

Lecture Notes in Computer Science 5170
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Otmane Ait Mohamed César Muñoz
Sofiène Tahar (Eds.)

Theorem Proving
in Higher Order Logics

21st International Conference, TPHOLs 2008
Montreal, Canada, August 18-21, 2008
Proceedings

13

Volume Editors

Otmane Ait Mohamed
Sofiène Tahar
Concordia University
Department of Electrical and Computer Engineering
1455 de Maisonneuve Blvd. W.
Montreal, Quebec, Canada H3G 1M8
E-mail: {ait,tahar}@encs.concordia.ca

César Muñoz
National Institute of Aerospace
100 Exploration Way Hampton, VA 23666, USA
E-mail: munoz@nianet.org

Library of Congress Control Number: 2008931582

CR Subject Classification (1998): F.4.1, I.2.3, F.3.1, D.2.4, B.6.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71065-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71065-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446179 06/3180 5 4 3 2 1 0

Preface

This volume constitutes the proceedings of the 21st International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2008), which was held
during August 18–21, 2008 in Montreal, Canada. TPHOLs covers all aspects
of theorem proving in higher order logics as well as related topics in theorem
proving and verification.

There were 40 papers submitted to TPHOLs 2008 in the full research cat-
egory, each of which was refereed by at least four reviewers selected by the
Program Committee. Of these submissions, 17 research papers and 1 proof pearl
were accepted for presentation at the conference and publication in this vol-
ume. In keeping with longstanding tradition, TPHOLs 2008 also offered a venue
for the presentation of emerging trends, where researchers invited discussion by
means of a brief introductory talk and then discussed their work at a poster
session. A supplementary proceedings volume was published as a 2008 technical
report of Concordia University.

The organizers are grateful to Michael Gordon and Steven Miller for agreeing
to give invited talks at TPHOLs 2008. As part of the celebration of the 20 years of
TPHOLs, TPHOLs 2008 invited tool developers and expert users to give special
tool presentations of the most representative theorem provers in higher order
logics. The following speakers kindly accepted our invitation and we are grateful
to them: Yves Bertot (Coq), Matt Kaufmann (ACL2), Sam Owre (PVS), Konrad
Slind (HOL), and Makarius Wenzel (Isabelle).

The TPHOLs conference traditionally changes continents each year to maxi-
mize the chances that researchers around the world can attend. TPHOLs started
in 1998 in the University of Cambridge as an informal users’ meeting for the
HOL system. Since 1993, the proceedings of TPHOLs have been published in
the Springer Lecture Notes in Computer Science series:

1993 (Canada) Vol. 780 2001 (UK) Vol. 2152
1994 (Malta) Vol. 859 2002 (USA) Vol. 2410
1995 (USA) Vol. 971 2003 (Italy) Vol. 2758
1996 (Finland) Vol. 1125 2004 (USA) Vol. 3223
1197 (USA) Vol. 1275 2005 (UK) Vol. 3603
1998 (Australia) Vol. 1479 2006 (USA) Vol. 4130
1999 (France) Vol. 1690 2007 (Germany) Vol. 4732
2000 (USA) Vol. 1869 2008 (Canada) Vol. 5170

We would like to thank our local organizers at Concordia University for their
help in many aspects of planning and running TPHOLs.

VI Preface

Finally, we thank our sponsors: Intel Corporation, Concordia University,
the National Institute of Aerospace, and the Regroupement Strategique en
Microsystèmes du Québec, for their support.

May 2008 Otmane Ait Mohamed
César Muñoz
Sofiène Tahar

Organization

Conference Chair

Sofiène Tahar (Concordia)

Program Chairs

Otmane Ait Mohamed (Concordia) César Muñoz (NIA)

Program Committee

Mark Aagaard (Waterloo) Peter Homeier (US DoD)
Hasan Amjad (Cambridge) Joe Hurd (Galois)
Yves Bertot (INRIA) Paul Jackson (Edinburgh)
Jens Brandt (Kaiserslautern) Thomas Kropf (Tübingen and Bosch)
Thierry Coquand (Chalmers) John Matthews (Galois)
Jean-Christophe Filliâtre (CNRS) Tobias Nipkow (München)
Ganesh Gopalakrishnan (Utah) Sam Owre (SRI)
Mike Gordon (Cambridge) Christine Paulin-Mohring (Paris Sud)
Hanne Gottliebsen (Queen Mary) Lawrence Paulson (Cambridge)
Jim Grundy (Intel) Klaus Schneider (Kaiserslautern)
Elsa Gunter (Urbana-Champaign) Konrad Slind (Utah)
John Harrison (Intel) Matthew Wilding (Rockwell Collins)
Jason Hickey (Caltech) Burkhart Wolff (ETH Zürich)

External Reviewers

Behzad Akbarpour Rebekah Leslie
Brian Aydemir Guodong Li
Yves Bertot Ulf Norell
Pierre Casteran Nicolas Oury
Lucas Dixon Grant Passmore
Catherine Dubois Raymond Richards
Bruno Dutertre Tarek Sadani
Amjad Gawanmeh Susmit Sarkar
Georges Gonthier Norbert Schirmer
Alexey Gotsman Murali Talupur
David Greve Andrew Tolmach
David Hardin Thomas Tuerk

VIII Organization

Nicolas Julien Christian Urban
Florent Kirchner Tjark Weber
Vladimir Komendantsky Makarius Wenzel
Alexander Krauss

Table of Contents

Invited Papers

Twenty Years of Theorem Proving for HOLs Past, Present and
Future (Invited Talk) . 1

Mike Gordon

Will This Be Formal? (Invited Talk) . 6
Steven P. Miller

Tutorials

A Short Presentation of Coq (Invited Talk) . 12
Yves Bertot

An ACL2 Tutorial (Invited Talk) . 17
Matt Kaufmann and J Strother Moore

A Brief Overview of PVS (Invited Talk) . 22
Sam Owre and Natarajan Shankar

A Brief Overview of HOL4 (Invited Talk) . 28
Konrad Slind and Michael Norrish

The Isabelle Framework (Invited Talk) . 33
Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow

Regular Papers

A Compiled Implementation of Normalization by Evaluation 39
Klaus Aehlig, Florian Haftmann, and Tobias Nipkow

LCF-Style Propositional Simplification with BDDs and SAT Solvers 55
Hasan Amjad

Nominal Inversion Principles . 71
Stefan Berghofer and Christian Urban

Canonical Big Operators . 86
Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca

A Type of Partial Recursive Functions . 102
Ana Bove and Venanzio Capretta

X Table of Contents

Formal Reasoning About Causality Analysis . 118
Jens Brandt and Klaus Schneider

Imperative Functional Programming with Isabelle/HOL 134
Lukas Bulwahn, Alexander Krauss, Florian Haftmann,
Levent Erkök, and John Matthews

HOL-Boogie—An Interactive Prover for the Boogie Program-Verifier . . . 150
Sascha Böhme, K. Rustan M. Leino, and Burkhart Wolff

Secure Microkernels, State Monads and Scalable Refinement 167
David Cock, Gerwin Klein, and Thomas Sewell

Certifying a Termination Criterion Based on Graphs, without
Graphs . 183

Pierre Courtieu, Julien Forest, and Xavier Urbain

Lightweight Separation . 199
Holger Gast

Real Number Calculations and Theorem Proving: Validation and Use
of an Exact Arithmetic . 215

David R. Lester

A Formalized Theory for Verifying Stability and Convergence of
Automata in PVS . 230

Sayan Mitra and K. Mani Chandy

Certified Exact Transcendental Real Number Computation in Coq 246
Russell O’Connor

Formalizing Soundness of Contextual Effects . 262
Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks, and
Iulian Neamtiu

First-Class Type Classes . 278
Matthieu Sozeau and Nicolas Oury

Formalizing a Framework for Dynamic Slicing of Program Dependence
Graphs in Isabelle/HOL . 294

Daniel Wasserrab and Andreas Lochbihler

Proof Pearls

Proof Pearl: Revisiting the Mini-rubik in Coq . 310
Laurent Théry

Author Index . 321

Twenty Years of Theorem Proving for HOLs

Past, Present and Future

Mike Gordon

The University of Cambridge Computer Laboratory
William Gates Building

15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom
Mike.Gordon@cl.cam.ac.uk,

http://wwww.cl.cam.ac.uk/~mjcg

1 Theorem Proving for HOLs?

There are two kinds of theorem provers for higher order logics: fully automatic
(e.g. TPS and Leo) and user guided (e.g. HOL4, HOL Light, ProofPower, Is-
abelle/HOL, Coq, Nuprl and PVS). All the user guided systems, except PVS,
are based on the LCF “fully expansive” approach invented by Robin Milner.
PVS evolved from a different tradition that doesn’t expand everything down to
primitive inferences.

The emphasis here is on user guided proof assistants, but future developments
in automatic higher order proof methods are likely to be incorporated into these
as the automatic methods available today are mainly propositional or first order.

2 From 1988 to 2008

Twenty years ago Nuprl was already going strong and HOL88 had just been
released. By the mid 1990s Coq, Isabelle/HOL, HOL Light, ProofPower and
PVS had arrived and mechanised proof in higher order logic was an active area,
already with many impressive applications. The following subsections are com-
ments on some of the major developments up to the present.

2.1 Automation

Early LCF-style proof assistants forced users to construct proofs by tedious
low-level steps such as explicit quantifier instantiation and Modus Ponens. It
was amazing that so much managed to get done this way. PVS introduced a
more automated proof development framework based on a few primitive powerful
methods. Theorem proving with PVS was much faster and easier than with
old style LCF systems, but soon LCF-style provers began to catch up using
derived rules that automated low level reasoning. Ideas were imported from
the automatic theorem proving community, such as resolution for first order
reasoning and decision procedures for specific theories like linear arithmetic.
These methods were programmed as “tactics” in ML. It had been thought that

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 1–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Gordon

one might never make fully-expansive automatic proof tools efficient enough,
but the art of tactic programming advanced very rapidly and remarkably good
performance was achieved. One can never have enough automation, and adding
more automatic proof methods will always be an active topic of research.

Although fully-expansive theorem proving made amazing advances, there are
cases where it is hard to achieve adequate performance, so linkups to external
solvers have been explored, e.g. for model checking, SAT and some decision pro-
cedures. Sometimes the solvers are regarded as oracles and their results trusted
and sometimes they are used to find proofs or counterexamples, which are then
replayed inside the proof assistant to retain the security of full expansiveness.
The efficiency/trust trade-offs of linking to external solvers is still an active area.

2.2 User Interfaces

Beginners approaching the early proof assistants derived from LCF were usually
not impressed by their command line user interfaces, especially if they were used
to graphical programming environments. This was regarded as an embarrassment
and several substantial efforts to create better user interfaces were undertaken in
the 1990s (I can think of three such projects at Cambridge alone). The resulting
GUIs never caught on: although they looked impressive in demos, the need to
manage multiple windows and access tools via menus got in the way for experts.
PVS introduced a middle ground between a raw command line and a full windows
style GUI. The PVS interface, built in emacs, was neither clunkily primitive or
got in the way of experts. This approach caught on and now the majority of proof
assistants support an emacs-based front-end. Both Coq and Isabelle/HOL have
interfaces based on Proof General, a generic front-end developed at Edinburgh
and implemented in emacs.

The distinction between procedural and declarative proof styles emerged dur-
ing the 1990s, partly through the discovery by the HOL community of the amaz-
ing Mizar proof checker. Attempts were made to duplicate the naturalness of
Mizar’s proof specification language within an LCF-style tactic framework. A
lasting trace of this is the Isar interface to Isabelle/HOL, though fragments of
the original “Mizar mode” experiments in HOL Light have propagated to other
HOL systems. It seems that a declarative style is well suited to textbook math-
ematics (which is where Mizar excelled). It is less clear how suited declarative
proof is to verification applications that need tightly-coupled combinations of
algorithmic and user-guided deduction. Some pure mathematics developments
(Four color and Jordan Curve theorems) have been done using the procedural
front ends of Coq and HOL Light, whilst others (sub-proofs of the Kepler con-
jecture) have been done using the declarative Isar front end to Isabelle/HOL.
Declarative proof has had a clear influence, but it hasn’t pushed aside the earlier
procedural proof-as-programming approaches.

2.3 Functional and Logic Programming

Higher order logic is based around the typed lambda-calculus and so its terms
can be viewed as functional programs. Proof assistants, especially Coq, have

Twenty Years of Theorem Proving for HOLs 3

developed a role as functional programming environments for creating ‘certified’
programs.

Functions in higher order logic are total, so functional programming inside proof
assistants can only create terminating programs, and thus proof of termination
is always necessary (though is often accomplished automatically). Partial func-
tions can be considered as single-valued relations, and all the main proof assistants
support inductive definitions of relations. In Isabelle/HOL these can then be effi-
ciently executed using ideas from logic programming. Programs in logic can either
be executed ‘securely’ by deduction or translated to external languages like ML or
Prolog when higher execution performance is needed. Some proof assistants have
imported functional software engineering ideas. For example, Isabelle/HOL and
PVS have versions of QuickCheck for debugging by testing.

Computation can be a very important part of proof. This has been especially
developed by Coq where there are impressive applications involving combinations
of proof and calculation linked by reflection principles (e.g. primality testing
using elliptic curves).

2.4 Theorem Prover as an Implementation Platform

Higher order logic can encode the semantics of many of the specification lan-
guages used in formal methods (e.g. Z, LCF, mu-calculus). Encodings of such
languages have been constructed and a methodology has evolved (e.g. “deep” and
“shallow” embedding). The LCF-style proof assistants provide an ML-based pro-
gramming environment for implementing tools like verification condition gener-
ators. However, the assurance provided by semantic embedding comes at a price:
the considerable effort needed to formalise and then mechanise the semantics.

Industrial verification tools, both for hardware and software, are usually imple-
mented by directly coding up algorithms in a raw programming language. Tools
built using semantic embedding implemented inside proof assistants largely re-
main as academic prototypes (an exception is ProofPower/Z, which provides
support for the Z specification language via semantic embedding in HOL and
has been successful in industrial applications).

2.5 Versions of Higher Order Logic

HOL4, HOL Light and ProofPower all use Church’s simple type theory extended
with the Hindley-Milner decidable polymorphic type discipline. Isabelle/HOL en-
hances this with Haskell-style type-classes to manage overloading in a system-
atic manner and locales for structuring theory developments. Certain kinds of
specification and reasoning about functional programs are hard to express using
Hindley-Milner polymorphism and there are substantial implementation experi-
ments in progress (HOL2P and HOL-Omega) to extend the Church simple type
system to increase expressive power whilst retaining tractability of type checking.

At the other end of the type simplicity spectrum lies Coq. This uses a non-
classical constructive logic based around propositions-as-types, so that type
checking is a core part of theorem proving rather than being a kind of decidable
static analysis as in the HOL systems.

4 M. Gordon

PVS adopts a middle ground: it has a classical logic, but with dependent
subtypes that need theorem proving for checking type correctness conditions.

It seems, however, that this diversity is less significant than one might think.
For example, the authors of a recent Coq paper say: “Using decidable types
and relying heavily on rewriting for our proofs gives a ‘classical’ flavour to our
development that is more familiar to what can be found in provers like Isabelle
or Hol than what is usually done in Coq”.

2.6 Impressive Proofs

The progress in complexity of what can be proved today compared with the
state-of-the-art in 1988 is quite stunning. Not only have enormously complex
pure mathematical theorems been proved (e.g. Four Color Theorem, Jordan
Curve Theorem, large developments in measure theory and multivariate real
analysis) but there have been very substantial applications to industrial exam-
ples (e.g. floating point verifications, processor correctness proofs, compiler ver-
ifications, formal analysis of aircraft flight safety rules). Although some of these
proofs took years, it has become clear that there is no fundamental problem in
proving pretty much anything: higher order logic appears capable of representing
both textbook mathematics and industrial scale formal models.

3 Future

Three things are particularly striking about the evolution of theorem proving
for higher order logics over the last 20 years:

1. differences between the various logics and proof methodologies are growing
less significant;

2. increases in automation are spectacular both through new kinds of automa-
tion and via links to external tools;

3. the mechanisation of pure mathematics has made stunning progress and is
not only driving proof method developments but also finding applications.

These will be continuing trends and point to directions for the future. It is
impossible to have any confidence in predicting what will actually happen, but
below are some thoughts on two particular challenges.

3.1 Library of Formalised Mathematics

It seems clear that cultural and historical pressures will prevent convergence to
a single theorem prover or logic. In the 1990s Larry Paulson and I had a funded
project called something like “Combining HOL and Isabelle”, but the systems
were not combined and there are still two proof assistants being developed at
Cambridge! The reason why the HOL and Isabelle developments didn’t merge
was, I think, not primarily technical but due to the hassle and cultural adjust-
ment needed in switching tools when there was no really compelling reason to

Twenty Years of Theorem Proving for HOLs 5

do so. Each tool development is a little community and merging communities is
hard. Besides not wanting to give up ones cosy sub-culture, there is hard work
involved in switching that isn’t on the critical path to immediate goals. A cur-
rent illustration is the ARM processor development in HOL4. We would like to
port this to other logics, particularly Isabelle/HOL and ACL2, but this will take
months, maybe more, and is hard to get off the ground as the work involved
is not at all alluring! It is not just that it is hard to merge tool communities,
it is not even clear that it is desirable. There is a certain amount of friendly
competition between different systems, and the process of reimplementing ideas
from system A into system B can lead to new ideas and improvements.

It would be wonderful for everyone to continue to use their favourite tools, but
somehow to be able to contribute to building a library of formalised mathematics,
both pure and applied. How can this dream be reconciled with the reality of
different HOL tool communities? This is surely a grand challenge problem whose
solution would benefit everyone. A possible solution: generate proof libraries in
some standard set theory?

3.2 Substantial Implementation Experiments Directly in Logic

Higher order logic is very expressive: its terms support functional and logic
programming, and maybe even imperative programming via monads. Proof as-
sistants can be used as implementation platforms, e.g. for implementing com-
pilers (the CompCert compiler from Clight to PowerPC and the Utah compiler
from HOL to ARM) and hardware synthesis (lots of work over the years). One
can even run compiled code inside a theorem prover: ACL2 has demonstrated
that formal processor models can be executed with performance not that much
less than that of C simulators. Thus, in principle, complete systems develop-
ments could be done inside a proof assistant, coding in higher order logic and
then compiling using certified execution of certified algorithms.

A challenge for the future is to go beyond academic scale examples and build a
significant system this way. The CLI Stack project in ACL2 was an early project
along these lines. Can higher order logic technology be the basis for a Stack 2.0
project?

4 Conclusion

Theorem proving for HOLs has made incredible progress in the last twenty years
and is now mature, powerful and poised for a golden age!

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 6–11, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Will This Be Formal?

Steven P. Miller*

Advanced Technology Center, Rockwell Collins,
400 Collins Rd NE, Cedar Rapids, Iowa 52498
spmiller@rockwellcollins.com

Abstract. While adding formal methods to traditional software development
processes can provide very high levels of assurance and reduce costs by finding
errors earlier in the development cycle, there are at least four criteria that should
be considered before introducing formal methods into a project. This paper de-
scribes five successful examples of the use of formal methods in the develop-
ment of high integrity systems and discusses how each project satisfied these
criteria.

Keywords: Formal methods, model checking, theorem proving, avionics.

1 Introduction

Adding formal methods to traditional software development processes can provide
very high levels of assurance and reduce costs by finding errors earlier in the devel-
opment cycle. However, to be successful there are at least four criteria that should be
considered before introducing formal methods into a project. This paper describes
five successful examples of the use of formal methods in industry and discusses how
each of the five projects satisfied these criteria.

2 Examples of the Successful Use of Formal Methods

This section describes five successful examples of the use of formal methods in the
development of high integrity systems. In three projects model checking was used to
verify the functional correctness of Simulink® models. In two projects theorem prov-
ing was used to verify security properties of microcode and source code.

2.1 FCS 5000 Flight Control System

One of the first applications of model checking at Rockwell Collins was to the mode
logic of the FCS 5000 Flight Control System [1]. The FCS 5000 is a family of Flight
Control Systems for use in business and regional jet aircraft. The mode logic determines

* This work was supported in part by the NASA Langley Research Center under contract NCC-01001 of

the Aviation Safety Program (AvSP), the Air Force Research Lab under contract FA8650-05-C-3564 of
the Certification Technologies for Advanced Flight Control Systems program (CerTA FCS) and the Air
Force Research Lab under the EISTS program Delivery Order 4.

 Will This Be Formal? 7

which lateral and vertical flight modes are armed and active at any time. While inher-
ently complex, the mode logic consists almost entirely of Boolean and enumerated types
and is written in Simulink. The mode logic analyzed consisted of five inter-related mode
transition diagrams with a total of 36 modes, 172 events, and 488 transitions.

Desired properties of the mode logic were formally verified using the NuSMV
model checker. To accomplish this, the Simulink models were automatically trans-
lated into NuSMV using a translation framework developed by Rockwell Collins and
the University of Minnesota. This same translation framework also optimized the
models for efficient analysis by the NuSMV BDD-based model checker.

Analysis of an early specification of the mode logic found 26 errors, seventeen of
which were found by the model checker. Of these 17 errors, 13 were classified by the
FCS 5000 engineers as being possible to miss by traditional verification techniques
such as testing and inspections. One was classified as being unlikely to be found by
traditional verification techniques.

2.2 ADGS-2100 Adaptive Display and Guidance System

One of the most complete examples of model checking at Rockwell Collins was the
analysis of the Window Manager logic in the ADGS-2100 Adaptive Display and
Guidance System [2]. The ADGS-2100 is a Rockwell Collins product that provides
the display management software for next-generation commercial aircraft. The Win-
dow Manager (WM) is a component of the ADGS-2100 that ensures that data from
different applications is routed to the correct display panel, even in the event of physi-
cal failure of one or more components.

Like the FCS 5000 mode logic, the WM is specified in Simulink and was verified
by translating it into NuSMV and applying the NuSMV model checker. While the
WM contains only Booleans and enumerated types, it is still quite complex. It is di-
vided into five main components that contain a total of 16,117 primitive Simulink
blocks that are grouped into 4,295 instances of Simulink subsystems. The reachable
state space of the five components ranges from 9.8 ×109 to 1.5× 1037 states.

Ultimately, 593 properties about the WM were developed and checked, and 98 er-
rors were found and corrected in early versions of the model. As with the FCS 5000
mode logic, this verification was done early in the design process while the design
was still changing. While the verification was initially performed by formal methods
experts, by the end of the project, the WM developers themselves were doing virtually
all the model checking.

2.3 Lockheed Martin Operational Flight Program

The Air Force Research Labs (AFRL) sponsored Rockwell Collins to apply model
checking to the Operational Flight Program (OFP) of an Unmanned Aerial Vehicle
developed by Lockheed Martin Aerospace as part of the CerTA FCS project [3]. The
OFP is an adaptive flight control system that modifies its behavior in response to
flight conditions. Phase I of the project concentrated on applying model checking to
portions of the OFP, specifically the Redundancy Management (RM) logic, which
were well suited to analysis with the NuSMV model checker. While relatively small
(the RM logic consisted of three components containing a total of 169 primitive

8 S.P. Miller

Simulink blocks organized into 23 subsystems, with reachable state spaces ranging
from 2.1 × 104 to 6.0 × 1013 states), they were replicated once for each of the ten con-
trol surfaces on the aircraft, making them a significant portion of the total OFP logic.

The verification of the RM logic took approximately 130 hours, with about half of
that time spent preparing the models to be verified, correcting the errors found, and
running the verification on the corrected models. A total of 62 properties were
checked and 12 errors were found and corrected.

In Phase II of this project, the translator framework was extended so that an SMT-
solver model checker could be used to verify portions of the numerically intensive
inner loop control components in the OFP model. This phase is just being completed
and will be reported on at a later date.

2.4 AAMP7G Intrinsic Partitioning

The AAMP7G is microprocessor developed by Rockwell Collins for use in its prod-
ucts. The AAMP7G provides high code density, low power consumption, long life
cycle, and is screened for the full military temperature range. In addition, the
AAMP7G includes a micro-coded separation kernel that provides MILS capability by
ensuring the separation of data at different security classification levels.

To formally verify the AAMP7G intrinsic partitioning mechanism, it was first nec-
essary to develop a formal description of what “data separation” means. This defini-
tion, now referred to as the GWV theorem, was specified as a formal property in the
language of the ACL2 theorem prover [4]. To prove that the GWV theorem was satis-
fied by the AAMP7G, the microcode implementing the security kernel was modeled
in ACL2 and the GWV theorem proven using the ACL2 theorem prover. To ensure
that the ACL2 model of the microcode truly specified the behavior of the microcode
on the AAMP7G, it was subjected to a painstaking code-to-spec review overseen by
the National Security Agency (NSA) [5].

In May of 2005, the AAMP7G was certified as meeting the EAL-7 requirements of
the Common Criteria as “… capable of simultaneously processing unclassified
through Top Secret Codeword information”.

2.5 Greenhills Integrity-178B Real Time Operating System

The Greenhills Integrity-178B Real Time Operating System implements an ARINC-
653 compliant APEX interface that has been certified to DO-178B Level A. It also
includes a security kernel written in C that ensures the separation of data at different
security classification levels.

To formally verify the Integrity-178B security kernel, the GWV specification of
data separation developed for the AAMP7G was generalized to the GWVr2 theorem
in order to describe the more dynamic scheduling managed by the OS [6]. As with the
AAMP7G, the separation kernel was modeled in ACL2 language and the GWVr2
theorem was proven using the ACL2 theorem prover. To ensure that the ACL2 model
of the C code truly specified the behavior of the Integrity-178B security kernel, it was
also subjected to a painstaking code-to-spec review overseen by the NIAP/NSA.

Formal verification of the Integrity-178B security kernel satisfied the U.S. Gov-
ernment Protection Profile for Separation Kernels in Environments Requiring High

 Will This Be Formal? 9

Robustness and the Common Criteria v2.3 EAL7 ADV requirements. Final certifica-
tion of the Integrity-178B is now pending completion of NSA penetration testing.

3 Requirements for the Successful Use of Formal Methods

This section identifies four criteria for the successful use of formal verification on a
problem and discusses how the examples described earlier satisfy these criteria.

3.1 Is the Problem Important?

While the cost of formal verification has been decreasing with the introduction of
more powerful computers and analysis tools, it is still unusual for it to be accepted as
an alternative to traditional verification techniques such as reviews and testing. To
provide value, formal methods have to either satisfy a need for assurance greater than
that provided by traditional means or have to reduce overall development costs by
finding errors earlier in the life cycle. In either case, the problem being addressed
should be inherently important.

This is the case for each of the examples cited earlier. The ADGS 2100 Window
Manager is part of a DO-178B Level A system that provides critical functionality on
Air Transport class aircraft. While the FCS 5000 Mode Logic is part of a DO-178B
Level C system, errors in its implementation are highly visible to pilots of the aircraft,
making the elimination of such errors very desirable. The Lockheed Martin Redun-
dancy Management Logic implements important fault tolerance mechanisms essential
for the correct operation of the UAV. Both the intrinsic partitioning mechanism of the
AAMP7 and the Green Hills Integrity-178B Real-Time OS needed to provide separa-
tion of security domains and to satisfy the Common Criteria.

3.2 Are High Fidelity Models Available for Analysis?

Unlike testing, which verifies the actual implementation of a system, formal verifica-
tion can only be applied to models of a system such as its design or code. While for-
mal verification will typically find many errors that testing will miss, the availability
of high fidelity models is critical for formal verification to be successful.

In each of the examples described earlier, high fidelity models were readily avail-
able or could be created at an acceptable cost. For the FCS 5000 Mode Logic, the
ADGS 2100 Window Manager, and the Lockheed Martin OFP, unambiguous, ma-
chine-readable Simulink models had been created by the designers and used to gener-
ate source code. These models were automatically translated into high fidelity models
for verification using the NuSMV and PROVER model-checkers.

In contrast, formal models of the AAMP7G microcode and the Greenhills Integrity-
178B security kernel were created by hand and verified through painstaking code-to-
spec reviews that were directly overseen by the NSA. While creation of these models
was expensive, the cost was acceptable in order to achieve the extremely high levels of
assurance required for certification.

10 S.P. Miller

3.3 Can the Properties of Interest be Stated Formally?

Even if a problem is inherently important, distilling the critical requirements into
mathematical relationships that can be formally verified is not always possible. For
the FCS 5000 Mode Logic, the ADGS 2100 Window Manager, and the Lockheed
Martin OFP, the main challenge was identifying all the properties to be verified. Usu-
ally, this was done by formalizing the existing requirements and through discussions
with the developers. Frequently, this process uncovered undocumented assumptions
and missing requirements that had to be resolved through discussion.

In contrast, the challenge in formalizing the separation requirements for the
AAMP7G intrinsic partitioning and the Greenhills Integrity-178B security kernel was
developing a precise statement of the abstract concept of separation. While this was
ultimately stated as a single ACL2 theorem (the GWV theorem for the AAMP7G and
the GWVr2 theorem for the Integrity-178B security kernel), the process took several
months of discussion and refinement.

3.4 Are the Right Analysis Tools Available?

The final consideration is whether the right analysis tools are available for the prob-
lem. To be effective, the formal verification tools must be able to verify the properties
of interest, produce results sufficiently quickly, produce results at acceptable cost, and
only require expertise that their users can be expected to know or acquire. Typically,
the capability of the analysis tools will play as large a role in selecting which prob-
lems will be formally verified as will the inherent need for high assurance.

For the FCS 5000 Mode Logic, the ADGS 2100 Window Manager, and the first
phase of the Lockheed Martin OFP, the models all had state spaces of less than 1050
reachable states, making them well suited for verification with BDD-based model
checkers. Even so, the success of all these projects depended on the ability to auto-
matically generate high fidelity models that were optimized for analysis. This was
especially true for the ADG-2100 Window Manager where the design models were
being revised daily. If the analysis had taken more than a few hours, the project would
not have been a success. In the second phase of the Lockheed Martin OFP analysis,
the numerically intensive nature of the problem required the use of the Prover model
checker. While successful, the greater expertise required to use an SMT-solver instead
of a BDD-based model checker poses real challenges to the transfer of this technology
to production developments.

Verification of the security separation provided by the AAMP7G and the Green-
hills Integrity-178B security kernel was performed using the ACL2 theorem prover.
These efforts took several months and significant expertise to complete. Even so, the
project was highly successful due to the inherent importance of the problem, the sta-
bility of the AAMP7G microcode and Integrity-178B source code, and the availability
of experts to formulate the formal properties and complete the proofs.

4 Future Directions

This paper has briefly described five industrial applications of formal methods and identi-
fied some of the main reasons those projects were successful. While the availability of

 Will This Be Formal? 11

the right tools played a key role in each example, there are still many directions for re-
search that could make formal methods even more useful. An obvious need is to extend
the domain of models for which model checking is feasible to include numerically inten-
sive models with transcendental functions. While SMT-solvers hold great promise, there
may be difficulty in getting practicing engineers to use them on a routine basis. Industrial
users could also use help in determining when they have an optimal set of properties.
Also valuable would be a sound basis for determining what testing can be replaced by
analysis. Finding ways to compose the verification of subsystems to verify entire systems
will be essential to cope with the increasing size of digital systems. Techniques for mod-
eling and verifying asynchronous systems using message passing is another area of need.

References

1. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal Verification of
Flight Critical Software. In: AIAA Guidance, Navigation and Control Conference and Ex-
hibit, AIAA-2005-6431, American Institute of Aeronautics and Astronautics (2005)

2. Whalen, M., Innis, J., Miller, S., Wagner, L.: ADGS-2100 Adaptive Display & Guidance
System Window Manager Analysis, CR-2006-213952, NASA (2006)

3. Whalen, M., Cofer, D., Miller, S., Krogh, B., Storm, W.: Integration of Formal Analysis
into a Model-Based Software Development Process. In: 12th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2007), Berlin, Germany (2007)

4. Greve, D., Wilding, M., Vanfleet, W.M.: A Separation Kernel Formal Security Policy. In:
Fourth International Workshop on the ACL2 Prover and Its Applications (ACL2-2003)
(2003)

5. Greve, D., Richards, R., Wilding, M.: A Summary of Intrinsic Partitioning Verification. In:
Fifth International Workshop on the ACL2 Prover and Its Applications (ACL2-2004)
(2004)

6. Greve, D., Wilding, M., Richards, R., Vanfleet, W.M.: Formalizing Security Policies for
Dynamic and Distributed Systems. In: Systems and Software Technology Conference
(SSTC 2005), Utah State University (2005)

A Short Presentation of Coq

Yves Bertot

INRIA Sophia Antipolis Méditerranée

1 Introduction

The Coq proof assistant has been developed at INRIA, Ecole Normale Supérieure
de Lyon, and University of Paris South for more than twenty years [6]. Its the-
oretical foundation is known as the “Calculus of Inductive Constructions” [4,5].
Versions of the system were distributed regularly from 1989 (version 4.10). The
current revision is 8.1 and a revision 8.2 is about to come out. This 8th gen-
eration was started in 2004, at the time when a radical change in syntax was
enforced and a textbook [2] was published. A more complete historical overview,
provided by G. Huet and C. Paulin-Mohring, is available in the book foreword.

The calculus of Inductive constructions is a variant of typed lambda-calculus
based on dependent types. Theorems are directly represented by terms of the
lambda-calculus, in the same language that is also used to describe formulas and
programs. Having all elements of the logic at the same level makes it possible to
mix computation and theorem proving in productive ways.

2 The Gallina Specification Language

2.1 Types and Formulas

In the Coq programming language, types can express very precise specifications,
like “a function that takes as input an even number and produces as output a
natural number that is the half of the input”. With a simple type as in Haskell or
ML, the type can only be described as “a function that takes as input a number
and produces as output a number”.

To describe the information that the output satisfies a given relation with the
input, we need to add a new notation to the typing language. For instance, if the
relation “half x y” means “x is the half of y”, then we need to have a typing
notation to express that the function input will be named y. In Coq, this is given
by the “forall” notation. Another notation makes it possible to write “{x :
nat | half x y}” to describe a type where all elements are pairs, where the
first component is a natural number, and the second component is a proof that
this number is the half of y. Thus, if we also assume that the predicate even y
means “y is even”, we can write the specification for the function we described
in the previous paragraph as

forall y: nat, even y -> {x : nat | half x y}

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 12–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Short Presentation of Coq 13

This actually is the type of a function that takes two arguments as inputs: the
first argument is a natural number, the second argument is a proof that this
number is even. The result of this function is a pair where the first component
is a number and the second component is a proof that this number is the half
of the input. The dependency between the first input, the proof on this input
and the output is apparent in the reuse of the name y at various places in the
specification. Thus, we can mix concrete data (like y and x) and more immaterial
proofs about this data. Theorems are just fully specified functions like the one
above: they are distinguished only by the fact that they return a proof.

The distinction between functions as programs and functions as theorems is
blurred, so that the function type that we wrote explicitely above can also be read
as “for every y, if y is even, then there exists a x so that half x y holds.” When
a function type is read as a logical formula, the “forall” keyword can really be
read as a universal quantification and the arrow “->” can really be read as an
implication. This correspondance is known as the Curry-Howard isomorphism.
In its pure form, the logical setting is restricted with respect to the logical setting
of HOL or Isabelle/HOL: some facts that would be taken for granted do not hold.
Important examples are the excluded middle (any proposition is either true or
false) and extensionality (two functions that coincide on every input are equal).
The advantage of working in this fragment of logic is that any proof of existence
always contains a constructive process. This is used for the extraction tool, which
makes it possible to derive programs in functional programming languages from
formal proofs [12,11]. However, users can also require a package with the missing
axioms to get full classical logic.

2.2 Inductive Types

Users can define new types using the inductive type capability. An inductive type
is given by providing simultaneously a type or a type family and canonical ways
to construct elements of this type. For instance, the type of natural number is
not primitive in the Coq logic. It is rather defined as an inductive type nat with
two constructors.

Inductive nat : Set := O | S : nat -> nat.

The type that is actually defined is the minimal solution of an “abstract equa-
tion” between types. This is reflected by an associated inductive principle named
nat ind that is generated automatically from the definition.

The same syntax can be used to define type families, i.e., types that are
indexed over another type. For instance, the notion of even number can be
described as the following inductive type:

Inductive even : nat -> Prop :=
e0 : even 0

| e2 : forall n, even n -> even (S (S n)).

This definition defines even as the minimal property that is satisfied for 0 and
gets inherited from n to n+2. It is interesting that the type even 1 cannot contain
an element, and this is used to express that even 1 is logically false.

14 Y. Bertot

Defining propositions as inductive types is very powerful and actually all logi-
cal connectives apart from universal quantification and implication are described
using inductive types. This also includes equality, which thus does not benefit
from a specific treatement.

Coq also provides facilities to define coinductive types. These types are not
minimal solutions to type equations but maximal solutions. In practice, coin-
ductive types can be used to define potentially infinite datatypes, like infinite
lists and recursive functions for these datatypes. Computation with these infinite
values is supported through lazy evaluation.

2.3 Expressions, Functions, and Proofs

Functions in Coq are written in a style that is very similar to the style that is
available in functional programming languages. Anonymous functions are writ-
ten “fun x => e” and function application is written by simple juxtaposition,
parentheses being added only to disambiguate applications. Numbers receive a
specific treatement, with a notion of scope to help work with natural numbers,
integers, or real numbers, and the usual infix notations for elementary opera-
tions. To compute on inductive types, the language provides a pattern-matching
construct that is very close to the one found in Ocaml. The following example
shows a use of Coq’s syntax to describe a simple recursive function.

Fixpoint div2 (n:nat) : nat :=
match n with S (S p) => S (div2 p) | _ => 0 end.

However, pattern-matching constructs may sometimes be dependently typed: each
branch returns a value in a different type, which depends on the pattern being
recognized. This dependent pattern-matching is very powerful and makes it pos-
sible to show that some cases cannot occur.

Thus, the Coq system provides a programming language that makes it pos-
sible to perform most kinds of side-effect-free functional programming. Several
kinds of recursive definitions are supported: the first kind is structural recursion,
the second is well-founded recursion. Structurally recursive functions have the
characteristic that they can be executed directly inside Coq. A special atten-
tion was devoted to the efficiency of in-system execution, so that executing a
function inside Coq often runs with the same speed as in a “byte-code” execu-
tion using Ocaml, which means only one order of magnitude slower than exe-
cuting native code. Coq also provides an extraction feature, where algorithms
from the calculus of constructions are translated to programs in conventional
functional programming languages. Extracted programs can then be compiled
efficiently.

A recent extension to Coq makes it possible to define simultaneously a func-
tion and various tools to reason about this function [1]. This command, known
as the Function command also attempts to smoothe the difference between
structurally recursive functions and well-founded recursive functions. Discussions
on user mailing-lists indicate that this approach makes the system easier for
newcomers.

A Short Presentation of Coq 15

Coq is now used as the main development tool for the the CompCert compiler,
a certified compiler for a large subset of the C language [10]. In the long run,
this effort should lead to a completely formally verified production chain from
coq specifications to binary code.

3 Goal Directed Proof

Proofs in Coq can be constructed directly, by composing functions that repre-
sent theorems. However, it is often much easier to perform goal-directed proof
where a statement is first proposed to the system and then decomposed in sim-
pler statement using tactics, following the LCF tradition. A language with basic
tactics is provided, with a variety of composition operators: sequence, alterna-
tion, etc. Users can define new tactics using a specific language known as Ltac.
They can also use directly the programming language provided in the calculus
of constructions to support their own proof procedures.

A collection of automatic proof procedures are provided for a variety of proof
problems: equalities between polynomial or fractional formulas (ring or field),
inequations between linear formulas (omega for integers and fourier for real
numbers), automatic proof in first-order logic, incomplete resolution of systems
of inequation between polynomial formulas using sums-of-squares [3], as sug-
gested by [9], etc.

4 The Reflection Feature

An important feature of the Coq system is that the algorithms that are described
using the calculus of constructions can also be run directly in the system to solve
some proof problems. In a typical application, a data-type is defined to describe
abstractly the formulas manipulated in some class of proof problem, a function
is described to compute on this data-type, and a theorem is proved about this
function (for instance, if the function’s target type is a boolean value, one as-
serts that when this boolean result is true, then some property holds for the
input). The new theorem is then used directly to reason on arbitrary instances
of the proof problem. The proof process involves a computation of the function.
This feature relies on efficient in-system computation of structurally recursive
functions. The tactic ring (to solve equations between polynomial formulas) is
a good example of a proof procedure relying on this reflective approach.

The solution of the four-colour theorem by G. Gonthier [7] makes an intensive
use of this approach. In that proof, two levels of reflection are used. On the one
hand, a large procedure is defined to cover the collection of cases that need to
be verified mechanically. On the other hand, the type of boolean values is used
directly to represent logical truth value in a systematic way, so many small steps
of logical reasoning can also be handled using functional evaluation. This relies
on an extension of the Coq system known as small-scale reflection [8].

16 Y. Bertot

5 Sharing Proofs and Results

The Coq user community shares questions and announcements through a mail-
ing list, known as coq-club and a library of user contributions is maintained
as a companion to the coq distributions. Pointers are available at the address
coq.inria.fr.

References

1. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-
sive functions: a practical tool for the coq proof assistant. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

2. Bertot, Y., Castéran, P.: Interactive theorem proving and program development,
Coq’art: the calculus of inductive constructions. Texts in Theoretical Computer
Science: an EATCS series. Springer, Heidelberg (2004)

3. Besson, F.: Fast reflexive arithmetic tactics: the linear case and beyond. In:
Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.
Springer, Heidelberg (2007)

4. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76 (1988)

5. Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P.,
Mints, G. (eds.) COLOG 1988. LNCS, vol. 417. Springer, Heidelberg (1990)

6. Dowek, G., Felty, A., Herbelin, H., Huet, G., Murthy, C., Parent, C., Paulin-
Mohring, C., Werner, B.: The Coq Proof Assistant User’s Guide. INRIA, Version
5.8 (May 1993)

7. Gonthier, G.: A computer-checked proof of the four colour theorem (2004),
http://research.microsoft.com/∼gonthier/4colproof.pdf

8. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the coq sys-
tem. Technical Report 6455, Centre Commun INRIA Microsoft fresearch (2008),
http://hal.inria.fr/intria/00258384

9. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

10. Leroy, X.: Formal certification of a compiler back-end, or programmin a compiler
with a proof assistant. In: Principles of Programming Languages (POPL 2006).
ACM Press, New York (2006)

11. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646. Springer, Heidelberg (2003)

12. Paulin-Mohring, C., Werner, B.: Synthesis of ML programs in the system Coq.
Journal of Symbolic Computation 15, 607–640 (1993)

coq.inria.fr
http://research.microsoft.com/~gonthier/4colproof.pdf
http://hal.inria.fr/intria/00258384

An ACL2 Tutorial

Matt Kaufmann and J Strother Moore

Department of Computer Sciences, University of Texas at Austin,
Taylor Hall 2.124, Austin, Texas 78712

{kaufmann,moore}@cs.utexas.edu

Abstract. We describe a tutorial that demonstrates the use of the ACL2
theorem prover. We have three goals: to enable a motivated reader to
start on a path towards effective use of ACL2; to provide ideas for other
interactive theorem prover projects; and to elicit feedback on how we
might incorporate features of other proof tools into ACL2.

1 Introduction

The name “ACL2” [14] stands for “A Computational Logic for Applicative Com-
mon Lisp” and refers to a functional programming language, a formal logic, and
a mechanized proof system. It was developed by the authors of this paper, with
early contributions by Bob Boyer, and is the latest in the line of “Boyer-Moore”
theorem provers [2,3] starting with the 1973 Edinburgh Pure Lisp Prover’ [1].

The ACL2 logic and programming language are first-order and admit total
recursive function definitions, and are based on a non-trivial purely functional
subset of the Common Lisp [20] programming language. Thus, ACL2 can be built
on many Lisp platforms. We have extended this subset in some important ways,
in no small part because ACL2 is written primarily in itself! Extensions include
additional primitives; a program mode that avoids proof obligations; a state with
applicative semantics supporting file I/O and global variables; and applicative
property lists and arrays with efficient under-the-hood implementations.

This extended abstract describes a one-hour tutorial, not presented here, but
accessible from the “demos” link on the ACL2 home page [14]. Our ambitious
goal is to create effective ACL2 users. Of course, no such system can be absorbed
deeply in just one hour, so we point to useful documentation and references.
Our focus on demos and references suits a second and probably more important
goal of this talk, given that most in our audience will already be committed to
their favorite theorem prover: To provide a sense of ACL2 interaction that could
provide ideas for other interactive theorem prover projects. Conversely, we hope
that this introduction to ACL2 will stimulate suggestions for how to improve
ACL2 by incorporating ideas from other proof tools.

2 About ACL2

We invite the reader to browse the ACL2 web pages starting with the home
page [14], to find: papers on applications and on foundations; tutorials and
demos; documentation; mailing list pages; and other useful information.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 17–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 M. Kaufmann and J S. Moore

The remaining sections summarize a few ACL2 demos and ACL2 features that
they illustrate. In those demos we will refer to sections of the online hypertext
user’s manual [16] with the notation “see documentation”. This note skips the
logical foundations [12,13], focusing instead on the use of ACL2. We conclude
this section with a few words about how the ACL2 proof engine attempts an
individual proof and how ACL2 supports interactive proof development.

Figure 1 shows the ACL2 proof engine as an orchestrated collection of auto-
mated tactics, including a simplifier that incorporates conditional congruence-
based rewriting as well as decision procedures.

Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

Fig. 1. The ACL2 Waterfall, highlighting the Simplifier

Proof attempts often fail at first! Figure 2 illustrates user interaction with
ACL2. The user submits a definition or theorem, which ACL2 attempts to prove
using definitions and rules stored in the logical world, a database that includes
rules stored from definitions and theorems. If the attempt succeeds, then ACL2
makes a corresponding extension to its logical world. Otherwise, ACL2 provides
output that can suggest lemmas to prove, and it also offers a variety of other
proof debugging tools [15]. Ultimately, a completed proof may be checked by
certifying the resulting books: input files of events, in particular definitions and
proved theorems. Books can be developed independently and combined into
libraries of rules that are valuable for automating future proof attempts.

3 Demo: Basics of Interaction with ACL2

This demo develops a proof that for a recursively-defined notion of permutation,
the reverse of a list is a permutation of the list. We illustrate how to use ACL2

An ACL2 Tutorial 19

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
Gates

Arith Vectors

prover

proposed definitions
conjectures and
advice

theorem

Fig. 2. Basic ACL2 Architecture

interactively, specifically highlighting several aspects of using ACL2. We use a
shell running under Emacs, but an Eclipse-based interface is available [7].

– Top-downproof development (see the-method [11]),using simplification check-
points to debug proof failures

– Helpful proof automation, in particular conditional rewriting with respect
to equivalence and congruence relations and a loop-stopper heuristic

– Library development and local scopes
– The proof-checker goal manager

4 Demo: A JVM Model

Next, we demonstrate the so-called M5 model of the Java Virtual Machine
(JVM). In the process we illustrate several aspects of ACL2:

– Library re-use via include-book
– Namespace support through Lisp packages
– Efficient evaluation supporting simulation of models
– Lisp macros, providing user-defined syntax

5 Demo: Proof Debugging and Theory Management

This short demo shows how ACL2 can help to identify rules that slow it down.

– Management of theories (disabling and enabling rules)
– Helpful suggestions from the tool
– Accumulated-persistence for statistics on rule use
– DMR (Dynamic Monitoring of the Rewrite stack)

20 M. Kaufmann and J S. Moore

6 Concluding Remarks

Below is a partial list of useful ACL2 features not mentioned above, many of
them requested by users. For more about ACL2, see the home page [14].

– a primitive for user-installed executable counterparts [9]
– proof control [10], including user-installed metatheoretic simplifiers, user-

supplied syntactic conditions for rewrite rules, and dynamically computed
hints

– traditional tactics (macro-commands) for the proof-checker
– partially-defined functions (see encapsulate) and, mimicking second-order

logic, functional instantiation [5,13]
– a defpun utility [18] for defining non-terminating tail-recursive functions,

built on top of ACL2 with macros
– capabilities for system-level control, such as user-defined tables, state with

applicative semantics, and an extended macro capability (make-event) useful
in defining templates for creating events

– guards, which may be viewed as a general, semantic replacement for types
– many modes and switches (see switches-parameters-and-modes)
– hooks to external tools [17], built on a trust tag mechanism (defttag) [6]
– experimental extensions others have initiated, to support:

• Real numbers (through non-standard analysis) [8]
• Hash cons, function memoization, and applicative hash tables [4]
• Parallel evaluation [19]

– more debugging tools, e.g. to trace or to inspect the rewrite stack
– diverse tools for querying the logical database (see history)
– quantification via Skolemization (see defun-sk)

Acknowledgements. This material is based upon work supported by DARPA
and the National Science Foundation (NSF) under Grant No. CNS-0429591 and
also NSF grant EIA-0303609. We also thank Sandip Ray for helpful feedback on
a preliminary version of this paper.

References

1. Boyer, R.S., Moore, J S.: Proving theorems about pure lisp functions. JACM 22(1),
129–144 (1975)

2. Boyer, R.S., Moore, J S.: A Computational Logic. Academic Press, NY (1979)

3. Boyer, R.S., Moore, J S.: A Computational Logic Handbook. Academic Press,
London (1997)

4. Boyer, R.S., Hunt Jr., W.A.: Function memoization and unique object represen-
tation for ACL2 functions. In: Proceedings of the Sixth International Workshop
on the ACL2 Theorem Prover and Its Applications, pp. 81–89. ACM, New York
(2006)

An ACL2 Tutorial 21

5. Boyer, R.S., Goldschlag, D.M., Kaufmann, M., Moore, J S.: Functional instanti-
ation in first-order logic. In: Lifschitz, V. (ed.) Artificial Intelligence and Math-
ematical Theory of Computation: Papers in Honor of John McCarthy, pp. 7–26.
Academic Press, London (1991)

6. Dillinger, P., Kaufmann, M., Manolios, P.: Hacking and extending ACL2. In: ACL2
Workshop 2007, Austin, Texas (November 2007),
http://www.cs.uwyo.edu/∼ruben/acl2-07/

7. Dillinger, P., Manolios, P., Moore, J S., Vroon, D.: ACL2s: The ACL2 Sedan.
Theoretical Computer Science 174(2), 3–18 (2006)

8. Gamboa, R., Kaufmann, M.: Non-Standard Analysis in ACL2. Journal of Auto-
mated Reasoning 27(4), 323–351 (2001)

9. Greve, D.A., Kaufmann, M., Manolios, P., Moore, J S., Ray, S., Ruiz-Reina, J.L.,
Sumners, R., Vroon, D., Wilding, M.: Efficient execution in an automated rea-
soning environment. Journal of Functional Programming 18(1), January 3–18,
2008; Tech. Rpt. TR-06-59, Dept. of Computer Sciences, Univ. of Texas, Austin,
http://www.cs.utexas.edu/ftp/pub/techreports/tr06-59.pdf

10. Hunt Jr., W.A., Kaufmann, M., Krug, R., Moore, J S., Smith, E.: Meta reasoning
in ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
163–178. Springer, Heidelberg (2005)

11. Kaufmann, M.: Modular proof: The fundamental theorem of calculus. In: Kauf-
mann, M., Manolios, P., Moore, J S. (eds.) Computer-Aided Reasoning: ACL2
Case Studies, Boston, MA., pp. 75–92. Kluwer Academic Publishers, Dordrecht
(2000)

12. Kaufmann, M., Moore, J S.: A precise description of the ACL2 logic. In: Dept. of
Computer Sciences, University of Texas, Austin (1997), http://www.cs.utexas.
edu/users/moore/publications/km97a.ps.gz

13. Kaufmann, M., Moore, J S.: Structured Theory Development for a Mechanized
Logic. Journal of Automated Reasoning 26(2), 161–203 (2001)

14. Kaufmann, M., Moore, J S.: The ACL2 home page. In: Dept. of Computer Sci-
ences, University of Texas, Austin (2008), http://www.cs.utexas.edu/users/
moore/acl2/

15. Kaufmann, M., Moore, J S.: Proof Search Debugging Tools in ACL2. In: Boulton,
R., Hurd, J., Slind, K. (eds.) Tools and Techniques for Verification of System
Infrastructure, A Festschrift in honour of Prof. Michael J. C. Gordon FRS, Royal
Society, London (March 2008), http://www.ttvsi.org/

16. Kaufmann, M., Moore, J S.: The ACL2 User’s Manual. In: Dept. of Computer
Sciences, University of Texas, Austin (2008), http://www.cs.utexas.edu/users/
moore/acl2/#User’s-Manual

17. Kaufmann, M., Moore, J S., Ray, S., Reeber, E.: Integrating external deduction
tools with ACL2. In: Benzmueller, C., Fischer, B., Sutcliffe, G. (eds.) Proceedings of
the 6th International Workshop on Implementation of Logics (IWIL 2006). CEUR
Workshop Proceedings, vol. 212, pp. 7–26 (2006); The Journal of Applied Logic
(to appear)

18. Manolios, P., Moore, J S.: Partial functions in ACL2. Journal of Automated Rea-
soning 31(2), 107–127 (2003)

19. Rager, D.L.: Adding parallelism capabilities to ACL2. In: Proceedings of the Sixth
International Workshop on the ACL2 Theorem Prover and its applications, pp.
90–94. ACM Press, New York (2006)

20. Steele Jr., G.L.: Common Lisp The Language, 2nd edn. Digital Press (1990)

http://www.cs.uwyo.edu/~ruben/acl2-07/
http://www.cs.utexas.edu/ftp/pub/techreports/tr06-59.pdf
http://www.cs.utexas.
edu/users/moore/publications/km97a.ps.gz
http://www.cs.utexas.edu/users/
moore/acl2/
http://www.ttvsi.org/
http://www.cs.utexas.edu/users/
moore/acl2/#User's-Manual

A Brief Overview of PVS

Sam Owre and Natarajan Shankar�

Computer Science Laboratory,
SRI International

Abstract. PVS is now 15 years old, and has been extensively used in re-
search, industry, and teaching. The system is very expressive, with unique
features such as predicate subtypes, recursive and corecursive datatypes,
inductive and coinductive definitions, judgements, conversions, tables,
and theory interpretations. The prover supports a combination of deci-
sion procedures, automatic simplification, rewriting, ground evaluation,
random test case generation, induction, model checking, predicate ab-
straction, MONA, BDDs, and user-defined proof strategies. In this paper
we give a very brief overview of the features of PVS, some illustrative
examples, and a summary of the libraries and PVS applications.

1 Introduction

PVS is a verification system [17], combining language expressiveness with auto-
mated tools. The language is based on higher-order logic, and is strongly typed.
The language includes types and terms such as: numbers, records, tuples, func-
tions, quantifiers, and recursive definitions. Full predicate subtype is supported,
which makes typechecking undecidable. For example, division is defined such
that the second argument is nonzero, where nonzero is defined:

nonzero_real: TYPE = {r: real | r /= 0}

Note that this means PVS is total; partiality is only supported via subtyping.
Dependent types for records, tuples, and function types is also supported. Here
is a record type (introduced with [# #]) representing a finite sequence, where
the seq is an array with domain depending on the length.

finseq: TYPE = [# length: nat, seq: [below[length] -> T] #]

Beyond this, the PVS language has structural subtypes (i.e., a record that
adds new fields to a given record), dependent types for record, tuple, and func-
tions, recursive and corecursive datatypes, inductive and coinductive definitions,
theory interpretations, and theories as parameters, conversions, and judgements
that provide control over the generation of proof obligations. Specifications are

� This material is based on work performed at SRI and supported by the National
Science Foundation under Grants No. CCR-ITR-0326540 and CCR-ITR-0325808.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 22–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Brief Overview of PVS 23

given as collections of parameterized theories, which consist of declarations and
formulas, and are organized by means of importings.

The PVS prover is interactive, but with a large amount of automation built
in. It is closely integrated with the typechecker, and features a combination of
decision procedures, BDDs, automatic simplification, rewriting, and induction.
There are also rules for ground evaluation, random test case generation [11],
model checking, predicate abstraction, and MONA. The prover may be extended
with user-defined proof strategies.

PVS has been used as a platform for integration. It has a rich API, making it
relatively easy to add new proof rules and integrate with other systems. Examples
of this include the model checker, Duration Calculus [19], MONA [12], Maple [1],
Ag [14], and Yices. The system is normally used through a customized Emacs
interface, though it is possible to run it standalone (PVSio does this). PVS is
open source, and is available at http://pvs.csl.sri.com. PVS is a part of
SRI’s Formal Methods Program [6].

In the following sections we will describe a basic example, give a brief descrip-
tion of some more advanced examples, describe some of the available libraries,
and finally describe some of the applications.

2 PVS Examples

Ordered Insertion Ordered binary trees are a fundamental data structure used to
represent more abstract data structures such as sets, multisets, and associative
arrays. The basic idea is that the values in the nodes are totally ordered, and
the values of the nodes on the left are less than the current node, which in turn
is less than those on the right. The first step is to define a binary tree. In PVS,
this can be specified using a datatype.

binary_tree[T: TYPE]: DATATYPE BEGIN
leaf: leaf?
node(val: T, left, right: binary_tree): node?

END binary_tree

A binary tree is constructed from the leaf and node constructors; the node
constructor takes three arguments, and has accessors val, left, and right, and
recognizers leaf? and node?. This is all parameterized by the type T. Here is
an example creating a binary tree where the type T is int:

When this is typechecked by PVS, theories are created that include many
axioms such as extensionality and induction, and various mapping and reduction
combinators [17].

The theory of ordered binary trees is parameterized with a type and a total or-
dering, an ordered? predicate is defined, and an insert operation specified. The
main theorem states that if a tree is ordered, then the tree obtained after insert-
ing an element is also ordered. This is naturally an inductive argument. In the ac-
tual specification available at http://pvs.csl.sri.com/examples/datatypes/
datatypes.dmp a helper lemma is used to make the induction easier. The proof

http://pvs.csl.sri.com
http://pvs.csl.sri.com/examples/datatypes/datatypes.dmp
http://pvs.csl.sri.com/examples/datatypes/datatypes.dmp

24 S. Owre and N. Shankar

then is quite simple; both lemmas use induct-and-rewrite!, including the
helper lemma as a rewrite rule in the proof of the main lemma.

Inductive and Coinductive Definitions. PVS provides a mechanism for defining
inductive and coinductive definitions. A simple example of an inductive definition
is the transitive closure of an arbitrary relation R.

TC(R)(x, y): INDUCTIVE bool =
R(x, y) OR (EXISTS z: R(x, z) AND TC(R)(z, y))

This is simply a least fixedpoint with respect to a given domain of elements and
a set of rules, which is well-defined if the rules are monotonic, by the well known
Knaster-Tarski theorem. Under these conditions the greatest fixedpoint also ex-
ists and corresponds to coinductive definitions. Inductive and coinductive defin-
itions have induction principles, and both must satisfy additional constraints to
guarantee that they are well defined.

Corecursive Datatypes. The ordered binary tree example is based on an induc-
tively defined datatype, which is defined inductively and describes an algebra,
as described by Jacobs and Rutten [7]. It is also possible to define codatatypes,
corresponding to coalgebras. The simplest codatatype is the stream:

stream[T: TYPE]: CODATATYPE BEGIN
cons(first:T, rest:stream): cons? END stream

This describes an infinite stream. Instead of induction, properties of coalgebras
are generally proved using bisimulation, which is automatically generated for
codatatypes, as induction is for datatypes.

colist[T: TYPE]: CODATATYPE BEGIN
null: null?
cons(first: T, rest: colist): cons?

END colist

The colist example abovce looks like the list datatype, but includes both finite
and infinite lists. This is often useful in specifications; for example, to describe a
machine that may run forever, or may halt after some steps. Without coalgebras,
the usual approaches are to model halting as stuttering, or to model it as a union
type—both of which have various drawbacks.

Theory Interpretations. PVS has support for interpreting one theory in terms of
another. This allows uninterpreted types and constants to be interpreted, and
the axioms of the uninterpreted theory are translated into proof obligations,
thus guaranteeing soundness. Theory interpretations are primarily used for re-
finement and to prove consistency for an axiomatically defined theory. PVS
theory interpretations are described in the theory interpretations report [17].

A Brief Overview of PVS 25

Model Checking and Predicate Abstraction. PVS includes an integrated model
checker that is based on the µ-calculus.1. To use the model checker, a finite
transition system must be defined with an initial predicate and a transition
relation. The PVS prelude provides CTL temporal operators, as well as several
definitions of fairness. Examples making use of the model checker may be found
in the report [13], which also describes the PVS table construct in some detail.

Model checking requires finite (and usually small) domains, but real systems
are generally not finite. Thus in order to apply model checking to a system one
must first map it to a finite abstraction. One powerful technique for doing this
semi-automatically is predicate abstraction [16], which has been integrated into
the PVS theorem prover as the abstract rule.
Ground Evaluation and PVSio. PVS is primarily a specification language, but
it is possible to recognize an executable subset, and hence to actually run PVS.
This is efficiently done with the ground evaluator, described in [18,5].

César Muñoz has extended the ground evaluator with PVSio [10], which in-
cludes a predefined library of imperative programming language features such
as side effects, unbounded loops, input/output operations, floating point arith-
metic, exception handling, pretty printing, and parsing. The PVSio library is im-
plemented via semantic attachments. PVSio is now a part of the PVS distribution.

3 PVS Libraries and Applications

PVS has an extensive set of libraries available. To begin with, there is the
prelude—a preloaded set of theories defining many concepts, ranging from
booleans through relations, functions, sets, numbers, lists, CTL, bit-vectors, and
equivalence classes (see the prelude report [17] for details). The PVS distribution
includes extensions of the basic finite sets and bit-vector theories given in the
prelude.

NASALangleyhasbeenworkingwithPVS formanyyears,andhasdevelopedex-
tensive libraries,availableathttp://shemesh.larc.nasa.gov/fm/fm-pvs.html.
This includes libraries for algebra, analysis, calculus, complex numbers, graphs/
digraphs, number theory, orders, series, trigonometric functions, and vectors.
They have also contributed the Manip and Field packages, which make it easier
to do numeric reasoning.

PVS has been used for applications in teaching, research, and industry. Formal
specification and verification are inherently difficult, so the focus tends to be on
applications with high cost of failure, or critical to life or national security.
Thus most applications are to requirements [2,8], hardware [9], safety-critical
applications [3], and security [15]

4 Conclusions and Future Work

PVS contains several features that we have omitted from this brief introduc-
tion. PVS is still under active maintenance and development. We have many
1 See Chapter 7 of Model Checking [4] for an introduction to the µ-calculus.

http://shemesh.larc.nasa.gov/fm/fm-pvs.html

26 S. Owre and N. Shankar

features we hope to add in the future, including polymorphism, reflection, proof
generation, faster rewriting and simplification, a declarative proof mode, coun-
terexamples, proof search and other target languages for the ground evaluator.

References

1. Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Com-
puter algebra meets automated theorem proving: Integrating Maple and PVS. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 27–42.
Springer, Heidelberg (2001)

2. Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving.
Annals of Mathematics and Artificial Intelligence 29(1–4), 139–181 (2000)

3. Carreño, V., Muñoz, C.: Aircraft trajectory modeling and alerting algorithm ver-
ification. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869,
pp. 90–105. Springer, Heidelberg (2000)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

5. Crow, J., Owre, S., Rushby, J., Shankar, N., Stringer-Calvert, D.: Evaluating, test-
ing, and animating PVS specifications. Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park, CA (March 2001),
http://www.csl.sri.com/users/rushby/abstracts/attachments

6. Formal Methods Program. Formal methods roadmap: PVS, ICS, and SAL. Tech-
nical Report SRI-CSL-03-05, Computer Science Laboratory, SRI International,
Menlo Park, CA (October 2003), http://fm.csl.sri.com/doc/roadmap03

7. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bul-
letin 62, 222–259 (1997)

8. Kim, T., Stringer-Calvert, D., Cha, S.: Formal verification of functional properties
of an SCR-style software requirements specification using PVS. In: Katoen, J.-P.,
Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 205–220.
Springer, Heidelberg (2002)

9. Miller, S.P., Srivas, M.: Formal verification of the AAMP5 microprocessor: A case
study in the industrial use of formal methods. In: WIFT 1995: Workshop on
Industrial-Strength Formal Specification Techniques, Boca Raton, FL, pp. 2–16.
IEEE Computer Society, Los Alamitos (1995)

10. Muñoz, C.: Rapid Prototyping in PVS. National Institute of Aerospace, Hampton,
VA (2003), http://research.nianet.org/∼munoz/PVSio/

11. Owre, S.: Random testing in PVS. In: Workshop on Automated Formal Methods
(AFM), Seattle, WA (August 2006),
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf

12. Owre, S., Rueß, H.: Integrating WS1S with PVS. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 548–551. Springer, Heidelberg (2000)

13. Owre, S., Rushby, J., Shankar, N.: Analyzing tabular and state-transition specifi-
cations in PVS. Technical Report SRI-CSL-95-12, (1995); also published as NASA
Contractor Report 201729, http://www.csl.sri.com/csl-95-12.html

14. Pombo, C.L., Owre, S., Shankar, N.: A semantic embedding of the Ag dynamic
logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI
International, Menlo Park, CA (October 2004)

15. Rushby, J.: A separation kernel formal security policy in PVS. Technical note,
Computer Science Laboratory, SRI International, Menlo Park, CA (March 2004)

http://www.csl.sri.com/users/rushby/abstracts/attachments
http://fm.csl.sri.com/doc/roadmap03
http://research.nianet.org/~munoz/PVSio/
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://www.csl.sri.com/csl-95-12.html

A Brief Overview of PVS 27

16. Säıdi, H., Graf, S.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Shankar, N., Owre, S., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Sys-
tem Guide, PVS Language Reference, PVS Prover Guide, PVS Prelude Li-
brary, Abstract Datatypes in PVS, and Theory Interpretations in PVS.
Computer Science Laboratory, SRI International, Menlo Park, CA (1999),
http://pvs.csl.sri.com/documentation.shtml

18. Shankar, N.: Static analysis for safe destructive updates in a functional language.
In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 1–24. Springer, Hei-
delberg (2002), ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf

19. Skakkebæk, J.U., Shankar, N.: A Duration Calculus proof checker: Using PVS as
a semantic framework. Technical Report SRI-CSL-93-10, Computer Science Labo-
ratory, SRI International, Menlo Park, CA (December 1993)

http://pvs.csl.sri.com/documentation.shtml
ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf

A Brief Overview of HOL4

Konrad Slind1 and Michael Norrish2

1 School of Computing, University of Utah
slind@cs.utah.edu

2 National ICT Australia
Michael.Norrish@nicta.com.au

Abstract. The HOL4 proof assistant supports specification and proof
in classical higher order logic. It is the latest in a long line of similar
systems. In this short overview, we give an outline of the HOL4 system
and how it may be applied in formal verification.

1 Introduction

HOL4 is an ML-based environment for constructing proofs in higher order logic.
It provides a hierarchy of logical theories which serves as a rich specification
library for verification. It also provides a collection of interactive and fully auto-
matic proof tools which can be used in further theory building or in the provision
of bespoke verification procedures.

Implementation history. The original HOL system was created in the mid-
1980’s when Mike Gordon at Cambridge University performed surgery on the
Edinburgh LCF system, installing a version of Church’s higher order logic as
the object language of the system. The metalanguage in which the logic was
encoded was Edinburgh ML, itself implemented on top of Lisp. An enhanced
version of HOL, called HOL88 [6], was publically released (in 1988), after several
years of further development. HOL90 (released in 1990) was a port of HOL88 to
SML by Slind at the University of Calgary. The Lisp substrate was abandoned,
and some of the more recondite underlying LCF technology was trimmed away
or reimplemented. HOL90 ran on Poly/ML and SML/NJ. HOL98 (released in
1998) was a new design, emphasizing separate compilation of theories and proof
procedures [12], thus allowing HOL to be ported to MoscowML.

HOL4 is the latest version of HOL, featuring a number of novelties compared
to its predecessors. HOL4 continues to be implemented in SML; it currently runs
atop Poly/ML and MoscowML. HOL4 is also the supported version of the system
for the international HOL community [11].

Project management. The HOL project1 is open source, managed using the
facilities of SourceForge, and currently has about 25 developers, not all of whom
are active. In general, control of user contributions is relaxed; anyone who wishes
to make a contribution to the system may do so, provided they are willing to

1 Located at http://hol.sourceforge.net

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 28–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Brief Overview of HOL4 29

provide support. However, modifications to the kernel are scrutinized closely by
the project managers (the present authors) before being accepted.

2 Technical Features

We now summarize some notable aspects of HOL4.

2.1 Logic

The logic implemented by HOL4 is essentially Church’s Simple Type Theory [3],
with polymorphic type variables. The logic implemented by HOL systems, in-
cluding ProofPower and HOL-Light, has been unchanged since the release of
HOL88. An extremely important aspect of the HOL logic, not mentioned by
Church, is primitive definition principles for consistently introducing new types
and new constants.

An ongoing theme in HOL systems has been adherence to the derivation judge-
ment of the logic: all theorems have to be obtained by performing proofs in higher
order logic. However, in some cases, it is practical to allow external proof tools to be
treated as oracles delivering HOL theorems sans proof. Such theorems are tagged
in such a way that the provenance of subsequent theorems can be ascertained.

2.2 Kernels

As is common with HOL designs, the kernel implementation of the logic is kept
intentionally small. Only a few simple axioms and rules of inference are encapsu-
lated in the abstract type of theorems implemented in the logic kernel. Currently
in HOL4 we maintain two kernels, one based on an explicit substitution calculus,
and one based on a standard name-carrying lambda calculus. The desired kernel
implementation may be chosen at build time. Informal testing indicates that
each kernel outperforms the other on some important classes of input, but that
neither outperforms the other in general.

2.3 Derived Rules and Definition Principles

Given such a simple basis, serious verification efforts would be impossible were it
not for the fact that ML is a programmable metalanguage for the proof system.
Derived inference rules and high-level definition principles are built by program-
ming: such complex logical steps are reduced to a sequence of kernel inferences.
For example, some of the current high-level definition principles for types are
those supporting the introduction of quotient types and ML-style datatypes.
Datatypes can be mutually and nested recursive and may also use record no-
tation. At the term level, support is provided for defining inductively specified
predicates and relations; mutual recursion and infinitary premises are allowed.
Total recursive functions specified as recursion equations, possibly using ML-
style pattern matching, are defined by a package that mechanizes the wellfounded
recursion theorem. Mutual and nested recursions are supported. Simple termi-
nation proofs have been automated; however, more serious termination proofs
have of course to be performed interactively.

30 K. Slind and M. Norrish

2.4 Proof Tools

The view of proof in HOL4 is that the user guides the proof at a high level,
leaving subsidiary proofs to automated reasoners. Towards this, we provide a
database of type-indexed theorems (case analysis, induction, etc) which supports
user control of decisive proof steps. In combination with a few ‘declarative proof’
constructs, this allows many proofs to be conducted at a high level.

HOL4 has a healthy suite of automated reasoners. All produce HOL proofs.
Propositional logic formulas can be sent off to external SAT tools and the re-
sulting resolution-style proofs are backtranslated into HOL proofs. For formulas
involving N, Z, or R, decision procedures for linear arithmetic may be used. A de-
cision procedure for n-bit words has recently been released. For formulas falling
(roughly) into first order logic, a robust implementation of ordered resolution
has become very popular.

Probably the most commonly used proof tool is simplification. We provide a
call-by-value evaluation mechanism which reduces ground, and some symbolic,
terms to normal form [1]. A more general (and more heavily used) tool, the
simplifier, provides conditional and contextual ordered rewriting, using matching
for higher order patterns. The simplifier may be extended with arbitrary context-
aware decision procedures.

For experienced users, most simple proofs can be accomplished via a small
amount of interactive guidance (specifying induction or case-analysis, for exam-
ple) followed by application of the simplifier and first order proof search.

2.5 Theories and Libraries

The system provides a wide collection of theories on which to base further verifi-
cations: booleans, pairs, sums, options, numbers (N, Z, Q, R, fixed point, floating
point, n-bit words), lists, lazy lists, character strings, partial orders, monad in-
stances, predicate sets, multisets, finite maps, polynomials, probability, abstract
algebra, elliptic curves, lambda calculus, program logics (Hoare logic, separation
logic), machine models (ARM, PPC, and IA32), temporal logics (ω-automata,
CTL, µ-calculus, PSL) and so on. All theories have been built up definitionally.

HOL4 also has an informal notion of a library, which is a collection of theories,
APIs, and proof procedures supporting a particular domain. For example, the
library for N provides theories formalizing Peano Arithmetic and extensions (nu-
merals, gcd, and simple number theory), a decision procedure, simplification sets
for arithmetic expressions, and an extensive collection of syntactic procedures
for manipulating arithmetic terms. Loading a library extends the logical context
with the types, constants, definitions, and theorems of the comprised theories;
it also automatically extends general proof tools, such as the simplifier and the
evaluator, with library-specific contributions.

Both theories and libraries are persistent: this is achieved by representing
them as separately compiled ML structures. A ‘make’-like dependency mainte-
nance tool is used to automatically rebuild formalizations involving disparate
collections of HOL4 libraries and theories, as well as ML or external source code
in other programming languages.

A Brief Overview of HOL4 31

2.6 External Interfaces

There is a variety of ways for a logic implementation to interface with external
tools. On the input side, as we have mentioned, purported theorems coming from
external tools need to be accompanied with enough information to reconstruct a
HOL proof of the theorem. An example of this is the interface with SAT solvers
which can supply proof objects (we currently favour minisat).

Another approach is illustrated by the integration of a BDD library into HOL.
This has been used to support the formalization and application of model-checking
algorithms for temporal logic. Since HOL theorems are eventually derived from
operations on BDDs representing HOL terms, the oracle mechanism mentioned
earlier is used to tag such theorems as having been constructed extra-logically.

On the output side, HOL formalizations confining themselves to the ‘functional
programming’ subset of HOL may be exported to ML. This gives a pathway from
formalizations to executables. The generated code is exported as separately com-
pilable ML source with no dependencies on the HOL4 implementation. Thus, the
theory hierarchy of HOL4 is paralleled by a hierarchy of ML modules containing
exported definitions of datatypes and computable functions formalized in HOL.
We support the substitution of more efficient versions of such modules; for ex-
ample, the GMP library used in the mlton compiler may be used instead of the
relatively slow code generated from our theory of numerals.

Finally, higher order logic can be used as a metalogic in which to formalize
another logic; such has been done for ACL2 [4,5]. HOL4 is used to show that
ACL2 is sound. This allows a two-way connection between the two systems in
which a HOL formalization may be translated to the HOL theory of ACL2, this
formalization is then transported to the ACL2 system and processed in some way
(e.g., reduced using the powerful ACL2 evaluation engine) and then the result
is transported back to HOL4 and backtranslated to the original HOL theory.

3 Current Projects

Network specification and validation. Peter Sewell and colleagues have used
HOL4 to give the first detailed formal specifications of commonly used network
infrastructure (UDP, TCP) [2]. This work has heavily used the tools available in
HOL4 for operational semantics. They also implemented an inference rule which
tested the conformance of real-world traces with their semantics.

Programming language semantics. As an application of the HOL4 backend of the
Ott tool [14], Scott Owens has formalized the operational semantics of a large
subset of OCaml and proved type soundness [13]. The formalization heavily re-
lied upon the definition packages for datatypes, inductive relations, and recursive
functions. Most of the proofs proceeded by rule induction, case analysis, simpli-
fication, and first order proof search with user-selected lemmas. In recent work,
Norrish has formalized the semantics of C++ [10].

Machine models. An extremely detailed formalization of the ARM due to An-
thony Fox sits at the center of much current work in HOL4 focusing on the

32 K. Slind and M. Norrish

verification of low-level software. The development is based on a proof that a
micro-architecture implements the ARM instruction set architecture. In turn, the
ISA has been extended with so-called ‘Thumb’ instructions (which support com-
pact code) and co-processor instructions. On top of the ISA semantics, Myreen
has built a separation logic for the ARM and provided proof automation [8].
Compiling from logic; decompiling to logic. It is possible to compile a ‘functional
programming subset’ of the HOL logic to hardware [15] and also to ARM code
[7]. This supports high-level correctness proofs of low-level implementations. As
well, one can map in the other direction and decompile machine code to HOL

functions with equivalent semantics [9].

References

1. Barras, B.: Proving and computing in HOL. In: Aagaard, M.D., Harrison, J. (eds.)
TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000)

2. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and Sockets. In: Proceedings of SIGCOMM. ACM Press,
New York (2005)

3. Church, A.: A formulation of the Simple Theory of Types. Journal of Symbolic
Logic 5, 56–68 (1940)

4. Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the
ACL2 logic in HOL. In: Proceedings of ACL2 2006, ACM International Conference
Proceeding Series, vol. 205, pp. 40–46. ACM Press, New York (2006)

5. Gordon, M.J.C., Reynolds, J., Hunt, W.A., Kaufmann, M.: An integration of HOL
and ACL2. In: Proceedings of FMCAD 2006, pp. 153–160. IEEE Computer Society,
Los Alamitos (2006)

6. Gordon, M., Melham, T.: Introduction to HOL, a theorem proving environment
for higher order logic. Cambridge University Press, Cambridge (1993)

7. Li, G., Slind, K.: Compilation as rewriting in higher order logic. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603. Springer, Heidelberg (2007)

8. Myreen, M., Gordon, M.: Hoare logic for realistically modelled machine code. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424. Springer, Heidelberg
(2007)

9. Myreen, M., Slind, K., Gordon, M.: Machine-code verification for multiple architec-
tures: An application of decompilation into logic. In: FMCAD 2008 (submitted 2008)

10. Norrish, M.: A formal semantics for C++. In: Informal proceedings of TTVSI 2008
(2008)

11. Norrish, M., Slind, K.: HOL-4 manuals (1998-2008),
http://hol.sourceforge.net/

12. Norrish, M., Slind, K.: A thread of HOL development. Computer Journal 45(1),
37–45 (2002)

13. Owens, S.: A sound semantics for OCaml-Light. In: Proceedings of ESOP 2008.
LNCS, vol. 4960. Springer, Heidelberg (2008)

14. Sewell, P., Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.:
Ott: Effective tool support for the working semanticist. In: Proceedings of ICFP
2007. ACM Press, New York (2007)

15. Slind, K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic
and cryptographic hardware. Formal Aspects of Computing 19(3), 343–362 (2007)

http://hol.sourceforge.net/

The Isabelle Framework

Makarius Wenzel1, Lawrence C. Paulson2, and Tobias Nipkow1

1 Technische Universität München, Institut für Informatik
2 University of Cambridge, Computer Laboratory

1 Overview

Isabelle, which is available from http://isabelle.in.tum.de, is a generic
framework for interactive theorem proving. The Isabelle/Pure meta-logic allows the
formalization of the syntax and inference rules of a broad range of object-logics fol-
lowing the general idea of natural deduction [32, 33]. The logical core is implemented
according to the well-known “LCF approach” of secure inferences as abstract datatype
constructors in ML [16]; explicit proof terms are also available [8]. Isabelle/Isar pro-
vides sophisticated extra-logical infrastructure supporting structured proofs and speci-
fications, including concepts for modular theory development. Isabelle/HOL is a large
application within the generic framework, with plenty of logic-specific add-on tools and
a large theory library. Other notable object-logics are Isabelle/ZF (Zermelo-Fraenkel
set-theory, see [34, 36]) and Isabelle/HOLCF [26] (Scott’s domain theory within HOL).
Users can build further formal-methods tools on top, e.g. see [53].

Beginners are advised to start working with Isabelle/HOL; see the tutorial volume
[30], and the companion tutorial [28] covering structured proofs. A general impression
of Isabelle/HOL and ZF compared to other systems like Coq, PVS, Mizar etc. is given in
[52]. The Proof General Emacs interface [3] is still the de-facto standard for interaction
with Isabelle. The Isabelle document preparation system enables one to generate high-
quality PDF-LATEX documents from the original theory sources, with full checking of
the formal content.

The Archive of Formal Proofs http://afp.sf.net collects proof libraries, ex-
amples, and larger scientific developments, mechanically checked with Isabelle. AFP is
organized like a journal everybody can contribute to. Submitting formal theories there
helps to maintain applications in the longer term, synchronized with the ongoing devel-
opment of Isabelle itself.

2 Specification Mechanisms

Isabelle/Pure is a minimal version of higher-order logic; object-logics are specified by
stating their characteristic rules as new axioms. Any later additions in application the-
ories are usually restricted to definitional specifications, and the desired properties are
being proven explicitly. Working directly from primitive definitions can be tedious, and
higher-level specification mechanisms have emerged over the years, implemented as
derived concepts within the existing background logic. This includes (co)inductive sets
[35], inductive datatypes [11], and recursive functions [42, 23].

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 33–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://isabelle.in.tum.de
http://afp.sf.net

34 M. Wenzel, L.C. Paulson, and T. Nipkow

3 Structured Proofs

The Isar proof language [49] continues the natural deduction principles of Isabelle/Pure,
working with human readable proof texts instead of primitive inferences. “Isar” abbre-
viates “Intelligible semi-automated reasoning”; the language is also related to Mizar,
but many underlying principles are quite different [54].

The Isabelle/Isar design also follows the generic framework idea [51]. Starting with
a small selection of common principles of natural deduction, various advanced con-
cepts are defined as derived elements (e.g. for calculational reasoning [7] and complex
induction proofs [50]). The demands for structured proof composition have also in-
fluenced the way of writing definitions and statements, using extra language elements
corresponding to Isar proofs, instead of going through the object-logic again [12].

4 Modular Theory Development

Isabelle theories are organized as a graph, with monotonic operations to extend and to
merge logical environments. Smaller units of context elements are managed by separate
mechanisms for modular theory development, notably axiomatic type-classes [27, 48,
40] and locales [21, 5, 6]. More recent work integrates type-classes and locales [18],
joining the simplicity of classes with the flexibility of locales.

The generic local theory concept [19] integrates user-defined module mechanisms
smoothly into the Isabelle/Isar framework. The Isabelle distribution already incorpo-
rates locales, classes, and class instantiation contexts into the local theory infrastructure.
Other approaches to modular theories like AWE [13] could be integrated as well.

Internally, all aspects of locality in Isabelle are centered around the notions of proof
context and morphism — to transfer entities from one context into another. This covers
primitive types / terms / theorems of Isabelle/Pure, and any extra-logical context data
defined in Isabelle/Isar. This idea of “local everything” allows us to implement tools
within an abstract theory and apply them in concrete application contexts later on. One
example is an implementation [15] of algebraic methods on abstract rings that can be
used for concrete rings.

5 Reasoning Tools

Isabelle has traditionally supported a fair amount of automated reasoning tools. The
basic framework is centered around higher-order unification. The Simplifier supports
higher-order rewriting, with plug-in interfaces for extra simplification procedures writ-
ten in ML. The Classical Reasoner [37] and Classical Tableau Prover [38] have been
recently complemented by the Metis prover due to Joe Hurd. Various arithmetic proof
procedures are available as well. Sledghammer [41] uses external automated provers (E,
Vampire, SPASS) as untrusted search tools to find the necessary lemmas for a particular
goal; the actual proof is then performed internally with Metis.

6 Counterexample Search
Because much of the time one (unwittingly) tries to prove non-theorems, Isabelle/HOL
offers two facilities to find counterexamples: Quickcheck [10] tries randomized

The Isabelle Framework 35

instantiation of the free variables and is restricted to executable formulae (see §7). Re-
fute [47] searches for small finite countermodels by translating (unrestricted) HOL for-
mulae into propositional logic and hitting them with a SAT solver.

7 Code Generation

Executable HOL theories, including recursive functions and inductive definitions, can
be translated into various functional languages, notably SML, OCaml, Haskell [9, 17].
Efficient imperative code can be generated from functions written in monadic style [14].
Results of ML-level computations can be re-imported as theorems (“reflection”) to al-
low efficient computations in proofs. These code generators are restricted to evaluation
of closed terms. Efficient evaluation of terms with free variables is supported by a com-
piled implementation of “normalization by evaluation” [1].

8 Major Applications

In the past 20 years, Isabelle has been used by numerous researchers and students of
computer-science and mathematics world wide. Below we summarize some represen-
tative large-scale applications.
Pure Mathematics. Here the largest applications are: a) The verification by Bauer,

Nipkow [29] and Obua [31] of two of the algorithmic parts of Hales’ proof of the
Kepler Conjecture (What is the densest arrangement of spheres in space?). This is
part of Hales’ Flyspeck project, the complete verification of his proof. b) Avigad’s
verification of the Prime Number Theorem [4] (about the distribution of primes).
c) Paulson’s proof [39] of the relative consistency of the axiom of choice in ZF,
formalized in Isabelle/ZF.

Systems verification. The Verisoft projecthttp://www.verisoft.deformalized
a whole computer system from the hardware up to an operating system kernel [2]
and a compiler for C-dialect [24]. The L4.verified project [20, 43] verifies the L4
operating system microkernel, relating an abstract specification, a Haskell model,
and the C code.

Programming languages. A large amount of work has gone into formalizations of
a sequential Java-like language Jinja [22], including bytecode-verification, virtual
machine and compiler. Jinja has become the basis for further extensions like mul-
tithreading [25] and multiple inheritance [46]. Isabelle/HOL-Nominal [44] extends
Isabelle/HOL with a unique infrastructure for defining and reasoning about lan-
guages with bound variables. Many case studies have been carried out, for example
about the meta theory of LF [45].

References

[1] Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalization by
evaluation. In: Theorem Proving in Higher Order Logics (TPHOLs 2008). LNCS. Springer,
Heidelberg (2008)

[2] Alkassar, E., Schirmer, N., Starostin, A.: Formal pervasive verification of a paging mecha-
nism. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008). LNCS, vol. 4963, pp. 109–123. Springer, Heidel-
berg (2008)

http://www.verisoft.de

36 M. Wenzel, L.C. Paulson, and T. Nipkow

[3] Aspinall, D.: Proof General: A generic tool for proof development. In: European Joint
Conferences on Theory and Practice of Software (ETAPS) (2000)

[4] Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number
theorem. ACM Trans. Comput. Logic 9(1:2), 1–23 (2007)

[5] Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M.,
Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085. Springer, Heidelberg (2004)

[6] Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In: Borwein,
J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108. Springer, Heidelberg
(2006)

[7] Bauer, G., Wenzel, M.: Calculational reasoning revisited — an Isabelle/Isar experience. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152. Springer, Heidelberg
(2001)

[8] Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In: Aagaard,
M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869. Springer, Heidelberg (2000)

[9] Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McK-
inna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg
(2002)

[10] Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.)
Software Engineering and Formal Methods (SEFM 2004), pp. 230–239. IEEE Computer
Society Press, Los Alamitos (2004)

[11] Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in Formal-
Logic Engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690. Springer, Heidelberg (1999)

[12] Berghofer, S., Wenzel, M.: Logic-free reasoning in Isabelle/Isar. In: Mathematical Knowl-
edge Management (MKM 2008), LNCS (LNAI). Springer, Heidelberg (2008)

[13] Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle. Nordic
Journal of Computing 13 (2006)

[14] Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional pro-
gramming in Isabelle/HOL. In: Theorem Proving in Higher Order Logics (TPHOLs 2008).
LNCS. Springer, Heidelberg (2008)

[15] Chaieb, A., Wenzel, M.: Context aware calculation and deduction — ring equalities via
Gröbner Bases in Isabelle. In: Kauers, M., et al. (eds.) MKM/CALCULEMUS 2007. LNCS
(LNAI), vol. 4573. Springer, Heidelberg (2007)

[16] Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer,
Heidelberg (1979)

[17] Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In: K. Schneider,
J. Brandt (eds.) Theorem Proving in Higher Order Logics: Emerging Trends Proceedings.
Dept. Comp. Sci., U. Kaiserslautern (2007)

[18] Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T.,
McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502. Springer, Heidelberg (2007)

[19] Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar (2008),
http://www.in.tum.de/∼wenzelm/papers/local-theory.pdf

[20] Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustworthy com-
puting systems: taking microkernels to the next level. SIGOPS Operating Systems Re-
view 41(4), 3–11 (2007)

[21] Kammüller, F., Wenzel, M., Paulson, L.C.: Locales: A sectioning concept for Isabelle. In:
Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690. Springer, Heidelberg (1999)

[22] Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Trans. Progr. Lang. Syst. 28(4), 619–695 (2006),
http://doi.acm.org/10.1145/1146809.1146811

http://www.in.tum.de/~wenzelm/papers/local-theory.pdf
http://doi.acm.org/10.1145/1146809.1146811

The Isabelle Framework 37

[23] Krauss, A.: Partial recursive functions in Higher-Order Logic. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)

[24] Leinenbach, D., Petrova, E.: Pervasive compiler verification — from verified programs to
verified systems. In: Workshop on Systems Software Verification (SSV 2008). Elsevier,
Amsterdam (2008)

[25] Lochbihler, A.: Type safe nondeterminism — a formal semantics of Java threads. In: Foun-
dations of Object-Oriented Languages (FOOL 2008) (2008)

[26] Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. Journal of
Functional Programming 9, 191–223 (1999)

[27] Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.) Logical
Environments. Cambridge University Press, Cambridge (1993)

[28] Nipkow, T.: Structured proofs in Isar/HOL. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002.
LNCS, vol. 2646. Springer, Heidelberg (2003)

[29] Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame graphs. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer, Heidelberg (2006)

[30] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

[31] Obua, S.: Flyspeck II: The basic linear programs. Ph.D. thesis, Technische Universität
München (2008)

[32] Paulson, L.C.: Natural deduction as higher-order resolution. Journal of Logic Programming
3 (1986)

[33] Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and
Computer Science. Academic Press, London (1990)

[34] Paulson, L.C.: Set theory for verification: I. From foundations to functions. Journal of Au-
tomated Reasoning 11(3) (1993)

[35] Paulson, L.C.: A fixedpoint approach to implementing (co)inductive definitions. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814. Springer, Heidelberg (1994)

[36] Paulson, L.C.: Set theory for verification: II. Induction and recursion. Journal of Automated
Reasoning 15(2) (1995)

[37] Paulson, L.C.: Generic automatic proof tools. In: Veroff, R. (ed.) Automated Reasoning
and its Applications: Essays in Honor of Larry Wos. MIT Press, Cambridge (1997)

[38] Paulson, L.C.: A generic tableau prover and its integration with Isabelle. Journal of Univer-
sal Computer Science 5(3) (1999)

[39] Paulson, L.C.: The relative consistency of the axiom of choice — mechanized using
Isabelle/ZF. LMS Journal of Computation and Mathematics 6, 198–248 (2003)

[40] Paulson, L.C.: Organizing numerical theories using axiomatic type classes. Journal of Au-
tomated Reasoning 33(1) (2004)

[41] Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem
proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732. Springer,
Heidelberg (2007)

[42] Slind, K.: Function definition in higher order logic. In: von Wright, J., Harrison, J., Grundy,
J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996)

[43] Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Principles of Pro-
gramming Languages (POPL 2007), pp. 97–108. ACM Press, New York (2007)

[44] Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40, 327–
356 (2008)

[45] Urban, C., Cheney, J., Berghofer, S.: Mechanizing the metatheory of LF. In: 23rd IEEE
Symp. Logic in Computer Science (LICS) (2008)

[46] Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and type safety
proof for multiple inheritance in C++. In: Object Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2006), pp. 345–362. ACM Press, New York (2006)

38 M. Wenzel, L.C. Paulson, and T. Nipkow

[47] Weber, T.: Bounded model generation for Isabelle/HOL. In: Ahrendt, W., Baumgartner,
P., de Nivelle, H., Ranise, S., Tinelli, C. (eds.) Workshops Disproving and Pragmatics of
Decision Procedures (PDPAR 2004), vol. 125, pp. 103–116. Elsevier, Amsterdam (2005)

[48] Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty,
A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275. Springer, Heidelberg (1997)

[49] Wenzel, M.: Isar — a generic interpretative approach to readable formal proof documents.
In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999.
LNCS, vol. 1690. Springer, Heidelberg (1999)

[50] Wenzel, M.: Structured induction proofs in Isabelle/Isar. In: Borwein, J.M., Farmer, W.M.
(eds.) MKM 2006. LNCS (LNAI), vol. 4108. Springer, Heidelberg (2006)

[51] Wenzel, M.: Isabelle/Isar — a generic framework for human-readable proof documents.
In: R. Matuszewski, A. Zalewska (eds.) From Insight to Proof — Festschrift in Honour
of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10(23). University of
Białystok (2007),
http://www.in.tum.de/∼wenzelm/papers/isar-framework.pdf

[52] Wenzel, M., Paulson, L.C.: Isabelle/Isar. In: Wiedijk, F. (ed.) The Seventeen Provers of the
World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)

[53] Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework. In:
Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732. Springer, Heidelberg
(2007)

[54] Wiedijk, F., Wenzel, M.: A comparison of the mathematical proof languages Mizar and
Isar. Journal of Automated Reasoning 29(3-4) (2002)

http://www.in.tum.de/~wenzelm/papers/isar-framework.pdf

A Compiled Implementation

of Normalization by Evaluation

Klaus Aehlig1,� , Florian Haftmann2,��, and Tobias Nipkow2

1 Department of Computer Science, Swansea University
2 Institut für Informatik, Technische Universität München

Abstract. We present a novel compiled approach to Normalization by
Evaluation (NBE) for ML-like languages. It supports efficient normal-
ization of open λ-terms w.r.t. β-reduction and rewrite rules. We have
implemented NBE and show both a detailed formal model of our imple-
mentation and its verification in Isabelle. Finally we discuss how NBE is
turned into a proof rule in Isabelle.

1 Introduction

Symbolic normalization of terms w.r.t. user provided rewrite rules is one of the
central tasks of any theorem prover. Several theorem provers (see §5) provide
especially efficient normalizers which have been used to great effect [9,14] in car-
rying out massive computations during proofs. Existing implementations per-
form normalization of open terms either by compilation to an abstract machine
or by Normalization by Evaluation, NBE for short. The idea of NBE is to carry
out the computations by translating into some underlying functional language,
evaluating there, and translating back. The key contributions of this paper are:

1. A novel compiled approach to NBE that exploits the pattern matching al-
ready available in a decent functional language, while allowing the normal-
ization of open λ-terms w.r.t. β-reduction and a set of (possibly higher-order)
rewrite rules.

2. A formal model and correctness proof1 of our approach in Isabelle/HOL [15].

NBE is implemented and available at the user-level in Isabelle 2007, both to
obtain the normal form t′ of some given term t, and as a proof rule that yields
the theorem t = t′.

Throughout the paper we refer to the underlying functional language as ML.
This is only for brevity: any language in the ML family, including Haskell, is
suitable. However, we assume that the language implementation provides its
own evaluator at runtime, usually in the form of some compiler. The guiding

� Partially supported by grant EP/D03809X/1 of the British Engineering and Physical
Sciences Research Council (EPSRC).

�� Supported by DFG grant Ni 491/10-1.
1 Available online at afp.sf.net

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 39–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

afp.sf.net

40 K. Aehlig, F. Haftmann, and T. Nipkow

principle of our realization of NBE is to offload as much work as possible onto
ML: not just substitution but also pattern matching. Thus the word ‘compiled’
in the title refers to both the translation from the theorem prover’s λ-calculus
into ML and from ML to some byte or machine code. The trusted basis of the
theorem prover is not extended if the compiler used at runtime is the same as
the one compiling the theorem prover.

2 Normalization by Evaluation in ML

Normalization by Evaluation uses the evaluation mechanism of an underlying
metalanguage to normalize terms, typically of the λ-calculus. By means of an
evaluation function [[·]]ξ, or, alternatively by compiling and running the compiled
code, terms are embedded into this metalanguage. In other words, we now have
a native function in the implementation language. Then, a function ↓, which acts
as an “inverse of the evaluation functional” [5], serves to recover terms from the
semantics. This process is also known as “type-directed partial evaluation” [7].

Normalization by Evaluation is best understood by assuming a semantics
enjoying the following two properties.

– Soundness: if r→ s then [[r]]ξ = [[s]]ξ, for any valuation ξ.
– Reproduction: if r is a term in normal form, then ↓ [[r]]↑ = r with ↑ a special

valuation.

These properties ensure that ↓ [[r]]↑ actually yields a normal form of r if it exists.
Indeed, let r→∗ s with s normal; then ↓ [[r]]↑ =↓ [[s]]↑ = s.

We implement untyped normalization by evaluation [1] in ML. To do so, we
need to construct a model of the untyped λ-calculus, i.e., a data type containing
its own function space. Moreover, in order to make the reproduction property
possible, our model ought to include some syntactical elements in it, like con-
structors for free variables of our term language. Fortunately, ML allows data
types containing their own function space. So we can simply define a universal
type Univ like the following.

datatype Univ =
Const of string * Univ list

| Var of int * Univ list
| Clo of int * (Univ list -> Univ) * Univ list

Note how the constructors of the data type allow to distinguish between basic
types and proper functions of implementation language. In type-directed partial
evaluation such a tagging is not needed, as the type of the argument already tells
what to expect; on the other hand, this need of anticipating what argument will
come restricts the implementation to a particular typing discipline, whereas our
untyped approach is flexible enough to work with any form of rewrite calculus.

