

Lecture Notes in Computer Science 5086
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kaisa Nyberg (Ed.)

Fast
Software Encryption

15th International Workshop, FSE 2008
Lausanne, Switzerland, February 10-13, 2008
Revised Selected Papers

13

Volume Editor

Kaisa Nyberg
Helsinki University of Technology
Department of Information and Computer Science
Konemiehentie 2, 02150 Espoo, Finland
E-mail: kaisa.nyberg@tkk.fi

Library of Congress Control Number: 2008930931

CR Subject Classification (1998): E.3, I.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-71038-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71038-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association for Cryptologic Research 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12435869 06/3180 5 4 3 2 1 0

Preface

Fast Software Encryption (FSE) is the 15th in a series of workshops on symmetric
cryptography. It is sponsored by the International Association for Cryptologic
Research (IACR), and previous FSE workshops have been held around the world:

1993 Cambridge, UK 1994 Leuven, Belgium 1996 Cambridge, UK
1997 Haifa, Israel 1998 Paris, France 1999 Rome, Italy
2000 New York, USA 2001 Yokohama, Japan 2002 Leuven, Belgium
2003 Lund, Sweden 2004 New Delhi, India 2005 Paris, France
2006 Graz, Austria 2007 Luxembourg, Luxembourg

The FSE workshop is devoted to the foreground research on fast and secure
primitives for symmetric cryptography, including the design and analysis of block
ciphers, stream ciphers, encryption schemes, analysis and evaluation tools, hash
functions, and message authentication codes.

This year 72 papers were submitted to FSE including a large number of high-
quality and focused submissions, from which 26 papers for regular presentation
and 4 papers for short presentation were selected. I wish to thank the authors of
all submissions for their scientific contribution to the workshop. The workshop
also featured an invited talk by Lars R. Knudsen with the title “Hash functions
and SHA-3.” The traditional rump session with short informal presentations on
current topics was organized and chaired by Daniel J. Bernstein.

Each submission was reviewed by at least three Program Committee members.
Each submission originating from the Program Committee received at least five
reviews. The final selection was made after a thorough discussion. I wish to thank
all Program Committee members and referees for their generous work. I am also
grateful to Thomas Baignères for maintaining and customizing the iChair review
management software, which offered an excellent support for the demanding
reviewing task. I would also like to thank him for setting up a beautiful and
informative website and for compiling the pre-proceedings.

The efforts of the team members of the local Organizing Committee at Lau-
sanne led by Serge Vaudenay and Thomas Baignères were particularly appreci-
ated by the over 200 cryptographers who came from all over the world to attend
the workshop. The support given to the FSE 2008 workshop by the sponsors
École Polytechnique Fédérale de Lausanne, Nagravision and Nokia is also grate-
fully acknowledged.

March 2008 Kaisa Nyberg

FSE 2008

February 10–13, 2008, Lausanne, Switzerland

Sponsored by the
International Association for Cryptologic Research (IACR)

Program and General Chairs

Program Chair Kaisa Nyberg
Helsinki University of Technology and NOKIA, Finland

General Co-chairs Serge Vaudenay and Thomas Baignères
École Polytechnique Fédérale de Lausanne, Switzerland

Program Committee

Frederik Armknecht Ruhr-University Bochum, Germany
Steve Babbage Vodafone, UK
Alex Biryukov University of Luxembourg, Luxembourg
John Black University of Colorado, USA
Anne Canteaut INRIA, France
Claude Carlet University of Paris 8, France
Joan Daemen STMicroelectronics, Belgium
Orr Dunkelman Katholieke Universiteit Leuven, Belgium
Henri Gilbert France Telecom, France
Louis Granboulan EADS, France
Helena Handschuh Spansion, France
Tetsu Iwata Nagoya University, Japan
Thomas Johansson Lund University, Sweden
Antoine Joux DGA and University of Versailles, France
Pascal Junod Nagravision, Switzerland
Charanjit Jutla IBM T.J. Watson Research Center, USA
Mitsuru Matsui Mitsubishi Electric, Japan
Willi Meier Fachhochschule Nordwestschweiz, Switzerland
Kaisa Nyberg (Chair) Helsinki University of Technology and NOKIA, Finland
Elisabeth Oswald University of Bristol, UK
Josef Pieprzyk Macquarie University, Australia
Bart Preneel Katholieke Universiteit Leuven, Belgium
Vincent Rijmen Katholieke Universiteit Leuven, Belgium and Graz

University of Technology, Austria
Greg Rose Qualcomm, USA

VIII Organization

Referees

Jean-Philippe Aumasson
Côme Berbain
Daniel J. Bernstein
Olivier Billet
Nick Bone
Chris Charnes
Joo Yeon Cho
Scott Contini
Jean-Charles Faugère
Martin Feldhofer
Simon Fischer
Ewan Fleischmann
Raphael Fourquet
Thomas Fuhr
Samuel Galice
Sylvain Guilley
Phillip Hawkes
Alexandre Karlov
Shahram Khazaei
Dmitry Khovratovich
Ulrich Kühn
Yann Laigle-Chapuy
Mario Lamberger
Gregor Leander
Marco Macchetti
Stefan Mangard

Stéphane Manuel
Krystian Matusiewicz
Cameron McDonald
Florian Mendel
Marine Minier
Paul Morrisey
Ivica Nikolic
Ludovic Perret
Thomas Peyrin
Duong Hieu Phan
Norbert Pramstaller
Deike Priemuth-Schmid
Emmanuel Prouff
Christian Rechberger
Matthew Robshaw
Markku-Juhani Saarinen
Martin Schläffer
Joern-Marc Schmidt
Yannick Seurin
François-Xavier Standaert
Dirk Stegemann
Jean-Pierre Tillich
Stefan Tillich
Gilles Van Assche
Huaxiong Wang
Ralf-Philipp Weinmann

Sponsors

École Polytechnique Fédérale de Lausanne, Switzerland
Nagravision, Kudelski Group, Switzerland
Nokia, Finland

Table of Contents

SHA Collisions

Collisions for Step-Reduced SHA-256 . 1
Ivica Nikolić and Alex Biryukov

Collisions on SHA-0 in One Hour . 16
Stéphane Manuel and Thomas Peyrin

New Hash Function Designs

The Hash Function Family LAKE . 36
Jean-Philippe Aumasson, Willi Meier, and Raphael C.-W. Phan

SWIFFT: A Modest Proposal for FFT Hashing . 54
Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and
Alon Rosen

Block Cipher Cryptanalysis (I)

A Unified Approach to Related-Key Attacks . 73
Eli Biham, Orr Dunkelman, and Nathan Keller

Algebraic and Slide Attacks on KeeLoq . 97
Nicolas T. Courtois, Gregory V. Bard, and David Wagner

A Meet-in-the-Middle Attack on 8-Round AES . 116
Hüseyin Demirci and Ali Aydın Selçuk

Implementation Aspects

Block Ciphers Implementations Provably Secure Against Second Order
Side Channel Analysis . 127

Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff

SQUASH – A New MAC with Provable Security Properties for Highly
Constrained Devices Such as RFID Tags . 144

Adi Shamir

Differential Fault Analysis of Trivium (Short Talk) 158
Michal Hojśık and Bohuslav Rudolf

X Table of Contents

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup
and Fast Cyclical Permutation (Short Talk) . 173

Yedidya Hilewitz, Yiqun Lisa Yin, and Ruby B. Lee

Hash Function Cryptanalysis (I)

Second Preimage Attack on 3-Pass HAVAL and Partial Key-Recovery
Attacks on HMAC/NMAC-3-Pass HAVAL . 189

Eunjin Lee, Donghoon Chang, Jongsung Kim, Jaechul Sung, and
Seokhie Hong

Cryptanalysis of LASH . 207
Ron Steinfeld, Scott Contini, Krystian Matusiewicz, Josef Pieprzyk,
Jian Guo, San Ling, and Huaxiong Wang

A (Second) Preimage Attack on the GOST Hash Function 224
Florian Mendel, Norbert Pramstaller, and Christian Rechberger

Stream Cipher Cryptanalysis (I)

Guess-and-Determine Algebraic Attack on the Self-Shrinking
Generator . 235

Blandine Debraize and Louis Goubin

New Form of Permutation Bias and Secret Key Leakage in Keystream
Bytes of RC4 . 253

Subhamoy Maitra and Goutam Paul

Efficient Reconstruction of RC4 Keys from Internal States 270
Eli Biham and Yaniv Carmeli

Security Bounds

An Improved Security Bound for HCTR . 289
Debrup Chakraborty and Mridul Nandi

How to Encrypt with a Malicious Random Number Generator 303
Seny Kamara and Jonathan Katz

A One-Pass Mode of Operation for Deterministic Message
Authentication—Security beyond the Birthday Barrier 316

Kan Yasuda

Entropy

Post-Processing Functions for a Biased Physical Random Number
Generator . 334

Patrick Lacharme

Table of Contents XI

Entropy of the Internal State of an FCSR in Galois Representation
(Short Talk) . 343

Andrea Röck

Block Cipher Cryptanalysis (II)

Bit-Pattern Based Integral Attack . 363
Muhammad Reza Z’aba, H̊avard Raddum, Matt Henricksen, and
Ed Dawson

Experiments on the Multiple Linear Cryptanalysis of Reduced Round
Serpent . 382

Baudoin Collard, François-Xavier Standaert, and
Jean-Jacques Quisquater

Impossible Differential Cryptanalysis of CLEFIA . 398
Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Teruo Saito,
Tomoyasu Suzaki, and Hiroyasu Kubo

Hash Function Cryptanalysis (II)

MD4 Is Not One-Way . 412
Gaëtan Leurent

Improved Indifferentiability Security Analysis of chopMD Hash
Function . 429

Donghoon Chang and Mridul Nandi

New Techniques for Cryptanalysis of Hash Functions and Improved
Attacks on Snefru . 444

Eli Biham

Stream Cipher Cryptanalysis (II)

On the Salsa20 Core Function (Short Talk) . 462
Julio Cesar Hernandez-Castro, Juan M.E. Tapiador, and
Jean-Jacques Quisquater

New Features of Latin Dances: Analysis of Salsa, ChaCha, and
Rumba . 470

Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei,
Willi Meier, and Christian Rechberger

Author Index . 489

Collisions for Step-Reduced SHA-256

Ivica Nikolić� and Alex Biryukov

University of Luxembourg
{ivica.nikolic,alex.biryukov}@uni.lu

Abstract. In this article we find collisions for step-reduced SHA-256.
We develop a differential that holds with high probability if the mes-
sage satisfies certain conditions. We solve the equations that arise from
the conditions. Due to the carefully chosen differential and word differ-
ences, the message expansion of SHA-256 has little effect on spreading
the differences in the words. This helps us to find full collision for 21-step
reduced SHA-256, semi-free start collision, i.e. collision for a different ini-
tial value, for 23-step reduced SHA-256, and semi-free start near collision
(with only 15 bit difference out of 256 bits) for 25-step reduced SHA-256.

1 Introduction

The SHA-2 family of hash functions was introduced to the cryptographic commu-
nity as a new, more complex, and hopefully, more secure variant of MD4-family
of hash functions. The recent results on the widely used MD4-family hash func-
tions SHA-1 and MD5 [6],[7] show flaws in the security of these functions, with
respect to collision attacks. The question arises, if the most complex member of
MD4-family, the SHA-2 family, is also vulnerable to collision attacks.

Known Results for the SHA-2 Family. Research has been made on finding
a local collisions for the SHA-2 family. Gilbert and Handschuh [2] reported a 9-
step local collision with probability of the differential path of 2−66. Later, Mendel
et al [4] estimated the probability of this local collision to be 2−39. Somitra and
Palash obtained a local collision with probability 2−42. Using modular differences
Hawkes, Paddon and Rose [3] were able to find a local collision with probability
2−39. As far as we know, the only work on finding a real collision for SHA-2 was
made by Mendel et al[4]. They studied message expansion of the SHA-256 and
reported a 19-step near collision.

Our Contributions. We find a 9-step differential that holds with probability of
1
3 by fixing some of the intermediate values and solving the equations that arise.
We show that it is not necessary to introduce differences in message words on
each step of the differential. This helps us to overcome the message expansion. We
use modular substraction differences. Using only one instance of this differential
we find 20 and 21-step collisions (collisions for the original initial value) with

� The work of this author was supported by the BFR grant 07/031 of the FNR.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 1–15, 2008.
c© International Association for Cryptologic Research 2008

2 I. Nikolić and A. Biryukov

probabilities 1
3 and 2−19 respectively. Also, using slightly different differential

we were able to find a 23-step semi-free start collision (collisions for a specific
initial value) with probability 2−21. Our final result is a 25-step semi-free start
near collision with Hamming distance of 15 bits and probability 2−34.

Let H(M, h0) be a hash function, where M is the input message, and h0 is the
initial chaining value. The following attacks are considered in the paper:

Collision attack : Find messages M1 and M2 such that M1 �=M2 and H(M1, h0)=
H(M2, h0).

Semi-free start collision attack : Find messages M1,M2 and hash value h∗
0 such

that M1 �= M2 and H(M1, h
∗
0) = H(M2, h

∗
0).

Near collision attack : Find messages M1 and M2 such that M1 �= M2 and Ham-
ming distance between H(M1, h0) and H(M2, h0) is small compared to the out-
put size n of the hash function.

2 Description of SHA-2

SHA-2 family consists of iterative hash functions SHA-224, SHA-256, SHA-384,
and SHA-512. For our purposes, we will describe only SHA-256. The definitions
of the rest of the functions can be found in [1]. The SHA-256 takes a message of
length less than 264 and produces a 256-bit hash value. First, the input message
is padded so the length becomes a multiple of 512, and afterwards each 512-
bit message block is processed as an input in the Damgard-Merkle iterative
structure. Each iteration calls a compression function which takes for an input
a 256-bit chaining value and a 512-bit message block and produces an output
256-bit chaining value. The output chaining value of the previous iteration is
an input chaining value for the following iteration. The initial chaining value,
i.e. the value for the first iteration, is fixed, and the chaining value produced
after the last message block is proceeded is the hash value of the whole message.
Internal state of SHA-256 compression function consists of 8 32-bit variables A,
B, C, D, E, F, G, and H, each of which is updated on every of the 64 steps.
These variables are updated according to the following equations:

Ai+1 = Σ0(Ai) + Maj(Ai, Bi, Ci) + Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Ki + Wi

Bi+1 = Ai

Ci+1 = Bi

Di+1 = Ci

Ei+1 = Σ1(Ei) + Ch(Ei, Fi, Gi) + Hi + Ki + Wi + Di

Fi+1 = Ei

Gi+1 = Fi

Hi+1 = Gi

Collisions for Step-Reduced SHA-256 3

The Maj(X, Y, Z) and Ch(X, Y, Z) are bitwise boolean functions defined as:

Ch(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
Maj(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

For SHA-256 Σ0(X) and Σ1(X) are defined as:

Σ0(X) = ROTR2(X) ⊕ ROTR13(X) ⊕ ROTR22(X)
Σ1(X) = ROTR6(X) ⊕ ROTR11(X) ⊕ ROTR25(X)

State update function uses constants Ki, which are different for every step. The
512-bit message block itself is divided in 16 32-bit bit words: m0, m1, . . . , m16.
Afterwards, the message block is expanded to 64 32-bit words according to the
following rule:

Wi =

{
mi, 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16, i > 15

For SHA-256 σ0(X) and σ1(X) are defined as:

σ0(X) = ROTR7(X) ⊕ ROTR18(X) ⊕ SHR3(X)
σ1(X) = ROTR17(X) ⊕ ROTR19(X) ⊕ SHR10(X)

The compression function after the 64-th step adds the initial values to the
chaining variables, i.e. the hash result of the compression function is:

h(M) = (A64+A0, B64+B0, C64+C0, D64+D0, E64+E0, F64+F0, G64+G0, H64+H0).

These values become the initial chaining value for the next compression function.

3 Technique for Creating Collisions

Differences used in this paper are subtractions mod 232 differences.
We use the following notation:

∆X = X
′ − X, X ∈ {A, B, D, D, E, F, G, H, W, m},

∆Maji(∆a, ∆b, ∆c) = Maj(Ai + ∆a, Bi + ∆b, Ci + ∆c) − Maj(Ai, Bi, Ci),

∆Chi(∆e, ∆f, ∆g) = Ch(Ei + ∆e, Fi + ∆f, Gi + ∆g) − Ch(Ei, Fi, Gi).

∆Σ0(Ai) = Σ0(A
′

i) − Σ0(Ai)

∆Σ1(Ei) = Σ1(E
′

i) − Σ1(Ei)

∆σ0(mi) = σ0(m
′

i) − σ0(mi)

∆σ1(mi) = σ1(m
′

i) − σ1(mi)

We introduce perturbation on step i and in the following 8 steps we try to correct
the differences in the internal variables. We use the following differential:

4 I. Nikolić and A. Biryukov

Table 1. A 9 step differential for SHA-2 family. Notice that only 5 differences are
introduced, i.e. in steps i, i + 1, i + 2, i + 3, and i + 8.

step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆W

i 0 0 0 0 0 0 0 0 1

i+1 1 0 0 0 1 0 0 0 δ1

i+2 0 1 0 0 -1 1 0 0 δ2

i+3 0 0 1 0 0 -1 1 0 δ3

i+4 0 0 0 1 0 0 -1 1 0

i+5 0 0 0 0 1 0 0 -1 0

i+6 0 0 0 0 0 1 0 0 0

i+7 0 0 0 0 0 0 1 0 0

i+8 0 0 0 0 0 0 0 1 δ4

i+9 0 0 0 0 0 0 0 0 0

As you can see from the table (column ∆W), only the perturbation has been
fixed. All the other differences are to be determined.

3.1 Conditions for the Local Collision

From the definition of SHA-2, focusing on registers Ai+1 and Ei+1, we get:

∆Ai+1 − ∆Ei+1 = ∆Σ0(Ai) + ∆Maji(∆Ai, ∆Bi, ∆Ci) − ∆Di,

∆Ei+1 = ∆Σ1(Ei) + ∆Chi(∆Ei, ∆Fi, ∆Gi) + ∆Hi + ∆Di + ∆Wi.

We will keep in mind that if ∆Ai = ∆Bi = ∆Ci = 0 then ∆Maji(0, 0, 0) = 0.
Also if ∆Ei = ∆Fi = ∆Gi = 0 then ∆Chi(0, 0, 0) = 0.

We fix the differences for the registers A and E (as shown in the table). The
variables B, C, D, F, G, H can only inherit the values from A and E. So, for each
step we get some equations with respect to δi and Ai or Ei.

Step i+1. We have that ∆Di = 0, ∆Hi = 0, ∆Σ0(Ai) = 0, ∆Σ1(Ei) = 0.
We require ∆Ai+1 = 1, ∆Ei+1 = 1. So we deduce:

∆Wi = 1 (1)

Step i+2. We have that ∆Di+1 = 0, ∆Hi+1 = 0. We require ∆Ai+2 = 0,
∆Ei+2 = −1. We want also ∆Σ0(Ai+1) = 1 to be satisfied. So we deduce:

∆Maji+1(1, 0, 0) = 0, (2)

∆Wi+1 = −1 − ∆Chi+1(1, 0, 0) − ∆Σ1(Ei+1). (3)
∆Σ0(Ai+1) = 1 (4)

Step i+3. We have that ∆Di+2 = 0, ∆Hi+2 = 0, ∆Σ0(Ai+2) = 0. We require
∆Ai+3 = 0, ∆Ei+3 = 0. So we deduce:

∆Maji+2(0, 1, 0) = 0, (5)

∆Wi+2 = −∆Σ1(Ei+2) − ∆Chi+2(−1, 1, 0). (6)

Collisions for Step-Reduced SHA-256 5

Step i+4. We have that ∆Di+3 = 0, ∆Hi+3 = 0, ∆Σ0(Ai+3) = 0, ∆Σ1(Ei+3) =
0. We require ∆Ai+4 = 0, ∆Ei+4 = 0. So we deduce:

∆Maji+3(0, 0, 1) = 0, (7)

∆Wi+3 = −∆Chi+3(0,−1, 1). (8)

Step i+5. We have that ∆Di+4 = 1, ∆Hi+4 = 1, ∆Σ0(Ai+4) = 0, ∆Σ1(Ei+4) =
0. We require ∆Ai+5 = 0, ∆Ei+5 = 1. So we deduce:

∆Chi+4(0, 0,−1) = −1. (9)

Step i+6. We have that ∆Di+5 = 0, ∆Hi+5 = −1, ∆Σ0(Ai+5) = 0. We require
∆Ai+6 = 0, ∆Ei+6 = 0. We want also ∆Σ0(Ei+5) = 1 to be satisfied. So we
deduce:

∆Chi+5(1, 0, 0) = 0. (10)
∆Σ1(Ei+5) = 1 (11)

Step i+7. We have that ∆Di+6 = 0, ∆Hi+6 = 0, ∆Σ0(Ai+6) = 0, ∆Σ1(Ei+6) =
0. We require ∆Ai+7 = 0, ∆Ei+7 = 0. So we deduce:

∆Chi+6(0, 1, 0) = 0. (12)

Step i+8. We have that ∆Di+7 = 0, ∆Hi+7 = 0, ∆Σ0(Ai+7) = 0, ∆Σ1(Ei+7) =
0. We require ∆Ai+8 = 0, ∆Ei+8 = 0. So we deduce:

∆Chi+7(0, 0, 1) = 0. (13)

Step i+9. We have that ∆Di+8 = 0, ∆Hi+8 = 1, ∆Σ0(Ai+8) = 0, ∆Σ1(Ei+8) =
0. We require ∆Ai+9 = 0, ∆Ei+9 = 0. So we deduce:

∆Wi+8 = −1. (14)

3.2 Solution of the System of Equations

Let’s first observe (4) and (11). From the differential we can see that ∆Ai+1 =
∆Ei+5 = 1. It means that we want the functions ∆Σ0(Ai+1), ∆Σ1(Ei+5) to
preserve the difference 1, in other words:

Σ0(Ai+1 + 1) − Σ0(Ai+1) = 1,

Σ1(Ei+5 + 1) − Σ1(Ei+5) = 1.

The only solution to these equations is Ai+1 = Ei+5 = −1, so we get:

Ai+1 = −1, A
′

i+1 = 0, (15)

Ei+5 = −1, E
′

i+5 = 0. (16)

6 I. Nikolić and A. Biryukov

Now let’s consider the function ∆Maji = Maj(A
′

i, B
′

i , C
′

i) − Maj(Ai, Bi, Ci).
Let’s suppose that B

′

i = Bi, C
′

i = Ci and Ai and A
′

i differ in every single bit,
i.e. Ai ⊕ A

′

i =0xffffffff. Then:

∆Maji = 0 ⇔ Bi = Ci

Therefore (2) gives us Bi+1 = Ci+1, which is Ai = Ai−1. With the same reasoning
we can deduce from (5) that Ai+2 = Ai, and from (7) that Ai+3 = Ai+2. So,
from (2),(5) and (7) we get that

Ai−1 = Ai = Ai+2 = Ai+3 (17)

Similarly to what we have done with Maj, now let’s consider ∆Chi and suppose
that F

′

i = Fi, G
′

i = Gi and Ei and E
′

i differ in every single bit. Then:

∆Chi = 0 ⇔ Fi = Gi

Therefore (10) and the result (16) gives us Fi+5 = Gi+5, which is:

Ei+4 = Ei+3 (18)

Solving (12) requires slightly different reasoning; if we have Ei+6 = E
′

i+6, Gi+6 =
G

′

i+6 and Fi+6 and F
′

i+6 would differ in every bit (and they do, see (16)) then :

∆Chi+6 = 0 ⇔ Ei+6 = 0. (19)

Analogously, from (13) we get:

Ei+7 = −1 (20)

The only remaining condition is (9):

∆Chi+4 =Ch(Ei+4, Fi+4, G
′

i+4)−Ch(Ei+4, Fi+4, Gi+4)=−1, G
′

i+4−Gi+4 = −1.

The words Ei+4, Fi+4, Gi+4 are already determined to satisfy the previous con-
ditions. So, we don’t have any degrees of freedom left to control precisely the
solution of this equation. Therefore we will try to find the probability that this
condition holds. We can see that it holds if and only if register Ei+4 has 0’s in
the bits where G

′

i+4 and Gi+4 are different. The G
′

i+4 and Gi+4 can differ in the
last i bits, where 1 ≤ i ≤ 32., and these bits are uniquely determined. So, for
the probability we get:

i=32∑
i=1

P{Last i bits of Ei+4 are zero}× P{Difference in the exactly i last bits} =

=
i=32∑
i=1

1
2i

1
2i

≈ 1
3
.

Collisions for Step-Reduced SHA-256 7

So, the overall probability of our differential is 1
3 = 2−1.58.

The differences in message words of the differential as in Table 1 are the
following:

δ1 = −1 − ∆Chi+1(1, 0, 0) − ∆Σ1(Ei+1),

δ2 = −∆Σ1(Ei+2) − ∆Chi+2(−1, 1, 0),

δ3 = −∆Chi+3(0,−1, 1)
δ4 = −1

Notice that the condition (17) shows us that Ai=Bi has to hold.

4 Full, Semi-free and Near Collisions for Step-Reduced
SHA-256

Our attack technique is the following:

1. Introduce perturbation at step i;
2. Correct the differences in the following 8 steps (probability of success is the

probability of our differential, i.e. 1
3). After the last step of the differential,

the differences in the internal variables are zero;
3. All the message words that follow the last step of the differential have to

have zero differences;

4.1 20-Step Collision

From the Table 3 of Appendix A we can see that the words m5, m6, m7, m8, and
m13 are used only once in the first 20 steps of SHA-2, i.e. they are not used
to compute the values of expanded words W16, W17, W18, and W19. This means
that message expansion doesn’t introduce any difference after the last step of
the differential. So, we get collision for 20 step reduced SHA-2, and the collisions
can be found practically by hand. The probability of collision is 2−1.58.

4.2 21-Step Collision

From the Table 3 of Appendix A we can easily see that we have to consider
message expansion since there are no message words that are used only once in
the first 21 steps and that have the proper indexes for the differential.

We will introduce differences in the words m6, m7, m8, m9, and m14. The
words m6, m7, m8 are used only once in the first 21 steps. Therefore the message
expansion in the first 21 steps is irrelevant with respect to these words, i.e.
differences in these words don’t introduce any other new differences, after the last
step of the differential(step 14). Now, we want to find words m9, m

′

9, m14, m
′

14

such that after the 14-th step, the message expansion will not introduce any
difference in the following steps. From the Table 3 of Appendix A we can see that

8 I. Nikolić and A. Biryukov

the words m9 and m14 are used in W16, W18, and W20. So, from the definition
of Wi we get the equations:

∆W16 = ∆σ1(m14) + ∆m9 + ∆σ0(m1) + ∆m0 = 0 (21)
∆W17 = ∆σ1(m15) + ∆m10 + ∆σ0(m2) + ∆m1 = 0 (22)
∆W18 = ∆σ1(W16) + ∆m11 + ∆σ0(m3) + ∆m2 = 0 (23)
∆W19 = ∆σ1(W17) + ∆m12 + ∆σ0(m4) + ∆m3 = 0 (24)
∆W20 = ∆σ1(W18) + ∆m13 + ∆σ0(m5) + ∆m4 = 0 (25)

Obviously if m
′

i = mi (W
′

i = Wi) then ∆σ0(mi) = 0 (∆σ0(Wi) = 0). This
means that ∆W17 = ∆W19 = 0. If we can make so that ∆W16 = 0 then ∆W18 =
∆W20 = 0. So, we get the equation:

∆σ1(m14) + ∆m9 = 0 (26)

Considering that ∆m14 = δ4 = −1, and m9 can take any value, our experimental
results (Monte Carlo method with 232 trials) give us a probability of 2−17.5 that
∆m14 and ∆m9 satisfy this equation. Therefore, the overall probability of 21
step collision is around 2−19.

4.3 23-Step Semi-free Start Collision

For 23 step collision we introduce differences in the words m9, m10, m11, and m12.
If we would follow our differential, we are supposed to introduce difference

in the message word W17. We can not control W17 directly because it is an ex-
panded word. From the condition W17 = δ4 = −1 (differential) and the message
expansion, we get:

∆W17 = ∆σ1(m15) + ∆m10 + ∆σ0(m2) + ∆m1 = −1.

Since ∆m15 = ∆m2 = ∆m1 = 0, we get:

∆m10 = −1. (27)

In our original differential there are no message differences in the word W16. But
for W16 we have:

∆W16 = ∆σ1(m14) + ∆m9 + ∆σ0(m1) + ∆m0.

Obviously only ∆m9 �= 0 and therefore ∆W16 = ∆m9 = 1 �= 0. Therefore we
shall use slightly different differential:one were there is a difference in the word
W16. To keep everything else unchanged, the equations for the step 17 become
the following:

∆E17 = ∆Σ1(E16) + ∆Ch16(0, 0, 1) + ∆D16 + ∆H16 + ∆W16.

From the differential we can see that: ∆E17 = ∆Σ1(E16) = ∆D16 = ∆H16 = 0.
Therefore we get:

∆Ch16(0, 0, 1) + ∆W16 = 0. (28)

Collisions for Step-Reduced SHA-256 9

Now, let’s observe the other words of the message expansion.
For W18 we have:

W18 = ∆σ1(W16) + ∆m11 + ∆σ0(m3) + ∆m2 = 0

Since ∆m3 = ∆m2 = 0, ∆W16 = 1 we get the equation:

∆σ1(W16) + ∆m11 = 0. (29)

For W19 we have:

W19 = ∆σ1(W17) + ∆m12 + ∆σ0(m4) + ∆m3 = 0

Since ∆m4 = ∆m3 = 0, ∆W17 = −1 we get the equation:

∆σ1(W17) + ∆m12 = 0. (30)

For W20 we have:

W20 = ∆σ1(W18) + ∆m13 + ∆σ0(m5) + ∆m4 = 0

Since ∆W18 = ∆m13 = ∆m5 = ∆m4 = 0 we get that this equation is satisfied
for all values of W18, m13, m5, m4.

For W21 we have:

W21 = ∆σ1(W19) + ∆m14 + ∆σ0(m6) + ∆m5 = 0

Since ∆W19 = ∆m14 = ∆m6 = ∆m5 = 0 we get that this equation is satisfied
for all values of W19, m14, m6, m5.

For W22 we have:

W22 = ∆σ1(W20) + ∆m15 + ∆σ0(m7) + ∆m6 = 0

Since ∆W20 = ∆m15 = ∆m7 = ∆m6 = 0 we get that this equation is satisfied
for all values of W20, m15, m7, m6.

For W23 we have:

W23 = ∆σ1(W21) + ∆W16 + ∆σ0(m8) + ∆m7 = 0

Since ∆W21 = ∆m8 = ∆m7 and ∆W16 �= 0 we get that this equation has no
solution. That is why we can not get more than 23 step collision.

Let’s try to solve (27), (28), (29) and (30).
For (27) and the value of the register E11 from the differential’s conditions we

have:
∆E11 = ∆Σ1(E10)) + ∆Ch10(1, 0, 0) + ∆m10.

Since ∆E11 = m10 = −1 we get:

∆Σ1(E10) + ∆Ch10(1, 0, 0) = 0.

10 I. Nikolić and A. Biryukov

We solve this equation by setting ∆Σ1(E10) = 1 and ∆Ch10(1, 0, 0) = −1. The
first one has solution:

E10 = −1, E
′

10 = 0. (31)

The second equation holds for the values:

F10 = G10 + 1. (32)

Now let’s turn to the solution of (28). Using the fact that G16 = −1 and G
′

16 = 0,
we get that this equation is satisfied if:

E16 = 0xfffffffe (33)

Let’s observe the equation (30). From the conditions of the differential we have:

∆E13 = ∆Σ1(E12) + ∆Ch12(0,−1, 1) + ∆H12 + ∆D12 + ∆m12

Since ∆E13 = ∆E12 = ∆H12 = ∆D12 = 0 we get:

∆Ch12(0,−1, 1) + ∆m12 = 0.

If we substitute m12 from (30) we can get:

∆Ch12(0,−1, 1) = ∆σ1(−1).

This equation can be satisfied if we can control E12 and F12.
For E12, from the definition of A12 and E12 we have:

A12 − E12 = Σ1(A11) + Ch(A11, B11, C11) − D11

Considering that A12 = A11 = C11 = D11 from the differential’s conditions,
we get:

E12 = A9 − Σ1(A9)

Since A9 can take any value (we consider semi-free start collision) we deduce
that E12 can take any value.

The F12 value, which is E11 can be controlled through H10. Notice that chang-
ing H10, which is G9, doesn’t effect E10, because from (31) we can see that E10

always takes the arranged value.
We proved that we can fully control E12 and F12. We can choose some specific

value for ∆σ1(−1) which is possible to get from ∆Ch12(0,−1, 1), and set the A9

and G9 so that the equation (30) will hold.
The last equation, i.e. (29), is satisfied for some specific values of W16 and

m11. Our experimental results show that with probability 2−19.5 W16 and m11

satisfy (29). Therefore the overall probability of semi-free start collision for 23-
step reduced SHA-256 is around 2−21.

Collisions for Step-Reduced SHA-256 11

4.4 25-Steps Semi-free Start Near Collision

Let’s suppose we have a semi-free start collision on the 23-rd step. Each following
step introduces differences in the chaining variables A and E. The variables
B, C, D, F, G, H can only inherit differences from A and E. Therefore, for each
step, we should try to minimize the differences in A and E. When we say to
minimize the differences we mean to minimize the Hamming distances between
A

′
and A, and between E

′
and E.

Step 24

min
W

′
23−W23=1

hd(E
′

24, E24) = min
W

′
23−W23=1

hd(C1 + 1, C1) = 1,

where C1 = Σ1(E23) + Ch(E23, F23, G23) + H23 + D23 + K23 + W23.

min
W

′
23−W23=1

hd(A
′

24, A24) = min
W

′
23−W23=1

hd(C2 + 1, C2) = 1,

where C2 = Σ0(A23)+Maj(A23, B23, C23)+Σ1(E23)+Ch(E23, F23, G23)+H23+
K23 + W23.

We have the minimal Hamming distances when C32
1 = C32

2 = 0, which means
with probability 2−2.

Step 25

min
W

′
24−W24=−1+∆σ0(1)

hd(E
′

25, E25) =

= minhd(Σ1(E
′

24)+Ch(E
′

24, F24, G24)−1+σ0(m9+1)+C1, Σ1(E24)+Ch(E24, F24, G24)+σ0(m9)+C1),

where C1 = H24+D24+K24+σ1(W22)+m8. If F 32
24 = 1 and G32

24 = 0 (probability
2−2) then, considering that E

′32
24 = 1, E32

24 = 0, we have Ch(E
′

24, F24, G24) − 1 =
Ch(E24, F24, G24), and we can rewrite the last expression as:

min hd(Σ1(E
′

24) + σ0(m9 + 1) + C2, Σ1(E24) + σ0(m9) + C2),

where C2 = C1 + Ch(E24, F24, G24).
If no carry occurs due to the differences, then the above minimum is:

min hd(Σ1(E
′

24) + σ0(m9 + 1) + C2, Σ1(E24) + σ0(m9) + C2) = 5.

For Σ1(E
′

24) (difference in three bits) there are no carries with probability 2−3.
For σ0(m9 + 1) (two differences if m32

9 = 0) with probability 2−3. Therefore the
minimum is 5 with probability 2−8.

Using the same methods we can get:

min
W

′
24−W24=−1+∆σ0(1)

hd(A
′

25, A25) = 8,

with probability 2−11. Notice that if minimum holds for A25 then it holds
for E25.

12 I. Nikolić and A. Biryukov

So, for the whole hash value, we have:

hd((A
′

25, B
′

25, C
′

25, D
′

25, E
′

25, F
′

25, G
′

25, H
′

25)), (A25, B25, C25, D25, E25, F25, G25, H25)) =

= hd((A
′

25, A
′

24, C25, D25, E
′

25, E
′

24, G25, H25), (A25, A24, C25, D25, E25, E24, G25, H25)) =

= hd(A
′

25, A25) + hd(E
′

25, E25) + hd(A
′

24, A24) + hd(E
′

24, E24) =
= 8 + 5 + 1 + 1 = 15

Therefore we get a 25-step semi-free start near collision with the Hamming weight
of 15 bits and probability 2−34. Notice that we haven’t investigated all the possi-
ble outcomes of the carry effects. Therefore, it is possible that the real probability
is higher.

Table 2. Collision search attacks for SHA-256

of steps Type of collision Complexity(*) Paper

19 Near collision (**) [4]

20 Collision 21.58 This paper

21 Collision 219 This paper

22 Pseudo-collision (**) [4]

23 Semi-free start collision 221 This paper

25 Semi-free start near collision 234 This paper

(*) Complexity is measured in reduced SHA-256 calls
(**) Complexity not mentioned in the paper

5 Conclusion

We created a 9-step differential for SHA-256 that holds with high probability.
Using the characteristics of this differential, precisely, the fact that not all of the
input message words have differences, we were able to overcome the beginning
steps of the message expansion. We created a full collisions for 20 and 21-step
reduced SHA-256. Also, we found a 23-step reduced semi-free start collision, and
25-step reduced near collision with Hamming distance of 17 out of 256 bits. The
complexities of these collisions search attacks are showed in Table 2. Obviously,
our results hold for SHA-224 too. For SHA-384 and SHA-512 different equations
arise. We have not analyzed them, but our guess is that complexities of the
attacks should stay the same.

References

1. Secure Hash Standard. Federal Information Processing Starndard Publication 180-
2. U.S. Department of Commerce, National Institute of Standards and Technology
(NIST) (2004)

2. Gilbert, H., Handschuh, H.: Security analysis of SHA-256 and sisters. In: Matsui,
M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography, 2003. LNCS, vol. 3006,
pp. 175–193. Springer, Heidelberg (2003)

Collisions for Step-Reduced SHA-256 13

3. Hawkes, P., Paddon, M., Rose, G.G.: On Corrective Patterns for the SHA-2 Family.
Cryptology eprint Archive (August 2004), http://eprint.iacr.org/2004/207

4. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

5. Sanadhya, S.K., Sarkar, P.: New Local Collision for the SHA-2 Hash Fam-
ily.Cryptology eprint Archive (2007), http://eprint.iacr.org/2007/352

6. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

7. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

A Message Expansion

Table 3. Message expansion of SHA-2. There is ’x’ in the intersection of row with
index i and column with index j if Wi uses mj .

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 x
1 x
2 x
3 x
4 x
5 x
6 x
7 x
8 x
9 x
10 x
11 x
12 x
13 x
14 x
15 x
16 x x x x
17 x x x x
18 x x x x x x x
19 x x x x x x x
20 x x x x x x x x x x
21 x x x x x x x x x x
22 x x x x x x x x x x x x x

http://eprint.iacr.org/2004/207
http://eprint.iacr.org/2007/352

14 I. Nikolić and A. Biryukov

B Conditions for Collision

Table 4. The differences propagation for 20, 21, and 23-step collisions for SHA-256.
Notice that for each collision initial difference is introduced in different steps (steps
5,6,9 respectively).

20 21 23 ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H ∆W
step step step

5 6 9 0 0 0 0 0 0 0 0 1

6 7 10 1 0 0 0 1 0 0 0 δ1

7 8 11 0 1 0 0 -1 1 0 0 δ2

8 9 12 0 0 1 0 0 -1 1 0 δ3

9 10 13 0 0 0 1 0 0 -1 1 0

10 11 14 0 0 0 0 1 0 0 -1 0

11 12 15 0 0 0 0 0 1 0 0 0

12 13 16 0 0 0 0 0 0 1 0 δ5

13 14 17 0 0 0 0 0 0 0 1 −1

14 15 18 0 0 0 0 0 0 0 0 0

Table 5. The values of the word differences in 20, 21, and 23-step collisions for SHA-
256. Notice that 23-step semi-free start collision has a word difference in δ5. That is
why its collision path is slightly different than the one used for 20 and 21-step collision.

δ1 δ2 δ3 δ5

20-step −1 − ∆Ch6(1, 0, 0) − ∆Σ1(E6) −∆Σ1(E7) − ∆Ch7(−1, 1, 0) −∆Ch8(0,−1, 1) 0
21-step −1 − ∆Ch7(1, 0, 0) − ∆Σ1(E7) −∆Σ1(E8) − ∆Ch8(−1, 1, 0) −∆Ch9(0,−1, 1) 0
23-step −1 −∆Σ1(E11) − ∆Ch11(−1, 1, 0) −∆Ch12(0,−1, 1) 1

Table 6. The additional conditions that have to hold in order to get a 20, 21, and
23-step collisions for SHA-256

20-step A4 = A5 = A7 = A8 E9 = E8, E10 = −1, E
′
10 = 0 ∆Ch9(0, 0, −1) = −1

A6 = −1, A
′
6 = 0 E11 = 0, E12 = −1

21-step A5 = A6 = A8 = A9 E10 = E9, E11 = −1, E
′
11 = 0 ∆Ch10(0, 0, −1) = −1

A7 = −1, A
′
7 = 0 E12 = 0, E13 = −1 ∆σ1(−1) + δ3 = 0

23-step A8 = A6 = A9 = A10 E13 = E12, E14 = −1, E
′
14 = 0 ∆Ch13(0, 0, −1) = −1

A10 = −1, A
′
10 = 0 E15 = 0, E16 =0xfffffffe ∆σ1(−1) + δ3 = 0

E9 = E8 + 1, E10 = −1, E
′
10 = 0 ∆σ1(1) + δ2 = 0

Collisions for Step-Reduced SHA-256 15

C Collision Examples

Table 7. A 21-step collision for SHA-256

M0 0004024f 00000000 00000000 00000000 00000000 2c51fd8d b83daf3c bc852709
ae18a3e7 1d11dbc7 21d06175 ab551b5f a48e9a8b 00000000 19000000 00000000

M
′
0 0004024f 00000000 00000000 00000000 00000000 2c51fd8d b83daf3d 7c652ab7

b238a344 1d11dac8 21d06175 ab551b5f a48e9a8b 00000000 18ffffff 00000000

H 73f5fcd2 682f578e 8d9c3d05 f93ad865 662b0636 a5a5d4c2 32091775 04ac6dae

Table 8. A 23-step semi-free start collision for SHA-256

H0 cb518aaa 55d8f4ad 231e476a 89ac8889 f29c30cc 2e1f63c5 cf4f2366 75367200

M0 b5c16a2d 6da1708b 00000000 00000000 00000000 00000000 00000000 00000000
00000000 a9d5faeb 54eb8149 085be1ce b9e61e60 9380ae01 efa5a517 cdc5da00

M
′
0 b5c16a2d 6da1708b 00000000 00000000 00000000 00000000 00000000 00000000

00000000 a9d5faec 54eb8148 085c0205 b9e61d61 9380ae01 efa5a517 cdc5da00

H 6682cc14 9c825293 bc17ea6d d89770cf a69ac7ed cfa5ee3e e35c0091 7249d71e

Table 9. A 25-step semi-free start near collision with Hamming distance of 17 bits for
SHA-256

H0 8e204f9e bca27aea 42da63d7 00f2f219 fd1db715 6389ae13 c6f57538 de4e655c

M0 c63714eb 13d5fa9c 00000000 00000000 00000000 00000000 00000000 00000000
00000000 d51b4dba aeb6f738 61dce9b7 0ab5c01a 83406f01 df65666b cdc5da00

M
′
0 c63714eb 13d5fa9c 00000000 00000000 00000000 00000000 00000000 00000000

00000000 d51b4dbb aeb6f737 71dd499a 0ab5bf1b 83406f01 df65666b cdc5da00

H 2e2fcb73 8192d3a4 f85b5a7d 801c4583 9307e51c cf57fb61 11c48b0d 7131ccd2

H
′

6c478ef3 8192d3a5 f85b5a7d 801c4583 9127a49c cf57fb62 11c48b0d 7131ccd2

Collisions on SHA-0 in One Hour

Stéphane Manuel1,� and Thomas Peyrin2,3,4,��

1 INRIA
stephane.manuel@inria.fr

2 Orange Labs
thomas.peyrin@orange-ftgroup.com

3 AIST
4 Université de Versailles Saint-Quentin-en-Yvelines

Abstract. At Crypto 2007, Joux and Peyrin showed that the boomerang
attack, a classical tool in block cipher cryptanalysis, can also be very useful
when analyzing hash functions. They applied their new theoretical results
to SHA-1 and provided new improvements for the cryptanalysis of this al-
gorithm. In this paper, we concentrate on the case of SHA-0. First, we show
that the previous perturbation vectors used in all known attacks are not
optimal and we provide a new 2-block one. The problem of the possible ex-
istence of message modifications for this vector is tackled by the utilization
of auxiliary differentials from the boomerang attack, relatively simple to
use. Finally, we are able to produce the best collision attack against SHA-0
so far, with a measured complexity of 233,6 hash function calls. Finding one
collision for SHA-0 takes us approximatively one hour of computation on
an average PC.

Keywords: hash functions, SHA-0, boomerang attack.

1 Introduction

Cryptographic hash functions are an important tool in cryptography. Basically, a
cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [11]. For a secure hash function that
gives an n-bit output, compromising these properties should require 2n, 2n, and
2n/2 operations respectively.

Usually, hash functions are built upon two components: a compression func-
tion and a domain extension algorithm. The former has the same security require-
ments that a hash function but takes fixed length inputs. The latter defines how
to use the compression function in order to handle arbitrary length inputs. From
the early beginning of hash functions in cryptography, designers relied on the
pioneering work of Merkle and Damg̊ard [8,17] concerning the domain extension
� The first author is supported in part by the french Agence Nationale de la Recherche

under the project designation EDHASH, DPg/ANR-CI FA/VB 2007-010.
�� The second author is supported by the Japan Society for Promotion of Science and

the French RNRT SAPHIR project (http://www.crypto-hash.fr).

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 16–35, 2008.
c© International Association for Cryptologic Research 2008

Collisions on SHA-0 in One Hour 17

algorithm. Given a collision resistant compression function, it became easy to
build a collision resistant hash function. However, it has been recently shown that
this iterative process presents flaws [9,12,13,15] and some new algorithms [1,4]
with better security properties have been proposed. One can distinguish three
different methods for compression function designs: block cipher based, related
to a well studied hard problem and from scratch.

The most famous design principle for dedicated hash functions is indisputably
the MD-SHA family, firstly introduced by R. Rivest with MD4 [24] in 1990 and its
improved version MD5 [23] in 1991. Two years after, the NIST publishes [19] a
very similar hash function, SHA-0, that will be patched [20] in 1995 to give birth
to SHA-1. This family is still very active, as NIST recently proposed [21] a 256-bit
new version SHA-256 in order to anticipate the potential cryptanalysis results
and also to increase its security with regard to the fast growth of the computa-
tion power. All those hash functions use the Merkle-Damg̊ard extension domain
and their compression function, even if considered conceived from scratch, is
built upon a dedicated block cipher in Davies-Meyer mode: the output of the
compression function is the output of the block cipher with a feed-forward of
the chaining variable.

Dobbertin [10] provided the first cryptanalysis of a member of this family
with a collision attack against MD4. Later, Chabaud-Joux [7] published the first
theoretical collision attack against SHA-0 and Biham-Chen [2] introduced the
idea of neutral bits, which led to the computation of a real collision with four
blocks of message [3]. Then, a novel framework of collision attack, using modular
difference and message modification techniques, surprised the cryptography com-
munity [26,27,28,29]. Those devastating attacks broke a lot of hash functions,
such as MD4, MD5, SHA-0, SHA-1, RIPEMD or HAVAL-128. In the case of SHA-0
the overall complexity of the attack was 239 message modification processes. Re-
cently, Naito et al. [18] lower this complexity down to 236 operations, but we
argue in this paper that it is a theoretical complexity and not a measured one.

At Crypto 2007, Joux and Peyrin [14] published a generalization of neutral bits
and message modification techniques and applied their results to SHA-1. The so-
called boomerang attack was first devoted for block ciphers cryptanalysis [25] but
their work showed that it can also be used in the hash functions setting. Used
in parallel with the automated tool from De Cannière and Rechberger [5] that
generates non-linear part of a differential path, this method turns out to be quite
easy to use and handy for compression functions cryptanalysis.

This article presents a new attack against the collision resistance of SHA-0
requiring only 233 hash computations and the theoretical analysis is confirmed
by experimentation. First, we show that the previously used perturbation vector,
originally found by Wang et al., is not optimal. We therefore introduce a new
vector, allowing ourselves to use two iterations of the compression function. In
order to compensate the loss of the known message modifications due to the
perturbation vector change, we use the boomerang attack framework in order
to accelerate the collision search. Finally, this work leads to the best collision

18 S. Manuel and T. Peyrin

attack against SHA-0 from now on, now requiring only one hour of computation
on an average PC.

We organized the paper as follows. In Section 2, we recall the previous attacks
and cryptanalysis techniques for SHA-0. Then, in Section 3, we analyze the per-
turbation vector problem and give new ones that greatly improve the complexity
of previous attacks. We then apply the boomerang technique as a speedup tech-
nique in Section 4 and provide the final attack along with its complexity analysis
in Section 5. Finally, we draw conclusions in Section 6.

2 Previous Collision Attacks on SHA-0

2.1 A Short Description of SHA-0

SHA-0 [19], is a 160-bit dedicated hash function based on the design principle
of MD4. It applies the Merkle-Damg̊ard paradigm to a dedicated compression
function. The input message is padded and split into k 512-bit message blocks.
At each iteration of the compression function h, a 160-bit chaining variable Ht

is updated using one message block Mt+1, i.e Ht+1 = h(Ht, Mt+1). The initial
value H0 (also called IV) is predefined and Hk is the output of the hash function.

The SHA-0 compression function is build upon the Davis-Meyer construction.
It uses a function E as a block cipher with Ht for the message input and Mt+1

for the key input, a feed-forward is then needed in order to break the invertibility
of the process:

Ht+1 = E(Ht, Mt+1) � Ht,

where � denotes the addition modulo 232 32-bit words by 32-bit words. This
function is composed of 80 steps (4 rounds of 20 steps), each processing a 32-
bit message word Wi to update 5 32-bit internal registers (A, B, C, D, E). The
feed-forward consists in adding modulo 232 the initial state with the final state
of each register. Since more message bits than available are utilized, a message
expansion is therefore defined.

Message Expansion. First, the message block Mt is split into 16 32-bit words
W0, . . . , W15. These 16 words are then expanded linearly, as follows:

Wi = Wi−16 ⊕ Wi−14 ⊕ Wi−8 ⊕ Wi−3 for 16 ≤ i ≤ 79.

State Update. First, the chaining variable Ht is divided into 5 32-bit words
to fill the 5 registers (A0, B0, C0, D0, E0). Then the following transformation is
applied 80 times:

STEPi+1 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ai+1 = (Ai 	 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi,

Bi+1 = Ai,

Ci+1 = Bi
 2,

Di+1 = Ci,

Ei+1 = Di.

where Ki are predetermined constants and fi are boolean functions defined in
Table 1.

Collisions on SHA-0 in One Hour 19

Feed-Forward. The sums modulo 232: (A0 + A80), (B0 + B80), (C0 + C80),
(D0 + D80), (E0 + E80) are concatenated to form the chaining variable Ht+1.

Note that all updated registers but Ai+1 are just rotated copies, so we only
need to consider the register A at each step. Thus, we have:

Ai+1 = (Ai 	 5) + fi(Ai−1, Ai−2
 2, Ai−3
 2) + Ai−4
 2 + Ki + Wi. (1)

2.2 First Attacks on SHA-0

The first published attack on SHA-0 has been proposed by Chabaud and Joux in
1998 [7]. It focused on finding linear differential paths composed of interleaved
6-step local collisions, which have probability 1 to hold in a linearized version
of SHA-0. However, in the standard version of SHA-0, a local collision only has
a certain probability to hold. The overall probability of success of the attack is
the product of the holding probability of each local collision.

The core of the differential path is represented by a perturbation vector which
indicates where the 6-step local collisions are initiated. The probability of success
of the attack is then related to the number of local collisions appearing in the
perturbation vector. In their paper, Chabaud and Joux have defined 3 necessary
conditions on perturbation vectors in order to permit the differential path to end
with a collision for the 80-step compression function. Such a perturbation vector
should not have truncated local collisions, should not have two consecutive local
collisions initiated in the first 16th steps and should not start a local collision
after step 74. Under these constraints they were able to find a perturbation vector
(so-called L-characteristic) with a probability of success of 268. The running
complexity of their attack is decreased to 261 by a careful implementation of the
collision search. As the attacker has full control on the first 16 message blocks,
those blocks are chosen such that the local collisions of those early steps hold
with probability 1. See [7] for more details.

In 2004, Biham and Chen have improved the attack of Chabaud and Joux
by introducing the neutral bit technique. The idea is to multiply the number
of conformant message pairs up to a certain step s (message pairs that verify
the main differential path up to step s) for a cost almost null. This is done by
looking for different sets of small modifications in the message words such that
each set will have very low impact on the conformance of the message pair up
to step s. Basically, the attacker can effectively start the collision search at a
higher step than in a normal setting, and this improvement finally led to the

Table 1. Boolean functions and constants in SHA-0

round step i fi(B, C, D) Ki

1 1 ≤ i ≤ 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

2 21 ≤ i ≤ 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

3 41 ≤ i ≤ 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

4 61 ≤ i ≤ 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

20 S. Manuel and T. Peyrin

computation of the first real collision for SHA-0 with four blocks of message [3]
with an overall complexity of 251 functions calls.

2.3 The Wang Approach

The attack on SHA-0 of Wang et al. is derived from the approach of Chabaud and
Joux. The principle of this attack consists in relaxing two of the three conditions
on the perturbation vectors defined by Chabaud and Joux, namely no truncated
local collision allowed and no consecutive local collisions in the 16th first steps.
Relaxing those conditions permits to search for better perturbation vectors, i.e.
higher probability linear differential paths.

However, the main drawback of this approach is that non corrected perturba-
tions inherited from truncated local collisions appear in the first steps. In order
to offset these unwanted perturbations, they had to construct a non linear dif-
ferential path (so-called NL-characteristic) which connects to the desired linear
differential path. Said in other words, they kept the same linear differential mask
on the message, but computed a new and much more complex differential mask
on the registers for the early steps of SHA-0. A NL-characteristic presents also
the advantage that consecutive local collisions in the early steps are no more a
problem. Using modular subtraction as the differential, the carry effect (a prop-
erty of the powers of 2, i.e. 2j = −2j −2j+1 . . .−2j+k−1 +2j+k) and by carefully
controlling the non linearity of the round function IF, they succeeded to build
their NL-characteristic by hand. A NL-characteristic holds only if specific con-
ditions are verified step by step by the register values. In their paper, Wang et
al. denoted these conditions as sufficient conditions. These sufficient conditions
are described with respect to the register A into one general form Ai,j = v
where Ai,j denotes the value of bit j of the register A at the step i and where
v is a bit value fixed to be 0 or 1 or a value that has been computed before
step i.

The NL-characteristic found presents conditions on the initial value of the
registers1. However, since the initial value is fixed, Wang et al. have build their
collision with two blocks of message. The first block is needed in order to obtain a
chaining variable verifying the conditions, inherited from the NL-characteristic,
on the initial values of the register. This is detailed in Figure 1.

The attack of Wang et al. is thus divided into two phases. The first one is the
pre-computation phase:

1. search for a higher probability L-characteristic by relaxing conditions on the
perturbation vectors,

2. build a NL-characteristic which connects to the L-characteristic by offsetting
unwanted perturbations,

3. find a first block of message from which the incoming chaining variable ver-
ifies the conditions inherited from the NL-characteristic.

1 The conditions given by Wang et al. in their article are incomplete. In fact, two more
conditions need to be verified [16,18].

Collisions on SHA-0 in One Hour 21

�

�

� � NL L � �

�

�
�����

������

�
�����

������

+ +
∆H0 = 0

∆H1 = 0

Conditions
on H1

�
∆H2 = 0

∆M1 = 0 ∆M2 = ∆
Conditions

on M2
�

Fig. 1. Attack of Wang et al

The second phase is the collision search phase. It consists in searching for a sec-
ond block of message for which the sufficient conditions on the register values
are fulfilled for a maximum number of steps. In order to achieve that goal, they
use both basic modification technique and advanced modification technique. The
main idea of the former is simply to set Ai,j to the correct bit by modifying the
corresponding bit of the message word Wi−1. This is only possible for the first
16 steps, where the attacker has full control on the values Wi. The advanced
modification technique are to be applied to steps 17 and higher, where the mes-
sage words Wi are generated by the message expansion. The idea is to modify
the message words of previous steps in order to fulfill a condition in a given step.
Wang et al. claimed in their article that using both basic modification and ad-
vanced modification techniques, they are able to fulfill all the sufficient conditions
up to step 20. However very few details can be found on advanced modification
technique in their article. Finally, their attack has a claimed complexity of 239

SHA-0 operations.

Remark. Wang et al. optimized the choice of their perturbation vector taking
into account their ability to fulfill the conditions up to step 20.

2.4 Naito et al.

Naito et al. recently proposed [18] a new advanced modification technique so-
called submarine modification. Its purpose is to ensure that the sufficient condi-
tions from steps 21 to 24 are fulfilled. The main idea of submarine modifications
is to find modification characteristics which will permit to manipulate bit val-
ues of registers and message words after step 16. Each parallel characteristic is
specifically built to satisfy one target condition. In order to construct such a
characteristic, Naito et al. use two different approaches the cancel method and
the transmission method. The former is based on the local collision principle.
Whereas the transmission method combines the recurrence properties of the
message expansion and of the step update transformation.

Those modification characteristics define new sets of conditions on register val-
ues and message words. The new conditions should not interfere with the already

22 S. Manuel and T. Peyrin

pre-computed sufficient conditions. Naito et al. detailed their submarine modifica-
tions up to step 17 (see [18] proof of Theorem 1). They remarked that the probabil-
ity that one of these modifications can satisfy a target condition without affecting
the other sufficient conditions is almost 1. No detail is given about the impact of
the submarine modifications after step 24.

The claimed complexity of the attack described in [18] is 236 SHA-0 operations.
This is a theoretical complexity that will be further discussed in section 5. The
given collision example is based on the same NL-characteristic and perturbation
vector that Wang et al. used to produce their own collision. Taking into account
that their submarine modifications permit to fulfill the sufficient conditions up to
step 24, Naito et al. proposed a new perturbation vector which would therefore
minimizes the complexity of the attack. However, in order to effectively build an
attack based on the proposed vector, a new NL-characteristic and new submarine
modifications should be found.

3 A New Perturbation Vector

In order to lower the complexity of a collision search on SHA-0, high probabil-
ity L-characteristics are needed. In the previous attacks on SHA-0, the authors
have proposed perturbation vectors which do not have local collisions starting
after step 74. By relaxing this last condition, it may be possible to find better
perturbation vectors. Note that those vectors do not seem to be eligible for a
collision search, since they would lead to a near-collision (two compression func-
tion outputs with very few bits of difference) instead of a collision. However,
this problem can be tackled by using the multi-block technique as in [3]: the
attacker can take advantage of the feed-forward operation inherited from the
Davis-Meyer construction used in the compression function of SHA-0. Said in
other words, we allow ourselves to use several message blocks with differences,
whereas the previous known attacks on SHA-0 only use one of such blocks of mes-
sage. Thanks to the new automatic tool from De Cannière and Rechberger [5]
that can generate NL-characteristics on SHA-1, computing non linear parts for
SHA-0 is relatively easy. Indeed, SHA-1 and SHA-0 only differ on a rotation in the
message expansion, which has no effect on the validity of this tool. Moreover, the
ability to generate NL-characteristics reduce the multi-block problem to the use
of only two blocks. More precisely, we start with a L-characteristic L1 (defined
by a new perturbation vector), and modified on the early steps by a generated
NL-characteristic NL1. We thus obtain a specific near-collision ∆H1 = +d after
this first block. We then apply the same L-characteristic modified on the early
steps by a second generated NL-characteristic NL2, that takes in account the
new incoming chaining variable H1. Finally, before the feed-forward on this sec-
ond block, we look for the opposite difference ∆E(H1, m1) = −d and the two
differences cancel each over ∆H2 = 0. This is detailed in Figure 2.

Now that all the conditions on the perturbation vectors are relaxed, we need
to define what are the criteria for good perturbation vectors. In order to fulfill
the sufficient conditions inherited from NL1, NL2 and L1, we will use basic

Collisions on SHA-0 in One Hour 23

�

�
NL1 L1 � � NL2 L1 � �

�

�
�����

������

�
�����

������

+ +

∆H0
= 0

∆H1

= +d

∆E
(H1, M2)

= −d

∆H1 = +d

∆H2
= 0

∆M1 ∆M2

Fig. 2. Multi-block collision on SHA-0

Table 2. A new perturbation vector for SHA-0, along with the number of conditions
at each steps (the conditions before step 16 have been removed since not involved in
the complexity during the collision search)

Steps 1 to 40

vector 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

� conditions - - - - - - - - - - - - - - - - 2 0 2 1 1 0 2 0 2 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1

Steps 41 to 80

vector 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

� conditions 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 2 1 2 2 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0

message modifications and boomerang techniques. In consequence, we focused
our search on perturbation vectors that have the smallest number of sufficient
conditions to fulfill in steps 17 to 80. Namely, a characteristic L1 for which the
probability of success of the attack is maximized. We used the same approach
of Chabaud and Joux in order to evaluate the probability of holding of each
local collision involved. See [7] and particularly Section 2.2 (Tables 4 and 5) for
detailed examples. There are a lot of perturbation vectors with an evaluated
probability of success around 2−40 for the steps between 17 and 80. However,
this probability can be affected by the NL-characteristic. Thus, we build the
NL-characteristics corresponding to each matching perturbation vector in order
to compute the exact probability of success. This aspect of the search will be
further detailed in the next section. The perturbation vector we chose, which
has 42 conditions between step 17 and 80, is given in Table 2.

4 Boomerang Attacks for SHA-0

Now that we found good perturbation vectors by relaxing certain conditions, a
problem remains. Indeed, no message modification and no NL-characteristic are
known for those vectors, and this makes the attack complexity drastically in-
crease. This is the major drawback of Wang et al. collision attack on SHA-0 and

24 S. Manuel and T. Peyrin

other hash functions: is not easily reusable and we are stuck with their perturba-
tion vector. Hopefully, some work have been done recently in order to theorize
Wang et al. major improvements. Recently, De Cannière and Rechberger [5]
introduced an automated tool that generates non linear part of a differential
path, thus resolving the NL-characteristic problem. Then, Joux and Peyrin [14]
provided a framework that generalizes message modifications and neutral bits.
Thanks to the so-called boomerang attack, they describe techniques that allows
an attacker to easily use neutral bits or message modifications, given only a
main perturbation vector. In fact, boomerang attacks and NL-characteristic au-
tomated search are exactly the two tools we need for our attack to be feasible.
Finally, we replace the loss of the message modifications because of the new
vector by the gain of the boomerang attack, which is a much more practical
technique and fit for our constraints.

Boomerang attacks for hash functions can be seen as a generalization of col-
lision search speed up techniques such as neutral bits or message modification.
However, new possibilities were also suggested. In the usual setting, the attacker
first sets the differential path and then tries to find neutral bits or message modi-
fications if possible. In the explicit conditions approach from boomerang attacks,
the attacker first set some constraints on the registers and the message words
and then tries to find a differential path taking in account those constraints.
One can see that for the latter part the NL-characteristic automated search tool
becomes really handy. The constraints are set in order to provide very good
message modifications or neutral bits that would not exist with a random dif-
ferential path, or with very low probability. More generally, this can be seen as
an auxiliary characteristic, different from the main one, but only fit for a few
steps and this auxiliary characteristic can later be used as a neutral bit or a
message modification, with very high probability (generally probability equal to
1) thanks to the preset constraints. Obviously the complexity of the collision
search will decrease by adding as much auxiliary characteristics as possible.

Building an auxiliary path requires the same technique as for a main path, that
is the local collisions. We refer to [14] for more details on this construction for
SHA-1, since the technique is identically applicable to SHA-0. In our attack, we will
consider two different types of auxiliary paths and we will use them as neutral bits
(and not message modifications). Informally, we define the range of an auxiliary
path to be the latest step where the uncontrolled differences from the auxiliary
path (after the early steps) do not interfere in the main differential path. The first
one, AP1, will have very few constraints but the range will be low. On contrary,
the second type, AP2, will require a lot of constraints but the range will be much
bigger. A trade-off among the two types needs to be considered in order not to
have to many constraints forced (which would latter makes the NL-characteristic
automated search tool fail) but also have a good set of auxiliary differential paths.
More precisely, AP1 and AP2 are detailed in Figures 3 and 4 respectively. AP1 is
build upon only one local collision but the first uncontrolled difference appears at
step 20. AP2 is build upon three local collisions but the first uncontrolled differ-
ence appears at step 25. Note that, as remarked in the original paper from Joux

Collisions on SHA-0 in One Hour 25

W0 to W15 W16 to W31

perturbation mask 0000001000000000

differences on W j 0000001000000000 0000101101100111

differences on W j+5 0000000100000000 0000010110110011

differences on W j−2 0000000000010000 0001001000000010

i Ai Wi

-1: --------------------------------
00: -------------------------------- --------------------------------
01: -------------------------------- --------------------------------
02: -------------------------------- --------------------------------
03: -------------------------------- --------------------------------
04: -------------------------------- --------------------------------
05: ---------------------------b---- --------------------------------
06: ---------------------------b---- -----------------------------a--
07: -----------------------------a-- ------------------------a-------
08: -------------------------------0 --------------------------------
09: -------------------------------1 --------------------------------
10: -------------------------------- --------------------------------
11: -------------------------------- -------------------------------a
12: -------------------------------- --------------------------------
13: -------------------------------- --------------------------------
14: -------------------------------- --------------------------------
15: -------------------------------- --------------------------------

Fig. 3. Auxiliary differential path AP1 used during the attack. The first table shows
the 32 first steps of the perturbation vector (with the first uncontrolled difference
on registers at step 20) and the second gives the constraints forced in order to have
probability one local collisions in the early steps in the case where the auxiliary path is
positioned at bit j = 2. The MSB’s are on the right and “-” stands for no constraint.
The letters represent a bit value and its complement is denoted by an upper bar on
the corresponding letter (see [14] for the notations).

and Peyrin, an auxiliary differential path used as a neutral bit with the first un-
controlled difference at step s is a valid neutral bit for step s + 3 with a very high
probability (the uncontrolled difference must first propagate before disrupting the
main differential path). Thus, in our attack, we will use AP1 and AP2 as neutral
bits for steps 23 and 28 respectively; that is as soon as we will find a conformant
message pair up to those step during the collision search, we will trigger the corre-
sponding auxiliary path in order to duplicate the conformant message pair. This
will directly provide new conformant message pairs for free.

The next step is now to build a main differential path with the tool from
De Cannière and Rechberger, containing as much auxiliary paths as possible (of
course while favoring AP2 instead of AP1, the latter being less powerful). We refer
to [5] for the details of this algorithm. The tool works well for SHA-0 as for SHA-1
and given a random chaining variable, it is easy to find a main differential path
containing at least five auxiliary paths, with at least three AP2 characteristics.

26 S. Manuel and T. Peyrin

W0 to W15 W16 to W31

perturbation mask 1010000000100000

differences on W j 1010000000100000 0000000010110110

differences on W j+5 0101000000010000 0000000001011011

differences on W j−2 0001111100000011 0000000000001110

i Ai Wi

-1: ---------------------------d----
00: ---------------------------d---- -----------------------------a--
01: ---------------------------e-a-- ------------------------a-------
02: ---------------------------e---1 -----------------------------b--
03: -----------------------------b-0 ------------------------b------a
04: -------------------------------0 -------------------------------a
05: -------------------------------0 -------------------------------a
06: -------------------------------- -------------------------------b
07: -------------------------------- -------------------------------b
08: -------------------------------- --------------------------------
09: ---------------------------f---- --------------------------------
10: ---------------------------f---- -----------------------------c--
11: -----------------------------c-- ------------------------c-------
12: -------------------------------0 --------------------------------
13: -------------------------------0 --------------------------------
14: -------------------------------- -------------------------------c
15: -------------------------------- -------------------------------c

Fig. 4. Auxiliary differential path AP2 used during the attack. The first table shows
the 32 first steps of the perturbation vector (with the first uncontrolled difference
on registers at step 25) and the second gives the constraints forced in order to have
probability one local collisions in the early steps in the case where the auxiliary path is
positioned at bit j = 2. The MSB’s are on the right and “-” stands for no constraint.
The letters represent a bit value and its complement is denoted by an upper bar on
the corresponding letter (see [14] for the notations).

Note that this part, as the automated tool, is purely heuristic and often more
auxiliary paths can be forced2. However, the behavior of the automated tool is
quite dependant of the perturbation vector. Thus, among the possible good ones,
we chose a perturbation vector (depicted in Table 2) that seemed to work well
with the automated search tool. Note that since the perturbation vector remains
the same during the two parts of the attack, this property will be true for the
two blocks of message.

2 The auxiliary path AP2 has one condition on the IV (the bit d in Figure 4) and this
harden the task of the attacker to place a lot of them in the main differential trail.
However, this is already taken in account in the evaluation. There remains space for
improvements on this part but we chose to describe an easy-to-implement attack
instead of the best possible but hard to implement one.

Collisions on SHA-0 in One Hour 27

5 The Final Collision Attack

At this point, we have all the required elements to mount the attack and analyze
it. Its total complexity will be the addition of the complexities of the collision
search for both blocks3. Note that, unlike for the 2-block collision attacks for
SHA-1 where the first block complexity is negligible compared to the second
block one, here our perturbation vector imposes the same raw complexity for
both blocks.

5.1 A Method of Comparison

As observed in [6,14], there are many different collision search speeding tech-
niques for the SHA family of hash functions. However, their real cost is often
blurry and it becomes hard to compare them. Thus, it has been advised to mea-
sure the efficiency of those tools with an efficient implementation of the various
hash functions attacked, for example by using OpenSSL [22]. For any computer
utilized, one can give the complexity of the attack in terms of number of function
calls of the hash function with an efficient implementation, which is relatively
independent of the computer used.

In their paper [18], Naito et al. claimed a complexity of 236 SHA-0 calls for
their collision attack. However, their implementation required approximatively
100 hours on average in order to find one collision on a PentiumIV 3, 4 GHz. 100
hours of SHA-0 computations on this processor would correspond to 240,3 SHA-0
calls approximatively with OpenSSL, which is far from the claimed complexity.

Thus, in this paper, we chose to handle the complexities in terms of number of
SHA-0 calls with OpenSSL in order to allow an easy comparison. The time measure-
ments have been done on a single PC with an AMD Opteron 2, 2 GHz processor.

5.2 Without Collision Search Speedup

Without even using boomerang attacks, our new differential paths already pro-
vides an improvement on the best known collision attack against SHA-0. Indeed,
in our perturbation vector, 42 conditions remain after step 17. However, by re-
fining the differential path utilized (i.e. by forcing some conditions just before
step 17, without any impact on the complexity since located in the early steps),
one can easily take care of the two conditions from step 17 before beginning the
collision search. Therefore, we are finally left with 40 conditions per message
block. Since for each basic message pair tested during the collision search only
one quarter of a whole SHA-0 is computed in average, we expect a complexity
of 240/22 = 238 SHA-0 evaluations for one block and thus a total complexity of
239 SHA-0 evaluations for one complete collision. This theoretical complexity is
fully confirmed by practical implementation (237,9 and 237,8 SHA-0 evaluations

3 One can argue that the cost of the NL-characteristics automated search tool has also
to be counted. However, unlike in the SHA-1 case, for SHA-0 the number of possible
collisions that can be generated with only one full differential path construction is
really big. Thus, this cost becomes largely negligible compared to the collision search.

28 S. Manuel and T. Peyrin

Table 3. Message instance for a 2-block collision: H(M1, M2) = H(M ′
1, M

′
2) =

A2||B2||C2||D2||E2, computed according to the differential path given in Tables 5,
6, 7 and 8 from appendix

1st block 2nd block

M1 M ′
1 M2 M ′

2

W0 0x4643450b 0x46434549 0x9a74cf70 0x9a74cf32

W1 0x41d35081 0x41d350c1 0x04f9957d 0x04f9953d

W2 0xfe16dd9b 0xfe16dddb 0xee26223d 0xee26227d

W3 0x3ba36244 0x3ba36204 0x9a06e4b5 0x9a06e4f5

W4 0xe6424055 0x66424017 0xb8408af6 0x38408ab4

W5 0x16ca44a0 0x96ca44a0 0xb8608612 0x38608612

W6 0x20f62444 0xa0f62404 0x8b7e0fea 0x0b7e0faa

W7 0x10f7465a 0x10f7465a 0xe17e363c 0xe17e363c

W8 0x5a711887 0x5a7118c5 0xa2f1b8e5 0xa2f1b8a7

W9 0x51479678 0xd147963a 0xca079936 0x4a079974

W10 0x726a0718 0x726a0718 0x02f2a7cb 0x02f2a7cb

W11 0x703f5bfb 0x703f5bb9 0xf724e838 0xf724e87a

W12 0xb7d61841 0xb7d61801 0x37ffc03a 0x37ffc07a

W13 0xa5280003 0xa5280041 0x53aa8c43 0x53aa8c01

W14 0x6b08d26e 0x6b08d26c 0x90811819 0x9081181b

W15 0x2e4df0d8 0xae4df0d8 0x312d423e 0xb12d423e

A2 B2 C2 D2 E2

0x6f84b892 0x1f9f2aae 0x0dbab75c 0x0afe56f5 0xa7974c90

on average for the first and second blocks respectively). Our computer needs 39
hours on average in order to find a collision, which is much faster than Naito et
al.’s attack and this with a less powerful processor.

5.3 Using the Boomerang Improvement

As one can use many collision search speedup techniques, a good choice can
be the boomerang attack for its simplicity of use. We give in the appendix a
possible differential path for the first block (Tables 5 and 6) and the second block
(Tables 7 and 8). The notations used are also given in the appendix in Table 4.
The chaining variable of the second block is the output of the first valid message
pair found (i.e. conformant to the whole differential path) for the first block. As
for the previous subsection, we are left with 40 conditions for each blocks since
the two conditions from step 17 can be easily cancelled before the collision search.
The differential path for the second block possesses 5 auxiliary paths. However,
as explained before, it is possible to build NL-characteristics containing more
auxiliary paths but we only take in account the average case and not the best case

Collisions on SHA-0 in One Hour 29

of behavior of the automated NL-characteristics search tool. For example, one
can check that there are 3 AP2 auxiliary paths in bit positions j = {17, 22, 30}
and 2 AP1 auxiliary paths in bit positions j = {9, 11} for the second block.
The first block case is particular since the chaining variable is the predefined
IV which is highly structured. This particular structure greatly improves our
capability to place auxiliary paths since the condition on the chaining variable
for AP2 is verified on much more bit positions than what someone would expect
in the random case. Thus, for the first block one can place 2 more AP2 on average
and one can check in Table 5 that there are 5 AP2 auxiliary paths in bit positions
j = {10, 14, 19, 22, 27} and 2 AP1 auxiliary paths in bit positions j = {9, 11}.

In theory, with k auxiliary paths, one would expect an improvement of a
factor 2k. However, this slightly depends on the type and the number of auxiliary
paths used. Obviously, compared to the AP1 auxiliary path, using the AP2 type is
better during the collision search. Thus, we expect an improvement of the attack
of a factor approximatively 27 = 128 for the first block and 25 = 32 for the second
one. We get something close in practice with a measured complexity of 232,2 and
233 function calls for the first and second block respectively. This leads to a
final complexity for a collision on the whole SHA-0 of 233,6 function calls, which
compares favourably in theory and practice to the best known collision attack
on this hash function: our computer can generate a 2-block collision for SHA-0
in approximatively one hour on average (instead of 100 hours of computation on
a faster processor for the best known attack). For proof of concept, we provide
in Table 3 a 2-block message pairs that collides with SHA-0.

6 Conclusion

In this paper, we introduced a new attack against SHA-0. By relaxing the pre-
viously established constraints on the perturbation vector, we managed to find
better candidates. Then, as a collision search speedup technique, we applied on
those candidates the boomerang attack which provides a good improvement with
a real practicality of use. This work leads to the best collision attack on SHA-0
so far, requiring only one hour of computation on an average PC. Yet, there
stills space for further improvements as some parts of the attack are heuristic.
Moreover, this work shows the efficiency of the dual use of the boomerang attack
for hash functions combined with a differential path automated search tool.

References

1. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

2. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

3. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

30 S. Manuel and T. Peyrin

4. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions: HAIFA.
In: Proceedings of Second NIST Cryptographic Hash Workshop (2006),
www.csrc.nist.gov/pki/HashWorkshop/2006/program 2006.htm

5. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. De Cannire, C., Mendel, F., Rechberger, C.: Collisions for 70-step SHA-1: On the
Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876. Springer, Heidelberg (2007)

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (1999)

10. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

11. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton (1996)

12. Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

13. Joux, A.: Multi-collisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

14. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

15. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
Than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

16. Manuel, S.: Cryptanalyses Différentielles de SHA-0. Mémoire pour l’obtention du
Mastère Recherche Mathematiques Applications au Codage et à la Cryptographie.
Université Paris 8 (2006), http://www-rocq.inria.fr/codes/Stephane.Manuel

17. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

18. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K. (eds.):
ASIACRYPT 2006. LNCS, vol. 4284, pp. 21–36. Springer, Heidelberg (2006)

19. National Institute of Standards and Technology. FIPS 180: Secure Hash Standard
(May 1993), http://csrc.nist.gov

20. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

21. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002), http://csrc.nist.gov

22. OpenSSL. The Open Source toolkit for SSL/TLS (2007),
http://www.openssl.org/source

23. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),
http://www.ietf.org/rfc/rfc1321.txt

24. Rivest, R.L.: RFC 1320: The MD4 Message Digest Algorithm (April 1992),
http://www.ietf.org/rfc/rfc1320.txt

25. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
http://www-rocq.inria.fr/codes/Stephane.Manuel
http://csrc.nist.gov
http://csrc.nist.gov
http://csrc.nist.gov
http://www.openssl.org/source
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1320.txt

Collisions on SHA-0 in One Hour 31

26. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

27. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

28. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

29. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

Appendix

Table 4. Notations used in [5] for a differential path: x represents a bit of the first
message and x∗ stands for the same bit of the second message

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -

0 � - - -

u - � - -

n - - � -

1 - - - �
- - - -

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -

5 � - � -

7 � � � -

A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

32 S. Manuel and T. Peyrin

Table 5. Steps 1 to 39 of the main differential path of the first block

i Ai Wi

-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
00: 01100111010001010010001100000001 0100111001001011000001010n0010u1
01: 1110110111111111100111011n1111u0 0100000011011011010100001n000000
02: 01100111011111111101n10101101010 1111011000011110100111011n011011
03: 001101010010100n00001100n0uuuuu0 0011100010101001011100100u000101
04: 111100000nu000001010110001110000 u110010001000000010100000u0101n1
05: 00111n00000010011000100000u0n1u1 n0010100110010000101010010100000
06: 10110101110110110000101u100u1001 n010001011110100001111000u000100
07: 100unnnnnnnnn0100nu0100101u11001 00010010111101000101011001011010
08: 1000011100001n000n100u0n010nn001 0101101001110001000110001n0001u1
09: 0010000000000010un00nu1u1un01100 n101000101000111100101100u1110n0
10: 11100110100101000nu01u10un00n100 01111010011000100100011100011000
11: 011110001110001101nuu10101000101 0111000100110111010110011u1110u0
12: 01001101011010000010u0000n110000 10110111110101-----1-----u000001
13: 010110011100000----010-0-01001u0 101001010----------------n0000u1
14: 10111100--------------1--110u011 01101-0----0--1----0---0-1-011u0
15: 10100------------------0-1-u0100 n0101-0----0--1----0---0-1-11000
16: --01-----------------------n0011 010001110----------------00101n0
17: -----------------------------1n- n1000-0----1--1----1---0-u-10011
18: 1----------------------------0-- 01000-0----1--1----0---0-0-011u0
19: -------------------------------- n00110100----------------0001011
20: -------------------------------- n0110-0----1-------0-----0-000u1
21: ------------------------------n- u1100-1------------------u-10111
22: -------------------------------- 00001-1------------------0-00110
23: ------------------------------n- n1011-1----0-------0-----u-11001
24: -------------------------------- u0000-0------------------1-11100
25: ------------------------------n- 01101-1------------------u-10111
26: -------------------------------- u1010-1----0-------1-----0-011u0
27: -------------------------------- 01001-1------------------0-01110
28: -------------------------------- u0000-0------------------1-11011
29: -------------------------------- u0111-0------------------0-00010
30: -------------------------------- 01101-1------------------1-10010
31: -------------------------------- 10110-1------------------0-01001
32: -------------------------------- 00111-1------------------1-00100
33: -------------------------------- 01011-1------------------1-11101
34: -------------------------------- 00010-0------------------0-010u0
35: ------------------------------u- 10001-0------------------n-10110
36: -------------------------------- 11100-0------------------0-000u1
37: -------------------------------- n0010-0------------------0-001u0
38: ------------------------------u- n1101-0------------------n-11110
39: -------------------------------- n1100-1------------------0-001n0

· · · · · ·

Collisions on SHA-0 in One Hour 33

Table 6. Steps 40 to 80 of the main differential path of the first block

i Ai Wi

· · · · · ·
40: -------------------------------- n1111-0------------------0-10000
41: -------------------------------- n0010-1------------------0-11010
42: -------------------------------- n0100-0------------------1-110u1
43: ------------------------------u- 00000-1------------------n-01010
44: -------------------------------- 00011-0------------------0-100n0
45: -------------------------------- n0111-1------------------1-10110
46: -------------------------------- n0111-1------------------0-00010
47: -------------------------------- u0010-1------------------1-00000
48: -------------------------------- 01101-0------------------0-010n0
49: ------------------------------n- 11111-1------------------u-10011
50: -------------------------------- 01000-1------------------0-100u0
51: -------------------------------- u1110-1------------------0-10010
52: -------------------------------- n1101-1------------------1-11110
53: -------------------------------- n0001-1------------------1-001u0
54: ------------------------------u- 11011-0------------------n-11110
55: -------------------------------- 10001-0------------------0-000n0
56: -------------------------------- n0111-1------------------0-001n1
57: ------------------------------n- n0110-1------------------u-11101
58: -------------------------------- u1110-1------------------1-11001
59: ------------------------------n- u1110-0------------------u-010u1
60: ------------------------------u- n1111-1------------------n-100n1
61: -------------------------------- 01010-0------------------0-010n1
62: -------------------------------- 01111-1------------------1-11111
63: -------------------------------- 10011-1------------------0-00010
64: -------------------------------- n1000-0------------------0-10110
65: -------------------------------- 01000-0------------------1-00011
66: -------------------------------- 01000-0------------------0-101u1
67: ------------------------------u- 01001-0------------------n-01001
68: -------------------------------- 10001-0------------------0-100u0
69: -------------------------------- u0010-1------------------1-11000
70: -------------------------------- u1010-0------------------1-011n1
71: ------------------------------n- u0101-0------------------u-01101
72: -------------------------------- 00011-1------------------0-100u0
73: -------------------------------- n1010-1------------------0-11000
74: -------------------------------- n1100-0------------------0-10010
75: -------------------------------- u1110-1------------------1-110n1
76: ------------------------------n- 11011-1------------------u-00100
77: -------------------------------- 00111-0------------------1-000n1
78: -------------------------------- n0011-0------------------1-11101
79: -------------------------------- u0101-0------------------1-01000
80: --------------------------------

34 S. Manuel and T. Peyrin

Table 7. Steps 1 to 39 of the main differential path of the second block

i Ai Wi

-4: 111011010000101010001110101010u1
-3: 01000110011100010110101100101000
-2: 10010000011011111010001110100111
-1: 11100110001011011100010100001001
00: 01011110101010111100001100111101 1001101001110110110011110u1100n0
01: u0111011010011100010111unn1010n1 0000010010111001100101010u111101
02: 11010011001110011011u000110u0111 1110111000100100001000100n111101
03: 111001111000010u000unnnnnn000100 1001101001000110011001001n110101
04: u0100101unn01010000u100011110110 u011100001000000000010101u1101u0
05: n000un001000011u00100000000nn0n0 u0111000011000000000011000010010
06: nnn0010001011110011100n1nu1u011u u000101101111110100001011u101010
07: 10nuuuuuuuuuuuuu11100n00un0u1001 11100001011111111111011000111100
08: 0001111100000000unnn11010001n001 1010001011110001101110001u1001n1
09: 00000111111111111110001n111un111 u100101000000111100110010n1101u0
10: 1110110110111111110100nu111uu011 00000010111100001010011111001011
11: 00111110010001010011011uu0n000u0 1111011101100100111010101n1110n0
12: 010001101000111000111111nuu1u011 001101111111-------------n111010
13: 101010000000----0--------01111u0 01010--------------------u0000u1
14: 00110001-----------------1010010 10010------0----1--------00110n1
15: 10011--------------------10101n0 n0110------0----1--------0111110
16: 0-------------------------011000 10000--------------------11010u1
17: 1-----------------------------n- u1000------1----1--------u100111
18: 0------------------------------- 01100------1----0--------01111u0
19: -------------------------------- n1010--------------------1110100
20: -------------------------------- u1000------1-------------10000n1
21: ------------------------------n- n1101--------------------u010011
22: -------------------------------- 11101--------------------1100010
23: ------------------------------n- u1011------0-------------u110101
24: -------------------------------- n1001--------------------0010110
25: ------------------------------u- 00010--------------------n001011
26: -------------------------------- u0001------1-------------01110u0
27: -------------------------------- 10111--------------------0011001
28: -------------------------------- n1110--------------------1101001
29: -------------------------------- u0000--------------------0010100
30: -------------------------------- 01000--------------------0001001
31: -------------------------------- 01011--------------------1000101
32: -------------------------------- 00101--------------------1010111
33: -------------------------------- 11000--------------------0010001
34: -------------------------------- 01110--------------------00000n0
35: ------------------------------n- 10101--------------------u101001
36: -------------------------------- 10011--------------------10110u1
37: -------------------------------- n1000--------------------01100u0
38: ------------------------------u- n1001--------------------n010100
39: -------------------------------- n0001--------------------11000n0

· · · · · ·

Collisions on SHA-0 in One Hour 35

Table 8. Steps 40 to 80 of the main differential path of the second block

i Ai Wi

· · · · · ·
40: -------------------------------- u0101--------------------1001001
41: -------------------------------- n0100--------------------0010111
42: -------------------------------- u0000--------------------01100u1
43: ------------------------------u- 00111--------------------n101101
44: -------------------------------- 10001--------------------01011n0
45: -------------------------------- n0011--------------------1010000
46: -------------------------------- n0011--------------------1100111
47: -------------------------------- n0011--------------------0011000
48: -------------------------------- 11101--------------------10011u0
49: ------------------------------u- 01010--------------------n001000
50: -------------------------------- 01110--------------------11100n0
51: -------------------------------- n0111--------------------0111000
52: -------------------------------- n0001--------------------1101011
53: -------------------------------- n0100--------------------11100u0
54: ------------------------------u- 11000--------------------n000010
55: -------------------------------- 00111--------------------00001n0
56: -------------------------------- u1100--------------------10001u0
57: ------------------------------u- u0001--------------------n110000
58: -------------------------------- n1000--------------------1101011
59: ------------------------------u- u1111--------------------n0000u1
60: ------------------------------u- n0010--------------------n0100n0
61: -------------------------------- 01100--------------------10100n1
62: -------------------------------- 11001--------------------0101000
63: -------------------------------- 01100--------------------0000100
64: -------------------------------- n0011--------------------0101001
65: -------------------------------- 00101--------------------0101000
66: -------------------------------- 01011--------------------11101n0
67: ------------------------------n- 11111--------------------u100000
68: -------------------------------- 11110--------------------10100n1
69: -------------------------------- n0100--------------------1010011
70: -------------------------------- n0010--------------------00011n0
71: ------------------------------n- n0100--------------------u100001
72: -------------------------------- 10011--------------------10101u1
73: -------------------------------- n1001--------------------0010111
74: -------------------------------- n0101--------------------1101110
75: -------------------------------- u1111--------------------11001n1
76: ------------------------------n- 01100--------------------u111110
77: -------------------------------- 00001--------------------11010n0
78: -------------------------------- n0111--------------------1101000
79: -------------------------------- n0001--------------------0110011
80: --------------------------------

The Hash Function Family LAKE

Jean-Philippe Aumasson1,�, Willi Meier1, and Raphael C.-W. Phan2,��

1 FHNW, 5210 Windisch, Switzerland
2 Electronic & Electrical Engineering, Loughborough University, LE11 3TU,

United Kingdom

Abstract. This paper advocates a new hash function family based on
the HAIFA framework, inheriting built-in randomized hashing and higher
security guarantees than the Merkle-Damg̊ard construction against
generic attacks. The family has as its special design features: a nested
feedforward mechanism and an internal wide-pipe construction within
the compression function. As examples, we give two proposed instances
that compute 256- and 512-bit digests, with a 8- and 10-round compres-
sion function respectively.

Keywords: Hash function, HAIFA, Randomized hashing, Salt, Wide-
pipe.

1 Introduction

Why do we need another hash function? Aside from the explicit aim of the U.S.
Institute of Standards and Technology (NIST) to revise its standards [30, 29],
motivations lie in the present status of hash functions: among the proposals of
recent years, many have been broken (including “proven secure” ones), or show
impractical parameters and/or performance compared to the SHA-2 functions,
despite containing interesting design ideas1. For example all the hash functions
proposed at FSE in the last five years [18,17,19] are now broken [35,25,34], except
for one [33] based on SHA-256. We even see recent works [27] breaking old designs
that had until now been assumed secure due to absence of attacks. It seems
necessary to learn from these attacks and propose new hash functions that are
more resistant to known cryptanalysis methods, especially against differential-
based attacks, which lie at the heart of major hash function breaks. These design
proposals would also hopefully contribute to the discovery of new ways to attack
hash functions, contributing to NIST’s SHA3 development effort.

This paper introduces the hash function family LAKE along with two partic-
ular instances aimed at suiting a wide variety of cryptographic usages as well as
present and future API’s. We adopted the extended Merkle-Damg̊ard framework
HAIFA [8] and include the following features in our design:
� Supported by the Swiss National Science Foundation under project number 113329.

�� Work done while the author was with the Security & Cryptography Lab (LASEC),
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

1 Note that the ISO/IEC standards Whirlpool [3] and RIPEMD-160 [13] are not
broken yet.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 36–53, 2008.
c© International Association for Cryptologic Research 2008

The Hash Function Family LAKE 37

• Built-in salted hashing: to avoid extra code for applications requir-
ing a salt (be it random, a nonce, etc.), and to encourage the use of
randomized hashing.

• Software-oriented: we target efficiency in software, although efficient
hardware implementations are not precluded.

• Direct security: the security is not conditioned on any external hard-
ness assumption.

• High speed: with significantly better performance than the SHA-2 func-
tions on all our machines.

• Flexibility: with variable number of rounds and digest length.

Road Map. First we give a complete specification of LAKE (§2), then we explain
our design choices (§3), present performance (§4), and study security of the
proposed instances (§5). Appendices include lists of constants, and test values.

2 Specification

This section gives a bottom-up specification of the LAKE family, and the defi-
nition of the instances LAKE-256 and LAKE-512 (“LAKE” designates both the
general structure and the family of hash functions built upon it, while instances
have parametrized names). We’ll meet the following symbols throughout the
paper (length unit is the bit).

w Length of a word M̃ Padded message
n Length of the chaining variable M̃ t t-th (padded) message block
m Length of the message block M̃ t

i i-th word of M̃ t

s Length of the salt N Number of blocks of M̃
d Length of the digest S Salt
b Length of the block index Si i-th word of the salt
r Number of rounds Ht t-th chaining variable
t Index of the current block Ht

i i-th word of Ht

ti i-th word of t D Message digest
M Message to hash IV n-bit fixed initial value

We let lengths n, m, etc. be multiples of w. Hexadecimal numbers are written in
typewriter style, and function or primitive labels in sans-serif font. The operator
symbols +, ⊕,
, ≫, ∨, ∧ keep their standard definition. Last but not least,
LAKE is defined in unsigned little-endian representation.

2.1 Building Blocks

LAKE’s compression function compress is made up of three procedures: initial-
ization (function saltstate), internal round function (function processmessage),
and finalization (function feedforward). Fig. 1 represents the interaction between
these functions.

38 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

������ ������
saltstate

(r rounds)
processmessage feedforward

Hi−1 � Hi�

�

S0...3

�

t0,1

�

M0...15

�

Hi−1

�

S0...3

�

t0,1

Fig. 1. The structure of LAKE’s compression function: the chaining variable Hi−1 is
transformed into a local chaining variable twice as large, which undergoes message-
dependent modification, before being shrunk to define Hi

The saltstate Function. This mixes the global chaining variable H with the salt
S and the block index t, writing its output into the buffer L, twice as large as H .
In addition, saltstate uses 16 constants C0, . . . , C15, and a function g that maps a
4w-bit string to a w-bit string. L plays the role of the chain variable—in a “wide-
pipe” fashion—, while g can be seen as an internal compression function, and the
constants are used to simulate different functions. In the following algorithm, word
indexes are taken modulo the number of w-bit words in the array. For example,
in the second “for” loop of saltstate’s algorithm, i ranges from 2 ≡ 10 (mod 8) to
7 ≡ 15 (mod 8) for Hi, and over 2, 3, 0, 1, . . . , 2, 3 for Si (see also Fig. 2).

saltstate

input H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1

1. for i = 0, . . . , 7 do
Li ← Hi

2. L8 ← g(H0, S0 ⊕ t0, C8, 0)
3. L9 ← g(H1, S1 ⊕ t1, C9, 0)
4. for i = 10, . . . , 15 do

Li ← g(Hi, Si, Ci, 0)

output L = L0‖ . . . ‖L15

The first eight words in the buffer L allow H to pass through saltstate unchanged
for use in later feedforwarding, while the last eight words ensure dependence on

�
8 calls to g

�

H0...7

L8...15L0...7

� S0...3

� t0,1

�

Fig. 2. The saltstate function

The Hash Function Family LAKE 39

the salt and the block index. Clearly, the function is not surjective, but will be
injective for a well-chosen g. These local properties do not raise any security
issues (see §5 for more discussion).
The processmessage Function. This is the bulk of LAKE’s round function. It
incorporates the current message block M within the current internal chaining
variable L, with respect to a permutation σ of the message words. It employs a
local m-bit buffer F for local feedforward, and internal compression functions f
and g, both mapping a 4w-bit string to a w-bit string. In the algorithm below,
indexes are reduced modulo 16, i.e. L−1 = L15, L16 = L0.

processmessage

input L = L0‖ . . . ‖L15, M = M0‖ . . . ‖M15, σ

1. F ← L
2. for i = 0, . . . , 15 do

Li ← f(Li−1, Li, Mσ(i), Ci)
3. for i = 0, . . . , 15 do

Li ← g(Li−1, Li, Fi, Li+1)

output L = L0‖ . . . ‖L15

�
16 calls to f

�
16 calls to g

�

L0...15

L0...15

L0...15

� M0...15

� C0...15
� σ

�

Fig. 3. The processmessage function

The feedforward Function. This compresses the initial global chaining variable
H , the salt S, the block index t and the hitherto processed internal chaining
variable L. It outputes the next chaining variable. In the algorithm indexes are
reduced modulo 4 for S (see also Fig. 4).

feedforward

input L = L0‖ . . . ‖L15, H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1

1. H0 ← f(L0, L8, S0 ⊕ t0, H0)
2. H1 ← f(L1, L9, S1 ⊕ t1, H1)
3. for i = 2, . . . , 7 do

Hi ← f(Li, Li+8, Si, Hi)

output H = H0‖ . . . ‖H7

40 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

�
8 calls to f

�

L0...15

H0...7

� S0...3

� t0,1

� H0...7

Fig. 4. The feedforward function

The compress Function. This is the compression function of LAKE. It computes
the next chaining variable Ht+1 from the current Ht, the current message block
M t, the salt S and the current block index t. The number of rounds r and the
permutations (σi)0≤i<r are parameters to be set later.

compress

input H = H0‖ . . . ‖H7, M = M0‖ . . . ‖M15, S = S0‖ . . . ‖S3, t = t0‖t1

1. L ←saltstate(H, S, t)
2. for i = 0, . . . , r − 1 do

L ←processmessage(L, M, σi)
3. H ←feedforward(L, H, S, t)

output H

Apart from its arguments, compress requires 32 memory words for L and F .
Here, L acts as an internal chaining variable, twice as long as H , finally shrunk
to output the next chaining variable, as in the “wide-pipe” construction [23,24].
The goal of this approach is to make local collisions difficult to find—if not
impossible. Observe that the current message block M is input r times to (and
thus input to r different points of) processmessage; meanwhile the salt S, the
current block index t, and the chaining variable H are feedforwarded to the last
stage of compress, thus in fact these inputs are injected into two different points
of compress.

2.2 The LAKE Structure

The LAKE structure consists of the sequence: initialization (functions pad and
init), iteration of compress, and finalization (function out). We start this section
with a description of the padding rule, inherited from HAIFA.

Padding. A message M is padded by concatenating a ‘1’ bit followed by suffi-
cient number of ‘0’ bits, then the b-bit message length, and the digest length d,
such that a padded message M̃ is exactly km bits, for a minimal integer k.

Initialization. The effective initial chaining variable H0 is computed by the
function init on input an n-bit initial value IV and a length d of the output hash
value:

H0 ← init(IV, d) = compress(IV, d, 0, 0).

The Hash Function Family LAKE 41

For words of reasonable length d is written in M0, and all other Mi’s are null. In
practice H0 should be precomputed, unless variable digest length is necessary.

Finalization. The function out simply truncates the final chaining variable HN

to its d first bits, to return the final hash output digest D.

Overall Hashing. A LAKE hash function take as input a message and a
salt, and is parametrized by an initial value IV , a number of rounds r, a se-
quence of permutations (σi)0≤i<r, the word size w, and subsequently bit-lengths
n, m, d, s, b.

LAKE

input M = M0‖ . . . ‖MN−1, S = S0‖ . . . ‖S3

1. M̃ ← pad(M)
2. H0 ← init(IV, d)
3. for t = 0, . . . , N − 1 do

Ht+1 ← compress(Ht, M̃ t, S, t)
4. D ← out(HN)

output D

2.3 Instances

We introduceLAKE-256andLAKE-512, respectively suited for32-and64-bitwords:
LAKE-256 has parameters

n = 256 (chaining variable) d = 256 (digest) r = 8 (rounds)
m = 512 (message block) s = 128 (salt) b = 64 (block index)

Its IV and constants C0, . . . , C15 are extracted from π (see Appendix A), and
permutations of the set {0, . . . , 15} are defined as in MD5 by

i ≡ 0 (mod 4) ⇒ σi(j) = j
i ≡ 1 (mod 4) ⇒ σi(j) = 5j + 1 (mod 16)
i ≡ 2 (mod 4) ⇒ σi(j) = 3j + 5 (mod 16)
i ≡ 3 (mod 4) ⇒ σi(j) = 7j (mod 16)

The internal compression functions are2

f(a, b, c, d) =
[
a + (b ∨ C0)

]
+
([

c + (a ∧ C1)
]

≫ 7
)

+
([

b + (c ⊕ d)
]

≫ 13
)

g(a, b, c, d) =
[
(a + b) ≫ 1

]
⊕ (c + d).

2 It was observed by F. Mendel, C. Rechberger, and M. Schläffer [26] that the non-
invertibility of f can be exploited to find collisions for a reduced version with 4
rounds (instead of 8) faster than with a birthday attack (this was independently
suggested by S. Lucks at FSE 2008). These authors mention that choosing e.g.
f(a, b, c, d) = [a + (b ∨ C0)] + ([d + (a ∧ C1)] ≫ 7) + ([b + (c ⊕ d)] ≫ 13) makes
this attack impossible. It is however unclear whether their suggestion impacts the
security of the original version with all 8 rounds.

42 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

LAKE-512 has parameters

n = 512 (chaining variable) d = 512 (digest) r = 10 (rounds)
m = 1024 (message block) s = 256 (salt) b = 128 (block index)

Constant values are given in Appendix A, permutations are the same as for
LAKE-256, and internal compression functions are

f(a, b, c, d) =
[
a + (b ∨ C0)

]
+
([

c + (a ∧ C1)
]

≫ 17
)

+
([

b + (c ⊕ d)
]

≫ 23
)

g(a, b, c, d) =
[
(a + b) ≫ 1

]
⊕ (c + d).

Other Instances. Instances with digest length 0 < d ≤ 256 take LAKE-256
parameters, and instances with 256 < d ≤ 512 take LAKE-512 parameters. Since
the effective initial value H0 depends on d, this will be distinct for each choice of d.

3 Design

Design rationale is given top-down, from the operating mode to the wordwise op-
erators. Apart from the obvious concerns of security and speed guiding principles
include:

• Withstand differential attacks: no high-probability differential path
should be exploitable, including techniques based on impossible or trun-
cated differentials.

• Prevent side-channel leakage: time and memory consumption as well
as operations should be input-independent, to avoid weaknesses in keyed
modes.

• Facilitate implementation: instances proposed should allow compact
implementations, be the less processor-specific as possible, use simple
operators.

• Facilitate analysis: we use a small number of building blocks, of rea-
sonable complexity, and provide flexible instances, in a clear and concise
specification.

3.1 HAIFA as the Operating Mode

Some properties of the classical MD mode and the need for salted hashing (not
explicitly handled by the previous constructions) motivated the design of the
HAsh Iterative FrAmework (HAIFA) [8]. Its main novelties are the explicit input
of a salt and the number of bits hashed so far to the compression function, the
computation of the initial value depending on the digest length, and the padding
rule. Consequently,

• genericattacks forfinding“one-of-many”preimagesandsecond-preimages
with k targets requires 2d trials for HAIFA against 2d/k for MD,

• online “herding” time-memory trade-off for finding preimages with mem-
ory 2t require 2d/2+t/2+s trials for HAIFA against 2d/2+t/2 for MD,

The Hash Function Family LAKE 43

• HAIFA captures the MD, enveloped MD [5], RMC [1], ROX [2], and
Wide-pipe [23,24] operating modes,

• it explicitly handles randomized hashing.

Other operating modes could have been chosen, however we believe that HAIFA
offers more advantages, in addition to a simple and familiar framework for crypt-
analysts and implementers since it builds on the well known MD mode.

On Salted Hashing. To the best of our knowledge, LAKE is the first concrete
hash construction to include built-in salting. Although this is not a strict re-
quirement for randomized hashing (see e.g. the RMX transforms of Halevi and
Krawczyk [15]), it has the advantage of requiring no additional programming, so
that the hash function can be directly used as a black box fed with a message and
a salt. The main application of randomized hashing is digital signatures, enhanc-
ing security by reducing the security requirement of the underlying hash function
from collision-resistance to second-preimage-like notions [15]. More generally, a
salt may find applications in protocols requiring hash functions families, as well
as future protocols may take advantage of it, be it public or secret, random or a
counter. When a salt is not needed, the null value can be used.

A disadvantage of salted hashing is that extra-data might have to be sent,
while disadvantages of built-in salt are that it might facilitate certain attacks,
and potentially increases the complexity of the algorithm. On the other hand, it
encourages the use of randomized hashing, and prevents from weak home-brewed
construction.

3.2 Building Blocks

The structure of compress is similar in spirit to the one of the overall hash
function: initialization, chained rounds, and finalization. Essential differences are
that the round function here allows no collision for a fixed chaining variable, and
that the same message is used at each iteration (up to a permutation of words).
The goal of the internal wide-pipe is indeed to have an (almost) injective function
built as a repetition of processmessage; the goal is to make local collisions unlikely
for fixed chaining variable, salt, and counter. Also note that, contrary to the SHA
functions, LAKE-256 does not admit easily found fixed-points.

For designing compress we create two levels of interdependence: fast diffusion
can be seen as a propagation of spatial interdependence across words at any inter-
mediate state within the hash function, and complicates attacks including those
that exploit high-probability differentials. Analogously, the feedforward mech-
anism allows injected values to influence two different intermediate states at
different times during the processing, which achieves temporal interdependence.
Although wordwise diffusion as a spatial interdependence technique is widely
known in cryptographic literature to increase resistance to common attacks, the
notion of feedforwarding as a form of achieving temporal interdependence is less
treated. In fact, this latter serves to complicate the perturb-and-correct strat-
egy used in many hash function attacks that exploit inputs with well chosen
differences. The central building block processmessage achieves both spatial and

44 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

temporal interdependence by making use of multiple-blockwise chaining [4] and
feedforwarding respectively. Spatial and temporal interdependencies are achieved
in a similar way within feedforward and the structure of the compression func-
tion compress. We further comment on the three internal modules of compress
hereafter.

We chose a round-dependent permutation for the message input, with same
permutations as MD5; note that, though MD5 is broken, it is essentially due to
the relative simplicity of its round function, rather than to the message input
strategy. An alternative would be to use message expansion, as used in a fully
XOR-linear fashion in SHA-0/1, and non-linearly in SHA-2. The main argument
for recursive message expansion is that it simulates a complicated function, and
the non-surjectivity makes collisions of random expanded messages useless. How-
ever, it may increase memory usage, and other strategies can be used to have a
complex mixing.

3.3 Core Functions f and g

Each of these functions is called 136 times in an 8-round compress. We opted for
a high-number of calls to simple functions, rather than a few calls to some com-
plicated procedures, mainly because it simplifies analysis and implementation,
and reduces the amount of code.

The role of f is to provide a large amount of mixing, to break linearity and
diffuse changes across words. We considered various combinations of wordwise
operators and our final choice was selected for its high ratio diffusion over speed,
its ability to increase quickly the algebraic degree, and its simplicity. The much
simpler g only aims at making each input influence the internal state, within a
progressive diffusion of changes via addition carries and 1-bit rotations in a non-
linear fashion. When used as arguments, constants Ci simulate distinct functions
and reduces self-similarity.

3.4 Wordwise Operators

We chose a combination of standard constant-time word operators, known to be
complementary to achieve cryptographic strength: integer addition and XOR dif-
fuse changes locally, while logical operators AND and OR increase non-linearity–
over GF(2) and GF(232). Though the operators AND and OR are in no way
mandatory, the use of the sole triplet (+,⊕, ≫) can be risky, as suggested by
the existence of high-probability differentials in the stream ciphers Phelix and
Salsa20/8, the block cipher TEA, or in the hash function FORK-256 [40,7,39,17].
Finally, rotation provides fast diffusion within the words, with a choice of data-
independent distances—in order to avoid side-channel leakage, reduce the control
of the attacker over the operations, and reduce complexity of the algorithm. Ro-
tation counts of f were chosen so as to avoid byte alignments, and diffuse changes
to any word offset as fast as possible; as observed by the authors of Twofish [37],
one-bit rotation (as used in g) saves time over smartcards processors, compared
to multi-bit rotation. We avoid integer multiplication essentially for performance
reasons and the risk of timing leakage.

The Hash Function Family LAKE 45

3.5 Parameters

We propose instances whose input and output have lengths similar to previous
and current standards, to suit present and future API’s, and minimize imple-
menters’ work. The salt length was chosen to be sufficient for randomized hash-
ing, and to suit HAIFA’s requirements (for which the salt should be at least half
as large as the digest).

After intensive security analysis, we believe that eight rounds for LAKE-256 are
sufficient for actual security, and as a security margin to counter future attacks
(in comparison, MD5 and SHA-256 have four rounds, SHA-1 and SHA-512 have
five rounds). We add two rounds for LAKE-512 whose larger state delays full
diffusion.

4 Performance

4.1 Algorithmic Complexity

We consider here the algorithm independently from any specific implementation
or parallelism issues, and study time and space complexities. However, from this
abstract evaluation one cannot directly infer statements on the actual speed of
the algorithms when implemented, which depends on a multitude of other factors
(see speed benchmarks in §4.2).

Table 1 presents on its leftmost part the number of arithmetic operations for
LAKE-256, LAKE-512, and their components, comparing with SHA-256 and SHA-
512 (refering to [29]): our functions count slightly less operations than the SHA-2
equivalents, with significantly less XORs and more integer additions. The larger
amount of rotations in SHA-2 functions increases the difference of operation
counts on processors simulating a rotation with two shifts (as the Itanium and
UltraSPARC). The rightmost part of Table 1 compares storage requirements.

Table 1. Algorithmic complexities and memory requirements (in bytes)

Function Operations Memory
Total + ⊕ ≫ � ∨ ∧ ROM RAM

f 10 5 1 2 0 1 1 - -
g 4 2 1 1 0 0 0 - -

saltstate 34 16 10 8 0 0 0 - -
processmessage 224 112 32 48 0 16 16 - -

feedforward 82 40 10 16 0 8 8 - -
LAKE-256 1908 952 276 408 0 136 136 64 128
SHA-256 2232 600 640 576 96 0 320 256 64
LAKE-512 2356 1176 340 504 0 168 168 128 256
SHA-512 2632 712 752 672 96 0 400 512 128

46 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

4.2 Implementation

Implementation on 32- and 64-bit architectures should pose no problem, since we
only use standard wordwise operators. On 8- and 16-bit architectures (e.g. smart-
cards) word operations have to be decomposed; rotations translate less simply
than addition and XOR, but remain easily implementable. Choosing multiples
of 8 as rotation counts would have improved performances on 8- and 16-bit
processors, but reduced the quality of diffusion. We do not preclude hardware
implementation, since our operators are consistently simple and fast.