The data type Univ represents the embedding of the syntax and the embed-
ding of the function space. There is no constructor for application. The reason is
that semantical values of the λ-calculus correspond to normal terms, whereas an

A Compiled Implementation of Normalization by Evaluation 41

application of a function to some other value, in general, yields a redex. There-
fore application is implemented by a function apply: Univ -> Univ -> Univ
discussed below. The constructor Const serves to embed constructors of data
types of the underlying theory; they are identified by the string argument. Nor-
mal forms can have the shape C t1 . . . tk of a constructor C applied to several
(normal) arguments. Therefore, we allow Const to come with a list of arguments,
for convenience of the implementation in reverse order. In a similar manner, the
constructor Var is used to represent expressions of the form x t1 . . . tk with x a
variable.

The constructor Clo represents partially applied functions. More precisely,
“Clo (n, f , [ak,. . . ,a1])” represents the (n+k)-ary function f applied to a1, . . . , ak.
This expression needs another n arguments before f can be evaluated. In the case
of the pure λ-calculus, n would always be 1 and f would be a value obtained by
using (Standard) ML’s “fn x => . . . ” function abstraction. Of course, ML’s un-
derstanding of the function space is bigger than just the functions that can be ob-
tained by evaluating a term in our language. For example, recursion can be used
to construct representation for infinite terms. However, this will not be a problem
for our implementation, for several reasons. First of all, we only claim that terms
are normalised correctly—this suffices for our procedure to be admissible in a the-
orem prover. During that normalisation process, only function that can be named
by a (finite) term will occur as arguments to Clo. Moreover, only needing partial
correctness, we will only ever be concerned with semantical values where our ↓-
function terminates. But then, the fact that it did terminate, witnesses that the
semantical value has a finite representation by one of our terms.

As mentioned, application is realised by an ML-function apply. With the
discussed semantics in mind, it is easy to construct such a function: in the cases
that C t1 . . . tk or x t1 . . . tk is applied to a value s, we just add it to the list. In
the case of a partially applied function applied to some value s we either, in case
more then one argument is still needed, collect this argument or, in case this was
the last argument needed, we apply the function to its arguments.

fun apply (Clo (1, f, xs)) x = f (x :: xs)
| apply (Clo (n, f, xs)) x = Clo (n - 1, f, x :: xs)
| apply (Const (name, args)) x = Const (name, x :: args)
| apply (Var (name, args)) x = Var (name, x :: args)

It should be noted that the first case in the above definition is the one that
triggers the actual work: compiled versions of the functions of the theory are
called. As discussed above, our semantical universe Univ allows only normal
values. Therefore, this call carries out all the normalization work.

As an example, consider a function append defined in some Isabelle/HOL
theory T based on the type list defined in theory List

fun append :: "’a list => ’a list => ’a list" where
"append Nil bs = bs" |
"append (Cons a as) bs = Cons a (append as bs)"

42 K. Aehlig, F. Haftmann, and T. Nipkow

and assume “ append(appendas bs) cs = appendas (appendbs cs)”was proved.
Compiling these equations together with associativity of append yields the follow-
ing ML code.

fun T_append [v_cs, Nbe.Const ("T.append", [v_bs, v_as])] =
T_append [T_append [v_cs, v_bs], v_as]

| T_append [v_bs, Nbe.Const ("List.Cons", [v_as, v_a])] =
Nbe.Const ("List.Cons", [T_append [v_bs, v_as], v_a])

| T_append [v_bs, Nbe.Const ("List.Nil", [])] =
v_bs

| T_append [v_a, v_b] =
Nbe.Const ("T.append", [v_a, v_b])

The second and third clause of the function definition are in one-to-one corre-
spondence with the definition of the function append in the theory. The argu-
ments, both on the left and right side, are in reverse order; this is in accordance
with our semantics that fa1 . . . an is implemented as “f [an,. . . , a1]”.

The last clause is a default clause fulfilling the need that the ML pattern
matching be exhaustive. But our equations, in general, do not cover all cases.
The constructor Var for variables is an example for a possible argument usually
not covered by any rewrite rule. In this situation where we have all arguments
for a function but no rewrite rule is applicable, no redex was generated by the
last application—and neither will be by applying this expression to further ar-
guments, as we have already exhausted the arity of the function. Therefore, we
can use the append function as a constructor. Using (the names of) our compiled
functions as additional constructors in our universal data type is a necessity of
normalising open terms. In the presence of variables not every term reduces to
one built up from only canonical constructors; instead, we might obtain normal
forms with functions like append. Using them as additional constructors is the
obvious way to represent these normal forms in our universal semantics.

Keeping this reproduction case in mind, we can understand the first clause.
If the first argument is of the form append, in which case it cannot further be
simplified, we can use associativity. Note that we are actually calling the append
function, instead of using a constructor; in this way we ensure to produce a
normal result.

Continuing the example, now assume that we want to normalise the expression
“append [a,b] [c]”. Then the following compiled version of this expression
would be evaluated to obtain an element of Univ.

(Nbe.apply
(Nbe.apply
(Clo (2,T_append,[]))
(Nbe.Const ("List.cons",

[(Nbe.Const ("List.cons",
[(Nbe.Const ("List.nil", [])),
(Nbe.free "b")])),

(Nbe.free "a")])))

A Compiled Implementation of Normalization by Evaluation 43

(Nbe.Const ("List.cons", [(Nbe.Const ("List.nil", [])),
(Nbe.free "c")])))

As discussed, values of type Univ represent normal terms. Therefore we can
easily implement the ↓-function, which will be called term in our implementation.
The function term returns a normal term representing a given element of Univ.
For values of the form “Const name [vn,. . . ,v1]” we take the constant C named
by the string, recursively apply term to v1, . . . , vn, obtaining t1, . . . , tn, and build
the application C t1 . . . tn. Here, again, we keep in mind that arguments are in
reverse order in the implementation. The definition in the case of a variable
is similar. In the case v = “Clo . . . ” of a closure we just carry out an eta
expansion: the value denotes a function that needs at least another argument,
so we can always write it as λx.term(v x), with x a fresh syntactical variable.
Naturally, this application of v to the fresh variable x is done via the function
apply discussed above. In particular, this application might trigger a redex and
therefore cause more computation to be carried out. For example, as normal
form of “append Nil” we obtain—without adding any further equations!—the
correct function “λu. u”.

Immediately from the definition we note that term can only output normal
terms. Indeed, the Const construct is used only for constructors or functions
where the arguments are of such a shape that no redex can occur. Expressions
of the shape x t1 . . . tk and λx.t are always normal if t, t1, . . . , tk are; the latter
we can assume by induction hypothesis. Note that we have shown the normality
of the output essentially by considering ways to combine terms that preserve the
normality. In fact, the normalisation property of normalisation by evaluation can
be shown entirely by considering an appropriate typing discipline [8].

Compared to the expressivity of the underlying term language in Isabelle, our
universal datatype is quite simple. This is due to the fact, that we consider an
untyped term-rewriting mechanism. This simplicity, however, comes at a price:
we have to translate back and forth between a typed and an untyped world.
Forgetting the types to get to the untyped rewrite structure is, essentially, an
easy task, even though some care has to be taken to ensure that the more
advanced Isabelle features like type classes and overloading are compiled away
correctly and the term to be normalised obeys the standard Hindley-Milner type
discipline. More details of this transformation into standard typing discipline are
described in §4.

From terms following this standard typing discipline the types are thrown
away and the untyped normal form is computed, using the mechanism described
earlier. Afterwards, the full type annotations are reconstructed. To this end, the
types of all free variables have been stored before normalization; the most general
types of the constants can be uniquely rediscovered from their names. The type
of the whole expression is kept as well, given that the Isabelle object language
enjoys subject reduction. Standard type inference will obtain the most general
type annotations for all sub-terms such that all these constraints are met.

In most cases, these type reconstructions are unique, as follows from the
structure of normal terms in the simply-typed lambda calculus. However, in

44 K. Aehlig, F. Haftmann, and T. Nipkow

the presence of polymorphic constants, the most general type could be more
general than intended. For example, let f be a polymorphic constant of type
“(’a => ’a) => bool”, say without any rewrite rule. Then the untyped nor-
mal form of “f (λu::bool. u)” would be “f (λu. u)” with most general type
annotations “f (λu::’a. u)”. To avoid such widening of types only those equa-
tions will be considered as being proved by normalization where the typing of
the result is completely determined, i.e., those equations, where the most general
type for the result does not introduce any new type variables. It should be noted
that this, in particular, is always the case, if an expression evaluates to True.

3 Model and Verification

This section models the previous section in Isabelle/HOL and proves partial cor-
rectness of the ML level w.r.t. rewriting on the term level. In other words, we will
show that, if NBE returns an output t′ to an input t, then t = t′ could have also
be obtained by term rewriting with equations that are consequences of the theory.

We do not attempt to handle questions of termination or uniqueness of normal
forms. This would hardly be possible anyway, as arbitrary proven equations may
be added as rewrite rules. Given this modest goal of only showing soundness,
which however is enough to ensure conservativity of our extension of the theorem
prover, we over-approximate the operational semantics of ML. That is, every
reduction ML can make is also a possible reduction our model of ML can make.
Conversely, our ML model is non-deterministic w.r.t. both the choice among the
applicable clauses of a compiled function and the order in which to evaluate
functions and arguments—any evaluation strategy is fine, even non left-linear
equations are permitted in function definitions. This over-approximation shows
that partial correctness of our implementation is quite independent of details of
the implementation language. In particular, we could have chosen any functional
language, including lazy ones like Haskell.

In the introduction it was mentioned that Normalization by Evaluation is best
understood in terms of the mentioned properties “soundness of the semantics”
(i.e., the semantics identifies enough terms) and “reproduction” (i.e., normal
terms can be read off from the semantics). For showing partial correctness, how-
ever, the task is slightly different. First of all, we cannot really guarantee that
our semantics identifies enough terms; there might be equalities that hold in
the Isabelle theory under consideration that are not expressed as rewrite rules.
Fortunately, this is not a problem. A failure of this property can only lead to two
terms that are equal in the theory, but still have different normal forms. Then,
the lack of this properties requires us to show a slightly stronger form of the
reproduction property. We need to for arbitrary terms r that ↓ [[r]]↑ is, if defined,
a term that our theory equates with r. To show this property, we give a model of
our implementation language and assign each internal state a “denoted term”;
having this term denotation at hand we just have to show that each step our
machine model makes either doesn’t change the denoted term, or transforms it
to a term of which our theory shows that it is equal.

A Compiled Implementation of Normalization by Evaluation 45

3.1 Basic Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces some non-standard notation and a few basic data types with their primitive
operations.

The types of truth values and natural numbers are called bool and nat. The
space of total functions is denoted by ⇒. The notation t :: τ means that term t
has type τ .
Sets over type α, type α set, follow the usual mathematical convention.
Lists over type α, type α list, come with the empty list [], the infix constructor·,

the infix @ that appends two lists, and the standard functions map and rev.

3.2 Terms

We model bound variables by de Bruijn indices [6] and assume familiarity with
this device, and in particular the usual lifting and substitution operations. Below
we will not spell those out in detail but merely describe them informally—the
details are straightforward. Because variables are de Bruijn indices, i.e. natural
numbers, the types vname and ml-vname used below are merely abbreviations
for nat. Type cname on the other hand is an arbitrary type of constant names,for
example strings.

ML terms are modeled as a recursive datatype:

ml = CML cname
| VML ml-vname
| AML ml (ml list)
| LamML ml
| CU cname (ml list)
| V U vname (ml list)
| Clo ml (ml list) nat
| apply ml ml

The default type of variables u and v shall be ml.
The constructors come in three groups:

– The λ-calculus underlying ML is represented by CML, VML, AML and
LamML. Note that application AML applies an ML value to a list of ML
values to cover both ordinary application (via singleton lists) and to model
the fact that our compiled functions take lists as arguments. Constructor
LamML binds VML.

– Values of the datatype Univ (§2) are encoded by the constructors CU , V U

and Clo.
– Constructor apply represents the ML function apply (§2).

Note that this does not model all of ML but just the fraction we need to express
computations on elements of type Univ, i.e. encoded terms.

Capture-avoiding substitution substML σ u, where σ :: nat ⇒ ml, replaces
VML i by σ i in u. Notation u[v/i] is a special case of substML σ u where σ

46 K. Aehlig, F. Haftmann, and T. Nipkow

replaces VML i by v and decreases all ML variables ≥ i by 1. Lifting the free ML
variables ≥ i is written liftML i v. Predicate closedML checks if an ML value
has no free ML variables (≥ a given de Bruijn index).

The term language of the logical level is an ordinary λ-calculus, again modeled
as a recursive datatype:

tm = C cname | V vname | tm · tm | Λ tm | term ml

The default type of variables r, s and t shall be tm.
This is the standard formalization of λ-terms (using de Bruijn), but aug-

mented with term. It models the function term from §2. The subset of terms not
containing term is called pure.

We abbreviate (· · ·(t · t1) · · · ·) · tn by t ·· [t1,. . .,tn]. We have the usual lift-
ing and substitution functions for term variables. Capture-avoiding substitution
subst σ s, where σ :: nat ⇒ tm, replaces V i by σ i in s and is only defined
for pure terms. The special form s [t/i] is defined in analogy with u[v/i] above,
only for term variables. Lifting the free term variables ≥ i is written lift i and
applies both to terms (where V is lifted) and ML values (where V U is lifted).

In order to relate the encoding of terms in ML back to terms we define an
auxiliary function kernel :: ml ⇒ tm that maps closed ML terms to λ-terms.
For succinctness kernel is written as a postfix !; map kernel vs is abbreviated to
vs !. Note that postfix binds tighter than prefix, i.e. f v ! is f (v !).

(CML nm)! = C nm
(AML v vs)! = v ! ·· (rev vs)!
(LamML v)! = Λ ((lift 0 v)[V U 0 []/0])!
(CU nm vs)! = C nm ·· (rev vs)!
(V U x vs)! = V x ·· (rev vs)!
(Clo f vs n)! = f ! ·· (rev vs)!
(apply v w)! = v ! · w !

The arguments lists vs need to be reversed because, as explained in §2, the
representation of terms on the ML level reverses argument lists to allow apply
to add arguments to the front of the list.

The kernel of a tm, also written t !, replaces all subterms term v of t by v !.
Note that ! is not structurally recursive in the LamML case. Hence it is not

obvious to Isabelle that ! is total, in contrast to all of our other functions. To
allow its definition [13] we have shown that the (suitably defined) size of the
argument decreases in each recursive call of !. In the LamML case this is justified
by proving that both lifting and substitution of V U i [] for VML i do not change
the size of an ML term.

3.3 Reduction

We introduce two reduction relations:→ on pure terms, the usual λ-calculus re-
ductions, and⇒ on ML terms, which models evaluation in functional languages.

The reduction relation→ on pure terms is defined by β-reduction: Λ t · s →
t [s/0], η-expansion: t → Λ (lift 0 t · V 0), rewriting:

A Compiled Implementation of Normalization by Evaluation 47

(nm, ts , t) ∈ R
C nm ·· map (subst σ) ts → subst σ t

and context rules:

t → t ′

Λ t → Λ t ′
s → s ′

s · t → s ′ · t
t → t ′

s · t → s · t ′

Note that R :: (cname × tm list × tm) set is a global constant that mod-
els a (fixed) set of rewrite rules. The triple (f , ts , t) models the rewrite rule
C f ·· ts → t .

Just like → depends on R, ⇒ depends on a compiled version of the rules,
called compR :: (cname × ml list × ml) set. A triple (f , vs , v) represents the
ML equation with left-hand side AML (CML f) vs and right-hand side v. The
definition of compR in terms of our compiler is given further below.

The ML reduction rules come in three groups. First we have β-reduction
AML (LamML u) [v] ⇒ u[v/0] and invocation of a compiled function:

(nm, vs , v) ∈ compR ∀ i . closedML 0 (σ i)
AML (CML nm) (map (substML σ) vs) ⇒ substML σ v

This is simply one reduction step on the level of ML terms.
Then we have the reduction rules for function apply:

0 < n
apply (Clo f vs (Suc n)) v ⇒ Clo f (v ·vs) n

apply (Clo f vs (Suc 0)) v ⇒ AML f (v ·vs)
apply (CU nm vs) v ⇒ CU nm (v ·vs)
apply (V U x vs) v ⇒ V U x (v ·vs)

which directly realize the defining equations for apply in §2.
Finally we have all the context rules (not shown). They say that reduction can

occur anywhere, except under a LamML. Note that we do not fix lazy or eager
evaluation but allow any strategy. Thus we cover different target languages. The
price we pay is that we can only show partial correctness.

Because λ-calculus terms may contain term, they too reduce via ⇒. These
reduction rules realize the description of term in §2:

term (CU nm vs) ⇒ C nm ·· map term (rev vs)
term (V U x vs) ⇒ V x ·· map term (rev vs)
term (Clo vf vs n) ⇒ Λ (term (apply (lift 0 (Clo vf vs n)) (V U 0 [])))

The last clause formalizes η-expansion. By lifting, 0 becomes a fresh variable
which the closure object is applied to and which is bound by the new Λ.

In addition we can reduce anywhere in a tm:

t ⇒ t ′

Λ t ⇒ Λ t ′
s ⇒ s ′

s · t ⇒ s ′ · t
t ⇒ t ′

s · t ⇒ s · t ′
v ⇒ v ′

term v ⇒ term v ′

48 K. Aehlig, F. Haftmann, and T. Nipkow

3.4 Compilation

This section describes our compiler that takes a λ-calculus term and produces
an ML term. Its type is tm ⇒ (nat ⇒ ml)⇒ ml and it is defined for pure terms
only:

compile (V x) σ = σ x
compile (C nm) σ = Clo (CML nm) [] (arity nm)
compile (s · t) σ = apply (compile s σ) (compile t σ)
compile (Λ t) σ = Clo (LamML (compile t (VML 0 ## σ))) [] 1

We explain the equations one by one.

1. In the variable case we look the result up in the additional argument σ. This
is necessary to distinguish two situations. On the one hand the compiler is
called to compile terms to be reduced. Free variables in those terms must
be translated to V U variables, their embedding in type Univ. Function term
reverses this translation at the end of ML execution. On the other hand the
compiler is also called to compile rewrite rules (R) to ML (compR). In this
case free variables must be translated to ML variables which are instantiated
by pattern matching when that ML code is executed.

2. A constant becomes a closure with an empty argument list. The counter
of missing arguments is set to arity nm, where arity is a global table map-
ping each constant to the number of arguments it expects. Note that our
implementation takes care to create only closures with a non-zero counter—
otherwise apply never fires. This does not show up in our verification because
we only show partial correctness: even though the output would not be nor-
mal, it still would be a reduct of the input.

3. Term application becomes apply.
4. Term abstraction becomes a closure containing the translated ML function

waiting for a single argument. The construction V ML 0 ## σ is a new
substitution that maps 0 to V ML 0 and i+1 to liftML 0 (σ i). This is the
de Bruijn way of moving under an abstraction.

Note that our actual compiler avoids building intermediate closures that are
directly applied to an argument.

As explained above, the compiler serves two purposes: compiling terms to be
executed (where the free variables are fixed) and compiling rules (where the free
variables are considered open). These two instances are given separate names:

comp-open t = compile t VML comp-fixed t = compile t (λi . V U i [])

We can now define the set of compiled rewrite rules compR as the union of the
compilation of R and the default rules (§2) for each defined function symbol

compR =
(λ(nm, ts , t). (nm, map comp-open (rev ts), comp-open t)) ‘ R ∪
(λ(nm, ts , t). let vs = map VML [0 ..<arity nm] in (nm, vs , CU nm vs)) ‘ R

A Compiled Implementation of Normalization by Evaluation 49

where f ‘ M is the image of a set under a function and [m..<n] is the list
[m,. . .,n−1]. Since compilation moves from the term to the ML level, we need
to reverse argument lists. On the left-hand sides of each compiled rule this is
done explictly, on the right-hand side it happens implicitly by the interaction of
apply with closures. For the default rewrite rules no reversal is necessary.

We can model the compiled rewrite rule as a set (rather than a list) because
the original rewrite rules are already a set and impose no order. For partial
correctness it is irrelevant in which order the clauses are tried. If the default
rule is chosen, no reduction occurs, which is correct, too. Of course the actual
implementation puts the default clause last. The implementation also ensures
that in all clauses fp1 . . . pn = t for some function f , n is the same: additional
parameters can always be added by extensionality.

3.5 Verification

The main theorem is partial correctness of compiled evaluation at the ML level
w.r.t. term reduction:

Theorem 1. If pure t, pure t ′ and term (comp-fixed t) ⇒∗ t ′ then t →∗ t ′.

Let us examine the key steps in the proof. The two inductive lemmas

Lemma 2. If pure t and ∀ i . σ i = V U i [] then (compile t σ)! = t .

Lemma 3. If pure t and ∀ i . closedML n (σ i) then closedML n (compile t σ).

yield (term (comp-fixed t))! = t and closedML 0 (term (comp-fixed t)). Then

Theorem 4. If t ⇒∗ t ′ and closedML 0 t then t ! →∗ t ′! ∧ closedML 0 t ′.

yields the desired result t →∗ t ′ (because pure t ′ =⇒ t ′! = t ′). Theorem 4 is
proved by induction on⇒∗ followed by induction on⇒. The inner induction, in
the term case, requires the same theorem, but now on the ML level:

Theorem 5. If v ⇒ v ′ and closedML 0 v then v ! →∗ v ′! ∧ closedML 0 v ′.

This is proved by induction on the reduction ⇒ on ML terms. There are two
nontrivial cases: β-reduction and application of a compiled rewrite rule. The
former requires a delicate and involved lemma about the interaction of the kernel
and substitution which is proved by induction on u (and whose proof requires
an auxiliary notion of substitution):

Theorem 6. If closedML 0 v and closedML (Suc 0) u then (u[v/0])! =
((lift 0 u)[V U 0 []/0])![v !/0].

The application of a compiled rewrite rule is justified by

Theorem 7. If (nm, vs , v) ∈ compR and ∀ i . closedML 0 (σ i) then
C nm ·· (map (substML σ) (rev vs))! →∗ (substML σ v)!.

50 K. Aehlig, F. Haftmann, and T. Nipkow

That is, taking the kernel of a compiled and instantiated rewrite rule yields a
rewrite on the λ-term level. The conclusion is expressed with→∗ rather than→
because the rule in compR may also be a default rule, in which case both sides
become identical.

The proof of Theorem 7 requires one nontrivial inductive lemma:

Lemma 8. If pure t and ∀ i . closedML 0 (σ i) then (substML σ (comp-open t))!
= subst (kernel ◦ σ) t.

In the proof of Theorem 7 this lemma is applied to vs and v, which are the
output of comp-open by definition of compR. Hence we need that all rules in R
are pure:

(nm, ts , t) ∈ R =⇒ (∀ t∈set ts . pure t) ∧ pure t

This is an axiom because R is otherwise arbitrary. It is trivially satisfied by our
implementation because the inclusion of term as a constructor of λ-terms is an
artefact of our model.

4 Realization in Isabelle

The implementation of our NBE approach in Isabelle/HOL is based on a generic
code generator framework [12]. The following diagram and description explains
how this is connected to the rest of Isabelle:

extralogical part

T1

t1
preprocessor

t4

t3 = t4

T2

t2

t1 = t2

postprocessor

translation

t3

P

it

evaluation
& reconstruction

compilation

funs

e

1. The input is an Isabelle term t1 to be normalized w.r.t. a set of equa-
tional theorems T 1 (and β-reduction). Until evaluation both t1 and T 1 are
processed in parallel.

2. The framework allows one to configure arbitrary logical transformations on
input t1 (and T 1) and output t3 (pre- and postprocessing). This is for the
user’s convenience and strictly on the level of theorems: both transformations
yield equational theorems t1 = t2 and t3 = t4; together with the equation
t2 = t3 stemming from the actual evaluation (this is where we have to trust
the evaluator!), the desired t1 = t4 is obtained by transitivity and returned
to the user.

3. The main task of the framework is to transform a set of equational theorems
T 2 into a program P (and t2 into it) in an abstract intermediate language
capturing the essence of languages like SML or Haskell with an equational
semantics. The intermediate term language is practically the same as the

A Compiled Implementation of Normalization by Evaluation 51

Isabelle term language, and the equational semantics is preserved in the
translation. The key changes are the replacement of an unordered set of
equational theorems by a structured presentation with explicit dependen-
cies, and, most importantly, the removal of overloading and the dictionary
translation of type classes. For details see [12]. Inputs to NBE are in this
intermediate language. Having compiled away type classes and overloading,
NBE operates on terms following the Hindley-Milner type discipline, as as-
sumed in §2.

4. P is compiled (via comp-open, see §3.4) to a series of SML function definitions
funs and it (via comp-fixed) to an SML term e. Then term (let funs in
e end) is given to the SML compiler, causing the evaluation of e and the
translation of the result back into an Isabelle term; type reconstruction (see
§2) on the result yields t3.

We conducted a number of timing measurements to determine the relative perfor-
mance of NBE w.r.t. two other normalization mechanisms available in Isabelle:

simp, the symbolic simplifier which operates on the level of Isabelle terms and
theorems and produces a theorem purely by inference.

eval , the ground evaluator which compiles terms and theorems directly to SML,
without support for open terms. It uses the same code generator framework
but defines a native SML datatype for each Isabelle datatype, rather than
operating on a universal datatype. For details see [12].

Our setup for this experiment ensures that all three evaluators use the same
equational theorems and the same reduction strategy.

We measured the performance of three different programs: eras computes the
first 100 prime numbers using the Sieve of Eratosthenes in a symbolic and naive
implementation; graph computes the strongly connected components of a graph
represented as a finite set of pairs; sort sorts a list of strings by insertion sort:2

eras graph sort

simp 4304 1384% 222717 11404% 1451169 22488%
nbes 339 109% 3312 170% 11174 173%
nbe 311 100% 1953 100% 6453 100%
eval 48 15% 292 15% 393 6%

Unsurprisingly, nbe turns out to be faster than simp and slower than eval. How-
ever the relative differences increase from left to right. In this order also the
use of pattern matching in the examples increases. This shows the superiority
of native pattern matching as exploited by eval over the pattern matching via
strings in some universal datatype as required by nbe, which is in turn superior

2 Absolute figures are in milliseconds using Isabelle 2007 with PolyML 5.1 on a Linux
2.6 AMD 1 GHz machine.

52 K. Aehlig, F. Haftmann, and T. Nipkow

to pattern matching programmed in SML as in simp. This relevance of pattern
matching motivated us to use integers (not strings) to identify constant names in
patterns. Indeed, if we use an implementation using strings for constant names
(nbes), there is a considerable loss of efficency.

There is a trade-off between performance and expressiveness. While eval is
fast, it can evaluate only closed terms. Furthermore, if the result of eval is
to be “read back” as an Isabelle term, it must only contain constructors and
no function values. Finally, eval cannot cope with additional rewrite rules like
associativity. With a comparably small performance penalty nbe can lift all these
restrictions, while still outperforming the simplifier by 1–2 orders of magnitude.

5 Related Work

The work probably most closely related to ours is that of Berger, Eberl, and
Schwichtenberg [3,4] who also integrated NBE into a proof assistant. However,
their approach is based on a type-indexed semantics with constructors coinciding
with those of the object language. Besides the administrative hassle, the commit-
ment to a particular type system in the object language, and unneeded and un-
wanted η-expansions, the main disadvantage of this choice is that functions, like
the append function in our example in §2, cannot serve the role as additional con-
structors. Note that in our example, this usage of an append constructor made it
possible to effortlessly incorporate associativity into the definition of T_append,
with pattern matching directly inherited from the implementation language.

The unavailability of the shape of a semantical object, unless it is built from
a canonical constructor of some ground type, made it necessary in the approach
by Berger et al. to revert to the term representation. This led to the artificial (at
least from a user’s point of view) and somewhat obscure distinction between so-
called “computational rules” and “proper rewrite rules” where only the former
are handled by NBE. The latter are carried out at a symbolic level (using pattern
matching on the term representation). This mixture of computations on the
term representation and in the implementation language requires a continuous
changing between both representations. In fact, one full evaluation and reification
is performed for each single usage of a rewrite rule.

Following Aehlig and Joachimski [1], our proof shows again that correctness of
NBE is completely independent of any type system. In particular, no new version
of NBE has to be invented each and every time it is applied to some term system
with a different typing discipline. There simply is no need for logical relations in
the proof.

Two other theorem proving systems provide specialized efficient normalisers
for open λ-terms. Both of them are based on abstract machines and are therefore
complementary to our compiled approach:

– Barras [2] extends the HOL [10] system with an abstract reduction machine
for efficient rewriting. It is as general as our approach and even goes through
the inference kernel. For efficiency reasons HOL’s term language was ex-
tended with explicit substitutions.

A Compiled Implementation of Normalization by Evaluation 53

– Grégoire and Leroy [11] present and verify a modification of the abstract
machine underling OCaml. This modified abstract machine has become part
of Coq’s trusted proof kernel. The main difference is that they cannot deal
with additional rewrite rules like associativity.

Compiled approaches to rewriting of first-order terms can also be found in other
theorem provers, e.g. KIV [17].

6 Future Work

A small extension of the formalization is the straightforward proof normality of
the output (see §2). More interesting are extensions of the class of permitted
rewrite rules:

– Currently the implementation inherits ML’s restriction to left-linear rules.
It can be lifted to allow repeated variables on the left-hand side roughly
as follows: make all variables distinct on the left-hand side but check for
equality on the right-hand side. The details are more involved.

– More adventurous generalizations include ordered rewriting (where a rewrite
rule only fires if certain ordering constraints are met) and conditional rewrit-
ing. The former should be easy to add, the latter would require a nontrivial
generalization of the underlying code generator framework.

It would also be interesting to model λ-terms by different means than de
Bruijn indices. Particularly prominent is the nominal approach [16] and its real-
isation by Urban [18] in Isabelle. As about one third of our proofs are primarily
concerned with de Bruijn indices, it would be an interesting comparison to redo
the verification in the nominal setup. Our preference for de Bruijn terms is due
to the fact that the current implementation of nominal data types in Isabelle
does not support nested data types, where recursion is through some other data
type like list, which occurs in our model of ML terms.

References

1. Aehlig, K., Joachimski, F.: Operational aspects of untyped normalization by eval-
uation. Mathematical Structures in Computer Science 14(4), 587–611 (2004)

2. Barras, B.: Programming and computing in HOL. In: Aagaard, M.D., Harrison, J.
(eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000)

3. Berger, U., Eberl, M., Schwichtenberg, H.: Term rewriting for normalization by
evaluation. Information and Computation 183, 19–42 (2003)

4. Berger, U., Eberl, M., Schwichtenberg, H.: Normalization by evaluation. In: Möller,
B., Tucker, J.V. (eds.) NADA 1997. LNCS, vol. 1546, pp. 117–137. Springer, Hei-
delberg (1998)

5. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
λ–calculus. In: Vemuri, R. (ed.) Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science (LICS 1991), pp. 203–211 (1991)

54 K. Aehlig, F. Haftmann, and T. Nipkow

6. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church–Rosser theorem.
Indagationes Mathematicae 34, 381–392 (1972)

7. Danvy, O.: Type-directed partial evaluation. In: Proceedings of the Twenty-Third
Annual ACM SIGPLAN-SIGACT Symposium on Priciples Of Programming Lan-
guages (POPL 1996) (1996)

8. Danvy, O., Rhiger, M., Rose, C.H.: Normalisation by evaluation with typed syntax.
Journal of Functional Programming 11(6), 673–680 (2001)

9. Gonthier, G.: A computer-checked proof of the four-colour theorem,
http://research.microsoft.com/ gonthier/4colproof.pdf

10. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: a theorem-proving
environment for higher order logic. Cambridge University Press, Cambridge (1993)

11. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Inter-
national Conference on Functional Programming 2002, pp. 235–246. ACM Press,
New York (2002)

12. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In:
Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings. Department of Computer Science, University of Kaiserslautern
(2007)

13. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006)

14. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: Tame graphs. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 21–35. Springer,
Heidelberg (2006)

15. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002), http://www.in.tum.de/ nipkow/LNCS2283/

16. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186, 165–193 (2003)

17. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: tructured specifications and inter-
active proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A
Basis for Applications. Systems and Implementation Techniques, vol. II, pp. 13–39.
Kluwer Academic Publishers, Dordrecht (1998)

18. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

LCF-Style Propositional Simplification with

BDDs and SAT Solvers

Hasan Amjad

Middlesex University School of Computing Science, London NW4 4BT, UK
Hasan.Amjad@cl.cam.ac.uk

Abstract. We improve, in both a logical and a practical sense, the sim-
plification of the propositional structure of terms in interactive theorem
provers. The method uses Binary Decision Diagrams (BDDs) and SAT
solvers. We present experimental results to show that the time cost is
acceptable.

1 Introduction

We consider the problem of simplifying the propositional structure of terms, in
interactive theorem provers (ITPs) based on higher-order logic (HOL) or stronger
type systems.

Most such ITPs use rewriting or equational reasoning (semi-automatic or man-
ual) to do such simplification. Such tools include Coq [12], HOL4 [8], HOL Light
[10], Isabelle/HOL [18], and PVS [17]. The PVS theorem prover is unique in this
family, in additionally optionally allowing the use of Binary Decision Diagrams
(BDDs) [1] for propositional simplification [2]. The propositional structure of the
input term is encoded as a BDD, from which PVS can automatically extract a
term in conjunctive normal form (CNF) that is logically equivalent to the input
term. As BDDs usually achieve very compact encodings, the expectation is that
the extracted term will be simpler than the input term.

BDDs are powerful tools for propositional reasoning, and have seen widespread
adoption in the automated reasoning community. And yet BDDs are rarely if
ever used by ITPs. In the current context, there are four broad objections to the
use of BDDs for propositional simplification in ITPs:

1. Not needed. Current rewriting based implementations of simplifiers are suf-
ficient for the terms that typically occur in interactive proof.

2. Unsuitable. The process of BDD-based simplification converts the term to
CNF. This destroys the structure of the term and thus may often destroy
any intuition that the human ITP user may have had about the term.

3. Inefficient for LCF-style. All the ITPs mentioned above, except PVS, are
“LCF-style”, or follow the “de Bruijn criterion”. Roughly speaking, this
means that they employ some high assurance facility for verifying their
proofs. Typically, this is by translation of the proof to a very simple proof
system – the implementation of which is easily understood and well tested

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 55–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 H. Amjad

– which accepts all correct proofs (and no incorrect ones) produced by the
ITP. Verifying BDD operations in this fashion has been tried and found to
be very costly [9,21].

4. Classical. BDDs are based on classical propositional logic, which limits their
usefulness in non-classical contexts.

The last objection cannot be overcome using BDDs as they are currently
implemented. Thus, we restrict ourselves to the classical setting. We address the
remaining objections in this paper:

1. Need. We augment BDD-based simplification with new and known clause-
form simplifications and prove that our simplification method can provide
logical guarantees about the simplified term that are not provided by current
rewrite-based simplifiers. We present experimental results that suggest that
in practice our method always does better than rewrite-based simplifiers on
a quantifiable measure of simplification quality.

2. Suitability. Our method improves on the BDD-based simplification of PVS
by not completely flattening the input term. Instead, it selectively applies
simplification to suitable sub-terms, thus largely retaining term structure.

3. Efficiency. We show that LCF-style BDD-based simplification is possible at
not too great a cost, by verifying the BDD operations using a recent LCF-
style integration [22] of SAT solvers [16,4] and ITPs. We present experimental
results to support this claim.

The next section describes related work. We then give a brief account of the
relevant aspects of normal forms, BDDs and SAT solvers, to keep the paper self-
contained. Finally, we describe our work (§4) and present experimental results
(§5). Henceforth, all discussion is restricted to classical purely propositional HOL
terms, unless explicitly stated otherwise.

2 Related Work

There is a reasonable body of work on integrating BDDs in interactive provers.
One of the earliest results combined higher-order logic with BDDs for symbolic
trajectory evaluation [13]. A little later, temporal symbolic model checking was
done in PVS [19]. These integrations trusted the underlying BDD engines. At
about the same time, a serious attempt at using BDDs in an LCF-style manner
[9] reported an approximate 100x slowdown. Later, a larger project added BDDs
to the Coq theorem prover [21] and reported similar slowdowns, except that the
faster programs were themselves extracted by reflection from the Coq represen-
tation, and could thus said to have higher assurance. The penalty for checking
BDD proofs has thus more or less ensured that BDDs are not used internally by
LCF-style theorem provers, in a non-trusted manner. There have of course been
trusted integrations of BDDs with LCF-style provers [7].

This does not rule out the use of BDDs in interactive provers in general.
BDDs are used in the ACL2 prover [14] to help with conditional rewriting and

LCF-Style Propositional Simplification with BDDs and SAT Solvers 57

for deciding equality on bit vectors (see ACL2 System Documentation). The PVS
theorem prover can use BDDs for propositional simplification, via its bddsimp
function [2]. This was the inspiration for our work. Roughly speaking, when
invoked on a goal with propositional structure, it uses BDDs to obtain the CNF
of the goal, and each conjunct of the CNF becomes a separate subgoal.

LCF-style integrations of SAT solvers with interactive provers have a shorter
history. The integration is trivial for the case where the solver returns a satisfying
assignment: we simply substitute the assignments into the input term and check
that the resulting ground term evaluates to true. This can be done efficiently. For
the unsatisfiable case, the earliest work we know of is the LCF-style programming
of St̊almarck’s Algorithm in an ancestor of HOL4 [11]. This achieved good results
but was never distributed due to licensing issues. Further work had to wait for the
arrival of DPLL-based proof producing SAT solvers [25] and mature integrations
were reported relatively recently [22].

3 Technical Background

We use Γ � t to denote that t is a theorem (under hypotheses Γ) in the mechanized
object logic, i.e, the logic of the interactive prover. Quantification binds weaker
than ⇔ which binds weaker than all other propositional connectives. Proposi-
tional truth is denoted by � and falsity by ⊥. All other notation is standard.

In pure propositional logic, there is no concept of variables. In HOL, variables
of Boolean type do double duty as propositional letters. We will refer to propo-
sitional letters as variables, keeping in mind that quantification over these is not
allowed in our setting.

3.1 Normal Forms

A literal is either a variable or its negation. Any term has a finite number of
variables, so all involved literals can be encoded as numbers when working on
a given term. We shall switch between the term and number representation of
literals as convenient.

A clause is a disjunction of literals. Since both conjunction and disjunction are
associative, commutative and idempotent (ACI), clauses can also be interpreted
as sets of literals. If a literal occurs in a set, then we abuse notation and assume
its underlying proposition also occurs in the set. We assume that any trivial
clauses, i.e., containing both a literal and its negation, have been filtered out.

A term is in conjunctive normal form (CNF) if it is a conjunction of clauses.
Any propositional term t can be transformed into a logically equivalent term in
CNF. Again, by ACI, a CNF term can be interpreted as a set (of sets of literals),
and we overload the notation accordingly. We will switch back and forth between
the term and set interpretations, as convenience dictates.

Any term can be transformed to CNF, but the result can be exponentially
larger than the original term. To avoid this, definitional CNF [20] introduces
extra fresh1 Boolean variable names as place-holders for subterms of the original
1 Guaranteed not to already occur in the term.

58 H. Amjad

problem. Conversion to definitional CNF is linear time in the worst case. We use
dCNF (t) to denote the definitional CNF of t.

The term dCNF (t) is not logically equivalent to t, since there are valuations
for the introduced definitional variables that can disrupt an otherwise satisfying
assignment to the variables of t. However, it is equisatisfiable. This is expressed
by the theorem

t⇔ ∃V.dCNF (t) (1)

where V is the set of all the definitional variables and the existential quantifica-
tion is lifted to all v ∈ V in the usual way.

3.2 BDDs

Reduced Ordered Binary Decision Diagrams (ROBDDs, shortened to BDDs) [1]
are data structures for efficiently representing Boolean terms and Boolean op-
erations on them. In theory, the problem is NP-complete. In practice, BDDs
can often achieve very compact representatations. They are built by starting
with the BDDs representing propositional variables and performing a bottom-
up construction using the BDD operations corresponding to each propositional
connective in the term.

01 1 1

p

q q

Fig. 1. Binary decision tree for p ⇒ q

01

p

q

Fig. 2. Corresponding ROBDD

For example, the decision tree of the term p⇒ q is given in Figure 1, and its
BDD in 2. Dotted arcs indicate a valuation of ⊥ and solid arcs a valuation of �
to the parent node. A path from the root to the 1 node indicates an assignment
that makes the formula true, and a path to the 0 node, a falsifying assignment.

To read off the CNF equivalent to a term t represented by a BDD, we treat every
path from the root to the 0 node, with the signs of variables inverted, as a clause.
So, for example, the CNF for Figure 2 is ¬p∨q. This can be done by a single depth-
first search of the BDD structure. We denote by BDDCNF (t) the CNF term read
off the BDD of a pure propositional term t. We state a standard result:

Proposition 1. t⇔ BDDCNF (t)

A term is tautology free if no strict sub-term of it is true. A term is contradiction
free if no strict sub-term of it is false. BDDs are canonical and built bottom-up.
Hence sub-terms that are tautologies or contradictions are detected during con-
struction, and are absorbed into the BDD. So the following result also holds:

LCF-Style Propositional Simplification with BDDs and SAT Solvers 59

Proposition 2. BDDCNF (t) is tautology free and contradiction free.

Representing BDDs efficiently in an LCF style prover causes too high a perfor-
mance penalty (see §2 for details). Therefore, we assume that the results of BDD
operations by themselves cannot produce LCF-style theorems in the object logic.

3.3 SAT Solvers

SAT solvers are algorithms for testing Boolean satisfiability. A SAT solver will
accept a Boolean term in CNF and return a satisfying assignment to its variables.
If the term is unsatisfiable, the solver will simply say so, though some SAT solvers
will also return a resolution refutation proof from the clauses of the input CNF
term [25]. Such proof-producing SAT solvers have been integrated with LCF-
style ITPs [22]. We assume we have access to such an LCF-style integration.

Suppose we have a propositional term t, and we wish to check whether or not
it is a tautology. This can be done by computing dCNF (¬t) (which can be done
efficiently) and asking a SAT solver if that term is unsatisfiable. If so, we can
derive � t.

Thus, we can assume access to a black box procedure SATprove(t) that re-
turns � t iff t is a valid pure propositional term. This short description is sufficient
for our purposes. A tutorial introduction to SAT solvers is available [15].

3.4 CNF Simplification

In general, SAT solvers require input in CNF. This has lead to much work on
CNF simplification in the SAT community.

Equivalence-preserving CNF simplifications. Of special interest to us are
equivalence-preserving simplifications, since these can be directly useful in term
simplification where we must derive a logically equivalent but simpler term.
Two methods, subsumption reduction (S-reduction for short) and decremental
resolution reduction (DR-reduction), have been very effective in practice [3,24].

A clause C subsumes another clause D iff C ⊆ D, i.e., C ⇒ D. D is then
called subsumed and C is called an S-clause. Given a clause set, any clauses
subsumed by other clauses in the set are redundant and can be removed. This
removal, an S-reduction, preserves equivalence, so we have that,

∀CD.(C ⇒ D)⇒ (C ∧D ⇔ C) (2)

A CNF term is considered subsumption free (S-free for short) if it has no S-
clauses.

The propositional resolution rule is

C ∨ p D ∨ ¬p
C ∪D

where the resultant clause is called the resolvent, and written as C ∨ p ⊗ D ∨
¬p. p is the pivot literal, written as pivot(C ∨ p ⊗ D ∨ ¬p). The pivot occurs

60 H. Amjad

complementarily in the two input clauses; if needed, the sign will be clear from
the context.

A resolution is decremental if the resolvent implies either of the two input
clauses. If so, the implied input clause can be strengthened by removing its
pivot literal (equivalent to replacement by the resolvent). This strengthening, a
DR-reduction, also preserves equivalence, so we have,

∀CD.(C ⊗D ⇒ D)⇒ (C ∧D ⇔ C ∧ C ⊗D) (3)

A DR-reduction is possible iff one of the two input clauses of the corresponding
resolution subsumes the other, modulo the pivot. The almost-subsuming clause
is called a DR-clause. A CNF term is considered decremental resolution free
(DR-free for short) if it has no DR-clauses.

We shall adapt the method of Een et al. [3] to our specific circumstances
(§4.1). Their method turns a clause set S S-free, by checking whether any C ∈ S
is an S-clause. Let L(p) = {C|p ∈ C ∧ C ∈ S}, i.e, it gives all clauses in which
the literal p occurs. Let #(C) =

⊕
p∈C 2p mod 64 where ⊕ is bitwise OR, i.e.,

#(C) computes a 64-bit hash of clause C. An overview of the algorithm is given
in Figure 3, where & is bitwise AND, and ! is bitwise NOT. The test in line 5
is a fast semi-complete subset test: if true it guarantees that C � D, and avoids
doing the full (and expensive) subset check. They then achieve DR-freedom as
shown in Figure 4, where the test in line 3 uses the S-reduction routine.

1. foreach C ∈ S

2. p ← the p such that p ∈ C ∧ ∀q ∈ C.|L(p)| ≤ |L(q)|
3. foreach D ∈ L(p) − {C}
4. if |C| > |D| then continue

5. if #(C)& !#(D) �= 0 then continue

6. if C ⊆ D then S ← S − {D}

Fig. 3. S-reduction detection

1. foreach C ∈ S

2. foreach p ∈ C

3. foreach D ∈ S − {C} such that C[p ← ¬p] ⊆ D

4. D ← D − {¬p}

Fig. 4. DR-reduction detection

SAT-based CNF simplifications. A considerably more powerful class of CNF
simplifications [6,23] removes redundant clauses by using information gleaned
from invoking the SAT solver on the CNF term. They are all based on the
fact that if a SAT solver produces a refutation from some CNF term t, then
clauses of t not participating in the proof can be removed without affecting the

LCF-Style Propositional Simplification with BDDs and SAT Solvers 61

unsatisfiability of t. The same cannot be said if t is satisfiable, since any clauses
not used in finding a given satisfying assignment are not necessarily irrelevant
to the truth value of t. We shall use the black box call SATsimp(t) to denote the
use of such off-the-shelf SAT-based simplifications, under the assumption that
the CNF term t is unsatisfiable, and that the call returns some subset c of the
clauses of t, such that c is unsatisfiable iff t is unsatisfiable.

4 Simplification

Roughly speaking, the core of our method works as follows:

1. Convert input term t to a BDD and read off the CNF equivalent c0.
2. Further simplify c0 using new and known CNF simplifications to obtain c1.
3. Find redundant clauses in c1 using SAT-based simplifications to obtain s.
4. If needed, use LCF-style SAT solver interface to prove � t⇔ s

Note that LCF-style proof is applied only in the final step, so the other phases
can be optimised without regard for proof. The main challenges are: avoiding too
large a c0 in BDD construction; fast CNF simplification; using powerful SAT-
based simplifications that work only on unsatisfiable terms, for arbitrary terms;
achieving a useful term simplification. The last goal is intentionally vague, for
now. We discuss this further in §4.3.

4.1 Faster CNF Simplification

The DR-reduction check in Figure 4 requires computing the hash of each C[p←
¬p] for each p ∈ C. We cannot compute them incrementally, because we can-
not tell whether removing a literal from a clause turned the corresponding bit
position in the hash to 0, without considering all the other literals of the clause.

We can improve on this since our goal is simplification of terms encountered
in interactive proof: in ITPs, automatic or semi-automatic proof procedures very
rarely use full-blown simplification internally, for efficiency reasons. This means
that the terms we encounter will have considerably fewer variables than the
typical SATLIB problem.

Suppose that instead of using a single 64-bit word for the hash, we use enough
words so that #(−) maps each literal to a unique bit position in the hash, i.e.,
we turn #(−) into a perfect hashing function. Then the hash-based subset test
(Figure 3, line 5) becomes complete. Further, if C is a subset of D modulo some
p ∈ C such that ¬p ∈ D, then #(C)& !#(D) will have exactly one bit switched
on. This can also be detected in constant time (assuming fixed hash size). Figure
5 outlines a method that uses multiword hashes, and combines checking whether
some C ∈ S is an S-clause or a DR-clause. The recursion terminates because the
number of literal occurrences in the underlying set S is always strictly smaller
with each call. So either eventually there are no more reductions to be found, or
we discover the empty clause ⊥, which subsumes all clauses so S is reduced to
{⊥}. This method is very fast, because it dispenses with the expensive subset
checks altogether.

62 H. Amjad

1.EQsimp clause(C)

2. p ← any p such that p ∈ C ∧ ∀q ∈ C.|L(p)| ≤ |L(q)|
3. foreach D ∈ L(p) − {C}
4. if |C| > |D| then continue

5. h ← #(C) & !#(D)

6. if h = 0 then S ← S − {D}
7. else if h&(h − 1) = 0 then

8. D ← D − {pivot(C ⊗ D)}
9. EQsimp clause(D)

Fig. 5. Combined S-reduction and DR-reduction detection

Our actual implementation is slightly more complex: we also need to check at
various points that a clause under consideration has not already been removed
from S due to the result of a previous call.

Our overall equivalence-preserving simplification procedure, EQsimp, takes
as argument a CNF term S (actually a set of set of numbers) and then calls
EQsimp clause for each C ∈ S. The number of 64-bit words for the hash is
determined once per EQsimp call, and is given by dividing the number of vari-
ables by 32 and rounding up. This approach is not feasible for SATLIB problems
with millions of variables, but in our experiments with interactive goals we rarely
needed a hash size of more than four 64-bit words.

Proposition 3. EQsimp(t) is S-free and DR-free

Proof #(−) is now a perfect hash, so bitwise operations on clause hashes coincide
with logical operations on clauses. Hence, the test for S-reduction on line 6 of
Figure 5 is sound and complete. For DR-reduction, if C subsumes D modulo
pivot(C⊗D), the bit position for the occurrence of the pivot in C will be switched
on in both #(C) and !#(D), and hence in their conjunction. The remaining bits
in the conjunction will be off, as in the S-reduction test. Hence h will be “1-
hot”, i.e., will have exactly one bit switched on. The test in line 7 turns the most
significant switched-on bit of h to off, thereby allowing 1-hot detection. So, the
DR-reduction test is sound and complete.

EQsimp(t) checks each clause for being an S-clause or DR-clause. Once
checked, a clause cannot again become an S-clause or DR-clause unless it is
strengthened in line 8, in which case we recheck it in line 9. Thus, when the
algorithm terminates, no clause is an S-clause or a DR-clause. �
Proposition 4. t⇔ EQsimp(t)

Proof Immediate from (2) and (3). �

4.2 Simplification Using SAT Solvers

Figure 6 gives an overview of our core algorithm, simplify, which takes a pure
propositional term t and attempts to simplify it by BDD-based conversion to

LCF-Style Propositional Simplification with BDDs and SAT Solvers 63

1. simplify(t)

2. c0 ← BDDCNF (t)

3. c1 ← EQsimp(c0)

4. s ← SATsimp(c1 ∧ dCNF (¬t)) ∩ c1

5. return SATprove(t ⇔ s)

Fig. 6. Core simplification method

CNF, application of CNF simplifications, and SAT-based simplifications, fol-
lowed by a call to SATprove if an LCF-style theorem is required. We have
already seen all the simplifications except for SAT-based simplification, which
will be the focus here.

We have t ⇔ c1 by Propositions 1 and 4. However, the powerful SATsimp
works only for unsatisfiable terms, and in general we cannot expect to be so
fortunate. To use it for simplifying arbitrary terms, we devise a specially crafted
argument for SATsimp and intersect the result with c1. The correctness of this
construction is central to the main theoretical result of the paper.

Theorem 5. t⇔ s

Proof We have t⇔ c1. Now

(t⇔ c1)⇔ (¬t ∨ c1) ∧ (¬c1 ∨ t) (4)

and hence
c1 ∧ ¬t⇔⊥ (5)

Then,

c1 ∧ ¬t⇔⊥
iff c1 ∧ (∃V.dCNF (¬t))⇔⊥ by (1)
iff (∃V.c1 ∧ dCNF (¬t))⇔⊥ no v ∈ V occurs in c1

iff ∀V.¬(c1 ∧ dCNF (¬t))

So c1∧dCNF (¬t) is unsatisfiable by (5), and of course it is in CNF, meeting the
pre-conditions for the call to SATsimp, which returns some subset of its input
clauses. Clearly s ⊆ c1, hence c1 ⇒ s. Then

¬c1 ∧ t⇒⊥ by (4) and t⇔ c1

iff ¬s ∧ t⇔⊥ since ¬s⇒ ¬c1 (6)

Finally, s is that subset of c1 that suffices for the proof of c1 ∧ dCNF (¬t) ⇔⊥.
So we have a proof of s ∧ dCNF (¬t) ⇔⊥. But s ∧ dCNF (¬t) ⇔⊥ iff s ⇒ t by
(1) together with some simple reasoning that uses the fact that no v ∈ V occurs
in s. Combining s⇒ t with (6) gives us t⇔ s as required. �

Thus, the call to SATprove in line 5 succeeds, and we obtain � t ⇔ s as
desired. Here s obeys the guarantees given by Propositions 2 and 3. Additionally,

64 H. Amjad

we know that s also does not contain any clauses of c1 not needed by the SAT
solver to prove c1 ⇒ t. It may nevertheless contain redundant clauses: the solver
does not guarantee to use the minimum number of clauses. So we do not phrase
this as a guarantee.

4.3 Practicalities

Our hope is that s is “simpler” than t, though we have left this notion vague until
now. ITP simplifiers perform many tasks, but in our setting we shall concentrate
on the simplest one: given a pure propositional term, what does it mean to
simplify it? We believe it means, first, to reduce the size without introducing
new operators or variables, and second, to reduce the bracketing depth (modulo
associativity) provided this does not conflict too much with the first goal.

These goals are quantifiable and approximate our intuition about proposi-
tional simplification to a reasonable degree. The restriction on the second goal
implicitly acknowledges that flattening a term too much may lose structure that
helps guide intuition. We shall measure term size and bracketing depth in the
standard way. We denote the size of term t by size(t).

By these criteria, the simplify procedure is too crude. It converts the term
to possibly exponentially larger CNF, violating both goals. Instead, we parame-
terise simplify and use it as a subroutine in a control wrapper.

We introduce three parameters B1, B2 and F , of which the last two are real
numbers, that enforce the following invariants on simplify:

1. No BDD has a node count exceeding B1

2. size(c0) < size(t)×B2

3. size(s) < size(t)× F

If any invariant fails, simplify signals failure.
The first invariant imposes an upper bound on BDD size, and the second

invariant ensures that the CNF generated from the BDD is not too big. The
BDDCNF function is easily modified to enforce these invariants on-the-fly, rather
than checking them after the full BDD or CNF term has been generated. How-
ever, our invariant checking for B1 is not as low-level as it could be: it checks
BDD size after each operation, so cannot avoid an exponential size explosion
from a single BDD operation. This has not happened yet, but if it becomes a
problem, we can simply impose a time limit on the BDD building procedure,
rather than a size limit. The third invariant imposes an upper bound on size(s).

All this is not enough, since invoking simplify on a term will now invariably
report failure. Instead, our control wrapper invokes simplify once on every sub-
term of t in a bottom-up manner. If the invocation succeeds, that sub-term is
replaced by its simplified equivalent. Hence, the final simplified term is equiv-
alent to t. Since simplify works semantically rather than by non-deterministic
rewriting, there is no need to apply it to a given sub-term more than once.

This does mean that the relatively expensive SATprove call is made several
times. We remedy the situation by modifying simplify to return the trivial theo-
rem t⇔ s � t⇔ s on the last line, which takes negligible cost to generate. Recall

LCF-Style Propositional Simplification with BDDs and SAT Solvers 65

that the control wrapper applies each sub-term simplification to t. So when the
bottom up traversal has finished, we have a theorem of the form

t0 ⇔ s0, t1 ⇔ s1, . . . � t⇔ s

where the ti are those sub-terms of t which simplify succeeded in simplifying
to si. We now make a single call to SATprove(

∧
i ti ⇔ si), split the resulting

theorem into its conjuncts, and use them to discharge every hypothesis in ti ⇔
si � t⇔ s. Even though this SATprove call deals with a larger term, in practice
these terms are quite small by SAT solver standards, and do not really exercise
the SAT interface. Thus, the only LCF-style proof is a single SATprove call,
followed by very low cost hypothesis discharges that number at most linear in
size(t) and considerably fewer in practice.

The guarantees of Proposition 2 and Proposition 3 now only hold locally, at
sub-terms where simplify succeeded.

As observed earlier, a pleasant side effect of the invariants is that the term
structure of t is not flattened beyond the reach of intuition. The degree of flat-
tening can be controlled by the F parameter.

We claimed in the introduction (§1) to simplify the propositional structure
of arbitrary terms, rather than pure propositional terms. This is easily done by
replacing each atomic proposition with a fresh Boolean variable (but maintain-
ing a bijection between the propositions and the variables), resulting in a pure
propositional term that is logically equivalent (modulo the atomic propositions)
to the original term. This is not new: PVS already does this, as does the HOL4
decision procedure for propositional tautologies.

As a quick example, consider the term

(((p⇒ q)⇒ p)⇒ p) ∧ (p ∧ (p⇔ q))

The HOL4, HOL Light, and Isabelle/HOL simplifiers (all in default setup) all
fail to simplify this term, whereas our method returns p ∧ q as expected. The
top-level left conjunct is a tautology (Peirce’s Law) that is famously hard for
rewriting. The top-level right conjunct is interesting because all three simplifiers
fail on it despite its simplicity.2 Even the BDDCNF function by itself returns
p ∧ (¬p ∨ q) (assuming p is before q in the BDD ordering) and it requires a
DR-reduction to obtain p ∧ q. PVS does return p ∧ q but only because after
extracting the CNF from the BDD, PVS performs a variant of unit propagation
that, as a simplification strategy, is in general both weaker and slower than our
reductions.

5 Experimental Results

In §1, we made three claims about the work: that it is not too slow, that it
reduces term size better than existing rewrite-based simplifiers, and that it does
2 They succeed if we make the simplifier aware of certain congruences for conjunction,

which are not part of the default set of rewrites because they tend to slow down the
rewriter and are not commonly useful.

66 H. Amjad

so without annihilating term structure. Although we have shown that our sim-
plified terms provide certain guarantees of semantic simplicity, these need not
always translate into simpler syntax. Hence we present empirical evidence in
support of the first two claims.

We compare our method against the HOL4 simplifier. The choice of HOL4
(rather than HOL Light, Isabelle/HOL or PVS) was made because:

1. We wish to evaluate the method in an LCF-style setting, ruling out PVS.
2. The HOL4 SAT interface’s definitional CNF subroutine is faster than that

of Isabelle/HOL. It avoids all proof by inlining definitions, as opposed to
Isabelle/HOL where the definitional CNF produces an expensive LCF-style
equivalance proof.

3. We understand the HOL4 simplifier better than the HOL Light simplifier,
at the implementation level.

Our method was implemented to produce a valid LCF-style HOL4 theorem, in
an interactive HOL4 proof environment. We used a trusted integration of HOL4
with the BuDDy BDD engine [7]. EQsimp was implemented by us in C++. For
SATsimp we used the fixpoint technique of Zhang et al. [23]. For SATprove, we
used an LCF-style integration of the MiniSat SAT solver [4] with HOL4 [22]. For
the comparison, the HOL4 simplifier was invoked using SIMP CONV bool ss [].
The test machine was an AMD Athlon X2 6400+, with 2GB of RAM. Memory
consumption was not an issue for these experiments.

We used values of 10000 for B1, 10.0 for B2, and 1.1 for F throughout. The
B2 value reflects our intention that the CNF from the BDD should not be too
large, but should be big enough to give the CNF simplifications something to
work with. The F value reflects our intuition that a “simplified” term that is
more than 10% bigger than its original size (without expanding any definitions,
which never happens here) is best discarded. We have not experimented with
any other values of the parameters.

Since existing propositional benchmark libraries like SATLIB and TPTP (BOO
category) have problems already in CNF, we generated random propositional
terms for testing, parameterised on a target term size. Randomness meant that for
each term size parameter, actual term sizes varied slightly. Nine increasing target
sizes were used. For each, the benchmarks were run 100 times. Table 1 presents
the minimum, average and maximum term sizes and term bracketing depths for
the input and simplified terms, and Table 2 gives the same statistics for execution
times, for each size parameter.

As Table 1 shows, our method is always able to achieve a better reduction in
term size. In the minimum simplified term sizes for our method, a 1 signifies a
random term that was either a tautology or a contradiction, and this was caught
by our method as per the guarantee of Proposition 2, and reduced to either �
or ⊥. HOL4 invariably slightly increases the size of the term. In our method we
can control this using the F parameter.

LCF-Style Propositional Simplification with BDDs and SAT Solvers 67

Table 1. Experimental results: term size and bracketing depth

Term Size Term Depth

Input HOL4 BDD+SAT Input HOL4 BDD+SAT

min avg max min avg max min avg max min avg max min avg max min avg max

1 7 12.9 16 1 8.4 17 1 2.7 9 1 2.0 3 0 1.3 3 0 0.3 2
2 22 29.5 33 1 26.9 40 1 15.6 33 2 3.5 5 0 3.0 4 0 1.6 4
3 50 59.8 66 1 58.0 74 1 44.2 69 2 4.9 7 0 4.2 6 0 3.8 7
4 70 99.6 122 61 100.2 137 1 75.4 118 4 5.7 7 3 4.8 7 0 4.6 7
5 110 121.3 132 89 124.9 158 1 101.4 127 4 6.2 8 4 5.4 7 0 5.6 8
6 113 125.6 135 62 129.0 149 1 107.1 130 5 6.8 9 4 5.5 8 0 6.3 9
7 161 204.4 233 1 207.0 251 1 171.4 224 5 7.0 9 0 6.1 8 0 6.2 9
8 215 241.7 256 163 249.5 279 1 212.1 246 6 7.7 11 4 6.5 9 0 7.1 9
9 240 251.6 262 205 262.2 289 1 230.5 256 5 8.2 11 5 6.6 8 0 7.7 11

For bracketing depth, HOL4 achieves a marginally better score on larger terms.
This may due to inwards movement of negations by HOL4, which reduces depth
without badly affecting term size. More detailed analysis of this is needed.

Table 2. Experimental results: execution times (ms)

HOL4 BDD+SAT

min avg max min avg max

1 0 0.2 2 10 21.6 58
2 1 1.7 10 12 76.1 266
3 2 4.0 13 16 224.9 944
4 4 6.8 20 20 294.3 589
5 7 11.0 31 25 372.0 637
6 6 9.3 35 27 379.8 553
7 10 14.8 47 33 503.9 847
8 14 17.9 50 42 747.6 1620
9 14 18.7 53 40 876.2 3263

For execution time, (Table 2) HOL4 is about two orders of magnitude faster.
However, we are not disappointed. First, in absolute terms our simplifier typically
takes less than a second, which is acceptable in interactive proof. Second, our
implementation is a mix of SML, C++, Perl and shell scripts, all communicating
via disk files, brought on by the need to try out various third-party off-the-
shelf implementations. Since the method invokes simplify for each subterm, the
overhead of file creation, reading, writing, and spawning command shells adds
up. This diagnosis is supported by profiling of individual modules: with the
exception of SATsimp, they contribute very little to the time cost. Our current
SATsimp works by invoking a SAT solver on the clause set file, extracting only
the clauses used by the solver, and repeating the invocation on the new clause
set file, until a fixpoint is reached. So it is also disk intensive. We fully expect
the execution times to approach those of HOL4 with a little more engineering
effort towards direct in-memory interfaces.

68 H. Amjad

6 Conclusion

We have shown how BDDs and SAT solvers can be used for propositional term
simplification. The method appears to improve on the simplification of pure
propositional terms by rewrite-based simplifiers, at least on random terms with
propositional structure sizes the same as those of terms typically encountered
in interactive proof. Further we have proved that our simplified terms respect
formal guarantees about semantic simplicity that cannot be furnished by rewrite-
based simplifiers. Our treatment is tool independent, except that we require that
the SAT solver is proof producing. We have also shown that the method can be
used in an LCF-style framework with acceptable cost.

We are currently considering a more aggressive structure retention strat-
egy that uses the definitions of definitional CNF to encode structural infor-
mation, that can later be recovered from the CNF. However, given that the
current method does a decent enough job, this is not very high on our list of
priorities.

Even though we have restricted ourselves to propositional logic, in theory the
results should be applicable to the use of SMT solvers rather than SAT solvers,
and should allow us to do simplification in combinations of decidable theories.
This awaits the development of a fast and mature LCF-style SMT interface,
work on which is underway [5]. If so, our results could then be applied to the
propositional structure of more expressive logics via Skolemization, as is done in
PVS, since SMT solvers can reason about uninterpreted functions.

Possible direct applications of this work include isolating the cause of a failure
to prove a putative tautology, and identification of dead code.3

We also plan to use simplify in a more fine grained manner, perhaps in con-
junction with the rewriting engine of the theorem prover, as is done in ACL2:
the HOL4 and Isabelle/HOL simplifiers do provide hooks for integrating other
procedures with the rewrite engine. We plan to customize SAT-based simplifiers,
for instance to try harder to exclude clauses containing no definitional variables.
These plans will form the initial steps for future research.

References

1. Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

2. Cyrluk, D., Rajan, S., Shankar, N., Srivas, M.K.: Effective theorem proving for
hardware verification. In: Kumar, R., Kropf, T. (eds.) TPCD 1994. LNCS, vol. 901,
pp. 203–222. Springer, Heidelberg (1995)

3. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3 Thanks to Larry Paulson and Laurent Théry respectively, for these ideas.

LCF-Style Propositional Simplification with BDDs and SAT Solvers 69

5. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006.
LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)

6. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with
dominators. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–
122. Springer, Heidelberg (2006)

7. Gordon, M.J.C.: Programming combinations of deduction and BDD-based sym-
bolic calculation. LMS Journal of Computation and Mathematics 5, 56–76
(2002)

8. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem-proving
environment for higher order logic. Cambridge University Press, Cambridge (1993)

9. Harrison, J.: Binary decision diagrams as a HOL derived rule. The Computer
Journal 38(2), 162–170 (1995)

10. Harrison, J.: HOL Light. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS,
vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

11. Harrison, J.: St̊almarck’s algorithm as a HOL derived rule. In: von Wright, J., Har-
rison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 221–234. Springer,
Heidelberg (1996)

12. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: A tutorial:
Version 7.2. Technical Report RT-0256, INRIA (February 2002)

13. Joyce, J.J., Seger, C.-J.H.: The HOL-Voss system: Model checking inside a general-
purpose theorem prover. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS,
vol. 780, pp. 185–198. Springer, Heidelberg (1994)

14. Kaufmann, M., Moore, J.: An industrial strength theorem prover for a logic based
on Common Lisp. IEEE Transactions on Software Engineering 23(4), 203–213
(1997)

15. Mitchell, D.G.: A SAT solver primer. In: EATCS Bulletin. The Logic in Computer
Science Column, EATCS, vol. 85, pp. 112–133 (February 2005)

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, pp. 530–535. ACM Press, New York (2001)

17. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992), http://pvs.csl.sri.com

18. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
19. Rajan, S., Shankar, N., Srivas, M.K.: An integration of model checking and auto-

mated proof checking. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 84–97.
Springer, Heidelberg (1995)

20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J., Wrightson, G. (eds.) Automation Of Reasoning: Classical Papers On
Computational Logic, Vol. II, 1967-1970, pp. 466–483. Springer, Heidelberg (1983);
Slisenko, A.O. (eds.) Structures in Constructive Mathematics and Mathematical
Logic Part II, pp. 115–125 (1968)

21. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs
in Coq. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 162–181.
Springer, Heidelberg (2000)

22. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theo-
rem provers. JAL (2007) (accepted for publication, July 2007) (to appear)

http://pvs.csl.sri.com

70 H. Amjad

23. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formula. In: 6th SAT (2003) (presentation only)

24. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005)

25. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE, pp. 10880–
10885. IEEE Computer Society Press, Los Alamitos (2003)

Nominal Inversion Principles

Stefan Berghofer and Christian Urban

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

Abstract. When reasoning about inductively defined predicates, such as typing
judgements or reduction relations, proofs are often done by inversion, that is by a
case analysis on the last rule of a derivation. In HOL and other formal frameworks
this case analysis involves solving equational constraints on the arguments of the
inductively defined predicates. This is well-understood when the arguments con-
sist of variables or injective term-constructors. However, when alpha-equivalence
classes are involved, that is when term-constructors are not injective, these equa-
tional constraints give rise to annoying variable renamings. In this paper, we show
that more convenient inversion principles can be derived where one does not have
to deal with variable renamings. An interesting observation is that our result relies
on the fact that inductive predicates must satisfy the variable convention compati-
bility condition, which was introduced to justify the admissibility of Barendregt’s
variable convention in rule inductions.

1 Introduction

Inductively defined predicates play an important role in formal methods; they are de-
fined by a set of introduction rules and come equipped with rule induction and inversion
principles. A typical example of an inductive predicate is beta-reduction defined by the
four rules

App (Lam x.s1) s2 −→β s1[x:=s2]
b1

s1 −→β s2
App s1 t −→β App s2 t

b2

s1 −→β s2
App t s1 −→β App t s2

b3

s1 −→β s2
Lam x.s1 −→β Lam x.s2

b4

(1)

where [:=] stands for capture-avoiding substitution. Another is the typing predicate
for simply-typed lambda-terms defined by the rules

valid Γ (x, T) ∈ Γ

Γ � Var x : T
t1

Γ � t1 : T1 → T2 Γ � t2 : T1

Γ � App t1 t2 : T2

t2

(x, T1)::Γ � t : T2

Γ � Lam x.t : T1 → T2
t3

(2)

where the typing contexts Γ are lists of (variable name,type)-pairs, ∈ stands for list
membership and :: for list-cons. The premise valid Γ in the first typing rule is another
inductive predicate which states that the typing context must not contain repeated oc-
currences of a variable name. This can be defined as follows:

valid []
v1

valid Γ x # Γ

valid ((x, T)::Γ)
v2 (3)

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 71–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 S. Berghofer and C. Urban

where [] stands for the empty typing context and x # Γ states that the variable name x
does not occur in Γ .

The rule induction and inversion principles are the main thrust behind these defin-
itions: they provide the infrastructure for convenient reasoning about inductive predi-
cates. This is illustrated by the proof of the following lemma establishing that
beta-reduction preserves typing.

Lemma 1 (Type Preservation). If Γ � u : U and u −→β u ′ then Γ � u ′ : U.

Type preservation can be proved by a rule induction on Γ � u : U. This gives rise to
three subgoals:

(i) Var x −→β u ′ ∧ . . .⇒ Γ � u ′ : T
(ii) App t1 t2 −→β u ′ ∧ . . .⇒ Γ � u ′ : T2

(iii) Lam x.t −→β u ′ ∧ . . .⇒ Γ � u ′ : T1 → T2

where we omitted some of the side-assumptions. The proof then proceeds by a case
analysis, called inversion, of the assumptions about−→β .

In general, inversion is a reasoning principle that applies to any instance of an induc-
tive predicate occurring in the assumptions; it relies on the observation that this instance
must have been derived by at least one of the rules by which the inductive predicate is
defined. In informal reasoning one therefore matches the assumption with the conclu-
sion of every rule and tests whether the assumption and conclusion match. We will refer
to this kind of informal reasoning as inversion by matching and describe it next.

In the case (i), the assumption Var x −→β u ′matches with no conclusion in (1). There-
fore this is an impossible case, which implies that the goal Γ � u ′ : T holds trivially.

In the case (ii), the matching of App t1 t2 −→β u ′with the conclusions in (1) succeeds
in case of b1, b2 and b3, and therefore three cases need to be considered. Let us first
analyse the case corresponding to the rule

s1 −→β s2
App s1 t −→β App s2 t

b2

In this case we know for some s2 that u ′ = App s2 t2 (since t1 matches with s1, and
t with t2). By induction we can infer that Γ � s2 : T1 → T2 and Γ � t2 : T1 hold.
Consequently, Γ � u ′ : T2 holds.

Continuing with our informal reasoning, the case of beta-reduction, i.e. App (Lam
x.s1) s2 −→β s1[x:=s2], goes as follows: For some term s1, u ′ is equal to s1[x:=t2] and
t1 equal to Lam x.s1. The latter equation gives us that Γ � Lam x.s1 : T1 → T2 and
Γ � t2 : T1 hold. To complete the proof we need the substitutivity lemma:

Lemma 2 (Type Substitutivity).
If (x, U)::Γ � t : T and Γ � u : U then Γ � t[x:=u] : T.

whose proof we omit. For this lemma to be useful, we have to invert the typing judge-
ment Γ � Lam x.s1 : T1 → T2. The informal inversion by matching gives us the de-
sired result: this judgement matches with the conclusion of the rule t3 and we obtain
(x, T1)::Γ � s1 : T2. So we can conclude in this case by using Lemma 2 (similarly in
all remaining cases).

Nominal Inversion Principles 73

The point of these calculations is to show that the inversion by matching is very
natural and convenient. It is also very typical in programming language research: similar
proofs are described for System F<: in the POPLmark challenge (see Appendix of [2]).
The contribution of this paper is to make this informal reasoning formal. The problem
we have to solve for this arises from the fact that the examples above contain lambda-
terms, where the term constructor Lam is not injective. By this we mean the property
that in general one cannot infer from the equation

Lam x.t = Lam x ′.t ′

that
x = x ′ and t = t ′

hold. This is in contrast to the injective term constructors Var and App where we have
the implications

Var x = Var x ′ ⇒ x = x ′

App t s = App t ′ s ′ ⇒ t = t ′∧ s = s ′

Why the lack of injectivity leads to problems with formal inversion principles is
explained in the next section. Section 3 characterises the form of rules in inductive
definitions, Section 4 recalls some notions from the nominal logic work [7,9] and Sec-
tion 5 describes the condition for variable-convention compatibility and gives the proof
for our main result. Examples are described in Section 6 and Section 7 concludes and
mentions related work.

2 Formal Inversion Principles

Unfortunately, the formal reasoning in systems such as HOL, Coq and LEGO is subtly
different from the informal inversion by matching illustrated in the Introduction: instead
of matching two instances of a relation, the formal inversion principles in these systems
require equality constraints to be solved.

Consider the inversion principles given in Fig. 1, which are formally derived by
Isabelle/HOL for beta-reduction and typing. Both inversion principles can be employed
to prove a proposition P from the assumption u1 −→β u2 and ∆ � u : U, respectively.
Their general structure is as follows: each premise of the inversion rule corresponds
to a rule of the inductive predicate. These premises are implications whose right-hand
side is the proposition P, and whose left-hand side are conjunctions (note also in each
case the outermost universal quantification ranging over the entire implication). The
elements of these conjunctions can be divided into two parts: the first part consists of
equality constraints expressing the equality between the arguments of the predicate to
be inverted and the arguments of each conclusion in the inductive definition; the second
part consists of the premises of the corresponding rule.

Returning to our running example of proving the type-preservation lemma, let us
analyse how the formally derived inversion principles given in Fig. 1 behave. The case
(i) in Lemma 1 required us to prove

Var x −→β u ′ ∧ . . .⇒ Γ � u ′ : T

74 S. Berghofer and C. Urban

∀ x s2 s1. u1 = App (Lam x.s1) s2 ∧ u2 = s1[x:=s2] ⇒ P
∀ s1 s2 t. u1 = App s1 t ∧ u2 = App s2 t ∧ s1 −→β s2 ⇒ P
∀ s1 s2 t. u1 = App t s1 ∧ u2 = App t s2 ∧ s1 −→β s2 ⇒ P
∀ s1 s2 x. u1 = Lam x.s1 ∧ u2 = Lam x.s2 ∧ s1 −→β s2 ⇒ P

u1 −→β u2 ⇒ P (4)

∀Γ x T . ∆ = Γ ∧ u = Var x ∧ U = T ∧ valid Γ ∧ (x, T) ∈ Γ ⇒ P
∀ t1 T1 T2 t2. ∆ = Γ ∧ u = App t1 t2 ∧ U = T2 ∧ Γ t1 : T1 → T2 ∧ Γ t2 : T1 ⇒ P
∀ x T1 Γ t T2. ∆ = Γ ∧ u = Lam x.t ∧ U = T1 → T2 ∧ (x, T1)::Γ t : T2 ⇒ P

∆ u : U ⇒ P (5)

Fig. 1. Inversion principles derived by Isabelle/HOL for the inductive predicates beta-reduction
and typing

If we use inversion principle for −→β (i.e. (4)) and invert Var x −→β u ′, we obtain the
following four subgoals:

∀ x ′ s2 s1. Var x = App (Lam x ′.s1) s2 ∧ u ′ = s1[x ′:=s2] ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 t. Var x = App s1 t ∧ u ′ = App s2 t ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 t. Var x = App t s1 ∧ u ′ = App t s2 ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 x ′. Var x = Lam x ′.s1 ∧ u ′ = Lam x ′.s2 ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T

The left-hand sides of these subgoals all reduce to False because the term constructors
are in conflict (Var can never be equal to App). Therefore we can quickly, like in the
informal reasoning, discharge all subgoals.

In case (ii) where we invert App t1 t2 −→β u ′, we obtain the following four subgoals:

∀ x s2 s1. App t1 t2 = App (Lam x.s1) s2 ∧ u ′ = s1[x:=s2] ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 t. App t1 t2 = App s1 t ∧ u ′ = App s2 t ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 t. App t1 t2 = App t s1 ∧ u ′ = App t s2 ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T
∀ s1 s2 x. App t1 t2 = Lam x.s1 ∧ u ′ = Lam x.s2 ∧ s1 −→β s2 ∧ . . . ⇒ Γ � u ′ : T

The fourth subgoal can again be discharged because of the conflicting equality between
App and Lam. The reasoning in the second and third is very similar with the informal
inversion by matching, because the App-term constructor is injective and therefore we
can infer

App t1 t2 = App s1 t ⇒ t1 = s1 ∧ t2 = t, and
App t1 t2 = App t s1 ⇒ t1 = t ∧ t2 = s1

(6)

which are the same equations we would have got by the informal inversion by matching.
The first subgoal (corresponding to b1) is more complicated: although we obtain by

injectivity of App the equations t1 = Lam x.s1 and t2 = s2, we will encounter problems
with inverting the typing judgement Γ � Lam x.s1 : T1 → T2. That is, we will not be
able to infer that (x, T1)::Γ � s1 : T2 holds. This is because Lam is not injective and
we cannot reason as in (6).

We encounter the same problem with the reasoning in case (iii). There we have to
invert the reduction Lam x.t −→β u ′ and obtain by using the first inversion principle
from (4) the following four subgoals:

Nominal Inversion Principles 75

∀ x ′ s2 s1. Lam x.t = App (Lam x ′.s1) s2 ∧ u ′ = s1[x ′:=s2]⇒ Γ � u ′ : T1 → T2

∀ s1 s2 t. Lam x.t = App s1 t ∧ u ′ = App s2 t ∧ s1 −→β s2 ⇒ Γ � u ′ : T1 → T2

∀ s1 s2 t. Lam x.t = App t s1 ∧ u ′ = App t s2 ∧ s1 −→β s2 ⇒ Γ � u ′ : T1 → T2

∀ s1 s2 x ′. Lam x.t = Lam x ′.s1 ∧ u ′ = Lam x ′.s2 ∧ s1 −→β s2 ⇒ Γ � u ′ : T1 → T2

Again the first three cases reduce to False. However in the fourth case we end up with
solving the equation

Lam x.t = Lam x ′.s1 (7)

where the variables x ′ and s1 are universally quantified (that is we cannot choose them).
Since Lam is not injective, the only way to solve this equation is to unfold the definition
of alpha-equivalence, which in the Nominal Datatype Package gives us the cases

(i) x = x ′ ∧ t = s1 or
(ii) x �= x ′ ∧ t = (x x ′)·s1 ∧ x # s1

where (x x ′) is a permutative renaming of x and x ′, and x # s1 stands for x not occurring
freely in s1, see [7]. While the first case is easy to deal with (the induction hypothesis
is immediately applicable), the second leads to the following proof state:

x �= x ′∧ x # s1 ∧ s1 −→β s2 ∧ . . . ⇒ Γ � Lam x ′.s2 : T1 → T2

with the induction hypothesis

∀ s ′. (x x ′)·s1 −→β s ′⇒ (x, T1)::Γ � s ′ : T2

Here the formal reasoning starts to hurt, as it is much harder than the informal inversion
by matching. As one can see, the induction hypothesis is not directly applicable: we
know s1 −→β s2 but we need that (x x ′)·s1 reduces to some term. Also the induction
hypothesis gives us a typing-judgement involving the variable x, but we need one for x ′.
The most direct way to complete this case requires the following side lemmas:

Lemma 3.
(i) If s1 −→β s2 then (x x ′)·s1 −→β (x x ′)·s2.

(ii) If x # s1 and s1 −→β s2 then x # s2.

where, interestingly, the second is a property specific to beta-reduction.
Clearly, inverting Lam x.t −→β u ′ in this way is not very convenient and the same

difficulties arise if we try to invert Γ � Lam x.s1 : T1 → T2 using (5) as needed in the
App-case above. In contrast, inverting inductive predicates based on the locally name-
less approach to binders (see [3]) is much simpler, because there all term constructors
are injective—even Lam. We show in this paper that we can obtain stronger inversion
principles (than given in Fig. 1), where they are stronger in the sense that we can avoid
the renaming of the binder, as long as the binder is sufficiently fresh. In this way we
can follow quite closely the informal reasoning of inversion by matching an assumption
with all rules.

These strong inversion principles will depend on the inductive predicates to sat-
isfy the variable convention compatibility condition, short vc-condition. The reason
for this condition is that the informal reasoning (i.e. inversion by matching) can lead

76 S. Berghofer and C. Urban

to faulty reasoning when alpha-equivalence classes are involved. Consider the follow-
ing inductive definition of a two-place predicate (both arguments are alpha-equated
lambda-terms)

Var x ↪→ Var x App t1 t2 ↪→ App t1 t2

t ↪→ t ′

Lam x.t ↪→ t ′
(8)

Now choose two distinct variables, say x and y with x �= y. A simple calculation shows
that Lam x.Var x ↪→ Var x can be derived using the rules above. Therefore we can use it
as an assumption. Since we are working with alpha-equated lambda terms, we have that
Lam x.Var x = Lam y.Var y and therefore also Lam y.Var y ↪→ Var x must hold. Next
we apply the inversion principle naively to the latter instance of the relation, i.e. we
invert by matching this instance with the conclusions of the rules shown in (8). Only
the third rule matches, yielding the fact Var y ↪→ Var x. Next we invert this instance of
the relation: the first rule matches, enabling us to infer that x = y holds. This, however,
contradicts the assumption that x and y are distinct. The vc-condition will protect us
from this kind of faulty reasoning.

3 Inductive Predicates

An inductive predicate, say R, is defined by a finite set of rules ri

B1

R ts1
r1 . . .

Bn

R tsn

rn (9)

where in the premises the Bi are HOL-formulae possibly containing R and where in the
conclusion the tsi are the arguments of the predicate R. The tsi are HOL-terms, which
for the purposes of this paper we can assume to be either variables or constructed by
term constructors. Again for the purposes of this paper HOL-formulae will be the ones
given by the grammar

B ::= P ts | B1 ∧ B2 | B1 ∨ B2 | B1 −→ B2 | ¬ B | ∀ x. B x | ∃ x. B x

where P stands for atomic predicates and ts are the arguments of P. In (9) we have
the usual assumption that the premises can contain the predicate R in positive position
only (see [1]). However, the Bi can contain other predicates, these are usually called
side-conditions. For example our typing rule t1 has the side-condition concerning ∈
and valid as premise.

In what follows it is convenient to have the notations t[xs], where the xs contain all the
variables of t, and B[ys], where ys includes the free variables of B (in B some variables
might be bound because of the universal and existential quantifiers). The meaning of a
rule in (9) is then the implication

∀ xsi. Bi[xsi]⇒ R ts[xsi]

where each xsi includes all free variables in ri. That means every instantiation of the
free variables in ri will result in an instance of this rule. With the rules given in (9)
comes the following inversion principle

Nominal Inversion Principles 77

∀ xs1. ss = ts1[xs1] ∧ B1[xs1]⇒ P rule r1

...
∀ xsn. ss = tsn[xsn] ∧ Bn[xsn]⇒ P rule rn

R ss⇒ P

(10)

where the tsi correspond to the arguments in the conclusion of each rule and the Bi to
the premises (not also that the xsi do not include any of the free variables in ss and P).
The inversion principles given for −→β and the typing rues in Fig. 1 are instances of
(10). We refer to this inversion principle as the weak inversion principle. As we have
shown in Section 2: when applying the weak inversions to cases involving non-injective
term constructors, we need to analyse cases involving annoying variable renamings. We
will show later that a strong inversion principle can be derived from the weak one and
using the strong one we can avoid the renamings.

4 Nominal Logic Work

Before we proceed, we introduce some necessary notions from the nominal logic work
[7,9]. We assume that there are countably infinitely many names, which can be used as
binders. We base our description on permutation actions and on the notion of support.
The support of an object will, for the purposes of this paper, coincides with the set of
free names of that object. For details and a proper definition of support see [8]. A name
a is fresh w.r.t. an object, say t, provided that it is not free in t; we write this as a # t.
Note that if t has finitely many free variables, then there exists a fresh variable w.r.t. t.
We will also use the auxiliary notation a # ts, in which ts stands for a collection of
objects t1,. . . ,tn, to mean a # t1,. . . , a # tn. We further generalise this notation to a
collection of names, namely as # ts, which means a1 # ts,. . . , am # ts.

Permutations are finite lists of swappings (i.e., pairs of variables). We write such per-
mutations as (a1 b1)(a2 b2) · · · (an bn); the empty list [] stands for the identity permuta-
tion, list append (i.e. π1 @ π2) for the composition of two permutations and list reversal
(i.e. π−1) for the inverse of a permutation. We define the permutation action over the
structure of types in HOL. The point of the permutation action is to push permutations
inside the structure of every object, renaming names on the way. A permutation acting
on names is therefore defined as follows:

[] · a = a

(a, b)::π · c =

⎧⎨
⎩

a if π · c = b
b if π · c = a
π · c otherwise

(11)

The permutation action on lists, pairs and booleans is given by

π · [] = []
π · (x::xs) = π · x::π · xs
π · (x, y) = (π · x, π · y)
π · True = True
π · False = False

(12)

78 S. Berghofer and C. Urban

Notice the last two lines imply the fact that for every HOL-formula B the equality π ·
B = B holds. This is because HOL is a classical logic and every formula is either true
or false. For alpha-equated lambda-terms we have

π · Var x = Var (π · x)
π · App t1 t2 = App (π · t1) (π · t2)
π · Lam x.t = Lam (π · x).(π · t)

(13)

We can easily prove that the permutation actions in (11), (12) and (13) satisfy the fol-
lowing three properties:

(i) [] · () = ()
(ii) (π1 @ π2) · () = π1 · π2 · ()

(iii) If π1 ≈ π2 then π1 · () = π2 · ().
(14)

where in the last clause equality between two permutations, that is π1 ≈ π2, is defined
by the property that as π1 · a = π2 · a holds for all names a. In the next section we need
the following lemma about freshness and the permutation actions in (11), (12) and (13):

Proposition 1. If a # () and b # () then (a b)·() = ().

The notion of equivariance is derived from the permutation actions:

Definition 1 (Equivariance [7]). A HOL-term t, respectively a HOL-formula B, with
free variables amongst xs is equivariant provided for all π, we have π · t[xs] = t[π·xs]
and π · B[xs] = B[π·xs].

From the definition of their permutation action, pairs, nil and list-cons are equivariant.
For HOL-formulae we have:

π · (A ∧ B) = π · A ∧ π · B
π · (A ∨ B) = π · A ∨ π · B

π · (A −→ B) = π · A −→ π · B
π · (¬ A) = ¬ π · A

π · (∀ x. P x) = ∀ x. π · P (π−1 · x)
π · (∃ x. P x) = ∃ x. π · P (π−1 · x)

(15)

Therefore for all the structures we consider in this paper we can move permutations
inside the structures until they reach variables, therefore all structures we consider in
paper will be equivariant.

For proving our main result in the next section it is convenient to refine our notation
ts[xs] and B[xs] for indicating the free variables of ts and B. The reason is that some of
these variables stand for names and those names are potentially in binding positions.
By binding position we mean the x in Lam x.t. In what follows the notation ts[as;xs]
and B[as;xs] will be used to indicate that the variables in binding position of the ts
are included in as and the other variables of the ts are either in as or in xs (similarly
for HOL-formulae). We extend this notation also to rules: by writing r[as;xs] we mean
rules of the form

B[as;xs]
R ts[as;xs] ri[as;xs]

Nominal Inversion Principles 79

However, unlike in the notation for HOL-terms and HOL-formulae, we mean in ri[as;xs]
that the as stand exactly for the variables occurring somewhere in ri in binding position
and the xs stand for the rest of variables. To see how this notation works out in our
examples, reconsider the definitions for the relations given in (1) and (2). Using our
notation for these rules, we have

b1[x;s1,s2]
b2[−;s1,s2,t]
b3[−;s1,s2,t]
b4[x;s1,s2]

t1[−;Γ ,x,T]
t2[−;Γ ,t1,t2,T1,T2]
t3[x;Γ ,t,T1,T2]

where ‘−’ stands for no variable in binding position. An inductive definition for alpha-
equivalence between lambda terms includes the two rules:

t1 = t2
Lam x.t1 = Lam x.t2

a1

x �= y t1 = (x y)·t2 x # t2
Lam x.t1 = Lam y.t2

a2

There our notation would be a1[x;t1,t2] and a2[x,y;t1,t2].

5 Strengthening of the Inversion Principle

In this section, we show how the “weak” inversion rules in (10) can be used to derive
stronger inversion rules in which the equality constraints are formulated in such a way
that they can be solved without having to rename variables.

We have seen in the example about t ↪→ t ′ from the Introduction that inversion prin-
ciples involving alpha-equivalence classes require some care. In order to rule out the
problematic case (and similar ones), we need to impose a condition on the rules of an
inductive definition. It is interesting that the condition we impose is the same as the one
introduced in [8] for justifying the admissibility of Barendregt’s variable convention in
rule inductions.

A rule is said to be variable convention compatible, or short vc-compatible, provided
the following two properties are satisfied:

Definition 2 (Variable Convention Compatibility). A rule r[as;xs] with conclusion
R ts[as;xs] and premise B[as;xs] is vc-compatible provided that:

• all HOL-terms and HOL-formulae occurring in r are equivariant, and
• the premise B[as;xs] implies that as # ts[as;xs] holds and that the as are distinct.

Note that if rule r does not contain any variable in binding position, then the second
condition is vacuously true. The first condition ensures that the relation R is equivariant.
The equivariance property will allow us to push permutations inside HOL-terms and
HOL-formulae until they reach free variables.

If every introduction rule in an inductive definition satisfies these conditions, then
the inversion principle can be strengthened. The strengthened version looks as follows

80 S. Berghofer and C. Urban

∀ xs1. (bs1 # ss ∧ distinct(bs1)⇒ ss = ts1[bs1;xs1] ∧ B1[bs1;xs1])⇒ P rule r1

...
∀ xsn. (bsn # ss ∧ distinct(bsn)⇒ ss = tsn[bsn;xsn] ∧ Bn[bsn;xsn])⇒ P rule rn

R ss⇒ P
(16)

where for every rule r1,. . . ,rn we have a case to analyse. In our notation the rules have
the form r1[bs1;xs1],. . . ,rn[bsn;xsn] where the bsi are the variables in binding position.
Note that in contrast to (10) the variables bsi are no longer universally quantified, mean-
ing that we are free to choose the names bsi when we want to invoke the strong inversion
principle. The only constraints we have is that the preconditions bsi # ss ∧ distinct(bsi)
need to be satisfied. This will be the case if the bsi are sufficiently fresh.

We now prove the main result of this paper: if the rules of an inductive definition are
vc-compatible, then the strong inversion principle in (16) holds.

Theorem 1. For an inductive definition of the predicate R, involving vc-compatible
rules only, a strong inversion principle exists deriving the implication R ss⇒ P.

Proof. We need to establish R ss ⇒ P using the implications indicated in (16). To do
so we will use the weak inversion rule from (10). For each rule ri[asi;xsi] of the form

B[asi;xsi]
R tsi[asi;xsi]

we have to analyse one case of the form

∀ asi xsi. ss = tsi[asi;xsi] ∧ Bi[asi;xsi]⇒ P

To show P in these cases we have available the fact from (16), namely

∀ xsi. (bsi # ss ∧ distinct(bsi)⇒ ss = tsi[bsi;xsi] ∧ Bi[bsi;xsi])⇒ P (17)

We first assume that

ss = tsi[asi;xsi] (18)

Bi[asi;xsi] (19)

hold. Since ri[asi;xsi] is assumed to be vc-compatible, we further have that

(a) asi # tsi[asi;xsi] and (b) distinct(asi) (20)

hold. The proof then proceeds by choosing for every name a in asi a fresh name c such
that for all the csi the following hold (csi is the collection of all those c):

(a) csi # ss (b) csi �= asi (c) csi �= bsi (d) distinct(csi) (21)

Such a sequence csi always exists: the first three properties can be obtained since the
terms ss, asi and bsi stand for finitely supported objects—so a free variable always

Nominal Inversion Principles 81

exists; the last can be obtained by choosing the c one after another avoiding the ones
that have already been chosen. We now build the permutation

π
def= (bn cn). . . (b1 c1) (an cn). . . (a1 c1)

The point of π is that when applied to the asi we get π · asi = bsi. This follows from
the properties in (20.b), (21.b-d) and the fact that we can assume distinct(bsi) holds
(see below). We next instantiate in (17) the xsi with π · xsi giving us

(bsi # ss ∧ distinct(bsi)⇒ ss = tsi[bsi;π · xsi] ∧ Bi[bsi;π · xsi])⇒ P

So in order to show P, it suffices to prove

ss = tsi[bsi;π · xsi] ∧ Bi[bsi;π · xsi] (22)

under the assumptions

(a) bsi # ss and (b) distinct(bsi) (23)

From (23.a) and (18) we obtain bsi # tsi[asi;xsi]. Using this, (20.a) and Lemma 1,
we have that π · tsi[asi;xsi] = tsi[asi;xsi]. Since the rule is equivariant we have that
π · tsi[asi;xsi] = tsi[bsi;π · xsi] and thus also the first conjunct of (22). The reasoning
for the other conjunct is as follows: using (19) and the fact that Bi is a boolean we have
that π · Bi[asi;xsi] holds. Again by equivariance of the rule, we can move the permu-
tation inside to obtain Bi[bsi;π · xsi]—the second conjunct of (22). This concludes the
proof. ��

Let us next describe how the stronger inversion principles simplify the formal reasoning
in the type preservation lemma.

6 Examples

To use the strong inversion rules, we first have to make sure that the beta-reduction
and typing relation are equivariant. For this we only have to observe that all constants
(that is term constructors and functions) in the rules of −→β , typing and valid are
equivariant. This follows either from the definition of the permutation action or is by
a simple induction over the predicates (in our implementation Isabelle will infer this
automatically). To show that the second condition in Definition 2 is satisfied we have to
show that the binders are fresh w.r.t. the conclusions of the rule they appear in. That is
a simple calculation for the rules

(x, T1)::Γ � t : T2

Γ � Lam x.t : T1 → T2

t3
s1 −→β s2

Lam x.s1 −→β Lam x.s2
b4

In the first case we have to show that x # (Γ , Lam x.t, T1 → T2) holds under the
assumption that (x, T1)::Γ � t : T2. Since we can show by a routine induction that
typing judgements only include valid contexts, we have that valid ((x, T1)::Γ) holds.