Speed Benchmarks. It is, alas, rather difficult to make a complete and com-
prehensive relative study of hash functions: security evaluation requires intensive
cryptanalysis effort (even for “proven secure” designs), and performances com-
parison cannot be fair when reference source codes are not published, or do not
have a same degree of optimization, are more or less processor-dependent, etc.,
not to mention the issue of hardware benchmarks. The simplest solution is then
to compare with the reference SHA-2 family, since other proposals would also be
compared to these functions.

We compare LAKE-256 with SHA-256 using portable C implementations: re-
spectively our reference code (available upon request) and the version in XySSL
[12]. These codes have roughly the same level of optimization, and we used
exactly the same source code for all processors. Cycles counts are measured us-
ing the RDTSC assembly instruction through the processor-specific cpucycles
library [6], on machines running a Linux kernel 2.6.19 with Gentoo distribu-
tions; sources are compiled with gcc 4.1.2 with full optimization flags (-O3) and
processor-specific settings (e.g. -march=pentium4). For each machine, Table 2
shows the median cycles count measured among 1000 successive calls to the com-
pression function with random inputs, along with the cycles-per-byte cost. This
measurement has a relatively high variant, so we give rounded values for clarity,
that seems sufficient for a raw comparison of performance.

LAKE-256 significantly outperforms SHA-256 on our test machines, particu-
larly on our Athlon XP and Pentium D, while the difference of cycles on the
other machines roughly matches the difference of arithmetic operations (see
§4.1); this suggests that LAKE-256 takes a particular advantage of some fea-
ture of the former processors (possibly thread-level parallelism). These results

Table 2. Cycle counts for the compression function (and corresponding cycles-per-byte
cost)

CPU Function
Name Frequency L2 cache LAKE-256 SHA-256
Athlon 800 MHz 256 Kb 2700 (42) 3000 (50)

Athlon XP 1830 MHz 512 Kb 2400 (38) 4500 (70)
Pentium 4 1500 MHz 256 Kb 3600 (56) 4050 (63)
Pentium 4 2400 MHz 512 Kb 3300 (52) 3900 (61)
Pentium D 2×3010 MHz 2048 Kb 2600 (41) 4500 (70)

The Hash Function Family LAKE 47

should be interpreted carefully, and performance on other architectures as well
as the optimization potential remain to be studied.

Parallelism. How can LAKE-256 be parallelized? First consider the “medium
grain” level: In saltstate, the computation of the Li’s can be parallelized into
sixteen branches, since there is no diffusion across word boundaries—the con-
current access to H might however be an obstacle. Due to its large amount of
flow dependence, the main function processmessage is not parallelizable, unlike
feedforward, which can be split into eight branches. At a finer level, the three
internal expressions of f can be computed in parallel (by copying two variables),
as well as the two additions of g. This can benefit to the three components.

5 Security

5.1 Introduction

Definitions. For LAKE hash functions, the preimage problem (resp. second
preimage) takes as parameter a random digest y (resp. random message and
salt of digest y), and the challenge is to find a (distinct) pair message and salt
mapping to y. Target second preimage is similar to second preimage except that
the two salts must be identical. The collision problem is to find two pairs message
and salt with identical digest, and we call a collision synchronized if the two salts
are identical. The generic (brute force) attack solves preimage with probability ε
within 2d+log2 ε calls to the hash function. Hellman’s time(T)-memory(M) trade-
off is TM2 = 22n [16]. Idem for (target) second preimage. Against collision, the
generic birthday attack requires

√
−2 log(1 − ε) · 2d/2 calls to the hash function

to succeed with probability ε, with negligible memory requirement (thanks to
smart variants of Floyd’s cycle-finding technique [38, 36]). For evaluating the
cryptographic quality of the distributions induced by our hash functions, we
suggest to consider the definitions of pseudo-randomness and unpredictability
given by Naor and Reingold [28] for function distributions, which apply as well
for salt-indexed families derived from a LAKE instance (in this case the function
of the family take as sole input a message).

Conjectures. For all the instances proposed, no method should solve preimage,
second preimage, or collision faster than the generic one for any parameters of the
problem. We also conjecture pseudo-randomness and unpredictability for families
indexed by the s-bit salt. In addition, relaxed problems as pseudo- or near-collision
should also be hard (note that our claims concern the full functions, not the build-
ing blocks individually). On the other hand we expect variants with less than three
rounds to be relatively weak—though we have no evidence of it yet.

5.2 One-Wayness and Collision Resistance

One-wayness is achieved mainly thanks to the feedforward operations (in pro-
cessmessage and feedforward), and to the redundancy in the initial local chaining
variable L (in saltstate).

48 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

Arguments for collision resistance are given by the structure of processmessage:
recall from §3.2 that the local wide-pipe strategy of processmessage makes it
injective for a fixed L; we can expect the r-round processmessage to be collision-
free as well, or at least have a negligible number of collisions. Synchronized
collisions on compress can thus only occur at the ultimate step, feedforward,
when the 512-bit state is compressed to a 256-bit chaining variable (for LAKE-
256 parameters). Therefore, the objective of the repeated processmessage is to
make hard the search for message pairs (M, M ′) such that

feedforward(processmessage(L,M, σ),H, S, t) = feedforward(processmessage(L,M ′, σ),H, S, t),

with L = saltstate(H, S, t). Note that, if synchronized collisions over compress
with similar (H, S, t) are hard to find, then the corresponding LAKE instance
is target collision resistant. This is because for any collision over the full hash
function with similar salts, at least one collision over compress with identical
counter exists.

On the other hand, it is easy to find 1-round collisions with (chosen) distinct
salts, and identical H : it suffices to take a random message M , and adapt a
second one M ′ to correct changes in the last eight words of the initial L. How-
ever, the collision does not persist to subsequent rounds, and seems to have no
consequence on the overall security of compress.

5.3 Algebraic Attacks

Traditional algebraic attacks aim at giving an input/output relationship in terms
of multivariate equations, then exploiting this system (ideally solving it) to re-
cover secret information. Due to its rather nested structure, LAKE is unlikely
to be vulnerable to such attacks: addition carries and chained computation of L
ensure an algebraic normal form (ANF) for each Boolean component of maximal
degree after one round of processmessage.

Recently, two works aimed at detecting non-uniform randomness in the alge-
braic structure of several cryptographic primitives [32, 31, 14]. Their basic idea
is to compute all or part of the ANF of some implicit Boolean function, map-
ping part of the input to part of the output, then applying statistical tests on
the distribution of the monomials of the ANF; reference [32] notably claims to
distinguish SHA-2 functions from random using so-called Defectoscopy, claiming
that “at least 8 full cycles are required for it to be secure instead of the proposed
4-5”, idem for MD5 and SHA-0/1—unfortunately, the description of the tests
and the methodology used in [32] is not precise enough to reproduce the exper-
iments. In [14], comparable tests are used to build distinguishers for the stream
ciphers DECIM, Grain, Lex, and Trivium. Against such methods, we applied the
following countermeasures:

• Intensive feedforward: each round incorporates a complex feedforward
operation, such temporal dependency providing highly non-linear
relations.

The Hash Function Family LAKE 49

• Many additions: compared to SHA-256, we use a large amount of integer
additions, and a few XORs (see Table 1), which increases non-linearity
through the carries.

• Large state: the output of compress is extracted from a large local state
combined with a non-linear dependence on the initial H in feedforward
(unlike in SHA-2 functions).

We ran a few experiments with the “d-monomial” and “maximum-degree mono-
mial” tests described in [14], and also used in [32]; for input windows of 8 to 20
bits of the salt or of the message, and each of the 256 output bits. Significant
deviations where observed for up to two rounds. This bound might be slightly in-
creased by using refined experiments, as apparently employed, but not detailed,
in [32].

5.4 Differential Attacks

The essential idea of differential attacks on hash functions [10], as used to break
MD5 and SHA-0/1, is to exploit a high-probability input/output differential over
some component of the hash function, e.g. under the form of a “perturb-and-
correct” strategy for the latter functions, exploiting high-probability linear/non-
linear characteristics. A common property of those functions, as well as to the
SHA-2 functions, is indeed the behavior of the compression function as a shift
register: at each step, a “first” word is updated depending of a message word
input, while the other words are shifted. Hence “corrected words” can spread
along the state, as explained in the Chabaud-Joux attack on SHA-0 [11]. More-
over, their relatively simple step function allowed to find several high-probability
characteristics (see e.g. [10])—the SHA-2 functions made this much more diffi-
cult, though have more or less the same structure as their ancestors, and keep a
similar number of rounds.

In the design of LAKE-256 and LAKE-512, we applied the following counter-
measures against differential attacks:

• High number of steps: with respectively 128 and 160 message word inputs
in LAKE-256 and LAKE-512, against 64 for MD5 and SHA-256, and 80
for SHA-512 and SHA-0/1. In particular, the function f called 136 and
168 times in compress makes the exploit of linear approximations highly
implausible.

• Nested feedforward: the r message-dependent internal feedforward oper-
ations aim at strengthening the function against differential paths.

• Internal wide-pipe: this makes internal collisions unlikely, and the final
compression of L to H makes differences in the output much harder to
predict.

• No “shift register”: in the round function, all state words are updated in
chain with dependence on a message word, and then undergo a message-
independent post-treatment, making any “correction” impossible.

• Use all operators: as observed in §3.4, a small set of operations often
facilitates differential analysis.

50 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

Note that the foregoing features, except the increased number of rounds, do
not require extra computation or memory, unlike the use of a recursive message
expansion, or of S-boxes.

We can sketch a simple method for finding low-weight 1-round differentials in
compress: choose an input difference ∆ changing M14 and M15 such that after the
first loop in processmessage, only L14 is modified. Consequently, after the second
loop changes will occur only in L13, L14 and L15, that is, a difference of weight
at least 3. However, such low-weight output-difference will persist no further.
We discovered no high-probability differential, but a more careful analysis is
required.

5.5 Empirical Tests

For completeness, we report some experiments assessing the minimal require-
ments for a hash function. Note that no statement about preimage or collision
resistance should be derived from these results.

Diffusion. To illustrate the difference propagation in LAKE-256, we give visual
examples of the diffusion provided by processmessage, after running saltstate with
H = IV , S = 0, t = 0. The avalanche effect is suggested by the high number of
differences within only two rounds of processmessage. We consider various one-bit
differences in random messages, as presented in Fig. 5: the first stripe represents
the message difference, and the eight subsequent ones show the differences in the
buffer L after each round of processmessage.

Fig. 5. Diffusion diagrams, for randomly chosen messages and a difference at 2nd,
128th, 256th, and 512th position

The observation that the most-significant bits of the message diffuse less after
one round can easily be explained by the algorithm of processmessage. This
however has no consequence on the security per se, since after only two rounds
no kind of regularity seems observable.

The Hash Function Family LAKE 51

Acknowledgments

We would like to thank the reviewers of FSE 2008 who pointed out several issues
to improve the paper, and F. Mendel, C. Rechberger, M. Schläffer, and S. Lucks
for their analysis of LAKE .

References

1. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-properties-preserving
iterated hashing: The RMC construction. Technical Report STVL4-KUL15-RMC-
1.0, ECRYPT (2006)

2. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving
iterated hashing: ROX. In: Kurosawa [21], pp. 130–146

3. Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First Open NESSIE
Workshop (2000)

4. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

5. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, Chen [22], pp. 299–314

6. Bernstein, D.J.: The cpucycles library, http://ebats.cr.yp.to/cpucycles.html
7. Bernstein, D.J.: Salsa20. Technical Report 2005/25, ECRYPT eSTREAM, 2005

(2005), http://cr.yp.to/snuffle.html
8. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.

Cryptology ePrint Archive, Report 2007/278, 2007. In: The second NIST Hash
Function Workshop (2006)

9. Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)
10. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results

and applications. In: Lai, Chen [22], pp. 1–20
11. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk [20], pp. 56–71
12. Devine, C.: XySSL, http://xyssl.org/code/
13. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of

RIPEMD. In: FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996)
14. Englund, H., Johansson, T., Turan, M.S.: A framework for chosen IV statistical

analysis of stream ciphers. In: Special ECRYPT Workshop – Tools for Crypt-
analysis (2007), http://www.impan.gov.pl/BC/Program/conferences/07Crypt-
prg.html

15. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

16. Hellman, M.: A cryptanalytic time-memory tradeoff. IEEE Transactions on Infor-
mation Theory 26, 401–406 (1980)

17. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A
new dedicated 256-bit hash function: FORK-256. In: Robshaw, M.J.B. (ed.) FSE
2006. LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

18. Knudsen, L.R.: SMASH - a cryptographic hash function. In: Gilbert, H., Hand-
schuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 228–242. Springer, Heidelberg
(2005)

http://ebats.cr.yp.to/cpucycles.html
http://cr.yp.to/snuffle.html
http://xyssl.org/code/
http://www.impan.gov.pl/BC/Program/conferences/07Crypt-prg.html
http://www.impan.gov.pl/BC/Program/conferences/07Crypt-prg.html

52 J.-P. Aumasson, W. Meier, and R.C.-W. Phan

19. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In:
Biryukov [9], pp. 39–57, http://www.ramkilde.com/grindahl/

20. Krawczyk, H. (ed.): CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)

21. Kurosawa,K. (ed.):ASIACRYPT2007.LNCS,vol. 4833.Springer,Heidelberg (2007)

22. Lai, X., Chen, K. (eds.): ASIACRYPT 2006. LNCS, vol. 4284. Springer, Heidelberg
(2006)

23. Lucks, S.: Design principles for iterated hash functions. Cryptology ePrint Archive,
Report 2004/253 (2004)

24. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B.K. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

25. Matusiewicz, K., Peyrin, T., Billet, O., Contini, S., Pieprzyk, J.: Cryptanalysis of
FORK-256. In: Biryukov [9], pp. 19–38,
http://www.ics.mq.edu.au/∼kmatus/FORK/

26. Mendel, F., Rechberger, C., Schläffer, M.: Collisions for round-reduced LAKE (sub-
mitted, 2008)

27. Mendel, F., Rijmen, V.: Cryptanalysis of the Tiger hash function. In: Kurosawa
[21], pp. 536–550.

28. Naor, M., Reingold, O.: From unpredictability to indistinguishability: A simple
construction of pseudo-random functions from MACs (extended abstract). In:
Krawczyk [20], pp. 267–282

29. NIST. FIPS 180-2 secure hash standard (2002)

30. NIST. Cryptographic hash project (2007),
http://www.nist.gov/hash-competition

31. O’Neil, S.: Algebraic structure defectoscopy, http://defectoscopy.com/

32. O’Neil, S.: Algebraic structure defectoscopy. In: Special ECRYPT Workshop –
Tools for Cryptanalysis (2007),
http://www.impan.gov.pl/BC/Program/conferences/07Crypt-prg.html

33. Pal, P., Sarkar, P.: PARSHA-256 - a new parallelizable hash function and a multi-
threaded implementation. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp.
347–361. Springer, Heidelberg (2003)

34. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa [21], pp. 551–567.

35. Pramstaller, N., Rechberger, C., Rijmen, V.: Breaking a new hash function design
strategy called SMASH. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS,
vol. 3897, pp. 233–244. Springer, Heidelberg (2006)

36. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search? Application to
DES (extended summary). In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 429–434. Springer, Heidelberg (1990)

37. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish Encryption Algorithm. Wiley, Chichester (1999)

38. Sedgewick, R., Szymanski, T.G., Yao, A.C.-C.: The complexity of finding cycles in
periodic functions. SIAM Journal of Computing 11(2), 376–390 (1982)

39. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

40. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix - fast encryption and
authentication in a single cryptographic primitive. Technical Report 2005/20,
ECRYPT eSTREAM (2005)

http://www.ramkilde.com/grindahl/
http://www.ics.mq.edu.au/~kmatus/FORK/
http://www.nist.gov/hash-competition
http://defectoscopy.com/
http://www.impan.gov.pl/BC/Program/conferences/07Crypt-prg.html

The Hash Function Family LAKE 53

A Constants

For LAKE-256, IV corresponds to the first 64 hexadecimal digits of π, and the
constants to the 65-th to the 192-th digits3:

IV0 = 243F6A88 IV2 = 13198A2E IV4 = A4093822 IV6 = 082EFA98
IV1 = 85A308D3 IV3 = 03707344 IV5 = 299F31D0 IV7 = EC4E6C89

C0 = 452821E6 C4 = C0AC29B7 C8 = 9216D5D9 C12 = 2FFD72DB
C1 = 38D01377 C5 = C97C50DD C9 = 8979FB1B C13 = D01ADFB7
C2 = BE5466CF C6 = 3F84D5B5 C10 = D1310BA6 C14 = B8E1AFED
C3 = 34E90C6C C7 = B5470917 C11 = 98DFB5AC C15 = 6A267E96

For LAKE-512, IV corresponds to the first 128 hexadecimal digits of π ending
trillion-th, and the constants to the 129-th to the 384-th digits.

IV0 = 57F5C7D088813AFC IV4 = F92F3FFEB7790C39
IV1 = 13908A7C25E945C0 IV5 = 428D3FD1A930A4EE
IV2 = B273D634AF4635AB IV6 = A66C46E2B3255458
IV3 = B8E6A0E2AE025B8F IV7 = F2AC54FEDE1EC2EA

C0 = 0769441AD54C789F C8 = 4623A40AB23A2E02
C1 = 3CB62BB721C2746E C9 = A43BA7CDFC9BCF82
C2 = 1BE973B3FF6C5EDE C10 = D6AEBF43FB266C5E
C3 = D9883F666CD37F6B C11 = 139363097AAB1247
C4 = 2A9572193E06AA68 C12 = 2A53B4E0A95CAA01
C5 = 8AB87CA9222605F2 C13 = 8D1770714B749520
C6 = 3B43E1D7013CEAC5 C14 = B3BC88DB689CA207
C7 = DF6534E1E77E037E C15 = C46EF39031B3E5A5

B Test Values

For LAKE-256, compress(Null input) =

C5EB97EC 704D4816 5A1714E3 549343B4 18831B53 2FB84D85 E304A0A4 73CB9E03.

For LAKE-512, compress(Null input)=

804829AB81DA589B E9205F12A4EE3666 D23D5574793C9C32 4DB7387F53795476
653D40810DC4A3AA F14D3A5E8D14F043 9904191ADE724751 C9D033C934C9229E.

3 Hexadecimal π digits are copied from
http://www.super-computing.org/pi-hexa current.html

SWIFFT: A Modest Proposal for FFT Hashing�

Vadim Lyubashevsky1, Daniele Micciancio1, Chris Peikert2,��,
and Alon Rosen3

1 University of California at San Diego
2 SRI International

3 IDC Herzliya

Abstract. We propose SWIFFT, a collection of compression functions
that are highly parallelizable and admit very efficient implementations
on modern microprocessors. The main technique underlying our func-
tions is a novel use of the Fast Fourier Transform (FFT) to achieve
“diffusion,” together with a linear combination to achieve compression
and “confusion.” We provide a detailed security analysis of concrete in-
stantiations, and give a high-performance software implementation that
exploits the inherent parallelism of the FFT algorithm. The through-
put of our implementation is competitive with that of SHA-256, with
additional parallelism yet to be exploited.

Our functions are set apart from prior proposals (having comparable
efficiency) by a supporting asymptotic security proof : it can be formally
proved that finding a collision in a randomly-chosen function from the
family (with noticeable probability) is at least as hard as finding short
vectors in cyclic/ideal lattices in the worst case.

1 Introduction

In cryptography, there has traditionally been a tension between efficiency and
rigorous security guarantees. The vast majority of proposed cryptographic hash
functions have been designed to be highly efficient, but their resilience to at-
tacks is based only on intuitive arguments and validated by intensive crypt-
analytic efforts. Recently, new cryptanalytic techniques [29,30,4] have started
casting serious doubts both on the security of these specific functions and on the
effectiveness of the underlying design paradigm.

On the other side of the spectrum, there are hash functions having rigorous
asymptotic proofs of security (i.e., security reductions), assuming that various
computational problems (such as the discrete logarithm problem or factoring large
integers) are hard to solve on the average. Unfortunately, all such proposed hash
functions have had computation cost comparable to typical public key crypto-
graphic operations, making them unattractive from a practical point of view.
� Mod·est, adj.: Marked by simplicity.

�� Supported by the National Science Foundation under Grants CNS-0716786 and
CNS-0749931. Any opinions, findings, and conclusions or recommedations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 54–72, 2008.
c© International Association for Cryptologic Research 2008

SWIFFT: A Modest Proposal for FFT Hashing 55

1.1 Our Proposal: SWIFFT

We propose the SWIFFT collection of compression functions, and give a high-
performance software implementation. SWIFFT is very appealing and intuitive
from a traditional design perspective, and, at the same time, achieves the ro-
bustness and reliability benefits of provable asymptotic security under a mild
computational assumption. The functions correspond to a simple algebraic ex-
pression over a certain polynomial ring, as described in detail in Section 2.1.
Here we describe a high-level algorithm for the fast evaluation of a SWIFFT
compression function.

The algorithm takes as input a binary string of length mn (for suitable pa-
rameters m, n), which is viewed as an n × m binary matrix (xi,j) ∈ {0, 1}n×m.
It then performs the following two steps, where all operations are performed in
Zp for an appropriate modulus p:

1. The input matrix (xi,j) is first processed by multiplying the ith row by ωi−1

for i = 1, . . . , n (where ω ∈ Zp is an appropriate fixed element).
Then the Fast Fourier Transform (FFT) is computed (over Zp) on each
column j = 1, . . . , m:

(y1,j , . . . , yn,j) = FFT(ω0 · x1,j , . . . , ωn−1 · xn,j).

We remark that this operation is easy to invert, and is performed to achieve
“diffusion,” i.e., to mix the input bits of every column.

2. A linear combination is then computed across each row i = 1, . . . , n:

zi = ai,1 · yi,1 + · · · + ai,m · yi,m =
∑m

j=1
ai,j · yi,j ,

where the coefficients ai,j ∈ Zp are fixed as part of the function description.
This operation compresses the input, achieving “confusion.”

The output is the vector (z1, . . . , zn) ∈ Zn
p .

Consider an attempt to invert the function, i.e., to find some input (xi,j) that
evaluates to a given output (z1, . . . , zn). Viewed independently, each linear equa-
tion zi =

∑m
j=1 ai,j · yi,j on the rows admits a large number of easily-computed

solutions. However, there are strong dependencies among the equations. In par-
ticular, every column (y1,j , . . . , yn,j) is constrained to be the result of applying
Step 1 to an n-dimensional binary vector (x1,j , . . . , xn,j) ∈ {0, 1}n.

Perhaps surprisingly, these constraints turn out to be sufficient to guarantee
asymptotically that the SWIFFT functions are provably one-way and collision-
resistant. More precisely, the family admits a very strong security reduction:
finding collisions on the average (when the coefficients ai,j are chosen at random
in Zp) with any noticeable probability is at least as hard as solving an underlying
mathematical problem on certain kinds of point lattices in the worst case. This
claim follows from the fact that the SWIFFT functions are a special case of the
cyclic/ideal lattice-based functions of [18,21,16].

56 V. Lyubashevsky et al.

SWIFFT’s simple design has a number of other advantages. First, it also
enables unconditional proofs of a variety of statistical properties that are desir-
able in many applications of hash functions, both in cryptography and in other
domains. Second, its underlying mathematical structure is closely related to well-
studied cryptographic problems, which permits easy understanding and analysis
of concrete instantiations. Third, it is extremely parallelizable, and admits soft-
ware implementations with throughput comparable to (or even exceeding) the
SHA-2 family on modern microprocessors.

While SWIFFT satisfies many desirable cryptographic and statistical proper-
ties, we caution that it was not designed to be an “all-purpose” cryptographic
hash function. For example, it is not (by itself) a pseudorandom function, and
would not be a suitable instantiation of a random oracle. (See Section 4 for more
details.) In addition, while the concrete parameters were chosen so as to resist all
known feasible attacks, SWIFFT does not achieve full “birthday bound” security
of 2n/2 for collision attacks with an n-bit output, nor 2n security for inversion
attacks. (See Section 5 for more details.)

1.2 Related Work

Using the Fast Fourier Transform (FFT) as a building block in hash functions
is not new. For example, Schnorr et al proposed a variety of FFT-based hash
functions [24,25,26], which unfortunately were subsequently cryptanalyzed and
shown to be insecure [9,2,27]. Our compression functions are set apart from pre-
vious work by the way that the FFT is used, and the resulting proof of security.
Namely, while in previous work [24,25,26] the FFT was applied to unrestricted
input vectors (x1, . . . , xn) ∈ Zn

p , here we require the input values xi to be bits.
This introduces non-linear constraints on the output values of the FFT opera-
tion, a fact that plays a fundamental role both in our theoretical proof of security,
as well as on the analysis of our concrete functions. Our novel use of FFT may
be of independent interest, and might find other applications in cryptographic
design.

The subset-sum and knapsack problems have long ago been suggested as foun-
dations for compression functions, e.g., by Damg̊ard [10]. Unfortunately, these
functions are only efficient in small dimensions, at which point lattice-based
attacks [14] and other forms of cryptanalysis [7] become possible.

An important ingredient in the conceptual design of our functions (and as-
sociated proof of security) is the use of lattices with special structure as an
underlying mathematical problem. Special classes of lattices (with closely re-
lated, but somewhat different structure than ours) also have been used before
in practical constructions (most notably, the NTRU encryption scheme [13] and
LASH hash function [3]), but without any security proofs.

Most closely related to our work is the theoretical study initiated by Aj-
tai [1] of subset sum-like cryptographic functions that are provably secure under
worst-case assumptions for lattice problems. Ajtai’s work and subsequent im-
provements [11,6,17,19] do not lead to very efficient implementations, mostly
because of the huge size of the function description and slow evaluation time

SWIFFT: A Modest Proposal for FFT Hashing 57

(which grow quadratically in the security parameter). A first step toward bridg-
ing the gap between theoretical constructions and practical functions was taken
by Micciancio [18], who proposed using lattices with special structure (namely,
cyclic lattices) and showed how they lead to cryptographic functions that have
provable worst-case hardness and also admit fast implementations using FFT.
The main limitation of the functions proposed in [18] was the notion of security
achieved: they are provably one-way (under a worst-case assumption on cyclic
lattices), but not collision resistant. Peikert and Rosen [21] and Lyubashevsky
and Micciancio [16] then modified and generalized the function originally pro-
posed in [18] to achieve collision resistance.

From a theoretical point of view, the SWIFFT functions proposed in this
paper are equivalent to and inherit all provable security features from the cyclic/
ideal hash functions of [21,16]. But differently from [18,21,16], the emphasis in
this paper is on practical implementation issues, and the construction of concrete
instances and variants of those functions that enjoy very efficient implementation
from a practical point of view. For a deeper understanding of the theoretical
ideas underlying the proofs of security of our compression functions, we refer
the reader to [18,21,16].

2 SWIFFT Compression Functions

In this section, we describe an algebraic expression that is the underlying founda-
tion of the SWIFFT functions, and how it is related to the FFT-based algorithm
described in Section 1.1. We then propose a set of concrete parameters on which
our implementation and security analysis are based.

2.1 Algebraic Description

The SWIFFT functions correspond to a simple algebraic expression over a cer-
tain polynomial ring. A family of SWIFFT functions is described by three main
parameters: let n be a power of 2, let m > 0 be a small integer, and let p > 0 be
a modulus (not necessarily prime, though we will soon see that certain prime p
will be convenient). Define R to be the ring R = Zp[α]/(αn + 1), i.e., the ring of
polynomials (in α) having integer coefficients, modulo p and αn +1. Any element
of R may therefore be written as a polynomial of degree < n having coefficients
in Zp = {0, . . . , p − 1}.

A particular function in the family is specified by m fixed elements a1, z . . . ,
am ∈ R of the ring R, called “multipliers.” The function corresponds to the
following expression over the ring R:∑m

i=1
(ai · xi) ∈ R, (1)

where x1, . . . ,xm ∈ R are polynomials having binary coefficients, and corre-
sponding to the binary input of length mn.

58 V. Lyubashevsky et al.

To compute the above expression, the main bottleneck is in computing the
polynomial products ai ·xi over R. It is well-known that the Fast Fourier Trans-
form (FFT) provides an O(n log n)-time algorithm that can be used for multi-
plying polynomials of degree < n. The multiplication algorithm starts by using
the FFT to compute (all at once) the Fourier coefficients of each polynomial,
i.e., the values on all the 2nth roots of unity over the complex field C. It then
multiplies the respective Fourier coefficients of the two polynomials, and finally
interpolates back to a degree < 2n polynomial via an inverse FFT.

Because we are working modulo p and αn + 1, there is an even more conve-
nient and efficient method for computing the polynomial products in the ring
R. Suppose that p is prime and p − 1 is a multiple of 2n. Then Zp is a field,
and it contains a multiplicative subgroup of order 2n whose elements are all the
2nth roots of unity in Zp (i.e., the roots of the polynomial α2n − 1 mod p). Let
ω ∈ Zp be some generator of this subgroup, i.e., an element of order 2n. The n
odd powers ω1, ω3, . . . , ω2n−1 are exactly the primitive 2nth roots of unity, i.e.,
the roots of αn + 1.

In order to compute a polynomial product ai · xi modulo p and αn + 1,
it suffices to compute only the n primitive Fourier coefficients of ai and xi,
i.e., the values ai(ω1),ai(ω3), . . . ,ai(ω2n−1), and likewise for xi. The primitive
coefficients can be computed all at once by preprocessing the input and then
applying an n-dimensional FFT (which uses half the space), as described in the
algorithm from Section 1.1. Furthermore, because the field Zp has roots of unity,
the FFT can be performed over Zp using the nth primitive root of unity ω2,
instead of over C.1

In addition to using an FFT, other significant optimizations are possible when
computing Expression (1). First, because the multipliers ai are fixed in advance
and determined uniquely by their primitive Fourier coefficients, we can simply
store and work with their Fourier representation. Additionally, because the FFT
is linear and a bijection, there is no need to even apply an inverse FFT. In
other words, the value of Expression (1) is correctly and uniquely determined by
summing the Fourier representations of ai ·xi. Combining all these observations,
we are left with the high-level algorithm as described in Section 1.1, which we
implement (using additional optimizations) in Section 3.

2.2 Concrete Parameters

In this paper we primarily study one family of SWIFFT compression functions,
obtained by choosing concrete values for the parameters n, m, and p as follows:

n = 64, m = 16, p = 257.

For these parameters, any fixed compression function in the family takes a binary
input of length mn = 1024 bits (128 bytes), to an output in the range Zn

p , which

1 Performing an FFT over Zp rather than C is often called a number theoretic trans-
form (NTT) in the literature; however, we will retain the FFT terminology due to
broad familiarity.

SWIFFT: A Modest Proposal for FFT Hashing 59

has size pn = 25764 ≈ 2512. An output in Zn
p can easily be represented using 528

bits (66 bytes). Other unambiguous representations (using > 512 bits) are also
possible; the representation does not affect security.

We now briefly explain our choice of parameters. The first consideration is the
security of the compression function. As we will explain in the security analysis
of Section 5, the function corresponds to a subset-sum from mn bits to roughly
n lg p bits. We first set the constraints mn = 1024 and n lg p ≈ 512, because
solving such subset-sum problems appears to be intractable. In order for our
proofs of security to go through, we also need the polynomial αn + 1 to be
irreducible over Z[α], which is true if and only if n is a power of 2. (If a reducible
polynomial is used, actual attacks can become possible, as we show in Section 5.3
for similar functions in the literature.)

Next, we optimize the running time and space of the function by choosing n to
be relatively large, and p and m to be small, subject to the above constraints. As
discussed above, the Fast Fourier Transform is most efficiently and conveniently
computed when p is prime and p − 1 is a multiple of 2n.

Finally, to fix one concrete function from the family, the multipliers ai should
be chosen uniformly and independently at random from the ring R; this is equiva-
lent to choosing their primitive Fourier coefficients uniformly and independently
at random from Zp. We note that the multipliers (or their Fourier coefficients)
should be chosen using “trusted randomness,” otherwise it may be possible to
embed a “backdoor” in the resulting function. For example, one might derive
the multipliers using some deterministic transformation on the digits of π.

3 Implementation

Our implementation uses two main techniques for achieving high performance,
both relating to the structure of the Fast Fourier Transform (FFT) algorithm.
The first observation is that the input to the FFT is a binary vector, which limits
the number of possible input values (when restricting our view to a small portion
of the input). This allows us to precompute and store the results of several initial
iterations of the FFT in a lookup table. The second observation is that the FFT
algorithm consists of operations repeated in parallel over many pieces of data,
for which modern microprocessors have special-purpose instruction sets.

Recall the parameters n = 64, m = 16, and modulus p = 257. Let ω be a
128th root of unity in Zp = Z257, i.e., an element of order 128 = 2n. (We will
see later that it is convenient to choose ω = 42, but most of the discussion is
independent from the choice of ω.)

The compression function takes an mn = 1024-bit input, viewed as m = 16
binary vectors x0, . . . ,x15 ∈ {0, 1}64. (For convenience, entries of a vector or
sequence are numbered starting from 0 throughout this section.) The function
first processes each vector xj , multiplying its ith entry by ωi (for i = 0, . . . , 63),
and then computing the Fourier transform of the resulting vector using ω2 as
a 64th root of unity. More precisely, each input vector xj ∈ {0, 1}64 is mapped to

60 V. Lyubashevsky et al.

yj = F (xj), where F : {0, 1}64 → Z64
257 is the function

F (x)i =
63∑

k=0

(xk · ωk) · (ω2)i·k =
63∑

k=0

xk · ω(2i+1)k. (2)

The final output z of the compression function is then obtained by computing
64 distinct linear combinations (modulo 257) across the ith entries of the 16 yj

vectors:

zi =
15∑

j=0

ai,j · yi,j (mod 257),

where the ai,j ∈ Z257 are the primitive Fourier coefficients of the fixed multipliers.

Computing F . The most expensive part of the computation is clearly the com-
putation of the transformation F on the 16 input vectors xj , so we first focus on
the efficient computation of F . Let y = F (x) ∈ Z64

257 for some x ∈ {0, 1}64. Ex-
pressing the indices i, k from Equation (2) in octal as i = i0+8i1 and k = k0+8k1

(where j0, j1, k0, k1 ∈ {0, . . . , 7}), and using ω128 = 1 (mod 257), the ith com-
ponent of y = F (x) is seen to equal

yi0+8i1 =
7∑

k0=0

(ω16)i1·k0

(
ω(2i0+1)k0 ·

7∑
k1=0

ω8k1(2i0+1) · xk0+8k1

)

=
7∑

k0=0

(ω16)i1·k0 (mk0,i0 · tk0,i0) ,

where mk0,i0 = ω(2i0+1)k0 and tk0,i0 =
∑7

k1=0 ω8k1(2i0+1)xk0+8k1 . Our first ob-
servation is that each 8-dimensional vector tk0 = (tk0,0, tk0,1, . . . , tk0,7) can take
only 256 possible values, depending on the corresponding input bits xk0 , xk0+8,
. . . , xk0+8·7. Our implementation parses each 64-bit block of the input as a se-
quence of 8 bytes X0, . . . , X7, where Xk0 = (xk0 , xk0+8, . . . , xk0+8·7) ∈ {0, 1}8,
so that each vector tk0 can be found with just a single table look-up opera-
tion tk0 = T (Xk0), using a table T with 256 entries. The multipliers mk0 =
(mk0,0, . . . , mk0,7) can also be precomputed.

The value y = F (x) can be broken down as 8 (8-dimensional) vectors

yi1 = (y8i1 , y8i1+1, . . . , y8i1+7) ∈ Z8
257.

Our second observation is that, for any i0 = 0, . . . , 7, the i0th component of yi1

depends only on the i0th components of mk0 and tk0 . Moreover, the operations
performed for every coordinate are exactly the same. This permits parallelizing
the computation of the output vectors y0, . . . ,y7 using SIMD (single-instruction
multiple-data) instructions commonly found on modern microprocessors. For
example, Intel’s microprocessors (starting from the Pentium 4) include a set of
so-called SSE2 instructions that allow operations on a set of special registers
each holding an 8-dimensional vector with 16-bit (signed) integer components.

SWIFFT: A Modest Proposal for FFT Hashing 61

We only use the most common SIMD instructions (e.g., component-wise addi-
tion and multiplication of vectors), which are also found on most other modern
microprocessors, e.g., as part of the AltiVec SIMD instruction set of the Mo-
torola G4 and IBM G5 and POWER6. In the rest of this section, operations
on 8-dimensional vectors like mk0 and tk0 are interpreted as scalar operations
applied component-wise to the vectors, possibly in parallel using a single SIMD
instruction.

Going back to the computation of F (x), the output vectors yi1 can be ex-
pressed as

yi1 =
7∑

k0=0

(ω16)i1·k0(mk0 · tk0).

Our third observation is that the latter computation is just a sequence of 8
component-wise multiplications mk0 · tk0 , followed by a single 8-dimensional
Fourier transform using ω16 as an 8th root of unity in Z257. The latter can
be efficiently implemented using a standard FFT network consisting of just 12
additions, 12 subtractions and 5 multiplications.

Optimizations relating to Z257. One last source of optimization comes from two
more observations that are specific to the use of 257 as a modulus, and the choice
of ω = 42 as a 128th root of unity. One observation is that the root used in the 8-
dimensional FFT computation equals ω16 = 22 (mod 257). So, multiplication by
(ω16), (ω16)2 and (ω16)3, as required by the FFT, can be simply implemented as
left bit-shift operations (by 2, 4, and 6 positions, respectively). Moreover, analysis
of the FFT network shows that modular reduction can be avoided (without the
risk of overflow using 16-bit arithmetic) for most of the intermediate values.
Specifically, in our implementation, modular reduction is performed for only 3
of the intermediate values. The last observation is that, even when necessary to
avoid overflow, reduction modulo 257 can be implemented rather cheaply and
using common SIMD instructions, e.g., a 16-bit (signed) integer can be reduced
to the range {−127, . . . , 383} using x ≡ (x ∧ 255) − (x
 8) mod 257, where ∧
is the bit-wise “and” operation, and
 8 is a right-shift by 8 bits.

Summary and performance. In summary, function F can be computed with
just a handful of table look-ups and simple SIMD instructions on 8 dimen-
sional vectors. The implementation of the remaining part of the computation
of the compression function (i.e., the scalar products between yi,j and ai,j) is
straightforward, keeping in mind that this part of the computation can also be
parallelized using SIMD instructions, and that reduction modulo 257 is rarely
necessary during the intermediate steps of the computation due to the use of
16-bit (or larger) registers.

We implemented and tested our function on a 3.2GHz Intel Pentium 4. The
implementation was written in C (using the Intel intrinsics to instruct the com-
piler to use SSE2 instructions), and compiled using gcc version 4.1.2 (compiler
flags -O3) on a PC running under Linux kernel 2.6.18. Our tests show that our
basic compression function can be evaluated in 1.5 µs on the above system,

62 V. Lyubashevsky et al.

yielding a throughput close to 40 MB/s in a standard chaining mode of opera-
tion. For comparison, we tested SHA256 on the same system using the highly
optimized implementation in openssl version 0.9.8 (using the openssl speed
benchmark), yielding a throughput of 47 MB/s when run on 8KB blocks.

Further optimizations. We remark that our implementation does not yet take
advantage of all the potential for parallelism. In particular, we only exploited
SIMD-level parallelism in individual evaluations of the transformation function
F . Each evaluation of the compression function involves 16 applications of F ,
and subsequent multiplication of the result by the coefficients ai,j . These 16 com-
putations are completely independent, and can be easily executed in parallel on
a multicore microprocessor. Our profiling data shows that the FFT computa-
tions and multiplication by ai,j currently account for about 90% of the running
time. So, as multicore processors become more common, and the number of cores
available on a processor increases, one can expect the speed of our function to
grow almost proportionally to the number of cores, at least up to 16 cores. Fi-
nally, we point out that FFT networks are essentially “optimally parallelizable,”
and that our compression function has extremely small circuit depth, allowing
it to be computed extremely fast in customized hardware.

4 Properties of SWIFFT

Here we review a number of statistical and cryptographic properties that are
often desirable in hash functions, and discuss which properties our functions do
and do not satisfy.

4.1 Statistical Properties

Here we review a number of many well-known and useful statistical properties
that are often desirable in a family of hash functions, in both cryptographic and
non-cryptographic applications (e.g., hash tables, randomness generation). All
of these statistical properties can be proved unconditionally, i.e., they do not
rely on any unproven assumptions about any computational problems.

Universal hashing. A family of functions is called universal if, for any fixed
distinct x, x′, the probability (over the random choice of f from the family) that
f(x) = f(x′) is the inverse of the size of the range. It is relatively straightforward
to show that our family of compression functions is universal (this property is
used implicitly in the proofs for the statistical properties below).

Regularity. A function f is said to be regular if, for an input x chosen uniformly
at random from the domain, the output f(x) is distributed uniformly over the
range. More generally, the function is ε-regular if its output distribution is within
statistical distance (also known as variation distance) ε from uniform over the
range. The only randomness is in the choice of the input.

As first proved in [18], our family of compression functions is regular in the
following sense: all but an ε fraction of functions f from the family are ε-regular,

SWIFFT: A Modest Proposal for FFT Hashing 63

for some negligibly small ε. The precise concrete value of ε is determined by the
particular parameters (n, m, p) of the family.

Randomness extraction. Inputs to a hash function are often not chosen uni-
formly from the domain, but instead come from some non-uniform “real-world”
distribution. This distribution is usually unknown, but may reasonably be as-
sumed to have some amount of uncertainty, or min-entropy. For hash tables and
related applications, it is usually desirable for the outputs of the hash function
to be distributed uniformly (or as close to uniformly as possible), even when
the inputs are not uniform. Hash functions that give such guarantees are known
as randomness extractors, because they “distill” the non-uniform randomness of
the input down to an (almost) uniformly-distributed output. Formally, random-
ness extraction is actually a property of a family of functions, from which one
function is chosen at random (and obliviously to the input).

The proof of regularity for our functions can be generalized to show that
they are also good randomness extractors, for input distributions having enough
min-entropy.

4.2 Cryptographic Properties

Here we discuss some well-known properties that are often desirable in crypto-
graphic applications of hash functions, e.g., digital signatures. Under relatively
mild assumptions, our functions satisfy several (but not all) of these crypto-
graphic properties. (For precise definitions, see, e.g., [23].)

Informally, a function f is said to one-way if, given the value y = f(x) for an
x chosen uniformly at random from the domain, it is infeasible for an adversary
to find any x′ in the domain such that f(x′) = y. It is second preimage resistant
if, given both x and y = f(x) (where x is again random), it is infeasible to find
a different x′ �= x such that f(x′) = y. These notions also apply to families of
functions, where f is chosen at random from the family.

A family of functions is target collision resistant (also called universal one-
way) if it is infeasible to find a second preimage of x under f , where x is first
chosen by the adversary (instead of at random) and then the function f is chosen
at random from the family. Finally, the family is fully collision resistant if it is
infeasible for an adversary, given a function f chosen at random from the family,
to find distinct x, x′ such that f(x) = f(x′).

For functions that compress their inputs, the notions above are presented in
increasing order of cryptographic strength. That is, collision resistance implies
target collision resistance, which in turn implies second preimage resistance,
which in turn implies one-wayness. All of the above notions are computational,
in that they refer to the infeasibility (i.e., computational difficulty) of solving
some cryptographic problem. However, the concrete effort required to violate
these security properties (i.e., the meaning of “infeasible”) will vary depending
on the specific security notion under consideration, and is discussed in more
detail below in Section 5.

As shown in [21,16], our family of compression functions is provably collision
resistant (in an asymptotic sense), under a relatively mild assumption about

64 V. Lyubashevsky et al.

the worst-case difficulty of finding short vectors in cyclic/ideal lattices. This
in turn implies that the family is also one-way and second preimage resistant.
In Section 5.1, we give a detailed discussion and interpretation of the security
proofs. In Section 5.2, we discuss the best known attacks on the cryptographic
properties of our concrete functions, and give estimates of their complexity.

4.3 Properties Not Satisfied by SWIFFT

For general-purpose cryptographic hash functions and in certain other applica-
tions, additional properties are often desirable. We discuss some of these proper-
ties below, but stress that our functions do not satisfy these properties, nor were
they intended or designed to.
Pseudorandomness. Informally, a family of functions is pseudorandom if a
randomly-chosen function from the family “acts like” a truly random function
in its input-output behavior. More precisely, given (adaptive) oracle access to
a function f , no adversary can efficiently distinguish between the case where
(1) f is chosen at random from the given family, and (2) every output of f is
uniformly random and independent of all other outputs. (The formal definition
is due to [12].) We stress that the adversary’s view of the function is limited to
oracle access, and that the particular choice of the function from the family is
kept secret.

Our family of functions is not pseudorandom (at least as currently defined),
due to linearity. Specifically, for any function f from our family and any two
inputs x1, x2 such that x1 + x2 is also a valid input, we have f(x1) + f(x2) =
f(x1 + x2). This relation is very unlikely to hold for a random function, so an
adversary can easily distinguish our functions from random functions by querying
the inputs x1, x2, and x1 + x2. However, this homomorphism might actually be
considered as a useful feature of the function in certain applications (much like
homomorphic encryption).

With additional techniques, it may be possible to construct a family of pseu-
dorandom functions (under suitable lattice assumptions) using similar design
ideas.
Random oracle behavior. Intuitively, a function is said to behave like a random
oracle if it “acts like” a truly random function. This notion differs from pseudo-
randomness in that the function is fixed and public, i.e., its entire description is
known to the adversary. Though commonly used, the notion of “behaving like
a random oracle” cannot be defined precisely in any meaningful or achievable
way. Needless to say, we do not claim that our functions behave like a random
oracle.

5 Security Analysis

In this section, we interpret our asymptotic proofs of security for collision-
resistance and the other claimed cryptographic properties. We then consider
cryptanalysis of the functions for our specific choice of parameters, and review
the best known attacks to determine concrete levels of security.

SWIFFT: A Modest Proposal for FFT Hashing 65

5.1 Interpretation of Our Security Proofs

As mentioned above, an asymptotic proof of one-wayness for SWIFFT was given
in [18], and an asymptotic proof of collision-resistance (a stronger property)
was given independently in [21] and [16]. As in most cryptography, security
proofs must rely on some precisely-stated (but as-yet unproven) assumption. Our
assumption, stated informally, is that finding relatively short nonzero vectors in
n-dimensional ideal lattices over the ring Z[α]/(αn + 1) is infeasible in the worst
case, as n increases. (See [18,21,16] for precise statements of the assumption.)

Phrased another way, the proofs of security say the following. Suppose that
our family of functions is not collision resistant; this means that there is an
algorithm that, given a randomly-chosen function f from our family, is able to
find a collision in f in some feasible amount of time T . The algorithm might
only succeed on a small (but noticeable) fraction of f from the family, and may
only find a collision with some small (but noticeable) probability. Given such
an algorithm, there is also an algorithm that can always find a short nonzero
vector in any ideal lattice over the ring Z[α]/(αn + 1), in some feasible amount
of time related to T and the success probability of the collision-finder. We stress
that the best known algorithms for finding short nonzero vectors in ideal lattices
require exponential time in the dimension n, in the worst case.

The importance of worst-case assumptions in lattice-based cryptography can-
not be overstated. Robust cryptography requires hardness on the average, i.e.,
almost every instance of the primitive must be hard for an adversary to break.
However, many lattice problems are heuristically easy to solve on “many” or
“most” instances, but still appear hard in the worst case on certain “rare” in-
stances. Therefore, worst-case security provides a very strong and meaningful
guarantee, whereas ad-hoc assumptions on the average-case difficulty of lattice
problems may be unjustified. Indeed, we are able to find collisions in compres-
sion function of the related LASH-x family of hash functions [3] by falsifying its
underlying (ad-hoc) average-case lattice assumption (see Section 5.3).

At a minimum, our asymptotic proofs of security indicate that there are no
unexpected “structural weaknesses” in the design of SWIFFT. Specifically, vio-
lating the claimed security properties (in an asymptotic sense) would necessarily
require new algorithmic insights about finding short vectors in arbitrary ideal
lattices (over the ring Z[α]/(αn + 1)). In Section 5.3, we demonstrate the sig-
nificance of our proofs by giving examples of two compression functions from
the literature that look remarkably similar to ours, but which admit a variety of
very easily-found collisions.

Connection to algebraic number theory. Ideal lattices are well-studied objects
from a branch of mathematics called algebraic number theory, the study of num-
ber fields. Let n be a power of 2, and let ζ2n ∈ C be a primitive 2nth root of
unity over the complex numbers (i.e., a root of the polynomial αn +1). Then the
ring Z[α]/(αn + 1) is isomorphic to Z[ζ2n], which is the ring of integers of the
so-called cyclotomic number field Q(ζ2n). Ideals in this ring of integers (more
generally, in the ring of integers of any number field) map to n-dimensional lat-
tices under what is known as the canonical embedding of the number field. These

66 V. Lyubashevsky et al.

are exactly the ideal lattices for which we assume finding short vectors is diffi-
cult in the worst case.2 Further connections between the complexity of lattice
problems and algebraic number theory were given by Peikert and Rosen [22].

For the cryptographic security of our hash functions, it is important that the
extra ring structure does not make it easier to find short vectors in ideal lattices.
As far as we know, and despite being a known open question in algebraic number
theory, there is no apparent way to exploit this algebraic structure. The best
known algorithms for finding short vectors in ideal lattices are the same as those
for general lattices, and have similar performance. It therefore seems reasonable
to conjecture that finding short vectors in ideal lattices is infeasible (in the worst
case) as the dimension n increases.

5.2 Known Attacks

We caution that our asymptotic proofs do not necessarily rule out cryptanalysis
of specific parameter choices, or ad-hoc analysis of one fixed function from the
family. To quantify the exact security of our functions, it is still crucially impor-
tant to cryptanalyze our specific parameter choices and particular instances of
the function.

A central question in measuring the security of our functions is the meaning
of “infeasible” in various attacks (e.g., collision-finding attacks). Even though
our functions have an output length of about n lg p bits, we do not claim that
they enjoy a full 2n lg p “level of security” for one-wayness, nor a 2(n lg p)/2 level
of security for collision resistance. Instead, we will estimate concrete levels of
security for our specific parameter settings. This is akin to security estimates
for public-key primitives like RSA, where due to subexponential-time factoring
algorithms, a 1024-bit modulus may offer only (say) a 2100 concrete level of
security.

In Section 5.2, we describe the known algorithms to find collisions in our
functions takes time at least 2106 and requires almost as much space. We also
describe the known inversion attacks, which require about 2128 time and space.

Throughout this section, it will be most convenient to cryptanalyze our func-
tions using their algebraic characterization as described in Section 2.1, and in
particular, Equation (1).

Connection to Subset Sum. A very useful view of our compression function
is as a subset sum function in which the weights come from the additive group
Zn

p , and are related algebraically.
An element a in the ring R = Zp[α]/(αn + 1) can be written as a0 + a1α +

. . .+an−1α
n−1, which we can represent as a vector (a0, . . . , an−1) ∈ Zn

p . Because
αn ≡ −1 in the ring R, the product of two polynomials a,x ∈ R is represented

2 In [18,21,16], the mapping from ideals to lattices is slightly different, involving the
coefficient vectors of elements in Z[ζ2n] rather than the canonical embedding. How-
ever, both mappings are essentially the same in terms of lengths of vectors, and the
complexity of finding short vectors is the same under both mappings.

SWIFFT: A Modest Proposal for FFT Hashing 67

by the matrix product of the square skew-circulant matrix of a with the vector
representation of x:

a · x ∈ R ↔

⎡⎢⎢⎢⎣
a0 −an−1 · · · −a1

a1 a0 · · · −a2

...
. . .

an−1 an−2 · · · a0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0

x1

...
xn−1

⎤⎥⎥⎥⎦ mod p (3)

Thus we can interpret Equation (1) (with fixed multipliers a1, . . . ,am) as multi-
plying a fixed matrix A ∈ Zn×mn

p by an input vector x ∈ {0, 1}mn. The matrix
A has the form

A = [A1| · · · |Am] (4)

where each Ai is the n × n skew-circulant matrix of ai. Ignoring for a moment
the algebraic dependencies within each Ai, this formulation is equivalent to a
subset sum function over the group Zn

p . Indeed, the output of our function is
just the sum of a subset of the mn column vectors of A. And in fact, the fastest
known algorithm for inverting (or finding collisions in) our function f is the
same one that is used for solving the high density subset sum problem [28,15].
We describe this algorithm next.

Generalized Birthday Attack. Finding a collision in our function is equiva-
lent to finding a nonzero x ∈ {−1, 0, 1}mn such that

Ax = 0 mod p (5)

where A is as in Equation (4). This is because if we find a {−1, 0, 1}-combination
of the columns of A that sums to 0 mod p, the subset of the columns correspond-
ing to the −1s collides with the subset corresponding to the 1s. We will now
describe an algorithm for finding such an x for the specific parameters n = 64,
m = 16, p = 257. Our goal is to provide a lower bound on the running time
of the most efficient known algorithm for breaking our function. Therefore the
analysis of the function will be fairly conservative.

Given a 64 × 1024 matrix A whose coefficients are in Z257, we proceed as
follows:

1. Arbitrarily break up the 1024 column vectors of A into 16 groups of 64
vectors each.

2. From each group, create a list of 364 vectors where each vector in the list is
a different {−1, 0, 1}-combination of the vectors in the group.

We now have 16 lists each containing 364 ≈ 2102 vectors in Z64
257. Notice that

if we are able to find one vector from each list such that their sum is the zero
vector, then we can solve Equation 5.

Finding one vector from each list such that the sum is 0 is essentially the k-list
problem that was studied by Wagner [28], and is also related to the technique
used by Blum, Kalai, and Wassserman [5] for solving the parity problem in the
presence of noise. The idea is to use the lists to obtain new lists of vectors that

68 V. Lyubashevsky et al.

are {−1, 0, 1}-combinations of A’s columns, but which have many coordinates
that are 0. We then continue forming lists in which the vectors have more and
more coordinates equal to 0. More precisely, we continue with the algorithm in
the following way:

3. Pair up the 16 lists in an arbitrary way.
4. For each pair of lists (Li, Lj), create a new list Li,j such that every vector in

Li,j is the sum of one vector from Li and one vector from Lj , and the first
13 positions of the vector are all 0 modulo 257.

There are a total of 25713 ≈ 2104 different values that a vector in Z64
257 can

take in its first 13 entries. Since the lists Li and Lj each contain 364 ≈ 2102

vectors, there are a total of 2204 possible vectors that could be in Li,j . If we
heuristically assume that each of the 25713 ≈ 2104 possible values of the first 13
coordinates are equally likely to occur3, then we expect the list Li,j to consist of
2204 · 2−104 = 2100 vectors whose first 13 coordinates are all 0. For convenience,
we will assume that the lists have 2102 vectors (this again is a conservative
assumption that is in the algorithm’s favor).

At the end of Step 4, we have 8 lists, each with 2102 vectors in Z64
257 whose first

13 coordinates are zero. We can now pair up these 8 lists and create 4 lists of 2102

vectors whose first 26 coordinates are zero. We continue until we end up with
one list of 2102 elements whose first 52 coordinates are zero. This means that
only the last 12 coordinates of these vectors may be nonzero. If the vectors are
randomly distributed in the last 12 coordinates, then there should be a vector
which consists of all zeros (because there are only 25712 ≈ 296 possibilities for
the last 12 coordinates).

Since we started out with 16 lists of 2102 elements, the running time of the
algorithm is at least 16 · 2102 = 2106. Notice that it also requires at least 2102

space.
Using a slightly modified generalized birthday attack, it is also possible to

mount an inversion attack using time and space approximately 2128. The main
difference is that we use 8 lists, and when combining (say) the first two lists in
each level of the tree, we pair up entries so that they match the desired output
value on the appropriate block of entries (for the other pairs of lists, we pair the
entries to produce zeros).

Lattice Attacks. Lattice reduction is a possible alternative way to find a
nonzero vector x ∈ {−1, 0, 1}mn that will satisfy Equation (5). If we think of the
matrix A as defining a linear homomorphism from Zmn to Zn

p , then the kernel
of A is ker(A) = {y ∈ Zmn : Ay ≡ 0 mod p}. Notice that ker(A) is a lattice
of dimension mn, and a vector x ∈ {−1, 0, 1}mn such that Ax ≡ 0 mod p is a
shortest nonzero vector in the �∞ or “max” norm of this lattice.

Because a basis for ker(A) can be computed efficiently given A, finding a
shortest nonzero vector (in the �∞ norm) of the lattice would yield a collision
3 This is true if all the vectors in the lists are random and independent in Z64

257, but
this is not quite the case. Nevertheless, since we are being conservative, we will
assume that the algorithm will still work.

SWIFFT: A Modest Proposal for FFT Hashing 69

in our compression function. The lattice ker(A) shares many properties with
the commonly occurring knapsack-type lattice (see, e.g., [20]). Our lattice is
essentially a knapsack-type lattice with some additional algebraic structure. It is
worthwhile to note that none of the well-known lattice reduction algorithms take
advantage of the algebraic structure that arises here. Because the dimension 1024
of our lattice is too large for the current state-of-the-art reduction algorithms,
breaking our function via lattice reduction would require some very novel idea
to exploit the additional algebraic structure. As things stand right now, we
believe that the generalized birthday technique described in the previous section
provides a more efficient algorithm for finding collisions in our function.

Viewing the kernel as a lattice also leads naturally to a relaxed notion of
“pseudo-collisions” in our function, which are defined in terms other norms,
e.g., the Euclidean �2 norm or “Manhattan” �1 norm. Note that for any actual
collision corresponding to an x ∈ ker(A), we have x ∈ {−1, 0, 1}mn and therefore
the �2 norm of x is ‖x‖2 ≤

√
mn. However, not every nonzero x ∈ ker(A) with

‖x‖2 ≤
√

mn determines a collision in our function, because the entries of x may
lie outside {−1, 0, 1}. We say that such an x is a pseudo-collision for the �2 norm.
More generally, a pseudo-collision for any �p norm (1 ≤ p < ∞) is defined to be
a nonzero x ∈ ker(A) such that ‖x‖p ≤ (mn)1/p. The set of pseudo-collisions
only grows as p decreases from ∞ to 1, so finding pseudo-collisions using lattice
reduction might be easier in norms such as �2 or �1. Finding pseudo-collisions
could be a useful starting point for finding true collisions.

5.3 Cryptanalysis of Similar Functions

In this section, we briefly discuss two other compression functions appearing in
the literature that bear a strong resemblance to ours, but which do not have
asymptotic proofs of collision resistance. In fact, these compression functions
are not collision resistant, and admit quite simple collision-finding algorithms.
The attacks are made possible by a structural weakness that stems from the
use of circulant matrices, which correspond algebraically to rings that are not
integral domains. Interestingly, integral domains are the crucial ingredient in the
asymptotic proofs of collision resistance for our function [21,16]. We believe that
this distinction underscores the usefulness and importance of security proofs,
especially worst-case hardness proofs for lattice-based schemes.

Micciancio’s Cyclic One-Way Function. The provably one-way function
described by Micciancio [18] is very similar to SWIFFT, and was the foun-
dation for the subsequent collision-resistant functions on which this paper is
based [21,16]. Essentially, the main difference between Micciancio’s function and
the ones presented in [21,16] is that the operations are performed over the ring
Zp[α]/(αn − 1) rather than Zp[α]/(αn + 1). This difference, while seemingly mi-
nor, makes it almost trivial to find collisions, as shown in [21,16].

Just like ours, Micciancio’s function has an interpretation as the product of
a matrix A (as in Equation (4)) and a vector x ∈ {0, 1}mn. The only difference

70 V. Lyubashevsky et al.

is the matrices Ai from Equation (4) are circulant, rather than skew-circulant
(i.e., just like Equation (3), but without negations).

Notice that in the vector product of a circulant matrix Ai with the all-1s
vector 1, all of the entries are the same. Thus, for any circulant matrix Ai, the
n-dimensional vector Ai · 1 mod p can be only one of p distinct vectors. There
are 2m ways to set each vector x1, . . . ,xm to be either 0 or 1, but there are only
p distinct values of the compression function Ax = A1x1 + . . . + Amxm mod p.
Because 2m > p (otherwise the function does not compress), some pair of distinct
binary vectors are mapped to the same output. Such a collision can be found in
linear time.

LASH Compression Function. LASH-x is a family of hash functions that
was presented at the second NIST hash function workshop [3]. Its compression
function fH takes an n-bit input x = x1|x2 where x1,x2 ∈ {0, 1}n/2, and is
defined as fH(x) = (x1 ⊕ x2) + Hx mod q, where H is a “semi-circulant” m× n
matrix whose entries are from the group Z256:

H =

⎡⎢⎢⎢⎣
a0 an−1 an−2 · · · a1

a1 a0 an−1 a2

...
. . .

am−1 am−2 am−3 . . . am

⎤⎥⎥⎥⎦ .

The values a0, . . . , an−1 ∈ Z256 are essentially chosen at random (actually, ac-
cording to a weak pseudorandom generator).

As discussed in [3], a heuristic assumption for the security of LASH is that its
compression function fH is collision-resistant. However, for a random choice of
the entries a0, . . . , an−1, finding a collision in fH with noticeable probability is
actually trivial. Notice that all the rows of the matrix H have the same sum. If
this sum happens to be 0 mod 256 (which happens with probability 1/256 over
the choice of the ai), then we have

f(0) = 0 + H · 0 = 0 = 0 + H · 1 = f(1),

where 0 and 1 are all-0s and all-1s vectors, respectively. Therefore these two
distinct inputs make up a collision in the compression function.

When n is divisible by a large power of 2 (e.g., n = 640, 1024 are proposed
in [3]), other collisions may be easy to find as well (with some noticeable prob-
ability over the choice of the ai). For example, the inputs x = 0101 · · ·01 and
x′ = 1010 · · ·10 will collide with probability 1/256, because Hx and Hx′ consist
of two repeated values, i.e., the sum of the even-indexed ais and the sum of
the odd-indexed ais. Other kinds of collisions are also possible, corresponding
essentially to the factorization of the polynomial αn − 1 over Z[α].

The attacks described above apply only to LASH’s underlying compression
function, and not (as far as we are aware) to the full LASH hash function itself.
Using different ideas (that do not exploit the above-described structural weak-
ness in fH), Contini et al [8] give a thorough cryptanalysis of the full LASH
hash function.

SWIFFT: A Modest Proposal for FFT Hashing 71

Acknowledgments

We thank Ron Steinfeld and Gaëtan Leurent (among others) for pointing out
the more efficient inversion attacks using the generalized birthday attack.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: STOC, pp. 99–108
(1996)

2. Baritaud, T., Gilbert, H., Girault, M.: FFT hashing is not collision-free. In: Ruep-
pel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 35–44. Springer, Heidel-
berg (1993)

3. Bentahar, K., Page, D., Silverman, J., Saarinen, M., Smart, N.: Lash. Technical
report, 2nd NIST Cryptographic Hash Function Workshop (2006)

4. Biham, E., Chen, R., Joux, A., Carribault, P., Jalby, W., Lemuet, C.: Collisions of
SHA-0 and reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494. Springer, Heidelberg (2005)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM 50(4), 506–519 (2003)

6. Cai, J., Nerurkar, A.: An improved worst-case to average-case connection for lattice
problems. In: FOCS, pp. 468–477 (1997)

7. Camion, P., Patarin, J.: The knapsack hash function proposed at Crypto 1989 can
be broken. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 39–53. Springer, Heidelberg (1990)

8. Contini, S., Matusiewicz, K., Pieprzyk, J., Steinfeld, R., Guo, J., Ling, S., Wang,
H.: Cryptanalysis of LASH. Cryptology ePrint Archive, Report 2007/430 (2007),
http://eprint.iacr.org/

9. Daemen, J., Bosselaers, A., Govaerts, R., Vandewalle, J.: Collisions for Schnorr’s
hash function FFT-hash presented at crypto 1991. In: Matsumoto, T., Imai, H.,
Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739. Springer, Heidelberg (1993)

10. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

11. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Technical Report TR-42, ECCC (1996)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

13. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: ANTS, pp. 267–288 (1998)

14. Joux, A., Granboulan, L.: A practical attack against knapsack based hash functions
(extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 58–66. Springer, Heidelberg (1995)

15. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

16. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

http://eprint.iacr.org/

72 V. Lyubashevsky et al.

17. Micciancio, D.: Almost perfect lattices, the covering radius problem, and applica-
tions to Ajtai’s connection factor. SIAM J. on Computing 34(1), 118–169 (2004)

18. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. Computational Complex-
ity 16, 365–411 (2007); Preliminary version in FOCS 2002

19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. on Computing 37(1), 267–302 (2007)

20. Nguyen, P., Stehlé, D.: LLL on the average. In: ANTS, pp. 238–256 (2006)
21. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-

tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876.
Springer, Heidelberg (2006)

22. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: STOC, pp. 478–487; Full version in ECCC Report TR06-147
(2007)

23. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

24. Schnorr, C.P.: FFT-hash, an efficient cryptographic hash function. In: Crypto
Rump Session (1991)

25. Schnorr, C.P.: FFT–Hash II, efficient cryptographic hashing. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 45–54. Springer, Heidelberg (1993)

26. Schnorr, C.P.: Serge Vaudenay. Parallel FFT-hashing. In: Fast Software Encryp-
tion, pp. 149–156 (1993)

27. Vaudenay, S.: FFT-Hash-II is not yet collision-free. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 587–593. Springer, Heidelberg (1993)

28. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

29. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for hash functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494.
Springer, Heidelberg (2005)

30. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)

A Unified Approach to Related-Key Attacks

Eli Biham1,�, Orr Dunkelman2,��, and Nathan Keller3,� � �

1Computer Science Department, Technion
Haifa 32000, Israel

biham@cs.technion.ac.il
2ESAT/SCD-COSIC, Katholieke Universiteit Leuven

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

3Einstein Institute of Mathematics, Hebrew University
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. This paper introduces a new framework and a generalization
of the various flavors of related-key attacks. The new framework allows
for combining all the previous related-key attacks into a complex, but
much more powerful attack. The new attack is independent of the num-
ber of rounds of the cipher. This property holds even when the round
functions of the cipher use different subkeys.

The strength of our new method is demonstrated by an attack on
4r-round IDEA, for any r. This attack is the first attack on a widely
deployed block cipher which is independent of the number of rounds.
The variant of the attack with r = 2 is the first known attack on 8-round
IDEA.

1 Introduction

In many applications the same block cipher is used with two unknown keys whose
relation is known. To study the security of block ciphers in these situations the
Related-key attacks framework was first presented in 1993 [3]. In a related-key
attack, the attacker is allowed to ask for plaintexts encrypted under two (or
more) related keys. This approach might seem unrealistic, as it assumes that
the attacker can control some relations between the unknown keys. Still, there
are some instances, e.g., the 2PKDP protocol [43], where this approach suggests
practical attacks.

A block cipher susceptible to a related-key attack has some security concerns.
It may not be suitable for other cryptographic primitives that use block ciphers

� This work was supported in part by the Israel MOD Research and Technology
Unit.

�� This work was supported in part by the Concerted Research Action (GOA) Am-
biorics 2005/11 of the Flemish Government and by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy).

� � � The research presented in this paper was supported by the Adams fellowship.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 73–96, 2008.
c© International Association for Cryptologic Research 2008

74 E. Biham, O. Dunkelman, and N. Keller

as building blocks, e.g., hash functions. A famous example for this claim is the
block cipher TEA [45]. A related-key property of TEA [33] was used in hacking
Microsoft’s Xbox architecture, which uses a Davies-Meyer hash function employ-
ing TEA as the underlying block cipher [46]. Another security concern is the fact
that such a cipher cannot be used in protocols which allow key manipulation,
such as the ones used in most inter-bank communications in the US which incre-
ment the key by one in each transaction. Sometimes, the security of the mode
of operation of the block cipher is closely related to the immunity of the cipher
to related-key attacks (as in the 3GPP case, as was shown in [29]).

There are two classes of related-key attacks: The first class, originally pre-
sented by Biham [3] and independently by Knudsen [36], are attacks that use
related-key plaintext pairs. These attacks use pairs of keys for which most of the
encryption function is equivalent. Such relations exist when the key schedule is
very simple. Also, in order for the attacks to succeed, the round functions have
to be relatively weak (i.e., there exists a known plaintext attack on the round
function given one or two input/output pairs). On the other hand, once such a
relation can be found, it can be used to devise an attack on the cipher, where
the attack is independent of the number of rounds.

The second class of related-key attacks, originally presented by Kelsey et
al. [32,33] is composed of attacks that treat the key relation as another freedom
level in the examination of statistical properties of the cipher. Besides related-
key differentials, where the key difference is used to control the evolution of
differences, this class contains variants of most of the known cryptanalytic tech-
niques: The SQUARE attack [20] was treated in the related-key model in [23]
and used to extend the best known SQUARE attack against AES into a related-
key attack that uses 256 related keys. The boomerang attack [44] and the rect-
angle attack [5] were combined with related-key differentials to introduce the
related-key boomerang and related-key rectangle attacks [7,28,35]. Finally, lin-
ear cryptanalysis [38] was also combined with related-key attacks to produce a
related-key attack on 7.5-round IDEA [8]. The second class of attacks can deal
with much more complex key schedules and round functions, but their effective-
ness (usually) drops with the number of rounds.

In this paper we unify the main ideas from the two classes of related-key
attacks into one framework. The new framework has two main advantages:

1. A new approach for generating multiple related-key plaintext pairs, based
on multiple encryptions under chains of related keys. When the key schedule
has a short cycle, it is possible to obtain many related-key plaintext pairs
from one pair using encryption under several keys. This technique allows to
mount attacks on round functions that require more than two input/output
pairs.

2. A combination of the two classes of attacks to allow a related-key attack on
the underlying round function (rather than applying only a simple attack on
the round function).

Thus, the unified approach allows attacking more ciphers, as the restrictions on
the key schedule and on the round functions are significantly reduced.

A Unified Approach to Related-Key Attacks 75

To demonstrate the strength of the new technique, we apply our new at-
tack to 4r-round IDEA [37]. IDEA is a 64-bit block cipher with 128-bit keys,
which was introduced by Lai and Massey in 1991. IDEA was thoroughly an-
alyzed [1,4,7,8,9,12,16,18,19,21,22,26,27,31,39,40,41] but the best known attack
on the cipher is against 7.5-round IDEA (out of 8.5 rounds) in the related-key
model [8], and 6-round IDEA in the single key model [9].

We first introduce a related-key attack on 4-round IDEA. Then, using our
new framework, we elevate this attack to any 4r-round IDEA, presenting the
first attack on IDEA that is independent of the number of rounds. The variant
of the attack with r = 2 is the first known attack on 8-round IDEA.

The remainder of this paper is organized as follows: In Section 2 we present
the various related-key attacks. We incorporate all the attacks into the new
related-key framework in Section 3. Section 4 describes our attack on 4r-round
IDEA. Appendix A contains a short description of IDEA. Appendix B gives
the full description of the 4-round related-key differential of IDEA we use in our
attack. In Appendix C we outline a different attack algorithm on 4r-round IDEA
(with roughly the same data and time complexities). We conclude the paper in
Section 5.

2 Previous Work

Related-key attacks exploit the relations between the encryption processes under
different but related keys. Related-key attacks can be divided into two classes.
The first class is attacks concentrated on detecting and exploiting related-key
plaintext pairs, and the second class is adaptation of the standard cryptanalytic
attacks into the related-key model.

2.1 Related-Key Attacks Exploiting Related-Key Plaintext Pairs

The original variant of related-key attacks introduced in [3,36] is attacks ex-
ploiting related-key plaintext pairs. The main idea behind the attack is to find
instances of keys for which the encryption processes deploy the same permuta-
tion (or almost the same permutation). To illustrate the technique, we shortly
present the attack from [3].

Consider a variant of DES in which all the rotate left operations in the key
schedule algorithm are by a fixed number of bits.1 For any key K1 there exists
another key K2 such that the round subkeys KR1

i , KR2
i produced by K1 and

K2, respectively, satisfy:

KR1
i+1 = KR2

i , for i = 1, . . . , 15.

For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P2 = fKR1
1
(P1),

where fsk(P) denotes one round DES encryption of P under the subkey sk, then
the corresponding ciphertexts C1 and C2 satisfy C2 = fKR2

16
(C1). Given such a

1 Such a variant was proposed by Brown and Seberry [17].

76 E. Biham, O. Dunkelman, and N. Keller

pair of plaintexts (called in the sequel a related-key plaintext pair), the subkeys
KR2

16 and KR1
1 can be easily extracted [3].

Throughout the paper we shall refer to the round in which the key is re-
covered as the underlying round function. This kind of related-key attacks is
based on finding related-key plaintext pairs, which are then used to extract an
input/output pair (or two pairs) to the round function. Once the input/output
pair to the underlying round function is given, the attacker applies a cryptana-
lytic attack on the underlying round function and retrieves the key.

In the above attack, the attacker asks for the encryption of two pools of 216

chosen plaintexts under two (unknown) related keys K1, K2. The plaintexts in
the first pool, denoted by S1, are of the form (X, A) and are encrypted under
K1, and the plaintexts in the second pool, denoted by S2, are of the form (A, Y)
and are encrypted under K2, where A is some fixed 32-bit value and X, Y vary.

The attacker then finds pairs of ciphertexts (C1, C2), such that the first ci-
phertext belongs to S1 and the second one belongs to S2 and such that the
left half of C1 equals to the right half of C2. Once such a pair is found, then
there is a good chance that P1 and P2, the corresponding plaintexts, satisfy that
P2 = fKR1

1
(P1). If this is the case, then the pair (P1, P2) is a related-key plain-

text pair, and it can be used to retrieve the values of KR2
16 and KR1

1. It can
be shown that with a high probability, if the pair is not a related-key plaintext
pair, this procedure yields a contradiction, and hence, once a consistent value
for KR2

16 and KR1
1 is suggested by the attack, it is the correct value with high

probability.
The data complexity of the attack is 217 chosen plaintexts, and the time

complexity of the attack is 217 encryptions as well. We note that even if there
were more rounds in the modified version of DES, the attack would still be
successful.

In the more general case, this class of related-key attacks is composed of
three parts: Obtaining related-key plaintexts, identifying the related-key plain-
text pairs, and using them to deduce the key. In many cases, identifying the
related-key plaintext pairs is best achieved by assuming for each candidate pair
that it is a related-key plaintext pair, and then using it as an input for the key
recovery phase of the attack. In other cases, the round functions’ weaknesses
allow the attacker to identify these pairs easily.

The attack relies heavily on the simplicity of the key schedule, the similarity of
the rounds, and on the cryptographic weakness of the underlying round function.
As a result, most of the known block ciphers are immune to related-key attacks
of this class.

2.2 Slide Attacks

When a cipher has self-related keys, i.e., it can be written as Ek = f �
k = fk ◦

fk ◦ · · · ◦ fk it is susceptible to a variant of the related-key attack called the
slide attack [13]. In this case, it is possible to apply the related-key attack to
the cipher with K1 = K2, thus eliminating the key requirement of having two
keys. The attacker looks for a slid pair, i.e., two plaintexts (P1, P2) such that

A Unified Approach to Related-Key Attacks 77

P2 = fk(P1). In this case, the pair satisfies C2 = fk(C1) as well. When the
round function fk is simple enough, it is possible to use these two pairs in order
to deduce information about the key.

In the slide attack the attacker obtains enough plaintext/ciphertext pairs to
contain a slid pair, and has to check for each possible pair of plaintexts whether
it is a slid pair by applying the attack on fk. When dealing with a general block
cipher this approach requires O(2n/2) known plaintexts and O(2n) applications
of the attack on fk, where n is the block size. For Feistel block ciphers, the attack
can be optimized using O(2n/4) chosen plaintexts and O(1) applications of the
attack. Note that as in the original related-key attacks, the main drawback of
this approach is that the attack can be used only if fk can be broken using only
two known input/output pairs, i.e., given one slid pair.

In 2000, Biryukov and Wagner [14] presented two variants of the slide attack,
named complementation slide and sliding with a twist. These variants allow for
treating more complex functions in the slide attack. Nevertheless, there are no
widely used ciphers that can be attacked using these techniques.

The authors of [14] also presented several techniques aimed at finding several
slid pairs simultaneously, enabling to use the attack even if several input/output
pairs are needed for attacking fk. One of these techniques, fully explored by
Furuya [24], uses the fact that when (P1, P2) is a slid pair then (Et

k(P1), Et
k(P2))

are also slid pairs for all values of t.2 This allows the attacker to transform any
known plaintext attack on fk that requires m known plaintexts to an attack on
Ek with a data complexity of O(m ·2n/2) adaptively chosen plaintexts. The time
complexity of this approach is O(2n) applications of the known plaintext attack
on fk.3

2.3 Attacks Adapting Standard Techniques to the Related-Key
Model

The related-key model can be used as a platform for all standard attacks. This
fact was first noted in [32,33] where related-key differentials were introduced.
Recall, that a regular differential deals with some plaintext difference ∆P and a
ciphertext difference ∆C such that

Pr P,K [EK(P) ⊕ EK(P ⊕ ∆P) = ∆C]

is high enough. A related-key differential is a triplet of a plaintext difference ∆P ,
a ciphertext difference ∆C, and a key difference ∆K, such that

Pr P,K [EK(P) ⊕ EK⊕∆K(P ⊕ ∆P) = ∆C]

is high enough.
2 Throughout the paper the notation F i(·) means i successive applications of F (·).
3 It is worth mentioning that the technique can be easily improved in the case of Feistel

ciphers, for which O(2n/4) chosen plaintexts and O(m) adaptive chosen plaintexts are
sufficient to achieve m slid pairs, which are easily identified.

78 E. Biham, O. Dunkelman, and N. Keller

The related-key differential attack uses the subkey differences to control the
development of differences through the encryption process. As a result, related-
key differentials are usually much stronger than the respective “ordinary” dif-
ferentials. The related-key differential technique was used to attack numerous
block ciphers, including GOST, TEA, and 6-round KASUMI.

For example, using this approach a 60-round related-key differential with prob-
ability 2−30 of TEA is presented. Using this related-key differential, it is possible
to break the full TEA (with 64 rounds) using about 232 related-key chosen plain-
texts and a small computational effort [33].

After the introduction of impossible differentials, i.e., differentials with zero
probability, in [4], the concept of related-key impossible differentials was pre-
sented [30]. In this case, the subkey relations are used to ensure that the input
difference of the impossible differential can not evolve into the output difference.
This technique was used to analyze 8-round AES-192.

Related-key differentials were also used as the base for the related-key
boomerang and the related-key rectangle attacks [7,28,35]. These attacks use
two related-key differentials, i.e., up to four related keys. Hence, they enjoy the
transition into related-key differentials twice, leading to much higher probabil-
ities for the distinguisher (in exchange for more related keys). The related-key
rectangle technique was successfully applied to several block ciphers, including
10-round AES-192, 10-round AES-256, the full SHACAL-1, the full KASUMI,
and 7-round IDEA.

In [23] it is showed that the SQUARE attack can also be improved in the
related-key model. The 4-round SQUARE property of AES used in the regular
SQUARE attack, is extended into a 5-round related-key SQUARE property for
AES-256. As a result, while the ordinary SQUARE technique can be used to
attack up to 7 rounds of AES, the related-key SQUARE attack is applicable to
a 9-round variant of AES.

Finally, even linear relations can be improved in the related-key model. In [8]
a 2.5-round linear relation of IDEA is presented. When two related keys are
used, this linear relation can be extended to a 4.5-round linear relation. This
extension improves the regular attack on IDEA by 2.5 rounds, and is the best
known attack so far against IDEA.

3 The Unified Related-Key Framework

In this section we present the new framework unifying the different related-key
attacks. The construction of the framework is divided into two stages:

– First, we present a new approach to generating multiple related-key plaintext
pairs, based on encryption under chains of related keys. This approach allows
to mount a related-key attack on the entire cipher, even if the attack on the
underlying function requires multiple input/output pairs.

– Then, we unify the two classes of related-key attacks into a single framework.
This allows to use a related-key attack on the underlying round function.

A Unified Approach to Related-Key Attacks 79

Thus, even if the underlying round function is secure against regular crypt-
analytic attacks, it can still be attacked using a related-key attack.

3.1 A New Approach for Generating Multiple Related-Key
Plaintext Pairs

When a cipher can be written as Ek = f �
k = fk ◦ fk ◦ · · · ◦ fk and the slide attack

can be applied, any slid pair (P, Q) can be used to generate many additional slid
pairs of the form (Et

k(P), Et
k(Q)), for all t. These pairs can be used to devise

a slide attack on the cipher even if multiple input/output pairs are required to
break the underlying round function. However, this property exists only since the
relation between the plaintexts of the slid pair is similar to the relation between
the ciphertexts. If the plaintexts satisfy Q = fk(P) then the ciphertexts satisfy
Ek(Q) = fk(Ek(P)), and thus can be treated as the plaintexts in a new slid pair.

For an encryption with different subkeys, i.e., when EK = fkr ◦ fkr−1 ◦ · · · ◦
fk1 , the situation is more complicated. The plaintexts of a related-key plain-
text pair satisfy Q = fk1(P), but the respective ciphertexts satisfy Ek(Q) =
f“kr+1”(Ek(P)).4 Hence, unless k1 = “kr+1”, multiple encryption does not yield
additional related-key plaintext pairs.

Our new approach uses chains of keys in order to achieve the additional
related-key plaintext pairs. Let EK = fkr ◦ fkr−1 ◦ · · · ◦ fk1 , and let (P 1, Q1)
be a related-key plaintext pair (with the corresponding ciphertexts (P 2, Q2))
with respect to the keys (K1

P , K1
Q), i.e., kP1

i+1 = kQ1
i , and f

k
P1
1

(P 1) = Q1. Then,

if K2
P is a key such that kP2

1 = kQ1
r , then f

k
P2
1

(P 2) = Q2. Moreover, let K2
Q sat-

isfy that kP2
i+1 = kQ2

i , then (P 2, Q2) is a related-key plaintext pair with respect
to (K2

P , K2
Q).

Defining K2
P as a function of K1

P is usually very simple, and usually it is
the key that produces the next r subkeys if the key schedule would have been
extended by r rounds. Formally, there are cases in which there exists a function
g(·) such that for every pair of keys (K1

P , K2
P = g(K1

P)), and the key K1
Q related

to K1
P , we have kP2

1 = kQ1
r . For example, in the modified variant of DES con-

sidered in Section 2, g can be the rotation of the key by 16 times the rotation
in each round. Examples of real ciphers for which such g exists are 4r-IDEA
and the full SHACAL-1. In IDEA, where each fki represents 4 rounds, we have
g(K) = K ≪ (75 · r). For SHACAL-1, g(K) is obtained from K by running the
LFSR used in the key schedule of the cipher 80 steps forward.

Assume now that for the examined cipher there exists a function g as described
above. If the pair (P 1, Q1) is a related-key plaintext pair with respect to the
keys (K1

P , K1
Q), then the corresponding ciphertext pair (P 2, Q2) is a related-key

plaintext pair with respect to the keys (g(K1
P), K2

Q), where K2
Q is the key related

to g(K1
P) (and in many cases it is g(K1

Q)).

4 “kr+1” is the rth subkey produced by the second key. It can be treated as the r+1th
subkey produced by the first key.

80 E. Biham, O. Dunkelman, and N. Keller

P 1 P 2 P 3 P t P t+1
kP1
1 kP1

2 kP1
r

EK1
P

kP2
1 kP2

2

EK2
P

EKi
P

kP1
1 kP1

2

EK1
P

Q1 Q2 Q3 Qt Qt+1
kP1
1 kP1

2 kQ1
r

EK1
Q

kQ2
1 kQ2

2

EK2
Q

EKi
Q

kQ1
1 kQ1

2

EK1
Q

Dashed line stands for equal values.

Fig. 1. The Evolution of Multiple Related-Key Plaintext Pair

This process can be repeated to achieve multiple related-key plaintext pairs
with respect to different pairs of related keys. We define Ht

KP
= Egt−1(KP) ◦

Egt−2(KP) ◦ . . . ◦ EKP and similarly Ht
KQ

= Egt−1(KQ) ◦ Egt−2(KQ) ◦ . . . ◦ EKQ .
If (P 1, Q1) is a related-key plaintext pair with respect to (KP , KQ), then the pair
(Ht

KP
(P 1), Ht

KQ
(Q1)) is a related-key plaintext with respect to (gt(KP), gt(KQ)).

While in some cases obtaining many related-key plaintext pairs under different
keys might be useful, we have not identified a concrete example where it can be
used as is. We do note that for some specific cases this property can be used to
identify the related-key plaintext pairs more easily. Assume that the related-key
plaintext pair satisfies some relation in the ciphertexts which is not sufficient for
the immediate identification of the related-key plaintext pair (for example, n/4
bits out of the n bits of the ciphertexts have to be equal). It is possible to identify
the related-key plaintext pair by using the fact that a related-key plaintext pair
is expanded into several such ones.

In most cases though, the attack on the underlying function requires several
input/output pairs encrypted under the same key. However, we note that if for
some t, gt(K1

P) = K1
P , we can get more related-key plaintext pairs under the

original key pair (K1
P , K1

Q). We outline the evolution of such a pair in Figure 1.
For example, in 4r-IDEA the cycle length of g for all the keys equals at most

64. Hence, using the algorithm presented above we can generate efficiently many
related-key plaintext pairs encrypted under the same pair of related keys. For
block ciphers whose key schedule is based on LFSRs, e.g., SHACAL-1, the cycle
size is lcm(r, l) where l is the cycle length of the LFSR and r is the number of
rounds of the cipher.

After obtaining enough related-key plaintext pairs under the keys (KP , KQ)
it is possible to mount any known plaintext attack on the underlying round
function, similarly to the slide case. If sufficiently many known plaintexts
are available, then it might be possible to mount chosen plaintext attacks, or
even adaptive chosen plaintext attacks. Therefore, the new approach for the

A Unified Approach to Related-Key Attacks 81

generation of related-key plaintext pairs allows to mount the related-key attack
even if the underlying function is not a weak one.

Our above observation can be used as-is, or in conjunction with the method we
describe in the following section. We note that the data and time complexities
required for the generation of the sequence are discussed separately, as they
depend heavily on the structure of the analyzed cipher.5

3.2 A New Approach for Attacking the Underlying Round
Functions

The method described in the previous section enables the attacker to produce
many related-key plaintext pairs given one such pair. As noted earlier, these
pairs can be used to mount any regular key recovery attack on the underlying
round function. However, in many cases, no such attacks exist, while there is a
related-key attack on the underlying round function, e.g., a related-key differen-
tial attack.

Our new framework allows to combine the related-key structure with a related-
key attack on the underlying function. The main feature of the new framework is
examining and comparing several chains of related-key plaintext pairs encrypted
under different (but related) pairs of related keys.

Recall that Ek = fkr ◦ fkr−1 ◦ · · · ◦ fk1 , and assume that there exists a related-
key attack on f(·). We shall describe the case of a related-key attack that requires
two related keys, but related-key attacks which require more keys can be easily
integrated into this framework.

Assume that the related-key attack on f(·) uses two related keys k1 and
k̂1. We denote the data used in the attack by the set of input/output pairs
(I1, O1), (I2, O2), . . . encrypted under k1, and the set of input/output pairs
(Î1, Ô1), (Î2, Ô2), . . . encrypted under k̂1. There might be some relation between
the inputs, e.g., in the case of a related-key differential attack, the relation be-
tween the inputs is Ij ⊕ Îj = ∆IN .

Our unified attack allows to mount the attack on fk1(·) although the outputs
of fk1(·) are not immediately available to the attacker. The outputs are detected
as the related-key plaintext counterparts of the inputs (if more than one in-
put/output pair is needed under a single pair of keys, they can be generated
using the approach provided in Section 3.1).

The basic algorithm of the unified attack is the following:

1. Pick two plaintexts P and R. For every possible pair of plaintexts Q and S,
perform the following:
(a) Assume that (P, Q) is a related-key plaintext pair with respect to the

keys (KP , KQ) and generate from them a chain of related-key plaintext
pairs (P t, Qt) with respect to the same pair of keys.

5 For the sake of simplicity, we describe only attacks that use pairs encrypted under the
same pair of related keys. In some cases, the attack can be improved by aggregating
the information obtained from several pools of related-key plaintext pairs encrypted
under different pairs of related keys.

82 E. Biham, O. Dunkelman, and N. Keller

P 1 P 2 P 3 P 4 P 5

Q1 Q2 Q3 Q4 Q5

R1 R2 R3 R4 R5

S1 S2 S3 S4 S5

P t

Qt

Rt

St

EK1
P

EK1
Q

EK1
R

EK1
S

EK2
P

EK2
Q

EK2
R

EK2
S

EK3
P

EK3
Q

EK3
R

EK3
S

EK4
P

EK4
Q

EK4
R

EK4
S

EKt
P

EKt
Q

EKt
R

EKt
S

I1

O1

I2

O2

Î1

Ô1

Î2

Ô2

(P i, Qi) are related-key plaintext pairs with respect to (Ki
P , Ki

Q).

(Rj , Sj) are related-key plaintext pairs with respect to (Kj
R, Kj

S).
(Ii, Oi) are input/output pairs for the related-key attack on f(·) for the first key.
(Îi, Ôi) are input/output pairs for the related-key attack on f(·) for the second key.

Fig. 2. Overview of the Related-Key Plaintext Pairs Used in the Unified Attack

(b) Assume that (R, S) is a related-key plaintext pair with respect to the
keys (KR, KS) and generate from them a chain of related-key plaintext
pairs (Rm, Sm) with respect to the same pair of keys.

(c) Detect a set of (P ti , Qti) such that P ti = Ii, and let Oi = Qti .
(d) Detect a set of (Rmj , Smj) such that Rmj = Îj , and let Ôj = Smj .
(e) Apply the related-key attack on fk1(·) and fk̂1

(·) using the inputs
I1, I2, . . . and Î1, Î2, . . . and the corresponding outputs O1, O2, . . . and
Ô1, Ô2,

2. If for all the checked pairs Q and S the related-key attack on fk1 fails, repeat
Step 1 with a different choice of P and R.

The unified attack considers simultaneously two chains {(P t, Qt)} and
{(Rm, Sm)} encrypted under different pairs of related keys. Each chain contains
a set of input/output pairs for the round functions fk1 and fk̂1

, thus allowing
to apply the related-key attack. We outline these chains of plaintexts and their
relations in Figure 2.

Our new approach increases the problem of identifying the related-key plain-
text pairs. Now, the attacker has to find two related-key plaintext pairs (P, Q)
and (R, S) rather than only one.

The general algorithm can be improved in many cases. The relations be-
tween Ii’s and Oi’s can be used to reduce the number of related-key plaintext

A Unified Approach to Related-Key Attacks 83

counterparts corresponding to P and (independently) to R [3,13]. For example,
if f(·) is one round of a Feistel cipher, then the number of possible counterparts
of P (and of R) is greatly reduced. If there exists a relation between the val-
ues of Oi’s and the values of Ôj ’s they can be used as well to reduce the need
of trying all possible pairs of pairs ((P, Q) and (R, S)). We observe that the
possible number of counterparts can further be reduced using relations between
the chains. For example, assume that there exists a related-key differential of
f(·) that predicts that with high probability the input difference α becomes an
output difference β. In this case, obtaining the first related-key plaintext pair
(P, Q) suggests that with a high probability (R = P ⊕ α, S = Q ⊕ β) is also a
related-key plaintext pair. We note that in the case of the slide attack, a similar
improvement is suggested in [14].

3.3 Comparison with Other Related-Key Attacks

The main drawback of our proposed framework is the fact that the new attack
requires encryption under multiple related keys. Hence, in order to measure the
effectiveness of the new framework, it is not sufficient to compare it with the
classic generic attacks, such as exhaustive key search and dictionary attacks. The
framework should be compared also to generic attacks that allow the attacker
to use encryption under multiple related keys. In this section we consider two
attacks of this class.

The first attack is a generic time-memory-key trade-off attack suggested in
[11]. In the classic time-memory trade-off attack on block ciphers, if the number
of keys is N , the available memory is M , and the time complexity of the on-
line step of the attack is T , then N2 = TM2. In addition, the attack requires
a precomputation step of N operations. In [11] the authors show that if the
attacker is able to ask for encryptions under D related keys, then the complexities
of the attack can be reduced according to the curve (N/D)2 = TM2. The length
of the precomputation step is also reduced to N/D.

In view of this generic attack, it seems that an attack requiring encryption
under D related keys should be compared to an exhaustive search over a space
of N/D keys or to a classic time-memory tradeoff attack over such key space.6

The second attack is the generic attack presented in [2]. The attack uses the
fact that if for any block cipher a key is periodic, i.e., can be rotated to itself, this
can be identified easily using a few related-key queries. Actually, this property
defines a weak key class for all block ciphers. In the attack, the attacker asks for
the encryption under various keys, tracing the relation of the keys to the original
key, and checks whether the related keys fall into the weak key class.

We note that the attack can be applied with other weak key classes as well. In
general, if the size of a weak key class is WK and the total number of possible

6 We note that the time-memory-key attack recovers only one of the related keys.
However, the other keys can be easily found using the relations between the related
keys. Also note that if the relation between the keys is correlated to the tables
constructed in the time-memory-key attack, the attack might fail.

84 E. Biham, O. Dunkelman, and N. Keller

keys is N , the attack is expected to require N/WK related keys. For the generic
weak-key class presented in [2], the attack requires 2N/2 related keys and a few
chosen plaintext queries under each of the keys.

The attack presented in Section 4.2 requires 256 related keys, has a memory
complexity of 266 and a time complexity of 2100 for a 128-bit key cipher. Hence,
its complexity is better than that of the corresponding time-memory-key tradeoff
attack. It also compares favorably with the generic attack presented in [2] since
for such a small amount of related keys the success probability of the generic
attack is 2−56.

4 Attacking 4r-Round IDEA

IDEA is a 64-bit, 8.5-round block cipher with 128-bit keys [37]. IDEA is a com-
position of XOR operations, additions modulo 216, and multiplications over the
field GF (216 + 1). The full description of IDEA is given in Appendix A.

4.1 Observations on IDEA Used in the Attack

Our attack on IDEA is based on the following two observations:

1. The key schedule of IDEA has the following property: If the original key is
rotated by 75 bits to the left and entered into the key schedule algorithm, the
resulting subkeys of rounds 1–4 are the same as the subkeys of rounds 5–8
for the original key. Hence, we can treat 4r-IDEA as a cascade of r 4-round
IDEA components.

2. There exists a related-key truncated differential on 4-round IDEA. The key
difference of the differential is in bits 25 and 48. The input difference of the
differential is ∆IN = (0, 8040x, 0, 0) and the fourth input word is set to 1.
This input difference leads to an output difference ∆OUT = (a, a, b, b), where
a and b are some (not necessarily different) 16-bit values, with probability of
2−17. The related-key truncated differential is fully described in Appendix B.

We denote four rounds of IDEA with key k (i.e., the first 128 bits that are
used as subkeys), by 4IDEAk. Thus, a 4r-round IDEA with a key K can be
described as

EK(P) = 4IDEAK≪75·(r−1)(. . . (4IDEAK≪75(4IDEAK(P)))),

where ≪ is the rotate left operation. The attack on 4r-round IDEA uses the
unified related-key framework. The cipher is treated as a cascade of r 4-round
components, and the related-key truncated differential is used to attack the
underlying function, i.e., 4-round IDEA.

A pair of ciphertexts C1 = (C1
1 , C1

2 , C1
3 , C1

4) and C2 = (C2
1 , C2

2 , C2
3 , C2

4) that
satisfy the output difference ∆OUT satisfy that

C1
1 ⊕ C2

1 = C1
2 ⊕ C2

2 and C1
3 ⊕ C2

3 = C1
4 ⊕ C2

4

A Unified Approach to Related-Key Attacks 85

These relations can be easily rewritten into:

C1
1 ⊕ C1

2 = C2
1 ⊕ C2

2 and C1
3 ⊕ C1

4 = C2
3 ⊕ C2

4

Thus, we define the function evaluate(C), to efficiently help us to determine
right pairs:

evalute(C = (C1, C2, C3, C4)) = C1 ⊕ C2||C3 ⊕ C4.

Thus, in order to check whether two values (C1, C2) satisfy the output difference
of the related-key differential, it is sufficient to check whether evaluate(C1) =
evaluate(C2).

For the sake of simplicity we shall describe the attack on 8-round IDEA. The
changes needed for attacking 4r-round IDEA with r �= 2 are relatively small
(and are mainly in the data generation phase).

The attack has three main steps. The first one is data generation, where
chains of plaintexts are generated according to the framework we described in
the previous section. The purpose of the chains is to produce several related-key
plaintext pairs simultaneously. The second step is composed of analyzing the
chains and trying to find the related-key plaintext pairs efficiently. This step is
performed by using the key recovery step (the third one). The last step is the
key recovery step, in which the candidates for being related-key plaintext pairs
are used for key recovery. Once sufficiently many related-key plaintext pairs are
found, so does the right key.

For sake of simplicity we assume that the chains of plaintexts generated in
the attack compose the entire code book, i.e., all plaintexts are there. The cases
when this assumption does not hold are discussed in Section 4.4. As long as the
chains contain enough related-key plaintext pairs, our attack works. To justify
the assumption we made, we note that starting with a chain which does not
contain enough plaintexts is highly unlikely.

4.2 The Attack Algorithm

1. Data Generation
(a) Let KP be the unknown key, and let KQ = KP ≪ 75. Let KR = KP ⊕

e25,48, i.e., KR is the same as KP in all bits but bits 25 and 48. Finally,
let KS = KR ≪ 75. Pick randomly four plaintexts: P 0

0 , Q75
0 , R0

0, S
75
0 .

(b) Starting from P 0
0 and KP compute the following chain:

P l+22 mod 128
i =

{
EKP ≪l(P �

i) if l + 22 �≡ 0 mod 128
EKP ≪l(P �

i−1) if l + 22 ≡ 0 mod 128

Continue till P 0
0 is about to be encrypted under KP again (according

to our assumption — after 264 encryptions under KP). We denote this
chain by ChainP .

(c) Compute ChainQ starting from Q75
0 as the plaintext and KQ as the key,

using the same process.

86 E. Biham, O. Dunkelman, and N. Keller

(d) Denote by KR = KP ⊕ e25,48, Pick a plaintext R0
0 randomly, and re-

peat the previous step with the key KR to obtain the chain ChainR =
R0

0, R
22
0 , . . . , R106

264−1.
(e) Pick a plaintext S75

0 randomly and perform the same operation in the
previous step with the key KS = KR ≪ 75, obtaining the chain
ChainS = S75

0 , S97
0 , . . . , S75

1 , . . . , S53
264−1. For sake of simplicity, we as-

sume that each of the four chains covers all possible plaintexts (i.e., each
plaintext is encrypted under every key of the chain). We deal with the
case of several chains in Section 4.4.

2. Analyzing the Chains: Locate a set of 236 pairs of plaintexts (P 0
i1

, P 0
i2

) in
ChainP whose fourth word equals 1 for both plaintexts. For each such pair:
(a) Compute the values of j1 and j2, such that R0

j1
= P 0

i1
⊕ ∆IN and R0

j2
=

P 0
i2

⊕ ∆IN .
(b) For each S75

m ∈ ChainS store the 64-bit value valueS = evaluate(S75
m)||

evaluate(S75
m+j2−j1

) along with m in a table TableS indexed by the com-
puted value.

(c) For each Q75
l ∈ ChainQ perform:

– Compute the 64-bit value valueQ = evaluate(Q75
l)||evaluate

(Q75
l+i2−i1

). Search for valueQ in TableS.
– For each possible value of m associated with valueQ, check whether

Q75
l = 4IDEAKP (P 0

i1); Q75
l+i2−i1 = 4IDEAKP (P 0

i2);

S75
m = 4IDEAKR(R0

j1); S75
m+j2−j1 = 4IDEAKR(R0

j2)

using the key recovery attack that uses the respective pairs (we out-
line this attack later), where 4IDEA denotes 4-round IDEA. If the
key recovery attack succeeds, the key is found.

ChainP and ChainQ contains input/output pairs to 4IDEAKP (·) whose or-
der is unknown. The same is true for ChainR and ChainS with respect to
4IDEAKR(·). The attack tries all the possible shifts between ChainP and
ChainQ (for which one is the correct shift). To prevent the need of checking
all the shifts between ChainR and ChainS , we use the related-key truncated
differential. The key difference between KP and KR is the key difference of the
differential, which means that an input pair (P 0

i , R0
j = P 0

i ⊕∆IN) is more likely
to have the corresponding outputs (Q75

l , S75
m) satisfying the output difference of

the differential.
The attack algorithm first tries to find the shift between ChainP and ChainQ.

For each such shift, we assume it is the correct one and we find 236 pairs of pairs
(P 0

i1 , R
0
j1) and (P 0

i2 , R
0
j2) with difference ∆IN . If indeed the shift was correct, the

probability that the corresponding outputs satisfy the output difference (twice) is
2−34, and thus, the only remaining problem is finding the corresponding outputs.
For the ChainP , as we know the shift of ChainQ we know the outputs. Thus,
we only need to find the shift of ChainS with respect to ChainR.

The last task is achieved by observing that if S75
m is the output of Rj1 , then

S75
m+j2−j1 is the output of Rj2 . Thus, we compute for each S75

m the value of

A Unified Approach to Related-Key Attacks 87

evaluate(S75
m)||evalaute(S75

m+j2−j1
). Similarly, if Q75

l is the output of P 0
i1

, then
Q75

l+i2−i1
is the output of P 0

i2
. If indeed the pairs (P 0

i1
, R0

j1
) and (P 0

i2
, R0

j2
) satisfy

the differential, then it must hold that evaluate(S75
m) = evalute(Q75

l) and that
evalaute(S75

m+j2−j1) = evalaute(Q75
l+i2−i1

). Thus, the attack succeeds in retriev-
ing the right shift of ChainS with respect to ChainR given the right shift of
ChainQ with respect to ChainP .

The most basic attack retrieves the subkey bits involved in the last MA layer
(by finding the key value for which both pairs have a zero difference before the
MA layer). An additional fast filtering of wrong subkey values can be performed
using the first round of the truncated differential (verifying that indeed during
the first KA layer the difference in the second word becomes 8000x).

If indeed the related-key plaintext pairs are the ones analyzed, then there is
a probability of 2−34 that the attack succeeds (as both pairs should be right
pairs for the attack to succeed). If this is not the case, then it is highly unlikely
that the key recovery attack succeeds. We first note that for any value of Q75

l

we expect about one suggestion for the value of m. Then, the probability that
two wrong pairs (or even one wrong pair and one right pair) agree on the key for
the fourth round MA layer is 2−32. Considering the additional filtering based
on the first round as well, the probability that a wrong Q75

l leads to a consistent
key suggestion is 2−34.

Thus, it is expected that of the 264 possible relations for a given P 0
i1

and P 0
i2

,
only 230 values of Q75

l may seem suitable, and these can be easily discarded using
an additional “pair” of related-key plaintexts and ciphertexts.

4.3 The Time Complexity of the Attack

The first step of the attack is composed of constructing four chains. Each such
chain requires the encryption of 264 values, each under 64 keys. Thus, the time
complexity of the data generation is 4 · 64 · 264 = 272 encryptions.

The time complexity of Step 2 is mostly dominated by Step 2(c). It is easy
to see that using a well chosen data structure, Step 2(a) takes a relatively small
number of operations for each pair. For each of the 236 pairs (P 0

i1
, P 0

i2
), the time

complexity of Step 2(b) is about 264 operations. Step 2(c) is repeating 264 times
a basic operation and a key recovery attack. The key recovery attack can be
efficiently simulated using two table lookups (to a table suggesting for each pair
the respective MA layer subkey). Thus, the time complexity of Step 2 is about
236+64 = 2100 operations.7

We conclude that the attack requires 272 related-key chosen plaintexts, and
has a time complexity of about 2100 operations.

The memory complexity of the attack is dominated by the stored data and
the table containing valueS. Thus, the total memory required by our attack is at

7 By generating the indices using a little different order, it is possible to use eight
64-bit logical operations for the computation of valueQ or valueS. Thus, the term
“operation” refers here to about eighteen 64-bit logical operations and seven memory
accesses.

88 E. Biham, O. Dunkelman, and N. Keller

most 4 ·264 blocks of memory for the data, and additional 264 entries of the form
m||valueS (which take two blocks of memory each). Thus, the total memory
used by the attack is at most 48 · 264 bytes (which are 6 · 264 blocks of 64 bits).

4.4 Dealing with Multiple Chains

When the chains do not cover the entire plaintext space, then the attack al-
gorithm has to be tweaked a bit to ensure success. We first note that we can
divide the entire plaintext space into multiple chains, i.e., ChainP1 , ChainP2 ,
. . . , and equivalent ChainQ1 , ChainQ2 , Then, we wait till 236 pairs of val-
ues (P 0

i1 , P
0
i2) that can be used in the attack are encountered in some chain

ChainPn .
We can treat the chains as generated by a random permutation over the

plaintext space of a given key, e.g., KP . Hence, the analysis of [25] can be applied,
revealing that the longest chain is expected to cover about 263 plaintexts (for a
given key), that the second longest chain covers about 262 plaintexts, etc.

As in the original description, we start from a random plaintext and start
generating the chain. With high probability this plaintext belongs to one of the
longest chains. Doing the same for the generation of the other chains, we are
expected to find chains of the same length, i.e., ChainPi and ChainQi of the
same length, and ChainRj and ChainSj of the same length. As the existence
of a related key plaintext pair in the two chains ChainPi and ChainQi can
happen only if their length is the same, then this can improve the attack, by
first generating the chains, and then reducing the number of candidate related-
key plaintext pairs by taking the chain lengths into account.

There is a small problem that may rise. In order for the attack to work,
(P 0

i1 , P
0
i2) counterparts, i.e., R0

j1 and R0
j2 has to be in the same chain chainRj

(for the indexing phase done in Step 2(b)). This condition cannot be assured.
However, assuming that the cycle structure of the chains ChainR1 , ChainR2 ,
. . . behaves as if 8-round IDEA is a random permutation, it is expected that
there is a chain ChainR whose size is larger than 263 with overwhelming proba-
bility [25]. If this is the case, we can change the attack algorithm such that only
pairs of plaintexts (P 0

i1
, P 0

i2
) whose counterparts are in that chain, are considered.

This increases the number of pairs that are considered from 236 to 238 at most,
but as at least 3/4 of the new pairs are not analyzed, this does not increase the
time complexity of the attack.

Actually, the time complexity of the attack is expected to drop by a factor of
about 2. This is caused by the fact that the indexing is now performed in some
ChainS (the one corresponding to ChainR) whose size is smaller than 264. Also,
there are less candidates for Q75

l that need to be considered.
We note that we can use even shorter chains, as long as there are sufficiently

many candidate pairs between the chains ChainPi and ChainRj . hence, the
attacker starts to generate ChainPi until he obtains the three longest chains.
Then, the attacker has to find a ChainQ with any of these lengths (which can
be easily done, as the probability of picking a plaintext at random from the longer
chains is significantly higher). The same is done for ChainRj and ChainS, where

A Unified Approach to Related-Key Attacks 89

we stop once we have sufficiently long chains (and thus, enough candidate pairs
for the analysis).

Thus, in this case our attack requires about 299 8-round IDEA encryptions.
The data complexity can be slightly reduced as well. For generating ChainPi and
ChainRj we do not need to cover all the small chains. Hence, it is expected that
generating these chains requires roughly 264−252 adaptive chosen plaintexts and
ciphertexts encrypted under 64 keys each. For ChainQi and ChainSj we need
only to find one of the longer chains, and thus it is expected that 263.4 adaptively
chosen plaintexts and ciphertexts (encrypted under 64 keys each) are required.
Thus, the data complexity of the attack is 2 · 270 + 2 · 269.4 = 271.7 related-key
adaptive chosen plaintexts and ciphertexts.

We note that this attack requires more data than the entire codebook for a
given key. However, for any given key of the 256 involved keys, we do not require
the entire code book.

4.5 Changes for 4r-Round IDEA with r �= 2

As mentioned earlier, it is possible to apply our attack to 4r-IDEA when the
number of rounds is much larger than 8. The changes in the attack algorithm
are only in the data generation phase. While for 8-round IDEA, the chains are
constructed as ChainP = P 0

0 , P 22
0 , . . ., for 4r-round IDEA the chains are of the

form ChainP = P 0
0 , P 75·r mod 128

0 , P 75·r·2 mod 128
0 , P 75·r·3 mod 128

0 ,
When gcd(r, 128) = 2, the obtained attack has the same data complexity as

well as the same number of involved keys (64 for each of the chains). Besides the
data generation phase, the attack is the same.

For the cases when gcd(r, 128) = 1 the chains ChainP and ChainQ are actu-
ally the same chain (and ChainR and ChainS as well). This follows the fact that
for such values of r, KP is rotated each time to the left by a number of bits which
is eventually equal to 75 (i.e., there exists g s.t. 75 · r · g ≡ 75 mod 128). Again,
this has no affect on any other steps of the attack or on its date complexity.