82 S. Berghofer and C. Urban

s s y u u u App Lam y s s u s y s y s P
s s t u App s t u App s t s s P
s s t u App t s u App t s s s P
s s x u u u Lam x s u Lam x s s s P

u u P (24)

x T u Var x U T valid x T P
t T T t u App t t U T t T T t T P
T t T x u U u Lam x t U T T x T :: t T P

u U P
(25)

Fig. 2. Strong inversion principles derived by the Nominal Datatype Package for the inductive
predicates for beta reduction and typing

From this we can infer that x # Γ . We also know that x # Lam x.t (since x is abstracted)
and that x # T1 → T2 (since types in the simply-typed lambda-calculus do not contain
any variables). We can discharge the conditions in the other rule by similar arguments.
However the condition will fail for the rule

App (Lam x.s1) s2 −→β s1[x:=s2]
b1 (26)

because we cannot determine whether x # s2. However we can show that this beta-
reduction rule is equivalent to the following more restricted rule

x # s2
App (Lam x.s1) s2 −→β s1[x:=s2]

b′
1 (27)

This is because we can choose a y such that y # (s1, s2) and alpha-rename App (Lam
x.s1) s2 to App (Lam y.(y x)·s1) s2. Then apply the restricted rule to this term in order
to obtain the reduct ((y x)·s1)[y:=s2]. By a structural induction over s1, we can show
that this term is equal to s1[x:=s2] as desired. The point of this “manoeuvre” is that we
can show that the restricted rule for beta-reduction does satisfy the vc-condition.

The result of these calculations is that there are strengthened inversion rules for beta-
reduction and the typing-relation. They are given in Fig. 2. Using them for the type
preservation lemma, the second and third case are the same as with the weak inversion
rule (4). In the first and fourth case, however, the user does not need to show the claim
for an arbitrary variable x ′, but for a sufficiently freshly chosen one (it has to be fresh
w.r.t. (u1, u2)). In the strong inversion for the typing rule we have that the cases for
variables and applications are the same as with the weak inversion rule (5). In the case
of lambda abstractions, the user can choose a x so that x # (∆, u, U). These choices
will hugely simplify the formal reasoning. To give an impression of this fact we show
next three lemmas in Isabelle/HOL proving special instances of inversion principles.

lemma Ty-Lam-inversion:
assumes ty: Γ Lam x.t : T and fc: x#Γ
shows ∃ T1 T2. T = T1 → T2 ∧ (x,T1)::Γ t : T2

using ty fc by (cases rule: typing.strong-cases) (auto simp add: alpha)

Nominal Inversion Principles 83

lemma Beta-Lam-inversion:
assumes red: Lam x.t −→β s and fc: x#s
shows ∃ t ′. s = Lam x.t ′ ∧ t −→β t ′

using red fc by (cases rule: Beta.strong-cases) (auto simp add: alpha)

lemma Beta-App-inversion:
assumes red: App (Lam x.t) s −→β r and fc: x#(s,r)
shows (∃ t ′. r = App (Lam x.t ′) s ∧ t −→β t ′) ∨

(∃ s ′. r = App (Lam x.t) s ′ ∧ s −→β s ′) ∨ (r = t[x:=s])
using red fc
by (cases rule: Beta.strong-cases) (auto dest: Beta-Lam-inversion simp add: alpha)

These lemmas are needed frequently in proofs about structural operational semantics.
As seen in Section 2, it would have been quite painful to derive them using the weak
inversion principles. We use the alpha-rule in the proofs above in order to rewrite the
trivial alpha-equivalence Lam x.t = Lam x.s to t = s.

The Isar-proof of the complete type preservation lemma is given in Fig. 3. Lines 6
and 7 show the variable case. Lines 9-21 contain the steps for the case where a beta-
reduction occurs (the other cases are automatic in Line 22). We first chose a fresh name
x (Line 10); invert App t1 t2 −→β u ′ in Line 12 using the fresh x. In the only interesting
case, we have that Γ � Lam x.s1 : T1 → T2 holds (Line 15), which we can invert to
(x, T1)::Γ � s1 : T2. To this we can apply the Lemma 2 (Line 20). In the lambda-case
(Lines 24-31), we invert Lam x.t −→β u ′. We know that x is fresh for u ′ by the strong
induction (Line 5). We can apply the induction hypothesis in Line 28 and use the typing
rule to conclude (Lines 30 and 31).

7 Conclusion and Related Work

As long as one is dealing with injective term constructors, the weak (or standard) inver-
sion rules provided by Isabelle/HOL work similarly to the informal inversion by match-
ing an assumption over the conclusions of inference rules. However, non-injective term
constructors, such as Lam in the lambda-calculus, give rise to annoying variable renam-
ings, and formal reasoning is quite different from and much more inconvenient than
the informal inversion by matching. This was observed in [3], because in their locally
nameless representation of binders, all term constructors are injective.

We have shown in this paper that if a binder is fresh with respect to the conclu-
sion of the rule where the binder appears and the inductive predicate satisfies the vc-
condition, then one can avoid the renamings. As a result the formal inversion principles
are again as convenient the informal reasoning of inversion by matching—though the
strong inversion principles only apply to vc-compatible inductive relations. In (8) we
have shown that the informal inversion by matching can lead to faulty reasoning when
the vc-condition is not satisfied. In our implementation this kind of faulty reasoning is
prevented because the strong inversion principles are derived only when the user has
verified the second part of the vc-condition (see Def. 2); the first part of that condi-
tion is verified automatically by observing that equivariant inductive predicates must be
composed of equivariant components only.

84 S. Berghofer and C. Urban

lemma type-preservation:1

assumes ty: Γ u : U and red: u −→β u ′
2

shows Γ u ′ : U3

using ty red4

proof (nominal-induct avoiding: u ′ rule: typing.strong-induct)5

case (ty-Var Γ x T)6

from 〈Var x −→β u ′〉 show Γ u ′ : T by (cases) (simp-all)7

next8

case (ty-App Γ t1 T1 T2 t2)9

obtain x::name where fc: x # (Γ , App t1 t2, u ′) by (rule exists-fresh-var)10

from 〈App t1 t2 −→β u ′〉 show Γ u ′ : T2 using fc11

proof (cases rule: Beta.strong-cases[where x=x and xa=x])12

case (Beta s2 s1)13

then have eqs: t1 = Lam x.s1 t2 = s2 u ′ = s1[x:=s2] using fc by (simp-all)14

from 〈Γ t1 : T1 → T2〉 have Γ Lam x.s1 : T1 → T2 using eqs by simp15

then have (x,T1)::Γ s1 : T2 using fc16

by (cases rule: typing.strong-cases) (auto simp add: alpha)17

moreover18

from 〈Γ t2 : T1〉 have Γ s2 : T1 using eqs by simp19

ultimately have Γ s1[x:=s2] : T2 by (rule type-substitutivity)20

then show Γ u ′ : T2 using eqs by simp21

qed (auto intro: ty-App)22

next23

case (ty-Lam x T1 Γ t T2)24

from 〈Lam x.t −→β u ′〉 〈x # u ′〉25

obtain s2 where t-red: t −→β s2 and eq: u ′ = Lam x.s226

by (cases rule: Beta.strong-cases) (auto simp add: alpha)27

have ih: t −→β s2 =⇒ (x,T1)::Γ s2 : T2 by fact28

with t-red have (x,T1)::Γ s2 : T2 by simp29

then have Γ Lam x.s2 : T1 → T2 by (rule typing.ty-Lam)30

with eq show Γ u ′ : T1 → T2 by simp31

qed32

Fig. 3. An Isar-proof of the type preservation lemma in Isabelle/HOL

What was surprising to us is that the strong inversion principles depend on the vc-
condition that we introduced in previous work [8]. There, this condition was used to
make sure that the variable convention in proofs by rule induction does not lead to
faulty lemmas. An disadvantage of our approach is that in case of beta-reduction we
have to use rule b′1 shown in (27) and so far we have no automatic method to derive
from it the usual rule b1 shown in (26).

The most closely related work to the one presented here is our own [8], where we
study strong induction principles. Here we were concerned with inversion principles,
which in our setting with non-injective term constructors are not a degenerated form
of induction (as is usually the case). In contrast with that work [8], we also deal here
with the case where rules include quantifiers. In the context of type theory, inversion
principles have been studied by Cornes and Terrasse for the Coq proof assistant [4]
and by McBride for the LEGO system [5]. McBride’s implementation in LEGO uses

Nominal Inversion Principles 85

an algorithm for solving equality constraints based on unification. The derivation of
inversion principles for inductive sets in Isabelle’s object logic HOL and ZF was first
described by Paulson [6].

References

1. Aczel, P.: An Introduction to Inductive Definitions. In: Barwise, J. (ed.) Handbook of Math-
ematical Logic, pp. 739–782. Elsevier, Amsterdam (1977)

2. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis,
D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized Metatheory for the Masses: The
POPLMARK Challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603.
Springer, Heidelberg (2005),
http://www.cis.upenn.edu/plclub/wiki-static/poplmark.pdf

3. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pp. 3–15. ACM Press, New York (2008)

4. Cornes, C., Terrasse, D.: Automating Inversion of Inductive Predicates in Coq. In: Berardi,
S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 85–104. Springer, Heidelberg
(1996)

5. McBride, C.: Inverting Inductively Defined Relations in LEGO. In: Giménez, E. (ed.) TYPES
1996. LNCS, vol. 1512, pp. 236–253. Springer, Heidelberg (1998)

6. Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype definitions. In:
Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honor
of Robin Milner, pp. 187–211. MIT Press, Cambridge (2000)

7. Pitts, A.M.: Nominal Logic, A First Order Theory of Names and Binding. Information and
Computation 186, 165–193 (2003)

8. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s Variable Convention in Rule Inductions.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–50. Springer, Heidelberg
(2007)

9. Urban, C., Tasson, C.: Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.)
CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

http://www.cis.upenn.edu/plclub/wiki-static/poplmark.pdf

Canonical Big Operators

Yves Bertot1, Georges Gonthier2, Sidi Ould Biha1, and Ioana Pasca1

1 INRIA
2 Microsoft Research

{Yves.Bertot,Sidi.Ould_Biha,Ioana.Pasca}@sophia.inria.fr
gonthier@microsoft.com

Abstract. In this paper, we present an approach to describe uniformly
iterated “big” operations, like

�n
i=0 f(i) or maxi∈I f(i) and to provide

lemmas that encapsulate all the commonly used reasoning steps on these
constructs.

We show that these iterated operations can be handled generically
using the syntactic notation and canonical structure facilities provided
by the Coq system. We then show how these canonical big operations
played a crucial enabling role in the study of various parts of linear
algebra and multi-dimensional real analysis, as illustrated by the formal
proofs of the properties of determinants, of the Cayley-Hamilton theorem
and of Kantorovitch’s theorem.

1 Introduction

One of the most versatile tools of the working mathematician is the“big operator”
notation. At the stroke of a \bigxx LaTeX macro, she gets a bird’s eye view of the
algebra of her problem, revealing hidden symmetries, which she can immediately
exploit using a rich set of partitioning, reindexing, and commutation operations.

So far, big operators have been missing from the toolbox of the formal math-
ematician, at least in their full generality, that is, allowing big of any operator
indexed in any way, such as∑

d|n
φ(n/d)md or

⊕
Vi�W

Vi

We report here on the design of a generic big operator library for the Coq proof
system [4,2]. This development was motivated and honed by the proof of several
advanced results in algebra and analysis, which we also present.

This library is not just a collection of notations, although we do make good use
of Coq’s facilities in this respect. It contains a generic theory of big operators,
including unique lemmas that perform complex operations such as reindexing
and dependent commutation, for all operators, with minimal user input and
under minimal assumptions.

Critically, the library relies on Coq’s canonical structures (described below)
for expressing structural and algebraic properties of indices and operators. This
allows rewriting and resolution to infer such properties automatically, which

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 86–101, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Canonical Big Operators 87

is essential for the library to be usable in practice. Although similar, neither
dependent record subtyping nor axiomatic type classes would support this style
of operator-centric inference.

The paper is organized as follows. In Section 2, we describe and use Coq’s
canonical structures to create the level foundation on which we will build our big
operator theory, while in Section 3 we use Coq’s syntactic notation facility to
map a wide range of big operator forms to a single generic function; in Section 4
we develop a library of generic lemmas that can handle most of the common
algebraic and logical operations on these forms. Finally, in Sections 5, 6, and 7,
we put this library to work in the formalization of some classical results in algebra
and analysis, including the Cauchy determinant formula, the Cayley-Hamilton
theorem, and Kantorovitch’s theorem.

2 Canonical Structures

Building a generic library that can accommodate a large variety of iterated oper-
ators requires more than notation — although the latter does play an important
role, as we shall see in the next section. It calls for a logical framework that
can express and classify the key properties of the two main components of big
operators, namely, indexes and operations.

We implement this framework with Coq’s Canonical Structure declaration,
which we use in a new and nonstandard way. Although specific to Coq, the
Canonical Structures are fairly close to record subtyping and type classes [15],
so our approach could be ported to other systems, given some minor extensions.

For indices we actually reuse combinatorial structures that were developed
for the Four Colour Theorem proof, and used in our finite group library [7],
so the next section is a review of material from [7,6] that can also serve as an
introduction to Canonical Structures.

2.1 Index Structures

We want to handle big operators indexed by arbitrary types. However, we need to
compare and possibly enumerate indices to compute big operators, so the indices
must have enriched types. In an object-oriented setting this could be achieved by
subtyping; it is well-known that in higher-order logic nested dependent records
(aka telescopes) can be used instead [11,16].

For example we can describe comparable (“equality”) types as follows: 1

Structure eqType : Type := EqType {
sort :> Type;
eqd : sort -> sort -> bool;

_ : forall x y, (x == y) <-> (x = y)
} where "x == y" := (eqd x y).

1 The actual code uses a mixin/class presentation and handles Coq technicalities like
namespace management and reduction hints.

88 Y. Bertot et al.

The :> symbol makes sort into a coercion, which means we can use a T : eqType

as if it were a Type — type inference will insert the missing sort projection. The
structure lets us define a unified notation for the generic comparison function
eqd. Moreover every eqType contains an axiom stating that the comparison func-
tion reflects actual (Leibnitz) equality, so it is valid to rewrite x into y given
x == y (i.e., (x == y)= true). Indeed, equality is decidable (and therefore proof-
irrelevant [1]) for all eqTypes.

Unlike telescopes, Coq structures are not restricted to abstract types, and
can be created for existing types. For example, if we can prove

Lemma eqnP : forall m n, eqn m n <-> m = n.

for an appropriate function eqn : nat −> nat −> bool, then we can make nat, a
Type, behave as an eqType by declaring

Canonical Structure nat_eqType := EqType eqnP.

This creates a new eqType with sort ≡ nat and eqd ≡ eqn (both are inferred from
the type of eqnP). Dually to coercions, this declaration allows nat to behave
as sort nat_eqType during type inference. This lets Coq interpret 2 == n as
(eqn 2 n), because it can solve the unification equation sort ?e ≡βδι nat and
then evaluate eqd nat_eqType to eqn.

These details are crucial for the next section. However, the casual user can
mostly gloss over them; he only cares that canonical structures let him use generic
constructions and properties for specific instances, similarly to type classes.

The computation of a big operator must also enumerate the indices in its
range. This is trivial if the range is an explicit sequence of type seq I, where I

has an eqType structure, e.g., if the range is a nat interval. However, it is often
more convenient to specify the range implicitly by a predicate, in which case the
computation must be able to enumerate the entire index type, which must thus
be finite. The following structure supports this capability:

Structure finType : Type := FinType {
sort :> eqType;
enum : seq sort;
_ : forall x, count (fun y => y == x) enum = 1

}.

The axiom asserts that every value of the type occurs exactly once in enum.
This structure is very good for working with finite sets; we have a rich finType-

based library of over 250 lemmas [7], which includes the construction of a type
ordinal n (denoted I_(n)) of integers 0 ≤ i < n, of function and set types over a
finType, as well as canonical eqType and finType structures for all of these.

2.2 Operator Structures

Genericity over operations is more difficult to achieve, but probably more im-
portant than genericity over indices. We want to be able to use our library for all
kinds of types and operations, from simple integer sums to GCDs of polynomials.

Canonical Big Operators 89

Using telescopes here would essentially amount to identifying big operators with
generalized summations over a type with the following structure:

Structure additive_group : Type := AdditiveGroup {
sort :> eqType; zero : sort;
opp : sort -> sort; add : sort -> sort -> sort;
_ : associative add; _ : commutative add;
_ : left_unit zero add; _ : left_inverse zero opp add

}.

However this would be wrong, for several reasons:

1. It imposes strong axioms, which will not hold for many interesting operators,
such as max over nat. Simply refining the telescope to take into account the
many relevant axiom sets, from non-commutative monoids up to commuta-
tive rings, would lead to an uncomfortably deep hierarchy. The latter would
cause type inference to generate terms bloated with long projection chains.

2. It makes the representation of the summation depend on the proofs that
the operator satisfies algebraic properties, and by extension on any data on
which these proofs might depend. This artificial dependency could only be
broken by breaking the summation abstraction thereby losing all generic
notations and properties.

3. It is only parametric in the operator type, not the operator itself, so we could
only have at most one generic big operator per type. This is inadequate even
for abstract rings, where we want both sums and products, and woefully
inadequate for integers, which have sum, product, min, max, GCD and LCM!

The proper solution to this parametricity problem lies in the observation that
unlike type classes or telescopes, canonical structures can be used to enrich not
only types, but arbitrary values. Indeed, this was already the case for finType

and additive_group, which both enriched the eqType structure — a record.
This fact allows us to define iteration for arbitrary operators, because we can

use a structure to meet the algebraic requirements of our lemmas. For instance
we define

Structure law T unit : Type := Law {
operator : T -> T -> T; mul1m : left_unit unit operator;
_ : associative operator; mulm1 : right_unit unit operator

}.

and then

Canonical Structure andb_monoid := Law andbA andTb andbT.
Canonical Structure addn_monoid := Law addnA add0n addn0.
Canonical Structure gcdn_monoid := Law gcdnA gcd0n gcdn0.
...

This simple series of canonical structure declarations lets Coq know that boolean
conjunction, integer addition and GCD, etc, are monoidal laws, so that it can
automatically discharge this condition when a lemma or rewrite rule is used.

90 Y. Bertot et al.

We define similar structures for abelian monoids and semirings; note that
nesting depth (issue 1 above) is not a problem here as these structures appear
in the proof terms only, not in the big operator expression.

3 Notations

To capture the commonalities between all possible big operators, we provide a
host of notations that are independent from the operator being used, the operator
and the value for the empty range being given as parameters. Thus the notation
has the following shape:

\big [op / nil]_ (index and range description) F

3.1 Range Descriptions

The part called index and range description is responsible for giving the name
of the bound variable and stating the set over which this variable is supposed to
range. There are mainly three ways to give the range: take a list of values that
have to be covered, take a specific integer interval, or take the entire type of the
bound variable (which must then be a finType) or a subset thereof. We use the
notation (i <− r) to range over a list, the notations (m <= i < n) or (i < n) to
range over an interval, the notations (i) or (i : t) to range over the entire index
type, and the notation (i \in A) to range over a subset. In all cases, the variable
i is bound in F.

On top of these variants, we choose to add the possibility to filter the range
with a predicate, meaning that the big operator takes only the elements of the
range that satisfy the predicate. This is simply written by adding | P at the end
of the index and range description. Again, the variable i is bound in the formula
P. Thus, the following notation represents the addition of all squares of even
numbers between 0 and n− 1.

\big[addn/0]_(i < n | even i) i^2

Since natural numbers in an interval can easily be enumerated, all notations
reduce to the same function, where the range is a list of values that do not
need to belong to a finite type and a filtering predicate is always provided. This
notation is implemented by the following code:

Definition reducebig R I op nil r (P : pred I) (F : I -> R) : R :=
foldr (fun i x => if P i then op (F i) x else x) nil r.

Notation "\big [op / nil]_ (i <- r | P) F" :=
(reducebig op nil r (fun i => P%B) (fun i => F)) : big_scope.

It is a simple structural recursive function which follows the structure of the list
r and tests whether P is satisfied on the first element to decide whether the value
of F on this element is combined with the value computed for the rest; at the
end of the list the nil value is used.

Canonical Big Operators 91

3.2 Operator Inference

We then define other notation that is specialized for the case where the operator
satisfies a particular structure. For a variable ranging on a type, the various
patterns are as follows:

– \sum_(i) F is used when the result type is nat, nil is 0 and the operator
is nat addition, or when the operator is the add field of an additive_group

structure (see 2.2) whose zero is nil. Thus, when the type of formula F is
sort of a canonical additive_group structure, this operation is automatically
understood as the iteration of its additive law.

– \prod_(i) F is used when the result type is nat, nil is 1 and the operator is
nat multiplication, or when the operator is the multiplication of a ring or
group with unit nil.

– \max_(i) F is used when the operator is the nat binary max and nil is 0.

Note that the denoted term is always of the form reducebig ..., so generic lem-
mas apply uniformly regardless of which notation is used to for the range and
operator.

4 Main Lemmas

Canonical structures play a crucial role when organizing the large library of
lemmas that we provide to reason about big operations (there are around 80
lemmas). A first collection of lemmas helps reasoning about big operations with-
out any assumption on the operator being iterated. Other collections of lemmas
are for operators that respect a plain monoid structure (with only associativity
and a neutral element), an abelian monoid structure (with commutativity) or a
semi-ring structure (where two operators interact through distributivity).

For instance, lemmas applicable to a monoid operator handle a big operator
where op has the form operator l and require l to have the type law, while lemmas
applicable to an abelian monoid operator handle a big operator where op has the
form operator (law_of_abelian l) and require l to have the type abelian_law. For
a given operator op that is both associative and commutative and has a neutral
element, two canonical structures are constructed, one with type law and the
other with type abelian_law. The user always writes \big[op/nil]_...; when a
lemma requiring associativity is applied the corresponding canonical structure
is automatically inferred. Thus, we have a single notation that is independent
of properties satisfied by operators; lemmas refer to properties through records,
and we use canonical structures to reconcile the two approaches at the time we
use the lemmas. This will be apparent as we study in more detail some of the
lemmas.

4.1 Lemmas for Plain Operators

Operations like replacing the general term or predicate of a big operation by an
equivalent one or unmapping its index range do not require any property of the
operator.

92 Y. Bertot et al.

To cope with rewriting in parts of a big operation, we provide a variety of
congruence lemmas. Here is one example, which can be used to express that we
can rewrite in the predicate and the formula parts of a big operation.

Lemma eq_big : forall (r : seq I) (P1 P2 : pred I) F1 F2,
P1 =1 P2 -> {in P1, F1 =1 F2} ->
\big[op/nil]_(i <- r | P1 i) F1 i =
\big[op/nil]_(i <- r | P2 i) F2 i.

This lemma expresses that two big operations can be proved equal even though
their predicates and formulas may appear to be different. The first premise
P1 =1 P2 expresses that it suffices that the predicates are extensionally equal (the
two functions are equal on every argument), the second premise {in P1, F1 =1 F2}
that it suffices that the two formulas are extensionnally equal on the subset of
the type determined by the predicate P1.

Other collections of lemmas concern rewritings that occur simultaneously in
the range and in some other part of the big operation. For instance, a combined
rewriting in the range and the formula makes it possible to change all elements
in the range list, compensating by a composition in the formula and the filtering
predicate:

Lemma big_maps : forall (J : eqType) (h : J -> I) r F P,
\big[op/nil]_(i <- maps h r | P i) F i =
\big[op/nil]_(j <- r | P (h j)) F (h j).

We also have lemmas that make it possible to change the length of the range:
we can assert that a sum up to n1 is equal to a sum up to n2, with n1 ≤ n2,
if the predicate filters out all numbers that are larger than or equal to n1 and
smaller than n2:

Lemma big_nat_widen : forall m n1 n2 P F, n1 <= n2 ->
\big[op/nil]_(m <= i < n1 | P i) F i =
\big[op/nil]_(m <= i < n2 | P i && (i < n1)) F i.

4.2 Plain Monoid Re-indexing

When the iterated operation is associative and the nil value is the neutral ele-
ment, nicer decomposition lemmas can be obtained. To express that the operator
is a monoid law we use a notation ∗%M. We also use a specific notation for the
nil value, but this is only to enhance readability. For instance, we can state a
lemma that helps decomposing a list range in two sub-lists, where ++ stands for
the concatenation of lists:

Lemma big_cat : forall I (r1 r2 : seq I) P F,
\big[*%M/1]_(i <- r1 ++ r2 | P i) F i =
\big[*%M/1]_(i <- r1 | P i) F i *
\big[*%M/1]_(i <- r2 | P i) F i.

Canonical Big Operators 93

which would be written in standard mathematics:∏
i∈r1∪r2,Pi

Fi =
∏

i∈r1,Pi

Fi ∗
∏

i∈r2,Pi

Fi

We actually provide half a dozen lemmas that are specific, to monoidal laws.

4.3 Abelian Monoid Re-indexing

To handle commutative monoidal operators, we redefine our notation ∗%M to
express that it has to be the operator of an abelian monoidal law. This is done
with the following notation declaration:

Notation Local "*%M" := (operator (law_of_abelian op)).

In this case, permuting elements in the range or grouping them according to a
partition becomes possible. Here are two of the main lemmas, concerned with
partitioning an index set and with swapping nested sum operators.

To describe partitions, we use an auxiliary function and view each subset in
the partition as the inverse image of one element:

Lemma partition_big :
forall (I J : finType) (P : pred I) p (Q : pred J) F,
(forall i, P i -> Q (p i)) ->
\big[*%M/1]_(i | P i) F i =
\big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i && (p i == j)) F i.

(∀i, Pi → Qp(i))→
∏

i∈I,Pi

Fi =
∏

j∈J,Qj

∏
i∈I

Pi∧p(i)=j

Fi

To permute nested sum operators, we start by showing that that nested big
operations can be reduced to a single big operation where pairs of indices are
enumerated. Through a re-indexing operation on the pairs, we then obtain a
variety of commutation lemmas, of which we show only the simplest one:

Lemma exchange_big : forall (I J : finType) P Q F,
\big[*%M/1]_(i : I | P i) \big[*%M/1]_(j : J | Q j) F i j =
\big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i) F i j.

∏
i∈I,Pi

∏
j∈J,Qj

Fi,j =
∏

j∈J,Qj

∏
i∈I,Pi

Fi,j

4.4 Distributivity

Distributivity plays a role when several operators interact, usually in a semi-ring
structure. Here we adapt our notation so that ∗%M refers to the multiplication
operation of a semi-ring and +%M refers to the addition of the same semi-ring.
Here is a first simple lemma:

94 Y. Bertot et al.

Lemma big_distrl : forall I (r : seq I) alpha P F,
(\big[+%M/0]_(i <- r | P i) F i) * alpha =
\big[+%M/0]_(i <- r | P i) (F i * alpha).

In general, big products of big sums can be transformed into big sums of big
products: this is another form of swapping lemma that gives rise to pairs of
indices. Here is one of our lemmas to handle this, where {ffun I −> J} describes
the set of all functional graphs in I∗J (a finite type that actually describes all
functions from the finite type I to the finite type J):

Lemma bigA_distr_bigA :
forall (I J : finType) F,
\big[*%M/1]_(i : I) \big[+%M/0]_(j : J) F i j =
\big[+%M/0]_(f : {ffun I -> J}) \big[*%M/1]_(i) F i (f i).

It is remarkable that none of these lemmas requires a proof that C1, the value
of empty “big products”, actually be the neutral element for multiplication.

5 Some Results on Determinants

The first motivating example for our big operator library was the study of deter-
minants; it uses many key features of the library, including the compact notation,
generic indexing, and reindexing and swapping lemmas.

5.1 The Leibnitz Formula

While in practice determinants are best computed from a triangular decompo-
sition, or by using Laplace’s formula to expand with respect to a fixed row, it is
impractical to derive any of the theoretical properties of determinants from such
expressions because of their lack of symmetry. In contrast, the highly symmet-
rical but impractical Leibnitz formula calls for summing over permutations; our
generic library handles this quite gracefully:

Definition determinant n (A : M_(n)) :=
\sum_(s : S_(n)) (-1)^+s * \prod_(i) A i (s i).

The actual Coq proofs that this definition yields a multilinear alternate form
are only 7 and 14 lines long, respectively; the proof of the Laplace formula is 80
lines (most of which compute the parity of a cyclic permutation), but then we
only need 16 lines to prove the Cramer rule:

A.adj A = adj A.A = detA.Id (1)

5.2 The Cauchy Formula

The Cauchy formula simply states that the determinant commutes with matrix
product. It is fairly tricky to establish rigorously for abstract rings; here is a
self-contained proof, for n× n matrices:

Canonical Big Operators 95

detAB =
∑

σ∈Sn

(−1)σ
∏

i

⎛
⎝∑

j

AijBjσ(i)

⎞
⎠

=
∑

φ: [1,n]→[1,n]

∑
σ∈Sn

(−1)σ
∏

i

Aiφ(i)Bφ(i)σ(i)

=
∑

φ/∈Sn

∑
σ∈Sn

(−1)σ
∏

i

Aiφ(i)Bφ(i)σ(i) +
∑

φ∈Sn

∑
σ∈Sn

(−1)σ
∏

i

Aiφ(i)Bφ(i)σ(i)

=
∑

φ/∈Sn

(∏
i

Aiφ(i)

) ∑
σ∈Sn

(−1)σ
∏

i

Bφ(i)σ(i)

+
∑

φ∈Sn

(−1)φ

(∏
i

Aiφ(i)

) ∑
σ∈Sn

(−1)φ−1σ
∏
k

Bkσ(φ−1(k))

=
∑

φ/∈Sn

(∏
i

Aiφ(i)

)
det

(
Bφ(i)j

)
ij

+ (det A)
∑

τ∈Sn

(−1)τ
∏
k

Bkτ(k)

= 0 + (det A)(det B)

The first step swaps the iterated product of the Leibnitz formula with the sum in
the general term of the matrix product, generating a sum over all functions from
indices to indices. This is split into a sum over non-injective functions and a sum
over permutations. The former is rearranged into a weighted sum of determinants
of matrices with repeated rows, while the latter is reindexed, using the group
properties of permutations, to become the desired product of determinants.

Remarkably, the formal Coq proof is only 25 lines long, and actually shorter
than the above proof sketch, because all of the required sum manipulations are
directly supported by the library, and our previous work on finite groups [7]
supplies the all required permutation facts.

6 The Cayley-Hamilton Theorem

After proving the Cramer rule, the next step was formalizing the Cayley-Hamilton
theorem [3]. For a commutative ring R and a square matrix A on R, this theorem
states that A is a root of its characteristic polynomial pA(x) = det (xIn − A).

To prove the Cayley-Hamilton theorem, we apply the Cramer rule (1) to the
(xIn −A) ∈Mn(R[x]) and we obtain:

adj (xIn −A) ∗ (xIn −A) = det (xIn −A) ∗ In = pA(x) ∗ In (2)

This is an equality in Mn(R[x]). However the ring Mn(R[x]) of matrices with
polynomial coefficients and the ring of polynomials with matrix coefficients
(Mn(R))[x] are isomorphic. For example, the following equality exhibits the cor-
respondence:(

x2 + 1 x− 2
−x + 3 2x− 4

)
= x2

(
1 0
0 0

)
+ x

(
0 1
−1 2

)
+
(

1 −2
3 −4

)

96 Y. Bertot et al.

We call φ : Mn(R[x])→ (Mn(R))[x] the isomorphism from one ring to the other.
In (Mn(R))[x], the equality (2) is written :

φ(adj (xIn −A)) ∗ (x−A) = pφ
A(x) (3)

where pφ
A(x) is in fact the polynomial with scalar matrix coefficients obtained

by applying φ to pA(x) ∗ In. This shows that (x − A) is a factor of pφ
A(x) in

(Mn(R))[x], so pφ
A(A) = On.

To formalize this proof, we developed a library to describe polynomials.

6.1 Polynomials

A polynomial is formally defined by the list of its coefficients ai which are ele-
ments of a ring R :

anxn + an−1x
n−1 + · · · + a1x + a0

It is natural to represent a polynomial with the list (a0, . . . , an); however, it is
also handy to use polynomials as functions of type nat → R, which return 0
almost everywhere.

We can easily change from one representation to the other by using a lemma
that states that two polynomials are equal if their functional representations are
extensionally equal. The list representation is used to define the operations on
polynomials by induction on the coefficient list. With the representation as func-
tion of type nat→ R, we can reuse lemmas on big operators to prove algebraic
properties of polynomials, in a style that is close to standard mathematics. For
example the following property of the coefficients of the product of two polyno-
mials is expressed using a big sum.

Lemma coef_mul_poly : forall p1 p2 i,
coef (p1 * p2) i = \sum_(j < i.+1) coef p1 j * coef p2 (i - j).

With this new point of view, we prove the associativity of polynomial multiplica-
tion by simply reusing re-indexation and distributivity lemmas for big operators.

In the following, the notation \poly_(i < n) E, where E is an expression on
i, corresponds to the polynomial

∑
i<n Eix

i. The notations \X, \C c and p.[c]

correspond respectively to the monomial x, the constant polynomial c and the
evaluation of a polynomial p in a value c.

In the polynomials library we give a proof of the factor theorem :

Theorem factor_theorem : forall p c,
(exists q, p = q * (\X - \C c)) <-> (p.[c] = 0).

We proved the equivalence, but we only need the implication from left to right
for the Cayley-Hamilton theorem. This proof is only 12 lines long, thanks to the
lemmas on big operators.

Canonical Big Operators 97

6.2 Proving the Cayley-Hamilton Theorem

The morphism between the ring of matrices of polynomials and the ring of
polynomials of matrices is the central part of the proof. It is best described
using big operators:

Definition phi (A : M(R[X])) : M(R)[X] :=
\poly_(k < \max_(i) \max_(j) size (A i j))

\matrix_(i, j) coef (A i j) k.

In this formula, the notation \matrix_(i, j) E denotes the matrix whose coefficient
at position (i, j) is described by the expression E. The length of the resulting
polynomial is the maximum size of coefficient lists in the input matrix, described
with the \max operator. Big operator lemmas are also instrumental in the proofs
of morphism properties for φ.

The characteristic polynomial is defined as follow :

Definition char_poly (A : M(R)) : R[X] := \det(\Z \X - matrixC A).

In this formula \Z stands for the scalar multiplication by the identity matrix. We
also define Zpoly as the canonical injection from the ring of polynomials with
scalar coefficients into the ring of polynomials with matrix coefficient. With these
definitions the Cayley-Hamilton theorem has the following statement.

Theorem Cayley_Hamilton : forall A, (Zpoly (char_poly A)).[A] = 0.

The main proof is done in three lines.

7 Multivariate Real Analysis and Kantorovitch’s
Theorem

We also conducted an experiment in giving a complete formalization for Kan-
torovitch’s theorem [14]. This theorem in numerical analysis gives sufficient con-
ditions for the convergence of Newton’s method for finding the root of a function
f : Rp → Rp. The main challenge was to find a representation for vectors in Rp

and formalize multivariate analysis concepts.
After a careful analysis, the choice was made to base this formalization on

the Reals from standard Coq and on the SSReflect extension. This choice
turned out to be adequate for vectors, matrices, and the use of big operations
to abstract over dimensions.

We provide a canonical structure of field for R and encode vectors as functional
graphs from a finite type of dimension p to R. In practice, this gives both a view
of vectors as lists and vectors as functions over the index type, thus facilitating
the description of component-wise operations.

We then simply formalize a norm on vectors as a big operation. The norm is
‖x‖ = maxi |xi|, which in Coq can be expressed as:

Definition norm (v : Rvec p) := \big[Rmax/0]_(i < p) Rabs (v i).

With this definition, a lemma stating the positivity of the norm

98 Y. Bertot et al.

Lemma norm_pos : forall v, 0 <= norm v.

is easily proved by applying a generic lemma named big_prop. This induction
scheme states that a property which is closed with respect to the operator,
satisfied by the nil value, and by the formula for every index is also satisfied
by the result of big operation. In this case, the property is positiveness. Other
required properties for norms have about the same level of complexity.

Nevertheless, the use of the maximum as an indexed operation posed some
difficulties. As stated before, the lemmas on big operations are organized in a
sort of hierarchy following the algebraic structure given by the operator. In the
case of the maximum, we have associativity and commutativity, but we do not
have a neutral element on the type of real numbers. Since we work only with
positive numbers (and the maximum on this subset has 0 for neutral element),
we would like to be able to use the lemmas that deal with an abelian monoid
structure.

There are two possible solutions for this problem. The first is to have a new
type for positive reals. We can define the canonical structure of abelian monoid
on this new type, manipulate the indexed operation as desired and inject the
result in the original type. The second solution is to define a new operator that
gives the type the desired structure. This operator has to be equal to the original
one on the target subset (here, the positive reals). Such a change of operator is
covered in the library by a lemma called eq_big_op.

We adopted the second approach, as we had this definition at hand:

max′ x y =

{
max x y if x > 0 or y > 0;
min x y if x, y ≤ 0

However, we could easily have fallen back to the first solution if such a construc-
tion had not been available.

Another interesting example regards the decomposition of a vector to prove
a multi-dimensional variant of the mean value theorem.

f(x1, . . . , xp) − f(y1, . . . , yp) = f(x1, . . . , xp)− f(y1, x2, . . . , xp) +
f(y1, x2, . . . , xp) − f(y1, y2, x3, . . . , xp) + . . . + f(y1, . . . , yp−1, xp)− f(y1, . . . , yp)

=
p∑

i=1

(xi − yi)
∂f(y1, . . . , yi−1, ci, xi+1, . . . , xp)

∂xi

This simple and elegant proof goes through naturally in our formalization.
During the development we also needed a formalization of matrices in order

to represent, for example, the Jacobian of a partially derivable function. We used
the matrix library developed during the formalization of the Cayley-Hamilton
theorem, which we enriched with additional concepts, like the norm of a matrix,
compatible with our vector norm: ‖A‖ = maxi

∑
j

|aij |.

Most of the lemmas we have described so far are concerned with equality,
but results about norms also exhibit the need for lemmas concerned with binary

Canonical Big Operators 99

relations. For instance, we use a lemma named big_rel which states that if a
relation R is reflexive and transitive, R satisfies some stability condition with
respect to the operator, and formulas F and G are related by R for every index,
then the big operation on F is related by R with the big operation on G. Such
a lemma is instrumental in the proof of the following results:

‖AB‖ ≤ ‖A‖‖B‖ and ‖A‖ < 1→ det(Ip −A) �= 0

The first result relies on big_rel and distributivity lemmas, while the second
result relies on the convergence of a series of matrices. One of the intermediate
lemmas for the second result is expressed as follows:

Lemma mat_norm_sum : forall (A : nat -> MR(p)) n,
norm (\sum_(i <= n) A i) <= \sum_(i <= n) norm (A i).

This lemma is a direct consequence of one of the generic lemmas from the library,
named big_morph_rel: it suffices to show that norm has a morphism-like property
with respect to the relation <=, addition of matrices (on the left), and addition
of real numbers (on the right).

8 Conclusion

This work is based on the SSReflect extension of Coq [6]. This extension
relies extensively on canonical structures and reflexion. The work described in
this paper is available on Internet at: www-sop.inria.fr/marelle/bigops.

8.1 Related Work

The HOL-Light system [8] also provides generic iterated operations and applica-
tions to multi-dimensional spaces. Separate work of T. Hales and J. Harrison [9]
provide formalizations of euclidean space.

HOL-Light lacks dependent types but does not restrict itself to constructive
logic. As a result, finite types cannot be described as records like our finType and
iteration is actually defined on subsets of infinite types. Properties are mainly
provided for abelian monoidal laws with a neutral element. This approach is less
generic than ours, but it is already strong enough for many results. In particular,
the system library contains results for real matrices and determinants similar to
ours, but its applications do not go all the way to the Cayley-Hamilton theorem.
Our work lives in a different setting: the main part is done in constructive logic
with dependent types and we use enumerations for finite types which allows us
to define big operations for plain operators.

Work by Gamboa, Cowles, and van Baalen also describes matrix computations
in ACL2 [5]; they don’t make a systematic use of big operations and determinants
are described through a process of gaussian elimination, but almost no properties
are proved.

In the Coq system N. Magaud implemented vectors and matrices as depen-
dent lists [12] but this is mainly an exercise in dependent types. J. Stein [17] and
S. Obua [13] also describe linear algebra using big operations with monoid laws,
for instance for matrix multiplication, but do not study determinants.

www-sop.inria.fr/marelle/bigops

100 Y. Bertot et al.

8.2 Overview and Perspectives

A commonly held opinion is that the formalization of mathematics is a long and
difficult process for two reasons: first, more detail is required than in standard
mathematical proofs and second, the formalized corpus is too small as a foun-
dation, so that many lemmas have to be re-proved before addressing significant
results. This opinion overlooks an important area where progress can be made,
the area of infra-structure. Infra-structure can help in formalizing mathematics
if statements and proofs can be expressed concisely and if the details can be
collected automatically. This paper brings a contribution to the infra-structure
aspect of formalizing mathematics.

We also bring a collection of lemmas organized in a way that increases their
reusability drastically and we illustrate the gain with big operators for proofs
on the properties of determinants and matrices. We feel we can approach new
landmarks that were hitherto considered out of reach like the Cayley-Hamilton
theorem. In the Mathematical Components project [7] we also reuse big opera-
tions to study generated groups.

Two questions come to mind: if this library on big operators has such a positive
and structuring impact, what is the infrastructure behind the it that makes it
so powerful? What is the next concept that deserves a systematic treatment and
will have the same structuring effect?

To answer the first question, we propose to consider canonical structures as
the key advance. First proposed by Säıbi in his study of category theory [10],
these structures are instrumental here as they take over the automatic search
for relevant information attached to each operator. Also, we propose to use
canonical structures to attach properties to operators, while usual approaches
attach properties to types. We can now write big operations simply, the required
properties are inferred from the canonical structure declarations when applying
lemmas.

We can’t actually answer the second question yet, but we believe that big
operations have opened the road to a re-newed study of linear algebra, with
notions like bases, linear combinations, and so on, or of algorithms in other
parts of algebra, like the algorithm of sub-resultants, the proof of which already
relied on an abstract notion of determinants.

References

1. Barbanera, F., Berardi, S.: Proof-irrelevance out of Excluded-middle and Choice in
the Calculus of Constructions. Journal of Functional Programming 6(3), 519–525
(1996)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)

3. Biha, S.O.: Formalisation des mathématiques: une preuve du théorème de Cayley-
Hamilton. In: Journées Francophones des Langages Applicatifs, pp. 1–14 (2008)

4. Coq development team. The Coq Proof Assistant Reference Manual, version 8.1
(2006)

Canonical Big Operators 101

5. Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix
Algebra. In: ACL2 Workshop (2003)

6. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system.
INRIA Technical report, http://hal.inria.fr/inria-00258384

7. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formal-
isation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007.
LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

8. Harrison, J.: HOL Light: A Tutorial Introduction. In: FMCAD, pp. 265–269 (1996)
9. Harrison, J.: A HOL Theory of Euclidian Space. In: Hurd, J., Melham, T. (eds.)

TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)
10. Huet, G., Säıbi, A.: Constructive category theory. In: Proof, language, and interac-

tion: essays in honour of Robin Milner, pp. 239–275. MIT Press, Cambridge (2000)
11. Kammuller, F.: Modular Structures as Dependent Types in Isabelle. In: Altenkirch,

T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 121–132.
Springer, Heidelberg (1999)

12. Magaud, N.: Ring properties for square matrices,
http://coq.inria.fr/contribs-eng.html

13. Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Theorem
Proving in Higher-Order Logics, pp. 227–244 (2005)

14. Paşca, I.: A Formal Verification for Kantorovitch’s Theorem. In: Journées Fran-
cophones des Langages Applicatifs, pp. 15–29 (2008)

15. Paulson, L.C.: Organizing Numerical Theories Using Axiomatic Type Classes. J.
Autom. Reason. 33(1), 29–49 (2004)

16. Pollack, R.: Dependently Typed Records for Representing Mathematical Structure.
In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 462–
479. Springer, Heidelberg (2000)

17. Stein, J.: Documentation for the formalization of Linerar Agebra,
http://www.cs.ru.nl/~jasper/

http://hal.inria.fr/inria-00258384
http://coq.inria.fr/contribs-eng.html
http://www.cs.ru.nl/~jasper/

A Type of Partial Recursive Functions

Ana Bove1 and Venanzio Capretta2

1 Department of Computer Science and Engineering,
Chalmers University of Technology, 412 96 Göteborg, Sweden

Tel.: +46-31-7721020, Fax: +46-31-7723663
bove@chalmers.se

2 Computer Science Institute (ICIS), Radboud University Nijmegen
Tel.: +31-24-3652631, Fax: +31-24-3652525

venanzio@cs.ru.nl

Abstract. Our goal is to define a type of partial recursive functions
in constructive type theory. In a series of previous articles, we studied
two different formulations of partial functions and general recursion. We
could obtain a type only by extending the theory with either an impred-
icative universe or with coinductive definitions. Here we present a new
type constructor that eludes such entities of dubious constructive cre-
dentials. We start by showing how to break down a recursive function
definition into three components: the first component generates the ar-
guments of the recursive calls, the second evaluates them, and the last
computes the output from the results of the recursive calls. We use this
dissection as the basis for the introduction rule of the new type con-
structor. Every partial recursive function is associated with an inductive
domain predicate; evaluation of the function requires a proof that the
input values satisfy the predicate. We give a constructive justification
for the new construct by interpreting it into the base type theory. This
shows that the extended theory is consistent and constructive.

1 Introduction

Our research investigates the formalisation of partial functions and general re-
cursion in constructive type theory. In a series of previous articles, we expound
two different ways of achieving that goal.

In our first approach [3,4,2,5], we define an inductive (domain) predicate that
characterises the inputs on which a function terminates. The constructors of this
predicate are automatically determined from the recursive equations defining the
function. The function itself is formalised by structural recursion on an extra
argument, a proof that the input values satisfy the domain predicate.

In our second approach [9,6], refined by Megacz [19], we associate to each
data type a coinductive type of partial elements. Computations are modelled by
(possibly) infinite structures. Partial and general recursive functions are imple-
mented by corecursion on these types.

It is desirable that all partial functions with the same source and target are
elements of the same type, rather than each function having an ad hoc type. In
three of the articles mentioned above, we succeed in defining such a type, but

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 102–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Type of Partial Recursive Functions 103

there is always a cost to pay. In [5], we need to work in an impredicative type
theory. Alternatively, we could work with a hierarchy of universes and accept
that we are not able to formalise all recursive function definitions. In [9,6], we
need support for coinductive definitions.

Other approaches to the definition of a type of partial recursive functions can
be found in the literature; we summarise those we believe are more relevant.

Constable and Mendler [13] introduce a type of partial functions as a new
type constructor in the Nuprl system [12]. Given a partial function, one can
compute its domain predicate, which contains basically the same information as
our domain predicates. A difference is that when defining a partial function in
the Nuprl system, the actual definition of the partial function does not depend
on its domain predicate. This would not be possible in the intuitionistic type
theories in which we work. In other words, in Nuprl, a partial function from A
to B maps an element a of A into an element of B provided there is some proof
p that a belongs to the domain of the function. In our case, the formalisation of
the partial function would map both the a and the p into B.

In [14], Constable and Smith develop a partial type theory for the Nuprl
type system in which, for each type of the underlying total theory, there exists
another type which might contain diverging terms. Together with this type of
partial elements, a termination predicate and an induction principle to reason
about partial functions are introduced.

Audebaud [1] uses the above idea [14] to define a conservative extension of
the Calculus of Constructions [15] with fixed point terms and a type of partial
objects. Strong normalisation still holds for terms with no fixed points. From
the computational point of view, an equivalent of the Kleene theorem for partial
recursive functions is obtained, but logical aspects need more examination.

Based on our work [3], Setzer [22,23] defines a type (of codes) of partial func-
tions. From the code of a partial function, one can extract the domain of the
function and the function itself, and one can evaluate the function on a cer-
tain argument. Nested functions and higher-order functions can also be coded
as elements of the type of partial functions.

The approach illustrated in the present article is based on an analysis of a
recursive definition into three components. The first component determines the
arguments of the recursive calls, the second computes the recursive calls, and
the third combines the results of the recursive calls to produce the output. This
decomposition was described in [10] and is analogous to the separation of an
hylomorphism into the composition of an anamorphism and a catamorphism in
[20]. The method works in standard intuitionistic type theory and gives simple
and direct formalisations, but we must pay a price: nested recursion and higher-
order partiality are not possible anymore. The class of recursive functions that
can be coded is still Turing-complete, but some function definitions may need
to be rewritten to fit the pattern.

We formalised our approach in the proof assistant Coq [24]. The file
containing the formalisation can be obtained from the following web page:
www.cs.ru.nl/∼venanzio/Coq/rec fun type/

www.cs.ru.nl/~venanzio/Coq/rec_fun_type/

104 A. Bove and V. Capretta

The paper is organised as follows. Section 2 gives a closer look at functions and
shows how a function can be split into three components, following the descrip-
tion in [10,11]. Section 3 gives the formal rules of the type of partial recursive
functions. Section 4 formalises the signatures that describe the structure of the
recursive calls in a way that ensures that the rules of the new type are predica-
tive. Section 5 shows the consistency of the type theory extended with the new
type by modelling it inside the base theory. Section 6 presents a modification
of the rules to allow a general recursive pattern in which the input can also be
used directly in the computation of the output, and not just in the generation
of the recursive arguments. Finally, Section 7 summarises the achieved results.

2 A Closer Look at Recursive Functions

A common informal way to define a partial recursive function is by a sequence
of recursive equations, as it could be implemented in a pure functional language
like Haskell [17]:

f : A→ B
f p0 = e0[(f a00), . . . , (f a0k0)]

...
f pn = en[(f an0), . . . , (f ankn)].

Here p0, . . . , pn are patterns, that is, general terms containing variables and
constructors. The notation e[· · ·] denotes an expression e containing occurrences
of the terms inside the square brackets. We restrict the form of the definition
by requiring that the only occurrences of f are the displayed ones; specifically,
f does not occur in any of the aij ’s. This means that we are excluding nested
recursive definitions.

When we apply a function to a concrete argument, the argument is matched
against the patterns to find the equation that must be evaluated to give the
result. We will not enter here into details about this process, nor about issues
like exhaustiveness or overlapping patterns. What is important in what follows
is that, when we give an actual input a to the function f , the system compares
a with each pattern until it finds one, say pi, that matches a. Then, it computes
the new recursive arguments ai0, . . . , aiki on which to apply the function, and
recursively computes f on these arguments. Finally, the system feeds the results
of the recursive calls to the expression ei in order to obtain the final output.

Next, we first illustrate with an example the issues involved in the process
just described and then we present a generalisation of the example that allows
a dissection of functions into three well-defined components. In the following
section, we base our new type of partial recursive functions on this dissection.

A First Example

The example is a recursive functional program to translate Gödel’s coding system
for trees into Cantor’s.

A Type of Partial Recursive Functions 105

Kurt Gödel devised a system to encode expressions of a formal language into
natural numbers by exploiting the uniqueness of prime factorisation [16]. His
idea was that a complex expression can be encoded by giving the codes of its
immediate n subexpressions as exponents to the first n prime numbers. As an
instance of this process let us consider the coding of unlabelled well-founded
trees of arbitrary branching degree. Let a tree t be represented by a node with a
finite number of subtrees, that is, something of the form node(t0, . . . , tk). Gödel’s
representation recursively encodes each tree ti into a natural number gi and then
uses these gi’s as exponents of prime numbers to obtain the code of t as follows:
if pi is the (i + 1)th prime number, the code of t is pg0

0 · · · · · p
gk

k . A leaf is a node
with no branches, node(), and has code 1.

If we are interested in trees with small branching degree, high prime numbers
are never used. In this case it is more convenient to adopt a different encoding
that uses Cantor’s pairing function. According to Cantor, a pair 〈n1, n2〉 of
natural numbers can be encoded by the number

pair 〈n1, n2〉 = (n1 + n2) · (n1 + n2 + 1)/2 + n2.

This is a bijection between pairs and single numbers. Longer vectors can be
encoded by repeated use of the pairing function: tuple0 〈〉 = 0, tuple1 〈n0〉 = n0

and, recursively, tuplek+1 〈n0, . . . , nk〉 = pair 〈n0, tuplek 〈n1, . . . , nk〉〉. We can
now represent trees by an encoding similar to Gödel’s: if ci is the Cantor code of
the tree ti, then pair 〈k + 1, tuplek+1〈c0, . . . , ck〉〉 is the code of node(t0, . . . , tk).

We adopt the convention of writing 〈x0, . . . , xk−1〉 for a tuple of length k,
understanding it to denote the empty tuple 〈〉 if k = 0. Similarly, a product
pi0
0 · · · p

ik−1
k−1 is understood to be equal to 1 if k = 0.

We define a translation function that maps Gödel’s encoding of trees into
Cantor’s encoding:

trans code: N→ N
trans code x = pair 〈k, tuplek 〈c0, . . . , ck−1〉〉

where ci = trans code gi for i = 0, . . . , k − 1
with k, g0, . . . , gk−1 such that x = pg0

0 · · · p
gk−1
k−1 .

Note that the function is undefined on 0, since 0 cannot be written as a product
of powers of primes. This kind of partiality is relatively easy to deal with, since
it is decidable, unlike the partiality arising from non-termination, which is the
real topic of our work. We assume that one of the following solutions is adopted:
state that trans code 0 = 0, turn this kind of partiality into a non-terminating
loop by adding the equation trans code 0 = trans code 0, or extend the target
type to N + Unit (the operator + denotes the disjoint union on types and Unit
is the type with only one element) to generate an exception on non-matchable
inputs. So we brush aside this technical issue for the rest of the example.

We can analyse this translation algorithm by splitting it into three compo-
nents, following the categorical description in [10,11].

The first step consists in computing, from the input x, the index k− 1 of the
largest prime divisor of x and the exponents g0, . . . , gk−1 of the prime numbers

106 A. Bove and V. Capretta

p0, . . . , pk−1 in x (with k = 0 if x = 1). We give a name and a type to this
function:

αtrans code: N→
∑

k:N Nk

αtrans code x = 〈k, 〈g0, . . . , gk−1〉〉
with k, g0, . . . , gk−1 such that x = pg0

0 · · · p
gk−1
k−1 .

The sum type
∑

k:N Nk consists of elements of the form 〈k, g〉, where k is the
length of the tuple and g is a tuple of k natural numbers.

The second step consists in applying the function trans code recursively to the
elements of the vector obtained in the first step. We indicate the lifting of the
function to tuples by putting an arrow over it:
−−−−−−−→
trans code:

∑
k:N Nk →

∑
k:N Nk

−−−−−−−→trans code 〈k, 〈g0, . . . , gk−1〉〉 = 〈k, 〈trans code g0, . . . , trans code gk−1〉〉.

The third and final step of the translation algorithm is the computation of
the output from the results of the recursive calls:

βtrans code:
∑

k:N Nk → N
βtrans code 〈k, 〈c0, . . . , ck−1〉〉 = pair 〈k, tuplek〈c0, . . . , ck−1〉〉.

The function trans code is now specified by giving the fixed point equation

trans code = βtrans code ◦
−−−−−−−→
trans code ◦ αtrans code.

The General Framework

The explanation given above suggests an analysis into three steps, already stud-
ied from the categorical point of view in [10,11].

Recall the general form of the definition of a function f given by several
(recursive) equations and presented at the beginning of this section. We adopt
a uniform formulation that abstracts away from the actual matching algorithm:
the structure of the recursive calls is given by a type operator (a functor in
categorical terms) which, in the case of the function f , is as follows:

F : Set→ Set
FX = Xk0 + · · ·+ Xkn .

The form of the functor may also be more complex, possibly containing type
parameters and dependent families, for example, for the trans code function the
functor is Ftrans code X =

∑
k:N Xk.

The first step in the computation of a function is represented by a map
α : A→ FA (in categorical terms, an F -coalgebra). Specifically, for f we have:

α: A→ Ak0 + · · ·+ Akn

α p0 = in0〈a00, . . . , a0k0〉
...

α pn = inn〈an0, . . . , ankn〉,

A Type of Partial Recursive Functions 107

where ini is the ith injection: if n = 0 then in0 is just the identity, and for n > 0,

ini y = inl (

i times︷ ︸︸ ︷
inr (· · · (inr(y)) · · ·)) if 0 � i < n and inn y =

n times︷ ︸︸ ︷
inr (· · · (inr(y)) · · ·).

By the function α above we mean the following: when α is applied to a partic-
ular argument, this is matched against the different patterns and when the first
pattern matching the argument is found, the tuple with the recursive arguments
is computed and returned.

The second step in the computation of f , the evaluation of the recursive calls,
is the lifting of f by the functor F , Ff : FA→ FB.

The last step is a mapping β: FB → B (in categorical jargon, an F -algebra).
It is computed by applying the appropriate ei from the recursive equations.

In short, the analysis can be expressed by the following diagram:

A

f

��

α �� FA

Ff

��

pi
� ��

�

��

〈ai0, . . . , aiki〉�

��
ei[(f ai0), . . . , (f aiki)] 〈(f ai0), . . . , (f aiki)〉

���

B FB.
β

��

The function f can now be given by the single equation f = β ◦ Ff ◦ α, in
place of the set of recursive equations presented at the beginning of this section.

A Final Example

Let us illustrate this analysis again with another example: a generalisation of the
Fibonacci sequence that depends on three numerical parameters a, b, and c, and
on a function parameter g: N → N (the actual Fibonacci sequence is obtained
for a = b = 1, c = 0, and g = idN):

fib : N→ N
fib 0 = a
fib 1 = b + c · fib (g 0)
fib (m + 2) = fib (g m) + fib (g (m + 1)).

The interest in this generalisation lies in the fact that, for some choices of the
parameters, fib will be a total function (for example, for the choices that give
the actual Fibonacci sequence), while, for other choices, fib will be partial (for
example, if one chooses a = b = 1 and c = 0, but g = (+1), the successor
function over natural numbers). For the fib function, F , α, and β are as follows:

108 A. Bove and V. Capretta

Ffib X = Unit + X + X2

αfib 0 = in0(tt) βfib in0(tt) = a
αfib 1 = in1(g 0) βfib in1(x) = b + c · x
αfib (m + 2) = in2〈g m, g (m + 1)〉 βfib in2〈y, z〉 = y + z

where tt is the only element of the type Unit (which we identify with X0).

3 The Type of Partial Recursive Functions

Inspired by the previous analysis, we introduce a new type constructor for partial
recursive functions in which the coalgebra-algebra pair is used in the introduction
rule. For the elimination rule, we define a domain predicate similar to the one
in the Bove/Capretta method [3]. For full generality, the method we used in the
previous section must be adapted by defining a lifted universal quantifier: for
every predicate P : X → Prop and functor F , we define

∧
F,P : FX → Prop as the

conjunction of the statement of P on every element of type X occurring in an
element of FX ; its formal definition will be given in the next section.

We give now the formal rules for the type of partial recursive functions:

– Formation:
A: Set B: Set
A ⇀ B: Set

;

– Introduction:
α: A→ FA β: FB → B

rec(α, β): A ⇀ B
F a functor;

– Domain predicate:

f : A ⇀ B

Domf : A→ Prop
,

α: A→ FA β: FB → B a: A h:
∧

F,Domrec(α,β)
(α a)

domα,β(a, h): Domrec(α,β) a
;

– Application:
f : A ⇀ B a: A h: Domf a

appf a h: B
;

– Reduction:

apprec(α,β) a domα,β(a, h) � β (rec(α, β) (α a) h)

where f is the lifting of the function f : A ⇀ B by the functor F :

f : ∀t: FA,
∧

F,Domf

t→ FB;

its formal definition, which is more complex than the lifting of trans code in
the previous section because of the presence of the domain predicate, will
also be given in the next section. We could also see f as a recursive function
f : Fα ⇀ Fβ by setting f = rec(Fα, Fβ). This definition would be equivalent
to the one given.

A Type of Partial Recursive Functions 109

With these rules, the functions trans code and fib can simply be defined as:

trans code: N ⇀ N fib: N ⇀ N
trans code = rec(αtrans code, βtrans code) fib = rec(αfib, βfib).

4 A Predicative Reflection

The rules given in the previous section do not take F as an explicit parameter,
but in an intensional type theory F should always be given explicitly. Since every
function has its own different functor F , we should really write rec(F, α, β) in
place of just rec(α, β).

So, how should we formalise our functors? A functor is a higher-order object of
type Set→ Set. (If we want to be really formal, we should give a more complex
dependent type to F , also containing a proof of functoriality.) It is therefore
clear that with a solution like this the type A ⇀ B would be inherently im-
predicative. One option to circumvent this impasse consists in stratifying partial
functions over the hierarchy of predicative universes U0, U1, U2, . . . by defining
A⇀i B: Ui+1 as the type of partial functions rec(F, α, β) where F : Ui → Ui.

An alternative solution, adopted here, is to be stricter about the functors we
allow. Observe that each equation in the definition of a recursive function always
contains a finite number of recursive calls, therefore we can limit ourselves to
finitary functors. The class of these functors is small enough to be encoded by
a small type, similarly to the encoding of the larger class of strictly positive
functors given in [8]. In other words, a functor can be given by a signature in
the same way that algebraic structures are defined in Universal Algebras [7].

If the functor is of the form FX = Xk0 + · · ·+ Xkn , then the signature may
consist of just the list of exponents [k0, . . . , kn]. However, some functions have a
more general signature: they may have an a priori unknown number of potential
cases; this is the case for trans code.

Therefore, we define a signature to be a mapping σ: N → N that specifies,
for every possible number of recursive arguments, how many equations contain
that number of recursive arguments. Intuitively, for each arity n, the signature σ
gives us the number (σ n) of cases (equations) of the function that generate that
number of recursive calls. In other words, the function will have (σ 0) cases with
no recursive calls, (σ 1) cases with a single recursive call, (σ 2) cases with two
recursive calls, and, in general, (σ i) cases with i recursive calls. In the definition
of the functor, the coefficient (σ i) means that we take (σ i) copies of X i.

We define an operator � such that m � Y gives the sum of m copies of Y :

� : N→ Set→ Set
0 � Y = ∅
1 � Y = Y
(m + 1) � Y = Y + (m � Y).

A signature σ represents the following functor Fσ:

Fσ X = (σ 0) � Unit + (σ 1) � X + (σ 2) � X2 + · · ·
or, more formally,

110 A. Bove and V. Capretta

Fσ X =
∑
n:N

(σ n) � Xn.

The corresponding signatures in the examples trans code and fib are:

σtrans code n = 1 and σfib n =
{

1 if n=0,1,2
0 otherwise.

When we adopt this restrained class of functors, the definitions of the α and
β components of a function look a bit different from what we have seen before.
For example, for the fib function, we have now that:

Ffib X =
∑

n:N(σfib n) � Xn

αfib 0 = 〈0, tt〉 βfib 〈0, tt〉 = a
αfib 1 = 〈1, g 0〉 βfib 〈1, x〉 = b + c · x
αfib (m + 2) = 〈2, 〈g m, g (m + 1)〉〉 βfib 〈2, 〈x, y〉〉 = y + z.

This gives us a version of fib equivalent to the one given in Section 2. Recall that
in0 is simply the identity, so we do not write it in the equations above.

We now revise the rules given in the previous section to use signatures as para-
meters in place of functors. The introduction rule for partial recursive functions
becomes:

σ: N→ N α: A→ Fσ A β: Fσ B → B

rec(σ, α, β): A ⇀ B
.

Similarly, in the rest of the rules, we should simply add the parameter σ and
replace F with Fσ.

We can now be more precise about the definition of the operator
∧

F,P when
the functor F is given by a signature. We actually substitute the functor argu-
ment F with σ and define, for P : X → Prop:∧

σ,P : Fσ X → Prop∧
σ,P 〈0, ini tt〉 = True∧
σ,P 〈n + 1, ini 〈x0, . . . , xn〉〉 = (P x0) ∧ · · · ∧ (P xn)

with 0 � i < σ n and True the trivially true proposition (isomorphic to Unit).
The introduction rule for the domain predicate becomes:

σ: N→ N α: A→ Fσ A β: Fσ B → B a: A h:
∧

σ,Domrec(σ,α,β)
(α a)

domσ,α,β(a, h): Domrec(σ,α,β) a
.

Finally, we specify how to lift a function f : A ⇀ B by a functor specified by
a signature:

f
σ
: ∀t: Fσ A,

∧
σ,Domf

t→ Fσ B

f
σ 〈0, ini tt〉 tt = 〈0, ini tt〉

f
σ 〈n + 1, ini 〈x0, . . . , xn〉〉 〈h0, . . . , hn〉 =
〈n + 1, ini 〈appf x0 h0, . . . , appf xn hn〉〉

with 0 � i < σ n and tt the only constructor of True.

A Type of Partial Recursive Functions 111

Observe that the definitions of appf and f
σ

are mutually dependent. The
recursion is well-founded, since the recursive calls are on structurally smaller
arguments. Systems like Coq provide support for mutual recursion.

We mentioned before that rec(σ, α, β) can itself be alternatively defined as
a partial recursive function by rec(σ, Fσ α, Fσ β). This possibility relies on the
equivalence of Domrec(σ,Fσα,Fσβ) t with

∧
σ,Domrec(σ,α,β) t, which can be shown

by induction on Dom. We leave this verification to the reader and stick to our
original definition for the rest of the article.

5 Consistency of the Extended Type Theory

We show here that if we extend a consistent type theory with the new type
of partial functions, we obtain a consistent new theory. We achieve this goal
by translating the constructors for the new type of partial recursive functions
into the base theory. The base theory must be expressive enough to provide
the needed operators, specifically it must have Σ-types and inductive dependent
families. Our reference system is Martin-Löf’s type theory [18,21], but most
versions of dependent type theory will work as well.

Let TT be a consistent and normalising type system and let PTT be its extension
with the type of partial functions presented in Sections 3 and 4.

We first define an interpretation function [[]]: PTT → TT. The translation
is defined by recursion on the structure of the terms and types of PTT. The
constructors that are already present in TT are translated into themselves; so we
only need to specify how to interpret the new constructors related to the type
of partial functions.

We first define a type which we will use to interpret the type of partial functions:

A ⇀∗ B :=
∑

σ:N→N

(A→ Fσ A)× (Fσ B → B).

Let now f : A ⇀∗ B. We use the abbreviations σf = π1 f , αf = π1 (π2 f), and
βf = π2 (π2 f), with π1 and π2 the first and second projection from a pair,
respectively, and we represent elements of the above Σ-type as triples 〈σ, α, β〉
rather than nested pairs 〈σ, 〈α, β〉〉.

We then define an inductive predicate which we will use to interpret the
domain of f :

Dom∗
f : A→ Prop

dom∗
f : ∀a: A,

∧
σf ,Dom∗

f
(αf a)→ Dom∗

f a.

Finally, we define an application operator for f by recursion on Dom∗
f :

app∗f : ∀a: A, Dom∗
f a→ B

app∗f a dom∗
f (a, h) = βf (f

∗σf (αf a) h).

The definition of f
∗ σf is exactly that of f

σf given at the end of Section 4 but
with calls to app∗ in place of calls to app, and with Dom∗ in place of Dom in the
type of its last argument.

112 A. Bove and V. Capretta

The translation proceeds now formally by structural induction on the types
and terms of PTT. All the elements that are already present in TT are left un-
changed by the translation. Therefore, the translation of type and term variables
is the identity, [[X]] = X and [[x]] = x; standard type constructors, like products
and sums, and their constructors, that is, abstractions and pairs, are trans-
lated straightforwardly, hence [[Πx: A.B]] = Πx: [[A]].[[B]], [[Σx:A B]] = Σx:[[A]] [[B]],
[[λx.a]] = λx.[[a]] and [[〈x, y〉]] = 〈[[x]], [[y]]〉; and so on for all operations already
present in TT, for example, application is translated as [[(d e)]] = ([[d]] [[e]]) and
projections as [[πi p]] = πi [[p]] for i = 1, 2.

The new constructions for partial recursive functions are translated using the
starred definitions presented above:

[[A ⇀ B]] = [[A]] ⇀∗ [[B]]
[[Domf]] = Dom∗

[[f]]

[[rec (σ, α, β)]] = 〈[[σ]], [[α]], [[β]]〉
[[domσ,α,β(a, h)]] = dom∗

〈[[σ]],[[α]],[[β]]〉 ([[a]], [[h]])
[[appf a h]] = app∗[[f]] [[a]] [[h]]

It is worth noticing that any term of TT is returned unchanged from the inter-
pretation [[]] (this can be proved by simple structural induction on the terms of
TT). In addition, the functor associated to a signature, the lifted universal quan-
tifier, and the lifting operator on functions commute with the interpretation
function.

Lemma 1. For terms of the appropriate type, we have that:

[[Fσ]] = F[[σ]], [[
∧
σ,P

]] =
∧

[[σ]],[[P]]

, and [[f
σ
]] = [[f]]

∗ [[σ]]
.

Proof. For the first two statements, it is sufficient to check that the definitions
of these operators use only constructions from the base type theory and none of
the new ones defined for partial recursive functions.

The proof of the third statement follows from from the fact that f
σ

and [[f]]
∗ [[σ]]

are defined basically in the same way. The difference between the definitions
is that first one uses app while the second uses app∗, but then we have that
[[appf a h]] = app∗[[f]] [[a]] [[h]]. ��

In addition, the interpretation is sound, as we show in the following lemma.

Lemma 2 (Soundness of [[]]). Let Γ be a context, t a term and T a type. If
Γ �PTT t: T then [[Γ]] �TT [[t]]: [[T]].

Proof. By induction on the derivation of Γ �PTT t: T . We consider here only the
new rules of the extended system.

– Formation:
A: Set B: Set
A ⇀ B: Set

.

A Type of Partial Recursive Functions 113

By inductive hypotheses (IH), both [[A]] and [[B]] are types. Hence, it is easy
to see that [[A ⇀ B]] = Σσ:N→N ([[A]]→ Fσ [[A]])× (Fσ [[B]]→ [[B]]) is a type.

– Introduction:

σ: N→ N α: A→ Fσ A β: Fσ B → B

rec(σ, α, β): A ⇀ B
.

By IH, [[σ]]: N→ N, [[α]]: [[A→Fσ A]]=[[A]]→F[[σ]] [[A]] and [[β]]: F[[σ]] [[B]]→ [[B]].
It is easy to check now that [[rec(σ, α, β)]] = 〈[[σ]], [[α]], [[β]]〉 has type [[A ⇀ B]].

– Domain predicate:

f : A ⇀ B

Domf : A→ Prop

σ: · · · α: · · · β: · · · a: A h:
∧

σ,Domrec(σ,α,β)
(α a)

domσ,α,β (a, h): Domrec(σ,α,β) a
.

By IH we have that [[f]]: [[A ⇀ B]], [[σ]],[[α]] and [[β]] have the types shown
above, [[a]]: [[A]], and [[h]]: [[

∧
σ,Domrec(σ.α,β)

(α a)]] =
∧

[[σ]],Dom∗
[[rec(σ,α,β)]]

([[α]] [[a]]).

By definition [[Domf]] = Dom∗
[[f]] has type [[A]]→ Prop.

We know that [[domσ,α,β (a, h)]] = dom∗
[[rec(σ,α,β)]] ([[a]], [[h]]), which has type

Dom∗
[[rec(σ,α,β)]] [[a]] as required.

– Application:
f : A ⇀ B a: A h: Domf a

appf a h: B
.

Let [[f]]: [[A ⇀ B]], [[a]]: [[A]], and [[h]]: Dom∗
[[f]] [[a]] by IH. Then, by definition,

[[appf a h]] = app∗[[f]] [[a]] [[h]], which has type [[B]]. ��

We can also check that the interpretation of the reduction rule is sound. Be
aware of the overloading of the symbol �, used to denote reduction both in PTT
and TT. It should be clear from the context in which theory we are performing
the reduction. We denote the reflexive-transitive closure of � in TT by �∗.

Lemma 3 (Preservation of reductions). Let Γ , t and T such that Γ �PTT t: T .
If t � t′ in PTT for a certain term t′, then [[t]] �∗ [[t′]] in TT.

Proof. We just need to check that the new reduction rule for application of a
partial recursive function is interpreted correctly:

apprec(σ,α,β) a domσ,α,β(a, h) � β (rec(σ, α, β)
σ

(α a) h).

The interpretation of the left-hand side of the rule can be reduced using the
definition of app∗:

[[apprec(σ,α,β) a domσ,α,β(a, h))]] = app∗[[rec(σ,α,β)]] [[a]] dom∗
[[rec(σ,α,β)]] ([[a]], [[h]])

� [[β]] ([[rec(σ, α, β)]]
∗ [[σ]]

([[α]] [[a]]) [[h]]).

114 A. Bove and V. Capretta

The interpretation of the right-hand side gives us the following:

[[β (rec(σ, α, β)
σ

(α a) h)]] = [[β]] ([[rec(σ, α, β)
σ
]] ([[α]] [[a]]) [[h]]).

Now, the correctness of the translation of the reduction rule for application is a
consequence of Lemma 1. ��

Conservativity and consistency follow now straightforwardly.

Theorem 1 (Conservativity of PTT). Let Γ and T be a context and a type,
respectively, in TT, and let t be a term in PTT. If Γ �PTT t: T then Γ �TT [[t]]: T .

Proof. By Lemma 2 we have that [[Γ]] �TT [[t]]: [[T]]. Every term of TT is returned
unchanged by the interpretation [[]]; hence, Γ = [[Γ]] and T = [[T]]. ��

Theorem 2 (Consistency of PTT). PTT is consistent.

Proof. Let us assume that �PTT t:⊥ for some term t. Then, by Theorem 1, we
have that �TT [[t]]:⊥, which is absurd since TT is consistent. ��

The results of this section show that we can implement types of partial recursive
functions satisfying our formal rules in standard type theory. Our formalisation
is then to be used as a useful module to develop recursion theory in a system like
Coq, as we exemplified in the Coq formalisation that accompanies this article.
A direct implementation of the extended system could also have its advantages,
avoiding the overhead of the interpretation and improving efficiency by direct
computation of the reduction rule for partial functions.

6 Full Recursion

So far we have considered recursive definitions in which the argument was used
only to generate recursive calls. This is a scheme of definition by iteration. A more
general scheme, giving full recursion, allows the argument to be used directly and
not just inside the recursive calls. The most simple example is the recursive equa-
tion in the definition of the factorial function, fact (n + 1) = (n + 1) · (fact n),
where the argument (n + 1) is used as a factor of the multiplication, beside gen-
erating the recursive call to n. The factorial is a structurally recursive function
and standard type theory can be used to define it with no problem. So we gen-
eralise the factorial function as we have generalised the Fibonacci function in
order to consider a function that displays the same phenomenon, but requires
at the same time general recursion. Let a: N and g: N→ N be fixed parameters,
then we define:

fact: N→ N
fact 0 = a
fact (n + 1) = (n + 1) · fact (g n).

If a = 1 and g is the identity, we get the usual factorial function, but for some
choices of g, for example the successor function, fact will be a partial function.

A Type of Partial Recursive Functions 115

This function does not fall into the scheme described in the previous sections
because we have passed the input (n + 1) directly as an argument of the mul-
tiplication. That is, the β component uses not only the result of the recursive
call, but also the input itself. The type of β must then be changed: it involves
not only the functor Fσ, but also the type of the input. The introduction rule
for partial recursive functions becomes now:

σ: N→ N α: A→ Fσ A β: A× Fσ B → B

rec(σ, α, β): A ⇀ B
.

Observe that the α component remains the same: α still determines just the
structure of the recursive calls and says nothing about the extra parameter. The
change in the type of β should of course be made in all the other rules as well.

The reduction rule must also be modified to feed the input as an extra argu-
ment to β:

apprec(σ,α,β) a domσ,α,β(a, h) � β 〈a, rec(σ, α, β)
σ

(α a) h〉.

The interpretation and the proof of soundness can be easily modified to take
this generalisation into account.

In the case of the fact function, the components σ, α and β are as follows:

σfact n =
{

1 for n = 0, 1
0 otherwise

αfact 0 = 〈0, tt〉 βfact 〈x, 〈0, tt〉〉=a
αfact (n + 1) = 〈1, (g n)〉 βfact 〈x, 〈1, y〉〉=x · y.

7 Conclusions

The work presented here is a contribution to the formalisation of general recur-
sion in intensional type theories. For every pair of types A and B, we define
a type of partial functions A ⇀ B. Its introduction rule allows us to define a
function by prescribing the structure of recursive calls and the operations that
produce the output from the recursive results. Every function is coupled with a
domain predicate inductively defined to be true whenever it holds for the recur-
sive arguments. Application is allowed only for elements in the domain and the
reduction rule performs recursion over the proof of the domain predicate.

The fact that all recursive functions between two given types A and B can
be collected in a single type facilitates the definition of higher-order programs.
Indeed, the source type A can itself be a type of partial functions, A = X ⇀ Y .
However, the mechanism does not immediately allow the inheritance of partiality
from a higher-order partial argument. For example, the formalisation of the map
function on lists (which is itself structurally recursive) raises the problem of how
the partiality of the mapped argument function is reflected on the list argument.
The method explained here does not directly give an answer to this problem.

Another problematic issue is that nested recursive functions are not allowed:
the α component must directly identify the recursive arguments, without recur-
sively calling the function that we are defining.

116 A. Bove and V. Capretta

Partiality may come not only from infinite recursion but also from a sequence
of recursive equations whose patterns are not exhaustive. We did not provide
a direct method to deal with the fact that the α component must be total.
However, as we already mentioned before, there are easy fixes for this since we
can add equations to make the patterns exhaustive by doing one of three things:
assign a default value to the new patterns, make the function loop on them, or
add an undefined element to the target type B, that is, using B + Unit in place
of B.

We proved the conservativity of the new constructors with respect to a base
type theory. Thus the extended system is sound whenever the base theory is.

We maintain that this new type could be of use in the formalisation of general
recursive algorithms and in the proof of their correctness. It can be readily
implemented in type-theory based proof assistants like Coq.

References

1. Audebaud, P.: Partial objects in the calculus of constructions. In: Kahn, G. (ed.)
Proceedings of the Sixth Annual IEEE Symp. on Logic in Computer Science, LICS
1991, July 1991, pp. 86–95. IEEE Computer Society Press, Los Alamitos (1991)

2. Bove, A.: General recursion in type theory. In: Geuvers, H., Wiedijk, F. (eds.)
TYPES 2002. LNCS, vol. 2646, pp. 39–58. Springer, Heidelberg (2003)

3. Bove, A., Capretta, V.: Nested general recursion and partiality in type theory. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 121–135.
Springer, Heidelberg (2001)

4. Bove, A., Capretta, V.: Modelling general recursion in type theory. Mathematical
Structures in Computer Science 15(4), 671–708 (2005)

5. Bove, A., Capretta, V.: Recursive functions with higher order domains. In: Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 116–130. Springer, Heidelberg
(2005)

6. Bove, A., Capretta, V.: Computation by prophecy. In: Della Rocca, S.R. (ed.)
TLCA 2007. LNCS, vol. 4583, pp. 70–83. Springer, Heidelberg (2007)

7. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G.,
Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp.
131–148. Springer, Heidelberg (1999)

8. Capretta, V.: Recursive families of inductive types. In: Aagaard, M.D., Harrison,
J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 73–89. Springer, Heidelberg (2000)

9. Capretta, V.: General recursion via coinductive types. Logical Methods in Com-
puter Science 1(2), 1–18 (2005)

10. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. In: Pro-
ceedings of the Workshop on Coalgebraic Methods in Computer Science (CMCS
2004). Electronic Notes in Theoretical Computer Science, vol. 106, pp. 43–61 (2004)

11. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Infor-
mation and Computation 204(4), 437–468 (2006)

12. Constable, R.L.: Constructive mathematics as a programming logic I: Some princi-
ples of theory. Annals of Mathematics, vol. 24. Elsevier Science Publishers, North-
Holland, Amsterdam (1985)

13. Constable, R.L., Mendler, N.P.: Recursive definitions in type theory. In: Parikh,
R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 61–78. Springer, Heidelberg
(1985)

A Type of Partial Recursive Functions 117

14. Constable, R.L., Smith, S.F.: Partial objects in constructive type theory. In: Logic
in Computer Science, Ithaca, New York, pp. 183–193. IEEE, Los Alamitos (1987)

15. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76, 95–120 (1988)

16. Gödel, K.: Über formal unentscheidbare sätze der Principia Mathematica und ver-
wandter systeme. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

17. Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report, April 2003.
Cambridge University Press, Cambridge (2003)

18. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, 1984. Notes by Giovanni
Sambin of a series of lectures given in Padua (June 1980)

19. Megacz, A.: A coinductive monad for Prop-bounded recursion. In: Stump, A., Xi,
H. (eds.) PLPV 2007: Proceedings of the 2007 workshop on Programming languages
meets program verification, pp. 11–20. ACM Press, New York (2007)

20. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991)

21. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type
Theory. An Introduction. International Series of Monographs on Computer Scence,
vol. 7. Oxford University Press, Oxford (1990)

22. Setzer, A.: Partial recursive functions in Martin-Löf Type Theory. In: Beckmann,
A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, p. 505.
Springer, Heidelberg (2006)

23. Setzer, A.: A data type of partial recursive functions in Martin-Löf Type Theory,
http://www.cs.swan.ac.uk/ csetzer/articles/setzerDataTypePar
RecPostProceedings.ps

24. The Coq Development Team. LogiCal Project. The Coq Proof Assistant. Reference
Manual. Version 8. INRIA (2004), http://pauillac.inria.fr/coq/coq-eng.html

http://www.cs.swan.ac.uk/~csetzer/articles/setzerDataTypeParRecPostProceedings.ps
http://www.cs.swan.ac.uk/~csetzer/articles/setzerDataTypeParRecPostProceedings.ps
http://pauillac.inria.fr/coq/coq-eng.html

Formal Reasoning About Causality Analysis

Jens Brandt and Klaus Schneider

University of Kaiserslautern
Embedded Systems Group, Department of Computer Science

P.O. Box 3049, 67653 Kaiserslautern, Germany
http://es.cs.uni-kl.de

Abstract. Systems that can immediately react to their inputs may suffer from
cyclic dependencies between their actions and the corresponding trigger condi-
tions. For this reason, causality analysis has to be employed to check the construc-
tiveness of the programs which implies the existence of unique and consistent
behaviours. In this paper, we describe the embedding of various views of causal-
ity analysis into the HOL4 theorem prover to check their equivalence. In partic-
ular, we show the equivalence between the classical analysis procedure, which is
based on a fixpoint computation, and a formulation as a (bounded) model check-
ing problem.

1 Introduction

For the modelling of embedded systems, or more generally, the modelling of systems
with concurrent actions whose execution may consume time, many models of computa-
tion [8,10,12] have been considered. Among these models of computation are asynchro-
nous models like dataflow process networks and Hoare’s CSP, discrete-event models as
used by most hardware description languages including VHDL, Verilog and SystemC,
and synchronous models as used by synchronous hardware circuits, synchronous pro-
gramming languages [3] and classical automata theory.

Most of these models of computation define a causality relation between actions and
their trigger conditions. Roughly speaking, causality determines a logical sequentiality
between trigger conditions and subsequent reactions according to the stimuli of the
environment. Causality can be achieved in various ways: for example, the notion of
δ-time has been introduced in hardware description languages to circumvent causality
problems, and tagged tokens have been introduced in dataflow computers to solve this
problem.

In synchronous models of computation, however, causality is not given by construc-
tion. There is neither a finer notion of time as given by δ-time nor are there tagged
values to establish a causality relation. Instead, the execution of a synchronous system
is partitioned into macro steps that consist of finitely many micro steps. The values of
the variables remain constant during all micro steps within a macro step and change
synchronously when proceeding to the next macro step. Time is given as a logical time
in the number of macro steps. Hence, causality analysis is much more difficult than in
other models of computation.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 118–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://es.cs.uni-kl.de

Formal Reasoning About Causality Analysis 119

For this reason, special procedures for causality analysis have been developed for syn-
chronous languages [4,22]. It is well-known that a synchronous program is causally cor-
rect (constructive) if and only if for all inputs, there is a dynamic schedule of the micro
step actions in all macro steps (hence, the program can be executed on a sequential ma-
chine). Moreover, it is known that causality analysis is equivalent to the stability analysis
of combinational feedback loops in hardware circuits [11,9,17,13,22,4,15,16,14] under
Brzozowski and Seger’s unbounded delay model [5,22].

Since the causality of a program depends on its syntax (or equivalently on the partic-
ular structure of a hardware circuit) and not only on its semantics, the causality analysis
furthermore depends on the translation to semantically equivalent hardware circuits or
sequential programs. We have studied such variants in depth in our previous research
[19,20,21]. As it turned out that the problem is very subtle and depends on details of
the used definitions, we believe that the research in this area would greatly benefit from
a solid formal treatment using an interactive theorem prover like HOL4. Hence, this
paper is the first step towards such a formal treatment, and it already presents an equiv-
alence proof between two kinds of causality analyses, namely one that could be used at
run-time with concrete inputs and a static one, which is used at compile-time with sym-
bolic inputs (so that a symbolic analysis is obtained). The symbolic causality analysis is
the second added value of this paper, since symbolic methods only exist for the special
case of Boolean event variables so far.

In this paper, we do not consider a particular language like our synchronous program-
ming language Quartz [18]. Instead, we consider a language-independent formalisation
of synchronous systems that is based on so-called guarded actions to obtain a theory
that is as general as possible. A guarded action is thereby a pair (γ, C) where the guard
γ is a Boolean condition, and where the action C is an atomic action of the system
under consideration. Throughout this paper, we only consider immediate assignments
of the form y = τ , where y is an output variable, and τ is an expression that is type-
consistent with y. Further kinds of actions like assumptions, assertions, and delayed
assignments [18] do not further complicate the causality analysis [19]. Moreover, we
do not take into account the reachability of states, which is necessary in a full causality
analysis by a compiler. Again, this would not further complicate the algorithms. Finally,
we only consider variables of type Boolean, while a real programming language offers
typically further types. However, types do not complicate our symbolic analysis either.

Guarded actions as the ones considered here have been widely used in computer
science so far, and entire programming languages like Unity [6,1,2] have been built
on top of them. However, the semantics of the guarded actions often differs, depend-
ing on the preferred model of computation. As we consider the synchronous model of
computation, the system’s computation consists of micro and macro steps: Thus, we
must analyse the causal order of the micro steps within one macro step, and variables
have constant values during the analysis. Indeed, the major goal of causality analysis
is to find a constructive schedule (dependent on the values of the input variables) to
determine the successive values of the output variables.

The symbolic causality analysis of this synchronous system starts with known inputs
xi and unknown outputs yi. For this reason, the initial environment E0 maps all input
variables to known Boolean constants, while it maps the output variables to a third

120 J. Brandt and K. Schneider

value⊥ that means ‘still unknown’ in the multi-valued causality analysis. Starting with
the initial environment E0, the following iteration is performed in causality analysis to
compute an environment Ei+1 from a given environment Ei. We first evaluate all guards
of the actions and partition the actions into (1) must-actions that have a guard Ei(γ) =
true and (2) can-actions that have a guard Ei(γ) ∈ {true,⊥}, respectively. Then, we
‘execute’ the must-actions, so that the assigned variables’ values are updated in the new
environmentEi+1. Moreover, if all actions of an output variable y are cannot-actions, we
can assign a default value to y (which may be a fixed constant in case of event variables
(transient) or the previous value in case of memorised variables (persistent)). In all other
cases, we have to maintain the current value of y, which may still be unknown ⊥. If a
variable y should already have a known value, but a must-action assigns a different
value, we update the value of y to � to indicate a write conflict.

{ (x0 ∧ y5, y0 = true),
(x1 ∨ y0, y1 = true),
(x2 ∧ y1, y2 = true),
(x0 ∨ y2, y3 = true),
(x1 ∧ y3, y4 = true),
(x2 ∨ y4, y5 = true) }

��������
�������

y0 = x0 ∧ y5

y1 = x1 ∨ y0

y2 = x2 ∧ y1

y3 = x0 ∨ y2

y4 = x1 ∧ y3

y5 = x2 ∨ y4

��������
�������

y0 = x0 ∧ (x2 ∨ x1)
y1 = x1 ∨ (x0 ∧ x2)
y2 = x2 ∧ (x1 ∨ x0)
y3 = x0 ∨ (x2 ∧ x1)
y4 = x1 ∧ (x0 ∨ x2)
y5 = x2 ∨ (x1 ∧ x0)

Fig. 1. An Example of a Cyclic Equation System due to [17]

In case of Boolean event variables, a set of guarded actions is equivalent to a (po-
tentially cyclic) equation system, i.e., a combinational hardware circuit with potential
feedback loops. As an example (due to Rivest [17]), consider the guarded actions given
on the left hand side of Figure 1 for inputs x0, x1 and x2 and outputs y0, y1, y2, y3, y4

and y5. This set of guarded actions is equivalent to the cyclic Boolean equation system
shown in the middle of Figure 1. Using ternary simulation [13,22,4,19], it is possible to
convert every causally correct set of guarded actions into an acyclic equation system.
In case of our example of Figure 1, this equivalent acyclic equation system is given on
the right of Figure 1.

While there are paper-and-pencil proofs for the equivalence of the causality analysis
based on can-must analysis and the symbolic ternary simulation, there is no publication
on a symbolic analysis for non-Boolean or non-event variables. In this paper, we present
such a symbolic analysis as a generalisation of ternary simulation. To this end, we have
to take into account the problem of write conflicts which does not appear for Boolean
events (since disjunction is used as an implicit conflict resolution function). In addition,
we prove the equivalence between the can-must causality analysis and our symbolic
formulation based on extending each data type by the constants ⊥ and �.

To summarise, we present in this paper the formalisation of the traditional causality
analysis for synchronous systems as well as the definition of a fully symbolic version
of a general causality analysis. We use the HOL4 theorem prover to prove the equiv-
alence of these two variants of the causality analysis, so that we can guarantee that
what is checked by means of model checking in a compiler with the symbolic analysis
exactly matches the definition of causality analysis as given by the can-must analysis.

Formal Reasoning About Causality Analysis 121

Moreover, we extend the classical analysis by considering run-time errors like write
conflicts, division by zero, or access to array elements outside the declared range. This
is accomplished by generalising the traditional three-valued analysis to a four-valued
setting using a constant � for ‘run-time error’ in addition to ⊥ ‘yet unknown’.

This paper is organised as follows: In Section 2 we present a formalisation of the
traditional can-must analysis. Section 3 describes our symbolic approach to causality
analysis, which is subsequently formalised and shown to be equivalent in Section 4.
Finally, Section 5 draws some conclusions.

2 Formalisation of Traditional Can-Must Analysis

Before we formalise the traditional can-must analysis in the last part of this section,
we first have to model the system description, which is based on guarded actions (Sec-
tion 2.1) and the environment to allow the evaluation of terms (Section 2.2).

2.1 System Description

The main objective of our work is the reasoning about different procedures for causality
analysis; we are less interested in causality analysis of a particular system. Therefore,
we need a deep embedding of the system description to quantify over systems in the
logic. Hence, our first step is the formalisation of the guarded actions.

A guarded action is a pair (γ, x = τ), where grd(γ, x = τ) = γ is called the guard,
lhs(γ, x = τ) = x the left-hand side, and rhs(γ, x = τ) = τ the right-hand side of the
action. The guard and the right-hand side are Boolean expressions, which are defined
in HOL as follows:

BlExpr �def false ∈ BlExpr | true ∈ BlExpr | x, x ∈ V
| not(e), e ∈ BlExpr
| and(e1, e2), e1, e2 ∈ BlExpr | or(e1, e2)e1, e2 ∈ BlExpr

2.2 Four-Valued Environment

The previous subsection only describes the syntax of synchronous systems in our HOL
theory. To define their semantics, we have to formalise the environment of the system.
In the traditional can-must analysis, the environment maps each variable to a three-
valued truth value. We extend this definition here to integrate write conflicts and other
run-time errors into the causality analysis. Thus, the environment maps each variable to
one of the four truth values F = {⊥, 0, 1, �}.

¬̈
⊥ ⊥
0 1
1 0
� �

∧̈ ⊥ 0 1 �
⊥ ⊥ 0 ⊥ �
0 0 0 0 �
1 ⊥ 0 1 �
� � � � �

∨̈ ⊥ 0 1 �
⊥ ⊥ ⊥ 1 �
0 ⊥ 0 1 �
1 1 1 1 �
� � � � �

sup
F

⊥ 0 1 �
⊥ ⊥ 0 1 �
0 0 0 � �
1 1 � 1 �
� � � � �

Fig. 2. Definitions of Four-Valued Negation, Conjunction and Disjunction

122 J. Brandt and K. Schneider

In the rest of this section we implement a theory based on four-valued logic. To
reason about monotonic functions, and the existence of fixpoints, we define a strict
partial order <̈ on the type F as follows: x<̈y :⇔ x �= y ∧ (x = ⊥ ∨ y = �). It is
easily seen that (F, <̈) is a complete lattice, since two elements have a supremum and
an infimum (see Figure 2).

Clearly, our theory contains four-valued generalisations for all Boolean operators
that are defined according to the truth tables shown in Figure 2. As can be seen, all
four-valued operations are maximal monotonic generalisations of the corresponding
Boolean operations (with respect to our partial order). The reason for this choice will
be discussed later in this paper, when we show the equivalence of this method to our
model-checking approach.

The environment itself is defined as a finite map [7] from natural numbers, which
represent variables in our case, to four-valued truth values. The actual implementation
is hidden behind the functions E(x) and Eτ

x , which read and update the value of a given
variable x in the environment E , respectively. The evaluation [[τ]]FE of an expression τ to
a value in F with respect to the given environment E is defined recursively as follows:

blEval4_def �def

([[false]]FE = 0) ∧ ([[true]]FE = 1)∧
([[x]]FE = E(x)) ∧ ([[not(τ)]]FE = ¬̈[[τ]]FE)∧
([[and(τ1, τ2)]]FE = [[τ1]]FE ∧̈[[τ2]]FE) ∧ ([[or(τ1, τ2)]]FE = [[τ1]]FE ∨̈[[τ2]]FE)

2.3 Fixpoint Iteration

As already explained in the introduction, the can-must analysis iteratively computes
values for all output variables of the environment E until a fixpoint is reached. To this
end, we have to maintain two sets of guarded actionsA: The guard of the must-actions
is true, while the guard of the can-actions is not false.1 To this end, we provide the
following definitions:

can4_def �def

(can(⊥) = true) ∧ (can(0) = false)∧
(can(1) = true) ∧ (can(�) = false)

canActs_def �def

canActsE(A) = filter λ(γ, x = τ). can([[γ]]FE) fromA
must4_def �def

(must(⊥) = false) ∧ (must(0) = false)∧
(must(1) = true) ∧ (must(�) = true)

mustActs_def �def

mustActsE(A) = filter λ(γ, x = τ). must([[γ]]FE) fromA
After the set of guarded actions is partitioned into must-, cannot-, and the remaining
actions, their update of the environment is defined as follows: for must-actions, the
variable on the left-hand side should be assigned the supremum of its old value and the
right-hand side. This construction ensures two important properties. First, the order of

1 For a more intuitive formalisation, we use can-actions and not the complement cannot-actions,
which can be usually found in traditional causality.

Formal Reasoning About Causality Analysis 123

assignments to the same variable is irrelevant, which is a result of the associativity and
commutativity of the supF operation. Thus, multiple actions can be executed sequen-
tially without caring about the sequential order. Second, instead of changing a variable
from one Boolean value to another one, � is assigned, which signals a write conflict.
Hence, this definition exactly models the intended behaviour.

executeActionF_def �def

execActF(E , a) = E sup
F
([[lhs(a)]]FE ,[[rhs(a)]]FE)

lhs(a)

executeActionsF_def �def

(execActsF(E , 〈〉) = E)∧
(execActsF(E , a ::A) = execActF(execActsF(E ,A), a))

If no action is activated, the new value of a variable x is set to a default value, which is
commonly referred to as reaction to absence. The function reactToAbsenseF(E , x,A)
checks for a given output variable x, whether there is a possibly enabled action inA for
x. If this is not the case, x is assigned its default value in environment E .

reactToAbsenseF_def �def

(reactToAbsenseF(E , x, 〈〉) = Edefault(x)
x)∧

(reactToAbsenseF(E , x, a ::A) =
if x = lhs(a) then E else reactToAbsenseF(E , x,A))

reactToAbsensesF_def �def

(reactToAbsensesF(E , 〈〉,A) = E)∧
(reactToAbsensesF(E , m ::V ,A) =

reactToAbsenseF(reactToAbsensesF(E ,V ,A), x,A)

Each step of the causality analysis consists in executing all must-actions and reacting to
absence for all variables that have no can-actions. Note that must-actions of the previous
iteration step are executed again in the next iteration. This must be done, since the
expression on the right-hand side might not have been known. So, its value can change
during the iterations.

cmAnalysisStep_def �def cmAnalysisStep(A,V , E) =
reactToAbsensesF(execActsF(E , mustActsE(A)),V , canActsE(A))

cmAnalysis_dfn �def cmAnalysis(A,V , E) =
let E ′ = cmAnalysisStep(A,V , E) in

if E = E ′ then E else cmAnalysis(A,V , E ′)
To prove the termination of the fixpoint iteration performed by the can-must analysis
cmAnalysis(A,V , E), we define a weight envWeight(E ,V) for an environment E with
output variablesV . The weight of a variable intuitively reflects the amount of knowledge
it stores, and the weight of an environment is just the sum of the weights of all output
variables. Since the set of output variables V is finite, it has the upper bound 2|V|.

weight4_def �def

(wt(⊥) = 0) ∧ (wt(0) = 1) ∧ (wt(1) = 1) ∧ (wt(�) = 2)
envWeight_def �def

(envWeight(E , 〈〉) = 0)∧
(envWeight(E , v ::V) = envWeight(E ,V) + wt(E(v)))

124 J. Brandt and K. Schneider

Since the termination is apparent for the case that no action is executed and the environ-
ment remains the same, it remains to prove that each call to cmAnalysisStep(A,V , E)
is monotonic in that it increases the weight of the environment. The proof basically
follows the argument that the executions of all actions and the reactions to absence are
monotonic. A variable with a Boolean value is never reset to ⊥, and a � is never re-
placed by any other value. The proof is done by induction on the variables, followed by
an induction on the actions. However, some more subtle preconditions are required for
a successful proof, which are due to the general assumptions of the theory:

– Since the list of variables V models rather a set than an actual list, all of its elements
must be distinct, so that the weight can be computed correctly.

– varsDefined(E ,V) assures that values for all output variables V can be found in
the environment E . Otherwise, their weights would be undefined. Alternatively, the
weight of undefined variables could be defined, which would not reflect the real
situation.

– The actions A must only modify the variables given by output variables V . Other-
wise, some updates would not affect the weight computation. Note that the set of
output variables cannot be determined from the set of actions, since there may be
some variables whose behaviour is only given by the reaction to absence.

– Finally, as already noted, the default value default(x) should be independent of
the current environment. Otherwise, the reaction to absence would be able to cause
additional dependencies.

varDefined_def �def varDefined(E , v) = v ∈ domain(E)
varsDefined_def �def

(varsDefined(E , 〈〉) = true)∧
(varsDefined(E , v :: V) = varDefined(E , v) ∧ varsDefined(E ,V))

actionValid_def �def actionValid(V , a) = lhs(a) ∈ V
actionsValid_def �def

(actionsValid(V , 〈〉) = true)∧
(actionsValid(V , a ::A) = actionValid(V , a) ∧ actionsValid(V ,A))

STEP_MONOTONE �
distinct(V)→ varsDefined(E ,V)→ actionsValid(V ,A)→
(∀E1 E2 x. ([[default(x)]]FE1

) = ([[default(x)]]FE2
))→

(envWeight(V , E) ≤ envWeight(V , cmAnalysisStep(A,V , E)))

This concludes the formalisation of the can-must analysis, which serves as a specifica-
tion for other algorithms for causality analysis.

3 Causality Analysis by Model Checking

In this section, we describe our symbolic approach to causality analysis, which is based
on a symbolic description of a transition system, so that the causality analysis can be
formulated as a model checking problem. In the following, we describe the transition
system, before we explain the actual verification task in Subsection 3.2.

Formal Reasoning About Causality Analysis 125

3.1 Modelling the Progress of Information

To encode the causality analysis as a model checking problem, we must create a tran-
sition system that explicitly models the progress of information and the occurrence of
write conflicts. Therefore, in addition to the variables in the program, we introduce for
every output variable x a Boolean-typed variable xkn that holds iff the value of x is
known. If this is the case, then the value of x is stored in the variable x, otherwise
the value of x is not yet known and we have to ignore its content. Similarly, a second
Boolean-typed variable xwc is added that holds iff a write conflict occurred for variable
x. If this bit is set, we can also ignore the content of the corresponding variable.

Using the variables xkn and xwc, we can explicitly model the progress of the infor-
mation flow, which is obtained by evaluating the program expression step by step until
either assignments can be executed that determine the current value of a variable or
until it becomes clear that no assignment will modify the current value of a variable so
that the reaction to absence will determine it.

As a first step, we define a function that maps a program expression σ to a Boolean
formula wc(σ) such that wc(σ) holds iff the expression σ cannot be evaluated due to a
write conflict. Basically, this is always the case if a subformula cannot be evaluated:

– For variables and constants, we define:

• wc(x) :=
{

false : if x is an input variable
xwc : otherwise

• wc(c) := false

– For the Boolean operators, we define:

• wc(not(ϕ)) := wc(ϕ)
• wc(and(ϕ, ψ)) := wc(ϕ) ∨ wc(ψ)
• wc(or(ϕ, ψ)) := wc(ϕ) ∨ wc(ψ)

Analogously, we formally define a function that maps a program expression σ to a
Boolean formula kn(σ) such that kn(σ) holds if and only if the expression σ can be
evaluated to a known value. The formula kn(σ) encodes the lazy evaluation rules of the
Boolean operators, which are shown in Figure 3.

– For variables and constants, we define:

• kn(x) :=
{

true : if x is an input variable
xkn : otherwise

• kn(c) := true

– For the Boolean operators, we define:

• kn(not(τ1)) := wc(τ1) ∨ kn(τ1)

x ∧ false = false false ∧ x = false
x ∨ true = true true ∨ x = true
false → x = true x → true = true

Fig. 3. Lazy Evaluation Rules

126 J. Brandt and K. Schneider

• kn(and(τ1, τ2)) := wc(τ1) ∨ wc(τ2) ∨ kn(τ1) ∧ kn(τ2) ∨
kn(τ1) ∧ (τ1 = true) ∨ kn(τ2) ∧ (τ2 = true)

• kn(or(τ1, τ2)) := wc(τ1) ∨ wc(τ2) ∨ kn(τ1) ∧ kn(τ2) ∨
kn(τ1) ∧ (τ1 = false) ∨ kn(τ2) ∧ (τ2 = false)

Clearly, in the actual behaviour of the program, we can only make use of an expression
if we know its value. For this reason, the entire execution of the actions is controlled
by the data flow: we start with unknown values for all output variables and try to deter-
mine their values with the micro steps that can occur in a macro step. The procedure is
repeated for each reaction.

For this reason, we introduce a clock signal tick, which is true whenever all variables
have become known values, and a new reaction may be started. If this happens, the sys-
tem state may change according to the control flow, and the input variables are allowed
to change their values in a non-deterministic way (which reflects the uncontrollable
input of the environment).

Propagation of Knowledge:

KnownTransx :≡

0
BB@next(xkn) :⇔

0
BB@

¬tick ∧ kn(x)∨
¬tick ∧

“Wp
j=1 kn(γj) ∧ γj ∧ kn(τj)

”
∨

¬tick ∧
“Vp

j=1 kn(γj) ∧ ¬γj

”
1
CCA
1
CCA

Propagation of Write Conflicts:

WCTransx :≡

0
BBBBBBB@

next(xwc) :⇔

0
BBBBBBB@

¬tick ∧ wc(x)∨
¬tick ∧ kn(x)∧“Wp

j=1 kn(γj) ∧ γj ∧ kn(τj) ∧ (x �= τj)
”

∨
¬tick ∧„Wp−1

j=1

Wp
k=j+1 kn(γj) ∧ γj ∧ kn(τj)∧

kn(γk) ∧ γk ∧ kn(τk) ∧ (τj �= τk)

«

1
CCCCCCCA

1
CCCCCCCA

Computation of Values:

ValTransx :≡

0
BBBBBB@

¬tick →

p^

j=1

¬kn(x) ∧ kn(γj) ∧ γj ∧ kn(τj) → next(x) = τj

!!
∧

¬tick →

kn(x) ∨ ¬

p_
j=1

kn(γj) ∧ γj ∧ kn(τj)

!
→ next(x) = x

!!
∧

(tick → (next(x) = default(x)))

1
CCCCCCA

Fig. 4. Causality Transition Relation of Variable x

Macro steps are therefore separated by occurrences of the tick signal, and between
two clock ticks, the micro steps of a macro step are executed: as long as tick is false,
the immediate assignments to the variables are executed if the values of the guards and
right hand side expressions are known, and the guard is true. We therefore distinguish
between the information flow and the data flow. The information flow of a variable x is
determined by the corresponding variables kn(x) = xkn and wc(x) = xwc.

The transition relation of the information flow can be formulated as an equation
system as shown in Figure 4 that contains the following cases for xkn:

Formal Reasoning About Causality Analysis 127

– If there is no clock tick, the value of x remains known if it was already known.
– If there is no clock tick, the value of x becomes known if a guarded action (γj ,x=τj)

with an assignment x=τj can be fired. This is the case if and only if the value of the
guard γj is known to be true and if the value of the right hand side expression τj is
known.

– If there is no clock tick, and all guards γj are known to be false, the reaction to
absence determines the value of x: the formula of Figure 4 simply demands that
next(x)=x has to hold in this case, since x has been given the now desired value at
the first step of the reaction as a preliminary value.

– Otherwise, the value of x is not known.

Write conflicts are propagated according to the following rules:

– If there is no clock tick, a write conflict for x persists.
– If there is no clock tick, a write conflict occurs, if a guarded action (γj ,x=τj) is

activated that assigns a different value to an already known variable.
– If there is no clock tick, a write conflict occurs, if there are two guarded actions that

are activated and assign different values to the same variable.

The data flow of x is determined by the same cases as formalised in formula ValTransx
given in Figure 4:

– If there is no clock tick and a guarded action (γj ,x=τj) with an assignment x=τj

can be fired, then x will receive the value of τj at the next point of time.
– If there is no clock tick and no guarded action can be fired, then x will keep its value.

This covers two cases: first, if the reaction-to-absence should take place, since all
guards γj are known to be false, then keeping the value of x is correct, since we
already provided the desired value for x at the previous clock tick. Second, if a
write conflict occurs, the value of x is irrelevant.

– If there is a clock tick, then the values of all variables are known, and therefore, we
can execute all enabled delayed actions. If one of the delayed actions can be fired,
then the value of x is known for the following macro step. Note again that there is
no transition if several delayed guarded actions with different values πi and πj are
fired.

– Finally, if there is a clock tick, x is initialised to its default value default(x).

The formulas given in Figure 4 describe the transition relation of a particular variable
x. The complete transition relation is therefore the conjunction of the partial transition
relations of all output variables. In addition to this, we also have to determine, when the
causality analysis terminates. This is accomplished by the clock signal, which is defined
as follows:

ClockTrans :≡
(

tick :⇔
∧
x

kn(x) ∧ ¬wc(x)

)

The new clock tick can arrive as soon as all values of the local and output variables
become known. New input variables can then be read for the next reaction.

128 J. Brandt and K. Schneider

3.2 Model Checking Tasks

It is easily seen that the micro step behaviour as formalised in the previous subsection
describes the semantics of an asynchronous circuit. Obviously, a program is causally
correct, if the values of all variables can be determined for all possible inputs. Due to the
definition of ClockTrans, the states in which all variables are known can be identified
by the tick variable, which also marks the beginning of a new reaction. Hence, a single
reaction is modelled by a finite chain of transitions in this model leading from one state
where tick holds to another state where tick holds. Causally incorrect transitions (which
do not exist in the macro step model), are chains that do no lead to a valid new state, i.e.
tick does not appear after the initial step. Such execution sequences end in a self-loop
of a state without a tick. Thus, any system that is guaranteed to hit a clock state after
the initialisation, is causally correct. This property can be simply denoted by XF tick
in linear time temporal logic and can be checked by any state-of-the-art model checker
that supports linear time logic (LTL).

4 Formalisation of Alternative Analysis

Traditional causality analysis differs from our symbolic procedure in two aspects: first,
the data is represented in a different way. Instead of four-valued truth values, the sym-
bolic formulation is based on the original data types plus two additional status bits (to
allow the use of state-of-the-art model checkers). Second, the transition relation has a
denotational style, while traditional causality analysis describes the fixpoint computa-
tion operationally. Our formalisation and the equivalence proof of the equivalence are
therefore divided into two parts. The next two sections first link both data representa-
tions, while Section4.3 bridges the second gap.

4.1 Two-Valued Environment

Similar to the definitions of the four-valued environment, we hide the functions to read
and store values in the environment behind the notations E(x) and Ev

x , respectively.
Analogously, the additional status bits for knowledge and write conflicts can be ac-
cessed by E(xkn), Ev

xkn , E(xwc) and Ev
xwc , respectively.

The fundamental definition to link both variants of causality analysis, which is the
basis for the equivalence proof, is given by envEqual(E1, E2). This relation takes two
environments, a four-valued one and a two-valued one and defines whether they are
equivalent or not. For this task, it makes a case distinction on the four possible truth
values of the can-must analysis:

– If a four-valued variable is ⊥, the two-valued counterpart should be marked as not
known and without write conflicts.

– If the value of variable is 0 (or 1), it should be marked as known with no write
conflict and its value is set to 0 (or 1, respectively).

– If the value of the variable is�, it should be marked as known with a write conflict.
– The remaining case for the two-valued environment, i. e. a variable is not known

and has a write conflict, is forbidden.

Formal Reasoning About Causality Analysis 129

The following definition respects these considerations:

envEqual_def �def envEqual(E1, E2) =
(∀x.(E1(x) = ⊥) = ¬E2(xkn) ∧ ¬E2(xwc))∧
(∀x.(E1(x) = 0) = E2(xkn) ∧ ¬E2(xwc) ∧ (E2(x) = 0))∧
(∀x.(E1(x) = 1) = E2(xkn) ∧ ¬E2(xwc) ∧ (E2(x) = 1))∧
(∀x.(E1(x) = �) = E2(xkn) ∧ E2(xwc))∧

(∀x. false = ¬E2(xkn) ∧ E2(xwc)

On this basis, the evaluation [[e]]E of the Boolean expressions is defined:

blEval_def �def

([[false]]E = false) ∧ ([[true]]E = true)∧
([[x]]E = E(x))∧
([[not(τ)]]E = ¬[[τ]]E)∧
([[and(τ1, τ2)]]E = [[τ1]]E ∧ [[τ2]]E)∧
([[or(τ1, τ2)]]E = [[τ1]]E ∨ [[τ2]]E)

The definition for the write conflict status needs some considerations. Following the
approach of the previous section, its determination should be strict. If a write conflict
occurs in any subterm, it is propagated. This models the fact that a model that contains
inconsistent variables is completely inconsistent.

blWriteConflict_def �def

(wcE(false) = false) ∧ (wcE(true) = false)∧
(wcE(x) = E(xwc))∧
(wcE(not(τ)) = wcE(τ))∧
(wcE(and(τ1, τ2)) = wcE(τ1) ∨ wcE(τ2))∧
(wcE(or(τ1, τ2)) = wcE(τ1) ∨ wcE(τ2))

In contrast to this, the known status makes use of lazy evaluation.

blKnown_def �def

(knE(false) = true) ∧ (knE(true) = true)∧
(knE(x) = E(xkn))∧
(knE(not(τ)) = wcE(τ) ∨ knE(τ))∧
(knE(and(τ1, τ2)) =

wcE(τ1) ∨ wcE(τ2) ∨ (knE(τ1) ∧ knE(τ2))∨
(knE(τ1) ∧ ([[τ1]]E = false)) ∨ (knE(τ2) ∧ ([[τ1]]E = false)))∧

(knE(or(τ1, τ2)) =
wcE(τ1) ∨ wcE(τ2) ∨ (knE(τ1) ∧ knE(τ2))∨
(knE(τ1) ∧ ([[τ1]]E = true)) ∨ (knE(τ2) ∧ ([[τ1]]E = true)))

The first proof obligation is that the previous definitions comply with the four-valued
ones. This corresponds to a lifting of the environments for the variables to the expres-
sions, i. e. : provided that variables in the current environments are considered equal,
all expressions can be considered to be equal, too. This goal can be proved with the
calculation rules for the four-valued operations, the given definitions and a first-order
tactic automatically, after initiating an induction on the structure of the expressions.

130 J. Brandt and K. Schneider

EXPR_EQUAL � envEqual(E1, E2)→
(([[τ]]FE1

= ⊥) = ¬knE2(τ) ∧ ¬wcE2(τ))∧
(([[τ]]FE1

= 0) = knE2(τ) ∧ ¬wcE2(τ) ∧ ([[τ1]]E2 = false))∧
(([[τ]]FE1

= 1) = knE2(τ) ∧ ¬wcE2(τ) ∧ ([[τ1]]E2 = true))∧
(([[τ]]FE1

= �) = knE2(τ) ∧ wcE2(τ))∧
(¬(¬knE2(τ) ∧ wcE2(τ)))

This proof is done by structural induction on expressions. Surprisingly, it revealed some
glitches in the definitions in former versions of knE(τ), which did not respect some
write conflicts.

4.2 Execution of Actions

The next step to define the execution of actions and to prove is that both variants perform
exactly the same steps, each one in its representation. Provided that the environments
have been equivalent before the execution of an action, they must be equivalent after
the execution. This is assured by the following definitions and theorems:

executeGuardedAction4_def �def executeGuardedActionF(a, E) =
if must([[grd(a)]]EF

) then execActF(EF, a) else EF

actionExecutable_def �def actionExecutable(E , a) =
knE(grd(a)) ∧ ([[grd(a)]]E = true) ∧ knE(rhs(a))

actionConflictFree_def �def actionConflictFree(E , a) =
¬knE(lhs(a)) ∨ ([[lhs(a)]]E = [[rhs(a)]]E)

executeGuardedAction_def �def executeGuardedAction(a, E) =
if actionExecutable(E , a) then

(if actionConflictFree(E , a) then execActF(E , a) else E1
awc)1akn

else E
ACTION_EQUAL � envEqual(E1, E2)→

envEqual(executeGuardedActionF(a, E1), executeGuardedAction(a, E2))

The proof of the last theorem basically makes a case distinction on the following situations
given by the value and status of the expressions occurring in a guarded action a:

– The guard grd(a) is not known or it is false. In both cases, the value of the left-hand
side is not changed by the execution of the guarded action, since the else branches
in both representations are taken.

– The guard grd(a) is known and not false, and the right-hand side expression rhs(a)
is unknown. The value of the left-hand side is not changed in both environment, due
to the following reasons. In the environment E , the whole action a is not executed.
In the environment EF, the action is executed, in principle. However, it does not
have any effect, since the maximum of the old value and the value of the unknown
right-hand side (which is ⊥ by assumption) is always the old value.

– The guard of the guarded action is known and not false. The right-hand side expres-
sion is known. The environment is updated, where the update depends whether a
write conflict is caused or not. If this is not the case, the value of the left-hand side
is updated and set to be known. Otherwise, its write conflict status is set in both
representations.

Formal Reasoning About Causality Analysis 131

actionActive_def def

activeE(a) = knE(grd(a)) ∧ [[grd(a)]]E ∧ knE(rhs(a))
someActionActive_def def

(someActiveE(〈〉) = false) ∧
(someActiveE(a ::A) = activeE(a) ∨ someActiveE(A))

allActionsInactive_def def

(allInactiveE(〈〉) = true) ∧
(allInactiveE(a ::A) = ¬activeE(a) ∧ allInactiveE(A))

conflictingActionActive_def def

conflActiveE(a) = activeE(a) ∧ knE(lhs(a)) ∧ ([[lhs(a)]]E �= [[rhs(a)]]E)
conflictingActionsActive_def def

(conflsActiveE(〈〉) = false) ∧
(conflsActiveE(a ::A) = conflActiveE(a) ∨ conflsActiveE(A))

inconsistentActionActive_def def

(inconActiveE(a0, 〈〉) = false)
(inconActiveE(a0, a1 ::A) = inconActiveE(a0, A)∨

activeE(a0) ∧ activeE(a1) ∧ ([[rhs(a0)]]E �= [[rhs(a1)]]E))
inconsistentActionsActive_def def

(inconsActiveE(〈〉) = false)
(inconsActiveE(a ::A) = inconActiveE(a,A) ∨ inconsActiveE(A))

trWCVar_def def trWCVar(A, v, E ,E ′) =
(wcE′(v) = wcE(v) ∨ conflActiveE(Av) ∨ inconsActiveE(Av)

trWC_def def trWC(A, V, E ,E ′) =
�

v∈V trWCVar(A, v, E ,E ′)

trKnVar_def def trKnVar(A, v, E , E ′) =
(knE′(v) = knE(v) ∨ someActiveE(Av) ∨ allInactiveE(Av))

trKn_def def trKn(A, V, E ,E ′) =
�

v∈V trKnVar(A, v, E ,E ′))

trValAct_def def trValAct(a, v, E ,E ′) =
¬knE(v) ∧ activeE(a) → ([[v]]E′ = [[rhs(a)]]E)

trValActs_def def

(trValActs(〈〉, v, E , E ′) = true) ∧
(trValActs(a ::A, v, E , E ′) = trValActs(a, v, E ,E ′) ∧ trValAct(A, v, E ,E ′))

trValVar_def def trValVar(A, v, E ,E ′) =
trValActs(Av, v, E ,E ′) ∧ (knE(v) ∨ allInactiveE(Av) → ([[v]]E = [[v]]E′))

trVal_def def trVal(A, V, E ,E ′) =
�

v∈V trValVar(A, v, E ,E ′)

trAnalysisStep_def def

trAnalysisStep(A, V, E ,E ′) =
trKn(A, V, E ,E ′) ∧ trWC(A, V, E , E ′) ∧ trVal(A, V, E ,E ′)

Fig. 5. Formalisation of the Transition Relation

4.3 Transition Relation

A last step to link both variants of causality analysis remains, the description style: the
previous paragraph still formalises the analysis operationally, it describes how to move
from one state to another. In contrast, the transition relation of the model-checking

132 J. Brandt and K. Schneider

analysis has a different, rather denotational view. It describes the possible transitions
and makes it possible that no behaviours or multiple behaviours exist (instead of a
single one defined by the operational description). Hence, we have to prove that the
transition relation exactly describes the steps that would be executed by an iteration in
the operational description of the previous sections.

The complete formalisation of the transition relation is given in Figure 5. We closely
follow the definitions for a single variable given in Section 3, but use some auxiliary
definitions to keep the formalisation traceable and readable. Furthermore, we do not
integrate the tick signal in our formalisation, but replace it by an initialisation of the
output variables.

The following two theorems are the final step of our equivalence proof, which shows
that a step in the transition relation corresponds to a step in the can-must analysis.

TRANSREL_CORRECTNESS �
envEqual(E1, E2)→ envEqual(E ′1, E ′2)→
(E ′1 = cmAnalysisStep(A,V , E1))→ trAnalysisStep(A,V , E2, E ′2)

TRANSREL_COMPLETENESS �
envEqual(E1, E2)→ envEqual(E ′1, E ′2)→
trAnalysisStep(A,V , E2, E ′2)→ (E ′1 = cmAnalysisStep(A,V , E1))

Critical points are the variables that are updated multiple times in the course of a step,
e. g. write conflicts are typical examples for this. There, we must abstract from the in-
termediate environments, which come from the sequential execution of actions within a
single iteration in the traditional can-must analysis. The equivalence proof uses the fact
that they can be reordered, i. e. the execution of actions has the Church-Rosser property.
Hence, a cumulated action with the same effect can be defined, which is subsequently
shown to be equivalent with the transition relation.

5 Conclusions

In this paper, we have presented a new symbolic causality analysis based on model
checking, which supports arbitrary data types and run-time error checking. With the
help of the HOL4 theorem prover, we formalised our new approach as well as the tra-
ditional can-must analysis and showed their equivalence. Thus, we gained a formally
verified symbolic causality analysis, which can be used in particular by compilers of
synchronous languages.

References

1. Andersen, F.: A Theorem Prover for UNITY in Higher Order Logic. PhD thesis, Horsholm,
Denmark (March 1992)

2. Andersen, F., Petersen, K.D., Petterson, J.S.: Program verification using HOL-UNITY. In:
Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 1–15. Springer, Heidelberg
(1994)

3. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone, R.: The
synchronous languages twelve years later. Proceedings of the IEEE 91(1), 64–83 (2003)

Formal Reasoning About Causality Analysis 133

4. Berry, G.: The constructive semantics of pure Esterel (July 1999),
http://www-sop.inria.fr/esterel.org/

5. Brzozowski, J.A., Seger, C.-J.: Asynchronous Circuits. Springer, Heidelberg (1995)
6. Chandy, K.M., Misra, J.: Parallel Program Design, May 1989. Addison Wesley, Austin, Texas

(1989)
7. Collins, G., Syme, D.: A theory of finite maps. In: Schubert, E.T., Alves-Foss, J., Windley, P.

(eds.) HUG 1995. LNCS, vol. 971, pp. 122–137. Springer, Heidelberg (1995)
8. Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple concurrency

models. IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems 18(6), 742–760 (1999)

9. Huffman, D.: Combinational circuits with feedback. In: Mukhopadhyay, A. (ed.) Recent De-
velopments in Switching Theory, pp. 27–55. Academic Press, London (1971)

10. Jantsch, A.: Modeling Embedded Systems and SoCs. Morgan Kaufmann, San Francisco
(2004)

11. Kautz, W.: The necessity of closed circuit loops in minimal combinational circuits. IEEE
Transactions on Computers C-19(2), 162–166 (1970)

12. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17(12),
1217–1229 (1998)

13. Malik, S.: Analysis of cycle combinational circuits. IEEE Transactions on Computer Aided
Design 13(7), 950–956 (1994)

14. Riedel, M.: Cyclic Combinational Circuits. PhD thesis, California Institute of Technology,
Passadena, California (2004)

15. Riedel, M.D., Bruck, J.: Cyclic combinational circuits: Analysis for synthesis. In: Interna-
tional Workshop on Logic and Synthesis (IWLS), Laguna Beach, California (2003)

16. Riedel, M.D., Bruck, J.: The synthesis of cyclic combinational circuits. In: Design Automa-
tion Conference (DAC), Anaheim, California, USA, pp. 163–168. ACM Press, New York
(2003)

17. Rivest, R.: The necessity of feedback in minimal monotone combinational circuits. IEEE
Transactions on Computers C-26(6), 606–607 (1977)

18. Schneider, K.: The synchronous programming language Quartz. Internal Report, Department
of Computer Science, University of Kaiserslautern (to appear, 2008)

19. Schneider, K., Brandt, J., Schuele, T.: Causality analysis of synchronous programs with de-
layed actions. In: Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pp. 179–189. ACM Press, New York (2004)

20. Schneider, K., Brandt, J., Schuele, T., Tuerk, T.: Improving constructiveness in code gen-
erators. In: Synchronous Languages, Applications, and Programming (SLAP), Edinburgh,
United Kingdom (2005)

21. Schneider, K., Brandt, J., Schuele, T., Tuerk, T.: Maximal causality analysis. In: Application
of Concurrency to System Design (ACSD), St. Malo, France, pp. 106–115. IEEE Computer
Society, Los Alamitos (2005)

22. Shiple, T.R., Berry, G., Touati, H.: Constructive analysis of cyclic circuits. In: European De-
sign and Test Conference (EDTC), Paris, France. IEEE Computer Society Press, Los Alami-
tos (1996)

http://www-sop.inria.fr/esterel.org/

Imperative Functional Programming with Isabelle/HOL

Lukas Bulwahn1, Alexander Krauss1, Florian Haftmann1,�,
Levent Erkök2, and John Matthews2

1 Technische Universität München,
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

2 Galois Inc., Beaverton, OR 97005, USA

Abstract. We introduce a lightweight approach for reasoning about programs
involving imperative data structures using the proof assistant Isabelle/HOL. It
is based on shallow embedding of programs, a polymorphic heap model using
enumeration encodings and type classes, and a state-exception monad similar
to known counterparts from Haskell. Existing proof automation tools are eas-
ily adapted to provide a verification environment. The framework immediately
allows for correct code generation to ML and Haskell. Two case studies demon-
strate our approach: An array-based checker for resolution proofs, and a more
efficient bytecode verifier.

1 Introduction

A very common way of verifying programs in a HOL theorem prover is to use a shal-
low embedding and express the program as a set of recursive functions. Properties of
the program can then be proved by induction. Despite some well-known limitations,
shallow embeddings are widely used for verification. This success is due in part to
the simplicity of the approach: A full-blown formal model of the operational or denota-
tional semantics of the language is not required, and many technical difficulties (e.g. the
representation of binders) are avoided altogether. Furthermore, the proof methods used
are just standard induction principles and equational reasoning, and no specialized pro-
gram logic is necessary. The specifactions may be turned into executable code directly
by means of code generation.

Until recently, this approach has been used primarily for purely functional programs.
As the notion of side-effect is alien to the world of HOL functions, programs with im-
perative updates of references or arrays cannot be expressed directly. However, there are
many examples where for efficiency’s sake imperative data structures are unavoidable
to obtain practically usable executable programs.

We aim to permit Haskell’s imperative specification style in Isabelle/HOL [11],
where local state references and mutable arrays can be dynamically allocated with-
out having to add their types to the enclosing function’s type signature [6]. From such
specifications we then generate efficient imperative functional code. Currently we need
to restrict the contents of references and mutable arrays to first order values, but this is
still sufficient for many applications.

� Supported by DFG project NI 491/10-1.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 134–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Imperative Functional Programming with Isabelle/HOL 135

Accordingly, the contributions of this paper are:

1. A purely definitional polymorphic heap allowing to encode dynamic allocation of
polymorphic first-order references and mutable arrays (§2).

2. A Haskell-style heap monad encapsulating the primitive heap operations and sup-
porting abnormal termination through exceptions (§3); an adaption for Isabelle’s
code generator allows to generate monadic Haskell and imperative ML1 code (§4).

3. A set of proof rules that allows to reason about such monadic programs (§5).
4. Two case studies (§6): an imperative MiniSat proof replay oracle and an imperative

Jinja bytecode verifier.

1.1 Related Work

Since the seminal paper by Peyton Jones and Wadler [13], the use of monads to in-
corporate effects in purely functional programs is standard. However, up to now, no
practically usable verification framework for such monadic programs exists.

For imperative programs, there are such tools: The Why/Krakatoa/Caduceus
toolset [3] works by translating the source language into an intermediate language and
using a verification condition generator to generate proof obligations. Schirmer [14]
proposes a similar method, which is closely integrated with Isabelle/HOL, and whose
metatheory is formally verified. These approaches rely on Hoare logic and a verification
condition generator. The actual reasoning then happens on the generated verification
conditions and is often outsourced to automatic provers. The user must provide enough
annotations in the source code that the verification conditions can be solved by the au-
tomated prover. In our approach, reasoning happens on the source code level, which
we find better suited for interactive use. Proof principles are similar to those used for
purely functional programs, i.e. induction and equational reasoning.

Probably closest to our work is the concept of single-threaded objects [1] in the
ACL2 prover. By declaring an object as single-threaded (and obeying rigorous syntactic
restrictions), one instructs the prover to replace non-destructive updates by destructive
ones. The rules ensure that referential transparency is not violated, and thus the code
can be treated as purely functional in the reasoning phase. Our approach is similar in
the sense that our heap can be seen as a single-threaded object. However, we allow the
dynamic allocation of arrays and references, whereas in ACL2 imperative fields must
be statically declared in a single record.

Imperative language features have previously been embedded in higher order logic
via a state monad [8, 15]. As long as the monad primitives do not duplicate the state,
the resulting programs are single threaded and can be safely transformed to monadic
Haskell or imperative ML code. However, just like single-threaded objects, the state
monad approach requires the state record be statically declared as part of the monad
type itself, either fixed or as an explicit type parameter. This makes it difficult to write
specifications that dynamically allocate new references or mutable arrays, or to com-
pose monadic specifications that work over different state types.

Our heap model has some similarities to the one used by Tuch, Klein, and Nor-
rish [16], especially concerning the use of type classes and phantom types to manage

1 In its two flavors SML and OCaml.

136 L. Bulwahn et al.

encodings. On the other hand, our model is slightly more abstract, since we are only
dealing with functional languages instead of low level C code.

Nanevski et al. [10] describe how Hoare logic can be integrated in dependent type
theory, yielding Hoare Type Theory, with a sophisticated type system and program
logic. However, it seems that this requires significant modifications to the theorem
prover in order to support such a system. In contrast, our approach was developed on
top of standard Isabelle/HOL.

1.2 A Trivial Example: Array Reversal

To illustrate imperative functional programming in monadic HOL, we define two simple
functions, one for swapping two elements in an array, and one for reversing an array:

swap :: (α::hrep) array⇒ nat⇒ nat⇒ unit Heap
swap a i j = do x← a[i];

y← a[j];
a[i] := y;
a[j] := x;
return ()

rev :: (α::hrep) array⇒ nat⇒ nat⇒ unit Heap
rev a i j = (if i < j then do swap a i j;

rev a (i + 1) (j − 1)
else return ())

This idiom is well-known from Haskell: Manipulations of imperative arrays are monadic
actions (of type α Heap), and they can be composed into more complex actions using the
sequencing operation provided by the monad. Other language constructs (conditionals,
recursion, data types) are taken from the functional part of the language.

Let us prove a lemma that describes the behavior of swap:

(h, h ′, r) ∈ [[swap a i j]] =⇒
get-array a h ′ ! k =
(if k = i then get-array a h ! j
else if k = j then get-array a h ! i else get-array a h ! k)

The notation [[c]] stands for the big-step semantics of a command c, which is a ternary
relation: (h, h ′, r) ∈ [[c]] holds iff the computation c started on heap h does not generate
an exception and yields the result r and the updated heap h ′. The lemma expresses how
the entries of the updated array are related to original entries. The function get-array
returns the contents of an array on a given heap as a list, and infix ! denotes list indexing.

The lemma is proved by unfolding the call to swap and applying standard rules for
the semantics of the monad operations and the basic commands, which can easily be
automated using existing Isabelle technology. Now let us turn to the reversal function:

(h, h ′, r) ∈ [[rev a i j]] =⇒
get-array a h ′ ! k =
(if k < i then get-array a h ! k
else if j < k then get-array a h ! k else get-array a h ! (j − (k − i)))

Imperative Functional Programming with Isabelle/HOL 137

Since rev is defined recursively, we proceed by induction. The proof is as one would
expect: In the step case, we distinguish the cases k < i, k = i, i < k < j, k = j and j < k,
and apply the induction hypothesis and the lemma about swap.

1.3 Dynamic Allocation: Linked Lists

The ability to explicitly allocate memory is another fundamental technique in impera-
tive programming. To illustrate how this idiom can be coded in HOL, we will show how
to build and traverse a dynamically allocated linked list.

Linked lists are represented by a recursive datatype, where the tail of the list is a
mutable reference.

datatype α node = Empty | Node α (α node ref)

To convert a HOL list of elements to a linked list, we simply recurse over each tail,
allocating the nodes as we go along by calling the ref function:

make-llist :: (α::hrep) list⇒ α node Heap
make-llist [] = return Empty
make-llist (x·xs) = do tl← make-llist xs;

next← ref tl;
return (Node x next)

In the other direction, we can traverse a linked list as follows:

traverse :: (α::hrep) node⇒ α list Heap
traverse Empty = return []
traverse (Node x r) = do tl← !r;

xs← traverse tl;
return (x·xs)

Note that the definitions of make-llist and traverse operationally mimic their equivalents
in Haskell using the state monad, or in ML using imperative features.2

For reference, here is the traverse function as rendered by the code generator of our
framework in ML:3

datatype ’a node = Node of ’a * ’a node ref | Empty;

fun traverse A_ (Node (x, r)) =
(fn a as () =>
let

val tl = (fn () => ! r) ();
val xs = traverse A_ tl ();

in
x :: xs

end)
| traverse A_ Empty = (fn () => []);

2 Technical details on the definition of traverse can be found in §7.3.
3 The A argument denotes the dictionary, which is not used in this particular example. See [4].

138 L. Bulwahn et al.

2 Modeling a Polymorphic Heap

In the following two sections we present our definitional model of a typed heap and
the monad we are using. We present the theory in a bottom-up manner, and explain the
most important design decisions.

Essentially, our heap will be a mapping h :: N ⇒ Val from addresses to values.
However, since values can generally have arbitrary types, this is difficult to model in a
simply typed language. Since there is no HOL type that can contain all types, we are
facing the problem what type to choose for Val.

This problem could be solved using dependent types, but we want to stay in the
simply typed framework, so we make a draconian restriction: We decide that functions
cannot be stored on the heap, and use the natural numbers as value type, in which all
first-order data objects will be encoded. We’ll use phantom types (§2.2) to safely omit
these encodings from the generated code.

Obviously this restrictive design decision excludes a fair number of relevant pro-
grams. But even then our model allows for interesting applications. Possibilities for
lifting this restriction are discussed in §7.2.

2.1 Representable Types

Using encodings to circumvent restrictions in the type system seems very awkward at
first, but we can make this transparent to the user by defining an axiomatic type class
countable, with an axiom stating that the type can be encoded into the natural numbers:

axclass countable⊆ type
∃ (enc :: α⇒ nat). inj enc

Obviously, basic types like nat, int and all finite types are countable, and the well-known
constructions can be used to show that if α and β are countable then so are α× β and α
list. In fact, such instance proofs are straightforward for first-order recursive data types
and could be automated. The overloaded encoding and decoding functions are called
to-nat and from-nat:

to-nat :: (α::countable)⇒ nat
from-nat :: nat⇒ (α::countable)

2.2 Typed References

References are just addresses, i.e. natural numbers

datatype α ref = Ref nat

with the projection addr-of (Ref n) = n. Here, unlike above, the type system is again
a useful tool instead of just a handicap: The phantom type α, which does not occur on
the right hand side of the definition, allows us to view references as typed objects as we
know them from ML, although the underlying representation is untyped.

Imperative Functional Programming with Isabelle/HOL 139

Reference Equality. We will certainly need to reason about reference (in)equality. For
example, we would expect the following simplification rule to hold, where r and s are
references and h is a heap:

r �= s =⇒ get-ref r (set-ref s x h) = get-ref r h

Indeed, when we write down and prove this lemma, everything seems to work. Only if
we look at the inferred types, there is an unpleasant surprise: Because of the equality in
the premise, the references r and s have the same type, and we have thus only proved a
special case. Of course we want to perform the same simplification if we have references
of different types, and ideally, we want the condition r �= s to be immediate, when the
references have different types.

The solution is to define a heterogeneous inequality relation for references, which
just strips away the phantom type and compares the bare addresses:

r � s↔ (addr-of r �= addr-of s) 4

If r and s have the same type, the relation � coincides with �=.

2.3 Type Reflection

Comparing references of different types is a little artificial. In a typed language, aliasing
between e.g. an integer and a boolean reference is not possible, and the above rewrite
rule should be applicable unconditionally. Our model will be built in such a way that
we can automatically derive r � s, whenever r and s have different types:

We define a type typerep and a type class typeable to reflect the syntax of (monomor-
phic) types back into the language of terms:

datatype typerep = Typerep string (typerep list)

class typeable = type +
fixes typerep :: α itself ⇒ typerep

The predefined type α itself comes with a singleton term written TYPE(α) which is
used to embed types into terms. We write RTYPE(α) for typerep (TYPE(α)). The over-
loaded function typerep constructs a concrete syntactic representation of a type name.
Its definition for concrete types is completely schematic (and easily automated):

RTYPE(nat) = Typerep ′′nat ′′ []
RTYPE(bool) = Typerep ′′bool ′′ []
RTYPE(α list) = Typerep ′′list ′′ [RTYPE(α)]

The result of this exercise (which is also common in the Haskell world) is that we can now
compare types for equality explicitly. For example: RTYPE(nat) �= RTYPE(bool) and
RTYPE(char list) = RTYPE(string) are theorems5, however RTYPE(α) �= RTYPE(β) is
not, since α and β could later be instantiated to the same type.

Now we can refine the definition of reference inequality as follows:

(r :: α ref) � (s :: β ref)↔ RTYPE(α) �= RTYPE(β) ∨ addr-of r �= addr-of s

4 The ↔ denotes equality of bool values.
5 Note that in Isabelle, string just abbreviates char list on the surface syntax level.

140 L. Bulwahn et al.

From this immediately follows that references of different types are always unequal.
Hence, aliasing proof obligations like r � s can be solved automatically, if r and s are
of different types.

2.4 The Heap

The heap is modelled as a mapping from type representations and addresses to nat-
encoded values. We use two separate mappings for references and arrays (which are
mapped to lists of encoded values). Additionally, we use a counter which bounds the
currently used address space. It is incremented when new references are created.

record heap =
refs :: typerep⇒ addr⇒ nat
arrays :: typerep⇒ addr⇒ nat list
lim :: addr

We can now define the basic heap operations, such as allocation, reading and writing
of references. Note how the embeddings and projections are used here to convert the
stored values into their respective encodings and back6:

get-ref :: (α::hrep) ref ⇒ heap⇒ α
get-ref (Ref r) (h(|refs := f |)) = from-nat (f RTYPE(α) r)

set-ref :: (α::hrep) ref ⇒ α⇒ heap⇒ heap
set-ref (Ref r) x (h(|refs := f |)) =
h(|refs := f (RTYPE(α) := (f RTYPE(α))(r := to-nat x))|)

new-ref :: heap⇒ (α::hrep) ref × heap
new-ref (h(|lim := l|)) = (Ref l, h(|lim := Suc l|))

Operations for arrays are analogous. From these definitions, we can now easily prove
the expected lemmas, expressing the interaction of the operations, e.g.:

get-ref r (set-ref r x h) = x
r � s =⇒ get-ref r (set-ref s x h) = get-ref r h

Since arrays and references occupy different heap areas, the corresponding heap opera-
tions always commute:

get-array a (set-ref r x h) = get-array a h
get-ref r (set-array a xs h) = get-ref r h

3 The Heap Monad

We now define a monad which characterizes computations affecting the heap. An imper-
ative program with return type α will be logically represented as a value of type α Heap.

6 The hrep type class just intersects the classes countable and typeable; also note that the h(|. . .
:= . . . |) syntax denotes component assignment on records and may also be used for pattern
matching.

Imperative Functional Programming with Isabelle/HOL 141

Essentially, our monad is a state-exception monad, where the state is the heap from the
previous section:

datatype α Heap = Heap (heap⇒ (α + exception) × heap)
heap f = Heap (λh. let (x, h ′) = f h in (Inl x, h ′))
execute (Heap f) = f

Exceptions are essentially strings generated by error :: string⇒ exception and are not
caught inside the monad; they are a mere device to introduce a notion of abnormal
termination. The monad operations return, (�=) and raise are defined as expected:

return x = heap (λh. (x, h))
f �= g = Heap

(λh. case execute f h of (Inl x, h ′)⇒ execute (g x) h ′

| (Inr e, h ′)⇒ (Inr e, h ′))
raise s = Heap (λh. (Inr (error s), h))

Isabelle’s syntax facilities allow for Haskell-style do-notation. Lifting the heap opera-
tions into the monad is straightforward:

ref x = heap (λh. let (r, h ′) = new-ref h in (r, set-ref r x h ′))
!r = heap (λh. (get-ref r h, h))
r := x = heap (λh. ((), set-ref r x h))

array n x = heap (λh. let (a, h ′) = new-array h in (a, set-array a (replicate n x) h ′))
length a = heap (λh. (|get-array a h|, h))
a[i] = do len ← length a;

(if i < len then heap (λh. (get-array a h ! i, h))
else raise ′′array lookup: index out of range ′′)

a[i] := x = do len ← length a;
(if i < len then heap (λh. (a, set-array a (get-array a h[i := x]) h))
else raise ′′array update: index out of range ′′)

These are the necessary foundations to write stateful programs like in §1.2.

4 Execution

When we consider some parts of HOL as the shallow embedding of a programming
language, then the inverse of that embedding is called code generation. Isabelle’s code
generator [4] can produce SML, OCaml and Haskell code from executable HOL speci-
fications. In a first approximation, the executable fragment of HOL consists of datatype
and function definitions, which are simply translated to their counterparts. This guaran-
tees partial correctness: if 〈s〉 denotes the generated code from term s, then each abstract
evaluation step from 〈s〉 to some t ′ in the target language corresponds to an equational
rewrite step s = t in HOL, such that 〈t〉 = t ′ (cf. Fig. 1(a)).

142 L. Bulwahn et al.

s 〈s〉

〈t〉= t ′t

code gen.�

code gen.
�

�

equational
rewriting

�
evaluation

(a) Partial correctness

HOL ML Haskell
α Heap unit ⇒ α ST ξ α
t �= (λx. f) λ(). let x = t () in f () end t �= (λx. f)
return t λ(). t return t
α ref α ref STRef ξ α
ref x λ(). ref x newSTRef x
!r λ(). !r readSTRef r
r := t λ(). r := x writeSTRef r x
α array α array STArray ξ Integer α
array n x λ(). Array.array (n, x) newArray (0, n) x
a[i] λ(). Array.sub (a, i) readArray a i
a[i] := x λ(). Array.update (a, i, x) writeArray a i x
length a λ(). Array.length a liftM snd (getBounds a)

raise s λ(). raise Fail s error s

(b) Translating monadic constructs to ML and Haskell

Fig. 1. Code generation

The reference and array operations are mapped to the target language as given in
Fig. 1(b). Since ML expressions may already contain side effects, the monad vanishes
and is just replaced by a unit abstraction to ensure the correct evaluation order.

For Haskell we use the built-in ST state monad, together with the corresponding
STRef and STArray types. Recall that our HOL programs only raise exceptions but
never handle them – instead of dealing with them inside the monad, we treat them as
partiality, using the error primitive.

Note that the extended executable fragment of HOL does not include the construc-
tions that were used to define the heap monad: If we break the monad abstraction
(e.g. by writing heap (λh. (h, h))), the results are no longer executable and trying to
generate code for them causes an error, just like for other purely logical notions like
quantifiers.

5 Verification

Having defined the model of execution for our stateful programs, we need verification
tools which can be used to prove an individual program correct. Our model does not
force us to use a particular technique: We can choose any calculus (like e.g. Hoare logic)
that is sound with respect to the semantics we have defined. After a bit of experimenting,
we opted for a very simple method, which seems to fit well with the structured proof
language Isabelle/Isar. A deeper comparison of this relational style with Hoare logic is
beyond the scope of this paper.

We use the relational description of the big-step semantics we have already seen in
§1.2. The relation is defined by:

(h, h ′, r) ∈ [[c]] = ((Inl r, h ′) = execute c h)

Imperative Functional Programming with Isabelle/HOL 143

We can prove rules which connect this relation to the different basic commands. Here
is the rule for the bind operation.

(h, h ′′, r ′) ∈ [[f �= g]] =⇒
(
�

h ′ r. (h, h ′, r) ∈ [[f]] =⇒ (h ′, h ′′, r ′) ∈ [[g r]] =⇒ P) =⇒ P

Note the elimination rule format. Since the (. . .) ∈ [[. . .]] relation usually lives in
the premise of a statement, we use elimination rules to manipulate it: if our goal has a
premise of the form (h, h ′′, r) ∈ [[f �= g]], we can obtain the intermediate heap h ′ and
the new assumptions (h, h ′, a) ∈ [[f]] and (h ′, h ′′, r) ∈ [[g a]]. These elimination rules
allow us to systematically decompose compound statements into primitive steps. Here
are some other rules:

(h, h ′, r) ∈ [[return x]] =⇒ (r = x =⇒ h = h ′ =⇒ P) =⇒ P

(h, h ′, r) ∈ [[a[i]]] =⇒
(r = get-array a h ! i =⇒ h = h ′ =⇒ i < length-array a h =⇒ P) =⇒ P

(h, h ′, r) ∈ [[a[i] := v]] =⇒ (r = a =⇒ h ′ = Heap.upd a i v h =⇒ P) =⇒ P

By feeding these rules into Isabelle’s auto method, we obtain a reasonable ad-hoc au-
tomation, which makes proofs quite short.

6 Case Studies

6.1 A SAT Checker

Our first case study is motivated by the wish to integrate SAT solvers into Isabelle in a
scalable way, such that they can be used to solve large propositional proof obligations.

We aim at a compromise between performing a full replay of the proof within Isabelle
and trusting the SAT solver completely. The first approach was taken by Weber and Am-
jad [17] and gives the usual high assurance of the LCF principle, but is computationally
expensive. On the other end of the spectrum, trusting the external tool is obviously cheap
but unsatisfactory.

A reasonable compromise is to run the external proof (a standard propositional res-
olution proof) through a checker, which is itself proved correct in Isabelle. This gives
a good balance between assurance and cost, since unlike the SAT solver, the checker
is formally verified, and checking a proof is about an order of magnitude faster than
replaying the inferences in Isabelle.

Usually, for such a reflective approach, the checker would need to be purely func-
tional. Using our framework, we can implement a checker that uses destructive arrays
instead, which gives us another 30% speedup over a purely functional implementation
with balanced trees.

The core of our checker operates on a table that stores the clauses that have al-
ready been derived. Clauses are modeled (purely functionally) as sorted lists of integers,
where a negative number signifies a negated variable:

144 L. Bulwahn et al.

types
idx = nat
lit = int
clause = lit list
resolvants = idx × (lit × idx) list

datatype ProofStep =
Root idx clause
| Resolve idx resolvants
| Delete idx

A proof step can either (a) add a new so-called root clause to the array, (b) derive a
new clause from existing clauses and store it in the array, or (c) delete a clause from the
array, to free some memory.

The root clauses are the initial clauses from which a contradiction is derived. It is
a specialty of the MiniSAT [2] proof format that root clauses may be added any time
during the proof, hence our checker must accumulate all root clauses it encounters in a
list. Then, if the checker succeeds in deriving the empty clause, the root clauses it has
collected must be inconsistent.

A Resolve step derives a new clause in a series of resolutions: Resolve i (j, rs) starts
with clause no. j and resolves it with the clause/variable pairs in rs. In the end, the
result is stored at position i. The Delete proof step removes a clause from the array.
This weakening step is simply an optimization to reduce memory usage of the checker
by removing clauses that are no longer needed.

With clauses modeled as sorted lists, resolution is essentially a merge operation and
can be done in just one traversal. However, the operation may fail if the literal does not
occur in the clause. It is convenient to let the monad deal with such failures, even if no
heap access is required. Hence our resolve operation has the following type (for brevity,
we omit the implementation, which does not contain surprises):

resolve :: lit⇒ clause⇒ clause⇒ clause Heap

The function get-clause retrieves a clause from the array. It fails if it sees a None:

get-clause :: clause option array⇒ idx⇒ clause Heap

The heart of our checker is the function step, which processes a single proof step,
collecting root clauses in the accumulator list rcs:

step :: clause option array⇒ ProofStep⇒ clause list⇒ clause list Heap

step a (Root cid clause) rcs = do a[cid] := Some (remdups (sort clause));
return (clause·rcs)

step a (Resolve saveTo (i, rs)) rcs =
do cli← get-clause a i;

result← foldM (λ(l, j) c. get-clause a j �= resolve l c) rs cli;
a[saveTo] := Some result;
return rcs

step a (Delete cid) rcs = do a[cid] := None;
return rcs

Finally, a wrapper function checker just allocates an array of a given size, folds the
step function over a list of proof steps, and finally checks for the empty clause at some
given position. Our main result is the following partial correctness theorem:

(h, h ′, cs) ∈ [[checker n p i]] =⇒ inconsistent cs

Imperative Functional Programming with Isabelle/HOL 145

Integration. Since we have verified our checker, we may now choose to use it to import
proofs into Isabelle. This can be done using a generic monadic evaluation oracle, which
implements the following inference rule:

∧
h h ′. (h, h ′, r) ∈ [[c]] =⇒ P r

P r
(if c, when executed in ML, evaluates to r)

Thus we can discharge the premise of a partial correctness theorem by just running the
generated code in ML.

The soundness of this rule relies on the assumption that the semantics of ML is
compatible with our model of monadic programs. At the moment, we have no proof of
this assumption.

However, such a generic reflection mechanism, which provides a clearly defined
way to extend the theorem prover by reflected imperative proof tools, still provides
higher assurance than an ad-hoc extension, since the monadic code is verified, and no
additional “glue code” is required for the integration.

In particular, nothing in our particular development of the SAT checker needs to be
trusted.

6.2 A Jinja Bytecode Verifier

Our second case study is a modification of the Jinja bytecode verifier. Jinja [7] is a
complete formal model of a Java-like language, which includes a formal semantics,
type system, virtual machine model, compiler, and bytecode verifier.

Essentially, the bytecode verifier performs an abstract interpretation of the bytecode
instructions, keeping track of the abstract state, that is, the types of values in registers
and on the stack. The central data structure is a mapping that assigns such an abstract
state to every bytecode instruction. Then, this information is propagated to the succes-
sors of the instruction until a fixed point is reached.

In the existing implementation, this mapping is represented by a list of fixed length.
In our modification, we use an imperative array instead, with the obvious advantages:
constant-time access and no garbage.

Fortunately, the bytecode verifier is modeled in a very abstract framework using a
semilattice (type σ), which hides all the technical details of the virtual machine. Later,
the “real thing” can be obtained by instantiation. A bytecode method is modelled by
a function step :: nat ⇒ σ ⇒ (nat × σ) list that maps a given program position and
an abstract machine state to a list of possible successor positions and states. Additional
requirements for the step function (e.g. monotonicity) are detailed in [7].

Figure 2 shows the pure version of the bytecode verifier together with its monadic
counterpart. This side-by-side comparison shows that the differences between the two
versions are small. Consequently, proving partial correctness of kildallM wrt. kildall is
straightforward:

τs ∈ list n A =⇒ (h, h ′, τs ′) ∈ [[kildallM τs]] =⇒ τs ′ = kildall τs

This shows that it is relatively easy to move from a purely functional specification to a
monadic one, which can then be executed efficiently.

146 L. Bulwahn et al.

propa [] τ s w = (τ s, w)
propa ((q, τ)·qs) τ s w =
(let u = τ � τ s ! q;

w ′ = if u = τ s ! q then w else {q} ∪ w
in propa qs (τ s[q := u]) w ′)

propaM [] τ s w = return w
propaM ((q, τ)·qs) τ s w =
do τ ′ ← τ s[q];

let u = τ � τ ′;
let w ′ = (if u = τ ′ then w else {q} ∪ w);
τ s[q] := u;
propaM qs τ s w ′

iter (τ s, w) =
(if w = ∅ then τ s
else let p = SOME p. p ∈ w

in iter
(propa (step p (τ s ! p)) τ s (w −

{p})))

iterM τ s w =
(if w = ∅ then freeze τ s
else let p = SOME p. p ∈ w

in do v ← τ s[p];
w ′ ← propaM (step p v) τ s

(w − {p});
iterM τ s w ′)

kildall τ s = iter (τ s, unstables τ s) kildallM τ s =
do a ← of-list τ s;

iterM a (unstables τ s)

Fig. 2. Pure vs. monadic versions of the bytecode verifier

7 Problems and Limitations

7.1 No Monad Polymorphism

Of course, one would like to specify a monad as a constructor class, and see our heap
monad just as a particular instance of the general concept. However, for this we would
need type constructor polymorphism, which is not supported in HOL. We must be sat-
isfied with the possibility of defining concrete instances of monads.

Huffman, Matthews, and White [5] describe how to simulate constructor classes in
an extension of HOL, but their embedding does not seem practical for our application.

7.2 Heap Model

Our simple heap model prohibits storing any kind of function value in mutable refer-
ences. Although many applications can live with this limitation, it may be painful in
other situations. One can think of different ways to improve this situation:

Encoding types of order n. Just like we now encode all first-order values in N, one
could also encode all functions on such values by N⇒N, and all functions that take
such arguments by (N⇒ N)⇒ N, and so on. For any given order, we can encode
all “smaller” types in a single type. Again, this can be made transparent using type
classes. Probably, order 3 or 4 would be enough for most practical purposes.

Dependent types. In a dependently typed system, one could do without explicit encod-
ings, and represent heap values as a dependent pair of a type and a value. In such a
system, the type heap would live in some higher universe than the types used in a
program.

Imperative Functional Programming with Isabelle/HOL 147

ZF extension. HOLZF [12] is a consistent extension of HOL which declares a set-
theoretic universe Z , in which all HOL types can be embedded. In such a system
we could store the full tower of (pure, monomorphic) higher order functions over
the naturals, since our heap function could take values in Z .

However, even these extensions will not allow us to store monadic functions in the
heap. The collection of heap monad functions has at least the cardinality of heap⇒heap,
which is strictly larger than heap itself in classical HOL.

One avenue of escape would be to limit ourselves to the constructive portion of HOL
and build some kind of impredicative datatype facility to represent the heap. A more
pragmatic option is to store only a representable subset of the full function space in the
heap, for example just the continuous functions as is done in Isabelle/HOLCF[9]. We
would retain the full power of classical HOL while still allowing to store all (partially)
executable functions, which are the only ones we are really interested in.

7.3 Recursive Functions

Monadic functions can be defined recursively just like any other function by using the
available packages in Isabelle. However, proving termination of the functions can some-
times be tricky, as the following example demonstrates:

f :: nat ref ⇒ nat⇒ nat Heap
f r n = do x← !r;

(if x = 0 then return n else do r := x − 1;
f r (Suc n))

Since there is no wellfounded order for which (r, Suc n)≺ (r, n) holds, we cannot hope
to define f by wellfounded recursion on its arguments. Instead, the recursion happens
on the heap itself, which is not an explicit argument of the function. To define f, we
must first break the monad abstraction and define a function f ′ :: nat ref ⇒ nat⇒ heap
⇒ (nat + exception) × heap, which explicitly recurses over the heap. Then f can be
defined in terms of f ′, deriving the above recursion equation.

Another issue is that when building pointer structures on the heap, many functions
are actually partial, since the structures can become cyclic. The attentive reader may
have noticed that the traverse function in §1.3 is in fact such an example.

However, it turns out that even nonterminating recursive functions are definable if
the recursion happens within the heap monad, since such definitions always have a
total model. This argument is similar to the observation that tail-recursive functions
can always be defined in HOL (e.g. using a while combinator). The details are beyond
the scope of this paper, so we just mention that traverse was defined using a monadic
recursion combinator MREC, which satisfies the following recursion equation:

MREC :: (α⇒ (β + α) Heap)⇒ (α⇒ α⇒ β ⇒ β Heap)⇒ α⇒ β Heap
MREC f g x =
do y← f x;

(case y of Inl r⇒ return r | Inr s⇒ do z← MREC f g s;
g x s z)

In the future, we plan to provide automation for defining such recursive functions.

148 L. Bulwahn et al.

7.4 External I/O

Another practical limitation is that our heap monad does not support any kind of interac-
tion with the outside world. This means, for example, that the full sequence of MiniSat
proof steps needs to be passed into our SAT checker from the start. This becomes a
problem for long-running proofs where the number of steps may exceed the total size
of Isabelle’s memory.

However, if our monad supported IO actions then we could incrementally ask Min-
iSat to supply us just the next portion of the proof to check, and never have to represent
the entire proof at once. Supporting I/O would require us to extend our heap model to
include relevant aspects of the outside system, plus some kind of nondeterminism for
I/O actions, to take into account that we can never model the world in its entirety.

8 Conclusion

We presented a lightweight approach to reuse our favorite theorem prover for verify-
ing monadic programs that manipulate a state. Our shallow embedding of imperative
constructs in HOL is a continuation of the traditional way of modeling programs and
systems by recursive functions, which can be translated to “real” programs by a code
generator. Although there are still some limitations (see §7), our case studies show that
it is already quite useful in its current form. Equipped with that, we want to tackle
specification, verification and prototypic code generation for compute-intensive appli-
cations like e.g. microprocessor models. Another important application is the extension
of the Isabelle system itself by means of verified monadic proof procedures as we have
sketched it in §6.1.

Future work will also focus on alleviating current limitations, most notably to allow
a broader range of heap-representable types, monadic I/O, and more automation for
defining monadic recursive functions.

Acknowledgments

We would like to thank David Hardin, Joe Hurd, Matt Kaufmann, Dylan McNamee,
Tobias Nipkow, Konrad Slind, and Tjark Weber for their useful discussions, encourage-
ment and feedback on our work.

References

[1] Boyer, R.S., Moore, J.S.: Single-threaded objects in ACL2. In: Krishnamurthi, S., Ramakr-
ishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 9–27. Springer, Heidelberg (2002)

[2] Een, N., Sörensson, N.: An extensible sat-solver. In: Goos, G., Hartmanis, J., van Leeuwen,
J. (eds.) SAT 2003. LNCS, vol. 2919, p. 502. Springer, Heidelberg (2004)

[3] Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program
verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590. Springer,
Heidelberg (2007)

Imperative Functional Programming with Isabelle/HOL 149

[4] Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. Technical Report
364/07, Department of Computer Science, University of Kaiserslautern (August 2007)

[5] Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF.
In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 147–162. Springer,
Heidelberg (2005)

[6] Jones, S.P., Launchbury, J.: Lazy functional state threads. In: SIGPLAN Conference on
Programming Language Design and Implementation, pp. 24–35 (1994)

[7] Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine
and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

[8] Krstić, S., Matthews, J.: Verifying BDD algorithms through monadic interpretation. In:
Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 182–195. Springer, Heidelberg (2002)

[9] Müller, O., Nipkow, T., Oheimb, D.V., Slotosch, O.: HOLCF = HOL + LCF. Journal of
Functional Programming 9, 191–223 (1999)

[10] Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in hoare type the-
ory. In: ICFP 2006: Proceedings of the eleventh ACM SIGPLAN international conference
on Functional programming, pp. 62–73. ACM Press, New York (2006)

[11] Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Hei-
delberg (2002)

[12] Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A.
(eds.) ICTAC 2006. LNCS, vol. 4281, pp. 272–286. Springer, Heidelberg (2006)

[13] Jones, S.P., Wadler, P.: Imperative functional programming. In: Proc. 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1993),
pp. 71–84 (1993)

[14] Schirmer, N.: A verification environment for sequential imperative programs in
Isabelle/HOL. In: Baader, F., Voronkov, A. (eds.) Logic for Programming, Artificial In-
telligence, and Reasoning, vol. 3452, pp. 398–414. Springer, Heidelberg (2005)

[15] Sprenger, C., Basin, D.A.: A monad-based modeling and verification toolbox with appli-
cation to security protocols. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 302–318. Springer, Heidelberg (2007)

[16] Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M.,
Felleisen, M. (eds.) Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2007), Nice, France, January 2007, pp. 97–108 (2007)

[17] Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem
provers. Journal of Applied Logic (to appear, 2007)

HOL-Boogie — An Interactive Prover for the

Boogie Program-Verifier�

Sascha Böhme1, K. Rustan M. Leino2, and Burkhart Wolff3

1 Technische Universität München
boehmes@in.tum.de

2 Microsoft Research, Redmond
leino@microsoft.com

3 Universität Saarbrücken
bwolff@wjpserver.cs.uni-sb.de

Abstract. Boogie is a program verification condition generator for an
imperative core language. It has front-ends for the programming lan-
guages C# and C enriched by annotations in first-order logic.

Its verification conditions — constructed via a wp calculus from these
annotations — are usually transferred to automated theorem provers such
as Simplify or Z3. In this paper, however, we present a proof-environment,
HOL-Boogie, that combines Boogie with the interactive theorem prover
Isabelle/HOL. In particular, we present specific techniques combining au-
tomated and interactive proof methods for code-verification.

We will exploit our proof-environment in two ways: First, we present
scenarios to ”debug” annotations (in particular: invariants) by interac-
tive proofs. Second, we use our environment also to verify ”background
theories”, i.e. theories for data-types used in annotations as well as mem-
ory and machine models underlying the verification method for C.

1 Introduction

Verifying properties of programs at their source code level has attracted sub-
stantial interest recently. While not too long ago, “real programming languages”
like Java or C have been considered as too complex to be tackled formally,
there are meanwhile verification systems like ESC/Java [11], Why/Krakatoa/-
Caduceus [10], and Boogie used both for Spec# [3,1] and C [21]. The latter
system is also used in a substantial verification effort for the Microsoft Hypervi-
sor as part of the Verisoft XT project ([5], see also http://www.verisoft.de/).

Combining Boogie with an interactive prover has a number of incentives:

– verification attempts can be debugged by interactive proofs,
– background theories can be proven consistent,
– existing front-end compilers for Spec# and C to the Boogie-Core-Language

represent an alternative to a logical embedding of these languages.

Debugging Verification Attempts. Starting to annotate a given program
can lead to situations where the automated prover fails and can neither find a

� Supported by BMBF under grant 01IS07008.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 150–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.verisoft.de/

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 151

proof nor a counterexample. All existing systems report of a degree of automation
approaching 100%, causing wide-spread and understandable enthusiasm. How-
ever, there is also a slight tendency to overlook that the remaining few percent
are usually the critical ones, related to the underlying theory of the algorithm
rather than implementation issues like memory and sharing. Moreover, these fig-
ures tend to hide the substantial effort that may have been spent to end up with
a formulation that can be finally proven automatically; there is even some em-
pirical evidence that in the difficult cases, the labor to massage the specification
can be comparable to the effort of an interactive proof [4].

The reason for a prover failure might be:
– specification-related (i.e., annotations and “background theories” (see below)

are inconsistent, incomplete, or specify unintended behavior),
– program-related, e. g. a program simply does not behave as intended, or
– it can be a problem of the prover, by just using a wrong heuristics for the

concrete task, or even by bad luck (e.g., Z3 [6] uses random-based heuristics).
An interactive proof, suitably adapted to the problems arising from automated
formula generation, decomposes the verification conditions along the program
structure and finally the logical structure of the annotations and can thus lead
to insufficient preconditions or invariants systematically.

Consistency of Background Theories. Conceptually, the Boogie-Core-Lan-
guage (called BoogiePL) allows for specifying transition systems; these transi-
tions are described in terms of first-order logic over a model comprising user-
defined types, constants, axioms as well as program variables. The signature and
axiom set is called the “background theory” of a program. A background theory
can be just program specific or programming-language specific. In the case of the
Verified C Compiler (VCC, e.g., Boogie with C front-end, the configuration of
Boogie mostly studied in this paper), the operations to be axiomatized consist of
elementary operations of a machine model (called C Virtual Machine (CVM)),
allowing reading and storing byte-wise, word-wise, and double-word-wise, do-
ing signed and unsigned operations in bitvector arithmetic, etc. This machine
model presents a (slight) abstraction over an x86 processor architecture, tak-
ing into account the processor intricacies of little-endianness, bit-padding, etc.,
but abstracting from registers and jumps (which are represented by goto’s in
BoogiePL). A crucial part of the model is concerned with the representation
of memory, memory regions etc. in order to formulate frame conditions. VCC
compiles an ANSI-C program into a BoogiePL program based on the CVM.

Getting an axiomatization of this size consistent is a non-trivial task, and for
several automated and interactive provers to work together, one has to make
sure that all provers agree on this axiomatization.

An Alternative to Embeddings. Compiling ANSI-C to a transition system
described in the fairly small and logically clean BoogiePL represents an alterna-
tive to a logical embedding into HOL (such as, for example, [12,20] describing a
small-step transition semantics for the C fragment C0 comprising only side-effect
free expressions). While we still consider the logical embedding method as “near

152 S. Böhme, K.R.M. Leino, and B. Wolff

perfection” with respect to logical foundations, it is obvious that an embedding
of a more substantial C fragment is an enormous effort with questionable value.
Given that ANSI-C language semantics is heavily under-specified, given that
optimizing compilers tend to make their own story over the variety of “semantic
deviation points”, and given that a realistic concurrency model depends on the
granularity of the atomic operations defined by the target assembler language, it
is debatable if we should care about the sterile myth of some general C seman-
tics or rather concentrate our efforts on a specific compiler and target assembler
language. For a given compiler, one can exchange the code-generator against
a BoogiePL translator, and validate compiled assembler sequences against the
abstract model traces in the CVM by tests (what has been done intensively) or
by simulation proofs if needed. There is meanwhile sufficient empirical evidence
that a carefully constructed and tested C front-end to a verification condition
generator such as Boogie can achieve a reasonable degree of trustworthiness.

Outline of the Paper. We will address the first two issues. After presenting the
background of this work, namely Isabelle/HOL, Boogie, and the HOL-Boogie ar-
chitecture, we present three scenarios of using HOL-Boogie and will explain the
underlying machinery at need: In the first scenario, we use HOL-Boogie to verify
Dijkstra’s Shortest Path Algorithm given as BoogiePL program (only a high-
level memory model involved). In the second scenario, we verify a C program,
converted into BoogiePL, i.e. a program over the CVM. In the third scenario,
we show how CVM axiomatizations can be proven consistent with HOL-Boogie,
enabling a “safe mode” of C program verification.

2 Background

2.1 Isabelle/HOL and the Isar Framework

Isabelle is a generic theorem prover [17], i.e. new object logics can be introduced
by specifying their syntax and inference rules. Isabelle/HOL is an instance of
Isabelle with Church’s higher-order logic (HOL), a classical logic with equality.
Substantial libraries for sets, lists, maps, have been developed for Isabelle/HOL,
based on definitional techniques, allowing the use of Isabelle/HOL as a “func-
tional language with quantifiers”.

Isabelle is based on the so-called “LCF-style architecture” which allows one
to extend a small trusted logical kernel by user-programmed procedures in a
logically safe way. Moreover, on top of the kernel, there is a generic system
framework Isabelle/Isar [22] that can be compared in a rough analogy to the
Eclipse programming system framework. It provides (1) a hierarchical organiza-
tion of theory documents, (2) incremental document processing for interactive
theory and proof development (with unlimited undo) and an Emacs-based GUI,
and (3) extensible syntax for top-level commands, embedded methods and at-
tributes, and the inner term language. HOL-Boogie is yet another instance of
the Isabelle/Isar framework. It comes with a loader of the verification conditions
generated by Boogie, a proof-obligation management and specific tactic support

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 153

(BoogiePL)

C− Front−End

Proof

Obligations

Boogie (VCG)

Program

Z3

VCC HOL−Boogie
CVM

Proof
Obligations

(*.b2i)

(BoogiePL)

Fig. 1. VCC and the HOL-Boogie back-end

for the formulas arising in this scenario as well as interactions with external
provers such as Z3 which have been integrated via the Isabelle oracle mechanism.

2.2 The VCC System Architecture

The Verified C Compiler(VCC) evolved from the Spec# project (see http://
research.microsoft.com/specsharp/, [3]). It comprises a C front-end sup-
porting ANSI-C and — geared towards verification of programs close to the
hardware-level — bitwise representation of e. g. integers, structs, and unions in
memory. The core component of VCC is Boogie, a verification condition genera-
tor. Its input language BoogiePL provides constants and functions and first-order
axioms, as well as a small imperative language with assignments, first-order as-
sertions, unstructured goto and structured control constructs (if, while, break).
From these annotated imperative programs, Boogie computes (optimized) ver-
ification conditions over the program and the axiomatization of a background
theory. In the case of VCC, an abstract machine model is given in the back-
ground theory, describing linear memory (a map from references to bitvectors),
allocation operations, little-endian word-wise load- and store operations, and a
family of word-wise operations abstracting the x64 processor architecture.

Boogie also provides a framework into which converters to external prover
formats may be “plugged in”. Our HOL-Boogie integration is based on such a
plug-in that we implemented for interactive back-ends. We also coupled HOL-
Boogie to the default target prover Z3 in such a way that formulas constructed
in the former can be discharged by the latter.

3 Foundations of Boogie and HOL-Boogie

3.1 Introduction to BoogiePL

BoogiePL is a many-sorted logical specification language extended by an imper-
ative language with variables, contracts, and procedures.

http://research.microsoft.com/specsharp/
http://research.microsoft.com/specsharp/

154 S. Böhme, K.R.M. Leino, and B. Wolff

The type system of BoogiePL has several built-in as well as user-defined types.
The former cover basic types like bool and int, as well as one- and two-dimensional
arrays which can be indexed by any valid type.

BoogiePL includes the following kinds of top-level declarations:

– user-defined types:

type Ver tex ;

– symbolic constants having a fixed but possibly unknown value:

const I n f i n i t y : i n t ;

– uninterpreted functions :

f u n c t i o n Di s tance (from : Vertex , to : Ve r t ex) r e tu r n s (r e s u l t : i n t) ;

– axioms constraining symbolic constants and functions:

axiom 0 < I n f i n i t y ;

– global variables:

var Sho r te s tPa th : [Ve r tex] i n t ;

– procedure contracts, i.e. signatures with pre- and postconditions, and
– implementations of procedures.

An implementation begins with local-variable declarations which are followed by
a sequence of basic blocks. We will only consider the latter in more detail here,
and we omit the structured control structures, which can be desugared into the
statements and goto’s shown here. Each basic block has a name, a body, and a
possibly empty set of successors. Expressions are first-order logic formulas with
equality and integer operations.

Semantically, each block corresponds to a transition relation over the variables
of a program; goto statements correspond to a composition with the intersection
of the successor transition relations, loops to fixpoints: Boogie represents a par-
tial correctness framework. The basic assertion assert constrains the subsequent
transition, while assume weakens it. Pragmatically, assert produces obligations
for the programmer, while assume leaves him “off-the-hook”, see, e. g., [15,16].

BlockSeq ::= Block+

Block ::= BlockId : [Statement ;] Goto ;
Statement ::= Var := Expression

| havoc VarId
| assert Expression
| assume Expression
| call [Var+ :=] ProcId (Expression∗)
| Statement ; Statement

Goto ::= goto BlockId∗ | return

Fig. 2. Schematic syntax of blocks in BoogiePL

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 155

An assignment statement x := E updates the program state by setting the
variable x to the value of the expression E. The statement havoc x sets the
the variable x to an arbitrary value. The statement S ; T corresponds to the
relation composition. The procedure call statement, i.e. call, is just a short-hand
for suitable assert, havoc and assume statements, encoding the callee’s pre- and
postconditions [14]. The return command is a short-hand for the procedure’s
postconditions and a goto with no successors.

BoogiePL also comes with a structured syntax with which one can express
loops (while) and branches (if) directly. These can be defined as a notation for
certain basic blocks; for example, the following schematic while loop:

wh i l e (G) i n v a r i a n t P ; { B }

is encoded by the following basic blocks [1]:

LoopHead : assert P ; goto LoopBody ,LoopDone;
LoopBody : assume G ; B ; goto LoopHead ;
LoopDone : assume ¬G ; . . .

More details of BoogiePL can be found in [1,7].

3.2 Generating Verification Conditions

Verification condition generation proceeds in the following steps: First, the ex-
pansion of syntactic sugar and (safe) cutting of loops result in an acyclic control-
flow graph. Second, a single-assignment transformation is applied. Third, the
result is turned into a passive program by changing assignment statements into
assume statements. Finally, a verification condition of the unstructured, acyclic,
passive procedure is generated by means of weakest preconditions.

We will present only the final step here, the reader interested in the first three
is referred to [2]. Each basic block in a preprocessed program consists only of a
sequence of assert and assume statements, followed by a final goto command.

For any statement S and predicate Q on the post-state of S, the weakest
precondition of S with respect to Q, written wp(S, Q), is a predicate that char-
acterizes all pre-states of S whose reachable successor states satisfy Q. The
computation of weakest preconditions follows the following well-known rules:

wp(assert P, Q) = P ∧Q
wp(assume P, Q) = P =⇒ Q

wp(S ; T, Q) = wp(S,wp(T, Q))

For every block

A : S ; goto B1, . . . , Bn;

an auxiliary variable Acorrect is introduced, the intuition being that Acorrect is
true if the program is in a state from which all executions beginning from block
A are correct. Formally, there is the following block equation:

156 S. Böhme, K.R.M. Leino, and B. Wolff

Acorrect ≡ wp(S,
∧

B∈{B1,...,Bn}
Bcorrect)

Each block contributes one block equation, and from their conjunction, call it
R, the procedure’s verification condition is

R =⇒ Startcorrect

where Start is the name of the first block of the procedure. Note that the veri-
fication condition generated this way is linear in the size of the procedure.

3.3 Labeling in Boogie

Boogie is able to output source code locations of errors and also execution
traces leading to these errors. The underlying basic idea is to enrich formu-
las by labels, i.e. uninterpreted predicate symbols intended to occur in coun-
terexamples of verification conditions. In verification conditions generated by
Boogie, labels are either positive (lblpos L : P) or negative (lblneg L : P).
Logically, these formulas are equivalent to P ; the labels occur in counterexam-
ples if P has the indicated sense (i.e. P or ¬P). Their formal definition is as
follows:

(lblneg L : P) = P ∨ L
(lblpos L : P) = P ∧ ¬L

Negative labels tag formulas of assertions (including invariants and postcon-
ditions) with their location in the source program. If an assertion cannot be
proven, the accompanying label allows Boogie to emit an error location identi-
fying which program check failed. Positive labels tag the beginning of a block
by an additional assertion which is always true. This way, execution traces con-
tain information reflecting the order in which basic blocks were processed. If
execution terminates in an error, the positive labels represent an error trace.

A more detailed description of this use of labels is found in [13].

3.4 Attribution in BoogiePL

We implemented a new feature in Boogie: The top-level declarations for types,
constants, functions, axioms, and global variables, can be tagged by attributes ;
previously, Boogie allowed such attributes only on quantifier expressions. For
example, an attributed axiom looks as follows: axiom {attr1} ... {attrN} P. These
attributes are opaque for Boogie; they may carry information for external provers
and may influence Boogie’s back-ends. In the case of Z3, for example, attributes
are used to tag some axioms as built-in to Z3.

The attribution mechanism provided by Boogie is flexible enough to add new
attributes for any prover back-end.

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 157

4 Scenario I: Interactive Verification of Algorithms

4.1 Dijkstra’s Shortest Path Algorithm

Widely known and yet fairly complex, this algorithm already poses a reasonable
challenge for verification efforts. The following code, written by Itay Neeman,

type Ver tex ;
const Graph : [Vertex , Ver t ex] i n t ;
axiom (∀ x : Vertex , y : Ver t ex : : x �= y =⇒ 0 < Graph [x , y]) ;
axiom (∀ x : Vertex , y : Ver t ex : : x == y =⇒ Graph [x , y] == 0) ;

const I n f i n i t y : i n t ;
axiom 0 < I n f i n i t y ;

const Source : Ver t ex ;
var SP : [Ver t ex] i n t ; // s h o r t e s t pa th s from Source

procedure D i j k s t r a () ;
mod i f i e s SP ;
en su r e s SP [Source] == 0 ;
en su r e s (∀ z : Vertex , y : Ver t ex : :

SP [y] < I n f i n i t y ∧ Graph [y , z] < I n f i n i t y =⇒ SP [z] ≤ SP [y] + Graph [y , z]) ;
en su r e s (∀ z : Ver t ex : : z �= Source ∧ SP [z] < I n f i n i t y =⇒

(∃ y : Ver t ex : : y �= z ∧ SP [z] == SP [y] + Graph [y , z])) ;

imp lementat ion D i j k s t r a ()
{

var v : Ver t ex ;
var V i s i t e d : [Ve r t ex] bool ;
var oldSP : [Ver t ex] i n t ;

havoc SP ;
assume (∀ x : Ver t ex : : x == Source =⇒ SP [x] == 0) ;
assume (∀ x : Ver t ex : : x �= Source =⇒ SP [x] == I n f i n i t y) ;

havoc V i s i t e d ;
assume (∀ x : Ver t ex : : ¬V i s i t e d [x]) ;

wh i l e ((∃ x : Ver t ex : : ¬V i s i t e d [x] ∧ SP [x] < I n f i n i t y))
i n v a r i a n t SP [Source] == 0 ;
i n v a r i a n t (∀ y : Vertex , z : Ver t ex : :

¬V i s i t e d [z] ∧ V i s i t e d [y] =⇒ SP [y] ≤ SP [z]) ;
i n v a r i a n t (∀ z : Vertex , y : Ver t ex : :

V i s i t e d [y] ∧ Graph [y , z] < I n f i n i t y =⇒ SP [z] ≤ SP [y] + Graph [y , z]) ;
i n v a r i a n t (∀ z : Ver t ex : : z �= Source ∧ SP [z] < I n f i n i t y =⇒

(∃ y : Ver t ex : : y �= z ∧ V i s i t e d [y] ∧ SP [z] == SP [y] + Graph [y , z])) ;
{

havoc v ;
assume ¬V i s i t e d [v] ;
assume SP [v] < I n f i n i t y ;
assume (∀ x : Ver t ex : : ¬V i s i t e d [x] =⇒ SP [v] ≤ SP [x]) ;
V i s i t e d [v] := t r ue ;
o ldSP := SP ;
havoc SP ;
assume (∀ u : Ver t ex : :

Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u] =⇒
SP [u] == oldSP [v] + Graph [v , u]) ;

assume (∀ u : Ver t ex : :
¬(Graph [v , u] < I n f i n i t y ∧ oldSP [v] + Graph [v , u] < oldSP [u]) =⇒

SP [u] == oldSP [u]) ;
}

}

158 S. Böhme, K.R.M. Leino, and B. Wolff

presents a high-level implementation of Dijkstra’s algorithm, abstracting from
any memory model and even shortening several initializations and assignments
by logical expressions.

While developing algorithms and their specifications like the one given here,
it commonly happens that, even if a program behaves as intended, its specifica-
tion is incomplete or inconsistent. Indeed, when letting Boogie check the given
program, it reports the following error message:

Spec# Program Verifier Version 0.88, Copyright (c) 2003-2007, Microsoft.
dijkstra.bpl(34,5): Error BP5005: This loop invariant might not be

maintained by the loop.
Execution trace:

dijkstra.bpl(26,3): anon0
dijkstra.bpl(33,3): anon2_LoopHead
dijkstra.bpl(42,5): anon2_LoopBody

Spec# Program Verifier finished with 0 verified, 1 error

Using HOL-Boogie we can navigate to the cause for this error and inspect it.
The underlying techniques, described later in more detail, split the verification
condition into altogether 11 subgoals and pass each of them to Z3, which can
discharge all of them except one. The remaining subgoal, without its premises,
reads as follows in HOL-Boogie :

assert-at Line-34-Column-5 (SP-2 [Source] = 0)

This formula corresponds to a negatively labeled formula in the verification condi-
tion generated by Boogie. Note that SP-2 is an inflection of the program variable
SP holding the computed shortest paths after arbitrary runs of the while loop.

The subgoal found by HOL-Boogie is exactly the cause of the error reported
by Boogie, as the position label indicates. The associated premises represent the
complete execution trace until the point where the above invariant is checked.
Among those premises, only two express properties of SP-2, while a third one
states something similar to the subgoal above:

�
u. G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u]

=⇒ SP-2[u] = SP-1[v-1] + G[v-1, u]
�

u. ¬(G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u])
=⇒ SP-2[u] = SP-1[u]

SP-1[Source] = 0

Based on those three properties, we attempt to prove the subgoal. Consider the
following Isar extract:

proof (ib-split try-z3)
case goal1
note H1 = 〈

�
u. G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u]

=⇒ SP-2[u] = SP-1[v-1] + G[v-1, u] 〉

note H2 = 〈
�

u. ¬(G[v-1, u] < Infinity ∧ SP-1[v-1] + G[v-1, u] < SP-1[u])
=⇒ SP-2[u] = SP-1[u] 〉

note H3 = 〈SP-1[Source] = 0 〉

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 159

show ?case
proof ib-assert
show SP-2[Source] = 0
proof (cases

G[v-1, Source] < Infinity ∧
SP-1[v-1] + G[v-1, Source] < SP-1[Source])

case True
moreover with H3 have SP-1[v-1] + G[v-1, Source] < 0 by simp
ultimately have SP-2[Source] < 0 using H1 by simp

oops

Here, it becomes obvious what exactly caused the error in Boogie/Z3 before.
Besides the contradiction in the proof attempt, computed shortest paths are
always non-negative in Dijkstra’s algorithm. From this observation, we can infer
an additional invariant for the while loop of the implementation:

i n v a r i a n t (∀ x : Ver t ex : : SP [x] >= 0) ;

This addition suffices to correct the specification; the program can now be veri-
fied automatically by Boogie and Z3.

4.2 Tracking Program Positions

Relating formulas to locations in the original program is one of the key aspects
of HOL-Boogie; this feature results from exploiting the labeling mechanism of
Boogie. Since assertions, subsuming also invariants and postconditions, form
the crucial parts of verification conditions, they are tagged by labels holding
their program position. After producing a verification condition and loading it
in HOL-Boogie, the labels then occur at the formulas to be proven, in the way
shown along the example of Dijkstra’s algorithm before.

4.3 Specific Tactic Support

HOL-Boogie comes with a set of specific tactics to manipulate verification con-
ditions. They allow the user to navigate to assertions, to prune some of them by
applying Z3, and to restrict the list of premises associated with assertions. Some
of these tactics are already shown in the verification of Dijkstra’s algorithm.

Based on the structure of verification conditions generated by Boogie, the
central tactic of HOL-Boogie, ib-split, extracts all assertions and associates them
with their execution trace, expressed as a list of premises. Each assertion then
forms a subgoal for the proof of the original verification condition.

After splitting a verification condition, each subgoal is passed to Z3 if the
argument try-z3 is given to the tactic ib-split. This essentially gives the “de-
bugging flavor” to HOL-Boogie, since Z3 usually discharges all subgoals except
those that are incorrect or inconsistent. The method is based on an oracle calling
Z3; the communication uses the SMT-LIB format [19]. Due to this standardized
format, it is possible to replace Z3 with other SMT solvers, or combine them for
better results.

160 S. Böhme, K.R.M. Leino, and B. Wolff

The list of premises of a subgoal can be pruned by the tactic ib-filter-prems.
It selects all premises potentially necessary to solve the current subgoal, while
cutting off all other premises. Note, however, that this tactic, due to its heuristics,
may remove too many premises. Therefore, its purpose is only to assist in finding
a draft of a proof for a subgoal, especially in the case of a long list of premises.

Finally, the tactic ib-assert serves to unwrap a formula of an assertion by
cutting off the label.

4.4 Structured Proofs and Isabelle Proof Support

Without using Z3 from inside HOL-Boogie, many subgoals of a verification con-
dition can already by proven by tools included in Isabelle. In simple academic
experiments, the built-in simplifier is already able to solve some subgoals. A
more substantial help, however, comes from sledgehammer. When applied to a
subgoal, it uses external first-order provers to identify necessary facts which are
then combined into a proof, usually by passing the facts to a resolution-based
built-in prover. Since the amount of facts given as axioms in BoogiePL as well
as the number of premises for an assertion can easily grow to an unmanageable
size, sledgehammer is of an invaluable help. Usually, around 50% of all subgoals
generated from a verification condition can be shown by this method.

5 Scenario II: Interactive Verification of C-Programs

Verifying C programs in HOL-Boogie seems to be a straightforward extension
to the previous section. The C front-end of VCC compiles a C program like the
following example (computing a maximal unsigned byte for an array whose size
is bounded by 240):

#in c l u d e ” vcc . h”
. . .

s t a t i c UINT8 maximum(i n o u t e coun t (l e n) UINT8 a r r [] , UINT64 l en)
r e q u i r e s (0 < l e n ∧ l e n < (1 UI64 << 40))
en su r e s (∀(UINT64 i ; i<l e n =⇒ a r r [i]≤r e s u l t))

{
UINT8 max ;
UINT64 p ;

max = 0 ;
f o r (p = 0 ; p < l e n ; p++)

i n v a r i a n t (p ≤ l e n)
i n v a r i a n t (∀(UINT64 i ; i < p =⇒ a r r [i] ≤ max))

{
i f (a r r [p] > max) { max = a r r [p] ; }

}
a s s e r t (p == l en) ;
r e tu r n max ;

}

into a BoogiePL-program. This BoogiePL program is significantly larger (about
2400 lines), since it contains the axiomatization of the CVM. In order to give
an impression of its abstraction level, we show some code resulting from the
invariant’s:

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 161

i n v a r i a n t $ c l e . u8 (p , l e n) ;
i n v a r i a n t (∀ i : bv64 : : $ i n r a n g e . u8 (i) =⇒ $ c l t . u8 (i , p) =⇒

$ c l e . u4 ($ l d . u1 ($mem, $add . p t r (a r r , i , 1 bv64)) , max)) ;
f r e e i n v a r i a n t $on l y r e g i o n ch a ng ed o r n ew (

o ld ($ r e g i o n (a r r , $mul . u8 (l en , 1bv64))) ,
o l d ($gmem) , $gmem, o l d ($mem) , $mem) ;

i n v a r i a n t $ a l l o c g r ow s (#temp10 , $gmem) ;

The primitives of the CVM provide operations for:

1. dereference, load and store in memory: $ld.u1, $ld.u2, $ld.u4, $ld.u8,
$st.u1, $st.u2, $st.u4, $st.u8,... The index indicates the length of the bitvector
in bytes. These operations take the padding conventions of the little-endian
x86 architecture into account.

2. bitvector computations: e.g. cle.u8, clt.u8, mul.u8, etc, ...
3. pointer arithmetic: e.g. $add.ptr, $sub.ptr, $base, $offset, ...
4. memory regions (= pointer sets): e.g. $region, $contains, $overlap, ...
5. memory operations: e.g. malloc, free, memcopy, ...
6. framing conditions: $only region changed or new(X, mem, mem’) expresses

that memory mem in the state and memory mem’ in its successor state remain
unchanged for all pointers not in X, ...

7. typed ghost memory: $gmem and its infrastructure.

Ghost memory is a separate memory, which is updated in a way that does
not affect the program control flow, where syntactic restrictions guarantee that
information never flows from ghost states to concrete program states. Thus, ghost
state and any code using it can be eliminated when the program is compiled. It
is used in particular to specify the concept of a $valid reference or the $size of an
array into which all references are $valid memory. Conceptually, it is a map from
references to records with arbitrarily many fields with possibly different types.

When compiling the axioms referring to ghost state, a problem arises: while
the typing discipline of BoogiePL is simply many-sorted first-order in most cases,
there is a non-standard built-in type construct <x>T (used here for a type name
that stands for field names) that requires special treatment. There are several
axioms that quantify over ghost memory which has the BoogiePL array type
[$gid,<x>name]x. We interpret this type by functions of type gid⇒ α name⇒ α
(where gid is the type of ghost references for which an injection from standard
memory references exist). For each ghost field, such as $size, the axiomatization
also defines a field tag constant :

const un ique $ s i z e : <bv64>name ;

which we convert into a constant declaration $ size :: bv64 name. Thus, so far,
this concept can be safely embedded into Hindley-Milner style polymorphism.
However, there are axioms with quantifications over name (intended to mean:
“over all fields”) such as in:

162 S. Böhme, K.R.M. Leino, and B. Wolff

axiom (∀
r : $ r eg i on , n : name , oldgmem : [$g id ,<x>name] x , newgmem : [$g id ,<x>name] x ,

oldmem : $memory , newmem : $memory : :
. . . n . . .

We interpret a BoogiePL axiom of this form as an axiom scheme and create for
each field tag constant an instance for it.

The compiled BoogiePL code of the above C program can still be loaded
within 36 seconds (on standard hardware) into HOL-Boogie. Its proof is fairly
straightforward but profits substantially from the tactic firing Z3.

6 Scenario III: Verification of Background Theories

At present, the axiomatization of the CVM —called Prelude Version 7.0— con-
sists of about 750 axioms (where a certain number of axioms were not made
explicit since they are “built-in” into the target prover; for example, reflexivity
of equality or the laws of arithmetic). There had been a number of errors in
the current and similar formalizations of background theories; and consistency
is even a greater issue if Boogie is used with different memory/machine models.
Since the abstraction level of a machine model is tantamount for deduction effi-
ciency, more refined models should be used only when inherently needed. This is
the case if, for example, the allocation function itself must be verified, which is
atomic in a more abstract model, or when inherently untyped memory is required
such as in unions, where everything is translated into bitvectors [5].

From the perspective of a HOL system, proving the consistency of a complex
first-order system is not exactly an easy task, but at least routine: Just build
up a theory by conservative extensions, i.e. constant or type definitions, and
derive all the “axioms” from it. In the sequel, we report on a verification of a
previous version of the CVM model (Prelude Version 3.0). Since the CVM model
is rapidly changing at present, we plan to repeat this effort at a later stage.

The conservative theory for Prelude 3.0 is constructed as follows: First, a sim-
ple bitvector library is built; bitvectors were represented as lists of boolean, and
operations like length, extract , and concat were defined as usual. Since the CVM
operations work only in byte and word formats, the necessary side-conditions
referring to length can be omitted if these formats were already expressed at the
type level, for example:

typedef bv32 = {x :: bool list . length x = 32 }

Arithmetic operations for signed and unsigned integers were defined over bv32, as
well as bitwise conjunction or disjunction. For example, consider the definition:

constdefs shr-i4 :: [bv32 , bv32] ⇒ bv32
shr-i4 v w ≡ Abs-bv32 (bv-shr (Rep-bv32 v) (Rep-bv32 w))

where bv-shr (omitted here) is defined on bitvectors directly representing the
usual intuition “division by two”. Moreover, following the conventions on signs

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 163

of the x86 architecture, it is enforced that the most significant bit is replicated
and the size of the bitvector remains identical.

Similarly, the type of pointers ptr is introduced as a pair of unsigned 64 bit
integers (references called ref) and an integer; the former is called the base and
the latter the offset. On ptr ’s, pointer arithmetic operations are defined allowing
byte-wise addressing of memory. The core of the memory model is:

typedef memory = {x :: ref ⇒ Bitvector . True}
types state = (ref ⇒ bool) × memory

The pivotal concept of a valid reference, for example, is defined as:

constdefs valid :: [state, ptr , int] ⇒ bool
valid σ p l ≡ (fst σ) (base p) ∧ 0 ≤ (offset p) + 1 ∧

offset p ∗ 8 < length (lkup (snd σ) (base p))

Definitions for malloc and free are straightforward.
We implemented a little compiler that takes a Boogie-Configuration — i.e. a

list of theorems, their names, and attributes — and compiles this information
into a BoogiePL background-theory file. In particular, attributes are generated
that correspond to Isabelle’s internal naming in the theory, for example:

axiom { : i s a b e l l e ” i d p r e l u d e . b a s i c s a xms 1 ”}(∀ x : i n t : : exp (x , 0) == (1)) ;

Since Boogie re-feeds attributes to its target provers, HOL-Boogie can check
that every axiom in the background theory of a verification condition indeed
exists (and by construction is derived) in its own logical environment; thus, a
strict checking mode can be implemented that makes sure that a verification in
an external prover is based only on a consistent axiomatization.

7 Conclusion

We have presented a novel HOL-based proof environment, called HOL-Boogie,
that is integrated into a verification tool chain for imperative programs, in par-
ticular C (and C#; not supported yet). Key issues of the integration are:

1. the support of labels and positions at the proof level, which enables tracking
back missing properties to assertions in the source,

2. specific tactic support for decomposition of verification conditions in a way
stable under certain changes of the source,

3. a mechanism to generate background theories from consistent, conservative
models in HOL,

4. the integration of the target prover in order to discharge as many subgoals
as possible, and

5. mechanisms to track attributes in order to exchange meta-information be-
tween tools.

164 S. Böhme, K.R.M. Leino, and B. Wolff

7.1 Related Work

As such, combining an interactive prover with a Boogie-like VCG is not a new
idea. In Figure 1, just replace C-Front-End by Caduceus [9], Boogie by Why [8],
and Z3 by the default prover ERGO, and one gets (nearly) the architecture of
the Why/Caduceus system [10]. However, its interactive prover-back-end cannot
be used to decompose verification conditions and send the “splinters” to the
target prover (ERGO is not integrated into Coq), it offers no mechanism for
tracking back unsatisfiable subgoals to the source, and it offers little specific
tactic support for this application scenario. With respect to the C front-end
and the underlying CVM, VCC is more detailed since it leverages features such
as byte-wise access into unions. Moreover, support for fine-grain concurrency is
actively under development [5].

There is a quite substantial body on programming language embeddings into
HOL, be it shallow [20,18] or deep [12]. In particular, Leinenbach [12] provides
a small-step semantics for a language C0, which has been used for system level
verification, and Schirmer [20] derives a (shallow-ish) Hoare-Logic from this se-
mantics and formally developed a verification condition generator. C0 assumes
a typed memory model (although bitvectors and conversions to standard data-
types could easily be integrated). However, the size of the supported language
fragment, many complications in the semantic representation, and the degree
of automatic proof support have limited its use in case studies substantially. In
contrast to VCC and the Hypervisor Verification Project [5], the idea is to adapt
the code to be verified instead of trying to live with the existing code and adapt
the tool chain.

7.2 Future Work

We see the following directions for future work:

1. More Stable Proof Formats. In our scenario, where the specification of
a program is essentially re-constructed post-hoc, it is the annotations that
change constantly under development. This means that positions of asser-
tions change easily, which can (but must not) have influence on proofs re-
sulting from previous proof attempts. A proof style using control-flow labels
(as generated by Boogie) would be more stable under changes of the source
in this scenario.

2. Verified Current CVM Model. The verified C background theory con-
taining the memory and machine axiomatization is currently rapidly evolv-
ing; at a later stage, we would like to verify the consistency on a more recent
model. From our experience, this is a substantial task (several man-months),
but routine.

3. More Automated Proof Support in Isabelle. Currently, there is not
enough automated proof support for bitvectors and for the logical reasoning
required to discharge formulas related to memory-framing and updates in
the C model.

HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier 165

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

2. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
PASTE 2005, pp. 82–87. ACM Press, New York (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Basin, D., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature
architecture: A comparative case study. Formal Aspects of Computing 19(1), 63–91
(2007)

5. Cohen, E., Hillebrand, M., Leinenbach, D., der Rieden, T.I., Moskal, M., Paul,
W., Santen, T., Schirmer, N., Schulte, W., Tobies, S., Wolff, B.: The Microsoft
Hypervisor Verification Project (manuscript in preparation) (2008)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. LNCS,
vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

7. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. Rep. 2005-70, Microsoft Research (2005)

8. Filliâtre, J.-C.: Why: A multi-language multi-prover verification condition genera-
tor. Tech. Rep. 1366, LRI, Université Paris Sud (2003)

9. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

11. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI 2002, pp. 234–245. ACM Press, New
York (2002)

12. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In: SEFM 2005, pp.
2–12. IEEE Computer Society Press, Los Alamitos (2005)

13. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-
condition counterexamples. Science of Computer Programming 55(1-3), 209–226
(2005)

14. Leino, K.R.M., Saxe, J.B., Stata, R.: Checking Java programs via guarded com-
mands. In: FTfJP 1999, Tech. Rep. 251. Fernuniversität Hagen (1999)

15. Morgan, C.: The specification statement. ACM toplas 10(3), 403–419 (1988)
16. Nelson, G.: A generalization of Dijkstra’s calculus. ACM toplas 11(4), 517–561

(1989)
17. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
18. Norrish, M.: C formalised in HOL. Ph.D. thesis, Computer Laboratory, University

of Cambridge (1998)
19. Ranise, S., Tinelli, C.: The smt-lib standard: Version 1.2. Tech. rep., Dept. of

Comp. Sci., The University of Iowa (2006), http://www.smt-lib.org

http://www.smt-lib.org

166 S. Böhme, K.R.M. Leino, and B. Wolff

20. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/hol.
Ph.D. thesis, Technische Universität München (2006)

21. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verifying C compiler
(extended abstract). In: C/C++ Verification Workshop (2007)

22. Wenzel, M., Wolff, B.: Building Formal Method Tools in the Isabelle/Isar Frame-
work. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp.
351–366. Springer, Heidelberg (2007)

Secure Microkernels, State Monads and Scalable

Refinement

David Cock1, Gerwin Klein1,2, and Thomas Sewell1

1 Sydney Research Lab., NICTA�, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{david.cock,gerwin.klein,thomas.sewell}@nicta.com.au

Abstract. We present a scalable, practical Hoare Logic and refinement
calculus for the nondeterministic state monad with exceptions and failure
in Isabelle/HOL. The emphasis of this formalisation is on large-scale ver-
ification of imperative-style functional programs, rather than expressing
monad calculi in full generality. We achieve scalability in two dimensions.
The method scales to multiple team members working productively and
largely independently on a single proof and also to large programs with
large and complex properties.

We report on our experience in applying the techniques in an exten-
sive (100,000 lines of proof) case study—the formal verification of an
executable model of the seL4 operating system microkernel.

1 Introduction

This paper touches on three main topics: the verification of a secure operating
system microkernel, the state monad as used in Haskell programs, and formal
refinement as the verification technique in the correctness proof.

The main motivation for our work is the first of these three. In the larger
context, we are aiming to design and fully formally verify the seL4 microkernel
down to the level of its ARM11 C implementation. The seL4 microkernel [3,6]
is an evolution of the L4 family [15] for secure, embedded devices. As described
elsewhere [5], the design of seL4 involved building a binary compatible prototype
of the kernel in the programming language Haskell which subsequently was au-
tomatically translated into Isabelle/HOL to arrive at a very detailed, executable
formal model of the kernel. This operational model is inherently state based, and
the corresponding Haskell program makes extensive use of the state monad to
express the corresponding state transformations. The model is low level, using
data types such as 32 bit wide finite machine words, modelling the heap memory
of the eventual C program explicitly as part of its state, and mutating typical
pointer data structures such as doubly linked lists on that heap.

Complementing this executable model is a still operational, but more abstract
specification of the functional behaviour of seL4. This more abstract model uses
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 167–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 D. Cock, G. Klein, and T. Sewell

nondeterminism to leave details unspecified and uses, for instance, abstract func-
tions instead of explicit pointer representations (although it still makes use of
references on many occasions, to model the user-visible sharing behaviour of
particular data structures).

This paper presents the main techniques we used in verifying that the exe-
cutable model correctly implements its abstract specification. It should be noted
explicitly that we did not aim for maximum generality and theoretical depth in
either the formalisations or the techniques. Instead, we focused on simplicity,
easy applicability, and most importantly scalability of the methods. As a micro-
kernel, seL4 is neither nicely modular, nor does it implement a nicely self con-
tained abstract algorithm. Compared to other verifications, the main challenge
was to deal with a highly complex, intermingled set of low-level data structures
with high reliance on global invariants exploited in various optimisations. The
size of the specifications, with about 3K lines of Isabelle definitions on the ab-
stract and 7K lines on the concrete side, implies a massive proof effort which we
aimed to spread over multiple people working concurrently, with as little need
for interaction and coordination as possible.

In summary, this paper can be seen as a study on how far you can get with
the simplest possible methods. It is our hypothesis that it was precisely this
simplicity that enabled us to achieve this large-scale verification.

The contributions of this paper are as follows.

– We formalise the nondeterministic state monad with exceptions and fail-
ure. This subsumes the state monad with exceptions that is commonly used
in Haskell. The formalisation is a shallow embedding into the logic of Is-
abelle/HOL.

– We present a Hoare Logic and refinement calculus on the above, both simple
yet scalable and practical.

– We report on our experience in applying the above to a binary compatible,
executable model of seL4 microkernel translated from Haskell.

The following sections provide detail on each of these in turn.

2 State Monads

A state monad allows a pure functional model of computation with side effects.
For result type ’a and state type ’s, the associated monad type (abbreviated
(’s , ’a) state-monad) is ’s ⇒ ’a × ’s. That is, a function from previous state
to next state together with a computation result. A pure state transformer is
typically denoted by the one-valued return type unit i.e. ’s ⇒ unit × ’s.

All monads define two constructors, here called return and bind. For the state
monad they are defined as follows:

return :: ’a ⇒ (’s,’a) state-monad
return a ≡ λs. (a, s)

bind :: (’s,’a) state-monad ⇒ (’a ⇒ (’s,’b) state-monad) ⇒ (’s,’b) state-monad
bind f g ≡ λs. let (v , s’) = f s in g v s’

Secure Microkernels, State Monads and Scalable Refinement 169

Note that as Isabelle/HOL is simply typed, it is not possible to straightfor-
wardly define the monad type constructor as in Haskell, defining return, bind and
associated syntax once, and thereby proving results generically about the class of
monadic types. The solution that we adopt is to instantiate the class for specific
monads and monad constructors, e.g., return :: ’a ⇒ (’s , ’a) state-monad .

The constructor return simply injects the value a into the monad type, passing
the state unchanged, whilst bind sequentially composes a computation f, and a
computation g (a function from the return type of f). The expression bind f g is
abbreviated as f >>= g. To allow concise description of longer computations,
we define a do syntax in a similar fashion to Haskell:

do x ← f ; g x od ≡ f >>= g

A state monad also defines two additional constructors: get and put, the primitive
state transformers (here () is the sole element of type unit):

get :: (’s, ’s) state-monad put :: ’s ⇒ (unit , ’s) state-monad
get ≡ λs. (s, s) put s ≡ λ-. ((), s)

The constructors of all monads must obey the following three laws, which we
have instantiated and proved for each monad instance:

return x >>= f = f x return bind

m >>= return = m bind return

(m >>= f) >>= g = m >>= (λx . f x >>= g) bind assoc

The simple state monad is able to model sequential computations with
side-effects, but does not provide good notation for non-local flow control (e.g.
exceptions). A straightforward way to model try-catch-style exceptions is to in-
stantiate the state monad return type with the sum type ’e + ’a (for result type
’a and exception type ’e) in place of the simple result type. Every component
in the monad now returns either Inr a in case of success, or Inl e in case of fail-
ure with exception e. To complete the model we require a new bind constructor,
bindE which propagates exceptions, and the catch constructor to embed the error
monad into the non-error state monad.

lift f v ≡ case v of Inl e ⇒ return v | Inr a ⇒ f a

bindE f g ≡ f >>= lift g

catch f handler ≡ do x ← f ;
case x of Inl e ⇒ handler e | Inr b ⇒ return b

od

In formulating an abstract behavioural model, it is convenient to express
computation nondeterministically. This is readily modelled as an extension of
the state monad by allowing each computation to return a (possibly empty) set
of value-state pairs: ’s ⇒ (’a × ’s) set, and redefining bind as λs .

⋃
{g a s’

| (a,s’) ∈ f s}. This formulation has a drawback however: we wish to model
catastrophic failure e.g. kernel panic, and show its absence; the obvious definition
fail ≡ λs . {}, admits only the existential statement: For all states s, not all paths
fail. What we desire, however, is the universal statement: For all states s, no
path fails, which cannot be expressed as a simple predicate on the state set,

170 D. Cock, G. Klein, and T. Sewell

as the failure case ({}) is dominated in the union by the non-failure case. Our
solution is to append a failure flag which is propagated separately, and which
dominates non-failure in bind. This leads us to the following definitions (n.b. f ‘
A is the image of A under f):

return a ≡ λs. ({(a, s)}, False)
bind f g ≡ λs. (

�
fst ‘ (λ(x , y). g x y) ‘ fst (f s),

True ∈ snd ‘ (λ(x , y). g x y) ‘ fst (f s) ∨ snd (f s))

In addition to the state monad constructors get and put, we define select,
a nondeterministic return, which takes a set of values. We also define fail as
indicated above:

get :: (’s,’s) nd-monad put :: ’s ⇒ (unit ,’s) nd-monad
get ≡ λs. ({(s, s)}, False) put s ≡ λ-. ({((), s)}, False)

select :: ’a set ⇒ (’s,’a) nd-monad fail :: (’s,’a) nd-monad
select A ≡ λs. (A × {s}, False) fail ≡ λs. ({}, True)

The nondeterminism inherent in the model allows us to model input conve-
niently: do x ← select InputActions ; f x od.

3 Hoare Logic on State Monads

The Hoare triple {|P |} f {|Q |} is a predicate on the computation f, stating that
if the precondition P holds before execution, then the postcondition Q will
hold afterwards. Since HOL is a logic of total functions, and f is just a HOL
function that must terminate, our Hoare triples express total correcntess. For
the nondeterministic state monad, the basic Hoare triple also needs to take into
account the return value and is defined as follows:

{|P |} f {|Q |} ≡ ∀ s. P s −→ (∀ (r , s’) ∈ fst (f s). Q r s’)

Note that the postcondition Q is a binary predicate while P is unary. For the
state monad with exceptions, we define:

{|P |} f {|Q |}, {|R|} ≡ {|P |} f {|λr s. case r of Inl a ⇒ R a s | Inr b ⇒ Q b s|}

This specifies a separate postcondition for the exception and non-exception cases.
All of the following rules have a natural expression for the state-exception monad
in terms of this augmented Hoare triple.

To build a calculus for reasoning about monadic computations, we first state
and prove axiomatic rules for the basic constructors:

{|λs. P () x |} put x {|P |} put-wp {|λs. P s s|} get {|P |} get-wp

{|P x |} return x {|P |} return-wp

Constructor bind requires a more complicated rule, to capture the interaction of
the pre- and post-conditions of composed computations:

∀ x . {|B x |} g x {|C |} {|A|} f {|B |}
{|A|} f >>= g {|C |}

seq

Note that the premises of the seq rule are reversed with respect to the program
order, this is done to ease the repeated application of the rule by the VCG.

Secure Microkernels, State Monads and Scalable Refinement 171

Finally, to complete the basic calculus we introduce the weaken rule, to
substitute arbitrary preconditions. An analogous rule (strengthen) exists to
substitute postconditions.

{|Q |} f {|R|} ∀ s. P s −→ Q s
{|P |} f {|R|}

weaken

An equivalent set of rules exists to reason about the presence or absence of failure.

4 Verification Condition Generator

As usual in Hoare Logic, reasoning within this calculus can be substantially
automated by the use of a verification condition generator (VCG) if we phrase
our structural Hoare rules in weakest-precondition (WP) form. The rules given
for put, get and return in Sect. 3 are weakest-precondition rules. As an example,
consider the following definition of the modify constructor, and the proof of its
associated weakest-precondition rule:

modify f ≡ do s ← get; put (f s) od

We wish to show {|λs . P () (f s)|} modify f {|P |}. Before invoking the VCG, we
unfold definitions until the goal is phrased in terms of known operations. The
VCG then produces the following proof steps automatically.

It starts by applying the weaken rule to replace the concrete precondition
with a schematic1 precondition, ?Q, and an implication. We get two new goals:

1 . {|λs. ?Q |} do s ← get; put (f s) {|P |}
2 . ∀ s. P () (f s) −→ ?Q

The VCG now repeatedly tries to apply one of its set of WP rules. The rule
seq will match the current goal, as its postcondition is fully general (matching
the concrete P) and the precondition, which is concrete in the rule, matches
the schematic precondition ?Q that we have just created. If the WP set is con-
structed correctly, the goals will always remain in this form, with concrete post-
condition and schematic precondition, and for every top-level operator there will
be one rule that matches. In our example, the VCG would apply seq, put-wp,
and get-wp in turn, leaving the user with only the implication introduced at
the first step. This is a HOL formula, free of both monad and Hoare syntax:

1 . ∀ s. P () (f s) −→ P () (f s)

Here, the goal is trivial, as the precondition we set out to prove was in fact the
weakest. We could now add this new WP rule to the set available to the VCG,
to avoid having to unfold the definition of modify in future. In this manner we
progressively build the calculus towards a higher and higher level of abstraction.

Note that, if we add rules that are not strictly weakest preconditions, we do not
affect the soundness of the VCG, we simply take the risk that the implication goal
produced may be too weak to be provable, indicating that our rules need to be
strengthened.
1 Schematic variables in Isabelle stand for terms that can be syntactically instantiated

(as opposed to free variables that need to remain fixed in proofs).

172 D. Cock, G. Klein, and T. Sewell

The weakest-precondition rules mentioned so far all apply to an arbitrary
postcondition. For elementary functions like put, get and modify, rules of this
form are easily stated. In principle such a rule can be stated for any of the
monadic functions we use. In practice, however, we find that the preconditions in
these rules are typically of exponential term size with respect to the complexity of
the operator. The tractable solution we have found is to supply the VCG instead
with Hoare triples that have specific postconditions and manually simplified
preconditions. In principle these can still be weakest precondition rules, however
this is not normally the case. An example is set-ep-valid-objs:

{|λs. valid-objs s ∧ valid-ep v s|} set-endpoint ep v {|λrv s. valid-objs s|}

The set-endpoint function models pointer update for the communication end-
point type. Like other models of pointer update, it simply replaces the contents
of the heap at the given address with the new value. The valid-objs predicate in
the postcondition is one of our global invariants, and establishes that all objects
satisfy certain validity criteria. Clearly for set-endpoint to preserve valid-objs the
new endpoint value must satisfy the appropriate validity predicate, valid-ep. This
is not the weakest possible precondition, as it globally asserts in valid-objs that
the value about to be replaced is valid, which is unnecessary. The precise weakest
precondition would be tedious to define, and the precondition given, although
not weakest, is always true in practice.

Hoare triples with specific postconditions complicate the VCG, which must
labour to connect the postconditions available to the one that is needed. To illus-
trate this problem, consider the scenario in which we wish to establish valid-objs
after a pair of endpoint updates.

{|λs. valid-objs s ∧ valid-ep v s ∧ valid-ep v’ s|}
do set-endpoint p v ; set-endpoint p’ v’ od

{|λrv s. valid-objs s|}

The VCG can divide the problem using seq and apply set-ep-valid-objs to
the second problem. The postcondition for the first update will then be λrv s .
valid-objs s ∧ valid-ep v’ s. To apply set-ep-valid-objs again, the VCG must
first use the conjunction lifting rule.

{|P |} f {|Q |} {|P’ |} f {|Q’ |}
{|λs. P s ∧ P’ s|} f {|λrv s. Q rv s ∧ Q’ rv s|}

conj-lift

The conjunction operator is one of a family of first-order logic operators that have
a VCG lifting rule. Conjunction, disjunction, and the universal and existential
quantifiers have lifting rules, but the negation operator does not. Implication is
dealt with by reducing to a disjunction and negation, after which the negation
must be dealt with explicitly.

The only such lifting rule that the VCG will use by default is conj-lift, and
it will only be used conservatively, that is, when one of the subproblems created
can be immediately solved using another rule. The VCG can also be configured
to use any lifting rule aggressively, that is, whenever possible.

Secure Microkernels, State Monads and Scalable Refinement 173

The VCG could apply all lifting rules by default. However, should one or more
of the created subgoals be unresolvable, the resulting proof state may be difficult
to understand or work with. It is thus pragmatically useful for the VCG to fail
early, returning an interactive state that is amenable to further manual progress.
Conjunction occurs in our postconditions so frequently that the VCG must handle
it explicitly, but other operators are rare enough to be handled manually.

The VCG is not limited to Hoare triples. Rules for absence of failure, as
mentioned in Sect. 3, can be similarly automated by the same tool.

5 Refinement Calculus

The ultimate objective of our effort is to prove refinement [2] between an abstract
and a concrete process. We define a process as a triple containing an initialisation
function, which creates the process state with reference to some external state, a
step function which reacts to an event, transforming the state, and a finalisation
function which reconstructs the external state.

record process = Init :: ’external ⇒ ’state set
Step :: ’event ⇒ (’state × ’state) set
Fin :: ’state ⇒ ’external

The execution of a process, starting from a initial external state, via a sequence
of input reactions results in a set of external states: (n.b. R ‘‘ S is the image of
the set S under the relation R)

steps δ s events ≡ foldl (λstates event . (δ event) ‘‘ states) s events
execution A s events ≡ (Fin A) ‘ (steps (Step A) (Init A s) events)

Process A is refined by C, if with the same initial state and input events, execu-
tion of C yields a subset of the external states yielded by executing A:

A � C ≡ ∀ s events. execution C s events ⊆ execution A s events

Refinement is commonly proven by establishing forward simulation [2], of which
it is a consequence. To demonstrate forward simulation we define a relation, SR,
between states of the two processes. We must show that the relation is established
by Init, is maintained if we advance the systems in parallel, and implies equality
of the final external states: (n.b. S ;; T is the composition of relations S and T.)

fw-sim SR C A ≡ (∀ s. Init C s ⊆ SR ‘‘ Init A s)
∧ (∀ event . SR ;; Step C event ⊆ Step A event ;; SR)
∧ (∀ s s’ . (s, s’) ∈ SR −→ Fin C s’ = Fin A s)

To address our scalability concerns, we wish to decompose the refinement
problem into smaller subproblems and translate the statement to the state
monad. The simplest way to do this is to break the forward simulation problem
down to component functions. The corres predicate captures forward simulation
between a single concrete monadic computation, C, and its abstract counterpart,
A, with SR instantiated to our standard state relation, state-relation. It takes
three additional parameters: R relates abstract and concrete return values, and
the preconditions P and P’ restrict the input states, allowing use of information
such as global invariants:

174 D. Cock, G. Klein, and T. Sewell

corres R P P’ A C ≡ ∀ (s, s’) ∈ state-relation. P s ∧ P’ s’ −→
(∀ (r’ , t’) ∈ fst (C s’). ∃ (r , t) ∈ fst (A s). (t , t’) ∈ state-relation ∧ R r r’)
∧ (snd (C s’) −→ snd (A s))

Note that the outcome of the monadic computation is a pair of result and
failure flag. The last conjunct of the corres statement is stronger than strictly
necessary for refinement. It states that failure on the concrete m’ implies failure
on the abstract m. This means we only have to show absence of failure on the
most abstract level to get absence of failure on all concrete levels by refinement.

The key property of corres is that it decomposes over the bind constructor
through the corres-split rule.

corres-split:

corres R’ P P’ A C ∀ r r’ . R’ r r’ −→ corres R (S r) (S’ r’) (B r) (D r’)
{|Q |} A {|S |} {|Q’ |} C {|S’ |}

corres R (P and Q) (P’ and Q’) (A >>= B) (C >>= D)

Similar splitting rules exist for other common monadic constructs including
bindE, catch and conditional expressions. There are terminating rules for the
elementary monadic functions, for example:

corres-return:

R a b

corres R (λs. True) (λs. True) (return a) (return b)

The corres predicate also has a weakening rule, similar to the Hoare Logic.

corres-precond-weaken:

corres R Q Q’ A C ∀ s. P s −→ Q s ∀ s. P’ s −→ Q’ s
corres R P P’ A C

Proofs of the corres property take a common form: first the definitions of the
terms under analysis are unfolded and the corres-precond-weaken rule is
applied. As with the VCG, this allows the syntactic construction of a precon-
dition to suit the proof. The various splitting rules are used to decompose the
problem; in some cases with carefully chosen return value relations. Existing
results are then used to solve the component corres problems. Some of these
existing results, such as corres-return, require compatibility properties on
their parameters. These are typically established using information from pre-
vious return value relations. The VCG eliminates the Hoare triples, bringing
preconditions assumed in corres properties at later points back to preconditions
on the starting states. Finally, as in Dijkstra’s postcondition propagation [4],
the precondition used must be proved to be a consequence of the one that was
originally assumed.

6 Case Study – The seL4 Microkernel

In this section, we give an overview of the seL4 microkernel, its two formalisa-
tions in Isabelle/HOL, some of the properties we have proved on them, and our

Secure Microkernels, State Monads and Scalable Refinement 175

experience in this verification. With about 10,000 lines of C code; 7,500 lines
of executable model and 3,000 lines of abstract Isabelle/HOL specification, the
kernel is too large for us to provide any kind of useful detail in a conference pa-
per, or even a comprehensive overview of its formalisation. We do not attempt
to do so; instead we provide a very high-level view of its functionality, and show
bits and pieces of the formalisation to give an impression of the general flavour.

6.1 Overview

As mentioned in the introduction, seL4 is an evolution of the L4 microkernel
family. The main difference to L4 is that it is entirely capability based, unifying
all resource accounting and access control into a single mechanism.

All kernel abstractions and system calls are provided via named, first-class
kernel objects. Authorised users obtain kernel services by invoking operations on
kernel objects. Authority over these objects is conferred via capabilities only. Sys-
tem call arguments can be either data, or other capabilities. Similarly to L4, seL4
provides three basic abstractions: threads, address spaces and inter-process com-
munication (IPC). In addition, seL4 introduces an abstraction, untyped memory
(UM), which represents a region of currently unused physical memory.

An important part of the seL4 design is that all memory, used directly by
an application (e.g. memory frames) or indirectly through the kernel (e.g. page
tables), is fully accounted for by capabilities. A parent capability to untyped
memory can be refined into child capabilities to smaller untyped memory blocks
or other kernel objects via the retype operation. The creator can then delegate all
or part of the its authority over the object to one or more of its clients. Untyped
capabilities can be revoked : this removes all corresponding child capabilities from
clients and prepares the memory spanned by that capability for retyping.

These mechanisms make seL4 a highly flexible microkernel, supporting a num-
ber of practical application scenarios. A simple example is running a full legacy
guest OS (e.g. Linux) next to a critical, trusted communications stack; another
is to provide full separation between components at multiple security levels with
strict controls on explicit information channels between them.

6.2 Formalisation

We now give a very brief introduction to the formalisation of seL4. We begin
with the state space of the abstract model.

This state is embedded into a process, modelling machine execution, of which
we make only the kernel execution precise. User-level execution is assumed free to
mutate any user-accessible part of the state. The transitions for kernel execution
are defined by a nondeterministic monadic function, in the manner described
above. The events triggering these transitions are: timer interrupts, kernel trap
instructions (user level kernel calls), page faults, and user-level faults. We collect
all of these in the data structure event, shared with the executable level:

datatype syscall = Send | Wait | SendWait | Identify | Yield

datatype event = SyscallEvent syscall | UnknownSyscall nat |
UserLevelFault nat | TimerInterrupt | VMFaultEvent vptr bool

176 D. Cock, G. Klein, and T. Sewell

The type syscall models user level calls (sending/replying to IPC, identify-
ing capabilities, yielding the current time slice). The other events are machine
generated. Arguments to system calls are read from machine registers in binary
form and decoded for further processing. This decoding phase is fully precise in
the abstract specification, and therefore very similar on the executable and the
abstract level. It is a major part of the programmer-visible API specification; in
fact, typical kernel reference manuals describe almost exclusively this syntactic
part, and only sketch the semantics of the system; the latter is the bulk of the
specification in our case.

The abstract state space of seL4 is a record with the following components:

record abstract-state = pspace :: obj-ref ⇀ kernel-object
cdt :: cte-ptr ⇀ cte-ptr
cdt-revokable :: cte-ptr ⇒ bool
cur-thread :: obj-ref
machine-state :: machine-state

datatype kernel-object = CapTable cap-ref ⇀ cap | TCB tcb |
Endpoint endpoint | AsyncEndpoint async-ep | Frame

The whole state space declaration2 comprises approximately 200 lines of Is-
abelle definitions, we mention only the salient points. The pspace component
models the kernel-accessible part of memory. In this abstract view, it is a partial
function from object references (machine words) to kernel objects. The capabil-
ity derivation tree (CDT) is a data structure that keeps track of the parent/child
relationship between capabilities; it is realised as a partial function from child
capability table entry (CTE) locations to parent CTE locations, i.e., a tree of
CTE locations. A CTE location is fully determined by the location of the kernel
object (an obj-ref) and a position within that kernel object (a cap-ref). As men-
tioned, CapTable objects store capabilities; TCB objects implement the kernel
accounting for threads; Endpoint and AsyncEndpoint objects implement IPC,
and Frame objects stand for user data frames. The remaining two components of
the global state are a pointer to the TCB of the current thread and the machine
state (e.g. register state). Currently, we do not model the machine state in detail,
but instead use a set of axiomatised functions such as loadRegister/storeRegister
on type machine-state.

Since the machine context is the main part of the shared outside-observable
part of the two models, we have proved during refinement that the observable
effect of reads, writes, cache flushes, TLB flushes, etc. is the same on both
levels. In the next step of refinement, to C, we plan to eliminate these remaining
straightforward axioms and provide a direct model for the machine context.

In the concrete model, our abstract views of the CDT, and kernel object
states vanish, and are replaced with much more detailed alternatives. The CDT,
for instance, becomes a doubly linked list together with a number of flags for
level information, stored in machine words within CTEs. In addition, we gain

2 We present a slightly simpler, earlier version of the model here. The current version
also contains interrupt tables and page table data structures.

Secure Microkernels, State Monads and Scalable Refinement 177

a number of state components implementing data structures that were not nec-
essary on the abstract level. These are: a table of ready-queues for scheduling
(indexed by a priority byte), and a scheduler action which effectively points to
the next thread’s TCB.

record concrete-state = ksPSpace :: pspace
ksReadyQueues :: 8 word ⇒ ready-queue
ksCurThread :: 32 word
ksSchedulerAction :: scheduler-action
ksMachineState :: machine-state

The ksPSpace component corresponds to the C heap, and ksMachineState
to the machine context, as on the abstract side. The rest are global pointer
variables. In this way, the executable model is close to the final implementation.

For refinement, we need to define the process types of the models. The exe-
cutable model has a single entry point, callKernelC, which handles the event type
defined above. It is natural then to define the Step component of the process
datatype as the outcome of this nondeterministic monadic operator. Likewise,
the Init component resets the state to the default newKernelStateC and then calls
initKernelC. The Fin component is simply the projection, ksMachineState. The
abstract process is defined similarly.

The refinement property can then be proven using corres properties and Hoare
triples. First, we establish that our abstract and concrete global invariant col-
lections, (invsA and invsC), are invariants of the respective processes.

{|λs. s = newKernelStateA|} initKernelA entry frames offset kFrames {|λr . invsA|}
{|invsA|} callKernelA e {|λr . invsA|}, {|λr . invsA|}

{|λs. s = newKernelStateC|} initKernelC entry frames offset kFrames {|λr . invsC|}
{|invsC|} callKernelC e {|λr . invsC|}, {|λr . invsC|}

Secondly, we establish that all elements of the Init sets are related.

(newKernelStateA, newKernelStateC) ∈ state-relation

corres dc (λs. s = newKernelStateA) (λs. s = newKernelStateC)
(initKernelA entry frames offset kFrames)
(initKernelC entry frames offset kFrames)

Finally we establish that the main execution steps correspond.

corres (intr ⊕ dc) invsA invsC (callKernelA event) (callKernelC event)

From these we establish forward simulation, which implies refinement. The state-
ments above are slightly simplified versions of our theorems which involve more
preconditions on machine behaviour.

6.3 Properties

We now describe some of the properties and invariants we proved on these two
formalisations, in addition to the main refinement theorem that states that the
concrete model is a correct implementation of the abstract specification.

178 D. Cock, G. Klein, and T. Sewell

One of the first properties proved on both levels was that all system calls
terminate. Since HOL is a logic of total functions, this is a necessary condition
to formalise the kernel behaviour. The proof for most of the kernel was straight-
forward; we only had one complex, mutually recursive case that models a nested
loop in the C code: the delete operation that removes capabilities.

The main invariant of the kernel is simple: all references in the kernel—be it
in capabilities, kernel objects or other data structures—always point to an object
of the expected type. This is a dynamic property as memory can be re-typed at
runtime. Despite its simplicity, it is the major driver for almost all other kernel
invariants. Exceptions are low-level invariants like address 0 is never inhabited
by any object, and objects are always aligned to their size.

The main validity predicates (including valid-objs and valid-ep mentioned pre-
viously) are liftings of the well-typedness criterion above to the entire heap,
thread states, scheduler queues and other state components. An example of a
more complex invariant, needed to prove that well-typedness is preserved is: A
kernel object k1 contains a reference to kernel object k2 if and only if there exists
a (possibly transitive) reference from k2 back to k1. This symmetry condition
can be used to conclude that if an object contains no references itself, there will
be no dangling references to it in the rest of the kernel. It would therefore be safe
to remove such an object once capability references are checked. To avoid inef-
ficient object state checks, we additionally observe: If an object is live (contains
references to other objects), there exists a capability to it.

Testing for capabilities is much easier, because they are tracked explicitly in
the CDT. CDT-related properties include:

Linked List. The doubly-linked list structure is consistent (back/forward point-
ers are implemented correctly), the lists always terminate in NULL, and the
list together with the additional tags correctly implements a tree. This is a
basic shape property.

Chunks. If two CTEs point to the same memory location, they have a common
ancestor and all entries between them in the CDT point to this same memory
location. This ensures various tests in the kernel can be implemented locally.

Cap Ancestry. If an untyped capability c1 covers a sub-region of another ca-
pability c2, then c1 must be a descendant of c2 according to the CDT.

Object Ancestry. If a capability c1 points to a kernel object whose memory
is covered by an untyped capability c2, then c1 must be a descendant of c2.

All of these together ensure that memory can be retyped safely and with minimal
local checks; if an untyped capability has no children, then all kernel objects in
its region must be non-live (otherwise there would be capabilities to them, which
in turn would have to be children of the untyped capability). If the objects are
not live and no capabilities to them exist, there is no further reference in the
whole system that could be made unsafe by the type change.

This example is the most complex chain of invariants we had to create for a
single operation. Other operations, such as IPC and scheduling have their own
requirements.

Secure Microkernels, State Monads and Scalable Refinement 179

6.4 Experience and Lessons Learned

The total effort for the refinement proof described here was 100,000 lines of Is-
abelle/HOL and 5 person years. The proof lead to over 100 changes in each of the
two specifications. The majority of the changes were for ease of proof: slight re-
arrangement of code, avoidance of unnecessary optimisations, local tests instead
of global assumptions. The majority of actual bugs were typographical and copy
& paste errors that slipped through prior testing. Unsurprisingly, there were
far more of these simple mistakes on the abstract level than on the executable
one. The abstract level was only type checked, never run, since it is not exe-
cutable. We found on the order of 10 conceptual problems and oversights which
would have lead to crashes or security exploits—as would have most of the ty-
pos. These were mainly missing checks on user input, subtle side effects in the
middle of operations, or (rarely) too-strong assumptions on what is invariant
during execution. Security attacks became apparent via invariant violations.

We found that the kernel programming team usually knew the invariants
precisely and used them for optimisations. In fact, the developers were often
able to articulate clearly why a certain property should hold or why a certain
test was unnecessary. A number of the security breaches mentioned above were
discovered during these discussions with the developers. On the other hand, it
was the formal proof that forced us to have this discussion in the first place.

In terms of lessons learned, we confirm the usual observation that the more
abstract the easier, and the less assumptions on global state the easier. In this
light, it was unsurprising that the low-level CDT and large, concrete initialisation
phase of the kernel were unpleasant parts of the proof.

After an initial full proof of refinement was achieved, we found that new
features could be added with reasonable effort. This depends on how independent
the new feature is from the rest of the system. If it uses its own data structure
that is not accessed anywhere else, the effort is largely proportional to the size
of the feature. For instance, adding multiple capability arguments to system
calls (as opposed to only one) was easy, with about 2 person weeks of effort,
although it concerned changes fairly deep in IPC message decoding and transfer.
If, on the other hand, the feature is highly intermingled with the rest of the
system, a factor of the size of the kernel times the size of the feature is to be
expected. We hypothesise that the effort for the whole verification so far was
quadratic in the size of the kernel. Since in a microkernel almost every basic
feature relies on properties of almost all others (IPC, TCBs, CTEs, CDT are all
highly connected), proving preservation of a new invariant on one feature will
involve significant work not only on this, but on all other features in the kernel
as well. The refinement proof itself remains linear in the size of the kernel. With
more modular code, one would expect independent data structures and therefore
invariant proofs of a size proportional to the code.

Another observation concerns invariant discovery. We began with a simple
invariant that was needed for the refinement proof (well-typedness) and let that
drive the invariant discovery process. In hindsight it would, after a short initial
phase, probably have been more effective to simply use the strongest invariant

180 D. Cock, G. Klein, and T. Sewell

that we suspected we could prove. At several points we hoped to get away with
a simpler formulation, but were then caught out halfway through the proof by a
particular operation after several thousand lines of proof. We then ended up with
the complex, precise form anyway. The lesson is: in such a complex system, the
simple formulation is unlikely to succeed. Take the precise formulation instead,
even if it looks like more work initially. As mentioned above, a good source of
invariants is the development team.

In terms of proof engineering and the methods presented in this paper, we
believe we have achieved our goal of scalability. Up to four people worked on
this proof concurrently and independently without much conflict. We estimate
that for code of this size (10K lines of C code) a team of more than five or six
persons would need a more serious effort in planning and synchronisation.

Once the framework and invariants are established, and more importantly
once the kernel is well understood, the proof is not too hard and should be readily
repeatable. We see potential for more automation in the refinement proof, and in
exploratory automatic invariant proofs. Simple invariants can often be stated and
proved automatically for many functions at a time. This could automatically be
tried for a set of basic properties before manual proof starts. We have developed
first steps in this direction, but have not made it the focus so far.

In conclusion, code verification at this size and level of detail is entirely feasible
with current theorem proving technology.

7 Related Work

Earlier work on OS verification includes PSOS [7] and UCLA Secure Unix [20].
Later, KIT [1] describes verification of process isolation properties down to object
code level, but for an idealised kernel far simpler than modern microkernels.
The Verisoft project [9] is attempting to verify a whole system stack, including
hardware, compiler, applications, and a simplified microkernel VAMOS. The
VFiasco [13] project is attempting to verify the Fiasco kernel, another variant
of L4 directly on the C++ level. The Coyotos [17] kernel is being designed for
verification, but it is unclear how much progress has been made.

The House and Osker kernels [11] (in Haskell) and the Hello kernel [8] (in
Standard ML) demonstrated that modern functional languages can be used to
develop bare metal implementations of operating systems. In contrast, we see
our Haskell implementation of the kernel as a prototype only.

There are other approaches to translating Haskell into Isabelle [10,12,14].
Since none of these approaches were able to parse our code base, we use our own
translator; for the work presented here, we need to assume its correctness. In
the longer term however, this is unnecessary, because the final theorem will be
a refinement theorem between the abstract Isabelle model and the C program.
We have already invested significant effort into modelling C precisely [19].

Our treatment of Hoare Logic on monads is much less general than that of
Mossakowski et al. [16]. We do not make assertions part of the program, which
in our setting would provide barriers to splitting up the same proof among

Secure Microkernels, State Monads and Scalable Refinement 181

multiple persons. As mentioned before, we trade generality for simplicity, and
for lightweight infrastructure with an emphasis on scalability.

8 Conclusion

We have presented simple, but effective techniques for reasoning about state-
based functional programs and for proving formal refinement on them. Although
we have not aimed at full generality, we are convinced that the combination of
basic monads we used covers a wide range of practical programs in languages
such as Haskell and ML. Our case study has shown that it is practical to fully
formally verify programs of thousands of lines of code at this level.

The salient point of our Hoare Logic is that it is simple enough to be auto-
mated effectively; but despite its simplicity, expressive enough to be easily ap-
plicable. Our extension of classic refinement to the nondeterministic state monad
is formally largely straightforward, and the calculus presented is not complete.
Again, the main point is that it is engineered such that a large-scale proof can
be effectively divided up into mostly independent parts. Classical step-wise re-
finement calculi do not necessarily work well within this paradigm, and often
require window reasoning and other complex context tracking [18].

The case study we report on constitutes the formal, fully machine-checked
verification of a binary-compatible executable model of seL4. Binary compatible
meaning that the corresponding Haskell program, together with a hardware sim-
ulator, can execute normal, compiled user-level ARM11 binaries that would run
unchanged on bare hardware. This includes low-level hardware feedback: cache
flushes, TLB loads, etc. To our knowledge, this is the first such verification of
an OS microkernel of this size and complexity.

Although the verification reported on here reaches a level of detail far greater
than that usually present when a software system is claimed to be verified, we
refrain from calling seL4 itself “fully formally verified” yet. Our goal is to take
the verification from the executable model down to the level of C code, compiled
and running on hardware.

Acknowledgements. We thank the other current and former members of the L4.
verified and seL4 teams: Michael Norrish, Jia Meng, Catherine Menon, Jeremy
Dawson, Simon Winwood, HarveyTuch, Rafal Kolanski,David Tsai, Andrew Boy-
ton, Kai Engelhardt, Kevin Elphinstone, Philip Derrin and Dhammika Elkaduwe
for their help and support.

References

1. Bevier, W.R.: Kit: A study in operating system verification. IEEE Transactions on
Software Engineering 15(11), 1382–1396 (1989)

2. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science,
vol. 47. Cambridge University Press, Cambridge (1998)

182 D. Cock, G. Klein, and T. Sewell

3. Derrin, P., Elphinstone, K., Klein, G., Cock, D., Chakravarty, M.M.T.: Running
the manual: An approach to high-assurance microkernel development. In: Proc.
ACM SIGPLAN Haskell Workshop, Portland, OR, USA (September 2006)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

5. Elkaduwe, D., Derrin, P., Elphinstone, K.: A memory allocation model for an em-
bedded microkernel. In: Proc. 1st MIKES, Sydney, Australia, pp. 28–34 (2007)

6. Elphinstone, K., Klein, G., Derrin, P., Roscoe, T., Heiser, G.: Towards a practical,
verified kernel. In: Proc. 11th Workshop on Hot Topics in Operating Systems, San
Diego, CA, USA (May 2007)

7. Feiertag, R.J., Neumann, P.G.: The foundations of a provably secure operating
system (PSOS). In: AFIPS Conf. Proc., 1979 National Comp. Conf., New York,
NY, USA, June 1979, pp. 329–334 (1979)

8. Fu, G.: Design and implementation of an operating system in Standard ML. Mas-
ter’s thesis, Dept.of Information and Computer Sciences, Univ.Hawaii at Manoa
(1999)

9. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of
operating system kernels. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 1–16. Springer, Heidelberg (2005)

10. Hallgren, T., Hook, J., Jones, M.P., Kieburtz, R.B.: An overview of the Progra-
matica Tool Set. In: High Confidence Software and Systems Conference (2004)

11. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.: A principled approach to op-
erating system construction in Haskell. In: Proc. ICFP 2005, pp. 116–128. ACM
Press, New York (2005)

12. Harrison, W.L., Kieburtz, R.B.: The logic of demand in Haskell. Journal of Func-
tional Programming 15(6), 837–891 (2005)

13. Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating system. In:
Proc. 2nd ECOOP-PLOS Workshop, Glasgow, UK (October 2005)

14. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Is-
abelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 147–162. Springer, Heidelberg (2005)

15. Liedtke, J.: On µ-kernel construction. In: 15th ACM Symposium on Operating
System Principles (SOSP) (December 1995)

16. Mossakowski, T., Schröder, L., Goncharov, S.: A generic complete dynamic logic
for reasoning about purity and effects. In: Fiadeiro, J., Inverardi, P. (eds.) Proc.
FASE 2008. LNCS, vol. 4961, pp. 199–214. Springer, Heidelberg (2008)

17. Shapiro, J.: Coyotos (2006), http://www.coyotos.org
18. Staples, M.: A Mechanised Theory of Refinement. PhD thesis, University of Cam-

bridge (1999)
19. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,

M., Felleisen, M. (eds.) Proc. 34th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Nice, France, pp. 97–108. ACM Press, New York
(2007)

20. Walker, B., Kemmerer, R., Popek, G.: Specification and verification of the UCLA
Unix security kernel. Commun. ACM 23(2), 118–131 (1980)

http://www.coyotos.org

Certifying a Termination Criterion Based on Graphs,
without Graphs�

Pierre Courtieu1, Julien Forest2, and Xavier Urbain2

1 CÉDRIC – CNAM, Paris, France
2 CÉDRIC – ENSIIE, Évry, France

Abstract. Although graphs are very common in computer science, they are still
very difficult to handle for proof assistants as proving properties of graphs may
require heavy computations. This is a problem when it comes to issues such as the
certification of a proof of well-foundedness, since premises of generic theorems
involving graph properties may be at least as difficult to prove as their conclusion.
We define a framework and propose an original approach based on both shallow
and deep embeddings for the mechanical certification of these kinds of proofs
without the help of any graph library. This framework actually avoids concrete
models of graphs and handles those implicitly. We illustrate this approach on a
powerful refinement of the dependency pairs approach for proving termination.
This refinement makes heavy use of graph analysis and our technique is power-
ful enough to deal efficiently –and with full automation– with graphs containing
thousands of arcs, as they may occur in practice.

1 Introduction

The halting problem is a well-known undecidable problem and its related property, ter-
mination, plays a fundamental role at several levels in many proofs and definitions. For
instance the termination of a relation→, i.e. the well-foundedness of its inverse, is cru-
cial for induction proofs with reference to←; functions which are total, i.e. functions
whose computation always terminates, are often compulsory in some proofs assistants;
some properties like the confluence of a relation become decidable as soon as the re-
lation is proven to be terminating, etc. Termination is also compulsory when proving
total correctness of programs.

Discovering a termination proof is often very tricky. The past decade has been rich
in developments of automated tools dedicated to termination proofs [14, 10, 12, 18, 17],
in particular in the context of first order term/string rewriting systems which we address
here. However, skeptical proof assistants [21, 20] cannot take for granted the answers
of these tools: they need a formal proof of handled properties. Hence, two of the main
concerns are: 1) developing powerful techniques to prove termination of more and more
relations with full automation, and 2) obtaining formal (mechanical) certificates of well-
foundedness for these relations, in order to enable their definition and use in skeptical
proof assistants. We will address here point 2).

Regarding termination criteria, most tools now use the Dependency Pairs (DP) ap-
proach, introduced in 1997 by Arts & Giesl [1,2]. Contrary to the historical Manna and

� Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 183–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 P. Courtieu, J. Forest, and X. Urbain

Ness criterion, the main idea of dependency pairs does not consist in discovering a well-
founded, monotonic (i.e., closed by context) and stable (w.r.t. instantiation) ordering for
which each rule of the system decreases strictly. Roughly speaking, it focuses instead
on the possible inner recursive calls of rules (the so-called dependency pairs). This leads
to constraints on suitable orderings that are much easier to fulfil. For details, see [2].
This approach has been made even more powerful by use of multiple refinements: in
particular it can benefit greatly from the analysis of a dependency graph, especially
when different orderings can be used [13].

Regarding certification of automated proofs, the project A3PAT1 aims at improving
cooperation between automated provers and skeptical proof assistants [9]. The idea is
to get some proof trace from an (efficient) automated prover and translate it into a proof
script which can be certified by a targeted proof assistant (which often lacks automa-
tion), possibly with the help of dedicated libraries. Eventually we obtain automatically a
proof of the wanted theorem. One original point of our approach is that it mixes shallow
and deep embeddings, this may ease the work of the proof assistant significantly. This
work takes place in project A3PAT and focuses on proofs involving graph analysis.

Regarding termination in particular, a few libraries model the base theory of depen-
dency pairs [9,8,7]. However, regarding the use of graphs, some properties may require
heavy computations and particularly involved algorithmics, and may be very difficult to
overcome for a proof assistant (even with the help of dedicated libraries). For instance
the strong version of the enhanced dependency graph theorem [13] states that one has
to find a suitable ordering “for each cycle of the graph”, that is: the property has to be
shown for each cycle separately, and moreover one has to prove that all cycles have
been considered. Applying directly such a theorem is currently out of reach regarding
the size of graphs that occur in the practice of termination proof.

We propose here a method which allows certification of (termination) proofs based
on a graph analysis. Our technique can manage efficiently graphs containing thousands
of arcs; it is implemented in the prototype developed by the A3PAT project [9]. Our
prototype instantiates our approach and generates termination proof scripts that just
have to be compiled and type-checked by the COQ proof assistant2, possibly with the
help of our library COCCINELLE [8].

It is to date the only one able to use the power of the enhanced graph criterion in its
strongest version (yet without the so-called usable rules). We consider enhanced graph
criteria [13] only as they are much more powerful than original ones [2] which they
subsume; for the sake of readability, we will simply write “graph criteria”.

Since our approach uses shallow embedding, we describe an instantiation of it, on
termination proofs. Thus, in Preliminaries, we will recall some notions and results about
graphs, termination of term rewriting, termination proofs and the DP approach with
graphs refinements. As noted in [9] and pictured as processors in [15] criteria can be
expressed in a uniform setting. We will see in Section 3 that we can even write them as
formal inference rules. For each of the considered graph criteria, we will give the corre-
sponding rule. Then, in Section 4, we will focus on how we model dependency graphs

1 http://a3pat.ensiie.fr
2 http://coq.inria.fr

http://a3pat.ensiie.fr
http://coq.inria.fr

Certifying a Termination Criterion Based on Graphs, without Graphs 185

so as to certify termination proof using a proof assistant like Coq. We will eventually
provide some experiments to illustrate the efficiency of our approach.

2 Preliminaries

We assume the reader to be familiar with basic concepts of graphs [6], and of term
rewriting [11,5] and termination, in particular with the Dependency Pairs approach [2].
We recall the usual notions, and give our notations.

2.1 Graphs

Definition 1 (Graph, Path). A graph G is a pair (N, A) where N is a set of vertices,
and A ⊂ N2 is a set of arcs. We say that an arc a = (n1, n2) goes from vertex n1 to
vertex n2 (noted n1 #→G n2).
A finite path from a vertex u to a vertex v is a sequence of arcs
(u #→ n0, . . . , mi #→ ni, . . . , mk−1 #→ v) such that ∀i, 0 < i < k, ni−1 = mi. In our
case a path is completely determined by the sequence of vertices that it encounters.

Definition 2 (Subgraph). let G = (D , A) be a graph, the subgraph of G generated by
D ′ ⊂ D is the graph GD′ = (D ′, A′) such that A ⊇ A′ = {n #→ n′ | n, n′ ∈ D ′}. We
also note G\d the subgraph GD\d.

Definition 3 (Strongly connected parts of a graph). Let G = (N, A) be a graph. A
strongly connected part (scp) of G is a subset C of N such that for all a, b ∈ C there is
a path from a to b in subgraph GC . We denote SCP(G) the set of all scp of G.

A strongly connected component (scc) of a graph G is a maximal strongly connected
part of G. We denote SCC(G) the set of all scc of G.

In the example below, we see that a scc contains a set of scp:

SCP
(

1 2
)

=
{

1 2 ; 2 ; 1 2
}

Definition 4 (directed acyclic graph of connected components). Let G be a graph.
The directed acyclic graph (DAG) of strongly connected components of G is the graph:
GSCC = (SCC(G), {c1 #→ c2|c1, c2 ∈ SCC(G) and ∃(n1, n2) ∈ c1 × c2, n1 #→G n2}).

It is easy to see that GSCC is the directed acyclic graph of strongly connected compo-
nents of G since components are maximal strongly connected parts. All graphs in this
work are finite, in particular #→+

GSCC is a finite (well-founded) ordering.

2.2 Rewriting

A signature F is a finite set of symbols with arities. Let X be a countable set of vari-
ables; T (F , X) denotes the set of finite terms on F and X . Λ(t) is the symbol at root
position in term t. We write t|p for the subterm of t at position p and t[u]p for term t

186 P. Courtieu, J. Forest, and X. Urbain

where t|p has been replaced by u. Substitutions are mappings from variables to terms
and tσ denotes the application of a substitution σ to a term t.

A term rewriting system (TRS for short) over a signature F is a set R of rewrite
rules l → r with l, r ∈ T (F , X). In this work we restrict to finite systems. A TRS R
defines a monotonic relation→R closed under substitution (aka a rewrite relation) in
the following way: s →R t (s reduces to t) if there is a position p such that s|p = lσ
and t = s[rσ]p for a rule l → r ∈ R and a substitution σ. We shall omit systems and
positions that are clear from the context. We denote the reflexive-transitive closure of a
relation→ by→�. Symbols occurring at root position in the left-hand sides of rules in
R are said to be defined, the others are said to be constructors.

A term is R-strongly normalizable (R-SN) if it cannot reduce infinitely many times
for →R. A rewrite relation →R terminates if any term is R-SN, which we denote
SN(→R). In such case we may say that R terminates. This is equivalent to ←R is
well-founded that is, every term is accessible for←R.

Dependency pairs. In this section, we briefly recall main definitions and results about
dependency pairs, dependency chains and dependency graphs. We introduce some of
our notations.

Definition 5 (Dependency pairs, Dependency chain [2]). The set of un-
marked dependency pairs of a TRS R, denoted DP(R) is defined as
{〈u, v〉 | u→ t ∈ R and t|p = v and Λ(v) is defined}. Let D be a set of depen-
dency pairs, a dependency chain in D is a sequence of dependency pairs 〈ui, vi〉 with
a substitution σ such that

∀i, viσ
�=Λ �−−−→

R
ui+1σ

It is worth noticing that distinguishing root symbols of dependency pairs (by means
of marks, or ’tuple-symbols’) enhances significantly this technique. Marking or not
dependency pairs does not interfere with our approach, thus for readability’s sake, we
will restrict to unmarked pairs. Further note that our approach and prototype handle
marks without any problem [9].

Definition 6. Given a TRS R, we note s→DPR(D) t iff s
�=Λ �−−−→

R
uσ

Λ−−−−−→
〈u,v〉∈D

vσ ≡ t.

The main theorem of dependency pairs of [2] can be rephrased using the DPR relation:

Theorem 1 (Dependency Pairs Criterion). Let R be a TRS,→DPR(DP(R)) terminates
if and only if→R terminates.

Termination of relation→DPR(D) may be directly proved by mean of an ordering pair,
a very general notion of which may be found in [19]. Due to our definition of the DPR
relation, we use a slightly restricted definition of those but it does not interfere with the
topic of this work.

Definition 7 (Ordering pair). An ordering pair is a pair (%, >) of relations over
T (F , X) such that: 1) % is a quasi-ordering, i.e. reflexive and transitive, 2) > is a
strict ordering, i.e. irreflexive and transitive, and 3) % ·> = >.
An ordering pair (%, >) is well-founded if there is no infinite strictly decreasing se-
quence t1 > t2 > . . . , which we denote WF(%, >).

Certifying a Termination Criterion Based on Graphs, without Graphs 187

An effective corollary of Theorem 1 consists in discovering a well-founded ordering
pair (%, >) for which →R⊆% and u > v for all 〈u, v〉 ∈ D to prove that →DPR(D)

terminates.
Many efficient termination tools (see for instance [14, 17, 10]) use this criterion as a

first step. Then, one is left with proving that there is no infinite dependency chain. In
the following we describe the graph criterion which allows to split this proof into easier
ones.

Dependency Pairs with graph. Not all DPs can follow another in a dependency chain,
one may consider the graph of possible sequences of DPs. Note that since we restricted
to finite TRSs, this graph is finite. Thus, each dependency chain corresponds to a path
in this graph. Therefore if there is no infinite path corresponding to a dependency chain
in the graph, then there is no infinite dependency chain.

Definition 8 (Dependency graph [2]). Let R be a rewriting system. The dependency
graph of R is the graph G = (DP(R), A) where 〈s, t〉 #→ 〈s′, t′〉 ∈ A if and only if there

exists a substitution σ such that tσ
�=Λ �−−−→ s′σ.

Remark 1. It is worth noticing that this graph (D , A) is not computable, so one uses a
sound approximation i.e., a graph (D , A′ ⊇ A) that contains it. Arts & Giesl proposed
a simple yet efficient approximation, namely connectability (with REN/CAP) [2]. The
approximation we choose to implement in our prototype corresponds to this simple one
(see Section 4.2).

The (enhanced) graph refinement, as stated by Giesl, Arts and Ohlebusch is:

Theorem 2 (Dependency graph refinement [13]). A TRS R terminates if and only if
for each circuit C in the dependency graph there exists no infinite dependency chain of
dependency pairs of C.

Note that it is not sufficient to consider elementary cycles instead of circuits3 (for a
counterexample, see [4]).

Further note that proving in a proof assistant that his theorem can be applied to a
particular termination problem amounts to proving that all cycles have been considered,
which is difficult in practice. We provide hereafter an approach to avoid this problem.

2.3 Modelling Rewriting and Graphs in COQ

The goal of our methodology and prototype is to be able to derive with full automation,
from the definition of a rewrite system R, a proof certified (i.e. checked) by a skeptical
proof assistant. Regarding termination proofs, our tool generates a lemma of the form
well_founded R together with its proof.

We will reuse the model we introduced in [9]. We only recall here the notions and
notations used in this paper.

We illustrate our approach using the COQ proof assistant which is based on type
theory and enjoys in particular the ability to define inductive types to express inductive

3 This is why we use the word ”circuit” instead of the original ”cycle”, cf. [6].

188 P. Courtieu, J. Forest, and X. Urbain

data types and inductive properties, and a very expressive tactic language. Tactics in
COQ unsafely produce proof terms which are safely validated at saving time by type
checking the proof.

If R is the relation modelling a TRS R, we should write R u t (which means u < t)
when a term t rewrites to a term u. For the sake of readability we will use as much as
possible the COQ notation: t -[R]> u (and t -[R]*> u for t→∗ u) instead.

We use in this work a deep embedding for term algebras and shallow em-
bedding for rewriting relations. In COQ scripts below a term f(x, y, z) will
be denoted Term f [x;y;z], and f(x, y, z) →�

R g(a, z) will be denoted
Term f [x;y;z] -[R]*> Term g [a;z].

3 Formalizing Graph Refinements

Our project aims at making skeptical proof assistants and automated provers cooperate.
Hence, our presentation of the graph refinement differs from the original one from Arts
and Giesl [2] in order to fit our general scheme for proving properties on graphs. Such a
general scheme could form a basis for a general trace language, similar to the processors
setting [14]. For example, in our framework, Theorem 1 is expressed formally by the
following inference rule:

SN(→DPR(DP(R)))
SN(→R)

DP

The graph criterion consists in proving that there is no infinite dependency chain by
proving that circuits in the graph cannot be crossed infinitely many times by a depen-
dency chain. For the sake of simplicity, we consider strongly connected parts (finite
sets of vertices) instead of circuits (finite sequences of arcs). In particular, a strongly
connected part corresponds to a set of circuits. This choice is particularly convenient
since our relation DPR is also parameterized by a set of pairs (i.e. vertices).

Definition 9. Let P be a strongly connected part of a dependency graph, we denote
by SNG(P) the property that there is no reduction in→DPR(P) such that each vertex
of P is crossed infinitely many times. For X =

⋃
0≤i<k Pi, we denote SNG

{
X
}
≡∧

0≤i<k SNG(Pi).

The main theorem of the graph criterion can be rephrased as follows:

Theorem 3 (graph criterion). Let R be a rewriting system, let G be its dependency
graph. Let P1, . . . , Pk be the k scp of G (the Pi ∈ SCP(G) are the subgraphs of G).

SN(→DPR(DP(R))) if and only if SNG
{⋃k

i=1 Pi

}
.

Remark 2. If G is a sound approximation of the dependency graph of a TRS R, then
only the if direction is true.

This theorem can in turn be expressed by the following inference rule:

SNG
{
SCP(G)

}
SN(→DPR(DP(R)))

GRAPH

Certifying a Termination Criterion Based on Graphs, without Graphs 189

Where G is the (approximated) dependency graph of R. Note that the termination proof
of each scp may be done using a different ordering. In practice this is expensive. Instead,
we will gather scp into subsets of SCP(G), which will be recursively proved to be
terminating separately. Actually, the graph criterion can be completed by the following
rule for recursive splitting:

SNG
{

X1

}
. . . SNG

{
Xk

}
SNG

{
X
} SUBGRAPH

where
⋃

1≤i≤k Xi = X .
Since the set of strongly connected components covers all scp of G, one way to

use the graph criterion is to prove that→DPR(Xi) terminates for all Xi ∈ SCC(G). A
weak version of the graph criterion consists in providing for each strongly connected
component an ordering pair that decreases strictly for all its vertices, and weakly for all
rules of the initial system.

The whole termination proof for a system R by this weak graph criterion may be
represented by a proof tree like:

ORD

WF(≤1, <1) →R⊆ ≤1

→DPR(GC1) ⊆ <1

SNG
{
SCP(C1)

}
. . .

WF(≤k, <k) →R⊆ ≤k

→DPR(GCk
) ⊆ <k

SNG
{
SCP(Ck)

} ORD

SN(→DPR(DP(R)))
SN(→R)

DP

GRAPH

Where G is the (approximated) dependency graph of R, and C1 . . . Ck are the strongly
connected components.

The graph criterion in its strong version consists in partitioning the set of scp of G in
parts smaller than scc. An efficient technique, due to Middledorp and Hirokawa [16], is
to apply recursively the following steps for each scc C of G:

1. choose a node p = 〈t, u〉 of C;
2. prove that each scp D containing p is such that SNG(D);
3. prove (recursively) that each scp of the remaining graph is SNG.

This technique can be formalized by the following application of SUBGRAPH:

SUBGRAPH
SNG

{
SCP(G\〈t, u〉)

}
SNG

{
{P ∈ SCP(G)|〈t, u〉 ∈ P}

}
SNG

{
SCP(G)

}
where 〈t, u〉 ∈ G. Notice that the rule SUBGRAPH is applied correctly since
SCP(G\〈t, u〉) ∪ {P ∈ SCP(G)|〈t, u〉 ∈ P} = SCP(G).

Usually step 3 is done by computing G1 . . .Gn (the scc of G\〈t, u〉), and by applying
recursively the SUBGRAPH rule to each Gi until one of the following happens:

– there is no more scc,
– one finds an ordering pair (≤, <) such that→R⊆ ≤ and →DPR(G)⊆<.

Usually step 2 is done by discovering a well-founded ordering pair (≤, <) such that
→R⊆ ≤,→DPR(C\〈t,u〉)⊆≤ and t < u. This is rule VERTEX.

Finally a typical graph criterion application is illustrated by Figure 1.

190 P. Courtieu, J. Forest, and X. Urbain

SUBGRAPH

SUBGRAPH

...

SNG
˘

SCP(G1)
¯

. . .

...

SNG
˘

SCP(Gk

¯
SNG

˘
SCP(G\〈t, u〉)

¯
WF(≤, <) t < u
→R⊆ ≤ →DPR(G\〈t,u〉)⊆≤

SNG
˘

{P ∈ SCP(G)|〈t, u〉 ∈ P}
¯ VERTEX

SNG
˘

SCP(G)
¯

where G1 . . . Gk are scc of G\〈t, u〉.

Fig. 1. Typical application of strong graph criterion

4 Mechanical Certification of the Graph Refinement

The key point of our approach is that the graph will be defined implicitly. We never
actually model a graph, we just use a set of vertices and a relation between them to build
it implicitly as we prove the relevant property on its parts, in a hierarchical fashion.
Regarding termination proofs: vertices will be dependency pairs, a pair p1 will be in
relation with a pair p2 if p1p2 may occur in a dependency chain.

In the formal proof that is generated automatically by our technique, each rule ap-
plied corresponds to an independent lemma. We described the proof techniques rele-
vant to some of these rules in a previous work [9]. Some of these lemmas are proved
using generic theorems previously formalized in a deep embedding, some others are
proved by generating directly a shallow embedded proof. Graph refinement rules are
of the latter category. As explained in the introduction, the reason is that the premises
of rules GRAPH and SUBGRAPH are computationally hard to deal with. For exam-
ple to prove an application of rule SUBGRAPH one has not only to prove recursively
SNG

{
X1

}
. . . SNG

{
Xk

}
but also to prove that

⋃
1≤i≤k Xi = X . Such complete-

ness properties are known to be difficult to prove.
Instead of relying on a generic proof of GRAPH and SUBGRAPH, we generate a

direct proof for each application of these rules. This proof is done by induction on the
possible dependency chains in the initial graph X . In particular this induction follows a
graph that is now implicit.

Suppose we have to prove an application of a graph refinement as shown in Figure 1.
The goal of our methodology is to build from this tree (output by an automated tool), a
formal proof of the property SNG

{
SCP(G)

}
. To that purpose, we4 will generate two

lemmas proved by different techniques:

– SNG
{
SCP(G\〈t, u〉)

}
⇒ SNG

{
SCP(G)

}
proved by induction on the well-

founded ordering <, and
– SNG

{
SCP(G\〈t, u〉)

}
proved by a hierarchical decomposition of G\〈t, u〉.

We describe this hierarchical decomposition in more details in the next section.

4.1 Hierarchical Decomposition of SCC(G)

In order to prove SNG
{
SCP(G\〈t, u〉)

}
in a shallow embedded way, we proceed as

follows:
4 More precisely “the tool in which this approach is implemented”, since all this is done without

any human interaction.

Certifying a Termination Criterion Based on Graphs, without Graphs 191

– Compute the DAG (G\〈t, u〉)SCC .
– Prove successively, for each sub-DAG Si (rooted by Gi) and in a bottom-up fashion:(∧

S⊂Si
SNG

{
SCP(S)

})
⇒ SNG

{
SCP(Si)

}
(See Figure 3 for an example).

Therefore we can formalize this part of the proof as follows:

SUBGRAPH

∧
Si

((∧
S⊂Si

SNG
{
SCP(S)

})
⇒ SNG

{
SCP(Si)

})

SNG
{
SCP(G\〈t, u〉)

}
Each proof of

(∧
S⊂Si

SNG
{
SCP(S)

})
⇒ SNG

{
SCP(Si)

}
is done by pro-

ceeding the same way recursively with the proofs of SNG
{
SCP(Gi)

}
from Figure 1.

4.2 Formalization of Hierarchical Decomposition

Dependency chains. In our methodology dependency graphs and sub-graphs are not
concrete. Instead, we will work directly on dependency chains which we model by
inductive relations. Using inductive types, reasoning on all possible dependency chains
can be done by induction on the definition of the relation.

For example suppose we have a scc SCC defined by the set of pairs:

SCC = {〈plus(s x,y), plus(x,y)〉, 〈plus(x,s y), plus(x,y)〉}

The corresponding dependency chain relation is generated as follows:

Inductive SCC : term → term → term:=
SCC0: ∀V0 V1, x -[R]*> S(V0) → y -[R]*> V1

→ plus(x,y) -[SCC]> plus(V0,V1)
| SCC1: ∀V0 V1, x -[R]*> V0 → y -[R]*> s(V1)

→ plus(x,y) -[SCC]> plus(V0,V1)

Note that SCC y x is exactly equivalent to x →DPR(SCC) y, in particular notice how
head reduction by R is disallowed by construction. Further note that this relation is not
constructively defined: for instance the set of terms x such that x -[R]*> S(V0) is
not defined explicitly and actually, it cannot be computed in general. There are several
possible approximations of this set as noted in Remark 1. In our methodology the ap-
proximation lies, during reasoning, in the way we discard terms t that cannot reduce to
u. Currently our generated proofs implement the simple connectability relation of Arts
& Giesl [2].

Sub-DAGs of the dependency chains. A scp Gi of the graph G implicitly modelled
by DPR is built by restraining the constructors of SCC to the set of pairs inside Gi.
For example let us consider the following graph corresponding to the relation above:

0 1 . The scp of SCC containing only pair 〈plus(s x,y), plus(x,y)〉 is

modelled by the following relation, which corresponds to 0 :

Inductive SCP0 : term → term → term:=
SCP00: ∀V0 V1, x -[R]*> S(V0) → y -[R]*> V1

→ plus(x,y) -[SCP0]> plus(V0,V1)

192 P. Courtieu, J. Forest, and X. Urbain

Finally, to prove
∧

Si

((∧
S⊂Si

SNG
{
SCP(S)

})
⇒ SNG

{
SCP(Si)

})
as ex-

plained above, we prove the following equivalent lemmas:

Lemma Acc_S0: ∀x y, SCC0 x y → Acc SCC x.
...
Lemma Acc_Sn: ∀x y, SCCn x y → Acc SCC x.

The proof of Acc_Si may use any Acc_Sj for j<i. Note that the conclusion is about
accessibility in the current graph instead of the well-foundedness of the sub-DAG Si.
Since all dependency chains starting in SCC_i can only stay in Si, those lemmas are
equivalent to

∧
Si

((∧
S⊂Si

SNG
{
SCP(S)

})
⇒ SNG

{
SCP(Si)

})
.

5 Examples

5.1 A Weak Graph Criterion Example

The example R1 below is due to Arts and Giesl [1] and computes the sum of the ele-
ments of a list:

app(nil, k) → k
app(l, nil) → l
app(cons(x,l), k) → cons(x, app(l, k))
sum(cons(x,nil)) → cons(x,nil)
sum(cons(x,cons(y,l))) → sum(cons(plus(x,y),l))
sum(app(l,cons(x,cons(y,k)))) → sum(app(l,sum(cons(x,cons(y,k)))))
plus(0,y) → y
plus(s(x),y) →s(plus(x,y)))

The dependency pairs of this system are the following:

1 : 〈plus(s(x),y),plus(x,y)〉
2 : 〈sum(app(l,cons(x,cons(y,k)))),sum(cons(x, cons(y,k)))〉
3 : 〈sum(app(l,cons(x,cons(y,k)))),app(l,sum(cons(x,cons(y,k))))〉
4 : 〈sum(app(l,cons(x,cons(y,k)))),sum(app(l,sum(cons(x,cons(y,k)))))〉
5 : 〈sum(cons(x,cons(y,l))),plus(x,y)〉
6 : 〈sum(cons(x,cons(y,l))),sum(cons(plus(x,y),l))〉
7 : 〈app(cons(x,l),k),app(l,k)〉

The (approximated) dependency graph, the induced DAG of scc and corresponding sub-
DAGs may be found Figure 2 and Figure 3. Each scc is modelled by the corresponding
sub-relation of DPR:

Inductive SCC0 : term → term → Prop :=
| SCC00 : ∀x0 x1 V2 V3,

x0 -[R]*> Term s [V2] → x1 -[R]*> V3

→ Term plus [x0;x1] -[SCC0]> Term plus [V2;V3].

Certifying a Termination Criterion Based on Graphs, without Graphs 193

156

7

2

3

4

SCC0: 1

SCC1: 6

SCC2: 7

SCC3: 4

Fig. 2. Dependency graph of R1 and its scc

SCC0SCC1

SCC2

SCC3 SCC0SCC1

SCC2

SCC3

S0S1

S2S3

Fig. 3. DAG of scc of R1 and corresponding sub-DAGs

Inductive SCC1 : term → term → Prop :=
| SCC10 : ∀x0 V1 V2 V3,

x0 -[R]*> (Term cons [V2; (Term cons (V3;V1))])
→ (Term sum [x0])

-[SCC1]> Term sum [Term cons [Term plus [V2; V3];V1]].

Inductive SCC2 : term → term → Prop :=
| SCC20 : ∀x0 x1 V0 V1 V2, x0 -[R]*> (Term cons [V2;V1])

→ x1 -[R]*> V0
→ Term app [x0;x1] -[SCC2]> Term app [V1;V0].

Inductive SCC3 : term → term → Prop :=
| SCC30 : ∀x0 V0 V1 V2 V3,

x0 -[R]*> Term app [V1;Term cons [V2;Term cons [V3;V0])]] →
Term sum [x0] -[SCC3]>
Term sum [Term app

[V1;Term sum [Term cons [V2;term cons [V3;V0]]]]].

Each scc is proved to be terminating using a different ordering by classical induction
(see [9]). Then the final proof of SNG(G) (well_founded DPR below) must be built.
We show below how this is done by composing results on sub-DAGs in a bottom-up
fashion as described in Section 4.2.

194 P. Courtieu, J. Forest, and X. Urbain

(*Now suppose scc are SNG and prove that then DPR is well-founded.*)
Hypothesis Well_Founded_SCC0 : well_founded SCC0.
Hypothesis Well_Founded_SCC1 : well_founded SCC1.
Hypothesis Well_Founded_SCC2 : well_founded SCC2.
Hypothesis Well_Founded_SCC3 : well_founded SCC3.

Lemma Acc_SCC0 : ∀x y, SCC0 x y → Acc DPR x.
Proof. (*well-founded induction on SCC0.*) Qed.

Lemma Acc_SCC1 : ∀x y, SCC1 x y → Acc DPR x.
Proof. (*well-founded induction on SCC1 + Acc_SCC0.*) Qed.

Lemma Acc_SCC2 : ∀x y, SCC2 x y → Acc DPR x.
Proof. (*well-founded induction on SCC2. *) Qed.

Lemma Acc_SCC3 : ∀x y, SCC3 x y → Acc DPR x.
Proof. (*well-founded induction on SCC3 + Acc_SCC1 + Acc_SCC2.*) Qed.

Lemma Well_Founded_DPR : well_founded DPR.
Proof. (*case analysis on DPR + Acc_SCC3.*) Qed.

5.2 A Strong Graph Criterion Example

The example below is also due to Arts and Giesl [3] and checks whether the first argu-
ment of evenodd is even or not.

not(true) →false
not(false) →true
evenodd(x,0) →not(evenodd(x,s(0)))
evenodd(0,s(0)) →false
evenodd(s(x),s(0)) →evenodd(x,0)

The dependency pairs of this new system is:

1 : 〈evenodd(x,0), evenodd(x,s(0))〉
2 : 〈evenodd(s(x),s(0)), evenodd(x,0)〉
3 : 〈evenodd(x,0), not(evenodd(x,s(0)))〉

The corresponding (approximated) dependency graph is : 2 13 and

its only scc is SCC0 : 2 1

The first step of the graph proof is very similar to the previous example one:

Inductive SCC0 : term →term →Prop :=
| SCC01 : ∀x0 x1 V0,

x0 -[R]*> V0 →x1 -[R]*> Term 0 [] →
Term evenodd [x0;x1] -[SCC0]>
Term evenodd [V0;Term s [Term 0 []]]

Certifying a Termination Criterion Based on Graphs, without Graphs 195

| SCC02 : ∀x0 x1 V0,
x0 -[R]*> Term s [V0] →x1 -[R]*> Term s [Term 0 []] →
Term evenodd [x0;x1] -[SCC0]> Term evenodd [V0;Term 0 []]

Variable Well_Founded_SCC0 : well_founded SCC0.

Lemma Acc_SCC0 : ∀x y, SCC0 x y →Acc DPR x.
Proof. (*well-founded induction on SCC0.*) Qed.

Lemma Well_Founded_DPR : well_founded DPR.
Proof. (*case analysis on DPR + Well_Founded_SCC0.*) Qed.

Despite the simplicity of this graph, our automated (termination) prover does use the
enhanced version of the graph criterion in order to split the single component SCC0. The
pair 2 is strictly oriented by the discovered ordering pair while the pair 1 is only weakly
oriented.

The proof of SNG
{
SCP(SCC0)

}
is obtained as follows :

Inductive SCC0_large : term →term →Prop :=
| SCC0_large1 : ∀x0 x1 V0,

x0 -[R]*> V0 →x1 -[R]*> Term 0 [] →
Term evenodd [x0;x1] -[SCC0]>
Term evenodd [V0;Term s [Term 0 []]]

Variable Well_Founded_SCC0_large : well_founded SCC0_large.

Inductive SCC0_strict : term →term →Prop :=
| SCC0_strict1 : ∀x0 x1 V0,

x0 -[R]*> Term s [V0] →x1 -[R]*> Term s [Term 0 []] →
Term evenodd [x0;x1] -[SCC0]> Term evenodd [V0;Term 0 []]

Variable lt le : term →term →Prop.
Hypothesis lt_le_compat : ∀x y z, lt x y →le y z →lt x z.
Hypothesis wf_lt : well_founded lt.
Hypothesis SCC0_strict_in_lt :
Relation_Definitions.inclusion _ SCC0_strict lt.

Hypothesis SCC_large_in_le :
Relation_Definitions.inclusion _ SCC0_large le.

Lemma Well_Founded_SCC0 : well_founded SCC0.
Proof. (*well-founded induction on lt and SCC0_large+

case analysis on SCC0*) Qed.

6 Experiments

Our approach is implemented in a prototype which is an automated prover dedicated to
termination, based on a restricted version of the termination engine of CiME 2.04 [10].
We ran experiments using this technique on a 3GHz, 8GB, Debian-linux machine. Up

196 P. Courtieu, J. Forest, and X. Urbain

to now it gives termination certificates for more than 550 problems of the Termination
Problems DataBase (TPDB) 4.05 (i.e. ∼27% of the standard category, some problems
of which being non-terminating). It is important to notice that the limiting factor in
these results is not the certification process itself but the termination techniques used by
the prototype! Actually, all proofs found by the prototype are certified by COQ.

Some interesting proofs should be highlighted here. We can certify prob-
lems with 159 nodes (TRS/TRCSR/PALINDROME complete-noand FR.trs, cer-
tified in 568.77 s), with 1015 edges (TRS/TRCSR/ExSec11 1 Luc02a iGM.trs,
certified in 113.49s), with 10 strongly connected components at top level
(TRS/TRCSR/inn/Ex26 Luc03b C.trs, certified in 78.80s) or even using 6 times
graph splitting (TRS/TRCSR/Ex9 BLR02 iGM.trs.v, certified in 64.15s).

Of course, the certification time for those examples is not representative of the av-
erage certification time. It emphasizes what we are able to certify in the TPDB’s worst
cases. Further note that the certification time takes all the certification process into ac-
count (orderings, etc.) and not only the graph management. Yet, those times are still
reasonable for such tricky examples.

The average certification time on all certified problems is 14s (83% of them are
certified in less than 15s and 58% in less than 5s). This makes our approach exploitable
in practice, for developments where (involved) proofs of well-foundedness are required.

7 Conclusion

We described an approach to deal efficiently with some graph analysis in skeptical proof
assistants. This approach is based on proof scripts generation and uses well-founded
induction and dependent inductive types. One of the key points is that induction on the
paths in the graph can be simulated by judicious generation of intermediate lemmas
that propagate the desired property along the arcs. It benefits from shallow embedding
by handling the graph implicitly, without any concrete model. Thus, some premises
that would be difficult to prove in a full deep embedding setting (like completeness, for
instance) are avoided.

Regarding termination proofs, this technique is fully implemented in a prototype in
the context of the A3PAT project; the prototype is available and can be tried online from
the web-page of the project: http://a3pat.ensiie.fr. Note that our implementa-
tion takes benefit of the expressive tactic language of Coq. Experiments with our proto-
type illustrate the power of this approach, in particular it allows us to certify in COQ, in
a few seconds, (scripts of) termination proofs that rely on the circuit analysis of graphs
consisting of more than a thousand arcs. Another approach for certifying termination
proofs is the Rainbow+Color approach [7], which is based on deep embedding only.
Restricted to termination problems, the Color library models several orderings, among
which powerful orderings induced by matrix interpretations. However it cannot handle
graph criteria as involved as Theorem 2.

Although we illustrate our approach through its instantiation for termination proofs
in COQ, it is general enough to adapt to other skeptical proof assistant (e.g. Is-
abelle/HOL [20]), provided that the targeted assistant is powerful enough to handle

5 http://www.lri.fr/∼marche/tpdb

http://www.lri.fr/~marche/tpdb

Certifying a Termination Criterion Based on Graphs, without Graphs 197

inductive relations and associated reasoning tools, provides a mechanism to deal with
well-founded induction and enjoys an expressive enough tactic language. Among the
perspectives, a first one could be to implement this approach in other assistants than
COQ. A second one could be to generalize this shallow model + external prover tech-
nique to deal with generic graph analysis and other properties that rely on it.

Acknowledgments

The authors would like to thank Christiane Goaziou for her help in improving the read-
ability of this paper, and the anonymous referees for their comments.

References

1. Arts, T., Giesl, J.: Automatically Proving Termination Where Simplification Orderings Fail.
In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214. Springer, Heidelberg (1997)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science 236, 133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using depen-
dency pairs. Technical report, RWTH Aachen (September 2001)

4. Arts, T., Giesl, J.: Verification of Erlang Processes by Dependency Pairs. Application Algebra
in Engineering, Communication and Computing 12(1,2), 39–72 (2001)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)

6. Berge, C.: Graphs, 3rd edn. North-Holland mathematical library, vol. 6. North-Holland, Am-
sterdam (1991)

7. Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: Color, a coq library
on rewriting and termination. In: Geser, A., Sondergaard, H. (eds.) Extended Abstracts of the
8th International Workshop on Termination, WST 2006 (August 2006)

8. Contejean, É.: The Coccinelle library for rewriting,
http://www.lri.fr/∼contejea/Coccinelle/coccinelle.html

9. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of automated ter-
mination proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp.
148–162. Springer, Heidelberg (2007)

10. Contejean, É., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with
CiME. In: Rubio, A. (ed.) Extended Abstracts of the 6th International Workshop on Termina-
tion, WST 2003, June 2003, pp. 71–73 (2003), http://cime.lri.fr

11. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)

12. Endrullis, J.: Jambox, http://joerg.endrullis.de/index.html
13. Giesl, J.: Thomas Arts, and Enno Ohlebusch. Modular Termination Proofs for Rewriting

Using Dependency Pairs 34, 21–58 (2002)
14. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination proofs in

the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130. Springer, Heidelberg (2006)

15. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Depen-
dency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

16. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)

http://www.lri.fr/~contejea/Coccinelle/coccinelle.html
http://cime.lri.fr
http://joerg.endrullis.de/index.html

198 P. Courtieu, J. Forest, and X. Urbain

17. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005.
LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)

18. Koprowski, A.: TPA., http://www.win.tue.nl/tpa
19. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Nadathur,

G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg (1999)
20. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-

berg (2002)
21. The Coq Development Team. The Coq Proof Assistant Documentation – Version V8.1 (Feb-

ruary 2007), http://coq.inria.fr

http://www.win.tue.nl/tpa
http://coq.inria.fr

Lightweight Separation

Holger Gast

Wilhelm-Schickard-Institut für Informatik
University of Tübingen

gast@informatik.uni-tuebingen.de

Abstract. Lightweight separation is a novel approach to automatic rea-
soning about memory updates in pointer programs. It replaces the spatial
formulae of separation logic, which complicate automation, by indepen-
dent assertions about the memory content and the memory layout. As a
result, assertions about the content can be treated by existing reasoners.
The effect of memory updates is evaluated using specialized tactics that
prove disjointness of memory regions from a given memory layout.

1 Introduction

Separation logic [20, 17] has proven a powerful tool for specifying and verifying
algorithms that work on mutable heap data structures. Its spatial formulae cap-
ture the structure and content of the heap precisely: E #→ F holds on heaps
with domain {E} where F is stored at address E; spatial conjunction P ∗ Q
holds on heaps that can be split such that P and Q hold for the disjoint parts.
Specifications in separation logic are tight, i.e. a correct program never accesses
memory outside of the heap specified in its precondition. A general frame rule
then allows local specifications of procedures to be adapted at the call site.

Separation logic has a direct shallow embedding into higher-order logic
[23, 1, 22, 2], but reasoning about programs requires a substantial amount of
manual interaction, despite the sophisticated automation available in current
proof assistants. Different reasons for this shortcoming have been identified in
the literature. Appel [1] observes that separation logic is a linear logic, such
that classical reasoners do not apply. Tuch [21] points out that the definition
of spatial conjunction contains existential quantification, which is known to re-
quire human insight in proofs. Weber [23] argues that separation logic is not
finitely axiomatizable [8], hence the goal can only be a comprehensive library of
theorems.

We will investigate the pragmatic view that the spatial formulae of separation
logic restrict access to those formulae that existing reasoners would handle well:
the assertions about the content of memory are at least partially hidden below
spatial conjunctions. Our goal is therefore to replace spatial formulae by asser-
tions about the memory layout, such that the memory content can be specified
independently in classical higher-order logic. This approach is lightweight in that
it does not impose a structure on verification rules, assertions, and proofs in the
way that separation logic does (e.g. [1,2]).

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 199–214, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

gast@informatik.uni-tuebingen.de

200 H. Gast

The approach poses the obvious challenge that each assertion about the mem-
ory content is potentially affected by each memory update in the program. We
use conditional rewrite rules to evaluate the effects of memory updates:

is-valid (block a len ‖ typed-block Γ a’ t)

rd Γ a’ t (STORE a len M’ M) = rd Γ a’ t M

In this rule, rd fetches a typed value from address a and STORE represents one
update of len bytes at address a. M is the current, M’ a previous memory state.
The update can be discarded if the read and the modified memory regions do
not overlap, which is expressed in the rule’s premise. The disjointness in the
premise will be derived from the given memory layout by specialized tactics.

This paper’s contribution is a framework, developed in Isabelle/HOL, which
uses memory layouts to simplify the effect of memory updates, to discharge
side-conditions on the allocatedness of memory regions, and which maintains
the layouts themselves through memory updates, allocation, and deallocation.
We apply the approach to a low-level language with memory-allocated local
variables, references to variables, and structured data types.

Organization of the Paper Section 2 surveys Isabelle’s notation and simplifier.
Section 3 describes the low-level language that serves as an application of our
framework. Section 4 formalizes memory layouts and derives their properties.
Section 5 describes the tactics for reasoning about the effects of memory updates.
Section 6 applies the framework to the in-place list reversal algorithm. Section 7
surveys related work. Section 8 discusses future work and concludes.

2 Isabelle Syntax and Simplifier

The syntax of Isabelle/HOL follows standard mathematical conventions, with
a few exceptions. In Isabelle’s meta-logic, [[P1; . . . ; Pn]]=⇒Q denotes implication
of Q by P1, . . . , Pn. Meta-level forall quantification of P over x1, . . . , xn is written∧

x1, . . . , xn.P . s ≡ t is meta-level equality. The type of total functions from τ
to τ ′ is written τ ⇒ τ ′. τ ⇀ τ ′ = τ ⇒ τ ′ option is used for partial functions.
Type variables are written ′a, ′b, . . . Type ′a set denotes the sets over ′a. {a ..< b}
is the half-closed interval [a, b).

Isabelle’s simplifier [19, §10] is a flexible rewriting engine whose operation is
controlled by simpsets. We use three advanced elements of simpsets: the premises,
simplification procedures, and the subgoaler. The premises of a simpset are theo-
rems representing the local assumptions valid at the redex. When the simplifier
is invoked on a goal [[P1; . . . ; Pn]]=⇒Q, it simplifies each Pi using the remaining
Pj as premises, and simplifies Q with premises P1, . . . , Pn. Simplification pro-
cedures [19, §10.2.5] are ML functions that compute rewrite rules on demand.
Simpsets associate simplification procedures with term patterns. When a redex
matches a pattern, the simplifier calls the corresponding procedure with the cur-
rent simpset and the redex. The procedure may then prove a theorem that the
simplifier will apply as a rewrite rule. The subgoaler [19, §10.2.7] of a simpset

Lightweight Separation 201

is a specialized tactic for solving the premises of conditional rewrite rules. To
apply a rule [[C1; . . . ; Cn]]=⇒A ≡ B, the simplifier matches A against the redex
and and calls the subgoaler with the instantiated premises C1σ, . . . , Cnσ and the
current simpset.

3 A Low-Level Language

L0 is a prototypical low-level language that shares many aspects with C, but
ignores its semantic subtleties [16]. Its main features are memory-allocated local
variables and an unrestricted address operator. Since our focus is on reasoning
about memory updates, the presentation in this section is necessarily brief.

3.1 Types and Contexts

Types in L0 are used to determine the size of data objects.
datatype ty = TVoid | TNat | TBool | TPtr ty | TStruct string

Contexts, denoted by Γ , store the definitions of structs, and the types and ad-
dresses of local variables. The representation of local variables as an association
list simplifies reasoning about block-structured allocation and deallocation.

record ctx =
ctx-structs :: ”string ⇀ (string × ty) list”
ctx-vars :: ”(string × (addr × ty)) list”

The size of types is given by inductively defined predicates tysz Γ t l and
tyszs Γ F l, where t is a type, F is a list of fields, and l is the length as a
natural number. Type TVoid has size 0, the primitive types have size 1. tyszs
gives the size of a struct type as the sum of the field sizes. The auxiliary predicate
field-data Γ t f d l t′ yields the offset d, the length l, and the type t′ for field f of
struct type t in context Γ . A type t is well-formed in context Γ , written wf-ty Γ t,
if it has a size. This definition allows the use of C-style incomplete types. The
definition of tysz and tyszs as a least fixpoint ensures that well-formed types have
no cyclic references. The predicate is-field Γ t f asserts that struct type t is well-
formed in Γ and has a field f . The function sz-of-ty Γ t = (THE s. tysz Γ t s)
facilitates reasoning about type sizes using the definite description operator from
Isabelle/HOL. Likewise, addr-of Γ x and type-of Γ x, and sz-of Γ x yield the
address, type, and size of local variable x in context Γ using the.

3.2 Memory Model

Memory is a partial mapping from addresses to numbers. Values are represented
as lists of numbers [16, 22]. Memory operations are total functions memory ⇒
memory, but they mark memory invalid for accesses outside of the domain. A
memory state is well-formed if it is valid and has a finite domain.

record memory =
m-dom :: addr set
m-cnt :: addr ⇒ nat
m-valid :: bool

types
addr = nat
val = nat list

wf-mem M ≡ m-valid M ∧ mem-finite M

202 H. Gast

The field m-valid is a history variable [21]: it does not influence the behaviour
of memory operations, but records illegal accesses. Side-conditions in the Hoare-
logic will guarantee that correct programs do not invalidate memory.
The operations fetch and store follow heap-list and heap-update from [22].

fetch :: addr ⇒ nat ⇒ memory ⇒ (nat list × memory)
fetch a 0 M = ([],M)
fetch a (Suc l) M = (let (vs’,M’) = fetch (a + 1) l M

in if a ∈ m-dom M
then (m-cnt M a # vs’, M’)
else (arbitrary # vs’, M’ (| m-valid := False |)))

store :: addr ⇒ nat list ⇒ memory ⇒ memory
store a [] M = M
store a (v # vs) M = (let M’ = store (Suc a) vs M

in if a ∈ m-dom M’
then M’ (| m-cnt := (m-cnt M’) (a := v) |)
else M’ (| m-valid := False |))

The function alloc abstracts over the allocation strategy using Hilbert’s choice
operator. Deallocation restricts the domain of the memory state.

alloc :: nat ⇒ memory ⇒ (addr × memory)
alloc l M ≡ (let c = (ε a. { a ..< a + l } ∩ m-dom M = {})

in (c, M (| m-dom := m-dom M ∪ { c..< c + l } |)))
dealloc :: addr ⇒ nat ⇒ memory ⇒ memory
dealloc a l M ≡ (if { a ..< a+l } ⊆ m-dom M

then M (| m-dom := m-dom M - { a ..< a+l } |)
else M (| m-valid := False |))

The terms fetch-val a l M, fetch-M a l M, alloc-a a M, and alloc-M a M abbreviate the
first and second components, respectively, of the corresponding fetch and alloc.

3.3 State Updates for Forward-Reasoning

Separation logic is usually formulated with forward-style verification rules [17,20,
5,1]. Logics for forward reasoning have not been discussed extensively in the litera-
ture on mechanized Hoare logics, butFloyd’s assignment axiom generalizes readily.

{ P } x := e { ∃x′. P [x′/x] ∧ x = e[x′/x] }

The post-condition here is obtained by replacing references to x in both the pre-
condition and the (side-effect-free) expression e by an existentially quantified
variable x′ denoting the old value of x. The generalization consists in inverse
operators that cancel the effects of memory operators from Section 3.2. The
definition of ALLOC is the definition of dealloc, and we omit it for brevity.

STORE :: addr ⇒ nat ⇒ memory ⇒ memory ⇒ memory
STORE a l M’ M ≡ (if { a ..< a+l } ⊆ m-dom M

then M (| m-cnt := λb. if b ∈ { a ..< a + l }
then m-cnt M’ b else m-cnt M b |)

else M (| m-valid := False |))
ALLOC :: addr ⇒ nat ⇒ memory ⇒ memory
DEALLOC :: addr ⇒ nat ⇒ memory ⇒ memory
DEALLOC a l M ≡ (if m-dom M ∩ { a ..< a+l } = {}

then M (| m-dom := m-dom M ∪ { a ..< a+ l } |)
else M (| m-valid := False |))

Lightweight Separation 203

3.4 Language, Semantics, and External Syntax

Expressions in L0 imitate low-level intermediate languages. Type annotations at
all operators and constants determine the size of the handled values. Variable
types are kept in the context. Primitive operators are given explicitly by values
of types prim1 and prim2, which also contain the parameter and return types.

EVar string
ECnat nat
ENil ty

EDeref ty exp
EAddr exp
EAcc exp ty string
EAssign ty exp exp

EPrim1 prim1 exp
EPrim2 prim2 exp exp
ENew ty
EFree ty exp

The statement language is standard and is omitted for brevity. It includes if,
while, and block statements. Expressions can be executed as statements. Block
statements contain local variable declarations as a list of names and types.

L0 uses a standard big-step semantics for expressions and statements. Evalu-
ation of expressions as l-values and r-values (in the sense of C, see [16]) is defined
inductively by relations Γl M ,e→a,M ′ and Γr M ,e →v,M ′, where a is the ad-
dress of the l-value, v is the r-value of type val, M is the old memory state and
M ′ is the new memory state. The statement semantics is given by the relation
Γsm M , s →M ′.

In the following, we highlight two properties that are crucial for the Hoare
logic. Like any fetch operation, pointer dereferencing for an r-value may inval-
idate memory. to-ptr lifts a value of type val to type addr by taking its first
element.

[[Γ r M0, e → vs’, M1;
(vs,M2) = fetch (to-ptr vs’) (sz-of-ty Γ t) M1

]] =⇒ Γ r M0, EDeref t e → vs,M2

Local variables are memory-allocated. The execution of block statements uses
alloc-var and dealloc-var, defined in terms of alloc and dealloc. Declaration d
is a pair of name and type; the type determines the size of the allocated memory.

[[(x,M1) = alloc-var Γ0 d M0;
Γ1 = Γ0 (| ctx-vars := x # ctx-vars Γ0 |);
Γ1 sm M1,SBlock decls sm → M2;
M3 = dealloc-var Γ1 x M2

]] =⇒ Γ0 sm M0, SBlock (d # decls) sm → M3

L0 expressions are very verbose. We therefore define an external syntax [19, §6.1]
for statements, expressions, and types, and register a parse-translation function
[19, §8.6] that creates the internal representation. It includes a type-checker that
resolves overloading of primitive operators and computes type annotations by
Hindley/Milner type inference. Assertions in Hoare triples are also pre-processed:
names of declared local variables are replaced by a read access to the variables.
A corresponding print-translation reverses these effects for display.

3.5 Hoare Logic

The following memory access functions are used in assertions. rd and rdv yield a
value from address a and variable x, respectively. tyval asserts that a value has
the correct length for a given type.

204 H. Gast

rd Γ a t ≡ λM. fetch-val a (sz-of-ty Γ t) M
rdv Γ x ≡ λM. rd Γ (addr-of Γ x) (type-of Γ x) M
tyval Γ vs t ≡ (length vs = sz-of-ty Γ t)

The inverse operator STORE is lifted to STORE-TYPED Γ a t and STORE-VAR Γ

x. Analogous lifted versions exist for ALLOC and DEALLOC. The inverse opera-
tor ADD-VAR x Γ cancels the addition of x to Γ ; DEL-VAR (x,t) a Γ re-inserts the
variable x with type t and address a.

The assertions in Hoare triples for statements are of type ctx⇒memory⇒bool.
Post-conditions on expressions have access to the computed result [13]. Well-
formedness of memory is an implicit invariant of all correct programs.

|=l { P } e { Q } ≡ (∀Γ M M’ a. wf-mem M −→ P Γ M
−→ Γ l M, e → a, M’ −→ wf-mem M’ ∧ Q Γ M’ a)

|=r { P } e { Q } ≡ (∀ Γ M M’ vs. wf-mem M −→ P Γ M
−→ Γ r M, e → vs, M’ −→ wf-mem M’ ∧ Q Γ M’ vs)

|=sm { P } s { Q } ≡ (∀ Γ M M’. wf-mem M −→ P Γ M
−→ Γ sm M,s → M’ −→ wf-mem M’ ∧ Q Γ M’)

Sound verification rules are obtained as lemmata about Hoare triples. We illus-
trate those aspects that concern memory reasoning. Pointer dereferencing for
an r-value shows the expected side-condition on the allocatedness of the read
region. The relation � is introduced in Section 4.1.

[[|=r { P0 } e { P1 };
∀ Γ M vs. P1 Γ M vs −→ M � typed-block Γ (to-ptr vs) t

]] =⇒ |=r { P0 } EDeref t e { λΓ M vs. ∃ vs’. vs = rd Γ (to-ptr vs’) t M ∧ P1 Γ M vs’}
Assignment introduces the inverse operator STORE into the post-condition. The
side-condition concerns the allocatedness of the modified memory region.

[[|=l { P0 } e1 { P1 };
∀ a. (|=r { λΓ M. P1 Γ M a } e2 { P2 a } ∧

∀Γ M vs. P2 a Γ M vs −→ M � typed-block Γ a t ∧ tyval Γ vs t)
]] =⇒ |=l { P0 } EAssign t e1 e2

{ λΓ M a. ∃ M’ vs. P2 a Γ (STORE a (sz-of-ty Γ t) M’ M) vs ∧ vs = rd Γ a t M }
Block-statements allocate and deallocate local variables. The side-condition on
the allocatedness of x could be replaced by the invariant that local variables
remain allocated throughout their lifetime. For L0, we have opted for simplicity.

[[|=sm { λΓ M. type-of Γ x = t ∧ P0 (ADD-VAR x Γ) (ALLOC-VAR Γ x M) }
SBlock decls s { P2 };

∀ Γ M. P2 Γ M −→ M � var-block Γ x
]] =⇒ |=sm { P0 } SBlock ((x,t) # decls) s
{ λΓ M. ∃ a. P2 (DEL-VAR (x,t) a Γ) (DEALLOC-VAR (DEL-VAR (x,t) a Γ) x M) }

4 Formalizing Memory Layouts

We split the presentation of lightweight separation into two parts. This section
contains the definition and properties of covers and their use in formalizing mem-
ory layouts. The next Section 5 describes the tactics that use these properties
to automate memory reasoning.

Lightweight Separation 205

4.1 Covers

A cover is a predicate on address sets; it is well-formed if it yields true for a
single set. We will call address sets memory regions, and speak of the memory
region covered by a well-formed cover. A cover is valid if it covers some region.

types cover = addr set ⇒ bool
wf-cover A ≡ (∀S S’. A S −→ A S’ −→ S = S’)
is-valid A ≡ (∃S. A S)

Well-formed covers are interchangeable with the regions that they cover. It is
this property which will enable many manipulations on memory layouts that
would be invalid on spatial formulae of separation logic.

The relations M
.= A, read “M is covered by A” and M � A, read “A is

allocated in M” allow covers to be treated as descriptions of the memory layout.
Both relations hold only on valid memory, because no assertion must be made
about invalid, hence corrupt memory.