When gcd(r, 128) > 2, the all the chains are shorter, as the number of keys
needed for closing the cycle of the key schedule algorithm is shorter than 64. In
that case, the data complexity of the attack drops by a factor of gcd(r, 128)/2,
as well as the number of keys. For example, for r = 128, the data complexity of
the attack is only 266 plaintexts, and the number of keys is reduced to four.

5 Summary and Conclusions

Our new framework combines the various kinds of related-key attacks. We show
that by combining them, we create a powerful attack. For example, we present
the first attack on 4r-round IDEA, and in particular, the first published work
that can break 8 rounds of IDEA. The complexities of our new attack on IDEA,
along with the best previously known attacks, are summarized in Table 1.

90 E. Biham, O. Dunkelman, and N. Keller

Table 1. Selected Known Attacks on IDEA and Our New Results

Rounds Attack Complexity # of Source
Type Data Time Memory Keys

5 Differential-Linear 16 KP 2114 32 1 [9]
5.5 Higher-Order Diff.-Lin. 234 CP 2126.8 235 1 [9]
6 Higher-Order Diff.-Lin. 264 − 252 KP 2126.8 264 1 [9]
7 Related-Key Rectangle 265 RK-CP 2104.2 266 4 [8]

7.5 Related-Key Linear 243.5 RK-KP 2115.1 244.5 2 [8]

8 Unified Related-Key 272 RK-KP 2100 266.6 256 Section 4
8 Unified Related-Key 271.7 RK-ACP 299 266.6 256 Section 4.4
8 Unified Related-Key 271 RK-ACP 2103 MA 266.6 256 Appendix C
4r Unified Related-Key 272/x RK-KP 2100 266.6 256/x Section 4

x = �(gcd(r, 128)/2�

KP – Known plaintext, CP – Chosen plaintext, RK – Related key,
ACP – Adaptive chosen plaintexts, MA – Memory accesses.
Time complexity is measured in encryption units (unless stated otherwise).
Memory complexity is measured in blocks.

References

1. Ayaz, E.S., Selçuk, A.A.: Improved DST Cryptanalysis of IDEA. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 1–14. Springer, Heidelberg
(2007)

2. Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

3. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

4. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

5. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

6. Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144.
Springer, Heidelberg (2005)

7. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

8. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA.
In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427.
Springer, Heidelberg (2006)

9. Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

A Unified Approach to Related-Key Attacks 91

10. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

11. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-Offs
with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006)

12. Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

13. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

14. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 586–606. Springer, Heidelberg (2000)

15. Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative Differentials. In:
Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 17–33. Springer,
Heidelberg (2002)

16. Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced Round IDEA.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer,
Heidelberg (1997)

17. Brown, L., Seberry, J.: Key Scheduling in DES Type Cryptosystems. In: Seberry,
J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 221–228. Springer,
Heidelberg (1990)

18. Daemen, J., Govaerts, R., Vandewalle, J.: Cryptanalysis of 2.5 Rounds of IDEA
(Extended Abstract), technical report 93/1, Department of Electrical Engineering,
ESAT–COSIC, Belgium (1993)

19. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

20. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

21. Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg
(2003)

22. Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the
IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 117–129. Springer, Heidelberg (2004)

23. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

24. Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)

25. Granville, A.: Cycle lengths in a permutation are typically Poisson distributed,
http://www.dms.umontreal.ca/∼andrew/PDF/CycleLengths.pdf

26. Hawkes, P.: Differential-Linear Weak Keys Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

27. Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim,
K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115.
Springer, Heidelberg (1996)

28. Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

http://www.dms.umontreal.ca/~andrew/PDF/CycleLengths.pdf

92 E. Biham, O. Dunkelman, and N. Keller

29. Iwata, T., Kohno, T.: New Security Proofs for the 3GPP Confidentiality and In-
tegrity Algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
427–445. Springer, Heidelberg (2004)

30. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

31. Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg
(2005)

32. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

33. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

34. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

35. Kim, J., Kim, G., Hong, S., Hong, D.: The Related-Key Rectangle Attack — Appli-
cation to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

36. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

37. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

38. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

39. Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)

40. Nakahara Jr., J., Barreto, P.S.L.M., Preneel, B., Vandewalle, J., Kim, H.Y.:
SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers, IACR
Cryptology ePrint Archive, Report 2001/068 (2001)

41. Nakahara Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on
Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer,
Heidelberg (2004)

42. Raddum, H.: Cryptanalysis of IDEA-X/2. In: Johansson, T. (ed.) FSE 2003. LNCS,
vol. 2887, pp. 1–8. Springer, Heidelberg (2003)

43. Tsudik, G., Van Herreweghen, E.: On simple and secure key distribution. In: Con-
ference on Computer and Communications Security, Proceedings of the 1st ACM
conference on Computer and communications security, pp. 49–57. ACM Press, New
York (1993)

44. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

45. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

46. ZDNet, New Xbox security cracked by Linux fans (2002),
http://news.zdnet.co.uk/software/developer/0,39020387,2123851,00.htm

http://news.zdnet.co.uk/software/developer/0,39020387,2123851,00.htm

A Unified Approach to Related-Key Attacks 93

A A Description of IDEA

IDEA is a 64-bit, 8.5-round block cipher with 128-bit keys proposed by Lai and
Massey in 1991 [37].

Each round of IDEA (besides the last one) consists of two layers. Let the
input of round i be denoted by four 16-bit words (X i

1, X
i
2, X

i
3, X

i
4). The first

layer, denoted by KA, affects each word independently: The first and the fourth
words are multiplied by subkey words (mod 216 + 1) where 0 is replaced by 216,
and the second and the third words are added with subkey words (mod 216).
We denote the intermediate values after this half-round by (Y i

1 , Y i
2 , Y i

3 , Y i
4). Let

Zi
1, Z

i
2, Z

i
3, and Zi

4 be the four subkey words, then

Y i
1 = Zi

1 � X i
1; Y i

2 = Zi
2 � X i

2; Y i
3 = Zi

3 � X i
3; Y i

4 = Zi
4 � X i

4,

where � denotes multiplication modulo 216+1 with 0 replaced by 216, and where
� denotes addition modulo 216.

The second layer, denoted by MA, accepts two 16-bit words pi and qi com-
puted as (pi, qi) = (Y i

1 ⊕ Y i
3 , Y i

2 ⊕ Y i
4). We denote the two output words of the

MA transformation by (ui, ti). Denoting the subkey words that enter the MA
function of round i by Zi

5 and Zi
6,

ti = (qi � (pi � Zi
5)) � Zi

6; ui = (pi � Zi
5) � ti

The output of the i-th round is (Y i
1 ⊕ ti, Y i

3 ⊕ ti, Y i
2 ⊕ ui, Y i

4 ⊕ ui). In the last
round (round 9) the MA layer is removed. Thus, the ciphertext is
(Y 9

1 ||Y 9
2 ||Y 9

3 ||Y 9
4). The structure of a single round of IDEA is shown in Figure 3.

IDEA’s key schedule expands the 128-bit key into 6 · 8 + 4 = 52 subkeys of
16 bits each using a very simple algorithm. The key is first used as the first
eight subkeys. Then, the key is rotated by 25 bits to the left, and the outcome is
used as the next eight subkeys. The rotation by 25 bits to the left is repeatedly
used as many times as needed. All the subkeys for 8.5-round IDEA are listed in
Table 2.

B A 4-Round Related-Key Truncated Differential of
IDEA

Our attack exploits a 4-round related-key truncated differential. This related-
key differential has probability 2−17 when a 16-bit condition on the plaintext is
imposed, as we describe later.

The differential holds for rounds 1–4 of IDEA, and thus can be used as a
building block in the unified related-key attack. The key difference is in bits 25
and 48 (i.e., the two related keys K1 and K2 satisfy K1 ⊕ K2 = ∆K = e25,48).

The input difference of the differential is ∆IN = (0, 8040x, 0, 0), and the fourth
input words of both plaintexts are required to be 1. Thus, after the first key
addition layer, the difference becomes (0, 8000x, 0, 8000x) with probability 1/2.
We note that the difference in the most significant bit of the fourth word is

94 E. Biham, O. Dunkelman, and N. Keller

Z
i

4

Y
i

4

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

MA

X X X

i
Z

1

i
X 2

i X 3

i

4

i

X X

i+1 i+1 i+1 i+1

4321

Z Z
i

Z
i i

321

Z 6

i

5

Y
i

3Y
i

1

Y
i

2

X

pi qi

tiui

Fig. 3. One Round of IDEA

Table 2. The Key Schedule Algorithm of IDEA

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

caused by the key difference and the fact that the fourth words of the plaintexts
have the value of 1.

The input difference to the first MA layer is (0, 0), and thus, the output
difference of the first round is (0, 0, 8000x, 8000x). In the second KA layer, the
difference in the third word is cancelled by the key difference with probability 1.
Under the assumption that the multiplication operation (under the two related
subkeys) has a close to random behavior, the difference in the fourth word is
cancelled as well with probability 2−16. Hence, with probability 2−17 there is a
zero difference after the second KA layer.

A Unified Approach to Related-Key Attacks 95

The zero difference state remains until the MA layer of the fourth round,
where the key difference affects the two subkeys. Thus, the output difference of
the related-key differential is ∆OUT = (a, a, b, b) for some unknown a and b.

Note that if the differential is satisfied, then the difference before the MA
layer of the fourth round is a zero difference. This property is used in the key
deduction phase of the attack presented in Section 4.

C Another Key Recovery Attack on 4r-Round IDEA

In this section we propose a different attack algorithm on 4r-round IDEA. The
attack is different than the one in Section 4.2 in the way the chains are used
to detect the related-key plaintext pairs. As before, we present the attack on
8-round IDEA, but it can be easily transformed to other 4r-round variants of
IDEA.

C.1 Attack Algorithm

1. Data Generation
(a) Pick a plaintext P 0

0 randomly, and ask for its encryption under the un-
known key K and for the encryption of the plaintext R0

0 = P 0
0 ⊕ ∆IN

under K ′ = K ⊕∆K. Denote the corresponding ciphertexts by P 22
0 and

R22
0 , respectively. Then ask for the encryption of P 22

0 under K 	 22 and
of R22

0 under K ′ 	 22, and denote the corresponding ciphertexts by P 44
0

and R44
0 , respectively. Continue the process until the keys are again K

and K ′, and denote the plaintexts by P 0
1 and R0

1, respectively. Repeat
the process until 220 pairs (P 0

i , R0
j) such that P 0

i ⊕ R0
j = ∆IN with the

fourth word of P 0
i and R0

j equal to 1 are encountered. Store each such
set of indices (i, j) in a table TableP,R. In case the chains end before
enough such pairs are encountered, another P 0

0 and R0
0 are chosen.

(b) Repeat Steps 1.2 and 1.4 of the attack from Section 4.2 to obtain ChainQ

and ChainS.
2. Generating Related-Key Plaintext Pairs: Choose a pool of 232 candi-

date related-key plaintext counterparts to R0
0 denoted by {S75

m }232−1
m=0 , such

that ∀m, m′ the difference S75
m ⊕S75

m′ is in ∆OUT . Note that the entire space of
plaintexts is divided to 232 disjoint pools of this form. For each pool perform
the following:
(a) For each (i, j) ∈ TableP,R, and for all m, compute the encryption of S75

m

j positions further in the chain that starts from it, denoted by S75
m,j .

Store in a table the values of S75
m,j, along with S75

m .
(b) Compute the set of 232 possible Q75

l such that S75
m ⊕ Q75

l ∈ ∆OUT . (We
note that the pool {Q75

l }232−1
l=0 is actually equal to the pool {S75

m }232−1
m=0 ,

since ∆OUT is closed under the XOR operation).
(c) For every (i, j) ∈ TableP,R and for all l, compute the i’th places in the

chain of the encryption of Q75
l , denoted by Q75

l,i.

96 E. Biham, O. Dunkelman, and N. Keller

(d) For every (i, j) ∈ TableP,R, and for each pair (Q75
l , S75

m), check how many
times Q75

l,i ⊕ S75
m,j ∈ ∆OUT is satisfied. If this number is greater than 4,

apply the key recovery algorithm using Q75
l as the related-key plaintext

counterpart of P 0
0 and S75

m as the related-key plaintext counterpart of
R0

0.
3. If the attack fails for all the 232 pools of {S75

m }, repeat Step 1.1 and Step 2
for another choice of P 0

0 and R0
0.

The attack identifies the correct related-key plaintext pairs by observing the
fact that if Q75

l and S75
m are the related-key plaintext counterparts of P 0

0 and
R0

0, respectively, then out of the 220 checked pairs, it is expected that 8 satisfy
∆OUT . In case that (P 0

0 , Q75
l) and (R0

0, S
75
m) are not related-key plaintext pairs,

then only 2−12 of the Q75
l,i ⊕ S75

m,j values are expected to satisfy ∆OUT .

C.2 Analysis of the Attack

We first note that during the attack, Steps 1 and 2 are expected to be exe-
cuted 217 times (until encountering a pair (P 0

0 , R0
0) that satisfies the related-key

differential).
Step 1 consists mainly of searching the encryption chains of P 0

0 and R0
0, which

can be efficiently performed using hash tables. Thus, Step 1 requires about 221

memory accesses for finding the pairs (i, j), and another 220 memory accesses
for storing them.

For each pool {S75
m }232−1

m=0 , steps 2(a),2(b), and 2(c) consist of generating sets
of 220 values 233 times (232 for S75

m ’s and 232 times for Q75
l ’s) . Assuming that

these values are generated as in the attack of Section 4.2, this stage is mainly
composed of memory accesses (253 for each set of S75

m ’s). Step 2(d) is the more
complex one. By correctly indexing the tables, it is possible to try all the possible
pairs of the form (Q75

l,i, S
75
m,j) requiring only 252 memory accesses for a pool. This

is done by storing for each j all the values S75
m,j (or more precisely the 32 bits

composed of the XOR of the first two words and the XOR of the last two words
of S75

m,j for all m’s). Then to query a specific Q75
l,i it is sufficient to compute the

XOR of the first and second words, and the XOR of the third and fourth words,
and to check whether this value appears in the corresponding table. Thus, we
conclude that Step 2 requires 254 memory accesses for any pool of S75

m ’s. As there
are 232 such pools, the total time complexity of Step 2 is 286 memory accesses
for each choice of the pair (P 0

0 , R0
0).

Therefore, we conclude that this attack requires 2103 memory accesses, which
is roughly the same as the attack in Section 4.2. The data complexity of the
attack is about 271 related-key chosen plaintexts and ciphertexts for obtaining
ChainQ and ChainS . Generating the chains of all the pairs of (P 0

0 , R0
0) required

for the attack is expected to require about 265.5 related-key adaptive chosen
plaintexts and ciphertexts.

Algebraic and Slide Attacks on KeeLoq

Nicolas T. Courtois1, Gregory V. Bard2, and David Wagner3

1 University College London, Gower Street, London WC1E 6BT, UK
2 Fordham University, NY, USA

3 University of California - Berkeley, Berkeley CA 94720, USA

Abstract. KeeLoq is a block cipher used in wireless devices that unlock
the doors and alarms in cars manufactured by Chrysler, Daewoo, Fiat,
GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc [8,9,33,34]. KeeLoq
is inexpensive to implement and economical in gate count, yet according
to Microchip [33] it should have “a level of security comparable to DES”.

In this paper we present several distinct attacks on KeeLoq, each of
them is interesting for different reasons. First we show that when about
232 known plaintexts are available, KeeLoq is very weak and for example
for 30 % of all keys the full key can be recovered with complexity of 228

KeeLoq encryptions. Then we turn our attention to algebraic attacks
with the major challenge of breaking KeeLoq given potentially a very
small number of known plaintexts.

Our best “direct” algebraic attack can break up to 160 rounds of
KeeLoq. Much better results are achieved in combination with slide at-
tacks. Given about 216 known plaintexts, we present a slide-algebraic
attack that uses a SAT solver with the complexity equivalent to about
253 KeeLoq encryptions. To the best of our knowledge, this is the first
time that a full-round real-life block cipher is broken using an algebraic
attack.

Keywords: block ciphers, unbalanced Feistel ciphers, slide attacks, al-
gebraic cryptanalysis, Gröbner bases, SAT solvers, KeeLoq.

1 Introduction

KeeLoq is a lightweight block cipher designed in the 1980’s and in 1995 it was sold
to Microchip Technology Inc for more than 10 million US dollars as documented
in [8]. Following [35], the specification of KeeLoq that can be found in [34] is “not
secret” but is patented and was released only under license. In 2007, a Microchip
document with the specification of KeeLoq has been made public on a Russian
web site [34].

KeeLoq operates with 32-bit blocks and 64-bit keys. Compared to typical
block ciphers that have a few carefully-designed rounds, this cipher has 528
extremely simple rounds. KeeLoq is not a stream cipher, it does not actually
use any LFSR, and the construction only resembles an NLFSR. Therefore it
is not trivial to see whether KeeLoq will be vulnerable to algebraic attacks.
KeeLoq is a full-fledged “unbalanced Feistel” block cipher of compressing type,

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 97–115, 2008.
c© International Association for Cryptologic Research 2008

98 N.T. Courtois, G.V. Bard, and D. Wagner

and we anticipate from the Luby-Rackoff theory, that such ciphers are secure
if the number of rounds is sufficient. Is 528 rounds sufficient? As it turns out,
KeeLoq has been designed to be fast, and requires a low number of gates to be
implemented. This is quite interesting as it has been sometimes conjectured that
ciphers which require a small number of gates should be vulnerable to algebraic
cryptanalysis, see [19,13,18,15]. Currently algebraic attacks on block ciphers are
not very powerful, for example for DES [19] and a toy cipher called CTC [17],
only respectively 6 and 10 rounds can be broken, and further progress seems
difficult. According to [33], KeeLoq should have “a level of security comparable
to DES”. In this paper we will see that the simplicity of KeeLoq makes it directly
breakable by simple algebraic attacks for up to 160 rounds out of 528.

The key property that allows further more efficient attacks on KeeLoq is a
sliding property: KeeLoq has a periodic structure with a period of 64 rounds.
This in combination with an algebraic attack will allow us to recover the complete
key for the full 528-round cipher given 216 known plaintexts.

KeeLoq has unusually small block length: 32 bits. Thus, in theory the attacker
can expect to recover and store the whole code-book of 232 known plaintexts.
Then one may wonder whether it is really useful to recover the key, as the code-
book allows one to encrypt and decrypt any message. However, there are many
cases in which it remains interesting for example if a master key can be recovered.
We will see that given the whole code-book KeeLoq is spectacularly weak and
the key will be recovered in time equivalent to about 228 KeeLoq encryptions.

This paper is organised as follows: in Section 2 we describe the cipher and its
usage. In Section 3, we discuss the unusual properties of block ciphers with small
blocks and discuss the practical interest of key recovery attacks in this case. In
Section 4 we do some preliminary analysis of KeeLoq and recall useful results
about random functions. In Section 5 we describe a very fast attack that recovers
the key for full KeeLoq given the knowledge of slightly less than the whole code-
book. In Section 6 we demonstrate several simple algebraic attacks that work
given very small quantity of known/chosen plaintexts and for a reduced number
of rounds of KeeLoq. In Section 7 we study combined slide and algebraic attacks
that work given about 216 known plaintexts for the full 528-round cipher. In
Appendix A we discuss strong keys in KeeLoq. In Appendix B we study the
algebraic immunity of the Boolean function used in KeeLoq.

1.1 Notation

We will use the following notation for functional iteration:

f (n)(x) = f(f(· · · f(︸ ︷︷ ︸
n times

x) · · ·))

2 Cipher Description

The specification of KeeLoq can be found in the Microchip product specification
document [34], which actually specifies KeeLoq decryption, that can be converted

Algebraic and Slide Attacks on KeeLoq 99

to a description of the encryption, see [8,9,4]. Initially there were mistakes in [8,9]
as opposed to [34,4] but they are now corrected.

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function has one bit of output, and consequently in one round only one
bit in the “state” of the cipher will be changed. Alternatively it can viewed as a
modified shift register with non-linear feedback, in which the fresh bit computed
by the Boolean function is XORed with one key bit.

The cipher has the total of 528 rounds, and it makes sense to view that as
528 = 512+16 = 64×8+16. The encryption procedure is periodic with a period
of 64 and it has been “cut” at 528 rounds, because 528 is not a multiple of 64, in
order to prevent obvious slide attacks (but more advanced slide attacks remain
possible as will become clear later). Let k63, . . . , k0 be the key. In each round,
it is bitwise rotated to the right, with wrap around. Therefore, during rounds
i, i + 64, i + 128, . . ., the key register is the same. If one imagines the 64 rounds
as some fk(x), then KeeLoq is

Ek(x) = gk(f (8)
k (x))

with g(x) being a 16-round final step, and Ek(x) being all 528 rounds. The last
“surplus” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean k15, . . . , k0) and gk is a functional“prefix” of fk (which is also repeated at
the end of the whole encryption process). In addition to the simplicity of the
key schedule, each round of the cipher uses only one bit of the key. From this
we see that each bit of the key is used exactly 8 times, except the first 16 bits,
k15, . . . , k0, which are used 9 times.

At the heart of the cipher is the non-linear function with algebraic normal
form (ANF) given by:

NLF (a, b, c, d, e) = d ⊕ e ⊕ ac ⊕ ae ⊕ bc ⊕ be ⊕ cd ⊕ de ⊕ ade ⊕ ace ⊕ abd ⊕ abc

Alternatively, the specification documents available [8], say that it is “the
non-linear function 3A5C742E” which means that NLF (a, b, c, d, e) is equal to
the ith bit of that hexadecimal number, where i = 16a + 8b + 4c + 2d + e. For
example 0, 0, 0, 0, 1 gives i = 1 and the second least significant (second from the
right) bit of of “3A5C742E” written in binary.

The main shift register has 32 bits, (unlike the key shift register with 64 bits),
and let Li denote the leftmost or least-significant bit at the end of round i,
while denoting the initial conditions as round zero. At the end of round 528, the
least significant bit is thus L528, and then let L529, L530, . . . , L559 denote the 31
remaining bits of the shift register, with L559 being the most significant. The
following equation gives the shift-register’s feedback:

Li+32 = ki mod 64 ⊕ Li ⊕ Li+16 ⊕ NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

where k63, k62, . . . , k1, k0 is the original key.

100 N.T. Courtois, G.V. Bard, and D. Wagner

1. Initialize with the plaintext: L31, . . . , L0 = P31, . . . , P0

2. For i = 0, . . . , 528 − 1 do
Li+32 = ki mod 64 ⊕ Li ⊕ Li+16⊕NLF (Li+31, Li+26, Li+20, Li+9, Li+1)

3. The ciphertext is C31, . . . , C0 = L559, . . . , L528.

Fig. 1. KeeLoq Encryption

2.1 Cipher Usage

It appears that the mode in which the cipher is used depends on the car man-
ufacturer. One possible method is a challenge-response authentication with a
fixed key and a random challenge. Another popular method is to set the plain-
text to 0, and increment the key at both sides. Another important mode is a so
called ’hopping’ or ’rolling’ method described in [4,33]. In this case 16 bits of the
plaintext are permanently fixed on both sides, and the attacker cannot hope get
more than 216 known plaintexts. More information can be found in [4,5,6].

In this paper we study the security of the KeeLoq cipher against key recovery
attacks given a certain number of known or chosen plaintexts.

Algebraic and Slide Attacks on KeeLoq 101

3 Block Ciphers with Small Blocks and Large Key Size

Most known block ciphers operate on binary strings and consist of a function
E : {0, 1}�K ×{0, 1}�P → {0, 1}�P . The stereotype is that �P = �K = �P , however
in practical/industrial applications, this is almost never the case, for example:

– IDEA �P = 64, �K = 128.
– DES �P = 64, �K = 56.
– Two-key triple DES �P = 64, �K = 112.
– AES �P = 128, �K ∈ {128, 192, 256}.
– KeeLoq �P = 32, �K = 64.

Another stereotype is that, when �P << �K , for example in triple-DES and AES-
256, the key recovery is of purely academic interest, and an attack on AES-256
that runs in time of say 2240 has no practical consequences. However, for cipher
such as KeeLoq, the situation is different. The block size is small enough so that
the whole code-book can be stored on a PC, and several key recovery attacks
are feasible in practice. In what follows we will explain that, when �P << �K ,
and even if more or less the whole code-book is known, recovering the key can
have numerous important and practical consequences.

3.1 On Key Recovery Attacks and Ciphers with Small Blocks

The code-book of a cipher E under a key k is defined as the set of all 2�P pairs
(P, C) such that E(k, P) = C. If 2�P < 2�K , a natural question is why, would
one want to recover the key if it is possible to have the entire code-book? There
are several answers to this question depending on the circumstances:

1. If the adversary is a powerful insider, and has an oracle chosen-plaintext
access to the cipher, or the whole code-book table stored in memory, the
question will be of purely academic interest. Nevertheless, in real life appli-
cations, and even for such powerful attackers, the actual key recovery can
be very valuable. When there is a master key in the system – it is a com-
mon practice in the industry – a successive key recovery would allow to
compromise the security of the system on a much wider scale.

2. In most practical scenarios, we rather have a known-plaintext attack, and
not all plaintexts will actually arise (e.g. due to padding, specific probabil-
ity distribution, some values only can appear in the future, etc.). Here the
adversary can recover a number of plaintext-ciphertext pairs that can be for
example 60 % of all possible pairs, but typically he cannot hope to recover
all pairs. Importantly, the value of pairs he doesn’t have may be very large,
while the value of pairs he already has can be negligible. For example, a block
cipher with small block-size can be used to anonymize records in medical and
financial databases. Then, key recovery would allow the adversary to have
all possible pairs, some of which may potentially be valuable. A security
model for ciphers with small blocks was recently studied by Granboulan and

102 N.T. Courtois, G.V. Bard, and D. Wagner

Pornin in Section 5 of [28]: in this model, even if the adversary has the whole
code-book except images of two points, his goal is to recover the images of
the missing two points, which can be still very hard.

3. In many real-life situations, the code-book can be noisy, and contain errors.
This can be because of transmission errors, human errors such as selecting
the wrong encryption key, inadvertent interference with another system or
another (active) attacker, or a defensive voluntary injection of dummy mes-
sages to frustrate the attackers. Then again, the key recovery may be the
only way to know which messages were genuine.

In an extreme scenario, the whole code-book is known, but not with certainty,
and a confirmation is sought. If the reader doubts the practicality of this scenario,
consider the following. In 1942, the United States decrypted many messages
encrypted with the famous Japanese cipher known as “Purple”, forecasting an
attack at “AF.” Making sure that “AF” was in fact the Midway Island (which
was anticipated but there was no certitude) had a pivotal impact on winning the
World War II. For more details we refer to David Kahn [31].

4 Preliminary Analysis and Useful Combinatorial Facts

4.1 Preliminary Analysis of KeeLoq

Fact 4.1. Given (x, y) with y = hk(x), where hk represents up to 32 rounds of
KeeLoq, one can find the part of the key used in hk in as much time as it takes
to compute hk.

Justification: This is because for up to 32 rounds, all state bits between round i
and round i − 1 are directly known. More precisely, after the round i, 32 − i bits
are known from the plaintext, and i bits are known from the ciphertext, for all i =
1, 2, . . . , 32. Then the key bits are obtained directly: we know all the inputs of each
NLF, and we know the output of it XORed with the corresponding key bit. We
simply have ki−32 = Li ⊕Li−32 ⊕Li−16 ⊕NLF (Li−1, Li−6, Li−12, Li−23, Li−30).
This also shows that there will be exactly one possible key.

Remark: For more rounds it is much less simple, yet as shown in Section 6, direct
algebraic attacks allow to efficiently recover the key for up to 160 rounds.

Fact 4.2. Given (x, y), one can quickly test whether it is possible that y = gk(x)
for 16 rounds. The probability that a random (x, y) will pass this test is 1/216.

Justification: After 16 rounds of KeeLoq, only 16 bits of x are changed, and 16
bits of x are just shifted. If data is properly aligned this requires a 16-bit equality
test that should take only 1-2 CPU clocks.

Fact 4.3. Given (x, y) with y = hk(x), where hk represents 48 rounds of
KeeLoq, one can find all 216 possible keys for hk in as much time as 216 times
the time to compute hk.

Algebraic and Slide Attacks on KeeLoq 103

Justification: Try exhaustively all possibilities for the first 16 key bits and apply
Fact 4.1.

Fact 4.4. For full KeeLoq, given a pair (p, c) with c = Ek(p), it is possible to
very quickly test whether p is a possible fixed point of f8

k . All fixed points will
be accepted; all but 1/216 of the non-fixed points will be rejected.

Justification: If p is a fixed point of f8, then c = gk(p). We simply use Fact 4.2
to test whether it is possible that c = gk(p).

4.2 Useful Facts about Fixed Points and Random Permutations

Proposition 4.1. Given a random function from n-bits to n-bits, the probabil-
ity that a given point y has i pre-images is 1

ei! , when n → ∞.

Justification: Let y be fixed, the probability that f(x) = y is 1/N where N = 2n

is the size of the space. We get
(
N
i

)
(1− 1/N)N−i1/N i ≈ 1

ei! when N → ∞. This
is a Poisson distribution with the average number of pre-images being λ = 1.

This fact can be applied to derive statistics on the expected number of fixed
points of permutations tat we encounter in cryptanalysis. In particular let fk(x)
be the first 64 rounds of KeeLoq. Assuming that fk(x) ⊕ x is a pseudo-random
function, we look at the number of pre-images of 0 with this function. This gives
immediately:

Proposition 4.2. The first 64 rounds fk of KeeLoq have 1 or more fixed points
with probability 1 − 1/e ≈ 0.63.

Proposition 4.3. Assuming fk behaves as a random permutation, the expected
number of fixed points of f8

k is exactly 4.

Justification: A random permutation π has 1 fixed point on average. Then in
addition to possible “natural” fixed points (1 on average) the π8 will also “in-
herit” all fixed points of π2, π4 and π8, that for large permutations are with very
high probability all distinct fixed points. A rigourous proof of this fact can be
obtained from the authors, see [22].

Proposition 4.4. The probability that i) first 64 rounds fk of KeeLoq have 1
or more fixed points, and simultaneously ii) the 512 rounds f8

k have j = 4 or
more fixed points, is e−1 − 13

6 e−15/8 which is about 0.29985.

Justification: Roughly, from Proposition 4.3, we expect about half of 0.63. In
[22] we show how one compute such probabilities exactly with the methods of
modern analytic combinatorics, see [25,38,22].

5 Attacks on KeeLoq That Use the Whole Dictionary

We will now present an attack that is extremely fast and shows that KeeLoq is
very weak when (about) the whole code-book is known. In this paper we present
two relatively simple versions of this attack. Additional improved versions are
described in [22].

104 N.T. Courtois, G.V. Bard, and D. Wagner

5.1 Setup and Assumptions

We assume that one can iterate through all possible 232 plaintexts. This can
either be obtained from a remote encryption oracle, or simply harnessing the
circuitry without being able to read the key in order to clone the device. While
this may sound like a practical attack scenario, it is hard to imagine a hacker pa-
tient enough to get 232 known plaintext-ciphertext pairs from the device knowing
that brute force is actually feasible. For simplicity we will assume that all the
plaintext-ciphertext pairs are stored in a table. This requires 16 Gigabytes of
RAM which is now available on a high-end PC. We also assume that the time
to get one pair is about tr = 16 CPU clocks. This is a realistic and conservative
estimation.

In our Slide-Determine Attack we make the following assumption.

Fixed Point Assumption. We assume that there is at least one fixed point
for fk(x) where fk(x) represents the first 64 rounds of the cipher. As shown in
Section 4.2, this happens with probability 0.63. We recall that if x is a fixed
point of fk(·) than x is a fixed point of f

(8)
k (·), which are the first 512 rounds of

KeeLoq. In fact several additional fixed points for f8
k are expected to exist, as

on average f8
k has 4 fixed points (cf. Proposition 4.3).

The complexity of nearly all known attacks on KeeLoq greatly depends on
the number of fixed points for fk and f8

k . In our attack that will follow, the more
fixed points exist for f8

k , the fastest can be the overall attack. The version A
of our attack works for 63 % of all keys (cf. Proposition 4.2). The version B is
faster but works for a smaller fraction of 30 % of all keys (this figure comes from
Proposition 4.4). Other versions of this attack can be designed and are described
in [22]. In contrast, for 37 % of keys for which fk has no fixed point whatsoever,
all versions of our Slide-Determine attack fail completely. In Appendix A we
discuss this situation: there is a large class of “strong keys” for which the cipher
is more secure.

5.2 Our Slide-Determine Attack

This attack requires 232 plaintext-ciphertext pairs (p, c). We assume that (at
least) one p is a fixed point of fk. Then, slightly more than 4 of them on average
are fixed points for f8

k (cf. Proposition 4.3). This attack occurs in three stages.

Stage 1 - Batch Guessing Fixed Points. Following our assumption there is
(at least) one p is a fixed point for f8

k . For each pair (p, c), we use Fact 4.4 to test
whether it is possible that f8

k (p) = p; if not, discard that pair. The complexity
so far is about tr · 232 CPU clocks (mostly spent accessing the memory). Only
about 216 + 4 pairs will survive, and all these where p is a fixed point to f8

k .
Then following Fact 4.1 we can at the same time compute 16 bits of the key

with time of about 4 ·16 CPU clocks (cf. Fact 4.1 and 6.1). To summarize, given
the whole code-book and in time of about tr ·232 CPU clocks by assuming that p
is a fixed point to f8

k , we produce a list of about τA = 216 triples p, c, (k15, . . . , k0).
Assuming that tr = 16 CPU clocks, the complexity of Stage 1 is about 236 CPU
clocks which is about 225 KeeLoq encryptions.

Algebraic and Slide Attacks on KeeLoq 105

Stage 1B - Filtering (Optional). This stage is optional, it is omitted in
version A of our attack, and necessary in version B. We wish to be able to filter
out a certain fixed proportion of these 216 cases, so that the complexity of Stage
1 will dominate attack. Let j8 be the number of fixed points for f8

k . If j8 > 1,
our attack can be improved. If we omit Stage 1B, or if j8 = 1 (which is quite
infrequent), then the Stage 3 will dominate the attack, which as we will see
later will make it noticeably slower. To bridge this gap we wish to exclude a
proportion of all the 216 pairs. The filtering is done as follows.

We store the triples p, c, (k15, . . . , k0) in a data structure keyed by (k15, . . . , k0).
(For instance, we can have an array of size 216, where A[i] points to a linked
list containing all triples such that (k15, . . . , k0) = i.) It allows us to count, for
each value (k15, . . . , k0), the number f of triples associated with that partial-key
value. In version B, we assume that j8 ≥ 4 which occurs for 30 % of all keys (cf.
Proposition 4.4). We will then discard all triples such that (k15, . . . , k0) does not
repeat 4 or more times in our list.

The worst-case complexity of Step 2 and Step 3 of our attack will be pro-
portional to the size τ of our list (if all cases are tried). The expected size of
the filtered list can be computed as follows: we assume that the keys that ap-
pear in this table are the 216 outputs of a random function on 16 bits, that
takes as input any of the 216 pairs (p, c). Then following Proposition 4.1, the
proportion of 1

ei! of keys will appear i times. The total number of keys that will
appear 4 or more times is therefore equal to 216 ·

∑
i≥4

1
ei! . However, we have

to check all the triples which is more than all the keys. In our list of triples,
each of these keys will appear i times (in some triple). In our attack, it is not
merely sufficient to find a triple in our list having the correct 16 bits of the key:
this is because our list contains several fixed points for fk, but only about one
fixed point for f8

k which is necessary to complete further stages of our attack.
Accordingly, the expected number of elements to be checked (the size of our list)
is τB = 216 ·

∑
i≥4 i · 1

ei! ≈ 212.4. This is the worst-case estimate for the attack
version B (which works for 30 % of all keys). On average we only need about
half of this number.

Stage 2 - Batch Solving. If we assume that p is a fixed point of fk, at least
one triple in our list is valid. Moreover we expect than less than 2 are valid on
average, as we expect on average between 1 and 2 fixed points for fk (we assumed
there is at least one). For each surviving triple, assume that p is a fixed point,
so that c = Ek(p) = gk(f (8)

k (p)) = gk(p). Note that if fk(p) = p, then p = hk(c),
where hk represents the 48 rounds of KeeLoq using the last 48 key bits. Then an
algebraic attack can be applied to suggest possible keys for this part. If we guess
additional 16 bits of the key, such an attack with a SAT solver takes less than
0.1 s. We have found a simpler and faster method to get the same result. We use
Fact 4.3 to recover 216 possibilities for the last 48 key bits from the assumption
that p = h(c). Combined with the 16 bits pre-computed above for each triple,
we get a list of at most 232 possible full keys on 64 bits. We expect to compute
only at most 216 · τ of these full keys on 64 bits, before the attack succeeds. This
takes time of at most 216 · τ computations of hk(·) (cf. Fact 4.3). And we have

106 N.T. Courtois, G.V. Bard, and D. Wagner

τA = 216 and τB = 212.4 in versions A and B of our attack respectively. Overall
Step 2 requires 216 · τ · 4 · 48 CPU clocks, which is approximatively 228.6 and
225.0 KeeLoq encryptions for respective versions A and B.

Early Abort: About half of this number is needed on average, with an early
abort strategy as follows: for each of the τ triples we will execute Step 2 and
Step 3. If Step 3 recovers and confirms the full key of KeeLoq, we abort the
attack.

Stage 3 - Verification. Finally, we test each of these 216 · τ complete keys
(which is less or equal to 232) on one other plaintext-ciphertext pair p′, c′. Most
incorrect key guesses will be discarded, and only 1 or 2 keys will survive, one of
them being correct. With additional few pairs we get the right key with certainty.

In version A, this stage requires up to 216 · τA = 232 full 528-round KeeLoq
encryptions. which dominates the complexity of the whole attack. In version B,
we need at most 216 · τB full KeeLoq encryptions.

Complexity Analysis
The total complexity of the full attack is as follows:

Version A: The worst-case complexities of stages 1, 2 and 3 are 225, 228.6 and
232.0 KeeLoq encryptions respectively. The total is is 232.1 KeeLoq encryptions.

On average, with early abort of Stages 2 and 3, after trying on average half
of τA triples, as described above (Step 1 has to be executed in entirety), we get
an average complexity of about 231.1 KeeLoq encryptions.
Version B: In this version, the worst-case complexities of stages 1, 2 and 3 are
225, 225 and 228.4 KeeLoq encryptions. The total is 228.7 KeeLoq encryptions.

On average, we get about 227.7 KeeLoq encryptions.

Summary of Our Slide-Determine Attack. To summarize, for 30 % of all
keys ourSlide-Determine Attack versionB allows to recover the key in average time
equivalent to about 228 KeeLoq encryptions. Overall, for all 63 % of keys our Slide-
Determine Attack versionA requires about 231 KeeLoq encryptions on average.No
attack of comparable efficiency is known for the remaining 37 % of keys.

6 Direct Algebraic Attacks on KeeLoq

Our goal is to recover the key of the cipher by solving a system of multivariate
equations given a small quantity of known, chosen or random plaintexts, as in
[13]. Very few such attacks are really efficient on block ciphers. For example
DES can be broken for up to 6 rounds by such attacks, see [19]. For KeeLoq, due
to its simplicity, up to 160 rounds can be directly attacked, without (not yet)
exploiting the sliding properties of the cipher. This is in particular interesting
for the 37 % of keys for which all our sliding attacks fail.

6.1 How to Write the Equations

We write equations in a straightforward way: namely by following directly the
description of Fig 1. One new variable represents the output of the NLF in the

Algebraic and Slide Attacks on KeeLoq 107

current round. In addition, in order to decrease the degree, we add two additional
variables per round, to represent the monomials α = ab and β = ae, and add
equations of the form αi = aibi and βi = aiei.

This means we have:

y = NLF (a, b, c, d, e) = d ⊕ e ⊕ ac ⊕ β ⊕ bc ⊕ be ⊕ cd ⊕ de ⊕ βd ⊕ βc ⊕ αd ⊕ αc

which permits us to write

Li+32 = k
i mod 64 ⊕ Li ⊕ Li+16 ⊕ Li+9 ⊕ Li+1

⊕Li+31Li+20 ⊕ βi ⊕ Li+26Li+20 ⊕ Li+26Li+1 ⊕ Li+20Li+9

⊕Li+9Li+1 ⊕ βiLi+9 ⊕ βiLi+20 ⊕ αiLi+9 ⊕ αiLi+20

αi = Li+31Li+26

βi = Li+31Li+1

These three equations need merely be repeated for each round.
The values of the plaintext, the ciphertext, and a certain number of key bits

that we may fix (i.e. guess, cf. Section 6.2) during the attack are written as
separate equations (for example we write that L31 = 1 for the leftmost bit of
the plaintext). Thus, given r rounds of the cipher, and for each known plaintext,
assuming that F bits of the key are known, we will get a system of 3r+32+32+F
multivariate quadratic equations with 3r + 64 + 32 variables: these are all the
L0, . . . , Lr+31, the key variables ki, the αi and the βi. Out of these the values of
32+32+ F variables are already known. It should be noted that these equation
and monomial counts are exact, and that this system is overdefined. The total
number of distinct monomials that appear in these equations is roughly 12r.

The equations are written for one or several known plaintexts. This will be
our known-plaintext attack. In another version, we consider that the cipher is
used in the counter mode, i.e. the set of plaintexts forms a set of consecutive
integers encoded on 32 bits. This will be called a counter mode attack. Several
complete and working examples of equations can be downloaded from [10].

6.2 Direct Algebraic Attacks on KeeLoq Vs. Brute Force

The equations of KeeLoq are of very low degree (i.e. 2), and very sparse. One can
try to solve with an off-the-shelf computer algebra system such as Magma’s imple-
mentation of F4 algorithm [24] or Singular’s slimgb() algorithm [39]. We have also
tried a much simpler method called ElimLin and described in [19]. Another family
of techniques are SAT solvers. Any system of multivariate equations is amenable
for transformation into a CNF-SAT problem, using the methods of [20].

Fact 6.1. An optimised assembly language implementation of r rounds of
KeeLoq is expected to take only about 4r CPU clocks.

Justification: See footnote 4 in [4].
Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the

key should be compared to 4r × 2k−1 which is the expected complexity of the

108 N.T. Courtois, G.V. Bard, and D. Wagner

brute force key search. For example, for full KeeLoq, the reference complexity
for the exhaustive key search is about 275 CPU clocks. Assuming that the CPU
runs at 2.5 GHz, one can execute about 243 CPU clocks per hour. Consider the
following example. Suppose we guess 32 key bits for example k1 = 0, k2 = 1,
Suppose that the remaining key bits are found on a PC in less than an hour, or
< 243 CPU clocks. In reality, the attacker is not given 32 bits of the key. Instead
one can guess them and on average 231 such guesses must be made. With early
abort of unsuccessful tries after for example 1.5 hours, the expected running
time is < 243231+1 or < 275, which is faster than brute force.

Note: In the real life hackers recover the KeeLoq key by brute force with FPGAs
which takes about two weeks, see [8].

6.3 Frontal Assault – Elimination and Gröbner Bases Attacks

Example 1. For example, we consider 64 rounds of KeeLoq and 2 known plain-
texts, and we run ElimLin as described in [19]. In 5 seconds, the program man-
ages to eliminate all but 130 variables out of the initial 512 variables. Moreover,
in the linear span of the equations after ElimLin, the program is able to find
one equation of degree 2, that involves only the 64 key variables and in which
all the internal variables of the cipher are eliminated. This is sufficient to show
that 64 rounds are very easy to break by Gröbner bases. For example, we may
proceed as follows: for each new pair of known plaintexts, we get a new equation
of this type. Given a sufficient number of known plaintexts (a small multiple of
64 will be sufficient), we will get a very overdefined system of equations with
64 variables. Such systems are known to be easily solvable by the XL algorithm
and Gröbner bases, see [12,11,1].

Example 2. Here also, we consider 64 rounds of KeeLoq and 4 known plaintexts,
and we run ElimLin as described in [19]. We fix 10 key bits to their true values.
Then the remaining 54 key bits are recovered by ElimLin alone in 8 seconds.
With Singular slimgb() function [39] the same computation takes 1 minute.

Example 3. With 64 rounds, 2 plaintexts that differ only in 1 bit, (it is no
longer a known plaintext attack, but rather a chosen plaintext attack), and with
14 key bits fixed, the key is computed by ElimLin in 7 seconds and by Singular
in 10 seconds.

Example 4. With 128 rounds and 128 plaintexts in the counter mode (the
plaintexts are consecutive integers on 32-bits), and 30 bits fixed, the remaining
34 bits are recovered by ElimLin in 3 hours. This is slightly faster than brute
force.

6.4 Cryptanalysis of KeeLoq with SAT Solvers

From [19], one may expect that better results will be obtained with SAT solvers.
Given some number of pairs of plaintext and ciphertexts, over the whole 528

Algebraic and Slide Attacks on KeeLoq 109

rounds, we rewrite the equations as a SAT problem and try to solve them. We
write equations as polynomials (cf. previous section) and use the simplest version
of the ANF to CNF conversion method described in [20].

Example 5. For full 528 rounds of KeeLoq, these attacks remain much slower
than exhaustive search. For example with 2 plaintexts in counter mode (two
consecutive integers on 32-bits) and 48 bits fixed, the remaining 16 key bits
are recovered in 30 seconds with our conversion to CNF and MiniSat 2.0., done
as described in [19,20]. This is much slower than brute force. However, with a
reduced number of rounds, the results are more interesting.

Example 6. For 64 rounds of KeeLoq and 2 known plaintexts, the key is re-
covered by MiniSat 2.0. in 0.3 s.

Example 7. For 96 rounds of KeeLoq, 4 known plaintexts, and when 20 key
bits are guessed, the key is recovered by MiniSat 2.0. in 0.4 s.

Example 8. With 128 rounds and 2 known plaintexts, and 30 bits guessed, the
remaining 34 bits are recovered in 150 s by MiniSat 2.0. This is about 80x faster
than brute force.

Example 9. With 160 rounds, 2 plaintexts in counter mode, and 30 bits guessed,
the remaining 34 bits are recovered in 233 s by MiniSat 2.0. This is clearly faster
than brute force.

We note that the maximum number of rounds that we can break faster than
by exhaustive search by our best algebraic attack with SAT solvers is 160 rounds.
This attack does not exploit the periodicity of the cipher and uses an extremely
low number of know plaintext-ciphertext pairs. In comparison up to 32 rounds
can be broken directly “by hand” (cf. Fact 4.1). We also note that when the
number of rounds is reduced to 64, the full key can be obtained almost instantly.
This fact gave inspiration to design Slide-Algebraic attacks.

7 Combining Slide and Algebraic Attacks on KeeLoq

If the number of rounds were 512, and not 528, then it would be easy to analyse
KeeLoq as an 8-fold iteration of 64 rounds. The last 16 rounds are a “barrier”,
which we can remove by guessing the 16 bits of the key used in those 16 rounds.
These are the first 16 key bits, or k0, . . . , k15, and the guess is correct with
probability 2−16. This is what we will do in our Slide-Determine Attack and
our Slide-Algebraic Attack 1. Alternatively (as we will see in our Slide-Algebraic
Attack 2), we may assume/guess some particular property of the 512 rounds of
the cipher and try to recover the 16 (or more) bits that confirm this property.

Classical sliding attacks [3,26,30] exploit pairs of plaintext that have the fol-
lowing property:

Definition 7.1. Given a block cipher with periodic structure of the form
Ek(x) = gk(f (m)

k (x)), m > 1, we call a “slid pair” any pair of plaintexts (Pi, Pj)
such that fk(Pi) = Pj .

110 N.T. Courtois, G.V. Bard, and D. Wagner

7.1 Slide-Algebraic Attack 1

A simple sliding attack on KeeLoq would proceed as follows.

1. We guess the 16 key bits of gk which gives us “oracle access” to 512 rounds
of KeeLoq that we denote by O = f

(8)
k .

2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair” for 64 rounds.
4. From this, one can derive as many known plaintexts for 64 rounds of KeeLoq

as desired. For example, if fk(Pi) = Pj then fk(O(Pi)) = O(Pj). Additional
“slid pairs” are obtained by iterating O twice, three times etc..

5. The whole attack has to be run about 232 times, to find the correct “slid
pair” (Pi, Pj).

In all with guessing the key of gk there are 248 possibilities to check. For each
potential value for the first 16 bits of the key, and for each couple (Pi, Pj) we
compute some 4 plaintext-ciphertext pairs for 64 rounds and then the key is
recovered by MiniSat (cf. above) in 0.4 s which is about 230 CPU clocks. The
total complexity of the attack is about 278 CPU clocks which is more than the
exhaustive search.

7.2 Slide-Algebraic Attack 2

Another, better sliding attack proceeds as follows.

1. We do not guess 16 key bits, they will be determined later.
2. We consider 216 known plaintexts (Pi, Ci).
3. By birthday paradox, one pair (Pi, Pj) is a “slid pair”: fk(Pi) = Pj .
4. Then the pair (Ci, Cj) is a plaintext-ciphertext pair for a “slided” version of

the same cipher: starting at round 16 and finishing before round 80. This is
to say a cipher with absolutely identical equations in every respect except
for the (permuted) subscripts of the ki.

5. From the point of view of multivariate equations and algebraic cryptanalysis,
this situation is not much different than in Example 6 above solved in 0.3
seconds. We have one system of equations with the pair (Pi, Pj) for the first
64 rounds, and the same system of equations with the pair (Ci, Cj) and the
key bits that are rotated by 16 positions.

6. We did write this system of equations and try ElimLin and MiniSat. For
example with 15 first bits of the key fixed, ElimLin solves the system in 8
seconds. Better results are obtained with MiniSat, and without guessing any
key variables, the key is computed in typically1 about 2 seconds. Thus, with
ElimLin, we can recover the key in about 249 CPU clocks, and with MiniSat,
we can do it in about 232 CPU clocks.

7. There are about 232 pairs (Pi, Pj) to be tried.

1 We have written these equations for 10 different random keys with randomly chosen
plaintexts, and the timings we obtained were: 2.3, 9.1, 1.5, 0.5, 4.4, 0.3, 8.1, 1.8, 0.4, 0.6
seconds. Here the average time is 2.9 s and the median time is 1.65 s.

Algebraic and Slide Attacks on KeeLoq 111

The total complexity of the attack, in the version with MiniSat is about
232+32 = 264 CPU clocks which is much faster than exhaustive search that
requires about 275 CPU clocks.

Summary. Our Slide-Algebraic Attack 2 can break KeeLoq within 264 CPU
clocks given 216 known plaintexts. This is about 253 KeeLoq encryptions. The
attack is realistic, practical and has been fully implemented.

8 Conclusions

In this paper we described several key recovery attacks on KeeLoq, a block
cipher with a very small block size and a simple periodic structure. KeeLoq is
widespread in the automobile industry and is used by millions of people every
day. Recently it has been shown that for a more complex cipher such as DES, up
to 6 rounds can be broken by an algebraic attack given only one known plaintext
[19]. In this paper we showed that up to 160 rounds of KeeLoq can be broken
directly using MiniSat 2.0. algorithm with only 2 chosen plaintexts.

In combination with sliding attacks, an algebraic attack one the full 528-round
KeeLoq is possible. Given about 216 known plaintexts, we have proposed a work-
ing slide-algebraic attack equivalent to 253 KeeLoq encryptions. In particular,
in the so called ’hopping’ or ’rolling’ mode described in [4,5,6,33], one cannot
obtain more than 216 known plaintexts. We are the first to have proposed such
an attack on KeeLoq (all previous attacks required 232 known plaintexts). Our
attack is practical and was implemented with little programming effort.

We also showed that if as many as 232 known plaintexts are available, KeeLoq
is in fact extremely weak. For example, for 30 % of all keys, we can recover the
key of the full cipher with complexity equivalent to 228 KeeLoq encryptions. This

Table 1. Comparison of our attacks to other attacks reported on KeeLoq

Type of attack Data Time Memory Reference

Pure Algebraic/SAT 2 KP 273 small Our Example 5

Brute Force 2 KP 263 small

Slide-Algebraic 216KP 267 small Our Slide-Algebraic Attack 1

Slide-Algebraic 216KP 253 small Our Slide-Algebraic Attack 2

Slide-Meet-in-the-Middle 216KP 246 small Biham, Dunkelman et al[23]

Slide-Meet-in-the-Middle 216CP 245 small Biham, Dunkelman et al[23]

Slide-Correlation 232KP 251 16 Gb Bogdanov[4, 5]

Slide-Cycle-Algebraic 232KP 240 18 Gb Attack 3 in [21]

Slide-Cycle-Correlation 232KP 240 18 Gb Bogdanov [5]

Two versions:

Slide-Determine 232KP 231 16 Gb A: for 63 % of all keys

Slide-Determine 232KP 228 16 Gb B: for 30 % of all keys

Legend: The unit of time complexity here is one KeeLoq encryption.

112 N.T. Courtois, G.V. Bard, and D. Wagner

attack can be prevented by a class of “strong keys” we defined that decreases
the effective key space from 64 bits to 62.56 bits.

KeeLoq is a weak and simple cipher, and has several vulnerabilities. It is
interesting to note that attacks that use sliding properties can be quite powerful
because typically (in all our Slide-Determine and Slide-Algebraic Attacks) their
complexity simply does not depend on the number of rounds of the cipher.

The results of this paper can be compared to [4,5,6], other very recent work
on KeeLoq. Recently, another attack with 216 KP and time about 245 KeeLoq
encryptions was proposed by Biham, Dunkelman et al. [23]. Knowing which is
the fastest attack on one specific cipher, and whether one can really break into
cars and how, should be secondary questions in a scientific paper. Instead, in
cryptanalysis we need to study a variety of attacks on a variety of ciphers. Brute
force will be in fact maybe the only attack that will be executed in practice
by hackers. It is precisely by attacking weak ciphers such as KeeLoq in many
different ways that we discover many interesting attacks, and some important
attacks such as algebraic attacks would never be discovered without extensive
experimentation.

Acknowledgments. We thank Sebastiaan Indesteege and Sean O’Neil for valu-
able help.

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis com-
putation of semi-regular overdetermined algebraic equations. In: Proceedings of
International Conference on Polynomial System Solving (ICPSS, Paris, France),
pp. 71–75 (2004)

2. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

3. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

4. Bogdanov, A.: Cryptanalysis of the KeeLoq block cipher,
http://eprint.iacr.org/2007/055

5. Bogdanov, A.: Attacks on the KeeLoq Block Cipher and Authentication Systems.
In: 3rd Conference on RFID Security 2007, RFIDSec (2007)

6. Bogdanov, A.: Linear Slide Attacks on the KeeLoq Block Cipher. In: The 3rd
SKLOIS Conference on Information Security and Cryptology (Inscrypt 2007).
LNCS. Springer, Heidelberg (2007)

7. Cid, C., Babbage, S., Pramstaller, N., Raddum, H.: An Analysis of the Hermes8
Stream Cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 1–10. Springer, Heidelberg (2007)

8. Keeloq wikipedia article. On 25 January 2007 the specification given here was
incorrect and was updated since, http://en.wikipedia.org/wiki/KeeLoq

9. Keeloq C source code by Ruptor, http://cryptolib.com/ciphers/
10. Courtois, N.: Examples of equations generated for experiments with algebraic

cryptanalysis of KeeLoq, http://www.cryptosystem.net/aes/toyciphers.html
11. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.)

CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

http://eprint.iacr.org/2007/055
http://en.wikipedia.org/wiki/KeeLoq
http://cryptolib.com/ciphers/
http://www.cryptosystem.net/aes/toyciphers.html

Algebraic and Slide Attacks on KeeLoq 113

12. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

13. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

14. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

15. Courtois, N.: General Principles of Algebraic Attacks and New Design Criteria for
Components of Symmetric Ciphers. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
AES 2005. LNCS, vol. 3373, pp. 67–83. Springer, Heidelberg (2005)

16. Courtois, N.: The Inverse S-box, Non-linear Polynomial Relations and Cryptanal-
ysis of Block Ciphers. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005.
LNCS, vol. 3373, pp. 170–188. Springer, Heidelberg (2005)

17. Courtois, N.T.: How Fast can be Algebraic Attacks on Block Ciphers? In: Biham,
E., Handschuh, H., Lucks, S., Rijmen, V. (eds.) online proceedings of Dagstuhl
Seminar 07021, Symmetric Cryptography (January 07-12, 2007),
http://drops.dagstuhl.de/portals/index.php?semnr=07021 ,
http://eprint.iacr.org/2006/168/ ISSN 1862 - 4405

18. Courtois, N.: CTC2 and Fast Algebraic Attacks on Block Ciphers Revisited,
http://eprint.iacr.org/2007/152/

19. Courtois, N., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Cryptography and Coding, 11-th IMA Conference, Cirencester, UK, De-
cember 18-20, 2007. Springer, Heidelberg (2007), eprint.iacr.org/2006/402/;
Also presented at ECRYPT workshop Tools for Cryptanalysis, Krakow, September
24-25 (2007)

20. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2)
via SAT-Solvers, http://eprint.iacr.org/2007/024/

21. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq,
Older preprint with using incorrect specification of KeeLoq,
eprint.iacr.org/2007/062/

22. Courtois, N., Bard, G.V., Wagner, D.: An Improved Algebraic-Slide Attack on
KeeLoq, A sequel to the oresent paper (preprint available from the authors)

23. Biham, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B.: How to Steal
Cars – A Practical Attack on KeeLoq, Crypto 2007, rump session talk (2007);
Full paper will be presented at Eurocrypt 2008 and published in Springer LNCS,
http://www.cosic.esat.kuleuven.be/keeloq/keeloq-rump.pdf

24. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999),
www.elsevier.com/locate/jpaa

25. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 807 pages. Cambridge Uni-
versity Press, Cambridge (to appear, 2008),
http://algo.inria.fr/flajolet/Publications/book.pdf

26. Phan, R.C.-W., Furuya, S.: Sliding Properties of the DES Key Schedule and Po-
tential Extensions to the Slide Attacks. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002.
LNCS, vol. 2587, pp. 138–148. Springer, Heidelberg (2003)

27. Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)

http://drops.dagstuhl.de/portals/index.php?semnr=07021
http://eprint.iacr.org/2006/168/
http://eprint.iacr.org/2007/152/
eprint.iacr.org/2006/402/
http://eprint.iacr.org/2007/024/
eprint.iacr.org/2007/062/
http://www.cosic.esat.kuleuven.be/keeloq/keeloq-rump.pdf
www.elsevier.com/locate/jpaa
http://algo.inria.fr/flajolet/Publications/book.pdf

114 N.T. Courtois, G.V. Bard, and D. Wagner

28. Granboulan, L., Pornin, T.: Perfect Block Ciphers with Small Blocks. In: Biryukov,
A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)

29. Gemplus Combats SIM Card Cloning with Strong Key Security Solution, Press
release, Paris (November 5, 2002),
http://www.gemalto.com/press/gemplus/2002/r d/strong key 05112002.htm

30. Grossman, E.K., Tuckerman, B.: Analysis of a Feistel-like cipher weakened by
having no rotating key, IBM Thomas J. Watson Research Report RC 6375 (1977)

31. Kahn, D.: The Codebreakers, The Comprehensive History of Secret Communica-
tion from Ancient Times to the Internet (first published in 1967) (new chapter
added in 1996)

32. Marraro, L., Massacci, F.: Towards the Formal Verification of Ciphers: Logical
Cryptanalysis of DES. In: Proc. Third LICS Workshop on Formal Methods and
Security Protocols, Federated Logic Conferences (FLOC 1999) (1999)

33. Microchip. An Introduction to KeeLoq Code Hopping (1996),
http://ww1.microchip.com/downloads/en/AppNotes/91002a.pdf

34. Microchip. Hopping Code Decoder using a PIC16C56, AN642 (1998),
http://www.keeloq.boom.ru/decryption.pdf

35. Microchip. Using KeeLoq to Validate Subsystem Compatibility, AN827 (2002),
http://ww1.microchip.com/downloads/en/AppNotes/00827a.pdf

36. MiniSat 2.0. An open-source SAT solver package, by Niklas Eén, Niklas Sörensson,
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

37. Mironov, I., Zhang, L.: Applications of SAT Solvers to Cryptanalysis of Hash Func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006), http://eprint.iacr.org/2006/254

38. Riedel, M.R.: Random Permutation Statistics,
http://www.geocities.com/markoriedelde/papers/randperms.pdf

39. Singular, A.: Free Computer Algebra System for polynomial computations,
http://www.singular.uni-kl.de/

A Strong Keys in KeeLoq

It is possible to see that the manufacturer or the programmer of a device that
contains KeeLoq can check each potential key for fixed points for fk. If it has
any, that key can be declared “weak” and never used. This means that 63% of
keys will be weak, and changes the effective key space from 64 bits to 62.56 bits,
which is in fact a small loss. This appears to be practical for KeeLoq because
the size of the plaintext-space is only 232 and can be checked. A similar strong-
key solution was in 2002 patented and commercialized by Gemplus corporation
(currently Gemalto) to prevent GSM SIM cards from being cloned, see [29]. This
removes our fastest attack on KeeLoq, Slide-Determine Attack. Further research
is needed to see what is the best attack on KeeLoq in this case, and whether it
is also necessary to remove fixed points for f

(2)
k .

B Algebraic Immunity and Boolean Function Used in
KeeLoq

The security of KeeLoq depends on the quality of KeeLoq Boolean function
NLF. We have:

http://www.gemalto.com/press/gemplus/2002/r_d/strong_key_05112002.htm
http://ww1.microchip.com/downloads/en/AppNotes/91002a.pdf
http://www.keeloq.boom.ru/decryption.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00827a.pdf
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://eprint.iacr.org/2006/254
http://www.geocities.com/markoriedelde/papers/randperms.pdf
http://www.singular.uni-kl.de/

Algebraic and Slide Attacks on KeeLoq 115

y = NLF (a, b, c, d, e) = d⊕ e⊕ac⊕ae⊕ bc⊕ be⊕ cd⊕de⊕ade⊕ace⊕abd⊕abc

Following [4] , this function is weak with respect to correlation attacks, it is
1-resilient but it is not 2-resilient and can in fact be quite well approximated by
the linear function d ⊕ e.

From the point of view of algebraic cryptanalysis, the fundamental question
to consider is to determine the “Algebraic Immunity” of the NLF, which is also
known “Graph Algebraic Immunity” or “I/O degree”. We found that it is only 2,
and one can verify that this NLF allows one to write the following I/O equation
of degree 2 with no extra variables:

(e + b + a + y) ∗ (c + d + y) = 0

However, there is only 1 such equation, and this equation by itself does not
give a lot of information on the NLF of KeeLoq. This equation is “naturally”
true with probability 3/4 whatever is the actual NLF used. It is therefore easy
to see that this equation alone does not fully specify the NLF, and taken alone
cannot be used in algebraic cryptanalysis. When used in combination with other
equations, this should allow some algebraic attacks to be faster, at least slightly.
At present time we are not aware of any concrete attack on KeeLoq that is
enabled or aided by using this equation.

A Meet-in-the-Middle Attack on 8-Round AES

Hüseyin Demirci1 and Ali Aydın Selçuk2

1 Tübitak UEKAE, 41470 Gebze, Kocaeli, Turkey
huseyind@uekae.tubitak.gov.tr

2 Department of Computer Engineering
Bilkent University, 06800, Ankara, Turkey

selcuk@cs.bilkent.edu.tr

Abstract. We present a 5-round distinguisher for AES. We exploit this
distinguisher to develop a meet-in-the-middle attack on 7 rounds of AES-
192 and 8 rounds of AES-256. We also give a time-memory tradeoff gen-
eralization of the basic attack which gives a better balancing between
different costs of the attack. As an additional note, we state a new square-
like property of the AES algorithm.

Keywords: AES, Rijndael, meet-in-the-middle cryptanalysis, square
attack.

1 Introduction

In year 2000, the Rijndael block cipher was adopted by NIST as the Advanced
Encryption Standard (AES), the new standard encryption algorithm of the US
government to replace DES. The algorithm is a member of the family of square-
type algorithms [7] designed by Vincent Rijmen and John Daemen. It is currently
one of the most widely used and analyzed ciphers in the world.

AES is a 128-bit block cipher and accepts key sizes of 128, 192 and 256
bits. These versions of AES are called AES-128, AES-192 and AES-256 and the
number of rounds for these versions are 10, 12 and 14 respectively. The algorithm
is easy to understand, but the underlying mathematical ideas are strong. It has
an SP-network structure. Interaction between the operations is chosen so that
it satisfies full diffusion after two rounds. There is only one non-linear function
in the algorithm, but it does not seem to have any considerable weakness so far.

AES has been remarkably secure against attacks. Some related key attacks
can go up to 10 rounds on AES-192 and AES-256 with a complexity close to the
complexity of exhaustive search. Attacks that are not of related-key type have
been unable to go any further than 8 rounds. Most successful attacks in this
class have been based on the square property observed by the designers of the
Square algorithm [7].

In this paper we provide a distinguisher on 5 inner rounds of AES. This dis-
tinguisher relates a table entry of the fifth round to a table entry of the first
round using 25 parameters that remain fixed throughout the attack. Using this
distinguisher, we are able to attack up to 8 rounds of AES-256. For attacking

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 116–126, 2008.
c© International Association for Cryptologic Research 2008

A Meet-in-the-Middle Attack on 8-Round AES 117

AES-192, we use a birthday-paradox-like approach to reduce the precomputa-
tion complexity, which enables a 7-round attack on AES-192. Our attack is also
related to the meet-in-the-middle attack of Demirci et al. [9] on the IDEA block
cipher, where a large sieving set is precomputed according to a certain distin-
guishing property of the cipher, and this set is later used to discover the round
keys by a partial decryption.

This paper proceeds as follows: In Section 2 we briefly explain the AES block
cipher and give a survey of the previous attacks. In Section 3, we review the
4-round AES distinguisher of Gilbert and Minier [12]. In Section 4, we introduce
our 5-round distinguisher for AES. In Section 5, we describe our attacks on
AES-192 and AES-256 based on this distinguisher. We conclude the paper with
a summary of the results in Section 6. As an additional note, we present a novel
square-like property of the AES algorithm in the appendix.

2 The AES Encryption Algorithm

The AES encryption algorithm organizes the plaintext as a 4× 4 table of 1-byte
entries, where the bytes are treated as elements of the finite field GF (28). There
are three main operations used in AES: the s-box substitution, shift row, and
mix column operations. There is a single s-box substitution used for all entries of
the table based on the inverse mapping in GF (28) plus an affine mapping, which
is known to have excellent differential and linear properties [19]. The shift row
operation shifts the ith row i units left for i = 0, 1, 2, 3. Mix column operation
is an MDS matrix multiplication which confuses the four entries of each column
of the table. Key mixing is done at the end of each round where the bytes of the
round key are XORed to the corresponding plaintext bytes of the table. Initially
there is a key whitening before encryption begins, and in the final round there
is no mix column operation. The key scheduling of AES is almost linear. Our
analysis is independent of the key schedule algorithm. The interaction between
the operations is designed in such a way that full diffusion is obtained after two
rounds. Full details of the encryption, decryption, and key schedule algorithms
can be found in [11].

AES has been remarkably resistant against attacks. Although different at-
tacks have been tried on reduced-round versions, there is no way to break the
actual cipher faster than exhaustive search. The algorithm designers applied the
square attack [7] to the cipher. The attack uses about 232 chosen plaintexts and
breaks 6 rounds of AES with about 272 complexity. The square attack has been
improved [10] and the workload has been reduced to 246. For the key lengths 192
and 256 bits, the attack can be increased one more round with the help of the key
schedule [18]. In [12] a collision attack has been applied to the cipher using a dis-
tinguishing property of the four-round encryption. With 232 chosen plaintexts,
the attack breaks 7 rounds of AES-192 and AES-256 with a complexity of 2140.
For AES-128, the attack is marginally faster than exhaustive search. The impos-
sible differential attack has been applied up to 7 rounds of AES [3,5,22,20,21];
but the complexities of these attacks are higher than the square attack. Biryukov

118 H. Demirci and A.A. Selçuk

applied the boomerang attack technique to 5 and 6 rounds of the cipher [4]. For
the 128 bit key length, the boomerang attack breaks 5 rounds of AES using
246 adaptive chosen plaintexts in 246 steps of analysis. The 6-round boomerang
attack requires 278 chosen plaintexts, 278 steps of analysis, and 236 bytes of mem-
ory. There is also a class of algebraic attacks applied on AES [6]. The authors
write the AES S-box as a system of implicit quadratic equations. As a result, the
cryptanalysis of the system turns out to be solving a huge system of quadratic
equations. In [6], XSL method is suggested if the system of equations is overde-
fined and sparse which is the case for AES. Recently, related key attacks have
been applied to the cipher [1,2,15,14,17,23]. These attacks work up to 10 rounds
of AES-192 and AES-256.

Throughout the paper, we use K(r) and C(r) to denote the round key and
the ciphertext of the rth round; K

(r)
ij and C

(r)
ij denote the byte values at row

i, column j. The arithmetic among table entries are in GF (28), where addition
is the same as bit-wise XOR. By a one round AES encryption, we mean an
inner round without whitening or exclusion of the mixcolumn operation unless
otherwise stated.

2.1 The Square Property

The square attack [7] is the first attack on AES, which was applied by the
designers of the algorithm [8]. Proposition 1 states the distinguishing property
the square attack exploits.

Throughout this paper by an active entry, we mean an entry that takes all
byte values between 0 and 255 exactly once over a given set of plaintexts. By a
passive entry we mean an entry that is fixed to a constant byte value.

Proposition 1 ([8]). Take a set of 256 plaintexts so that one entry in the
plaintext table is active and all the other entries are passive. After applying
three rounds of AES, the sum of each entry over the 256 ciphertexts is 0.

This property leads to a straightforward attack on 4 rounds of AES where the
last round key is searched and decrypted and the third round outputs are checked
for this property. This attack can be extended one round from the top and one
round from the bottom so that 6 rounds of AES can be attacked using this
property [7,10].

The idea behind the square attack still forms the basis of most of the analysis
on AES. Therefore, obtaining more square-like properties of the cipher is essen-
tial for evaluating its security. We state such a new square-like property of the
AES algorithm in the appendix.

3 A 4-Round Distinguisher of AES

In [12], Gilbert and Minier showed an interesting distinguishing property for 4
rounds of AES: Consider the evolution of the plaintext over 4 inner rounds, with

A Meet-in-the-Middle Attack on 8-Round AES 119

no whitening. Let aij denote the ith row, jth column of the plaintext. After the
first s-box transformation, define tij = S(aij). At the end of round 1, our state
matrix is of the form:

2t11 + c1 m12 m13 m14

t11 + c2 m22 m23 m24

t11 + c3 m32 m33 m34

3t11 + c4 m42 m43 m44

where mij and ci, 1 ≤ i ≤ 4, 2 ≤ j ≤ 4, are fixed values that depend on the
passive entries and subkey values. At the end of the second round, this gives

C
(2)
11 = 2S(2t11 + c1) + 3S(m22) + S(m33) + S(m44) + K

(2)
11

= 2S(2t11 + c1) + c5,

for some fixed value c5. Similarly we can get the other diagonal entries as:

C
(2)
22 = S(3t11 + c4) + c6

C
(2)
33 = 2S(t11 + c3) + c7

C
(2)
44 = S(t11 + c2) + c8

Since C
(3)
11 = 2C

(2)
11 + 3C

(2)
22 + C

(2)
33 + C

(2)
44 + K

(3)
11 , we can summarize the above

observations with the following proposition:

Proposition 2 ([12]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Encrypt this set with 3 rounds of
AES. Then, the function which maps a11 to C

(3)
11 is entirely determined by 9

fixed 1-byte parameters.

Proof. To write the equation for C
(3)
11 , the constants ci, 1 ≤ i ≤ 8, and K

(3)
11 are

required. Therefore, the nine fixed values(
c1, c2, . . . , c8, K

(3)
11

)
completely specify the mapping a11 → C

(3)
11 . ��

Proposition 2 can be generalized: Note that the argument preceding the propo-
sition applies to any other third round ciphertext entry and hence the statement
is true for any C

(3)
ij . Similarly, any other aij can be taken as the active byte

instead of a11.
Gilbert and Minier [12] observed that the constants c1, c2, c3, and c4 depend

on the values (a21, a31, a41) on the first column, whereas the other constants c5,
c6, c7, and c8 are independent of these variables. They used this information to
find collisions over 3 rounds of the cipher: Assume that c1, c2, c3, and c4 behave
as random functions of the variables (a21, a31, a41). If we take about 216 random
(a21, a31, a41) values and fix the other passive entries of the plaintext, by the
birthday paradox, two identical functions f, f ′ : a11 → C

(3)
11 will be obtained

120 H. Demirci and A.A. Selçuk

with a non-significant probability by two different values of (a21, a31, a41). This
distinguishing property was used to build attacks on AES up to 7 rounds.

Through a 1-round decryption, we get the following distinguisher for 4-round
AES:

Proposition 3 ([12]). Consider a set of 256 plaintexts where the entry a11

is active and all the other entries are passive. Apply 4 rounds of AES to this
set. Let the function S−1 denote the inverse of the AES s-box and k(4) denote
0E · K(4)

11 + 0B · K(4)
21 + 0D · K(4)

31 + 09 · K(4)
41 . Then,

S−1[0E · C(4)
11 + 0B · C(4)

21 + 0D · C(4)
31 + 09 · C(4)

41 + k(4)]

is a function of a11 determined entirely by 1 key byte and 8 bytes that depend on
the key and the passive entries. Thus,

0E · C(4)
11 + 0B · C(4)

21 + 0D · C(4)
31 + 09 · C(4)

41

is a function of a11 determined entirely by 10 constant bytes.

4 A 5-Round Distinguisher of AES

In this section, we show how the observations of Gilbert and Minier [12] can be
extended to 5 rounds. To the best of our knowledge, this is the first 5-round
distinguishing property of AES. This property will help us to develop attacks on
7 rounds of AES-192 and AES-256, and on 8 rounds of AES-256.

Proposition 4. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Encrypt this set with 4 rounds of AES.
Then, the function which maps a11 to C

(4)
11 is entirely determined by 25 fixed

1-byte parameters.

Proof. By Proposition 2, in the third round we have

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(2S(2t11 + c4) + c6)

+S(S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (1)

Similarly it can be shown that

C
(3)
22 = S(S(3t11 + c4) + c9) + 2S(3S(2t11 + c3) + c10)

+3S(S(t11 + c2) + c11) + S(3S(2t11 + c1) + c12) + K
(3)
22 , (2)

C
(3)
33 = S(S(t11 + c3) + c13) + S(2S(t11 + c2) + c14)

+2S(S(2t11 + c1) + c15) + 3S(2S(3t11 + c4) + c16) + K
(3)
33 (3)

C
(3)
44 = 3S(S(t11 + c2) + c17) + S(S(2t11 + c1) + c18)

+S(3S(3t11 + c4) + c19) + 2S(S(t11 + c3) + c20) + K
(3)
44 . (4)

A Meet-in-the-Middle Attack on 8-Round AES 121

Since
C

(4)
11 = 2S(C(3)

11) + 3S(C(3)
22) + S(C(3)

33) + S(C(3)
44) + K

(4)
11 , (5)

the fixed values (
c1, c2, . . . , c20, K

(3)
11 , K

(3)
22 , K

(3)
33 , K

(3)
44 , K

(4)
11

)
(6)

are sufficient to express the function a11 → C
(4)
11 . ��

Although each of the diagonal entries depend on 9 fixed parameters, it is inter-
esting to observe that the fourth round entry C

(4)
11 is entirely determined by 25

variables, rather than 37. This is a result of the fact that the constants c1, c2,
c3 and c4 are common in formulas (1–4) of all the diagonal entries. Note that,
like Proposition 2, Proposition 4 can also be generalized to any entry.

Since this 4-round property is related to a single entry, we can develop a
5-round distinguisher by considering the fifth round decryption:

Proposition 5. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Apply 5 rounds of AES to this set. Let the
function S−1 denote the inverse of the AES S-box and k(5) denote 0E · K(5)

11 +
0B · K(5)

21 + 0D · K(5)
31 + 09 · K(5)

41 . Then,

S−1[0E · C(5)
11 + 0B · C(5)

21 + 0D · C(5)
31 + 09 · C(5)

41 + k(5)]

is a function of a11 determined entirely by 5 key bytes and 20 bytes that depend
on the key and the passive entries. Thus,

0E · C(5)
11 + 0B · C(5)

21 + 0D · C(5)
31 + 09 · C(5)

41

is a function of a11 determined entirely by 26 constant bytes.

25 bytes may be too much to search exhaustively in an attack on AES-128;
but for AES-256, we can precalculate and store all the possible values of this
function, and using this distinguisher we can attack on 7 and 8 rounds. For
AES-192, we can apply a time-memory tradeoff trick to reduce the complexity
of the precomputation of the function over these 25 parameters and to make the
attack feasible for 192-bit key size.

5 The Attack on AES

In this section, we describe a meet-in-the-middle attack on 7-round AES based
on the distinguishing property observed in Section 4. In the attack, we first
precompute all possible a11 → C

(4)
11 mappings according to Proposition 4. Then

we choose and encrypt a suitable plaintext set. We search certain key bytes, do
a partial decryption on the ciphertext set, and compare the values obtained by
this decryption to the values in the precomputed set. When a match is found,
the key value tried is most likely the right key value. The details of the attack
are as follows:

122 H. Demirci and A.A. Selçuk

1. For each of the 225×8 possiblevalues of the parameters in (6), calculate the func-
tion a11 → C

(4)
11 , for each 0 ≤ a11 ≤ 255, according to equations (1–4) and (5).

2. Let Kinit denote the initial whitening subkey blocks (K(0)
11 , K

(0)
22 , K

(0)
33 , K

(0)
44).

Try each possible value of Kinit, and choose a set of 256 plaintexts accord-
ingly to satisfy that the first entry takes every value from 0 to 255 and all
other entries are fixed at the end of round 1. Also search K

(1)
11 to guess the

value of C
(1)
11 . Encrypt this set of plaintexts with 7 rounds of AES.

3. Let Kfinal denote the subkey blocks (K(7)
11 , K

(7)
24 , K

(7)
33 , K

(7)
42 , k(6)), where k(6)

denotes 0E ·K(6)
11 +0B ·K(6)

21 + 0D ·K(6)
31 + 09 ·K(6)

41 . Search over all possible
values of Kfinal. Using Kfinal, do a partial decryption of the ciphertext
bytes C

(7)
11 , C

(7)
24 , C

(7)
33 and C

(7)
42 to obtain the entry C

(5)
11 over the set of 256

ciphertexts obtained in Step 2.
4. Now if the Kinit and Kfinal subkeys are guessed correctly, the function

C
(1)
11 → C

(5)
11 must match one of the functions obtained in the precomputation

stage. Compare the sequence of the 256 C
(5)
11 values obtained in Step 3 to

the sequences obtained in precomputation. If a match is found, the current
key is the correct key by an overwhelming probability, since the probability
of having a match for a wrong key is approximately 28×25 2−2048 = 2−1848.

5. Repeat the attack three times with different target values, C
(5)
21 , C

(5)
31 , and

C
(5)
41 , instead of C

(5)
11 , using the same plaintext set. Having already discovered

Kinit, this attack gives us another 15 key bytes from the final two rounds.
6. Now having recovered most of the key bytes, we can search the remaining

key bytes exhaustively.

This attack requires 232 chosen plaintexts where the first column of the plaintext
takes every possible value and the rest remain constant. There is a precompu-
tation step which calculates 2200 possible values for 256 plaintexts. Therefore
the complexity of this step, which will be done only once, is 2208 evaluations of
the function. In the key search phase, for every combination of Kinit, K

(1)
11 , and

Kfinal, we do partial decryption over 256 ciphertexts which makes 288 partial
decryptions. As in [7] and [10], we assume that 28 partial decryptions take ap-
proximately the time of a single encryption. Therefore the processing complexity
of the attack is comparable to 280 encryptions.

Note that since we take the target entries used in Step 5 to be on the same
column as C

(5)
11 , such as C

(5)
21 , equations (1–4) will remain identical in these

computations, and the only change will be on a few coefficients in equation (5).
Hence, there won’t be a need for a separate precomputation; the necessary values
for C

(1)
11 → C

(5)
21 can be obtained with a slight overhead. However, we will need

separate memory to store the obtained values. Hence, the memory requirement
of the attack is 4 × 2208 = 2210 bytes, which is equivalent to 2206 AES blocks.

5.1 A Time-Memory Tradeoff

The cost of the attack above is dominated by generation of the function set
in the precomputation phase. A time-memory tradeoff approach can be useful

A Meet-in-the-Middle Attack on 8-Round AES 123

here to balance the costs: Instead of evaluating all the possible functions in the
precomputation phase, we can evaluate and store only a part of the possible
function space. On the other hand, we must repeat the key search procedure a
number of times with different plaintext sets to compensate the effect of this
reduction. In general, if we reduce the size of the function set by a factor of n1

and repeat the key search procedure for each candidate key n2 times, for some
n1, n2 > 1, the probability of having a match for the right key becomes, for
relatively large n1,

1 −
(

1 − 1
n1

)n2

≈ 1 − e
−n2

n1 , (7)

which means a success probability of 63% for n2 = n1 and 98% for n2 = 4n1.
By this tradeoff approach, one can balance different costs of the attack. The

attack’s complexity is currently dominated by the complexity of the precompu-
tation phase and the required storage. As seen in Table 1, the basic attack is
not feasible on AES-192. By the tradeoff approach, the precomputation cost can
be reduced as desired, and the attack becomes feasible on AES-192 for n1 > 216

(i.e., n > 16).

5.2 Extension to 8 Rounds

To attack 8 rounds of AES, we follow exactly the same steps of the 7-round
attack, but we also search the last round key exhaustively. Therefore the data,
precomputation, and storage complexities do not change, whereas the complexity
of the key search phase increases by a factor of 2128. Hence the time complexity
of the attack on 8-round AES becomes 2208 while the memory complexity is 2206.
Although this attack appears to be dominated by Hellman’s [13] time-memory
tradeoff on both counts, it is a non-trivial attack faster than exhaustive search
on 8-round AES-256.

The performance of our attacks and the previous attacks on AES are sum-
marized in Table 1. Related key attacks, which are a different phenomenon, are
not included in the comparison.

As seen in Table 1, the complexity of our attacks includes a precomputation
cost in addition to the regular time complexity. The precomputation cost is con-
sidered separately from the rest of the time complexity due to the fact that it
is executed only once at the time of initialization. The precomputation costs
are given in terms of one evaluation of the a11 → C

(4)
11 function according to

equations (1–5).

5.3 An Improved Attack

Orhun Kara [16] observed the following improvement on the attack we described
above: In the partial decryption phase of the attack in Step 3 where the attacker
checks the partial ciphertext values of round 5, if the attacker looks at the XOR
of two partial ciphertexts rather than looking at them individually, the k(5)

124 H. Demirci and A.A. Selçuk

Table 1. Plaintext, memory, time, and precomputation time complexities of the chosen
plaintext attacks on AES-192 and AES-256. “MitM” stands for a meet-in-the-middle
attack; “MitM-TM” denotes the time-memory tradeoff version of the attack as de-
scribed in Section 5.1. Here we assume that if the precomputed set is reduced by a
factor of 2n, the key search procedure is repeated 2n+2 times to compensate for this
reduction.

Complexity
Block Cipher Paper Rounds Type Data Memory Time Pre.

AES-192 [12] 7 Collision 232 284 2140 284

[21] 7 Imp. Differential 292 2153 2186 –
[18] 7 Square 232 232 2184 –
[10] 7 Square 19 · 232 232 2155 –
[10] 7 Square 2128 − 2119 264 2120 –

This paper 7 MitM 232 2206 272 2208

This paper 7 MitM-TM 234+n 2206−n 274+n 2208−n

[10] 8 Square 2128 − 2119 264 2188 –

AES-256 [18] 7 Square 232 232 2200 –
[12] 7 Collision 232 284 2140 284

[10] 7 Square 21 · 232 232 2172 –
[10] 7 Square 2128 − 2119 264 2120 –
[21] 7 Imp. Differential 292.5 2153 2250.5 –

This paper 7 MitM 232 2206 272 2208

This paper 7 MitM-TM 234+n 2206−n 274+n 2208−n

[10] 8 Square 2128 − 2119 2104 2204 –
This paper 8 MitM 232 2206 2200 2208

This paper 8 MitM-TM 234+n 2206−n 2202+n 2208−n

term in the equation cancels and he does not need to include this term in the
key search.

This improved variant of the attack works as follows: In the precomputation
phase, for f denoting the mapping a11 → C

(4)
11 , the attacker computes and stores,

S(f(i)) + S(f(0)),

rather than storing f(i), for 1 ≤ i ≤ 255. And, accordingly, in the key search
phase, he looks for this XORed value in the precomputed set.

In this new variant, the key search complexity is reduced by a factor of 28, to
272 for the 7-round attack and to 2200 for the 8-round attack. The complexity
figures in Table 1 are given to reflect this improvement on the basic attack.

6 Conclusion

We have shown that if only one entry of a set of plaintexts is active while the
other 15 entries are passive, each entry of the ciphertext after 4 rounds of AES
encryption can be entirely defined using 25 fixed bytes. Using this property,
we have developed the first 5-round distinguisher of AES. This enabled us to

A Meet-in-the-Middle Attack on 8-Round AES 125

develop attacks on 7 and 8 rounds of AES-256 and 7 rounds of AES-192. The
attack has a huge precomputation and memory complexity, but the data and
time complexities are comparable with the best existing attacks. We have used a
birthday paradox approach to reduce the precomputation and memory complex-
ities. The proposed attacks present a new way of utilizing square-like properties
for attacking AES.

Acknowledgments

We would like to thank Çağdaş Çalık for a helpful discussion on time-memory
tradeoff attacks and Orhun Kara for his careful review and many valuable com-
ments on the paper.

References

1. Biham, E., Dunkelman, O., Keller, N.: Related-key and boomerang attacks. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer,
Heidelberg (2005)

2. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 21–31.
Springer, Heidelberg (2006)

3. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: The Third
AES Candidate Conference (2000)

4. Biryukov, A.: Boomerang attack on 5 and 6-round AES. In: The Fourth Conference
on Advanced Encryption Standard (2004)

5. Cheon, J.H., Kim, M.J., Kim, K., Lee, J., Kang, S.: Improved impossible differential
cryptanalysis of Rijndael. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp.
39–49. Springer, Heidelberg (2002)

6. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

7. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher SQUARE. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

8. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: The First AES Candidate
Conference (1998)

9. Demirci, H., Selçuk, A.A., Türe, E.: A new meet-in-the-middle attack on IDEA.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 117–129.
Springer, Heidelberg (2004)

10. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

11. FIPS PUB 197. NIST

12. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: The Third
AES Candidate Conference (2000)

13. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Information
Theory 26(4), 401–406 (1980)

126 H. Demirci and A.A. Selçuk

14. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced
versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

15. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

16. Kara, O.: Personal communication
17. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192

and AES 256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

18. Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In:
The Third AES Candidate Conference (2000)

19. Nyberg, K., Knudsen, L.R.: Provable security against a differential attack. Journal
of Cryptology 8(1), 27–38 (1995)

20. Phan, R.C.W.: Classes of impossible differentials of Advanced Encryption Stan-
dard. IEE Electronics Letters 38(11), 508–510 (2002)

21. Phan, R.C.W.: Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard AES. Information Processing Letters 91, 33–38 (2004)

22. Phan, R.C.W., Siddiqi, M.U.: Generalized impossible differentials of Advanced
Encryption Standard. IEE Electronics Letters 37(14), 896–898 (2001)

23. Zhang, W., Wun, W., Zhang, L., Feng, D.: Improved related-key impossible dif-
ferential attacks on reduced round AES-192. In: Biham, E., Youssef, A.M. (eds.)
SAC 2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

A A Semi-square Property of AES

In this section we present a semi-square property of the AES encryption algo-
rithm. This property observes the effect of fixing a certain bit position over the
diagonal entries.

Proposition 6. Take a set of AES plaintexts where all the non-diagonal entries
are fixed. For the diagonal entries, choose a certain bit position and fix that bit
of all the four diagonal entries; vary the remaining bits and obtain the set of all
possible (27)4 values of these plaintexts. Apply three rounds of AES to this set.
Then the sum of each table entry over the ciphertext set obtained will be 0.

One can use this semi-square property as a distinguisher to develop attacks on
AES. Instead of one active entry used in the square attack, the semi-square
property uses 4 semi-active entries. Therefore, the semi-square property is less
efficient in terms of the required data amount. Also it is difficult to increase
the number of rounds in an attack since it uses the diagonal entries. On the
other hand, it is interesting to observe the effect of fixing a one-bit position.
Although the s-box of AES is perfect in terms of linear and differential properties,
some structural properties can still be tracked if we fix a one-bit position. This
property is not preserved if we fix two or more bit positions. Understanding
the mechanism behind this observation can help us to deduce more square-like
properties of the cipher. This example illustrates that square properties are not
restricted to just the cases where all possible values of one cell are enumerated.

Block Ciphers Implementations Provably Secure

Against Second Order Side Channel Analysis

Matthieu Rivain1,2, Emmanuelle Dottax2, and Emmanuel Prouff2

1 University of Luxembourg
2 Oberthur Card Systems

{m.rivain,e.dottax,e.prouff}@oberthurcs.com

Abstract. In the recent years, side channel analysis has received a lot of
attention, and attack techniques have been improved. Side channel analy-
sis of second order is now successful in breaking implementations of block
ciphers supposed to be effectively protected. This progress shows not only
the practicability of second order attacks, but also the need for provably
secure countermeasures. Surprisingly, while many studies have been dedi-
cated to the attacks, only a few papers have been published about the ded-
icated countermeasures. In fact, only the method proposed by Schramm
and Paar at CT-RSA 2006 enables to thwart second order side channel
analysis. In this paper, we introduce two new methods which constitute a
worthwhile alternative to Schramm and Paar’s proposal. We prove their
security in a strong security model and we exhibit a way to significantly
improve their efficiency by using the particularities of the targeted archi-
tectures. Finally, we argue that the introduced methods allow us to effi-
ciently protect a wide variety of block ciphers, including AES.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in an-
alyzing the physical leakage (called side channel leakage) produced during the
execution of a cryptographic algorithm embedded on a physical device. SCA
exploits the fact that this leakage is statistically dependent on the intermediate
variables that are processed, these variables being themselves related to secret
data. Different kinds of leakage can be exploited. Most of the time SCA focuses
on the execution time [12], the power consumption [13] or the electromagnetic
emanations [8].

Block ciphers implementations are especially vulnerable to a powerful class of
SCA called Differential SCA (DCSA) [13,4]. Based on several leakage observa-
tions, a DSCA-attacker estimates a correlation between the leakage and different
predictions on the value of a sensitive variable. According to the obtained corre-
lation values, this attacker is able to (in)validate some hypotheses on the secret
key. An alternative to DSCA exists when profiling the side channel leakage is
allowed. The so-called Profiling SCA [6, 24] is more powerful than DSCA, but
it assumes a stronger adversary model. Indeed, a Profiling SCA attacker has a
device under control, which he uses to evaluate the distribution of the side chan-
nel leakage according to the processed values. These estimated distributions are

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 127–143, 2008.
c© International Association for Cryptologic Research 2008

128 M. Rivain, E. Dottax, and E. Prouff

then involved in a maximum likelihood approach to recover the secret data of
the attacked device. Profiling attacks are not only more efficient than DSCA but
they are also more effective since they can target the key manipulations.

A very common countermeasure against SCA is to randomize sensitive vari-
ables by masking techniques [5,9]. The principle is to add one or several random
value(s) (called mask(s)) to each sensitive variable. Masks and masked vari-
ables (together called the shares) propagate throughout the cipher in such a way
that every intermediate variable is independent of any sensitive variable. This
strategy ensures that the instantaneous leakage is independent of any sensitive
variable, thus rendering SCA difficult to perform. Two kinds of masking can
be distinguished: the hardware masking (that is included at the logic gate level
during the design of the device) and the software masking (that is included at
the algorithmic level). Hardware masking is expensive in terms of silicium area
and it has some security flaws. In particular, the shares are usually processed at
the same time. As a consequence the instantaneous leakage is actually dependent
on the sensitive variables, which makes some dedicated attacks possible [28, 19].
Other vulnerabilities come from physical phenomena such as glitches [16] or
propagation delays [27]. Compared to hardware masking, software masking does
not imply any overhead in silicium area, but it usually impacts the timing per-
formances and the memory requirements. Regarding security, it does not suffer
from the previous flaws and it is therefore widely used to protect block ciphers
implementations.

The masking can be characterized by the number of random masks that are
used per sensitive variable. A masking that involves d random masks is called
a dth order masking. When a dth order masking is used, it can be broken by a
(d + 1)th order SCA, namely an SCA that targets d + 1 intermediate variables
at the same time. Indeed, the leakages resulting from the d + 1 shares (i.e.
the masked variable and the d masks) are jointly dependent on the sensitive
variable. Whatever the order d, such an attack theoretically bypasses a dth order
masking [21]. However, the noise effects imply that the difficulty of carrying out
a dth order SCA in practice increases exponentially with its order [5, 25] and
the dth order SCA resistance (for a given d) is thus a good security criterion for
block cipher implementations.

Though block ciphers can theoretically be protected against dth order SCA by
using a dth order masking, the actual implementation reveals some issues. The
main difficulty lies in performing all the steps of the algorithm by manipulating
the shares separately, while being able to re-build the expected result. As we will
see, non-linear layers – crucial for the block cipher security – are particularly
difficult to protect. Only a few proposals have been made regarding this issue
and actually none of them provides full satisfaction. A first attempt has been
made by Akkar and Goubin for the DES algorithm [2] – and improved in [1,15]
– but it rests on an ad-hoc security and it is not provably secure against second
order SCA. A second proposal has been made by Schramm and Paar in [25] to
secure an AES implementation against dth order SCA but it has been broken
in [7] for d ≥ 3. Even if it seems to be resistant for d = 2, its security has

Block Ciphers Implementations Provably Secure Against Second Order SCA 129

not been proved so that there is nowadays no countermeasure provably secure
against second order SCA.

The lack of solutions implies that the higher order SCA resistance still needs
to be investigated. As a first step, resistance against second order SCA (2O-
SCA) is of importance since it has been substantially improved and successfully
put into practice [28, 19, 11, 18, 17, 14].

In this paper, we focus on block ciphers implementations provably secure
against 2O-SCA. We first introduce in Sect. 2 notions about block ciphers. We
recall how they are usually protected and we introduce the security model. We
show that in this model, the whole cipher security can be simply reduced to the
security of the S-box implementation. Then, two new generic S-box implemen-
tations are described in Sect. 3. We analyze their efficiency and we prove their
security against 2O-SCA. In this section, we also propose an improvement that
allows us to substantially speed up our solutions when several S-box outputs can
be stored on one microprocessor word.

Because of length constraints, some results could not be included in the pa-
per. They are given in the extended version [23]. In particular, in [23, Sect.
4] we compare our new proposal with the existing solutions, we give practical
implementation results, and we discuss their requirements and their efficiency.

2 Block Ciphers Implementations Secure Against
2O-SCA

In this section, we introduce some basics about block ciphers and we explain
how to implement such algorithms in order to guarantee the security against 2O-
SCA. Then, we introduce a security model to prove the security of the proposed
implementations.

2.1 Block Ciphers

A block cipher is a cryptographic algorithm that, from a secret key K, trans-
forms a plaintext block P into a ciphertext block C through the repetition of
key-dependent permutations, called round transformations. Let us denote by p,
and call cipher state, the temporary value taken by the ciphertext during the al-
gorithm. In practice, the cipher is iterative, which means that it applies R times
the same round transformation ρ to the cipher state. This round transformation
is parameterized by a round key k that is derived from K by iterating a key
scheduling function α. We shall use the notations pr and kr when we need to
precise the round r during which the variables p and k are involved: we have
kr+1 = α(kr , r) and pr+1 = ρ[kr](pr), with p0 = P, pR = C and k0 = α(K, 0).
Moreover, we shall denote by (p)j the jth part of the state p.

The round transformation ρ can be further modeled as the composition of
different operations: a key addition layer σ, a non-linear layer γ, and a linear
layer λ:

ρ[k] = λ ◦ γ ◦ σ[k].

130 M. Rivain, E. Dottax, and E. Prouff

The whole cipher transformation can thus be written1:

C = ©R−1
r=0 λ ◦ γ ◦ σ[kr] (P).

Remark 1. The key scheduling function α can also be modeled as the composi-
tion of linear and non-linear layers.

The key addition layer is usually a simple bitwise addition between the round key
and the cipher state and we have σ[k](p) = p⊕ k. The non-linear layer consists of
several, say N , non-linear vectorial functions Sj , called S-boxes, that operate in-
dependently on a limited number of input bits: γ(p) =

(
S1((p)1), · · · , SN ((p)N)

)
.

For efficiency reasons, S-boxes are most of the time implemented as look-up
tables (LUT). We will consider in this paper that the layer λ, that mixes the
outputs of the S-boxes, is linear with respect to the bitwise addition.

As an illustration, Fig. 1 represents a typical round transformation with a non-
linear layer made of four S-boxes. Note that this description is not restrictive
regarding the structure of recent block ciphers. In particular, this description
can be straightforwardly extended to represent the AES algorithm.

S1

S2

S3

S4

pr

σ γ

kr

pr+1
λ

Fig. 1. A typical round transformation with a non-linear layer composed of four S-
boxes

2.2 Securing Block Ciphers Against 2O-SCA

In order to obtain a 2O-SCA resistant implementation of a block cipher, we
use masking techniques [5, 9]. To prevent any second order leakage, random
shares are introduced: the cipher state p and the secret key k are represented by
three shares – (p0, p1, p2) and (k0, k1, k2) respectively – that satisfy the following
relations:

p = p0 ⊕ p1 ⊕ p2 , (1)
k = k0 ⊕ k1 ⊕ k2 . (2)

1 This is not strictly the case for all iterated block ciphers. For instance, the last round
of AES slightly differs from the iterated one. But this restriction does not impact on
our purpose.

Block Ciphers Implementations Provably Secure Against Second Order SCA 131

In order to ensure the security, shares (p1, p2) and (k1, k2) – called the masks
– are randomly generated. And in order to keep track of the correct values of
p and k, shares p0 and k0 – called the masked state and the masked key – are
processed according to Relations (1) and (2).

Remark 2. For an implementation to be secure against 2O-DSCA only, the key
does not need to be masked. This amounts in our description to fix the values of
k1 and k2 at zero. In such a case, the key scheduling function can be normally
implemented.

At the end of the algorithm, the expected ciphertext (which corresponds to the
final value pR) is re-built from the shares

(
pR
0 , pR

1 , pR
2

)
. To preserve the security

throughout the cipher and to avoid any second order leakage, the different shares
must always be processed separately. Thus, the point is to perform the algorithm
computation by manipulating the shares separately, while maintaining Relations
(1) and (2) in such a way that the unmasked value can always be re-established.
To maintain these relations along the algorithm, we must be able to maintain
them throughout the three layers λ, σ and γ.

For the linear layer λ, maintaining Relations (1) and (2) is simply done by
applying λ to each share separately. Indeed, by linearity, λ(p) and the new shares
λ(pi) satisfy the desired relation:

λ(p) = λ(p0) ⊕ λ(p1) ⊕ λ(p2) .

An easy relation stands also for the key addition layer σ where each ki can
be separately added to each pi since we have:

σ[k](p) = σ[k0](p0) ⊕ σ[k1](p1) ⊕ σ[k2](p2) .

For the non-linear layer, no such a relation exists and maintaining Relation
(1) is a much more difficult task. This makes the secure implementation of such
a layer the principal issue while trying to protect block ciphers.

Because of the non-linearity of γ, new random masks p′1, p
′
2 must be generated.

Then a masked output state p′0 has to be processed from p0, p1, p2 and p′1, p
′
2 in

such a way that:
γ(p) = p′0 ⊕ p′1 ⊕ p′2.

Since γ is composed of several S-boxes, each operating on a subpart of p, the
problem can be reduced to securely implement one S-box. The underlying prob-
lem is therefore the following.

Problem 1. Let S be an (n, m)-function (that is a function from Fn
2 in Fm

2). From
a masked input x⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of masks (r1, r2) ∈ Fn
2 ×Fn

2 and a pair
of output masks (s1, s2) ∈ Fm

2 ×Fm
2 , compute S(x)⊕s1 ⊕s2 without introducing

any second order leakage.

If the problem above can be resolved by an algorithm SecSbox, then the masked
output state p′0 can be constructed by performing each S-box computation
through this algorithm.

132 M. Rivain, E. Dottax, and E. Prouff

pr+1
2

pr+1
0

pr+1
1

pr
0

pr
1

pr
2

λ

λ

λ

SecSbox(S1)

SecSbox(S2)

SecSbox(S4)

SecSbox(S3)

kr
0 kr

1 kr
2

Fig. 2. A 2O-SCA resistant round transformation

Let us now assume that we have such a secure S-box implementation. Then,
the scheme described in Fig. 2 can be viewed as the protected version of the round
transformation described in Fig. 1. Finally, the whole block cipher algorithm
protected against 2O-SCA can be implemented as depicted in Algorithm 1.

Remark 3. We have described above a way to secure a round transformation
ρ. The secure implementation αsec of the key scheduling function α – neces-
sary to thwart Profiling 2O-SCA – can be straightforwardly deduced from this
description since it is also composed of linear and non-linear layers.

Algorithm 1. Block Cipher secure against 2O-SCA
Input: a plaintext P , a masked key k0 = K ⊕ k1 ⊕ k2 and the masks (k1, k2)
Output: the ciphertext C

1. (p1, p2) ← rand()

2. p0 ← P ⊕ p1 ⊕ p2

3. for r = 0 to R − 1 do
4. (k0, k1, k2) ← αsec ((k0, k1, k2), r)

5. (p0, p1, p2) ← (p0 ⊕ k0, p1 ⊕ k1, p2 ⊕ k2)

6. (p′
1, p

′
2) ← rand()

7. for j = 1 to N do (p′
0)j ← SecSbox (Sj , (p0)j , (p1)j , (p2)j , (p

′
1)j , (p

′
2)j)

8. (p0, p1, p2) ← (λ (p′
0) , λ (p′

1) , λ (p′
2))

9. return p0 ⊕ p1 ⊕ p2

This paper aims to design implementations that are provably secure against
any kind of 2O-SCA. We will show how it can be achieved by using masking only.
However, as stated in [5,26], masking must be combined with hiding-like counter-
measures (such as noise addition, pipelining, operations order randomization etc.)
to provide a satisfying resistance2 against SCA of any order. Otherwise a higher
2 By resistance, we mean the computational difficulty of the attack.

Block Ciphers Implementations Provably Secure Against Second Order SCA 133

order SCA may be easy to carry out (see for instance [18,17]). As a consequence, to
offer a good level of resistance against SCA of order greater than 2, the implemen-
tations we propose hereafter should be combined with classical hiding techniques
(e.g. the operations order randomization described in [10] for the AES).

2.3 Security Model

In order to prove the security of our implementations, we need to introduce
a few definitions. We shall say that a variable is sensitive if it is a function
of the plaintext and the secret key (that is not constant with respect to the
secret key). Additionally, we shall call primitive random values the intermediate
variables that are generated by a random number generator (RNG) executed
during the algorithm processing. In the rest of the paper, the primitive random
values are assumed to be uniformly distributed and mutually independent.

In the security analysis of our proposal, we will make the distinction between
a statistical dependency and what we shall call a functional dependency. Every
intermediate variable of a cryptographic algorithm can be expressed as a discrete
function of some sensitive variables and some primitive random values (gener-
ated by a RNG). When this function involves (resp. does not involve) a primitive
or sensitive variable X , the intermediate variable is said to be functionally de-
pendent (resp. independent) of X . If the distribution of an intermediate variable
I varies (resp. does not vary) according to the value of a variable X then I is
said to be statistically dependent (resp. independent) of X . It can be checked that
the two notions are not equivalent since the functional independency implies the
statistical independency but the converse is false. We give hereafter an example
that illustrates the difference between these notions.

Example 1. Let X be a sensitive variable and let R be a primitive random value.
The variable I = X ⊕R is functionally dependent on X and on R. On the other
hand, it is statistically independent of X since the probability P [X = x|I = i]
is constant for every pair (x, i).

In the rest of the paper, the term (in)dependent will be used alone to refer to
the statistical notion.

Definition 1 (2O-SCA). A second order SCA is an SCA that simultaneously
exploits the leakages of at most 2 intermediate variables.

From Definition 1 and according to [3,7], we formally define hereafter the security
against 2O-SCA.

Definition 2. A cryptographic algorithm is said to be secure against 2O-SCA if
every pair of its intermediate variables is independent of any sensitive variable.

Conversely, an algorithm is said to admit a second order leakage if two of its
intermediate variables jointly depend on a sensitive variable.

Remark 4. Usually a second order SCA refers to an SCA that simultaneously tar-
gets two different leakage points in the time-indexed leakage vector corresponding

134 M. Rivain, E. Dottax, and E. Prouff

to the algorithm execution. Thus Definitions 1 and 2 implicitly assume that an
instantaneous leakage gives information on at most one intermediate variable.
However, a non-careful implementation may imply that an instantaneous leakage
jointly depends on two intermediate variables. This may result from physical tran-
sitions occurring at the hardware level (e.g. in a register or on a bus [4,20]). The
different algorithms proposed in this paper fulfill security according to Definition
2 and assume a careful implementation to preclude this kind of phenomena.

Due to Definition 2, proving that an algorithm is secure against 2O-SCA can be
done by listing all pairs of its intermediate variables and by showing that they
are all independent of any sensitive variable. In order to simplify our security
proofs, we introduce the notion of independency for a set.

Definition 3. A set E is said to be independent of a variable X if every element
of E is independent of X.

By extension, Definition 3 implies that the cartesian product of two sets E1 and E2

is independent of a variable X if any pair in E1 × E2 is independent3 of X . Thus,
according to Definition 2, an algorithm processing a set I of intermediate variables
is secure against 2O-SCAif and only ifI×I is independent of any sensitivevariable.

Based on the definitions above, our security proofs make use of the two fol-
lowing lemmas.

Lemma 1. Let X and Z be two independent random variables. Then, for every
family (fi)i of measurable functions the set E = {fi(Z); i} is independent of X.

Remark 5. In the sequel we will say that an intermediate variable I is a function
of a variable Z (namely I = f(Z)), if its expression involves Z and (possibly)
other primitive random values of which Z is functionally independent.

Lemma 2. Let X be a random variable defined over Fn
2 and let R be a random

variable uniformly distributed over Fn
2 and independent of X. Let Z be a variable

independent of R and functionally independent of X. Then the pair (Z, X ⊕ R)
is independent of X.

When a sensitive variable is masked with two primitive random values, then
Lemmas 1 and 2 imply that no second order leakage occurs if the three shares
are always processed separately.

According to the definitions and lemmas we have introduced, we get the fol-
lowing proposition.

Proposition 1. Algorithm 1 is secure against 2O-SCA if and only if SecSbox
is secure against 2O-SCA.

Sketch of Proof. Let us denote by I the set of intermediate variables processed
during one execution of Algorithm 1. Moreover, let us denote by S the set of
intermediate variables processed in the different executions of SecSbox, and by

3 Unlike for a set, a pair is independent of a variable X if its two elements are jointly
independent of X.

Block Ciphers Implementations Provably Secure Against Second Order SCA 135

O the set of the other intermediate variables of Algorithm 1 (namely I = O∪S).
We will argue that I × I admits a leakage (namely a pair of I × I depends on
a sensitive variable) if and only if S × S admits a leakage.

If S × S admits a leakage then it is straightforward that so does I × I. Let
us now show that the converse is also true. In Algorithm 1, all the operations
except the S-box computations are performed independently on the three shares
of every sensitive variable. This implies that O×O is independent of any sensitive
variable i.e. that it admits no leakage. Since one execution of SecSbox takes as
parameter a tuple

(
(p0)j , (p1)j , (p2)j , (p′1)j , (p′2)j

)
, every intermediate variable

in S can be expressed as a function of such a tuple. Hence, if O×S depends on a
sensitive variable then this one is either (p)j or (p′)j = S

(
(p)j

)
. We deduce that

the intermediate variable in O that jointly leaks with the one in S is either a share
(pi)j or a share (p′i)j . Since we have {(p0)j , (p1)j , (p2)j , (p′0)j , (p′1)j , (p′2)j} ⊂ S
we deduce that if a leakage occurs in O × S then it also occurs in S × S.

Finally, we can conclude that if a leakage occurs in I × I then it occurs in
S × S. �

In the next section, we propose two new methods to implement any S-box in a
way which is provably secure against 2O-SCA. Using one of these methods as
SecSbox in Algorithm 1 guarantees a global 2O-SCA security.

3 Generic S-Box Implementations Secure Against
2O-SCA

In this section, we first describe two methods (Sect. 3.1 and Sect. 3.2) to imple-
ment any (n, m)-function S and we prove their security against 2O-SCA. Then
we propose an improvement (Sect. 3.3) that allows us to substantially reduce
the complexity of both methods.

3.1 A First Proposal

The following algorithm describes a method to securely process a second order
masked S-box output from a second order masked input.