M .
= A ≡ m-valid M ∧ A (m-dom M)

M � A ≡ m-valid M ∧ (∃S. S ⊆ m-dom M ∧ A S)
The subcover relation A ' B asserts that A covers a part of the region covered
by B and that validity of B implies validity of A. It is both reflexive and transitive
for arbitrary covers and antisymmetric for well-formed covers.

A � B ≡ ∀S. B S −→ (∃S’. S’ ⊆ S ∧ A S’)
Lemma (1) below reduces proving allocatedness of memory regions to proving a
subcover relation if a memory layout is given. Lemma (2) uses antisymmetry to
derive a complete layout B from a given layout A. The significance of the fact
is-valid A in the third premise will be clarified in Section 4.2.

[[M .
= A; B � A]] =⇒ M � B (1)

[[M .
= A; B � A; is-valid A =⇒ A � B; wf-cover A]] =⇒ M .

= B (2)

The matchcover relation A ≺ B is a weaker variant of subcover. It asserts that
validity of B implies validity of A, but does not relate their covered regions. The
tactics will employ it to reason about disjointness independently of allocatedness.

A ≺ B ≡ ∀S. B S −→ (∃S’. A S’)
The following Lemma (3) reduces proving validity to proving a matchcover re-
lation if a memory layout is given. Since valid layout expressions (Section 4.2)
can capture disjointness, this lemma is central to lightweight separation.

[[M .
= A; B ≺ A]] =⇒ is-valid B (3)

4.2 Layout Expressions

The memory layout is captured by nested covers, which we call layout expres-
sions. The base of the layout expressions are blocks, which cover an interval of
addresses. The empty cover covers the empty region.

block a l ≡ λS. S = {a ..< a + l} Empty ≡ λA . A = {}

206 H. Gast

A typed-block Γ a t covers the block at a with the size of t; a var-block Γ x covers
the memory region of variable x. Note that all blocks are well-formed and valid.

The following combinators of type cover⇒cover⇒cover build nested layout ex-
pressions. A cover that is not constructed by one of them is a layout block.

”A ‖ B ≡ λS. ∃S1 S2. A S1 ∧ B S2 ∧ S = S1 ∪ S2 ∧ S1 ∩ S2 = {}”
”A \ B ≡ λS. ∃S1 S2. A S1 ∧ B S2 ∧ S2 ⊆ S1 ∧ S = S1 - S2”
”A | B ≡ λS. ∃S2. A S ∧ B S2 ∧ S ∩ S2 = {}”

The cover A ‖B, read disjoint, covers the union of the disjoint memory regions
covered by A and B. Note that it parallels spatial conjunction of separation logic,
but does not consider the memory content. As an operator, ‖ is both associative
and commutative. A ‖B is well-formed if both A and B are well-formed.

The operators clip A \B and weak disjointness A |B capture memory deallo-
cation. The cover A \B asserts that the memory region covered by B has been
deallocated, but that region is still covered by A. The cover A |B, on the other
hand, asserts that the memory region covered by A does not contain the region
covered by B.1 Both A |B and A \B are well-formed if A and B are well-formed.

The tactics of Section 5 use clipping as an intermediate step towards the layout
after deallocation. The following lemmata provide the basis for removing clip.
(4) shows that removing A from A yields an empty block, which is, of course,
disjoint from A. The Lemmata (5) allow this replacement to occur recursively, on
both side of ‖ and on the left, the allocated side, of |. Note that the deallocated
part C is kept with the already deallocated D in this last case.

[[wf-cover C; is-valid C; A = C]] =⇒ A \ C = Empty | C (4)
[[wf-cover C; C � A; (A \ C) = A’]] =⇒ ((A ‖ B) \ C) = (A’ ‖ B) | C
[[wf-cover C; C � B; B \ C = B’]] =⇒ ((A ‖ B) \ C) = (A ‖ B’) | C
[[wf-cover C; C � A; (A \ C) = A’]] =⇒ ((A | D) \ C) = (A’ | (D ‖ C)) | C

(5)

Several applications of weak disjointness in a row are redundant.

((A | C) ‖ B) | C = (A ‖ B) | C
(A ‖ (B | C)) | C = (A ‖ B) | C
((A | C) | (B ‖ C)) | C = (A | (B ‖ C)) | C

(6)

Proving allocatedness and disjointness is reduced to proving subcovers by Lem-
mata (1) and (3). The right-hand side then is a known memory layout, and the
left-hand side must be proven to be a fragment of it. Lemmata (7) is used to
focus on parts of the right-hand-side. Lemma (8) allows subcovers on disjoint
regions to be proven independently. Lemma (9) shows that the covered region is
immaterial for matchcover.

A � A ‖ B
B � A ‖ B A � A | B A ≺ A ‖ B

B ≺ A ‖ B
A ≺ A | B
B ≺ A | B (7)

[[A � A’; B � B’]] =⇒ A ‖ B � A’ ‖ B’ (8)
A ‖ C ≺ A | C (9)

1 Weak disjointness avoids a well-known incompleteness [5] of separation logic. The
triple {E �→ F ∗ E′ �→ F ′} dispose(E) {emp ∗ E′ �→ F ′} is provable, but looses
information, since postcondition does not imply E �= E′. Operator A | B is defined
to maintain just this lost information.

Lightweight Separation 207

Lemmata (10) and (11) parallel (7) and (8) for the left-hand-side. Their repeated
application removes weak disjointness from the third premise of (2). Note that
cover B in (2) will not contain the combinator | during forward reasoning.

[[is-valid (A | B); is-valid A =⇒ A � A’; wf-cover A]] =⇒ A | B � A’ (10)
[[is-valid (A ‖ B); is-valid A =⇒ A � A’; is-valid B =⇒ B � B’]] =⇒ A ‖ B � A’ ‖ B’

(11)

5 Simplification of Memory Updates

This section describes the specialized tactics that simplify memory updates in
verification conditions. Sections 5.1 and 5.2 reduce this problem to proving sub-
covers and eliminating clip. Sections 5.3– 5.5 describe the implemented tactics.

5.1 A Framework of Modifiers and Accessors

The Hoare logic introduces several memory operators, which take memory states
to memory states, and several memory accessors, which read a particular value
from memory. We define two types:

mem-op = memory ⇒ memory
’a mem-acc = memory ⇒ ’a

The following two predicates characterize the behaviour of memory operators
and memory accessors using covers: modifies asserts that mop does not change
the memory state outside the region covered by A, accesses asserts that the result
value does not depend on the memory state outside of region A.

modifies mop M A ≡ eqv-outside A M (mop M)
accesses ac M A ≡ ∀M’. eqv-inside A M M’ −→ ac M = ac M’

The equivalence relation eqv-insideAM M ′ checks thatm-domM a = m-domM ′ a
and m-cnt M a = m-cnt M ′ a for all addresses a covered by A. eqv-outside does
the same for all addresses not covered by A. With these definitions, we have:

[[modifies mop M A; accesses mac M B;
wf-cover A; wf-cover B;
is-valid (A ‖ B)

]] =⇒ mac (mop M) = mac M

(12)

Lemma (12) serves as a generator for rewrite rules that simplify memory update
operators in assertions. For each accessor and operator from Sections 3.3 and 3.5,
we prove a lemma of the following form.

lemma STORE-TYPED-modifies[sepmod]:
”modifies (STORE-TYPED Γ a t M’) M (typed-block Γ a t)”

lemma rd-accesses[sepacc]:
”accesses (rd Γ a t) M (typed-block Γ a t)”

The attributes sepmod and sepacc declare the lemmata as modifier and accessor
theorems, respectively. The framework resolves each pair of modifier/accessor the-
orems against the first two premises of Lemma (12), solves the wf-cover premises by

208 H. Gast

theorems with attribute sepwfcover, and uses the result as a conditional rewrite
rule like (13). The implemented tactics (Section 5.5) register a subgoaler that
proves the premise from a given memory layout.

is-valid (typed-block Γ a t ‖ typed-block Γ ’ a’ ta)
=⇒ rd Γ ’ a’ ta (STORE-TYPED Γ a t M’ M) = rd Γ ’ a’ ta M (13)

5.2 Simplifying the Memory Layouts

The memory state M obviously appears in assertions M
.= A, such that these

terms need to be simplified as well. For the left-hand-side, we can derive rewrite
rules for the inverse operators from Sections 3.3 and 3.5 based on these:

block a l � A =⇒ (STORE a l M’ M .
= A) = (M .

= A)
(ALLOC a l M .

= A) = (M .
= A ‖ block a l)

(DEALLOC a l M .
= A) = (M .

= A \ block a l)

Note how allocation and deallocation directly influence the layout expressions
describing the memory layout, while STORE has the obvious proof obligation as
a premise. The clip operator will be removed in Section 5.4.

The assertion M
.= A may contain, for example, list-cover (Section 6), and

therefore M itself, within A. We can prove a sepacc lemma for list-cover, but no
simplification can take place, since the memory layout M

.= A is not available as
a premise during simplification of A. The solution is to register a simplification
procedure (Section 2) that produces rewrite rules M

.= A ≡M
.= A′, where the

memory operators in A have been removed in A′. The procedure selects each
layout block B of A in turn, and computes Â with A = Â B. It then proves:

M
.= A = (∃C.M

.= Â C ∧ C = B)
(†)
= (∃C.M

.= Â C ∧ C = B′) = M
.= Â B′

The equality (†) is resolved using variants of the Isabelle/HOL congruence rules
for ∃ and ∧. The result is a goal of the form

M
.= Â C =⇒ (C = B) = (C = B′)

Now the rewrites from Section 5.1 can be applied to B. Any disjointness derivable
from A that does not involve B is also derivable from Â C. Layout blocks like list-
cover, however, access their own covered area. Lemma (14) provides the missing
rewrite rules, using again pairs of modifier/accessor theorems.

[[modifies mop M A;
�

M’. accesses mac M’ (mac M’);
wf-cover A;

�
M’. wf-cover (mac M’);

is-valid (A ‖ C)
]] =⇒ (C = mac (mop M)) = (C = mac M)

(14)

5.3 Proving Subcover Relations

The basis of automation of memory reasoning is the tactic prove_subcover,
which solves goals of the form A ' B and A ≺ B. The procedure is motivated
by example goals that arise from applications of Lemmata (3), (1), and (2).

Lightweight Separation 209

A ‖ B ' B ‖ C ‖ A ‖ F (15)
A ‖ B ‖ E ' ((A ‖ B) | C) ‖ E | F (16)

A ‖ B ≺ B ‖ C | (A ‖ F) (17)
A ‖ B ‖ E ‖ F ≺ ((A ‖ B) | C) ‖ E | F (18)

A ‖ B ‖ C ≺ ((A ‖ B) | C) ‖ E | F (19)

In the following, we leave applications of transitivity and reflexivity implicit.
Goal (15) has only ‖ operators on both sides of the subcover relation. It suf-
fices to rearrange the layout blocks using commutativity and associativity into
A ‖ B ‖ Empty ' A ‖ B ‖ C ‖ F and to apply (8) repeatedly to achieve trivial
goals. Goal (16) is resolved like Goal (15), after the weak disjointness operators
on the right have been removed by Lemmata (7) and (8). Goal (17) exploits the
top-level weak disjointness; after an application of (9), the goal has the form
of (15). Goal (18) is a combination of Goals (17) and Goal (16), in that the
nested weak disjointness can be discarded while the top-level one must be ex-
ploited. Goal (19) is solved by bringing the inner weak disjointness to the top
using Lemmata (7), and then proceeding in (17).

Note also that the following Goal (20) can not be derived, because block E
may have been allocated in the region covered by the deallocated C.

C ‖ E ≺ ((A ‖ B) | C) ‖ E | F (20)

Applications of Lemma (2) during forward resolution can lead to subcover goals
with weak disjointness on the left, as in Goal (21) below. However, these occur-
rences are removed by Lemmata (10) and (11).

is-valid (B ‖ C | (A ‖ F)) =⇒ B ‖ C | (A ‖ F) ' B ‖ C (21)

These examples motivate the following procedure for proving A ' B or A ≺ B.

1. Remove weak disjointness on the left-hand-side. (Goal (21))
2. Match the layout blocks of A with the layout blocks of B.

Determine the layout blocks A1, . . . , An and B1, . . . , Bm of A and B. For
each i = 1 . . . n, find a block Bji such that theorem Ai ' Bji can be proven.
Store also the paths pi and qji of Ai and Bji from the root of the layout
expression. Fail if ji = ji′ for some i, i′.

3. Drop common the prefix of qj1 , . . . , qjn from B. (Goal (19))
4. Convert ≺ to '. (Goal (17))
5. Remove weak disjointness on the right-hand-side. (Goals (16), (20))
6. Align matching layout blocks on left- and right-hand-side.

Use commutativity and associativity and the path information from Step 2.
7. Solve the goal recursively.

Use (Lemma 8) and the theorems from Step 2.

Step 2 contains the opportunity for automatic unfolding. Suppose that Ai and Ai′

are different fields in the same struct covered by Bj . By definition of the struct,
we can prove Ai ' Bj and Ai′ ' Bj . The the resulting equality ji = ji′ then
serves as a trigger for unfolding of Bj into its constituent fields.

210 H. Gast

5.4 Simplifying Clip

The clip operator A \B leaves implicit which part covered by A has been deal-
located. The cover must be simplified into some A′ |B in which the part of A
matching B does no longer occur in A′. Here are typical examples:

(A‖B‖C‖D)\A = (B‖C‖D)|A (22)
(A‖B|C)\A = (B|(C‖A)) (23)

(A‖B|(C‖D))\A = (B|(C‖D‖A)) (24)

In Example (22), one of the allocated blocks is removed. Example (23) demon-
strates that the term (B |C |A) is not a solution, because it loses the information
that A and C are disjoint. Example (24) applies this insight again.

A simplification procedure clipproc computes the above rewrite rules as fol-
lows. Given a cover A \B, it recursively searches for the layout block B within A.
When called on C \A and A is found in C, the search returns two theorems:
C \B = C′ |B and B ' C. In the base case, it uses Lemma (4) and reflexivity
of subcover. In the recursion step, it resolves the two theorems obtained from
the recursive call against the premises of one of the Lemmata (5).

5.5 Implemented Tactics

We have implemented the lightweight separation framework in the form of four
tactics. Tactic sep invokes the Isabelle simplifier with the conditional rewrite
rules from Section 5.1, the simplification procedure from Section 5.4, and a
special subgoaler. The subgoaler resolves the is-valid-premise of a rewrite rule
(13) by Lemma (3), resolves that lemma’s first premise with a premise from the
passed simpset, and proves the remaining matchcover relation by the procedure
from Section 5.3. Tactic ctx registers only the simplification procedure from
Section 5.2. Tactic lift rewrites the goal with rules declared as lift, among
them the lifts from STORE to STORE-TYPED and STORE-VAR from Section 3.5.

Tactic hoare implements a verification condition generator for forward rea-
soning. It repeatedly applies one verification rule from Section 3.5 and then
applies tactics lift, ctx, and sep to the resulting post-condition. It stops if
some inverse operator cannot be removed, if a non-trivial side-condition is to be
proven, and after the if and while rules have introduced the outcome of the
test into the precondition. At these points, the user can apply arbitrary tactics
before resuming the verification by another invocation of hoare.

6 Example: List Reversal

The algorithm for the reversal of a singly-linked list has been used frequently
for comparing different approaches to the verification of pointer programs [6,
14, 1, 21]. Figure 1 states the specification and algorithm in L0 (Section 3.4).
The VERIFY keyword triggers the parse translation from the external syntax, the

Lightweight Separation 211

lemma list-reversal:
”∀ XS. VERIFY VAR p : * struct node; VAR q : * struct node;
|=sm { node-known Γ ∧ M .

= p ‖ q ‖ list-cover Γ p M ∧ list-vals Γ p XS M }
BEGIN
q = nil;
{INV node-known Γ ∧ M .

= p ‖ q ‖ list-cover Γ p M ‖ list-cover Γ q M ∧
(∃PS QS. list-vals Γ p PS M ∧ list-vals Γ q QS M ∧ XS = (rev QS) @ PS) }

WHILE p != nil DO
BEGIN VAR t : * struct node;

t = (*p). next;
(*p). next = q;
q = p;
p = t

END
END

{ M .
= p ‖ q ‖ list-cover Γ q M ∧ list-vals Γ q (rev XS) M }”

Fig. 1. List Reversal

subsequent VAR declarations are used to type-check the program. The outermost
forall quantifier introduces the auxiliary variable XS [14].

The assertions in the example demonstrate the independent treatment of
memory layout and memory content in lightweight separation. The content of
a list is captured in the standard way (e.g. [14, 21]) by an inductively defined
predicate list-vals Γ p XS M, where the values of the HOL list XS are stored in the
data fields of the singly-linked list starting at p. Note that the predicate can be
used freely in HOL terms, e.g. below an existential quantifier in the invariant.

The assertions about the memory layout require a cover for the nodes of a
linked list. The struct node with fields data (L0-type nat) and next (L0-type *struct
node) represents list nodes. The predicate node-known states that struct node is
defined in context Γ . The functions node-data-rd and node-next-rd read the fields’
content. The cover for the list is given by the following inductive definition.

[[p = nil; S = {}]] =⇒ list-cover Γ p M S
[[p �= nil; (typed-block Γ (to-ptr p) (TStruct ”node”)

‖ list-cover Γ (node-next-rd Γ (to-ptr p) M) M) S
]] =⇒ list-cover Γ p M S

To use the framework from Section 5.1, we show that list-cover is a well-formed
cover and as a memory operator accesses the addresses covered by itself; list-vals
accesses the corresponding list-cover.

node-known Γ =⇒ accesses (list-cover Γ p) M (list-cover Γ p M)
node-known Γ =⇒ accesses (list-vals Γ p vs) M (list-cover Γ p M)

The verification of the algorithm then consists of 17 steps, 7 of which are in-
vocations of the hoare tactic. The main proof obligations are straightforward.
After the existentially quantified PS has been instantiated to XS, Isabelle’s force
method proves that the loop invariant holds initially. Maintenance of the loop
invariant is proven by sep for the memory layout and by force for the memory
content. Note that the temporary variable t has been allocated and deallocated,
and that the list-cover in the memory layout has been simplified.

212 H. Gast

Within the loop body, the side-conditions on allocatedness (Section 3.5) and
the applications of ctx and sep (Section 5) require the memory layout in different
levels of detail: For some, the individual node fields need to be exposed, others
use the entire list-cover. The user must therefore fold or unfold these structures
manually using equalities like the following.

node-known Γ =⇒
typed-block Γ a (TStruct ”node”) =

field-block Γ a (TStruct ”node”) ”data” ‖ field-block Γ a (TStruct ”node”) ”next”
When the automatic unfolding mechanism sketched in Section 5.3 is imple-
mented, the proof is reduced to 12 lines, 5 of which are applications of hoare,
and the others solve the natural proof obligations described above.

7 Related Work

Appel [1] provides tactics to manipulate spatial conjunctions in forward veri-
fication. His approach is to lift pure assertions, which do not access the heap,
to assertions about the empty heap. The tactics facilitate access to such pure
spatial conjuncts: they extract equalities for rewriting, apply lemmata to specific
conjuncts, and solve trivial implications between spatial formulae by rearrang-
ing conjuncts. The general problem remains that the application of Hoare rules
places syntactic restrictions on the pre-condition, and these restrictions must
be resolved by hand. The example verifications in [1, Section 5] therefore still
require a number of technical insights.

Tuch et al. [22] use separation logic for reasoning about C programs by lifting
an untyped memory to a typed view, where distinct types occupy disjoint mem-
ory regions [7]. They also lift proof obligations about raw memory updates to
goals in separation logic [22, §5.2], but do not provide specific support for rea-
soning in separation logic. Tuch [21] extends the approach to structured types
and provides rewrite rules that exploit disjointness of parts within a structured
value. He reports using 67 lines for the verification of the list-reversal algorithm.

A different line of research aims at completely automatic verification [5,4,15]
and shape analysis [9, 11, 3] using separation logic. These approaches focus on
the shape of data structures and restrict formulae to the form Π ∧Σ, where Π
is a pure conjunction of pointer equalities and inequalities, and Σ is a spatial
conjunction. Automation is achieved by a decidable entailment relation between
the restricted formulae (e.g. [5, §4]). Unfortunately, the restrictions also preclude
general assertions, such as about the values stored in a linked list.

While separation logic aims at describing the layout of heaps explicitly, many
languages maintain the invariant that the data objects of different types and the
different fields of the same struct do not overlap on the heap [7]. This insight
has proven very successful for mechanized reasoning about pointer programs
[10, 6, 14]. However, the assertions there need to contain explicit inequalities
between pointers that must be reasoned about manually. Recently, this model has
been complemented by a static analysis that discharges many of the remaining
disjointness conditions [12]. Since the invariant cannot be circumvented even
locally [22], these approaches do not apply to low-level programs.

Lightweight Separation 213

8 Conclusion

Lightweight separation replaces the spatial formulae of separation logic by layout
expressions that capture the disjointness of memory regions in classical higher-
order logic. Assertions about the memory content likewise remain classical pred-
icates, such that existing reasoners can be applied. A framework of specialized
tactics removes memory updates from verification conditions and discharges side-
conditions on allocatedness.

This paper has introduced the method of lightweight separation, focussing on
the automation of memory reasoning. Two extensions will be described in com-
panion papers. First, the formalization of (nested) structured datatypes with
automatic unfolding (Sections 5.3 and 6). Second, the extension of L0 by proce-
dures, which require the following variant of the frame rule [20]: preconditions of
procedures contain the memory layout M .

= R ‖ A, where A is the region accessed
by the procedure and R is an auxiliary variable [18] covering the remaining mem-
ory. Pre- and post-condition contain eqv-inside R M0 M with auxiliary variable M0.
The framework generates additional simplification rules by instantiating the fol-
lowing lemma with modifier theorems:

[[
�

M. modifies mop M A;
is-valid (A ‖ B);
wf-cover A; wf-cover B

]] =⇒ eqv-inside B M (mop M’) = eqv-inside B M M’

Since the procedure does not modify R, the post-condition eqv-inside R M0 M
can be proven. By instantiating M0 with the pre-state, and proving the arising
tautology in the precondition, the caller gets the assertion that the post-state is
unchanged from the pre-state within R, which can in turn be used to simplify
the memory operators introduced by the procedure call.

References

1. Appel, A.W.: Tactics for separation logic (January 2006),
http://www.cs.princeton.edu/∼appel/papers/septacs.pdf

2. Appel, A.W., Blazy, S.: Separation logic for small-step C minor. In: Schneider, K.,
Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg
(2007)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590. Springer, Heidelberg (2007)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111. Springer, Heidelberg (2006)

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

6. Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program
Construction (2000)

http://www.cs.princeton.edu/~appel/papers/septacs.pdf

214 H. Gast

7. Burstall, R.: Some techniques for proving correctness of programs which alter data
stuctures. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7. Edinburgh
University Press (1972)

8. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: FST TCS 2001: Proceedings
of the 21st Conference on Foundations of Software Technology and Theoretical
Computer Science, London, UK, 2001, pp. 108–119. Springer, London (2001)

9. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS,
vol. 3920, pp. 287–302. Springer, Heidelberg (2006)

10. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308. Springer, Heidel-
berg (2004)

11. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis with sepa-
rated heap abstractions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 240–260.
Springer, Heidelberg (2006)

12. Hubert, T., Marché, C.: Separation analysis for deductive verification. In: Heap
Analysis and Verification (HAV 2007), Braga, Portugal (March 2007)

13. Kowaltowski, T.: Axiomatic approach to side effects and general jumps. Acta In-
formatica 7, 357–360 (1977)

14. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Inf. Com-
put. 199(1-2), 200–227 (2005)

15. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

16. Norrish, M.: C formalised in HOL. PhD thesis, University of Cambridge, Technical
Report UCAM-CL-TR-453 (1998)

17. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

18. von Oheimb, D., Nipkow, T.: Hoare Logic for NanoJava: Auxiliary Variables, Side
Effects, and Virtual Methods Revisited. In: Eriksson, L.-H., Lindsay, P.A. (eds.)
FME 2002. LNCS, vol. 2391. Springer, Heidelberg (2002)

19. Paulson, L.C.: Isabelle – A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994)

20. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002) (2002)

21. Tuch, H.: Structured types and separation logic. In: 3rd International Workshop
on Systems Software Verification (SSV 2008) (February 2008)

22. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,
M., Felleisen, M. (eds.) Proc. 34th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2007), Nice, France (January 2007)

23. Weber, T.: Towards mechanized program verification with separation logic. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210. Springer, Heidel-
berg (2004)

Real Number Calculations and Theorem Proving

Validation and Use of an Exact Arithmetic

David R Lester

School of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom

dlester@cs.man.ac.uk

Abstract. When handling proofs of properties in the real world we
often need to assert that one numeric quantity is greater than another.
When these numeric quantities are real-valued, it is often tempting to
get out the calculator to calculate the values of the expressions and then
enter the results directly into the theorem prover as “facts” or axioms,
since formally proving the desired properties can often be very tiresome.
Obviously, such a procedure poses a few risks.

An alternative approach, presented in this paper, is to prove the cor-
rectness of an arbitrarily accurate calculator for the reals. If this calcula-
tor is expressed in terms of the underlying integer arithmetic operations
of the theorem-prover’s implementation language, then there is a rea-
sonable expectation that a practical evaluator of real-valued expressions
may have been constructed.

Obviously, there are some constraints imposed by computability the-
ory. It is well known, for example, that it is not possible to determine the
sign of a computable real in finite time. We show that for all practical
purposes, we need not worry about such fussy details. After all, mathe-
maticians have – throughout the centuries – been prepared to make such
calculations without being overly punctilious about the computability of
the operations they were performing!

We report on the experience of validating and using a real number
calculator in PVS.

Keywords: Computable Reals, Exact Arithmetic, Higher-order Logic,
PVS, Theorem Proving.

1 Introduction

My initial motivation to get involved with theorem proving was the recogni-
tion that without guarantees on its correctness, any work on exact arithmetic
was valueless. What is the point in generating arbitrarily accurate answers to
questions involving real arithmetic, if these answers cannot then be relied upon?
This paper presents a small arbitrary precision calculator written and validated
in PVS. To provide interest, the operations implemented include trigonometric
functions as well as exponential and logarithm. The implementation strategy is
that of “Fast Cauchy Sequences”; with a better quality range reduction than

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 215–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 D.R Lester

presented in this paper the technique is reasonably competitive in the world of
Exact Arithmetic. The library has exactly 500 theorems and will be distributed
as part of the NASA library for PVS; all proofs and type-checks are complete
and there are no AXIOMs. This is the culmination of work commenced in 1998,
and which has proceeded rather fitfully ever since. Initially, a certain amount of
work was undertaken to place the NASA library into a non-axiomatic footing.
The new material in this paper is that for sin(x), cos(x), exp(x) and log(x).
Previous work on basic operations is in [LG03] and that on power series and
inverse trigonometric functions is in [Les03].

2 Real Arithmetic and Computability

One of the obvious problems encountered when we seek to implement real arith-
metic on a computer is this: there are more real numbers than there are computer
programs. There are only countably many computer programs (and hence rep-
resentable real numbers), but Cantor showed that there are uncountably many
real numbers.

To address this issue much work has been done to impose a computabil-
ity structure onto, firstly, the real numbers (the so-called “Computable Re-
als” [Tur36, Tur37]), and to then investigate the consequences to real analysis
(or “Computable Analysis” [Grz55a,Grz55b,Grz57,Grz59,BB85,PER89]).

In a non-constructive theorem-proving setting (such as PVS [ORS92], or Is-
abelle/HOL [Pau94]) we can quite happily prove theorems about real numbers
and almost never have to face the issue of computability or constructivity. The
exceptions to this happy state of affairs involve actually calculating the values
of arithmetic expressions, and comparing their results. At this point we would
like to use the power of computers to perform these calculations. An obvious
alternative approach is to work in a constructive setting using a theorem-prover
such as Coq, as has been done in [Ber07, Jul08].

For those who’d like to see a formal definition of computable reals, it is as
follows [PER89].

Definition 1. The real number x is Computable if, and only if, there exists
three computable functions over the naturals n, d, s : N → N, such that for all
k ≥ n : N ∣∣∣∣x− (−1)s(k) n(k)

d(k)

∣∣∣∣ < 2−n

In other words a real number x is computable precisely when there is a com-
putable sequence of rational approximations that converge to x, and for which
the nth approximation is within 2−n of the value of x.

For the work presented in this paper, the above definition is not strictly re-
quired, as we instead relate our representation directly to the reals rather than
to the computable reals, relying on the underlying integer arithmetic functions
to be computable. However, the limitations on computability implied by our
definition inform the practicality of the methods we implement.

Real Number Calculations and Theorem Proving 217

Because we use the rounding operation so frequently, we use the following
notation.

Definition 2. Rounding is defined as (x) = (x + 1
2*.

In practical terms, then, here is what might realistically be able to implement.

Theorem 1. Every natural number i ∈ N is a computable real.

Proof. Take n(k) = i, d(k) = 1, and s(k) = 0 in Definition 1.

Theorem 2. If x and y are computable reals then the following operations are
computable and give computable real answers: x + y, x − y, xy, sin(x), cos(x),
arctan(x) (and hence π = 4 arctan(1) is computable), exp(x), max(x, y), and
min(x, y). In addition, if y �= 0 we can calculate x/y, if x ≥ 0 we can calculate√

(x) and if x > 0 we can calculate log(x).

Proof. We give a few of these proofs, to give a flavour. We begin with addition; if
x and y are computable reals then they each have an associated computable se-
quence of rational approximations xk = (−1)sx(k) nx(k)

dx(k) and yk = (−1)sy(k) ny(k)
dy(k) .

Let zk = (xk+1+yk+1
2), then |x + y − zk| < 2−k as required. In addition zk gives

rise to associated computable functions n(k), d(k), and s(k).
For max(x, y) we simply compare approximations. Let zk = max(xk, yk), then

|max(x, y)− zk| < 2−k as required.
For sin(x) we choose a Taylor series approximation P (x) that is within 2−(k+1)

of sin(x). Since | d
dx sin(x)| ≤ 1, and provided | d

dxP (x)| ≤ 2 on the open interval
(xk+2−2−(k+2), xk+2 +2−(k+2)) – which can be arranged by taking a sufficiently
good approximating polynomial – then

| sin(x)− P (xk+2)| < 2−k

as required.

At this point we might be feeling pretty smug about our prospects. The follow-
ing theorem removes this unfounded optimism and also dictates the nature of
computable analysis.

Theorem 3. If x and y are computable reals then the following operations are
not computable: x = y, x ≤ y and (x*.

A formal proof requires us to take account of the computability structure, how-
ever for our purposes, an informal argument will suffice. Suppose that the ap-
proximations for x and y are the same for the first n cases. Then we are unable
to answer either x = y or x �= y in the affirmative. Instead we must determine
whether the n + 1st terms for x and y differ. The significance of the final part
is that printing an answer accurate to 10 decimal places may be thought of as
calculating (1010x*10−10.

In practice these restrictions impose minimal constraints on calculations. We
can replace the calculation of x ≤ y with x ≤ε y, which is true when x ≤ y − ε

218 D.R Lester

and false when y + ε ≤ x and is either true or false when |x − y| < ε. Provided
we use this operation in a suitable context this causes no problem. For example,
provided F and G give the same answer in the interval x± ε, the program

if x ≤ε y then F (x) else G(x) endif

is computable; it should be noted that many algorithms from Numerical Analysis
have this property, since they are intended to work with inaccurate floating-point
representations. With regard to printing, it would be a harsh task-master indeed
who was prepared to quibble that 2.999999 . . .9999999 was not an acceptable
answer to the calculation of (

√
3)

2
. As we shall see, even this infelicity can usually

be avoided. But note carefully: we cannot completely evade this constraint, as
it is a fundamental theoretical limitation on computable arithmetic.

The more common problem is how to evaluate something like x/y? Clearly, if
we can prove that y is non-zero then we can calculate x/y. And the best way to
calculate that y �= 0? Evaluate it! Thus if we are prepared to exchange a total
function x/y for a partial one, our problems are over. In other words we now
have a system for numeric calculations which can guarantee that any answers it
provides are correct, but which might not terminate for certain arguments. Con-
trast this with the situation involving floating-point numbers: our calculations
execute quickly, none of the basic operations fail to terminate because explicit
division by 0 is trapped, but where even simple properties of the real numbers
such as associativity are no longer true.

3 Validation of an Exact Arithmetic

Various attempts have been made to do this before. Ménissier-Moran provides
a hand proof of an exact arithmetic [Mén94], Harrison [Har97a,Har97b,Har99,
Har00] provides a formal verification of mainly floating point arithmetic. Muñoz
et al. provide a formal presentation of interval arithmetic [DMM05,ML05], and
Lester [LG03,Les03] provides a PVS validation of a restricted set of operations
for an exact arithmetic.

There are two justifications for using PVS [ORS92] in this work; firstly, in
conjunction with the NASA libraries, there is extensive coverage of the principal
functions needed for this paper and their properties. In addition, it is possible
to exploit the integer arithmetic operations of the underlying LISP system to
execute some of the specification. It is interesting to speculate on whether one can
rely on this process being undertaken correctly; as far as the system presented
in this paper is concerned we only need the basic integer operations of addition,
subtraction, multiplication and division/remainder along with comparisons and
string conversions to work correctly.

There is currently no computability library defined in PVS. Obviously, this
makes any attempt to restrict attention to just the computable reals problematic.
For practical real number calculations this problem is something of a non-issue.
Observe that calculating the value of a non-computable real presents something

Real Number Calculations and Theorem Proving 219

of a problem: if we have an algorithmic way to calculate increasingly accurate
rational approximations to the number, then it will in fact be computable!

So, instead, we choose to deal with reals whose computability is guaranteed
because they are the results of applying computable operations to the integers,
e.g. expressions such as exp(sin(1)/191) log(672). Again – as there is currently no
machinery to define computability in PVS – we do not attempt to prove that the
operations are in fact computable. Instead, we note that any attempt to define
non-computable operations will result in the non-termination of the system.

The key property is:

x: var R
p: var N
c: var N→ Z

cauchy prop(x, c): bool = ∀ p: c(p)− 1 < x2p ∧ x2p < c(p) + 1

cauchy real?(c): bool = ∃ x: cauchy prop(x, c)

cauchy real: nonempty type = (cauchy real?) containing (λ p : 0)
In other words: the computable real x is represented by a function c from N→ Z
with the property that for all n: |x− c(n)

2n | < 2−n. Note that every real x has an
associated function c, satisfying the Cauchy property above: take c(n) = (x2n*;
observe very carefully – from Theorem 3 – that this function is not in general
computable.

In the argot of the computer arithmetic community the functions c with the
above cauchy property – or more correctly λn : c(n)

2n – are known as Fast Cauchy
Sequences. The important point about the Fast Cauchy Sequences is that their
storage requirements grow linearly with the accuracy required, whereas working
directly with the implied representation of the previous section (functions of
type N→ Q) places no constraints on the storage requirements of each rational
in the representation.

The PVS fragment above also defines a type cauchy real, which restricts the
functions from N → Z, to those for which there is a real number satisfying
the cauchy property. We have similar definitions for the non-negative reals and
positive reals amongst many others.

Note that every integer i is uniquely represented by λn : i2n, but that this
uniqueness property is not in general true even for the rationals: consider 1

3 .
Both λn : (2n

3 * and λn : , 2n

3) are acceptable representations because 2n

3 is not
an integer and hence either floor or ceiling may be selected.

We can define an addition operation for our representation.

cx,cy: var cauchy real
x, y: var R
p: var N

cauchy add(cx, cy): cauchy real

220 D.R Lester

= λ p : ((cx(p + 2) + cy(p + 2))/4)

add lemma: lemma cauchy prop(x,cx) ∧ cauchy prop(y,cy)
⇒ cauchy prop(x + y, cauchy add(cx,cy))

This is typical of the approach. We define a function that manipulates the rep-
resentations of the input computable reals, in this case: cauchy add. If we wish
to (or are able to) we can show that this function is computable. As we shall see,
these functions are normally simple rational calculations for which we will have
no qualms about their computability. We then show that if the cauchy property
holds for the input computable reals, then the output computable real also has
the required cauchy property.

Before attempting this, one needs a viable theorem proving system which
is capable of dealing with some of the more everyday transcendental functions
such as sin, cos, arctan, exp and log. After all, without some such functions the
provision of an exact arithmetic becomes trivial: the algebraic numbers are a
countable computable field.

4 An Example in Raw PVS

Before discussing the proofs, let’s look at the system in action. Suppose we wish
to use the system to calculate an approximation to π, how do we proceed? First,
we declare as a LEMMA the bounds of our calculation, in this case forty decimal
places of π.

new_pi_bnds: LEMMA % 40 dp
3.1415926535897932384626433832795028841971 < π ∧

π < 3.1415926535897932384626433832795028841972

This theorem takes about 30 seconds to prove on a reasonable 1GHz lap-
top. That’s because the underlying LISP system is not using a modern integer
representation such as GMP, and our power series calculations are not as effi-
cient as they might be. Running the same calculation in Haskell under the Hugs
interpreter the time is only 1 second.

The proof of this result is in two stages. First, we claim that |cauchy pi
(140)/2140 − π| < 1/2140. By using pi lemma, which merely states that the
cauchy property holds between cauchy pi and π, we know that this is true for
any natural number, not just 140. For reference

cauchy pi(140) = 4378741080330103799233250808471022728399425.

To ease the exposition, we have used the PVS renaming command for some
of the expressions. The rational cauchy pi(140)/2140 has been named APPROX,
the rational 1/2140 has been named EPS, and we have also named the lower and
upper bounds we are seeking to establish LO and HI respectively.

And now, because we have been lucky, it turns out that both LO + EPS <
APPROX and APPROX < HI − EPS are true. This is where the heavy-duty

Real Number Calculations and Theorem Proving 221

evaluation is taking place. Note these are simple integer arithmetic operations
that are being undertaken within the theorem-prover. It is this process of eval-
uation that has been previously referred to as using the “integer arithmetic of
the underlying LISP system”.

Had the approximation APPROX been close to one or other bound then
we would have needed a better approximation. To do this, we merely increase
the value of the precision from 140 to a higher value, thereby reducing the
approximation error EPS.

A mildly compressed version of the output proof trace of PVS is as follows:
new pi bnds:

{1} 3.1415926535897932384626433832795028841971 < π ∧
π < 3.1415926535897932384626433832795028841972

Case splitting on abs(cauchy pi(140)/2140 − π) < 1/2140,
we get 2 subgoals:
new pi bnds.1:

{-1} abs(cauchy pi(140)/2 ∧ 140− π) < 1/2 ∧ 140
{1} 3.1415926535897932384626433832795028841971 < π ∧

π < 3.1415926535897932384626433832795028841972

Using APPROX to name and replace cauchy pi(140)/2140, EPS to name and
replace 1/2140, LO to name and replace 3.141592653589793238462643383279502
8841971, and HI to name and replace 3.14159265358979323846264338327950288
41972,

new pi bnds.1:

{-1} abs(APPROX− π) < EPS
{1} LO < π ∧ π < HI

Case splitting on LO + EPS < APPROX AND APPROX < HI − EPS, and
flattening,

we get 2 subgoals:
new pi bnds.1.1:

{-1} LO + EPS < APPROX
{-2} APPROX < HI− EPS
{-3} abs(APPROX− π) < EPS
{1} LO < π ∧ π < HI

Expanding the definition of abs, simplifying, rewriting, and recording with
decision procedures,

This completes the proof of new pi bnds.1.1.
Hiding formulas: -1, 2,

222 D.R Lester

new pi bnds.1.2:

{1} LO + EPS < APPROX ∧ APPROX < HI− EPS

Evaluating formula 1 in the current sequent,
This completes the proof of new pi bnds.1.2.
Hiding formula: 2,
new pi bnds.2:

{1} abs(cauchy pi(140)/2 ∧ 140− π) < 1/2 ∧ 140

Applying pi lemma, expanding the definition of cauchy prop, instantiating
the top quantifier in - with the terms: 140,

new pi bnds.2:

{-1} cauchy pi(140)− 1 < π × 2ˆ140 ∧
π × 2ˆ140 < 1 + cauchy pi(140)

{1} abs(cauchy pi(140)/2 ∧ 140− π) < 1/2 ∧ 140

Rewriting with div mult pos lt1 and div mult pos lt2, expanding abs and
Simplifying, rewriting, and recording with decision procedures,

This completes the proof of new pi bnds.2.
Q.E.D.

5 Transcendental Functions: Sine and Cosine

The new material in this paper is that concerning the transcendental functions
sin(x) and cos(x) and of ln(x) and exp(x), as [LG03] showed how to evaluate
power series in an exact arithmetic setting, and [Les03] applied this technique
to evaluate arctan(x).

Assuming that one has selected a sensible representation of the numbers,
the key to efficient evaluation of exact arithmetic lies in choosing a good range
reduction which restricts the domain over which the associated power series is
evaluated. The reason is simple: over a small interval even the most complicated
continuous functions can be accurately evaluated with a low-order polynomial
approximation (ideally just a linear interpolation). As the interval size increases,
the order of the approximating polynomial will also increase, leading to poor
performance. In this paper we choose a fairly large domain, as this simplifies
the proof and presentation. For a realistic implementation, competitive in the
annual exact arithmetic competition, a much more sophisticated scheme needs
to be used [BEIR00].

For sin(x) and cos(x) we use the traditional Taylor series approximation with
x restricted to the domain − 3π

16 < x < 3π
16 . Notice that 0 ≤ x2 < 1

2 and that
in the Taylor series approximation for sin(x) and cos(x) each coefficient is less

Real Number Calculations and Theorem Proving 223

than or equal to 1. Therefore, for p bits of accuracy we need at most p+ 2 terms
of the power series and we perform the calculations involved in the summation
also at p + 2 bits of accuracy.

cauchy sin drx(csnx): cauchy real =

λ p : (cauchy powerseries(csnx, cauchy sin series, p + 2)(p + 2)/4)

cauchy cos drx(csnx): cauchy real =

λ p : (cauchy powerseries(csnx, cauchy cos series, p + 2)(p + 2)/4)

sin drx lemma: lemma cauchy prop(snx, csnx) ∧ snx �= 0 ⇒
cauchy prop(sin(sqrt(snx))/sqrt(snx), cauchy sin drx(csnx))

cauchy sin dr(csx): cauchy real =

cauchy mul(csx, cauchy sin drx(cauchy mul(csx, csx)))

cauchy cos dr(csx): cauchy real =

cauchy cos drx(cauchy mul(csx, csx))

sin dr lemma: lemma

cauchy prop(sx, csx) ⇒ cauchy prop(sin(sx), cauchy sin dr(csx))

cos dr lemma: lemma

cauchy prop(sx, csx) ⇒ cauchy prop(cos(sx), cauchy cos dr(csx))

The critical part now is to find a computable way to divide up the domain so
that we only ever apply sin and cos to arguments in the interval (− 3π

16 , 3π
16). For

both sin(x) and cos(x) we calculate the integer closest to k = (4x
π) evaluated to

two bits accuracy. It is this approximation that causes the argument interval to
be wider than the expected (−π

8 , π
8). Defining y = x − kπ

4 ∈ (− 3π
16 , 3π

16), and
knowing the remainder mod 8 of k we can reconstruct sin(x) and cos(x) in terms

of sin(y), cos(y) and
√

1
2 = sin(π

4) = cos(π
4). The desired cauchy properties then

follow.

cauchy sin(cx): cauchy real =

let p2 = cauchy div2n(cauchy pi, 2),
s2 = cauchy sqrt(cauchy div2n(cauchy int(1), 1)),
k = round(cauchy div(cx, p2)(2)/4),
n = rem(8)(k),
cy = cauchy sub(cx, cauchy mul(p2, cauchy int(k))),
s = cauchy sin dr(cy),
c = cauchy cos dr(cy)

in if n = 0 then s
elsif n = 1 then cauchy mul(s2, cauchy add(c, s))
elsif n = 2 then c
elsif n = 3 then cauchy mul(s2, cauchy sub(c, s))
elsif n = 4 then cauchy neg(s)

224 D.R Lester

elsif n = 5 then cauchy neg(cauchy mul(s2, cauchy add(c, s)))
elsif n = 6 then cauchy neg(c)
else cauchy neg(cauchy mul(s2, cauchy sub(c, s))) endif

cauchy cos(cx): cauchy real =

let p2 = cauchy div2n(cauchy pi, 2),
s2 = cauchy sqrt(cauchy div2n(cauchy int(1), 1)),
k = round(cauchy div(cx, p2)(2)/4),
n = rem(8)(k),
cy = cauchy sub(cx, cauchy mul(p2, cauchy int(k))),
s = cauchy sin dr(cy),
c = cauchy cos dr(cy)

in if n = 0 then c
elsif n = 1 then cauchy mul(s2, cauchy sub(c, s))
elsif n = 2 then cauchy neg(s)
elsif n = 3 then cauchy neg(cauchy mul(s2, cauchy add(c, s)))
elsif n = 4 then cauchy neg(c)
elsif n = 5 then cauchy neg(cauchy mul(s2, cauchy sub(c, s)))
elsif n = 6 then s
else cauchy mul(s2, cauchy add(c, s)) endif

sin lemma: lemma

cauchy prop(x, cx) ⇒ cauchy prop(sin(x), cauchy sin(cx))

cos lemma: lemma

cauchy prop(x, cx) ⇒ cauchy prop(cos(x), cauchy cos(cx))

Since they’re now easy to implement and prove, sec(x), csc(x), tan(x), cot(x),
arcsin(x) and arccos(x) are also provided.

6 Transcendental Function: Natural Logarithm

We begin by restricting the domain for ln(x) to x ∈ [12 , 3
2] (or ssx ∈ [− 1

2 , 1
2]),

and calculating the natural logarithm by Taylor series expansion.

cauchy ln drx(cssx)(p): Z =

(cauchy powerseries(cssx, cauchy ln series, p + 2)(p + 2)/4)

ln drx lemma: lemma cauchy prop(ssx, cssx) ⇒
cauchy prop(ln(1 + ssx), cauchy ln drx(cssx))

From this we can calculate values for ln(1
2), ln(2) and ln(

√
2). Using these

values we calculate a value for ln(cmx) with cmx ∈ [14 , 9
4]. We note first that

if 3 ≤ cmx(2) ≤ 5 then the argument supplied lies in the interval: (1
2 , 3

2), and
we can use our previous approximation to ln(cmx). Otherwise, the value of cmx
must lie in either of the intervals [14 , 3

4) or (5
4 , 9

4]. In either case
√

cmx ∈ [12 , 3
2],

Real Number Calculations and Theorem Proving 225

and we use the identity ln(cmx) = 2∗ ln(
√

cmx) to establish the required cauchy
property.

cauchy ln dr(cmx): cauchy real =

if 3 ≤ cmx(2) ∧ cmx(2) ≤ 5
then cauchy ln drx(cauchy sub(cmx, cauchy int(1)))
else cauchy mul2n(cauchy ln drx(cauchy sub(cauchy sqrt(cmx),

cauchy int(1))), 1)
endif

ln dr lemma: lemma

cauchy prop(mx, cmx) ⇒ cauchy prop(ln(mx), cauchy ln dr(cmx))

Next, we perform the classic range reduction for ln(x) [CW80, Mul97], that
is: determine y and n such that x = y2n with y ≤ 9

4 , in which case ln(x) =
ln(y) + n ln(2). Provided x ≥ 1

4 , we have two cases. If cx(2) ≤ 8 then x ≤ 9
4

as required. Otherwise we use the identity ln(x
2n) + n ln(2) = ln(x) choosing

n so that x
2n ≤ 9

4 . Notice carefully the use of the recursively defined function
floor log2 :

[
N → N

]
. Using (ln(t)* here would break the executability of the

PVS specification.

cauchy lnx(cx):
[
N→ Z

]
=

let t = cx(2) in

if t ≤ 8
then cauchy ln dr(cx)

else let n = floor log2(t)− 1 in

cauchy add(cauchy ln dr(cauchy div2n(cx, n)),
cauchy mul(cauchy int(n), cauchy ln2))

endif

ln lemma x: lemma

cauchy prop(x, cx) ⇒
cauchy prop(ln(x), cauchy lnx(cx))

Finally, to obtain a function for the whole range (including the currently
missing interval (0, 1

4)), we use the identity − ln(1
x) = ln(x) should it be needed.

cauchy ln(pcx): cauchy real =

if pcx(2) ≤ 2
then cauchy neg(cauchy lnx(cauchy inv(pcx)))

else cauchy lnx(pcx)
endif

ln lemma: lemma

cauchy prop(px, pcx) ⇒ cauchy prop(ln(px), cauchy ln(pcx))

226 D.R Lester

7 Transcendental Function: Exponential

This is now relatively easy. For sx ∈ (−1, 1) the standard Taylor series performs
adequately.

cauchy exp dr(csx)(p): Z =

(cauchy powerseries(csx, cauchy exp series, p + 3)(p + 2)/4)

exp dr lemma: lemma

cauchy prop(sx, csx) ⇒ cauchy prop(exp(sx), cauchy exp dr(csx))

The classic range reduction for exp(x) now involves exploiting the identity
exp(x) = 2n exp(x− n ln(2))

cauchy exp(cx):
[
nat → int

]
=

let n = cauchy div(cx, cauchy ln2)(0),
cy = cauchy sub(cx, cauchy mul(cauchy int(n), cauchy ln2))

in if n < 0 then cauchy div2n(cauchy exp dr(cy), −n)
elsif n > 0 then cauchy mul2n(cauchy exp dr(cy), n)

else cauchy exp dr(cy) endif

exp lemma: lemma

cauchy prop(x, cx) ⇒ cauchy prop(exp(x), cauchy exp(cx))

Since they’re now easy to implement and prove, hyperbolic and inverse hy-
perbolic functions are also provided.

8 Printing the Answer

In the version presented here, in PVS, we have no easy way to determine the
value of a calculation. Instead we have provided a mechanism by which the
value may be compared in a fixed inequality. If instead we had a mechanism to
print out the results, how would we ensure accuracy? The simple technique is to
evaluate an expression to n + 1 decimal’s accuracy.

Suppose that we wish to print out just three decimal places, and that these
are estimated to be 0.129. Provided that the calculation to 4 decimal places is
not precisely 0.1295 we will be able to round up or down correctly. Obviously
– and this is a fundamental limitation – if the result really is 0.1295000000 . . .
then no amount of extra evaluation will be able to determine whether to round
up or down. However we could count ourselves unlucky to have hit this precise
problem: selecting one further decimal place of accuracy would have obviated
the problem entirely.

9 An Oversight

One problem discovered as a result of directly executing the PVS specification
was that the integer square-root of n had been defined as (

√
n*. Obviously this

Real Number Calculations and Theorem Proving 227

caused the evaluation to fail as there is no LISP evaluation available to evaluate
this definition. An earlier version of the proof had been more explicit in that it
had constructively defined this operation. When it was reinstated, the system
evaluated integer square-root correctly, but due to the algorithm being perhaps
the worst possible (starting at i = 0, iterate until i2 ≥ n), the evaluation only
works for very small values of n.

A better version of integer square-root using bisection or Newton iteration is
in the process of being constructed.

10 Conclusion

One question that a number of reviewers posed is: to what extent can this tech-
nique be used to automatically determine inequalities? I’m afraid that the only
honest answer is another question: to what extent is an approximate answer
satisfactory? If an exact answer is required then Theorem 3 already provides
the result: in general – using computable operators on computable reals – we
cannot determine which of x < y, x = y or x > y is true. However, we can define
automated semi-decision procedures for x �= y and x < y (näıvely, increase the
precision until the inequality is proved); this was what we did in the interval-
based version described in [ML05]. Note carefully that the converses x = y and
x ≤ y cannot be proved using this technique. Another alternative, if an approx-
imate answer (accurate to any particular ε) is acceptable, is to evaluate x− y to
accuracy ε: this technique can be easily automated, and will always terminate.
Notice that we are discussing the general situation: i.e. general computable oper-
ators applied to arbitrary computable reals. For the particular case of elementary
functions a better result is possible, see, for example, [AP06,AP07].

One of the problems which came to light in performing this work is that
partial functions are second class citizens in PVS. By this we do not mean that
they are not provided (they are), nor that they are tricky to reason about (they
aren’t). Rather, we might like to represent a non-terminating evaluation by a
recursive partial function, and this is tricky. Our particular problem occurs with
division, where we need to show that the divisor is non-zero. In the PVS system
described, we will need to provide a proof that the divisor is non-zero, leading
to a system that is a curious mix of theorem-proving and calculation.

Perhaps because of anticipating the use of a theorem-prover to double-check
the results, the specification was found to be defective in various minor ways.
Nineteen bugs were detected by the use of PVS validation. Typically one or two
too few terms of Taylor series expansion were used or evaluation was one or
two bits too inaccurate for the desired accuracy of the output. One of these was
detected by testing. One other bug involved an over-enthusiastic cut-and-paste
for the cases in cos(x)!

No claim is made that the bounds provided in this paper are optimal. Indeed
it is reasonably obvious that a better quality implementation can be obtained
by using better range reduction on the transcendental functions.

It is interesting that the decision to define integer square-root in such an
inefficient way came to be a problem. In my defence, it should be pointed out that

228 D.R Lester

it was never originally intended that the PVS specification should be executable,
and with that in mind I had reworked the specification with a non-constructive
definition, only to return to the original formulation.

An interesting possibility is now open to us: it is now possible to commence
validation of floating-point algorithms by relating them to the “correct” values
they should have as determined by this system. If this is combined with a validat-
ing compiler, it ought to be possible to at least partially automate this process.
Although there has been much previous work on aspects of this, such as Har-
rison’s work on floating point trigonometric functions [Har00] or Moore, Lynch
and Kaufmanns’ work on floating point division algorithms [MLK98], I envisage
a system which automatically determines and correctly handles the condition
number of an algorithm and determines when the floating point results are cred-
ible. As an example, consider an algorithm to invert a non-singular matrix using
Gaussian Elimination with pivoting. This algorithm is essentially the same in
floating point and exact real arithmetic, but the results can be wildly different
depending on how close the matrix (or its inverse) is to singularity.

References

[AP06] Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities
involving elementary functions. In: PDPAR 2006: Pragmatics of Decision
Procedures in Automated Reasoning, pp. 27–37 (2006)

[AP07] Akbarpour, B., Paulson, L.C.: Extending a resolution prover for inequal-
ities on elementary functions. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR 2007. LNCS (LNAI), vol. 4790, pp. 47–61. Springer, Heidelberg
(2007)

[BB85] Bishop, E., Bridges, D.S.: Constructive Analysis. Grundlehren der Math-
ematischen Wissenschaften, vol. 279. Springer, Berlin (1985)

[BEIR00] Bajard, J.-C., Ercegovac, M., Imbert, L., Rico, F.: Fast evaluation of ele-
mentary functions with combined shift-and-add and polynomial methods.
In: 4th Conference on Real Numbers and Computers, pp. 75–87 (2000)

[Ber07] Bertot, Y.: Affine functions and series with co-inductive real numbers.
Mathematical Structures in Computer Science 17(1) (2007)

[CW80] Cody Jr., W.J., Waite, W.: Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs (1980)

[DMM05] Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval
arithmetic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th
Symposium on Computer Arithmetic, Cape Cod, Massachusetts (2005)

[Grz55a] Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42,
168–202 (1955)

[Grz55b] Grzegorczyk, A.: On the definition of computable functionals. Fundamenta
Mathematicae 42, 232–239 (1955)

[Grz57] Grzegorczyk, A.: On the definitions of computable real continuous func-
tions. Fundamenta Mathematicae 44, 61–71 (1957)

[Grz59] Grzegorczyk, A.: Some approaches to constructive analysis. In: Heyting,
A. (ed.) Constructivity in mathematics. Studies in Logic and the Founda-
tions of Mathematics, pp. 43–61. North-Holland, Colloquium, Amsterdam
(1957)

Real Number Calculations and Theorem Proving 229

[Har97a] Harrison, J.: Floating point verification in HOL light: the exponential
function. Technical Report 428, University of Cambridge Computer Lab-
oratory (1997)

[Har97b] Harrison, J.: Verifying the accuracy of polynomial approximations in HOL.
In: Proceedings of the 10th International Conference on Theorem Proving
in Higher Order Logics, Murray Hill, New Jersey, pp. 137–152 (1997)

[Har99] Harrison, J.: A machine-checked theory of floating point arithmetic. In:
Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) 12th
International Conference on Theorem Proving in Higher Order Logics,
Nice, France, pp. 113–130 (1999)

[Har00] Harrison, J.: Formal verification of floating point trigonometric functions.
In: Hunt, W.A., Johnson, S.D. (eds.) Proceedings of the Third Interna-
tional Conference on Formal Methods in Computer-Aided Design, Austin,
Texas, pp. 217–233 (2000)

[Jul08] Julien, N.: Certified exact real arithmetic using co-induction in arbi-
trary integer base. In: Functional and Logic Programming Symposium,
Saratoga, NY. LNCS, vol. 4989, pp. 48–63. Springer, Heidelberg (2008)

[Les03] Lester, D.: Using PVS to validate the inverse trigonometric functions of an
exact arithmetic. In: Proceedings of the Seminar on Numerical Software
with Result Verification, Dagstuhl, Germany, pp. 259–273 (2003)

[LG03] Lester, D., Gowland, P.: Using PVS to validate the algorithms of an exact
arithmetic. Theoretical Computer Science 291, 203–218 (2003)

[Mén94] Ménissier, V.: Arithmétique Exacte. PhD thesis, Université Pierre et Marie
Curie, Paris (December 1994)

[ML05] Muñoz, C., Lester, D.: Real number calculations and theorem proving.
In: 18th International Conference on Theorem Proving in Higher Order
Logics, Oxford, England, pp. 239–254 (2005)

[MLK98] Moore, J.S., Lynch, T., Kaufmann, M.: A mechanically checked proof of
the correctness of the kernel of the amd5k86 floating-point division algo-
rithm. IEEE Transactions on Computers 47(9), 913–926 (1998)

[Mul97] Muller, J.-M.: Elementary Functions. Birkhauser, Basel (1997)
[ORS92] Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification sys-

tem. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752.
Springer, Heidelberg (1992)

[Pau94] Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Saratoga (1994)
[PER89] Pour-El, M.B., Ian Richards, J.: Computability in Analysis and Physics.

Springer, Berlin (1989)
[Tur36] Turing, A.M.: On computable numbers, with an application to the

“Entscheidungsproblem”. Proceedings of the London Mathematical So-
ciety 42(2), 230–265 (1936)

[Tur37] Alan, M., Turing, A.M.: On computable numbers, with an application
to the “Entscheidungsproblem”. A correction. Proceedings of the London
Mathematical Society 43(2), 544–546 (1937)

A Formalized Theory for Verifying Stability and

Convergence of Automata in PVS�

Sayan Mitra and K. Mani Chandy

California Institute of Technology
Pasadena, CA 91125

{mitras,mani}@caltech.edu

Abstract. Correctness of many hybrid and distributed systems require
stability and convergence guarantees. Unlike the standard induction prin-
ciple for verifying invariance, a theory for verifying stability or conver-
gence of automata is currently not available. In this paper, we formalize
one such theory proposed by Tsitsiklis [27]. We build on the existing PVS
metatheory for untimed, timed, and hybrid input/output automata, and
incorporate the concepts about fairness, stability, Lyapunov-like func-
tions, and convergence. The resulting theory provides two sets of suf-
ficient conditions, which when instantiated and verified for particular
automata, guarantee convergence and stability, respectively.

1 Introduction

Verification of many classes of systems require proofs for stability and conver-
gence. For example, the requirement that a hybrid control system regains equi-
librium in the face of disturbances is a stability property; the requirement that
a set of mobile agents get arbitrarily close to the centroid of their initial posi-
tions through interaction is a convergence property. To best of our knowledge,
existing frameworks that formalize automata in higher-order logics do not de-
fine these notions nor do they provide sufficient conditions for verifying them.
In this paper we present a PVS [23] metatheory for stating and verifying stabil-
ity and convergence properties. This theory extends the PVS interface for the
Tempo toolkit [1,4]; thus, along with invariance properties and implementation
relations, now we can also prove stability and convergence of automata, within
the same framework.

In a 1987 paper [27] Tsitsiklis analyzed stability and convergence of a general
class of models which he called Asynchronous Iterative Processes (henceforth,
AIPs). An AIP consists of a set X , and a finite collection of functions or “oper-
ators” Tk : X → X , k ∈ {1, . . . , K}. Given an initial point x0 ∈ X , an execution
is obtained by choosing an arbitrary sequence of T ′

ks, and iteratively applying
them to x0. An AIP is stable around a given point x∗ ∈ X , with respect to
a given topological structure T on X , if for every neighborhood set U ∈ T

� The work is funded in part by the Caltech Information Science and Technology
Center and AFOSR MURI FA9550-06-1-0303.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 230–245, 2008.
� Springer-Verlag Berlin Heidelberg 2008

A Formalized Theory for Verifying Stability and Convergence 231

containing x∗, there exists another neighborhood set V ∈ T , such that every
execution starting from V remains within U . An infinite execution is said to
be fair if every operator Tk is applied infinitely many times. An AIP converges
to x∗ with respect to a topological structure T around x∗, if for every U ∈ T
containing x∗, there exists n ∈ N, such that for every fair execution all the states
obtained after applying the first n operations, are in U . In general, neither of
these properties imply the other (see, Figure 1 for examples). In [27] the au-
thor provides sufficient conditions for proving stability and convergence of AIPs
in terms of Lyapunov-like functions [16]. Moreover, under some weak assump-
tions about the topological structures, it turns out that these conditions are also
necessary.

AIPs generalized to infinite (and possibly uncountable) set of operations sub-
sume the classes of discrete, timed, and hybrid automata, and therefore, the
sufficient conditions for proving convergence and stability of AIPs apply to these
classes as well. In this paper, we formalize Tsitsiklis’ theory of stability and con-
vergence in PVS. We build on the existing PVS metatheory for untimed, timed,
and hybrid I/O automata [3,15] which is integrated with the Tempo toolkit [1].
The preexisting theory defines reachable states and implementation relations for
automata and provides theorems for inductively verifying invariant properties
and simulation relations. We extend this metatheory as follows:

(a) A real-valued distance function d on pairs of states is introduced as a para-
meter to the theory; for a given state s∗, the sublevel sets of the function
d(s∗, .) define a topological structure around s∗.

(b) Infinite executions of automata and fairness conditions are defined.
(c) Stability and convergence of automata are defined with respect to a given

state (or a set of states), a distance function, and a fairness condition.
(d) A set of theorems are stated and proved which provide sufficient conditions

for verifying convergence and stability.

The new metatheory can be downloaded from http://ist.caltech.edu/∼
mitras/research/pvs/convergence/. In order to apply the theory to partic-
ular automata, the user has to supply a Lyapunov-like function and check that
this function satisfies the criteria prescribed in the theorems. This check can be
performed by analyzing the state transitions of the automaton and one need not
reason about infinite executions. We illustrate the application of the theory on
a simple distributed coordination protocol.

A key issue in formalizing this metatheory was to reconcile fairness of AIPs
with the notion of fair executions of automata. Recall that an AIP-execution
is fair, if every operator is applied infinitely often. This definition is too strong
for automata, where each operator corresponds to a specific state transition. A
fair execution for an automaton typically does not have every state transition
occurring infinitely many times, instead it has some set of transitions represented
infinitely often. More precisely, fairness of an automaton is defined with respect
to a collection F = {F1, F2, . . . , Fn}, where each Fi is a set of transitions. An
execution α is said to be F -fair if every Fi ∈ F is represented (or scheduled) in
α infinitely often. In our theory, we formalize this weaker notion of fairness, and

http://ist.caltech.edu/~mitras/research/pvs/convergence/
http://ist.caltech.edu/~mitras/research/pvs/convergence/

232 S. Mitra and K.M. Chandy

Fig. 1. Stable & convergent (left), stable & nonconvergent (middle), and convergent
& unstable (right) executions. In the last case, the execution from s0 converges, but
executions starting from in the left neighborhood of s∗ diverge.

hence, the sufficient conditions we obtain are stronger than those in [27]. If each
Fi is defined to be a singleton transition then our conditions reduce to Tsitsiklis’.
There are several other relatively minor differences between the original theory
and our PVS formalization; these are discussed in Section 6.

2 Related Work

Convergence of general sequences has been formalized in the PVS and Isabelle
libraries for differential calculus [10], real-analysis [11], and topology [13]. There
are several formalizations of automata in higher-order logics of theorem provers
including Isabelle/HOL [21,22,20,25], PVS [3,7,19], and Coq [8,24]. These theo-
ries formalize reachable states, invariant properties, acceptance conditions, and
abstraction relations, but neither stability nor convergence. Our theory builds
on the PVS formalization of input/output automata [17] presented in [3] and
its subsequent extensions to timed and hybrid I/O automata [12] that were pre-
sented in [19,18].

Literature on stability and convergence (also called asymptotic stability) of
purely discrete or continuous systems is extensive. Control theory textbooks,
such as [16], typically provide conditions for checking stability of processes evolv-
ing in Euclidean space. Stability conditions for hybrid and switched systems is
an active area of research; we refer the reader to [14] for an overview.

Although convergence is distinct from termination, constructing proofs for
both these properties rely on existence of Lyapunov-like functions from the state
space of the automaton to some well-ordered set. There is a large body of litera-
ture on proving termination of programs and recursive functions using theorem
provers (see, e.g., [5,26]). This research direction focuses on automatically find-
ing Lyapunov-like functions that prove termination. This connection is further
discussed in Section 6.

3 Automata and Executions

3.1 Preliminaries

In this paper, we present our PVS metatheory using standard set theoretic no-
tations, in as much of a syntax-free manner as possible. The set theoretic defin-

A Formalized Theory for Verifying Stability and Convergence 233

itions, in most cases, correspond in an obvious way to the definitions in PVS’s
simply typed higher-order logic. Wherever necessary we note special constructs
that are necessary for this translation.

We denote the set of boolean constants by B = {true, false}, the set of natural
numbers by N = {0, 1, . . . , }, and the set of reals by R. For a set A, Aω is defined
as the set of infinite sequences of elements in A indexed by N. For aω ∈ Aω , i ∈ N,
we denote the ith element by aω

i . In the rest of this section we summarize the
relevant definitions and theorems from the existing metatheory of [3].

3.2 Formalization of Automata

An automaton A is a nondeterministic, labeled transition system. Formally, it
is a quintuple consisting of:

(a) a nonempty set S,
(b) a nonempty set A,
(c) a nonempty subset S0 of S,
(d) a function E : [S, A→ B], and
(e) a function T : [S, A→ S].

Elements of S, S0, and A are called states, starting states and actions , respec-
tively. E and T are called the enabling predicate and the transition function of
A . The actions are labels for state transitions. For s ∈ S and a ∈ A, E(s, a)
holds if and only if the transition labeled by a can be applied to s. In this case,
a is said to be enabled at s. At any state s, multiple actions may enabled. How-
ever, once an action a is fixed the post-state of the transition s′ is uniquely
determined. Specifically, s′ = T (a, s), if a is enabled at s, or else s′ = s.

The set of actions can be uncountably infinite and indeed actions can label
functions for discrete transitions as well as continuous evolution. We refer the
reader to [15] for models of timed and hybrid systems in this formalism.

The PVS metatheory formalizing automata is parameterized by S, A, S0, E
and T , where S and A are uninterpreted type parameters, and S0, E , and T
are parameters with the appropriate type constraints1. To apply the metatheory
to specific systems, the parameters are instantiated with concrete types and
function definitions. The following example shows such an instantiation.

Example 1. We model a distributed algorithm in which a set of N agents start
at arbitrary positions on a line and through interactions converge to a point.
Specifically, any two agents interact at any time; when they do, their positions
are atomically updated so that they move towards each other by some fraction
of the distance between them.

Table 1 provides concrete definitions for the types and the functions for mod-
eling this protocol as an automaton. N is a constant natural number. L is a
constant real in the range (0, 1). I is the type {0, . . . , N − 1}. The states type is
an array of R≥0 indexed by I. For any state s and i ∈ I, the ith component of

1 Each parameter corresponds to its unscripted version in our presentation of the
automaton theory. E.g., the set of states S is modeled as the type S in PVS.

234 S. Mitra and K.M. Chandy

the array is denoted by s[i]. The state s0 is an arbitrary but constant element of
S. The predicate S0 defines a state s to be a starting state if and only if it equals
s0. The action type is defined using a (datatype) constructor called interact.
This construct means that for every i, j ∈ I, r ∈ [L, 1− L] interact(i, j, r) is an
action; and nothing else is an action. The set of actions is uncountably infinite
because of the real parameter r.

The enabling predicate E(s, a) returns true for any action a and state s, which
means that agents i and j can interact always. Finally, for action a of the form
interact(i, j, r), the state transition function T (a, s) returns a state s′ that is
identical to s except that the ith and the jth values of s′ are s[i] + r.(s[i]− s[j])
and s[j] − r.(s[i] − s[j]), respectively. Informally, for given i, j, each choice of r
defines a different proportion by which agents i and j move towards each other.
For example, interact(i, j, 1

2) causes s[i] and s[j] to move to their mid-point.

Table 1. An instance of automaton metatheory

S : Type := array[I �→ R≥0]
s0 : Const S
S0(s : S) : bool := (s = s0)

A : Datatype interact(i, j : I, r : [L, 1 − L])

E(s : S, a : A) : bool := true

T (s : S, a : A) : S := [Case a ≡ interact(i, j, r) :
s With [(i) := s[i] + r(s[j] − s[i]), (j) := s[j] − r(s[j] − s[i])]]

3.3 Executions, Reachability, and Invariance

The semantics of an automaton A is defined in terms of its executions. An
execution fragment of A is a (possibly infinite) alternating sequence of states
and actions s0, a0, s1, a1, s2, . . ., such that for each i, E(si, ai) holds and si+1 =
T (ai, si). An execution fragment is an execution if s0 is a starting state. The
length of a finite execution is the number of actions in it. For s ∈ S and a
natural number n, Reach rec(s, n) returns true if and only if there exists an
execution of length n that ends in the state s. The reachability predicate on
states is defined recursively as follows:

Reach rec(s, n) :=

⎧⎪⎪⎨
⎪⎪⎩

s ∈ S0 n = 0

∃ s1 ∈ S, a ∈ A (E(a, s1) ∧ otherwise.

s = T (a, s1) ∧ Reach rec(s1, n− 1))

Reach(s) := ∃ n ∈ N, Reach rec(s, n).

An invariant of A is a predicate on its states that holds in all reachable
states. Invariants are useful for capturing safety requirements, such as, multiple

A Formalized Theory for Verifying Stability and Convergence 235

processes never access a critical resource simultaneously. The following theorem
formalizes Floyd’s induction principle [9] in this framework.

Theorem 1. Suppose G : [S → B] is a predicate on S, and

A1. ∀ s ∈ S0, G(s), and
A2. ∀ s ∈ S, a ∈ A, Reach(s) ∧ E(a, s) ∧ G(s)⇒ G(T (a, s)).

Then ∀ s ∈ S, Reach(s)⇒ G(s), that is, G is an invariant predicate.

This theorem has been employed for verifying safety properties of untimed [3],
timed [15], and hybrid automata [28]. Features of this verification method that
make it attractive are: (a) It suffices to check that the predicate G is preserved
over individual actions, and hence, the check breaks down into a case analy-
sis of actions. (b) This structure facilitates partial automation of proofs using
customized proof strategies [2].

4 Formalizing Stability and Convergence of Automata

In this section we present the extensions to the PVS metatheory for stability and
convergence verification. In order to define stability and convergence properties,
first, we have to explicitly define arbitrary prefixes of infinite executions of the
automaton. Given a state s ∈ S, an infinite sequence of actions aω ∈ Aω, and
n ∈ N, the recursively defined Trans(s, aω, n) function returns the state that is
obtained by applying the first n actions in aω to s.

Trans(s, aω, n)=

⎧⎪⎪⎨
⎪⎪⎩

s if n = 0

T (aω
n−1, T rans(s, aω, n− 1)) if E(aω

n−1, T rans(s, aω, n− 1))

Trans(s, aω, n− 1) otherwise

Note that s, aω, and n, uniquely determine an execution fragment s0, a
ω
0 , s1, . . . ,

aω
n−1, sn of length n, where si = Trans(s, aω, i), for each i < n.
Stability and convergence of automaton A to a state s∗ ∈ S are defined with

respect to a topological structure around s∗. This topological structure is formal-
ized using a real-valued function. The metatheory can be easily generalized to
define stability (and convergence) with respect to arbitrarily defined topological
structures around a point; this is discussed further in Section 6.

Definition 1. A distance function d for a state s∗ ∈ S is a real-valued function
d : [S, S → R≥0], such that for all s �= s∗, d(s∗, s) > d(s∗, s∗). A distance
function d for a set of states S∗ ⊆ S is a real-valued function d : [2S, S → R≥0],
such that for all s /∈ S∗, s′ ∈ S∗, d(S∗, s) > d(S∗, s′).

For ε > 0 and s ∈ S, ε-ball around s, is the set

Bε(s) := {s1 ∈ S | d(s1, s) ≤ ε}.

236 S. Mitra and K.M. Chandy

In our theory, d is not required to satisfy identity, symmetry, and triangle in-
equality, properties that are usually attributed to metrics. The ε-balls around a
given state s define a topological structure around s. In the new PVS metathe-
ory we add S∗ and d as theory parameters, in addition to the six parameters
enumerated in Section 3.2.

4.1 Stability

Informally, automaton A is stable if every execution fragment that starts close
to the equilibrium state s∗ remains close to s∗, where closeness is defined in
terms of the ε-balls of some distance function for s∗.

Definition 2. Let A be an automaton 〈S, A, S0, E, T 〉, s∗ be a state in S, and
d be a distance function for s∗. A is (s∗, d)-stable if

∀ ε > 0, ∃ δ > 0, ∀s ∈ S, aω ∈ Aω, n ∈ N, s ∈ Bδ(s∗)⇒Trans(s, aω, n) ∈ Bε(s∗).

Note that stability is independent of the starting states of the automaton. For a
nonempty set S∗ ⊆ S, let d be a distance function for S∗. The definitions for the
ε-balls around S∗ (denoted by Bε(S∗)) and (S∗, d)-stability of A are analogous
to Definition 2.

The coarseness of the topological structure around s∗ (or S∗), and hence, the
meaning of stability depends on the function d. For example, suppose d(s∗, s) :=
0 if s∗ = s, and d(s∗, s) := 1, otherwise. Then, A is trivially (s∗, d)-stable. On
the other hand, if the set of states S is an Euclidean space and d is the Euclidean
metric on S, then d defines an uncountable set of distinct ε-balls around s∗. And
in this case (s∗, d)-stability of A depends on E and T .

4.2 Sufficient Conditions for Stability

In this section we present the sufficient conditions for proving stability of au-
tomaton A . The proofs of all the theorems presented in Section 4 have been
completed in PVS and are available as part of the metatheory. Here we present
summaries of these PVS proofs.

Let T be a set and < be a total order on T , and f be a function that maps
S to T . The range of f is denoted by Rngf , and the p-sublevel set is defined as
Lf,p := {s : S | f(s) ≤ p}. We omit the subscript f when the function is clear
from the context. The following theorem gives a sufficient condition for proving
stability of an automaton in terms of a Lypunov-like function.

Theorem 2. Let S∗ be a nonempty subset of S and d be a distance function for
S∗. Suppose there exists a totally ordered set (T, <) and a function f : [S → T]
that satisfies the following conditions:

B1. ∀ ε ≥ 0, ∃ p ∈ T , such that Lp ⊆ Bε(S∗).
B2. ∀ p ∈ T , ∃ ε ≥ 0, such that Bε(S∗) ⊆ Lp.
B3. ∀ s ∈ S, a ∈ A, E(a, s)⇒ f(T (a, s)) ≤ f(s).

A Formalized Theory for Verifying Stability and Convergence 237

Then A is (S∗, d)-stable.

B1 requires that every ε-ball around S∗ contains a p-sublevel set Lp. B2 is
symmetric; it requires that every sublevel set contains an ε-ball. B3 states that
the value of the function f does not increase if an action a is applied to state
where it is enabled.

Proof: Let us fix an ε > 0. We have to show that there exists a δ > 0, such
that any execution fragment that starts in Bδ(S∗) remains within Bε(S∗). There
exists p ∈ T , such that Lp ⊆ Bε(S∗) (by B1), and there exists a η ≥ 0, such that
Bη(S∗) ⊆ Lp ⊆ Bε(S∗) (by B2). Set δ = η, and fix an s ∈ Bδ(S∗), aω ∈ Aω .
We show by induction that every state in the execution fragment starting from
s and corresponding to aω remains within Bε(S∗).

Base case: We know that s ∈ Bδ(S∗) ⊆ Bε(S∗).
Inductive step: Let s′ be the state Trans(s, aω, j), 0 ≤ j ≤ n − 2. By the

induction hypothesis, s′ ∈ Bδ(S∗) ⊆ Lp. If aω
j is not enabled at s′, then

sj+1 = s′ ∈ Bδ(S∗) ⊆ Bε(S∗). Otherwise, sj+1 = T (am, s′). As f(sj+1) ≤
f(s′) (by B3), and it follows that sn ∈ Lp ⊆ Bε(S∗).

4.3 Fairness

An automaton A is said to converge to s∗ with respect to distance function d, if
for every infinite execution s0, a0, s1, . . . , an−1, sn . . ., d(s∗, sn) → 0 as n → ∞.
This captures the informal notion that every execution of the automaton gets
closer and closer to s∗.

In typical applications, the above definition of convergence is too strong be-
cause it quantifies over all infinite executions—including those in which some
set of actions never occur. For instance, consider an infinite execution α for the
automaton of Example 1 that starts from a state s0 with distinct values for all
s0[i]’s, and in which agent 0 never interacts with any other agent. It is easy
to see that such an execution does not converge. On the other hand, a different
infinite execution α′ = s0, a0, s1, . . ., converges to s∗, where s∗[i] = 1

N

∑N
i=1 s0[i],

provided for every i, j ∈ I, infinitely many interact(i, j, ∗) actions occur in α′. In
fact, an infinite execution in which for every i ∈ I, interact(i, (i + 1) mod N, ∗)
occurs infinitely often, also converges to s∗. This suggests that the convergence
of A can be studied under different sets of assumptions about the occurrence of
the actions. This motivates the following definition of fairness.

Definition 3. A fairness condition F for the set of actions A is a finite col-
lection {Fi}ni=1, n ∈ N, where each Fi is a nonempty subset of A. An infinite
sequence of actions aω ∈ Aω is F-fair if

∀ F ∈ F , n ∈ N, ∃ m ∈ N, m > n, such that aω
m ∈ F.

An infinite execution α = s0, a0, s1, a1, . . . is said to F-fair if the corresponding
sequence of actions a0, a1, . . . is F-fair.

238 S. Mitra and K.M. Chandy

In other words, an execution is not F -fair if there exists F ∈ F such that no
action from F ever appears in some suffix of α.

Definition 4. Given fairness conditions F1 and F2 for the set of actions A, F1

is said to be weaker than F2, denoted by F1 ≤ F2, if ∀ F1 ∈ F1, ∃ F2 ∈ F2,
such that F2 ⊆ F1.

The next lemma states that an F2-fair execution is also F1-fair, if F1 is a weaker
fairness condition than F2.

Lemma 1. Let F1,F2 be fairness conditions for the set of actions A. If F1 ≤
F2, then every F2-fair execution is F1-fair.

4.4 Convergence

Having introduced fairness of executions, we now modify the previously sug-
gested definition of convergence as follows. Informally, automaton A converges
to s∗ with respect to distance function d and a fairness condition F , if every
F -fair execution converges to s∗.

Definition 5. Let A be an automaton 〈S, A, S0, E, T 〉, s∗ be an element of S,
d be a function for s∗, and F be a fairness condition for A. A is (s∗, d,F)-
convergent, if ∀ s0 ∈ S0, ε > 0, aω ∈ Aω

if aω is F-fair then ∃n ∈ N, ∀m ∈ N, m > n⇒ Trans(s, aω, m) ∈ Bε(s∗).

For a nonempty subset of states S∗ ⊆ S, the definition of (S∗, d,F)-convergence
is analogous to Definition 5. For s ∈ S, aω ∈ Aω, we define Rf (s, aω) as the set
of values in T that can be reached from s by applying some prefix of aω.

Rf (s, aω) := {p ∈ T | ∃ n ∈ N, T rans(s, aω, n) ∈ Lf,p}.

The next theorem gives sufficient conditions for proving convergence of automa-
ton A in terms of a Lyapunov-like function.

Theorem 3. Let S∗ be a nonempty subset of S, d be a distance function for
S∗, and F be a fairness condition on A. Suppose there exists a totally ordered
set (T, <) and a function f : S → T that satisfies the following conditions:

C1. ∀ p, q ∈ T, p < q ⇒ Lp � Lq.
C2. ∀ ε > 0, ∃ p ∈ T , such that Lp ⊆ Bε(S∗).
C3. ∀ s ∈ S, a ∈ A, (Reach(s) ∧ E(a, s))⇒ f(T (a, s)) ≤ f(s).
C4. ∀ p ∈ T , Lp �= S∗ implies ∃ F ∈ F , such that ∀ a ∈ F, s ∈ Lp, Reach(s)⇒

(E(a, s) ∧ f(T (a, s)) < f(s)).
C5. ∀ s ∈ S0 and F-fair sequence aω ∈ Aω, R′ ⊆ Rf (s, aω), if R′ is lower

bounded then it has a smallest element.

Then A is (S∗, d,F)-convergent.

A Formalized Theory for Verifying Stability and Convergence 239

Some remarks about the hypothesis of the theorem are in order. C1 implies that
every sublevel set of the function f is distinct. C2 requires that for any ε > 0,
there exists a p-sublevel set of f that is contained within the ε-ball around S∗.
This is identical to condition B1. C3 requires that the function f is nonincreasing
over all transitions from reachable states. This is a weaker version of B3. C4
requires that for any sublevel set Lp that is not equal to the convergence set
S∗, there exists a fair set of actions F ∈ F , such that any action a ∈ F strictly
decreases the value of f—possibly by some arbitrarily small amount. C5 requires
that for all s, aω, every lower-bounded subset of Rf (s, aω) has a smallest element.
This is a weaker assumption than requiring Rf (s, aω) to be well-ordered. Instead
of C5 it is sometimes easier to prove that the set T is well-ordered.

Before proving Theorem 3, we state a set of intermediate lemmas that are used
in the proof. In the following, S∗ is a subset of S, F is a fairness condition on
A, (T, <) is a total order, and f is a function S → T satisfying conditions C1-5.
We make the following assumption, without any loss of generality.

∃ p∗ ∈ T, such that ∀ s ∈ S, if s ∈ S∗ then f(s) = p∗, otherwise f(s) > p∗.

This is without loss of generality because for any given f ′ we can define f(x) :=
p∗ = infs∈S∗ f(s) if x ∈ S∗ and f ′(x) := f(x) otherwise. Then f satisfies the
assumption and we work with it instead of f ′.

Lemma 2. For all aω ∈ Aω , n ∈ N, p ∈ T, s ∈ Lp: Trans(s, aω, n) ∈ Lp.

Lemma 3. For all s ∈ S, s ∈ S∗ iff Lf(s) = S∗.

Lemma 4. For all s0 ∈ S0 and F-fair action sequence aω, Rngf = Rf (s0, a
ω).

Proof: Let us fix an aω, s0, and f . We abbreviate Rf (s0, a
ω) as R. From its

definition it is clear that R ⊆ Rngf , so, we have to show that for every p ∈ Rng,
there is an n such that f(Trans(s0, a

ω, n)) ≤ p. Let us fix a value of p ∈ Rng,
and suppose for the sake of contradiction that p /∈ R. We know that f(s0) < p,
because otherwise Trans(s0, a

ω, 0) = s0 ∈ Lp, that is, p would be in R. We
consider two subcases:

Case 1: R has a lower bound. R has a smallest element, say pmin (by C5). If
pmin ≤ p then p ∈ R, so, we consider the case where p < pmin. There exists
p∗ such that f(s) = p∗ for every s ∈ S∗, and p∗ < f(s) outside S∗ (by
Lemma 3).

Case 1.1: pmin ≤ p∗. Then p < p∗ and this contradicts our assumption that
p∗ is the smallest value attained by f .

Case 1.2: p∗ < p < pmin: Since Lp �= S∗, there exists an F ∈ F , such
that for every a ∈ F and for every reachable state s in Lp, a is en-
abled at s, and f(T (a, s)) < p (by C4). Also, there exists n0 such that
Trans(s0, a

ω, n0)) ∈ Lpmin (by definition of pmin). Since aω is an F -
fair sequence, there exists an m, m > n0, such that aω

m ∈ F. We define

240 S. Mitra and K.M. Chandy

s′ := Trans(s0, a
ω, m − 1). It follows that s′ ∈ Lpmin (by Lemma 2),

that is, f(T (aω
m, s′)) < pmin. As f(T (aω

m, s′)) ∈ R, this contradicts our
assumption that pmin is the smallest element in R.

Case 2: R does not have a lower bound. Then there exists q ∈ R, such that q < p,
and by C1, Lq � Lp. That is, there exists n, such that Trans(s0, a

ω, n) ∈ Lp,
and therefore, contrary to our assumption p ∈ R.

Proof of Theorem 3: Let us fix ε ≥ 0, f satisfying the conditions in the
hypothesis, s0 ∈ S0, and an F -fair sequence aω = a0, a1, There exists
p ∈ Rngf , such that Lf,p ⊆ Bε(S∗) (by C2). There exists n ∈ N, such that
Trans(s0, a

ω, n) ∈ Lf,p ⊆ Bε(S∗) (by Lemma 4). It follows that for all m > n,
Trans(s0, a

ω, m) ∈ Lf,p ⊆ Bε(S∗) (by Lemma 2).

Corollary 1. If A is (S∗, d,F1)-convergent and F1 ≤ F2 then A is (S∗, d,F2)-
convergent.

4.5 Special Case

In certain applications the function d which defines the topological structure
around s∗ can itself be used as the Lyapunov-like function for proving conver-
gence. The obvious advantage of doing so is that C2 follows automatically. We
provide a restricted version of Theorem 3 which can be applied in such cases.

Corollary 2. Let S∗ be a nonempty subset of S and F be a fairness condition
on A. We define f : S → R≥0 as f(s) := d(S∗, s). Suppose there exists a strictly
decreasing sequence pω ∈ R≥0

ω of valuations of f that converges to 0, such that:

D1. ∀ i, j ∈ N, i > j ⇒ Lpi � Lpj .
D2. ∀ s ∈ S, a ∈ A, i ∈ N (Reach(s) ∧ E(a, s) ∧ s ∈ Lpi)⇒ T (a, s) ∈ Lpi .
D3. ∀ i ∈ N, pi �= 0 implies ∃ F ∈ F , such that ∀ a ∈ F, s ∈ Lpi , Reach(s) ⇒

(E(a, s) ∧ T (a, s) ∈ Lpi+1).

Then A (S∗, d,F)-convergent.

Proof: : We check that the defined function f satisfies the conditions in the
hypothesis of Theorem 3. C1 follows from D1. C2 follows from the convergence
of the sequence pω. C3 follows from D2. C4 follows from D3 and the strictly
decreasing property of the sequence pω. It remains to show C5.

Let us fix s ∈ S0 and a F -fair sequence aω ∈ Aω, and let pmin > 0 be a lower
bound for a subset R′ ⊆ Rf (s, aω). Suppose, for the sake of contradiction, that R′

does not have a smallest element. Then there exists a i ∈ N such that pi ∈ R′, and
for all j > i, pj < pmin. There exists s ∈ Lpi , such that s′ = Trans(s0, a

ω, m),
for some m ∈ N (by definition of R′). There exists F ∈ F , such that for all
a ∈ F, s ∈ Lpi , if s is reachable then E(a, s) and T (a, s) ∈ Lpi+1 (by D3).
We fix such an F . As aω is an F -fair sequence, there exists k > m, such that
ak ∈ F . Let s′ = Trans(s0, a

ω, k). As s′ is reachable and so is T (ak, s′). Since
f(T (ak, s′)) ≤ pi+1 < pi, it contradicts our assumption.

A Formalized Theory for Verifying Stability and Convergence 241

5 An Application

In this section, we illustrate the application of our convergence theory to verify
the convergence of the protocol introduced in Example 1. Recall, the set of
states S is defined as arrays of R≥0 indexed by I, where I = {0, 1, . . . , N − 1}.
For i ∈ I, s[i] corresponds to the value of the ith participating agent at state
s. The starting state s0 is an arbitrary but constant element of S. We define a
real-valued constant M that corresponds to the average of the initial values of
the agents: M := 1

N

∑N−1
j=0 s0[j]. Let s∗ ∈ S be defined as the constant array:

s∗ : Const S := [M, . . . , M]

We would like to prove convergence of this protocol to s∗, and in order to do
so we have to first define some notion of neighborhood around s∗ and a fairness
condition for the actions of this automaton. We define the neighborhood around
s∗ with the standard Euclidean distance between any state s ∈ S and s∗.

d(s∗, s) :=
∑

j

(s[j]− s∗[j])2

Next, we specify the fairness condition F . Informally, we require that no two sets
of participating agents are partitioned perpetually. That is, an action sequence
aω is F -fair, if for every n ∈ N, and for every pair of disjoint subsets J, K ⊂ I,
there exists m > n, such that am = interact(j, k, r) for some j ∈ J, k ∈ K and
r ∈ [L, 1− L]. Formally, let J, K be any two subsets of I. We define

FJ,K := {interact(j, k, r) | j ∈ J, k ∈ K, r ∈ [L, 1− L] },
F := {FJ,K | J ∩K = ∅}.

Our goal is to prove that automaton A is (s∗, d,F)-convergent. To this end
we invoke Corollary 2. In this case S∗ = {s∗}. We define

f(s) := s(s∗, s) =
∑

j

(s[j]−M)2,

and the sequence pω, as pi = Mβi, where β := (1− 2L(1−L)
N3). It is easy to check

that pω converges to 0 and that f satisfies condition D1. In the remainder of
this section we check that f satisfies D2 and D3.

We define sorted(s) as a derived variable that returns the sorted version of
the array s. That is, sorted(s) : [I → R≥0] has the following ordering property.
For all i, j ∈ I, sorted(s)(i) < sorted(s)(j) if and only if s[i] > s[j] or s[i] = s[j]
and i > j. That is, sorted(s)[k] is the kth largest element of s.

Prior to checking D2 and D3 the following invariant properties are verified
using Theorem 1. The first invariant follows from the property of the protocol
that

∑N−1
i=0 s[i] = MN remains constant in all reachable states.

Invariant 4 For every s ∈ S, Reach(s) implies
∑N−1

i=0 (sorted(s)[i]−M) = 0.

242 S. Mitra and K.M. Chandy

Invariant 5 For every s ∈ S, Reach(s) and s �= s∗ implies

N−2∑
i=0

sorted(s)[i]− sorted(s)[i + 1] ≥
√

f(s)
N

.

Proof: Since s �= s∗, f(s) > 0. There exists j ∈ I such that (s[j]−M)2 ≥ f(s)/N
(by definition of f(s)). Let us fix such a j. Since (s[j]−M)2 ≥ f(s)/N we conclude
that (sorted(s)[0] −M)2 ≥ f(s)/N . We assume that (sorted(s)[0] −M)2 > 0;
proof for the negative case is symmetric. From Invariant 4,

∑N−1
i=0 (sorted(s)[i]−

M) = 0 and the positivity of sorted(s)[0] −M it follows that there exists k ∈ I,
such that sorted(s)[k]−M < 0. Thus, sorted(s)[N−1]−M < 0.

∑N−2
i=0 (sorted(s)

[i]− sorted(s)[i + 1])

= sorted(s)[0] − sorted(s)[N − 1]

= sorted(s)[0] −M − (sorted(s)[N − 1]−M) ≥
√

f(s)
N

.

Proposition 1. f satisfies D2.

Proof: We have to show that from every reachable state s ∈ S and for any action
a ∈ A, f(T (a, s)) ≤ f(s). Every action a of A, is of the form interact(j, k, r),
where r ∈ [L, 1−L], and L ∈ (0, 1). We fix j, k ∈ I and a reachable state s ∈ S,
and define δ := s[k] − s[j]. From the definition of the transition function T for
action interact(j, k, r) we know:

T (interact(j, k)s)[i] =

⎧⎪⎪⎨
⎪⎪⎩

s[i] + δr if i = j

s[i]− δr if i = k

s[i] otherwise.

(1)

Thus, f(s) − f(T (interact(j, k, r), s)) = 2δr(1 − r), and since r ∈ [L, 1 − L],
f(s)− f(T (interact(j, k, r), s)) ≥ 2.δ2.L.(1− L) ≥ 0

Proposition 2. f satisfies D3.

Proof: Consider any reachable state s such that s �= s∗. It suffices to show
that there exists F ∈ F , such that for any action a ∈ F f(T (a, s)) ≤ βf(s),
where β has been defined to be 1 − 2L(1−L)

N3 . From Invariant 5 we know that∑N−2
i=0 sorted(s)[i]−sorted(s)[i+1] >

√
f(s)
N . Since each term in the summation

is nonnegative, we conclude that there exists k ∈ I, sorted(s)[k]− sorted(s)[k +

1] ≥ 1
N

√
f(s)
N . We fix such a k and define two subsets of I:

A = {j ∈ I | s[j] ≥ s[k]}
B = {j ∈ I | s[j] ≤ s[k − 1]}

A Formalized Theory for Verifying Stability and Convergence 243

Since A and B are disjoint subsets of I, FA,B ∈ F . Now we show that for any
action a ∈ FA,B , f(T (a, s)) ≤ βf(s). Let a = interact(j, k, r), where j ∈ A and
k ∈ B. From Proposition 1 it follows that

f(s)− f(T (interact(j, k, r), s)) ≥ 2L(1− L)(s[j]− s[k])2

≥ 2f(s)L(1− L)
N3

(by definition of A, B)

f(T (interact(j, k, r), s)) ≤
[
1− 2L(1− L)

N3

]
f(s).

6 Discussions

Comparison with Tsitsiklis’ theory. Apart from the more general notion of
fairness that we have formalized, our theory for stability and convergence differs
from that presented in [27] in the following ways.

Specifying topologies. In [27] closeness to the point of convergence s∗ is defined
in terms of a topological structure called a neighborhood system around s∗. A
neighborhood system around s∗ is a collection U of subsets of S that satisfies
the following conditions: (i) s∗ ∈ U , ∀U ∈ S. (ii) For all s ∈ S, s �= s∗, there
exists U ∈ U such that s /∈ U . (iii) U is closed under finite intersections and
arbitrary unions. For most natural definitions for the distance function d, the
ε-balls of d satisfy conditions (i), (ii) and (iii). We decided to use this functional
specification of the neighborhood sets because (a) it is concise, and (b) in many
applications there exists an inherent metric with respect to which we prove
convergence (or stability). Introducing neighborhood systems in the style of [27]
would require us make relatively minor modifications to B1, B2, and C2.

Reachability. In [27] reachability conditions for states of AIPs are not introduced.
Consequently, C4 and C5 in Theorem 3 are weaker than the corresponding con-
ditions in [27]. This is because we require the f to be nonincreasing (decreasing,
resp.) only from the reachable states. Thus, invariant properties proved using
Theorem 1, can be used to verify these conditions.

Convergence and termination. The general method for proving termination
is based on finding a function which decreases along every transition of an au-
tomaton. If the co-domain of the function is wellfounded, the automaton must
terminate, because there are no infinite descending chains.

The standard definition of termination—that of an automaton or a program
executing a finite sequence of transitions and then stopping with an answer—
is not directly applicable to reactive system models where the automaton runs
forever producing an infinite sequence of outputs. Thus, we redefine termination
as follows: given a subset of states ST , A terminates at ST if for every execution
s0, a1, s1, . . ., there exits n ∈ N, such that for all m > n, sm ∈ ST . If we set
S∗ = ST , then this definition of termination is equivalent to the definition of
convergence if one allows ε to be 0. With this interpretation, termination is

244 S. Mitra and K.M. Chandy

a stronger property than convergence. Indeed, many distributed systems, such
as the consensus protocol of Example 1, only convergence (for ε > 0) can be
guaranteed and not termination.

7 Conclusions

We have formalized fairness, stability, and convergence within an existing PVS
framework for verifying untimed, timed, and hybrid automata. The theory pro-
vides a very general set of sufficient conditions for proving stability and conver-
gence. These conditions can be checked using the PVS prover or using other tools.
For example, the nonincreasing condition for convergence C3 can be checked with
a model-checker. The theory extends the PVS interface for the Tempo toolkit,
and hence, enables us to now verify invariance, implementation, convergence,
and stability, all within the same software framework.