Algorithm 2. Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x) ⊕ s1 ⊕ s2 ∈ Fm

2

1. r3 ← rand(n)

2. r′ ← (r1 ⊕ r3) ⊕ r2

3. for a = 0 to 2n − 1 do
4. a′ ← a ⊕ r′

5. T [a′] ← (S(x̃ ⊕ a) ⊕ s1) ⊕ s2

6. return T [r3]

136 M. Rivain, E. Dottax, and E. Prouff

Remark 6. In the description of Step 5, we used brackets to point out that
the introduction of the two output masks s1 and s2 is done in this very order
(otherwise a second order leakage would occur).

The random value r3 is used to mask the sum r1 ⊕ r2 and to avoid any second
order leakage. The value returned at the end of the algorithm satisfies: T [r3] =
S(x̃ ⊕ r3 ⊕ r′) ⊕ s1 ⊕ s2 = S(x) ⊕ s1 ⊕ s2, which proves the correctness of
Algorithm 2.

Complexity. Algorithm 2 requires the allocation of a table of 2n m-bit words
in RAM. It involves 4 × 2n (+2) XOR operations, 2 × 2n (+1) memory transfers
and the generation of n random bits.

Security Analysis. We prove hereafter that Algorithm 2 is secure against
2O-SCA.

Security Proof. Algorithm 2 involves four primitive random values r1, r2, s1

and s2. These variables are assumed to be uniformly distributed and mutually
independent together with the sensitive variable x.

The intermediate variables of Algorithm 2 are viewed as functions of the loop
index a and are denoted by Ij(a). The set {Ij(a); 0 ≤ a ≤ 2n − 1} is denoted by
Ij . If an intermediate variable Ij(a) does not functionally depend on a, then the
set Ij is a singleton. The set I = I1 ∪ · · · ∪ I15 of all the intermediate variables
of Algorithm 2 is listed in Table 1.

Remark 7. In Table 1, the step values refer to the lines in the algorithm descrip-
tion (where Step 0 refers to the input parameters manipulation). Note that one
step (in the algorithm description) can involve several intermediate variables.
However, these ones are separately processed and do not leak information at the
same time.

In order to prove that Algorithm 2 is secure against 2O-SCA, we need to show
that I×I is independent of x. For this purpose, we split I into the three subsets
E1 = I1 ∪ · · · ∪ I9, E2 = I10 ∪ · · · ∪ I14 and I15. First, the sets E1 × E1, E2 × E2

and I15 × I15 are shown to be independent of x. Then, we show that E1 × E2,
E1 × I15 and E2 × I15 are also independent of x, thus proving the independency
between I × I and x.

The set E1 × E1 is independent of x since E1 is functionally independent of
x. Moreover, since x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2) is independent of x and
since each element in E2 × E2 (resp. I15 × I15) can be expressed as a function
of x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2), then Lemma 1 implies that E2 × E2 (resp.
I15 × I15) is independent of x.

One can check that E1 is independent of r1⊕r2 and is functionally independent
of x. Hence, we deduce from Lemma 2 that E1 ×{x⊕ r1 ⊕ r2} is independent of
x, which implies (from Lemma 1) that E1×E2 and x are independent. Similarly,
E1 is independent of s1 ⊕ s2 so that E1 × {I15} (namely E1 ×{S(x) ⊕ s1 ⊕ s2})
is independent of S(x) and hence of x.

Block Ciphers Implementations Provably Secure Against Second Order SCA 137

Table 1. Intermediate variables of Algorithm 2

j Ij Steps

1 r1 0,2
2 r2 0,2
3 s1 0,2
4 s2 0,2
5 r3 1,6
6 r1 ⊕ r3 2
7 r1 ⊕ r2 ⊕ r3 2,4
8 a 3,4,5
9 a ⊕ r1 ⊕ r2 ⊕ r3 4,5

10 x ⊕ r1 ⊕ r2 0,5
11 x ⊕ r1 ⊕ r2 ⊕ a 5
12 S(x ⊕ r1 ⊕ r2 ⊕ a) 5
13 S(x ⊕ r1 ⊕ r2 ⊕ a) ⊕ s1 5
14 S(x ⊕ r1 ⊕ r2 ⊕ a) ⊕ s1 ⊕ s2 5

15 S(x) ⊕ s1 ⊕ s2 6

To prove the independency between E2 × I15 and x, we split E2 into two
subsets: I10 ∪ · · · ∪ I13 and I14. One can check that (x ⊕ r1 ⊕ r2, S(x) ⊕ s2)
is independent of x and that every element of (I10 ∪ · · · ∪ I13) × I15 can be
expressed as a function of this pair. Hence one deduces from Lemma 1 that
(I10 ∪ · · · ∪ I13)× I15 is independent of x. In order to prove that I14 × I15 is also
independent of x, let us denote u1 = S(x)⊕ s1 ⊕ s2 and u2 = S(x⊕ a⊕ r1 ⊕ r2).
The variables u1 and u2 are uniformly distributed4, independent and mutually
independent of x. Since I14×I15 equals {S(x) ⊕ u2 ⊕ u1}×{u1}, we deduce that
it is independent of x. �

3.2 A Second Proposal

In this section, we propose an alternative to Algorithm 2 for implementing an
S-box securely against 2O-SCA. This second solution requires more logical op-
erations but less RAM allocation, which can be of interest for low cost devices.

The algorithm introduced hereafter assumes the existence of a masked func-
tion compareb that extends the classical Boolean function (defined by compare
(x, y) = 0 iff x = y) in the following way:

compareb(x, y) =
{

b if x = y
b̄ if x �= y

. (3)

Based on the function above, the second method is an adaptation of the first
order secure S-box implementation which has been published in [22].
4 This holds for u2 if and only if the S-box S is balanced (namely every element in Fm

2

is the image under S of 2n−m elements in Fn
2). As it is always true for cryptographic

S-boxes we implicitly make this assumption.

138 M. Rivain, E. Dottax, and E. Prouff

Algorithm 3. Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x) ⊕ s1 ⊕ s2 ∈ Fm

2

1. b ← rand(1)

2. for a = 0 to 2n − 1 do
3. cmp ← compareb(r1 ⊕ a, r2)

4. Rcmp ← (S(x̃ ⊕ a) ⊕ s1) ⊕ s2

5. return Rb

Let indif denote any element in Fm
2 . Steps 3 and 4 of Algorithm 3 perform

the following operations:{
cmp ← b ; Rb ← S(x) ⊕ s1 ⊕ s2 if a = r1 ⊕ r2 ,
cmp ← b̄ ; Rb̄ ← indif otherwise.

We thus deduce that the value returned by Algorithm 3 is S(x) ⊕ s1 ⊕ s2.

Complexity. The method involves 4× 2n XOR operations, 2n memory transfers
and the generation of 1 random bit. Since it also involves 2n compareb operations,
the overall complexity relies on the compareb implementation. As explained in
the next paragraph, the implementation of this function must satisfy certain
security properties. We propose such a secure implementation in [23, Appendix
A] which – when applied to Algorithm 3 – implies a significant timing overhead
compared to Algorithm 2 but requires less RAM allocation.

Security Analysis. Let δ0 denote the Boolean function defined by δ0(z) = 0 if
and only if z = 0. For security reasons, compareb(x, y) must be implemented in
a way that prevents any first order leakage on δ0(x ⊕ y) that is, on the result of
the unmasked function compare(x, y) (and more generally on x⊕ y). Otherwise,
Step 3 would provide a first order leakage on δ0(r1 ⊕ r2 ⊕ a) and an attacker
could target this leakage together with x̃ ⊕ a (Step 4) to recover information
about x. Indeed, the joint distribution of δ0(r1 ⊕ r2 ⊕ a) and x̃ ⊕ a depends
on x which can be illustrated by the following observation: x̃ ⊕ a = x if and
only if δ0(r1 ⊕ r2 ⊕ a) = 0. In particular, the straightforward implementation
compareb(x, y) = compare(x, y)⊕ b is not valid since it processes compare(x, y)
directly. A possible implementation of a secure function compareb is given in [23,
Appendix A]. With such a function, Algorithm 3 is secure against 2O-SCA as
we prove hereafter.

Security Proof. As done in Sect. 3.1, we denote by I the set of intermediate vari-
ables that are processed during an execution of Algorithm 3. Table 2 lists these
variables. The primitive random values r1, r2, s1, s2 and b are assumed to be uni-
formly distributed and mutually independent together with the sensitive variable
x. The following security proof is quite similar to the one done in Sect. 3.1.

Block Ciphers Implementations Provably Secure Against Second Order SCA 139

Table 2. Intermediate variables of Algorithm 3

j Ij Steps

1 r1 0,3
2 r2 0,3
3 s1 0,4
4 s2 0,4
6 b 1,3
7 a 2-4
8 r1 ⊕ a 3
10 δ0(a ⊕ r1 ⊕ r2) ⊕ b 3

11 x ⊕ r1 ⊕ r2 0,4
12 x ⊕ r1 ⊕ r2 ⊕ a 4
13 S(x ⊕ r1 ⊕ r2 ⊕ a) 4
14 S(x ⊕ r1 ⊕ r2 ⊕ a) ⊕ s1 4
15 S(x ⊕ r1 ⊕ r2 ⊕ a) ⊕ s1 ⊕ s2 4

16 S(x) ⊕ s1 ⊕ s2 5

In order to prove that Algorithm 3 is secure against 2O-SCA, we need to show
that I × I is independent of x. As in Sect. 3.1 we split I into three subsets E1 =
I1 ∪ · · · ∪ I10, E2 = I11 ∪ · · · ∪ I15 and I16. First, we show that E1 × E1, E2 × E2

and I16 × I16 are independent of x and then, we show that E1 ×E2, E1 × I16 and
E2 × I16 are independent of x (thus proving that I × I is independent of x).

As in Sect. 3.1, E1 × E1 is straightforwardly independent of x and the inde-
pendency between x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2) and x implies, by Lemma
1, that E2 × E2 (resp. I16 × I16) is independent of x.

Since E1 is independent of r1⊕r2 (resp. s1⊕s2) and functionally independent
of x, Lemma 2 implies that E1 × {x ⊕ r1 ⊕ r2} (resp. E1 × {S(x) ⊕ s1 ⊕ s2}) is
independent of x. Hence, since every element of E2 (resp. I16) can be written as
a function of x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2), Lemma 1 implies that E1 × E2

(resp. E1 × I16) is independent of x.
Every pair in (E2\I15) × I16 can be expressed as a function of (x ⊕ r1 ⊕

r2, S(x) ⊕ s2) which is independent of x. Hence, by Lemma 1, (E2\I15) × I16 is
independent of x. Finally, I15 × I16 can be rewritten as {S(x) ⊕ u2 ⊕ u1}×{u1},
where u1 (= S(x)⊕s1⊕s2) and u2 (= S(x⊕r1⊕r2⊕a)) are uniformly distributed,
mutually independent and mutually independent of x. This implies that I15×I16

is independent of x. �

3.3 Improvement

This section aims at describing an improvement of the two previous methods
which can be used when the device architecture allows the storage of 2w S-box
outputs on one q-bit word (namely m, w and q satisfy 2wm ≤ q). This situation
may happen for 8-bit architectures when the S-boxes to implement have small
output dimensions (e.g. m = 4 and w = 1) or for q-bit architectures when q ≥ 16
(and m ≤ 8).

140 M. Rivain, E. Dottax, and E. Prouff

In the following, we assume that the S-box is represented by a LUT hav-
ing 2n−w elements of bit-length 2wm (instead of 2n elements of bit-length m).
This LUT, denoted by LUT (S′), can then be seen as the table representa-
tion of the (n − w, 2wm)-function S′ defined for every y ∈ Fn−w

2 by: S′(y) =
(S(y, 0), S(y, 1), · · · , S(y, 2w − 1)), where each i = 0, · · · , 2w − 1 must be taken
as the integer representation of a w-bit value.

For every x ∈ Fn
2 , let us denote by x[i] the i-th most significant bit of x and

by xH (resp. xL) the vector (x[1], · · · , x[n − w]) (resp. the vector (x[n − w +
1], · · · , x[n])). According to these notations, the S-box output S(x) is the m-bit
coordinate of S′(xH) whose index is the integer representation of xL.

In order to securely compute the masked output S(x)⊕s1⊕s2 from the 3-tuple
(x̃, r1, r2), our improvement consists in the two following steps. In the first step
we securely compute the masked vector S′(xH) ⊕ z1 ⊕ z2 (where z1 and z2 are
(2wm)-bit random masks). Then, the second step consists in securely extracting
S(x) ⊕ s1 ⊕ s2 from S′(xH) ⊕ z1 ⊕ z2.

To securely compute the masked vector S′(xH) ⊕ z1 ⊕ z2, we perform Algo-
rithm 2 (or 3) with as inputs the pair of dimensions (n − w, 2wm), the 3-tuple
(x̃H , r1,H , r2,H), the pair of output masks (z1, z2) and the table LUT (S′). This
execution returns the value S′(xH) ⊕ z1 ⊕ z2. Moreover, as proved in Sect. 3.1
(or Sect. 3.2), it is secure against 2O-SCA.

At this point, we need to securely extract S(x)⊕s1 ⊕s2 from S′(xH)⊕z1⊕z2

as well as s1 and s2 from z1 and z2. Namely, we need to extract the m-bit
coordinate of S′(xH) ⊕ z1 ⊕ z2, and of z1 and z2 whose index corresponds to
the integer representation of xL. For such a purpose, we propose a process that
selects the desired coordinate by dichotomy.

For every word y of even bit-length, let H0(y) and H1(y) denote the most
and the least significant half part of y. At each iteration our process calls an
algorithm Select that takes as inputs a dimension l, a 2O-masked (2l)-bit word
z0 = z ⊕ z1 ⊕ z2 (and the corresponding masking words z1 and z2) and a 2O-
masked bit c0 = c⊕c1 ⊕c2 (and the corresponding masking bits c1 and c2). This
algorithm returns a 3-tuple of l-bit words (z′0, z

′
1, z

′
2) that satisfies z′0 ⊕ z′1 ⊕ z′2 =

Hc(z). We detail hereafter the global process that enables to extract the 3-tuple
(S(x) ⊕ s1 ⊕ s2, s1, s2) from (S′(xH) ⊕ z1 ⊕ z2, z1, z2).

1. z0 ← S′(xH) ⊕ z1 ⊕ z2

2. for i = 0 to w − 1

3. (c0, c1, c2) ← (x̃L[w − i], r1,L[w − i], r2,L[w − i])

4. (z′
0, z

′
1, z

′
2) ← Select

(
2wm/2i+1, (z0, z1, z2), (c0, c1, c2)

)
4. (z0, z1, z2) ← (z′

0, z
′
1, z

′
2)

6. return (z0, z1, z2)

To be secure against 2O-SCA, this process requires that Select admits no
second order leakage on z nor on c. A solution for such a secure algorithm is given
hereafter (Algorithm 4). It requires three l-bit addressing registers (A0, A1),
(B0, B1) and (C0, C1).

Block Ciphers Implementations Provably Secure Against Second Order SCA 141

Algorithm 4.
Input: a dimension l, a masked word z0 = z ⊕ z1 ⊕ z2 ∈ F2l

2 , the pair of masks
(z1, z2) ∈ F2l

2 × F2l
2 , a masked bit c0 = c ⊕ c1 ⊕ c2 ∈ F2 and the pair of masking bits

(c1, c2) ∈ F2 × F2

Output: a 3-tuple (z′
0, z

′
1, z

′
2) ∈ (Fl

2)
3 that satisfies z′

0 ⊕ z′
1 ⊕ z′

2 = z[c]

1. t1, t2 ← rand(l)

2. b ← rand(1)

3. c3 ← (c1 ⊕ b) ⊕ c2

4. Ac3 ← Hc0(z0) ⊕ t1

5. Bc3 ← Hc0(z1) ⊕ t2

6. Cc3 ← Hc0(z2) ⊕ t1 ⊕ t2

7. Ac3 ← Hc0(z0) ⊕ t1

8. Bc3 ← Hc0(z1) ⊕ t2

9. Cc3 ← Hc0(z2) ⊕ t1 ⊕ t2

10. return (Ab, Bb, Cb)

One can verify that Algorithm 4 performs the following operations for every
value of (c1, c2):{

(Ab, Bb, Cb) ← (Hc(z0) ⊕ t1, Hc(z1) ⊕ t2, Hc(z2) ⊕ t1 ⊕ t2)
(Ab, Bb, Cb) ← (Hc(z0) ⊕ t1, Hc(z1) ⊕ t2, Hc(z2) ⊕ t1 ⊕ t2)

.

Thus the three returned variables satisfy Ab ⊕ Bb ⊕ Cb = z[c].

Complexity. Algorithm 4 involves 10 XOR operations and the generation of
2l + 1 random bits.

The improvement allows to divide the execution time of Algorithm 2 (or 3) by
approximately 2w since it performs a loop of 2n−w iterations instead of 2n. Addi-
tionally, the improvement involves w calls to Algorithm 4 which implies an over-
head of approximately 10 × w XOR operations and the generation of 2m × (2w −
1) + w random bits. For instance, for an 8× 8 S-box on a 16-bit architecture, the
improvement applied to Algorithm 2 allows to save 512 XOR operations and 128
memory transfers for an overhead of 10 XOR operations and the generation of 33
random bits (16 more for (z1, z2) than for (s1, s2) and 16 + 1 for Algorithm 4).

Security Analysis. The random values t1 and t2 are introduced to avoid any
second order leakage on c. Otherwise, if the algorithm simply returns
(Hc(z0), Hc(z1), Hc(z2)), an inherent second order leakage (i.e. independent of
the algorithm operations) occurs. Indeed, by targeting one of the inputs zi

and one of the outputs Hc(zi), an attacker may recover information on c since(
zi, Hc(zi)

)
depends on c (even if zi is random).

The security proof of Algorithm 4 is given in the extended version of this
paper [23].

4 Conclusion

In this paper, we have detailed how to implement block ciphers in a way that is
provably protect against second order side channel analysis. We have introduced

142 M. Rivain, E. Dottax, and E. Prouff

two new methods to protect an S-box implementation and we have proved their
security in a strong and realistic security model. Furthermore, we have introduced
an improvement of our methods, that can be used when several S-box outputs can
be stored on one processor word. Implementation results for an 8×8 S-box on 16-
bit and 32-bit architectures have demonstrated its practical interest [23].

Considering the today feasibility of second order attacks, our proposals consti-
tute an interesting contribution in the field of provably secure countermeasures,
as being the sole alternative to Schramm and Paar’s method [25] and achieving
lower memory requirements and possibly better efficiency [23].

Acknowledgements

The authors would like to thank Christophe Giraud for his valuable contribution
to this work.

References

1. Akkar, M.-L., Bévan, R., Goubin, L.: Two Power Analysis Attacks against One-
Mask Method. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–
347. Springer, Heidelberg (2004)

2. Akkar, M.-L., Goubin, L.: A Generic Protection against High-Order Differential
Power Analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205.
Springer, Heidelberg (2003)

3. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

6. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–29. Springer, Heidelberg (2003)

7. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

9. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

10. Herbst, P., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

11. Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

Block Ciphers Implementations Provably Secure Against Second Order SCA 143

12. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

13. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Lemke-Rust, K., Paar, C.: Gaussian Mixture Models for Higher-Order Side Channel
Analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007)

15. Lv, J., Han, Y.: Enhanced DES Implementation Secure Against High-Order Dif-
ferential Power Analysis in Smartcards. In: Boyd, C., González Nieto, J.M. (eds.)
ACISP 2005. LNCS, vol. 3574, pp. 195–206. Springer, Heidelberg (2005)

16. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

17. Oswald,E.,Mangard, S.: TemplateAttacks onMasking–Resistance isFutile. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 562–567. Springer, Heidelberg (2006)

18. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)

19. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improving Higher-
Order Side-Channel Attacks with FPGA Experiments. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 309–321. Springer, Heidelberg (2005)

20. Peeters,E., Standaert, F.-X.,Quisquater, J.-J.: Power andElectromagneticAnalysis:
Improved Model, Consequences and Comparisons. Integration 40(1), 52–60 (2007)

21. Piret, G., Standaert, F.-X.: Security Analysis of Higher-Order Boolean Masking
Schemes for Block Ciphers (with Conditions of Perfect Masking). IET Information
Security (to appear)

22. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:
WISA 2007. LNCS, vol. 4867, pp. 227–244 (2007)

23. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021 (2008), http://eprint.iacr.org/

24. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659.
Springer, Heidelberg (2005)

25. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

26. Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards Security
Limits of Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006)

27. Suzuki, D., Saeki, M.: Security Evaluation of DPA Countermeasures Using Dual-
Rail Pre-charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 255–269. Springer, Heidelberg (2006)

28. Waddle, J., Wagner, D.: Toward Efficient Second-order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

http://eprint.iacr.org/

SQUASH – A New MAC with Provable

Security Properties for Highly Constrained
Devices Such as RFID Tags

Adi Shamir

Computer Science department, The Weizmann Institute, Rehovot 76100, Israel
Adi.Shamir@weizmann.ac.il

Abstract. We describe a new function called SQUASH (which is short
for SQU are-hASH), which is ideally suited to challenge-response MAC
applications in highly constrained devices such as RFID tags. It is excep-
tionally simple, requires no source of random bits, and can be efficiently
implemented on processors with arbitrary word sizes. Unlike other ad-hoc
proposals which have no security analysis, SQUASH is provably at least
as secure as Rabin’s public key encryption scheme in this application.

Keywords: Hash function, MAC, RFID, provable security, SQUASH.

1 Introduction

Passive RFID tags are very simple computational devices (costing a few cents
each). They obtain their power from and communicate with a reader using a
magnetic or electromagnetic field at a distance of several centimeters to several
meters. They have many applications, including warehouse inventory control,
supermarket checkout counters, public transportation passes, anti-counterfeiting
tags for medicines, pet identification, secure passports, etc. They are already
widely deployed, and many more applications are likely to be found in the near
future.

The basic requirement in most of these applications is that a tag should be
able to interactively authenticate itself securely to a reader. We assume that the
tag contains some nonsecret identity I and some secret information S associated
with it. When challenged by the reader, the tag sends I in the clear, and convinces
the reader that it knows S, without enabling rogue eavesdroppers to extract S
or to convince another reader that they know S when in fact they do not.

The classical solution for such a problem is to use zero knowledge interactive
proofs, which prevent any leakage of information about S. However, such proofs
are too complicated for RFID tags which have tiny memories and very limited
computing power. In addition, in many applications the legitimate reader already
knows the secret S, and thus we do not care about the potential leakage of
information from the real prover to the real verifier. We can thus use the much
simpler protocol of challenge-response authentication, in which the reader issues
a random challenge R, and the tag responds with the value H(S, R) where H

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 144–157, 2008.
c© International Association for Cryptologic Research 2008

SQUASH – A New MAC with Provable Security Properties 145

is some publicly known hash function. This value, which can be viewed as a
message authentication code (MAC), is independently computed by the reader,
which accepts the authentication if and only if the computed and received values
are the same.

Most of the literature on the construction of MAC’s (which deals with chaining
and padding techniques for multiblock inputs) is irrelevant in our challenge-
response application, since we always apply H to a single block input of fixed
size. The main requirement from H is that it should protect the secrecy of S
even after an eavesdropper or a rogue reader gets H(S, Ri) for many (known or
chosen) challenges Ri. In particular, it should make it difficult for the adversary
to compute the correct response of the tag to a new random challenge which had
not been seen before. The function H should thus be a one-way hash function,
hiding all information about S, but not necessarily a collision-resistant hash
function since the discovery of a collision is not a security threat in challenge-
response authentication.

Unfortunately, standard hash functions (such as SHA-1) are primarily de-
signed to be collision resistant in order to prevent forgery of digitally signed
documents. This is a very difficult requirement, which adds a lot of unnecessary
complexity to their design in our application, and makes them too complicated
for RFID tags. This was recognized by the RFID research community, and over
the last few years there was a major effort to develop dedicated one way hash
functions which are not necessarily collision resistant, and which are more suit-
able for RFID applications.

The best known schemes of this type belong to the HB family of schemes
originally proposed by Hopper and Blum in 2001, which now includes the schemes
HB [6], HB+ [7], HB++ [3], and HB-MP [11]. The security of these schemes is
based on the difficulty of solving the parity with noise problem, which is known
to be NP-complete in general, and was investigated in several recent papers [4]
[8]. These schemes are much simpler than SHA-1, but they suffer from several
serious problems:

1. The tag needs an internal source of random bits. Real randomness is diffi-
cult to find and can be externally manipulated by the adversary, while pseudo-
randomness requires a large nonvolatile memory and lots of computations.

2. Since the proof of authenticity in these schemes is probabilistic, there is a
small chance that a tag will fail to convince a reader that it is valid even when
both of them are honest and there are no adversaries.

3. There are several parameters involved (the length of the secret, the number
of repetitions, the probability of the additive noise, etc) and there is considerable
debate about which values of these parameters will make the scheme sufficiently
secure.

4. Over the last few years, a large number of attacks were developed against
most of these schemes, and the various members of the HB family were developed
in response to these attacks. For example, HB is known to be insecure against
active adversaries. HB+ was claimed to be secure against such adversaries, but
it had been recently shown in [9] that it can be attacked by a man-in-the-middle

146 A. Shamir

adversary who can modify the challenges and observe the reaction of the real
reader to the modified responses. With each modification, the scheme became
more complicated, requiring larger keys and more computations, and it is not
clear that even the latest version is completely secure.

2 The New Approach

In this paper we introduce a new function called SQUASH (which is a squashed
form of SQU are-hASH),which is ideally suited to RFID-based challenge-response
authentication. Unlike the HB schemes it is completely deterministic, and thus it
does not need any internal source of randomness and there is no way in which a
legitimate tag will fail to convince a legitimate reader that it is authentic. It is
exceptionally simple, and yet it is provably at least as secure as the Rabin scheme
(which had been extensively studied over the last 30 years) in this application.

The basic idea of SQUASH is to mimic the operation of the Rabin encryption
scheme [12], in which a message m is encrypted under key n (where the publicly
known modulus n is the product of at least two unknown prime factors) by
computing the ciphertext c = m2 (mod n). This is an excellent one way function,
but definitely not a collision resistant function, since m, −m, and m+n all hash
to the same c. To make the Rabin scheme secure, the binary length k of n must
be at least 1000 bits long, the length of m should not be much smaller than k,
and thus just to store n m and c we need at least 3000 bits. Clearly we can not
perform a general modular squaring operation on a severely limited RFID tag
which can store less than 300 bits. Our game plan in this paper is to use the
Rabin scheme as a secure starting point, and to change it in multiple ways which
make it much more efficient but with provably equivalent security properties.

There were several previous attempts to simplify the implementation of mod-
ular squaring on constrained devices. At Eurocrypt 1994 [13], I proposed to
replace the modular squaring operation m2 (mod n) by a randomized squaring
operation m2 + rn where r is a random number which is at least 100 bits longer
than n. This scheme is provably as strong as the original Rabin scheme, and
has the advantage that it can be computed with a very small memory since the
successive bits of m2 and rn can be computed on the fly from LSB to MSB.
This scheme can be used in low end smart cards, but it requires a lot of time
and power to compute all the bits of the output (which is twice as long as in the
original Rabin scheme), and is not suitable for the weaker processors contained
in RFID tag.

In any challenge-response application, the secret S (which is typically 64 to
128 bits long) and the challenge R (which is typically 32 to 64 bits long) should
be securely mixed and extended into a message m in the same way that keys and
IV’s are mixed and extended into initial states in stream ciphers. In a Rabin-
based scheme, the noninvertibility of the mapping should be primarily provided
by the squaring operation, and we would like to use the simplest mixing function
M(S, R) which addresses the known weaknesses of modular squaring, such as its
easy invertibility on small inputs, its multiplicativity, and its algebraic nature

SQUASH – A New MAC with Provable Security Properties 147

(which makes it easy, for example, to compute S from (S + R1)2 (mod n) and
(S + R2)2 (mod n) when the challenge R is numerically added to the secret S).

Studying various choices of simple mixing functions M(S, R) is likely to lead
to many interesting attacks and countermeasures. For example, Serge Vaudenay
(in a private communication) had already developed a very clever polynomial-
time attack on the case in which the short mixed value S ⊕ R is expanded by a
linear feedback shift register, and then squared modulo n = pq.

The best choice of M also leads to a delicate theoretical dilemma: if we make it
too strong (e.g., use a provably secure pseudo-random function) there is no point
in squaring its result, and if we make it too weak (e.g., use a constant function)
we cannot prove the formal security of the combined construction. To address
this difficulty, we proceed in the rest of this paper in two different directions.

In Section 3 we assume that the choice of M is not part of the generic SQUASH
construction (just as the choice of hash function for long messages is not part
of the generic RSA signature scheme). We prove a relative security result which
shows that for any choice of M , the combination SQUASH(M(S, R)) is at least
as secure as the combination Rabin(M(S, R)), even though SQUASH is much
simpler and faster than Rabin. More formally, we claim:

Theorem 1. Let ψ(S) be any predicate of S, which can be computed with non-
negligible advantage by using a known or chosen message attack on a MAC
based on the mixing function M and the SQUASH function using modulus n.
Then ψ(S) can be computed with at least the same advantage by the same type
of attack when SQUASH is replaced by the original Rabin function with the same
modulus n.

The security of the challenge-response authentication scheme can be viewed as a
special case of this theorem, in which ψ(S) is defined as the value of some bit in
H(S, R) for a new challenge R which had not been seen before by the attacker.

In this approach, it is the responsibility of each designer to pick a particular
mixing function M that he would be happy with if it would be followed by the
Rabin encryption scheme, and then we give him the assurance that he would
not go wrong by combining the same M with SQUASH.

Since this approach makes it difficult to evaluate the precise security and
efficiency of SQUASH and to compare it to other MAC’s designed for RFID
applications, we propose in Section 4 a particular choice of M . Since the com-
bined scheme has no formal proof of security, we optimize it very aggressively
but we still believe that in practice it provides a high level of security at very
low cost. It uses the nonlinear part of GRAIN-128[5], which is a well studied
stream cipher with an extremely small footprint. Our concrete proposal (which
we call SQUASH-128) is even smaller than GRAIN-128, requiring only half the
number of gates to implement both M and SQUASH.

3 The Generic SQUASH Proposal

We will now describe how to simplify and speed up the Rabin encryption scheme
without affecting its well studied one-wayness. The basic idea of SQUASH is to

148 A. Shamir

compute an excellent numerical approximation for a short window of bits in the
middle of the ciphertext produced by the Rabin encryption function which uses
a modulus of a particular form. We will now describe how to gradually transform
Rabin to SQUASH by a series of simple observations and modifications.

Our first observation is that in the challenge-response MAC application, no
one has to invert the mapping in order to recover the plaintext from the cipher-
text, since both the tag and the reader compute the hash function only in the
forward direction. Since we do not need a trapdoor in this application, no par-
ticipant in the protocol needs to know the factorization of n, and thus everyone
can use the same universal modulus n as long as no one knows how to factor it.

Our second observation is that the Rabin scheme cannot be efficiently inverted
(and many of its bits can be proven secure) for any modulus n with unknown
factorization. If a universal n with unknown factorization can be compactly
represented by a small number of bits, we can save a lot of storage on the
RFID tag. In particular, we recommend using a composite Mersenne number
of the form n = 2k − 1, which can be stored very compactly since its binary
representation is just a sequence of k 1’s. Other recommended choices of n which
have very compact representations, such as the Cunningham project numbers of
the form n = a ∗ (bc)± d for small values of a, b, c, and d, will be discussed later
in the paper.

A lot of effort was devoted over the last decade to determine which Mersenne
numbers are prime, and to factorize those Mersenne numbers which are com-
posite. A table summarizing the current status of these efforts is maintained by
Paul Leyland [10], and the most recent success in factorizing such numbers was
the complete factorization of 21039 − 1 in 2007 by a large distributed computa-
tion [1]. Since such numbers are a little easier to factor (by the special number
field sieve) than general numbers (which require the general number field sieve),
we recommend using numbers of the form n = 2k − 1 with 1200 < k < 1300.
The currently known factors of all the “interesting” numbers in this range are
summarized below. For example, 21279 − 1 is a 386 digit prime number denoted
by P386, whereas 21201 − 1 has four known prime factors which are relatively
small, plus a 314 decimal digit cofactor denoted by C314 which is known to be
composite but has no known factors.

1201: 57649.1967239.8510287.2830858618432184648159211485423. C314
1213: 327511. C360
1217: 1045741327. C358
1223: 2447.31799.439191833149903. P346
1229: 36871.46703.10543179280661916121033. C339
1231: 531793.5684759.18207494497.63919078363121681207. C329
1237: C373
1249: 97423.52358081.2379005273.9345276045907272726364012481. C326
1259: 875965965904153. C365
1277: C385
1279: P386

SQUASH – A New MAC with Provable Security Properties 149

1283: 4824675346114250541198242904214396192319. C347
1289: 15856636079.108817410937.827446666316953.9580889333063599
.16055826953448199975207. P314
1291: 998943080897.84051400422953302189544581841. C348
1297: 12097392013313.64873964199444497. C361

The most interesting number in this range (and the one we recommend as the
universal modulus of SQUASH) is n = 21277 − 1, which is a 385 digit composite
number with a completely unknown factorization. Another number of this type
is the slightly smaller n = 21237 − 1. Both numbers are on the “most wanted”
list of computational number theorists, and a lot of effort was devoted so far
to their factorization, without any success. However, there is no guarantee that
these numbers will remain unfactored forever, and thus we have to consider the
potential impact of either a partial or a complete factorization of the recom-
mended modulus. As will be shown later, SQUASH is surprisingly resilient to
such future events: partial factorization of n = 21277 − 1 will have no impact on
the scheme or on its formal proof of security, and even full factorization of this
n will only eliminate the formal proof of security but not necessarily the real
security of SQUASH. In this sense, SQUASH is much better than the original
Rabin scheme, whose security will be devastated by either a partial or a full
factorization of its modulus.

Our third observation is that Mersenne moduli are not only easy to store, but
they also make the computation of m2 (mod n = 2k−1) particularly simple: Since
2k = 1 (mod n), we just compute the double sized m2, and then numerically
add the top half to the bottom half. More precisely, if m2 = m1 ∗ 2k + m2, then
m2 = m1 + m2 (mod n). Note that this sum could be bigger than n, creating a
new wraparound carry of 1, but the effect of this carry will almost certainly be
limited to a few LSB bits in the result.

Our fourth observation is that there is no need to send the full 1000+ bit
ciphertext c in response to the challenge R. In general, when no information
about the expected response c can be computed by the adversary, the probability
that the reader will accept a random t-bit answer from an adversary is 2−t. In
most cases, a sufficiently secure authentication of an RFID tag will be achieved
if it sends t = 32 bits (with a cheating probability of about one in 4 billion).
Low security applications can even use t = 16, and high security applications can
either use a larger t such as 64, or repeat a low security authentication procedure
several times with different challenges. The tag can thus send only a small subset
of t bits from c, and as we will see shortly, sending a window of consecutive bits
makes the tag’s computation particularly simple. Since arithmetic modulo 2k−1
has cyclic symmetry (in which rotation of the bits is equivalent to multiplication
by 2), the exact location of this window within c is not important, but for the
sake of concreteness in the rest of this paper we place it close to the center of
c. The crucial point is that the difficulty of computing some useful predicate of
the secret S (such as computing one of the bits of its expected response to some
new challenge R) is monotonically decreasing with t since any computational

150 A. Shamir

task can only become easier when more information is provided in the input.
In particular, if we assume that it was difficult in the original Rabin scheme
then it will certainly be difficult when only t out of the k bits from each Rabin
ciphertext are made available by the tag to the adversary in each response.

Our fifth observation is that if we want to be sure that a particular bit we
compute in m2 is correct, we have to compute in the worst case all the earlier
bits in order to be certain about the effect of the carry entering this bit position
(addition carries propagate only from LSB to MSB, so we do not have to compute
higher order bits in m2). However, we can get an excellent numeric approximation
of the carry into the t bits we would actually like to compute if we compute a
longer window of t+u bits with u additional low order bits (which we call guard
bits), assuming that no carry entered into the LSB of this extended window, and
providing only the top t out of the t+u bits as an answer. For k between 1024 and
2048, it is easy to show that the carry into each bit position in the computation
of m2 can be at most 11 bits long, and thus if we add u = 16 guard bits to the
computed window we have only a small probability of less than 211/216 = 1/32
of computing an incorrect carry into the 17-th bit we compute. If we add u = 64
guard bits, then this error probability becomes negligible. Note that we can
easily determine when a mistake is possible (a necessary condition is that all the
top u − 11 guard bits above the 11 LSB bits in the extended window are 1 so
that the unknown carry can propagate through them). We can thus start the
computation with a small u such as 16, and only in the small fraction of the
cases in which all the u − 11 guard bits are 1, we can rerun the computation
with a larger u such as 32 or 64. This can guarantee an extremely small error
probability while keeping the average running time only slightly higher than
always computing t + 16 bits.

With this relaxation, what we gain is the ability to compute the small number
of relevant bits in m2 in linear rather than quadratic time, which is in practice
one to two orders of magnitude faster than a full computation of m2. What we
lose is that the value we produce is only an approximation of the real value
produced by Rabin’s encryption scheme, and thus it is conceivable that by using
our protocol we will reveal more information about the secret S than by using
Rabin’s scheme. However, the two results differ only in a negligible fraction of
executions, and thus neither the reader nor the adversary is ever expected to see
an incorrectly computed answer, and thus the formal security proof (based on
the assumption that the Rabin scheme is secure) remains unaffected.

Our sixth observation is that if the successive bits of m = M(S, R) can be
efficiently generated in both the forward and backward order, we can compute
the successive bits in m2 without storing the long m explicitly, by convolving
these two streams of bits. When we want to compute bit j in the lower half of
m2, we compute it by summing all the products mv ∗ mj−v for v = 0, 1, 2, ..., j,
and add to this sum the carry from the computation of the previous bit. When
we want to compute bit j+k in the upper half of m2, we compute it by summing
all the products mv ∗ mj+k−v for v = j + 1, ..., k − 1, and add to this sum the
carry from the computation of the previous bit. When we want to compute m2

SQUASH – A New MAC with Provable Security Properties 151

(mod n) for n = 2k −1, we want to sum the upper half and lower half of m2, and
thus the j-th bit cj of c = m2 (mod n) can be computed by adding bits j and
j + k in m2, along with their carries. It is easy to verify that the sum of the two
linear convolutions defining bits j and j + k is exactly the circular convolution
defined as the sum of all the products mv ∗ mj−v(mod k) for v = 0, 1, 2, ..., k − 1.
The final SQUASH algorithm is thus extremely simple:

1. Start with j which is the index at lower end of the desired extended window
of t + u bits, and set carry to 0.

2. Numerically add to the current carry (over the integers, not modulo 2) the
k products of the form mv ∗ mj−v(mod k) for v = 0, 1, 2, ..., k − 1.

3. Define bit cj as the least significant bit of the carry, set the new carry to
the current carry right-shifted by one bit position, and increment j by one.

4. Repeat steps 2 and 3 t + u times, throw away the first u bits, and provide
the last t bits as the response to the challenge.

To implement this algorithm, we can use a simple stream cipher such as
a nonlinear feedback shift register (NFSR) with a reversible state transition
function, initialize it with S and R, and run it back and forth to generate all
the bits of m which are used in the convolution. This requires time proportional
to k2 ∗ (t + u) which is too high for k = 1277. A much faster implementation
uses two copies of the stream cipher in order to compute the two sequences of
bits we want to circularly convolve. However, whenever the state has to wrap
around (e.g., to go from the first state to the last state) it has to do so in k
clock cycles. The total running time is thus proportional to 2k(t + u). To save
an extra factor of two in the running time, we can keep one additional state in
an auxiliary register. We initially load both copies of the stream cipher with the
initial state, clock the second copy to the desired middle state j, and load the
auxiliary register with the last state k − 1. We run the first copy upwards all
the way from state 0 to state k − 1, and the second copy downwards from state
j. When it reaches state 0, we exchange its state with the auxiliary register,
so that now the second copy will contain state k − 1 and the auxiliary register
will contain state 0. We continue to run the second copy downwards from state
k − 1 to state j + 1. This completes the computation of the first cj. We can now
exchange the states of the first copy and the auxiliary register, and clock the
second copy once, in order to bring all the components to the desired states for
computing the next bit. Note that it is possible to exchange the values of two
registers Y and Z without using additional storage by computing Y = Y ⊕ Z,
Z = Y ⊕ Z, and Y = Y ⊕ Z.

Note that due to the associativity of addition, we can compute the sum of
products either upwards or downwards and get the same value, which makes it
possible to run the algorithm in many different ways. For example, the first copy
of the stream cipher can alternately run forwards and backwards through states
0, 1, ..., k − 1, the second copy can alternately run backwards and forwards in
a cyclic order (mod k), incrementing its state once after each round, and the
auxiliary register can alternately keep states k − 1 and 0 in order to help the

152 A. Shamir

Time

State of shift
register I

Time

State of shift
register II

Convolution
 I

Convolution
II

Convolution
III

Fig. 1. The sequence of indices of the bits we have to multiply in the two streams to
generate the successive output bits

second copy jump between these cyclically adjacent (but computationally wide
apart) extreme states.

An important comment is that the SQUASH function is ”one size fits all”, and
can be implemented efficiently on microprocessors with arbitrary word sizes. If
the processor can multiply b-bit values in a single instruction, it can compute the
same type of circular convolution b times faster by working with words rather
than bits. Future RFID tags might contain simple 4-bit multipliers, which will
speed up this algorithm by a factor of 4. In addition, the powerful microproces-
sors in the readers (which also have to carry out this computation to compare
the expected and received responses) are likely to have 32-bit or even 64-bit
multipliers, which will make the SQUASH algorithm extremely fast.

So far we described how to compute the SQUASH function when the under-
lying modulus is a composite Mersenne number of the form 2k − 1. It is very
easy to modify the scheme to composite numbers of the form 2k + 1. The Rabin
ciphertext in this case is defined by subtracting (instead of adding) the top half
of m2 from the bottom half. Consequently, when we compute the circular con-
volution we have to add to the carry all the products of the form mv ∗mj−v for

SQUASH – A New MAC with Provable Security Properties 153

v = 0, 1, 2, ..., j, and to subtract from the carry all the other products of the form
mv ∗ mj+k−v for v = j + 1, ..., k − 1. Except for this minor change, everything
else remains the same.

We can also consider more complicated moduli such as n = a ∗ 2k − d where
a and d are small positive integers. since a ∗ 2k is congruent to d, we have to
add to the bottom half of m2 the top half divided by a and multiplied by d.
To avoid the complicated division operation, we can change the definition of
the output we are trying to compute to be a window of t consecutive bits in
a ∗ m2 (mod n). Note that the security of Rabin’s encryption scheme cannot be
changed if all its ciphertexts are multiplied by a known constant a, and thus
we can not lose security by computing windows of bits in such modified Rabin
ciphertexts instead of in the original ciphertexts. Since a multiplies both the top
and the bottom parts of m2, this implies that the algorithm now has to add to
the carry all the products of the form a ∗ mv ∗ mj−v for v = 0, 1, 2, ..., j, and
then to add to the carry all the other products of the form d ∗ mv ∗ mj+k−v for
v = j + 1, ..., k − 1. If n is of the form a ∗ 2n + d, then the algorithm has to
subtract (rather than add) from the carry all the products of the second type.
When n is of the general form a ∗ bc ± d for small a, b, c and d, the algorithm
can perform the same type of computations in base b instead of base 2, but this
will probably make the scheme too complicated for a typical RFID.

Our seventh observation is that we can retain the formal proof of security
even if n has some known small factors, provided that it has at least two large
unknown factors. This can greatly extend the set of moduli which we can use,
since most of the composite Mersenne numbers for 1000 < k < 2000 have some
small known factors. Consider, for example, the case of n = 21213 − 1, which has
a known prime factor of 327511 and a composite cofactor of 360 decimal digits
whose factorization is completely unknown. If we use Rabin’s encryption scheme
with this n, the value of the ciphertexts modulo 327511 actually leaks the values
of the plaintexts modulo this prime. We can completely stop this partial leakage
of information by adding to each Rabin ciphertext a freshly selected random
number between 0 and 327510, which randomizes the value of the ciphertexts
modulo 327511. Since these added random values are small and we compute a
window of bits near the middle of each Rabin ciphertext, we can pretend that
such a randomizing value was indeed added to the ciphertext without changing
anything in the definition of SQUASH - the only effect of such a randomiza-
tion is that our numerical approximation of the middle windows in the Rabin
ciphertexts will deteriorate in a negligible way1. An interesting corollary of this
observation is that SQUASH will remain provably secure even if someone will
partially factorize n in the future: Since we do not have to modify anything in
the definition of SQUASH in order to use a modulus with a small known factor,
we do not actually have to know its value when we use the scheme. Consequently,
our formal proof of security will not be affected by a future discovery of some
of the factors of the recommended modulus n = 21277 − 1, provided that the

1 This proof can be easily modified to deal with window locations which are closer to
the low end of c.

154 A. Shamir

factorization is partial and n has a sufficiently long cofactor whose factorization
remains unknown.

Let us now assume that next year someone will find the complete factorization
of n = 21277−1. This will devastate the security of the Rabin encryption scheme
which uses this modulus, since it will make it possible to decrypt all the pre-
viously produced ciphertexts. It will also eliminate the formal proof of security
of SQUASH, but will not necessarily make it insecure in practice: Even when
an attacker can extract arbitrary modular square roots mod n, it is not clear
how to apply this operation when only a short window of bits in the middle of
each Rabin ciphertext is available. In this sense, SQUASH is provably at least
as secure as Rabin, but in practice it can be much more secure.

Our final observation deals with the relationship between SQUASH and some
of the other proposed hash functions for RFID tags. The formal security of
SQUASH is based on the difficulty of factoring the modulus n, but its imple-
mentation has the form of a cyclic convolution of a secret vector m with itself,
which does not use n in an explicit way. It can thus be viewed as a scheme
whose security is based on the difficulty of solving a system of quadratic equa-
tions of a very specific type. This is not entirely accurate, since the convolution
is defined over the integers rather than over GF (2), and the carries are defined
by expressions with degrees higher than 2. In addition, the mixing function M
can create complex dependencies between the bits of m. The QUAD scheme[2]
is another attempt to construct a cryptographic primitive whose security is di-
rectly based on the NP-completeness of the general problem of solving systems
of quadratic equations with k variables over GF (2). However, the implementa-
tion complexity of QUAD is much higher than that of SQUASH since QUAD
must use a dense system of quadratic equations with O(k2) randomly chosen co-
efficients per equation, whereas the convolution-based SQUASH has only O(k)
coefficients per equation defined in a very regular way. Consequently, SQUASH
is much more suitable than QUAD for tiny RFID tags. Finally, HB+ also has
the overall structure of convolving two vectors (S and R), but in this case R is
known, and thus its security has to be based on the different problem of solving
a large system of linear equations corrupted by noise.

These comparisons raise a number of interesting open problems about the
security of other SQUASH-like functions. For example, SQUASH is typically
implemented with two copies of the stream cipher M initialized with the same
secret value and run in opposite directions. Can we initialize the two copies of M
with different secret values? This can halve the number of state bits needed to
get the same security against exhaustive search, but leads to bilinear rather than
quadratic equations, and we have no formal argument which supports its security.
Another modification is to run the two copies of M in the same direction rather
than in opposite directions, and compute the dot product (with carries) of the
generated sequence with various small shifts of itself. When M is implemented
by a shift register, we can use only one copy of M , and get the t + u shifted
versions of its output by tapping various bits within this register. This can again
halve the hardware complexity of the implementation, but there is no formal

SQUASH – A New MAC with Provable Security Properties 155

argument why the specific system of quadratic equations generated in such a
way should be secure.

4 The Concrete SQUASH-128 Proposal

In this section we describe a fully specified MAC proposal, in order to make
it possible to study its exact security and efficiency. It differs from the generic
SQUASH construction in two important ways:

1. It uses a particular choice of mixing function M0(S, R), which is based on
a single nonlinear feedback shift register. It shares this register with SQUASH,
and thus the only additional hardware required (beyond the register itself) are
a few gates to implement the feedback function and the carry adder.

2. Since the combined mapping SQUASH(M0(S, R)) has no formal proof
of security, we also simplify the SQUASH part in a very aggressive way by
eliminating all the elements which were required by the security proof but which
are not believed to contribute to the real security of the scheme. For example, we
use only 8 guard bits instead of a variable number up to 64, which were needed
only in order to claim that the windows of bits provided by SQUASH and Rabin
are indistinguishable.

The most radical optimization step in our concrete proposal is to use a smaller
modulus n. We can view the proof that SQUASH is at least as secure as Rabin
as a safety net in order to show that the general structure of SQUASH can
not be broken in polynomial time. This safety net is relatively weak (since the
complexity of factoring is only subexponential in the size of n) and very erratic:
it is applicable to n = 21277 − 1 which has no known factors, but inapplicable to
n = 21279 − 1 which is a prime number. However, SQUASH seems to be much
more secure than Rabin since there is no known attack on it even when the
complete factorization of n is given. We believe that in fact the best attack on
SQUASH requires exponential time and grows monotonically with the size of n,
and thus we propose as a challenge to the reader to try to break an extremely
reduced version of SQUASH which uses n = 2128 − 1 as the universal modulus,
even though it is very easy to factor. We call this version SQUASH-128, and
emphasize that its successful cryptanalysis will just indicate that we were too
aggressive in our optimizations. The relationship between SQUASH-128 and the
generic SQUASH construction is similar to the relationship between DES and
the Luby-Rackoff theory of Feistel structures upon which it is loosely based.

The reduction in the size of n increases the speed of the scheme by a factor of
10, and makes it possible to halve its footprint: Since m is short, we can generate
it with a single copy of M (instead of two copies which operate in opposite
directions), store it in a single 128-bit register, and perform the convolutions
directly on this register.

Our concrete proposal of SQUASH-128 uses a 64-bit key S and a 64-bit chal-
lenge R, and produces a 32-bit response. Our choice of M0 is the nonlinear half
of GRAIN-128 (we do not need the linear half since in this application we do not

156 A. Shamir

need any guaranteed lower bound on the cycle length of the generated sequence).
It initializes a single 128-bit shift register denoted by (b0, . . . , b127) by storing S
in its low half and S ⊕ R in its high half. It mixes them by clocking the register
512 times (this is twice the number of initialization steps in GRAIN-128, which
is still small compared to the time required by the convolutions), using no inputs
and producing no outputs. The resultant 128-bit state is the value m which is
squared modulo 2128 − 1. The 32-bit response consists of bits 48 to 79 in the
cyclically convolved result, using the 8 bits at positions 40 to 47 as guard bits.
The clocking of the shift register uses the following nonlinear feedback function:

bi+128 = bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13 +
bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

This function is the sum modulo 2 of a linear function and a quadratic bent
function. It has the nice property that it can be applied up to 32 times faster
by duplicating the feedback function and running these copies in parallel. Note
that the zero state is a fixedpoint, and thus S = 0 should be excluded as a weak
key.

Our choice of M0 shares the same 128-bit shift register with SQUASH, and
the only additional gates needed are an AND gate and an 8-bit carry register
for the convolutions, a few AND and XOR gates for the feedback function, and
two 7-bit counters for the indices v and j. Consequently, we expect the total
number of gates needed by the complete SQUASH-128 scheme to be about half
the number of gates in GRAIN-128, which is itself one of the smallest hardware-
oriented cryptographic primitives.

This completes the description of SQUASH-128, and we encourage the reader
to try to break the security of this scheme with a chosen challenge attack which
requires less than 264 time and space. As pointed out by Henri Gilbert and
Helena Handschuh (in a private communication), this is the highest possible
security level for any MAC which has a 128-bit internal state.

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: Research announce-
ment, http://actualites.epfl.ch/presseinfo-com?id=441

2. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

3. Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Pro-
tocol Secure Against Some Attacks. In: Workshop on Security, Privacy and Trust
in pervasive and Ubiquitous Computing - SecPerU (2006)

4. Fossorier, M.P.C., Mihaljević, M.J., Imai, H., Cui, Y., Matsuura, K.: An Algorithm
for Solving the LPN Problem and Its Application to Security Evaluation of the HB
Protocols for RFID Authentication. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 48–62. Springer, Heidelberg (2006)

5. Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal:
Grain-128, http://www.it.lth.se/martin/Grain128.pdf

http://actualites.epfl.ch/presseinfo-com?id=441
http://www.it.lth.se/martin/Grain128.pdf

SQUASH – A New MAC with Provable Security Properties 157

6. Hopper, N.J., Blum, M.: A Secure Human-Computer Authentication Scheme,
CMU-CS-00-139 (2000)

7. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

8. Levieil, E., Fouque, P.-A.: An Improved LPN Algorithm, Security and Cryptogra-
phy for Networks (2006)

9. Gilbert, H., Robshaw, M., Silbert, H.: An active attack against HB+ – a prov-
able secure lightweight authentication protocol, Cryptology ePrint Archive number
2005/237

10. Leyland, P.,
http://www.leyland.vispa.com/numth/factorization/cunningham/2-.txt

11. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51, 2262–2267 (2007)

12. Rabin, M.O.: Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, MIT LCS/TR-212 (1979)

13. Shamir, A.: Memory Efficient Variants of Public-Key Schemes for Smart Card
Applications. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp.
445–449. Springer, Heidelberg (1995)

http://www.leyland.vispa.com/numth/factorization/cunningham/2-.txt

Differential Fault Analysis of Trivium�

Michal Hojśık1,2 and Bohuslav Rudolf2,3

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
2 Department of Algebra, Charles University in Prague,

Sokolovská 83, 186 75 Prague 8, Czech Republic
3 National Security Authority, Na Popelce 2/16, 150 06 Prague 5, Czech Republic

michal.hojsik@ii.uib.no, b.rudolf@nbu.cz

Abstract. Trivium is a hardware-oriented stream cipher designed in 2005
by de Cannière and Preneel for the European project eStream, and it has
successfully passed the first and the second phase of this project. Its design
has a simple and elegant structure. Although Trivium has attached a lot
of interest, it remains unbroken.

In this paper we present differential fault analysis of Trivium and
propose two attacks on Trivium using fault injection. We suppose that an
attacker can corrupt exactly one random bit of the inner state and that he
can do this many times for the same inner state. This can be achieved e.g.
in the CCA scenario. During experimental simulations, having inserted
43 faults at random positions, we were able to disclose the trivium inner
state and afterwards the private key.

As far as we know, this is the first time differential fault analysis
is applied to a stream cipher based on shift register with non-linear
feedback.

Keywords: differential fault analysis, Trivium stream cipher, fault
injection.

1 Introduction

In 2004 eSTREAM project has started as part of the European project ECRYPT.
At the beginning there was a call for stream ciphers and 34 proposals were re-
ceived. Each proposal had to be (according to the call) marked as hardware or soft-
ware oriented cipher. At the time of writing this paper, the project was in phase
3, and there were just some ciphers left. One of the requirements of the call for
stream ciphers was the high throughput, so the winners can compete with AES.
In this respect, one of the best proposals is the stream cipher Trivium, which is a
hardware oriented stream cipher based on 3 nonlinear shift registers. Though the
cipher has a hardware oriented design it is also very fast in software, which makes
it one of the most attractive candidates of the eSTREAM project.

In this paper differential fault analysis of Trivium is described. We sup-
pose that an attacker can corrupt a random bit of the inner state of Trivium.

� The work was partly supported by the grant from GAUK n. 7302/2007.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 158–172, 2008.
c© International Association for Cryptologic Research 2008

Differential Fault Analysis of Trivium 159

Consequently some bits of keystream difference (proper keystream XOR faulty
keystream) depend linearly on the inner state bits, while other equations given
by the keystream difference are quadratic or of higher order in the bits of the
fixed inner state.

Since we suppose that an attacker can inject a fault only to a random position,
we also describe a simple method for fault position determination. Afterwards
knowing the corresponding faulty keystream, we can directly recover few inner
state bits and obtain several linear equations in inner state bits. Just by repeating
this procedure for the same inner state but for different (randomly chosen) fault
positions we can recover the whole cipher inner state, and clocking it backwards
we are able to determine the secret key. The drawback of this simple approach is
that we need many fault injections to be done in order to have enough equations.

To decrease number of faulty keystreams needed (i.e. to decrease the number
of fault injections needed), we also use quadratic equations given by a keystream
difference. But as we will see later on, we do not use all quadratic equations,
but just those which contains only quadratic monomials of a special type, where
the type follows directly from the cipher description. In this way we are able to
recover the whole trivium inner state using approx. 43 fault injections.

As mentioned above, presented attacks require many fault injections to the
same Trivium inner state. This can be achieved in the chosen-ciphertext scenario,
assuming that the initialisation vector is the part of the cipher input. In this
case, an attacker will always use the same cipher input (initialisation vector
and ciphertext) and perform the fault injection during the deciphering process.
Hence, proposed attacks could be described as chosen-ciphertext fault injection
attacks.

We have to stress out, that in this paper we do not consider usage of any so-
phisticated methods for solving systems of polynomial equations (e.g. Gröbner
basis algorithms). We work with simple techniques which naturally raised from
the analysis of the keystream difference equations. Hence the described attacks
are easy to implement. This also shows how simple is to attack Trivium by differ-
ential fault injection. We believe that usage of more sophisticated methods can
further improve presented attack, in sense of the number of the fault injections
needed for the key recovery.

The rest of this paper is organised as follows. In Sect. 2 we review related
work and Sect. 3 describes used notation. Trivium description in Sect. 4 follows.
Attacks description can be found in Sect. 5, which also contains attack outline
and differential fault analysis description. We conclude by Sect. 6.

2 Related Work

Let us briefly mention some of the previous results in Trivium cryptanalysis.
Raddum introduces a new method of solving systems of sparse quadratic equa-
tions and applies it in [2] to Trivium. The complexity arising from this attack on
Trivium is O(2162). A. Maximov and A. Biryukov [3] use a different approach to
solve the system of equations produced by Trivium by guessing the value of some

160 M. Hojśık and B. Rudolf

bits. In some cases this reduces the system of quadratic equations to a system of
linear equations that can be solved. The complexity of this attack is O(c · 283,5),
where c is the time taken to solve a sparse system of linear equations. Differ-
ent approaches to Trivium potential cryptanalysis - some ways of construction
and solution of equations system for Trivium mainly - are discussed in [4]. M.
S. Thuran and O. Kara model the initialisation part of Trivium as an 8-round
function in [5]. They study linear cryptanalysis of this part of Trivium and give
a linear approximation of 2-round Trivium with bias 2−31. In [6] the differential
cryptanalysis is applied mainly to initialisation part of Trivium.

Our attack deals with fault analysis of Trivium. Side-channel attacks are
amongst the strongest types of implementation attacks. Short overview on pas-
sive attacks on stream ciphers is given in [7]. Differential power analysis of Triv-
ium is described in [8].

Fault attacks on stream ciphers are studied in [9]. The authors are mainly
focused on attacking constructions of stream ciphers based on LFSRs. The cor-
responding attacks are based on the linearity of the LFSR. More specialised
techniques were used against specific stream ciphers such as RC4, LILI-128 and
SOBER-t32 [10].

3 Notation

In this paper the inner state of Trivium is denoted as IS and the bits of the inner
state (there are 288 of these) as (s1, . . . , s288). The inner state at time t0 is
denoted as ISt0 and the following keystream (starting at the time t0) as {zi}∞i=1.
We refer to this keystream as the proper keystream. After a fault injection into
the state ISt0 , the resulting inner state is denoted as IS′

t0 and the following
faulty keystream (starting at the time t0) as {z′i}∞i=1.

The keystream difference, i.e. the difference between the proper keystream
and the faulty keystream is denoted as {di}, i.e. di = z′i ⊕ zi, i ≥ 1. The fault
position is denoted as e, 1 ≤ e ≤ 288. The righ-hand-side of an equation is (as
usual) abbreviated to RHS.

4 Trivium Description

The stream cipher Trivium is an additive synchronous stream cipher with 80-
bit secret key and 80-bit initialisation vector (IV). The cipher itself produces
the keystream, which is then XOR-ed to a plaintext to produce the ciphertext.
Trivium (as other stream ciphers) can be divided into two parts: the initialisation
algorithm described by Alg. 1, which turns the secret key and the initialisation
vector into the inner state of Trivium, and the Keystream generation algorithm
described by Alg. 2, which produces the keystream (one bit per step).

The cipher itself consists of 3 shift registers with non-linear feedback functions.
These registers are of length 93, 84 and 111 respectively. Keystream production
function is a bit sum (i.e. XOR) of 6 bits in total, 2 bits from each register. Feed-
back function for register i (i = 0, 1, 2) depends on bits of register i quadratically

Differential Fault Analysis of Trivium 161

and on one bit of register (i + 1)mod 3 linearly. If we look closer at any of these
feedback functions we see, that it contains only one quadratic term and the rest
is linear. Furthermore, this quadratic term is of a special type, namely sj · sj+1.

In the rest of the paper, by the term pair quadratic equation we denote a
quadratic equation, which contains linear terms and quadratic terms only of
the type sj · sj+1. As we will see, these pair quadratic equations are typical for
Trivium and in our attack we take an advantage of this.

Algorithm 1. The Initialisation Algorithm of Trivium
Input: Secret key K = (K1, . . . , K80), initialisation vector IV = (IV1, . . . , IV80)
Output: Trivium inner state (s1, . . . , s288)

1: (s1, . . . , s93) ← (K1, . . . , K80, 0, . . . , 0)
2: (s94, . . . , s177) ← (IV1, . . . , IV80, 0, . . . , 0)
3: (s178, . . . , s288) ← (0, . . . , 0, 1, 1, 1)
4: for i = 0 to 4 · 288 do
5: t1 ← s66 + s91 · s92 + s93 + s171

6: t2 ← s162 + s175 · s176 + s177 + s264

7: t3 ← s243 + s286 · s287 + s288 + s69

8: (s1, . . . , s93) ← (t3, s1, . . . , s92)
9: (s94, . . . , s177) ← (t1, s94, . . . , s176)

10: (s178, . . . , s288) ← (t2, s178, . . . , s287)
11: end for

Algorithm 2. The Keystream generation algorithm
Input: Trivium inner state (s1, . . . , s288), number of output bits N ≤ 264

Output: Keystream {zi}N
i=1

1: for i = 0 to N do
2: zi ← s66 + s93 + s162 + s177 + s243 + s288

3: t1 ← s66 + s91 · s92 + s93 + s171

4: t2 ← s162 + s175 · s176 + s177 + s264

5: t3 ← s243 + s286 · s287 + s288 + s69

6: (s1, . . . , s93) ← (t3, s1, . . . , s92)
7: (s94, . . . , s177) ← (t1, s94, . . . , s176)
8: (s178, . . . , s288) ← (t2, s178, . . . , s287)
9: end for

5 Differential Fault Analysis of Trivium

In this section we will describe our contribution to the cryptanalysis of Trivium.
To show how our attack evolved, we describe more versions of differential fault
analysis of Trivium, from the simplest one, to the more sophisticated ones.

Before describing our contribution, let us briefly recall the basic ideas of Dif-
ferential Fault Analysis (DFA).

162 M. Hojśık and B. Rudolf

Differential fault analysis is an active side channel attack technique, in which
an attacker is able to insert a fault into the enciphering or deciphering process
or he is able to insert a fault into a cipher inner state. The later is the case of
our attack, we suppose that an attacker is able to change exactly one bit of the
Trivium inner state. Another assumption of DFA is that an attacker is able to
obtain not only the cipher output after the fault injection, but he is also able to
obtain the standard output, i.e. the output produced by the cipher without the
fault injection.

In this paper, according to the DFA description, we assume that an attacker is
able to obtain a part of a Trivium keystream {zi}∞i=1 produced from the arbitrary
but fixed inner state ISt0 and that he is also able to obtain a part of the faulty
keystream {z′i}∞i=1 produced by the fault inner state IS′

t0 . We will discuss the
amount of keystream bits needed for any of presented attacks later on. Just for
illustration, the attack we have implemented needs about 280 bits of the proper
keystream and the same amount of the faulty keystream bits.

Furthermore, in our attacks, an attacker has to be able to do the fault injection
many times, but for the same inner state ISt0 , where the value of t0 is fixed,
but arbitrary and unknown. It follows, that in our scenario the stream cipher
Trivium has to be run many times with the same key and IV, so an attacker is
able to inject a fault to the same inner state ISt0 . This can be achieved e.g. by
attacking the cipher in the deciphering mode, assuming the initialisation vector
is the part of the cipher input. In this case, we will always use the same pair of
IV and cipher text as the cipher input, and we will perform fault injections to
the cipher inner state during the deciphering process. Hence, proposed attacks
can be performed in the chosen-ciphertext attack scenario.

All our prerequisites are gathered in Sect. 5.1.
The result of our attack is the determination of the inner state ISt0 , which

can be used afterwards to obtain the secret key K and initialisation vector IV .
This can be done due to the reversibility of the Trivium initialisation algorithm
and due to the fact, that the initialisation part is the same as the keystream
generation part. Thus, after we determine ISt0 , we run trivium backwards (which
also allows us to decipher previous communication) until we obtain an inner state
of the form

(s1, . . . , s93) = (a1, . . . , a80, 0, . . . , 0),

(s94, . . . , s177) = (b1, . . . , b80, 0, . . . , 0), (1)

(s178, . . . , s288) = (0, . . . , 0, 1, 1, 1)

Afterwards if the values (b1, . . . , b80) are equal to the known IV, we can (with very
high probability) claim, that (a1, . . . , a80) is the secret key used for encryption.

5.1 Attack Prerequisites

Let t0 be arbitrary but fixed positive integer and let ISt0 be arbitrary but fixed
Trivium inner state at time t0. These are the prerequisites of our attack:

Differential Fault Analysis of Trivium 163

– an attacker is able to obtain first n consecutive bits of the keystream {zi}
produced out of the inner state ISt0 ,

– an attacker is able to inject exactly one fault at random position of the inner
state ISt0 ,

– an attacker is able to repeat the fault injection at random position of ISt0

m times
– an attacker is able to obtain first n consecutive bits of the keystream {z′i}

produced out of the inner sate IS′
t0 for all fault injections.

The number of consecutive bits of the proper and of the faulty keystream
needed, n, differs for presented attacks. For the most simple one n = 160 and
for the second one n = 280. The number of fault injections needed for any of the
presented attacks, m, is discussed after the attack descriptions.

5.2 Attack Outline

The core of the presented attack is to solve the system of equations in the inner
state bits of a fixed inner state ISt0 = (s1, . . . , s288). Because the output function
of the Trivium is linear in the inner state bits, some equations can be obtained
directly from the proper keystream. Specifically, the first 66 keystream bits are
linear combinations of bits of ISt0 ,

zi = s67−i + s94−i + s163−i + s178−i + s244−i + s289−i, 1 ≤ i ≤ 66, (2)

and the following 82 keystream bits depends quadratically on s1, . . . , s288. These
are followed by polynomials of degree 3 and higher.

Since we have 288 variables (bits of inner state) and the degree of keystream
equations grows very fast, we are not able to efficiently solve this polynomial
system. The question is how to obtain more equations. By the analysis of Triv-
ium, we have noticed that a change of a single bit of the inner state directly
reveals some inner state bits and also gives us some more equations. Hence, we
decided to use DFA as a method for obtaining more equations. For illustration,
Tab. 1 contains the first equations given by a keystream difference after a fault
injection on position 3, i.e. s′3 = s3 + 1.

Table 1. Non-zero elements of {di}230
i=1 for s′3 = s3 + 1

i di

64,91,148,175,199,211,214,217 1
158,175,224 s4

159,174,225 s3

212 s4 + s31 + s29s30 + s109

213 s2 + s29 + s27s28 + s107

227 s178 + s223 + s221s222 + s4

228 s161 + s176 + s174s175 + s263 + s221 + s2 + s219s220

164 M. Hojśık and B. Rudolf

5.3 Fault Position Determination

In our attack we suppose that an attacker is not able to influence the position
of a fault injection, i.e. he can inject a fault to the Trivium inner state only at
a random position. But as we will see further on, he also needs to determine
the fault position, since the equations for the keystream difference depend on
this position.

The core of the fault position determination is that the distance between the
output bits differs for each register. According to the line 2 of Alg. 2, s66 and
s93 are the output bits of the first register and their distance is 93− 66 = 27. In
the second register, s162 and s177 are used as the output bits and their distance
is 15. In the third register s243 and s288 are used and their distance equals 45.

For example suppose that we have injected a fault into one of the registers at
an unknown position e, so s′e = se + 1, and (only for this example) assume that
we know that e ∈ {1, . . . , 66}∪ {94, . . . , 162}∪ {178, . . . , 243}. Denote the index
of the first non-zero bit in the keystream difference by a, i.e. da = 1 and dj = 0
for all 1 ≤ j < a. If the fault was injected into the first register, then according
to the output function we have also da+27 = 1, since the distance between the
output bits of the first register is 27. In the same manner, if the fault was injected
to the second register, we have da+15 = 1 while da+27 = 0, and da+45 = 1 while
da+15 = da+27 = 0 for the third register.

A non-zero bit can occur in the keystream difference at many positions, de-
pending on the values of inner state bits. But since some occurrences of the
non-zero bit are certain, with a little bit more work that in our example, we can
easily determine the exact fault position. Tables 6, 7 and 8 in Appendix show
the positions and the values of the some first (potentially) nonzero bits of the
keystream difference in the correspondence to the fault position. In these tables,
symbol X denotes a value which is neither 1 nor si+1 or si−1. By the help of
these tables, it is easy to determine the fault position assuming that exactly one
fault was injected (our assumption from 5.1). E.g. assume that the first non-zero
keystream difference bit has index a, the second non-zero bit has index b and
that b− a = 42. According to the tables 6, 7 and 8, we see that this can happen
only in the case described by the third row of Tab. 6 (136− 94 = 42) and in the
case described by the third row of Tab. 8 (331 − 289 = 42). In the first case we
will also have db+42 = 1 (178 − 136 = 42) and db+24 = 0, while in the second
case db+42 = 0 and db+24 = 1 (355 − 331 = 24). In this way we can distinguish
between the two cases and we can claim that the fault position is 94 − a in the
first case and 289 − a in the second case.

5.4 First Attack, Using Linear Equations

Let us start with the description of a simple attack on Trivium using fault
injection technique.

In this attack an attacker uses only linear equations in the inner state bits
(s1, . . . , s288) given by the proper keystream and by the keystream difference.

Before the attack itself, the attacker does the following precomputation: for
each fault position 1 ≤ e ≤ 288, the attacker expresses potentially non-zero bits

Differential Fault Analysis of Trivium 165

Table 2. The average number (among all fault positions) of equations obtained from
a random fault

number The average number of equations of degree d obtained from one fault.
of steps d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

160 1.86 0.24 0.08 0 0 0 0
180 1.99 1.17 0.39 0 0 0 0
200 1.99 2.52 0.89 0 0 0 0
220 1.99 4.14 1.53 0 0 0 0
240 1.99 5.99 2.82 0.03 0 0 0
260 1.99 7.76 4.15 1.13 0.45 0.37 0.28
280 1.99 9.22 5.22 3.42 1.47 1.23 0.96
300 1.99 9.77 5.86 7.10 3.55 2.66 2.09

of the keystream difference as polynomials in (s1, . . . , s288) over GF(2), using
Alg. 2 and the fact that di = z′i ⊕ zi. Since he only needs linear equations, the
attacker has to express only the first n bits of keystream difference and store
these equations in a table. The value of n is discussed below. During the attack,
the attacker will just make table look-up for the right equation for the actual
fault position.

The average number of linear equations given by the keystream difference for
a single fault injection can be found in Tab. 2. It follows from this table, that
in the precomputation phase of this attack, it is enough to make 180 steps of
Trivium (in a symbolic computation) for each fault position, so n = 180.

Let us have a closer look on the relation between the number of fault injections
and the number of inner state bits obtained. At the beginning of the attack, al-
most every fault injected gives us directly two new variables. But as the attack
progresses, it becomes much harder to hit the positions which will bring us two
new inner state bits and there will be many fault injections, which bring only one
or even no new variable. If we would like to obtain all of the 288 bits of the inner
state just by the fault injection, at the end of the attack we will waste many fault
injections until we hit the right positions. Hence, it will significantly reduce the
number of fault injections needed, if we stop the attack at the point when T bits
of inner state are known and we will guess the remaining 288−T bits afterwards.

Table 3 shows the number of fault injections needed, m, to obtain T bits of
inner state for different values of T . This is also illustrated on the left of Fig. 1.

During the attack, the attacker stores linear equations obtained in a binary
matrix M with 289 columns (288 bits of ISt0 plus RHS). The attack itself is
described by Alg. 3.

Table 3. Number of fault injections needed (m) to obtain a certain number of inner
state bits (T) (average over 1000 experiments) in the linear attack

T 20 40 60 80 100 120 140 160 180 200 220 240 260 280 288

m 10 21 33 46 58 71 84 98 113 127 145 165 189 270 382

166 M. Hojśık and B. Rudolf

Algorithm 3. Linear attack
Input: Trivium stream cipher with possibility of fault injections (see Sect. 5.1)
Output: Secret key K

1: obtain n consecutive bits of {zi}
2: insert linear equations (2) (see Sect. 5.2) to M , using bits of {zi} as RHS
3: while rank(M) < T do
4: insert a fault into ISt0

5: obtain n consecutive bits of the faulty keystream {z′
i}

6: compute keystream difference di = z′
i + zi, 1 ≤ i ≤ n

7: determine the fault position e
8: insert equations for the keystream difference (according to value of e) into M
9: do Gauss elimination of M

10: end while
11: repeat
12: guess the remaining 288 − T inner state bits
13: solve the linear system given by M and guessed bits
14: store the solution in ISS

15: produce the keystream {z̃i}n
i=1 from the inner state ISS

16: until ∃ i ∈ {1, . . . , n} : z̃i �= zi

17: run Trivium backwards starting with ISS until an inner state IS0 = (s0
1, . . . , s

0
288)

of type (1) (see page 162) is reached
18: output K = (s0

1, . . . , s
0
80).

As already mentioned, according to Tab. 2, in Alg. 3 we can set n = 180, since
we would not get any more (previously unknown) linear equations from the bits
of the keystream difference {di} for i > 180.

The complexity of this simple attack is given by the complexity of solving
a system of linear equations (suppose this is O(n3)) multiplied by the complexity
of guessing 288 − T variables. For T = 258, we obtain the complexity of 2883 ·
230 = 254 operations and we need to do (according to Tab. 3) approximately 189
fault injections. For T = 268, the attack has the complexity of 244.2 operations
and we need to do approximately 200 fault injections.

5.5 Second Attack, Using Pair Quadratic Equations

The attack presented in this section is a natural successor of the previous one,
in the terms of reduction of the number of fault injections needed.

The main difference is that in this case, we do not use only linear equations but
also pair quadratic equations (see Sect. 4). The reason why we have decided to
use only pair quadratic and not all quadratic equations is that most of quadratic
equations that appear in Trivium analysis are pair equations. For example all
82 quadratic equations for keystream bits are pair and also most (approx. 80%)
of the quadratic equations for the keystream difference bits are also pair (see
Tab. 4). Furthermore, the number of all possible quadratic terms in 288 inner
state bits is too large (approx. 216.3) and hence the complexity of solving a linear
system in all quadratic variables would be too high.

Differential Fault Analysis of Trivium 167

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

N
um

be
r

of
 fa

ul
t i

je
ct

io
ns

Number of inner state bits

linear attack

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

N
um

be
r

of
 fa

ul
t i

je
ct

io
ns

Number of inner state bits

pair attack

Fig. 1. Number of fault injections needed to obtain a certain number of inner state
bits. Left: linear attack. Right: pair quadratic attack.

Lets have a look at the precomputation part of this attack. Here again, for all
possible fault positions 1 ≤ e ≤ 288, we need to express bits of the keystream
difference as polynomials in the bits of ISt0 = (s1, . . . , s288). However, now we
will store not only all linear but also all pair quadratic equations for each value of
e. Hence for each e we need to do more Trivium steps (in symbolical computing)
for both the proper inner state ISt0 and for the fault inner state IS′

t0 .
As common in cryptology, to simplify the computations we work in the factor

ring GF(2)[s1, . . . , s288]/(s2
1−s1, . . . , s

2
288−s288) instead of the whole polynomial

ring GF(2)[s1, . . . , s288]. This can be done, since for any x ∈ GF(2) we have
x2 = x and we would like to make these computations as simple as possible. In
this way we also obtain more equations of small degrees, since this factorisation
reduces any term of type sn

i to the term si.
In our implementation, we have used the value n = 280, so we need to obtain

280 bits of a keystream and we need to do 280 steps of Trivium (in symbolical
computing) during the precomputation. We will not theoretically discuss the com-
plexity of these precomputations, but in our implementation the precomputation
phase with 280 Trivium step took couple of hours on a standard desktop computer.

The average number of equations of a degree up to 7 given by the keystream
difference for a single fault injection and for a certain number of Trivium steps
can be found at Tab. 2. Table 4 describes number of pair quadratic equations
given by the keystream difference for a single fault injection and certain number
of Trivium steps and it compares this number to the amount of all quadratic
equations obtained. As we can see, the loss is around 20%.

During this attack, we store the equations obtained in a matrix M over GF(2)
which has 288+287+1 columns. The first 288 columns will represent the variables
s1, . . . , s288 and the following 287 columns will represent all pair quadratic terms.
We denote the variable of a column j by yj and define

yj =
{

sj , 1 ≤ j ≤ 288
sj−288 · sj−287, 289 ≤ j ≤ 575.

The last column contains the right-hand-side value for each equation. At the
beginning of the attack, we put all linear and pair quadratic equations obtained

168 M. Hojśık and B. Rudolf

Table 4. The average number (among all fault positions) of pair quadratic equations
obtained from a random fault compared to the average number of all quadratic equations

number avg. num. of avg. num. of loss
of steps all quad. eq. pair quad. eq. (percentage)

160 0.24 0.19 18.84%
180 1.17 0.94 19.64%
200 2.52 1.98 21.63%
220 4.14 3.19 22.75%
240 5.99 4.75 20.75%
260 7.76 6.08 21.66%
280 9.22 7.14 22.52%

from the proper keystream into M . Afterwards for each fault injection, we make
fault position determination and according to the fault position, we insert the
precomputed equations for the actual fault position.

In addition to the previous attack, we also hold a list of already known vari-
ables. This list will help us employ quadratic connections between variables yi.
Strictly speaking, anytime we determine the value of some previously unknown
variable yi, for some 1 ≤ i ≤ 288 (so yi = si), we go through the whole ma-
trix M and we eliminate variables yi+287 and yi+288 in each row (only y289 for
i = 1 and only y575 for i = 288). If we for example determine that for some
1 ≤ i ≤ 288, yi = si = 1, then we go through all rows of M with non-zero value
in column yi+287 or yi+288, set this variable to zero and add 1 to yi−1 or yi+1

respectively. In the case of yi = 0 for some 1 ≤ i ≤ 288, we just set yi+287 and
yi+288 to zero. In this way, we can possibly obtain some more linear equations in
s1, . . . , s288 or even determine some new variables. If this is the case, we repeat
this procedure again. For the rest of the paper, we denote this procedure as
quadratic to linear().

In the description of the attack, we suppose that the list of known variables is
updated automatically, so we do not mention this explicitly. E.g. 2 new variables
will be added automatically to the list of known variables after almost each fault
injection.

During the attack, we also use classical linear algebra techniques for solving a
system of linear equations in yi, 1 ≤ i ≤ 575, represented by M . Let us denote this
by elimination(). It is clear, that this procedure can also reveal some new variables.
If this happens, we use these new variables for the quadratic to linear() procedure
and if this changes at least one equation in M , we do the elimination() again.

The attack is described by Alg. 4.
We have not theoretically analysed the complexity of this algorithm, but its

running time on a standard desktop computer was always only a couple of seconds.
The average number of fault injections needed to obtain a certain number of

inner states bits by the described attack is shown on Tab. 5 and illustrated on
the right of the Fig. 1. These experimental results show, that the behaviour of
Alg. 4 is opposite to the behaviour of Alg. 3. In this case, if we would like to
obtain only 100 inner state bits, we need to inject approx. 40 faults and for 288

Differential Fault Analysis of Trivium 169

Algorithm 4. Attack using pair equations
Input: Trivium stream cipher with possibility of fault injections (see Sect. 5.1)
Output: Secret key K

1: obtain n consecutive bits of {zi}
2: insert equations for {zi}148

i=1 to M , using bits of {zi} as RHS
3: while not (all s1, . . . , s288 are known) do
4: insert a fault into ISt0

5: obtain n consecutive bits of the faulty keystream {z′
i}

6: compute keystream difference di = z′
i + zi, 1 ≤ i ≤ n

7: determine the fault position, e
8: insert equations for the keystream difference (according to value of e) into M
9: repeat

10: do quadratic to linear()
11: until it keeps changing M
12: do elimination()
13: if new variables obtained by elimination() then
14: goto 9
15: end if
16: end while
17: run Trivium backwards starting with IS = (s1, . . . , s288) until an inner state IS0 =

(s0
1, . . . , s

0
288) of type (1) (see page 162) is reached

18: output K = (s0
1, . . . , s

0
80).

Table 5. Number of fault injections needed (m) to obtain a certain number of inner
state bits (T) (average over 1000 experiments) by Alg. 4

T 20 40 60 80 100 120 140 160 180 200 220 240 260 280 288

m 10.1 20.3 28.4 35.4 39.8 41.9 42.4 42.5 42.7 42.8 42.9 43.0 43.1 43.1 43.1

inner state bits we need only approx. 43 faults. It follows that stopping Alg.4
earlier and guessing the remaining variables would be of no significance.

5.6 Possible Extensions, Future Work

In this section we will shortly describe some possible extensions of the previous
attack.

The first extension could be an algorithm, which would use all quadratic
equations and not only pair equations. The size of the matrix M would be
much higher in this case. However, since the matrix would be sparse, it could be
represented and handled efficiently. According to Tab. 4, we would get approx.
2 more equations from each fault, so this would reduce the number of faults
needed to less than 40.

Next possible extension would be an attack, which would also use equations of
higher order. This doesn’t necessarily mean that we would try to solve systems
of polynomial equations. We could only store these equations, and then use a
function similar to the quadratic to linear() to eliminate terms of higher order.

170 M. Hojśık and B. Rudolf

E.g. if we will decide to use equations up to degree 3, we could possible eliminate
cubic terms and get some new equations of degree 2. E.g. for fault position 95
we have

d256 = s96s81s82 + s96s56 + s96s83 + s96s161 + s96s98 + s96s97 + s96s185 =
= s96 · (s81s82 + s56 + s83 + s161 + s98 + s97 + s185)

so if s96 = 1 we get new a pair equation. In this way we could obtain more
equations, which could be used in the previous attack. This would further reduce
the number of fault injections needed.

By adjusting the prerequisites, we can obtain other improvements. E.g. if an
attacker can choose the fault position, the number of fault injections needed for
the proposed attacks would significantly reduce. Yet another option could be
injection of more faults at once. It is clear, that in this case an attacker would
obtain much more information from each fault injection (e. g. if two faults are
injected at once, 4 inner state bits are obtained directly). Hence, an attack could
be carried out using only few fault injection. On the other hand, the fault position
determination could be problematic.

6 Conclusion

In this paper, differential fault analysis of Trivium was described. As far as we
know, this was the first time differential fault analysis was applied to a stream
cipher based on non-linear shift registers.

We have shown, that an attacker is able to obtain the secret key after approx-
imately 43 fault injections using one of the described algorithms, assuming the
chosen-ciphertext attack scenario. All the methods proposed in this article arise
directly from the Trivium analysis, they are of low complexity and are easy to
implement.

Acknowledgement

The authors would like to thank Martin Hlaváč for his helpful comments and
the anonymous reviewers of the article for their careful readings and valuable
suggestions.

References

1. De Cannière, C., Preneel, B.: Trivium: A Stream Cipher Construction Inspired
by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/30 (2005), http://www.ecrypt.eu.org/stream

2. Raddum, H.: Cryptanalytic Results on Trivium. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039 (2006), http://www.ecrypt.eu.org/stream

3. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. eSTREAM, ECRYPT
Stream Cipher Project, Report 2007/006 (2007),
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Differential Fault Analysis of Trivium 171

4. Babbage, S.: Some Thoughts on Trivium. eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/007 (2007), http://www.ecrypt.eu.org/stream

5. Turan, M.S., Kara, O.: Linear Approximations for 2-round Trivium. eSTREAM,
ECRYPT Stream Cipher Project, Report 2007/008 (2007),
http://www.ecrypt.eu.org/stream

6. Biham, E., Dunkelman, O.: Differential Cryptanalysis in Stream Ciphers. COSIC
internal report (2007)

7. Rechberger, C., Oswald, E.: Stream Ciphers and Side-Channel Analysis. In: SASC
2004 - The State of the Art of Stream Ciphers, Workshop Record, pp. 320-326
(2004), http://www.ecrypt.eu.org/stream

8. Fischer, W., Gammel, B.M., Kniffler, O., Velten, J.: Differential Power Analysis of
Stream Ciphers. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/014
(2007), http://www.ecrypt.eu.org/stream

9. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

10. Biham, E., Granboulan, L., Nguyen, P.: Impossible Fault Analysis of RC4 and Dif-
ferential Fault Analysis of RC4. In: SASC 2004 - The State of the Art of Stream Ci-
phers, Workshop Record, pp. 147–155 (2004), http://www.ecrypt.eu.org/stream

11. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

Appendix

Table 6. Non-zero elements of {dj}, with s′i = si + 1, for 1 ≤ i ≤ 93

fault pos. keystream difference dj for j =
s′i = si + 1 67-i 94-i 136-i 151-i 161-i 162-i 163-i 176-i 177-i 178-i 202-i 220-i 242-i

i = 1 1 1 1 si+1 X si+1 X 1 1
i = 2, . . . , 66 1 1 1 si+1 si−1 si+1 si−1 1 1
i = 67, . . . , 69 1 1 si+1 si−1 si+1 si−1 1 1
i = 70, . . . , 90 1 si+1 si−1 1 si+1 si−1 1 1

i = 91 1 si+1 si−1 1 si+1 si−1 1
i = 92 1 si−1 1 si−1 1
i = 93 1 1 1

Table 7. Non-zero elements of {dj}, with s′i = si + 1, for 94 ≤ i ≤ 177

fault pos. keystream difference dj for j =
s′i = si + 1 163-i 178-i 229-i 241-i 242-i 243-i 244-i 256-i 274-i 287-i 288-i 289-i

i = 94 1 1 1 1 si+1 X 1 1 1 si+1 X 1
i = 95, . . . , 162 1 1 1 1 si+1 si−1 1 1 1 si+1 si−1 1
i = 163, . . . , 171 1 1 si+1 si−1 1 1 si+1 si−1 1
i = 172, . . . , 174 1 si+1 si−1 1 si+1 si−1 1

i = 175 1 si+1 si−1 1 si+1 si−1 1
i = 176 1 si−1 1 si−1 1
i = 177 1 1 1

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

172 M. Hojśık and B. Rudolf

Table 8. Non-zero elements of {dj}, with s′i = si + 1, for 178 ≤ i ≤ 288

fault pos. keystream difference dj for j =
s′i = si + 1 289-i 310-i 331-i 371-i 353-i 354-i 355-i 376-i 380-i 381-i 382-i 394-i

i = 178 1 1 1 1 si+1 X 1 1 si+1 X 1 1
i = 179, . . . , 243 1 1 1 1 si+1 si−1 1 1 si+1 si−1 1 1
i = 244, . . . , 264 1 1 si+1 si−1 1 1 si+1 si−1 1
i = 265, . . . , 285 1 si+1 si−1 1 si+1 si−1 1

i = 286 1 si+1 si−1 1 si+1 si−1 1
i = 287 1 si−1 1 si−1 1
i = 288 1 1 1

Accelerating the Whirlpool Hash Function Using

Parallel Table Lookup and Fast Cyclical
Permutation

Yedidya Hilewitz1, Yiqun Lisa Yin2, and Ruby B. Lee1

1 Department of Electrical Engineering,
Princeton University, Princeton NJ 08544, USA

{hilewitz,rblee}@princeton.edu
2 Independent Security Consultant

yiqun@alum.mit.edu

Abstract. Hash functions are an important building block in almost
all security applications. In the past few years, there have been ma-
jor advances in the cryptanalysis of hash functions, especially the MDx
family, and it has become important to select new hash functions for
next-generation security applications. One of the potential candidates is
Whirlpool, an AES-based hash function. Whirlpool adopts a very dif-
ferent design approach from MDx, and hence it has withstood all the
latest attacks. However, its slow software performance has made it less
attractive for practical use. In this paper, we present a new software im-
plementation of Whirlpool that is significantly faster than previous ones.
Our optimization leverages new ISA extensions, in particularly Parallel
Table Lookup (PTLU), which has previously been proposed to acceler-
ate block ciphers like AES and DES, multimedia and other applications.
We also show a novel cyclical permutation algorithm that can concur-
rently convert rows of a matrix to diagonals. We obtain a speedup of
8.8× and 13.9× over a basic RISC architecture using 64-bit and 128-
bit PTLU modules, respectively. This is equivalent to rates of 11.4 and
7.2 cycles/byte, respectively, which makes our Whirlpool implementa-
tion faster than the fastest published rate of 12 cycles/byte for SHA-2
in software.

1 Introduction

Hash functions form an important component in almost all security applications,
e.g., digital signature schemes, to ensure the authenticity and integrity of data.
Some of the most popular hash functions are MD5 [20] and SHA-1 [4]. Both
have been widely deployed in practice and adopted by major security standards
such as SSL/TLS and IPsec.

In the past few years, there have been major breakthroughs in the cryptanal-
ysis of hash functions. New collision attacks on MD5 [24] and SHA-1 [23] have
demonstrated serious weaknesses in their design. Built upon these attacks, re-
searchers have also developed new attacks on hash-based security protocols such

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 173–188, 2008.
c© International Association for Cryptologic Research 2008

174 Y. Hilewitz, Y.L. Yin, and R.B. Lee

as X.509 digital certificate protocol [22]. While practical impact of these attacks
is still debatable, it is obvious that new hash functions are needed. Indeed, NIST
has already hosted two hash function workshops and has started an AES-like
competition to select an Advanced Hash Standard (AHS) [17].

Whirlpool [1] is a hash function designed by Barreto and Rijmen in 2000. It is
designed based on the AES with very similar structure and basic operations. It
has been adopted by the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) as part of the joint
ISO/IEC international standard.

Since its publication, there have been some studies on fast implementation of
Whirlpool [12,19], mostly in hardware. A comprehensive comparative study on
hash function implementation [16] shows that Whirlpool is several times slower
than MD5 or SHA-1 in software. Due to its relative slow performance and the
prevalence of MD5 and SHA-1 in existing implementations, Whirlpool has not
attracted too much attention for practical use.

With the emergence of new hash proposals, there is some renewed interest
in Whirlpool. Compared with most of the new proposals, Whirlpool stands out
with its AES-based clean design. Its design approach is very different from the
MDx hash family, and hence may resist existing attacks that are applicable
to MDx. Also, since AES is now the NIST standard for block ciphers, there
is intense interest in faster implementations of AES and its security analysis.
Whirlpool’s similarity to AES can leverage these fast implementation techniques
and facilitate its security analysis.

In this paper, we present a new software implementation of Whirlpool that
is significantly faster than previous implementations. Our optimization method
takes advantage of the heavy use of table lookups and byte-oriented operations in
Whirlpool by leveraging processor ISA (Instruction Set Architecture) extensions
that are tailored to such operations. In particular, the Parallel Table Lookup
module (PTLU) [6,11] is a natural fit for the Whirlpool computation steps,
thereby providing major speedup. In addition, a subword permutation instruc-
tion called check [14] is also useful for accelerating cyclical permutations, giv-
ing further performance enhancements. These ISA extensions have been defined
previously for other purposes such as multimedia and cryptographic processing.
Besides general-purpose microprocessors, these operations are even more suit-
able for crypto-processors and hardware ASIC (Application Specific Integrated
Circuit) implementations, for fast software and hardware implementations of
Whirlpool.

Our software implementation of Whirlpool attains a speedup of 8.8× with a
64-bit PTLU module and 13.9× with a 128-bit PTLU module, compared with a
baseline single-issue processor. These performance results show that ISA exten-
sions are much faster - with significantly simpler hardware - than using conven-
tional micro-architectural performance-enhancing techniques such as superscalar
execution. For example, 4-way superscalar execution achieves a speedup of only
3.3×. We also compare our Whirlpool performance with other 512-bit hash func-
tions like SHA-2; we have a rate of 11.4 cycles/byte for the 64-bit PTLU module

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 175

and 7.2 cycles/byte for the 128-bit PTLU module, while the best reported rate
for SHA-2 is 12 cycles/byte on Intel Core 2 and AMD Opteron processors [21].
This suggests that Whirlpool is a viable hash function choice, providing excellent
security and excellent performance.

We remark that the use of the PTLU functional unit provides not only major
performance advantages but also security advantages in preventing side-channel
attacks. A new concern with software implementations of cryptographic algo-
rithms based on table lookups is the leakage of the secret key due to cache-based
software side channel attacks, which do not require additional equipment like
power or timing physical side channel attacks. Our proposed fast implementation
of Whirlpool, when it is used in keyed hash mode, is free from such cache-based
software side channel attacks.

The rest of the paper is organized as follows. Section 2 provides a high-level
overview of Whirlpool. Section 3 provides the motivation for our fast imple-
mentation of Whirlpool. Section 4 describes the parallel table lookup module
and other ISA extensions. Section 5 explains how to use these ISA extensions
to accelerate Whirlpool. Section 6 presents performance results and Section 7
considers security advantages. Section 8 is the conclusion.

2 Whirlpool

2.1 Algorithm Overview

Like most hash functions, Whirlpool operates by iterating a compression func-
tion that has fixed-size input and output. Its compression function is a dedi-
cated AES-like block cipher that takes a 512-bit hash state M and a 512-bit
key K. (Hence, both the state and the key can be conveniently represented as
8 × 8 matrices with byte entries.) The iteration process adopts the well-known
Miyaguchi-Preneel construction [15].

In what follows, we provide a concise description of the compression function
that is most relevant to our implementation. Technical details of the algorithm
can be found in [1]. At a high level, each execution of the compression function
can be divided into two parts:

a. expanding the initial key K into ten 512-bit round keys, and
b. updating the hash state M by mixing M and the round keys.

Part b consists of ten rounds, and each round consists of the following four
steps (labeled W1 through W4 below) with byte-oriented operations:

W1. Non-linear substitution. Each byte in the state matrix M is substituted by
another byte according to a predefined substitution, S(x) (aka S-box).

W2. Cyclical permutation. Each column of the state matrix M is cyclic shifted
so that column j is shifted downwards by j positions.

W3. Linear diffusion. The state matrix M is multiplied with a predefined 8 × 8
MDS matrix C.

W4. Addition of keys. Each byte of the round key is exclusive-or’ed (XOR) to
each byte of the state.

176 Y. Hilewitz, Y.L. Yin, and R.B. Lee

The key expansion (part a) is almost the same as the above state update, ex-
cept that the initial key K is treated as the state and some pre-defined constants
as the key. Hence, both parts consist of ten similar rounds.

Note that Whirlpool differs from AES in that the rounds operate on 512-bit
inputs rather than 128-bit inputs. Because of the larger block size, the design of
the S-box and MDS matrix is also adjusted accordingly, but the general design
philosophy remains the same.

2.2 A Useful Observation by the Designers

In [1], the designers of Whirlpool suggested a method to implement each round
of the compression function using only table lookup and XOR operations on a
64-bit processor. We exploit this in our optimization.

Their idea is to first define a set of tables which combine the computation of
the S-box S and MDS matrix C. For 0 ≤ k ≤ 7, let Ck be the k-th row of the
MDS-matrix C. Define eight tables of the following form:

Tk(x) = S(x) · Ck, 0 ≤ k ≤ 7. (1)

Note that each table Tk has 28 = 256 entries, indexed by the input x. For each x,
the entry S(x)·Ck has eight bytes (by multiplying S(x) with each of the eight bytes
in the row Ck) . Hence, each table Tk is 211 bytes, and the total storage is 214 bytes
(16 KB) for the eight tables. Given these tables, one can rewrite the operations
in Steps W1 through W3 as follows. Let Mi,j denote the (i, j)th byte in the state
matrix before Step W1, and let M ′

i denote the ith row in the state matrix after
Step W3. Then M ′

i (which is 8 bytes) can be computed as

M ′
i =

7⊕
k=0

Tk(M(i−k) mod 8,k). (2)

For example, the first output row M ′
0 can be computed as

M ′
0 = T0(M0,0) ⊕ T1(M7,1) ⊕ T2(M6,2) ⊕ T3(M5,3) ⊕

T4(M4,4) ⊕ T5(M3,5) ⊕ T6(M2,6) ⊕ T7(M1,7). (3)

Equation (3) produces the first row of the updated state matrix M ′. It is repeated
to generate all 8 rows of the new state matrix, M ′

i , for i = 0, 1, . . . , 7.

3 Motivation for Our Fast Implementation

How fast can a software implementation of Whirlpool be? Considering Equation
(3), each row of the updated matrix M ′ can be computed with 8 selections of byte-
elements of the current 8 × 8 matrix M , 8 table lookup operations using these 8
selected bytes as indices, and 7 exclusive-or operations. Hence, this computation
takes 8d+8+7 instructions, where d is the number of instructions needed to select
a byte and place it in a register in a form that can be used by the next instruction

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 177

for a load instruction (to perform the table lookup). In a typical RISC processor,
d = 3 instructions: shift target byte to correct position, mask byte, and add to base
address of table. Since Equation (3) is repeated for each of 8 rows, the number
of instructions required is 8 × (8d + 8 + 7) = 8 × 39 = 312 instructions. An
additional 8 exclusive-or instructions are required for key addition, for a total of
320 instructions. Since this is performed for both the state and key matrices, the
total number of instructions per round is 2 × 320 = 640 instructions.

Since the only serial dependences are between generating the index for a ta-
ble lookup, doing the table lookup, then combining this result with other results
using an XOR, can we achieve a faster software implementation with appropri-
ate new instruction primitives? By appropriate instruction primitives, we mean
instructions that are reasonable in cost, and have general-purpose usage for a
variety of applications. Reasonable cost also suggests that any new instruction
should fit the datapath structure of general-purpose microprocessors, which im-
plies that an instruction can have at most 2 source registers and 1 result register.

Equation (3) can also be described in two steps to generate each new row of
the state matrix, M ′:

A1. Cyclical Permutation. Select all the 8 byte-elements in parallel, placing them in
the appropriate order in a register. (Step W2)

A2. Substitution and Diffusion. Look up 8 tables in parallel, using the bytes in the
register generated in step A1 as indices, and immediately combine these 8 results
into a single result using an XOR tree. (Steps W1 and W3)

Fig. 1. Main steps in our optimized Whirlpool software implementation

Suppose Step A1 takes x instructions and Step A2 takes y instructions. Then,
the total number of instructions taken for 8 rows, for the state and key matrices, is:

2 × 8 × (x + y). (4)

Note that x = 24 instructions and y = 15 instructions in the above calculations
for the basic RISC processor.

With the microprocessor datapath restriction described above where an in-
struction can have at most 2 source registers and 1 result register, Step A1 would
require x = 4 instructions since it needs to read from 8 different registers. Step
A2 could potentially be done in y = 1 instruction since it has only one operand
and one result. It turns out that we can indeed achieve step A2 in y = 1 in-
struction using a powerful parallel table lookup instruction (Section 4). We can
do better in Step A1 using effectively only x = 3 instructions rather than 4, by
cyclically permuting all 8 rows of the matrix concurrently (Section 5).

4 ISA Extensions

Whirlpools’s heavy use of table lookup and byte-oriented computations motivate
us to pay special attention to ISA extensions that are related to such operations.

178 Y. Hilewitz, Y.L. Yin, and R.B. Lee

We describe a parallel table lookup instruction (Section 4.1) and a subword per-
mutation instruction (Section 4.2) previously proposed to accelerate multimedia,
block ciphers and other applications.

In general, ISAs are extended when new applications emerge that require a
set of operations that are not well supported by existing instructions. Emula-
tion of these operations can take many tens or hundreds of existing instructions.
Consequently, new instructions are added to perform the operations, yielding
significant acceleration and, typically, reduced power consumption. For micro-
processors, the goal is that the new operations are “general-purpose”, meaning
that they are useful in other applications beyond the initial motivating ones -
the more applications the more likely the new operation will be supported in
future generations of microprocessors. We show that two previously proposed
operations are also useful for Whirlpool.

4.1 Parallel Table Lookup

Parallel table lookup was initially proposed to speed up block cipher execution,
including AES [6], and other block ciphers including DES, 3DES, Mars, Twofish
and RC4 [5]. It has also been used for fingerprinting and erasure codes to accel-
erate storage backup [11] and other algorithms that can employ table-lookup as
an optimization.

An n-bit Parallel Table Lookup (PTLU) module consists of n/8 blocks of
memory, each with its own read port. Fig. 2 shows a 64-bit PTLU with 8 parallel
memory blocks. (A 128-bit PTLU will have 16 parallel memory blocks.) The
inputs to the module are sourced from two general-purpose registers and the
output is written to a single general-purpose register - hence fitting into the
typical 2-source, 1-result datapath of processors. The n/8 blocks of memory
are configured as a set of 256-entry tables, indexed by the n/8 bytes of the
first source operand. The tables are read in parallel and the outputs from the
tables are combined using a simple combinational logic function - a tree of XOR-
Multiplexers (termed XMUXes). The result is then XORed with the second
source operand and written to the result register.

The PTLU module is read using the following instruction:

ptrd.x1 r1, r2, r3

The bytes of r2 are used as indices into the set of tables in the PTLU module,
the outputs of which are XORed together into one value and then XORed with
r3 before being written to r1. While a parallel table lookup only needs one source
register, r2, to supply the table indices, a second source register is available in
processor datapaths, and so the XOR (or some other combination) with r3 is
essentially free in the above ptrd.x1 instruction.

In the PTLU module proposed in [5,6,11], the XMUX’s can also perform
other operations like logical OR, or select the left (or right) input, in addition
to the XOR operation. The “x1” in the ptrd instruction specifies that the XOR
operation is selected and one 64-bit result is produced. (An “x2” subop is used

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 179

for a 128-bit PTLU module to indicate that two 64-bit results are produced in
the final XMUX stage.)

In [6], a fast instruction for loading the 8 tables in parallel is alsoproposed. A row
across all 8 tables canbewritten fromthe contents of a data cache line in a singleptw
instruction.Hence, only256 instructions areneeded to load8 tables eachhaving256
entries, rather than 8× 256 instructions. In [11], addressing multiple sets of tables
is also described, to allow concurrent processing of different algorithms which use
the parallel lookup tables, without the need for re-loading tables.

Fig. 2. PTLU module

4.2 Byte Permutations

Multimedia applications often require operations on subwords, or data smaller
than the processor word (or register) size, down to a byte. ISAs have been ex-
tended with instructions that perform standard arithmetic or logical operations
on these subwords in parallel as well as with instructions to efficiently rear-
range these subwords in a register and between registers [13,14]. For example,
the check instruction was defined by Lee [14] as one of a small set of subword
permutation instructions for rearranging the elements of matrices in processing
two-dimensional multimedia data like images, graphics and video. We propose
re-using this to accelerate Whirlpool. The check instruction is defined as follows:

check.sw r1, r2, r3

The subwords of size sw bytes are selected alternately from the two source reg-
isters, r2 and r3, in a checkerboard pattern, and the result is written to r1. In
Fig. 3, each register is shown as 8 bytes, and the check instruction is shown for

180 Y. Hilewitz, Y.L. Yin, and R.B. Lee

2-byte subwords. The IBM AltiVec vsel instruction [9], which, for each bit posi-
tion, conditionally selects from the bits of the two source operands depending on
the value of the bit in a third source operand, can also be used to perform check
when executed with the appropriate masks in the third operand. Similarly, the
Intel SSE4 pblend instructions [10], which conditionally select subwords from
two operands depending on the value of an immediate or a fixed third source
operand, can also be used to perform check.

Fig. 3. check.2 r1, r2, r3 (for 64-bit registers)

5 Fast Software Implementation of Whirlpool

We now show in detail how we use the two instructions defined in Section 4 to
implement the two steps in our optimized Whirlpool algorithm shown in Fig. 1.
We will focus on 64-bit processors - the same techniques can be easily extended
to processors with 128-bit registers, with minor variations.

Fig. 4 shows our optimized pseudocode for one round of the state update of
the Whirlpool compression function on a 64-bit processor using PTLU. The 64
bytes of key are held in 8 general purpose registers (RK0-RK7) and the 64 bytes
of state are held in 8 general purpose registers (RM0-RM7). The eight PTLU
tables contain the eight tables from Equation (1), which combine steps W1 and
W3 (Section 2) of the Whirlpool algorithm, also labeled step A2 (Section 3) . A
further optimization with PTLU is that step W4 is also combined with steps W1
and W3 by a single ptrd instruction. Step W2, also labeled step A1 (Section 3),
is performed in the Cyclical Permute function described in Section 5.2.

5.1 Using PTLU for Substitution and Diffusion (Step A2)

A single PTLU read instruction updates a row of the state matrix, performing
the eight table lookups of Equation (2) at once. For example, the instruction

ptrd.x1 RM0, RM0, RK0

corresponds to Equation (3), which details the state transformation of row 0. The
eight bytes in row 0 of M : M0,0, M7,1, . . . , M1,7, are stored in RM0 after the cycli-
cal permutation step. These 8 bytes are used as the indices into the set of eight

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 181

RM0-RM7 are the 8 state registers
RK0-RK7 are the 8 key registers

Cyclical Permute(RM0-RM7)
ptrd.x1 RM0, RM0, RK0
ptrd.x1 RM1, RM1, RK1
ptrd.x1 RM2, RM2, RK2
ptrd.x1 RM3, RM3, RK3
ptrd.x1 RM4, RM4, RK4
ptrd.x1 RM5, RM5, RK5
ptrd.x1 RM6, RM6, RK6
ptrd.x1 RM7, RM7, RK7

Fig. 4. Pseudocode for one round of the state update of Whirlpool compression

R0 00 01 02 03 04 05 06 07 R0’ 00 71 62 53 44 35 26 17
R1 10 11 12 13 14 15 16 17 R1’ 10 01 72 63 54 45 36 27
R2 20 21 22 23 24 25 26 27 R2’ 20 11 02 73 64 55 46 37
R3 30 31 32 33 34 35 36 37 R3’ 30 21 12 03 74 65 56 47
R4 40 41 42 43 44 45 46 47 R4’ 40 31 22 13 04 75 66 57
R5 50 51 52 53 54 55 56 57 R5’ 50 41 32 23 14 05 76 67
R6 60 61 62 63 64 65 66 67 R6’ 60 51 42 33 24 15 06 77
R7 70 71 72 73 74 75 76 77 R7’ 70 61 52 43 34 25 16 07

(a) (b)

Fig. 5. (a) 8 × 8 matrix at start of round; (b) 8 × 8 matrix after cyclical permutation

tables defined by Equation (1) which are stored in the PTLU module (Fig. 2).
The eight 64-bit table entries read out, T0(M0,0), T1(M7,1), . . . , T7(M1,7), are
XORed together by the XMUX tree. At this point, the PTLU module has per-
formed Equation (3). The output of the XMUX tree is also XORed with the
first row of the key matrix stored in RK0, completing the state transformation
of row 0. The updated row 0 of M is then written back to RM0. Seven more
ptrd instructions update the remaining 7 rows of M .

5.2 Novel Algorithm for Cyclical Permutation

The state matrix at the start of a round is shown in Fig. 5(a). The transformed
matrix, used in the table lookup, is shown in Fig. 5(b). This transformation
is the columnar cyclical permutation of the Whirlpool compression function,
accomplished by rotating the jth column down by j positions. We propose a
novel algorithm that accomplishes this in a logarithmic number of steps. First,
move columns 1, 3, 5 and 7 down by 1 row. Second, move columns 2 and 3, 6
and 7 down by 2 rows. At this point, columns 0 and 4 have been moved down
by 0 rows, columns 1 and 5 by 1 row, columns 2 and 6 by 2 rows, and columns
3 and 7 by 3 rows. Third, move columns 4, 5, 6 and 7 down by 4 rows. This
achieves the desired result, where column j has been moved down by j rows.

182 Y. Hilewitz, Y.L. Yin, and R.B. Lee

R0 00 01 02 03 04 05 06 07
R7 70 71 72 73 74 75 76 77

⇓
R0’ 00 71 02 73 04 75 06 77

Fig. 6. check.1 R0’, R0, R7

The transformation by cyclical permutation from Fig. 5(a) to Fig. 5(b) turns
rows of the matrix into (wrapped) diagonals. In [14], Lee showed how two
check.1 instructions can be used to rotate one column of each 2 × 2 matrix
mapped across 2 registers. We propose using the check.sw instructions, dou-
bling the subword size (sw) at each step, to turn the eight rows of the 8 × 8
matrix of bytes (in eight 64-bit registers) into eight diagonals.

First, we execute a check.1 instruction on each row and its neighbor one row
above (Fig. 6), which selects one byte alternately from the two registers. This
has the effect of rotating columns 1, 3, 5 and 7 down by one position (Fig. 7(a)).
Second, we execute a check.2 instruction on each row and its neighbor two rows
above, which selects 2 bytes alternately from the two registers. This has the effect
of rotating columns 2, 3, 6 and 7 down by an additional two positions (Fig. 7(b)).
Third, we execute a check.4 instruction on each row and its neighbor four rows
above, which selects 4 bytes alternately from the two registers. This results in
rotating columns 4, 5, 6 and 7 down an additional four positions to yield the
final permutation (Fig. 5(b)).

R0’ 00 71 02 73 04 75 06 77 R0 00 71 62 53 04 75 66 57
R1’ 10 01 12 03 14 05 16 07 R1 10 01 72 63 14 05 76 67
R2’ 20 11 22 13 24 15 26 17 R2 20 11 02 73 24 15 06 77
R3’ 30 21 32 23 34 25 36 27 R3 30 21 12 03 34 25 16 07
R4’ 40 31 42 33 44 35 46 37 R4 40 31 22 13 44 35 26 17
R5’ 50 41 52 43 54 45 56 47 R5 50 41 32 23 54 45 36 27
R6’ 60 51 62 53 64 55 66 57 R6 60 51 42 33 64 55 46 37
R7’ 70 61 72 63 74 65 76 67 R7 70 61 52 43 74 65 56 47

(a) (b)

Fig. 7. (a) State matrix with columns 1, 3, 5 and 7 rotated down by 1 position; (b)
State matrix with columns 1 and 5 rotated down by one position, columns 2 and 6 by
two positions and columns 3 and 7 by three positions

5.3 Register Usage and Instruction Counts

Register usage: Most RISC processors have only 32 General Purpose Registers.
Our software implementation requires only 24 registers, 8 each for key, state and
scratch space, plus a few registers for memory pointers. The first step of the cycli-
cal permutation writes its result to 8 scratch registers, the second step writes
back to the original 8 registers, the third step writes to the scratch registers,

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 183

and the ptrd instruction writes back to the original registers. Thus our imple-
mentation is not constrained by register allocation.

Instruction Counts : Updating the state matrix takes 32 instructions total as
8 × lg(8) = 24 check instructions are needed to cyclically permute the matrix
and 8 ptrd instructions are needed to complete the update (see Fig. 4). The key
matrix undergoes a similar update with the only difference being an additional
load instruction to retrieve the round constant. Thus one round of the Whirlpool
compression function takes 65 instructions with PTLU-64.

Without PTLU, a round takes approximately 640 instructions on a basic RISC
processor (Section 3). Thus, using PTLU reduces the instruction count by an
order of magnitude. In Section 6, we consider cycle counts of the full Whirlpool
hash function.

5.4 Extending the Techniques to PTLU-128

For a processor with 128-bit registers, a PTLU-128 module with 16 parallel
memory blocks can be used (Fig. 2 shows PTLU-64 with 8 memory blocks). In
a PTLU-128 version of the parallel lookup instruction, ptrd.x2, the 16 bytes
of the first source register are used as indices into the 16 tables, the outputs of
which are XORed into 2 parallel 64-bit values, which are each XORed with the
second source register before being written to the 128-bit destination register.

For 128-bit registers, the cyclical permutation step also requires an instruction
to rearrange the bytes within a word, as two rows are contained within a single
processor register. We use a byteperm instruction, also defined in [6]. In this
instruction, the first source register holds the data to be permuted and the
second source register lists the new ordering for the bytes of the data. This
instruction is similar to the IBM AltiVec vperm instruction [9] or the IA-32
pshufb instruction [10] and is only needed for the 128-bit PTLU module, not
for the 64-bit PTLU module.

In total, 8 check instructions and 8 byteperm instructions are needed to cycli-
cally permute the matrix (held in only 4 128-bit registers) in a 128-bit processor;
the precise sequence of instructions is omitted for brevity. Only 4 ptrd.x2 in-
structions are needed for each of the key and state matrix transformations in
a round as two iterations of Equation (2) are done in parallel with ptrd.x2.
Hence, a Whirlpool round takes only 2× 20 + 1 = 41 instructions with a 128-bit
PTLU.

Commodity microprocessors have 128-bit register files for their multimedia
instructions like SSE for Intel x86 processors [10] and AltiVec for PowerPC
processors [9]. Hence, it is not unreasonable to add a 128-bit PTLU unit to the
multimedia functional units using the 128-bit registers already present.

6 Performance Analysis

Table 1 summarizes the performance improvement for Whirlpool over the basic
64-bit RISC processor for single-issue 64-bit and 128-bit processors with PTLU

184 Y. Hilewitz, Y.L. Yin, and R.B. Lee

Table 1. Relative Performance of Whirlpool

baseline Speedup with Superscalar Speedup with PTLU, 1-way

2-way 4-way 8-way 64-bit 128-bit

1 1.65 3.26 5.97 8.79 13.90

Table 2. Performance of Whirlpool and SHA-2

Algorithm Processor Cycles per Byte

Whirlpool PTLU-64 11.41
PTLU-128 7.22
Pentium III (asm) 36.52 [16]
Core 2 (C) 44 [21]
Opteron (C) 38 [21]

SHA-2 512 Pentium III (asm) 40.18 [16]
Core 2 (C) 12 [21]
Opteron (C) 12 [21] / 13.4 [8]

and for 64-bit superscalar execution (evaluated using the SimpleScalar Alpha
simulator [2]). We compare our performance using ISA extensions to superscalar
execution, because the latter is the technique typically used by processor design-
ers to increase performance by executing multiple instructions each processor
cycle. k-way superscalar means the execution of k instructions per cycle. In gen-
eral, the hardware cost of superscalar execution increases exponentially with k,
while the performance increases less than linearly with k.

While Whirlpool scales well with superscalar execution, ranging from 1.65×
to 5.97× for 2-way to 8-way superscalar, adding a PTLU module (and using
the check and byteperm instructions) yields even better results: 8.79× with a
64-bit PTLU and 13.90× with a 128-bit PTLU. The latter can be compared
to the 1.65× speedup of a 2-way superscalar processor, as both perform the
equivalent of two instructions per cycle - the processor with 128-bit PTLU is
8.42× faster. Even the 64-bit PTLU with 1 instruction per cycle is faster than
the very complex 8-way superscalar processor.

In Table 2, we compare our results (PTLU-64 and PTLU-128) with the per-
formance of Whirlpool on some existing processors [16,21], and with the per-
formance of the SHA-2 512-bit hash function [16,21,8]. The single-issue 64-bit
processor with PTLU greatly outperforms more complex 3- and 4-way super-
scalar processors like the AMD Opteron or the Intel Core 2.

We also estimated the performance of Whirlpool on the Intel Core 2 hypothet-
ically enhanced with a single PTLU-128 module using its 16 128-bit SSE regis-
ters. The performance result is slightly slower than that of our single issue RISC
processor with PTLU-128. This is due to the Core 2 machine having a byteperm
(implemented by pshufb) with a 3 cycle latency and 2 cycle pipelined instruc-
tion issue. (Note that later Core 2 processors have a “super shuffle engine” with

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 185

a 1 cycle pshufb.) Performance was also impacted by extra copy instructions
due to IA-32 instructions overwriting one of the source operands, and limited
superscalar speedup due to the single PTLU module and serialization restric-
tions on the byte permutation instructions. Nevertheless, due to the tremendous
performance boost provided by the PTLU-128 module, our Whirlpool imple-
mentation still has better performance than SHA-2 on the complex Intel Core 2
microprocessor.

7 Security Advantages

In Section 1, we discussed the security advantages of the Whirlpool algorithm, in
light of recent advances in finding collisions in MD-5 and SHA-1 hash functions.
We now discuss the additional advantages of using PTLU in our Whirlpool
implementation in thwarting side-channel attacks as well.

Cache side-channel timing attacks [18] have recently been shown to be viable
against cryptographic algorithms that use lookup tables stored in cache, such as
AES. One such attack forces part of the lookup table out of the cache and then
measures the time of a subsequent encryption. If the encryption takes longer than
the baseline time, it implies that the part of the table that was evicted from the
cache had to be refetched from main memory. This provides information about
the key bytes. The general idea can also be applied to keyed hash functions that
use lookup tables.

Using PTLU to perform the table lookups precludes these timing attacks from
taking place, as the tables do not reside in cache. Table access time is always
a constant for all tables in the PTLU module. Multiple processes can use the
same Whirlpool PTLU tables without impacting each other. If another process
needs the PTLU module, either multiple sets of tables may be implemented in
hardware or the OS is responsible for fully replacing and restoring the table
contents during context switch. Consequently, the use of PTLU for Whirlpool
not only provides tremendous performance improvements but also increases the
security of the implementation when Whirlpool is used in keyed mode such as
for MACs.

In general, the use of PTLU can protect crypto algorithms from cache-based
side-channel attacks. This would allow table lookup to continue to be an effective
non-linear component in ciphers and hash functions. For the MDx hash family,
the linear relation between the hash state and the input message has proved
to be a major weakness that made these functions vulnerable to the so-called
message modification techniques [23,24]. Whirlpool, with its heavy use of table
lookup, provides excellent resistance against this line of new attacks on hash
functions.

8 Conclusions

We have presented a fast software implementation of the hash function Whirlpool,
based on ISA extensions that permit parallel table lookup and a novel algorithm

186 Y. Hilewitz, Y.L. Yin, and R.B. Lee

that performs the cyclical permutation of the columns of the state (or key) matrix
in parallel. We show that the PTLU (parallel table lookup) module, together with
check, a subword permutation instruction, can greatly improve the performance
of Whirlpool. More specifically, on a single-issue 64-bit processor, our software
implementation provides an 8.79× speedup, more than the 5.97× speedup gained
from the much more complex hardware technique of 8-way superscalar execution.
With our speedup, Whirlpool is faster than SHA-512, both of which produce 512-
bit hash results.

Our optimization approach is somewhat different from existing ones. While
most research in fast software implementations has focused on how to optimize
given existing ISA, we also try to address the problem from the other direction.
That is, what ISA extensions are most useful to speed up existing algorithms?
The ISA extensions used in our implementation have already been defined and
applied earlier to accelerate multimedia and cryptographic processing. Our new
results on Whirlpool, together with the earlier work, support the inclusion of
more powerful ISA extensions in both general-purpose processors and crypto-
processors. In particular, the fact that many crypto algorithms make heavy use
of table lookups make the PTLU module and associated instructions very at-
tractive for future CPUs. Additionally, the use of PTLU inoculates these crypto
algorithms against cache-based software side channel attacks.

Due to Whirlpool’s initial performance problem, its designers have proposed
the Maelstrom-0 hash function [7] as a replacement. This new hash function
changes the key schedule, but uses the same compression function for updating
the hash state. Consequently, the techniques presented in this paper will speed
up Maelstrom-0 as well.

Designing and selecting new hash functions is a hot subject for both the
crypto research community and the security industry. Our new implementation
results suggest that, in addition to its security, Whirlpool can also have great
performance. Therefore, Whirlpool can be a viable hash function choice for next-
generation security applications.

Acknowledgments. Y. Hilewitz is supported by NSF and Hertz Foundation
Fellowships.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function, http://paginas.
terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

2. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0. University of
Wisconsin-Madison Computer Sciences Department Technical Report #1342 (1997)

3. CACTI 4.2. HP Labs,
http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.html

4. Federal Information Processing Standards (FIPS) Publication 180-1. Secure Hash
Standard (SHS). U.S. DoC/NIST (1995)

5. Fiskiran, A.M.: Instruction Set Architecture for Accelerating Cryptographic Pro-
cessing in Wireless Computing Devices. PhD Thesis, Princeton University (2005)

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://www.hpl.hp.com/personal/Norman_Jouppi/cacti4.html

Accelerating the Whirlpool Hash Function Using Parallel Table Lookup 187

6. Fiskiran, A.M., Lee, R.B.: On-Chip Lookup Tables for Fast Symmetric-Key
Encryption. In: Proceedings of the IEEE 16th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pp. 356–363.
IEEE, Los Alamitos (2005)

7. Gazzoni Filho, D.L., Barreto, P.S.L.M., Rijmen, V.: The Maelstrom-0 Hash Func-
tion. In: VI Brazilian Symposium on Information and Computer Systems Security
(2006)

8. Gladman, B.: SHA1, SHA2, HMAC and Key Derivation in C,
http://fp.gladman.plus.com/cryptography technology/sha/index.htm

9. IBM Corporation. PowerPC Microprocessor Family: AltiVec Technology Program-
ming Environments Manual. Version 2.0 (2003)

10. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 1-2 (2007)

11. Josephson, W., Lee, R.B., Li, K.: ISA Support for Fingerprinting and Erasure
Codes. In: Proceedings of the IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP). IEEE Computer Society
Press, Los Alamitos (2007)

12. Kitsos, P., Koufopavlou, O.: Whirlpool Hash Function: Architecture and VLSI
Implementation. In: Proceedings of the 2004 International Symposium on Circuits
and Systems (ISCAS 2004), pp. 23–36 (2004)

13. Lee, R.B.: Subword Parallelism with MAX-2. IEEE Micro. 16(4), 51–59 (1996)

14. Lee, R.B.: Subword Permutation Instructions for Two-Dimensional Multimedia
Processing in MicroSIMD Architectures. In: Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures and Processors, pp. 3–
14. IEEE Computer Society Press, Los Alamitos (2000)

15. Menezes, A., van Orschot, P., Vanstone, S.: Handbook of applied cryptography.
CRC Press, Boca Raton (1997)

16. Nakajima, J., Matsui, M.: Performance Analysis and Parallel Implementation of
Dedicated Hash Functions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 165–180. Springer, Heidelberg (2002)

17. NIST. Hash Function Main Page, http://www.nist.gov/hash-competition

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: the
Case of AES. Cryptology ePrint Archive, Report 2005/271 (2005)

19. Pramstaller, N., Rechberger, C., Rijmen, V.: A Compact FPGA Implementation
of the Hash Function Whirlpool. In: Proceedings of 14th International Symposium
on Field Programmable Gate Arrays, pp. 159–166 (2006)

20. Rivest, R.L.: The MD5 message-digest algorithm. Request for comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force (1992)

21. St. Denis, T.: LibTomCrypt Benchmarks, http://libtomcrypt.com/ltc113.html

22. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix Collisions for MD5 and
Colliding X. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22.
Springer, Heidelberg (2007)

23. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

24. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

http://fp.gladman.plus.com/cryptography_technology/sha/index.htm
http://www.nist.gov/hash-competition
http://libtomcrypt.com/ltc113.html

188 Y. Hilewitz, Y.L. Yin, and R.B. Lee

Appendix A: Hardware Cost Analysis

We estimate the cost in terms of area and latency of adding PTLU, byteperm
and check. For PTLU we used CACTI [3] to estimate the latency and area of
the tables and we synthesized the XMUX tree using a TSMC 90nm library. We
compare the access time latency and area of our 64-bit PTLU module with a
cache of the same capacity (i.e., 16 Kilobyte cache), and also compare our 128-bit
PTLU with a 32 Kilobyte cache. The 64-bit PTLU module, which has 16KB of
tables, has 88% of the latency and 92% of the area of a 16KB 2-way associative
cache with 64 byte lines. The 128-bit PTLU module has 75% of the latency and
79% of the area of a 32KB 2-way associative cache with 64 byte lines. In each
case, we find that the PTLU module is faster and smaller than a typical data
cache of the same capacity. Still, the two modules have larger latencies than an
ALU, so we conservatively estimate the ptrd instruction to take two processor
cycles. Since the results of the table lookups are not needed right away (Fig. 4),
this has no impact on performance.

For byteperm and check, in an ISA such as IA-32 or IA-64 that has a multi-
media subword permutation unit, the cost of adding these instructions, if they
do not already exist, is negligible. For other ISAs, support for the byteperm
instruction can be added to the shifter unit with minimal impact to area and
without affecting the cycle time [6]. The check instruction can be implemented
by a set of n/8 8-bit 2:1 multiplexers with the control bit pattern selected from
a small set of fixed bitstrings: (0k1k)n/2k, k = 1, 2, 4, . . . and n the register width
in bytes. Thus, it can also be easily added without area or cycle time impact.

Appendix B: Related Work

Byte permutation instructions such as the byteperm instruction described (or
the PowerPC AltiVec vperm [9] or Intel SSSE3 pshufb [10] mentioned above), can
be used as a limited PTLU instruction. For example, in the vperm instruction,
which uses three 128-bit registers, the bytes of the third source operand are
indices that select bytes in the first two source operands. The latter can be
considered a single 32-entry table, with byte entries. With byteperm or pshufb,
which only have 2 source registers, the first operand functions as a 16-entry table.
These instructions can be used for the S-box non-linear substitutions, which map
a byte to a byte, in AES or Whirlpool implementations that explicitly perform all
four steps (W1, W2, W3, W4) of the state transformation (Section 2). However,
the PTLU instruction used in this paper is much more capable.

Second Preimage Attack on 3-Pass HAVAL and

Partial Key-Recovery Attacks on
HMAC/NMAC-3-Pass HAVAL

Eunjin Lee1, Donghoon Chang1, Jongsung Kim1, Jaechul Sung2,
and Seokhie Hong1

1 Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{walgadak,pointchang,joshep,hsh}@cist.korea.ac.kr
2 University of Seoul,Seoul, Korea

jcsung@uos.ac.kr

Abstract. In 1992, Zheng, Pieprzyk and Seberry proposed a one-way
hashing algorithm called HAVAL, which compresses a message of arbi-
trary length into a digest of 128, 160, 192, 224 or 256 bits. It operates
in so called passes where each pass contains 32 steps. The number of
passes can be chosen equal to 3, 4 or 5. In this paper, we devise a new
differential path of 3-pass HAVAL with probability 2−114, which allows
us to design a second preimage attack on 3-pass HAVAL and partial
key recovery attacks on HMAC/NMAC-3-pass HAVAL. Our partial key-
recovery attack works with 2122 oracle queries, 5 · 232 memory bytes and
296 3-pass HAVAL computations.

Keywords: HAVAL, NMAC, HMAC, Second preimage attack, Key re-
covery attack.

1 Introduction

In 2004 and 2005, Biham et al. and Wang et al. published several important
cryptanalytic articles [1,2,12,13,14,15] that demonstrate efficient collision search
algorithms for the MD4-family of hash functions. Their proposed neutral-bit
and message modification techniques make it possible to significantly improve
previous known collision attacks on MD4, MD5, HAVAL, RIPEMD, SHA-0 and
SHA-1 [3,9,10,17], including the second preimage attack on MD4 which finds a
second preimage for a random message with probability 2−56 [18].

There have also been several articles that present attacks on NMAC and HMAC
based on the MD4 family. In 2006, Kim et al. first proposed distinguishing and
forgery attacks on NMAC and HMAC based on the full or reduced HAVAL, MD4,
MD5, SHA-0 and SHA-1 [7] and Contini and Yin presented forgery and partial
key recovery attacks on HMAC/NMAC-MD4, -SHA-0, -reduced 34-round SHA-1
and NMAC-MD5 [4]. More recently, full key-recovery attacks on HMAC/NMAC-
MD4, reduced 61-round SHA-1 and NMAC-MD5 were proposed in FC 2007 [8]
and in CRYPTO 2007 [6].

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 189–206, 2008.
c© International Association for Cryptologic Research 2008

190 E. Lee et al.

The motivation of this paper is that 1) there are strong collision producing
differentials of HAVAL for collision attacks [10,11], but no differential of HAVAL
has been proposed for second preimage attacks, and 2) there are distinguish-
ing/forgery attacks on HMAC/NMAC-HAVAL [7], but no key-recovery attack
has been proposed. This paper investigates if 3-pass HAVAL and HMAC/NMAC-
3-pass HAVAL are vulnerable to the second preimage and partial key recovery
attacks, respectively. (After our submission, we learned that Hongbo Yu worked
independently for her doctoral dissertation [16] on partial key recovery attacks
on HAVAL-based HMAC and second preimage attack on HAVAL).

The cryptographic hash function HAVAL was proposed by Y. Zheng et al. in
1992 [19]. It takes an input value of arbitrary length and digests it into variant
lengths of 128, 160, 192, 224 or 256 bits. In this paper, we present a new second
preimage differential path of 3-pass HAVAL with probability 2−114 and devise
a second preimage attack on 3-pass HAVAL, and a partial key recovery attack
on HMAC/NMAC-3-pass HAVAL with 2122 oracle queries, 5 · 232 memory bytes
and 296 3-pass HAVAL computations.

This paper is organized as follows. In Section 2, we describe HAVAL, HMAC,
NMAC, and notations. Next, we present a second preimage attack on 3-pass
HAVAL in Section 3 and apply it to recover a partial key of HMAC/NMAC-3-
pass HAVAL in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

In this section, we give a brief description of the HAVAL hash function, the
HMAC/NMAC algorithms and notations used in the paper.

2.1 Description of HAVAL

HAVAL produces hashes in different lengths of 128, 160, 192, 224 and 256 bits.
It allows that users can choose the number of passes 3, 4 or 5, where each pass
contains 32 steps. It computes the hashes in the following procedure:

– Padding: an inserted message is padded into a multiple of 1024 bits.
– Compression function H : let M0, M1, · · · , MS be 1024-bit message blocks

and each M i consists of 32 32-bit words, that is, M i = M i
0||M i

1|| · · · || M i
31,

where M i
j is a 32-bit word.

• h0 = H(IV, M0), where IV is the initial value.
• h1 = H(h0, M

1), · · · , hs = H(hs−1, M
S)

– Output of HAVAL: Hn

The HAVAL compression function H processes 3, 4 or 5 passes. Let F1, F2, F3,
F4 and F5 be the five passes and (Din, M) be the input value of H , where Din

is a 256-bit initial block and M is a 1024-bit message block. Then the output of
the compression function Dout can be computed in the following way.

E0 = Din, E1 = F1(E0, M), E2 = F2(E1, M), E3 = F3(E2, M);
E4 = F4(E3, M) (pass = 4, 5), E5 = F5(E4, M) (pass = 5);

Second Preimage Attack on 3-Pass HAVAL 191

Dout =

⎧⎨⎩
E3 � E0, pass = 3
E4 � E0, pass = 4
E5 � E0, pass = 5

Fig. 1 shows the i-th step of HAVAL, where ai represents the updated 32-
bit value of the i-th step. Let a 1024-bit message block M be denoted M =
M0||M1|| · · · ||M30||M31, where Mi (i = 0, 1, · · · , 31) is a 32-bit word, then the
orders of the message words in each pass are as in Table 1.

Each pass employs a different Boolean function fi (i = 1, 2, 3, 4, 5) and a
different permutation function. The following fi is used in pass i:

<<<7

φ>>>
7

ai-8 ai-7 ai-6 ai-5 ai-4 ai-3 ai-2 ai-1

ai-7 ai-6 ai-5 ai-4 ai-3 ai-2 ai-1 ai

>>>
11

f
W

(message)

C

Fig. 1. i-th step of HAVAL hash function

Table 1. Orders of message words

Pass1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pass2
5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8
30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Pass3
19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26
31 15 7 3 1 0 28 27 13 6 21 10 23 11 5 2

Pass4
24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3
22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13

Pass5
27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10
5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

f1(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0

f2(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x1x2 ⊕ x1x4 ⊕
x2x6 ⊕ x3x5 ⊕ x4x5 ⊕ x0x2 ⊕ x0

f3(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0

f4(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4 ⊕ x2x6 ⊕
x3x4 ⊕ x3x5 ⊕ x3x6 ⊕ x4x5 ⊕ x4x6 ⊕ x0x4 ⊕ x0

f5(x6, x5, x4, x3, x2, x1, x0) = x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x1x2x3 ⊕ x0x5 ⊕ x0

192 E. Lee et al.

Let ϕi,j be the permutation function of the j-th pass of the i-pass HAVAL.
Table 2 shows the ϕi,j used in each pass. In each step, the updated value ai is
computed as

ai = (ai−8 ≫ 11) � (f(ϕ(ai−7, ai−6, · · · , ai−1)) ≫ 7) � Mi � C,

where X ≫ i is the right cyclic rotation of X by i bits, and C is a constant.

Table 2. ϕi,j used in each pass

permutations x6 x5 x4 x3 x2 x1 x0

ϕ3,1 x1 x0 x3 x5 x6 x2 x4

ϕ3,2 x4 x2 x1 x0 x5 x3 x6

ϕ3,3 x6 x1 x2 x3 x4 x5 x0

ϕ4,1 x2 x6 x1 x4 x5 x3 x0

ϕ4,2 x3 x5 x2 x0 x1 x6 x4

ϕ4,3 x1 x4 x3 x6 x0 x2 x5

ϕ4,4 x6 x4 x0 x5 x2 x1 x3

ϕ5,1 x3 x4 x1 x0 x5 x2 x6

ϕ5,2 x6 x2 x1 x0 x3 x4 x5

ϕ5,3 x2 x6 x0 x4 x3 x1 x5

ϕ5,4 x1 x5 x3 x2 x0 x4 x6

ϕ5,5 x2 x5 x0 x6 x4 x3 x1

2.2 Description of HMAC/NMAC

Fig. 2 shows NMAC and HMAC based on a compression function f which maps
{0, 1}n × {0, 1}b to {0, 1}n. The K1 and K2 are all n-bit keys and the K =
K||0b−n, where K is an n-bit key. The opad is formed by repeating the byte
‘0x36’ as many times as needed to get a b-bit block, and the ipad is defined
similarly using the byte ‘0x5c’.

Let F : {IV } × ({0, 1}b)∗ → {0, 1}n be the iterated hash function defined as
F (IV, M1||M2|| · · · ||MS) = f(· · · f(f(IV, M1), M2) · · · , MS), where M i is a b
bit message. Let g be a padding method, g(x) = x||10t||bin64(x), where t is the
smallest non-negative integer such that g(x) is a multiple of b and bini(x) is the
i-bit binary representation of x. Then, NMAC and HMAC are defined as follows:

NMACK1,K2(M) = H(K2, g(H(K1, g(M))))
HMACK(M) = H(IV, g(K ⊕ opad||H(IV, g(K ⊕ ipad||M)))).

2.3 Notations

Let M and M ′ be 1024-bit messages such that M = M0||M1|| · · · ||M31 and M ′ =
M ′

0||M ′
1|| · · · ||M ′

31, where Mi (i = 0, 1, 2, · · · , 31) and M ′
j (j = 0, 1, 2, · · · , 31) are

32-bit words. We denote by ai (resp., a′
i) the updated value of the i-th step using

Second Preimage Attack on 3-Pass HAVAL 193

f

f f fIV

M1 MS

. . .
h1 h s-1

hs
padding

fIV

f

f f fK1

K2

M1 M2 MS

. . .
h1 h2 hs-1

hs

padding

K ipad

hs+1

K opad

hs+1

Fig. 2. NMAC and HMAC

the message M (resp., M ′). Let ti (resp., t′i) be the output value of the Boolean
function of the i-th step using the message M (resp., M ′). The j-th bits of ai

and ti are denoted ai,j and ti,j . Additionally, we use several following notations
in our attacks, where 0 ≤ j ≤ 31.

– ai[j] : ai,j = 0, a′
i,j = 1,

– ai[−j]: ai,j = 1, a′
i,j = 0,

– ti[j] : ti,j = 0, t′i,j = 1,
– ti[−j]: ti,j = 1, t′i,j = 0.

3 Second Preimage Attack on 3-Pass HAVAL

In this section, we show how to construct a second preimage differential path
of 3-pass HAVAL. Using this differential path, we find a second preimage of 3-
pass HAVAL with probability 2−114, i.e., for a given message M , we find another
message M ′ with probability 2−114 satisfying H(M) = H(M ′), where H is 3-pass
HAVAL. Our differential path of 3-pass HAVAL is stronger than the previous
ones [7,9,11,12] against the second preimage attack.

194 E. Lee et al.

3.1 Second Preimage Differential Path of 3-Pass HAVAL

Let two 1024-bitmessage blocks M = M0||M1||M2|| · · · ||M31 and M ′ = M ′
0||M ′

1||
M ′

2|| · · · ||M ′
31 satisfy Mi = M ′

i for i = 0, 1, · · · , 21, 23, 24, · · · , 31 and M22 ⊕
M ′

22 = 231. Then we can use these two messages to construct a second preim-
age differential path of 3-pass HAVAL with probability 2−114. Table 3 shows our
second preimage differential path of 3-pass HAVAL, which has been constructed
as follows.

First of all, from the message pair we get the input difference to the 23-rd step
(∆a15, ∆a16, ∆a17, ∆a18, ∆a19, ∆a20, ∆a21, ∆a22) = (0, 0, 0, 0, 0, 0, 0, a22[31]) if
a condition a22,31 = 0 holds. Recall that (ai−8, ai−7, · · · , ai−2, ai−1) is the input
state to the i-th step. We assume that the output differences of the Boolean func-
tions from the 23-rd step to the 36-th step are all zeroes. Then we can obtain the
input difference to the 37-th step is (0, a30[20], 0, 0, 0, 0, 0, 0). It is easy to see that
the required assumption works if several conditions hold in our differential, which
we call sufficient conditions. For example, consider a difference ∆t24. The input dif-
ference to the 24-th step is (∆a16, ∆a17, ∆a18, ∆a19, ∆a20, ∆a21, ∆a22, ∆a23) =
(0, 0, 0, 0, 0, 0, a22[31], 0).Thepermutation isϕ(x6, x5, x4, x3, x2, x1, x0) = (x1, x0,
x3, x5, x6, x2, x4) and the Boolean function is f(x6, x5, x4, x3, x2, x1, x0) = x1x4⊕
x2x5 ⊕ x3x6 ⊕ x0x1 ⊕ x0 in the 24-th step. Thus, f(ϕ(x6, x5, x4, x3, x2, x1, x0))
= x2x3 ⊕ x6x0 ⊕ x5x1 ⊕ x4x2 ⊕ x4 and the most significant bit of the output of
the Boolean function in the 24-th step is a20,31a21,31 ⊕a17,31a23,31 ⊕a18,31a22,31 ⊕
a19,31a21,31 ⊕ a19,31. If a18,31 = 0, then the difference of a22,31 does not have ef-
fect on the output difference of the Boolean function and thus ∆t24 = 0. Thus,
a18,31 = 0 is one of the sufficient conditions. We show in Table 5 of appendix all
the sufficient conditions which satisfy our differential path.

In order to compute the probability that a message M satisfies the sufficient
conditions listed in Table 5, we need to check the dependency of the conditions.
To make the problem easier we first solve and simplify the conditions. In this
process we may reduce the number of the sufficient conditions. Consider the
conditions on the 20-th bit from the 31-st step to the 37-th step in Table 5.

1. 31-st step : a30,20 = 0, a24,20 = 0
2. 32-nd step : a29,20a26,20 ⊕ a28,20 ⊕ a29,20 = 0
3. 33-rd step : a31,20a27,20 ⊕ a32,20 ⊕ a31,20 = 0
4. 34-th step : a33,20a28,20 ⊕ a28,20 ⊕ a32,20 = 0
5. 35-th step : a29,20 = 0
6. 36-th step : a35,20a32,20 ⊕ a34,20a33,20 ⊕ a32,20 ⊕ a31,20 ⊕ a35,20 = 0
7. 37-th step : a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

In the 32-nd step, we can simplify the condition to a28,20 = 0 by inserting
the value a29,20 = 0 which is the condition in the 35-th step. Using this con-
dition a28,20 = 0, we can obtain a32,20 = 0 in the 34-th step. This simplified
condition a32,20 = 0 and the 37-th step condition a31,20 = 0 make the 33-rd
step condition always hold. Moreover, the 36-th step condition is simplified to
a34,20a33,20 ⊕ a35,20 = 0 due to the conditions a31,20 = 0 and a32,20 = 0. Fol-
lowing is the simplified conditions for steps 31-37 (note that the number of the
sufficient conditions is reduced from 9 to 8 by solving the conditions):

Second Preimage Attack on 3-Pass HAVAL 195

Table 3. Second preimage differential path of 3-pass HAVAL

step ∆Mi ∆ti ∆ai−8 ∆ai−7 ∆ai−6 ∆ai−5 ∆ai−4 ∆ai−3 ∆ai−2 ∆ai−1

0 0 0 0 0 0 0 0 0 0 0
· · · · · · · · · · · · · · ·
21 0 0 0 0 0 0 0 0 0 0
22 ±31 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 31
24 0 0 0 0 0 0 0 0 31 0
25 0 0 0 0 0 0 0 31 0 0
26 0 0 0 0 0 0 31 0 0 0
27 0 0 0 0 0 31 0 0 0 0
28 0 0 0 0 31 0 0 0 0 0
29 0 0 0 31 0 0 0 0 0 0
30 0 0 31 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 20
32 0 0 0 0 0 0 0 0 20 0
33 0 0 0 0 0 0 0 20 0 0
34 0 0 0 0 0 0 20 0 0 0
35 0 0 0 0 0 20 0 0 0 0
36 0 0 0 0 20 0 0 0 0 0
37 0 20 0 20 0 0 0 0 0 0
38 0 0 20 0 0 0 0 0 0 13
39 0 0 0 0 0 0 0 0 13 9
40 0 0 0 0 0 0 0 13 9 0
41 0 0 0 0 0 0 13 9 0 0
42 0 13 0 0 0 13 9 0 0 0
43 ±31 ±6 0 0 13 9 0 0 0 6
44 0 0 0 13 9 0 0 0 6 0
45 0 -9 13 9 0 0 0 6 0 0
46 0 0 9 0 0 0 6 0 0 0
47 0 0 0 0 0 6 0 0 0 30
48 0 0 0 0 6 0 0 0 30 0
49 0 0 0 6 0 0 0 30 0 0
50 0 0 6 0 0 0 30 0 0 0
51 0 0 0 0 0 30 0 0 0 -27,28
52 0 0 0 0 30 0 0 0 -27,28 0
53 0 30 0 30 0 0 0 -27,28 0 0
54 0 0 30 0 0 0 -27,28 0 0 23
55 0 28 0 0 0 -27,28 0 0 23 19
56 0 21 0 0 -27,28 0 0 23 19 21
57 0 0 0 -27,28 0 0 23 19 21 -14,15
58 0 -23 -27,28 0 0 23 19 21 -14,15 0
59 0 0 0 0 23 19 21 -14,15 0 0
60 0 0 0 23 19 21 -14,15 0 0 0
61 0 -19 23 19 21 -14,15 0 0 0 0
62 0 -15 19 21 -14,15 0 0 0 0 0
63 0 0 21 -14,15 0 0 0 0 0 0
64 0 -10 -14,15 0 0 0 0 0 0 10
65 0 0 0 0 0 0 0 0 10 0
66 0 0 0 0 0 0 0 10 0 0
67 0 0 0 0 0 0 10 0 0 0
68 0 0 0 0 0 10 0 0 0 0
69 0 0 0 0 10 0 0 0 0 0
70 0 0 0 10 0 0 0 0 0 0
71 ±31 0 10 0 0 0 0 0 0 0
72 0 0 0 0 0 0 0 0 0 0
· · · · · · · · · · · · · · ·
95 0 0 0 0 0 0 0 0 0 0

196 E. Lee et al.

1. 31-st step : a30,20 = 0, a24,20 = 0
2. 32-nd step : a28,20 = 0
3. 33-rd step : no condition
4. 34-th step : a32,20 = 0
5. 35-th step : a29,20 = 0
6. 36-th step : a34,20a33,20 ⊕ a35,20 = 0
7. 37-th step : a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

Table 6 in appendix collects all the simplified conditions for those of Table 5.
We notice that the number of the sufficient conditions listed in Table 6 is 112,
which seems to make the probability that a message satisfy all these conditions
is 2−112. However, it is not 2−112, but approximately 2−114. This is due to the
fact that there are still dependencies in some conditions. For example, consider
the conditions on the 13-th bit from the 38-th step to the 41-st step in Table 6.

1. 38-th step : a38,13 = 1, a34,13a32,13 ⊕ a35,13 = 0
2. 39-th step : a33,13 �= a35,13

3. 40-th step : a34,13 �= a39,13

4. 41-st step : a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 1

These 5 conditions do not hold with probability 2−5, but with probability 2−3 · 3
16 .

The reason is as follows. The probability that the condition a38,13 = 1 is satisfied
is 2−1. Table 4 lists all the possible values of a32,13, a34,13 and a35,13 which sat-
isfy a34,13a32,13 ⊕ a35,13 = 0. The probability that this condition holds is 1

2 (= 4
8)

according to Table 4. In the 39-th step, the probability that a33,13 �= a35,13 is sat-
isfied is 2−1 since a33,13 is used only in the 39-th step. In the 40-th and 41-st steps,
if a35,13 = 0, then a39,13 and a34,13 should be 0 and 1, respectively, and a40,13 is
either 0 or 1. The probability that a35,13 = 0 and a34,13 = 1 hold is 1

4 (one out
of four cases, see Table 4). Thus the probability that a34,13 = 1, a35,13 = 0, and
a39,13 = 0 are satisfied is 1

8 (= 1
4 · 1

2) (recall that a40,13 does not have effect on the
condition a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 1). If a35,13 = 1 and a39,13 = 1, then
a40,13 = 1 and a34,13 = 0 due to the conditions a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 1
and a34,13 �= a39,13. However, this is a contradiction to the condition of the 38-
th step (see Table 4), and thus if a35,13 = 1, then a39,13 = 0, a40,13 = 1 and
a34,13 = 1. The probability that a35,13 = 1 and a34,13 = 1 hold is 1

4 by Ta-
ble 4 and each probability of a39,13 = 0 and a40,13 = 1 is 1

2 , so the probability
that (a34,13, a35,13, a39,13, a40,13) = (1, 1, 0, 1) is 1

16 . Therefore, we can compute the
probability that the conditions in the 40-th and 41-st step hold is 3

16 (= 1
8 + 1

16),
leading to a total probability 2−3 · 3

16 for the above 5 conditions. In this way, we an-
alyze the probability that the sufficient conditions in Table 6 are satisfied is 2−114.

3.2 Attack on 3-Pass HAVAL

The second preimage resistance on a hash function plays an important role to
block the attacker to produce a second preimage when a meaningful and sensi-
tive message (e.g. a finance-related message) is used. In literature, it is defined
as follows:

Second Preimage Attack on 3-Pass HAVAL 197

Table 4. Possible values for the conditions on the 38-th, 40-th and 41-st step

step a32,13 a34,13 a35,13 probability

38
1 1 1 1/8
0 1 0 1/8
1 0 0 1/8
0 0 0 1/8

step a34,13 a35,13 a39,13 a40,13 probability

40,
41

1 0 0 0 1/4 × 1/2 × 1/2
1 0 0 1 1/4 × 1/2 × 1/2
1 1 0 1 1/4 × 1/2 × 1/2

Second preimage resistance on a hash function H. for any given mes-
sage M , it is computationally infeasible to find another message M ′ satisfying
H(M) = H(M ′)

It follows that the second preimage attack on a hash function exists if for a
given message M there is an algorithm that finds another message M ′ such that
H(M) = H(M ′) with probability larger than 2−n, where n is the bit-length of
hash values. The second preimage attack on 3-pass HAVAL works due to our
differential path;

– For a given message M , the probability that M holds the sufficient conditions
listed in Table 6 is 2−114.

– If the message M holds the sufficient conditions, then the message M ′ which
only differs from M at the most significant bit of the 22-nd message word
has a same hash value.

4 Partial Key-Recovery Attacks on HMAC/NMAC-3-
Pass HAVAL

In this section, we present partial key recovery attacks on HMAC/NMAC-3-
pass HAVAL, which works based on our differential path described in Section 3.
More precisely, we show how to find the partial key K1 of NMAC-3-pass HAVAL
and f(K̄ ⊕ ipad) of HMAC-3-pass HAVAL (note that knowing f(K̄ ⊕ ipad) and
f(K̄ ⊕ opad) allows to compute the MAC value for any message). Since HMAC
= NMAC if f(K̄⊕ ipad) = K1 and f(K̄⊕opad) = K2, we focus on the NMAC-3-
pass HAVAL attack which finds K1 with message/MAC pairs. Recall that K1 is
placed at the position of the initial state in NMAC. This implies that recovering
the initial value of 3-pass HAVAL is equivalent to getting the partial key K1 of
NMAC-3-pass HAVAL.

The main idea behind of our attack is that the attacker can recover the initial
state of NMAC-3-pass HAVAL (in our attack it is K1) if he knows a 256-bit
input value at any step of 3-pass HAVAL. This idea has firstly been introduced
in [4]. In this section, we first find a16, a18, a21 and a23 which are used as a part of
an input value to the 24-th step. Remaining four-word input values a17, a19, a20

198 E. Lee et al.

and a22 to the 24-th step is then found by 2128 exhaustive searches. Let ai,j be
the j-th bit of ai and γi = (ai−8 ≫ 11) � (ti ≫ 7) � C, where C is a constant
used in step i (note γi � Mi = ai).

The value a16 is then revealed by the following Algorithm.

Algorithm 1. In order to recover the value a16, we use a condition a16,31 = 0
depicted in Table 6. The procedure goes as follows:

1. The attacker has access to the oracle O (=NMAC-3-pass HAVAL) and makes
2121 queries for 2120 message pairs M = M0, M1, · · · , M30, M31 and M ′ =
M ′

0, M
′
1, · · · , M ′

30, M
′
31 that have the message difference given in Table 5.

Among the 2120 message pairs, M0, M1, · · · , M15 and M ′
0, M

′
1, · · · , M ′

15 are
all identically fixed, M16 and M ′

16 vary in all 232 possible values, and 288 mes-
sage pairs in the remaining words M17, M18, · · · , M31 and M ′

17, M
′
18, · · · , M ′

31

are randomly chosen. In this case, what the attacker knows is that γ16 is iden-
tically fixed for all the 2120 message pairs even though he does not know the
actual value γ16.

2. For each candidate value γ16 in 0, 1, · · · , 232 − 1;
(a) Choose the message pairs (M, M ′) that make collisions for the corre-

sponding MAC pairs.
(b) Count the number of the message pairs chosen in Step 2(a) that satisfy

msb(γ16 � M16) = 1.
3. Output γ16 � M16 as a16, where γ16 has the least count number in Step 2

(b).

As mentioned before, this algorithm works due to our differential with probability
2−114. Notice that our differential encompasses a sufficient condition a16,31 = 0,
and each message pair among the 2120 message pairs satisfies the condition
a16,31 = 0, our differential holds with probability 2−113 with respect to this
message pair. If the message pair (M, M ′) makes the most significant bits of
a16 and a′

16 be 1, then the probability that the message pair (M, M ′) makes
a collision is 2−121(= 2−113 · 2−8), for it forces additionally 8 more sufficient
conditions in our collision producing differential. The reason is as follows. If
a16,31 = 1, then a difference ∆t23 is not zero, but ±231. However, this difference
value can be canceled by the output difference of the Boolean function in the
31-st step. In this procedure, each of steps 24-31 requires one more additional
condition, leading to total 8 additional conditions. Thus, the probability that
the message pair (M, M ′) has a same MAC value is not a random probability
but 2−121, where the most significant bits of a16 and a′

16 are 1. It follows that
if the right γ16 is guessed, we expect 2−2(= 2119 · 2−121) collision pairs. On
the other hand, if γ16 is wrongly guessed, the expectation of collision pairs is
25(= 2118 ·2−113 +2118 ·2−121), (note that in the group of the message pairs such
that msb(γ16 � M16) = 1 there are on average half message pairs satisfying the
actual a16,31 = 0). Since the probability that a wrong γ16 does not cause any
collision pair is (1−2−113)2

118 · (1−2−121)2
118

< (1−2−113)2
118

(≈ e−32) < 2−32,
we expect that there is no wrong γ16 which leads to no collision in Step 2. Hence,

Second Preimage Attack on 3-Pass HAVAL 199

we can determine the right γ16. To summarize, Algorithm 1 requires 2121 oracle
queries (in Step 1) and 232 memory bytes (the memory complexity of this attack
is dominated by the counters for γ16).

Next, we show how to recover the value a18, for which we use the condition
a18,31 = 0 required in our differential. Since there is no condition on a17 (see
Table 6), the attacker chooses any message word M17. The main idea is similar
to Algorithm 1.

First of all, the attacker selects 2119 message pairs (M, M ′) that have the mes-
sage difference given in Table 6, where M0, M1, · · · , M17 and M ′

0, M
′
1, · · · , M ′

17 are
all identically fixed (M0, M1, · · · , M16 and M ′

0, M
′
1, · · · , M ′

16 should be the same
as those selected in Algorithm 1, which leads to a16,31 = 0), M18 and M ′

18 vary in
all 232 possible values, and 287 message pairs in the remaining words are randomly
chosen. Once the attacker gets the corresponding MAC pairs, he performs Steps
2 and 3 of Algorithm 1 to recover a18 by setting γ18, M18, a18 instead of γ16, M16

and a16. The reason why recovering a18 requires half of the message pairs, com-
pared to when recovering a16, is that this attack algorithm exploits message pairs
satisfying a16,31 = 0 from the beginning. It increases by twice the probability that
our differential holds. The remaining analysis is the same as that of Algorithm 1.
To summarize, recovering a18 requires 2120 oracle queries.

Next, let us see how to recover a21. In order to recover a21 we need to use the
condition a20,31 = a21,31, which is of a different form from the previous two con-
ditions a16,31 = a18,31 = 0. However, the core in our attack is that a20,31 is always
a same value if M0, M1, · · · , M20 and M ′

0, M
′
1, · · · , M ′

20 are all identically fixed in
all required message pairs, i.e, in 2118 message pairs (note that all these message
pairs satisfy a16,31 = a18,31 = 0, which the attacker can select from the above
algorithms). Similarly, among the 2118 pairs, M21 and M ′

21 vary in all 232 possible
values and 286 pairs of remaining words are randomly chosen.

Algorithm 2. The attack algorithm to recover a21 goes as follows:

1. The attacker chooses the 2118 message pairs as above and asks the oracle O
for the corresponding 2118 MAC pairs.

2. Choose the message pairs (M, M ′) that make collisions for the corresponding
MAC pairs.

3. For each candidate value γ21 in 0, 1, · · · , 232 − 1;
(a) Divide two groups of which one contains message pairs that satisfy msb

(γ21 � M21) = 0 and the other one contains message pairs that satisfy
msb(γ21 � M21) = 1.

(b) Count the number of message pairs in each group that make collisions for
the corresponding MAC pairs

4. Output γ21 � M21 as a21, where γ21 is the value that has a group containing
the least count, and M21 is the one of the values satisfying a20,31 = a21,31.

If the values a20 and a21 satisfy the sufficient condition a20,31 = a21,31, then the
probability that the message pair (M, M ′) makes a collision is 2−111 (note that
the three conditions a16,31 = a18,31 = 0, a21,31 = a20,31 are excluded in the list of

200 E. Lee et al.

the sufficient conditions). On the other hand, if a21,31 �= a20,31, then the proba-
bility that the message pair (M, M ′) makes a collision is 2−119 (similarly, 8 more
conditions are additionally needed). In case the right γ21 is guessed, one of the two
groups is expected to have 2−111 ·2117 = 26 collision pairs and the other one is ex-
pected to have 2−119 · 2117 = 2−2 collision pair. On the other hand, if a wrong γ is
guessed, then the both groups are expected to have 2−111 ·2116 = 25 collision pairs
each. It implies that the probability that a wrong γ16 does not cause any collision
pair is about e−32 < 2−32, and thus there is no wrong γ21 to pass Step 3. To sum-
marize, Algorithm 2 needs 2119 oracle queries and 232 memory bytes. Recovering
a23 is quite similar to recovering a16 and a18, which requires 2118 oracle queries.

Exhaustive Search for the Remaining Four Words. Using the above algo-
rithms, we can compute the 128-bit a16, a18, a21 and a23 values. The remaining
128-bit a17, a19, a20 and a22 values are found by the following algorithm. We con-
sider a message pair (M, M ′) selected from the above algorithms which makes a
collision.

1. Guess a 128-bit a17, a19, a20, a22 value;
(a) Check with the computed a16, a18, a21, a23 and the guessed a17, a19, a20,

a22 that the message pair (M, M ′) makes a collision. If so, we determine
the guessed value as the right value. Otherwise, repeat Step 1.

(b) For the given message pair (M, M ′) and a16, a17, · · · , a22, recover the ini-
tial value.

If a wrong value is guessed, the probability that it causes a collision is 2−256. Since
the number of wrong a17, a19, a20, a22 tested in the attack is 2128 at most, we can
recover the right initial value. The time complexity of the exhaustive search step
is 2128 3-pass HAVAL computations.

As a result, our partial key recovery attack has 2121+2120+2119+2118 = 2121.9

oracle queries and 2128 3-pass HAVAL computations.

Reducing the Number of the 3-Pass HAVAL Computations. As described
above, our partial key-recovery attack is completed by two phases; the first phase
is to recover some portions of the 256-bit input value at step i, and the second is
the exhaustive search phase for its remaining input bits. If we apply our attack to
the input value to step 29 instead of step 24, then we can recover a21, a23, a24, a26

and a28 from the first phase with 2122 oracle queries and we recover the remaining
a22, a25 and a27 with 296 3-pass HAVAL computations from the second phase.

5 Conclusion

In this paper, we have presented a new second preimage differential path of 3-
pass HAVAL with probability 2−114 and exploited it to devise a second preimage
attack on 3-pass HAVAL, and partial key-recovery attacks on HMAC/NMAC-3-
pass HAVAL with 2122 oracle queries, 5 ·232 memory bytes and 296 3-pass HAVAL
computations. We expect that our attacks would be useful for the further analysis
of HAVAL and HMAC/NMAC-HAVAL (e.g., full key-recoveryattacks on HMAC/
NMAC-HAVAL).

Second Preimage Attack on 3-Pass HAVAL 201

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 22–35. Springer, Heidelberg (2005)

3. Boer, B.D., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Hei-
delberg (1994)

4. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

5. Dobbertin, H.: Cryptanalsis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

6. Fouque, P.A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

7. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

8. Rechberger, C., Rijmen, V.: On Authentication With HMAC and Non-Rondom
Properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 119–133. Springer, Heidelberg (2007)

9. Van Rompay, B., Biryukov, A., Preneel, B., Vandewalle, J.: Cryptanalysis of 3-pass
HAVAL. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 228–245.
Springer, Heidelberg (2003)

10. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD, Cryptology ePrint Archive, Report 2004/199 (2007)

11. Wang, X., Feng, D., Yu, H.: The Collision Attack on Hash Function HAVAL-128.
Science in China, Series E 35(4), 405–416 (2005)

12. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

13. Wang, X., Yin, X.Y., Yu, H.: Finding Collision in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

14. Wang, X., Yu, H., Yin, X.Y.: Efficient Collision Search Attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

15. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

16. Yu, H.: Cryptanalysis of Hash Functions and HMAC/NMAC, Doctoral dissertation,
SHANDONG

17. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4 and 5
Passes. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer,
Heidelberg (2006)

18. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4. In:
Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp.
1–12. Springer, Heidelberg (2005)

19. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL - a one-way hashing algorithm with
variable length of output. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS,
vol. 718, pp. 83–104. Springer, Heidelberg (1993)

202 E. Lee et al.

A Sufficient Conditions of the Second Preimage
Differential Path of 3-Pass HAVAL

Table 5 shows the sufficient conditions of the second preimage differential path of
3-pass HAVAL, which are derived from the property of the Boolean function fi of
appendix B. We solve and simplify the conditions of Table 5 and list the solutions
in Table 6.

B Property of the Boolean Functions f1, f2 and f3

Recall that the input value of the i-th step is denoted ai−8, ai−7, · · · , ai−1 and the
output value of the Boolean functions of the i-th step is denoted ti. Tables 7, 8 and
9 show the relations between the input difference and ti of the i-th step. In the col-
umn of Assumption in the Tables, as[j] represents the difference (∆ai−8, ai−7, · · · ,
∆as, · · · , ∆ai−1) = (0, 0, · · · , as[j], 0, · · · , 0) for i − 1 ≤ s ≤ i − 7 and ti[] means
that the output difference of the Boolean function of the i-th step is zero (see Sec-
tion 2.3 for the notations as[j] and ti[j]). Note that even though the sign is altered
from +j to −j in both as[j] and ti[j], still the conditions are the same as in Tables
7, 8 and 9, however if the sign is altered only in one of as[j] and ti[j], the second
conditions should be 1 (and the first ones are not altered).

Second Preimage Attack on 3-Pass HAVAL 203

Table 5. Sufficient conditions of the second preimage differential path of 3-pass HAVAL

S Sufficient conditions
23 a16,31 = 0, a22,31 = 0
24 a18,31 = 0
25 a20,31 = a21,31
26 a23,31 = 0
27 a24,31 = 1
28 a26,31 = 0
29 a28,31 = 0
31 a30,20 = 0, a24,20 = 0
32 a29,20a26,20 ⊕ a28,20 ⊕ a29,20 = 0
33 a31,20a27,20 ⊕ a32,20 ⊕ a31,20 = 0
34 a33,20a28,20 ⊕ a28,20 ⊕ a32,20 = 0
35 a29,20 = 0
36 a35,20a32,20 ⊕ a34,20a33,20 ⊕ a32,20 ⊕ a31,20 ⊕ a35,20 = 0
37 a31,20 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0
38 a37,13 = 0, a34,13a32,13 ⊕ a35,13 = 0
39 a38,9 = 0, a35,9a33,9 ⊕ a36,9 = 0, a36,13a33,13 ⊕ a35,13 ⊕ a36,13 = 0
40 a37,9a34,9 ⊕ a36,9 ⊕ a37,9 = 0, a38,13a34,13 ⊕ a39,13 ⊕ a38,13 = 0
41 a39,9a35,9 ⊕ a40,9 ⊕ a39,9 = 0, a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 0
42 a41,9a36,9 ⊕ a36,9 ⊕ a40,9 = 0, a36,13 = 1
43 a42,6 = 0, a37,9 = 0, a39,6a37,6 ⊕ a40,6 = 0,

a42,13a39,13 ⊕ a41,13a40,13 ⊕ a39,13 ⊕ a38,13 ⊕ a36,13 = 0
44 a41,6a38,6 ⊕ a40,6 ⊕ a41,6 = 0, a38,13 = 1, a43,9a40,9 ⊕ a42,9a41,9 ⊕ a40,9 ⊕ a39,9 ⊕ a37,9 = 0
45 a43,6a39,6 ⊕ a44,6 ⊕ a43,6 = 0, a39,9 = 0,

a44,9a41,9a39,9 ⊕ a39,9a43,9a42,9 ⊕ a41,9a43,9 ⊕ a39,9a40,9 ⊕ a44,9a41,9 ⊕ a43,9a42,9 = 1
46 a45,6a40,6 ⊕ a40,6 ⊕ a44,6 = 0
47 a46,30 = 0, a43,30a41,30 ⊕ a44,30 = 0, a41,6 = 0
48 a45,30a42,30 ⊕ a44,30 ⊕ a45,30 = 0, a47,6a44,6 ⊕ a46,6a45,6 ⊕ a44,6 ⊕ a43,6 ⊕ a41,6 = 0
49 a47,30a43,30 ⊕ a48,30 ⊕ a47,30 = 0, a43,6 = 1
50 a49,30a44,30 ⊕ a44,30 ⊕ a48,30 = 0
51 a50,27 = 1, a50,28 = 0, a47,27a45,27 ⊕ a48,27 = 0, a47,28a45,28 ⊕ a48,28 = 0, a45,30 = 0
52 a49,27a46,27 ⊕ a48,27 ⊕ a49,27 = 0, a49,28a46,28 ⊕ a48,28 ⊕ a49,28 = 0,

a51,30a48,30 ⊕ a50,30a49,30 ⊕ a48,30 ⊕ a47,30 ⊕ a45,30 = 0
53 a51,27a47,27 ⊕ a52,27 ⊕ a51,27 = 0, a51,28a47,28 ⊕ a52,28 ⊕ a51,28 = 0, a47,30 = 0
54 a53,23 = 0, a50,23a48,23 ⊕ a51,23 = 0, a53,27a48,27 ⊕ a48,27 ⊕ a52,27 = 0,

a53,28a48,28 ⊕ a48,28 ⊕ a52,28 = 0
55 a54,19 = 0, a51,19a49,19 ⊕ a52,19 = 0, a49,23 ⊕ a51,23 = 0, a49,27 = 0, a49,28 = 1
56 a55,21 = 0, a52,21 = 1, a50,21 = 1, ⊕ a53,21 = 1, a53,19a50,19 ⊕ a52,19 ⊕ a53,19 = 0,

a50,23 ⊕ a55,23 = 1, a55,27a52,27 ⊕ a54,27a53,27 ⊕ a52,27 ⊕ a51,27 ⊕ a49,27 = 0,
a55,28a52,28 ⊕ a54,28a53,28 ⊕ a52,28 ⊕ a51,28 ⊕ a49,28 = 0, a52,21a51,21 ⊕ a51,21 = 0

57 a56,14 = 1, a56,15 = 0, a54,21a51,21 ⊕ a53,21 ⊕ a54,21 = 0, a56,23a51,23 ⊕ a51,23 ⊕ a55,23 = 0,
a55,19a51,19 ⊕ a56,19 ⊕ a55,19 = 0, a51,27 = 1, a51,28 = 1

58 a55,14a52,14 ⊕ a55,14 ⊕ a54,14 = 0, a55,15a52,15 ⊕ a55,15 ⊕ a54,15 = 0,
a56,21a52,21 ⊕ a57,21 ⊕ a56,21 = 0, a57,19a52,19 ⊕ a52,19 ⊕ a56,19 = 0,
a57,23 ⊕ a56,23 ⊕ a57,23a55,23 = 0, a52,23 = 1

59 a57,14a53,14 ⊕ a58,14 ⊕ a57,14 = 0, a57,15a53,15 ⊕ a58,15 ⊕ a57,15 = 0, a53,19 = 0,
a58,21a53,21 ⊕ a53,21 ⊕ a57,21 = 0, a58,23a55,23 ⊕ a57,23a56,23 ⊕ a51,23 = 1

60 a59,14a54,14 ⊕ a54,14 = 0, a59,15a54,15 ⊕ a54,15 ⊕ a58,15 = 0,
a59,19a56,19 ⊕ a58,19a57,19 ⊕ a56,19 ⊕ a55,19 ⊕ a53,19 = 0, a54,21 = 0, a54,23 = 1

61 a55,14 = 0, a55,15 = 0, a55,19 = 0, a60,21a57,21 ⊕ a59,21a58,21 ⊕ a57,21 ⊕ a56,21 ⊕ a53,21 = 0
a59,19a57,19 ⊕ a60,19a58,19 ⊕ a59,19a58,19 = 1

62 a61,14a58,14 ⊕ a60,14a59,14 ⊕ a58,14 ⊕ a57,14 ⊕ a61,14 = 0, a60,15a59,15 ⊕ a58,15 = 1
a61,15a58,15 ⊕ a60,15a59,15 ⊕ a58,15 ⊕ a57,15 ⊕ a61,15 = 1, a56,21 = 1

63 a57,14 = 1, a57,15 = 1
64 a60,10 = 0, a63,10 = 0, a61,10a58,10 ⊕ a62,10a59,10 = 1
67 a62,10a61,10 ⊕ a60,10 ⊕ a66,10 = 0
68 a64,10a62,10 ⊕ a66,10 = 0
69 a65,10a64,10 ⊕ a66,10 = 0
70 a66,10 = 0

204 E. Lee et al.

Table 6. Simplified sufficient conditions of the second preimage differential path of 3-
pass HAVAL

S Sufficient conditions

a16,31 = 0, a18,31 = 0, a20,31 = a21,31, a22,31 = 0

23 a23,31 = 0

24 a24,31 = 1, a24,20 = 0

26 a26,31 = 0

28 a28,31 = 0, a28,20 = 0

29 a29,20 = 0

30 a30,20 = 0

31 a31,20 = 0

32 a32,20 = 0

36 a36,13 = 1, a36,9 = 0, a34,20a33,20 ⊕ a35,20 = 0

37 a37,9 = 0, a37,6 = 0, a37,13 = 0, a33,20a35,20 ⊕ a36,20a34,20 ⊕ a35,20a34,20 = 0

38 a38,13 = 1, a38,9 = 0, a34,13a32,13 ⊕ a35,13 = 0,

39 a39,6 = 1, a39,9 = 0, a35,9a33,9 = 0, a33,13 �= a35,13

40 a40,9 = 0, a40,6 = 0, a34,13 �= a39,13

41 a41,6 = 0, a40,13a35,13 ⊕ a35,13 ⊕ a39,13 = 0

42 a42,6 = 0

43 a43,6 = 1, a42,13a39,13 ⊕ a41,13a40,13 ⊕ a39,13 = 0

44 a44,30 = 0, a44,6 = 0, a42,9a41,9 = 0

45 a45,6 = 1, a45,30 = 0, a41,9a43,9 ⊕ a44,9a41,9 ⊕ a43,9a42,9 = 1

46 a46,6 = 1, a46,30 = 0

47 a47,30 = 0, a43,30a41,30 = 0

48 a48,30 = 0

49 a49,27 = 0, a49,28 = 1

50 a50,21 = 1, a50,27 = 1, a50,28 = 0

51 a51,27 = 1, a51,28 = 1, a51,15 = 0, a51,14 = 0,
a47,27a45,27 ⊕ a48,27 = 0, a47,28a45,28 ⊕ a48,28 = 0

52 a52,19 = 0, a52,21 = 1, a50,30a49,30 = 0, a52,23 = 1, a48,27 = 0, a46,28 = a48,28

53 a53,19 = 0, a53,14 = 0, a53,15 = 1, a53,21 = 0, a53,23 = 1, a47,28 ⊕ a52,28 = 1

54 a54,14 = 0, a54,15 = 0, a54,19 = 0, a50,23a48,23 ⊕ a51,23 = 0, a52,27 = 0,
a54,21 = 0, a54,23 = 1, a53,28a48,28 ⊕ a48,28 ⊕ a52,28 = 0

55 a55,14 = 0, a55,15 = 0, a55,19 = 0, a55,21 = 0, a51,19a49,19 = 0, a49,23 = a51,23

56 a56,19 = 0, a56,15 = 0, a56,14 = 1, a56,21 = 1, a50,23 = a55,23

a54,27a53,27 ⊕ a55,27 = 1, a55,28a52,28 ⊕ a54,28a53,28 ⊕ a52,28 ⊕ a51,28 ⊕ a55,28 = 0

57 a57,14 = 1, a57,15 = 1, a57,21 = 0, a56,23a51,23 ⊕ a51,23 ⊕ a55,23 = 0

58 a58,21 = 1, a58,14 = 0, a58,15 = 0, a57,23 ⊕ a56,23 ⊕ a57,23a55,23 = 0

59 a59,21 = 1, a58,23a55,23 ⊕ a57,23a56,23 ⊕ a55,23 ⊕ a51,23 = 1, a59,15 = 1

60 a58,19a57,19 ⊕ a55,19 = 0, a60,10 = 0, a60,15 = 1

61 a59,19a57,19 ⊕ a60,19a58,19 ⊕ a59,19a58,19 = 1, a61,15 = 1

62 a60,14a59,14 ⊕ a61,14 = 1

63 a63,10 = 0

64 a61,10a58,10 ⊕ a62,10a59,10 = 1

66 a66,10 = 0

67 a62,10a61,10 = 0

68 a64,10a62,10 = 0

69 a65,10a64,10 = 0

Second Preimage Attack on 3-Pass HAVAL 205

Table 7. Property of the Boolean function f1

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−7 = 0
ti[j] ai−7 = 1, ai−3ai−4 ⊕ ai−2ai−6 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−2[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1, ai−3ai−4 ⊕ ai−7ai−1 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−3[j]
ti[] ai−4 = ai−5

ti[j] ai−4 �= ai−5, ai−1ai−7 ⊕ ai−6ai−2 ⊕ ai−5 = 0

ai−4[j]
ti[] ai−3 = 0
ti[j] ai−3 = 1, ai−1ai−7 ⊕ ai−6ai−2 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−5[j]
ti[] ai−3 = 1
ti[j] ai−3ai−4 ⊕ ai−3 = 0, ai−1ai−7 ⊕ ai−6ai−2 = 0

ai−6[j]
ti[] ai−2 = 0
ti[j] ai−2 = 1, ai−3ai−4 ⊕ ai−7ai−1 ⊕ ai−5ai−3 ⊕ ai−5 = 0

ai−7[j]
ti[] ai−1 = 0
ti[j] ai−1 = 1, ai−3ai−4 ⊕ ai−6ai−2 ⊕ ai−5ai−3 ⊕ ai−5 = 0

Table 8. Property of the Boolean function f2

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−4ai−6 ⊕ ai−3 = 0
ti[j] ai−4ai−6 ⊕ ai−3 = 1,

ai−6ai−2ai−3 ⊕ ai−4ai−6 ⊕ ai−4ai−2

⊕ ai−6ai−5 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−2[j]
ti[] ai−3ai−6 ⊕ ai−4 ⊕ ai−3 = 0
ti[j] ai−3ai−6 ⊕ ai−4 ⊕ ai−3 = 1,

ai−4ai−6ai−1 ⊕ ai−4ai−6 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−3[j]
ti[] ai−2ai−6 ⊕ ai−1 ⊕ ai−2 = 0
ti[j] ai−2ai−6 ⊕ ai−1 ⊕ ai−2 = 1,

ai−4ai−6ai−1 ⊕ ai−4ai−6 ⊕ ai−6ai−5 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−4[j]
ti[] ai−1ai−6 ⊕ ai−6 ⊕ ai−2 = 0
ti[j] ai−1ai−6 ⊕ ai−6 ⊕ ai−2 = 1

ai−6ai−2ai−3 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−5[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1,

ai−4ai−6ai−1 ⊕ ai−6ai−2ai−3 ⊕ ai−4ai−6

⊕ ai−4ai−2 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7ai−6 ⊕ ai−7 = 0

ai−6[j]
ti[] ai−1ai−4 ⊕ ai−2ai−3 ⊕ ai−4 ⊕ ai−5 ⊕ ai−7 = 0
ti[j] ai−1ai−4 ⊕ ai−2ai−3 ⊕ ai−4 ⊕ ai−5 ⊕ ai−7 = 1,

ai−4ai−2 ⊕ ai−1ai−3 ⊕ ai−2ai−3 ⊕ ai−7 = 0

ai−7[j]
ti[] ai−6 = 1
ti[j] ai−6 = 0,

ai−4ai−5ai ⊕ ai−6ai−2ai−3 ⊕ ai−4ai−6

⊕ ai−4ai−2 ⊕ ai−6ai−5 ⊕ ai−1ai−3 ⊕ ai−2ai−3 = 0

206 E. Lee et al.

Table 9. The property of the Boolean function f3

Assumption Conditions for satisfying the Assumption

ai−1[j]
ti[] ai−4 = 1
ti[j] ai−4 = 0, ai−4ai−5ai−6 ⊕ ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−4ai−7 = 0

ai−2[j]
ti[] ai−5 = 0
ti[j] ai−5 = 1, ai−6ai−3 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−3[j]
ti[] ai−6 = 0
ti[j] ai−6 = 1, ai−4ai−5ai−6 ⊕ ai−5ai−2 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−4[j]
ti[] ai−5ai−6 ⊕ ai−7 ⊕ ai−1 = 0
ti[j] ai−5ai−6 ⊕ ai−7 ⊕ ai−1 = 1, ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−1 = 0

ai−5[j]
ti[] ai−4ai−6 ⊕ ai−2 = 0
ti[j] ai−4ai−6 ⊕ ai−2 = 1, ai−6ai−3 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−6[j]
ti[] ai−4ai−5 ⊕ ai−3 = 0
ti[j] ai−4ai−5 ⊕ ai−3 = 1, ai−5ai−2 ⊕ ai−4ai−7 ⊕ ai−1ai−4 ⊕ ai−1 = 0

ai−7[j]
ti[] ai−4 = 0
ti[j] ai−4 = 1, ai−4ai−5ai−6 ⊕ ai−6ai−3 ⊕ ai−5ai−2 ⊕ ai−1ai−4 ⊕ ai−1 = 0

Cryptanalysis of LASH

Ron Steinfeld1, Scott Contini1, Krystian Matusiewicz1, Josef Pieprzyk1,
Jian Guo2, San Ling2, and Huaxiong Wang1,2

1 Advanced Computing – Algorithms and Cryptography,
Department of Computing, Macquarie University

{rons,scontini,kmatus,josef,hwang}@ics.mq.edu.au
2 Division of Mathematical Sciences,

School of Physical & Mathematical Sciences
Nanyang Technological University

{guojian,lingsan,hxwang}@ntu.edu.sg

Abstract. We show that the LASH-x hash function is vulnerable to
attacks that trade time for memory, including collision attacks as fast
as 2(4x/11) and preimage attacks as fast as 2(4x/7). Moreover, we briefly
mention heuristic lattice based collision attacks that use small memory
but require very long messages that are expected to find collisions much
faster than 2x/2. All of these attacks exploit the designers’ choice of an
all zero IV.

We then consider whether LASH can be patched simply by changing
the IV. In this case, we show that LASH is vulnerable to a 2(7x/8) preim-
age attack. We also show that LASH is trivially not a PRF when any
subset of input bytes is used as a secret key. None of our attacks depend
upon the particular contents of the LASH matrix – we only assume that
the distribution of elements is more or less uniform.

Additionally, we show a generalized birthday attack on the final com-

pression of LASH which requires O

(
x2

x

2(1+ 107
105)

)
≈ O(x2x/4) time and

memory. Our method extends the Wagner algorithm to truncated sums,
as is done in the final transform in LASH.

1 Introduction

The LASH hash function [2] is based upon the provable design of Goldreich,
Goldwasser, and Halevi (GGH) [6], but changed in an attempt to make it closer
to practical. The changes are:

1. Different parameters for the m × n matrix and the size of its elements to
make it more efficient in both software and hardware.

2. The addition of a final transform [7] and a Miyaguchi-Preneel structure [9]
in attempt to make it resistant to faster than generic attacks.

The LASH authors note that if one simply takes GGH and embeds it in a Merkle-
Damg̊ard structure using parameters that they want to use, then there are faster
than generic attacks. More precisely, if the hash output is x bits, then they

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 207–223, 2008.
c© International Association for Cryptologic Research 2008

208 R. Steinfeld et al.

roughly describe attacks which are of order 2x/4 if n is larger than approximately
m2, or 2(7/24)x otherwise1. These attacks require an amount of memory of the
same order as the computation time. The authors hope that adding the second
changes above prevent faster than generic attacks. The resulting proposals are
called LASH-x, for LASH with an x bit output.

Although related to GGH, LASH is not a provable design: no security proof
has been given for it. Both the changes of parameters from GGH and the addition
of the Miyaguchi-Preneel structure and final transform prevent the GGH security
proof from being applied.

Our Results. In this paper, we show:

– LASH-x is vulnerable to collision attacks which trade time for memory
(Sect. 4). This breaks the LASH-x hash function in as little as 2(4/11)x work
(i.e. nearly a cube root attack). Using similar techniques, we can find preim-
ages in 2(4/7)x operations. These attacks exploit LASH’s all zero IV, and
thus can be avoided by a simple tweak to the algorithm.

– Even if the IV is changed, the function is still vulnerable to a short message
(1 block) preimage attack that runs in time/memory O(2(7/8)x) – faster than
exhaustive search (Sect. 5). Our attack works for any IV.

– LASH is not a PRF (Sect. 3.1) when keyed through any subset of the input
bytes. Although the LASH authors, like other designers of heuristic hash
functions, only claimed security goals of collision resistance and preimage
resistance, such functions are typically used for many other purposes [5]
such as HMAC [1] which requires the PRF property.

– LASH’s final compression (including final transform) can be attacked in

O

(
x2

x

2(1+ 107
105)

)
≈ O(x2x/4) time and memory. To do this, we adapt Wag-

ner’s generalized birthday attack [12] to the case of truncated sums (Sect. 6).
As far as we are aware, this is the fastest known attack on the final LASH
compression.

We also explored collision attacks for very long messages using lattice reduc-
tion techniques; experiments for LASH-160 suggest that such attacks can find
collisions for LASH-160 in significantly less than 280 time and with very little
memory. Due to lack of space, we could not include these results here – refer to
Sect. 6.2 for a brief summary.

Before we begin, we would like to make a remark concerning the use of large
memory. Traditionally in cryptanalysis, memory requirements have been mostly
ignored in judging the effectiveness of an attack. However, recently some re-
searchers have come to question whether this is fair [3,4,13]. To address this
issue in the context of our results, we point out that the design of LASH is
motivated by the assumption that GGH is insufficient due to attacks that use
large memory and run faster than generic attacks [2]. We are simply showing

1 The authors actually describe the attacks in terms of m and n. We choose to use x
which is more descriptive.

Cryptanalysis of LASH 209

that LASH is also vulnerable to such attacks so the authors did not achieve what
motivated them to change GGH. We also remark that a somewhat more efficient
cost-based analysis is possible [11], but page limits prevent us from providing
the analysis here.

After doing this work, we have learnt that a collision attack on the LASH
compression function was sketched at the Second NIST Hash Workshop [8]. The
attack applies to a certain class of circulant matrices. However, after discussions
with the authors [10], we determined that the four concrete proposals of x equal
to 160, 256, 384, and 512 are not in this class (although certain other values of
x are). Furthermore, the attack is on the compression function only, and does
not seem to extend to the full hash function.

We remark that our zero IV attacks apply also to the FFT hash function2

[8] if it were to be used in Merkle-Damg̊ard mode with a zero IV, giving col-
lisions/preimages with complexity O(2x/3)/O(2x/2), even if the internal state
is longer than output length x. However, our preimage attack for non zero IV
would not apply due to the prime modulus.

2 Description of LASH

2.1 Notation

Let us define rep(·) : Z256 → Z8
256 as a function that takes a byte and re-

turns a sequence of elements 0, 1 ∈ Z256 corresponding to its binary repre-
sentation in the order of most significant bit first. For example, rep(128) =
(1, 0, 0, 0, 0, 0, 0, 0). We can generalize this notion to sequences of bytes. The
function Rep(·) : Zm

256 → Z8·m
256 is defined as Rep(s) = rep(s1)|| . . . ||rep(sm),

e.g. Rep((192, 128)) = (1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Moreover, for two
sequences of bytes we define ⊕ as the usual bitwise XOR of the two bitstrings.

We index elements of vectors and matrices starting from zero.

2.2 The LASH-x Hash Function

The LASH-x hash function maps an input of length less than 22x bits to an
output of x bits. Four concrete proposals were suggested in [2]: x = 160, 256,
384, and 512.

The hash is computed by iterating a compression function that maps blocks
of n = 4x bits to m = x/4 bytes (2x bits). The measure of n in bits and m
in bytes is due to the original paper. Always m = n/16. Below we describe the
compression function, and then the full hash function.

Compression Function of LASH-x. The compression function is of the form
f : Z2m

256 → Zm
256. It is defined as

f(r, s) = (r ⊕ s) + H · [Rep(r)||Rep(s)]T , (1)

2 The proposal only specified the compression function and not the full hash function.

210 R. Steinfeld et al.

where r = (r0, . . . , rm−1) and s = (s0, . . . , sm−1) are column vectors3 belonging
to Zm

256. The vector r is called the chaining variable. The matrix H is a circulant
matrix of dimensions m × (16m) defined as Hj , k = a (j−k) mod 16m, where ai =
yi mod 28, and yi is defined as y0 = 54321, yi+1 = y2

i + 2 (mod 231 − 1) for
i > 0. Our attacks do not use any properties of this sequence. In some cases, our
analysis will split the matrix H into a left half HL and a right half HR (each of
size m × 8m), where HL is multiplied by the bits of Rep(r) and HR by the bits
of Rep(s).

A visual diagram of the LASH-160 compression function is given in Figure 1,
where t is f(r, s).

40
bytes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣ r

⎤⎥⎥⎥⎥⎦ ⊕

⎡⎢⎢⎢⎢⎣ s

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ +

640 columns︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣ · · · H · · ·

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Rep(r)

...
−
...

Rep(s)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣ t

⎤⎥⎥⎥⎥⎦

Fig. 1. Visualizing the LASH-160 compression function

The Full Function. Given a message of l bits, padding is first applied by
appending a single ‘1’-bit followed by enough zeros to make the length a multiple
of 8m = 2x. The padded message consists of κ = �(l+1)/8m� blocks of m bytes.
Then, an extra block b of m bytes is appended that contains the encoded bit-
length of the original message, bi = l/28i! (mod 256), i = 0, . . . , m − 1.

Next, the blocks s(0), s(1), . . . , s(κ) of the padded message are fed to the com-
pression function in an iterative manner as follows: r(0) := (0, . . . , 0) and then
r(j+1) := f(r(j), s(j)) for j = 0, . . . , κ. The r(0) is called the IV.

Finally, the last chaining value r(κ+1) is sent through a final transform which
takes only the 4 most significant bits of each byte to form the final hash value
h. Precisely, the ith byte of h is hi = 16 r2i/16! + r2i+1/16! (0 ≤ i < m/2).

3 Initial Observations

3.1 LASH is Not a PRF

In some applications (e.g. HMAC) it is required that the compression function
(parameterized by its IV) should be a PRF. Below we show that LASH does not
satisfy this property by exhibiting a differential that holds with probability 1,
independent of the IV.

3 In this paper, we sometimes abuse notation when there is no confusion in the text:
r and s can be both sequences of bytes as well as column vectors.

Cryptanalysis of LASH 211

Assume that r is the secret parameter fixed beforehand and unknown to us.
We are presented with a function g(·) which may be f(r, ·) or a random function
and by querying it we have to decide which one we have.

First we write H = [HL||HR] and so (1) can be rewritten as

f(r, s) = (r ⊕ s) + HL · Rep(r)T + HR · Rep(s)T .

Setting s = 0, we get f(r, 0) = r + HL ·Rep(r)T . Now, for s′ = (128, 0, . . . , 0) we
have Rep(s′) = 100 . . .0 and so

f(r, s′) = (r0 ⊕ 128, r1, . . . , rm−1) + HL · Rep(r)T + HR[·, 0] ,

where HR[·, 0] denotes the first column of the matrix HR. One can readily com-
pute the difference between f(r, s′) and f(r, 0):

f(r, s′) − f(r, 0) = HR[·, 0] + (128, 0, . . . , 0)T .

Regardless of the value of the secret parameter r, the output difference is a
fixed vector equal to HR[·, 0] + (128, 0, . . . , 0)T . Thus, using only two queries we
can distinguish with probability 1 − 2−8m the LASH compression function with
secret IV from a randomly chosen function.

The same principle can be used to distinguish LASH even if most of the bytes
of s are secret as well. In fact, it is enough for us to control only one byte of the
input to be able to use this method and distinguish with probability 1 − 2−8.

3.2 Absorbing the Feed-Forward Mode

According to [2], the feed-forward operation is motivated by Miyaguchi-Preneel
hashing mode and is introduced to thwart some possible attacks on the plain
matrix-multiplication construction. In this section we show two conditions under
which the feed-forward operation can be described in terms of matrix operations
and consequently absorbed into the LASH matrix multiplication step to get a
simplified description of the compression function. The first condition requires
one of the compression function inputs to be known, and the second requires a
special subset of input messages.

First Condition: Partially Known Input. Suppose the r portion of the
(r, s) input pair to the compression function is known and we wish to express
the output g(s) def= f(r, s) in terms of the unknown input s. We observe that each
(8i+j)th bit of the feedforward term r⊕s (for i = 0, . . . , m−1 and j = 0, . . . , 7)
can be written as

Rep(r ⊕ s)8i+j = Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j .

Hence the value of the ith byte of r ⊕ s is given by
7∑

j=0

(
Rep(r)8i+j + (−1)Rep(r)8i+j · Rep(s)8i+j

)
· 27−j =⎛⎝ 7∑

j=0

Rep(r)8i+j · 27−j

⎞⎠+

⎛⎝ 7∑
j=0

(−1)Rep(r)8i+j · Rep(s)8i+j · 27−j

⎞⎠ .

212 R. Steinfeld et al.

The first integer in parentheses after the equal sign is just the ith byte of r, whereas
the second integer in parentheses is linear in the bits of s with known coefficients,
and can be absorbed by appropriate additions to elements of the matrix HR (de-
fined in Section 2.2). Hence we have an ‘affine’ representation for g(s):

g(s) = (D′ + HR) · Rep(s)T + r + HL · Rep(r)T︸ ︷︷ ︸
m × 1 vector

, (2)

where

D′ =

⎡⎢⎢⎢⎢⎢⎣
J0 08 . . . 08 08

08 J1 . . . 08 08

...
...

. . .
...

...
08 08 . . . Jm−2 08

08 08 . . . 08 Jm−1

⎤⎥⎥⎥⎥⎥⎦ .

Here, for i = 0, . . . , m − 1, we define the 1 × 8 vectors 08 = [0, 0, 0, 0, 0, 0, 0, 0]
and

Ji = [27 ·(−1)Rep(r)8i , 26 ·(−1)Rep(r)8i+1 , . . . , 21 ·(−1)Rep(r)8i+6 , 20 ·(−1)Rep(r)8i+7] .

Second Condition: Special Input Subset. Observe that when bytes of one
of the input sequences (say, r) are restricted to values {0, 128} only (i.e. only
MS bit in each byte can be set), the XOR operation behaves like the byte-wise
addition modulo 256. In other words, if r∗ = 128 · r′ where r′ ∈ {0, 1}m then

f(r∗, s) = r∗ + s + H · [Rep(r∗)||Rep(s)]T

= (D + H) · [Rep(r∗)||Rep(s)]T . (3)

The matrix D recreates values of r∗ and s from their representations, similarly
to matrix D′ above. Then the whole compression function has the linear repre-
sentation f(r′, s) = H ′ · [r′||Rep(s)]T for a matrix H ′ which is matrix D + H
after removing 7m columns corresponding to the 7 LS bits of r for each byte.
The resulting restricted function compresses m + 8m bits to 8m bits using only
matrix multiplication without any feed-forward mode.

4 Attacks Exploiting Zero IV

Collision Attack. In the original LASH paper, the authors describe a “hybrid
attack” against LASH without the appended message length and final transform.
Their idea is to do a Pollard or parallel collision search in such a way that each
iteration forces some output bits to a fixed value (such as zero). Thus, the number
of possible outputs is reduced from the standard attack. If the total number of
possible outputs is S, then a collision is expected after about

√
S iterations.

Using a combination of table lookup and linear algebra, they are able to achieve
S = 2(14m/3) in their paper. Thus, the attack is not effective since a collision
is expected in about 2(7m/3) = 2(7x/12) iterations, which is more than the 2x/2

Cryptanalysis of LASH 213

iterations one gets from the standard birthday attack on the full LASH function
(with the final output transform).

Here, exploiting the zero IV, we describe a similar but simpler attack on
the full function which uses table lookup only. Our messages will consist of a
number of all-zero blocks followed by one “random” block. Regardless of the
number of zero blocks at the beginning, the output of the compression function
immediately prior to the length block being processed is determined entirely
by the one “random” block. Thus, we will be using table lookup to determine
a message length that results in a hash output value which has several bits in
certain locations set to some predetermined value(s).

Refer to the visual diagram of the LASH-160 compression function in Fig. 1.
Consider the case of the last compression, where the value of r is the output from
the previous iteration and the value of s is the message length being fed in. The
resulting hash value will consist of the most-significant half-bytes of the bytes
of t. Our goal is to quickly determine a value of s so that the most significant
half-bytes from the bottom part of t are all approximately zero.

Our messages will be long but not extremely long. Let α be the maximum
number of bytes necessary to represent (in binary) any s that we will use. So
the bottom 40 − α bytes of s are all 0 bytes, and the bottom 320 − 8α bits of
Rep(s) are all 0 bits. As before, we divide the matrix H into two halves, HL and
HR. Without specifying the entire s, we can compute the bottom 40 − α bytes
of (r⊕s)+HL ·Rep(r). Thus, if we precomputed all possibilities for HR ·Rep(s),
then we can use table lookup to determine a value of s that hopefully causes h
(to be chosen later) most-significant half-bytes from the bottom part of t to be
0. See the diagram in Fig. 2. The only restriction in doing this is α + h ≤ 40.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r︷︸︸︷⎡⎢⎢⎢⎢⎣
.
.
.
.
.

⎤⎥⎥⎥⎥⎦⊕

s︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

H︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
|
|

HL | HR

|
|

⎤⎥⎥⎥⎥⎦ ·

Rep(r||s)︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

.
−

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

t︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
.
.
.

0|.
0|.

⎤⎥⎥⎥⎥⎦

Fig. 2. Visualizing the final block of the attack on the LASH-160 compression function.
Diagram is not to scale. Table lookup is done to determine the values at the positions
marked with
. Places marked with 0 are set to be zero by the attacker (in the t vector,
this is accomplished with the table lookup). Places marked with ‘.’ are outside of the
attacker’s control.

We additionally require dealing with the padding byte. To do so, we restrict
our messages to lengths congruent to 312 mod 320. Then our “random” block
can have anything for the first 39 bytes followed by 0x80 for the 40th byte which
is the padding. We then ensure that only those lengths occur in our table lookup
by only precomputing HR · Rep(s) for values of s of the form 320i + 312. Thus,

214 R. Steinfeld et al.

we have α = � log 320+c
8 � assuming we take all values of i less than 2c. We will

aim for h = c/4, i.e. setting the bottom c/4 half-bytes of t equal to zero. The
condition α + h ≤ 40 is then satisfied as long as c ≤ 104, which will not be a
problem.

Complexity. Pseudocode for the precomputation and table lookup can be found
in Table 1 of [11]. With probability 1 − 1

e ≈ 0.632, we expect to find a match
in our table lookup. Assume that is the case. Due to rounding error, each of
the bottom c/4 most significant half-bytes of t will either be 0 or −1 (0xf in
hexadecimal). Thus there are 2c/4 possibilities for the bottom c/4 half-bytes,
and the remaining m − c/4 = x/4 − c/4 half-bytes (x − c bits) can be anything.
So the size of the output space is S = 2x−c+c/4 = 2x−3c/4. We expect a collision
after we have about 2x/2−3c/8 outputs of this form. Note that with a Pollard
or parallel collision search, we will not have outputs of this form a fraction of
about 1/e of the time. This only means that we have to apply our iteration
a fraction of 1/(1 − 1

e) ≈ 1.582 times longer, which has negligible impact on
the effectiveness of the attack. Therefore, we ignore such constants. Balancing
the Pollard search time with the precomputation time, we get an optimal value
with c = (4/11)x, i.e. a running time of order 2(4/11)x LASH-x operations. The
lengths of our colliding messages will be order ≤ 2c+log 2x bits. For instance,
this attack breaks LASH-160 in as few as 258 operations using 258 storage. The
lengths of our colliding messages will be order ≤ 2c+log 2x bits.

Experimental Results. We used this method to find collisions in LASH-160 trun-
cated to the first 12 bytes of the hash: see [11]. The result took one week of cpu
time on a 2.4GHz PC with c = 28.

Preimage Attack. The same lookup technique can be used for preimage at-
tacks. One simply chooses random inputs and hashes them such that the looked
up length sets some of the output hash bits to the target. This involves 2c pre-
computation, 2c storage, and 2x−3c/4 expected computation time, which balances
time/memory to 2(4x/7) using the optimal parameter setting c = 4x/7.

5 Short Message Preimage Attack on LASH with
Arbitrary IV

The attacks in the previous section crucially exploit a particular parameter choice
made by the LASH designers, namely the use of an all zero Initial Value (IV)
in the Merkle-Damg̊ard construction. Hence, it is tempting to try to ‘repair’ the
LASH design by using a non-zero (or even random) value for the IV. In this
section, we show that for any choice of IV, LASH-x is vulnerable to a preimage
attack faster than the desired security level of O(2x). Our preimage attack takes
time/memory O(2(7x/8)), and produces preimages of short length (2x bits). We
give a general description of the attack below with parameter choices for LASH-
160 in parentheses. Figure 3, which illustrates the attack for LASH-160, will be
particularly useful in understanding our algorithm. For ease of description, we

Cryptanalysis of LASH 215

ignore the padding bit, but the reader should be able to see that this can be
dealt with as well.

The Attack. Let f : Z2m
256 → Zm

256 denote the internal LASH compression
function and fout : Z2m

256 → Zm
16 denote the final compression function, i.e. the

composition of f with the final transform applied to the output of f . Given a
target value tout whose LASH preimage is desired, the inversion algorithm finds
a single block message sin ∈ Zm

256 hashing to tout, i.e. satisfying

f(rin, sin) = rout (first compression)

and
fout(rout, sout) = tout (final compression) ,

where sout is the 8m-bit (320-bit for LASH-160) binary representation of the
length block, and rin = IV is an arbitrary known value. The inversion algorithm
proceeds as follows:

Step 1: Find 2m (240 for LASH-160) inverses of the final compression. Using
the precomputation-based preimage attack on the final compression function
fout described in the previous section (with straightforward modifications to
produce the preimage using bits of rout rather than sout and precomputation
parameter cout = (20/7)m (cout ≈ 114 for LASH-160)), compute a list L of
2m preimage values of rout satisfying fout(rout, sout) = tout.

Step 2: Search for a preimage sin that maps to tout. Let c = 3.5m (c = 140
for LASH-160) be a parameter (later we show that choosing c = 3.5m is
optimal). Split the 8m-bit input sin to be determined into two disjoint parts
sin(1) (of length 6m − c bit) and sin(2) (of length 2m + c bit), i.e. sin =
sin(1)||sin(2) (For LASH-160, we have sin(1) of length 100 bits and sin(2) of
length 220 bits). We loop through all possibilities for the list L and the set of
inputs sin(1) (a total of 2m ·26m−c = 27m−c possibilities, or 2140 possibilities
for LASH-160). For each such possibility, we run the internal compression
function ‘hybrid’ partial inversion algorithm described below to compute a
matching ‘partial preimage’ value for sin(2), where by ‘partial preimage’ we
mean that the compression function output f(rin, sin) matches target rout

on a fixed set of m + c = 4.5m bits (180 bits for LASH-160). We leave
the remaining 3.5m bits (140 bits for LASH-160) to chance. Thus, for each
such computed partial preimage sin = sin(1)||sin(2) and corresponding rout

value, we check whether sin is a full preimage, i.e. whether f(rin, sin) = rout

holds, and if so, output desired preimage sin.

Internal Compression Function ‘Hybrid’ Partial Inversion Algorithm.
For integer parameter c, the internal compression function ‘hybrid’ partial inver-
sion algorithm is given a 8m-bit target value tin (= rout), an 8m-bit input rin,
and the (6m − c)-bit value sin(1), and computes a (2m + c)-bit value for sin(2)
such that f(rin, sin) matches tin on the top c/7 bytes as well as on the LS bit of
all remaining bytes. Hence, it matches on a total of m + c bits. (For LASH-160,
both tin and rin are 320 bits, sin(1) is 100 bits, sin(2) is 220 bits, and f(rin, sin)

216 R. Steinfeld et al.

ff

M
S
B

4

tout

fout

sout (fixed length block)

routrin (fixed IV)

sin

sin(1) (100 b)

sin(2) (220 b)

sin(2, 1)

sin(2, 2)

sin(2, 3)

1
4
0

b

tin

Fig. 3. Illustration of the preimage attack applied to LASH-160

matches tin on all of the bytes in the top half of tin as well as all least significant
bits). Some preliminaries are necessary before we explain the algorithm.

From Section 3.2 we know that for known rin, the Miyaguchi-Preneel feedfor-
ward term (rin ⊕ sin) can be absorbed into the matrix by appropriate modifica-
tions to the matrix and target vector, i.e. the inversion equation

(rin ⊕ sin) + H · [Rep(rin)||Rep(sin)]T = tin mod 256, (4)

where H is the LASH matrix, can be reduced to an equivalent linear equation

H ′ · [Rep(sin)]T = t′in mod 256, (5)

for appropriate matrix H ′ and vector t′in easily computed from the known H ,
tin, and rin.

We require some notation and a one-time precomputation. We divide sin(2)
into 3 parts s(2, 1) (length m bits = 40 bits for LASH-160), s(2, 2) (length c bits
= 140 bits for LASH-160) and s(2, 3) (length m bits = 40 bits for LASH-160).
For i = 1, 2, 3 let H ′(2, i) denote the submatrix of matrix H ′ from (5) consisting
of the columns indexed by the bits in s(2, i) (e.g. H ′(2, 1) consists of the m
columns of H ′ indexed by the m bits of s(2, 1)). Similarly, let H ′(1) denote the
submatrix of H ′ consisting of the columns of H ′ indexed by the m bits of sin(1).

The one-time precomputation pairs up values of s(2, 2) with s(2, 3) such that,
after multiplying by the corresponding columns of H , the result has 0’s in all m
least significant bits. To do this, for each of 2c possible values of s(2, 2), we find
by linear algebra over GF (2), a matching value for s(2, 3) such that

[H ′(2, 2) H ′(2, 3)] · [Rep(s(2, 2))||Rep(s(2, 3))]T = [0m]T mod 2. (6)

Cryptanalysis of LASH 217

The entry s(2, 2)||s(2, 3) is stored in a hash table, indexed by the string of c bits
obtained by concatenating 7 MS bits of each of the top c/7 bytes of vector y.

We are now ready to describe the internal compression function ‘hybrid’ par-
tial inversion algorithm, based on [2] (a combination of table lookup and linear
algebra), to find sin(2) such that the left and right hand sides of (5) match on
the desired m + c bits (180 bits for LASH-160). The gist of the algorithm is to
use linear algebra to match the least significant bits and table lookup to match
other bits. It works as follows:

– Solving Linear Equations: Compute s(2, 1) such that

H ′(2, 1) · [Rep(s(2, 1))]T = t′in − H ′(1) · [Rep(sin(1))]T mod 2. (7)

Note that adding (6) and (7) implies that H ′ · [Rep(sin(1))||Rep(sin(2))]T =
t′in mod 2 with sin(2) = s(2, 1)||s(2, 2)||s(2, 3) for any entry s(2, 2)||s(2, 3)
from the hash table. In other words, all least significant bits will be matched
regardless of which entry is taken from the hash table.

– Lookup Hash Table: Find the s(2, 2)||s(2, 3) entry indexed by the c-bit string
obtained by concatenating the 7 MS bits of each of the top c/7 bytes of the
vector t′in − H ′(2, 1) · [Rep(s(2, 1))]T − H ′(1) · [Rep(sin(1))]T mod 256. This
implies that vector H ′ · [Rep(sin(1))||Rep(sin(2))]T matches t′in on all top c/7
bytes, as well as on the LS bits of all bytes, as required.

Correctness of Attack. For each of 2m target values rout from list L, and each
of the 22.5m possible values for sin(1), the partial preimage inversion algorithm
returns sin(2) such that f(rin, sin) matches rout on a fixed set of m + c bits.
Modelling the remaining bits of f(rin, sin) as uniformly random and independent
of rout, we conclude that f(rin, sin) matches rout on all 8m bits with probability
1/28m−(m+c) = 1/27m−c = 1/23.5m (using c = 3.5m) for each of the 22.5m×2m =
23.5m runs of the partial inversion algorithm. Assuming that each of these runs
is independent, the expected number of runs which produce a full preimage is
23.5m × 1/23.5m = 1, and hence we expect the algorithm to succeed and return
a full preimage.

Complexity. The cost of the attack is dominated by the second step, where we
balance the precomputation time/memory O(2c) of the hybrid partial preimage
inversion algorithm with the expected number 27m−c of runs to get a full preim-
age. This leads (with the optimum parameter choice c = 3.5m) to time/memory
cost O(23.5m) = O(2(7x/8)), assuming each table lookup takes constant time. To
see that second step dominates the cost, we recall that the first step with precom-
putation parameter cout uses a precomputation taking time/memory O(2cout),
and produces a preimage after an expected O(24m−3cout/4) time using cout +
(4m−3cout/4) = 4m+ cout/4 bits of rout. Hence, repeating this attack 2m times
using m additional bits of rout to produce 2m distinct preimages is expected
to take O(max(2cout , 25m−3cout/4)) time/memory using 5m + cout/4 bits of rout.
The optimal choice for cout is cout = (20/7)m ≈ 2.89m, and with this choice the
first step takes O(2(20/7)m) = o(23.5m) time/memory and uses (40/7)m < 8m
bits of rout (the remaining bits of rout are set to zero).

218 R. Steinfeld et al.

6 Attacks on the Final Compression Function

This section presents collision attacks on the final compression function fout

(including the output transform). For a given r ∈ Zm
256, the attacks produce

s, s′ ∈ Zm
256 with s �= s′ such that fout(r, s) = fout(r, s′). To motivate these

attacks, we note that they can be converted into a ‘very long message’ colli-
sion attack on the full LASH function, similar to the attack in Sect. 4. The
two colliding messages will have the same final non-zero message block, and all
preceding message blocks will be zero. To generate such a message pair, the
attacker chooses a random (8m − 8)-bit final message block (common to both
messages), pads with a 0x80 byte, and applies the internal compression function
f (with zero chaining value) to get a value r ∈ Zm

256. Then using the collision
attack on fout the attacker finds two distinct length fields s, s′ ∈ Zm

256 such that
fout(r, s) = fout(r, s′). Moreover, s, s′ must be congruent to 8m − 8 (mod 8m)
due to the padding scheme. For LASH-160, we can force s, s′ to be congruent to
8m− 8 (mod 64) by choosing the six LS bits of the length, so this leaves a 1/52

chance that both inputs will be valid.
The lengths s, s′ producedby the attacks in this sectionarevery long (longer than

2x/2). However, we hope the ideas here can be used for future improved attacks.

6.1 Generalized Birthday Attack on the Final Compression

The authors of [2] describe an application of Wagner’s generalized birthday at-
tack [12] to compute a collision for the internal compression function f using
O(22x/3) time and memory. Although this ‘cubic root’ complexity is lower than
the generic ‘square-root’ complexity of the birthday attack on the full compres-
sion function, it is still higher than the O(2x/2) birthday attack complexity on
the full function, due to the final transformation outputting only half the bytes.
Here we describe a variant of Wagner’s attack for finding a collision in the final
compression including the final transform (so the output bit length is x bits).

The asymptotic complexity of our attack is O

(
x2

x

2(1+ 107
105)

)
time and memory –

slightly better than a ‘fourth-root’ attack. For simplicity, we can call the running
time O(x2x/4).

The basic idea of our attack is to use the linear representation of fout from
Sect. 3.2 and apply a variant of Wagner’s attack [12], modified to carefully deal
with additive carries in the final transform. As in Wagner’s original attack, we
build a binary tree of lists with 8 leaves. At the ith level of the tree, we merge
pairs of lists by looking for pairs of entries (one from each list) such that their
sums have 7−i zero MS bits in selected output bytes, for i = 0, 1, 2. This ensures
that the list at the root level has 4 zero MS bits on the selected bytes (these
4 MS bits are the output bits), accounting for the effect of carries during the
merging process. More precise details are given below.

The attack. The attack uses inputs r, s for which the internal compression func-
tion f has a linear representation absorbing the Miyaguchi-Preneel feedforward

Cryptanalysis of LASH 219

(see Section 3.2). For such inputs, which may be of length up to 9m bit (recall:
m = x/4), the final compression function f ′ : Z9m

256 → Zm
16 has the form

f ′(r) = MS4(H ′ · [Rep(r)]T), (8)

where MS4 : Zm
256 → Zm

16 keeps only the 4 MS bits of each byte of its input,
concatenating the resulting 4 bit strings (note that we use r here to represent the
whole input of the linearised compression function f ′ defined in Section 3.2). Let
Rep(r) = (r[0], r[1], . . . , r[9m−1]) ∈ Z9m

256 with r[i] ∈ {0, 1} for i = 0, . . . , 9m−1.
Let � ≈ 4m

2(1+107/105)! (notice that 8� < 9m). We refer to each component r[i] of
r as an input bit. We choose a subset of 8� input bits from r and partition the
subset into 8 substrings ri ∈ Z�

256 (i = 1, . . . , 8) each containing � input bits, i.e.
r = (r1, r2, . . . , r8). The linearity of (8) gives

f ′(r) = MS4(H ′
1 · [r1]T + · · · + H ′

8 · [r8]T),

where, for i = 1, . . . , 8, H ′
i denotes the m × � submatrix of H ′ consisting of the

� columns indexed (i − 1) · �, (i − 1) · � + 1, . . . , i · � − 1 in H ′. Following Wagner
[12], we build 8 lists L1, . . . , L8, where the ith list Li contains all 2� possible
candidates for the pair (ri, yi), where yi def= H ′

i · [ri]T (note that yi can be easily
computed when needed from ri and need not be stored). We then use a binary
tree algorithm described below to gradually merge these 8 lists into a single list
L3 containing 2� entries of the form (r, y = H ′ · [r]T), where the 4 MS bits in
each of the first α bytes of y are zero, for some α, to be defined below. Finally,
we search the list L3 for a pair of entries which match on the values of the 4 MS
bits of the last m − α bytes of the y portion of the entries, giving a collision for
f ′ with the output being α zero half-bytes followed by m−α random half-bytes.

The list merging algorithm operates as follows. The algorithm is given the
8 lists L1, . . . , L8. Consider a binary tree with c = 8 leaf nodes at level 0. For
i = 1, . . . , 8, we label the ith leaf node with the list Li. Then, for each jth internal
node ni

j of the tree at level i ∈ {1, 2, 3}, we construct a list Li
j labelling node ni

j ,
which is obtained by merging the lists Li−1

A , Li−1
B at level i − 1 associated with

the two parent nodes of ni
j . The list Li

j is constructed so that for i ∈ {1, 2, 3},
the entries (r′, y′) of all lists at level i have the following properties:

– (r′, y′) = (r′A||r′B, y′
A + y′

B), where (r′A, y′
A) is an entry from the left parent

list Li−1
A and (r′B , y′

B) is an entry from the right parent list Li−1
B .

– If i ≥ 1, the ��/7� bytes of y′ at positions 0, . . . , ��/7� − 1 each have their
(7 − i) MS bits all equal to zero.

– If i ≥ 2, the ��/6� bytes of y′ at positions ��/7� , . . . , ��/7� + ��/6� − 1 each
have their (7 − i) MS bits all equal to zero.

– If i = 3, the ��/5� bytes of y′ at positions ��/7�+ ��/6� , . . . , ��/7�+ ��/6�+
��/5� − 1 each have their (7 − i) = 4 MS bits all equal to zero.

The above properties guarantee that all entries in the single list at level 3 are of
the form (r, y = H ′ · [Rep(r)]T), where the first α = ��/7� + ��/6� + ��/5� bytes
of y all have 7 − 3 = 4 MS bits equal to zero, as required.

220 R. Steinfeld et al.

To satisfy the above properties, we use a hash table lookup procedure, which
aims, when merging two lists at level i, to fix the 7 − i MS bits of some of the
sum bytes to zero. This procedure runs as follows, given two lists Li−1

A , Li−1
B

from level i − 1 to be merged into a single list Li at level i:

– Store the first component r′A of all entries (r′A, y′
A) of Li−1

A in a hash table
TA, indexed by the hash of:
• If i = 1, the 7 MS bits of bytes 0, . . . , ��/7� − 1 of y′

A, i.e. string
(MS7(y′

A[0]), . . . , MS7(y′
A[��/7� − 1])).

• If i = 2, the 6 MS bits of bytes ��/7� , . . . , ��/7� + ��/6� − 1 of y′
A, i.e.

string (MS6(y′
A[��/7�]), . . . , MS6(y′

A[��/7� + ��/6� − 1])).
• If i = 3, the 5 MS bits of bytes ��/7�+ ��/6� , . . . , α− 1 of y′

A, i.e. string
(MS5(y′

A[��/7� + ��/6�]), . . . , MS5(y′
A[α − 1])).

– For each entry (r′B , y′
B) of Li−1

B , look in hash table TA for matching entry
(r′A, y′

A) of Li−1
A such that:

• If i = 1, the 7 MS bits of corresponding bytes in positions 0, . . . , ��/7�−1
add up to zero modulo 27 = 128, i.e. MS7(y′

A[j]) ≡ −MS7(y′
B[j]) mod 27

for j = 0, . . . , ��/7� − 1.
• If i = 2, the 6 MS bits of corresponding bytes in positions

��/7� , . . . , ��/7� + ��/6� − 1 add up to zero modulo 26 = 64, i.e.
MS6(y′

A[j]) ≡ −MS6(y′
B[j]) mod 26 for j = ��/7� , . . . , ��/7�+��/6�−1.

• If i = 3, the 5 MS bits of corresponding bytes in positions ��/7� +
��/6� , . . . , α − 1 add up to zero modulo 25 = 32, i.e. MS5(y′

A[j]) ≡
−MS5(y′

B [j]) mod 25 for j = ��/7� + ��/6� , . . . , α − 1.
– For each pair of matching entries (r′A, y′

A) ∈ Li−1
A and (r′B, y′

B) ∈ Li−1
B , add

the entry (r′A‖r′B, y′
A + y′

B) to list Li.

Correctness. The correctness of the merging algorithm follows from the following
simple fact:

Fact. If x, y ∈ Z256, and the k MS bits of x and y (each regarded as the binary
representation of an integer in {0, . . . , 2k − 1}) add up to zero modulo 2k,
then the (k − 1) MS bits of the byte x + y (in Z256) are zero.

Thus, if i = 1, the merging lookup procedure ensures, by the Fact above, that
the 7 − 1 = 6 MS bits of bytes 0, . . . , ��/7� − 1 of y′

A + y′
B are zero, whereas

for i ≥ 2, we have as an induction hypothesis that the 7 − (i − 1) MS bits of
bytes 0, . . . , ��/7� − 1 of both y′

A and y′
B are zero, so again by the Fact above,

we conclude that the 7− i MS bits of bytes 0, . . . , ��/7�− 1 of y′
A + y′

B are zero,
which proves inductively the desired property for bytes 0, . . . , ��/7� − 1 for all
i ≥ 1. A similar argument proves the desired property for all bytes in positions
0, . . . , α − 1. Consequently, at the end of the merging process at level i = 3,
we have that all entries (r, y) of list L3 have the 7 − 3 = 4 MS bits of bytes
0, . . . , α − 1 being zero, as required.

Asymptotic Complexity. The lists at level i = 0 have |L0| = 2� entries. To es-
timate the expected size |L1| of the lists at level i = 1, we model the entries

Cryptanalysis of LASH 221

(r0, y0) of level 0 lists as having uniformly random and independent y0 compo-
nents. Hence for any pair of entries (r0

A, y0
A) ∈ L0

A and (r0
B , y0

B) ∈ L0
B from lists

L0
A L0

B to be merged, the probability that the 7 MS bits of bytes 0, . . . , ��/7�−1
of y0

A and y0
B are negatives of each other modulo 27 is 1

2��/7�×7 . Thus, the total
expected number of matching pairs (and hence entries in the merged list L1) is

|L1| =
|L0

A| × |L0
B|

2��/7	×7
=

22�

2��/7	×7
= 2�+O(1).

Similarly, for level i = 2, we model bytes ��/7� , . . . , ��/7�+��/6�−1 as uniformly
random and independent bytes, and with the expected sizes |L1| = 2�+O(1) of
the lists from level 1, we estimate the expected size |L2| of the level 2 lists as:

|L2| =
|L1

A| × |L1
B|

2��/6	×6
= 2�+O(1),

and a similar argument gives also |L3| = 2�+O(1) for the expected size of the final
list. The entries (r, y) of L3 have zeros in the 4 MS bits of bytes 0, . . . , α − 1,
and random values in the remaining m − α bytes. The final stage of the attack
searches |L3| for two entries with identical values for the 4 MS bits of each of
these remaining m − α bytes. Modelling those bytes as uniformly random and
independent we have by a birthday paradox argument that a collision will be
found with high constant probability as long as the condition |L3| ≥

√
24(m−α)

holds. Using |L3| = 2�+O(1) and recalling that α = ��/7� + ��/6� + ��/5� =
(1/7+1/6+1/5)�+O(1) = 107

210�+O(1), we obtain the attack success requirement

� ≥ 4m

2(1 + 107
105)

+ O(1) ≈ x

4
+ O(1).

Hence, asymptotically, using � ≈ x
2(1+107/105) !, the asymptotic memory com-

plexity of our attack is O(x2
x

2(1+ 107
105)) ≈ O(x2x/4) bit, and the total running time

is also O(x2
x

2(1+ 107
105)) ≈ O(x2x/4) bit operations. So asymptotically, we have a

‘fourth-root’ collision finding attack on the final compression function.

Concrete Example. For LASH-160, we expect a complexity in the order of 240.
In practice, the O(1) terms increase this a little. Table 1 summarises the require-
ments at each level of the merging tree for the attack with � = 42 (note that
at level 2 we keep only 241 of the 242 number of expected list entries to reduce
memory storage relative to the algorithm described above). It is not difficult to
see that the merging tree algorithm can be implemented such that at most 4
lists are kept in memory at any one time. Hence, we may approximate the total
attack memory requirement by 4 times the size of the largest list constructed in
the attack, i.e. 248.4 bytes of memory. The total attack time complexity is ap-
proximated by

∑3
i=0 |Li| ≈ 243.3 evaluations of the linearised LASH compression

function f ′, plus
∑3

i=0 23−i|Li| ≈ 246 hash table lookups. The resulting attack
success probability (of finding a collision on the 72 random output bits among the
237 entries of list L3) is estimated to be about 1− e−0.5·237(237−1)/2160−88 ≈ 0.86.