Currently we are applying the proposed metatheory to verify timed and hybrid
system models; in particular, convergence of asynchronous pattern formation
algorithms for mobile agent systems [6]. We plan on developing PVS strategies
that exploit the common structural properties in these models and automate
convergence and stability proofs.

References

1. Tempo toolset, version 0.2.2 beta (January 2008),
http://www.veromodo.com/tempo/

2. Archer, M.: PVS Strategies for special purpose theorem proving. Annals of Math-
ematics and Artificial Intelligence 29(1/4) (February 2001)

3. Archer, M., Heitmeyer, C., Sims, S.: TAME: A PVS interface to simplify proofs
for automata models. In: Proceedings of UITP 1998 (July 1998)

4. Archer, M., Lim, H., Lynch, N., Mitra, S., Umeno, S.: Specifying and proving
properties of timed I/O automata using Tempo. Design Automation for Embedded
Systems (to appear, 2008)

5. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination
proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 38–53. Springer, Heidelberg (2007)

6. Chandy, K.M., Mitra, S., Pilotto, C.: Formations of mobile agents with message
loss and delay (preprint) (2007),
http://www.ist.caltech.edu/∼mitras/research/2008/asynchcoord.pdf

7. Devillers, M.: Translating IOA automata to PVS. Technical Report CSI-
R9903, Computing Science Institute, University of Nijmegen (February 1999),
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html

8. Filliâtre, J.: Finite automata theory in Coq: A constructive proof of kleene’s the-
orem. Technical report, LIP -ENS, Research Report 97-04, Lyon (February 1997)

9. Floyd, R.: Assigning meanings to programs. In: Symposium on Applied Mathe-
matics. Mathematical Aspects of Computer Science, pp. 19–32. American Mathe-
matical Society (1967)

10. Gottliebsen, H.: Transcendental functions and continuity checking in PVS. In: Aa-
gaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 197–214.
Springer, Heidelberg (2000)

http://www.veromodo.com/tempo/
http://www.ist.caltech.edu/~mitras/research/2008/asynchcoord.pdf
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html

A Formalized Theory for Verifying Stability and Convergence 245

11. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
12. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O

Automata. Synthesis Lectures on Computer Science. Morgan Claypool, Technical
Report MIT-LCS-TR-917 (November 2005)

13. Lester, D.: NASA langley PVS library for topological spaces,
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.
html

14. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations
and Applications. Birkhauser, Boston (2003)

15. Lim, H., Kaynar, D., Lynch, N., Mitra, S.: Translating timed I/O automata speci-
fications for theorem proving in PVS. In: Pettersson, P., Yi, W. (eds.) FORMATS
2005. LNCS, vol. 3829. Springer, Heidelberg (2005)

16. Luenberger, D.G.: Introduction to Dynamic Systems: Theory, Models, and Appli-
cations. John Wiley and Sons, Inc, New York (1979)

17. Lynch, N., Tuttle, M.: An introduction to Input/Output automata. CWI-
Quarterly 2(3), 219–246 (1989)

18. Mitra, S.: A Verification Framework for Hybrid Systems. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA 02139 (September 2007)

19. Mitra, S., Archer, M.: PVS strategies for proving abstraction properties of au-
tomata. Electronic Notes in Theoretical Computer Science 125(2), 45–65 (2005)

20. Müller, O.: I/O automata and beyond: Temporal logic and abstraction in Isabelle.
In: Proceedings of the 11th International Conference on Theorem Proving in Higher
Order Logics, London, UK, pp. 331–348. Springer, London (1998)

21. Nipkow, T., Slind, K.: I/O automata in Isabelle/HOL. In: Smith, J., Dybjer, P.,
Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 101–119. Springer, Heidel-
berg (1995)

22. Müller, O.: A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universität München (September 1998)

23. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining speci-
fication, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

24. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg
(2001)

25. Paulson, L.C.: Mechanizing UNITY in Isabelle. ACM Transactions on Computa-
tional Logic 1(1), 3–32 (2000)

26. Rohwedder, E., Pfenning, F.: Mode and termination checking for higher-order logic
programs. In: Riis Nielson, H. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 296–310.
Springer, Heidelberg (1996)

27. Tsitsiklis, J.N.: On the stability of asynchronous iterative processes. Theory of
Computing Systems 20(1), 137–153 (1987)

28. Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: A re-
finement approach. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 557–572. Springer, Heidelberg (2007)

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.html

Certified Exact Transcendental Real Number

Computation in Coq�

Russell O’Connor

Institute for Computing and Information Science
Faculty of Science

Radboud University Nijmegen
r.oconnor@cs.ru.nl

Abstract. Reasoning about real number expressions in a proof assistant
is challenging. Several problems in theorem proving can be solved by us-
ing exact real number computation. I have implemented a library for
reasoning and computing with complete metric spaces in the Coq proof
assistant and used this library to build a constructive real number im-
plementation including elementary real number functions and proofs of
correctness. Using this library, I have created a tactic that automatically
proves strict inequalities over closed elementary real number expressions
by computation.

1 Introduction

Mathematics increasingly relies on computation for proofs. Because software is
often error prone, proofs depending on computation are sometimes considered
suspect. Recently, people have used proof assistants to verify these kinds of
mathematical theorems [7]. Real number computation plays an essential role in
some of these problems. These proofs typically require finding a rational approx-
imation of some real number expression to within a specified error or proving a
(strict) inequality between two real number expressions. Two examples of such
proofs are the disproof of Merten’s conjecture [15] and the proof of Kepler’s
conjecture [8]. Certified real number computation also has other applications
including verifying properties of hybrid automata.

Proof assistants based on dependent type theory, such as Coq [17], allow one
to develop a constructive theory of real numbers in which approximations of real
numbers can be evaluated by the system. Functions on real numbers compute
what accuracy is needed from their input to satisfy the requested accuracy for
their output. Rather than accumulating rounding errors, the resulting approxi-
mations are guaranteed to be within the accuracy requested. One can develop a
constructive theory of real numbers that yields efficient functions by taking care
to ensure the computational aspects of the proofs are efficient. This paper illus-
trates how to develop such an efficient constructive theory. We begin reviewing
some results that are detailed in a previous publication [14]:

� This document has been produced using TEXmacs(see http://www.texmacs.org)

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 246–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Certified Exact Transcendental Real Number Computation in Coq 247

– A theory of metric spaces is developed (Section 3) that is independent of
the real numbers. An operation for completing metric spaces is defined
(Section 3.2), and this operation is seen to be a monad.

– This theory of complete metric spaces is used to define the real numbers
(Section 4). A key idea is to first define elementary functions over the rational
numbers, and then, once the functions are shown to be uniformly continuous,
lift these functions to the real numbers by using the monad operations.

A large library of mathematical results called CoRN has previously been devel-
oped at Radboud University Nijmegen [3]. Its collection of proofs includes both
the fundamental theorem of algebra and the fundamental theorem of calculus.
I extended this library by formalizing this theory of complete metric spaces.
The new results detailing how this theory was formalized in Coq are covered
(Section 5):

– The formalization was designed with efficient execution in mind (Section 5.1).
– Care was needed to efficiently approximate infinite series (Section 5.2).
– The technique of proof by reflection is used to verify a definition of π (Sec-

tion 5.3).
– Elementary functions are proved correct by showing that they are equivalent

to their corresponding functions defined in the CoRN library (Section 5.4).
– This theory is put to use by developing a tactic that uses computation to

automatically verify strict inequalities over closed real number expressions
(Section 5.5).

This formalization will be part of the next version of the CoRN library, which
will be released at the same time Coq 8.2 is released.

1.1 Notation

The propositions true and false are denoted by � and ⊥ respectively. The type
of propositions is written as �. In Coq this type is Prop.

The type �+ denotes the strictly positive rational numbers, and I will use
similar notation for other number types. The type �+

∞ denotes �+ + {∞}.
Functions taking multiple arguments will be curried as in f : A ⇒ B ⇒ C;

however, for readability, I will often use mathematical notation when applying
parameters, f(x, y), even though it should technically be written as f(x)(y).

I denote the function f iterated n times as f (n).
Because constructive mathematics has a classical interpretation, all the the-

orems in this paper can also be understood as theorems of classical analysis.
Although some of the definitions I use are somewhat different from the usual
classical definitions, they are still equivalent (under classical logic) to their clas-
sical counterparts.

2 Background

The real numbers are typically defined as a Cauchy sequence of rational numbers.
A sequence x : �⇒ � is Cauchy when

248 R. O’Connor

∀ε : �.0 < ε⇒ ∃N : �.∀m : �.N ≤ m⇒ |xm − xN | ≤ ε.

The function mapping ε to N is the modulus of convergence. It tells you how far
into the sequence you must reach in order to get good rational approximations
to the real number that x represents.

By using the constructive existential, one ensures that the value of N is com-
putable from ε. This results in the constructive real numbers. One can compute
approximations of constructive real numbers to within any given precision.

Real numbers are usually created from Cauchy sequences (which often arise
from Taylor series). Perhaps this is why the Cauchy sequence definition is com-
mon. On the other hand, approximation is the fundamental operation for con-
suming real numbers. This suggests an alternative definition of real numbers
based on how they are consumed. One can define a real number as a regular
function of rational numbers. A regular function of rational numbers is a func-
tion x : �+ ⇒ � such that

∀ε1ε2.|x(ε1)− x(ε2)| ≤ ε1 + ε2.

Regular functions are a generalization of regular sequences, which Bishop and
Bridges use to define the real numbers [1]. With regular functions, x directly rep-
resents the function that approximates a real number to within ε. The regularity
condition ensures that the approximations are coherent.

Regular functions and Cauchy sequences can be used to construct more than
just the real numbers. They can be used to construct the completion of any
metric space.

3 Metric Spaces

Usually a metric space X is defined by a metric function d : X × X ⇒ �;
however, this assumes that the real numbers have already been defined. Instead,
one can define a metric space based on a ball relation βε(a, b), that characterizes
when d(a, b) ≤ ε. Partial application, βε(a), yields a predicate that represents
the set of points inside the closed ball of radius ε around a. The following axioms
characterize a ball relationship β : �+ ⇒ X ⇒ X ⇒ �.

1. βε(a, a)
2. βε(a, b)⇒ βε(b, a)
3. βε1(a, b)⇒ βε2(b, c)⇒ βε1+ε2(a, c)
4. (∀δ : �+.βε+δ(a, b))⇒ βε(a, b)

Axioms 1 and 2 state that the ball relationship is reflexive and symmetric. Ax-
iom 3 is a form of the triangle inequality. Axiom 4 states that the balls are closed.
Closed balls are used because their proof objects usually have no computational
content and can be ignored during evaluation. For some metric spaces, such as
the real numbers, open balls are defined with existential quantifiers and their
use would lead to unnecessary computation [4].

Certified Exact Transcendental Real Number Computation in Coq 249

Two points are considered identical if they are arbitrarily close to each other.

(∀ε.βε(a, b))⇔ a / b

This can be considered either the definition of equivalence in X , or if X comes
with an equivalence relationship, then it can be considered a fifth axiom.

In Coq, a metric space X is a dependent record containing

1. a type (called the carrier)
2. a ball relation on that type
3. a proof that this ball relation satisfies the the above axioms.

The second projection function B returns the ball relation component of the
metric space. I will write the metric space parameter in a superscript, as in BX .
I will not distinguish between a metric space and its carrier, so X will denote
either a metric space or its carrier depending on the context.

Sometimes an extended ball relation B̌X : �+
∞ ⇒ X ⇒ X ⇒ � will be used

where B̌X∞(a, b) always holds and reduces to BX
ε (a, b) when ε <∞.

3.1 Uniformly Continuous Functions

A uniformly continuous function allows one to approximate the output from an
approximation of the input. The usual definition for a function f : X ⇒ Y to be
uniformly continuous is

∀ε.∃δ.∀ab.BX
δ (a, b)⇒ BY

ε (f(a), f(b)).

The function mapping ε to δ is what Bishop and Bridges [1] call the modulus of
continuity and is denoted by µf . (This is the inverse of what mathematicians
usually call the modulus of continuity.)

It is advantageous to use a more general notion of modulus of continuity that
can return ∞. This is used for bounded functions when the requested accuracy
is wider than the bound on the function. For example, µsin(ε) = ∞ for 1 ≤ ε
because sin(x)(ε) = 0 for all x. We also pull out the modulus of continuity in
order to reason about it directly. Thus, we define a function f : X ⇒ Y to be
uniformly continuous with modulus µf : �+ ⇒ �+

∞ when

∀abε.B̌X
µf (ε)(a, b)⇒ BY

ε (f(a), f(b)).

In Coq, a uniformly continuous functions is a dependent record containing

1. a function f between two metric spaces
2. a modulus of continuity for f
3. a proof that f is uniformly continuous with the given modulus.

This means that µ is really the second projection function. Again, I will not
distinguish between the uniformly continuous function f and its actual function.

I will denote the type of uniformly continuous functions with the single bar
arrow, as in X → Y .

250 R. O’Connor

3.2 Complete Metric Spaces

We are now in a position to define regular functions over an arbitrary metric
space X . A function x : �+

∞ ⇒ X is a regular function when

∀ε1ε2 : �+.BX
ε1+ε2

(x(ε1), x(ε2)).

The function x is allowed to return anything when given ∞.
Two regular functions are equivalent (x / y) when their approximations are

arbitrarily close to each other.

∀ε1ε2 : �+.BX
ε1+ε2

(x(ε1), y(ε2))

Thus, a regular function is a function that is equivalent to itself under this
relation.

Regular functions form a metric space [14], C(X), where the ball relation
B

C(X)
ε (x, y) is

∀δ1δ2 : �+.BX
δ1+ε+δ2

(x(δ1), y(δ2)).

This states that x and y are within ε of each other when their approximations
are almost within ε of each other.

Completion is a Monad. The completion operator C forms a monad in the
category of metric spaces and uniformly continuous functions between them [14].
The injection of X into C(X) is unit : X → C(X). The proof that a complete
metric space is complete yields join : C(C(X)) → C(X). The function map :
(X → Y)⇒ C(X)→ C(Y) lifts uniformly continuous functions to the complete
space. Finally, bind : (X → C(Y)) ⇒ C(X) → C(Y) is defined in terms of map
and join in the usual way.

unit(a)(ε) := a

join(x)(ε) := x
(ε

2

)(ε

2

)
map(f)(x)(ε) := f

(
x

(
µ̌f (ε)

2

))
(1)

bind(f) := join ◦map(f)

Here the function µ̌f : �+
∞ ⇒ �+

∞ maps ∞ to ∞, and applies µf otherwise.
In my previous work, I used a simpler definition of map

map′(f)(x)(ε) := f(x(µ̌f (ε))). (2)

Unfortunately, this definition requires the additional assumption that X be a
prelength space [14]. Recently, I inferred from Richman’s work [16] that map
can be defined using equation 1 and works for all metric spaces if the modulus
of continuity of map(f) is smaller than µf .

Despite the above, in the common case that X is a prelength space, the
definition of map′ in equation 2 is more efficient, and map′(f) has the same
modulus of continuity as f . Because of this, I use map′ (and similarly bind′)
throughout my work. I use map mostly for theoretical results.

Certified Exact Transcendental Real Number Computation in Coq 251

Completion is a Strong Monad. Functions between two metric spaces form
a metric space under the sup-norm. The ball relation between two functions
BX→Y

ε (f, g) is
∀a.BY

ε (f(a), g(a))

Now the function map : (X → Y)→ C(X)→ C(Y) can be shown to be uniformly
continuous [14]. By defining ap : C(X → Y)→ C(X)→ C(Y), higher arity maps
such as map2 : (X → Y → Z)→ C(X)→ C(Y)→ C(Z) can be constructed.

ap(f)(x)(ε) := map
(
f
(ε

2

))
(x)

(ε

2

)
map2(f) := ap ◦map(f)

4 Real Numbers

Because the rational numbers � are a metric space, the real numbers can be
simply defined as the completion of �.

� := C(�)

Uniformly continuous operations on the real numbers are defined by lifting their
rational counterparts with map or map2. This is how +� and−� are defined [14].

I find using monadic operators to define functions on � is easier than trying
to define functions directly. It splits the problem into two parts. The first part is
to define the the function over �, which is easier to work with because equality
is decidable for �. The second part is to prove that the function is uniformly
continuous.

4.1 Order

A real number x is non-negative when

∀ε : �+.− ε ≤� x(ε).

The not-greater-than relation on real numbers, x ≤� y, means that y − x is
non-negative.

A real number x is positive when

∃ε : �+. unit(ε) ≤� x

(recall that unit : �→ �). One real number is less than another, x <� y, when
y − x is positive. Two real numbers are apart, x ≶ y, when x < y ∨ y < x.

This definition of positivity differs from what would be analogous to Bishop
and Bridges’s definition, ∃ε : �+.ε <� x(ε). Although the two definitions are
equivalent, my definition above contains a rational number in]0, x]. This is ex-
actly the information that will be needed to compute x−1 or ln(x) (Section 4.2).
With Bishop and Bridges’s definition, one must compute x(ε) − ε, which is a
potentially expensive calculation.

252 R. O’Connor

4.2 Non-uniformly Continuous and Partial Functions

Unfortunately not all functions that we want to consider are uniformly continu-
ous. One can deal with continuous functions by noting that they are uniformly
continuous on some collection of closed sub-domains that cover the whole space.
For example, λa : �.a2 is uniformly continuous on [−c, c]. Thus, a real num-
ber x can be squared by finding some domain [−c, c] containing it and lifting
(λa.(max(min(a, c),−c))2, which is uniformly continuous. In this case c can be
chosen to be |x(1)|+1. One can prove that the result is independent of the choice
of c, so long as x ∈ [−c, c].

Evaluating a non-uniformly continuous function is potentially a costly oper-
ation. The input x must be approximated twice. The first approximation finds
a domain to operate in, and the second approximation is used to evaluate the
function. In practice, I have found that one often has a suitable domain lying
around for the particular problem at hand. If that is the case, then x only needs
to be approximated once.

Partial functions with open domains are handled in the same way as non-
uniformly continuous functions. For example, λx.x−1 is uniformly continuous
on the domains [c,∞[and] −∞,−c] (where 0 < c). One difference is that one
cannot automatically find a domain containing x. One requires a proof that x is
apart from 0. From such a proof, one can find a suitable domain containing x.

Partial functions with closed domains, such as λx.
√

x, can be extended to
continuous total functions. I extend the square root function to return 0 for
negative values. If one wishes, one can then restrict the lifted function to only
accept non-negative inputs.

4.3 Transcendental Functions

Transcendental functions are first defined from � to �. Once these functions
are shown to be uniformly continuous (or otherwise using the techniques from
the previous section), they are then lifted using bind to create functions from �
to �.

Most elementary functions can be defined on some sub-domain by an alter-
nating decreasing series. Inputs outside this domain can often be dealt with
by using range reduction. Range reduction uses elementary identities to reduce
inputs from a wider to a narrower domain [14].

For example, the alternating series
∑∞

i=0(−1)i a2i+1

(2i+1)! computes sin(a), and
is decreasing when a ∈ [−1, 1]. For a outside this interval, range reduction is
preformed by repeated application of the identity

sin(a) / 3 sin
(a

3

)
− 4 sin3

(a

3

)
.

The value of an infinite alternating series, is represented by a regular function
that finds a partial sum having an error no more than ε. When an alternating
series is decreasing, finding such a partial sum is easy because the last term also
represents the error. One only needs to accumulate terms until a term becomes
less than ε.

Certified Exact Transcendental Real Number Computation in Coq 253

Coq will not accept a general recursive function that computes the above
partial sum. It requires a proof of termination. This is done by computing an
upper bound on the number of terms that will be needed. Strategies for doing
this efficiently in Coq are discussed Section 5.2.

The elementary functions, sin, cos, and tan−1 are defined as described in
my previous publication [14]. The implementation of ln has been improved by
defining it in terms of tanh−1,

ln
(n

d

)
:= 2 tanh−1

(
n− d

n + d

)
.

However, the input is still range reduced into [12 , 2] before using the above
formula.

I have also implemented a function to sum sub-geometric series (a series where
|an+1| ≤ r|an|). The error of the partial sums of these series is easy to compute
from the last term and r. I now use this function to compute the exp(a) function
for a ∈]0, 1[.

4.4 Compression

Without intervention, the numerators and denominators of rational numbers oc-
curring in real number computations become too large for practical computation.
To help prevent this, I defined a compression operation for real numbers.

compress(x)(ε) := approx�
(
x
(ε

2

)
,
ε

2

)
where approx�(a, δ) returns some rational number within δ of a. The idea is
that approx�(a, δ) quickly computes a rational number close to a but having a
smaller numerator and denominator. In my implementation, I return b

2n , where
2n is the smallest power of 2 greater than the denominator of δ, and b is chosen
appropriately so that the result is within δ of a.

The compress function is equivalent to the identity function on �.

compress(x) / x

By liberally inserting compress into one’s expressions, one can often dramati-
cally improve the efficiency of real number calculations. I am considering adding
a call to compress with every use of map or bind so that the user does not need
to add these calls themselves. Too many calls to compress can harm performance
but perhaps not enough to cause worry.

5 Formalization in Coq

The theory of metric spaces and real numbers described in Sections 3 and 4 has
been formalized in the Coq proof assistant. I developed functions and proofs
simultaneously. I did not extract functions from constructive proofs, nor did I
write functions entirely separately from their proofs of correctness. Proofs and
functions are often mixed together, such as in the dependent records of metric
spaces, uniformly continuous functions, and regular functions.

254 R. O’Connor

5.1 Efficient Proofs

A mixture of proofs and functions can still be efficient to evaluate by taking care
to write the functional aspects efficiently and ensuring that the non-functional
aspects are declared opaque. Declaring lemmas as opaque prevents call-by-value
evaluation from normalizing irrelevant proofs.

I used Coq’s Prop/Set distinction (two different universes of types) to assist
in the separation of these concerns [4]. Types that have at most one member
(extensionally) are proof-irrelevant and go into Prop. Lemmas having these types
are declared opaque. Types that may have more than one member go into Set,
and objects of such types are kept transparent. This criterion means that I use
the Set based sum and dependent pair types for the constructive disjunction
and constructive existential quantifier.

When proving a constructive existential goal, one has to deal with both Prop
and Set during a proof. The existential lives in Set, but after supplying the wit-
ness, a Prop based proof obligation remains. The witness needs to be transparent,
but the proof obligation should be opaque. It is best to try and separate these
two parts into two different definitions, one transparent and one opaque. How-
ever, in some instances I make the entire development transparent, but I mark
the proof obligation part with Coq’s abstract tactic. The abstract tactic auto-
matically defines an opaque lemma containing marked part of the proof and places
this lemma into the proof object. Thus, the marked part is never evaluated.

5.2 Summing Series

One of the more challenging aspects of the formalization was computing the
infinite series defined in Section 4.3 in an efficient manner. In order to convince
Coq that the procedure of accumulating terms until the error becomes sufficiently
small terminates, I provided Coq with an upper bound on the number of terms
that would be required. I tried two different methods to accomplish this.

The first method computes an upper bound on the number of terms needed as
a Peano natural number. The problem is that the call-by-value evaluation scheme
used by Coq’s virtual machine would first compute this value before computing
the series. This upper bound is potentially extremely large, it is encoded in
unary, and only a few terms may actually be needed in the computation. The
solution to this problem was to create a lazy natural number using the standard
trick of placing a function from the unit type inside the constructor.

The lambda expressions inside the lazy natural numbers delay the evaluation
of the call-by-value scheme. With some care, only the number of constructors
needed for the recursion are evaluated.

Inductive LazyNat : Set :=
| LazyO : LazyNat
| LazyS : (unit -> LazyNat) -> LazyNat.

Fig. 1. Inductive definition of lazy natural numbers

Certified Exact Transcendental Real Number Computation in Coq 255

A second method, suggested by Benjamin Grégoire, is to compute the number
of terms needed as a binary number. This prevents the term from becoming too
big. It is possible to do recursion over the binary natural numbers such that two
recursive calls are made with the output of one recursive call being threaded
through the other. In this way, up to n recursive calls can be made even though
only lg n constructors are provided by the witness of termination.

In the simplified example below, the function F is iterated up to n times.
Continuation passing style is used to thread the recursive calls.

Variable A R : Type
Variable F : (A -> R) -> A -> R

Fixpoint iterate pos (n:positive) (cont: A -> R) : A -> R :=
match n with
| xH => F cont
| xO n’ => iterate pos n’ (fun a => iterate pos n’ cont a)
| xI n’ => F (fun a => (iterate pos n’
(fun a => iterate pos n’ cont a)) a)
end.

Fig. 2. The Coq function iterate pos recurses F at up to n times, using continuation
passing style

The η-expansion of the continuations in the above definition are important,
otherwise the virtual machine would compute the value of the iterate pos n’
cont calls before reducing F. This is important because F may not utilize its
recursive call depending on the value of a. In such a case, we do not want the
recursive call to be evaluated.

5.3 π

A common definition of π is 4 tan−1(1). This is an inefficient way of computing
π because the series for tan−1(1) converges slowly. One can more efficiently
compute π by calling tan−1 with smaller values [18]. I chose an optimized formula
for π from a list [19]:

π := 176 tan−1

(
1
57

)
+ 28 tan−1

(
1

239

)
− 48 tan−1

(
1

682

)
+96 tan−1

(
1

12943

)

This formula can easily be shown to be equivalent to 4 tan−1(1) by repeated
application of the arctangent sum law:

if a, b ∈]− 1, 1[then tan−1(a) + tan−1(b) / tan−1

(
a + b

1− ab

)
To apply the arctangent sum law, one needs to verify that a and b lie in]− 1, 1[.
To solve this, I wrote a Coq function to iterate the function f(b) := a+b

1−ab , and

256 R. O’Connor

at each step verify that the result is in the interval]−1, 1[. This function, called
ArcTan multiple, has type

∀a : �.− 1 < a < 1⇒ ∀n.� ∨
(
n tan−1(x) / tan−1(f (n)(0))

)
It is easy to build a function of the above type that just proves � in all cases,
but ArcTan multiple tries to prove the non-trivial result if it can.

To apply this lemma I use a technique called reflection. The idea is to eval-
uate the ArcTan multiple(a, r, n) into head normal form. This will yield either
left(q) or right(p). If right(p) is returned then p is the proof we want.

My first attempt at building a tactic to implement this did not work well. I
used Coq’s eval hnf command to reduce my expression to head normal form.
However, this command repeatedly calls simpl to expose a constructor instead
of using the evaluation mechanism directly. The problem was that simpl does
extra reductions that are not necessary to get head normal form, so using eval
hnf was too time consuming.

Instead, I built a reflection lemma, called reflect right, to assist in applying
the ArcTan multiple function:

∀z : A ∨B.(if z then ⊥ else �)⇒ B

This simple lemma does case analysis on z. If z contains a proof of A, it returns
a proof of ⊥ ⇒ B. If z contains a proof of B, it returns a proof of � ⇒ B. To
prove n tan−1(a) / tan−1(f (n)(0)), for the example a := 1

57 and n := 176, one
applies reflect right composed with ArcTan multiple to reduce the goal to

if (ArcTan multiple
1
57
∗ 176) then ⊥ else �,

where ∗ is the trivial proof of −1 < 1
57 < 1. Then one normalizes this expression

using lazy evaluation to either �, if ArcTan multiple succeeds, or ⊥, if it fails.

5.4 Correctness

There are two ways to prove that functions are correct. One way is to prove that
they satisfy some uniquely defining properties. The other way is to prove that the
functions are equivalent to a given reference implementation. I have verified that
my elementary functions are equivalent to the corresponding functions defined
in the CoRN library [3]. The functions in the CoRN library can be seen to be
correct from the large library of theorems available about them. The CoRN
library contains many different characterizations of these functions and new
characterizations can easily be developed.

The CoRN library defines a real number structure as a complete, ordered,
Archimedean field. My first step was to prove that my operations form a real
number structure. I first attempted to directly show that my real numbers satisfy
all the axioms of a real number structure, but this approach was difficult. Instead,
I created an isomorphism between my real numbers and the existing model of the

Certified Exact Transcendental Real Number Computation in Coq 257

real numbers developed by Niqui [6]. This was a much easier approach because
Niqui’s Cauchy sequence definition and my regular function definition are closely
related. With this isomorphism in place, I proved my operations satisfied the
axioms of a real number structure by passing through the isomorphism and using
Niqui’s existing lemmas. Niqui has also proved that all real number structures
are isomorphic, so I can create an isomorphism between my real numbers and
any other real number structure.

The next step was to define my elementary functions and prove that they are
equivalent to the corresponding CoRN functions. These theorems are of the form
Φ(fCoRN(x)) / f(Φ(x)) where Φ is the isomorphism from CoRN’s real numbers
to my real numbers.

To aid in converting statements between different representations of real num-
bers, I have created a rewrite database that contains the correctness lemmas.
By rewriting with this database, expressions can be automatically converted
from CoRN’s real numbers into my real numbers. This database can easily be
extended with more functions in the future.

The CoRN library was more than just a specification; this library was useful
throughout my development. For example, I was often able to prove that a
differentiable function f is uniformly continuous with modulus λε. ε

M when M
is a bound on the derivative of f . I could prove this because the theory of
derivatives had already been developed in CoRN. The CoRN library also helped
me reduce the problem of proving the correctness of continuous functions on �
to proving correctness only on �.

5.5 Solving Strict Inequalities Automatically

Whether a strict inequality holds between real numbers is semi-decidable. This
question can be reduced to proving that some expression e0 : � is positive. To
prove e0 is positive one must find an ε : �+, such that unit(ε) ≤ e0. I wrote a
tactic to automate the search for such a witness. It starts with an initial δ : �+,
and computes to see if e0(δ)− δ is positive. If it is positive, then e0(δ)− δ is such
a witness; otherwise δ is halved and the process is repeated. If e0 / 0, then this
process will never terminate. If e0 < 0, then the tactic will notice that e0(δ) + δ
is negative and terminate with an error indicating that e0 is negative.

This tactic has been combined with the rewrite database of correctness lem-
mas to produce a tactic that solves strict inequalities of closed expressions over
CoRN’s real numbers. This allows users to work entirely with CoRN’s real num-
bers. They need never be aware that my effective real numbers are running
behind the scenes.

Recently Cezary Kaliszyk has proved that Coq’s classical real numbers (from
the standard library) form a CoRN real number structure, and he has shown
that Coq’s elementary functions are equivalent to CoRN’s. Now strict inequali-
ties composed from elementary functions over Coq’s classical real numbers can
automatically be solved.

The tactic currently only works for expressions composed from total func-
tions. Partial functions with open domains pose a problem because proof objects

258 R. O’Connor

witnessing, for example, that x is positive for ln(x) must be transparent for
computation. However, proof objects for CoRN functions are opaque, and Coq’s
classical functions have no proof objects. The required proof objects are proofs of
strict inequalities, so I am developing a tactic that recursively solves these strict
inequalities and creates transparent proof objects. This will allow one prove
strict inequalities over expressions that include partial functions such as ln and
λx.x−1.

5.6 Setoids

Coq does not have quotient types. Setoids are used in place of quotient types. A
setoid is a type associated with an equivalence relation on that type. A frame-
work for working with setoids is built into Coq. Coq allows one to associate an
equivalence relation with a type and register functions as morphisms by prov-
ing they are well-defined with respect to the given equivalence relations. Coq
allows you substitute terms with other equivalent terms in expressions com-
posed from morphisms. Coq automatically creates proof objects validating these
substitutions.

Setoids have some advantages over quotient types. Some functions, most no-
tably the function that approximates real numbers, are not well-defined with
respect to the equivalence relation—two equivalent real numbers may compute
different approximations. It is unclear how one would support these functions if
a system with quotient types was used.

Support for setoids was invaluable for development; however, I encountered
some difficulties when dealing with convertible types. The types CR, Complete
Q as MetricSpace, and cs crr CRasCRing, where cs crr retrieves the carrier
type, are all convertible. They are equivalent as far as the underlying type theory
is concerned, but Coq’s tactics work on the meta-level where these terms are
distinguishable. The setoid system does not associate the equivalence relation
on the real numbers with all of these various forms of the same type. Adding
type annotations was not sufficient; they were simplified away by Coq. Instead,
I used an identity function to force the types into a suitable form:

Definition ms_id (m:MetricSpace) (x:m) : m := x.

The setoid system is being reimplemented in the upcoming Coq 8.2 release.
Therefore, some of these issues may no longer apply.

5.7 Timings

Table 1 shows examples of real number expressions that can be approximated.
Approximations of these expressions were evaluated to within 10−20 on a 1.4 GHz
ThinkPad X40 laptop using Coq’s vm compute command for computing with its
virtual machine. These examples are taking from the “Many Digits” friendly
competition problem set [13].

Certified Exact Transcendental Real Number Computation in Coq 259

Table 1. Timings of approximations of various real number expressions

Coq Expression
Mathematical Expression Time Result Error
(CRsqrt (compress (rational exp (1))*compress (CRinv pos (3#1) CRpi)))%CR�

e
π

1 sec 0.93019136710263285866 10−20

(sin (compress (CRpower positive 3
(translate (1#1) (compress (rational exp (1)))))))%CR
sin((e + 1)3) 25 sec 0.90949524105726624718 10−20

(exp (compress (exp (compress (rational exp (1#2))))))%CR

eee
1
2

146 sec 181.33130360854569351505 10−20

6 Related Work

Julien is developing an implementation of real numbers in Coq using co-inductive
streams of digits [11]. This representation allows common subexpressions to be
easily shared because streams naturally memoize. Sharing does not work as well
with my representation because real numbers are represented by functions. One
would require additional structure to reuse approximations between subexpres-
sions. Julien also uses the new machine integers implementation in Coq’s virtual
machine to make his computations even faster. It remains to be seen if using
machine integers would provide a similar boost in my implementation.

Cruz-Filipe implemented CoRN’s library of theorems and functions over the
real numbers in Coq [2]. His implementation forms the reference specification
of my work. Although his implementation is constructive, it was never designed
for evaluation [5]. Many important definitions are opaque and efficiency of com-
putation was not a concern during development. Cruz-Filipe showed that it is
practical to develop a constructive theory of real analysis inside Coq. My work
extends this result to show that it is also possible to develop a theory of real
analysis that is practical to evaluate.

Muñoz and Lester implemented a system for approximating real number ex-
pressions in PVS [12]. Their system uses rational interval analysis for doing
computation on monotone segments of transcendental functions. Unfortunately,
this leads to some difficulties when reasoning at a local minimum or maximum,
so their system cannot automatically prove 0 < sin

(
π
2) , for instance.

Harrison implemented a system to approximate real number expressions in
HOL Light [9]. His system runs a tactic that externally computes an approxima-
tion to an expression and generates a proof that the approximation is correct.
If such a technique were implemented for Coq, it would generate large proof
objects. This is not an issue in HOL Light where proof objects are not kept.

Jones created a preliminary implementation of real numbers and complete
metric spaces in LEGO [10]. She represented real numbers as a collection con-
taining arbitrarily small intervals of rational numbers that all intersect. Complete
metric spaces were similarly represented by using balls in place of intervals. Be-
cause the only way of getting an interval from the collection is by using the

260 R. O’Connor

arbitrarily small interval property, her representation could have been simpli-
fied by removing the collection and let it implicitly be the image of a function
that produces arbitrarily small intervals. This is similar to my work because one
can interpret a regular function f as producing the interval [f(ε)− ε, f(ε) + ε].
Perhaps using functions that return intervals could improve computation by
allowing one to see that an approximation maybe more accurate than requested.

My work is largely based on Bishop and Bridges’s work [1]. Some definitions
have been modified to make the resulting functions more efficient. My definition
of a metric space is more general; it does not require that the distance function
be computable. The original motivation for the ball relation was only to develop
a theory of metric spaces that did not presuppose the existence of the real
numbers; however, it allows me to form a metric space of functions. This metric
space does not have a computable distance function in general and would not
be a metric space according to Bishop and Bridge’s definition.

7 Conclusion

We have seen a novel definition of a metric space using a ball relation. We
have seen how to create an effective representation for complete metric spaces
and seen that the completion operation forms a monad. Using this monad, we
defined the real numbers and used the monad operations to define effective
functions on the real numbers. This theory has been formalized in Coq and the
elementary functions have been proved correct. Real number expressions can
be approximated to any precision by evaluation inside Coq. Finally, a tactic
was developed to automatically proof strict inequalities over closed real number
expressions.

After completing the Haskell prototype and after writing up detailed paper
proofs [14], it took about five months of work to complete the Coq formalization.
This preparation allowed for a smooth formalization experience. Only a few
minor errors were found in the paper proofs. These errors mostly consisted of
failing to consider cases when ε may be too large, and they were easy to resolve.

My results show that one can implement constructive mathematics such that
the resulting functionally can be efficiently executed. This may be seen as the
beginning of the realization of Bishop’s program to see constructive mathematics
as programming language.

References

1. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der mathematischen
Wissenschaften, vol. 279. Springer, Heidelberg (1985)

2. Cruz-Filipe, L.: Constructive Real Analysis: a Type-Theoretical Formalization and
Applications. PhD thesis, University of Nijmegen (April 2004)

3. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN: the constructive Coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 88–103. Springer, Heidelberg (2004)

Certified Exact Transcendental Real Number Computation in Coq 261

4. Cruz-Filipe, L., Spitters, B.: Program extraction from large proof developments. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 205–220. Springer,
Heidelberg (2003)

5. Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted pro-
grams. Electr. Notes Theor. Comput. Sci. 151(1), 75–91 (2006)

6. Geuvers, H., Niqui, M.: Constructive reals in Coq: Axioms and categoricity. In:
Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS,
vol. 2277, pp. 79–95. Springer, Heidelberg (2002)

7. Gonthier, G.: A computer-checked proof of the four colour theorem. Technical
report, Microsoft Research Cambridge (2005)

8. Hales, T.C.: A computer verification of the Kepler conjecture. In: Proceedings of
the International Congress of Mathematicians, Beijing, vol. III, pp. 795–804. Higher
Ed. Press (2002)

9. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
10. Jones, C.: Completing the rationals and metric spaces in LEGO. In: The second

annual Workshop on Logical environments, New York, NY, USA, pp. 297–316.
Cambridge University Press, Cambridge (1993)

11. Julien, N.: Certified exact real arithmetic using co-induction in arbitrary inte-
ger base. In: Functional and Logic Programming Symposium (FLOPS). LNCS,
Springer, Heidelberg (2008)

12. Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer,
Heidelberg (2005)

13. Niqui, M., Wiedijk, F.: The “Many Digits” friendly competition (2005),
http://www.cs.ru.nl/∼milad/manydigits

14. O’Connor, R.: A monadic, functional implementation of real numbers. Mathemat-
ical. Structures in Comp. Sci. 17(1), 129–159 (2007)

15. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. Reine
Angew. Math. 357, 138–160 (1985)

16. Richman, F.: Real numbers and other completions. Math. Log. Q. 54(1), 98–108
(2008)

17. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.0 (April 2004), http://coq.inria.fr

18. Weisstein, E.W.: Machin-like formulas. From MathWorld–A Wolfram Web Re-
source (January 2004),
http://mathworld.wolfram.com/Machin-LikeFormulas.html

19. Williams, R.: Arctangent formulas for PI (December 2002),
http://www.cacr.caltech.edu/∼roy/upi/pi.formulas.html

http://www.cs.ru.nl/~milad/manydigits
http://coq.inria.fr
http://mathworld.wolfram.com/Machin-LikeFormulas.html
http://www.cacr.caltech.edu/~roy/upi/pi.formulas.html

Formalizing Soundness of Contextual Effects

Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks, and Iulian Neamtiu

University of Maryland, College Park, MD 20742

Abstract. A contextual effect system generalizes standard type and ef-
fect systems: where a standard effect system computes the effect of an
expression e, a contextual effect system additionally computes the prior
and future effect of e, which characterize the behavior of computation
prior to and following, respectively, the evaluation of e. This paper de-
scribes the formalization and proof of soundness of contextual effects,
which we mechanized using the Coq proof assistant. Contextual effect
soundness is an unusual property because the prior and future effect of
a term e depends not on e itself (or its evaluation), but rather on the
evaluation of the context in which e appears. Therefore, to state and
prove soundness we must “match up” a subterm in the original typing
derivation with the possibly-many evaluations of that subterm during the
evaluation of the program, in a way that is robust under substitution. We
do this using a novel typed operational semantics. We conjecture that
our approach could prove useful for reasoning about other properties of
derivations that rely on the context in which that derivation appears.

1 Introduction

Type and effect systems are used to reason about a program’s computational
effects [5,8,11]. Such systems have various applications in program analysis, e.g.,
to compute the set of memory accesses, I/O calls, function calls or new threads
that occur in any given part of the program. Generally speaking, a type and
effect system proves judgments of the form ε; Γ � e : τ where ε is the effect
of expression e. Recently, we proposed generalizing such systems to track what
we call contextual effects, which capture the effects of the context in which an
expression occurs [7]. In our contextual effect system, judgments have the form
Φ; Γ � e : τ , where Φ is a tuple [α; ε; ω] containing ε, the standard effect of e,
and α and ω, the effects of the program evaluation prior to and after computing
e, respectively.

Our prior work explored the utility of contextual effects by studying two
applications, one related to dynamic software updating correctness, and the other
to analysis of multi-threaded programs. This paper presents the formalization
and proof of soundness of contextual effects, which we have mechanized using the
Coq proof assistant [2]. Intuitively, for all subexpressions e of a given program
ep, a contextual effect [α; ε; ω] is sound for e if (1) α contains the actual, run-time
effect of evaluating ep prior to evaluating e, (2) ε contains the run-time effect
of evaluating e itself, and (3) ω contains the run-time effect of evaluating the
remainder of ep after e’s evaluation has finished. (Discussed in Section 2.)

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 262–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formalizing Soundness of Contextual Effects 263

There are two main challenges with formalizing this intuition to prove that
our contextual effect system is sound. First, we must find a way to define what
constitute the actual prior and future effects of e when it is evaluated as part
of ep. Interestingly, these effects cannot be computed compositionally (i.e., by
considering the subterms of e), as they depend on the relative position of the
evaluation of e within the evaluation of ep, and not on the evaluation of e itself.
Moreover, the future effect of e models the evaluation after e has reduced to a
value. In a small-step semantics, specifying the future effect by finding the end
of e’s computation would be possible but awkward. Thus we opt for a big-step
operational semantics, in which we can easily and naturally define the prior,
standard, and future effect of every subterm in a derivation. (Section 3)

The second challenge, and the main novelty of our proof, is specifying how
to match up the contextual effect Φ of e, as determined by the original typing
derivation of Φp; Γ � ep : τp, with the run-time effects of e recorded in the eval-
uation derivation. The difficulty here is that, due to substitution, e may appear
many times and in different forms in the evaluation of ep. In particular, a value
containing e may be passed to a function λx.e′ such that x occurs several times
in e′, and thus after evaluating the application, e will be duplicated. Moreover,
variables within e itself could be substituted away by other reductions. Thus we
cannot just syntactically match a subterm e of the original program ep with its
corresponding terms in the evaluation derivation.

To solve this problem, we define a typed operational semantics in which each
subderivation is annotated with two typing derivations, one for the term under
consideration and one for its final value. Subterms in the original program ep

are annotated with subderivations of the original typing derivation Φp; Γ � ep :
τp. As subterms are duplicated and have substitutions applied to them, our
semantics propagates the typing derivations in the natural way to the new terms.
In particular, if Φ is the contextual effect of subterm e of ep, then all of the
terms derived from e will also have contextual effect Φ in the typed operational
semantics. Given this semantics, we can now express soundness formally, namely
that in every subderivation of the typed evaluation of a program, the contextual
effect Φ in its typing contains the run-time prior, standard, and future effects of
its computation. (Section 4)

We mechanized our proof using the Coq proof assistant, starting from the
framework developed by Aydemir et al [1]. We found the mechanization process
worthwhile, because our proof structure, while conceptually clear, required get-
ting a lot of details right. Most notably, typing derivations are nested inside of
evaluation derivations in the typed operational semantics, and thus the proofs
of each case of the lemmas are somewhat messy. Using a proof assistant made
it easy to ensure we had not missed anything. We found that, modulo some
typos, our paper proof was correct, though the mechanization required that we
precisely define the meaning of “subderivation.” (Section 5)

We believe that our approach to proving soundness of contextual effects could
be useful for other systems, in particular ones in which properties of subderiva-
tions depend on their position within the larger derivation in which they appear.

264 P. Pratikakis et al.

2 Background: Contextual Effects

This section reviews our type and effect system, and largely follows our previous
presentation [7]. Readers familiar with the system can safely skip this section.

2.1 Language

Figure 1 presents our source language, a simple calculus with expressions that
consist of values v (integers, functions or pointers), variables and call-by-value
function application. Our language also includes updateable references, created
with refL e, along with dereference and assignment. We annotate each syntactic
occurrence of ref with a label L, which serves as the abstract name for the
locations allocated at that program point. Evaluating refL e creates a pointer
rL, where r is a fresh name in the heap and L is the declared label. Dereferencing
or assigning to rL during evaluation has effect {L}. Note that pointers rL do
not appear in the syntax of the program, but only during its evaluation. For
simplicity we do not model recursive functions directly, but they can be encoded
using references. Also, due to space constraints we omit let and if. They are
included in the mechanized proof; supporting them is straightforward.

An effect, written α, ε, or ω, is a possibly-empty set of labels, and may be 1,
the set of all labels. A contextual effect, written Φ, is a tuple [α; ε; ω]. If e′ is a
subexpression of e, and e′ has contextual effect [α; ε; ω], then

– The current effect ε is the effect of evaluating e′ itself.
– The prior effect α is the effect of evaluating e until we begin evaluating e′.
– The future effect ω is the effect of the remainder of the evaluation of e after

e′ is fully evaluated.

Thus ε is the effect of e′ itself, α ∪ ω is the effect of the context in which e′

appears, and therefore α ∪ ε ∪ ω is the effect of evaluating e.
To make contextual effects easier to work with, we introduce some shorthand.

We write Φα, Φε, and Φω for the prior, current, and future effect components,
respectively, of Φ. We also write Φ∅ for the empty effect [1; ∅; 1]—by subsump-
tion, discussed below, an expression with this effect may appear in any context.
For brevity, whenever it is clear we will refer to contextual effects simply as
effects.

Expressions e ::= v | x | e e | ref L e | ! e | e := e
Values v ::= n | λx.e | rL

Effects α, ε, ω ::= ∅ | 1 | {L} | ε ∪ ε
Contextual Effects Φ ::= [α; ε; ω]

Types τ ::= int | ref ε τ | τ −→Φ τ
Environments Γ ::= · | (Γ, x �→ τ) | (Γ, r �→ τ)
Labels L

Fig. 1. Syntax

Formalizing Soundness of Contextual Effects 265

2.2 Typing

Figure 2 presents our contextual type and effect system. The rules prove judg-
ments of the form Φ; Γ � e : τ , meaning in type environment Γ , expression e has
type τ and contextual effect Φ.

Types τ , listed in Figure 1, include the integer type int ; reference types ref ε τ ,
which denote a reference to memory location of type τ where the reference itself
is annotated with a label L ∈ ε; and function types τ −→Φ τ ′, where τ and τ ′

are the domain and range types, respectively, and the function has contextual
effect Φ. Environments Γ , defined in Figure 1, are maps from variable names or
(unlabeled) pointers to types.

The first two rules, (TInt) and (TVar), assign the expected types and the
empty effect, since values have no effect. Rule (TLam) types the function body e
and annotates the function’s type with the effect of e. The expression as a whole
has no effect, since the function produces no run-time effects until it is actually
called. Rule (TApp) types function application, which combines Φ1, the effect

(TInt)

Φ∅; Γ n : int
(TVar)

Γ (x) = τ

Φ∅; Γ x : τ

(TLam)

Φ; Γ, x : τ ′ e : τ

Φ∅; Γ λx.e : τ ′ −→Φ τ
(TApp)

Φ1; Γ e1 : τ1 −→Φf τ2

Φ2; Γ e2 : τ1

Φ1 � Φ2 � Φf ↪→ Φ

Φ; Γ e1 e2 : τ2

(TRef)

Φ; Γ e : τ

Φ; Γ ref L e : ref {L} τ
(TDeref)

Φ1; Γ e : ref ε τ
Φε

2 = ε Φ1 � Φ2 ↪→ Φ

Φ; Γ ! e : τ

(TAssign)

Φ1; Γ e1 : ref ε τ Φ2; Γ e2 : τ Φε
3 = ε Φ1 � Φ2 � Φ3 ↪→ Φ

Φ; Γ e1 := e2 : τ

(TLoc)

Γ (r) = τ

Φ∅; Γ rL : ref {L} τ
(TSub)

Φ′; Γ e : τ ′

τ ′ ≤ τ Φ′ ≤ Φ

Φ; Γ e : τ

(XFlow-Ctxt)

Φ1 = [α1; ε1; (ε2 ∪ ω2)] Φ2 = [(ε1 ∪ α1); ε2; ω2]
Φ = [α1; (ε1 ∪ ε2); ω2]

Φ1 � Φ2 ↪→ Φ

(SInt)
int ≤ int

(SRef)
τ ≤ τ ′ τ ′ ≤ τ ε ⊆ ε′

ref ε τ ≤ ref ε′
τ ′

(SFun)
τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 Φ ≤ Φ′

τ1 −→Φ τ2 ≤ τ ′
1 −→Φ′

τ ′
2

(SCtxt)
α2 ⊆ α1 ε1 ⊆ ε2 ω2 ⊆ ω1

[α1; ε1; ω1] ≤ [α2; ε2; ω2]

Fig. 2. Typing

266 P. Pratikakis et al.

of e1, with Φ2, the effect of e2, and Φf , the effect of the function. We specify the
sequencing of effects with the combinator Φ1 � Φ2 ↪→ Φ, defined by (XFlow-

Ctxt). Since e1 evaluates before e2, this rule requires that the future effect of e1

be ε2 ∪ ω2, i.e., everything that happens during the evaluation of e2, captured
by ε2, plus everything that happens after, captured by ω2. Similarly, the past
effect of e2 must be ε1 ∪ α1, since e2 is evaluated just after e1. Lastly, the effect
Φ of the entire expression has α1 as its prior effect, since e1 is evaluated first;
ω2 as its future effect, since e2 is evaluated last; and ε1 ∪ ε2 as its current effect,
since both e1 and e2 are evaluated. We write Φ1 � Φ2 � Φ3 ↪→ Φ as shorthand
for (Φ1 � Φ2 ↪→ Φ′) ∧ (Φ′ � Φ3 ↪→ Φ).

(TRef) types memory allocation, which has no effect but places the annota-
tion L into a singleton effect {L} on the output type. This singleton effect can be
increased as necessary by using subsumption. (TDeref) types the dereference
of a memory location of type ref ε τ . In a standard effect system, the effect of
! e is the effect of e plus the effect ε of accessing the pointed-to memory. Here,
the effect of e is captured by Φ1, and because the dereference occurs after e is
evaluated, (TDeref) puts Φ1 in sequence just before some Φ2 such that Φ2’s
current effect is ε. Therefore by (XFlow-Ctxt), Φε is Φε

1 ∪ ε, and e’s future
effect Φω

1 must include ε and the future effect of Φ2. On the other hand, Φω
2 is

unconstrained by this rule, but it will be constrained by the context, assum-
ing the dereference is followed by another expression. (TAssign) is similar to
(TDeref), combining the effects Φ1 and Φ2 of its subexpressions with a Φ3

whose current effect is ε. (TLoc) gives a pointer rL the type of a reference to
the type of r in Γ .

Finally, (TSub) introduces subsumption on types and effects. The judgments
τ ′ ≤ τ and Φ′ ≤ Φ are defined at the bottom of Figure 2. (SInt), (SRef), and
(SFun) are standard, with the usual co- and contravariance where appropriate.
(SCtxt) defines subsumption on effects, which is covariant in the current effect,
as expected, and contravariant in both the prior and future effects. To understand
the contravariance, first consider an expression e with future effect ω1. Since ω1

should contain (i.e., be a superset of) the locations that may be accessed in
the future, we can use e in any context that accesses at most locations in ω1.
Similarly, since past effects should contain the locations that were accessed in
the past, we can use e in any context that accessed at most locations in α1.

3 Operational Semantics

As discussed in the introduction, to establish the soundness of the static seman-
tics we must address two concerns. First, we must give an operational semantics
that specifies the run-time contextual effects of each subterm e appearing in the
evaluation of a term ep. Second, we must find a way to match up subterms e that
arise in the evaluation of ep with the corresponding terms e′ in the unevaluated
ep, to see whether the effects ascribed to the original terms e′ by the type system
approximate the actual effects of the subterms e. This section defines an opera-
tional semantics that addresses the first concern, and the next section augments
it to address the second concern, allowing us to prove our system sound.

Formalizing Soundness of Contextual Effects 267

3.1 The Problem of Future Effects

Consider an expression e appearing in program ep. We write ep = C[e] for a
context C, to make this relationship more clear. Using a small-step operational
semantics, we can intuitively view the contextual effects of e as follows:

C[e]→ · · · →︸ ︷︷ ︸
prior effect α

C′[e]

evaluation of e︷ ︸︸ ︷
→ C′[e′]→ · · · →︸ ︷︷ ︸

standard effect ε

C′[v]→ · · · → vp︸ ︷︷ ︸
future effect ω

(The evaluation of ep could contain several evaluations of e, each of which could
differ from e according to previous substitutions of e’s free variables, but we
ignore these difficulties for now and consider them in the next section.)

For this evaluation, the actual, run-time prior effect α of e is the effect of the
evaluation that occurs before e starts evaluating, the actual standard effect ε of
e is the effect of the evaluation of e to a value v, and the actual future effect ω of
e is the effect of the remainder of the computation. For every expression in the
program, there exist similar partitions of the evaluation to define the appropriate
contextual effects.

However, while this picture is conceptually clear, formalizing contextual ef-
fects, particularly future effects, is awkward in small-step semantics. Suppose
we have some contextual effect Φ associated with subterm e in the context C′[e]
above. Then Φω, the future effect of subterm e, models everything that happens
after we evaluate to C′[v]—but that happens some arbitrary number of steps
after we begin evaluating C′[e], making it difficult to associate with the subterm
e. We could solve this problem by inserting “brackets” into the semantics to
identify the end of a subterm’s evaluation, but that adds complication, espe-
cially since there are many different subterms whose contextual effects we wish
to track and prove sound.

Our solution to this problem is to use big-step semantics, since in big-step
semantics, each subderivation is a full evaluation. This lets us easily identify
both the beginning and the end of each sub-evaluation in the derivation tree,
and gives us a natural specification of contextual effects.

3.2 Big-Step Semantics

Figure 3 shows key rules in a big-step operational semantics for our language.
Reductions operate on configurations 〈α, ω, H, e〉, where α and ω are the sets
of locations accessed before and after that point in the evaluation, respectively;
H is the heap (a map from locations r to values); and e is the expression to be
evaluated. Evaluations have the form

〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, R〉

where ε is the effect of evaluating e and R is the result of reduction, either a
value v or err, indicating evaluation failed. Intuitively, as evaluation proceeds,
labels move from the future effect ω to the past effect α.

268 P. Pratikakis et al.

[Id]
〈α, ω,H, v〉 −→∅ 〈α, ω, H, v〉

Heaps H ::= ∅ | H, r �→ v

[Ref]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉 r /∈ dom(H ′)

〈α, ω,H, ref L e〉 −→ε 〈α′, ω′, (H ′, r �→ v), rL〉

[Deref]
〈α, ω, H, e〉 −→ε 〈α′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

〈α, ω, H, ! e〉 −→ε∪{L} 〈α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign]

〈α, ω,H, e1〉 −→ε1 〈α1, ω1, H1, rL〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2 ∪ {L}, (H2, r �→ v′), v〉

〈α, ω,H, e1 := e2〉 −→ε1∪ε2∪{L} 〈α2 ∪ {L}, ω2, (H2, r �→ v), v〉

[Call]

〈α, ω, H, e1〉 −→ε1 〈α1, ω1, H1, λx.e〉
〈α1, ω1, H1, e2〉 −→ε2 〈α2, ω2, H2, v2〉

〈α2, ω2, H2, e[x �→ v2]〉 −→ε3 〈α′, ω′, H ′, v〉
〈α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈α′, ω′, H ′, v〉

[Call-W]
〈α, ω,H, e1〉 −→ε1 〈α′, ω′, H ′, v〉 v �= λx.e

〈α, ω, H, e1 e2〉 −→∅ 〈α, ω, H,err〉

[Deref-H-W]
〈α, ω,H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r /∈ dom(H ′)

〈α, ω, H, ! e〉 −→∅ 〈α, ω, H,err〉

[Deref-L-W]
〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, rL〉 r ∈ dom(H ′) L /∈ ω′

〈α, ω, H, ! e〉 −→∅ 〈α, ω,H,err〉

Fig. 3. Operational Semantics

With respect to the definitions of Section 3.1, the prior effect α in Section 3.1
corresponds to α here, and the future effect ω in Section 3.1 corresponds to ω′

here. The future effect ω before the evaluation of e contains both the future and
the standard effect of e, i.e., ω = ω ∪ ε. Similarly, the past effect α′ after the
evaluation of e contains the past effect α and the effect of e, i.e., α′ = α∪ ε. We
prove below that our semantics preserves this property.

The reduction rules are straightforward. [Id] reduces a value to itself without
changing the state or the effects. [Ref] generates a fresh location r, which is
bound in the heap to v and evaluates to rL. [Deref] reads the location r in
the heap and adds L to the standard evaluation effect. This rule requires that
the future effect after evaluating e have the form ω′ ∪ {L}, i.e., L must be
in the future effect after evaluating e, but prior to dereferencing the result.
Then L is added to α′ in the output configuration of the rule. Notice that
ω′ ∪ {L} is a standard union, hence L may also be in ω′, which allows the same
location to be accessed multiple times. Also note that we require L to be in the
future effect just after the evaluation of e, but do not require that it be in ω.
However, this will actually hold—below we prove that ω = ω′ ∪ {L} ∪ ε, and in
general when the semantics takes a step, effects move from the future to the past.

Formalizing Soundness of Contextual Effects 269

[Assign] behaves similarly to [Deref]. [Call] evaluates the first expression to a
function, the second expression to a value, and then the function body with the
formal argument replaced by the actual argument. Our semantics also includes
rules [Call-W], [Deref-H-W] and [Deref-L-W] that produce err when the
program tries to access a location that is not in the future effect of the input, or
when values are used at the wrong type. Our system includes similar error rules
for assignment (not shown).

3.3 Standard Effect Soundness

We can now prove standard effect soundness. First, we prove an adequacy prop-
erty of our semantics that helps ensure they make sense:

Lemma 1 (Adequacy of Semantics). If 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉, then
α′ = α ∪ ε and ω = ω′ ∪ ε.

This lemma formalizes our intuition that labels move from the future to prior
effect during evaluation.

We can then prove that the static Φε associated to a term by our type and
effect system soundly approximates the actual effect ε of an expression. We
ignore actual effects α and ω by setting them to 1. We say heap H is well-typed
under Γ , written Γ � H , if dom(Γ) = dom(H) and for every r ∈ dom(H), we
have Φ∅; Γ � H(r) : Γ (r). The standard effect soundness lemma is:

Theorem 1 (Standard Effect Soundness). If

1. Φ; Γ � e : τ ,
2. Γ � H and
3. 〈1, 1, H, e〉 −→ε 〈1, 1, H ′, R〉

then there is a Γ ′ such that:

1. R is a value v for which Φ∅; (Γ ′, Γ) � v : τ ,
2. (Γ ′, Γ) � H ′ and
3. ε ⊆ Φε.

Here (Γ ′, Γ) is the concatenation of environments Γ ′ and Γ . The proof of this
theorem is by induction on the evaluation derivation, and follows traditional
type-and-effect system proofs, adapted for our semantics.

Next, we prove that if the program evaluates to a value, then there is a canon-
ical evaluation in which the program evaluates to the same value, but starting
with an empty α and ending with an empty ω. This will produce an evaluation
derivation with the most precise α and ω values for every configuration, which
we can then prove we soundly approximate using our type and effect system.

Lemma 2 (Canonical Evaluation). If 〈1, 1, H, e〉 −→ε 〈1, 1, H ′, v〉 then there
exists a derivation 〈∅, ε, H, e〉 −→ε 〈ε, ∅, H ′, v〉.

270 P. Pratikakis et al.

4 Contextual Effect Soundness

Now we turn to proving contextual effect soundness. We aim to show that the
prior and future effect of some subterm e of a program ep approximate the
evaluation of ep before and after, respectively, the evaluation of e. Suppose for
the moment that ep contains no function applications. As a result, an evaluation
derivation Dp of ep according to the operational semantics in Figure 3 will be
isomorphic to a typing derivation Tp of ep according to the rules in Figure 2. In
this situation, soundness for contextual effects is easy to define. For any subterm
e of ep, we have an evaluation derivation D and a typing derivation T :

D :: 〈α, ω, H, e〉 −→ε 〈α′, ω′, H ′, v〉 T :: Φ; Γ � e : τ

where D is a subderivation of Dp and T is a subderivation of Tp. Then the prior
and future effects computed by our contextual effect system are sound if α ⊆ Φα

(the effect of the evaluation before e is contained in Φα) and ω′ ⊆ Φω (the effect
of the evaluation after v is contained in Φω).

For example, consider the evaluation of ! (refL n).

(Deref)

(Ref)

(Id)

〈∅, ∅ ∪ {L}, H, n〉 −→ 〈∅, ∅ ∪ {L}, H, n〉
〈∅, ∅ ∪ {L}, H, refL n〉 −→ 〈∅, ∅ ∪ {L}, (H, rL #→ n), rL〉

〈∅, ∅ ∪ {L}, H, ! (refL n)〉 −→{L} 〈∅ ∪ {L}, ∅, (H, rL #→ n), n〉

Here is the typing derivation (where we have rolled a use of (TSub) into (Tint)):

(TDeref)

(TRef)

(TInt’)

[∅; ∅; {L}]; · � n : int

[∅; ∅; {L}]; · � refL n : ref L int
[∅; {L}; ∅]ε = {L} [∅; ∅; {L}] � [∅; {L}; ∅] ↪→ [∅; {L}; ∅]

[∅; {L}; ∅]; · � ! (refL n) : int

We can see that these derivations are isomorphic, and thus it is easy to read the
contextual effect from the typing derivation for refL n and to match it up with
the actual effect of the corresponding subderivation of the evaluation derivation.

Unfortunately, function applications add significant complication because Dp

and Tp are no longer isomorphic. Indeed, a subterm e of the original program
ep may appear multiple times in Dp, possibly with substitutions applied to it.
For example, consider the term (λx. ! x; ! x) refL n (where we introduce the
sequencing operator ; with the obvious semantics, for brevity), typed as:

(TApp)

(TLam)

Φf ; Γ, x : ref {L} int � ! x; ! x : int

Φ∅; Γ � λx. ! x; ! x : ref {L} int −→Φf int (T1)
Φ2; Γ � refL n : ref {L} int (T2)

Φ∅ � Φ2 � Φf ↪→ Φ

Φ; Γ � (λx. ! x; ! x) refL n : int

Formalizing Soundness of Contextual Effects 271

The evaluation derivation has the following structure:

(Call)

〈∅, ∅ ∪ {L}, H, (λx. !x; ! x)〉 −→ 〈∅, ∅ ∪ {L}, H, (λx. !x; ! x)〉 (1)
〈∅, ∅ ∪ {L}, H, refL n〉 −→ 〈∅, ∅ ∪ {L}, H ′, rL〉 (2)

〈∅, ∅ ∪ {L}, H ′, (! x; ! x)[x #→ rL]〉 −→{L} 〈∅ ∪ {L}, ∅, H ′, n〉 (3)

〈∅, ∅ ∪ {L}, H, (λx. ! x; ! x) refL n〉 −→{L} 〈∅ ∪ {L}, ∅, H ′, n〉

where H ′ = (H, rL #→ n). Subderivations (1) and (2) correspond to the two sub-
derivations (T1) and (T2) of (TApp), but there is no analogue for subderivation
(3), which captures the actual evaluation of the function. Clearly this relates to
the function’s effect Φf , but how exactly is not structurally apparent from the
derivation. Returning to our example, we must match up the effect in the typing
derivation for ! x, which is part of the typing of the function (λx. ! x; ! x), with
evaluation of ! rL that occurs when the function evaluates in subderivation (3).

To do this, we instrument the big-step semantics from Figure 3 with typing
derivations, and define exactly how to associate a typing derivation with each
derived subterm in an evaluation derivation. The key property of the resulting
typed operational semantics is that the contextual effect Φ associated with a
subterm e in the original typing derivation Tp is also associated with all terms
derived from e via copying or substitution. In the example, the relevant typ-
ing subderivation for ! x in Tp will be copied and substituted according to the
evaluation so that it can be matched with ! rL in subderivation (3).

4.1 Typed Operational Semantics

In our typed operational semantics, evaluations have the form:

〈T, α, ω, H, e〉 −→ε 〈T ′, α′, ω′, H ′, v〉

where T is a typing derivation for the expression e, and T ′ is a typing derivation
for v:

T :: Φ; Γ � e : τ T ′ :: Φ∅; (Γ ′, Γ) � v : τ

Note that we include T ′ in our rules mostly to emphasize that v is well-typed
with the same type as e. The only information from T ′ we need that is not present
in T is the new environment (Γ ′, Γ), which may contain the types of pointers
newly allocated in the heap during the evaluation of e. Also, the environments
Γ and Γ ′ only refer to heap locations, since e and v have no free variables and
could always be typed under the empty environment.

Figure 4 presents the typed evaluation rules. New hypotheses are highlighted
with a gray background. While these rules look complicated, they are actually
quite easy to construct. We begin with the original rules in Figure 3, add a typing
derivation to each configuration, and then specify appropriate hypotheses about
each typing derivation to connect up the derivation of the whole term with the
derivation of each of the subterms. We discuss this process for each of the rules.

[Id-A] is the same as [Id], except we introduce typing derivations Tv and T ′
v

for the left- and right-hand sides of the evaluation, respectively. Tv may be any

272 P. Pratikakis et al.

[Id-A]
Tv :: Φ; Γ v : τ T ′

v :: Φ∅; Γ v : τ

〈Tv, α, ω, H, v〉 −→∅ 〈T ′
v, α, ω,H, v〉

[Ref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉 r /∈ dom(H)

T :: Φ; Γ refL e : ref ε τ T ′ :: Φ′; Γ e : τ

Tv :: Φ∅; Γ
′ v : τ Tr :: Φ∅; (Γ

′, r �→ τ) rL : ref ε τ Φ′ ≤ Φ

〈T, α, ω,H, refL e〉 −→ε 〈Tr, α
′, ω′, (H ′, r �→ v), rL〉

[Deref-A]

〈T ′, α, ω, H, e〉 −→ε 〈Tr, α
′, ω′ ∪ {L}, H ′, rL〉 r ∈ dom(H ′)

T :: Φ; Γ ! e : τ T ′ :: Φ1; Γ e : ref ε′
τ ′

Tr :: Φ∅; Γ
′ rL : ref ε′

τ ′ Tv :: Φ∅; Γ
′ H ′(r) : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 � [α1; ε
′; ω1] ↪→ Φ′

〈T, α, ω, H, ! e〉 −→ε∪{L} 〈Tv, α′ ∪ {L}, ω′, H ′, H ′(r)〉

[Assign-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tr, α1, ω1, H1, rL〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv, α2, ω2 ∪ {L}, (H2, r �→ v′), v〉

T :: Φ; Γ e1 := e2 : τ T1 :: Φ1; Γ e1 : ref ε τ ′

Tr :: Φ∅; Γ1 rL : ref ε τ ′ T2 :: Φ2; Γ1 e2 : τ ′

Tv :: Φ∅; Γ2 v : τ ′ T ′
v :: Φ∅; Γ2 v : τ

Φ′ ≤ Φ τ ′ ≤ τ Φ1 � Φ2 � [α3; ε;ω3] ↪→ Φ′

〈T, α, ω, H, e1 := e2〉 −→ε1∪ε2∪{L} 〈T ′
v, α2 ∪ {L}, ω2, (H2, r �→ v), v〉

[Call-A]

〈T1, α, ω, H, e1〉 −→ε1 〈Tf , α1, ω1, H1, λx.e〉
〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉

〈T3, α2, ω2, H2, e[v2 �→ x]〉 −→ε3 〈Tv, α′, ω′, H ′, v〉
T :: Φ; Γ e1 e2 : τ T1 :: Φ1; Γ e1 : τ1 −→Φf τ2

Tf :: Φ∅; Γ1 λx.e : τ1 −→Φf τ2 T2 :: Φ2; Γ1 e2 : τ1

Tv2 :: Φ∅; Γ2 v2 : τ1 T3 :: Φf ; Γ2 e[x �→ v2] : τ

Tv :: Φ∅; Γ3 v : τ Φ1 � Φ2 � Φf ↪→ Φ′ Φ′ ≤ Φ

〈T, α, ω,H, e1 e2〉 −→ε1∪ε2∪ε3 〈Tv, α′, ω′, H, v〉

Fig. 4. Typed operational semantics

typing derivation that assigns a type to v. Here, and in the other rules in the
typed operational semantics, we allow subsumption in the typing derivations on
the left-hand side of a reduction. Thus Tv may type the value v under some
effect Φ that is not Φ∅. The output typing derivation T ′

v is the same as Tv,
except it uses the effect Φ∅ (recall the only information we use from T ′

v is the
new environment, which is this case is unchanged from Tv).

[Ref-A] is a more complicated case. Here the typing derivation T must (by
observation of the rules in Figure 2) assign refL e a type ref ε τ and some effect

Formalizing Soundness of Contextual Effects 273

Φ. By inversion, then, we know that T must in fact assign the subterm e the
type τ as witnessed by some typing derivation T ′, which we use in the typed
evaluation of e. We allow Φ′ ≤ Φ to account for subsumption applied to the
term refL e. Note that this rule does not specify how to construct T ′ from T .
Later on, we will prove that if there is a valid standard reduction of a well-typed
term, then there is a valid typed reduction of the same term. Continuing with
the rule, our semantics assigns some typing derivation Tv to v. Then the output
typing derivation Tr should assign a type to rL. Hence we take the environment
Γ ′ from Tv, which contains types for locations in the heap allocated thus far,
and extend it with a new binding for r of the correct type.

[Deref-A] follows the same pattern as above. Given the initial typing deriva-
tion T of the term ! e, we assume there exists a typing derivation T ′ of the
appropriate shape for subterm e. Reducing e yields a new typing derivation Tr,
and the final typing derivation Tv assigns the type τ to the value H ′(r) returned
by the dereference. As above, we add subtyping constraints Φ′ ≤ Φ and τ ′ ≤ τ to
account for subsumption of the term ! e. The most interesting feature of this rule
is the last constraint, Φ1 � [α1; ε′; ω1] ↪→ Φ′, which states that the effect Φ ≥ Φ′

of the whole expression ! e (from typing derivation T) must contain the effect
Φ1 of e followed by some contextual effect containing standard effect ε′. Again,
we will prove below that it is always possible to construct a typed derivation
that satisfies this constraint, intuitively because [Deref] from Figure 2 enforces
exactly the same constraint. [Assign-A] is similar to [Deref].

[Call-A] is the most complex of the four rules, but the approach is exactly the
same as above. Starting with typing derivation T for the function application,
we require that there exist typing derivations T1 and T2 for e1 and e2, where the
type of e2 is the domain type of e1. Furthermore, Tf and Tv2 assign the same
types as T1 and T2, respectively. Then by the substitution lemma, we know there
exists a typing derivation T3 that assigns type τ to the function body e in which
the formal x is mapped to the actual v2. The output typing derivation Tv assigns
v the same type τ as T3 assigns to the function body. We finish the rule with
the usual effect sequencing and subtyping constraints.

4.2 Soundness

The semantics in Figure 4 precisely associate a typing derivation—and most
importantly, a contextual effect—with each subterm in an evaluation derivation.
We prove soundness in two steps. First, we argue that given a typing derivation
of a program and an evaluation derivation according to the rules in Figure 3, we
can always construct a typed evaluation derivation.

Lemma 3 (Typed evaluation derivations exist). If T :: Φ; Γ � e : τ and
D :: 〈α, ω, H, e〉 −→ε 〈α′ω′, H ′, v〉 where Γ � H, then there exists Tv such that

〈T, α, ω, H, e〉 −→ε 〈Tv, α
′, ω′, H ′, v〉

The proof is by induction on the evaluation derivation D. For each case, we show
we can always construct a typed evaluation by performing inversion on the typing

274 P. Pratikakis et al.

derivation T , using T ’s premises to apply the corresponding typed operational
semantics rule. Due to subsumption, we cannot perform direct inversion on T .
Instead, we used a number of inversion lemmas (not shown) that generalize the
premises of the syntax-driven typing rule that applies to e, for any number of
following [TSub] applications.

Next, we prove that if we have a typed evaluation derivation, then the contex-
tual effects assigned in the derivation soundly model the actual run-time effects.
Since contextual effects are non-compositional, we reason about the soundness of
contextual effects in a derivation in relation to its context inside a larger deriva-
tion. To do that, we use E1 ∈ E2 to denote that E1 is a subderivation of E2.
We define the subderivation relation inductively on evaluation derivations in the
typed operational semantics, with base cases corresponding to each evaluation
rule, and one inductive case for transitivity. For example, given an application
of [Call-A] (uninteresting premises omitted):

. . .
E1 :: 〈T1, α, ω, H, e1〉 −→ε1 〈Tf , α1, ω1, H1, λx.e〉
E2 :: 〈T2, α1, ω1, H1, e2〉 −→ε2 〈Tv2 , α2, ω2, H2, v2〉

E3 :: 〈T3, α2, ω2, H2, e[v2 #→ x]〉 −→ε3 〈Tv, α
′, ω′, H ′, v〉

E :: 〈T, α, ω, H, e1 e2〉 −→ε1∪ε2∪ε3 〈T ′, α′, ω′, H, v〉

we have E1 ∈ E, E2 ∈ E and E3 ∈ E. The subderivation relationship is also
transitive, i.e., if E1 ∈ E2 and E2 ∈ E3 then E1 ∈ E3.

The following lemma states that if E2 is an evaluation derivation whose con-
textual effects are sound (premises 2, 5, and 6) and E1 is a subderivation of E2

(premise 3), then the effects of E1 are sound (conclusions 2 and 3).

Lemma 4 (Soundness of sub-derivation contextual effects). If

1. E1 :: 〈T1, α1, ω1, H1, e1〉 −→ε1 〈Tv1 , α
′
1, ω

′
1, H

′
1, v1〉 with T1 :: Φ1; Γ1 � e1 : τ1,

2. E2 :: 〈T2, α2, ω2, H2, e2〉 −→ε2 〈Tv2 , α
′
2, ω

′
2, H

′
2, v2〉 with T2 :: Φ2; Γ2 � e2 : τ2,

3. E1 ∈ E2

4. Γ2 � H2

5. α2 ⊆ Φα
2

6. ω2 ⊆ Φω
2

then

1. Γ1 � H1

2. α1 ⊆ Φα
1

3. ω1 ⊆ Φω
1

The proof is by induction on E1 ∈ E2. The work occurs in the base cases of the
∈ relation, and the transitivity case trivially applies induction.

The statement of Lemma 4 may seem odd: we assume a derivation’s effects
are sound and then prove the soundness of the effects of its subderivation(s).
Nevertheless, this technique is efficacious. If E2 is the topmost derivation (for
the whole program) then the lemma can be trivially applied for E2 and any
of its subderivations, as α2 and ω′

2 will be ∅, and thus trivially approximated

Formalizing Soundness of Contextual Effects 275

by the effects defined in Φ2. Given this, and the fact (from Lemma 3) that
typed derivations always exist, we can easily state and prove contextual effect
soundness.

Theorem 2 (Contextual Effect Soundness). Given a program ep with no
free variables, a typing derivation T and a (standard) evaluation D according to
the rules in Figure 3, we can construct a typed evaluation derivation

E :: 〈T, ∅, εp, ∅, ep〉 −→εp 〈Tv, εp, ∅, H, v〉

such that for every subderivation E′ of E:

E′ :: 〈T ′, α, ω, H, e〉 −→ε 〈Tv, α′, ω′, H ′, v〉

with T ′ :: Φ; Γ � e : τ , it is always the case that α ⊆ Φα, ε ⊆ Φε, and ω′ ⊆ Φω.

This theorem follows as a corollary of Lemma 2, Lemma 3 and Lemma 4, since
the initial heap and Γ are empty, and the whole program is typed under [∅; ε; ∅],
where ε soundly approximates the effect of the whole program by Theorem 1.

The full (paper) proof can be found in a technical report [6].

5 Mechanization

We encoded the above formalization and soundness proof using the Coq proof as-
sistant. The source code for the formalization and the proof scripts can be found
at http://www.cs.umd.edu/projects/PL/contextual/contextual-coq.tgz.
We were pleased that the mechanization of the system largely followed the pa-
per proof, with only a few minor differences.

First, we used the framework developed by Aydemir et al. [1] for modeling
bound and named variables, whereas the paper proof assumes alpha equivalence
of all terms and does not reason about capturing and renaming.

Second, Lemma 4 states a property of all subderivations of a derivation. On
paper, we had left the definition of subderivation informal, whereas we had to
formally define it in Coq. This was straightforward if tedious. In Coq we defined
E ∈ E′, described earlier, as an inductive relation, with one case for each premise
of each evaluation rule.

While our mechanized proof is similar to our paper proof, it does have some
awkwardness. Our encoding of typed operational semantics is dependent on typ-
ing derivations, and the encoding of the subderivation relation is dependent on
typed evaluations. This causes the definitions of typed evaluations and subderiva-
tions to be dependent on large sets of variables, which decreases readability. We
were unable to use Coq’s system for implicit variables to address this issue, due
to its current limitations.

In total, the formalization and proof scripts for the contextual effect system
takes 5,503 lines of Coq, of which we wrote 2,692 lines and the remaining 2,811
lines came from Aydemir et al [1]. It took the first author approximately ten days
to encode the definitions and lemmas and do the proofs, starting from minimal

http://www.cs.umd.edu/projects/PL/contextual/contextual-coq.tgz

276 P. Pratikakis et al.

Coq experience, limited to attending a tutorial at POPL 2008. It took roughly
equal time and effort to construct the encodings as to do the actual proofs. In
the process of performing the proofs, we discovered some typographical errors
in the paper proof, and we found some cases where we had failed to account
for possible subsumption in the type and effect system. Perhaps the biggest
insight we gained was that to prove Lemma 4, we needed to do induction on the
subderivation relation, rather than on the derivation itself.

6 Related Work

Our original paper on contextual effects [7] presented the same type system and
operational semantics shown in Sections 2 and 3, but placed scant emphasis on
the details of the proof of soundness in favor of describing novel applications.
Indeed, we felt that the proof technique described in the published paper was
unnecessarily unintuitive and complicated, and that led us to ultimately discover
the technique presented in this paper. To our knowledge, ours is the first mech-
anized proof of a property of typing and evaluation derivations that depends on
the positions of subderivations in the super-derivation tree.

Type and effect systems [5,8,11] are widely used to statically enforce restric-
tions, check properties, or in static analysis to infer the behavior of computa-
tions [4,9,3,10,12]. Some more detailed comparisons with these systems can be
found in our previous publication [7]. Talpin and Jouvelot [11] use a big-step op-
erational semantics to prove standard effect soundness. In their system, opera-
tional semantics are not annotated with effects. Instead, the soundness property
is that the static effect, unioned with a static description of the starting heap, de-
scribes the heap at the end of the computation. In addition to addressing contex-
tual effects, our operational semantics can also be used as a definition of the actual
effect (prior, standard, or future) of the computation, regardless of the static sys-
tem used to infer or check effects. The soundness property for standard effects by
Talpin and Jouvelot immediately follows for our system from Theorem 1.

7 Conclusions

This paper presents the proof of soundness for contextual effects [7]. We have
mechanized and verified the proof using the Coq proof assistant.

Contextual effect soundness is interesting because the soundness of the effect
of e depends on the position of e’s evaluation within the evaluation derivation of
the whole program ep. That is, the prior and future effects of e depend not on
the evaluation of e itself, but rather on the evaluation of ep prior to, and after,
evaluating e, respectively. Adding further complication, a subterm e within the
original program, for which the contextual effect is computed by the type and
effect system, may change during the evaluation of ep. In particular, it may be
duplicated or modified due to substitutions. To match up these modified terms
with the term in the original typing derivation, we employ a novel typed oper-
ational semantics that correlates the relevant portion of the typing derivation

Formalizing Soundness of Contextual Effects 277

with the evaluation of every subexpression in the program. In mechanizing our
proof, we discovered a missing definition (subderivations) in our formal system,
and we gained much more assurance that our proof, which had to carefully co-
ordinate the many parts of typed evaluation derivations, was correct.

We conjecture that our proof technique can be used to reason about other
non-compositional properties that span a derivation, such as the freshness of a
name, or computations that depend on context.

Acknowledgments. The authors thank the Penn PLClub for holding the Coq tutorial

at POPL 2008, which got us interested in this topic. We thank the anonymous reviewers

for their useful feedback. This work was funded in part by NSF grants CNS-0346989,

CCF-0541036, CCF-0430118, and the University of Maryland Partnership with the

Laboratory for Telecommunications Sciences.

References

1. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL (2008)

2. The Coq proof assistant., http://coq.inria.fr
3. Hicks, M., Foster, J.S., Pratikakis, P.: Lock Inference for Atomic Sections. In:

TRANSACT (2006)
4. Igarashi, A., Kobayashi, N.: Resource Usage Analysis. In: POPL (2002)
5. Lucassen, J.M.: Types and Effects: Towards the Integration of Functional and

Imperative Programming. PhD thesis, MIT Laboratory for Computer Science,
MIT/LCS/TR-408 (August 1987)

6. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual Effects for Version-
Consistent Dynamic Software Updating and Safe Concurrent Programming. Tech-
nical Report CS-TR-4920, Dept. of Computer Science, University of Maryland
(November 2007)

7. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual effects for version-
consistent dynamic software updating and safe concurrent programming. In: POPL
(2008)

8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

9. Skalka, C., Smith, S., Horn, D.V.: Types and trace effects of higher order programs.
Journal of Functional Programming (July 2007)

10. Smith, F., Walker, D., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000
and ETAPS 2000. LNCS, vol. 1782. Springer, Heidelberg (2000)

11. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2),
245–296 (1994)

12. Walker, D., Crary, K., Morrisett, G.: Typed memory management in a calculus of
capabilities. In: TOPLAS, July 2000, vol. 24(4), pp. 701–771 (2000)

http://coq.inria.fr

First-Class Type Classes

Matthieu Sozeau1 and Nicolas Oury2

1 Univ. Paris Sud, CNRS, Laboratoire LRI, UMR 8623, Orsay, F-91405
INRIA Saclay, ProVal, Parc Orsay Université, F-91893

sozeau@lri.fr
2 University of Nottingham

npo@cs.nott.ac.uk

Abstract. Type Classes have met a large success in Haskell and Is-

abelle, as a solution for sharing notations by overloading and for spec-
ifying with abstract structures by quantification on contexts. However,
both systems are limited by second-class implementations of these con-
structs, and these limitations are only overcomed by ad-hoc extensions
to the respective systems. We propose an embedding of type classes into
a dependent type theory that is first-class and supports some of the
most popular extensions right away. The implementation is correspond-
ingly cheap, general and integrates well inside the system, as we have
experimented in Coq. We show how it can be used to help structured
programming and proving by way of examples.

1 Introduction

Since its introduction in programming languages [1], overloading has met an
important success and is one of the core features of object–oriented languages.
Overloading allows to use a common name for different objects which are in-
stances of the same type schema and to automatically select an instance given
a particular type. In the functional programming community, overloading has
mainly been introduced by way of type classes, making ad-hoc polymorphism
less ad hoc [17].

A type class is a set of functions specified for a parametric type but defined
only for some types. For example, in the Haskell language, it is possible to
define the class Eq of types that have an equality operator as:

class Eq a where (==) :: a → a → Bool

It is then possible to define the behavior of == for types whose equality is
decidable, using an instance declaration:

instance Eq Bool where x == y = if x then y else not y

This feature has been widely used as it fulfills two important goals. First, it
allows the programmer to have a uniform way of naming the same function over
different types of data. In our example, the method == can be used to compare
any type of data, as long as this type has been declared an instance of the Eq

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 278–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

First-Class Type Classes 279

class. It also adds to the usual Damas–Milner [4] parametric polymorphism a
form of ad-hoc polymorphism. E.g, one can constrain a polymorphic parameter
to have an instance of a type class.

=/= :: Eq a ⇒ a → a → Bool
x =/= y = not (x == y)

Morally, we can use == on x and y because we have supposed that a has an
implementation of == using the type class constraint ’Eq a ⇒’. This construct
is the equivalent of a functor argument specification in module systems, where
we can require arbitrary structure on abstract types.

Strangely enough, overloading has not met such a big success in the domain
of computer assisted theorem proving as it has in the programming language
community. Yet, overloading is very present in non formal—pen and paper—
mathematical developments, as it helps to solve two problems:

– It allows the use of the same operator or function name on different types. For
example, + can be used for addition of both natural and rational numbers.
This is close to the usage made of type classes in functional programming.
This can be extended to proofs as well, overloading the reflexive name for
every reflexivity proof for example (see §3.4).

– It shortens some notations when it is easy to recover the whole meaning
from the context. For example, after proving (M, ε, ·) is a monoid, a proof
will often mention the monoid M , leaving the reader implicitly inferring the
neutral element and the law of the monoid. If the context does not make clear
which structure is used, it is always possible to be more precise (an extension
known as named instances [9] in Haskell). Here the name M is overloaded
to represent both the carrier and the (possibly numerous) structures built
on it.

These conventions are widely used, because they allow to write proofs, speci-
fications and programs that are easier to read and to understand.

The Coq proof assistant can be considered as both a programming language
and a system for computer assisted theorem proving. Hence, it can doubly benefit
from a powerful form of overloading.

In this paper, we introduce type classes for Coq and we show how it fulfills
all the goals we have sketched. We also explain a very simple and cheap imple-
mentation, that combines existing building blocks: dependent records, implicit
arguments, and proof automation. This simple setup, combined with the expres-
sive power of dependent types subsumes some of the most popular extensions to
Haskell type classes [2,8].

More precisely, in this paper,

– we first recall some basic notions of type theory and some more specific
notions we are relying on (§2) ;

– then, we define type classes and instances before explaining the basic design
and implementation decisions we made (§3) ;

– we show how we handle superclasses and substructures in section 4 ;

280 M. Sozeau and N. Oury

– we present two detailed examples (§5): a library on monads and a develop-
ment of category theory ;

– we discuss the implementation and possible extensions to the system (§6) ;
– finally, we present related and future work (§7).

Though this paper focuses mainly on the Coq proof assistant, the ideas de-
veloped here could easily be used in a similar way in any language based on
Type Theory and providing both dependent records and implicit arguments.

2 Preliminaries

A complete introduction to Type Theory and the Coq proof assistant is out of
the scope of this article. The interested reader may refer to the reference manual
[16] for an introduction to both. Anyway, we recall here a few notations and
concepts used in the following sections.

2.1 Dependent Types

Coq’s type system is a member of the family of Type Theories. In a few words,
it is a lambda-calculus equipped with dependent types. It means that types can
depend upon values of the language. This allows to refine the type of a piece
of data depending on its content and the type of a function depending on its
behavior. For example, it is possible, using Coq, to define the type of the lists
of a given size n and to define a function head that can only be applied to lists
of a strictly positive size.

Indeed, the type can specify the behavior of a function so precisely, that a
type can be used to express a mathematical property. The corresponding program
is then the proof of this property. Hence, the Coq system serves both as a
programming language and a proof assistant, being based on a single unifying
formalism.

2.2 Dependent Records

Among the different types that can be defined in Coq, we need to explain more
precisely dependent records, as they serve as the basis of our implementation
of type classes. A dependent record is similar to a record in a programming
language, aggregating different fields, each possessing a label, a type and a value.
Dependent records are a slight generalization of this as the type of a field may
refer to the value of a preceding field in the record.

For example, for a type A and a property P on A, one can express the property
”there exist an element a in a type A such that (P a) holds” using a dependent
record whose:

– First field is named witness and has type A.
– Second field is named proof and is of type P witness. The type of this second

field depends on the value of the first field witness.

First-Class Type Classes 281

Another common use of dependent records, that we are going to revisit in the
following, is to encode mathematical structures gluing some types, operators and
properties. For example, the type of monoids can be defined using a dependent
record. In Coq syntax:

Record Monoid := {
carrier : Type ;
neutral : carrier ; op : carrier → carrier → carrier ;
neutral left : ∀ x, op neutral x = x ; · · · }

We can observe that the neutral element and the operation’s types refer to
carrier, the first field of our record, which is a type. Along with the type and
operations we can also put the monoid laws. When we build a record object
of type Monoid we will have to provide proof objects correspondingly. Another
possibility for declaring the Monoid data type would be to have the carrier type
as a parameter instead of a field, making the definition more polymorphic:

Record Monoid (carrier : Type) := {
neutral : carrier ; op : carrier → carrier → carrier ; · · · }

One can always abstract fields into parameters this way. We will see in sec-
tion §4 that the two presentations, while looking roughly equivalent, are quite
different when we want to specify sharing between structures.

2.3 Implicit Arguments

Sometimes, because of type dependency, it is easy to infer the value of a function
argument by the context where it is used. For example, to apply the function id
of type ∀ A : Type, A → A one has to first give a type X and then an element x
of this type because of the explicit polymorphism inherent to the Coq system.
However, we can easily deduce X from the type of x and hence find the value
of the first argument automatically if the second argument is given. This is
exactly what the implicit argument system does. It permits to write shortened
applications and use unification to find the values of the implicit arguments. In
the case of id, we can declare the first argument as implicit and then apply id
as if it was a unary function, making the following type-check:

Definition foo : bool := id true.

One can always explicitly specify an implicit argument at application time,
to disambiguate or simply help the type-checker using the syntax:

Definition foo : bool := id (A:=bool) true.

This is very useful when the user himself specifies which are the implicit
arguments, knowing that they will be resolved in some contexts (due to typ-
ing constraints giving enough information for example) but not in others. Both
mechanisms of resolution and disambiguation will be used by the implementa-
tion of type classes. Implicit arguments permit to recover reasonable (close to
ML) syntax in a polymorphic setting even if the system with non-annotated
terms does not have a complete inference algorithm.

282 M. Sozeau and N. Oury

3 First Steps

We now present the embedding of type classes in our type theory beginning with
a raw translation and then incrementally refine it. We use the syntax −−−−→xn : tn to
denote the ordered typing context x1 : t1, · · · , xn : tn. Following the Haskell

convention, we use capitalized names for type classes.

3.1 Declaring Classes and Instances

We extend the syntax of Coq commands to declare classes and instances. We
can declare a class Id on the types τ1 to τn having members f1 · · · fm and an
instance of Id using the following syntax:

Class Id (α1 : τ1) · · · (αn : τn) :=
f1 : φ1 ;

...
fm : φm.

Instance Id t1 · · · tn :=
f1 := b1 ;

...
fm := bm.

Translation. We immediately benefit from using a powerful dependently-typed
language like Coq. To handle these new declarations, we do not need to extend
the underlying formalism as in Haskell or Isabelle but can directly use ex-
isting constructs of the language.

A newly declared class is automatically translated into a record type having
the index types as parameters and the same members. When the user declares a
new instance of such a type class, the system creates a record object of the type
of the corresponding class.

In the following explanations, we denote by ΓId � −−−−→αn : τn the context of
parameters of the class Id and by ∆Id � −−−−−→fm : φm its context of definitions. Quite
intuitively, when declaring an instance −→tn should be an instance of ΓId and −→bm

an instance of ∆Id[−→tn].
Up to now, we just did wrapping around the Record commands, but the

declarations are not treated exactly the same. In particular, the projections
from a type class are declared with particular implicit parameters.

3.2 Method Calls

When the programmer calls a type class method fi, she does not have to specify
which instance she is referring to: that’s the whole point of overloading. However,
the particular instance that is being used is bound to appear inside the final term.
Indeed, class methods are encoded, in the final proof term, as applications of some
projection of a record object representing the instance fi : ∀ΓId, Id −→αi → φi. To be
able to hide this from the user we declare the instance of the class Id as an implicit
argument of the projection, as well as all the arguments corresponding to ΓId.

For example, the method call x == y where x, y : bool expands to the appli-
cation (eq) (?B :Type) (?e:Eq ?B) x y, where ?A : τ denotes unification variables

First-Class Type Classes 283

corresponding to implicit arguments, whose value we hope to discover during type
checking. In this case ?B will be instantiated by bool leaving anEqbool constraint.

Indeed, when we write a class method we expect to find the instance auto-
matically by resolution of implicit arguments. However, it will not be possible
to infer the instance argument using only unification as is done for regular ar-
guments: we have to do a kind of proof search (e.g., here we are left with a Eq
?B constraint). So, after type-checking a term, we do constraint solving on the
unification variables corresponding to implicit arguments and are left with the
ones corresponding to type class constraints.

3.3 Instance Search

These remaining constraints are solved using a special purpose tactic that tries
to build an instance from a set of declared instances and a type class constraint.
Indeed, each time an instance is declared, we add a lemma to a database corre-
sponding to its type. For example, when an instance of the class Eq for booleans
is declared, a lemma of type Eq bool is created. In fact, any definition whose
type has a conclusion of the form Eq τ can be used as an instance of Eq.

When searching for an instance of a type class, a simple proof search algorithm
is performed, using the lemmas of the database as the only possible hints to
solve the goal. Following our example, the remaining constraint Eq bool will be
resolved if we have (at least) one corresponding lemma in our database. We will
discuss the resolution tactic in section 6. Note that we can see the result of the
proof search interactively in Coq by looking at the code, and specify explicitely
which instance we want if needed using the (A:=t) syntax.

3.4 Quantification

Finally, we need a way to parameterize a definition by an arbitrary instance of a
type class. This is done using a regular dependent product which quantifies on
implementations of the record type.

For convenience, we introduce a new binding notation [Id −→tn] to add a type
class constraint in the environment. This boils down to specifying a binding
(instance : Id −→tn) in this case, but we will refine this construct soon to attain
the ease of use of the Haskell class binder. Now, all the ingredients are there
to write our first example:

Definition neq (A : Type) [Eq A] (x y : A) : bool := not (x == y).

The process goes like this: when we interpret the term, we transform the [Eq
A] binding into an (eqa : Eq A) binding, and we add unification variables for
the first two arguments of (==) : ∀A : Type,Eq A → A → A → bool. After
type-checking, we are left with a constraint Eq A in the environment [A : Type,
eqa : Eq A, x y : A], which is easily resolved using the eqa assumption. At this
point, we can substitute the result of unification into the term and give it to the
kernel for validation.
Implicit generalization. When writing quantifications on type classes, we will
often find ourselves having to bind some parameters just before the type class

284 M. Sozeau and N. Oury

constraint, as for the A argument above. This suggests that it would be conve-
nient to see type class binders as constructs binding their arguments. Indeed,
when we give variables as part of the arguments of a class binder for C, we are ef-
fectively constraining the type of the variable as it is known from the Γc context.
Hence we can consider omitting the external quantification on this variable and
implicitly quantify on it as part of the class binder. No names need be generated
and type inference is not more complicated. For example we can rewrite neq:

Definition neq [Eq A] (x y : A) : bool := negb (x == y).

This corresponds to the way type classes are introduced in Haskell in prenex
positions, effectively constraining the implicitly quantified type variables. If one
wants to specify the type of A it is also possible using the notation (A : Type)
in the class binder. The arguments of class binders are regular contexts.

Hence the syntax also supports instantiated constraints like [Eq (list A)].
More formally, to interpret a list of binders we proceed recursively on the list to
build products or lambda abstractions. For a type class binder [C −−−−→tn : τn] we
collect the set of free variables in the global environment extended by the terms−→
tn , we extend the environment with them and the class binder and recursively
interpret the rest of the binders in this environment.

General contexts. As hinted in the previous section, all the contexts we are
manipulating are arbitrary. In particular this means that the parameters of a
type class are not restricted to be types of kind Type (a strong limitation of
Isabelle’s implementation). Any type constructor is allowed as a parameter,
hence the standard Monad (m : Type → Type) class causes no problem in our
setting (see §5.1). In fact, as we are in a dependently-typed setting, one can even
imagine having classes parameterized by terms like:

Class Reflexive (A : Type) (R : relation A) := reflexive : ∀ x : A, R x x.

We can instantiate this class for any A using Leibniz equality:

Instance Reflexive A (eq A) := reflexive x := refl equal x.

Note that we are using implicit generalization again to quantify on A here.
Now, if we happen to have a goal of the form R t t where t : T we can just apply
the reflexive method and the type class mechanism will automatically do a proof
search for a Reflexive T R instance in the environment.