222 R. Steinfeld et al.

Table 1. Concrete Parameters of an attack on final compression function of LASH-
160. For each level i, |Li| denotes the expected number of entries in the lists at level i,
’Forced Bytes’ is the number of bytes whose 7−i MS bits are forced to zero by the hash
table lookup process at this level, ‘Zero bits’ is four times the total number of output
bytes whose 4 MS bits are guaranteed to be zero in list entries at this level, ‘Mem/Item’
is the memory requirement (in bit) per list item at this level, ‘log(Mem)/List’ is the
base 2 logarithm of the total memory requirement (in bytes) for each list at this level
(assuming that our hash table address space is twice the expected number of list items).

Level (i) log(|Li|) Forced Bytes Zero bits Mem/Item, bit log(Mem)/List, Byte

0 42 6 0 42 45.4
1 42 7 24 84 46.4
2 41 9 52 168 46.4
3 37 88 336 43.4

The total number of input bits used to form the collision is 8� = 336 bit, which
is less than the number 9m = 360 bit available with the linear representation for
the LASH compression function.

6.2 Heuristic Lattice-Based Attacks on the Final Compression

We investigated the performance of two heuristic lattice-based methods for find-
ing collisions in truncated versions of the final compression function of LASH.
The first reduces finding collisions to a lattice Shortest Vector Problem (SVP).
The second uses the SVP as a preprocessing stage and applies a cycling attack
with a lattice Closest Vector Problem (CVP) solved at each iteration. Due to
lack of space, a detailed description of these attacks and the experimental re-
sults obtained can be found elsewhere [11]. The lattice-based attacks have the
advantage of requiring very little memory. Preliminary experimental results for
LASH-160 [11] give a time complexity estimate below 268 for the CVP-based
attack, significantly lower than the desired 280. Using our SVP-based attack, we
found a collision in the final LASH-160 compression function truncated to 120
bits, with time complexity below 236 (much less than the expected 260).

7 Conclusions

The LASH-x hash function was constructed by taking the GGH provable design [6]
and duct taping on components that were intended for heuristic hashing. It is thus
a combination of several techniques which are individually sound when applied to
ideal components. Our work illustrates that this design strategy does not neces-
sarily yield a secure result when applied to concrete components. In summary, we
showed that LASH-x does not meet the designers’ security goals nor does it meet
other security goals that are typically assumed in heuristic hashing [5].

Acknowledgements. This research was supported in part by Australian Re-
search Council (under grants DP0663452, DP0558773 and DP0665035) and by

Cryptanalysis of LASH 223

Singapore Ministry of Education (under Tier 2 grant T206B2204). Ron Stein-
feld’s research was supported by the Macquarie University Research Fellowship.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bentahar, K., Page, D., Saarinen, M.-J.O., Silverman, J.H., Smart, N.: LASH. In:
Second Cryptographic Hash Workshop, August 24–25 (2006)

3. Bernstein, D.J.: Circuits for integer factorization: A proposal. Web page,
http://cr.yp.to/papers/nfscircuit.pdf

4. Bernstein, D.J.: What output size resists collisions in a xor of independent expan-
sions? In: ECRYPT Hash Workshop (May 2007)

5. Contini, S., Steinfeld, R., Pieprzyk, J., Matusiewicz, K.: A critical look at crypto-
graphic hash function literature. In: ECRYPT Hash Workshop (May 2007)

6. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Electronic Colloquium on Computational Complexity (ECCC) 3(042) (1996)

7. Lucks, S.: Failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

8. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Provably Secure FFT
Hashing (+ comments on “probably secure” hash functions). In: Second Crypto-
graphic Hash Workshop, August 24–25 (2006)

9. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

10. Peikert, C.: Private Communication (August 2007)
11. Steinfeld, R., Contini, S., Matusiewicz, K., Pieprzyk, J., Guo, J., Ling, S., Wang,

H.: Cryptanalysis of LASH. Cryptology ePrint Archive, Report 2007/430 (2007),
http://eprint.iacr.org/

12. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

13. Wiener, M.J.: The full cost of cryptanalytic attacks. J. Cryptol. 17(2), 105–124
(2004)

http://cr.yp.to/papers/nfscircuit.pdf
http://eprint.iacr.org/

A (Second) Preimage Attack

on the GOST Hash Function

Florian Mendel, Norbert Pramstaller, and Christian Rechberger

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.TUGraz.at

Abstract. In this article, we analyze the security of the GOST hash
function with respect to (second) preimage resistance. The GOST hash
function, defined in the Russian standard GOST-R 34.11-94, is an iter-
ated hash function producing a 256-bit hash value. As opposed to most
commonly used hash functions such as MD5 and SHA-1, the GOST hash
function defines, in addition to the common iterated structure, a check-
sum computed over all input message blocks. This checksum is then part
of the final hash value computation. For this hash function, we show
how to construct second preimages and preimages with a complexity of
about 2225 compression function evaluations and a memory requirement
of about 238 bytes.

First, we show how to construct a pseudo-preimage for the compres-
sion function of GOST based on its structural properties. Second, this
pseudo-preimage attack on the compression function is extended to a
(second) preimage attack on the GOST hash function. The extension is
possible by combining a multicollision attack and a meet-in-the-middle
attack on the checksum.

Keywords: cryptanalysis, hash functions, preimage attack.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to
a fixed-length hash value h. A cryptographic hash function has to fulfill the
following security requirements:

– Collision resistance: it is practically infeasible to find two messages M and
M∗, with M∗ �= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given message M , it is practically infeasible
to find a second message M∗ �= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is practically infeasible to
find a message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 224–234, 2008.
c© International Association for Cryptologic Research 2008

A (Second) Preimage Attack on the GOST Hash Function 225

second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
If the internal structure of a particular hash function allows collisions or (second)
preimages to be found more efficiently than what could be expected based on
its hash length, then the function is considered to be broken.

Recent cryptanalytic results on hash functions mainly focus on collision at-
tacks (see for instance [2,3,14,15,16,17]) but only few results with respect to
(second) preimages have been published to date (see for instance [7,9]). In
this article, we will present a security analysis with respect to (second) preim-
age resistance for the hash function specified in the Russian national stan-
dard GOST-R 34.11-94. This standard has been developed by GUBS of Federal
Agency Government Communication and Information and All-Russian Scientific
and Research Institute of Standardization. The standard also specifies amongst
others the GOST block cipher and the GOST signature algorithm.

The GOST hash function is an iterated hash function producing a 256-bit hash
value. Since the GOST block cipher is a building block of the hash function,
it can be considered as a block-cipher-based hash function. While there have
been published several cryptanalytic results regarding the block cipher (see for
instance [1,6,8,12,13]), we are not aware of any published security analysis of
the GOST hash function besides the work of Gauravaram and Kelsey in [4].
They show that the generic attacks on hash functions based on the Damg̊ard-
Merkle design principle can be extended to hash functions with linear/modular
checksums independent of the underlying compression function.

In this article, we present an analysis of the GOST hash function. To denote
the GOST hash function, we will simply write GOST for the remainder of this
article. We exploit the internal structure of GOST to construct pseudo-preimages
for the compression function of GOST with a complexity of about 2192. Further-
more, we show how this attack on the compression function of GOST can be
extended to a (second) preimage attack on the hash function. The attack has a
complexity of about 2225 instead of 2256 what is expected from a 256-bit hash
value. Both attacks are structural attacks in the sense that they are independent
of the underlying block cipher.

The remainder of this article is structured as follows. In Section 2, we give a
short description of GOST. Section 3 presents the pseudo-preimage attack on the
compression function. The extension of the attack on the compression function
resulting in the preimage attack is discussed in Section 4. Finally, we present
conclusions in Section 5.

2 Description of GOST

GOST is an iterated hash function that processes message blocks of 256 bits and
produces a 256-bit hash value. If the message length is not a multiple of 256,
an unambiguous padding method is applied. For the description of the padding
method we refer to [10]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after
padding). The hash value h = H(M) is computed as follows (see Fig. 1):

226 F. Mendel, N. Pramstaller, and C. Rechberger

f f f f

1

256
f

2 t

256

256

Fig. 1. Structure of the GOST hash function

H0 = IV (1)
Hi = f(Hi−1, Mi) for 0 < i ≤ t (2)

Ht+1 = f(Ht, |M |) (3)
Ht+2 = f(ht+1, Σ) = h , (4)

where Σ = M1 � M2 � · · · � Mt, and � denotes addition modulo 2256. IV is a
predefined initial value and |M | represents the bit-length of the entire message
prior to padding. As can be seen in (4), GOST specifies a checksum (Σ) con-
sisting of the modular addition of all message blocks, which is then input to the
final application of the compression function. Computing this checksum is not
part of most commonly used hash functions such as MD5 and SHA-1.

The compression function f of GOST basically consist of three parts (see also
Fig. 2): the state update transformation, the key generation, and the output
transformation. In the following, we will describe these parts in more detail.

state update
transformation
(encryption)

output
transformation

Mi

Hi-1

Hi

ke
y

ge
ne

ra
tio

n

S

K

10
24

256

256

256

256

Fig. 2. The compression function of GOST

2.1 State Update Transformation

The state update transformation of GOST consists of 4 parallel instances of the
GOST block cipher, denoted by E. The intermediate hash value Hi−1 is split
into four 64-bit words h3‖h2‖h1‖h0. Each 64-bit word is used in one stream of

A (Second) Preimage Attack on the GOST Hash Function 227

the state update transformation to construct the 256-bit value S = s3‖s2‖s1‖s0

in the following way:

s0 = E(k0, h0) (5)
s1 = E(k1, h1) (6)
s2 = E(k2, h2) (7)
s3 = E(k3, h3) (8)

where E(k, p) denotes the encryption of the 64-bit plaintext p under the 256-bit
key k. We refer to the GOST standard, for a detailed description of the GOST
block cipher.

2.2 Key Generation

The key generation of GOST takes as input the intermediate hash value Hi−1

and the message block Mi to compute a 1024-bit key K. This key is split into
four 256-bit keys ki, i.e. K = k3‖ · · · ‖k0, where each key ki is used in one stream
as the key for the GOST block cipher E in the state update transformation. The
four keys k0, k1, k2, and k3 are computed in the following way:

k0 = P (Hi−1 ⊕ Mi) (9)
k1 = P (A(Hi−1) ⊕ A2(Mi)) (10)
k2 = P (A2(Hi−1) ⊕ Const⊕ A4(Mi)) (11)
k3 = P (A(A2(Hi−1) ⊕ Const) ⊕ A6(Mi)) (12)

where A and P are linear transformations and Const is a constant. Note that
A2(x) = A(A(x)). For the definition of the linear transformation A and P as well
as the value of Const, we refer to [10], since we do not need them for our analysis.

2.3 Output Transformation

The output transformation of GOST combines the initial value Hi−1, the mes-
sage block Mi, and the output of the state update transformation S to compute
the output value Hi of the compression function. It is defined as follows.

Hi = ψ61(Hi−1 ⊕ ψ(Mi ⊕ ψ12(S))) (13)

The linear transformation ψ : {0, 1}256 → {0, 1}256 is given by:

ψ(Γ) = (γ0 ⊕ γ1 ⊕ γ2 ⊕ γ3 ⊕ γ12 ⊕ γ15)‖γ15‖γ14‖ · · · ‖γ1 (14)

where Γ is split into sixteen 16-bit words, i.e. Γ = γ15‖γ14‖ · · · ‖γ0.

3 Constructing Pseudo-preimages for the Compression
Function of GOST

In this section, we present how to construct a pseudo-preimage for the com-
pression function of GOST. The attack is based on structural weaknesses of

228 F. Mendel, N. Pramstaller, and C. Rechberger

the compression function. Since the transformation ψ is linear, (13) can be
written as:

Hi = ψ61(Hi−1) ⊕ ψ62(Mi) ⊕ ψ74(S) (15)

Furthermore, ψ is invertible and hence (15) can be written as:

ψ−74(Hi)︸ ︷︷ ︸
X

= ψ−13(Hi−1)︸ ︷︷ ︸
Y

⊕ψ−12(Mi)︸ ︷︷ ︸
Z

⊕S (16)

Note that Y depends linearly on Hi−1 and Z depends linearly on Mi. As opposed
to Y and Z, S depends on both Hi−1 and Mi processed by the block cipher E.
For the following discussion, we split the 256-bit words X, Y, Z defined in (16)
into 64-bit words:

X = x3‖x2‖x1‖x0 Y = y3‖y2‖y1‖y0 Z = z3‖z2‖z1‖z0

Now, (16) can be written as:

x0 = y0 ⊕ z0 ⊕ s0 (17)
x1 = y1 ⊕ z1 ⊕ s1 (18)
x2 = y2 ⊕ z2 ⊕ s2 (19)
x3 = y3 ⊕ z3 ⊕ s3 (20)

For a given Hi, we can easily compute the value X = ψ−74(Hi). Now assume,
that for the given X = x0‖x1‖x2‖x3, we can find two pairs (H1

i−1, M
1
i) and

(H2
i−1, M

2
i), where H1

i−1 �= H2
i−1 or M1

i �= M2
i , such that both pairs produce

the value x0. Then we know that with a probability of 2−192, these two pairs
also lead to the corresponding values x1, x2, and x3. In other words, we have
constructed a pseudo-preimage for the given Hi for the compression function of
GOST with a probability of 2−192. Therefore, assuming that we can construct
2192 pairs (Hj

i−1, M
j
i), where Hj

i−1 �= Hk
i−1 or M j

i �= Mk
i , such that all produce

the value x0, then we have constructed a pseudo-preimage for the compression
function.

Based on this short description, we will show now how to construct pseudo-
preimages for the compression function of GOST. We will first derive how to
construct pairs (Hj

i−1, M
j
i), which all produce the same value x0. This boils

down to solving an underdetermined system of equations. Assume, we want to
keep the value s0 in (17) constant. Since s0 = E(k0, h0), we have to find pairs
(Hj

i−1, M
j
i) such that the values k0 and h0 are the same for each pair. We know

that h0 directly depends on Hi−1. The key k0 depends on Hi−1 ⊕Mi. Therefore,
we get the following equations:

h0 = a (21)
m0 ⊕ h0 = b0 (22)
m1 ⊕ h1 = b1 (23)
m2 ⊕ h2 = b2 (24)
m3 ⊕ h3 = b3 (25)

A (Second) Preimage Attack on the GOST Hash Function 229

where a and the bi’s are arbitrary 64-bit values. Note that k0 = P (Hi−1 ⊕Mi) =
B̄, where B̄ = P (B) and B = b3‖ · · · ‖b0, see (9). This is an underdetermined
system of equations with 5 · 64 equations in 8 · 64 variables over GF (2). Solving
this system leads to 2192 solutions for which s0 has the same value. To find pairs
(Hj

i−1, M
j
i) for which x0 has the same value, we still have to ensure that also the

term y0 ⊕ z0 in (17) has the same value for all pairs. This adds one additional
equation (64 equations over GF (2)) to our system of equations, namely

y0 ⊕ z0 = c (26)

where c is an arbitrary 64-bit value. This equation does not add any new vari-
ables, since we know that y0 depends linearly on h3‖h2‖h1‖h0 and z0 depends
linearly on m3‖m2‖m1‖m0, see (16). To summarize, fixing the value of x0 boils
down to solving an underdetermined equation system with 6 · 64 equations and
8 ·64 unknowns over GF (2). This leads to 2128 solutions hi and mi for 0 ≤ i < 4
and hence 2128 pairs (Hj

i−1, M
j
i) for which the value x0 is the same.

Now we can describe how the pseudo-preimage attack on the compression
function of GOST works. In the attack, we have to find Hi−1 and Mi such that
f(Hi−1, Mi) = Hi for a given value of Hi. The attack can be summarized as
follows.

1. Choose random values for b0, b1, b2, b3 and a. This determines k0 and h0

2. Compute s0 = E(k0, h0) and adjust c accordingly such that

x0 = y0 ⊕ z0 ⊕ s0 = c ⊕ s0

holds with X = ψ−74(Hi).
3. Solve the set of 6 · 64 linear equations over GF (2) to obtain 2128 pairs

(Hj
i−1, M

j
i) for which x0 is correct.

4. For each pair compute X and check if x3, x2 and x1 are correct. This holds
with a probability of 2−192. Thus, after testing all 2128 pairs, we will find a
correct pair with a probability of 2−192 · 2128 = 2−64. Therefore, we have to
repeat the attack about 264 times for different choices of b0, b1, b2, b3 and a
to find a pseudo-preimage for the compression function of GOST.

Hence, we can construct a pseudo-preimage for the compression function of
GOST with a complexity of about 2192 instead of 2256 as expected for a com-
pression function with an output size of 256 bits. In the next section, we will
show how this attack on the compression function can be extended to a preimage
attack on the hash function.

4 A Preimage Attack for the Hash Function

In a preimage attack, we want to find, for a given hash value h, a message M such
that H(M) = h. As we will show in the following, for GOST we can construct
preimages of h with a complexity of about 2225 evaluations of the compression
function of GOST. Furthermore, the preimage consists of 257 message blocks,
i.e. M = M1‖ · · · ‖M257. The preimage attack consists basically of four steps as
also shown in Figure 3.

230 F. Mendel, N. Pramstaller, and C. Rechberger

Fig. 3. Preimage Attack on GOST

4.1 STEP 1: Multicollisions for GOST

In [5], Joux introduced multicollisions which can be constructed for any iterated
hash function. A multicollision is a set of messages of equal length that all lead
to the same hash value. As shown by Joux, constructing a 2t multicollision,
i.e. 2t messages consisting of t message blocks which all lead to the same hash
value, can be done with a complexity of about t · 2n/2, where n is the bit-
size of the hash value. For the preimage attack on GOST, we construct a 2256

multicollision. This means, we have 2256 messages M∗ = M j1
1 ‖M j2

2 ‖ · · · ‖M j256
256

for j1, j2, . . . , j256 ∈ {1, 2} consisting of 256 blocks that all lead to the same hash
value H256. This results in a complexity of about 256 · 2128 = 2136 evaluations
of the compression function of GOST. Furthermore, the memory requirement
is about 2 · 256 message blocks, i.e. we need to store 214 bytes. With these
multicollisions, we are able to construct the needed value of Σm in STEP 4 of
the attack (where the superscript m stands for ‘multicollision’).

4.2 STEP 2: Pseudo-preimages for the Last Iteration

We construct 232 pseudo-preimages for the last iteration of GOST. For the given
h, we proceed as described in Section 3 to construct a list L that consists of 232

pairs (H258, Σ
t) (where the superscript t stands for ‘target’). Constructing the

list L has a complexity of about 232 · 2192 = 2224 evaluations of the compression
function of GOST. The memory requirements in this step come from the storage
of 232 pairs (Hi−1, Mi), i.e. we need to store 232 512-bit values or 238 bytes.

4.3 STEP 3: Preimages Including the Length Encoding

In this step, we have to find a message block M257 such that for the given H256

determined in STEP 1, and for |M | determined by our assumption that we want
to construct preimages consisting of 257 message blocks, we find a H258 that is
also contained in the list L constructed in STEP 2. Note that since we want to
construct a message that is a multiple of 256 bits, we choose M257 to be a full
message block and hence no padding is needed. We proceed as follows. Choose
an arbitrary message block M257 and compute H258 as follows:

H257 = f(H256, M257)
H258 = f(H257, |M |)

A (Second) Preimage Attack on the GOST Hash Function 231

where |M | = (256 + 1) · 256. Then we check if the resulting value H258 is also
in the list L. Since there are 232 entries in L, we will find the right M257 with
a probability of 2−256 · 232 = 2−224. Hence, after repeating this step of the
attack about 2224 times, we will find an M257 and an according H258 that is also
contained in the list L. Hence, this step of the attack requires 2225 evaluations
of the compression function. Once we have found an appropriate M257, also the
value Σm is determined: Σm = Σt � M257.

4.4 STEP 4: Constructing Σm

In STEP 1, we constructed a 2256 multicollision in the first 256 iterations of the
hash function. From this set of messages that all lead to the same H256, we now
have to find a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256 for j1, j2, . . . , j256 ∈ {1, 2}
that leads to the value of Σm = Σt � M257. This can easily done by applying
a meet-in-the-middle attack. First, we save all values for Σ1 = M j1

1 � M j2
2 �

· · ·�M j128
128 in the list L. Note that we have in total 2128 values in L. Second, we

compute Σ2 = M j129
129 �M j130

130 � · · ·�M j256
256 and check if Σm �Σ2 is in the list L.

After testing all 2128 values, we expect to find a matching entry in the list L and
hence a message M∗ = M j1

1 ‖M j2
2 ‖ · · · ‖M j256

256 that leads to Σm = Σt � M257.
This step of the attack has a complexity of 2128 and a memory requirement of
2128 · 25 = 2133 bytes. Once we have found M∗, we found a preimage for GOST
consisting of 256+1 message blocks, namely M∗‖M257.

The complexity of the preimage attack is determined by the computational
effort of STEP 2 and STEP 3, i.e. a preimage of h can be found in about 2225 +
2224 ≈ 2225 evaluations of the compression function. The memory requirements
for the preimage attack are determined by finding M∗ in STEP 4, since we need
to store 2133 bytes for the standard meet-in-the-middle attack. Due to the high
memory requirements of STEP 4, one could see this part as the bottleneck of
the attack. However, the memory requirements of STEP 4 can be significantly
reduced by applying a memory-less variant of the meet-in-the-middle attack
introduced by Quisquater and Delescaille in [11].

4.5 A Remark on Second Preimages

Note that the presented preimage attack on GOST also implies a second preim-
age attack. In this case, we are not given only the hash value h but also a message
M that results in this hash value. We can construct for any given message a sec-
ond preimage in the same way as we construct preimages. The difference is, that
the second preimage will always consist of at least 257 message blocks. Thus, we
can construct a second preimage for any message M (of arbitrary length) with
a complexity of about 2225 evaluations of the compression function of GOST.

Note that for long messages (more than 232 message blocks) the generic second
preimage attack of Gauravaram and Kelsey [4] is more efficient. For instance,
a second preimage can be found for a message consisting of about 254 message
blocks with a complexity of 2203 evaluations of the compression function of GOST
and 2142 bytes of memory.

232 F. Mendel, N. Pramstaller, and C. Rechberger

5 Conclusion

In this article, we have presented a (second) preimage attack on GOST. Both
the preimage and the second preimage attack have a complexity of about 2225

evaluations of the compression function and a memory requirement of about 238

bytes. The internal structure of the compression function allows to construct
pseudo-preimages with a complexity of about 2192. This alone would not render
the hash function insecure but would actually just constitute a certificational
weakness. Nevertheless, the fact that we can construct multicollisions for any
iterated hash function including GOST and the possibility of applying a meet-
in-the-middle attack make the preimage and second preimage attack on GOST
possible. More precisely, as opposed to most iterated hash functions, GOST ad-
ditionally computes a checksum of the single message blocks which is then input
to the final application of the compression function. For the preimage attack, we
need a certain value in this chain after 256 iterations. The multicollision attack
allows to generate a huge set of colliding messages such that we can generate
any value for this checksum. Furthermore, a memory-less variant of meet-in-the-
middle attack enables us to construct the specific value in an efficient way with
respect to both running time and memory requirements.

Acknowledgements

The authors wish to thank Praveen Gauravaram, Mario Lamberger, Vincent
Rijmen, and the anonymous referees for useful comments and discussions.

The work in this paper has been supported in part by the Austrian Science
Fund (FWF), project P19863 and by the European Commission through the
IST Programme under contract IST2002507 932 ECRYPT. The information in
this paper is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

References

1. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

2. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262–277.
Springer, Heidelberg (2006)

3. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

4. Gauravaram, P., Kelsey, J.: Cryptanalysis of a Class of Cryptographic Hash Func-
tions. Accepted at CT-RSA (2008), http://eprint.iacr.org/2007/277

5. Joux, A.: Multicollisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

http://eprint.iacr.org/2007/277

A (Second) Preimage Attack on the GOST Hash Function 233

6. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

7. Knudsen, L.R., Mathiassen, J.E.: Preimage and Collision Attacks on MD2. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255–267.
Springer, Heidelberg (2005)

8. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

9. Lamberger, M., Pramstaller, N., Rechberger, C., Rijmen, V.: Second Preimages for
SMASH. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 101–111. Springer,
Heidelberg (2006)

10. Michels, M., Naccache, D., Petersen, H.: GOST 34.10 - A brief overview of Russia’s
DSA. Computers & Security 15(8), 725–732 (1996)

11. Quisquater, J.-J., Delescaille, J.-P.: How Easy is Collision Search. New Results and
Applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408–413. Springer, Heidelberg (1990)

12. Saarinen, M.-J.O.: A chosen key attack against the secret S-boxes of GOST (1998),
http://citeseer.ist.psu.edu/saarinen98chosen.html

13. Seki, H., Kaneko, T.: Differential Cryptanalysis of Reduced Rounds of GOST. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 315–323. Springer,
Heidelberg (2001)

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

15. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

17. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the Full HAVAL with 4
and 5 Passes. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110.
Springer, Heidelberg (2006)

A A Pseudo-collision for the Compression Function

In a similar way as we have constructed a pseudo-preimage in Section 3, we
can construct a pseudo-collision for the compression function of GOST. In the
attack, we have to find two pairs (H1

i−1, M
1
i) and (H2

i−1, M
2
i), where H1

i−1 �=
H2

i−1 or M1
i �= M2

i , such that f(H1
i−1, M

1
i) = f(H2

i−1, M
2
i). The attack can be

summarized as follows.

1. Choose random values for a, b0, b1, b2, b3 and c. This determines x0.
2. Solve the set of 6 · 64 linear equations over GF (2) to obtain 2128 pairs

(Hj
i−1, M

j
i) for which x0 in (17) is equal.

3. For each pair compute X = x3‖x2‖x1‖x0 and save the the triple (X, Hj
i−1,

M j
i) in the list L. Note that x0 is equal for all entries in the list L.

http://citeseer.ist.psu.edu/saarinen98chosen.html

234 F. Mendel, N. Pramstaller, and C. Rechberger

After computing at most 296 candidates for X one expect to find a matching
entry (a collision) in L. Note that a collision is likely to exist due to the
birthday paradox. Once, we have found a matching entry for X in the list L,
we have also found a pseudo-collision for the compression function of GOST,
since Hi = ψ74(X), see (16).

Note that memory-less variants of this attack can be devised [11]. Hence, we have
a pseudo-collision for the compression function of GOST with a complexity of
about 296 instead of 2128 as expected for a compression function with an output
size of 256 bits.

Guess-and-Determine Algebraic Attack

on the Self-Shrinking Generator�

Blandine Debraize1,2 and Louis Goubin2

1 Gemalto, Meudon, France
blandine.debraize@gemalto.com

2 Versailles Saint-Quentin-en-Yvelines University, France
Louis.Goubin@prism.uvsq.fr

Abstract. The self-shrinking Generator (SSG) was proposed by Meier
and Staffelbach at Eurocrypt’94. Two similar guess-and-determine at-
tacks were independently proposed by Hell-Johansson and Zhang-Feng
in 2006, and give the best time/data tradeoff on this cipher so far. These
attacks do not depend on the Hamming weight of the feedback polyno-
mial (defining the LFSR in SSG).

In this paper we propose a new attack strategy against SSG, when the
Hamming weight is at most 5. For this case we obtain a better tradeoff
than all previously known attacks (including Hell-Johansson and Zhang-
Feng). Our main idea consists in guessing some information about the in-
ternal bitstream of the SSG, and expressing this information by a system
of polynomial equations in the still unknown key bits. From a practical
point of view, we show that using a SAT solver, such as MiniSAT, is the
best way of solving this polynomial system.

Since Meier and Staffelbach original paper, avoiding low Hamming
weight feedback polynomials has been a widely believed principle. How-
ever this rule did not materialize in previous recent attacks. With the
new attacks described in this paper, we show explicitly that this principle
remains true.

Keywords: stream cipher, guess-and-determine attacks, multivariate
quadratic equations, SAT solver, self-shrinking generator, algebraic
cryptanalysis.

1 Introduction

The self-shrinking generator (SSG) was proposed by W. Meier and O. Staffel-
bach at Eurocrypt’94 in [12]. It is a variant of the original Shrinking Generator
proposed by Coppersmith, Krawczyk and Mansour in [4,10]. In their paper,
they proposed an attack of time complexity O(20.75n), and O(20.69n) when the
Hamming weight of the feedback polynomial is 3. In [13], Mihaljević proposed
a cryptanalysis with minimal time complexity O(20.5n), with data complexity
O(n20.5n). The amount of keystream is not realistic for large values of the key
� This work has been partially supported by the French Agence Nationale de la

Recherche (ANR) under the Odyssee project.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 235–252, 2008.
c© International Association for Cryptologic Research 2008

236 B. Debraize and L. Goubin

size n. An attack on SSG requiring very few keystream data (2.41n) is the BBD
cryptanalysis proposed in [9] with time complexity nO(1)20.656n and equivalent
memory complexity. The best tradeoff between time, memory and data complex-
ity today is the Hell and Johansson guess-and-determine cryptanalysis of [8]. A
very similar attack has been independently proposed by Zhang and Feng in [14].
For instance the time complexity of this latter attack varies from O(20.5n) to
O(n320.666n) and data complexity ranges from O(n20.5n) to O(n) accordingly.
For example with a reasonable amount of keystream of O(20.161n), it is possible
with this attack to recover the key in time O(n320.556n). The complexity of this
attack is independent from the Hamming weight of the feedback polynomial.

In this paper we show that a low Hamming weight for the feedback polyno-
mial defining the LFSR makes the self-shrinking generator even more vulnera-
ble against guess-and-determine attacks. To show this we propose a new type of
guess-and-determine attack. We guess some information and then write a system
of polynomial equations over GF(2) that we solve by using the SAT solver algo-
rithm MiniSAT. We describe a large family of attacks. Thus as the Hell-Johansson
and Zhang-Feng attacks, we can handle with different conditions of attack and
data requirements. Our simulations show that for small Hamming weight feed-
back polynomial, the complexity of our time/data tradeoff is noticeably better.

In Section 2, we briefly describe SAT solvers, the design of the SSG and the
principle of our attack. In Section 3 we analyse previous work on this cipher.
In Section 4, we describe a special case of our new attack, and in Section 5, we
generalize the principle to a family of attacks. Finally in Section 6, we look for
the best time/data tradeoff cryptanalysis.

2 Preliminaries

2.1 SAT Solvers

In cryptography the use of SAT solvers to solve polynomial systems over GF(2)
has been recently introduced by Bard, Courtois and Jefferson in [1,2]. The
method consists of converting the multivariate system into a conjunctive normal
form satisfiability (CNF-SAT) problem, and then applying a SAT solver algo-
rithm. It has been used in [3] to cryptanalyse the block cipher Keeloq and in
[11] to analyse the reduced version Bivium of the stream cipher Trivium.

The other well-known methods to solve algebraic systems of equations over
GF(2) are XL ([5]) and Gröbner bases algorithms like F4 and F5 ([6,7]). Both
are linear algebra based methods, their drawback is that they need to store big
matrices during the computations and then require a huge amount of memory.
Moreover it is unclear how much the sparsity of the initial system helps to reduce
the running time of the solving.

SAT solvers behave in a completely different way. Most of them try to find more
directly a solution to the system by recursively choosing a variable, first trying to
assign it a value and then the other. The important parameters for SAT solvers
are the number of clauses, the total length of all the clauses, and the number of
variables.

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 237

In this paper we use the conversion from algebraic normal form to conjunctive
normal form method described in [2], and the SAT solver MiniSAT also proposed
in [2]. This conversion method transforms linear equations in long CNF expres-
sions made of long clauses. That is why the method works much better if the
linear expressions are short, and, more generally, if the systems are sparse.

2.2 Trade-Off between Guessing and Exploiting Information

In this Section, we specifically consider the case of stream ciphers based on
one Linear Feedback Shift Register (LFSR), since the self-shrinking generator
belongs to this category. However, the notions defined below can be extended to
stream ciphers based on several LFSRs.

Let us suppose the state of the LFSR has length n. At each clock t, the LFSR
outputs a bit st. The bits s0, · · · , sn−1 are the bits of the initial state of the
LFSR. Here we consider that the initial state of the LFSR is the n-bit key of
the cipher.

We call internal sequence at clock t the sequence of bits St = s0s1...st. At
each clock t, the compression function outputs one bit or an empty word C(St).
The compression ratio η is the average number of output bits generated by one
bit of random internal sequence. For the SSG the compression ratio is η = 1

4 .

Definition 1. The information rate (per bit), which a keystream reveals about
the first m bits of the underlying internal bitstream, is denoted by α(m), and
defined by α(m) = 1

mI(Z(m), Y), where Z(m) denotes a random z ∈ {0, 1}m and
Y a random keystream.

Then α(m) can be computed as:

α(m) =
1
m

I(Z(m), Y) =
1
m

(
H(Z(m)) − H(Z(m)|Y)

)
= 1 − 1

m
H(Z(m)|Y)

We prove in appendix A that the information rate is constant for the self-
shrinking generator and that its value is 1

4 .
For a stream cipher based on one LFSR with a constant information rate and

a constant compression ratio, there is always a better attack than exhaustive
search, by exploiting the leakage of information given by the keystream. For m
keystream bits, this leakage is an amount of αm/η bits of information. The
entropy of the guess to recover the m/η first internal sequence bits is then
H(Z(m)|Y) = (1 − α)m

η . Recovering the n key bits requires then a complexity
O(2(1−α)n). This attack has been described in [12]. One way to improve this
attack is to decrease the amount of information we guess. In this case we cannot
recover directly all the consecutive bits of the initial state of the LFSR, but only
part of them. If we guess an amount of information h on the internal sequence
per keystream bit, what we obtain is an amount of h + α/η per keystream bit.
The ratio “guessed information”/“total information known per keystream bit”
is then

h

h + α
η

238 B. Debraize and L. Goubin

where α
η is a constant (here equal to 1). Therefore the smaller h gets, the smaller

this ratio becomes. This means that when h decreases, the amount of “guessed
information” staying the same, the obtained “total information” increases.

Decreasing the amount of information on the internal sequence we guess per
keystream bit seems then to be a good strategy. It is the adopted strategy
throughout this paper. The greatest issue is the following: once we have obtained
enough information, how to exploit it to recover the key. This will be discussed
in detail in this paper for the case of the self-shrinking generator.

2.3 Description of the Self-Shrinking Generator

The self-shrinking generator consists of one LFSR, and a shrinking component
that uses a compression function C. Let K = (K0, · · · , Kn−1) be a secret key,
and let s0 = K be the initial state of the LFSR. At each clock t = 0, 1, 2, · · · ,
the new state st is computed as st = L(st−1), with L being the multivariate
linear transformation corresponding to the connection polynomial of the LFSR.
Therefore st = Lt(K0, · · · , Kn−1), and every bit st

i of the state at time t can be
written as a known linear combination of the key bits K0, · · · , Kn−1.

Now we define the compression function. Let f be a function defined as follows:

f : {0, 1}2 −→ {0, 1, ε}

such that f(a, b) = b if a = 1, and f(a, b) = ε (the empty word) if a = 0. This
compression function can be extended to compress sequences of bits of arbitrary
length as follows. Let x0 x1 · · ·xr−1 be a bitstream of length r generated by the
LFSR. The output keystream of the SSG generator will be C(x0 x1 · · ·xr−1),
which is defined as f(x0, x1) f(x2, x3) · · · f(xr−2, xr−1) with the computation
being done in the free monoid {0, 1}∗ (which means that we simply concatenate
these strings of bits). The resulting compressed sequence C(x0 x1 · · ·xr−1) has
length at most � r

2�. This length is hard to predict and depends on the number
of pairs of consecutive bits such that f(xi, xi+1) = ε (i.e. xi = 0 and no bit is
output).

3 Previous Work and Known Attacks

3.1 The Meier and Staffelbach Attack

The attack described in [12] is the attack we refereed to in Section 2.2. It consists
of guessing all the consecutive bits of an internal sequence s of length n that
are not revealed by the keystream. As the compression ratio is 1

4 , the amount of
unknown bits is on average 3n

4 . As announced in Section 2.2, the complexity of
this attack is 2

3
4 n.

Two completely different attacks were proposed in 2001 [15] of complexity
O(20.694n), and in 2002 [9] of complexity nO(1)20.656n, for which we will not go
into detail in this paper.

There are two ways of improving Meier and Staffelbach attack. The first one
consists of reducing the amount of information we guess, as we describe in

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 239

Section 3.2. The second one consists in looking for the best case through the
keystream, as we briefly describe in Section 3.3.

3.2 Improvement

It is easy to improve this attack by decreasing the amount of information we
guess. The known method we explain here can be found in [8]. Each bit xi of
the pseudo-random sequence corresponds to two consecutive bits 1 and xi in
the internal sequence s. Then it is possible, instead of guessing the values of all
the bits of the internal sequence, to guess only the values of the subsequence s′

made of the even bits of s (x0, x2, · · · , x2n, · · ·). It is equivalent to guessing the
position of the pairs (1, xi) in s. We show now that this decreases the amount
of information we guess per bit. Let us suppose that x0 = 1. The probability for
the number of “0” to be k before the next “1” in s′ is 1

2k+1 . Consequently the
entropy for this information is

H(L) =
+∞∑
j=0

j + 1
2j+1

= 2

Let us suppose we get a sequence of m bits of keystream. The entropy for guessing
the values of the corresponding internal sequence s′ (bits in even positions) is
then 2m. Therefore we can guess all these values with an average about 22m

guesses. We have seen that the i-th bit of the keystream is equal to the odd bit
following the i-th even “1” of s. Once we get the positions of the “1”s in the
internal bitstream, we know the values and positions of 2m + m = 3m bits on
average. Therefore m must be about n

3 , assuming there is no redundancy in the
information.

How to exploit this information? Here it is very simple, as each internal se-
quence bit equals a linear expression of the key bits. We have then obtained a
system of linear equations. The non-redundancy of the information obtained by
our guess is expressed by the consistency of this linear system.

We observe that in this attack the ratio “information guessed”/“information
obtained” is 2

3 .

3.3 Mihaljević Attack

This attack is described in [13]. Let us consider again the subsequence s′ of the
internal bitstream made of the even bits. When we know that n

2 consecutive bits
of s′ are “1”s, we know n consecutive bits of s. The attack consists in looking
for this case through the keystream. To each keystream subsequence of n

2 bits
corresponds an n-bit internal bitstream sequence. If by running the stream cipher
on this sequence we do not obtain right values for the keystream, we try on the
following n

2 bits sequence of keystream, etc.
Of course the drawback of this attack is the huge amount of necessary keystream

bits: about n
2 · 2

n
2 . This is why [13] describes a family of attacks with time com-

plexity varying from O(2
n
2) (this attack) to O(2

3n
4) (the attack of Section 3.1),

and the required keystream length ranging from 2
n
2 to 2

n
4 accordingly.

240 B. Debraize and L. Goubin

The other tradeoff between the attack allowing the best complexity estimation
and the attack described at Section 3.2 is studied in [14] and [8]. The attack strat-
egy is the same in both papers, but in [8], an improvement is proposed when the
available keystream is very short (less than 20.05n). As our final attack will only
focus on larger keystream amounts, we will only take into account the common
part of [14] and [8] in this paper. We will briefly describe it in Section 6.

4 Principle of Our Attack

Our aim is to generalize the method described at Section 3.2. In this attack we
guess some bit values and solve the system of linear equations by a Gaussian
elimination when the system of linear equations has rank n.

To adopt a more general point of view on this attack, we can say that we
exploit the information we have obtained when its amount is sufficient, i.e. when
we have obtained n bits of information on the key (recall that the key is the
initial state of the LFSR). In Section 3.2 we exploit this information by a linear
algebra method. Each linear equation in the key bits represents one bit of infor-
mation. Here the non-redundancy of the information obtained is guaranteed by
the independence of the linear equations.

In the following, we keep this point of view. We guess some information on
the internal sequence and directly compute the total amount of information we
have obtained. The second step consists then in exploiting this information by
completely describing it by a system of polynomial equations and solving this
system with algebraic techniques.

4.1 Guessing Information

In the attack of Section 3.1, the amount of information that is guessed per
keystream bit is 3. In the attack of Section 3.2, it is 2. What we want to do
here is to further decrease this amount of guessed information per bit. Instead of
guessing the positions of the “1”s of the subsequence s′ made of the even bits of
the internal sequence, such as in the attack of Section 3.2, we guess the positions
of one such bit out of two.

Let us consider a sequence of keystream bits xi, xi+1, · · · , xi+k, · · · . Each of
these bits xj correspond to a pair (1, xj) in the internal bitstream s. Then we
guess the positions of the corresponding pairs for xi, xi+2, xi+4, · · · , xi+2k′ , · · · .
Thus for example the precise position of the pair corresponding to xi+1 is un-
known but ranges between the position of the pair corresponding to xi and the
position of the pair corresponding to xi+2.

Let us define for this attack a “block” of internal sequence bits: each block
contains two pairs beginning by 1 and the pairs beginning by “0” until the next
“1” in the sequence. This means that each block begins by a “1”. For example,
if the internal sequence is :

01 10 00 01 10 00 10 00 · · · ,

the first block we find for this sequence is 10 00 01 10 00.

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 241

To know the position of one 1 out of two in s′, it is enough to guess the size
of consecutive blocks of s, i.e. to guess the number of pairs beginning by 0 in
each block. The probability to have k pairs beginning by 0 in a block is the
number of ways of distributing k bits among 2 places multiplied by 1

2k+2 . For
any q, the number of possibilities to distribute k bits among q places is

(
q−1+k

k

)
.

The probability is then here k+1
2k+2 . The entropy of the information guessed by

keystream bit is:

H = −1
2

∑
k≥0

(
k+1

k

)
2k+2

log(

(
k+1

k

)
2k+2

) ≈ 1.356

This information describes the fact that we know that the first even bit of the
block is “1”, and that the other even bits are all “0” but one. The total amount
of information we know on this block comes from this information and from the
fact that we know the values of the keystream bits corresponding to the even
“1”s of the block, i.e. two bits of information. The average information we know
about one block is then 2× 1.356+ 2, and the known information per keystream
bit is 1.356 + 1 = 2.356. Thus for m bits of keystream, we get 2.356m bits of
information if there is no redundancy. Then m must be approximately n

2.356 and
the average complexity for the guessing part of the attack is 2

1.356n
2.356 = 20.575n.

4.2 Exploiting the information

The next stage of the attack consists in exploiting the information we have
obtained. This information cannot be expressed only by linear GF(2) relations
any more. But as we will see now, it is possible to describe it by quadratic
equations. To ease the understanding, we call “subblock” all the pairs of a block
but the first one. What we have to describe for each block is:

1. The fact that the first and second bits of the block are known. This can still
be described by linear relationships.

2. The fact that only one pair among the pairs of the subblock begins by “1”.
This information can be divided into two parts:
– There is at most one “1” among the even bits of the subblock. This

means that for each even bit of the subblock xi, if xj is another even bit
of the subblock, we have:

(xi = 1) ⇒ (xj = 0)

This is equivalent to : xixj = 0. Then this part of the information can
be described by

(
k
2

)
quadratic equations in the internal sequence bits.

– There is at least one “1” among the even bits ot the subblock. This is
described by a linear equation:

k+1⊕
j=1

xij = 1

where the xij are all the even bits of the subblock.

242 B. Debraize and L. Goubin

3. The fact that the bit of the pair beginning by “1” in the subblock is known.
This is described by the fact that for each even bit xj of the subblock,

(xj = 1) ⇒ (xj+1 = e)

where e is the corresponding keystream bit. It can be translated by k + 1
quadratic boolean equations:

xj(xj+1 + e) = 0

As the composition of linear functions with quadratic equations is still quadratic,
those equations can be written as quadratic equations in the key bits. We have
then obtained a system of quadratic equations over the field GF(2), completely
describing the key.

When the blocks are short, it is possible to find some other equations de-
scribing the information. It is interesting to have the most overdefined possible
system of equations if programs like Gröbner basis algorithm or XL are used
to solve the system. But in this paper we use SAT solver algorithms for which
working on very overdefined systems is not the best strategy. That is why we do
not add these additional equations in our systems.

We give here the results of our computations on these systems of equations
for different sizes of LFSR state n and three different Hamming weights hw for
the feedback polynomial of the LFSR:

Table 1. MiniSAT computations on quadratic systems of equations

hw = 5 hw = 6 hw = 7

n = 128 0.02s 0.03s 0.05s

n = 256 0.025s 0.046s 62s

n = 512 0.127s > 24h > 24h

n = 1024 122.25s > 24h > 24h

5 Generalisation of the Attack

5.1 Guessing Information

This method can be generalized. In Section 4, we have chosen to guess the
position of one even “1” in the internal sequence out of q = 2. Now we can
choose to guess the position of one 1 out of q bits, with q ≥ 2. This is again
equivalent to guessing the length of the “blocks” made of the consecutive bits of
the internal sequence containing q pairs of bits beginning by “1” and the other
pairs beginning by “0” until the next even “1”.

Each such block correspond to q keystream bits. The average entropy per
keystream bit to guess the length of consecutive blocks is then:

H(q) = −1
q

∑
k≥1

(
q−1+k

k

)
2q+k

log(

(
q−1+k

k

)
2q+k

)

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 243

For example, when q = 3, H(q) = 1.0385.
As explained in Section 2.2, the total amount of information we obtain per

keystream bit is 1+H(q). If there is no redundancy, it is then necessary to guess
the length of the blocks corresponding to n

1+H(q) keystream bits and the average

complexity of the guess is 2
H(q)

1+H(q) n.

Table 2. Average complexity of the guess for various values of q

q = 2 q = 3 q = 4 q = 5

Complexity 20.575n 20.509n 20.458n 20.417n

5.2 Solving the Polynomial System - Computational Results

As in Section 4.2, we need to completely describe the amount of information
we have, by means of polynomial GF(2) equations. It is possible to describe it
with equations of degree at most q, in a way very similar to the one proposed at
Section 4.2. We give details in Appendix B.

Moreover, it is possible to show that for small blocks, the degree of the equa-
tions decreases. If Gröbner bases are used, it is well known that the smaller the
degree is, the faster the attack is also. With SAT solvers, even if this correlation
is not so clear, our computations showed that the complexity gets smaller when
the degree of polynomials gets smaller. This tends to show that the shorter the
blocks are, the faster the complexity of solving the system is. We will exploit
this at Section 6.

We have written the systems of equations for q = 3 and q = 4 for values of
n ranging from 128 to 512. We fixed the value of the Hamming weight of the
feedback polynomial to 5 as greater values seem to lead to much slower attacks.
We then applied our SAT solver algorithm on these systems. We give the results
of the computations in table 3.

Table 3. MiniSAT computations on quadratic systems of equations for q=3 and q=4

n = 128 n = 256 n = 512

q = 3 2.28s 80s 2716s

q = 4 14s 1728s > 24h

6 Improvement of the General Attack

In the previous Sections, we have seen that the basic attack of [12] can be extended
in two directions. The first one (first proposed by Mihaljević in [13]) looks for a
tradeoff between time complexity and required keystream length. The second one,
especially studied in this paper, looks for a tradeoff between the cost of guessing

244 B. Debraize and L. Goubin

information and the cost of exploiting this information. The best attack consists
then of choosing the best tradeoff in both directions at the same time.

In [14] and [8], an attack is proposed that is already a tradeoff between a
similar attack as the one described in Section 3.2 and the best time complexity
attack proposed in [13], when the length of keystream is maximal. The authors
guess all the even bits of a sequence of the internal bitstream of length l, assuming
that the rate of “1”s in these even bits is at least α (with a fixed α > 1

2).
They choose the value l, depending on α, in order to have enough information
to recover the key by a Gaussian elimination once they have guessed all the
even bits of the sequence. In order to find such a sequence, they go through
the keystream. The time and data complexity completely depend on the value
chosen for α. For instance, the authors of [14] Zhang and Feng obtain a time
complexity of O(n32

n
1+α).

In Section 5, we denoted by q the number of even “1”s in a block, and con-
sidered guessing the position of one even “1” out of q in the internal sequence.
In this model, Hell-Johansson and Zhang-Feng attacks correspond to q = 1. Our
aim in this Section is to find the best tradeoff for q > 1.

In order to achieve this, we choose to limit the length of the blocks to a value

k′ = 2k, where k ≥ q. The probability for a block to have length 2k is (k−1
q−1)
2k ,

where
(
k−1
q−1

)
is the number of possibilities for the even bits, assuming the first

even bit is “1” and there are q − 1 other “1”s among the even bits of the block.
Thus the probability for a block to have length at most 2k is:

pq,k =
k∑

j=q

(
j−1
q−1

)
2j

If the number of blocks for which we guess the position is l, then the probability
for all the blocks to have length at most 2k is (pq,k)l.

To compute this value l, we need to know the amount of information we
have obtained when all the lengths of the blocks are fixed. The entropy leakage
provided by the keystream gives q bits of information per block. Then if we
call h the amount of information we guess for one block, the total amount of
information we then know is h + q.

Let us compute hq,k, that is h for a block of length 2k. This information only
concerns the even bits of the block. The number of possibilities for the even bits
is
(
k−1
q−1

)
, i.e. the number of manners to distribute the q − 1 even 1s among the

k − 1 even bits of the subblock made of all the pairs of the block but the first
one. This leads to an entropy of log(

(
k−1
q−1

)
). This quantity is the information we

still need to guess to have the full knowledge about the even bits of the block,
that is k bits of information. Thus the amount we already know (i.e. what we
have guessed on the even bits) is

hq,k = k − log(
(

k − 1
q − 1

)
)

Then for each q we need to find hq,min, i.e. the minimum of hq,k over all k. We
found that for q = 2, the minimum of the function holds when k = 2, for q = 3

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 245

when k = 4 and for q = 4 when k = 6. We give the values of these minima in
table 4.

Table 4. Minimal information known for the even bits of one block

q = 2 q = 3 q = 4 q = 5

hq,min 2 2.415 2.678 2.87

The minimal information we know about one block is hq,min + q. We need
an information of n bits to recover the key. We still suppose that there is no
redundancy in this information. We now can compute the number of blocks l for
which we guess the positions, as we know that

l(hq,min + q) = n

and we obtain l = n
hq,min+q .

Our attack is described in algorithm 6.1.

Algorithm 6.1. Our Attack
INPUT : q,k, and a sequence of keystream of length N
OUTPUT: values of the n key bits
PROCESSING:
compute l depending on q and k
For all the kl possibilities for the length of the l blocks:

For j = 0 to N − kl:
� Write the system of equations of degree q corresponding to the

keystream indexed from xj

� Solve the system of equations by running MiniSAT on it.
� Run the SSG forward on the candidate(s) key(s).
� If the candidate key is the right one, output it and break the loop.

Now let us compute the amount of keystream necessary for this attack. We
have computed the probability that all the l blocks have length at most 2k, that
is (pq,k)l. Thus the keystream length N should satisfy(N − kl) · (pq,k)l ≥ 1 if we
want to find at least one match pair between the real internal sequence and our
guess. Then we must have:

N ≥ 1
(pq,k)l

At each step we try (k − q + 1)l possibilities for the length of the blocks. As the
worst case for this attack is a number of steps N , the worst case complexity is:⎛⎝ k − q + 1∑k

j=q

(j−1
q−1)
2j

⎞⎠
n

q+h

where h stands for hq,min.

246 B. Debraize and L. Goubin

This complexity is true if the information obtained is not redundant. We made
simulations by choosing a number of blocks of exactly � 1

(pq,k)l � and we always
obtained the right key. If the key space given by the SAT solver is larger, we just
perform an exhaustive search at small scale.

Now we give the results of our computations. The details of the computations
are in appendix C. In this Section, instead of choosing random keys for our
simulations, we chose keys such that the blocks in the initial state of the LFSR
have length at most k. To achieve this, when generating randomly each block
inside the initial state, we test (once it has reached length k) whether the number
of “1”s among the even bits is at least q. If not, we start again from the beginning
of the block. When the number of “1”s is as expected, we do it for the following
block, until we find a compliant key.

We try many such compliant keys in order to limit also the length of the other
blocks in the sequence but when k is very small (k = q+1 or k = q+2) we could
not achieve the real conditions of the attack due to our limited computational
power. Of course the running time would be shorter in the exact case described
in the attack as, as we can see it in table 10 and 11 (appendix C), the shorter
the blocks are, the faster MiniSAT is for these system of equations.

In table 5 and table 6, we give the total complexities of our attacks, for
different block lengths. The Hamming weight of the feedback polynomials are 5
for both LFSR state length 256 and 512. The memory requirements during the
MiniSAT computations are never more than 100Mb for this systems.

Finally Table 7 provides a performance comparison between Mihaljević at-
tack, Hell-Johansson attack and our new method, for various sizes of n and of

Table 5. Total complexity and data complexity for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2146.2 264 2154.2 234.6 2170.9 219.2 2181.4 210.7

q = 3 2151.4 279.3 2147.2 247.3 2150 228.7 2157.2 217.5

q = 4 2153.6 292.6 2146.3 259 2147.2 238.3 2151.5 225

Table 6. Total time complexity and data complexity for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2279.2 2128 2295.7 269.2 2318.8 238.3 2343.8 221.4

q = 3 2277.4 2158.7 2269.6 294.6 2279.3 257.5 2293.5 235

q = 4 2284.9 2185 2278.1 2118.1 2268.8 276.7 > 2293 249.9

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 247

Table 7. Time complexity comparisons between Mihaljević, Hell et al. and our attack
for the same data complexities

n = 256 n = 512

data 265.3 249.2 239.1 217.5 2128 294.6 257.5 238.6

Mihaljević attack 2153 2160 2165.5 2182 2297 2311 2331 2335

Hell et al attack 2160.2 2164.8 2167.8 2176.4 2300 2308.3 2320 2328

Our attack 2146.2 2147.2 2147.2 2157.2 2268.8 2268.8 2279.3 2293.5

the amount of available keystream. For our attack, the results are bounded by our
computational power and would have probably been better if we could have per-
formed all the computations for q = 4 and n = 512. Anyway the obtained (heuris-
tical) complexities show that for this feedback polynomial Hamming weight, our
attack gives the best time/data tradeoff against the self-shrinking generator.

7 Conclusion

In [8] and [14], where the best known time/data tradeoffs are proposed on the
self-shrinking generator, the authors show that their attack is independent from
the value of the Hamming weight of the feedback polynomial defining the LFSR.
However, the new algebraic guess-and-determine attack described here suggests
that the security of SSG does depend on this Hamming weight. This new attack
is very flexible concerning keystream requirement. As we use SAT solvers to solve
our algebraic systems, it is not possible to compute a precise time complexity
for our attack. However for small Hamming weight values (i.e. at most 5), this
attack has a noticeably better complexity than the attacks of [8] and [14] and is
even the best heuristical time/data tradeoff known so far on the self-shrinking
generator.

Since Meier and Staffelbach original paper, avoiding low Hamming weight
feedback polynomials has been a widely believed principle. However this rule
did not materialize in previous recent attacks. With the new attacks described
in this paper, we show explicitly that this principle remains true.

References

1. Bard, G.: Algorithms for Solving Linear and Polynomial Systems of Equations over
Finite Fields, with Applications to Cryptanalysis. Ph.D. Dissertation, University
of Maryland (2007)

2. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient Methods for Conversion and
Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2)
via SAT-Solvers (2007), http://eprint.iacr.org/,/024

3. Bard, G.V., Courtois, N.T.: Algebraic and Slide Attacks on KeeLoq. In: Prepro-
ceedings of FSE 2008, pp. 89-104 (2008)

http://eprint.iacr.org/, /024

248 B. Debraize and L. Goubin

4. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg
(1994)

5. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

6. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139, 61–88 (1999),
www.elsevier.com/locate/jpaa

7. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Workshop on Applications of Commutative Algebra,
Catania, Italy. ACM Press, New York (2002)

8. Hell, M., Johansson, T.: Two New Attacks on the Self-Shrinking Generator. IEEE
Transactions on Information Theory 52(8), 3837–3843 (2006)

9. Krause, M.: BBD-based Cryptanalysis of Keystream Generators. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg
(2002)

10. Krawczyk, H.: Practical Aspects of the Shrinking Generator. In: Anderson, R. (ed.)
FSE 1993. LNCS, vol. 809, pp. 45–46. Springer, Heidelberg (1994)

11. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniS, AT (2007),
http://eprint.iacr.org/2007/040

12. Meier, W., Staffelbach, O.: The Self-Shrinking Generator. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)

13. Mihaljević, M.J.: A faster cryptanalysis of the self-shrinking generator. In:
Pieprzyk, J.P., Seberry, J. (eds.) ACISP 1996. LNCS, vol. 1172, pp. 182–189.
Springer, Heidelberg (1996)

14. Zhang, B., Feng, D.: New Guess-and-determine Attack on the Self-Shrinking Gen-
erator. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 54–68.
Springer, Heidelberg (2006)

15. Zenner, E., Krause, M., Lucks, S.: Improved Cryptanalysis of the Self-Shrinking
Generator. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp.
21–35. Springer, Heidelberg (2001)

A Computation of the Information Rate for the
Self-Shrinking Generator

We have seen in Section 2.2 that the information rate that the keystream y
reveals on the first m bits of internal sequence z is defined as

α(m) = 1 − 1
m

H(Z(m)|Y)

We have:

H(Z(m)|Y) =
∑
y,z

Proba(Z(m) = z, Y = y) log(Proba(Z(m) = z|Y = y))

=
∑

y

Proba(Y = y)
∑

z

Proba(Z(m) = z|Y = y) ×

log(Proba(Z(m) = z|Y = y))

www.elsevier.com/locate/jpaa
http://eprint.iacr.org/2007/040

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 249

The self-shrinking generator has the property that for m ≥ 1 the probability that
C(z) is prefix for y for a randomly chosen and uniformly distributed z ∈ {0, 1}m

is the same for all keystream y. This implies that∑
z

Proba(Z(m) = z|Y = y) log(Proba(Z(m) = z|Y = y))

is the same for all y and

H(Z(m)|Y) =
∑

z

Proba(Z(m) = z|Y = y) log(Proba(Z(m) = z|Y = y))

Let us call Z0 the random variable of the first pair of bits of the internal sequence,
Z1 the second pair, etc. We have:

H(Z0|Y) =
∑
z0

Proba(Z0 = z0|Y = y) log(Proba(Z0 = z0|Y = y)) =
3
2

Let us now show by recursion that H(Z(2k)|Y) = (3
2)k.

H(Z(2k)|Y) =
∑

zk,··· ,z0

Proba(Zk = zk, · · · , Z0 = z0|Y = y) ×

log(Proba(Zk = zk, · · · , Z0 = z0|Y = y))

And as

Proba(Zk = zk, · · · , Z0 = z0|Y = y) =
Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) ×

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)

we have:

H(Z(2k)|Y) =
∑

zk−1,··· ,z0

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y) ×

∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) ×

log(Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y))

+
∑

zk−1,··· ,z0

Proba(Zk−1 = zk−1, · · · , Z0 = z0|Y = y) ×

log(Proba(Zk−1 = zk−1, · · · , Z0 = z0|Y = y)) ×∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y).

We know that∑
zk

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) = 1

250 B. Debraize and L. Goubin

and by recursion∑
zk−1,··· ,z0

Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y) ×

log(Proba(Zk−1 = zk−1 · · · , Z0 = z0|Y = y)) =
3
2
(k − 1).

Once the first k − 1 internal sequence pairs are fixed, let r be the number of
1s among the first bits of the k − 1 pairs. Let us call y′ the keystream sequence
where the first r bits of y have been removed. Then the pair Zk can be seen as
the first pair of the internal sequence where C(Zk) is prefix for y′. Thus:

Proba(Zk = zk|Zk−1 = zk−1 · · · , Z0 = z0, Y = y) = Proba(Zk = zk|Y = y′)

and the first part of H(Z(2k)|Y) is∑
zk

Proba(Zk = zk|Y = y′) log(Proba(Zk = zk|Y = y′)) =
3
2
.

We have obtained H(Z(2k)|Y) = 3
2k and α(2k) = 1 − 3

2 · 1
2k · k = 1

4 .

B Equations for the General Case

This information can still be divided into three parts:

1. The first two bits of the block are known, this can be described by two linear
equations.

2. The fact that the even bits of the subblock made of all the pairs of the block
but the first one are all “0” but q − 1 of them is described by :
–
(
k−1

q

)
degree q polynomials of the form x2i0x2i1 · · · x2iq−1 = 0 where

2k is the length of the block and the x2ij are even bits of the subblock.
This describes the fact that there is at most one “1” among the even
bits of the subblock.

– One equation of degree q− 1:
∑

xi0xi1 · · ·xiq−2 = 1, where the xi0xi1 · · ·
xiq−2 are all the monomials of degree q−1, describing the fact that there
are at least q − 1 “1”s among the even bits of the subblock.

3. The fact that the first keystream bit corresponding to this subblock follows
the first even “1” of the subblock is described by

(
k−1
q−1

)
degree q equations

of the form x2i0x2i1 · · ·x2iq−2 (x2i0+1 + e0) = 0, the fact that the sec-
ond keystream bit corresponding to this subblock follows the second even
one of the subblock is described by

(
k−1
q−1

)
degree q equations of the form

x2i0x2i1 · · · x2iq−2 (x2i1+1 + e1) = 0, etc, where the e0, e1 · · · , eq−2 are the
keystream bits corresponding to the subblock.

The known information on one block of length 2k is completely defined by the
equations given above.

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator 251

C Simulations Details

In tables 8 and 9, we give the complexity of the guess and the data complexity
for our attack when the size of the LFSR is 256 or 512.

In tables 10 and 11, we give the time complexity of the MiniSAT solving part
of the attack. We first give the running time in seconds, and then we give an esti-
mation of the complexity of the form 2a for each case to be able to compare our
attack with the Hell and Johansson attack of [8]. This means that 2aE is the run-
ning time of the solving, where En3 would be the running time of the Gaussian
elimination in the Hell and Johansson attack on the same machine. Concerning
the Mihaljević attack, we just consider that testing the found key (by running the
generator on it), is about n operations, where n is the size of the key.

We measured E ≈ 2−40 hours. With this convention, a running time of one
hour corresponds to a complexity of 240.

Table 8. Complexity of the guess and data complexity for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2128 264 2136 234.6 2147.2 219.2 2159.3 210.7

q = 3 2126.6 279.3 2122.2 247.3 2123.3 228.7 2127.3 217.5

q = 4 2128 292.6 2119.8 259 2115 238.3 2114 225

Table 9. Complexity of the guess and data complexity for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

time data time data time data time data

q = 2 2256 2128 2272 269.2 2294.3 238.3 2318.6 221.4

q = 3 2253.2 2158.7 2244.4 294.6 2246.6 257.5 2254.6 235

q = 4 2256 2185 2239.6 2118.1 2230 276.7 2228 249.9

Table 10. MiniSAT Computations for n = 256

k = q + 1 k = q + 2 k = q + 3 k = q + 4

q = 2 < 0.001s 218.2 < 0.001s 218.2 0.046s 223.7 0.015s 222.1

q = 3 0.093s 224.8 0.109s 225 0.359s 226.7 3.39s 229.9

q = 4 0.171s 225.6 0.311 226.5 15.6 232.2 616s 237.5

252 B. Debraize and L. Goubin

Table 11. MiniSAT Computations for n = 512

k = q + 1 k = q + 2 k = q + 3 k = q + 4

q = 2 0.031s 222.2 0.046s 223.7 0.078s 224.5 0.125s 225.2

q = 3 0.06s 229.2 0.17s 230.6 22.3s 237.7 1641s 238.9

q = 4 1.171s 228.9 1308.5s 238.5 1613 238.8 > 24h > 245

New Form of Permutation Bias and Secret Key

Leakage in Keystream Bytes of RC4

Subhamoy Maitra1 and Goutam Paul2

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India
subho@isical.ac.in

2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India

goutam paul@cse.jdvu.ac.in

Abstract. Consider the permutation S in RC4. Roos pointed out in
1995 that after the Key Scheduling Algorithm (KSA) of RC4, each of
the initial bytes of the permutation, i.e., S[y] for small values of y, is
biased towards some linear combination of the secret key bytes. In this
paper, for the first time we show that the bias can be observed in S[S[y]]
too. Based on this new form of permutation bias after the KSA and
other related results, a complete framework is presented to show that
many keystream output bytes of RC4 are significantly biased towards
several linear combinations of the secret key bytes. The results do not
assume any condition on the secret key. We find new biases in the initial
as well as in the 256-th and 257-th keystream output bytes. For the first
time biases at such later stages are discovered without any knowledge of
the secret key bytes. We also identify that these biases propagate further,
once the information for the index j is revealed.

Keywords: Bias, Cryptanalysis, Keystream, Key Leakage, RC4, Stream
Cipher.

1 Introduction

RC4 is one of the most well known stream ciphers. It has very simple imple-
mentation and is used in a number of commercial products till date. Being one
of the popular stream ciphers, it has also been subjected to many cryptanalytic
attempts for more than a decade. Though lots of weaknesses have already been
explored in RC4 [1,2,3,4,5,6,7,8,10,11,12,13,15,16,17,19,20,21], it could not be
thoroughly cracked yet and proper use of this stream cipher is still believed to
be quite secure. This motivates the analysis of RC4.

The Key Scheduling Algorithm (KSA) and the Pseudo Random Generation
Algorithm (PRGA) of RC4 are presented below. The data structure contains an
array S of size N (typically, 256), which contains a permutation of the integers
{0, . . . , N − 1}, two indices i, j and the secret key array K. Given a secret key k
of l bytes (typically 5 to 16), the array K of size N is such that K[y] = k[y mod l]
for any y, 0 ≤ y ≤ N − 1.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 253–269, 2008.
c© International Association for Cryptologic Research 2008

254 S. Maitra and G. Paul

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling:

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Apart from some minor details, the KSA and the PRGA are almost the same.
In the KSA, the update of the index j depends on the secret key, whereas the key
is not used in the PRGA. One may consider the PRGA as the KSA with all zero
key. All additions in both the KSA and the PRGA are additions modulo N .

Initial empirical works based on the weaknesses of the RC4 KSA were ex-
plored in [17,21] and several classes of weak keys had been identified. In [17],
experimental evidences of the bias of the initial permutation bytes after the KSA
towards the secret key have been reported. It was also observed in [17] that the
first keystream output byte of RC4 leaks information about the secret key when
the first two secret key bytes add to 0 mod 256. A more general theoretical study
has been performed in [11,12] which includes the observations of [17]. These bi-
ases do propagate to the keystream output bytes as observed in [5,11]. In [5],
the Glimpse theorem [4] is used to show the propagation of biases in the initial
keystream output bytes. On the other hand, a bias in the choice of index has
been exploited in [11] to show a bias in the first keystream output byte.

More than a decade ago (1995), Roos [17] pointed out that the initial bytes
S[y] of the permutation after the KSA are biased towards some function fy

(see Section 1.1 for the definition of fy) of the secret key. Since then several
works [2,9,10,11,12,14] have considered biases of S[y] either with functions of
the secret key bytes or with absolute values and discussed applications of these
biases. However, no research has so far been published to study how the bytes
S[S[y]] are related to the secret key for different values of y. Here we solve this
problem, identifying substantial biases in this direction. It is interesting to note
that as the KSA proceeds, the probabilities P (S[y] = fy) decrease monotonically,
whereas the probabilities P (S[S[y]] = fy) first increases monotonically till the
middle of the KSA and then decreases monotonically until the end of the KSA.

Using these results and other related techniques, we find new biases in the
keystream output bytes towards the secret key. A complete framework is pre-
sented towards the leakage of information about the secret key in the keystream
output bytes, that not only reveals new biases at a later stage (256, 257-th bytes),
but also points out that the biases propagate further, once the information re-
garding j is known.

The works [2,7] also explain how secret key information is leaked in the
keystream output bytes. In [2], it is considered that the first few bytes of the se-
cret key is known and based on that the next byte of the secret key is predicted.
The attack is based on how secret key information is leaked in the first keystream

New Form of Permutation Bias and Secret Key Leakage 255

output byte of the PRGA. In [7], the same idea of [2] has been exploited with
the Glimpse theorem [4] to find the information leakage about the secret key at
the 257-th byte of the PRGA. Note that, our result is better than that of [7], as
in [7] the bias is observed only when certain conditions on the secret key and IV
hold. However, the biases we note at 256, 257-th bytes do not assume any such
condition on the secret key.

1.1 Notations, Contributions and Outline

Let Sr be the permutation, ir and jr be the values of the indices i and j after r
many rounds of the RC4 KSA, 1 ≤ r ≤ N . Hence SN is the permutation after
the complete key scheduling. By S0, we denote the initial identity permutation.
During round r of the KSA, ir = r − 1, 1 ≤ r ≤ N , and hence the permutation
Sr after round r can also be denoted by Sir+1.

Let SG
r be the permutation, iGr and jG

r be the values of the indices i and j,
and zr be the keystream output byte after r many rounds of the PRGA, r ≥ 1.
Clearly, iGr = r mod N . We also denote SN by SG

0 as this is the permutation
before the PRGA starts.

Further, let

fy =
y(y + 1)

2
+

y∑
x=0

K[x],

for y ≥ 0. Note that all the additions and subtractions related to the key bytes,
the permutation bytes and the indices are modulo N .

Our contribution can be summarized as follows.

– In Section 2, we present the results related to biased association of SN [SN [y]]
towards the linear combination fy of the secret key bytes.

– In Section 3, we present a framework for identifying biases in RC4 keystream
bytes towards several linear combinations of the secret key bytes.
• In Section 3.1, we show that P (zN = N−f0) is not a random association.

This indicates bias at z256.
• In Section 3.2, we use the bias of SN [SN [1]] (from Section 2) to prove

that P (zN+1 = N + 1 − f1) is not a random association. This indicates
bias at z257.

• In Section 3.3, we observe new biases in the initial keystream bytes apart
from the known ones [5]. It is shown that for 3 ≤ r ≤ 32, P (zr = fr−1)
are not random associations.

• These results are taken together in Section 3.4 to present cryptanalytic
applications.

– In Section 4, considering that the values of index j are leaked at some points
during the PRGA, we show that biases of the keystream output bytes to-
wards the secret key are observed at a much later stage.

2 Bias of S[S[y]] to Secret Key

We start this section discussing how P (Sr[Sr[1]] = f1) varies with round r, 1 ≤
r ≤ N , during the KSA of RC4. Once again, note that f1 = (K[0] + K[1] +

256 S. Maitra and G. Paul

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
(S

i+
1[S

i+
1[1

]]
=

 (
K

[0
] +

 K
[1

] +
 1

)
m

od
 2

56
)

−
−

−
−

>

i −−−−>

Fig. 1. P (Si+1[Si+1[1]] = f1) versus i (r = i + 1) during RC4 KSA

1) mod N . To motivate, we like to refer to Figure 1 that demonstrates the nature
of the curve with an experimentation using 10 million randomly chosen secret
keys. The probability P (Sr[Sr[1]] = f1) increases till around r = N

2 where it
gets the maximum value around 0.185 and then it decreases to 0.136 at r = N .
Note that this nature is not similar to the nature of P (Sr[1] = f1) that decreases
continuously as r increases during the KSA.

Towards the theoretical results, let us first present the base case for r = 2,
i.e., after round 2 of the RC4 KSA.

Lemma 1. P (S2[S2[1]] = K[0] + K[1] + 1) = 3
N − 4

N2 + 2
N3 .

Further, P (S2[S2[1]] = K[0] + K[1] + 1 ∧ S2[1] ≤ 1) ≈ 2
N .

Proof. The proof is based on three cases.

1. Let K[0] �= 0, K[1] = N − 1. The probability of this event is N−1
N2 . Now

S2[1] = S1[K[0] + K[1] + 1] = S1[K[0]] = S0[0] = 0. So, S2[S2[1]] = S2[0] =
S1[0] = K[0] = K[0]+K[1]+1. Note that S2[0] = S1[0], as K[0]+K[1]+1 �= 0.
Moreover, in this case, S2[1] ≤ 1.

2. Let K[0] + K[1] = 0, K[0] �= 1, i.e., K[1] �= N − 1. The probability of this
event is N−1

N2 . Now S2[1] = S1[K[0] + K[1] + 1] = S1[1] = S0[1] = 1. Note
that S1[1] = S0[1], as K[0] �= 1. So, S2[S2[1]] = S2[1] = 1 = K[0] + K[1] + 1.
Also, in this case, S2[1] ≤ 1.

3. S2[S2[1]] could be K[0] + K[1] + 1 by random association except the two
previous cases.
Out of that, S2[1] ≤ 1 will happen in 2

N proportion of cases.

New Form of Permutation Bias and Secret Key Leakage 257

Thus P (S2[S2[1]] = K[0]+K[1]+1) = 2(N−1)
N2 +(1− 2(N−1)

N2) 1
N = 3

N − 4
N2 + 2

N3 .
Further P (S2[S2[1]] = K[0]+K[1]+1∧S2[1] ≤ 1) = 2(N−1)

N2 + 2
N (1− 2(N−1)

N2) 1
N =

2
N − 4(N−1)

N4 ≈ 2
N . ��

Lemma 1 shows that after the second round (i = 1, r = 2), the event (S2[S2[1]] =
K[0] + K[1] + 1) is not a random association.

Lemma 2. Let pr = P (Sr[Sr[1]] = K[0] + K[1] + 1 ∧ Sr[1] ≤ r − 1) for r ≥ 2.
Then for r ≥ 3, pr = (N−2

N)pr−1 + 1
N · (N−2

N) · (N−1
N)2(r−2).

Proof. After the (r − 1)-th round is over, the permutation is Sr−1. In this case,
pr−1 = P (Sr−1[Sr−1[1]] = K[0] + K[1] + 1 ∧ Sr−1[1] ≤ r − 2). The event(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 1)

)
can occur in two mutually

exclusive and exhaustive ways:
(
(Sr[Sr[1]] = K[0] + K[1] + 1)∧ (Sr[1] ≤ r − 2)

)
and

(
(Sr[Sr[1]] = K[0]+K[1]+1)∧(Sr[1] = r−1)

)
. We compute the contribution

of each separately.
In the r-th round, i = r − 1 and hence does not touch the indices 0, . . . , r− 2.

Thus, the event
(
(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 2)

)
occurs if

we already had
(
(Sr−1[Sr−1[1]] = K[0] + K[1] + 1) ∧ (Sr−1[1] ≤ r − 2)

)
and

jr /∈ {1, r − 1}. Thus, the contribution of this part is pr−1(N−2
N).

The event
(
(Sr[Sr[1]] = K[0] + K[1] + 1)∧ (Sr[1] = r − 1)

)
occurs if after the

(r − 1)-th round, Sr−1[r − 1] = r − 1, Sr−1[1] = K[0] + K[1] + 1 and jr = 1
causing a swap involving the indices 1 and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the
rounds i = 0, . . . , r − 2. This happens with a probability at least (N−1

N)r−1.
2. The event Sr−1[1] = K[0]+K[1]+1 may happen as follows. In the first round

(when i = 0), j1 /∈ {1, K[0] + K[1] + 1} so that S1[1] = 1 and S1[K[0] +
K[1]+1] = K[0]+K[1]+1 with probability (N−2

N). After this, in the second
round (when i = 1), we will have j2 = j1 + S1[1] + K[1] = K[0] + K[1] + 1,
and so after the swap, S2[1] = K[0]+K[1]+1. Now, K[0]+K[1]+1 remains
in location 1 from the end of round 2 till the end of round (r − 1) (when
i = r− 2) with probability (N−1

N)r−3. Thus, P (Sr−1[1] = K[0]+K[1]+ 1) =
(N−2

N) · (N−1
N)r−3.

3. In the r-th round (when i = r − 1), jr becomes 1 with probability 1
N .

Thus, P
(
(Sr[Sr[1]] = K[0]+K[1]+ 1)∧ (Sr[1] = r− 1)

)
= (N−1

N)r−1 · (N−2
N) ·

(N−1
N)r−3 · 1

N = 1
N · (N−2

N) · (N−1
N)2(r−2).

Adding the above two contributions, we get pr = (N−2
N)pr−1 + 1

N · (N−2
N) ·

(N−1
N)2(r−2). ��

The recurrence in Lemma 2 along with the base case in Lemma 1 completely
specify the probabilities pr for all r ∈[2,. . . ,N].

Theorem 1. After the complete KSA,
P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N)2(N−1).

258 S. Maitra and G. Paul

Proof. Using the approximation N−2
N ≈ (N−1

N)2, the recurrence in Lemma 2 can
be rewritten as pr = apr−1 + ar−1b, where a = (N−1

N)2 and b = 1
N . The solution

of this recurrence is given by pr = ar−2p2 + (r − 2)ar−1b, r ≥ 2. Substitut-
ing the values of p2 (from Lemma 1), a and b, we get pr = 2

N (N−1
N)2(r−2) +

(r−2
N)(N−1

N)2(r−1). Substituting r = N and noting the fact that P
(
(SN [SN [1]] =

K[0] + K[1] + 1) ∧ (SN [1] ≤ N − 1)
)

= P (SN [SN [1]] = K[0] + K[1] + 1), we get
P (SN [SN [1]] = K[0] + K[1] + 1) = 2

N (N−1
N)2(N−2) + (N−2

N)(N−1
N)2(N−1). Note

that the second term (≈ 0.1348 for N = 256) dominates over the negligibly small
first term (≈ 0.0011 for N = 256), and so P (SN [SN [1]] = K[0] + K[1] + 1) ≈
(N−1

N)2(N−1) (replacing N−2
N = 1 − 2

N by 1 in the second term). ��

Now we like to present a more detailed observation. In [17,12], the association
between SN [y] and fy is shown. As we have observed the non-random associ-
ation between SN [SN [1]] and f1, it is important to study what is the associ-
ation between SN [SN [y]] and fy, and moving further, the association between
SN [SN [SN [y]]] and fy, for 0 ≤ y ≤ N − 1 and so on. Our experimental obser-
vations show that these associations are not random (i.e., much more than 1

N)
for initial values of y. The experimental observations (over 10 million runs of
randomly chosen keys) are presented in Figure 2.

The theoretical analysis of the biases of Sr[Sr[y]] towards fy for small values
of y is presented in Appendix A. The results involved in the process are tedious
and we need to approximate certain quantities to get the following closed form
formula.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

ba
bi

lit
y

−
−

−
−

>

y −−−−>

<−−−−−−−−−−−−−−−−− A

<−−−−−−−−−−−−−−−−− B

<−−−−−−−−−−−−−−−−− C

Fig. 2. A: P (SN [y] = fy), B: P (SN [SN [y]] = fy), C: P (SN [SN [SN [y]]] = fy) versus y
(0 ≤ y ≤ 255)

New Form of Permutation Bias and Secret Key Leakage 259

Theorem 2. After the complete KSA,
P (SN [SN [y]] = fy) ≈ y

N · (N−1
N)

y(y+1)
2 +2(N−2) + 1

N · (N−1
N)

y(y+1)
2 −y+2(N−1) +

(N−y−1
N) · (N−y

N) · (N−1
N)

y(y+1)
2 +2N−3, 0 ≤ y ≤ 31.

Extending similar techniques, the association between SN [SN . . . [SN [y]] . . .] and
fy can be studied in general. Though the general results are combinatorially
interesting, it is not immediate how they will be applicable to find further weak-
nesses in the RC4 PRGA. In terms of cryptanalytic point of view, we use the
non-random association of SN [SN [1]] relating f1 (Theorem 1) to obtain the bias
at the 257-th keystream output byte in Section 3.2.

3 New Biases in RC4 Keystream

We will first build the framework and then present new biases in Sections 3.1, 3.2
and 3.3, which were not known earlier.

Let us consider the existing result that relates each permutation byte after
the KSA with certain linear combination of the secret key bytes.

Proposition 1. [12, Theorem 1] Consider that the index j takes its values
uniformly at random during the KSA rounds. Then, P (Sr[y] = fy) ≈ (N−y

N) ·
(N−1

N)[
y(y+1)

2 +r] + 1
N , 0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

Substituting r = N in the statement of the aboveProposition,we get the following.

Corollary 1. The bias of the final permutation after the KSA towards the secret
key is given by P (SN [y] = fy) = (N−y

N) · (N−1
N)[

y(y+1)
2 +N] + 1

N , 0 ≤ y ≤ N − 1.

As explained in [12], the above result indicates significant biases for small values
of y (more precisely, for 0 ≤ y ≤ 47), that is supported by the experimental
result presented in [17].

The Glimpse Main Theorem [4,7] states that after the r-th round of the
PRGA, r ≥ 1, P (SG

r [jG
r] = r − zr) = P (SG

r [iGr] = jG
r − zr) = 2

N . We rewrite the
first relation between SG

r [jG
r] and r − zr as the following proposition.

Proposition 2. P (zr = r − SG
r−1[i

G
r]) = 2

N , r ≥ 1.

Proof. SG
r [jG

r] is assigned the value of SG
r−1[iGr]. As the Glimpse Main Theorem

gives P (zr = r − SG
r [jG

r]) = 2
N for r ≥ 1, we get P (zr = r − SG

r−1[i
G
r]) = 2

N for
r ≥ 1. ��

The idea of writing the Glimpse Main Theorem in the form of Proposition 2 is
due to the fact that relating “zr to SG

r−1[i
G
r]” will ultimately relate “zr to the

secret key bytes”, as the permutations in the initial rounds of the PRGA are
related to the secret key.

Now we start with our results. The following lemma shows how the permuta-
tion bytes at rounds t and r − 1 of the PRGA, for t + 2 ≤ r, are related.

260 S. Maitra and G. Paul

Lemma 3. Let P (SG
t [iGr] = X) = qt,r, for some X. Then, for t+2 ≤ r ≤ t+N ,

P (SG
r−1[i

G
r] = X) = qt,r ·

[
(N−1

N)r−t−1 − 1
N

]
+ 1

N .

Proof. We consider two separate cases.

1. SG
t [iGr] = X and during the next (r − t− 1) rounds of the PRGA, the index

iGr is not touched by any of the r − t − 1 many j values (since t + 2 ≤ r ≤
t + N , the index iGr is not touched by any of the r − t − 1 many i values
anyway). The first event occurs with probability qt,r and the second event
occurs with probability (N−1

N)r−t−1. Thus the contribution of this case is
qt,r · (N−1

N)r−t−1.
2. SG

t [iGr] �= X and still SG
r−1[i

G
r] equals X by random association. The contri-

bution of this case is (1 − qt,r) · 1
N .

Thus, adding the above two contributions, we get P (SG
r−1[iGr] = X) = qt,r ·

(N−1
N)r−t−1 + (1 − qt,r) · 1

N = qt,r ·
[
(N−1

N)r−t−1 − 1
N

]
+ 1

N . ��

Remark 1. The above result holds for t+2 ≤ r ≤ t+N , and not for r = t+1. If
we take r = t+1, then SG

r−1 = SG
t , which is our starting point, i.e., P (SG

r−1[iGr] =
X) = P (SG

t [iGr] = X) = qt,r.

The following is an immediate consequence of Lemma 3.

Corollary 2. For 2 ≤ r ≤ N −1, P (SG
r−1[r] = fr) =

[
(N−r

N) ·(N−1
N)[

r(r+1)
2 +N]+

1
N

]
·
[
(N−1

N)r−1 − 1
N

]
+ 1

N .

Proof. For 2 ≤ r ≤ N−1, we have iGr = r. Taking X = fr and t = 0 in Lemma 3,
we have q0,r = P (SG

0 [r] = fr) = P (SN [r] = fr) = (N−r
N) · (N−1

N)[
r(r+1)

2 +N] + 1
N

(by Corollary 1), and hence P (SG
r−1[r] = fr) =

[
(N−r

N) · (N−1
N)[

r(r+1)
2 +N] + 1

N

]
·[

(N−1
N)r−1 − 1

N

]
+ 1

N . ��

Next, we present the bias of each keystream output byte to a combination of the
secret key bytes in the following lemma.

Lemma 4. Let P (SG
r−1[i

G
r] = fiG

r
) = wr, for r ≥ 1. Then P (zr = r − fiG

r
) =

1
N · (1 + wr), r ≥ 1.

Proof. We consider two separate cases in which the event (zr = r − fiG
r
) can

occur.

1. SG
r−1[i

G
r] = fiG

r
and zr = r − SG

r−1[i
G
r]. The contribution of this case is

P (SG
r−1[iGr] = fiG

r
) · P (zr = r − SG

r−1[iGr]) = wr · 2
N (by Proposition 2).

2. SG
r−1[iGr] �= fiG

r
, and still zr = r − fiG

r
due to random association. So the

contribution of this case is P (SG
r−1[i

G
r] �= fiG

r
) · 1

N = (1 − wr) · 1
N .

Adding the above two contributions, we get the total probability as wr · 2
N +

(1 − wr) · 1
N = 1

N · (1 + wr). ��

New Form of Permutation Bias and Secret Key Leakage 261

Some results for biases in initial keystream bytes has earlier been pointed out
in [5] that has later been discussed in [19] too. We detail these biases giving
explicit formula under our theoretical framework.

Theorem 3.
(1) P (z1 = 1 − f1) = 1

N ·
(
1 + (N−1

N)N+2 + 1
N

)
.

(2) For 2 ≤ r ≤ N − 1,
P (zr = r−fr) = 1

N ·
(
1+
[
(N−r

N) · (N−1
N)[

r(r+1)
2 +N] + 1

N

]
·
[
(N−1

N)r−1 − 1
N

]
+ 1

N

)
.

Proof. First, we prove part (1). In the first round, i.e., when r = 1, we have
iGr = 1 and fiG

r
= f1, and so w1 = P (SG

0 [1] = f1) = P (SN [1] = f1) = (N−1
N) ·

(N−1
N)[

1(1+1)
2 +N] + 1

N = (N−1
N)N+2 + 1

N (by Corollary 1). Now, using Lemma 4,

we get P (z1 = 1 − f1) = 1
N · (1 + w1) = 1

N ·
(
1 + (N−1

N)N+2 + 1
N

)
.

Next, we prove part (2). From Corollary 2, wr = P (SG
r−1[r] = fr) =

[
(N−r

N) ·
(N−1

N)[
r(r+1)

2 +N]+ 1
N

]
·
[
(N−1

N)r−1− 1
N

]
+ 1

N , 2 ≤ r ≤ N−1. Now, using Lemma 4,

we get P (zr = r − fr) = 1
N · (1 + wr) = 1

N ·
(
1 +
[
(N−r

N) · (N−1
N)[

r(r+1)
2 +N] + 1

N

]
·[

(N−1
N)r−1 − 1

N

]
+ 1

N

)
. ��

Note that Lemma 3 or Corollary 2 is not used in proving part (1) of the above
theorem. It is proved directly from Corollary 1. In fact, Lemma 3 can not be
used in part (1), as here we have r = t + 1 with t = 0 (see Remark 1).

To have a clear understanding of the quantity of the biases, Table 1 lists the
numerical values of the probabilities according to the formula given in Theo-
rem 3. Note that the random association is 1

N , which is 0.0039 for N = 256.
Close to the round 48, the biases tend to disappear. This is indicated by the

convergence of the values to the probability 1
256 = 0.0039.

Table 1. The probabilities computed following Theorem 3

r P (zr = r − fr)

1-8 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052 0.0051
9-16 0.0051 0.0050 0.0050 0.0049 0.0048 0.0048 0.0047 0.0047

17-24 0.0046 0.0046 0.0045 0.0045 0.0044 0.0044 0.0043 0.0043
25-32 0.0043 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041
33-40 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
41-48 0.0040 0.0040 0.0040 0.0040 0.0040 0.0039 0.0039 0.0039

One may check that P (z1 = 1 − f1) = 1
N (1 + 0.36) and that decreases to

P (z32 = 32 − f32) = 1
N (1 + 0.05), but still then it is 5% more than the random

association.

3.1 Bias in the 256-th Keystream Output Byte

Interestingly, the biases again reappear after rounds 256 and 257. First we present
the bias for the 256-th keystream byte.

262 S. Maitra and G. Paul

Theorem 4. P (zN = N−f0) = 1
N ·
(
1+(N−1

N)2N−1+ 1
N2 ·(N−1

N)N−1− 1
N2 + 1

N

)
.

Proof. During the N -th round of the PRGA, iGN = N mod N = 0. Taking X =
f0, t = 0 and r = N in Lemma 3, we have q0,N = P (SG

0 [0] = f0) = P (SN [0] =
f0) = (N−1

N)N + 1
N (by Corollary 1), and hence wN = P (SG

N−1[0] = f0) =[
(N−1

N)N + 1
N

]
·
[
(N−1

N)N−1 − 1
N

]
+ 1

N = (N−1
N)2N−1 + 1

N2 · (N−1
N)N−1 − 1

N2 + 1
N .

Thus, by Lemma 4, the bias is given by P (zN = N − f0) = 1
N · (1 + wN) =

1
N ·
(
1 + (N−1

N)2N−1 + 1
N2 · (N−1

N)N−1 − 1
N2 + 1

N

)
. ��

For N = 256, wN = w256 = 0.1392 and the bias turns out to be 0.0045 (i.e.,
1

256 (1 + 0.1392)). Experimental results confirm this bias.

3.2 Bias in the 257-th Keystream Output Byte

We will now show that the bias in the 257-th keystream output byte follows from
Theorem 1, i.e., P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N)2(N−1).

Theorem 5. P (zN+1 = N + 1 − f1)
= 1

N ·
(
1 + (N−1

N)3(N−1) − 1
N · (N−1

N)2(N−1) + 1
N

)
.

Proof. During the (N + 1)-th round, we have, iGN+1 = (N + 1) mod N = 1.
Taking X = f1, t = 1 and r = N + 1 in Lemma 3, we have q1,N+1 = P (SG

1 [1] =
f1) = P (SN [SN [1]] = f1) = (N−1

N)2(N−1), and hence wN+1 = P (SG
N [1] = f1) =

(N−1
N)2(N−1) ·

[
(N−1

N)N−1 − 1
N

]
+ 1

N = (N−1
N)3(N−1) − 1

N · (N−1
N)2(N−1) + 1

N .
Now, using Lemma 4, we get P (zN+1 = N + 1 − f1) = 1

N · (1 + wN+1) =
1
N ·
(
1 + (N−1

N)3(N−1) − 1
N · (N−1

N)2(N−1) + 1
N

)
. ��

For N = 256, wN+1 = w257 = 0.0535 and P (z257 = 257−f1) = 1
N ·(1+0.0535) =

0.0041 which also conforms to experimental observation.

3.3 More Biases in Initial Bytes of RC4 Keystream

The biases of zr with r − fr for the initial keystream output bytes have been
pointed out in Theorem 3. Interestingly, experimental observation reveals bias
of zr with fr−1 too. The results are presented in Table 2 which is experimented
over hundred million (108) randomly chosen keys of 16 bytes. For proper random
association, P (zr = fr−1) should have been 1

256 , i.e., 0.0039.
Following our experimental observation, the explanation of the fact P (z3 =

f2) > 1
256 was pointed out in [18]. We present the idea of [18] in this paragraph.

Assume that after the third round of the KSA, S3[2] takes the value f2, and
is hit by j later in the KSA. Then f2 is swapped with Sk[k] and consider that
Sk[k] has remained k so far. Further, suppose that SN [3] = 0 holds. Thus,
SN [2] = k, SN [k] = f2 and SN [3] = 0 at the end of the KSA. In the second
round of the PRGA, SG

1 [2] = k is swapped with a more or less random location
SG

1 [l]. Therefore, SG
2 [l] = k and jG

2 = l. In the next round, i = 3 and points to

New Form of Permutation Bias and Secret Key Leakage 263

Table 2. Additional bias of the keystream bytes towards the secret key

r P (zr = fr−1)

1-8 0.0043 0.0039 0.0044 0.0044 0.0044 0.0044 0.0043 0.0043

9-16 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042 0.0042

17-24 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040

25-32 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040

33-40 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

41-48 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

SG
2 [3] = 0. So j does not change and hence jG

3 = l = jG
2 . Thus, SG

2 [l] = k is
swapped with SG

2 [3] = 0, and one gets SG
3 [l] = 0 and SG

3 [3] = k. The output z3

is now SG
3 [SG

3 [i] + SG
3 [jG

3]] = SG
3 [k + 0] = SG

3 [k] = f2.
Along the same line of arguments given in [18], we here provide a detailed

proof considering the event zr = fr−1 for r > 2 in general and explicitly derive
a formula for P (zr = fr−1). The proof depends on P (SN [r] = 0) for different r
values. The explicit formula for the probabilities P (SN [u] = v) was derived for
the first time in [9] and the problem was addressed again in [10,14].

Proposition 3. [14, Theorem 1, Item 2] For 0 ≤ v ≤ N − 1, v ≤ u ≤ N − 1,
P (SN [u] = v) = 1

N · (N−1
N)N−1−u + 1

N · (N−1
N)v+1 − 1

N · (N−1
N)N+v−u.

Theorem 6. For 3 ≤ r ≤ N , P (zr = fr−1) = (N−1
N) · (N−r

N) ·
(
(N−r+1

N) ·

(N−1
N)[

r(r−1)
2 +r] + 1

N

)
· (N−2

N)N−r+1 · (N−3
N)r−2 · γr + 1

N ,

where γr = 1
N · (N−1

N)N−1−r + 1
N · (N−1

N) − 1
N · (N−1

N)N−r.

Proof. Substituting y = r−1 in Proposition 1, we have P (Sr[r−1] = fr−1) = αr,
where αr ≈ (N−r+1

N) · (N−1
N)[

r(r−1)
2 +r] + 1

N , 1 ≤ r ≤ N . After round r, suppose
that the index r − 1 is touched for the first time by jt+1 in round t + 1 of the
KSA and due to the swap the value fr−1 is moved to the index t, r ≤ t ≤ N − 1
and also prior to this swap the value at the index t was t itself, which now comes
to the index r−1. This means that from round r+1 to round t (both inclusive),
the pseudo-random index j has not taken the values r− 1 and t. So, after round
t + 1, P

(
(St+1[r − 1] = t) ∧ (St+1[t] = fr−1)

)
= P

(
(St[r − 1] = fr−1) ∧ (St[t] = t) ∧ (jt+1 = r − 1)

)
= αr · (N−2

N)t−r · 1
N .

From round t+1 until the end of the KSA, fr−1 remains in index t and t remains
in index r − 1 with probability (N−2

N)N−t. Thus,
P
(
(SN [r − 1] = t) ∧ (SN [t] = fr−1)

)
= αr · (N−2

N)t−r · 1
N · (N−2

N)N−t

= αr · (N−2
N)N−r · 1

N = βr (say). Also, from Proposition 3, we have P (SN [r] =
0) = γr, where γr = 1

N · (N−1
N)N−1−r + 1

N · (N−1
N) − 1

N · (N−1
N)N−r.

Suppose the indices r − 1, t and r are not touched by the pseudo-random
index j in the first r − 2 rounds of the PRGA. This happens with probability
(N−3

N)r−2. In round r−1 of the PRGA, due to the swap, the value t at index r−1

264 S. Maitra and G. Paul

moves to the index jG
r−1 with probability 1, and jG

r−1 /∈ {t, r} with probability
(N−2

N). Further, if SG
r−1[r] remains 0, then in round r of the PRGA, jG

r = jG
r−1

and zr = SG
r

[
SG

r [r]+SG
r [jG

r]
]

= SG
r

[
SG

r−1[r]+SG
r−1[j

G
r−1]
]

= SG
r [0+ t] = SG

r [t] =
fr−1 with probability βr · γr · (N−3

N)r−2 · (N−2
N) = δr (say). Since, t can values

r, r + 1, r + 2, . . . , N − 1, the total probability is δr · (N − r). Substituting the
values of αr, βr, γr, δr, we get the probability that the event (zr = fr−1) occurs
in the above path is p = (N−r

N) ·
(
(N−r+1

N) · (N−1
N)[

r(r−1)
2 +r] + 1

N

)
· (N−2

N)N−r+1 ·
(N−3

N)r−2 · γr.
If the above path is not followed, still there is (1− p) · 1

N probability of occur-
rence of the event due to random association. Adding these two probabilities,
we get the result. ��

The theoretically computed values of the probabilities according to the above
theorem match with the estimated values provided in Table 2. It will be interest-
ing to justify the bias at r = 1 and the absence of the bias at r = 2 as observed
experimentally in Table 2. These two cases are not covered in Theorem 6.

3.4 Cryptanalytic Applications

Here we accumulate the results explained above. Consider the first keystream
output byte z1 of the PRGA. We find the theoretical result that P (z1 = 1−f1) =
0.0053 (see Theorem 3 and Table 1) and the experimental observation that
P (z1 = f0) = 0.0043 (see Table 2). Further, from [11], we have the result that
P (z1 = f2) = 0.0053. Taking them together, one can check that the P (z1 =
f0 ∨z1 = 1−f1∨z1 = f2) = 1− (1−0.0043) · (1−0.0053) · (1−0.0053) = 0.0148.
(The independence assumption in calculating the probability is supported by
detailed experimentation with 100 different runs, each run presenting the average
probability considering 10 million randomly chosen secret keys of 16 bytes.) Our
result indicates that out of randomly chosen 10000 secret keys, in 148 cases on
an average, z1 reveals f0 or 1 − f1 or f2, i.e., K[0] or 1 − (K[0] + K[1] + 1) or
(K[0]+K[1]+K[2]+3). If, however, one tries a random association, considering
that z1 will be among three randomly chosen values v1, v2, v3 from [0, . . . , 255],
then P (z1 = v1 ∨ z1 = v2 ∨ z1 = v3) = 1 − (1 − 1

256)3 = 0.0117. Thus one can
guess z1 with an additional advantage of 0.0148−0.0117

0.0117 · 100% = 27% over the
random guess.

Looking at z2, we have P (z2 = 2−f2) = 0.0053 (see Theorem 3 and Table 1),
which provides an advantage of 0.0053−0.0039

0.0039 · 100% = 36%.
Similarly, referring to Theorem 3 and Theorem 6 (and also Table 1 and Table 2),

significant biases can be observed in P (zr = fr−1 ∨ zr = r − fr) for r = 3 to 32
over random association.

Now consider the following scenario with the events E1, . . . , E32, where E1 :
(z1 = f0∨z1 = 1−f1∨z1 = f2), E2 : (z2 = 2−f2), and Er : (zr = fr−1∨zr = r−
fr) for 3 ≤ r ≤ 32. Observing the first 32 keystream output bytes z1, . . . , z32, one
may try to guess the secret key assuming that 3 or more of the events E1, . . . , E32

occur. We experimented with 10 million randomly chosen secret keys of length
16 bytes. We found that 3 or more of the events occur in 0.0028 proportion of

New Form of Permutation Bias and Secret Key Leakage 265

cases, which is true for 0.0020 proportion of cases for random association. This
demonstrates a substantial advantage (40%) over random guess.

4 Further Biases When j Is Known During PRGA

In all the currently known biases as well as in all the new biases discussed in
this paper so far, it is assumed that the value of the pseudo-random index j is
unknown. In this section, we are going to show that the biases in the permutation
at some stage of the PRGA propagates to the keystream output bytes at a later
stage, if the value of the index j at the earlier stage is known.

Suppose that we know the value jG
t of j after the round t in the PRGA.

With high probability, the value V at the index jG
t will remain there until jG

t is
touched by the deterministic index i for the first time after a few more rounds
depending on what was the position of i at the t-th stage. This immediately
leaks V in keystream output byte. More importantly, if the value V is biased to
the secret key bytes, then that information will be leaked too.

Formally, let P (SG
t [jG

t] = V) = ηt for some V . jG
t will be touched by i in round

r, where r = jG
t or N + jG

t depending on whether jG
t > t or jG

t ≤ t respectively.
By Lemma 3, we would have P (SG

r−1[j
G
t] = V) = ηt·

[
(N−1

N)r−t−1− 1
N

]
+ 1

N . Now,

Lemma 4 immediately gives P (zr = r−V) = 1
N ·
(
1+ηt ·

[
(N−1

N)r−t−1− 1
N

]
+ 1

N

)
.

For some special V ’s, the form of ηt may be known. In that case, it will
be advantageous to probe the values of j at particular rounds. For example,
according to Corollary 2, after the (t − 1)-th round of the PRGA, SG

t−1[t] is
biased to the linear combination ft of the secret key bytes with probability
ηt =

[
(N−t

N) · (N−1
N)[

t(t+1)
2 +N] + 1

N

]
·
[
(N−1

N)t−1 − 1
N

]
+ 1

N . Now, at round t, ft

would move to the index jt due to the swap, and hence SG
t [jt] will be biased to

ft with the same probability. So, the knowledge of jt will leak information about
ft in round jG

t or N + jG
t according as jG

t > t or jG
t ≤ t respectively.

If we know the values of j at multiple stages of the PRGA (it may be possible
to read some values of j through side-channel attacks), then the biases propagate
further down the keystream output bytes. The following example illustrates how
the biases propagate down the keystream output bytes when single as well as
multiple jG values are known.

Example 1. Suppose we know the value of jG
5 as 18. With probability η5, SG

4 [5]
would have remained f5 which would move to index 18 due to the swap in
round 5, i.e., SG

5 [18] = f5. With approximately η5 ·
[
(N−1

N)18−5−1 − 1
N

]
+ 1

N
probability, f5 would remain in index 18 till the end of the round 18-1 = 17. So,
we immediately get a bias of z18 with 18 − f5.

Moreover, in round 18, f5 would move from index 18 to jG
18. So, if the value of

jG
18 is also known, say jG

18 = 3, then we have SG
18[3] = f5. We can apply the same

line of arguments for round 256 + 3 = 259 to get a bias of z259 with 259 − f5.
Experiments with 1 billion random keys demonstrate that in this case the bias

of z18 towards 18 − f5 is 0.0052 and the bias of z259 towards 259 − f5 is 0.0044.
These conform to the theoretical values and show that the knowledge of j during

266 S. Maitra and G. Paul

the PRGA helps in finding non-random association (away from 1
256 = 0.0039)

between the keystream output bytes and the secret key.

5 Conclusion

In this paper, we present several new observations on weaknesses of RC4. It
is shown that biases towards the secret key exists at the permutation bytes
S[S[y]] for different y values. To our knowledge, this is the first attempt to
formally analyze the biases of S[S[y]] and its implications towards the security
of RC4. Moreover, a framework is built to analyze biases of the keystream output
bytes towards different linear combinations of the secret key bytes. Subsequently,
theoretical results are proved to show that RC4 keystream output bytes at the
indices 1 to 32 leak significant information about the secret key bytes. We also
discovered and proved new biases towards the secret key at the 256-th and the
257-th keystream output bytes. Moreover, we show that if one knows the value
of j during some rounds of the PRGA, then the biases propagate further down
the keystream.

Acknowledgment. The authors like to thank Mr. Snehasis Mukherjee, Indian
Statistical Institute, Kolkata for his support in the preparation of the graphs.

References

1. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream
Generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

2. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

3. Golic, J.: Linear statistical weakness of alleged RC4 keystream generator. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Heidelberg
(1997)

4. Jenkins, R.J.: ISAAC and RC4 (1996),
http://burtleburtle.net/bob/rand/isaac.html

5. Klein, A.: Attacks on the RC4 stream cipher (February 27, 2006), http://cage.
ugent.be/ klein/RC4/ [last accessed on June 27, 2007]

6. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

7. Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 395–411. Springer, Heidelberg
(2005)

8. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Genera-
tor. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506.
Springer, Heidelberg (2005)

9. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

http://burtleburtle.net/bob/rand/isaac.html
http://cage.ugent.be/~klein/RC4/
http://cage.ugent.be/~klein/RC4/

New Form of Permutation Bias and Secret Key Leakage 267

10. Mironov, I. (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

11. Paul, G., Rathi, S., Maitra, S.: On Non-negligible Bias of the First Output Byte
of RC4 towards the First Three Bytes of the Secret Key. In: Proceedings of the
International Workshop on Coding and Cryptography, pp. 285–294 (2007)

12. G. Paul and S. Maitra. RC4 State Information at Any Stage Reveals the Secret
Key. IACR Eprint Server, eprint.iacr.org, number 2007/208, June 1 (2007); This
is an extended version of [13]

13. Paul, G., Maitra, S.: Permutation after RC4 Key Scheduling Reveals the Secret
Key. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp.
360–377. Springer, Heidelberg (2007)

14. Paul, G., Maitra, S., Srivastava, R.: On Non-Randomness of the Permutation after
RC4 Key Scheduling. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS,
vol. 4851, pp. 100–109. Springer, Heidelberg (2007)

15. Paul, S., Preneel, B.: Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 52–67. Springer, Heidelberg (2003)

16. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

17. A. Roos. A class of weak keys in the RC4 stream cipher. Two posts in
sci.crypt, message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za
(1995), http://marcel.wanda.ch/Archive/WeakKeys

18. Tews, E.: Email Communications (September 2007)

19. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 bit WEP in less than 60
seconds. IACR Eprint Server, eprint.iacr.org, number 2007/120, April 1 (2007)

20. Vaudenay, S., Vuagnoux, M.: Passive-only key recovery attacks on RC4. In: Adams,
C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876. Springer, Heidelberg
(2007)

21. Wagner, D.: My RC4 weak keys. Post in sci.crypt, message-id
447o1l$cbj@cnn.Princeton.EDU (September 26, 1995), http://www.cs.berkeley.
edu/ daw/my-posts/my-rc4-weak-keys

Appendix A

Lemma 5. P
(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)

)
≈
(

1
N · (N−1

N)
y(y+1)

2
)
·(

y(N−2
N)y−1 + (N−1

N)y
)
, 0 ≤ y ≤ 31.

Proof. Sy+1[y] ≤ y means that it can take y+1 many values 0, 1, . . . , y. Suppose
Sy+1[y] = x, 0 ≤ x ≤ y − 1. Then Sy+1[x] can equal fy in the following way.

1. From round 1 (when i = 0) through x (when i = x − 1), j does not touch
the indices x and fy. Thus, after round x, Sx[x] = x and Sx[fy] = fy. This
happens with probability (N−2

N)x.
2. In round x + 1 (when i = x), jx+1 becomes equal to fy, and after the swap,

Sx+1[x] = fy and Sx+1[fy] = x. The probability of this event is P (jx+1 =
fy) = 1

N .

http://marcel.wanda.ch/Archive/WeakKeys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

268 S. Maitra and G. Paul

3. From round x + 2 (when i = x + 1) through y (when i = y − 1), again j
does not touch the indices x and fy. This, after round y, Sy[x] = fy and
Sy[fy] = x. This occurs with probability (N−2

N)y−x−1.
4. In round y + 1 (when i = y), jy+1 becomes equal to fy, and after the

swap, Sy+1[y] = Sy[fy] = x and Sy+1[Sy+1[y]] = Sy+1[x] = Sy[x] = fy.
This happens with probability P (jy+1 = fy) which is approximately equal
to (N−1

N)
y(y+1)

2 for small values of y as in the proof of [12, Lemma 1]. We
consider 0 ≤ y ≤ 31 for good approximation.

Considering the above events to be independent, we have
P
(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] = x)

)
= (N−2

N)x · 1
N · (N−2

N)y−x−1 · (N−1
N)

y(y+1)
2 = (1

N) · (N−2
N)y−1 · (N−1

N)
y(y+1)

2 .
Summing for all x in [0, . . . , y − 1], we get P

(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤

y − 1)
)

= (y
N) · (N−2

N)y−1 · (N−1
N)

y(y+1)
2 .

If Sy+1[y] = y, then Sy+1[Sy+1[y]] can equal fy in the following ways: (a)
fy has to be equal to y; this happens with probability 1

N , (b) index y is not
touched by j in any of the first y rounds; this happens with probability (N−1

N)y,
and (c) in the (y +1)-th round, jy+1 = fy so that there is no swap; this happens
with probability (N−1

N)
y(y+1)

2 . Hence, P
(
(Sy+1[Sy+1[y]] = fy)∧ (Sy+1[y] = y)

)
=

(1
N) · (N−1

N)y · (N−1
N)

y(y+1)
2 .

Adding the above two contributions (one for 0 ≤ Sy+1[y] ≤ y − 1 and the
other for Sy+1[y] = y), we get P

(
(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)

)
=(

1
N · (N−1

N)
y(y+1)

2
)
·
(
y(N−2

N)y−1 + (N−1
N)y

)
. ��

Lemma 6. Let pr(y) = P
(
(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 1)

)
, 0 ≤ y ≤ N − 1,

1 ≤ r ≤ N . Then pr(y) = (N−2
N)pr−1(y) + 1

N · (N−y
N) · (N−1

N)
y(y+1)

2 +2r−3, 0 ≤
y ≤ 31, y + 2 ≤ r ≤ N .

Proof. Then event
(
(Sr[Sr[y]] = fy)∧(Sr [y] ≤ r−1)

)
, where r ≥ y+2, can occur

in two mutually exclusive and exhaustive ways:
(
(Sr[Sr[y]] = fy)∧(Sr [y] ≤ r−2)

)
and

(
(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)

)
. We compute the contribution of each

separately.
In the r-th round, i = r − 1 and hence does not touch the indices 0, . . . , r− 2.

Hence the event
(
(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 2)

)
occurs if we already had(

(Sr−1[Sr−1[y]] = fy) ∧ (Sr−1[y] ≤ r − 2)
)

and jr /∈ {y, Sr−1[y]}. Thus, the
contribution of this part is pr−1(y) · (N−2

N).
The event

(
(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)

)
occurs if after the (r − 1)-th

round, Sr−1[r − 1] = r − 1, Sr−1[y] = fy and in the r-th round (i.e., when
i = r − 1), jr = y causing a swap involving the indices y and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the
rounds i = 0, . . . , r − 2. This happens with probability (N−1

N)r−1.
2. The event Sr−1[y] = fy happens with a probability which is approximately

equal to (N−y
N) ·(N−1

N)[
y(y+1)

2 +r−2] for small values of y as in the proof of [12,
Theorem 1]. We consider 0 ≤ y ≤ 31 for good approximation.

New Form of Permutation Bias and Secret Key Leakage 269

3. In the r-th round (when i = r − 1), jr becomes y with probability 1
N .

Thus, P
(
(Sr[Sr[y]] = fy)∧(Sr[y] = r−1)

)
= (N−1

N)r−1·(N−y
N)(N−1

N)[
y(y+1)

2 +r−2]·
1
N = 1

N · (N−y
N) · (N−1

N)
y(y+1)

2 +2r−3.
Adding the above two contributions, we get
pr(y) = (N−2

N)pr−1(y) + 1
N · (N−y

N) · (N−1
N)

y(y+1)
2 +2r−3. ��

The recurrence in Lemma 6 and the base case in Lemma 5 completely specify
the probabilities pr(y) for all y in [0, . . . , 31] and r in [y + 1, . . . , N].

Theorem 2 (Section 2): After the complete KSA,
P (SN [SN [y]] = fy) ≈ y

N · (N−1
N)

y(y+1)
2 +2(N−2) + 1

N · (N−1
N)

y(y+1)
2 −y+2(N−1) +

(N−y−1
N) · (N−y

N) · (N−1
N)

y(y+1)
2 +2N−3, 0 ≤ y ≤ 31.

Proof. Using the approximation N−2
N ≈ (N−1

N)2, the recurrence in Lemma 6

can be rewritten as pr(y) = (N−1
N)2pr−1(y) + 1

N (N−y
N) · (N−1

N)
y(y+1)

2 +2r−3, i.e.,

pr(y) = apr−1(y) + ar−1b, where a = (N−1
N)2 and b = 1

N (N−y
N) · (N−1

N)
y(y+1)

2 −1.
The solution of this recurrence is pr(y) = ar−y−1py+1(y) + (r − y − 1)ar−1b,
r ≥ y + 1. Substituting the values of py+1(y) (from Lemma 5), a and b, we get
pr(y) = y

N · (N−1
N)

y(y+1)
2 +2(r−2) + 1

N · (N−1
N)

y(y+1)
2 −y+2(r−1) + (r−y−1

N) · (N−y
N) ·

(N−1
N)

y(y+1)
2 +2r−3, y+1 ≤ r ≤ N , for initial values of y (0 ≤ y ≤ 31). Substituting

r = N and noting the fact that P
(
(SN [SN [y]] = fy) ∧ (SN [y] ≤ N − 1)

)
=

P (SN [SN [y]] = fy), we get the result. ��

Even after the approximation, our theoretical formula matches closely with the
experimental results for 0 ≤ y ≤ 31.

Efficient Reconstruction of RC4 Keys from

Internal States�

Eli Biham and Yaniv Carmeli

Computer Science Department
Technion – Israel Institute of Technology

Haifa 3200, Israel
{biham,yanivca}@cs.technion.ac.il

http://www.cs.technion.ac.il/∼biham/
http://www.cs.technion.ac.il/∼yanivca/

Abstract. In this paper we present an efficient algorithm for the re-
trieval of the RC4 secret key, given an internal state. This algorithm is
several orders of magnitude faster than previously published algorithms.
In the case of a 40-bit key, it takes only about 0.02 seconds to retrieve
the key, with success probability of 86.4%. Even if the algorithm cannot
retrieve the entire key, it can retrieve partial information about the key.
The key can also be retrieved if some of the bytes of the initial permu-
tation are incorrect or missing.

Keywords: Cryptanalysis, Initial Permutation, Key Scheduling, RC4,
Stream Cipher.

1 Introduction

The stream cipher RC4 was designed by Ron Rivest, and was first introduced
in 1987 as a proprietary software of RSA DSI. The details remained secret until
1994, when they were anonymously published on an internet newsgroup [1]. RSA
DSI did not confirm that the published algorithm is in fact the RC4 algorithm,
but experimental tests showed that it produces the same outputs as the RC4
software.

More than twenty years after its release, RC4 is still the most widely used
software stream cipher in the world. Among other uses, it is used to protect
internet traffic as part of the SSL (Secure Socket Layer) and TLS (Trans-
port Layer Security [3]) protocols, and to protect wireless networks as part
of the WEP (Wired Equivalent Privacy) and WPA (Wi-Fi Protected Access)
protocols.

The state of RC4 consists of a permutation S of the numbers 0, . . . , N − 1,
and two indices i, j ∈ {0, . . . , N − 1}, where N = 256. RC4 is comprised of
two algorithms: the Key Scheduling Algorithm (KSA), which uses the secret key
to create a pseudo-random initial state, and the Pseudo Random Generation
Algorithm (PRGA), which generates the pseudo-random stream.
� This work was supported in part by the Israel MOD Research and Technology Unit.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 270–288, 2008.
c© International Association for Cryptologic Research 2008

Efficient Reconstruction of RC4 Keys from Internal States 271

1.1 Previous Attacks

Most attacks on RC4 can be categorized as distinguishing attacks or key-retrieval
attacks. Distinguishing attacks try to distinguish between an output stream of
RC4 and a random stream, and are usually based on weaknesses of the PRGA.
Key recovery attacks recover the secret key, and are usually based on weaknesses
of the KSA.

In 1994, immediately after the RC4 algorithm was leaked, Finney [4] showed
a class of states that RC4 can never enter. This class consists of states satisfying
j = i+1 and S[i+1] = 1. RC4 preserves the class of Finney states by transferring
Finney states to Finney states, and non-Finney states to non-Finney states. Since
the initial state (the output of the KSA) is not a Finney state (in the initial state
i = j = 0) then RC4 can never enter these states. Biham et. al. [2] show how to
use Finney states with fault analysis in order to attack RC4.

Knudsen et al. [11] use a backtracking algorithm to mount a known plaintext
attack on RC4. They guess the values of the internal state, and simulate the
generation process. Whenever the output doesn’t agree with the real output,
they backtrack and guess another value.

Golić [7] describes a linear statistical weakness of RC4 caused by a positive
correlation between the second binary derivative of the least significant bit and 1,
and uses it to mount a distinguishing attack.

Fluhrer and McGrew [6] show a correlation between consecutive output bytes,
and introduce the notion of k-fortuitous states (classes of states defined by the
values of i, j, and only k permutation values, which can predict the outputs of
the next k iterations of the PRGA), and build a distinguisher based on that
correlation.

Mantin and Shamir generalize the notion of fortuitous states and define b-
predictive k-states (states with k known permutation values which predict only
b output words, for b ≤ k) and k-profitable states, which are classes of states in
which the index j behaves in the same way for k steps of the PRGA. The predic-
tive states cause certain output sequences to appear more often than expected
in a random sequence, thus they are helpful in mounting a distinguishing attack
on RC4.

Mantin and Shamir [14] also show that the second word of the output is
slightly more probable to be 0 than any other value. Using this bias they are
able to build a prefix distinguisher for RC4, based on only about N short streams.

In 2005 Mantin [13] observed that some fortuitous states return to their initial
state after the index i leaves them. These states have a chance to remain the
same even after a full cycle of N steps, and the same output of the state may
be observed again. Mantin uses these states to predict, with high probability,
future output bytes of the stream.

In practical applications, stream ciphers are used with a session key which is
derived from a shared secret key and an Initial Value (IV, which is transmitted
unencrypted). The derivation of the session key can be done in various ways such
as concatenating, XORing, or hashing (in WEP, for instance, the secret key is
concatenated after the IV).

272 E. Biham and Y. Carmeli

Many works try to exploit weaknesses of a specific method for deriving the ses-
sion key. Fluhrer, Mantin, and Shamir [5] have shown a chosen IV attack on the
case where the IV precedes the secret key. Using the first output bytes of 60l cho-
sen IVs (l is the length of the secret key), they recover the secret key with high
probability. They also describe an attack on the case where the IV follows the se-
cret key, which reveals significant information about the internal state just after
l steps of the KSA, thus reducing the cost of exhaustive search significantly.

In March 2007, Klein [10] (followed by Tews et. al. [17]) showed a statistical
correlation between any output byte and the value of S[j] at the time of the
output generation. They use this correlation to retrieve the entire secret key
using the first bytes of the output streams of about 40,000 known IVs (for the
cases the IV is concatenated either before or after the secret key).

Vaudenay and Vuagnoux [18] improve the attacks of [5,10] on the case of
WEP (where the IV is concatenated before the secret key). They present the
VX attack, which uses the sum of the the key bytes to reduce the dependency
between the other bytes of the key, such that the attack may work even if the
data is insufficient to retrieve one of the bytes.

Paul and Maitra [15] use biases in the first entries of the initial permutation to
recover the secret key from the initial permutation. They use the first entries of
the permutation to create equations which hold with certain probability. They
guess some of the bytes of the secret key, and use the equations to retrieve
the rest of the bytes. The success of their algorithm relies on the existence of
sufficiently many correct equations.

1.2 Outline of Our Contribution

In this paper we present methods that allow us to obtain significantly better
results than the algorithm of [15]. A major observation considers the difference
between pairs of equations instead of analyzing each equation separately. We
show that the probability that the difference of a pair of equations is correct
is much higher in most cases than the probabilities of each of the individual
equations. Therefore, our algorithm can rely on many more equations and apply
more thorough statistical techniques than the algorithm of [15]. We also show two
filtering methods that allow us to identify that some of the individual equations
(used in [15]) are probably incorrect by a simple comparison, and therefore, to
discard these equations and all the differences derived from them. Similarly, we
show filtering techniques that discard difference equations, and even correct some
of these equations. We also show how to create alternative equations, which can
replace the original equations in some of the cases and allow us to receive better
statistical information when either the original equations are discarded or they
lead to incorrect values. We combine these observations (and other observations
that we discuss in this paper) into a statistical algorithm that recovers the key
with a much higher success rate than the one of [15]. Our Algorithm also works
if some of the bytes of the initial permutation are missing or contain errors. Such
scenarios are likely results of side channel attacks, as in [9]. In these cases, our
algorithm can even be used to reconstruct the full correct initial permutation by

Efficient Reconstruction of RC4 Keys from Internal States 273

finding the correct key and then using it to compute the correct values. Details of
an efficient implementation of the data structures and internals of the algorithm
are also discussed.

The algorithm we propose retrieves one linear combination of the key bytes
at a time. In each step, the algorithm applies statistical considerations to choose
the subset of key bytes participating in the linear combination and the value
which have the highest probability to be correct. If this choice turns out to be
incorrect, other probable choices may be considered. We propose ways to discover
incorrect choices even before the entire key is recovered (i.e., before it can be
tested by running the KSA), and thus we are able to save valuable computation
time that does not lead to the correct key.

Our algorithm is much faster than the algorithm of [15], and has much better
success rates for the same computation time. For example, for 40-bit keys and
86% success rate, our algorithm is about 10000 times faster than the algorithm
of [15]. Additionally, even if the algorithm fails to retrieve the full key, it can
retrieve partial information about the key. For example, for 128-bit keys it can
give a suggestion for the sum of all the key bytes which has a probability of
23.09% to be correct, or give four suggestions such that with a probability of
41.44% the correct value of the sum of all the key bytes is one of the four.

1.3 Organization of the Paper

This paper is organized as follows: Section 2 describes the RC4 algorithms, gives
several observation about the keys of RC4, and defines notations which will
be used throughout this paper. Section 3 presents the bias of the first bytes
of the initial permutation, and describes the attack of [15], which uses these
biases to retrieve the secret key. Section 4 gathers several observations which
are the building blocks of our key retrieval algorithm, and have enabled us to
improve the result of [15]. Section 5 takes these building blocks and uses them
together to describe the detailed algorithm. In Section 6 we give some comments
and observations about an efficient implementation to our algorithm. Finally,
Section 7 summarizes the paper, presents the performance of our algorithm and
discusses its advantages over the algorithm of [15].

2 The RC4 Stream Cipher

The internal state of RC4 consists of a permutation S of the numbers 0, . . . , N−1,
and two indices i, j ∈ {0, . . . , N −1}. The permutation S and the index j form the
secret part of the state, while the index i is public and its value at any stage of the
stream generation is widely known. In RC4 N = 256, and thus the secret internal
state has log2

(
28 · 256!

)
≈ 1692 bits of information. Together with the public

value of i there are about 1700 bits of information in the internal state. Variants
with other values of N have also been analyzed in the cryptographic literature.

RC4 consists of two algorithms: The Key Scheduling Algorithm (KSA), and the
Pseudo Random Generation Algorithm (PRGA), both algorithms are presented in

274 E. Biham and Y. Carmeli

KSA(K) PRGA(S)
Initialization: Initialization:

For i = 0 to N − 1 i ← 0
S[i] = i j ← 0

j ← 0 Generation loop:
Scrambling: i ← i + 1

For i = 0 to N − 1 j ← j + S[i]
j ← j + S[i] + K[i mod l] Swap(S[i], S[j])
Swap(S[i], S[j]) Output S[S[i] + S[j]]

Fig. 1. The RC4 Algorithms

Figure 1. All additions in RC4 are performed modulo N . Therefore, in this paper,
additions are performed modulo 256, unless explicitly stated otherwise.

The KSA takes an l-byte secret key, K, and generates a pseudo-random initial
permutation S. The key size l is bounded by N bytes, but is usually in the
range of 5–16 bytes (40–128 bits). The bytes of the secret key are denoted by
K[0], . . . , K[l − 1]. If l < N the key is repeated to form a N -byte key. The KSA
initializes S to be the identity permutation, and then performs N swaps between
the elements of S, which are determined by the secret key and the content of
S. Note that because i is incremented by one at each step, each element of S
is swapped at least once (possibly with itself). On average each element of S is
swapped twice.

The PRGA generates the pseudo-random stream, and updates the internal
state of the cipher. In each iteration of the PRGA, the values of the indices are
updated, two elements of S are swapped, and a byte of output is generated. Dur-
ing the generation of N consecutive output bytes, each element of S is swapped
at least once (possibly with itself), and twice on average.

2.1 Properties of RC4 Keys

There are 28·256 = 22048 possible keys (every key shorter than 256 bytes has an
equivalent 256-byte key) but only about 21684 possible initial states of RC4. There-
fore, every initial permutation has on average about 2364 256-byte keys which cre-
ate it. Each initial permutation Ŝ has at least one, easy to find, 256-byte key: Since
every byte of the key is used only once during the KSA, the key bytes are chosen
one by one, where K[i] is chosen to set j to be the current location of Ŝ[i] (which
satifies, by this construction j > i). Thus, the Swap(S[i],S[j]) operation on iter-
ation i swaps the value Ŝ[i] = S[j] with S[i]. The value Ŝ[i] does not participate
in later swaps, and thus remains there until the end of the KSA.

The number of initial permutations which can be created by short keys, how-
ever, is much smaller. For example, the number of 16-byte keys is only 2128, and
the total number of keys bounded by 210 bytes is about 28·210 = 21680, which is
smaller than the total number of permutations.

Efficient Reconstruction of RC4 Keys from Internal States 275

2.2 Notations

We use the notation K[a, b] to denote the sum of the key bytes K[a] and K[b],
i.e.,

K[a, b] � K[a mod l] + K[b mod l] mod N.

Similarly, K[a, b, c], K[a, b, c, d], etc., are the sums of the corresponding key bytes
for any number of comma-separated arguments. We use the notation K[a . . . b]
to denote the sum of the key bytes in the range a, a + 1, . . . , b, i.e.,

K[a . . . b] �
b∑

r=a

K[r mod l] modN.

We also use combinations of the above, for instance:

K[a, b . . . c] � K[a mod l] +
c∑

r=b

K[r mod l],

K[a . . . b, c . . . d] �
b∑

r=a

K[r mod l] +
d∑

r=c

K[r mod l].

We use the notations Sr and jr to denote the values of the permutation S
and the index j after r iterations of the loop of the KSA have been executed.
The initial value of j is j0 = 0 and its value at the end of the KSA is jN . S0

is the identity permutation, and SN is the result of the KSA (i.e., the initial
permutation that we study in this paper). For clarity, from now on the notation
S (without an index) denotes the initial permutation SN .

3 Previous Techniques

In 1995 Roos [16] noticed that some of the bytes of the initial permutation have
a bias towards a linear combination of the secret key bytes. Theorem 1 describes
this bias (the theorem is taken from [16], but is adapted to our notations).

Theorem 1. The most likely value for S[i] at the end of the KSA is:

S[i] = K[0 . . . i] +
i(i + 1)

2
mod N. (1)

Only experimental results for the probabilities of the biases in Theorem 1 are
provided in [16]. Recently, Paul and Maitra [15] supplied an analytic formula
for this probability, which has corroborated the results given by [16]. Theorem 2
presents their result.

Theorem 2 (Corollary 2 of [15]). Assume that during the KSA the index j
takes its values uniformly at random from {0, 1, . . . , N − 1}. Then,

P

(
S[i] = K[0 . . . i] +

i(i + 1)
2

)
≥
(

N − i

N

)
·
(

N − 1
N

) i(i+1)
2 +N

+
1
N .

276 E. Biham and Y. Carmeli

For any fixed value of i, the bias described by (1) is the result of a combination
of three events that occur with high probability:

1. Sr[r] = r for r ∈ {0, . . . , i} (i.e., the value of S[r] was not swapped before
the r-th iteration).

2. Si[ji+1] = ji+1.
3. jr �= i for r ∈ {i + 1, . . . , N − 1}.

If the first event occurs then the value ji+1 is affected only by the key bytes and
constant values:

ji+1 =
i∑

r=0

(K[r] + Sr[r]) =
i∑

r=0

(K[r] + r) = K[0 . . . i] +
i (i + 1)

2
.

If the second event occurs, then after i + 1 iteration of the KSA Si+1[i] = ji+1.
The third event ensures that the index j does not point to S[i] again, and
therefore S[i] is not swapped again in later iterations of the KSA. If all three
events occur then (1) holds since

SN [i] =
↑
3

Si+1[i] =
↑
2

ji+1 =
i∑

r=0

(K[r] + Sr[r]) =
↑
1

K[0 . . . i] +
i (i + 1)

2
.

The probabilities derived from Theorem 2 for the biases of the first 48 entries
of S (S[0] . . . S[47]) are given in Table 1 (also taken from [15]). It can be seen
that this probability is about 0.371 for i = 0, and it decreases as the value of
i increases. For i = 47 this probability is only 0.008, and for further entries it
becomes too low to be used by the algorithm (the a-priori probability that an
entry equals any random value is 1/256 ≈ 0.0039). The cause for such a decrease
in the bias is that the first of the aforementioned events is less likely to occur
for high values of i, as there are more constraints on entries in S.

Given an initial permutation S (the result of the KSA), each of its entries
can be used to derive a linear equation of the key bytes, which holds with the
probability given by Theorem 2. Let Ci be defined as

Ci = S[i] − i · (i + 1)
2

.

Table 1. The Probabilities Given by Theorem 2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prob. .371 .368 .364 .358 .351 .343 .334 .324 .313 .301 .288 .275 .262 .248 .234 .220
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Prob. .206 .192 .179 .165 .153 .140 .129 .117 .107 .097 .087 .079 .071 .063 .056 .050
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Prob. .045 .039 .035 .031 .027 .024 .021 .019 .016 .015 .013 .011 .010 .009 .008 .008

Efficient Reconstruction of RC4 Keys from Internal States 277

Using (1) the i’th equation (derived from the entry S[i]) becomes:

K[0 . . . i] = Ci. (2)

The RecoverKey algorithm of [15] uses these equations in order to retrieve the
secret key of RC4. Let n and m be parameters of the algorithm, and recall that
l is the length of the secret key in bytes. For each combination of m independent
equations out of the first n equations of (2), the algorithm exhaustively guesses
the value of l − m key bytes, and solves the m equations to retrieve the rest of
the key bytes. The success of the RecoverKey algorithm relies on the existence
of m correct and linearly independent equations among the first n equations.
The success probabilities and the running time of the RecoverKey algorithm for
different key sizes and parameters, as given by [15], are presented in Table 2.1

4 Our Observations

Several important observations allow us to suggest an improved algorithm for
retrieving the key from the initial permutation.

4.1 Subtracting Equations

Let i2 > i1. As we expect that K[0 . . . i1] = Ci1 and K[0 . . . i2] = Ci2 , we also
expect that

K[0 . . . i2] − K[0 . . . i1] = K[i1 + 1 . . . i2] = Ci2 − Ci1 (3)

holds with the product of the probabilities of the two separate equations. How-
ever, we observe that this probability is in fact much higher. If the following
three events occur then (3) holds (compare with the three events described in
Section 3):

1. Sr[r] = r for r ∈ {i1 + 1, . . . , i2} (i.e., the value of S[r] was not swapped
before the r-th iteration).

2. Si1 [ji1+1] = ji1+1 and Si2 [ji2+1] = ji2+1.
3. jr �= i1 for r ∈ {i1 + 1, . . . , N − 1}, and jr �= i2 for r ∈ {i2 + 1, . . . , N − 1}.

1 We observe that the formula for the complexity given in [15] is mistaken, and the
actual values should be considerably higher than the ones cited in Table 2. We expect
that the correct values are between 25 and 28 times higher. The source for the mistake
is two-fold: the KSA is considered as taking one unit of time, and the complexity
analysis is based on an inefficient implementation of their algorithm. Given a set
of l equations, their implementation solves the set of equations separately for every
guess of the remaining l − m variables, while a more efficient implementation would
solve them only once, and only then guess the values of the remaining bytes. Our
complexities are even lower than the complexities given in [15], and are much lower
than the correct complexities.

We also observe that the complexities given by [15] for the case of 16-byte keys do
not match the formula they publish (marked by ∗ in Table 2). The values according
to their formula should be 282, 279, 273 and 269 rather than 260, 263, 264 and 264,
respectively. Their mistake is possibly due to an overflow in 64-bit variables.

278 E. Biham and Y. Carmeli

Table 2. Success Probabilities and Running Time of the RecoverKey Algorithm of [15]

l n m Time PSuccess l n m Time PSuccess

5 16 5 218 0.250 10 48 9 243 0.107
5 24 5 221 0.385 12 24 8 258 0.241
8 16 6 234 0.273 12 24 9 250 0.116
8 20 7 229 0.158 16 24 9 260 ∗ 0.185
8 40 8 233 0.092 16 32 10 263 ∗ 0.160

10 16 7 243 0.166 16 32 11 264 ∗ 0.086
10 24 8 240 0.162 16 40 12 264 ∗ 0.050
∗ Incorrect entries — see footnote 1.

If the first event occurs then the index j is affected in iterations i1 +1 through
i2 only by the key bytes and constant values:

ji2+1 − ji1+1 =
i2∑

r=i1+1

(K[r] + Sr[r]) = K[i1 + 1 . . . i2] +
i2∑

r=i1+1

r

If the second event occurs, then after i1+1 iteration of the KSA Si1+1[i1] = ji1+1,
and after i2 + 1 iteration Si2+1[i2] = ji2+1. The third event ensures that the
index j does not point to S[i1] or S[i2] again, and therefore S[i1] and S[i2] are
not swapped again in later iterations. If all three events occur then (3) holds
since

SN [i2] − SN [i1] =
↑
3

Si2+1[i2] − Si1+1[i1] =
↑
2

ji2+1 − ji1+1 =

=
i2∑

r=i1+1

(K[r] + Sr[r]) =
↑
1

K[i1 + 1 . . . i2] +
i2∑

r=i1+1

r =

= K[i1 + 1 . . . i2] +
i2 (i2 + 1)

2
− i1 (i1 + 1)

2
,

and therefore
K[i1 + 1 . . . i2] = Ci2 − Ci1 .

Theorem 3 states the exact bias of such differences.

Theorem 3. Assume that during the KSA the index j takes its values uniformly
at random from {0, 1, . . . , N − 1}, and let 0 ≤ i1 < i2 < N . Then,
P (Ci2 − Ci1 = K[i1 + 1 . . . i2]) ≥[(

1 − i2
N

)2 ·
(
1 − i2−i1+2

N

)i1 ·
(
1 − 2

N

)N−i2−1 ·
∏i1−i2−1

r=0

(
1 − r+2

N

)]
+ 1

N .

The proof of Theorem 3 is based on the discussion which precedes it, and is
similar to the proof of Theorem 2 given in [15]. The proof is based on the
analysis of the probabilities that the values of j throughout the KSA are such
that the three events described earlier hold.

Efficient Reconstruction of RC4 Keys from Internal States 279

As a result of Theorem 3 our algorithm has many more equations to rely
on. We are able to use the difference equations which have high enough prob-
ability, and furthermore, we can now use data which was unusable by the al-
gorithm of [15]. For instance, according to Theorem 2, the probability that
K[0 . . .50] = C50 is 0.0059, and the probability that K[0 . . .52] = C52 is 0.0052.
Both equations are practically useless by themselves, but according to Theorem 3
the probability that K[51 . . . 52] = C52 − C50 is 0.0624, which is more than ten
times the probabilities of the individual equations.

Moreover, the biases given by Theorem 2 and used by the RecoverKey algo-
rithm of [15] are dependent. If Sr[r] �= r for some r, then the first event described
in Section 3 is not expected to hold for any i > r, and we do not expect equations
of the form (2) to hold for such values of i. However, equations of the form (3) for
i2 > i1 > r may still hold under these conditions, allowing us to handle initial
permutations which the RecoverKey algorithm cannot.

4.2 Using Counting Methods

Since every byte of the secret key is used more than once, we can obtain several
equations for the same sum of key bytes. For example, all the following equations:

C1 = K[0 . . . 1]
Cl+1 − Cl−1 = K[l . . . l + 1] = K[0 . . .1]

C2l+1 − C2l−1 = K[2l . . . 2l + 1] = K[0 . . .1]

suggest values for K[0] + K[1]. If we have sufficiently many suggestions for the
same sum of key bytes, the correct value of the sum is expected to appear more
frequently than other values. We can assign a weight to each suggestion, use
counters to sum the weights for each possible candidate, and select the can-
didate which has the highest weight. We may assign the same weight to all
the suggestions (majority vote) or a different weight for each suggestion (e.g.,
according to its probability to hold, as given by Theorems 2 and 3). We demon-
strate the use of counters using the previous example. Assume that C1 = 178,
Cl+1 − Cl−1 = 210 and C2l+1 − C2l−1 = 178 are the only suggestions for the
value of K[0 . . .1], and assume that all three suggestions have equal weights of
one. Under these conditions the value of the counter of 178 will be two, the
value of the counter of 210 will be one, and all other counters will have a value
of zero. We guess that K[0 . . .1] = 178, since it has the highest total weight of
suggestions.

A simple algorithm to retrieve the full key would be to look at all the sug-
gestions for each of the key bytes, and choose the most frequent value for each
one. Unfortunately, some of the bytes retrieved by this sort of algorithm are
expected to be incorrect. We can run the KSA with the retrieved key to test its
correctness, but if the test fails (the KSA does not produce the expected initial
permutation), we get no clue to where the mistake is.

However, we observe that we do not need to limit ourselves to a single key byte,
but rather consider all candidates for all possible sums of key bytes suggested by

280 E. Biham and Y. Carmeli

the equations, and select the combination with the highest total weight. Once
we fix the chosen value for the first sum, we can continue to another, ordered by
the weight, until we have the entire key. There is no need to consider sequences
which are linearly dependent in prior sums. For example, if we have already fixed
the values of K[0] + K[1] and K[0], there is no need to consider suggestions for
K[1]. Therefore, we need to set the values of exactly l sums in order to retrieve
the full key. Moreover, each value we select allows us to substantially reduce the
number of sums we need to consider for the next step, as it allows us to merge
the counters of some of the sums (for example, if we know that K[0]+K[1] = 50
then we can treat suggestions for K[0] = 20 together with K[1] = 30).

A natural extension to this approach is trying also the value with the sec-
ond highest counter, in cases where the highest counter is found wrong. More
generally, once a value is found wrong, or a selection of a sequence is found un-
satisfactory, backtracking is performed. We denote the number of attempts to
be tried on the t-th guess by λt, for 0 ≤ t < l. This method can be thought of
as using a DFS algorithm to search an ordered tree of height l + 1, where the
degree of vertices on the t-th level is λt and every leaf represents a key.

4.3 The Sum of the Key Bytes

Denote the sum of all l key bytes by s, i.e.,

s = K[0 . . . l − 1] =
l−1∑
r=0

K[r].

The value of s is especially useful. The linear equations derived from the initial
permutation give sums of sequences of consecutive key bytes. If we know the
value of s, all the suggestions for sequences longer than l bytes can be reduced
to suggestions for sequences which are shorter than l bytes. For example, from
the following equations:

C1 = K[0 . . . 1]
Cl+1 = K[0 . . . l + 1] = s + K[0 . . . 1]

C2l+1 = K[0 . . . 2l + 1] = 2s + K[0 . . . 1]

we get three suggestions C1, Cl+1−s, and C2l+1−2s for the value of K[0]+K[1].
After such a reduction is performed, all the remaining suggestions reduce to

sums of fewer than l key bytes, of the form K[i1 . . . i2], where 0 ≤ i1 < l and
i1 ≤ i2 < i1+l−1. Thus, there are only l·(l−1) possible sequences of key bytes to
consider. Furthermore, the knowledge of s allows us to unify every two sequences
which sum up to K[0 . . . l − 1] = s (as described in Section 4.2), thus reducing
the number of sequences to consider to only l·(l−1)/2 (without loss of generality,
the last byte of the key, K[l − 1], does not appear in the sequences we consider,
so each sum we consider is of the form K[i1 . . . i2], for 0 ≤ i1 ≤ i2 < l − 1). In
turn, there are more suggestions for each of those unified sequences than there
were for each original sequence.

Efficient Reconstruction of RC4 Keys from Internal States 281

Table 3. Probabilities that s is Among the Four Highest Counters

Key Length Highest Second Third Fourth
Counter Highest Highest Highest

5 0.8022 0.0618 0.0324 0.0195
8 0.5428 0.1373 0.0572 0.0325
10 0.4179 0.1604 0.0550 0.0332
12 0.3335 0.1618 0.0486 0.0287
16 0.2309 0.1224 0.0371 0.0240

Fortunately, besides being the most important key byte sequence, s is also the
easiest sequence to retrieve, as it has the largest number of suggestions. Any sum
of l consecutive bytes, of the form K[i + 1 . . . i + l] = Ci+l −Ci, for any i, yields
a suggestion for s. In a similar way, we can consider sequences of 2l bytes for
suggestions for 2s, and we can continue to consider sequences of αl consecutive
bytes, for any integer α. However, for common key lengths, the probability of a
correct sum with α > 2 is too low.

As discussed in Section 4.2, we may want to consider also the second high-
est counter and perform backtracking. Our experimental results for the success
probabilities of retrieving s are presented in Table 3. For each of the key lengths
in the table, we give the probability that the value of s is the value with the
highest counter, second highest, third highest, or fourth highest. The data in
the table was compiled by testing 1,000,000,000 random keys for each of the key
lengths, and considering all suggestions with a probability higher than 0.01.

4.4 Adjusting Weights and Correcting Equations

During the run of the algorithm, we can improve the accuracy of our guesses
based on previous guesses. Looking at all suggestions for sequences we have
already established, we can identify exactly which of them are correct and which
are not, and use this knowledge to gain information about intermediate values of
j and S during the execution of the KSA. We assume that if a suggestion Ci2−Ci1

for K[i1 + 1 . . . i2] is correct, then all three events described in Section 4.1 occur
with a relatively high probability. Namely, we assume that:

• Sr[r] = r for i1 + 1 ≤ r ≤ i2 (follows from event 1 from Section 4.1).
• S[i1] = ji1+1 and S[i2] = ji2+1 (together, follow from events 2 and 3 from

Section 4.1.

This information can be used to better assess the probabilities of other sugges-
tions. When considering a suggestion Ci4 − Ci3 for a sum of key bytes
K[i3 + 1 . . . i4] which is still unknown, if we have an indication that one of the three
events described in Section 4.1 is more likely to have occurred than predicted by
its a-priori probability, the weight associated with the suggestion can be increased.
Example 1 demonstrates a case in which such information is helpful.

282 E. Biham and Y. Carmeli

Example 1. Assume that the following three suggestions are correct:

1. K[0 . . . 9] = C9,
2. K[12 . . . 16] = C16 − C11,
3. K[7 . . . 14] = C14 − C6,

and assume that for each of them the three events described in Section 4.1 hold
during the execution of the KSA. From the first suggestion we conclude that
j10 = S[9], from the second suggestions we learn that j12 = S[11], and the third
suggestion teaches us that Sr[r] = r for 7 ≤ r ≤ 14 (and in particular for r=10
and r=11). It can be inferred from the last three observations and according
to the explanation in Section 4.1 that under these assumptions K[10 . . . 11] =
C11 − C9. Since the probabilities that the assumptions related to K[10 . . . 11] =
C11 − C9 hold are larger than the a-priory probability (due to the relation to
the other suggestions, which are known to be correct), the probability that this
suggestion for K[10 . . . 11] is correct is increased.

Similarly, we can gain further information from the knowledge that suggestions
are incorrect. Consider r’s for which there are many incorrect suggestions that
involve Cr, either with preceding Ci1 (Cr − Ci1 , i1 < r) or with succeeding Ci2

(Ci2 − Cr, i2 > r). In such cases we may assume that SN [r] is not the correct
value of jr+1, and thus all other suggestions involving Cr are also incorrect.

Consider r’s for which there are many incorrect suggestions that pass over r,
i.e., of the form Ci2 − Ci1 where i1 < r ≤ i2. In this case, we may assume that
during the KSA Sr[r] �= r, and thus all other suggestions that pass over r are
also incorrect. All suggestions that pass over r for which Sr[r] �= r is the only
event (of the three events described in Section 4.1) that does not hold, must
have the same error ∆ = Ci2 − Ci1 − K[i1 + 1 . . . i2] (which is expected to be
∆ = Sr[r] − r). Thus, if we find that for some r several suggestions that pass
over r have the same error ∆, we can correct other suggestions by ∆.

4.5 Refining the Set of Equations

We observe that some of the equations can be discarded based on the values of
the initial permutation, and some others have alternatives. This observation is
also applicable to the equations used by the algorithm of [15], and could have
improved its running time and success probabilities.

If S[i′] < i′ for some i′, then the equation derived from S[i′] should be discarded,
since x = S[i′] is not expected to satisfy (1). In this case, even if Event 1 and
Event 3 (of the three events described in Section 3) hold, it is clear that Event 2
does not, as the number x has already been swapped in a previous iteration (when
i = x), and is not likely to be in location S[i′] after i′ iterations of the KSA.

If S[i′] > i′ for some i′, then an alternative equation may be derived from
x = S[i′], in addition to the equation derived by the algorithm of [15]. The
equations used by [15] assume that the assignment S[i′] ← x occurred with
i = i′, and j = S[j] = x (Figure 2(a)). However, in this case, another likely
possibility is that the assignment S[i′] ← x occurred with i = S[i] = x, and

Efficient Reconstruction of RC4 Keys from Internal States 283

i

xi’
x

j

S ...

(a)

xi’
xS ...

j i

(b)

Fig. 2. Two Probable Alternatives to the Positions of the Indices i and j Right Before
the Assignment S[i′] ← x Occurred

j = i′ (Figure 2(b)). In the latter case, jx+1 = i′, and the following equation
holds with a high probability:

i′ = K[0 . . . x] +
x(x + 1)

2
.

It can be shown that this equation holds with a probability slightly higher than
the probability given by Theorem 2 for i = x. We now have two likely possibilities
for the value of jx+1, i′ and S[x], which yield two alternative equations. Let C̄x

be defined as:

C̄x = S−1[x] − x(x + 1)
2

.

Using this notation, the proposed alternative equation is

K[0 . . . x] = C̄x .

Every time Cx is used to create a suggestion (by subtracting equations), the value
C̄x (if exists) can replace it to create an alternative suggestion for the same sum
of key bytes. It can be shown that the probabilities that C̄x2 − Cx1 , Cx2 − C̄x1

and C̄x2 − C̄x1 hold are slightly higher than the probability that Cx2 −Cx1 holds
(for any x1 < x2). Note that we do not expect that many equations have such
alternatives, because under the assumption that j takes its values uniformly at
random, it is much more likely that ji+1 > i for small values of i. Given the
two alternatives it is possible to run the algorithm twice, while on each run
consider only suggestions derived from the set of equations with one of the two
alternatives. However, due to our use of counting methods, both equations can
be added to the same set of equations, such that suggestions derived from both
alternatives are counted together, in the same counting process.

4.6 Heuristic Pruning of the Search

In Section 4.2 we have described the backtracking approach to finding the key
as a DFS search on an ordered tree. Once a guessed value is found wrong (the

284 E. Biham and Y. Carmeli

FIND KEY(S)

1. Build the equations: Compute the values of {Ci} and {C̄i}, for the indices i
where they exist (described in Sections 3 and 4.5).

2. Sum the weights of suggestions for each of the N candidates for s (described
in Section 4.3).

3. For x = 1 to λ0 do:
(a) Find a candidate for s with the highest counter, w0, which has not been

checked yet, and set s = K[0 . . . l − 1] = w0.
(b) Mark the correct suggestions for s = w0, adjust weights and correct

remaining suggestions accordingly (described in Section 4.4).
(c) Initialize N counters for each sequence of key bytes K[i1 . . . i2] such that

0 ≤ i1 ≤ i2 < l − 1, and sum the weights of suggestions for each of them
(described in Sections 4.1, 4.2 and 4.3).

(d) Call REC SUBROUTINE(1) to retrieve the rest of the key. If the correct
key is found, return it.

4. Return FAIL.

Fig. 3. The FIND KEY Algorithm

keys obtained from it fail to create the requested permutation) we go back and
try the other likely guesses. Naturally, by trying more guesses we increase our
chances to successfully retrieve the key, but we increase the computation time
as well. If we can identify an internal nodes as representing a wrong guess, we
can skip the search of the entire subtree rooted from it, and thus reduce the
computation time.

Section 4.2 also describes the merging of counters of different sequences ac-
cording to previous guesses, which allows us to consider fewer key sequences,
with more suggestions for each. If the guesses that we have already made are
correct, we expect that after such a merge the value of the highest counter is
significantly higher than other counters. If the former guesses are incorrect, we
don’t expect to observe such behavior, as the counters of different sequences will
be merged in a wrong way.

Let µt for 0 ≤ t < l be a threshold for the t-th guess. When considering
candidates for the t-th guess, we only consider the ones with a counter value of
at least µt. The optimal values of the thresholds can be obtained empirically,
and depend on the key length (l), the weights given to the suggestions, and
the number of attempts for each guess (λt’s). Even if the use of these thresholds
may cause correct guesses to be aborted, the overall success probability may still
increase, since the saved computation time can be used to test more guesses.

5 The Algorithm

The cornerstones of our method have been laid in Section 4. In this section
we gather all our previous observations, and formulate them as an algorithm to

Efficient Reconstruction of RC4 Keys from Internal States 285

retrieve the secret key from the initial permutation S. The FIND KEY algorithm
(presented in Figure 3) starts the search by finding s, and calls the recursive
algorithm REC SUBROUTINE (Figure 4). Each recursive call guesses another
value for a sum of key bytes, as described in the previous section.

The optimal values of the parameters λ0, . . . , λl−1, µ1, . . . , µl−1 used by the
algorithm and the weights it assigns to the different suggestions can by empiri-
cally found, so that the success probability of the algorithm and/or the average
running time are within a desired range.

6 Efficient Implementation

Recall that on each iteration of the algorithm some of the sums of the key
bytes are already known (or guessed). The suggestions for the unknown sums
are counted using a set of N counters, one counter for each possible value of that
sum. In Section 4.2 we stated that according to the prior guesses, the suggestions
for several sums of key bytes may be counted together (i.e., after a new guess is
made, some of the counters may be merged with counters of other sums). This
section describes an efficient way to discover which counters should be merged,
and how to merge them.

The known bytes induce an equivalence relation between the unknown sums of
the key bytes. Two sums are in the same equivalence class if and only if the value of
each of them can be computed from the value of the other and the values of known
sums. We only need to keep a set of N counters for each equivalence class, as all

REC SUBROUTINE(t)

1. If t = l, extract the key from all the l guesses made so far, and verify it. If
the key is correct, return it. Otherwise, return FAIL.

2. For y = 1 to λt do:
(a) Find a combination of key sequence and a candidate for its sum, with the

highest counter among the sum of sequences that hasn’t already been
guessed yet. Denote them by K[i1 . . . i2] and wt, respectively, and denote
the value of that counter by h.

(b) If h < µt, return FAIL (described in Section 4.6).
(c) Set K[i1 . . . i2] = wt.
(d) Mark the correct suggestions for K[i1 . . . i2] = wt, adjust weights and

correct remaining suggestions accordingly (described in Section 4.4).
(e) Merge the counters which may be unified as a result of the guess from 2a

(described in Section 4.2).
(f) Call REC SUBROUTINE(t + 1). If the correct key is found, return it.

Otherwise, cancel the most recent guess (revert any changes made during
the current iteration, including the merging of the counters).

3. Return FAIL.

Fig. 4. The Recursive REC SUBROUTINE Algorithm

286 E. Biham and Y. Carmeli

suggestions for sums which are in the same equivalence class should be counted
together. When we merge counters, we actually merge equivalence classes.

We represent our knowledge about the values of the sums as linearly indepen-
dent equations of the key bytes. After r key sums are guessed, there are r linear
equations of the form

l−1∑
i=0

ai,jK[j] = bj ,

for 1 ≤ j ≤ r, where 0 ≤ ai,j < N . The equations are represented as a tri-
angular system of equations, in which the leading coefficient (the first non-zero
coefficient) of each equation is one. These r equations form a basis of a linear
subspace of all the sums we already know. In this representation the equivalence
class of any sum of key bytes K[i1 . . . i2] can be found efficiently: We represent
the sum as a linear equation of the key bytes, and apply the Gaussian elimination
process, such that the system of equations is kept triangular, and the leading
coefficient of each equation is one. Sums from the same equivalence class give
the same result, as they all extend the space spanned by the r equations to the
same larger space spanned by r+1 equations. The resulting unique equation can
be used as an identifier of the equivalence class. When the counters are merged
after a guess of a new value, the same process is applied — we apply Gaussian
elimination to the equation representing the current equivalence class in order
to discover the equivalence class it belongs to on the next level, and merge the
counters. Note that as a result of the Gaussian elimination process we also learn
the exact linear mapping between the counters of the current equivalence classes,
and the counters of the classes of the next step.

7 Discussion

In this paper we presented an efficient algorithm for the recovery of the secret
key from the initial state of RC4, using the first bytes of the permutation. The
presented algorithm can also work if only some of the bytes of the initial per-
mutation are known. In this case, suggestions are derived only from the known
bytes, and the algorithm is only able to retrieve values of sums of key bytes for
which suggestions exist. However, as a result of the reduced number of sugges-
tions the success rates are expected to be lower. The algorithm can also work if
some of the bytes contain errors, as the correct values of the sums of key bytes
are still expected to appear more frequently than others.

Since changes to the internal state during the stream generation (PRGA) are
reversible, our algorithm can also be applied given an internal state at any point
of the stream generation phase. Like in [15], our algorithm is also applicable
given an intermediate state during the KSA, i.e., Si (i < N), instead of SN .

We tested the running times and success probabilities of our algorithm for
different key lengths, as summarized in Table 4. The tests were performed on a
Pentium IV 3GHz CPU. The running times presented in the table are averaged
over 10000 random keys. We have assigned a weight of two to suggestions with

Efficient Reconstruction of RC4 Keys from Internal States 287

Table 4. Empirical Results of The Proposed Attack

Time of
Key Length Time PSuccess Improved [15]∗[sec]

5 0.02 0.8640 366
8 0.60 0.4058 2900
10 1.46 0.0786 183
10 3.93 0.1290 2932
12 3.04 0.0124 100
12 7.43 0.0212 1000
16 278 0.0005 500

∗ Our rough estimation for the time it would take
an improved version of the algorithm of [15] achieve
the same PSuccess (see footnote 1). The time of the
algorithm of [15] is much slower.

probability higher than 0.05, a weight of one to suggestions with probability
between 0.008 and 0.05 and a weight of zero to all other suggestions. The values
of the parameters λ0, . . . , λl−1, µ1, . . . , µl−1 were chosen in an attempt to achieve
the best possible success probability with a reasonable running time. As can be
seen in the table, our algorithm is much faster than the one of [15] for the same
success rate, and in particular in the case of 5-byte keys, it is about 10000 times
faster. Note that with the same computation time, our algorithm achieves about
four times the success rate compared to [15] in most presented cases.

Another important advantage of our algorithm over the algorithm of [15] is
that when the algorithm of [15] fails to retrieve the key, there is no way to
know which of the equations are correct, nor is it possible to retrieve partial
information about the key. However, in our algorithm, even if the algorithm fails
to retrieve the full key, its first guesses are still likely to be correct, as those
guesses are made based on counters with high values. This difference can be
exemplified by comparing the success rates of obtaining the sum of key bytes s
(Table 3) with the success rates of obtaining the entire key (Table 4).

Acknowledgments

The authors would like to thank Adi Shamir for his comments.

References

1. Anonymous, RC4 Source Code, CypherPunks mailing list, September 9 (1994),
http://cypherpunks.venona.com/date/1994/09/msg00304.html

2. Biham, E., Granboulan, L., Nguy˜̂en, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

http://cypherpunks.venona.com/date/1994/09/msg00304.html

288 E. Biham and Y. Carmeli

3. Dierks, T., Allen, C.: The TLS Protocol, Version 1.0, Internet Engineering Task
Force (January 1999), ftp://ftp.isi.edu/in-notes/rfc2246.txt

4. Finney, H.: An RC4 Cycle That Can’t Happen, Usenet newsgroup sci.crypt
(September 1994)

5. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

6. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream
Generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

7. Golić, J.D.: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997)

8. Grosul, A.L., Wallach, D.S.: A Related-Key Cryptanalysis of RC4, Technical
Report TR-00-358, Department of Computer Science, Rice University (June 2000),
http://cohesion.rice.edu/engineering/computerscience/tr/TR Download.
cfm?SDID=126

9. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryption Keys (February 2008),
http://citp.princeton.edu/pub/coldboot.pdf

10. Klein, A.: Attacks on the RC4 Stream Cipher (2007),
http://cage.ugent.be/∼klein/RC4/RC4-en.ps

11. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

12. Mantin, I.: Analysis of the Stream Cipher RC4, Master Thesis, The Weizmann
Institute of Science, Israel (2001),
http://www.wisdom.weizmann.ac.il/∼itsik/RC4/Papers/Mantin1.zip

13. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Genera-
tor. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506.
Springer, Heidelberg (2005)

14. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

15. Paul, G., Maitra, S.: Permutation After RC4 Key Scheduling Reveals the Secret
Key. In: Adams, C., Miri, A., Wiener, M. (eds.) LNCS, vol. 4876, pp. 260–377.
Springer, Heidelberg (2007),
http://eprint.iacr.org/2007/208.pdf

16. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher, Two posts in sci.crypt
(1995), http://marcel.wanda.ch/Archive/WeakKeys

17. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 Bit WEP in Less than 60
Seconds (2007), http://eprint.iacr.org/2007/120.pdf

18. Vaudenay, S., Vuagnoux, M.: Passive-only Key Recovery Attacks on RC4. In:
Adams, C., Miri, A., Wiener, M. (eds.) LNCS, vol. 4876, pp. 344–359. Springer,
Heidelberg (2007),
http://infoscience.epfl.ch/record/115086/files/VV07.pdf

ftp://ftp.isi.edu/in-notes/rfc2246.txt
http://cohesion.rice.edu/engineering/computerscience/tr/TR_Download.cfm?SDID=126
http://cohesion.rice.edu/engineering/computerscience/tr/TR_Download.cfm?SDID=126
http://citp.princeton.edu/pub/coldboot.pdf
http://cage.ugent.be/~klein/RC4/RC4-en.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Mantin1.zip
http://eprint.iacr.org/2007/208.pdf
http://marcel.wanda.ch/Archive/WeakKeys
http://eprint.iacr.org/2007/120.pdf
http://infoscience.epfl.ch/record/115086/files/VV07.pdf

An Improved Security Bound for HCTR

Debrup Chakraborty and Mridul Nandi

Department of Computer Science
CINVESTAV-IPN

Mexico City, Mexico
debrup@cs.cinvestav.mx, mridul.nandi@gmail.com

Abstract. HCTR was proposed by Wang, Feng and Wu in 2005. It is a
mode of operation which provides a tweakable strong pseudorandom per-
mutation. Though HCTR is quite an efficient mode, the authors showed
a cubic security bound for HCTR which makes it unsuitable for applica-
tions where tweakable strong pseudorandom permutations are required.
In this paper we show that HCTR has a better security bound than what
the authors showed. We prove that the distinguishing advantage of an
adversary in distinguishing HCTR and its inverse from a random per-
mutation and its inverse is bounded above by 4.5σ2/2n, where n is the
block-length of the block-cipher and σ is the number of n-block queries
made by the adversary (including the tweak).

1 Introduction

A block-cipher mode of operation is a specific way to use a block-cipher to en-
crypt messages longer than the block-length of the block-cipher. In the literature
there are different modes of operations which provide different kinds of security
services like confidentiality, authentication etc. A tweakable enciphering scheme
(TES) is a specific kind of mode of operation. They are based on the notion of
tweakable block ciphers introduced in [9]. TES are length preserving encryption
schemes which can encrypt variable length messages. The security that these
modes provide is that of a strong pseudorandom permutation (SPRP), i.e., a
TES is considered secure if it is infeasible for any computationally bounded cho-
sen plaintext chosen ciphertext adversary to distinguish between the TES and
a random permutation. A TES takes as input a quantity called a tweak other
than the message and the key. The tweak is supposed to be a public quantity
which enriches the variability of the cipher-text produced.

The first construction of a wide block SPRP was provided by Naor and Rein-
gold [14], but their construction was not a TES as the concept of tweaks came
after their construction. A fully defined TES for arbitrary length messages using
a block cipher was first presented in [6]. In [6] it was also stated that a possible
application area for such encryption schemes could be low level disc encryption,
where the encryption/decryption algorithm resides on the disc controller which
has access to the disc sectors but has no access to the high level partitions of
the disc like directories files, etc. The disc controller encrypts a message before

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 289–302, 2008.
c© International Association for Cryptologic Research 2008

290 D. Chakraborty and M. Nandi

writing it to a specific sector and decrypts the message after reading it from the
sector. Additionally it was suggested in [6] that sector addresses can be used as
tweaks. Because of the specific nature of this application, a length preserving
enciphering scheme is required and under this scenario, a strong pseudorandom
permutation can provide the highest possible security.

In the last few years there have been numerous proposals for TES. These
proposals fall in three basic categories: Encrypt-Mask-Encrypt type, Hash-ECB-
Hash type and Hash-Counter-Hash type. CMC [6], EME [7] and EME∗ [4] fall
under the Encrypt-Mask-Encrypt group. PEP [3], TET [5] and HEH[15] fall
under the Hash-ECB-Hash type and XCB [11], HCTR [17], HCH, HCHfp [2],
ABL [12] fall under the Hash-Counter-Hash type.

The Encrypt-Mask-Encrypt type constructions require two layers of encryp-
tion with a light weight masking layer in between. The other two paradigms
require a single layer of encryption sandwiched between two universal hash lay-
ers. Thus, the only significant cost for Encrypt-Mask-Encrypt type constructions
are the block-cipher calls, whereas for the other two paradigms both block-
cipher calls and finite field multiplications are required. More specifically, the
Encrypt-Mask-Encrypt paradigm uses about 2m block cipher calls for encrypt-
ing a m block message and a the other two paradigms require m block-cipher
calls and 2m field multiplications. Recently, in [16] many different constructions
for the Hash-Encrypt-Hash paradigm were proposed using blockwise universal
hash functions. One of these proposals called HEH[BRW] uses m field multipli-
cations unlike other constructions of the same category. A detailed comparison
of different TES can be found in [2,5,15].

In a recent study [10], some performance data regarding various tweakable
enciphering schemes in reconfigurable hardware was reported. This study and
the comparisons presented in [2,5,15] indicate that HCTR is one of the most
efficient candidates among all proposed TES. But, the security guarantee that
the designers of HCTR claimed is insufficient in many practical scenarios. This
makes HCTR an uninteresting candidate.

In this paper we show that HCTR provides better security than that claimed
by the authors. In fact HCTR provides the same security as other other proposed
TES. We consider this result to be important in light of the current activities of
the IEEE working group on storage security which is working towards a standard
for a wide block TES [8].

The crux of this paper is a security proof for HCTR. The proof technique that
we use is a sequence of games as used in [2,5,15]. The previously reported game
based proofs for TES performs the final collision analysis on a non-interactive
game which runs on a fixed transcript and thus does not depend on the distri-
bution of the queries provided by the adversary. In our proof we do not require
the non-interactive game, as we can show that the final collision probabilities
are independent of the distribution of the adversarial queries. This observation
makes our proof different from the proof in [17] and helps to obtain a better
bound.

An Improved Security Bound for HCTR 291

2 The Construction

In the discussion which follows we shall denote the concatenation of two strings
X and Y by X ||Y . By |X | we shall mean the length of X in bits. binn(�) will
denote the n bit binary representation of �. For X, Y ∈ GF (2n), X ⊕Y and XY
will denote addition and multiplication in the field respectively.

HCTR uses two basic building blocks. A universal polynomial hash function
and a counter mode of operation. The hash used in case of HCTR is defined as:

Hh(X) = X1h
m+1 ⊕ X2h

m ⊕ . . . ⊕ padr(Xm)h2 ⊕ binn(|X |)h (1)

Where h is an n-bit hash key and X = X1||X2|| . . . ||Xm, such that |Xi| = n bits
(i = 1, 2, . . .m − 1), 0 < |Xm| ≤ n. The pad function is defined as padr(Xm) :=
Xm||0r where r = n − |Xm|. Thus, |padr(Xm)| = n. If X = λ, the empty string,
we define Hh(λ) = h. In addition to the hash function, HCTR requires a counter
mode of operation. Given an n-bit string S, a sequence S1, . . . , Sm is defined,
where each Si depends on S. Given such a sequence and a key K the counter
mode is defined as follows.

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S1), . . . , Am ⊕ EK(Sm)). (2)

Where Si = S ⊕ binn(i). In case the last block Am is incomplete then Am ⊕
EK(Sm) in Eq. 2 is replaced by Am ⊕ dropr(EK(Sm)), where r = n − |Am| and
dropr(EK(Sm)) is the first (n−r) bits of EK(Sm). The encryption and decryption
operations using HCTR are described in Fig. 1, and a high-level description is
provided in Fig. 2. If m = 1 (when we have one block message), we ignore line
4 in both encryption and decryption algorithm.

HCTR requires m block-cipher calls and 2m+2t+2 finite field multiplications
to encrypt a m block message with a t block tweak. It can be used on any fixed
length tweaks. The authors of HCTR prove that the maximum advantage of a

Algorithm ET
K,h(P1, . . . , Pm)

1. MM ← P1 ⊕ Hh(P2|| . . . ||Pm||T);
2. CC ← EK(MM);
3. S ← MM ⊕ CC;

4. (C2, . . . , Cm−1, Cm)
← CtrK,S(P2, . . . , Pm);

5. C1 ← CC ⊕ Hh(C2||C3|| . . . ||Cm||T);
6. return (C1, . . . , Cm);

Algorithm DT
K,h(C1, . . . , Cm)

1. CC ← C1 ⊕ Hh(C2||C3|| . . . ||Cm||T);
2. MM ← E−1

K (CC);
3. S ← MM ⊕ CC;

4. (P2, . . . , Pm−1, Pm)
← CtrK,S(C2, . . . , Cm);

5. P1 ← MM ⊕ Hh(P2|| . . . ||Pm||T);
6. return (P1, . . . , Pm);

Fig. 1. Encryption using HCTR. K is the block-cipher key, h the hash key and T the
tweak.

292 D. Chakraborty and M. Nandi

1
P P

2
P
m

C1 CmC2

Hh

Hh

EK
CtrK

T

T

Fig. 2. Encryption using HCTR. Here K is the key for the block cipher EK() and h is
the key for the universal hash function Hh().

chosen plain text and chosen ciphertext adversary in distinguishing HCTR from
a random permutation is 0.5q2+((2+t)σ2+σ3)

2n . Where t denotes the length of the
tweak and σ denotes the number of blocks of queries made by the adversary.
This cubic bound makes HCTR less attractive than other tweakable enciphering
schemes all of which are known to have a security bound of the order of σ2

2n .
In a recent work [13] a general construction of tweakable SPRP was reported

by using universal hash functions, tweakable block-ciphers and a weak pseudo-
random function. The paper [13] also reports a variant of HCTR which comes
as an instantiation of their general construction. They claim that this variant of
HCTR has a quadratic security bound. But, this variant is quite different and
also inefficient from the original specification of HCTR. The variant reported in
[13] needs one more block-cipher call than the original HCTR.

3 Improved Bound for HCTR

3.1 Definitions and Notation

The discussion in this section is based on [6]. An n-bit block cipher is a function
E : K × {0, 1}n → {0, 1}n, where K �= ∅ is the key space and for any K ∈ K,
E(K, .) is a permutation. We write EK() instead of E(K, .).

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacts with the oracles
O1,O2, and finally outputs the bit 1. In what follows, by the notation X

$← S, we
will denote the event of choosing X uniformly at random from the finite set S.

Let Perm(n) denote the set of all permutations on {0, 1}n. We require E(,)
to be a strong pseudorandom permutation. The advantage of an adversary A in
breaking the strong pseudorandomness of E(,) is defined in the following manner.

Adv±prp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(),E−1
K () ⇒ 1

]
−

Pr
[
π

$← Perm(n) : Aπ(),π−1() ⇒ 1
]∣∣∣ .

An Improved Security Bound for HCTR 293

A tweakable enciphering scheme is a function E : K × T × M → M, where
K �= ∅ and T �= ∅ are the key space and the tweak space respectively. The
message and the cipher spaces are M. For HCTR we have M = ∪i>n{0, 1}i. We
shall write ET

K(.) instead of E(K, T, .). The inverse of an enciphering scheme is
D = E−1 where X = DT

K(Y) if and only if ET
K(X) = Y .

Let PermT (M) denote the set of all functions πππ : T ×M → M where πππ(T , .)
is a length preserving permutation. Such a πππ ∈ PermT (M) is called a tweak
indexed permutation. For a tweakable enciphering scheme E : K × T × M →
M, we define the advantage an adversary A has in distinguishing E and its
inverse from a random tweak indexed permutation and its inverse in the following
manner.

Adv±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ . (3)

Here, πππ $← PermT (M) means that for each � such that {0, 1}� ⊆ M and T ∈ T
we choose a tweakable random permutation πT from Perm(�) independently. We

define Adv±p̃rp
E (q, σ) by maxAAdv±p̃rp

E (A) where maximum is taken over all
adversaries which makes at most q queries having at most σ many blocks. For a

computational advantage we define Adv±p̃rp
E (q, σ, t) by maxAAdv±p̃rp

E (A). In
addition to the previous restrictions on A, he can run in time at most t.

Pointless queries: Let T , P and C represent tweak, plaintext and ciphertext
respectively. We assume that an adversary never repeats a query, i.e., it does
not ask the encryption oracle with a particular value of (T, P) more than once
and neither does it ask the decryption oracle with a particular value of (T, C)
more than once. Furthermore, an adversary never queries its deciphering oracle
with (T, C) if it got C in response to an encipher query (T, P) for some P .
Similarly, the adversary never queries its enciphering oracle with (T, P) if it got
P as a response to a decipher query of (T, C) for some C. These queries are
called pointless as the adversary knows what it would get as responses for such
queries.

The notation HCTR[E] denotes a tweakable enciphering scheme, where the
n-bit block cipher E is used in the manner specified by HCTR. We will use the
notation Eπ as a shorthand for HCTR[Perm(n)] and Dπ will denote the inverse
of Eπ. Thus, the notation AEπ,Dπ will denote an adversary interacting with the
oracles Eπ and Dπ.

3.2 Statement of Results

The following theorem specifies the security of HCTR.

Theorem 1. Fix n, σ to be positive integers and an n-bit block cipher E : K ×
{0, 1}n → {0, 1}n. Then

Adv±p̃rp
HCTR[Perm(n)]

(σ) ≤ 4.5σ2

2n
. (4)

294 D. Chakraborty and M. Nandi

Adv±p̃rp
HCTR[E]

(σ, t) ≤ 4.5σ2

2n
+ Adv±prp

E (σ, t′) (5)

where t′ = t + O(σ).

The above result and its proof is similar to previous work (see for example [6,7,3]).
As mentioned in [6], Equation (5) embodies a standard way to pass from the in-
formation theoretic setting to the complexity theoretic setting.

For proving (4), we need to consider an adversary’s advantage in distinguishing
a tweakable enciphering scheme E from an oracle which simply returns random
bit strings. This advantage is defined in the following manner.

Adv±rnd
HCTR[Perm(n)]

(A) =
∣∣∣Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

−Pr
[
A$(.,.),$(.,.) ⇒ 1

]∣∣∣ (6)

where $(., M) or $(., C) returns independently distributed random bits of length
|M | or |C| respectively. The basic idea of proving (4) is as follows.

Adv±p̃rp
HCH[Perm(n)]

(A) =
(
Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

=
(
Pr
[
π

$← Perm(n) : AEπ,Dπ ⇒ 1
]

− Pr
[
A$(.,.),$(.,.) ⇒ 1

])
+
(
Pr
[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

≤ Adv±rnd
HCH[Perm(n)]

(A) +
(

q

2

)
1
2n

(7)

where q is the number of queries made by the adversary. For a proof of the last
inequality see [6]. Thus, the main task of the proof now reduces to obtaining an
upper bound on Adv±rnd

HCTR[Perm(n)]
(σ). In section 4 we prove that

Adv±rnd
HCTR[Perm(n)]

(σ) ≤ 4σ2

2n
. (8)

Using equation (8) and (7) we obtain equation (4).

4 The Game Sequence

We shall model the interaction of the adversary with HCTR by a sequence of
games. We shall start with the game HCTR1 which describes the mode HCTR,

An Improved Security Bound for HCTR 295

and with small changes we shall reach the game RAND2 which will represent an
oracle which returns just random strings and we shall bound the advantage of an
adversary in distinguishing between the games HCTR1 and RAND1. Where G
represents a game by Pr[AG ⇒ 1] we shall mean the probability that A outputs
1 by interacting with the game G. Next we describe the games.

Game HCTR1: In HCTR1, the adversary interacts with Eπ and Dπ where π is
a randomly chosen permutation from Perm(n). Instead of initially choosing π,
we build up π in the following manner.

Initially π is assumed to be undefined everywhere. When π(X) is needed, but
the value of π is not yet defined at X , then a random value is chosen among the
available range values. Similarly when π−1(Y) is required and there is no X yet
defined for which π(X) = Y , we choose a random value for π−1(Y) from the
available domain values.

The domain and range of π are maintained in two sets Domain and Range,
and Domain and Range are the complements of Domain and Range relative
to {0, 1}n. The game HCTR1 is shown in Figure 3. The figure shows the sub-
routines Ch-π, Ch-π−1, the initialization steps and how the game responds to
a encipher/decipher query of the adversary. The ith query of the adversary de-
pends on its previous queries, the responses to those queries and on some coins
of the adversary. When ls = n, we ignore the line 103 to line 109.

The game HCTR1 accurately represents the attack scenario, and by our choice
of notation, we can write

Pr[AEπ ,Dπ ⇒ 1] = Pr[AHCTR1 ⇒ 1]. (9)

Game RAND1: We modify HCTR1 by deleting the boxed entries in HCTR1
and call the modified game as RAND1. By deleting the boxed entries it cannot
be guaranteed that π is a permutation as though we do the consistency checks
but we do not reset the values of Y (in Ch-π) and X (in Ch-π−1). Thus, the
games HCTR1 and RAND1 are identical apart from what happens when the
bad flag is set. By using the result from [1], we obtain

|Pr[AHCTR1 ⇒ 1] − Pr[ARAND1 ⇒ 1]| ≤ Pr[ARAND1 sets bad] (10)

Another important thing to note is that in RAND1 in line 103, for a encryption
query CCs (and MM s for a decryption query) gets set to a random n bit string.
Similarly 105 and 108 Zs

i gets set to random values. Thus the the adversary
gets random strings in response to both his encryption and decryption queries.
Hence,

Pr[ARAND1 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1] (11)

So using Equations (6), (10) and (11) we get

Adv±rnd
HCTR[Perm(n)]

(A) = |Pr[AEπ ,Dπ ⇒ 1] − Pr[A$(.,.),$(.,.) ⇒ 1]| (12)

= |Pr[AHCTR1 ⇒ 1] − Pr[ARAND1 ⇒ 1]|
≤ Pr[ARAND1 sets bad] (13)

296 D. Chakraborty and M. Nandi

Subroutine Ch-π(X)

11. Y
$← {0, 1}n; if Y ∈ Range then bad ← true; Y

$← Range ; endif;

12. if X ∈ Domain then bad ← true; Y ← π(X) ; endif
13. π(X) ← Y ; Domain ← Domain ∪ {X}; Range ← Range ∪ {Y }; return(Y);

Subroutine Ch-π−1(Y)

14. X
$← {0, 1}n; if X ∈ Domain, bad ← true; X

$← Domain ; endif;

15. if Y ∈ Range then bad ← true; X ← π−1(Y) ; endif;
16. π(X) ← Y ; Domain ← Domain ∪ {X}; Range ← Range ∪ {Y }; return(X);

Initialization:
17. for all X ∈ {0, 1}n π(X) = undef endfor
18. bad = false

Respond to the sth query as follows: (Assume ls = n(ms − 1) + rs, with 0 ≤ rs < n.)

Encipher query: Enc(T s; P s
1 , P s

2 , . . . P s
ms)

101. MMs ← P s
1 ⊕ Hh(P s

2 || . . . ||P s
m||T s);

102. CCs ← Ch-π(MMs);

103. Ss ← MMs ⊕ CCs;
104. for i = 1 to ms − 2,
105. Zs

i ← Ch-π(Ss ⊕ binn(i));
106. Cs

i+1 ← P s
i+1 ⊕ Zs

i ;
107. end for
108. Zs

ms ← Ch-π(Ss ⊕ binn(ms − 1));
109. Cs

ms ← P s
ms ⊕ dropn−rs(Zs

ms);

110. Cs
1 ← CCs ⊕ Hh(Cs

2 || . . . ||Cs
ms ||T s);

111. return Cs
1 ||Cs

2 || . . . ||Cs
ms

Decipher query: Dec(Cs
1 , Cs

2 , . . . , Cs
ms , T s)

CCs ← Cs
1 ⊕ Hh(Cs

2 || . . . ||Cs
m||T s);

MMs ← Ch-π−1(CCs)

Ss ← MMs ⊕ CCs;
for i = 1 to ms − 2,

Zs
i ← Ch-π(Ss ⊕ binn(i));

P s
i+1 ← Cs

i+1 ⊕ Zs
i ;

end for
Zs

ms ← Ch-π(Ss ⊕ binn(ms − 1));
P s

ms ← Cs
ms ⊕ dropn−rs(Zs

ms);
P s

1 ← MMs ⊕ Hh(P s
2 || . . . ||P s

m||T s);

return P s
2 || . . . ||P s

ms

Fig. 3. Games HCTR1 and RAND1

Game RAND2: Now we make some subtle changes in the game RAND1 to
get a new game RAND2 which is described in Figure 4. In game RAND1 the
permutation was not maintained and a call to the permutation was responded by
returning random strings, so in Game RAND2 we no more use the subroutines
Ch-π and Ch-π−1. Here we immediately return random strings to the adversary
in response to his encryption or decryption queries. Later in the finalization step
we adjust variables and maintain multi sets D and R where we list the elements
that were supposed to be inputs and outputs of the permutation. In the second
phase of the finalization step, we check for collisions in the sets D and R, and
in the event of a collision we set the bad flag to true.

Game RAND1 and Game RAND2 are indistinguishable to the adversary, as in
both cases he gets random strings in response to his queries. Also, the probability

An Improved Security Bound for HCTR 297

Respond to the sth adversary query as follows:

Encipher query Enc(T s; P s
1 , P s

2 , . . . , P s
ms)

tys = Enc; Cs
1 ||Cs

2 || . . . ||Cs
ms−1||Ds

ms
$← {0, 1}nms

;
Cs

ms ← dropn−rs(Dms) return Cs
1 ||Cs

2 || . . . ||Cs
ms ;

Decipher query Dec(T s; Cs
1 , Cs

2 , . . . , Cs
ms)

tys = Dec; P s
1 ||P s

2 || . . . ||P s
ms−1||V s

ms
$← {0, 1}nms

;
P s

ms ← dropn−rs(Vms) return P s
1 ||P s

2 || . . . ||P s
ms ;

Finalization:
Case tys = Enc:

MMs ← P s
1 ⊕ Hh(P s

2 || . . . ||P s
m||T s);

CCs ← Cs
1 ⊕ Hh(Cs

2 || . . . ||Cs
m||T s);

Ss ← MMs ⊕ CCs;
D ← D ∪ {MMs};
R ← R ∪ {CCs};
for i = 2 to ms − 1,

Y s
i ← Cs

i ⊕ P s
i ;

D ← D ∪ {Ss ⊕ binn(i − 1)};
R ← R ∪ {Y s

i };
end for
Y s

ms ← Ds
ms ⊕ P s

ms

D ← D ∪ {Ss ⊕ binn(ms − 1)};
R ← R ∪ {Y s

ms};

Case tys = Dec:

MMs ← P s
1 ⊕ Hh(P s

2 || . . . ||P s
m||T s);

CCs ← Cs
1 ⊕ Hh(Cs

2 || . . . ||Cs
m||T s);

Ss ← MMs ⊕ CCs;
D ← D ∪ {MMs};
R ← R ∪ {CCs};
for i = 2 to ms − 1,

Y s
i ← Cs

i ⊕ P s
i ;

D ← D ∪ {Ss ⊕ binn(i − 1)};
R ← R ∪ {Y s

i };
end for
Y s

ms ← V s
ms ⊕ Cs

ms

D ← D ∪ {Ss ⊕ binn(ms − 1)};
R ← R ∪ {Y s

ms};

Second phase

bad = false;
if (some value occurs more than once in D) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Fig. 4. Game RAND2

with which RAND1 sets bad is same as the probability with which RAND2 sets
bad. Thus we get:

Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad] (14)

Thus from Equations (13) and (14) we obtain

Adv±rnd
HCTR[Perm(n)]

(A) ≤ Pr[ARAND2 sets bad] (15)

Now our goal would be to bound Pr[ARAND2 sets bad]. We notice that in Game
RAND2 the bad flag is set when there is a collision in either of the sets D or R.
So if COLLD and COLLR denote the events of a collision in D and R respectively
then we have

Pr[ARAND2 sets bad] ≤ Pr[COLLR] + Pr[COLLD]

298 D. Chakraborty and M. Nandi

In many previously reported game based proofs for strong pseudorandom
permutations including the proof given in [17], the final collision analysis is done
on a non-interactive game. The non-interactive game is generally obtained by
eliminating the randomness present in the distribution of the queries presented
by the adversary. To achieve this the final non-interactive game runs on a fixed
transcript which maximizes the probability of bad being set to true. In this
case as we will soon see, such a de-randomization is not required. Because of the
specific structure of the game RAND2 the probability COLLR and COLLD would
be independent of the distribution of the queries supplied by the adversary, hence
a final collision analysis can be done on the game RAND2 itself.

4.1 Bounding Collision Probability in D and R

In the analysis we consider the sets D and R to consist of the formal variables
instead of their values. For example, whenever we set D ← D ∪ {X} for some
variable X we think of it as setting D ← D ∪ {“X”} where “X” is the name of
that formal variable. This is the same technique as used in [6]. Our goal is to
bound the probability that two formal variables in the sets D and R take the
same value. After q queries of the adversary where the sth query has ms blocks
of plaintext or ciphertext and t block of tweak, then the sets D and R can be
written as follows:

Elements in D : MM s = P s
1 ⊕ Qs,

Ss
j = Ss ⊕ binn(j) = (P s

1 ⊕ Cs
1) ⊕ (Qs ⊕ Bs ⊕ binn(j)),

where Qs = Hh(P s
2 ‖ · · · ‖ P s

ms ‖ T s) and
Bs = Hh(Cs

2 ‖ · · · ‖ Cs
ms ‖ T s),

1 ≤ s ≤ q, 1 ≤ i ≤ ms − 1,

Elements in R : CCs = Cs
1 ⊕ Bs,

Y s
i = Cs

i ⊕ P s
i ,

2 ≤ i ≤ ms, 1 ≤ s ≤ q.

Before we present the collision analysis let us identify the random variables based
on which the probability of collision would be computed. In game RAND2 the
hash key h is selected uniformly from the set {0, 1}n. The outputs that the
adversary receives are also uniformly distributed, and are independent of the
previous queries supplied by the adversary and the outputs obtained by the
adversary. The ith query supplied by the adversary may depend on the previous
outputs obtained by the adversary, but as the output of GAME2 is not dependent
in any way on the hash key h thus the queries supplied by the adversary are
independent of h.

We consider T s as t n-bit blocks. Thus, for any s, Hh(P s
2 || · · · ||P s

ms ||T s) or
Hh(Cs

2 || · · · ||Cs
ms ||T s) has degree at most ms + t. We denote σ = qt +

∑
s ms.

An Improved Security Bound for HCTR 299

We denote �s,s′
= max{ms, ms′} + t. Since �s,s′ ≤ ms + ms′

+ t, we have the
following inequality∑

1≤s<s′≤q

�s,s′ ≤
(

q

2

)
t +

∑
1≤s<s′≤q

(ms + ms′
)

≤
(

q

2

)
t + (q − 1)(σ − qt)

≤ (q − 1)σ +
qt(q − 1)

2
− qt(q − 1)

≤ (q − 1)σ.

We also note that the response of encryption or decryption query are completely
independent of h (the poly hash key). Thus, inputs of Hh(·) for each query
are independent with h. So we can use the fundamental theorem of algebra to
claim that the probability that h is a root of a d degree polynomial is at most
d/2n where h is chosen uniformly and independently from the coefficient of the
polynomial (which is true in case of Hh in RAND2 game).

First we consider the collisions in R.

– We first consider collision among CCs. Let s′ �= s. Now, Pr[CCs = CCs′
] ≤

�s,s′
/2n where the probability is computed under the uniform choice of h ∈

{0, 1}n. We know that CCs⊕CCs′
is a non-zero polynomial of h with degree

at most �s,s′
. By using fundamental theorem of algebra we have the above

bound for the collision probability. Thus,

Pr[CCs = CCs′
: for some 1 ≤ s < s′ ≤ q] ≤

∑
1≤s<s′≤q

�s,s′

2n

≤ (q − 1)σ
2n

. (16)

Similarly we can compute collision probability between Y s
i and CCs′

. For
each s′, there are (σ − qt − q) many Y s

i ’s. For each such choice, Pr[CCs′
=

Y s
i] ≤ (ms′

+ t)/2n. Thus,

Pr[CCs′
= Y s

i : for some 1 ≤ s �= s′ ≤ q, 2 ≤ i ≤ ms]

≤
∑

1≤s′≤q

(σ − qt − q)(ms′
+ t)

2n

≤ σ2/2n. (17)

– Now we consider collision among Y s
i , 2 ≤ i ≤ ms, 1 ≤ s ≤ q. For the pairs

(Y s
i , Y s′

i′) with s′ ≤ s and (s, i) �= (s′, i′), the collision probability is 1/2n,
since either P s or Cs is chosen uniformly and independently from the rest
of the variables. There are

(
σ−qt−q

2

)
pairs of this form. Thus,

Pr[Y s
i = Y s′

i′ : for some 1 ≤ s ≤ s′ ≤ q, 1 ≤ i, i′ ≤ q, (s, i) �= (s′, i′)]

≤
(

σ − qt − q

2

)
/2n. (18)

300 D. Chakraborty and M. Nandi

Combining equation (16), (17) and (18) we obtain

Pr[COLLR] ≤ 4σ2

2n+1
. (19)

Now we consider collision in domain D.

– Similar to equations (16) and (17), we have

Pr[MM s = MM s′
: for some 1 ≤ s < s′ ≤ q] ≤

∑
1≤s<s′≤q

�s,s′

2n

≤ (q − 1)σ/2n. (20)

Pr[MM s′
= Ss

i : for some 1 ≤ s �= s′ ≤ q, 2 ≤ i ≤ ms] ≤ σ2/2n. (21)

– Now we consider collision among Ss
i = Ss ⊕ binn(i), 2 ≤ i ≤ ms, 1 ≤ s ≤ q.

Note that, Ss
i = Ss′

i′ implies that (P s
1 ⊕ Cs

1) ⊕ (Qs ⊕ Bs ⊕ binn(i)) = (P s′

1 ⊕
Cs′

1) ⊕ (Qs′ ⊕ Bs′ ⊕ binn(i′)). Let s′ ≤ s and (s, i) �= (s′, i′). Thus, either Cs
1

(in case sth query is encryption) or P s
1 (in case sth query is decryption) is

uniformly and independently distributed with all other variables stated in
the above equality. Thus, the collision probability is 1/2n. Since there are(
σ−qt−q

2

)
pairs of this form, we have

Pr[Ss
i = Ss′

i′ : for some 1 ≤ s ≤ s′ ≤ q, 1 ≤ i, i′ ≤ q, (s, i) �= (s′, i′)]

≤
(

σ − qt − q

2

)
/2n. (22)

The equations (20), (21) and (22) imply the following similar bound for domain
collision probability.

Pr[COLLD] ≤ 4σ2

2n+1
. (23)

Combining the domain and range collision probabilities, we obtain the probabil-
ity of bad being set to true in RAND2 to be at most 8σ2/2n+1. Thus, by using
equations (19) and (23), we have

Adv±rnd
HCTR[Perm(n)]

(A) ≤ 4σ2

2n
. (24)

5 Discussions

Why our bound is different from [17]: The analysis that we perform is very
similar to that presented in [17]. As stated earlier, the authors in [17] presents
their collision analysis on a non-interactive game where the plain texts and
ciphertexts are fixed. Thus they obtain a different bound for the probability of
collisions between Ss

i and Ss′

i′ . As they consider the plaintext and ciphertexts to

An Improved Security Bound for HCTR 301

be fixed thus they conclude that the probability of collision between each pair
is less than �/2n, where � is the maximum length of a query supplied by the
adversary. Thus according to their analysis they obtain

Pr[Ss
i = Ss′

i′ : for some 1 ≤ s ≤ s′ ≤ q, 1 ≤ i, i′ ≤ q, (s, i) �= (s′, i′)]

≤ �

(
σ − qt − q

2

)
/2n. (25)

This term contributes to the cubic security bound reported in [17].

The bound claimed in [13]: In [13] a improved bound provided of a variant of
HCTR. Firstly, the variant uses one more block-cipher call than HCTR making
it less efficient than the original construction. Secondly, they claim that the
security bound of modified HCTR is O(q2�2

2n), where � is the maximum query
length. This bound is uniformly larger than our bound.

6 Conclusion

We provided a improved security analysis of the HCTR mode of operation. This
work thus establish that HCTR provides same security guarantee as provided
by CMC, EME, EME∗, XCB, PEP, HCH, TET, and HEH (to our knowledge
these are the only TES with a security proof).

References

1. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/

2. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006),
http://eprint.iacr.org/2007/028

3. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

4. Halevi, S.: EME*: Extending EME to Handle Arbitrary-Length Messages with
Associated Data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

5. Halevi, S.: Invertible universal hashing and the tet encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

6. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

7. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

8. IEEE Security in Storage Working Group (SISWG). PRP modes comparison
IEEE, March 2007, pp. 1619–2. IEEE Computer Society, Los Alamitos (2007),
http://siswg.org/

http://eprint.iacr.org/
http://eprint.iacr.org/2007/028
http://siswg.org/

302 D. Chakraborty and M. Nandi

9. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

10. Mancillas-López, C., Chakraborty, D., Rodŕıguez-Henŕıquez, F.: Efficient imple-
mentations of some tweakable enciphering schemes in reconfigurable hardware. In:
Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 414–424. Springer, Heidelberg (2007)

11. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
Cryptology ePrint Archive, Report 2004/278 (2004), http://eprint.iacr.org/

12. McGrew, D.A., Viega, J.: Arbitrary block length mode (2004),
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf

13. Minematsu, K., Matsushima, T.: Tweakable enciphering schemes from hash-sum-
expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007.
LNCS, vol. 4859, pp. 252–267. Springer, Heidelberg (2007)

14. Naor, M., Reingold, O.: A pseudo-random encryption mode,
http://www.wisdom.weizmann.ac.il/∼naor

15. Sarkar, P.: Improving upon the TET mode of operation. In: Srinathan, K., Rangan,
C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 180–192. Springer,
Heidelberg (2007)

16. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. Cryptology ePrint Archive, Report 2008/004 (2008),
http://eprint.iacr.org/

17. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf
http://www.wisdom.weizmann.ac.il/~naor
http://eprint.iacr.org/

How to Encrypt with a Malicious Random

Number Generator

Seny Kamara1,� and Jonathan Katz2,��

1 Johns Hopkins University
seny@cs.jhu.edu

2 University of Maryland
jkatz@cs.umd.edu

Abstract. Chosen-plaintext attacks on private-key encryption schemes
are currently modeled by giving an adversary access to an oracle that
encrypts a given message m using random coins that are generated uni-
formly at random and independently of anything else. This leaves open
the possibility of attacks in case the random coins are poorly generated
(e.g., using a faulty random number generator), or are under partial ad-
versarial control (e.g., when encryption is done by lightweight devices
that may be captured and tampered with).

We introduce new notions of security modeling such attacks, propose
two concrete schemes meeting our definitions, and show generic trans-
formations for achieving security in this context.

Keywords: Private-key encryption, random number generation.

1 Introduction

Security against chosen-plaintext attacks (CPA-security) [10,2,12] is, nowadays,
considered a minimal notion of security that any private-key encryption scheme
deployed in practice should satisfy. (We defer for now any discussion of security
against chosen-ciphertext attacks, though we will consider such attacks later.)
Very roughly speaking, CPA-security means that given a challenge ciphertext
generated using an unknown key K, a computationally-bounded adversary can-
not recover any partial information about the underlying plaintext even if it is
given access to an encryption oracle that returns an encryption (using the same
key K) of any message m provided by the adversary. This “encryption oracle” is
meant, in part, to model potential real-world actions of an adversary that might
influence the honest sender (holding the key K) to encrypt certain messages that
are (partially or entirely) under the adversary’s control.

It is not hard to see that any scheme secure with respect to chosen-plaintext
attacks must be probabilistic. Furthermore, it is by now well-understood how
to construct CPA-secure schemes under the assumption that the sender is able

� Supported in part by the Phillips and Camille Bradford Fellowship.
�� Research supported in part by the U.S. Army Research Laboratory.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 303–315, 2008.
c© International Association for Cryptologic Research 2008

304 S. Kamara and J. Katz

to generate a fresh set of uniformly random coins each time a message is en-
crypted. In practice, such coins might be generated by using a combination of
randomness extractors and pseudorandom number generators (PRNGs) to distill
pseudorandom coins from a high-entropy source available to the sender.

The above, however, neglects the possibility that the random coins used to
encrypt may sometimes be “less than perfect”. For example, the sender may
be using a faulty PRNG that produces biased or partially predictable outputs.
Or, the random source used to seed the PRNG may have less entropy than
originally thought. More malicious scenarios include the possibilities that an
adversary may have tampered with the PRNG used by the sender, or may be
able to effect some control over the random source used to seed the PRNG.
In the most extreme case, the adversary may have physical access to the device
performing the encryption (as might be the case if, e.g., encryption is carried out
on a lightweight device captured by the adversary), and may then have complete
control over the “random coins” that will actually be used to encrypt. We refer
to such attacks as chosen-randomness attacks.

In this work, we introduce new definitions of security that offer protection
against the attacks just described. Our definitions assume the worst possible
case: that the randomness used by the encryption oracle is under the complete
control of the adversary. In fact, the only random coins that are not under the
adversary’s control (other than those used to generate the key) are those that
are used to encrypt the challenge ciphertext; we assume those coins are truly
random.1 Our definition, then, can be viewed (informally) as offering semantic
security for any messages that are encrypted using “good” random coins, even
if the adversary is able to “probe” the system repeatedly and thereby cause the
sender to use “poor” random coins when encrypting other messages.

Summary of our contributions. We formally define security against chosen-
randomness attacks (CRA-security), both with and without the additional pres-
ence of a decryption oracle. We then show two secure constructions that can be
based on any block cipher. The first is a relatively simple fixed-length construc-
tion, while the second is a scheme that can encrypt arbitrary-length messages.
We also show a generic transformation converting any CPA-secure scheme into a
CRA-secure scheme. Finally, we propose a simple way to extend any CRA-secure
scheme so as to also achieve security against chosen-ciphertext attacks.

1.1 Related Work

The most relevant prior work is perhaps Rogaway’s notion of nonce-based
private-key encryption [15], which treats the encryption algorithm as a deter-
ministic function of the message and a user-provided nonce. (With respect to
1 It is not hard to see that some assumption regarding those coins is necessary in

our setting (if the adversary has complete control over all coins, then the scheme
degenerates to a deterministic one that cannot be secure); our assumption that
the coins used to generate the challenge ciphertext are truly random is made for
simplicity, and can be relaxed by using randomness extractors and assuming only
access to a high-entropy source when encrypting the challenge ciphertext.

How to Encrypt with a Malicious Random Number Generator 305

this viewpoint, it is the responsibility of the user — not the encryption algorithm
— to ensure, e.g., that nonces are chosen at random.) In this context, Rogaway
defines a notion of security that, roughly speaking, guarantees semantic security
as long as nonces never repeat. While this definition is somewhat similar to our
own, we show in Section 3.1 that the notion considered by Rogaway is incom-
parable to the notion of CRA-security considered here; i.e., there are schemes
satisfying his definition and not ours, and vice versa. We remark further that
the motivations for our work and Rogaway’s work are very different: as argued
by Rogaway [15], nonce-based security is best understood as a usability require-
ment, whereas we are interested in examining a stronger attack model (within
the conventional framework for encryption).

Adversarial manipulation of a PRNG was mentioned as motivation for our
work. While there has been prior work developing “forward-” and “backward-
secure” pseudorandom number generators [4,1,8], simply composing such gener-
ators with a standard CPA- or CCA-secure encryption scheme does not defend
against the attacks considered here. The reason is that these prior works con-
sider only adversaries that learn the internal state of the PRNG, whereas our
notions consider stronger adversaries that may control the state of the PRNG.
One can therefore view our notion of CRA-security as achieving a strong variant
of backward- and forward-security with respect to the underlying source of ran-
domness. In other words, our definitions guarantee that a plaintext encrypted
using high-quality randomness is protected even against adversaries that can
control the source after the present plaintext is encrypted (i.e., strong forward-
security), or that have controlled it in the past (i.e., strong backward-security).

Work of McInnes and Pinkas [13] and Dodis et al. [7,5] has also considered
the security of encryption when truly random coins are not available to the
sender. Although these works are superficially related to our own, the problems
being considered — as well as the motivation — are very different. The work of
[13,7,5] is unwilling to assume any truly random coins, even during generation
of the secret key, and is interested in exploring what can be achieved in such an
extreme setting. For this reason, they are primarily concerned with information-
theoretic security (although later work [6,5] treats computational security) and
do not consider security against chosen-plaintext attacks at all. In this work, in
contrast, we are willing to assume that truly random coins exist (e.g., during
key generation and, at least once, when encrypting), but are concerned that the
adversary may periodically be able to tamper with the honest user’s ability to
generate true random coins. We are then interested in the question of whether
the analogue of CPA-security is achievable.

2 Notation and Preliminaries

We use standard cryptographic notation and terminology. We use 〈a, b〉 or a‖b
interchangeably for the concatenation of strings a and b. We let Func[n, m] denote
the set of all functions from {0, 1}n to {0, 1}m, and let Perm[n, n] denote the set
of all permutations over {0, 1}n. A function f : N → N is negligible in k, if for

306 S. Kamara and J. Katz

every polynomial p and sufficiently large k, f(k) < 1/p(k). We write negl(k) and
poly(k) to refer to unspecified negligible and polynomial functions in k.

If O is a probabilistic algorithm, then O(x) denotes an execution of O on
input x with uniformly chosen random coins, and O(x; r) denotes an execution
of O on input x with random coins r. Given a probabilistic algorithm O, we
will consider adversaries A given access to an oracle that on input 〈x, r〉 re-
turns O(x; r) (this is different from the usual case where A is given access to an
oracle that on input x returns O(x; r) for uniformly chosen random coins r).

2.1 Cryptographic Tools

We use standard cryptographic tools which are reviewed here to fix notation.

Pseudo-random functions. Let F be an efficiently-computable keyed func-
tion, where for a fixed key K of length k we have FK : {0, 1}�in(k) → {0, 1}�out(k)

with �in, �out polynomial in k. We say F is a pseudorandom function (PRF) if,
informally, the function FK (for a random key K ∈ {0, 1}k) is indistinguishable
from a function f chosen uniformly at random from Func[�in(k), �out(k)]. If F is
a PRF and FK is an efficiently-invertible permutation for each choice of K, then
we call F a pseudorandom permutation (PRP). We refer to [11] for the formal
definitions, which are standard.

Encryption. A private-key encryption scheme SKE = (Gen, Enc, Dec) consists
of three polynomial-time algorithms with the following functionality:

– Gen takes as input a security parameter 1k and returns a key K.
– Enc is a probabilistic algorithm that takes as input the key K and a message

m from some associated message space. It returns a ciphertext c, and we
denote this by c ← EncK(m).

– Dec takes as input the key K and a ciphertext c; it returns either a message
m in the message space or a special failure symbol ⊥. We write this as m :=
DecK(c), and assume without loss of generality that Dec is deterministic.

We assume perfect correctness: for all k ∈ N, all K output by Gen(1k), and all
messages m in the message space, DecK(EncK(m)) = m.

In most schemes, Gen(1k) simply outputs a random key of length k; when this
is the case, we write SKE = (Enc, Dec).

We use the standard notions of security against chosen-plaintext attacks
(CPA-security) and security against (adaptive) chosen-ciphertext attacks (CCA-
security); see, e.g., [11].

Message authentication codes (MACs). A message authentication code
MAC = (Mac, Vrfy) is a pair of polynomial-time algorithms. Mac takes as input
a key K ∈ {0, 1}k and a message m ∈ {0, 1}∗ and outputs a tag t; we assume2

that Mac is deterministic and denote this by t := MacK(m). The determin-
istic verification algorithm Vrfy takes as input a key K ∈ {0, 1}k, a message

2 This is without loss of generality, and anyway holds for many common constructions.

How to Encrypt with a Malicious Random Number Generator 307

m ∈ {0, 1}∗, and a tag t; it outputs a bit b := VrfyK(m, t) where a ‘1’ indi-
cates acceptance and a ‘0’ indicates rejection. We assume that for all k ∈ N, all
K ∈ {0, 1}k, and all m ∈ {0, 1}∗ it holds that VrfyK(m, MacK(m)) = 1.

Note that we assume trivial key generation, where on security parameter 1k

the key is chosen uniformly from {0, 1}k. We also assume MACs for arbitrary-
length messages. (Neither assumption is essential, but making these assumptions
simplifies the presentation.)

We use the standard definition of existential unforgeability under an adaptive
chosen message attack; see [11]. A MAC has unique tags if for all k ∈ N, all
K ∈ {0, 1}k, and all m ∈ {0, 1}∗, there is a unique t such that VrfyK(m, t) = 1.

3 Definitions

We now present our definitions of CRA and CCRA-security. Intuitively, CRA-
security guarantees that, given a ciphertext, no polynomially-bounded adversary
can recover any partial information about the plaintext even if it has access to
an encryption oracle and complete control over its source of randomness.

Definition 1 (CRA-security). Let SKE = (Gen, Enc, Dec) be a private-key
encryption scheme. SKE is CRA-secure if the advantage of any polynomial-time
adversary A in the following experiment is negligible (in k):

1. First, a key K ← Gen(1k) is generated.
2. A is allowed to interact with an oracle EncK(· ; ·). We stress that, here, A

submits pairs 〈m, r〉 and, in return, is given EncK(m; r). (Since A can choose
r uniformly at random, this is at least as strong as a chosen-plaintext attack.)

3. A outputs two equal-length messages m0, m1. A bit b is chosen at random,
and a “challenge ciphertext” c ← EncK(mb) is computed and given to A.
We stress that encryption here uses uniform coins that are not known to A.

4. A may continue to interact with its oracle as before. Eventually, it outputs
a bit b′; the experiment evaluates to 1 if b′ = b.

We denote the above experiment by CRAA,SKE(k), and define the advantage of A
in the experiment as

∣∣Pr[CRAA,SKE(k) = 1] − 1
2

∣∣.
The stronger notion of CCRA-security guarantees that, given a ciphertext, no
polynomially-bounded adversary can recover any partial information about the
plaintext, even if it has access to both an encryption and a decryption oracle
and complete control over the encryption oracle’s source of randomness. This
is defined in the natural way, and we denote the experiment in this case by
CCRAA,SKE(k). We remark that since Dec is deterministic, there is no analogue of
the adversary’s being able to “control the randomness” used during decryption.

3.1 Comparison to Previous Definitions

In this section we compare our new definitions to previous security notions for
private-key encryption, including CPA- and CCA-security, and the more closely
related notions of nonce-based CPA and CCA-security from [15].

308 S. Kamara and J. Katz

Theorem 1. CRA-security is strictly stronger than CPA-security.

Proof. It is easy to see that CRA-security implies CPA-security. We show that
the converse is not true. Let F be a pseudorandom function, and consider the
standard CPA-secure private-key encryption scheme with encryption given by
EncK(m; r) = 〈r, FK(r) ⊕m〉. We claim that this scheme is not CRA-secure. To
see this, note that an adversary given a challenge ciphertext 〈r, c〉 can submit
〈0k, r〉 to its oracle and will receive in return the ciphertext

EncK(0k; r) = 〈r, FK(r)〉.

It is then trivial for the adversary to determine the message that was encrypted.

Theorem 2. CCRA-security is strictly stronger than CCA-security.

A proof is very similar to the proof of the previous theorem, and is omitted.
Nonce-based encryption [15] is a formalization of private-key encryption where

the encryption algorithm is a deterministic function of a message and a nonce,
and the user (or, more generally, the program calling the encryption algorithm
as a sub-routine) is responsible for providing the nonce. E.g., in the case of CBC-
mode encryption the IV would be an additional input provided to the encryption
algorithm as opposed to being generated “internally”. This formulation gives
more flexibility with respect to how the nonce is chosen: by assuming the nonce
is chosen uniformly each time the encryption algorithm is called, the standard
notion of probabilistic encryption is recovered, but another option is to assume
only that nonces never repeat (but are not necessarily random).

Rogaway [15] considers definitions of security for nonce-based schemes in
which the adversary is given some control over the nonce that is used to en-
crypt at all times, i.e., both when interacting with an encryption oracle as well
as when the challenge ciphertext is computed. (A definition of nonce-based CPA-
security is given in Appendix A.) Intuitively, these definitions are incomparable
to our own because:

– On one hand, we assume the adversary has no control over the random-
ness used to encrypt the challenge ciphertext, whereas Rogaway allows the
adversary to have some control over the randomness even in this case.

– On the other hand, we give the adversary full control over the randomness
used by the encryption oracle, whereas Rogaway restricts the adversary to
never using the same nonce twice.

We formally prove that the notions are incomparable now.

Theorem 3. Nonce-based CPA-security and CRA-security are incomparable.

The theorem is a consequence of the following two lemmas. In proving them, we
rely on the definition of nonce-based security given in Appendix A; the definition
is weaker than that given in [15], but the difference is inessential and unimportant
for the present discussion.

How to Encrypt with a Malicious Random Number Generator 309

Lemma 1. Assuming the existence of one-way functions, there is a private-key
encryption scheme that is nonce-based CPA-secure but that is not CRA-secure.

Proof. We take the standard encryption scheme used in the proof of Theorem 1.
Recall, F is a pseudorandom function, which may be constructed from any one-
way function. Encryption is given by EncK(m; r) = 〈r, FK(r) ⊕ m〉, where we
treat r as a nonce, and decryption is given by DecK(〈r, c〉) = FK(r) ⊕ c.

We have already shown in the proof of Theorem 1 that this scheme is not
CRA-secure. On the other hand, it is not hard to see that it is nonce-based CPA-
secure: since the adversary is not allowed to use the same nonce twice, it holds
in particular that the nonce r used when encrypting the challenge ciphertext is
distinct from any nonce used in answering any queries to the encryption oracle.
It then follows easily from the pseudorandomness of F that the scheme is nonce-
based CPA-secure.

Lemma 2. Assuming the existence of a private-key encryption scheme that is
CRA-secure, there is a CRA-secure scheme that is not nonce-based CPA-secure.

Proof. Let SKE = (Enc, Dec) be a CRA-secure private-key encryption scheme.
Assume without loss of generality that, on security parameter k, the encryption
algorithm uses k bits of randomness. (We will again treat the random coins used
by Enc as a nonce.) Define a modified encryption scheme SKE′ = (Enc′, Dec)
(decryption remains unchanged) as follows:

Enc′K(m; r‖b) = EncK(m; r),

where b is a bit and r ∈ {0, 1}k. It is easy to see that SKE′ is not nonce-based
CPA secure: an adversary can simply request to have the challenge ciphertext en-
crypted using the nonce r‖0 and then query its encryption oracle using the (dis-
tinct) nonce r‖1. (Further details omitted.) It is similarly easy to see that SKE′

remains CRA-secure: oracle queries with respect to the modified scheme SKE′ are
no more powerful than oracle queries with respect to the original scheme SKE;
when the challenge ciphertext is encrypted, it will be encrypted using algorithm
Enc with uniform random coins.

In the sections that follow, we will show constructions of CRA-secure encryption
schemes that may be based on any one-way function.

Using ideas as above, we can similarly show that the notions of CCRA-security
and nonce-based CCA-security are incomparable.

4 Achieving CRA-Security

In this section we propose two CRA-secure private-key encryption schemes based
on PRPs; our first construction handles fixed-length messages only, while our
second construction handles messages of variable length. We then show a general
transformation from any CPA-secure scheme to a CRA-secure one.

310 S. Kamara and J. Katz

4.1 A Fixed-Length CRA-Secure Construction

Our first construction is a modification of the standard CPA-secure encryption
scheme that we have seen before in the proof of Theorem 1. Let P be a pseu-
dorandom permutation on k-bit strings, and let F be a pseudorandom function
mapping k-bit inputs to k-bit outputs. Our scheme is defined as follows:

Gen(1k): Choose K1, K2 ← {0, 1}k and output K = 〈K1, K2〉.
EncK(m; r): Compute c2 = FK2(r)⊕m, then output the ciphertext 〈PK1(r), c2〉.
DecK(〈c1, c2〉): Compute r = P−1

K1
(c1). Then output m := FK2(r) ⊕ c2 as the

message.

Theorem 4. If P is a pseudorandom permutation and F is a pseudorandom
function, then the scheme described above is CRA-secure.

Proof. Consider the (imaginary) scheme S̃KE = (G̃en, Ẽnc, D̃ec) in which G̃en
samples p ← Perm[k, k] and f ← Func[k, k] uniformly at random, and Ẽnc(m; r)
outputs the ciphertext 〈p(r), f(r) ⊕ m〉. We analyze the security of this scheme
in an information-theoretic sense; CRA-security of the scheme described above
(for polynomial-time adversaries) then follows easily.

Let A be an adversary making at most q(k) queries to its oracle in experiment
CRAA,S̃KE(k). Let r be the randomness used to generate the challenge ciphertext
in this experiment, and let query be the event that one of A’s oracle queries uses
randomness r. Then:

Pr
[
CRAA,S̃KE(k) = 1

]
= Pr [b′ = b]

= Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that∣∣∣Pr
[
CRAA,S̃KE(k) = 1

]
− Pr [b′ = b | query]

∣∣∣ ≤ Pr [query].

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ q(k)/2k.

This follows from the fact that, after observing the challenge ciphertext and
making q′ queries to its oracle that do not use randomness r, all A knows is that
r is not equal to any of the random coins used in its queries thus far.

Claim. Pr[b′ = b | query] = 1/2.

Let m0, m1 denote the messages output by A, and let 〈c1, c2〉 be the challenge
ciphertext. If query does not occur, then f(r) is equally likely to be c2 ⊕ m0 or
c2 ⊕ m1 (just as in the one-time pad), and thus A can do no better than guess.

How to Encrypt with a Malicious Random Number Generator 311

4.2 A CRA-Secure Construction for Variable-Length Messages

Our second construction applies a similar modification as in the previous section,
but to CTR-mode encryption. Let P be a pseudorandom permutation and F a
pseudorandom function, as in the previous section.

Gen(1k): Choose K1, K2 ← {0, 1}k and output K = 〈K1, K2〉.
EncK(m; r): Parse m into � blocks m = 〈m1, . . . , m�〉, each of length k. For
1 ≤ i ≤ �, compute ci = FK2(r+i)⊕mi. (Here, we are viewing r as a k-bit integer
and addition is done modulo 2k). Output the ciphertext c = 〈PK1(r), c1, . . . , c�〉.
DecK(〈c0, c1, . . . , c�〉): Compute r = P−1

K1
(c0). For 1 ≤ i ≤ �, compute mi =

FK2(r + i) ⊕ ci. Output m = 〈m1, . . . , m�〉.
Theorem 5. If P is a pseudorandom permutation and F is a pseudorandom
function then the scheme described above is CRA-secure.

Proof. Consider the private-key encryption scheme (G̃en, Ẽnc, D̃ec) such that G̃en
samples p ← Perm[k, k] and f ← Func[k, k] uniformly at random, and then Ẽnc is
define in the natural way based on the scheme described above. We analyze the
security of this scheme in an information-theoretic sense; security of the scheme
described above (for polynomial-time adversaries) then follows easily.

Let A be an adversary making at most q = q(k) queries to its oracle in
experiment CRAA,S̃KE(k), where the messages in these queries have block-length
at most � = q(k). We also let q(k) be a bound on the block-length of the messages
m0, m1 output by A. Let r be the randomness used to generate the challenge
ciphertext in this experiment, and let query be the event that one of A’s oracle
queries uses randomness r′ ∈ {r − q + 1, . . . , r + q − 1}. Then:

Pr
[
CRAA,S̃KE(k) = 1

]
= Pr [b′ = b]

= Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that∣∣∣Pr
[
CRAA,S̃KE(k) = 1

]
− Pr [b′ = b | query]

∣∣∣ ≤ Pr [query].

The following two claims complete the proof of the theorem.

Claim. Pr [query] ≤ O(q(k)2/2k).

Intuitively, the value r used to encrypt the challenge ciphertext is “hidden”
from A. Thus, assuming query has not yet occurred, a query made by A to its
encryption oracle can cause query to occur with probability at most

(r + q − 1) − (r − q + 1) + 1
2k

=
2q − 1

2k
.

Applying a union bound to the q queries of A gives the stated result.

Claim. Pr[b′ = b | query] = 1/2.

This follows by analogy to the one-time pad; conditioned on query not occurring,
FK2(r + 1), . . . , FK2(r + q) are uniformly distributed from A’s point of view.

312 S. Kamara and J. Katz

4.3 A CPA-to-CRA Transformation

Finally, we present a transformation that turns any CPA-secure private-key en-
cryption scheme into a CRA-secure scheme. The transformation assumes the
existence of pseudorandom functions for arbitrary-length inputs; these may be
constructed based on any one-way function, whose existence is implied by the
existence of a CPA-secure encryption scheme.

Let SKE′ = (Gen′, Enc′, Dec′) be a CPA-secure encryption scheme in which
encryption uses k random coins (this is not essential, but makes the analysis
easier), and let F be a pseudorandom function. Define SKE as follows:

Gen(1k): Compute K1 ← Gen′(1k), and then choose K2 ← {0, 1}k. Output the
key K = 〈K1, K2〉.
EncK(m; r), where r ∈ {0, 1}k: Compute “random coins” r′ = FK2(m‖r). Then
output the ciphertext c′ = Enc′K1

(m; r′).

DecK(c′): Output m = Dec′K1
(c′).

Theorem 6. If SKE′ is a CPA-secure private-key encryption scheme and F is
a pseudorandom function, then the scheme described above is CRA-secure.

Proof. Given an adversary A attacking the constructed scheme (in the sense of
CRA-security), we construct an adversary A′ attacking SKE′ (in the sense of
CPA-security). Our adversary A′ is defined as follows:

1. Run A. When A makes oracle query 〈m, r〉 to its oracle, A′ queries m to its
own (standard) encryption oracle and returns the result to A. We assume
without loss of generality that A never makes the same oracle query twice.

2. When A outputs two messages m0, m1, these same messages are output
by A′. The challenge ciphertext given to A′ is forwarded to A.

3. Oracle queries of A are handled exactly as before.
4. When A outputs a bit b′, the same bit is output by A′.

It is not hard to see that the view of A in the above is computationally indis-
tinguishable from its view when attacking the constructed scheme. Thus, the
advantage of A′ is negligibly close to the advantage of A. Since SKE′ is CPA-
secure by assumption, we conclude that the advantage of A in attacking the
constructed scheme (in the sense of CRA-security) is negligible.

5 Achieving CCRA-Security

We now show that the standard “encrypt-then-MAC” transformation [3] from
CPA-secure schemes to CCA-secure ones works in our setting also. Let (Mac, Vrfy)
be a secure message authentication code, and let SKE′ = (Gen′, Enc′, Dec′) be a
CRA-secure encryption scheme. Define SKE as follows:

Gen(1k): Compute K1 ← Gen′(1k), and then choose K2 ← {0, 1}k. Output the
key K = 〈K1, K2〉.
EncK(m; r): Compute c′ = Enc′K1

(m; r) and t = MacK2(c′). Output the cipher-
text 〈c′, t〉.

How to Encrypt with a Malicious Random Number Generator 313

DecK(〈c′, t〉): If VrfyK2
(c′, t) = 1 then output Dec′K1

(c′). Otherwise output ⊥.

Theorem 7. If SKE′ is CRA-secure and (Mac, Vrfy) is a secure MAC with
unique tags, then the scheme described above is CCRA-secure.

Proof. Let A be an adversary attacking SKE in the sense of CCRA-security. Let
query be the event that A submits a decryption query 〈c, t〉 to its decryption ora-
cle such that DecK(c, t) �=⊥ and 〈c, t〉 was not the result of a previous encryption
query. Clearly,

Pr [b′ = b] = Pr [b′ = b ∧ query] + Pr [b′ = b ∧ query]

from which it follows that

|Pr [b′ = b] − Pr[b′ = b | query]| ≤ Pr [query].

The following claims complete the proof.

Claim. For all ppt adversaries A it holds that Pr [query] is negligible.

We show that if there exists a ppt adversary A such that Pr [query] is not
negligible, then there exists a ppt adversary B that can win the existential
unforgeability experiment against MAC with non-negligible probability.

Consider the adversary B that, given 1k and oracle access to MacK(·) and
VrfyK(·, ·), begins by generating an encryption key K1 ← Gen′(1k) and runs
A(1k) as follows,

Given an encryption query e = 〈m, r〉, adversaryB computes c ← Enc′K1
(m; r)

and queries its own Mac oraclewith c, receiving t. Finally, it returns the cipher-
text 〈c, t〉 to A.

Given a decryption query d = 〈c, t〉, adversary B queries its Vrfy oracle with c
and t. If the oracle returns 1 then it computes and returns m ← Dec′K1

(c) to
A; otherwise it returns ⊥. Adversary B stores all of A’s decryption queries.
After polynomially-many queries, A outputs m0, m1.

B samples b ← {0, 1}, computes c∗ ← Enc′K1
(mb), and queries its oracle to

receive t∗ ← MacK(c∗). It then runs A with the challenge ciphertext 〈c∗, t∗〉,
and answers its queries as before. After polynomially many queries, A outputs
a bit b′ and halts. Let q(k) be the number of decryption queries made by A. If
query has occurred by the end of the game (note that B can determine if this
happens), then B outputs the appropriate query for which this first occurred.

Notice that B succeeds if query occurs. Since A’s view is identical to its view
when attacking SKE, the claim follows.

Claim. For all ppt adversaries A, it holds that Pr[b′ = b | query] ≤ 1/2+negl(k).

We show that if there exists a ppt adversary A such that

Pr[b′ = b | query] ≥ 1/2 + 1/poly(k),

314 S. Kamara and J. Katz

then there exists a ppt adversary B that can succeed in attacking SKE′ (in the
sense of CRA-security) with non-negligible probability.

Consider B that, given 1k, begins by choosing K2 ∈ {0, 1}k and runs A1(1k)
as follows.

Given an encryption query 〈m, r〉, adversary B queries its oracle with 〈m, r〉
to obtain a ciphertext c. It then computes t ← MacK2(c), and returns the
ciphertext 〈c, t〉 to A. It stores the tuple 〈c, t, m〉 in a table T .