4 Superclasses as Parameters, Substructures as Instances

We have presented a way to introduce and to use type classes and instances.
The design relies on the strength of the underlying logical system. This strength
makes it straightforward to extend this simple implementation with two key
structuring concepts: inheritance and composition of structures.

First-Class Type Classes 285

4.1 Superclasses as Parameters

Inheritance permits to specify hierarchies of structures. The idea is to allow a
class declaration to include type class constraints, known as superclasses in the
Haskell terminology.

This kind of superclasses happens a lot in the formalization of mathematics,
when the definition of a structure on an object makes sense only if the object
already supports another structure. For example, talking about the class of func-
tors from C to D only makes sense if C and D are categories or defining a group
G may suppose that G is already a monoid. This can be expressed by superclass
constraints:

Class [C : Category, D : Category] ⇒ Functor := . . .
Class [G : Monoid] ⇒ Group := . . .

As often when dealing with parameterization, there are two ways to translate
inheritance in our system: either by making the superstructures parameters of
the type class or regular members. However, in the latter case it becomes harder
to specify relations between structures because we have to introduce equalities
between record fields. For example, we may wish to talk about two Functors F
and G between two categories C and D to define the concept of an adjunction.
If we have the categories on which a Functor is defined as members src and dst
of the Functor class, then we must ensure that F and G’s fields are coherent
using equality hypotheses:

Definition adjunction (F : Functor) (G : Functor),
src F = dst G → dst F = src G . . .

This gets very awkward because the equalities will be needed to go from one
type to another in the definitions, obfuscating the term with coercions, and the
user will also have to pass these equalities explicitly.

The other possibility, known as Pebble-style structuring [13], encourages the
use of parameters instead. In this case, superstructures are explicitly specified
as part of the structure type. Consider the following:

Class [C : Category obj hom, D : Category obj’ hom’] ⇒ Functor := . . .

This declaration is translated into the record type:

Functor (obj : Type) (hom : obj → obj → Type) (C : Category obj hom)
(obj’ : Type) (hom’ : obj’ → obj’ → Type) (D : Category obj’ hom’) := . . .

We depart from Haskell’s syntax where the parameters of a superclass have
to be repeated as part of the type class parameters: they are automatically
considered as parameters of the subclass in our case, in the order they appear
in the superclass binders.

Note that we directly gave names to the type class binders instead of letting
the system guess them. We will use these names C and D to specify sharing of
structures using the regular dependent product, e.g.:

286 M. Sozeau and N. Oury

Definition adjunction [C : Category obj hom, D : Category obj’ hom’,
F : Functor obj hom C obj’ hom’ D,
G : Functor obj’ hom’ D obj hom C] := . . .

The verbosity problem of using Pebble-style definitions is quite obvious in this
example. However we can easily solve it using the existing implicit arguments
technology and bind F and G using (F : Functor C D) (G : Functor D C)
outside the brackets. One can also use the binding modifier ’ !’ inside brackets to
turn back to the implicit arguments parsing of Coq, plus implicit generalization.

This is great if we want to talk about superclasses explicitly, but what about
the use of type classes for programming, where we do not necessarily want to
specify hierarchies? In this case, we want to specify the parameters of the class
only, and not the implementations of superclasses. We just need to extend the
type-checking process of our regular binder to implicitly generalize superclasses.
For example, when one writes [Functor obj hom obj’ hom’], we implicitly
generalize not only by the free variables appearing in the arguments but also
by implementations C and D of the two category superclasses (the example
is developed in section §5.2). This way we recover the ability to quantify on a
subclass without talking about its superclasses but we still have them handy if
needed. They can be bound using the (A:=t) syntax as usual.

4.2 Substructures as Instances

Superclasses are used to formalize is-a relations between structures: it allows,
for example, to express easily that a group is a monoid with some additional
operators and laws.

However, it is often convenient to describe a structure by its components. For
example, one can define a ring by a carrier set S that has two components: a
group structure and a monoid structure on S. In this situation, it is convenient
that an instance declaration of a ring automatically declares instances for its
components: an instance for the group and an instance for the monoid.

We introduce the syntax :> for methods which are themselves type classes.
This adds instance declarations for the corresponding record projections, allow-
ing to automatically use overloaded methods on the substructures when working
with the composite structure.

Remark. This is very similar to the coercion mechanism available in Coq [14],
with which one can say that a structure is a subtype of another substructure. The
source-level type-checking algorithm is extended to use this subtyping relation
in addition to the usual conversion rule. It puts the corresponding projections
into the term to witness the subtyping, much in the same way we fill unification
variables with instances to build a completed term.

5 Examples

We now present two examples of type classes for programming and proving:
an excerpt from a monad library and a development of some basic concepts of

First-Class Type Classes 287

category theory. Both complete developments 1 can be processed by the latest
version of Coq which implements all the features we have described.

5.1 Monads

We define the Monad type class over a type constructor η having operations unit
and bind respecting the usual monad laws (we only write one for conciseness).
We use the syntax {a} for specifying implicit arguments in our definitions.

Class Monad (η : Type → Type) :=
unit : ∀ {α}, α → η α ;
bind : ∀ {α β}, η α → (α → η β) → η β ;
bind unit right : ∀ α (x : η α), bind x unit = x.

We recover standard notations for monads using Coq’s notation system, e.g.:

Infix ”>>=” := bind (at level 55).

We are now ready to begin a section to develop common combinators on a given
Monad on η. Every definition in the section will become an overloaded method
on this monad mon.

Section Monad Defs.
Context [mon : Monad η].

The following functions are directly translated from Haskell’s prelude. Defini-
tions are completely straightforward and concise.

Definition join {α} (x : η (η α)) : η α := x >>= id.

Definition liftM {α β} (f : α → β) (x : η α) : η β := a ← x ;; return (f a).

We can use the overloading support to write more concise proof scripts too.

Lemma do return eta : ∀ α (u : η α), x ← u ;; return x = u.
Proof. intros α u.
rewrite ← (bind unit right u) at 2.
rewrite (eta expansion (unit (α:=α))).
reflexivity.

Qed.

Type classes are transparently supported in all constructions, notably fixpoints.

Fixpoint sequence {α} (l : list (η α)) : η (list α) :=
match l with
| nil ⇒ return nil
| hd :: tl ⇒ x ← hd ;; r ← sequence tl ;; return (x :: r)

end.

They work just as well when using higher-order combinators.

Definition mapM {α β} (f : α → η β) : list α → η (list β) :=
sequence · map f.

1 http://www.lri.fr/∼sozeau/research/coq/classes.en.html

http://www.lri.fr/~sozeau/research/coq/classes.en.html

288 M. Sozeau and N. Oury

5.2 Category Theory

Our second example has a bit more mathematical flavor: we make a few con-
structions of category theory, culminating in a definition of the map functor on
lists.

A Category is a set of objects and morphisms with a distinguished id mor-
phism and a compose law satisfiying the monoid laws. We use a setoid (a set
with an equivalence relation) for the morphisms because we may want to redefine
equality on them, e.g. to use extensional equality for functions. The ≡ notation
refers to the overloaded equivalence method of Setoid.

Class Category (obj : Type) (hom : obj → obj → Type) :=
morphisms :> ∀ a b, Setoid (hom a b) ;
id : ∀ a, hom a a;
compose : ∀ a b c, hom a b → hom b c → hom a c;
id unit left : ∀ a b (f : hom a b), compose f (id b) ≡ f ;
id unit right : ∀ a b (f : hom a b), compose (id a) f ≡ f ;
assoc : ∀ a b c d (f : hom a b) (g : hom b c) (h : hom c d),

compose f (compose g h) ≡ compose (compose f g) h.

We define a notation for the overloaded composition operator.

Notation ” x · y ” := (compose y x) (at level 40, left associativity).

A Terminal object is an object to which every object has a unique morphism
(modulo the equivalence on morphisms).

Class [C : Category obj hom] ⇒ Terminal (one : obj) :=
bang : ∀ x, hom x one ;
unique : ∀ x (f g : hom x one), f ≡ g.

Two objects are isomorphic if the morphisms between them are unique and
inverses.

Definition isomorphic [Category obj hom] a b : :=
{ f : hom a b & { g : hom b a | f · g ≡ id b ∧ g · f ≡ id a } }.

Using these definition, we can do a proof on abstract instances of the type classes.

Lemma terminal isomorphic
[C : Category obj hom, ! Terminal C x, ! Terminal C y] : isomorphic x y.

Proof.
intros ; red.
exists (bang x). exists (bang (one:=x) y).
split.
apply unique.
apply (unique (one:=x)).

Qed.

We can define a Functor between two categories with its two components, on ob-
jects and morphisms. We keep them as parameters because they are an essential
part of the definition and we want to be able to specify them later.

First-Class Type Classes 289

Class [C : Category obj hom, D : Category obj’ hom’] ⇒
Functor (Fobj : obj → obj’)

(Fmor : ∀ a b, hom a b → hom’ (Fobj a) (Fobj b)) :=
preserve ident : ∀ a, Fmor a a (id a) ≡ id (Fobj a);
preserve assoc : ∀ a b c (f : hom a b) (g : hom b c),

Fmor a c (compose f g) ≡ Fmor b c g · Fmor a b f.

Let’s build the Functor instance for the map combinator on lists. We will be
working in the category of Coq types and functions. The arrow homset takes
Types A and B to the A → B function space.

Definition arrow A B := A → B.

Here we build a setoid instance for functions which relates the ones which are
pointwise equal, i.e: functional extensionality. We do not show the straightfor-
ward proofs accompanying each Instance declaration in the following. For ex-
ample, we have to show that pointwise equality is an equivalence here.

Instance arrow setoid : Setoid (arrow a b) :=
equiv f g := ∀ x, f x = g x.

We define the category TYPE of Coq types and functions.

Instance TYPE : Category Type arrow :=
morphisms a b := arrow setoid ;
id a x := x ;
compose a b c f g := g · f.

It is then possible to create a Functor instance for map on lists.

Instance list map functor : Functor TYPE TYPE list map.

6 Discussion

The previous sections contain a description of the overall design and imple-
mentation of type classes and a few examples demonstrating their effective use
in the current version of Coq. Our overall technical contribution is a realistic
implementation of type classes in a dependently-typed setting. We have also in-
troduced convenient syntactic constructions to build, use and reason about type
classes. We now summarize our implementation choices and explore some further
alleys in the design space of type classes for dependently–typed languages.

6.1 Overview

All the mechanisms we have described are implemented in the current version
of Coq, as a rather thin layer on top of the implicit arguments system, the
record implementation, and the type-checking algorithm. Each of these compo-
nents had to be slightly enhanced to handle the features needed by type classes.
We added the possibility of specifying (maximally inserted) implicit arguments

290 M. Sozeau and N. Oury

in toplevel definitions. We adapted the record declaration front-end to handle
implicit arguments in Class and Instance definitions properly and permit giv-
ing only a subset of an instance’s fields explicitly, leaving the rest to be proved
interactively. We also have a binding of type classes with Russell [15] that uses
its enriched type system and allows to handle missing fields as obligations.

6.2 Naming

We allow for a lot of names to be omitted by the user that we really need to
have programmatically. To create fresh names is difficult and error-prone, and
we tried to use as much information that the user gives as possible during name
generation. We need more experiments with the system to know where we should
require names to be given to get reasonably robust code and specifications.

One thing that we learned doing bigger examples is that naming instances is
very useful, even if we don’t know beforehand if we will need to refer to them
explicitly to disambiguate terms. Disambiguation is rarely needed in practice but
it is very helpful. We always allow it, so that one can specify a particular super-
class instance when specifying a class binder or a specific type class parameter
for any method if needed.

6.3 Computing

A common concern when using heavily parameterized definitions is how effi-
ciently the code can be run. Indeed, when we define type classes having multiple
superclasses or parameters and call a method it gets applied to a large number
of arguments. The good thing is that both the interpreted evaluation functions
and the virtual machine [5] of Coq are optimized to handle large applications.
Also, we avoid trouble with proofs preventing reductions in terms that happen
when using other styles of formalizations.

6.4 Searching

The current tactic that searches for instances is a port of the eauto tactic that
does bounded breadth- or depth-first search using a set of applicable lemmas.
The tactic is applied to all the constraints at once to find a solution satisfying all
of them, which requires a backtracking algorithm. Our first experiments suggest
that this is sufficient for handling type classes in the simply-typed version, à
la Isabelle. However, with multiple parameters and arbitrary instances the
problem becomes undecidable and we can only do our best efforts to solve as
much problems as possible. We envisage a system to give more control over this
part of the system, allowing to experiment with new ways of using type classes
in a controlled environment.

An especially important related issue is the current non-deterministic choice
of instances. The problem is not as acute as in Haskell because we have an
interactive system and disambiguation is always possible. Also, in some cases
(e.g., when using reflexive to search for a reflexivity proof) we simply do not care
what instance is found, applying the principle of proof-irrelevance. However, in

First-Class Type Classes 291

a programming environment, one may want to know if ambiguity arises due to
multiple instances for the same constraint appearing in the environment. This is
undecidable with arbitrary instances, so one would also want to restrict the shape
of allowed instances of some classes to ensure decidability of this test. We have
not yet explored how to do this in Coq, but we think this could be internalized
in the system using a reflection technique. We hope we could transport existing
results on type inference for Haskell type classes in this setting.

Finally, we did not study the relation between type-inference and instance
search formally as this has been done in the other systems. In our current setting,
the two systems could be given separate treatment, as we do instance search only
after the whole term is type-checked and unification of type variables is finished.

7 Related Work

The first family of related work concerns type classes in functional programming.
Type classes were introduced and extended as part of the Haskell language.
Some extensions has been proposed to make the type classes system more pow-
erful, while still retaining good properties of type inference. Most of them solve
problems that do not arise when introducing type classes in a dependently-typed
language like Coq.

– The use of dependent records gives a straightforward support of multi-
parameter, dependent type classes.

– The possibility to mix more liberally types and values could give us associated
types with classes [2] (and with them functional dependencies [8]) for free,
although we have not worked out the necessary changes on the system yet.

– Named instances [9] are a direct consequence of having a first-class encoding.

Some work has recently been done to extend Haskell with some partial
support for types depending on types or values like Generalized Algebraic Data
Types. These extensions often make use of type classes to write programs at the
level of types. Our approach, using the full power of dependent types, allows to
program types and values in the same functional language and is therefore much
less contrived.

Another embedding of type classes using an implicit argument mechanism
was done in the Scala object-oriented programming language [12] recently.

Isabelle. Haskell-style type classes are also an integral part of the Isabelle

proof assistant [19]. Wenzel [18] has studied type classes in the Isabelle proof
assistant, and recently F. Haftmann and him have given [6] a constructive ex-
planation of the original axiomatic type classes in terms of locales [10]. This
explanation is not needed in our case because the evidence passing is done di-
rectly in the core language. We always have the kernel’s type-checker to tell us
if the elaboration mechanism did something wrong at any point. However, the
inference is clearly formalized in Isabelle whereas we have no similar result.

The relative (compared to Coq) lack of power of the higher-order logic in
Isabelle/HOL makes it impossible to quantify on type constructors directly,

292 M. Sozeau and N. Oury

using ordinary constructs of the language. This prevents using the system to
implement our library on monads for example. To overcome this problem, one
has to work in an extension of HOL with Scott’s Logic of Computable Functions.
It is then possible to construct axiomatic type classes for type constructors using
a domain-theoretic construction [7].

Dependent Records. Ample litterature exists on how to extend dependent type
theories with records, e.g [3] gives a good starting point. We stress that our
implementation did absolutely not change Coq’s kernel and the associated type
theory, and we would only benefit from more fully-featured records. We leave
a thorough comparison with the Canonical Structure mechanism of Coq for
future work.

7.1 Future Work

Classes and Modules. We could customize the existing extraction mechanism [11]
from Coq to Haskell to handle type classes specially. However, this translation
is partial as our type system is more powerful. It would be interesting to study
this correspondence and also the connection between type classes and modules
in the Coq system itself.

Examples. Some examples have already been developed and we have seen some
improvements in the elegance and clarity of the formalization of mathematics
and the ease of programming. Some further work needs to be done there.

On top of classes. The type class system gives a basis for communication between
users and the system, by adhering to a common structuring principle. We are
exploring ways to use this mechanism, for example by developing a new setoid
rewriting tactic based on an internalization of signatures in the class system.

8 Conclusion

We have presented a type class system for the Coq proof assistant. This system
is useful both for developing elegant programs and concise mathematical formal-
izations on abstract structures. Yet, the implementation is relatively simple and
benefits from dependent types and pre–existing technologies. It could easily be
ported on other systems based on dependent types.

References

1. Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B., Nygaard, K.: Simula Begin. Stu-
dentlitteratur (Lund, Sweden), Bratt Institut fuer neues Lernen (Goch, FRG),
Chartwell-Bratt Ltd (Kent, England) (1979)

2. Chakravarty, M.M.T., Keller, G., Jones, S.L.P., Marlow, S.: Associated types with
class. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 1–13. ACM Press, New York
(2005)

First-Class Type Classes 293

3. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently
typed records. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 105–119.
Springer, Heidelberg (2003)

4. Damas, L., Milner, R.: Principal type schemes for functional programs. In: POPL,
Albuquerque, New, Mexico, pp. 207–212 (1982)

5. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
2002, pp. 235–246. ACM Press, New York (2002)

6. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007)

7. Huffman, B., Matthews, J., White, P.: Axiomatic Constructor Classes in Is-
abelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 147–162. Springer, Heidelberg (2005)

8. Jones, M.P.: Type classes with functional dependencies. In: Smolka, G. (ed.) ESOP
2000 and ETAPS 2000. LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000)

9. Kahl, W., Scheffczyk, J.: Named instances for haskell type classes. In: Hinze, R.
(ed.) A Comparative Study of Very Large Data Bases. LNCS, vol. 59. Springer,
Heidelberg (2001)

10. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A Sectioning Concept for
Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 149–166. Springer, Heidelberg (1999)

11. Letouzey, P.: Programmation fonctionnelle certifie – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Universit Paris-Sud (July 2004)

12. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: ECOOP 2008
(submitted, 2008)

13. Pollack, R.: Dependently typed records for representing mathematical structure.
In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 462–
479. Springer, Heidelberg (2000)

14. Säıbi, A.: Typing algorithm in type theory with inheritance. In: POPL, La Sor-
bonne, Paris, France, January 15-17, 1997, pp. 292–301. ACM Press, New York
(1997)

15. Sozeau, M.: Subset coercions in Coq. In: Altenkirch, T., McBride, C. (eds.) TYPES
2006. LNCS, vol. 4502, pp. 237–252. Springer, Heidelberg (2007)

16. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.1 (July 2006), http://coq.inria.fr

17. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: POPL,
Austin, Texas, pp. 60–76 (1989)

18. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidel-
berg (1997)

19. Wenzel, M., Paulson, L.: Isabelle/isar. In: Wiedijk, F. (ed.) The Seventeen Provers
of the World. LNCS (LNAI), vol. 3600, pp. 41–49. Springer, Heidelberg (2006)

http://coq.inria.fr

Formalizing a Framework for Dynamic Slicing of
Program Dependence Graphs in Isabelle/HOL

Daniel Wasserrab and Andreas Lochbihler�

Universität Karlsruhe,
{wasserra,lochbihl}@ipd.info.uni-karlsruhe.de

Abstract. Slicing is a widely-used technique with applications in e.g. compiler
technology and software security. Thus verification of algorithms in these areas
is often based on the correctness of slicing, which should ideally be proven in-
dependent of concrete programming languages and with the help of well-known
verifying techniques such as proof assistants. As a first step in this direction, this
contribution presents a framework for dynamic slicing based on control flow and
program dependence graphs and machine checked in Isabelle/HOL. Abstracting
from concrete syntax we base the framework on a graph representation of the
program fulfilling certain structural and well-formedness properties.

1 Introduction

Slicing is a widely-used technique with applications in e.g. compiler technology, debug-
ging and software security. Thus, many algorithms in these areas rely on the different
variants of slicing being correct. Suppose there was a tool with which to prove slicing
correct. Clearly, this would immensely faciliate verification of such algorithms. Ideally,
such a tool would not be restricted to a specific programming language or syntax and
utilize well-known verification techniques such as proof assistants. In this contribution,
to tackle a subtask of this idea, we present a framework for dynamic slicing based on
control flow and program dependence graphs and machine-checked in Isabelle/HOL.

In aiming for versatility, our approach rests upon a special graph representation in the
style of control flow graphs (CFG) and not on concrete syntax. If such a representation
fulfills certain basic structural and well-formedness properties, we call it trace control
flow graph (TCFG) and associate a path of edges to every program trace. For this graph,
which can even be infinite, we define the program dependence graph (PDG) using the
standard notions of control and data dependence. Then we compute the backward slice
and obtain the sliced path from the original TCFG path by invalidating (i.e. replacing
them with an operation doing nothing) all operations triggered by nodes that are not in
the backward slice. Our main theorem shows that executing the remaining operations
on a sliced path yields the same result as performing those on the initial path w.r.t. the
variables used at the target node for every suitable input to the program trace.

In the second part, we also present how to embed a simple While language (without
procedures) in the framework. On the one hand, we illustrate this way both how to
construct a trace control flow graph for a semantics and how to validate the required

� This work was supported by DFG grant Sn11/10-1.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 294–309, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 295

well-formedness properties using the programming language semantics. On the other
hand, this demonstrates that these properties are indeed sensible and chosen well.

1.1 Slicing

To collect all program points that can influence a certain statement in a program a pro-
gram analysis called slicing was defined by Weiser [18]. There are many approaches to
how to accomplish this task, for an overview, see Tip [15] or Krinke [8]. Our formal-
ization uses the graph-based approach in relying on the dynamic equivalents of control
flow (CFG) and program dependence graphs (PDG). CFGs consist of nodes denoting
the program statements and edges that represent the order, in which these statements are
executed. Two relations on these nodes, called data and control dependence, determine
the edges, which connect the CFG nodes to constitute the PDG. A backward slice of
a node is then defined as the set of all nodes on which the given node is transitively
data and control dependent. This set is a conservative approximation of all program
points that can influence this statement. Our approach is dynamic as we can have infi-
nite graphs (e.g. because of method inlining) and we only apply slicing to paths which
are executable in a certain state, not to the graph as a whole.

1.2 Isabelle

The formalization is written completely in Isabelle/HOL [12], including all lemmas
and theorems, i.e. every single proof is machine-checked. To be as generic as possible
with respect to possible languages/CFGs instantiating the framework, we extensively
use the Locales concept in Isabelle [3]. This encapsulation enables one to write generic
functions and predicates, limited only by imposing certain constraints on them.

Isabelle also provides the means to automatically generate LATEX documents (such
as this one) based on Isabelle input files by automatically replacing references to defi-
nitions and lemmas in the LATEX text with the respective pretty-printed and typeset for-
mulae. This avoids typing errors introduced via the transfer from Isabelle to LATEX files
and shows the convenient, human readable syntax of the formalization.

1.3 Notation

Types include the basic types of truth values, natural numbers and integers, which are
called bool, nat , and int respectively. The space of total functions is denoted by ⇒. Type
variables are written ′a, ′b, etc. t::τ means that HOL term t has HOL type τ .

Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and snd :: ′a × ′b ⇒
′b. We identify tuples with pairs nested to the right: (a, b , c) is identical to (a, (b , c))

and ′a × ′b × ′c is identical to ′a × (′b × ′c).
Sets (type ′a set) follow the usual mathematical convention.
Lists (type ′a list) come with the empty list [], the infix constructor ·, the infix @ that

appends two lists, and the conversion function set from lists to sets. Variable names
ending in “s” usually stand for lists and |xs| is the length of xs. If i < |xs| then xs[i]
denotes the i -th element of xs. The standard function map, which applies a function to
every element in a list, is also available.

296 D. Wasserrab and A. Lochbihler

datatype ′a option = None | Some ′a adjoins a new element None to a type ′a. All
existing elements in type ′a are also in ′a option, but are prefixed by Some. Hence bool
option has the values Some True, Some False and None.

Case distinctions on data types use guards, where every guard must be followed by
a data type constructor. E.g. case x of Some y ⇒ f y | None ⇒ g means that if x is some y
then the result is f y where f may refer to value y, and if x is None, then the result is g.

Partial functions are modeled as functions of type ′a ⇒ ′b option, where None repre-
sents undefinedness and f x = Some y means x is mapped to y. Instead of ′a ⇒ ′b option
we write ′a ⇀ ′b and call such functions maps.

Function update is defined as follows: f (a := b) ≡ λx. if x = a then b else f x, where
f :: ′a ⇒ ′b and a :: ′a and b :: ′b.

2 The Framework

Our framework is generic, i.e. we do not restrict ourselves to a specific programming
language (in fact, not even to a certain programming paradigm such as imperative or
object oriented programming). To construct a PDG, on which to perform dynamic slic-
ing, we instantiate the framework with a so called trace control flow graph, representing
code from any source code language. E.g. this trace CFG can be obtained by inlining
the CFG for every procedure at the respective calling site in a certain program, thus
being potentially infinite (e.g. if we have a recursive function). The constraints on this
trace CFG has to fulfill are described in detail in the next section.

2.1 The Input Trace Control Flow Graph

The trace CFG (called TCFG in the following) consists of nodes of type ′node and
edges of type ′edge, with an edge a being in the set of edges if it fulfills some property
valid-edge a, a parameter of the instantiating language. Using the functions sourcenode,
targetnode and kind, we can determine the source node, target node and edge kind of an
edge, respectively. An edge kind describes the action taken when traversing this edge,
so we have two different edge kinds of type ′state edge-kind, both parameterized with
a state (or context as it is called in other programming languages) type variable ′state:
updating the current state with a function f :: ′state ⇒ ′state, written ⇑f, or assuring that
predicate Q :: ′state ⇒ bool in the current state is fulfilled, written (Q)√ . We define a
function transfer such that traversing an edge in a state s then means that we apply this
function to the corresponding edge kind, thus calculating f s, if we have an update edge
⇑f, otherwise leaving the state unchanged. Function pred determines if predicate Q of a
predicate edge (Q)√ in a certain state s is fulfilled, returning True for update edges.

A node n is in the node set of a TCFG, if it fulfills the property valid-node n with the
following definition: valid-node n ≡ ∃ a. valid-edge a ∧ (n = sourcenode a ∨ n = targetnode
a). Furthermore we need two special nodes (-Entry-), which may only have outgoing
edges, and (-Exit-), having incoming edges only. Also there is a special edge which
has (-Entry-) as source and (-Exit-) as target node, the respective edge kind being (λs.
False)√ , a predicate which can never be fulfilled. The last restrictions on the TCFG are
that we do not allow multi edges nor self loops, so if the source and target nodes of two

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 297

Def (-Entry-) = ∅ ∧ Use (-Entry-) = ∅ Def (-Exit-) = ∅ ∧ Use (-Exit-) = ∅
valid-edge a V /∈ Def (sourcenode a)

state-val (transfer (kind a) s) V = state-val s V

valid-edge a kind a = (Q)√

Def (sourcenode a) = ∅

valid-edge a ∀ V∈Use (sourcenode a). state-val s V = state-val s ′ V

∀ V∈Def (sourcenode a). state-val (transfer (kind a) s) V = state-val (transfer (kind a) s ′) V

valid-edge a pred (kind a) s ∀ V∈Use (sourcenode a). state-val s V = state-val s ′ V

pred (kind a) s ′

Fig. 1. The well-formedness properties of a trace CFG

valid edges coincide, so do the two edges, and the source and target node of no valid
edge may be equal.

Based on these constraints, we can now specify a property inner-node n, which defines
the subset of valid nodes not being (-Entry-) or (-Exit-). We also allow to combine edges
in paths, written n −as→∗ n ′, meaning that node n can reach n ′ via edges as:: ′edge list.
These paths are constructed via the following two rules:

valid-node n

n −[]→∗ n

n ′′ −as→∗ n ′ valid-edge a sourcenode a = n targetnode a = n ′′

n −a·as→∗ n ′

Moreover we define sourcenodes, targetnodes and kinds as mappings of the respective
functions to edge lists using map. Using these, we can show that the source node of an
edge in a TCFG path edge list matches the target node of the edge preceding it, and the
target node of an edge matches the source node of the edge succeeding it.

We also lift transfer and pred to lists of edge kinds via

transfers [] s = s transfers (e·es) s = transfers es (transfer e s)
preds [] s = True preds (e·es) s = pred e s ∧ preds es (transfer e s)

After having defined the structural properties of the TCFG, we furthermore need
some well-formedness properties for its edges and the Def and Use sets of the source
nodes of its edges, which collect the defined and used variables in this node, respec-
tively, and a function state-val s V returning the value currently in variable V in state s
(the formal rules are shown in Fig. 1):

– Def and Use sets of (-Entry-) and (-Exit-) are empty,
– traversing an edge leaves all variables which are not defined in the source node of

this edge unchanged,
– the source node of a predicate edge does not define any variables,
– if two states agree on all variables in the Use set of the source node of an edge, after

traversing this edge the two states agree on all variables in the Def set of this node,
so different values in the variables not in the Use set cannot influence the values of
the variables in the Def set,

– if two states agree on all variables in the Use set of the source node of a predicate
edge and this predicate is valid in one state, it is also valid in the other one.

298 D. Wasserrab and A. Lochbihler

If we also have a semantics of the language – where 〈c,s〉 ⇒ 〈c ′,s ′〉 means that eval-
uating statement c in state s results in fully evaluated statement c ′ and final state s ′ –
and a mapping from a node n to its corresponding statement c via n identifies c, we have
another well-formedness property (called semantically well-formed):

n identifies c 〈c,s〉 ⇒ 〈c ′,s ′〉
∃ n ′ as. n −as→∗ n ′ ∧ transfers (kinds as) s = s ′ ∧ preds (kinds as) s ∧ n ′ identifies c ′

This property states that if the complete evaluation of statement c in state s results
in a state s ′ and node n corresponds to statement c, then there is a path in the TCFG
beginning at n, on which, taking s as initial state, all predicates in predicate edges hold
and the traversal of the path edge kinds also yields state s ′.

2.2 Constructing the Program Dependence Graph

Though we instantiate the framework with a possibly infinite trace CFG, we call the
data structure constructed in the following program dependence graph (PDG), as we
are using the standard definitions of control and data dependence described e.g. in [15,
Sec. 2]. For control dependence, the trace CFG must contain all possible paths and not
only a special one, i.e. a trace.

Control Dependence. First we formalize the notion of postdomination. A node n ′

postdominates a node n, if both are valid nodes and n ′ must lie on every path from n to
(-Exit-). Note: If no path from n to (-Exit-) exists (e.g. because of unstructured control
flow), every valid node postdominates n.

Definition 1. (Postdomination)

n ′ postdominates n ≡ valid-node n ∧ valid-node n ′ ∧
(∀ as. n −as→∗ (-Exit-) −→ n ′ ∈ set (sourcenodes as))

Using this notion, control dependence is straightforward (see [19], Sec. 3.3). A node n ′

is control dependent on a node n via edges as, iff there is a path from n to n ′ using edges
as and n ′ postdominates the targetnode of the first edge of as but does not postdominate
the targetnode of another valid edge a ′ leaving n. The notion n ′ /∈ set (sourcenodes as)
states that as is a minimal path without loops starting at n ′.

Definition 2. (Control Dependence)

n controls n ′ via as ≡ n ′ /∈ set (sourcenodes as) ∧ n −as→∗ n ′ ∧ (∃ a a ′ as ′. as = a·as ′ ∧
sourcenode a = n ∧ n ′ postdominates targetnode a ∧ valid-edge a ′ ∧
sourcenode a ′ = n ∧ ¬ n ′ postdominates targetnode a ′)

In Lem. 1 we prove that this definition is equivalent to the one given in [15, Sec. 2],
which says that node n ′ is control dependent on node n via edges as, iff there is a path
from n to n ′ using edges as and n ′ postdominates every node on this path except n –
since every node in this path except n is a target node of an edge of this edge list as, we
can rewrite this proposition using targetnodes – and n ′ does not postdominate n. Property
n ′ /∈ set (sourcenodes as) again guarantees minimal paths without loops starting at n ′ and
we have to explicitly forbid n being the (-Exit-) node.

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 299

Lemma 1. (Control Dependence Variant)

n controls n ′ via as ≡ n −as→∗ n ′ ∧ ¬ n ′ postdominates n ∧
(∀ n ′′∈set (targetnodes as). n ′ postdominates n ′′) ∧
n ′ /∈ set (sourcenodes as) ∧ n �= (-Exit-)

The next lemma shows that every inner node n, which is reachable via a path from
(-Entry-) and has a path leading to (-Exit-), has a node n ′ on which it is control dependent.
Note that there may be more than one such node if control flow is unstructured.

Lemma 2. (Control Dependence Predecessor)

inner-node n (-Entry-) −as→∗ n n −as ′→∗ (-Exit-)

∃ n ′ as. n ′ controls n via as

Data Dependence. Node n ′ is data dependent on a node n, iff there is a variable V
which gets defined at n and used at n ′ and there is a path from n to n ′ using a nonempty
list of edges as such that no node in the path redefines V.

Definition 3. (Data Dependence)

n influences V in n ′ via as ≡ V ∈ Def n ∧ V ∈ Use n ′ ∧ n −as→∗ n ′ ∧
(∃ a ′ as ′. as = a ′·as ′ ∧ (∀ n ′′∈set (sourcenodes as ′). V /∈ Def n ′′))

This definition forbids data dependences from a node to itself as well as source node n
occurring twice on path as.

The PDG. A PDG consists of edges of two different types: control dependence edges
n −as→cd n ′ and data dependence edges n −{V}as→dd n ′. The definitions are straight-
forward, using the definitions above:

Definition 4. (PDG Edges)

n controls n ′ via as

n −as→cd n ′
n influences V in n ′ via as

n −{V}as→dd n ′

A path in the PDG using edges as, written n −as→d ∗ n ′, is constructed by concatenating
PDG edges (if the respective source and target nodes match), as being the concatenation
of the CFG edge lists of all PDG edges.

2.3 Dynamic Backward Slicing with Respect to a Node

In the standard understanding of slicing in dependence graph-based approaches, the
slicing criterion corresponds to a node; thus, we call this node slicing node. In the
following, we compute a dynamic backward slice of a node n ′ and show that the slice
fulfills the fundamental property of dynamic slicing in Theorem 1, i.e. for all variables
used in n ′ traversing the sliced path returns the same result as traversing the respective
non-sliced TCFG path. Since we formalise dynamic backward slices as the backward
traversal of PDG edges and do not model def-def dependence edges, we only regard
variables in the Use set of the slicing node, not those in the Def set.

300 D. Wasserrab and A. Lochbihler

Computing a Dynamic Path Slice. The only relevant information the slice of a path
must provide is if a certain edge gets included in it or not – as their respective edge kind
carries the transition information in this framework. Thus we can model a path slice as
a bit vector, i.e. a bool list, of the same length as the edge list as of the path, being True
at position i iff the edge at position i of edge list as has to be considered. An edge has
to be considered if its source node has a PDG path to the slicing node n ′ with an edge
list corresponding to the according suffix of as. Function slice-path as computes this bit
vector by traversing the edge list as. Note that the last node of the reduced path being
the slicing node n ′ is invariant throughout this computation:

Definition 5. (Dynamic Path Slice)

slice-path [] ≡ []

slice-path (a·as) ≡ let n ′ = last(targetnodes (a·as)) in
(sourcenode a −a·as→d ∗ n ′)·slice-path as

The fact that we only consider PDG paths via the executed CFG edge list makes this
slicing dynamic, static slicing would consider all possible dependences, i.e. also depen-
dences via other CFG edge lists.

Bit vectors can be compared via the less-or-equal relation �b , where bs �b bs ′ holds
if |bs| = |bs ′| and bs ′ is True at least at those elements where bs is True. Thus we can say
that bs contains less or equal information on the former edge list than bs ′. The maximal
elements for relation �b , are the bit vectors which are True at every entry.

To obtain the edge kind list of the sliced path, we have to combine the bit vector with
the initial edge list of the path. If the bit vector is True for a certain edge, we copy the
respective edge kind in the list, otherwise, if the edge kind is an update edge, we include
⇑id which does not alter the state, if it is a predicate edge, we include (λs. True)√ being
True in any state. Again the calculation is done via iteration over the edge list:

Definition 6. (Edge Kind List for a Sliced Path)

select-edge-kinds [] [] ≡ []

select-edge-kinds (a·as) (b ·bs) ≡ (if b then kind a
else (case kind a of ⇑f ⇒ ⇑id | (Q)√ ⇒ (λs. True)√)))

·select-edge-kinds as bs
slice-kinds as ≡ select-edge-kinds as (slice-path as)

See Fig. 2 for an example of a path, the bit vector representing its sliced path and the
edge kind list of the respective sliced path. In this and all following examples, we num-
ber edges and use a simplified language where we replaced the update functions with
easier to understand variable assignments, writing predicates as boolean expressions
over variables in brackets without the √ . Data dependences are indicated with solid
arrows and annotated with the respective variable name, control dependence edges with
dashed arrows. All the variables on the right hand side of an assignment as well as
those used in a predicate are in the Use set of the source node of the respective edge,
the variables on the left hand side of an assignment constitute its Def set.

Dependent Live Variables. Our next aim is to prove that dynamic path slicing is
indeed correct, i.e. traversing the edge kinds in the sliced path returns the same result as

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 301

u := 5 y :=3 w : = v + 7 (c | |v>u) d := b| |c y :=u-w(d) z :=x-4
n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9

yu
w d

1 2 3 4 5 6 7 8

Assumption: Use n9 = { x, y }
Bit vector representing the sliced path: [True, False, True, True, False, False, False, True]

Sliced path edge kind list: [u:=5, id, w:=v+7, (c||v>u), id, True, id, y:=u-w]

Fig. 2. Example of how to calculate the edge kinds of a sliced path with slice node n9

traversing those on the original path for all variables used in the slicing node and if all
predicates on the original path are satisfiable, so are they in the sliced path. An auxiliary
definition to reach this goal is the notion of dep-live-vars n ′ as, a collection of variables
whose altering can change the value of a variable used in node n ′. In fact, we compute
a kind of Live Variables Analysis as described in [11], restricted to only one path and
ignoring those nodes, on which the parameter node is not (transitively) dependent.

But collecting just the variables is not enough for our goal, we furthermore need
information about via which TCFG edges we can reach the node where this variable
was used (and not redefined in between) starting from our current position in the path.
Hence it is possible to have the same variable multiple times in the set, but the respec-
tive edge list component differs. dep-live-vars has two parameters, first the node n ′ for
which this calculation is made, and second the edge list as we have already traversed
previous the iterations (note that this traversal happens from right to left). Example:
(V , as ′) ∈ dep-live-vars n ′ as states that a node where V is used can be reached via edges
as ′ from the node from which edges as lead to n ′ and no node on as ′ redefines V. The
formal rules for dep-live-vars:

Definition 7. (Dependent Live Variables)
V ∈ Use n ′

(V , []) ∈ dep-live-vars n ′ []

V ∈ Use (sourcenode a) sourcenode a −a·as ′→cd n ′

(V , []) ∈ dep-live-vars n ′ (a·as ′)

V ∈ Use (sourcenode a) sourcenode a −a·as ′→cd n ′′ n ′′ −as ′′→d ∗ n ′

(V , []) ∈ dep-live-vars n ′ (a·(as ′ @ as ′′))

(V , as ′) ∈ dep-live-vars n ′ as V ′ ∈ Use (sourcenode a)

n ′ = last (targetnodes (a·as)) sourcenode a −{V}a·as ′→dd last(targetnodes (a·as ′))

(V ′, []) ∈ dep-live-vars n ′ (a·as)

(V , as ′) ∈ dep-live-vars n ′ as
n ′ = last (targetnodes (a·as)) ¬ sourcenode a −{V}a·as ′→dd last(targetnodes (a·as ′))

(V , a·as ′) ∈ dep-live-vars n ′ (a·as)

An easy corollary of this definition is that for all (V , as ′) ∈ dep-live-vars n ′ as, list as ′ is
a prefix of list as. For an example of a calculation of the dependent live variables, see
Fig. 3. Note that there is no PDG path from n5 to n9 (as there is no dependency edge
leaving n9), so we can ignore the variables used at this node.

302 D. Wasserrab and A. Lochbihler

w:=8 b :=w-4 (c) v : = u + 5 y :=v y :=7x :=v-w (b>3)
n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9

w
b v

x
y

1 2 3 4 5 6 7 8

Calculation of dep-live-vars for node n9 (if x and y are in its Use set):
as = . . . elements in set dep-live-vars n9 as

[] {(x,[]),(y,[])}
[8] {(x,[8])}

[7,8] {(x,[7,8]),(b ,[])}
[6,7,8] {(b ,[6]),(v,[]),(w,[])}

[5,6,7,8] {(b ,[5,6]),(v,[5]),(w,[5])}
[4,5,6,7,8] {(b ,[4,5,6]),(u,[]),(w,[4,5])}

[3,4,5,6,7,8] {(b ,[3,4,5,6]),(u,[3]),(w,[3,4,5]),(c,[])}
[2,3,4,5,6,7,8] {(w,[]),(u,[2,3]),(w,[2,3,4,5]),(c,[2])}

[1,2,3,4,5,6,7,8] {(u,[1,2,3]),(c,[1,2])}

Fig. 3. Example for the calculation of Dependent Live Variables for node n9

Lemma 3. (Dependent Live Variables and Use sets)
If (V, as ′) ∈ dep-live-vars n ′ as and n −as→∗ n ′ then
V ∈ Use n ′ ∧ (∀ n ′′∈set (sourcenodes as). V /∈ Def n ′′) ∧ as = as ′ or
(∃ nx as ′′. as = as ′ @ as ′′ ∧ n −as ′→∗ nx ∧ nx −as ′′→d ∗ n ′ ∧ V ∈ Use nx ∧
(∀ n ′′∈set (sourcenodes as ′). V /∈ Def n ′′)).

This lemma, which is proved by induction on the dependent live variables rules, now
leads us directly to an important statement coded in Corollary 1: Suppose we have a
variable V with edge list component as ′ in the dep-live-vars set of node n ′ and path as
and a TCFG path from the target node of a valid edge a leading to n ′ also using edges as.
If now V gets defined at the source node of edge a, there is a PDG path from sourcenode
a via edges as to n ′ with a leading data dependency edge for variable V:

Corollary 1. (Dependent Live Variables and PDG paths)
If (V , as ′) ∈ dep-live-vars n ′ as and targetnode a −as→∗ n ′ and
V ∈ Def (sourcenode a) and valid-edge a then
(∃ nx as ′′. as = as ′@as ′′ ∧ sourcenode a −{V}a·as ′→dd nx ∧ nx −as ′′→d ∗ n ′)

Machine Checked Dynamic Slicing. Now, before proving the desired fundamental
property of path slicing, we show a more general lemma. We have a TCFG path n
−as→∗ n ′, n ′ not being (-Exit-), and two bit vectors bs �b bs ′, the first one the result of
slice-path as. es and es ′ are their respective edge kind lists obtained using select-edge-kinds
on edges as. Furthermore we have two states s and s ′ agreeing on all variables in the
dep-live-vars set for the slicing node n ′ on edge list as. If now all predicates hold while
traversing edge kinds es ′ with starting state s ′, so do all predicates while traversing edge
kinds es with starting state s and the value of any variable V in the Use set of slicing
node n ′ agrees in the states yielded by both traversals.

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 303

Lemma 4. (Generalized Fundamental Property of Dynamic Path Slicing)
n −as→∗ n ′ bs �b bs ′

slice-path as = bs select-edge-kinds as bs = es select-edge-kinds as bs ′ = es ′

∀ V xs. (V , xs) ∈ dep-live-vars n ′ as −→ state-val s V = state-val s ′ V preds es ′ s ′

(∀ V∈Use n ′. state-val (transfers es s) V = state-val (transfers es ′ s ′) V) ∧ preds es s

We prove this lemma by induction on bs, where the base case (bs = [] and thus bs ′ = []) is
trivial. In the induction step we know that since bs is nonempty as consists of a (valid)
leading edge a ′ and the tail list as ′. The proof then does the following case analysis:
if traversing edge list as changes one of the values in the Use set of n ′ compared to
traversing just the tail edge list as ′, the source node n of the leading edge a ′ has to define
a variable in the dependent live variables set of n ′ reached via as ′ – otherwise no such
influence would be possible. This implies by Corollary 1 that there is a PDG path from
n to n ′, so edge a ′ must be part of the slice, i.e. the first element of bs must be True
and so is the first element of bs ′ by definition of �b . If however traversing edge list
as gives the same values in the Use set of n ′ as traversing just the tail edge list as ′, the
traversal of the leading edge a ′ does not matter for the variables used in slicing node
n ′. This proposition, combined with the induction hypothesis and the well-formedness
properties of the TCFG, leads to the proof of this lemma.

Replacing bs ′ with the maximal bit vector w.r.t. �b of the matching size, using the
definition of slice-kinds (see Def. 6) and instantiating s and s ′ with the same state s, the
fundamental property is now an easy consequence:

Theorem 1. (Fundamental Property of Dynamic Path Slicing)

n −as→∗ n ′ preds (kinds as) s

(∀ V ∈ Use n ′. state-val (transfers (slice-kinds as) s) V = state-val (transfers (kinds as) s) V)

∧ preds (slice-kinds as) s

Provided that the TCFG is also semantically well-formed, we easily extend this theorem
to the semantics: a statement c evaluated in state s returns residual statement c ′ and state
s ′. Then there exists a path between the corresponding nodes of the statements and after
traversing the sliced version of this path, all variables that are used in the target node
have the same value as in state s ′, the result of the semantics evaluation.

Theorem 2. (Dynamic Path Slicing and Semantics)
n identifies c 〈c,s〉 ⇒ 〈c ′,s ′〉

∃ n ′ as. n −as→∗ n ′ ∧ preds (slice-kinds as) s ∧ n ′ identifies c ′ ∧
(∀ V ∈ Use n ′. state-val (transfers (slice-kinds as) s) V = state-val s ′ V)

3 Instantiation of the Framework with a Simple While-Language

We demonstrate that the framework is applicable and the well-formedness conditions
are sensible by showing how to embed a simple imperative While-language (without
procedures) called WHILE. In this section we use the basic definitions shown in Sec. 2.1,
instantiating the type variables accordingly.

304 D. Wasserrab and A. Lochbihler

The Language. Our language features two value types Intg::val and Bool ::val, which
represent integer and boolean (i.e. true and false) values. Expressions consist of constant
values, variables and binary operators. We support five different statements of type cmd:
the no-op statement Skip, assignment of expression e to a variable V, written V :=e,
sequential composition of statements ;;, conditionals if (b) c1 else c2 and while loops
while (b) c ′. Defining the state is easy: it is just a simple mapping from variables to
values var ⇀ val. The partial function [[e]]s returns Some v, if expression e evaluates
to value v in state s, None, if e cannot be evaluated in state s (e.g. in the case of non
well-formed programs).

The Control Flow Graph. As WHILE does not provide procedures, its trace CFG is
equal to its CFG. Nodes in this CFG are of the type w-node, which incorporates inner
nodes (- l -) bearing a label l of type nat, and the special nodes (-Entry-) and (-Exit-). n ⊕
i adds i to the label number of n and returns a new node bearing this number as label, if
n is an inner node, otherwise leaving (-Entry-) and (-Exit-) unchanged. #:c denotes the
number of inner nodes we need for a CFG of statement c.

WHILE CFG edges have the type w-edge = w-node × state edge-kind × w-node. A CFG
edge valid for program prog is written prog n −et→ n ′ and consists of a description
of the program prog of type cmd, i.e. the statement for which this CFG is generated, a
source node n, an edge kind et of type state edge-kind and a target node n ′. Basically, the
CFG is constructed via first constructing recursively the CFGs for the substatements,
then combining these graphs into a single one, eventually adjusting the labels so that
they remain unique. Also, we add one additional node after every variable assignment
node and one after every while node (reachable via the edge, where the loop predicate
is false). We will describe the motivation for this later.

Definition 8. (WHILE CFG Edges)
Basic rules:

prog (-Entry-) −(λs. False)√ → (-Exit-) prog (-Entry-) −(λs. True)√ → (- 0 -)

Skip: Skip (- 0 -) −⇑id→ (-Exit-)

V :=e:
V :=e (- 0 -) −⇑λs. s(V := [[e]]s)→ (- 1 -) V :=e (- 1 -) −⇑id→ (-Exit-)

c1 ;;c2 :
c1 n −et→ n ′ n ′ �= (-Exit-)

c1 ;; c2 n −et→ n ′
c1 n −et→ (-Exit-) n �= (-Entry-)

c1 ;; c2 n −et→ (- 0 -) ⊕ #:c1

c2 n −et→ n ′ n �= (-Entry-)

c1 ;; c2 n ⊕ #:c1 −et→ n ′ ⊕ #:c1

if (b) c1 else c2 : if (b) c1 else c2 (- 0 -) −(λs. [[b]]s = Some true)√ → (- 0 -) ⊕ 1

if (b) c1 else c2 (- 0 -) −(λs. [[b]]s = Some false)√ → (- 0 -) ⊕ (#:c1 + 1)

c1 n −et→ n ′ n �= (-Entry-)

if (b) c1 else c2 n ⊕ 1 −et→ n ′ ⊕ 1

c2 n −et→ n ′ n �= (-Entry-)

if (b) c1 else c2 n ⊕ (#:c1 + 1) −et→ n ′ ⊕ (#:c1 + 1)

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 305

(-Exit-)

(-Entry-)

(-0-)

(-1-)

x : = x + 1 :
x : = x + 1

w h i l e (x < 0) (x : = x + 1 ; ; y : = x) : (-Entry-) (-Exit-)(-0-)
(x > = 0)

y : = x : (-Entry-)

(-0-)
y :=x

x : = x + 1 ; ; y : = x :

(-Entry-)

(-0-)
x : = x + 1

(-1-)

Skip: (-Entry-)

(-1-) (-Exit-)(-1-)

(-2-)
y :=x

(-Exit-)(-3-)

(-2-)
 x :=x+1

(-3-) (-4-)
y:=x

(-5-)

(x<0)

(-0-) (-Exit-)

i f (y<0) (wh i le (x<0) (x :=x+1 ; ; y :=x)) e lse Sk ip :

(-Entry-) (-0-)
 (y<0)

(-Exit-)(-1-)
(x > = 0)

 x :=x+1
(-3-) (-5-)

y:=x
(-6-)

(x<0)

(-2-)

(-4-)

(-7-)(y > = 0)

1 .

5 .

2 .

3 .

4 . True

True

 True

True

True

True

id

id

id

id

id id

id

id

id

id

id

id

Fig. 4. Construction of the CFG for if (y<0) (while (x<0) (x:=x+1;;y:=x)) else Skip

while (b) c ′: while (b) c ′ (- 0 -) −(λs. [[b]]s = Some true)√ → (- 0 -) ⊕ 2

while (b) c ′ (- 0 -) −(λs. [[b]]s = Some false)√ → (- 1 -)

while (b) c ′ (- 1 -) −⇑id→ (-Exit-)
c ′ n −et→ (-Exit-) n �= (-Entry-)

while (b) c ′ n ⊕ 2 −et→ (- 0 -)

c ′ n −et→ n ′ n �= (-Entry-) n ′ �= (-Exit-)

while (b) c ′ n ⊕ 2 −et→ n ′ ⊕ 2

In Fig. 4, we show schematically the single steps 1.-5. of the recursive CFG construc-
tion for the statement if (y<0) (while (x<0) (x:=x+1;;y:=x)) else Skip. Now we have to
prove that these definitions fulfill the well-formedness criteria given in Sec. 2.1. Hence
we define sourcenode, targetnode and kind accordingly, say that a is a valid edge iff for a
program prog prog sourcenode a −kind a→ targetnode a holds and that n is a valid node
iff it is the source or target node of a valid edge. Also we define the Use set as the set of
all variables in the expression on the right hand side of a variable assignment and those
occuring in a condition or loop predicate. The Def set contains only the variable that
eventually gets assigned. Using these, the basic and well-formedness properties of the
WHILE CFG are easily shown via rule induction on the CFG edge rules.

The Semantics. The rules for a small step or structural operational semantics then look
as expected – only the while-rule has been split in two cases instead of a translation into
a conditional –, 〈c,s〉 → 〈c ′,s ′〉 stating that reduction of statement c in state s results in
remainder statement c ′ and state s ′:

Definition 9. (Small Step Semantics of WHILE)

〈V :=e,s〉 → 〈Skip,s(V := [[e]]s)〉
〈c,s〉 → 〈c ′,s ′〉

〈c;; c2 ,s〉 → 〈c ′;; c2 ,s ′〉
〈Skip;; c2 ,s〉 → 〈c2 ,s〉

306 D. Wasserrab and A. Lochbihler

[[b]]s = Some true

〈if (b) c1 else c2 ,s〉 → 〈c1 ,s〉
[[b]]s = Some false

〈if (b) c1 else c2 ,s〉 → 〈c2 ,s〉
[[b]]s = Some true

〈while (b) c,s〉 → 〈c;; while (b) c,s〉
[[b]]s = Some false

〈while (b) c,s〉 → 〈Skip,s〉
To prove that the WHILE CFG in combination with this semantics is semantically well-
formed, we need some kind of simulation of reducing statements in the semantics via
following the CFG edges. Thus, we need a one-to-one mapping from the current posi-
tion in the CFG to the current state of reduction in the semantics, i.e. from node n to
statement c, which we called n identifies c in Sec. 2.1. Predicate labels prog n c accom-
plishes this task in program prog, defined by recursively computing the predicate for
substatements and adjusting the labels if necessary (taking care of the additional nodes
for V :=e and while, being in fact Skip nodes).

Definition 10. (Mapping from Nodes to Statements)
labels c 0 c labels (V :=e) 1 Skip

labels c1 l c

labels (c1 ;; c2) l (c;; c2)

labels c2 l c

labels (c1 ;; c2) (l + #:c1) c

labels c1 l c

labels (if (b) c1 else c2) (l + 1) c

labels c2 l c

labels (if (b) c1 else c2) (l + #:c1 + 1) c

labels c ′ l c

labels (while (b) c ′) (l + 2) (c;; while (b) c ′)
labels (while (b) c ′) 1 Skip

Trying to define that traversing the CFG edges conforms to reducing the semantics
will fail as the semantics is not strong enough, since it reduces (and thus destroys)
the initial statement and does not contain any information on node labels. So we need
another means for reducing statements, called label semantics, which contains both
statement and label information and also remembers the initial statement. A step in this
semantics is written prog 〈c,s,l 〉 � 〈c ′,s ′,l ′〉, meaning that in program prog (the initial
statement), statement c in state s with label l reduces to a remainder statement c ′ in state
s ′ with label l ′. The label semantics rules can be divided into two groups: first, we have
seven rules corresponding to the seven rules of the standard semantics in Def. 9, with
identical rules for V :=e, if (b) c1 else c2 and while (b) c ′ (only label information added).
The rules for reducing a sequential composition need more premises to guarantee that
the reduction provides the correct label for the right hand side of the composition:

labels (c1 ;; c2) l (Skip;; c2) labels (c1 ;; c2) #:c1 c2 l < #:c1

c1 ;; c2 〈Skip;; c2 ,s,l 〉 � 〈c2 ,s,#:c1 〉

labels (while (b) c ′) l (Skip;; while (b) c ′)

while (b) c ′ 〈Skip;; while (b) c ′,s,l 〉 � 〈while (b) c ′,s,0〉
Second, we have five more rules to take care of valid semantics steps in substatements

also being valid in composite statements (i.e. ;;, if (b) c1 else c2 and while (b) c ′). We
show two examples of these rules:

prog 〈c,s,l 〉 � 〈c ′,s ′,l ′〉
c1 ;; prog 〈c,s,l + #:c1 〉 � 〈c ′,s ′,l ′ + #:c1 〉

cx;; while (b) cx 〈c,s,l 〉 � 〈c ′,s ′,l ′〉 l < #:cx l ′ < #:cx

while (b) cx 〈c,s,l + 2〉 � 〈c ′,s ′,l ′ + 2〉

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 307

Using labels we now show that a step in the label semantics simulates a step in the
small step semantics (proven via induction on c):

Lemma 5. (Label Semantics Simulates Semantics)
labels prog l c 〈c,s〉 → 〈c ′,s ′〉

∃ l ′. prog 〈c,s,l 〉 � 〈c ′,s ′,l ′〉 ∧ labels prog l ′ c ′

The label semantics now provides all information we need to show that traversing a
CFG edge simulates a reducing step in it:

Lemma 6. (CFG Edge Simulates Label Semantics)
prog 〈c,s,l 〉 � 〈c ′,s ′,l ′〉

∃ et . prog (- l -) −et→ (- l ′ -) ∧ transfer et s = s ′ ∧ pred et s

When proving this proposition by rule induction on the label semantics rules, the need
for the additional Skip nodes after variable assignments and while loops gets clear:
as the reduction of a variable assignment or while loop with invalid predicate leads
to a Skip statement, we also need a CFG edge from the respective nodes to a node
corresponding to a Skip statement. As the outgoing edge of this node is by construction
of the CFG a no-op edge (function id is applied to the state, see the second rule for
V :=e and the third rule for while (b) c ′ in Def. 8), this adjustment is valid.

Showing that the WHILE CFG is semantically well-formed w.r.t. its semantics is just
an easy consequence of Lem. 5 and 6, lifted to the corresponding transitive closures.

4 Related Work

Our slicing formalization approach is related to the work by Agrawal and Horgan [1],
primarily to Approach 3, since nodes can occur multiple times in path, which is our
equivalent to their execution history. From such an execution history, they build the
Dynamic Dependence Graph, but this graph does not correspond to the PDG computed
here as the latter contains all paths, not only a selected one. Although data dependence
can be computed for a single path in isolation, we need this additional information about
all possible paths for computing the control dependence relation. Agrawal and Horgan
also use (in their case static) PDG information to determine the control dependences
in their execution history. Having all possible traces in a TCFG is only a formalization
trick that is of course not applicable in algorithms really computing dynamic slices
because TCFGs are potentially infinite .

The quite natural idea of replacing parts irrelevant for slicing with operations doing
nothing can also be found in the work by Amtoft [2]. He uses a code map for mapping
CFG nodes to the corresponding program statements. Slicing then modifies this code
map for all nodes not in the slice, mapping statement nodes to skip (equivalent to our
⇑id), predicate nodes to true? or false?. Encoding the predicate directly in the edges,
we can restrict ourselves to (λs. True)√ for these edges in the dynamic case.

Jhala and Majumdar [6] also use the notion of path slicing, but they focus on elimi-
nating all edges not relevant for the (un)reachability of the target location. The resulting
(path) slices have two main properties: First, if the slice is infeasible, so is the original
path, and second, if the slice is feasible, then the target location is reachable. Similar to

308 D. Wasserrab and A. Lochbihler

our approach, they do not focus on one special path or trace, but also take alternative
paths into consideration, e.g. to find feasible variants of the path under consideration.

Ranganath et al. [13] discuss interesting questions that arise if some nodes in the
CFG cannot reach the Exit node. Our formalization is not immune to this problem as
unstructured control flow can lead to this undesired situation. At the moment we can
only guarantee that paths are sliced correctly for graphs without such nodes, otherwise
certain control dependences may not be recognized, i.e. slices may be too small. How-
ever the main theorems remain correct, but the slices do not necessarily conform the
standard understanding of correct slices. Since we also want to apply our framework to
unstructured control flow, future efforts will be made to tackle this problem.

There exist some formal approaches to program slicing and its correctness. Reps and
Yang showed in [14] the correctness of static PDG based slicing, restricted to a simple
While language without procedures. The approach of Gouranton and Le Métayer [5] is
similar to ours as they present a language independent framework and use it to show
the correctness of dynamic slicing. Instead of using graph structures, they base their
work on natural semantics. The slicing itself uses annotations where program points
with annotation False are treated as Skip, the same strategy we pursue with our notion
of bit vectors. They also present the embedding of three different languages in their
framework: an imperative, a logic programming and a functional one. In [16], Ward
and Zedan model slicing as a program transformation, thereby abstracting from specific
representations. A program transformation in their sense is any operation on a program
which generates a semantically equivalent program. The aim of their work is to provide
a unified mathematical framework for sequential programs. We think that our approach
is closer to the intuitive understanding of PDG based slicing than the last two methods as
we use the standard notions of control flow, and control and data dependence. Also, both
works rely on pen-and-paper proofs whereas our framework is fully machine-checked.

The notion of control flow graphs can be found in various works on verification
using theorem provers, e.g. see [10] and [4], using control flow implicitly, i.e. as a
relation, not as a real graph structure. Lammich and Müller-Olm [9] define a parallel
flow graph similar in structure to our control flow graph (but formalising procedures and
parallelism), which is not restricted to a certain language either. While our work uses
flow graphs to construct dependence graphs and to prove certain properties of them,
they focus on the correctness of analyses on the flow level.

5 Conclusion and Future Work

We have presented a generic framework for dynamic slicing using a PDG based ap-
proach and proven it correct in the proof assistant Isabelle/HOL. This framework is
independent from concrete programming language syntax but uses a graph structure ful-
filling certain structural and well-formedness properties. Moreover we have presented
how to embed a simple imperative While language (without procedures) in this frame-
work to show that the preconditions imposed on the graph structure are sensible. The
formalization, including the instantiation with a While language has about 6000 lines
of code and took one man-year of work.

Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs 309

Our next goal is to instantiate this framework with more sophisticated object oriented
languages like Jinja [7] or CoreC++ [17] and to apply it to a formalization of the JVM
[7] with unstructured control flow. Also we are working on expanding the framework to
the intricacies of static slicing including, amongst other things, a formalization of sys-
tem dependence graphs (SDGs) and an approximation of the peculiarities of dynamic
binding. In the remote future we plan to extend the formalization to concurrency.

References

1. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Proc. of PLDI 1990, pp. 246–256.
ACM Press, New York (1990)

2. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrelevant loops.
Information Processig Letters 106(2), 45–51 (2008)

3. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M.,
Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50. Springer, Heidelberg (2004)

4. Blech, J.O., Gesellensetter, L., Glesner, S.: Formal verification of dead code elimination in
Isabelle/HOL. In: Proc. of SEFM 2005, pp. 200–209. IEEE Computer Society Press, Los
Alamitos (2005)

5. Gouranton, V., Métayer, D.L.: Dynamic slicing: a generic analysis based on a natural seman-
tics format. Journal of Logic and Computation 9(6), 835–871 (1999)

6. Jhala, R., Majumdar, R.: Path slicing. In: Proc. of PLDI 2005, pp. 38–47. ACM Press, New
York (2005)

7. Klein, G., Nipkow, T.: A Machine-Checked Model for a Java-Like Language, Virtual Ma-
chine and Compiler. ACM TOPLAS 28(4), 619–695 (2006)

8. Krinke, J.: Program slicing. Handbook of Software Engineering and Knowledge Engineer-
ing 3, 307–332 (2004)

9. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of programs with thread-
creation and procedures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703,
pp. 287–302. Springer, Heidelberg (2007)

10. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In: Proc. of POPL 2006, pp. 42–54. ACM Press, New York (2006)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg
(1999)

12. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

13. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foundation for
control dependence and slicing for modern program structures. ACM TOPLAS 29(5), 27
(2007)

14. Reps, T., Yang, W.: The semantics of program slicing. Technical Report CS-TR-1988-777,
University of Wisconsin-Madison (1988)

15. Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3),
121–189 (1995)

16. Ward, M., Zedan, H.: Slicing as a program transformation. ACM TOPLAS 29(2), 1–53 (2007)
17. Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and type safety

proof for multiple inheritance in C++. In: Proc. of OOPSLA 2006, pp. 345–362. ACM Press,
New York (2006)

18. Weiser, M.: Program slices: formal, psychological, and practical investigations of an auto-
matic program abstraction method. PhD thesis, University of Michigan (1979)

19. Wolfe, M.J.: High Performance Compilers for Parallel Computing. Addison-Wesley, Reading
(1995)

Proof Pearl: Revisiting the Mini-rubik in Coq

Laurent Théry

Marelle Project INRIA, France
Laurent.Thery@inria.fr

Abstract. The Mini-Rubik is the 2x2x2 version of the famous Rubik’s
cube. How many moves are required to solve the 3x3x3 cube is still un-
known. The Mini-Rubik, being simpler, is always solvable in a maximum
of 11 moves. This is the result that is formalised in this paper. From this
formalisation, a solver is also derived inside the Coq prover. This rather
simple example illustrates how safe computation can be used to do state
exploration in order to derive non-trivial properties inside a prover.

1 Introduction

A recent paper [5] has shown that 26 moves are sufficient to solve Rubik’s cube.
This is the best-known upper bound (the exact value is conjectured to be around
20 moves). It uses some clever approximation of the problem but relies mainly
on heavy parallel computations: 8000 CPU hours are needed to get the result.
In this paper, we tackle the more elementary Mini-Rubik. Instead of 26 small
cubes, the Mini-Rubik is composed of 8 small cubes only. It is a well-known
result that it is always solvable in a maximum of 11 moves [1]. This is the result
we formalise in this paper.

In Coq [8], there is no native data-structure. All basic types such as inte-
ger, boolean, string are tree-like structures built using the standard Inductive
command. For example, the natural numbers use Peano representation with two
constructors S and O. The natural number 3 is then internally represented as
(S (S (S O))). Although this is perfectly adequate for proofs (for example, the
usual inductive principle is given for free), Peano numbers are useless for com-
puting. With a binary representation, the situation gets slightly better but is
still not satisfactory. In [7], a generic mechanism is proposed for associating a
dedicated data-structure for computing to the standard one for proving while
preserving all the nice properties of the type system. This mechanism is applied
to integer arithmetic in the following way. First, a special type Int31 is de-
fined that contains a single constructor with a list of 31 booleans as arguments.
This is the reference data-structure. Then, this type is associated to the internal
31-bit Ocaml integers1 in a straightforward manner. So, computing within the
Int31 type directly benefits from the processor arithmetic with the correspond-
ing speed-up. For example, the Int31 type was used in [9] to get the primality
of some large numbers using elliptic curves.
1 In Ocaml [6], the last bit of a word indicates if it should be interpreted as either a

value or a pointer, the arithmetic has then only 32 - 1 bits.

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 310–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proof Pearl: Revisiting the Mini-rubik in Coq 311

In this paper, we are going to use the Int31 type in a slightly different manner.
The Mini-Rubik has 3,674,160 possible configurations. In order to get our final
result, we need to visit all these configurations while recording those which have
already been encountered. It amounts to manipulating subsets of a set of size
3,674,160. In order to use as little memory as possible, we use the Int31 type
to encode subsets of small sets of size 31. We then represent a subset of the
configurations with 118,522, i.e. 3,674,160/31, of these Int31. This capability
of encoding small subsets in a single word is the key aspect that makes our
formalisation work.

The paper is organised as follows. In Section 1, we present a naive formalisation
that is used to get the basic properties of the problem. In Section 2, we introduce
a second formalisation whose main concern is memory consumption. The main
result is obtained from this second formalisation. Finally, in Section 3, we give
more details about our formalisation.

2 Direct Formalisation

To represent the Mini-Rubik inside Coq, we have chosen a model that is par-
ticularly well-suited for the computation we need to perform. If we believe that
one can relatively easily get convinced that we have modelled the Mini-Rubik
faithfully, ultimately we should also provide a more intuitive model and formally
prove the equivalence with our model.

In our model, the front-upper-left corner remains fixed. So, a configuration
needs to take into consideration 7 small cubes only. Information about a small
cube is split in two: its position and its orientation. Small cubes are numbered
from 1 to 7. The cube on the left of Figure 1 shows which ordering has been
used to label the small cubes: the fixed cube and cubes 1,2, 3 compose the front
face. Small cubes are represented by elements of the enumerate type cube:

Inductive cube: Set := C1 | C2 | C3 | C4 | C5 | C6 | C7.

Each small cube is rigid and has 3 coloured faces only. Choosing arbitrarily the
vertical direction, in any configuration, a small cube has exactly one face that
belongs to either the top face or the bottom face. Knowing the colour of this
face is sufficient to deduce the colours of the other faces. This means that a
cube has only 3 possible orientations that can be represented by elements of the
enumerate type orientation:

Inductive orientation: Set := O1 | O2 | O3.

Note that in the following we really manipulate positions and orientations as if
they were natural numbers. We have not been using directly natural numbers for
efficiency reason only. With enumerate types, checking if a position is C7 is done
by one elementary pattern matching, while checking if a number is 7, i.e. (S (S
(S (S (S (S (S O))))))), requires a more expensive pattern matching.

A configuration of the Mini-Rubik is represented by a constructor State with
7 positions and 7 orientations:

312 L. Théry

1
23

1
7 4

1
2

4
5 3

23

1
1 1

2
3

3
2

Fig. 1. Positions and Orientations of the Mini-Rubik

Inductive state: Set :=

State (p1 p2 p3 p4 p5 p6 p7: cube) (o1 o2 o3 o4 o5 o6 o7: orientation).

where pi indicates which small cube is at position i and oi gives its orientation.
We define the initial orientation in such a way that the initial state of the cube
is represented as:

Definition init_state = State C1 C2 C3 C4 C5 C6 C7 O1 O1 O1 O1 O1 O1 O1.

The front-upper-left corner being fixed, there are only three elementary rotations
of the cube: right, back and down. Following Figure 1, cubes 1-4-5-2 compose
the right face, cubes 4-5-6-7 the back face and cubes 2-5-6-3 the bottom face.
Note that our decision to have the front-upper-left corner fixed means that in our
model a rotation of the left face (resp. front and up) is simulated by a rotation in
the opposite direction of the right face (resp. back and down). Also, half-turns
and anti-clockwise rotations are obtained by iterating twice, resp. thrice, the
respective elementary rotation. All this is rather standard.

Orientations are the less intuitive part of our model. The cube on the right
of Figure 1 tries to explain how orientations work. Orientations are numbered
from 1 to 3 following the clockwise order. For each cube, we arbitrarily decide
that it is the face that belongs to the top face (or the bottom face) that holds
the orientation. So, from the definition of init_state, it follows that initially
the top and bottom faces contain only 1, i.e O1.

After a rotation, the orientation of a cube is either unaffected, modified in a
clockwise manner, or modified in an anti-clockwise manner. Clockwise and anti-
clockwise changes are represented by the functions up and down respectively:

Definition up o = match o with O1 ⇒ O2 | O2 ⇒ O3 | O3 ⇒ O1 end.

Definition down o = match o with O1 ⇒ O3 | O2 ⇒ O1 | O3 ⇒ O2 end.

The three elementary rotations are modelled as functions from State to State:

Definition rright s := match s with
State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p2 p5 p3 p1 p4 p6 p7 (up o2) (down o5) o3 (down o1) (up o4) o6 o7

end.

Proof Pearl: Revisiting the Mini-rubik in Coq 313

Definition rback s := match s with

State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p1 p2 p3 p5 p6 p7 p4 o1 o2 o3 (up o5) (down o6) (up o7) (down o4)

end.

Definition rdown s := match s with

State p1 p2 p3 p4 p5 p6 p7 o1 o2 o3 o4 o5 o6 o7 ⇒
State p1 p3 p6 p4 p2 p5 p7 o1 o3 o6 o4 o2 o5 o7

end.

Note that our decision to use the top and bottom faces to read orientations is
reflected by the fact that the down rotation does not modify any orientation.

A state is reachable if it can be reached from the initial state using the three
elementary rotations. This is easily defined inductively by:

Inductive reachable: state → Prop :=

reach0: reachable init_state

| reachr: ∀s, reachable s → reachable (rright s)

| reachb: ∀s, reachable s → reachable (rback s)

| reachd: ∀s, reachable s → reachable (rdown s).

The fact that 11 moves are sufficient to solve the Mini-Rubik is true for the
half-turn metric. This means that not only elementary rotations need to be
considered but also anti-clockwise rotations and half turns. This is done in the
move relation:

Definition move (s1 s2: state) :=

s2 = rright s1 ∨ s2 = rright (rright s1) ∨ s2 = rright (rright (rright s1))

∨ s2 = rback s1 ∨ s2 = rback(rback s1) ∨ s2 = rback(rback(rback s1))

∨ s2 = rdown s1 ∨ s2 = rdown(rdown s1) ∨ s2 = rdown(rdown(rdown s1)).

Once moves are defined, the reachability in n moves is defined inductively as:

Inductive nreachable: nat → state → Prop :=

nreach0: nreachable 0 init_state

| nreachS: ∀n s1 s2, nreachable n s1 → move s1 s2 → nreachable (S n) s2.

We also define the property of being reachable in less than n moves and the
property of being reachable in exactly n moves:

Definition nlreachable n s := ∃m, m ≤ n ∧ nreachable m s.

Definition nsreachable n s :=

nreachable n s ∧ ∀m, m < n → ¬ nreachable m s.

Now, the theorem we want to prove can be expressed as:

Lemma reach11: ∀s, reachable s → nlreachable 11 s.

Turning this lemma into a computational problem is quite direct. For each n, we
are going to compute the states that are reachable in less than n moves and the
states that are reachable in exactly n moves. We represent states by a simple
list of states. On such a list, the function in_states checks if a state belongs to
the list. We first define the list of all possible moves

314 L. Théry

Definition movel :=
rright :: rright o rright :: rright o rright o rright ::
rback :: rback o rback :: rback o rback o rback ::
rdown :: rdown o rdown :: rdown o rdown o rdown :: nil.

All the states that are reachable in exactly n+1 states are included in the states
that are within one move of states that are reachable in exactly n states. This is
the basic idea of the algorithm. The function nexts does this computation for a
single state:

Definition nexts (ps: states * states) s :=

fold_left

(fun (ps: states * states) f ⇒
let (states, nstates) := ps in

let s1 := f s in

if in_states s1 states then ps else (s1 :: states, s1 :: nstates))

movel ps.

where fold_left is the tail recursive version of the usual iterative fold function
on lists. For each state s1 that is one move from s, the nexts function checks if
s1 has already been visited. If not, it is added to the list of visited states (the
first element of the pair) and to the list of the new states (the second element
of the pair). Finally, to get the states that are reachable in less than n moves
and the states that are reachable in exactly n moves, we just need to iterate the
nexts function starting from the lists composed of the initial state only:

Function iters_aux n (ps: states * states) :=

match n with

O ⇒ ps

| S n1 ⇒ let (m,p) := ps in iters_aux n1 (fold_left nexts p (m,nil))

end.

Definition iters n := iters_aux n (init_state::nil, init_state::nil).

It is relatively easy to show that if the second element of the pair returned by
(iters n) is the empty list, the Mini-Rubik is solvable in n-1 moves. This is
formally stated by the following theorem:

Lemma iters_final: ∀n,
match iters n with

(_, nil) ⇒ ∀s, reachable s → nlreachable (pred n) s

| _ ⇒ True

end.

It is by applying this theorem that we turn the proof of the theorem reach11
into computing (iters 12).

3 Optimising Memory Consumption

The implementation of iters is far too naive to let us prove the reach11
theorem. Computing (iters 5), which involves 12,224 states only, is already

Proof Pearl: Revisiting the Mini-rubik in Coq 315

impossible inside Coq. Nevertheless, iters is useful as a reference implemen-
tation to which our optimised version is going to be proved equivalent. What
iters actually does is to compute the diameter of the Cayley graph of the
group generated by the three elementary rotations. As explained in [1], having
a compact representation in memory of the graph is mandatory to perform this
computation. If we go back to how configurations have been encoded, the values
of the 14 arguments of State are strongly constrained. First of all, the seven
arguments (p1, ..., p7) which represent positions must be a permutation of
(C1, C2, C3, C4, C5, C6, C7). Also, the orientation of the last cube can be
guessed from the orientations of the other cubes. These constraints are captured
by the predicate valid_state:

Definition valid_state s := match s with

State c1 c2 c3 c4 c5 c6 c7 o1 o2 o3 o4 o5 o6 o7 ⇒
perm (C1::C2::C3::C4::C5::C6::C7::nil) (c1::c2::c3::c4::c5::c6::c7::nil)

∧ o1 ⊕ o2 ⊕ o3 ⊕ o4 ⊕ o5 ⊕ o6 ⊕ o7 = O1

end.

where perm is the permutation predicate between two lists and⊕ is the projection
of the addition modulo 3 to the orientation, i.e. adding On is done by applying
the function up n − 1 times. The valid_state predicate is proved to hold for
the initial state and to be preserved by the reachability predicate. So, we have:

Lemma reachable_valid: ∀s, reachable s → valid_state s.

Note that this theorem already indicates that there are at most 7!36 = 3,674,160
configurations (7! is the contribution of the permutations, and the 36 corresponds
to the fact that the value of the last orientation is determined by the value of the
other orientations). Later, we explain how we formally prove that this is actually
the exact number of configurations.

An accurate encoding of permutations of length n should take into considera-
tion the facts that the first element of the permutation has n possible values, the
second element n − 1 and so on. This is done with the following two functions
that manipulate permutations as lists:

Function encode_aux l p :=

match l with

nil ⇒ nil

| m :: l1 ⇒ (if p <c m then downc m else m) :: encode_aux l1 p

end.

Function encode l n:=

match l, n with

m :: l1, (S n1) ⇒ m :: encode (encode_aux l1 m) n1

| _ , _ ⇒ nil

end.

where <c and downc are the projections of the comparison and the predecessor
functions from the natural numbers to the enumerate type cube, i.e. C2 <c C3

and downc C3 = C2. For the definition of the encode function, as the recursion is

316 L. Théry

not structural, an extra argument n is required to ensure termination. It bounds
the length of the resulting list. With this encoding on a permutation of length
n, the ith element is ensured to be in {C1, C2, . . . , Cn−i+1}. In particular, the last
element is always C1 and can be discarded. If n is the length of the permuta-
tion we want to encode, the extra argument of the encode function is n − 1.
For example, if we consider the permutation of the initial configuration, its en-
coding is computed by (encode (C1::C2::C3::C4::C5::C6::C7::nil) 6) and
evaluates to C1::C1::C1::C1::C1::C1::nil. To sum up, the information about
positions in a state can be encoded by 6 elements of type cube (p′1, p′2, p′3,
p′4, p′5, p′6) with p′i ∈ {C1, C2, . . . , C8−i} and the information about orientations
can be encoded by 6 elements of type orientation (o′1, o′2, o′3, o′4, o′5, o′6).
Furthermore, as the iters function intensively uses encoding and decoding of
permutations, we actually use co-inductive types, which are evaluated lazily, to
get the memoisation of these operations. This speeds up our computation by a
factor of 2.

We use decision trees to represent sets of states. The 12 elements that encode a
state (p′1, p′2, p′3, p′4, p′5, p′6, o′1, o′2, o′3, o′4, o′5, o′6) are used to denote
a path to a boolean leaf in the decision tree. If this leaf is true, the state is in the
set. In Coq, a constructor with n arguments allocates (n + 1) 32-bit words. It
is then better to have the elements with the largest number of arguments at the
bottom of the tree structure. This is why the reordering of the path (p′6, o′1,
o′2, o′3, o′4, o′5, o′6, p′5, p′4, p′3, p′2, p′1) is favoured. Furthermore, instead
of boolean leaves, we can use elements of the Int31 type to encode sets of 31
elements with the usual convention that the ith element of the set is present if and
only if the ith bit is set to one. In our path, p′2 has 6 possible values and p′3 has
5 possible values, this means that the pair (p′2, p

′
3) has 30 possible values which

can be effectively represented by a single Int31 element (a single bit is then
unused). The actual path that is used is then (p′6, o′1, o′2, o′3, o′4, o′5, o′6,
p′5, p′4, p′1, 5(index(p′2)−1)+index(p′3)−1) where index is the function that
maps elements of the type cube to natural numbers, i.e. index(C5) = 5. With
this encoding, the last element of a path is always a natural number strictly less
than 30. Two functions encode_state and decode_state are defined to relate
states and paths and their composition is proved to be the identity on valid
states. With this representation, a set of states requires a maximum of 295,001
32-bit words which means 2.6 bits per configuration.

It is also possible to derive a solver by slightly modifying the iters program.
This follows from the observation that, given a state s that is reachable in n
moves, the states which are one move from s are reachable in n− 1, n, or n + 1
moves. Out of all these states, a solver just needs to be capable to pick one state
that is reachable in n − 1 move. Since for any n, (n − 1) mod 3, n mod 3, and
(n + 1) mod 3 are always 3 distinct values, it is sufficient to be able to associate
for each state s the two-bit value n mod 3 where n is the number of moves that
are necessary to reach s. For this, we just need to split in two the states that
are reachable in less than n moves to get the two-bit information. The modified
version iter2s of the function iters for the solver is the following:

Proof Pearl: Revisiting the Mini-rubik in Coq 317

Definition next2s m (ps: states * states * states) s :=

fold_left

(fun (ps: state * states * states) f ⇒
let (states1, states2, nstates) := ps in

let s1 := f s in

if (in_states s1 states1 || in_states s1 states2) then ps

else match m with

0 ⇒ (s1::states1, states2, s1::nstates)

| 1 ⇒ (states1, s1::states2, s1::nstates)

| _ ⇒ (s1::states1, s1::states2, s1::nstates)

end)

movel ps.

Function iter2s_aux (n m: nat) (ps: states * states * states) :=

match n with

O ⇒ ps

| S n1 ⇒ let (ps1,ps2,ps3) := ps in

iter2s_aux n1 ((m+1) mod 3) (fold_left (next2s m) ps3 (ps1,ps2,nil))

end.

Definition iter2s n :=

iter2s_aux n 1 (init_state::nil, nil, init_state::nil).

4 Running the Solver

The complete formalisation is available at
ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Rubik.zip

It is composed of 7000 lines of code: 3000 lines for the naive formalisation, 4000
for the optimised version. On a Pentium 4 with 1 Gigabyte of RAM, getting
the reach11 theorem takes 260 seconds. Most of the time is spent in computing
(iters 12). Note that, once this computation has been performed, it can also
be used to get another interesting result:

Lemma valid11: ∀s, valid_state s → reachable s.

This proves that the number of configurations of the Mini-Rubik is exactly
3,674,160. This is done by checking that the first element of the pair computed
by (iters 12) with the optimised version has all its leaves equal to 230 − 1.

The solver returns the list of moves in the half-turn metric that leads to the
initial state. We use co-inductive types and memoisation to compute only once
the table that associates each state with its index of reachability modulo 3. So,
the first time the solver is called, the table is actually computed:

Time Eval compute in solve init_state.
= nil

Finished transaction in 384. secs (384.562537u,0.292956s)

The next invocations are then immediate. For example, we can try to swap two
adjacent corners

ftp://ftp-sop.inria.fr/marelle/Laurent.Thery/Rubik.zip

318 L. Théry

Time Eval compute in solve (State C2 C1 C3 C4 C5 C6 C7 O1 O1 O1 O1 O1 O1 O1).

= Right::Back−1::Down2::Right−1::Back::Right−1::Back−1::Right::Down2::

Right::Back::nil

Finished transaction in 0. secs (0.00100000000009u,0.s)

or two opposite corners

Time Eval compute in solve (State C7 C2 C3 C4 C5 C6 O1 O1 O1 O1 O1 O1 O1 1).

= Right::Back−1::Right2::Back−1::Right−1::Down−1::Right::Down2::Back::

Down−1::Back::nil

Finished transaction in 0. secs (0.00100000000009u,0.s)

5 Conclusions

Proof systems like Coq are not well-suited for dealing with state exploration.
Mike Gordon has already shown in [3] how one can benefit from an external link
to a Bdd package to solve a solitaire game inside the Hol prover [4]. In our work,
everything has been done withing the theorem prover using safe computation.
The main contribution of this paper is to show that we can actually use this
safe computation to effectively model problems of relatively large size like the
Mini-Rubik. As in [3], what we really gain by doing this inside a prover is the
formal connection between what we want to prove (the model) and what we
actually compute.

The key aspect of the formalisation is its memory consumption. Most of the
issues we have addressed here is not specific to theorem proving and can also
be found in the model checking community. For example, in [10], the author
shows how a careful design is necessary to be able to solve this problem with
Bdds. Having a certified formalisation in a purely functional setting that uses 2.6
bits only per configuration is rather satisfactory. The 260 seconds to complete
the exploration are less satisfactory but it is difficult to see how we could go
significantly faster in a programming language without side-effects. Finally, if
our decision trees are for the moment ad-hoc for the specific configurations of
the Mini-Rubik, deriving a generic library that uses Int31 to represent large
finite sets could be useful for other formalisations.

A natural continuation of this work would be to tackle the full Rubik’s cube.
Obviously, formalising results like [5] is outside reach but getting simpler bounds
like the one of 52 moves [2] seems feasible.

References

1. Cooperman, G., Finkelstein, L.: New Methods for Using Cayley Graphs in Inter-
connection Networks. Discrete Applied Mathematics 37(38), 95–118 (1992)

2. Frey, A.H., Singmaster, D.: Handbook of Cubik Math. Enslow Publishers (1982)
3. Gordon, M.J.C.: Reachability Programming in HOL98 using BDDs. In: Aagaard,

M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 179–196. Springer,
Heidelberg (2000)

Proof Pearl: Revisiting the Mini-rubik in Coq 319

4. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher-order logic. Cambridge University Press, Cambridge (1993)

5. Kunkle, D., Cooperman, G.: Twenty-Six Moves Suffice for Rubik’s Cube. In: ISSAC
2007, pp. 235–242 (2007)

6. Leroy, X.: Objective Caml (1997), http://pauillac.inria.fr/ocaml/
7. Spiwack, A.: Efficient Integer Computation in Type Theory, Draft paper (2007)
8. The Coq development team. The Coq Proof Assistant Reference Manual v7.2.

Technical Report 255, INRIA (2002), http://coq.inria.fr/doc
9. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K.,

Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 319–333. Springer, Heidel-
berg (2007)

10. Valmari, A.: What the small Rubik’s cube taught me about data structures, infor-
mation theory, and randomisation. International Journal for Software Tools Tech-
nology 8(3), 180–194 (2006)

http://pauillac.inria.fr/ocaml/
http://coq.inria.fr/doc

Author Index

Aehlig, Klaus 39
Amjad, Hasan 55

Berghofer, Stefan 71
Bertot, Yves 12, 86
Böhme, Sascha 150
Bove, Ana 102
Brandt, Jens 118
Bulwahn, Lukas 134

Capretta, Venanzio 102
Chandy, K. Mani 230
Cock, David 167
Courtieu, Pierre 183

Erkök, Levent 134

Forest, Julien 183
Foster, Jeffrey S. 262

Gast, Holger 199
Gonthier, Georges 86
Gordon, Mike 1

Haftmann, Florian 39, 134
Hicks, Michael 262

Kaufmann, Matt 17
Klein, Gerwin 167
Krauss, Alexander 134

Leino, K. Rustan M. 150
Lester, David R. 215
Lochbihler, Andreas 294

Matthews, John 134
Miller, Steven P. 6
Mitra, Sayan 230
Moore, J Strother 17

Neamtiu, Iulian 262
Nipkow, Tobias 33, 39
Norrish, Michael 28

O’Connor, Russell 246
Ould Biha, Sidi 86
Oury, Nicolas 278
Owre, Sam 22

Pasca, Ioana 86
Paulson, Lawrence C. 33
Pratikakis, Polyvios 262

Schneider, Klaus 118
Sewell, Thomas 167
Shankar, Natarajan 22
Slind, Konrad 28
Sozeau, Matthieu 278

Théry, Laurent 310

Urbain, Xavier 183
Urban, Christian 71

Wasserrab, Daniel 294
Wenzel, Makarius 33
Wolff, Burkhart 150

	Title Page
	Preface
	Organization
	Table of Contents
	Twenty Years of Theorem Proving for HOLs Past, Present and Future
	Theorem Proving for HOLs?
	From 1988 to 2008
	Automation
	User Interfaces
	Functional and Logic Programming
	Theorem Prover as an Implementation Platform
	Versions of Higher Order Logic
	Impressive Proofs

	Future
	Library of Formalised Mathematics
	Substantial Implementation Experiments Directly in Logic

	Conclusion

	Will This Be Formal?
	Introduction
	Examples of the Successful Use of Formal Methods
	FCS 5000 Flight Control System
	ADGS-2100 Adaptive Display and Guidance System
	Lockheed Martin Operational Flight Program
	AAMP7G Intrinsic Partitioning
	Greenhills Integrity-178B Real Time Operating System

	Requirements for the Successful Use of Formal Methods
	Is the Problem Important?
	Are High Fidelity Models Available for Analysis?
	Can the Properties of Interest be Stated Formally?
	Are the Right Analysis Tools Available?

	Future Directions
	References

	A Short Presentation of Coq
	Introduction
	The Gallina Specification Language
	Types and Formulas
	Inductive Types
	Expressions, Functions, and Proofs

	Goal Directed Proof
	The Reflection Feature
	Sharing Proofs and Results
	References

	An ACL2 Tutorial
	Introduction
	AboutACL2
	Demo: Basics of Interaction with ACL2
	Demo:AJVMModel
	Demo: Proof Debugging and Theory Management
	Concluding Remarks
	References

	A Brief Overview of PVS
	Introduction
	PVS Examples
	PVS Libraries and Applications
	Conclusions and Future Work
	References

	A Brief Overview of HOL4
	Introduction
	Technical Features
	Logic
	Kernels
	Derived Rules and Definition Principles
	Proof Tools
	Theories and Libraries
	External Interfaces

	Current Projects
	References

	The Isabelle Framework
	Overview
	Specification Mechanisms
	Structured Proofs
	Modular Theory Development
	Reasoning Tools
	Counterexample Search
	Code Generation
	Major Applications
	References

	A Compiled Implementation of Normalization by Evaluation
	Introduction
	Normalization by Evaluation in ML
	Model and Verification
	Basic Notation
	Terms
	Reduction
	Compilation
	Verification

	Realization in Isabelle
	Related Work
	Future Work
	References

	LCF-Style Propositional Simplification with BDDs and SAT Solvers
	Introduction
	Related Work
	Technical Background
	Normal Forms
	BDDs
	SAT Solvers
	CNF Simplification

	Simplification
	Faster CNF Simplification
	Simplification Using SAT Solvers
	Practicalities

	Experimental Results
	Conclusion
	References

	Nominal Inversion Principles
	Introduction
	Formal Inversion Principles
	Inductive Predicates
	Nominal LogicWork
	Strengthening of the Inversion Principle
	Examples
	Conclusion and RelatedWork
	References

	Canonical Big Operators
	Introduction
	Canonical Structures
	Index Structures
	Operator Structures

	Notations
	Range Descriptions
	Operator Inference

	Main Lemmas
	Lemmas for Plain Operators
	Plain Monoid Re-indexing
	Abelian Monoid Re-indexing
	Distributivity

	Some Results on Determinants
	The Leibnitz Formula
	The Cauchy Formula

	The Cayley-Hamilton Theorem
	Polynomials
	Proving the Cayley-Hamilton Theorem

	Multivariate Real Analysis and Kantorovitch’s Theorem
	Conclusion
	Related Work
	Overview and Perspectives

	References

	A Type of Partial Recursive Functions
	Introduction
	A Closer Look at Recursive Functions
	The Type of Partial Recursive Functions
	A Predicative Reflection
	Consistency of the Extended Type Theory
	Full Recursion
	Conclusions
	References

	Formal Reasoning About Causality Analysis
	Introduction
	Formalisation of Traditional Can-Must Analysis
	System Description
	Four-Valued Environment
	Fixpoint Iteration

	Causality Analysis by Model Checking
	Modelling the Progress of Information
	Model Checking Tasks

	Formalisation of Alternative Analysis
	Two-Valued Environment
	Execution of Actions
	Transition Relation

	Conclusions
	References

	Imperative Functional Programming with Isabelle/HOL
	Introduction
	RelatedWork
	A Trivial Example: Array Reversal
	Dynamic Allocation: Linked Lists

	Modeling a Polymorphic Heap
	Representable Types
	Typed References
	Type Reflection
	The Heap

	The Heap Monad
	Execution
	Verification
	Case Studies
	A SAT Checker
	A Jinja Bytecode Verifier

	Problems and Limitations
	No Monad Polymorphism
	Heap Model
	Recursive Functions
	External I/O

	Conclusion
	References

	HOL-Boogie — An Interactive Prover for the Boogie Program-Verifier
	Introduction
	Background
	Isabelle/HOL and the Isar Framework
	The VCC System Architecture

	Foundations of Boogie and HOL-Boogie
	Introduction to BoogiePL
	Generating Verification Conditions
	Labeling in Boogie
	Attribution in BoogiePL

	Scenario I: Interactive Verification of Algorithms
	Dijkstra’s Shortest Path Algorithm
	Tracking Program Positions
	Specific Tactic Support
	Structured Proofs and Isabelle Proof Support

	Scenario II: Interactive Verification of C-Programs
	Scenario III: Verification of Background Theories
	Conclusion
	Related Work
	Future Work

	References

	Secure Microkernels, State Monads and Scalable Refinement
	Introduction
	State Monads
	Hoare Logic on State Monads
	Verification Condition Generator
	Refinement Calculus
	Case Study – The seL4 Microkernel
	Overview
	Formalisation
	Properties
	Experience and Lessons Learned

	Related Work
	Conclusion
	References

	Certifying a Termination Criterion Based on Graphs, without Graphs
	Introduction
	Preliminaries
	Graphs
	Rewriting
	Modelling Rewriting and Graphs in COQ

	Formalizing Graph Refinements
	Mechanical Certification of the Graph Refinement
	Hierarchical Decomposition of \SCC(\G)
	Formalization of Hierarchical Decomposition

	Examples
	A Weak Graph Criterion Example
	A Strong Graph Criterion Example

	Experiments
	Conclusion
	References

	Lightweight Separation
	Introduction
	Isabelle Syntax and Simplifier
	A Low-Level Language
	Types and Contexts
	Memory Model
	State Updates for Forward-Reasoning
	Language, Semantics, and External Syntax
	Hoare Logic

	Formalizing Memory Layouts
	Covers
	Layout Expressions

	Simplification of Memory Updates
	A Framework of Modifiers and Accessors
	Simplifying the Memory Layouts
	Proving Subcover Relations
	Simplifying Clip
	Implemented Tactics

	Example: List Reversal
	Related Work
	Conclusion
	References

	Real Number Calculations and Theorem Proving
	Introduction
	Real Arithmetic and Computability
	Validation of an Exact Arithmetic
	An Example in Raw PVS
	Transcendental Functions: Sine and Cosine
	Transcendental Function: Natural Logarithm
	Transcendental Function: Exponential
	PrintingtheAnswer
	AnOversight
	Conclusion
	References

	A Formalized Theory for Verifying Stability and Convergence of Automata in PVS
	Introduction
	Related Work
	Automata and Executions
	Preliminaries
	Formalization of Automata
	Executions, Reachability, and Invariance

	Formalizing Stability and Convergence of Automata
	Stability
	Sufficient Conditions for Stability
	Fairness
	Convergence
	Special Case

	An Application
	Discussions
	Conclusions
	References

	Certified Exact Transcendental Real Number Computation in Coq
	Introduction
	Notation

	Background
	Metric Spaces
	Uniformly Continuous Functions
	Complete Metric Spaces

	Real Numbers
	Order
	Non-uniformly Continuous and Partial Functions
	Transcendental Functions
	Compression

	Formalization in Coq
	Efficient Proofs
	Summing Series
	π
	Correctness
	Solving Strict Inequalities Automatically
	Setoids
	Timings

	Related Work
	Conclusion
	References

	Formalizing Soundness of Contextual Effects
	Introduction
	Background: Contextual Effects
	Language
	Typing

	OperationalSemantics
	The Problem of Future Effects
	Big-Step Semantics
	Standard Effect Soundness

	Contextual Effect Soundness
	Typed Operational Semantics
	Soundness

	Mechanization
	Related Work
	Conclusions
	References

	First-Class Type Classes
	Introduction
	Preliminaries
	Dependent Types
	Dependent Records
	Implicit Arguments

	First Steps
	Declaring Classes and Instances
	Method Calls
	Instance Search
	Quantification

	Superclasses as Parameters, Substructures as Instances
	Superclasses as Parameters
	Substructures as Instances

	Examples
	Monads
	Category Theory

	Discussion
	Overview
	Naming
	Computing
	Searching

	Related Work
	Future Work

	Conclusion
	References

	Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs in Isabelle/HOL
	Introduction
	Slicing
	Isabelle
	Notation

	The Framework
	The Input Trace Control Flow Graph
	Constructing the Program Dependence Graph
	Dynamic Backward Slicing with Respect to a Node

	Instantiation of the Framework with a SimpleWhile-Language
	Related Work
	Conclusion and Future Work
	References

	Proof Pearl: Revisiting the Mini-rubik in Coq
	Introduction
	Direct Formalisation
	Optimising Memory Consumption
	Running the Solver
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