Given a decryption query d = 〈c, t〉, adversary B looks up the pair 〈c, t〉 in
its table and returns the corresponding plaintext m. If the pair 〈c, t〉 is not in
T , then it returns ⊥. After polynomially many queries, A outputs messages
m0, m1 which B also outputs.

Given a challenge ciphertext c∗, adversary B computes t∗ ← MacK2(c∗) and
gives the challenge ciphertext 〈c∗, t∗〉 to A, answering its oracle queries as before.
Eventually, A outputs a bit b′ which B outputs as well.

It remains to analyze B’s success probability. First, notice that B can answer
A’s encryption queries perfectly. Furthermore, if query does not occur, then the
only valid decryption queries A makes are for ciphertexts that were the result
of previous encryption queries. In this case (i.e., conditioned on query), B will
also correctly answer all of A’s decryption queries (using its table). It follows
then that conditioned on query, the view of A is identical to its view when
attacking SKE. The claim follows.

References

1. Barak, B., Halevi, S.: A model and architecture for pseudorandom generation and
applications to /dev/random. In: ACM Conf. on Computer and Communications
Security (2005)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science (FOCS) (1997)

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg (2000)

4. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: RSA Cryp-
tographers’ Track 2003 (2003)

5. Bosley, C., Dodis, Y.: Does privacy require true randomness? In: Theory of Cryp-
tography Conference 2007 (2007)

6. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: 45th Annual Symposium on Foundations
of Computer Science (FOCS) (2004)

7. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: 43rd
Annual Symposium on Foundations of Computer Science (FOCS) (2002)

8. Fu, K., Kamara, S., Kohno, T.: Key regression: Enabling efficient key distribution
for secure distributed storage. In: NDSS 2006 (2006)

How to Encrypt with a Malicious Random Number Generator 315

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1984)

10. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

11. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC Press (2007)

12. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-
key encryption. J. Cryptology 19(1), 67–96 (2006)

13. McInnes, J., Pinkas, B.: On the impossibility of private-key cryptography with
weakly random keys. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537. Springer, Heidelberg (1991)

14. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576.
Springer, Heidelberg (1992)

15. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017. Springer, Heidelberg (2004)

A Nonce-Based Private-Key Encryption

We offer a definition in the spirit of nonce-based security [15], but we do not
require that ciphertexts be indistinguishable from random strings. (This extra
requirement is irrelevant as far as the results of the present paper are concerned.)

Definition 2 (Nonce-based CPA-security). Let SKE = (Gen, Enc, Dec) be
a private-key encryption scheme where encryption uses k random coins and we
treat these coins as a nonce. SKE is nonce-based CPA-secure if the advantage of
any polynomial-time adversary A in the following experiment is negligible (in k):

1. First, a key K ← Gen(1k) is generated. Set Nonces = {0, 1}k.
2. A is allowed to adaptively submit multiple queries of the form 〈m, r〉, subject

always to the restriction that r ∈ Nonces. In response to each such a query,
A is given c = EncK(m; r) and r is removed from Nonces.

3. A outputs two equal-length messages m0, m1 and a nonce r ∈ Nonces. A
bit b is chosen at random, and a “challenge ciphertext” c = EncK(mb; r) is
computed and given to A. Also, r is removed from Nonces.

4. A may continue to interact with its oracle as before. Eventually, it outputs
a bit b′; the experiment evaluates to 1 if b′ = b.

We denote the above experiment by NB-CPAA,SKE(k), and define the advantage
of A in the experiment as

∣∣Pr[NB-CPAA,SKE(k) = 1] − 1
2

∣∣.

A One-Pass Mode of Operation

for Deterministic Message Authentication—
Security beyond the Birthday Barrier

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midoricho Musashino-shi, Tokyo 180-8585 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. We present a novel mode of operation which iterates a com-
pression function f : {0, 1}n+b → {0, 1}n meeting a condition b ≥ 2n.
Our construction can be viewed as a way of domain extension, applica-
ble to a fixed-input-length PRF (pseudo-random function) fk : {0, 1}b →
{0, 1}n meeting the condition b ≥ 2n, which yields an arbitrary-input-
length PRF Fk : {0, 1}∗ → {0, 1}n. Our construction accomplishes both
high security (beyond the birthday barrier) and high efficiency (one-
pass), with engineering considerations of being stateless, deterministic
and single-keyed.

Keywords: pseudo-random function, domain extension, birthday bar-
rier, compression function, mode of operation, message authentication
code, tweak, checksum, quasi-random function.

1 Introduction

Birthday Barrier. A message authentication code (MAC) is often constructed
of a compression function (e.g., HMAC [1]) via a mode of operation or a block
cipher (e.g., CBC-MAC [2]). The security of HMAC and CBC-MAC is based
on the fact that they are pseudo-random functions (PRFs), assuming that the
underlying primitives (i.e., the compression function and the block cipher) are
PRFs. Unfortunately, HMAC and CBC-MAC are inherently vulnerable to birth-
day attacks due to their naively-chained internal structure [3,4]. That is, using
an n-bit-output compression function or block cipher, HMAC or CBC-MAC gets
forged after about 2n/2 (which is much smaller than the desired 2n) queries. This
generic principle is known as the birthday barrier.

For modern compression functions and block ciphers the above attacks require,
for example, 2128 and 264 queries, which are unlikely to be a practical threat in
most scenarios. It is rather a theoretical challenge to construct a mode with secu-
rity beyond the birthday barrier at minimal costs over existing modes of operation.

Two Already-Known Ways of Breaking the Barrier. It seems that there
exist roughly two approaches of breaking the barrier, and hence constructing
MACs whose security is beyond the birthday bound. One is to allow use of

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 316–333, 2008.
c© International Association for Cryptologic Research 2008

A One-Pass Mode of Operation for Deterministic Message Authentication 317

either nonce elements or random salts. The other is to allow use of multiple
passes. Yet, neither of these two approaches is satisfactory, as explained below.

Nonce elements are often used in encryption (e.g., stream ciphers, the counter
mode of block ciphers, etc.), but their presence is sometimes unwelcome in prac-
tical MAC applications; if a nonce value is used in a MAC scheme, then the value
needs to be communicated, synchronized and maintained among all parties gen-
erating tags and/or verifying message-tag pairs. If instead a random salt is used,
then these constraints become somewhat relaxed, but it still leaves problematic
properties: the tag size gets enlarged, and the parties creating tags are required
to possess a random-number generator.

The use of multiple passes offers construction without counters nor coins but
results in inefficiency. Although usually parallelizable owing to their multi-pass
structure, these schemes require more numbers of invocations to the underlying
primitive, and the performance advantage due to the parallelism depends on
each implementation and is generally limited.

Our Contributions. In this paper we devise a novel approach of breaking the
birthday barrier. Namely, we utilize some techniques from the area of tweakable
block ciphers and combine them with “checksum construction.” The combination
enables us to provide a one-pass mode of operation that overcomes the birthday
limit without relying on the use of counters or coins.

Our starting primitive (i.e., building block) is a compression function f :
{0, 1}n+b → {0, 1}n. We require that b ≥ 2n. We emphasize that this requirement
is essential in our construction; we utilize this condition in two (completely)
different places.1 Then using this primitive f , we construct a PRF Fk : {0, 1}∗ →
{0, 1}n that satisfies the following seven properties:

1. The security of F is beyond the birthday barrier,
2. F is one-pass, that is, to process a message M ∈ {0, 1}∗ only requires |M |/b

plus a small constant number of invocations to f ,
3. Workings outside f consist of only simple machine operations,
4. F is stateless, avoiding use of nonce values or counters,
5. F is deterministic, avoiding use of random salts,
6. F is single-keyed, invoking f only with a fixed key k ∈ {0, 1}n via fk(m) def=

f(k‖m) for a message block m ∈ {0, 1}b, and
7. The security of F is based on the sole assumption that fk is a PRF.

It appears that no prior mode of operation, iterating either a compression func-
tion f : {0, 1}n+b → {0, 1}n or a block cipher fk : {0, 1}n → {0, 1}n, accom-
plishes the above features concurrently.

Organization of the Paper. Section 2 goes through previous work in this
field. We then review necessary notions from the area of tweakable block ciphers

1 We remark that the condition b ≥ 2n is not severe limitation in practice. In fact,
off-the-shelf compression functions, such as sha1 : {0, 1}160+512 → {0, 1}160 and
sha256 : {0, 1}256+512 → {0, 1}256, satisfy this requirement.

318 K. Yasuda

in Sect. 3. We introduce our mode of operation in Sect. 4. The security proofs of
our mode are given in Sect. 5. A couple of techniques to improve the performance
of our mode are discussed in Sect. 6. We mention some open problems regarding
the domain extension of PRFs in Sect. 7, prior to concluding the paper in Sect. 8.

2 Previous Work

In this section we briefly look over previous constructs that break the birthday
barrier, including the ones that take the two approaches mentioned in Sect. 1.
Other known results, which have some relevance to the techniques used in the
paper, are also cited in Sect. 3, 7 and 8.

StatefulorRandomizedConstruction. XORMAC [5] is aparallelizableMAC
that is based on a compression function. RMAC [6] is a serial MAC that is based on
a block cipher. Both of theseMACs guarantee securitybeyond the birthdaybarrier,
yet XOR MAC is nonce-based and RMAC is a randomized algorithm.

Multiple-Pass-Based Construction. The idea of using two (or more) passes
of data processing dates back to the design of RIPEMD and its application
to Two-Track MAC [7]. A similar approach appears in the context of keyless
hash functions as “Double-Pipe” hash [8]. These constructs effectively preclude
birthday attacks, but the problem is that they are twice or more slower than
their “single-pass” versions (even though they are somewhat parallelizable). The
L-Lane scheme [9] performs better than a naively-doubled construction, but it
is still less efficient as compared to a truly-single-pass construction.

Universal-Hash-Based Construction. A similar situation applies to MACs
based on universal hash functions. UMAC [10] and MACRX [11] achieve secu-
rity beyond the birthday barrier, but UMAC is nonce-based and MACRX is
randomized. Once these MACs are made deterministic (in the obvious way), the
security of such MACs gets degraded behind the birthday barrier immediately.

“Wide-Pipe” and Others. If we used a “wide-pipe” compression function f :
{0, 1}2n+b → {0, 1}2n or a “wide” universal hashing with a collision probability
ε ≈ 2−2n (in a deterministic MAC), then we could certainly preclude the birthday
attacks (in a provably secure way). However, such a method does not solve our
problem at hand in nature; such a function deserves 2n-bit security, not n-bit,
or not to mention the fact that schemes based on wide functions would become
inefficient.

Yet another approach is to construct a PRF f ′
k′ : {0, 1}2n → {0, 1}2n from

a PRF fk : {0, 1}n → {0, 1}n in a birthday-resistant way. Examples include
Benes [12], Ωt [13] and Feistel-6 [14]. These constructs however require too many
(4 or more) invocations to f , and consequently schemes based on such an f ′

would be inefficient.
Lastly, we mention the Sum construction [15] which gives a way to construct

a PRF from PRPs. The security of the resulting PRF is shown to be beyond the

A One-Pass Mode of Operation for Deterministic Message Authentication 319

birthday limit, but the construction requires at least two invocations to f when
instantiated with a single PRP f .

3 Preliminaries

In this section we first review the notion of pseudo-random functions (PRFs)
and that of quasi-random functions (QRFs). We then give an overview of the
theory of tweakable PRFs. Notice that such a theory is usually based on the
framework of block ciphers, but we carefully restate the theory in the language
of compression functions (rather than block ciphers). Some parts of the theory
are directly translated into the new setting, while other parts need to receive
local treatment in the context of compression functions.

Pseudo-random Functions (PRFs). Let {fk : X → Y } be a family of
functions with keys k ∈ K. Informally, we say that f is pseudo-random if fk

with a key k
$← K randomly chosen is indistinguishable from a truly random

function ϕ : X → Y (i.e., ϕ
$← Func(X, Y) where Func(X, Y) denotes the set of

all functions from X to Y), by computationally-bounded adversaries.
To be more precise, let A denote an adversary trying to distinguish between

f and ϕ. That is, A is given access to either the “real” oracle f or the “random”
oracle ϕ. The f -oracle picks a random key k

$← K at the beginning of each
experiment and, upon a query x ∈ X made by A, returns the value y = fk(x) to
A. On the other hand, the ϕ-oracle picks a random function ϕ

$← Func(X, Y) at
the beginning of each experiment and returns the value y = ϕ(x) upon a query
x ∈ X . Then the advantage of adversary A is defined by

Advprf
f (A) def= Pr

[
Af ⇒ 1

]
− Pr

[
Aϕ ⇒ 1

]
,

where by the notation AO ⇒ 1 we denote the event that A, given access to
oracle O, outputs value 1.

In order for the advantage function to be well-defined, the resources of adver-
sary A need to be bounded. We define

Advprf
f (t, q, �) def= max

A
Advprf

f (A),

where max runs over all adversaries, whose time complexity is at most t, making
at most q oracle queries, each query being at most length � (in some appropriate
units). In order to measure the time complexity t, we fix some model of com-
putation. The time complexity includes the maximum time for adversary A to
execute each overlying experiment, including the time consumed by oracles, plus
the code size of A. If f accepts only fixed-length inputs, then the quantity � is
simply omitted from the notation.

Quasi-random Functions (QRFs). The notion of QRFs is an information-
theoretic version of that of PRFs [16]. A QRF ψ is a family of functions, indexed

320 K. Yasuda

not by a key but by smaller random function(s). An adversary A attacking ψ is
computationally unbounded. The advantage function is defined similarly:

Advqrf
ψ (A) def= Pr

[
Aψ ⇒ 1

]
− Pr

[
Aϕ ⇒ 1

]
,

and we also define
Advqrf

ψ (q, �) def= max
A

Advqrf
ψ (A),

where again, � may be omitted from the notation if irrelevant.

Tweaking Pseudo-random Functions. Here we recast the theory of tweak-
able block ciphers in the context of compression functions. In fact, developing
the theory in the style of compression function is easier, because block ciphers
are permutations, whilst compression functions are functions, which in particu-
lar means that we do not need to exercise the PRP ↔ PRF Switching Lemma.
Also, we utilize the condition b ≥ 2n here, which is something impossible with
block ciphers where there exists an innate relation b = n.

The purpose of tweaking a PRF fk is to construct many functions f1, f2, . . .
from f which are indistinguishable from a collection of (truly) random functions
ϕ1, ϕ2, In order to do this, we begin with defining an initial value ∆0 of
masks to be the leftmost b bits of

fk

(
1
) ∥∥ fk

(
2
) ∥∥ · · ·

∥∥ fk

(
�b/n�

)
,

where integers 1, 2, . . . , �b/n� are represented as b-bit strings by some canonical
encoding. We then modify this value ∆0 sequentially, by “incrementing” as

∆1 , ∆2 , . . . , ∆�,

up until about � ≈ 2n. It is essential here that the values ∆1, ∆2, . . . , ∆� are all
distinct. In addition, we also need a “special” set of offsets

∆̄L,1 , ∆̄L,2 , ∆̄L,3,

for each L ∈ {1, 2, . . . , �}. All of these values need to be distinct among them-
selves and from the above list of �-many values.

In our construction a message M ∈ {0, 1}∗ needs to be padded so that the
length becomes a multiple of b bits, before being processed. This would cause
the length to increase by b bits in case |M | is already a multiple of b. If one
wants to avoid the extra block of computation when |M | happens to be exactly
equal to a multiple of b bits, then one needs another special set of offsets

¯̄∆L,1 , ¯̄∆L,2 , ¯̄∆L,3,

for performance optimization (saving one block of computation). For the sake of
simplicity, we do not make use of such masks ¯̄∆1,

¯̄∆2,
¯̄∆3 and do contend our-

selves with the trivial padding M‖10∗. Our construction always requires three
blocks of extra computation in any event, so the effectiveness of such optimiza-
tion is limited. All the proofs carry over with such optimization but only become
more complicated.

A One-Pass Mode of Operation for Deterministic Message Authentication 321

Incrementing Masks. It remains to describe the ways of “incrementing” the
masks. There are several known methods [17,18,19,20], and some of them can
be transformed into the context of compression functions. In the following we
modify the method in [20] so that it becomes compatible with our construction.

The basic framework of [20] is to let ∆i
def= αi ·∆0, where the multiplication is

done in the finite field F2b , and α ∈ F×
2b is a non-zero element whose multiplicative

order is large enough (say ≥ 2n). The functions fi are created via fi(m) def=
fk(m ⊕ ∆i). The special offsets are created via ∆̄L,j

def= αL · βj · ∆0, where
β ∈ F×

2b is an element such that αLβj can be guaranteed to be distinct from αis.
A preferred choice of α, β is usually α = 2 and β = 3.

The finite field needs to be represented by an irreducible polynomial g(x) ∈
F2[x] of degree b, with α = x(= “2”) being a generator of F×

2b (so that its
multiplicative order is 2b−1). Then we compute logx(x+1) in this field and verify
that it is huge, which enables us to choose β = x + 1(= “3”). Computing such
discrete logarithms for block ciphers has been feasible owing to small parameters
such as b = 64 and b = 128 [20].

Yet, now we are dealing with a compression function with a parameter such
as b = 512, which most likely stops us from computing such discrete logarithms.
So instead we choose an irreducible polynomial g(x) so that α = 2 generates
only a subgroup of F×

2b but its order being large enough (≥ 2n). Then we merely
need to verify that β = 3 generates the subgroup “missed” by α = 2.

For example, consider the case b = 512 and n = 128. We are then working in
the multiplicative group F×

2512 of the field with 2512 elements, and the order of the
group 2512−1 can be factored as 2512−1 = (21+1)(22+1) · · · (2128+1)(2256+1).
In particular, the term 2128 + 1 can be further factored as [21]:

2128 + 1 = 59649589127497217× 5704689200685129054721.

It can be directly verified that these two prime factors appear nowhere else in
the factorization of 2512 − 1.

Now we choose x512 + x12 + x7 + x2 + 1 ∈ F2[x] as an irreducible polynomial
to represent the field F2512 and verify that x(2512−1)/59649589127497217 �= 1 and
x(2512−1)/5704689200685129054721 �= 1 in this field, which ensures that the multi-
plicative order of the element x is at least 2128 + 1. On the contrary, notice that
x(2512−1)/17 = 1, where 17 = 24 + 1 appears only once in the factorization of
2512 − 1, from which we deduce that the element x does not “generate” the sub-
group of order 17 in the multiplicative group F×

2512 . On the other hand, observe
that (x+1)(2

512−1)/17 �= 1, which implies that the group generated by x+1 does
contain the subgroup of order 17.

After the above verification we are able to set

∆i
def= xi∆0 and ∆̄L,j

def= xL(x + 1)j∆0

for i, L ∈ {1, 2, . . . , 2128} and j ∈ {1, 2, 3}. These masks are all distinct because
of the following three reasons: (1) We have ∆i �= ∆i′ if i �= i′, owing to the
high order of the element x; (2) We have ∆i �= ∆̄L,j for any i, L, j in the above

322 K. Yasuda

ranges, because xL(x+1)j generates a group that contains the subgroup of order
17 while xi does not; (3) We have ∆̄L,j �= ∆̄L′,j′ as long as (L, j) �= (L′, j′), for
if the equality xL(x+1)j∆0 = xL′

(x+1)j′
∆0 holds in the field with i, L, j being

in the above ranges, then by looking at the subgroup of order 17 we see that
j = j′, which immediately implies that L = L′.

Lemma 1. If f is a PRF and the masks ∆1, ∆2, . . . , ∆� ∈ {0, 1}b are all dis-
tinct, created via ∆i

def= γi · ∆0 ∈ F2b with γi being some (public) function
of i independent of the value ∆0, then the functions f1, f2, . . . , f� defined by
fi(m) def= fk(m⊕∆i) are indistinguishable from random functions ϕ1, ϕ2, . . . , ϕ�,
by an adversary having time complexity at most t and making at most q ≥ �b/n�
queries to each fi (or ϕi), except for the probability at most

Advprf
f (t, q′) +

q2

22n−1
,

where q′ = (� + 1)q.

Proof. The proof is done via hybrid argument. Consider an intermediate oracle
ρ which chooses a random function ρ : {0, 1}b → {0, 1}n at the beginning of
each experiment and upon a query m to fi returns ρi(m) def= ρ(m⊕∆i) instead.
Here, ∆0 is computed as the leftmost b bits of

ρ
(
1
) ∥∥ ρ

(
2
) ∥∥ · · ·

∥∥ ρ
(
�b/n�

)
,

and the masks ∆1, ∆2, . . . , ∆� are generated accordingly, which are all distinct
as long as ∆0 �= 0b.

Now let A be an adversary trying to distinguish between f1, f2, . . . , f� and
ϕ1, ϕ2, . . . , ϕ�. Assume that A has time complexity at most t and makes at most
q queries to each fi (or ϕi). It is straightforward to see that the probability that
A distinguish between f1, f2, . . . , f� and ρ1, ρ2, . . . , ρ� is at most

Advprf
f (t, q′),

where q′ def= (� + 1)q ≥ �q + �b/n�.
We next show that ρ is quasi-random. Observe that functions ρ1, ρ2, . . . , ρ�

behave just like random functions ϕ1, ϕ2, . . . , ϕ� unless one of the following
events occurs: (1) ∆0 = 0b, or (2) A “collision” occurs among the inputs to ρ and
ρi. The probability for event (1) to occur is exactly 2−b ≤ 2−2n. For (2), if a colli-
sion occurs between inputs to ρ and ρi, then it means that j = m⊕∆i = m⊕γi∆0

for some j ∈ {1, 2, . . . , �b/n�}. This yields (j ⊕m)/γi = ∆0, and for a fixed (j, i)
the probability of such an event is 2−b ≤ 2−2n. On the other hand, if a collision
occurs between an input to ρi and an input to ρj for some 1 ≤ i < j ≤ �, then it
means that we have m⊕∆i = m′ ⊕∆j , or equivalently m⊕ γi∆0 = m′ ⊕ γj∆0.
This yields (m ⊕ m′)/(γi ⊕ γj) = ∆0, and for a fixed (i, j) the probability that
such an event occurs is 2−b ≤ 2−2n.

Since the values returned by ρ are random, adversary A learns nothing from
them to bring about a collision. That is, we can assume that A is non-adaptive

A One-Pass Mode of Operation for Deterministic Message Authentication 323

and outputs a sequence of fixed values (i1, m1), (i2, m2), . . . , (iq, mq), hoping that
a collision occurs among them [16]. Now for the first type of collision there are at
most �b/n�·q possible pairs, while for the second type there are at most

(
q
2

)
pairs.

Thus the advantage that A distinguish between ρ1, ρ2, . . . , ρ� and ϕ1, ϕ2, . . . , ϕ�

is at most
1

22n
+ �b/n� · q · 1

22n
+
(

q

2

)
· 1
22n

≤ q2

22n−1
.

��
4 Description of the Proposed Mode

In this section we give the definition of our algorithm. Recall that our start-
ing primitive is a compression function f : {0, 1}n+b → {0, 1}n. We key it via
fk(m) def= f(k‖m) and tweak it via fi(m) def= fk(m ⊕ ∆i), obtaining

f1 , f2 , . . . , f� , f̄1 , f̄2 , f̄3,

which should be (computationally) indistinguishable from random functions
ϕ1, ϕ2, . . . , ϕ�, ϕ̄1, ϕ̄2, ϕ̄3 (Recall that fi depends on the choice of key k, while f̄i

depends on the message length L, and so does ϕ̄i).

Algorithm f̄123(S‖vL‖s) // S ∈ {0, 1}b, vL, s ∈ {0, 1}n

Set u ← vL‖s
Compute Σ1 ← f̄1(S) and Σ2 ← f̄2(S)
Set w ← (Σ1‖Σ2) ⊕ u

Output τ ← f̄3(w‖0b−2n)

Algorithm Fk(M) // M ∈ {0, 1}∗

Pad M ← M‖10∗

Divide M = m1‖m2‖ · · · ‖mL so that mi ∈ {0, 1}b

Compute checksum S ←
⊕L

i=1 mi

Initialize v0 ← 0n

Iterate vi ← fi

(
mi ⊕ (vi−1‖0b−n)

)
for i = 1, 2, . . . , L

Compute checksum s ←
⊕L

i=1 vi

Output τ ← f̄123(S‖vL‖s)

Fig. 1. Definitions of f̄123 and Fk

Now with these tweaked functions in hand, we first define a function (which
depends on the choice of L)

f̄123 : {0, 1}b+2n → {0, 1}n,

from the three functions f̄1, f̄2 and f̄3. This function is used at the end of
processing a message in our mode of operation

Fk : {0, 1}∗ → {0, 1}n.

See Fig. 1 for precise definitions, as well as Fig. 2 for a pictorial description.

324 K. Yasuda

k

‖

⊕

∆2

¯

f

k

⊕ f

k

m2

⊕

m1

f ‖ vL

mL−1

0
b−n ∆2

⊕

⊕

f ⊕

∆1

⊕

⊕

f

∆L−1 k

mL

‖

0
b−n ∆L

⊕

⊕

⊕ s

S

vL

s

S

f

k

k

‖

‖

 ̄

⊕

∆1

⊕ ⊕ f

k ∆3 ¯ 0
b−2n

τ

Fig. 2. Proposed mode of operation Fk (the lower half corresponding to f̄123)

The construction of f̄123 may look unnatural at first glance. We note that this
is not the only one that works. For example, the roles of S and vL‖s may be
switched, or Two-Lane construction [9] may be used in the place. Our choice of
f̄123 simply comes from considerations of efficiency.

The major feature of our mode of operation is the usage of message checksum
S =

⊕L
i=1 mi and intermediate-value checksum s =

⊕L
i=1 vi. The checksum

construction is effectively combined with the tweaked compression functions,
yielding security beyond the birthday barrier.

5 Proofs of Security beyond the Birthday Barrier

We want to prove that our mode of operation Fk is (computationally) indistin-
guishable from a truly random function Ψ : {0, 1}∗ → {0, 1}n in such a way as
its security is still guaranteed when q ≈ 2n/2. Succinctly, we prove the following
theorem:

Theorem 1. Let Fk : {0, 1}∗ → {0, 1}n be the mode of operation as defined in
Sect. 4. It is a PRF without the birthday barrier if the underlying compression
function is a PRF. Concretely, we have

Advprf
F (t, q, �) ≤ Advprf

f (t, q′) +
(� + 5)q2

22n+1
,

where q ≥ �b/n� and q′ = (� + 4)q.

A One-Pass Mode of Operation for Deterministic Message Authentication 325

The proof is based on hybrid argument. In order to prove that Fk is a PRF via
hybrid argument, we construct intermediate QRFs Φ and Φψ as below.

The QRF Φ : {0, 1}∗ → {0, 1}n is constructed as follows. In the definition
of Fk, we replace functions f1, f2, . . . , f� with random functions ϕ1, ϕ2, . . . , ϕ�,
where ϕi : {0, 1}b → {0, 1}n is drawn independently at random. We also replace
f̄1, f̄2, f̄3 with random functions ϕ̄1, ϕ̄2, ϕ̄3 (The choice of these random functions
depends on the value L). This gives us a (to-be-proven) QRF Φ. See Fig. 3 for
an illustration of Φ.

ϕ3

ϕ2

ϕ1

ϕL−1

‖

¯

⊕

m2

⊕

m1

‖ vL

mL−1

0
b−n

⊕

⊕

ϕ1 ⊕

⊕

mL

‖

0
b−n

⊕

⊕

⊕ s

S

vL

s

S ‖

‖

 ̄

⊕ ¯

0
b−2n

τ

ϕ2 ϕL

Fig. 3. Description of Φ (the lower half corresponding to ϕ̄123)

The other QRF Φψ is obtained by modifying the last component in Φ. In the
definition of Φ, note that we have a (to-be-proven) QRF

ϕ̄123 : {0, 1}b+2n → {0, 1}n,

which is constructed of ϕ̄1, ϕ̄2, ϕ̄3 (Needless to say, ϕ̄123 in Φ corresponds to
f̄123 in Fk). We replace this QRF ϕ̄123 with a truly random function

ψ : {0, 1}b+2n → {0, 1}n.

That is to say, for each value of L, the function ϕ̄123 is replaced with a new random
function ψ = ψL. We name the resulting scheme as Φψ : {0, 1}∗ → {0, 1}n.

326 K. Yasuda

Now the hybrid argument works as follows. Let A be an adversary trying to
distinguish between Fk and Ψ . Then

Advprf
F (A) def= Pr

[
AF ⇒ 1

]
− Pr

[
AΨ ⇒ 1

]
= Pr

[
AF ⇒ 1

]
− Pr

[
AΦ ⇒ 1

]
+ Pr

[
AΦ ⇒ 1

]
− Pr

[
AΦψ ⇒ 1

]
+ Pr

[
AΦψ ⇒ 1

]
− Pr

[
AΨ ⇒ 1

]
.

We bound the three differences in the rest of this section.
To evaluate the first difference, we note that it is rather straightforward to

see that

Pr
[
AF ⇒ 1

]
− Pr

[
AΦ ⇒ 1

]
≤ Advprf

f (t, q′) +
q2

22n−1
,

where q′ def= (� + 4)q. This is because distinguishing between F and Φ essentially
amounts to the security of tweaked functions f1, f2, . . . , f�, f̄1, f̄2, f̄3, where each
f̄i may vary upon each query (of varying length). So the above inequality follows
from Lemma 1.

We next bound the second difference. It is again easy to see that

Pr
[
AΦ ⇒ 1

]
− Pr

[
AΦψ ⇒ 1

]
≤ Advqrf

ϕ̄123
(q).

This is because any adversary trying to distinguish between Φ and Φψ essentially
amounts to distinguishing between ϕ̄123 and ψ. So it remains to evaluate the
quantity Advqrf

ϕ̄123
(q). We do this in the following lemma:

Lemma 2. Fix L. Then the function ϕ̄123 is a quasi-random function. More
concretely, we have

Advqrf
ϕ̄123

(q) ≤ q2

22n+1
.

Proof. Let B be an adversary trying to distinguish between ϕ̄123 and a truly
random function ψ : {0, 1}b+2n → {0, 1}n. Since ϕ̄3 is a random function, ϕ̄123

behaves just like a truly random function unless a collision occurs among the
inputs to ϕ̄3. By a “collision” we mean an event w = w′ for distinct inputs
S‖u �= S′‖u′ (We carry over the symbols such as w, S, u from the definition of
f̄123 in Fig. 1). We want to evaluate the probability that such an event occurs.

Since the values returned by ϕ̄123 are random, and B learns nothing from
the values in order to bring about a collision, without loss of generality we can
assume that B is non-adaptive [16]. That is to say, B just queries a sequence of
fixed values S1‖u1, S2‖u2, . . . , Sq‖uq, hoping that a “collision” occurs between
wi and wj for some 1 ≤ i < j ≤ q.

So suppose S‖u �= S′‖u′ and w = w′. We claim that the probability that such
an event occurs is at most 2−2n. To see this, we first observe that S �= S′, for
if S = S′, then Σ1‖Σ2 = Σ′

1‖Σ′
2 and u �= u′, which implies w �= w′ and hence

A One-Pass Mode of Operation for Deterministic Message Authentication 327

never a collision. Thus we are looking at an event such that Σ1 ⊕ vL = Σ′
1 ⊕ v′L

and Σ2 ⊕ s = Σ′
2 ⊕ s′ for some fixed S, S′, vL, v′L, s, s′. Since ϕ̄1 and ϕ̄2 are

random functions, the probability that each event occurs is 2−n. Moreover, since
ϕ̄1 and ϕ̄2 are independently random, the probability that both events occur is
2−n · 2−n = 2−2n.

We have seen that the probability that Si‖ui �= Sj‖uj and wi = wj is at most
2−2n. Since there are at most

(
q
2

)
choices of values (i, j), we conclude that

Advqrf
ϕ̄123

(q) ≤
(

q

2

)
· 1
22n

≤ q2

22n+1
.

��

Now note that A’s varying lengths L of its queries does not contribute to in-
creasing the collision probability. So we obtain

Pr
[
AΦ ⇒ 1

]
− Pr

[
AΦψ ⇒ 1

]
≤ q2

22n+1
.

Lastly, we bound the third difference. This is nothing but the quantity

Advqrf
Φψ

(A) def= Pr
[
AΦψ ⇒ 1

]
− Pr

[
AΨ ⇒ 1

]
,

by definition. Hence in the next lemma we show that Φψ is indeed quasi-random:

Lemma 3. The function Φψ is quasi-random. More concretely, we have

Advqrf
Φψ

(q, �) ≤ �q2

22n+1
.

Proof. Since ψ : {0, 1}b+2n → {0, 1}n is a random function, Φψ behaves just
like a truly random function except when a collision occurs among the inputs
to ψ. Here by a “collision” we mean an event that for two distinct queries M =
m1‖m2‖ · · · ‖mL and M ′ = m′

1‖m′
2‖ · · · ‖m′

L′ the equality S‖vL‖s = S′‖v′L′‖s′
holds.

We want to evaluate the probability that such a collision occurs. We divide
our proof into two cases, depending on the lengths L, L′ of two messages.

Case A: L �= L′. There is nothing to prove in this case. That is, since the choice
of ψ changes for different values of L, two independently random functions, say
ψL and ψL′ , are used for messages of different lengths. So there is no “collision”
to consider here; the two outputs are truly random.

Case B: L = L′. Observe that from the condition M �= M ′ there exists a unique
a ∈ {1, 2, . . . , L} such that (va−1, ma) �= (v′a−1, m

′
a) and (vi−1, mi) = (v′i−1, m

′
i)

holds for i = a + 1, a + 2, . . . , L.

Case B-1: (va−1‖0b−n) ⊕ ma = (v′
a−1‖0b−n) ⊕ m′

a. In this case we note
that the rightmost b − n bits of ma and m′

a must be identical, and with
the condition (va−1, ma) �= (v′a−1, m

′
a) we see that va−1 �= v′a−1 and ma �=

328 K. Yasuda

m′
a. Since va−1 �= v′a−1, the two inputs to the random function ϕa−1 must

differ, implying that va−1 and v′a−1 are two independently random values. It
means that the equality (va−1‖0b−n) ⊕ ma = (v′a−1‖0b−n) ⊕ m′

a holds with
a probability of 2−n. Moreover, observe that since s = s′ and vi = v′i for
a ≤ i ≤ L we must have

⊕a−1
i=1 vi =

⊕a−1
i=1 v′i. The condition va−1 �= v′a−1

also tells us that
⊕a−2

i=1 vi �=
⊕a−2

i=1 v′i. Now put sa−2
def=
⊕a−2

i=1 vi and s′a−2
def=⊕a−2

i=1 v′i. Then the values sa−2 and s′a−2 are created using random functions
ϕ1, ϕ2, . . . , ϕa−2, which are all independent from the random function ϕa−1.
Therefore, the equality sa−2 ⊕ va−1 = s′a−2 ⊕ v′a−1 holds with a probability
of 2−n. This event is clearly independent from the previous equality, so this
case occurs with a probability at most 2−n · 2−n = 2−2n.

Case B-2: (va−1‖0b−n) ⊕ ma �= (v′
a−1‖0b−n) ⊕ m′

a. In this case the in-
puts to the random function ϕa are different, but their outputs are colliding
(i.e., va = v′a). Clearly, the probability that such an event occurs is exactly
2−n.

CaseB-2-(i):va−1 �= v′
a−1. In this casewe do an analysis similar toCaseB-

1. The condition va−1 �= v′a−1 tells us that
⊕a−2

i=1 vi �=
⊕a−2

i=1 v′i. Put
sa−2

def=
⊕a−2

i=1 vi and s′a−2
def=
⊕a−2

i=1 v′i. Then we have sa−2 �= s′a−2, and
the equality sa−2 ⊕ va−1 = s′a−2 ⊕ v′a−1 holds with a probability of 2−n.

Case B-2-(ii): va−1 = v′
a−1. In this case we have sa−1 = s′a−1. Since

M �= M ′ and S =
⊕L

i=1 mi = S′ =
⊕L′

i=1 m′
i, there must exist at least

two values of i ∈ {1, 2, . . . , L} such that mi �= m′
i. One of such values

may be equal to the value a, but it still guarantees that there exists a
b ∈ {1, 2, . . . , a−1} such that (vb−1, mb) �= (v′b−1, m

′
b) and vi = v′i, si = s′i

for i = b, b + 1, . . . , a − 1 and mi = m′
i for i = b + 1, b + 2, . . . , a − 1.

Then we do an analysis at block b similar to Case B-1 and B-2 as done
at block a, in order to prove that such an event happens at block b with
a probability at most 2−n.

In all events we see that the collision probability in Case B-2 is at most
2−n · 2−n = 2−2n.

We have shown that in all cases the collision probability is at most 2−2n. Since
the values returned by ψ are random, and A learns nothing from these values
in bringing about a collision, we can assume that A is non-adaptive. So assume
that A makes a fixed sequence of queries M1, M2, . . . , Mq, hoping that a collision
occurs at some 1 ≤ i < j ≤ q. We have just seen that for a pair (Mi, Mj) the
probability that the two messages collide is at most 2−2n. Since there are at
most

(
q
2

)
pairs, we conclude that

Advqrf
Φψ

(q, �) ≤ � ·
(

q

2

)
· 1
22n

<
�q2

22n+1
.

��

A One-Pass Mode of Operation for Deterministic Message Authentication 329

Now we go back to proving our main theorem. We have

Advprf
F (A) def= Pr

[
AF ⇒ 1

]
− Pr

[
AΨ ⇒ 1

]
= Pr

[
AF ⇒ 1

]
− Pr

[
AΦ ⇒ 1

]
+ Pr

[
AΦ ⇒ 1

]
− Pr

[
AΦψ ⇒ 1

]
+ Pr

[
AΦψ ⇒ 1

]
− Pr

[
AΨ ⇒ 1

]
≤ Advprf

f (t, q′) +
q2

22n−1
+

q2

22n+1
+

�q2

22n+1

= Advprf
f (t, q′) +

(� + 5)q2

22n+1
,

where q′ = (� + 4)q. This proves our main theorem.

6 Optimization for Better Performance

In this section we introduce a couple of techniques to improve the performance
of our mode. One is associated with the methods of setting up the masks, and
the other is related to the ways of keying the compression function.

Mask Partition. The performance of our mode should be essentially as good
as that of a naively-chained construction such as the Merkle-Damg̊ard iteration
(HMAC), except for the computational costs of workings outside the underlying
primitive f . These include concatenation, XOR, mask setup (initialization) and
its incrementation. The last calculation can be realized with a 1-bit (left-)shift
operation plus a conditional XOR, because an incrementation corresponds to
multiplying x to the mask in the field F2b (multiplication by x + 1 requires
slightly more operations).

The 1-bit shift operation may be costly in software implementations, because
we need to perform the operation on a long mask, say b = 512 bits, while the
available size of registers may be much smaller, say 32 bits. The long-size mask
causes another problem that we may be forced to store data outside registers,
further lowering performance. These difficulties can be relaxed by dividing the
b-bit mask into copies of a 2n-bit mask. For example, consider the case b = 512
and n = 128. Then we can use ∆i‖∆i as the mask, where ∆i is a 256-bit mask
(using for example x256 +x16 +x3 +x2 +1 ∈ F2[x] as an irreducible polynomial).
Note that our proofs work with such a construction without significant changes.

Key-Length Flexibility. Our mode does not require re-keying, presenting a
contrast to the classical Merkle-Damg̊ard iteration that re-keys at every step.
This does not have an impact on performance with compression functions such as
sha1 and sha256, but the situation would be quite different with block-cipher-like
primitives equipped with heavy key-schedule algorithms.

We remark that our construction has no restriction on the key space, though
so far we have assumed k ∈ {0, 1}n. In fact, our construction works with any
finite PRF fk : {0, 1}b → {0, 1}n with k ∈ K, where K can be an arbitrary type

330 K. Yasuda

of key space, as long as f is a secure PRF. Hence using a key k shorter than n
bits speeds up performance (i.e., each invocation to f processes more bits of a
message). This sort of situation may occur when the desired key length does not
match the value n of a compression function in hand.

7 Open Problems

Case b < 2n and Block-Cipher-Based Construction. Our construction
requires that the underlying compression function f : {0, 1}n+b → {0, 1}n should
meet the condition b ≥ 2n. We leave it as an open problem whether we can con-
struct a mode of operation, meeting our goals, with a compression function f
with b < 2n. Since we utilize this condition essentially in two different places, our
method does not seem to be feasible with such compression functions. In particu-
lar, the last process with f̄123 may be constructed by methods such as [12,13,14],
but using the condition in tweaking f seems to face a hard problem.

A possibly more challenging problem is to construct a mode of operation
using an fk with b = n and each fk being a permutation, rather than a function
(i.e., a block cipher). This introduces the difficulty in handling the PRP ↔ PRF
Switching Lemma that causes the birthday security degradation.

Parallelizable Construction. Our construction is inherently serial, and thus
not parallelizable. Parallelizability is one of the desirable properties in construct-
ing a mode of operation.

Recall that PMAC [18] is a mode of operation for message authentication,
which is fully parallelizable. Although usually constructed of a block cipher,
PMAC can be based on a compression function f : {0, 1}n+b → {0, 1}n meeting
the condition b ≥ 2n. We can then modify such PMAC as “multilaned” in the
ways described in [9]. This would yield a parallelizable construction (which would
resist birthday attacks). The only problem with this construction is that it is
not truly one-pass. We leave it as an open problem whether we can construct
a mode of operation that enjoys all the seven properties in our construction as
well as parallelizability.

Reducing the State Size. Our mode is based on three data flows, summing
up to b + n + n = b + 2n bits of state size. This is larger than 2n, the number of
bits we expect to be necessary to preclude birthday attacks. It is an interesting
problem to see how many of b + 2n bits we can reduce down to 2n bits with a
new construction in future work.

8 Concluding Remarks

Remarks on Checksum Construction. The idea of message checksum and
that of intermediate-value checksum appear in various scenarios, including CBC
with Checksum [22,23], 3GPP f9 [24] and O-NMAC [25]. The same techniques
are also used in the context of keyless hash functions, the purpose being, among

A One-Pass Mode of Operation for Deterministic Message Authentication 331

other things, to preclude multi-block collision attacks [26]. However, many of
these hash functions are broken subsequently after their introduction [27,28].

On the other hand, checksum techniques are proven to be effective (among
other things) for extending a distribution property of a compression function to
the whole hash function [29]. Our construction presents another positive appli-
cation of the techniques—providing a secure PRF without the birthday barrier.

Remarks on Masking Technique. The masking technique used in the present
work might be contrasted to that in constructing target-collision-resistant (TCR)
hash functions [30]. The difference lies in the number of necessary “randomness.”
In the case of TCR hash functions the construction requires fresh masks as many
as logarithmic of the message length (for each message), whereas in our case all
the masks are derived from a single mask (which is also derived from a single
key) for all messages. Having or not having a “secret” key seems to be essential
to making the difference here.

Acknowledgments. The author would like to thank anonymous FSE 2008
reviewers for their valuable comments. In particular, the author wishes to express
his appreciation to one of the referees for pointing out an incomplete description
of the methods for incrementing masks in an earlier version of the paper. The
author is grateful to Kazumaro Aoki for having discussions to fix the problem.

The author received useful feedback from the participants in the FSE 2008
Workshop. Special thanks go to Tetsu Iwata, Kaisa Nyberg, Taizo Shirai and
Thomas Shrimpton.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994)

3. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

4. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

5. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995)

6. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC be-
yond the birthday paradox limit: A new construction. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002)

7. den Boer, B., Rompay, B.V., Preneel, B., Vandewalle, J.: New (two-track-)MAC
based on the two trails of RIPEMD. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 314–324. Springer, Heidelberg (2001)

332 K. Yasuda

8. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

9. Yasuda, K.: Multilane HMAC—Security beyond the birthday limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

10. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and
secure message authentication. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

11. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudorandom
functions: Security beyond the birthday barrier. In: Wiener, M.J. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)

12. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transfor-
mations – Benes: A non-reversible alternative to Feistel. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)

13. Patarin, J.: Improved security bounds for pseudorandom permutations. In: ACM
Conference on Computer and Communications Security, pp. 142–150 (1997)

14. Patarin, J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998)

15. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

16. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

17. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

18. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002)

19. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

20. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

21. Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., Wagstaff Jr., S.S.: Fac-
torizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, 3rd edn. Con-
temporary Mathematics, vol. 22. AMS (2002)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

23. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley, Chichester (1996)

24. 3GPP: Specification of the 3GPP Confidentiality and Integrity Algorithms; Docu-
ment 1: f8 and f9 Specification. 3.1.1 edn (2001)

25. Gauravaram, P., Millan, W., Nieto, J.G., Dawson, E.: 3C – A provably secure pseu-
dorandom function and message authentication code. A new mode of operation for
cryptographic hash function. Cryptology ePrint Archive Report 2005/390 (2005)

26. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing secure
hash functions by enhancing Merkle-Damg̊ard construction. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Hei-
delberg (2006)

A One-Pass Mode of Operation for Deterministic Message Authentication 333

27. Joscák, D., Tuma, J.: Multi-block collisions in hash functions based on 3C and
3C+ enhancements of the Merkle-Damg̊ard construction. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 257–266. Springer, Heidelberg (2006)

28. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect
Damg̊ard-Merkle Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

29. Lei, D., Li, C.: Extended multi-property-preserving and ECM-construction. In:
Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859,
pp. 361–372. Springer, Heidelberg (2007)

30. Shoup, V.: A composition theorem for universal one-way hash functions. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Hei-
delberg (2000)

Post-Processing Functions for a Biased Physical

Random Number Generator

Patrick Lacharme

Imath, Université de Toulon

Abstract. A corrector is used to reduce or eliminate statistical weak-
ness of a physical random number generator. A description of linear
corrector generalizing post-processing described by M. Dichtl at FSE’07
[5] is introduced. A general formula for non linear corrector, determining
the bias and the minimal entropy of the output of a function is given.
Finally, a concrete and efficient construction of post-processing function,
using resilient functions and cyclic codes, is proposed.

Keywords: bias, linear correcting codes, Fourier transform, resilient
functions, entropy.

1 Introduction

The scheme of a true random number generator consists of two different parts.
The first one is a noise source using a physical non deterministic phenomenon
producing a raw binary sequence. The second one is a corrector compressing
this sequence in order to provide randomness extraction. 1 At FSE’07, M. Dichtl
proposed several true random number generators designed to reduce the bias
of the noise source and extract more entropy than known algorithms [5]. He
considered that the physical source produces statistically independents bits with
constant bias. In his conclusion, the author suggested to extend his work in many
directions : compression rates, other input sizes and systematic construction of
good post-processing functions.

In this paper, we study the output bias of a function. The same assumptions
as in [5] are taken : the input bits of the function are independents and have
the same bias. General constructions of functions achieving very good output
bias are exposed. Furthermore, these functions are very efficiently implemented
in smart-card applications. The output bias of a linear corrector is bounded in
Section 2, using linear correcting codes. Section 3 presents the explicit calculation
of the output bias of a function with its Fourier transform. Resilient functions are
used in Section 4 to construct correctors and Section 5 proposes an estimation
of minimal entropy of the output sequence.

1 True random number generator should not be used for cryptographic purposes with-
out a more complex structure as a pseudo random generator [3].

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 334–342, 2008.
c© International Association for Cryptologic Research 2008

Post-Processing Functions for a Biased Physical Random Number Generator 335

2 A Linear Corrector

We consider a physical noise source providing a raw binary sequence. The bits
xi are independent and display a constant bias e, defined by

e =
1
2
(P (xi = 1) − P (xi = 0)) ,

with P (xi = 1) = 1
2 +e and P (xi = 0) = 1

2 −e. This assumption is taken in order
to get a simple formula and to compare our correctors with the correctors pro-
posed in [5] on the same hypothesis. Nevertheless Theorem 1 can be generalized
with non constant bias assumption.

The linear corrector H proposed in [5], maps 16 bits to 8 bits. For x =
(x0, . . . , x15) the input vector and y = (y0, . . . , y7) the output vector, the correc-
tor H is defined by the following relation

∀i = 0, . . . , 7 yi = xi + xi+1 mod 8 + xi+8 mod 2 .

The compression rate of H is 2, exactly the same rate as the xor corrector

yi = x2i + x2i+1 mod 2 .

If we note X1 and X2 the two input bytes of H , + the bitwise xor and RL(X, i)
the circular rotation of i bits, we can write H in pseudocode

H(X1, X2) = X1 + RL(X1, 1) + X2 .

Two furthers improvements of H are presented

H2(X1, X2) = X1 + RL(X1, 1) + RL(X1, 2) + X2 ,

H3(X1, X2) = X1 + RL(X1, 1) + RL(X1, 2) + RL(X1, 4) + X2 .

The author says that if the bias of any input bits is e, then the lowest power
of e in the bias of output bytes is 3 for H , 4 for H2 and 5 for H3. His approach
is to determine probability of every inputs, and to sum up the probability for all
input leading to the same output of the corrector.

A simple mathematical proof of previous results is determined using the
matricial representation of a linear corrector. For x = (x1, . . . , xn) and y =
(y1, . . . , ym), any linear binary corrector mapping n bits to m bits, is defined as
the product of the vector x by the binary matrix G = (gi,j) :⎛⎜⎝ g1,1 . . . g1,n

...
gm,1 . . . gm,n

⎞⎟⎠
⎛⎜⎝x1

...
xn

⎞⎟⎠ =

⎛⎜⎝y1

...
ym

⎞⎟⎠ .

Theorem 1. Let G be a linear corrector mapping n bits to m bits. Then the
bias of any non zero linear combination of the output bits is less or equal than
2d−1ed, where d is the minimal distance of the linear code constructed by the
generator matrix G.

336 P. Lacharme

Proof. Firstly, recall that if n bits x1, . . . , xn have a bias e, then the bias of
x1 + . . . + xn mod 2 is 2n−1en (the proof is a simple induction) [7].

The matrix G is seen as a generator matrix of a [n, k, d] linear code. By
definition of the minimal distance of the code, any non zero linear combination
of output bits is the sum of, at least, d input bits. We conclude that the bias of
any non zero linear combination of output bits is less or equal than 2d−1ed. ��

This theorem gives an upper bound of the output bias for an arbitrary linear
corrector. In particular, the matrix corresponding to H , H2 and H3 are respec-
tively generator matrix of [16, 8, 3], [16, 8, 4] and [16, 8, 5] linear codes. Then the
bias of any linear combination of output bits is bounded, respectively by 4e3,
8e4 and 16e5. Theorem 5 of Section 5 allows to conclude on Dichtl results on the
lowest power of e in the output bytes bias.

Any linear [n, m, d]-code provides a linear corrector with an estimation of its
output bias. The compression rate of a corrector mapping n bits to m bits is
defined by n/m. A table of linear codes gives good linear corrector with variable
compression rates and input sizes [6]. The hardware implementation of linear
corrector is efficiently achieved as a simple multiplication of an input vector by
a constant matrix. A cyclic code provides a more compact implementation of
the corrector and improves its realisation.

There are no linear binary codes of length 16, dimension 8 with minimal
distance greater than 5 [6]. In theses conditions, to minimize output bias, we
must search non linear correctors.

3 Non Linear Corrector

Let f be a corrector mapping n-bits to m-bits. A non zero linear combination of
output bits of f is defined using a m-bits vector u �= 0, by the Boolean function
φu(x) =

∑m
i=1 uifi(x) = u.f(x). For an input bits bias e, the bias of this linear

combination is

∆u =
1
2
(P (φu(x) = 1) − P (φu(x) = 0)).

The bias ∆u can be directly computed using the truth table of φu(x) and the
input bias e by the formula

2∆u(e) =
∑

x∈Fn
2

φu(x)=1

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x) −
∑

x∈Fn
2

φu(x)=0

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)

=
∑

x∈Fn
2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)φu(x)+1 .

Therefore

∆u(e) = −1
2

∑
x∈Fn

2

(
1
2
− e)n−wh(x)(

1
2

+ e)wh(x)(−1)φu(x) . (1)

Post-Processing Functions for a Biased Physical Random Number Generator 337

For a Boolean function f , the Hamming weight wH(f) denotes the number of
‘1’ in its truth table. The Walsh transform of f is :

∀v ∈ Fn
2 f̂(v) =

∑
x∈Fn

2

(−1)f(x)+v.x .

Lemma 1. Let x be a binary vector on Fn
2 such that the bits xi are independent.

Then ∑
a∈Fn

2

P (x = a)(−1)v.a = (−2e)wH(v) .

Proof. By independency of the bits xi,∑
a∈Fn

2

P (x = a)(−1)v.a =
n∏

i=1

1∑
ai=0

P (xi = ai)(−1)viai

=
n∏

i=1
vi=1

(P (xi = 0)−P (xi = 1))
n∏

i=1
vi=0

(P (xi = 0)+P (xi = 1))

= (−2e)wH(v) .

Theorem 2 presents a complete description of the bias of any non zero linear
combination φu(x) = u.f(x) of a vectorial function f relatively to the the input
bias e and the coefficients of the Walsh transform of φu :

Theorem 2. Let f be a function which maps n bits to m bits and e the input
bit bias. Then the bias ∆u(e) is

∆u(e) =
1

2n+1

∑
v∈Fn

2

(2e)wH(v)(−1)wH(v)+1φ̂u(v) . (2)

Proof. By definition on bias ∆u,

2∆u(e) = P (φu(x) = 1) − P (φu(x) = 0)

= −
∑

a∈Fn
2

P (x = a)(−1)φu(a) .

Moreover, ∑
v∈Fn

2

(−1)v.(a+z) =
{

0 for a �= z
2n for a = z

(3)

Using equation (3) we get∑
a∈Fn

2

P (x = a)(−1)φu(a) = 2−n
∑

v∈Fn
2

∑
a∈Fn

2

(−1)v.aP (x = a)
∑

z∈Fn
2

(−1)φu(z)+v.z .

Therefore with Lemma 1 and definition of φ̂u,

∆u(e) =
1

2n+1

∑
v∈Fn

2

(2e)wH(v)(−1)wH(v)+1φ̂u(v) .

��

338 P. Lacharme

For example, let f be the quadratic Boolean function defined by

f(x) = f(x1, x2, x3) = x2 + x3 + x1x2 + x2x3 mod 2 ,

where the truth table and the Walsh coefficients are

x f(x) f̂(x)
000 0 0
001 1 4
010 1 0
100 0 -4
011 1 4
101 1 0
110 0 4
111 0 0

The probability P (f(x) = 0) = 1
2 − e, computed using the truth table of f :

P (f(x) = 0) = (
1
2
− e)3 + (

1
2
− e)2(

1
2

+ e) + (
1
2
− e)(

1
2

+ e)2 + (
1
2

+ e)3

=
1
2

+ 2e2 .

The output bias computed with Theorem 2 gives (with u = 1) :

∆1(e) =
1
16

(f̂(000) + 2ef̂(001) + 2ef̂(010) + 2ef̂(100)

−4e2f̂(011) − 4e2f̂(101) − 4e2f̂(110) + 8e3f̂(111))

After reduction, we get
∆1(e) = −2e2 .

Definition 1. Let P be a polynomial of degree d, defined by

P (X) =
d∑

i=0

aiX
i .

The valuation of P is the minimal i > 0 such that ai �= 0.

Corollary 1 is a consequence of Theorem 2 :

Corollary 1. Let f be a function mapping n bits to m bits and e the input bias
of the function. For any vector u, we define for all w, with 0 ≤ w ≤ n

Bw =
∑

v∈Fn
2

wH (v)=w

φ̂u(v) .

Then the bias of φu(x) is a polynomial of valuation W , with

W = min{w | Bw �= 0} .

Post-Processing Functions for a Biased Physical Random Number Generator 339

Formula (2) gives a complete description of the bias and coefficients of the poly-
nomial ∆u(e) are determined by Bw.

In particular, if we consider the linear Boolean function which is the sum of
d variables, then Bw = 0 for all w �= d.

4 A Resilient Corrector

A (n, m, t)-resilient function is a function mapping n bits to m bits such that if
t input bits are fixed, there is no influence on the output :

Definition 2. [4] A (n, m, t)-resilient function is a function f mapping Fn
2 to

Fm
2 such that for any coordinates i1, . . . it and for any binary constant c1, . . . , ct

and for all y ∈ Fm
2 , we have

P (f(x) = y | xi1 = c1, . . . , xit = ct) = 2−m,

where xi with i /∈ {i1, . . . , it} verify P (xi = 1) = P (xi = 0) = 0.5.

A (n, m, t)-linear resilient function is a linear corrector2 and Theorem 3 shows
the relation between resilience degree of a linear function and output bias :

Lemma 2. [4] A (n × m) binary matrix M is a generator matrix of a linear
[n, m, d]-code if and only if the function

x '→ M.tx

is a linear (n, m, d − 1)-resilient function.

Theorem 3. Let f be a linear (n, m, t)-resilient function. Then the bias of any
non zero linear combination of the output bits is less or equal than 2tet+1.

Proof. From Lemma 2, any linear (n, m, t)-resilient function provides a generator
matrix of a [n, m, t + 1]-linear code. The theorem follows with Theorem 1. ��

In the case of the (n, m, t)-resilient function is non linear, Theorem 4 evaluates the
valuation of the output bias, using the resilience order of the function. Lemma 3
is known as xor Lemma [4]:

Lemma 3. Let f be a (n, m, t)-resilient function and u a non zero vector in
Fm

2 . Then, any non zero linear combination u.f(x) of f is a (n, 1, t)-resilient
Boolean function.

G. Xiao and J. Massey propose a spectral characterization of (n, m, t)-resilient
functions [11] :

Lemma 4. Let f be a (n, 1, t)-resilient Boolean function. Then for all vector v

in Fn
2 with wH(v) ≤ t , we have f̂(v) = 0.

2 In [9], Stinson, Martin and Sunar have proposed a true random number generator
using a linear resilient function for the post-processing.

340 P. Lacharme

Theorem 4. Let f be (n, m, t)-resilient function and all input bits have a bias e.
Then the bias of any non zero linear combination of output bits is a polynomial
in e of valuation greater than t + 1.

Proof. Let φu(x) = u.f(x) be a linear combination of output bits. By Lemma 3
φu is a (n, 1, t)-resilient Boolean function. So, all Walsh coefficients φ̂u(v) are
null for all vector v of Hamming weight less or equal than t (Lemma 4). Using
Theorem 2, we get

∆u(e) =
1

2n+1

∑
v∈Fn

2
wH (v)>t

(2e)wH(v)(−1)wH(v)+1φ̂u(v) .

��

In the non linear case, the resilient property is not a necessary condition to
reduce the bias. The Boolean function of the previous example

f(x) = x2 + x3 + x1x3 + x2x3 mod 2 ,

is not resilient, but the output bias is reduced. Indeed, the Walsh coefficients of
(001) and (100) are not null, but the sum of both is null.

For example, M. Dichtl proposed a non linear corrector mapping 16 bits to 8
bits such that all e powers up to the fifth are gone in the output bias formula [5].
This corrector was found by exhaustive search and the hardware implementation
requires a considerable amount of chip area.

The calculation of syndrome of the non linear (16, 256, 6) Nordstrom-Robinson
code provides a (16, 8, 5)-resilient function [10]. Theorem 4, applied to this func-
tion, gives a corrector with a valuation of ∆u(e) equal to 6 and with a possible
implementation for smart-card applications.

5 Bias and Minimal Entropy

For the evaluation of the random quantity in a binary sequence, the minimal
entropy is an appropriate notion for random number generation in cryptography
[3]. In this part, we prove that if the bias of any non zero linear combination
of output bits is bounded, then the minimal entropy of the output can be esti-
mated. Theorem 5 gives the relation between one-dimensional bias ∆u(e) and
multidimensional bias and follows from [1], [2].

Theorem 5. Let f be a function from Fn
2 to Fm

2 . For all y ∈ Fm
2 , the multidi-

mensional bias ∣∣P (f(x) = y) − 2−m
∣∣

is less or equal than
2 max

u∈Fm
2

|∆u| .

Post-Processing Functions for a Biased Physical Random Number Generator 341

Definition 3. Let X be a discrete random variable on {0, 1}n. The minimal
entropy of X is the maximal number k such that

∀x ∈ X, P (X = x) ≤ 2−k .

Theorem 5 is a good tool to evaluate minimal entropy of the output. Indeed, we
suppose that a (n, m, t)-resilient function is used, with an input bias e. Then,
with Theorems 4 and 5, the bias of any output m-tuple is a polynomial of
valuation greater than t + 1. If et+1 is negligible compared to 2−m, then the
minimal entropy of the output is very close to m.

With a linear (n, m, t)-resilient function and an input bias e, we have

P (f(x) = y) ≤ 2−m + 2t+1et+1 ,

then the minimal entropy of the output is greater than

m − log2(1 + et+12m+t+1) .

For example, if e = 1/4, then

P (f(x) = y) ≤ 2−m + 2−(t+1) ,

For a linear cyclic code, a syndrome is computed with a modular polynomial
reduction, which is realized by using a linear feedback shift register. Lemma 2
explains how getting linear resilient function by calculating a syndrome. Let C a
[n, k, d] linear code, H its check matrix and d′ its dual distance, then the function
x '→ H.tx is a (n, n − k, d′ − 1)-resilient function.

Let C the [255, 21, 111] BCH code, D the [255, 234, 6] dual code of C, with
generator polynomial

H(X) = X21 + X19 + X14 + X10 + X7 + X2 + 1 .

The input 255-tuple (m1, . . . , m255) is coded by a binary polynomial m(X) =∑255
i=1 miX

i. Therefore the function f mapping F255
2 to F21

2 , defined by

m(X) '→ m(X) mod H(X)

is a (255, 21, 110)-resilient function. This polynomial reduction is implemented
by a shift register of length 21 with only seven xor gates.

In this case, with an important input bias e = 0.25, Theorems 3 and 5 give
an output bias of :

∀y ∈ F21
2

∣∣P (f(X) = y) − 2−21
∣∣ ≤ 2−111 .

Therefore, the minimal entropy of the output is very close to 21.

6 Conclusion

In this work we present general constructions of good post-processing functions.
We have shown that linear correcting codes and resilient functions provide many
correctors achieving good bias reduction with variable input sizes. Linear feed-
back shift register are suitable for an hardware inplementation where the chip
area is limited.

342 P. Lacharme

Acknowledgment

The author would like to thank Philippe Langevin for helpful discussions. The
author want also thank to Kaisa Nyberg for useful comments on the paper and
for the proof of Theorem 2, which is more elegant than original proof presented
at the workshop.

References

1. Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple Constructions of Almost k-
wise Independent Random Variables. In: IEEE Symposium on Foundations of Com-
puter Science, pp. 544–553., http://citeseer.ist.psu.edu/alon92simple.html

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanal-
ysis. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer,
Heidelberg (2004)

3. Barker, E., Kelsey, J.: Recommendation for random number generation using
deterministic random bit generators (revised). NIST Special publication 800-90
(March 2007), http://csrc.nist.gov/publications/nistpubs/800-90/SP800-
90revised March2007.pdf

4. Chor, B., Goldreich, O., Hastad, J., Freidmann, J., Rudich, S., Smolen-
sky, R.: The bit extraction problem or t-resilient functions. In: Proc. 26th
IEEE Symposium on Foundations of Computer Sciences, pp. 396–407 (1985),
http://citeseer.ist.psu.edu/chor85bit.html

5. Dichtl, M.: Bad and good ways of post-processing biased physical random num-
bers. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 127–152. Springer,
Heidelberg (2007)

6. Grassl, M.: Code table: bounds on the parameters of various types of codes,
http://www.codestables.de

7. Matsui, M.: Linear cryptanalysis method of DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

8. Mac Williams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland, Amsterdam (1977)

9. Martin, W.J., Sunar, B., Stinson, D.R.: A provably secure true random number
generator with built in tolerance to active attacks. IEEE Transactions on comput-
ers 56(1), 109–119 (2007)

10. Stinson, D.R., Massey, J.: An infinite class of counterexamples to a conjecture con-
cerning non linear resilient functions. Journal of cryptology 8(3), 167–173 (1995),
http://citeseer.ist.psu.edu/629195.html

11. Xiao, G.: Massey: A spectral Characterization of correlation immune functions.
IEEE Transactions on information theory V 34, 569–571 (1988)

http://citeseer.ist.psu.edu/alon92simple.html
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://citeseer.ist.psu.edu/chor85bit.html
http://www.codestables.de
http://citeseer.ist.psu.edu/629195.html

Entropy of the Internal State of an FCSR in

Galois Representation

Andrea Röck

Team SECRET, INRIA Paris-Rocquencourt, France
andrea.roeck@inria.fr

http://www-rocq.inria.fr/secret/

Abstract. Feedback with Carry Shift Registers (FCSRs) are primitives
that are used in multiple areas like cryptography or generation of pseu-
dorandom sequences. In both cases, we do not want that an attacker can
easily guess the content of the register. This requires a high entropy of
the inner state. We consider the case of a binary FCSR in Galois repre-
sentation. In this article, we show that we already lose after one iteration
a lot of entropy. The entropy reduces until the moment where the FCSR
reaches a periodic behavior. We present an algorithm which computes
the final entropy of an FCSR and which also allows us to show that the
entropy never decreases under the size of the main register.

1 Introduction

FCSRs are finite state machines which were independently introduced by Goresky
and Klapper [KG93, KG97], Marsaglia and Zamand [MZ91], and Couture and
L’Ecuyer [CL94]. They are similar to Linear Feedback Shift Registers (LFSRs).
However, they use an additional register to store the carry information and their
transition function is non linear, more precisely quadratic [AB05b]. Goresky and
Klapper [GK02] distinguish between FCSRs in Fibonacci and Galois representa-
tion. In this article, we consider binary FCSRs in Galois architecture.

An application of FCSRs is cryptography, as for example the stream cipher pre-
sented by Arnaut and Berger in [AB05b]. In this area, the entropy is an important
parameter. It represents the minimal number of binary questions an attacker has
to ask on average to obtain an unknown value. Therefore, we are always interested
in a high entropy. In the following, we study the entropy of the inner state of an
FCSR. First we give some notations. Subsequently, we will present the structure
of an FCSR in the Galois representation and explain exactly the meaning of the
state entropy. In the end, we give an overview of this article.

1.1 Notations

In this article, we are going to use the following notations to describe the behavior
of an FCSR.

n: Let n denote the size of the main register M in bits.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 343–362, 2008.
c© International Association for Cryptologic Research 2008

344 A. Röck

m: We mean by m the 2-adic description of the current state of M : m =∑n−1
i=0 mi 2i, where m0, . . . , mn−1 are the bits in M . Thus, 0 ≤ m < 2n.

d: Let d be an integer with 2n−1 ≤ d < 2n. We will use it to determine at which
positions we have a feedback with carry. We mean by di the i’th bit of the
binary representation of d. We define di = 0 for all i < 0.

Id = {0 ≤ i ≤ n − 2|di = 1}: The set Id contains all feedback positions.
d∗ = d − 2n−1.
� = wt(d∗): We denote with � the number of feedback branches, where wt(d∗)

means the hamming weight of d∗, i.e. the number of 1’s in its binary repre-
sentation.

c =
∑

i∈Id
ci 2i: The value c is the 2-adic description of the carry bits.

(m(t), c(t)): The pair (m(t), c(t)) represents the actual value of the state after
t iterations.

q = 1−2d: We denote by q the divisor in the 2-adic description of the produced
bit string. It holds that q < 0.

p = m + 2c: The value p represents the corresponding dividend which can be
in the range of 0 ≤ p ≤ |q|.

s: Let s is the binary representation of the output sequence of the generator.
H(1): Let H(1) denote the entropy of the state after one iteration.
Hf : As soon as the FCSR obtains a periodic behavior, the state entropy does

not change any more. We denote this final entropy by Hf .

Furthermore, we need two special sums in our calculations:

S1(k) =
2k∑

x=2k−1+1

x log2(x),

S2(k) =
2k−1∑
x=1

x log2(x).

1.2 FCSR in Galois

A binary FCSR in Galois representation is built like a LFSR with a main register
and several feedback branches. However, in the case of the FCSRs we have an
additional carry bit at each feedback position. An example for such an FCSR is
presented in Fig. 1.

To change the state from (m(t), c(t)) to (m(t+1), c(t+1)), we use the following
equations:

mn−1(t + 1) = m0(t), (1)
i ∈ Id : mi(t + 1) = (m0(t) + ci(t) + mi+1(t)) mod 2, (2)

ci(t + 1) = (m0(t) + ci(t) + mi+1(t)) ÷ 2, (3)
i �∈ Id : mi(t + 1) = mi+1(t), (4)

where x ÷ 2 means the integer division x/2!. The bit m0(t) is directly shifted
to position mn−1(t + 1). In the cases without a feedback, i.e. i �∈ Id, the bit gets

Entropy of the Internal State of an FCSR in Galois Representation 345

0c(t)

m(t) mn−1 mn−2 mn−3 m1 m0 st

c0cn−3

1 0 1 1d

Fig. 1. Model of an FCSR

simply shifted one position to the left. Otherwise, we add the bit in the main
register at position i + 1 with the carry bit and the bit from position 0. This
sum modulo 2 is put into the main register. The value of the sum divided by
2 is given back to the carry bit. The equations (2) and (3) can also be written
together as:

mi(t + 1) + 2ci(t + 1) = m0(t) + ci(t) + mi+1(t). (5)

Remark 1. The + in all these equations represents the normal integer addition
(and not an addition modulo 2) even if we are only using bit values for mi(t)
and ci(t).

The output sequence of the FCSR can be easily described by means of the
feedback positions (determined by d) and the initial state (m, c). Let q and p be
defined as q = 1− 2d and p = m+ 2c. This means that q < 0 and 0 ≤ p ≤ |q|. In
this case, the output sequence of the FCSR is s = p

q [GK02]. Another property
shown in [AB05a] is: Let (m(t+1), c(t+1)) be the state produced by (m(t), c(t))
after one iteration. Let p(t) = m(t) + 2c(t) and p(t + 1) = m(t + 1) + 2c(t + 1)
be the corresponding values of p. Then it holds that:

2p(t + 1) = p(t) (mod q). (6)

where all bits are 0 or 1 respectively.
We can use the following property of an FCSR to determine the period of a

sequence: if q is odd, p and q are coprime and s = p/q then the period of s is the
order of 2 modulo q, this means the smallest t such that 2t = 1 (mod q). If p
and q are not coprime, we divide them both by their greatest common divisor. It
is easy to see that the maximal period is |q| − 1. There are always two fix points
(0, 0) and (2n − 1, d∗) with an period of length 1, which represents the cases
where all bits are respectively 0 or 1. It is known [GK02] that if 2 is primitive
modulo q, which means it has order |q|−1, then all the other periodic states are
obtained by the state (1, 0) by iterating the FCSR. Since q is odd, this implies
that, except for the two fix points, we have an FCSR with one single cycle of
maximal length |q| − 1. Such a sequence is called �–sequence.

346 A. Röck

1.3 State Entropy

For any discrete probability distribution P = {p1, . . . , pZ}, Shannon’s entropy
is defined by:

H =
Z∑

j=1

pj log2

(
1
pj

)
. (7)

If pj = 0, we use the classical convention in the computation of the entropy:
0 log2(

1
0) = 0. This can be done, since a zero probability has no influence in the

computation of the entropy. The state of our FCSR consists of n+ � bits. Let us
assume that each initial state is chosen with the same probability p(m(0),c(0)) =
2−n−�. Then by using (7) we know that the initial entropy is n + � bits.

Let us consider the update function of an FCSR. It consists of trees of different
length, where each root of a tree is a node in a cycle. This is the same for any finite
function which is not a permutation. An example of such a graph can be found in
Fig. 2. Each node in the graph represents a possible state of the FCSR and each

(4,1)

(2,2)

(6,0)

(6,3)

(0,3)

(7,2)(5,2)

(3,0)(6,1)

(1,2)(4,3)

(2,1)(0,1)

(7,0)

(1,0)

(7,3)

(0,0) (2,0)

(0,2)

(4,0)

(4,2)

(2,3)

(1,1)

(5,3)

(3,3)

(7,1)

(3,1)

(5,0)

(6,2)

(1,3)

(3,2)

(5,1)

Fig. 2. Functional graph of the FCSR with n = 3 and q = −13

arrow represents an update from one state to another. Each time when a state is
produced by more than one state, the number of possible states, and therefore the
entropy of the state, reduces. As soon as we reached a point on the cycle from any
possible starting points, the FCSR behaves like a permutation and the entropy
stays constant. We will denote this value by the final entropy Hf .

We need the probability of each state to compute the entropy after some
iterations of the update function. If a state is produced by exactly r other states
after k iterations, then its probability is r 2−n−�. Using this probability, we can
compute the entropy applying (7).

Remark 2. We consider the case where all the 2n+� different values for the initial
state can be chosen, like in the first version of the F-FCSR-8 [ABL05]. This is
not always the case, e.g. for later versions of the F-FCSR [ABL06], the carry
bits of the initial value are always set to 0. This implies that at the beginning

Entropy of the Internal State of an FCSR in Galois Representation 347

this stream cipher has only n bits of entropy, however, it will not lose any more
entropy, as we will see later.

1.4 Outline

In Section 2, we compute the state entropy after 1 iteration. Subsequently, in
Section 3, we present an algorithm which computes the final entropy for any
arbitrary FCSR. This algorithm uses some sums which gets difficult to compute
for large �. However, we give a method to compute very close upper and lower
bounds of the entropy. The same algorithm is used in Section 4 to prove that
the final entropy is always larger than n. We conclude the article in Section 5.

2 Entropy after One Iteration

If the initial value of the state is chosen uniformly, we have an initial state
entropy of n + � bits. We are interested in how many bits of entropy we already
lose after one iteration.

Let us take an arbitrary initial state (m(0), c(0)) which produces the state
(m(1), c(1)) after one iteration. To compute the probability of (m(1), c(1)), we
want to know by how many other initial states (m′(0), c′(0)) �= (m(0), c(0)) it
is produced. From (1), we see that for such an initial state m′

0(0) = mn−1(1) =
m0(0) is fixed. In the same way, we see from (4) that for all i �∈ Id the values
m′

i+1(0) = mi(1) = mi+1(0) are already determined. By using (5) and the
previous remarks, we can write for i ∈ Id:

mi(1) + 2ci(1) = m0(0) + c′i(0) + m′
i+1(0)

mi(1) + 2ci(1) = m0(0) + ci(0) + mi+1(0)

and thus,

c′i(0) + m′
i+1(0) = ci(0) + mi+1(0).

If mi+1(0) = ci(0) it must hold that mi+1(0) = c′i(0) = m′
i+1(0) since each value

can only be either 0 or 1. Therefore, the only possibility for (m′(0), c′(0)) to
differ from (m(0), c(0)) is that there is a position i ∈ Id with mi+1(0) �= ci(0).

Let j be the number of positions in the initial state where i ∈ Id and ci(0) +
mi+1(0) = 1. Then, there are exactly 2j − 1 other initial states which produce
the same state after one iteration. Thus, (m(1), c(1)) has a probability of 2j

2n+� .
We look now how many states (m(1), c(1)) have this probability. Such a state
must be created by an initial state (m(0), c(0)) which has j positions i ∈ Id with
ci(0) + mi+1(0) = 1. There are

(
�
j

)
possibilities to choose these positions. At the

remaining � − j positions with i ∈ Id, we have mi+1(0) = ci(0) ∈ {0, 1}. In the
same way, we can choose between 0 and 1 for the remaining n−� positions. There
exists exactly 2n−j

(
�
j

)
different states (m(1), c(1)) with a probability of 2j−n−�.

348 A. Röck

Using (7),
∑�

j=0

(
�
j

)
= 2� and

∑�
j=0 j

(
�
j

)
= �2�−1 we can write the entropy after

one iterations as:

H(1) =
�∑

j=0

2n−j

(
�

j

)
2j−n−�(n + � − j)

= n +
�

2
.

We have shown that the entropy after one iteration is:

H(1) = n +
�

2
(8)

which is already �/2 bits smaller than the initial entropy.

3 Final State Entropy

We have shown that after one iteration the entropy has already decreased by
�/2 bits. We are now interested in down to which value the entropy decreases
after several iterations, i.e. the final entropy Hf . For the computation of Hf ,
we need to know how many initial states arrive at the same cycle point after the
same number of iterations. We are going to use the following proposition.

Proposition 1. [ABM08, Prop. 5] Two states (m, c) and (m′, c′) are equivalent,
i.e. m + 2c = m′ + 2c′ = p, if and only if they eventually converge to the same
state after the same number of iterations.

Let us assume that we have iterated the FSCR sufficiently many times that we
are on the cycle of the functional graph. In this case, we do not have any more
collisions. If a state in the cycle is reached by x other states, it has a probability
of x/2n+�. After one iteration, all probabilities shift one position in the direction
of the cycle, which corresponds to a permutation of the probabilities. However,
the definition of the entropy is invariant to such a permutation. Let v(p) denote
the number of states which produce the same p. From Proposition 1, we know
that we find a corresponding state in the cycle, which is reached by v(p) states
and has a probability of v(p)/2n+�. We can write the final entropy by means of
equation (7):

Hf =
|q|∑

p=0

v(p)
2n+�

log2

(
2n+�

v(p)

)
. (9)

Remark 3. Let us have a look at an FCSR as mentioned in Remark 2, which
always sets c(0) = 0. For each 0 ≤ p < 2n there is only one possibility to form
p = m. This means that there are no collision and the final entropy is the same
as the initial entropy, namely n bits.

The numerator p can take any value between 0 and 2n − 1 + 2(d − 2n−1) =
2d − 1 = |q|. We look at the binary representations of m, 2c and p to find all

Entropy of the Internal State of an FCSR in Galois Representation 349

1

2c
m

p

n 0

+

Fig. 3. Evaluation of p = m + 2c bit per bit

possible pairs (m, c) which correspond to a given p. We study bit per bit which
values are possible. This idea is presented in Fig. 3, where each box represents a
possible position of a bit. We mean by 2c the carry bits of the value c all shifted
one position to the left.

Remark 4. Due to this shift, we will normally consider the index i−1 for d or c.

3.1 Notations

Before continuing we give some additional notations:

ca(j) = mj + cj−1 + ca(j − 1) (mod 2): In the following, we consider only the
addition m + 2c, thus, if we talk of a carry we mean the carry of this integer
addition. We mean by ca(j) the carry which is produced by adding the bits
mj , cj−1 and the carry of the previous position. E.g. if we have m = 13 and
c = 2 we have ca(1) = 0 and ca(2) = ca(3) = 1. The value ca(0) is always 0
since we only have m0 for the sum.

i := log2(p)!: For 1 ≤ p ≤ |q|, let i be the index of the most significant bit in
p which is not equal to 0.

�′ = #{j ≤ i|dj−1 = 1}: We define by �′ the number of indices smaller or equal
to i for which dj−1 = 1.

r(p) = max{j < i|dj−1 = 0, pj = 1}: For a given p, let r(p) be the highest index
smaller than i such that dj−1 = 0 and pj = 1. In this case, the carry of the
integer addition m + 2c cannot be forwarded over the index r(p). If there is
no index j with dj−1 = 0 and pj = 1, we set r(p) = −1. For the case i < n
and di−1 = 0, we get a range of −1 ≤ r(p) < i. However, we will see that for
2n ≤ p ≤ |q|, the value r(p) is only possible for −1 ≤ r(p) < log2(d∗) + 1.
For simplicity reasons, we sometimes write only r if it is clear which p we
are meaning or if there are multiple p’s with the same value for r(p).

f1(r): This is a helping function which is needed in the further computations.
It is defined as:

f1(r) =

{
2r for r ≥ 0
1 for r = −1.

�′′(r) = #{j < r|dj−1 = 1}: For a given r, we define �′′ as the number of indices
strictly smaller than r for which dj−1 = 1. Again, we use sometimes only �′′

if it is clear to which r we refer.

350 A. Röck

v(p) = #{(m, c)|m+2c = p}: Let v(p) denote the number of pairs (m, c) which
create p = m + 2c.

In Case 2 in Section 3.2, we will see that it is sufficient to consider the indices
j with r(p) < j < i for knowing if there is a carry at position i− 1. To facilitate
the computation, we use the following notations:

p′

m′

c′

i

p

m

2c

r

1

mrmi−5

ci−6

mi−4mi−3mi−2mi−1mi

ci−1 ci−3 ci−4

1 0 pi−2 pi−3 0 pi−5 pi−3pi−2 pi−5

mi−5mi−3mi−2

ci−3 ci−4 ci−6

Fig. 4. Reduction of p, m, 2c to p′, m′, c′

p′,m′ and c′: We mean with p′, m′ and c′ the bit strings p, m, 2c reduced to the
positions j with r < j < i and dj−1 = 1. An example can be seen in Fig. 4.

Remark 5. In the case of c′, we do not consider c but 2c. Let j1 be an index
r < j1 < i with dj1−1 = 1 and j2 its corresponding index in the reduction,
i.e. m′

j2 = mj1 . Then we use c′j2 = cj1−1. Furthermore, the value of c′ is a
continuous bit string, since we are only interested in positions where there
is a feedback register.

The length of p′, m′ and c′ is �′ − �′′ − 1 bits.
0p′ and 1p′: We obtain 0p′ and 1p′ by concatenating respectively 0 and 1 to the

left of the bit string p′.
X(p′): We denote by X(p′) the number of possibilities for m′ and c′ such that

1p′ = m′ + c′, which means that we have a carry at the position of the most
significant bit of m′.

3.2 Final Entropy Case by Case

We cannot write the sum (9) for the final entropy directly in a closed form.
However, we partition the set of all possible 0 ≤ p ≤ |q| in four cases. For each
case, we will evaluate the value v(p)

2n+� log2

(
2n+�

v(p)

)
for all its p’s. We obtain the

final sum of the entropy by summing up all these values.

Case 1: 1 ≤ i < n and di−1 = 0
To create pi = 1 at position i, we have to add mi + ca(i− 1). For each value
of ca(i − 1) there exists exactly one possibility for mi. For each position j
with a feedback bit, dj−1 = 1, we have two possibilities to create the value
of pj. In this case, we can write for each p:

v(p) = 2�′
.

Entropy of the Internal State of an FCSR in Galois Representation 351

For each i, all p’s within the range [2i, 2i+1[are possible. So we must add:

H1(n, i, �, �′) = 2i 2�′−n−�(n + � − �′) (10)

to the entropy for each 1 ≤ i ≤ n with di−1 = 0.
Case 2: 1 ≤ i < n and di−1 = 1:

For a given p we know from the definition of r(p) that for all j’s with r(p) <
j < i, if dj−1 = 0, then pj = 0. In the case of (dj−1 = 0, pj = 0), a carry
is always forwarded. This means that for m + 2c, if we have ca(j − 1) = 1,
mj must be 1 and we have ca(j) = 1. However, with ca(j − 1) = 0 we have
mj = 0, and so we have ca(j) = 0 as well. It is sufficient to consider the
�′ − �′′ − 1 positions j with i > j > r(p) for which dj−1 = 1, to know if we
have a carry at index i − 1.
From the definition of this case, we know that pi = 1 and di−1 = 1. If we
have ca(i− 1) = 0 we have two possibilities for (mi, di−1), namely (1, 0) and
(0, 1), to generate the pi = 1. Otherwise, we only have one possibility (0, 0).
For a given p′ we have:

X(p′) + 2(2�′−�′′−1 − X(p′)) = 2�′−�′′ − X(p′) (11)

possibilities to choose m′,c′ and (mi, di−1). The following lemma helps us to
compute X(p′). Its proof is given in Appendix B.
Lemma 1. Let p′, m′ and c′ be three bit strings of length K. For all 0 ≤ x ≤
2K − 1, there exists exactly one p′ with X(p′) = x, i.e. there exists exactly
one p′ such that for x different pairs (m′, c′) we can write 1p′ = m′ + c′.
In our case: K = �′ − �′′ − 1. The next question is, how many p’s have the
same reduction p′. If 0 ≤ r < i we have 2r possibilities, in the case r = −1 we
have only one. We consider this behavior by using the helping function f1(r).
By combining Lemma 1 and (11), we obtain that for each 2�′−�′′−1 +1 ≤ y ≤
2�′−�′′

there is exactly one p′ which is generated by y different combinations
of m′ and c′. Each p which corresponds to such a p′, is generated by y 2�′′

different pairs (m, c), since at each position j < r with dj−1 = 1 we have two

possibilities to create p. This means that this p has a probability of y 2�′′

2n+� .
For fixed values of i, r, �′ and �′′ we have to add the following value to the
entropy:

H2(n, r, �, �′, �′′)

= f1(r)
2�′−�′′∑

y=2�′−�′′−1+1

y2�′′

2n+�
log2

(
2n+�

y2�′′

)
= f1(r)2−n−�

[
2�′−2

(
3 2�′−�′′−1 + 1

)
(n + � − �′′) − 2�′′

S1(�′ − �′′)
]
.

Thus, in this case, we have to add for every 1 ≤ i ≤ n − 1 with di−1 = 1,
and every −1 ≤ r < i with dr−1 = 0 the value:

H2(n, r, �, �′, �′′)=f1(r)2−n−�
[
2�′−2

(
3 2�′−�′′−1+ 1

)
(n + � − �′′)−2�′′

S1(�′−�′′)
]

(12)
where �′ = �′(i) and �′′ = �′′(r).

352 A. Röck

Case 3: i = n, 2n ≤ p ≤ |q|:
In this case, we always need a carry ca(n − 1) to create pn = 1. Like in the
previous case, we are going to use r(p), �′′, p′, (m′, c′) and X(p′). However,
this time we have i = n and � = �′.
For p = |q|, which means that (m, c) consists of only 1’s, it holds that for all
n > j > log2(d∗)+1, we have pj = 0. If we would have a r(p) ≥ log2(d∗)+1,
then p would be greater than |q| which is not allowed. Therefore, r must be
in the range of −1 ≤ r < log2(d

∗) + 1.
From Lemma 1, we know that for all 1 ≤ x ≤ 2�−�′′ − 1 there exists exactly
one p′ with X(p′) = x, i.e. there are x pairs of (m′, c′) with 1p′ = m′ + c′.
We exclude the case X(p′) = 0, because we are only interested in p′s that
are able to create a carry. For each p′, there are f1(r) possible values of p
which are reduced to p′. If p′ is created by x different pairs of (m′, c′), then
each of its corresponding values of p is created by x 2�′′

pairs of (m, c) and

has a probability of x 2�′′

2n+� .
For a given r and �′′ the corresponding summand of the entropy is:

H3(n, r, �, �′′) = f1(r)
2�−�′′

−1∑
x=1

x 2�′′

2n+�
log2

(
2n+�

x 2�′′

)
= f1(r)2−n

[
2−1
(
2�−�′′

− 1
)

(n + � − �′′) − 2�′′−�S2(� − �′′)
]
.

In this case, we have to add for each value of −1 ≤ r < log2(d∗) + 1 with
dr−1 = 0 and �′′ = �′′(r):

H3(n, r, �, �′′) = f1(r)2−n
[
2−1
(
2�−�′′ − 1

)
(n + � − �′′) − 2�′′−�S2(� − �′′)

]
.

(13)
Case 4: 0 ≤ p ≤ 1

If p = 0 or p = 1, there exists only one pair (m, c) which can produce the
corresponding p. Thus, for each of these p’s we have to add:

H4(n, �) = 2−n−�(n + �) (14)

to the sum of the entropy.

The Algorithm 1 shows how we can compute the final entropy for an FCSR
defined by n and d using the summands of the individual cases.

3.3 Complexity of the Computation

The exact computation of the entropy requires to evaluate the sums S1(k) =∑2k−1
x=1 x log2(x) and S2(k) =

∑2k

x=2k−1+1 x log2(x). If we have stored the values
S1(k) and S1(k) for 1 ≤ k ≤ �, we are able to compute the final entropy in O(n2).
We need O

(
2�
)

steps to evaluate both sums, which is impractical for large �.
However, by using the bounds (20)-(21) for larger k’s, we can easily compute
a lower and upper bound of those sums. In Table 1, we compare for different

Entropy of the Internal State of an FCSR in Galois Representation 353

Algorithm 1. Final entropy
1: Hf ← 0
2:
′ ← 0
3:
 ← wt(d) − 1
4: Hf ← Hf + 2H4(n,
) {p = 0 and p = 1}
5: for i = 1 to n − 1 do
6: if di−1 = 0 then
7: Hf ← Hf + H1(n, i,
,
′)
8: else {di−1 = 1}
9:
′ ←
′ + 1

10:
′′ ← 0
11: for r = −1 to i − 1 do
12: if dr−1 = 0 then
13: Hf ← Hf + H2(n, r,
,
′,
′′)
14: else {dr−1 = 1}
15:
′′ ←
′′ + 1
16: end if
17: end for
18: end if
19: end for
20:
′′ ← 0
21: for r = −1 to log2(d − 2n−1) do {2n ≤ p ≤ 2d − 1}
22: if dr−1 = 0 then
23: Hf ← Hf + H3(n, r,
,
′′)
24: else {dr−1 = 1}
25:
′′ ←
′′ + 1
26: end if
27: end for

Table 1. Comparison of the exact computation of the final state entropy, with upper
and lower bounds

n d
 Hf lb Hf ub Hf lb Hf , k > 5 ub Hf , k > 5

8 0xAE 4 8.3039849 8.283642 8.3146356 8.3039849 8.3039849

16 0xA45E 7 16.270332 16.237686 16.287598 16.270332 16.270332

24 0xA59B4E 12 24.273305 24.241851 24.289814 24.273304 24.273305

32 0xA54B7C5E 17 32.241192 32.289476 32.272834 32.272834

FCSRs the exact computation with those, using upper and lower bounds. The
values of d were randomly chosen. However, the accuracy of the estimation of
the sums can be shown anyway.

We mean by Hf the exact computation of the the final entropy. The values
lb/ub Hf mean the lower and the upper bound obtained by using the approxi-
mation of S1 and S2. The last two columns, lb/ub Hf , k > 5, we gain by using
the approximations only for k > 5. This last approximation is as close that we
do not see any difference between the lower and the upper bound in the first 8
decimal places.

354 A. Röck

4 Lower Bound of the Entropy

We can use the algorithm of the previous section and induction to give a lower
bound of the final state entropy. For a given n and � we first compute the entropy
for an FCSR where all the carry bits are the � least significant bits. Subsequently,
we show that by moving a feedback position to the left, the direction of the
most significant bit, we increase the final entropy. In both steps, we study all
0 ≤ p ≤ |q| case by case and use the summands of the entropy H1, H2, H3 and
H4 as presented in Section 3.

4.1 Basis of Induction

For a fixed n and � we study the final state entropy of an FCSR with

d = 2n−1 + 2� − 1.

This represents an FCSR which has all its recurrent positions grouped together
at the least significant bits (see Fig. 5). Like in the previous section, we are going

2c
m

p

n 0

1�

Fig. 5. FCSR with d = 2� − 1 + 2n−1

to compute the entropy case by case.

– p = 0 and p = 1.
– 1 ≤ i ≤ �: Here we have di−1 = 1, �′ = i, r = −1 and 0 and thus �′′ = 0.
– � < i < n: We have di−1 = 0 and �′ = �.
– 2n ≤ p ≤ |q|: Since it must hold that r ≤ log2(d∗) = log2(2� − 1) we see that

the only possible values for r are −1 and 0 and therefore �′′ = 0.

So in this case, the final entropy is:

Hf (n, d) = 2H4(n, �)

+
�∑

i=1

(H2(n,−1, �, i, 0) + H2(n, 0, �, i, 0))

+
n−1∑

i=�+1

H1(n, i, �, �)

+ H3(n,−1, �, 0) + H3(n, 0, �, 0)
= n + �

(
2−n+�+1 − 2−n+1

)
− 2−n−�+2S2(�) .

Entropy of the Internal State of an FCSR in Galois Representation 355

By using the lower bound (21) for S2(�) we can write:

Hf (n, d) ≥ n +
2−n+�+2

12 ln(2)
(
3 − (4 + �)2−2� − 2−3� + 21−4�

)
.

Let us examine the function g(�) = 3 − (4 + �)2−2� − 2−3� + 21−4�. It is easy to
verify that g(�+1)−g(�) > 0 for all � ≥ 1. Thus, we can write g(�) ≥ g(1) = 7/4
for all � ≥ 1 and finally:

Hf (n, d) ≥ n + 2−n+� 7
12 ln(2)

≥ n . (15)

4.2 Induction Step

We show that by moving one feedback position one position to the left, which
means in direction of the most significant bit, the final state entropy increases.
To prove this, we compare two cases A and B. In Case A we choose an s such

���
���
��
��
��

���
���
��
��
��

��
��
��
��

��
��
��
��

ss + 1

ss + 1

2c[B]

2c[A]

Fig. 6. Moving the feedback position

that ds−1 = 1 and ds = 0. It must hold that:

1 ≤ s ≤ n − 2, (16)
3 ≤ n . (17)

To create Case B, we move the feedback at index s one position to the left. This
is equivalent to:

dB = dA − 2s−1 + 2s.

In Fig. 6, we display the two values 2cA and 2cB which we are going to use to
compute the different finale entropies. Let

L = #{j < s|dj−1 = 1}

be the number of feedback positions smaller than s. We mean by

Ir
<s = {−1 ≤ j < s : di−1 = 0}

the set of all indices smaller than s where there is no feedback and which are
thus possible values for r. It must hold that |Ir

<s| = s − L.

356 A. Röck

We want to show that:
Hf

B − Hf
A ≥ 0 . (18)

To do this, we study the different cases of p. Each time, we examine if the
summands from the algorithm in Section 3 are different or not. In the end we
sum up the differences.

– p = 0 or p = 1: The summands of the entropy in A and B are the same.
– i < s: The summands of the entropy in A and B are the same.
– n > i > s + 1:

• di−1 = 0: In this case, i and �′ are the same for A and B and thus the
summands of the entropy as well.

• di−1 = 1: We have:
L + 2 ≤ �′ ≤ � .

∗ r < s: In this case, i, r, �′ and �′′ are the same and thus the summands
of the entropy as well.

∗ s + 1 < r: In this case, i, r, �′ and �′′ are the same and thus the
summands of the entropy as well.

∗ s ≤ r ≤ s + 1:
· A: Since for r it must hold that dr−1 = 0, we get r = s + 1 and

thus �′′ = L + 1. In this case, we have to count:

H2(n, s + 1, �, �′, L + 1) .

· B: In this case, we have r = s and �′′ = L and therefore the term:

H2(n, s, �, �′, L) .

– 2n ≤ p ≤ |q|:
• r < s: In this case, i, r and �′ are the same and thus the summands of

the entropy as well.
• s + 1 < r: In this case, i, r and �′ are the same and thus the summands

of the entropy as well.
• s ≤ r ≤ s + 1:

∗ A: We have r = s + 1 and �′′ = L + 1. Therefore, the summand of
the entropy in this case is:

H3(n, s + 1, �, L + 1) .

∗ B: We have to consider r = s and �′′ = L and therefore:

H3(n, s, �, L) .

– s ≤ i ≤ s + 1: We are going to use �′′(r) to denote the value of �′′ corre-
sponding to a specific r.
• i = s:

Entropy of the Internal State of an FCSR in Galois Representation 357

∗ A: In this case, we have di−1 = 1 and �′ = L + 1. Thus we have to
count for each r ∈ Ir

<s:

H2(n, r, �, L + 1, �′′(r)) .

∗ B: Since di−1 = 0 and �′ = L we get:

H1(n, s, �, L) .

• i = s + 1:
∗ A: In this case, we have �′ = L + 1 and di−1 = 0, thus we need to

consider:
H1(n, s + 1, �, L + 1) .

∗ B: This time, we have di−1 = 1. For �′ = L + 1, r ∈ Ir
<s and r = s

we get:
H2(n, r, �, L + 1, �′′(r)) .

In the case of r = s, we can write �′′ = L.

By combining all these results, we get a difference of the final entropies of:

Hf
B − Hf

A =
�∑

�′=L+2

(H2(n, s, �, �′, L) − H2(n, s + 1, �, �′, L + 1))

+ H3(n, s, �, L) − H3(n, s + 1, �, L + 1)

+ H1(n, s, �, L) −
∑

r∈Ir
<s

H2(n, r, �, L + 1, �′′(r))

+
∑

r∈Ir
<s

H2(n, r, �, L + 1, �′′(r)) + H2(n, s, �, L + 1, L)

− H1(n, s + 1, �, L + 1)
= 2�−1 (4� − 4L − 2) + 22�−L + 2L+1 (3S2(� − L − 1) − S1(� − L)) .

If we use the lower bound (21) for S2(� − L − 1) and the upper bound (20) for
S1(� − L), we can write:

Hf
B − Hf

A ≥ 2L

(
(� − L)

1
4 ln(2)

+
7

12 ln(2)
+ 2−(�−L)14 − 12 2−(�−L)

12 ln(2)

)
.

From � > L, it follows directly (18), which means that the difference of the final
entropies is greater or equal to 0.

Every FCSR with � feedback positions can be build by starting with the FCSR
described in Section 4.1 and successively moving one feedback position to the
left. Thus, by combining (15) and (18) we write the following theorem.

Theorem 1. An FCSR in Galois architecture, with given values for n and �,
has at least n + 2�−n 7

12 ln(2) ≥ n bits of entropy if all 2n+� initial states appear
with the same probability.

358 A. Röck

5 Conclusion

If we allow all initial states of the FCSR with the same probability 2−n−�, we
have an initial entropy of the state of n + � bits. We showed in this article that
already after one iteration, the entropy is reduced to n + �/2 bits.

As soon as the FCSR has reached its periodic behavior, the entropy does not
reduce any more. In this article, we presented an algorithm which computes this
final entropy in O

(
n2
)

steps. The algorithm is exact if the results of the sums

S1(k) =
∑2k

x=2k−1+1 x log2(x) and S2(k) =
∑2k−1

x=1 x log2(x) are known for k ≤ �.
For large values of �, the same algorithm allows us to give close upper and lower
bounds for the entropy by using approximations of S1(k) and S2(k).

In the end, we used the same algorithm to prove that the final state entropy
never drops under n bits. One might argue that this is evident, since there are
|q| different values of p and log2(|q|) ≈ n. However, it would be possible that the
probabilities are not very regular distributed and that we would have a lower
entropy. With our bound, it is sure that the entropy cannot drop under n bits.

The entropy of an FCSR decreases quite fast. However, it stays always larger
or equal to n bits.

References

[AB05a] Arnault, F., Berger, T.P.: Design and properties of a new pseudorandom
generator based on a filtered FCSR automaton. IEEE Transactions on Com-
puters 54(11), 1374–1383 (2005)

[AB05b] Arnault, F., Berger, T.P.: F-FCSR: Design of a New Class of Stream Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97.
Springer, Heidelberg (2005)

[ABL05] Arnault, F., Berger, T.P., Lauradoux, C.: F-FCSR. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/008 (2005),
http://www.ecrypt.eu.org/stream

[ABL06] Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR stream cipher.
In: SASC, State of the Art of Stream Ciphers Workshop, Leuven, Belgium,
February 2006. ECRYPT Network of Excellence in Cryptology, pp. 267–277
(2006)

[ABM08] Arnault, F., Berger, T.P., Minier, M.: Some results on FCSR automata with
applications to the security of FCSR-based pseudorandom generators. IEEE
Transactions on Information Theory 54(2), 836–840 (2008)

[CL94] Couture, R., L’Ecuyer, P.: On the lattice structure of certain linear congru-
ential sequences related to AWC/SWB generators. Math. Comput. 62(206),
799–808 (1994)

[GK02] Goresky, M., Klapper, A.: Fibonacci and galois representations of feedback-
with-carry shift registers. IEEE Transactions on Information Theory 48(11),
2826–2836 (2002)

[KG93] Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE
1993. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)

http://www.ecrypt.eu.org/stream

Entropy of the Internal State of an FCSR in Galois Representation 359

[KG97] Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combin-
ers with memory. J. Cryptology 10(2), 111–147 (1997)

[MZ91] Marsaglia, G., Zaman, A.: A new class of random number generators. Annals
of Appl. Prob. 1(3), 462–480 (1991)

A Bounds for the Sums

In this section, we prove the following lower and upper bounds:

2k∑
x=2k−1+1

x log2(x) ≥ 22k−3

(
3k + 1 − 3

2 ln(2)

)
+2k−2(k + 1)+

1 − 2−k+1

24 ln(2)
, (19)

2k∑
x=2k−1+1

x log2(x) ≤ 22k−3

(
3k+1− 3

2 ln(2)

)
+2k−2(k + 1)+

1 − 2−k + 3 21−2k

12 ln(2)
,(20)

2k−1∑
x=1

x log2(x) ≥ 22k−1

(
k − 1

2 ln(2)

)
− 2k−1k +

4 + k + 2−k+1

24 ln(2)
, (21)

2k−1∑
x=1

x log2(x) ≤ 22k−1

(
k − 1

2 ln(2)

)
− k 2k−1 +

4 + k + 2−k − 21−2k

12 ln(2)
. (22)

The idea of this proof is that:

1
2

(x log2(x) + (x + 1) log2(x + 1)) ≈
∫ x+1

x

y log2(y) dy ,

since log2(x) increases much slower than x and, thus, x log2(x) is almost a
straight line. This integral can be directly computed by:∫ x+1

x

y log2(y) dy =
y2

2

(
log2(y) − 1

2 ln(2)

)∣∣∣∣x+1

y=x

=
1
2

(x log2(x) + (x + 1) log2(x + 1)) − 1
4

2x + 1
ln(2)

+ log2

(
1 +

1
x

)
x

2
(x + 1) .

We use the approximation of the natural logarithm:

1
ln(2)

(
1
x

− 1
2x2

+
1

3x3
− 1

4x4

)
≤ log2

(
1 +

1
x

)
≤ 1

ln(2)

(
1
x

− 1
2x2

+
1

3x3

)
for x > 0 to get:

1 + 2x

4 ln(2)
−
(

1
3x − 1

6x2 + 1
2x3

)
4 ln(2)

≤ x

2
(x + 1) log2

(
1 +

1
x

)
≤ 1 + 2x

4 ln(2)
−
(

1
3x − 2

3x2

)
4 ln(2)

360 A. Röck

and finally the bounds for the integral:∫ x+1

x

y log2(y) dy ≥ 1
2

(x log2(x) + (x + 1) log2(x + 1)) −
(

1
3x − 1

6x2 + 1
2x3

)
4 ln(2)

(23)∫ x+1

x

y log2(y) dy ≤ 1
2

(x log2(x) + (x + 1) log2(x + 1)) −
(

1
3x − 2

3x2

)
4 ln(2)

. (24)

By combining the exact value of the integral:∫ 2k

2k−1
y log2(y) dy = 22k−3

(
3k + 1 − 3

2 ln(2)

)
with the lower bound:∫ 2k

2k−1
y log2(y) dy

≥ 1
2

2k−1∑
x=2k−1

x log2(x) +
1
2

2k∑
x=2k−1+1

x log2(x) − 1
4 ln(2)

2k−1∑
x=2k−1

(
1
3x

− 1
6x2

+
1

2x3

)

=
2k∑

x=2k−1+1

x log2(x) − 2k−2(k + 1) − 1
4 ln(2)

2k−1∑
x=2k−1

(
1
3x

− 1
6x2

+
1

2x3

)
.

gained by means of (23), we receive the upper bound:

2k∑
x=2k−1+1

x log2(x) ≤ 22k−3
(
3k + 1 − 3

2 ln(2)

)
+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x − 1

6x2 + 1
2x3

)
.

(25)

In the same way, by using (24) we get:

2k∑
x=2k−1+1

x log2(x) ≥ 22k−3
(
3k + 1 − 3

2 ln(2)

)
+ 2k−2(k + 1)

+ 1
4 ln(2)

∑2k−1
x=2k−1

(
1
3x − 2

3x2

)
.

(26)

Let us have a closer look at the two functions g1(x) = 1
3x − 1

6x2 + 1
2x3 and

g2(x) = 1
3x − 2

3x2 . If we analyze their first derivatives, we see that g1(x) is
decreasing for x ≥ 1 and g2(x) is decreasing for x ≥ 4. For the upper bound of
the sum, we can write directly:

2k∑
x=2k−1+1

x log2(x)≤22k−3

(
3k + 1 − 3

2 ln(2)

)
+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑
x=2k−1

(
1

3 2k−1
− 1

6 22k−2
+

1
2 23k−3

)

= 22k−3

(
3k + 1 − 3

2 ln(2)

)
+2k−2(k + 1)+

1 − 2−k + 3 21−2k

12 ln(2)

Entropy of the Internal State of an FCSR in Galois Representation 361

for all k ≥ 1. In the case of the lower bound, we can write:

2k∑
x=2k−1+1

x log2(x) ≥ 22k−3

(
3k + 1 − 3

2 ln(2)

)
+ 2k−2(k + 1)

+
1

4 ln(2)

2k−1∑
x=2k−1

(
1

3 2k
− 2

3 22k−2

)

= 22k−1

(
k − 1

2 ln(2)

)
− 2k−1k +

4 + k + 2−k+1

24 ln(2)

for k ≥ 3. However, we can verify by numeric computation that the lower bound
also holds in the cases k = 1 and k = 2. Thus, we have shown (19) and (20) for
k ≥ 1. Finally, by employing:

2K−1∑
x=1

x log2(x) =
K∑

k=1

2k∑
x=2k−1+1

x log2(x) − K2K

and the previous results, we receive the bounds (21) and (22).

B Proof of Lemma 1

Proof. Let p′, m′, c′ be three bit strings of size k and let X(p′) be the number of
possible pairs (m′, c′) such that 1p′ = m′ + c′. We are going to use the following
properties:

– For a given p′, let (m′, c′) be such that 1p′ = m′+c′. We have two possibilities
10p′ = 0m′ + 1c′ = 1m′ + 0c′ to create 10p′. If (m′, c′) is such that 0p′ =
m′ + c′, we only have one possibility 10p′ = 1m′ + 1c′ to build 10p′. Thus,
we can write:

X(0p′) = 2 X(p′) + 1
(
2k − X(p′)

)
. (27)

– The only possibility to create 11p′ is 11p′ = 1m′ +1c′ for a (m′, c′) such that
1p′ = m′ + c′. Therefore, it holds that

X(1p′) = X(p′). (28)

– If the most significant bit of p′ is a 0 followed by k times 1, we can only
generate the carry in the last position. This is due to the fact that to create
a carry and a 1 in the sum, we need three 1’s which is not possible if we
do not have a carry. So we have to create the carry in the highest position
by m′

k = c′k = 1. For the previous positions 0 ≤ j < k we always have two
possibilities for (m′

j , c
′
j), respectively (0, 1) and (1, 0). Thus, in total we have

2k choices for (m′, c′).

X(0

k︷ ︸︸ ︷
1 . . .1) = 2k. (29)

362 A. Röck

– As we have said above, it is not possible to create a carry with only 1’s in
p′ and no previous carry, thus:

X(1 . . . 1) = 0. (30)

We are now going to use induction over the length k of the bit strings p′, m′ and
c′ to show that for all 0 ≤ x ≤ 2k − 1 there exists exactly one p′ with X(p′) = x.

Basis, k = 1:
From (29) and (30) we can easily see that:

X(1) = 0,

X(0) = 1.

Induction step, k → k + 1:
We assume that for every 0 ≤ x ≤ 2k − 1 there exists a p′ of length k such
that X(p′) = x . We want to show that the same assumption holds for k+1.
– x = 2k: From (29), we know that X(p′) = 2k if p′ = 011 . . .1 with k 1’s.
– 0 ≤ x ≤ 2k − 1: From the assumption, we know that there exists a p′ of

length k with X(p′) = x, thus by using (28) we can write X(1p′) = x.
– 2k < x ≤ 2k+1 − 1: In this case 0 ≤ x − 2k ≤ 2k − 1 and due to the

assumption, we know that there exists a p′ such that X(p′) = x−2k. By
using (27) we get:

X(0p′) = 2X(p′) +
(
2k − X(p′)

)
= 2(x − 2k) + (2k − x + 2k)
= x.

We have proven that for all 0 ≤ x ≤ 2k − 1 there exists a p′ of length k, such
that X(p′) = x, i.e. there are exactly x pairs (m′, c′) of length k bits with
1p′ = m′ + c′. Since in total there are only 2k possible values of p′ of length k,
we see that there exists exactly one.

Bit-Pattern Based Integral Attack

Muhammad Reza Z’aba1, H̊avard Raddum2,�, Matt Henricksen3,
and Ed Dawson1

1 Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

m.zaba@isi.qut.edu.au, e.dawson@qut.edu.au
2 Selmersenteret, University of Bergen, Norway

haavardr@ii.uib.no
3 Institute for Infocomm Research, A*STAR,
21 Heng Mui Keng Terrace, Singapore 119613

mhenricksen@i2r.a-star.edu.sg

Abstract. Integral attacks are well-known to be effective against byte-
based block ciphers. In this document, we outline how to launch integral
attacks against bit-based block ciphers. This new type of integral attack
traces the propagation of the plaintext structure at bit-level by incorporat-
ing bit-pattern based notations. The new notation gives the attacker more
details about the properties of a structure of cipher blocks. The main dif-
ference from ordinary integral attacks is that we look at the pattern the
bits in a specific position in the cipher block has through the structure.
The bit-pattern based integral attack is applied to Noekeon, Serpent and
present reduced up to 5, 6 and 7 rounds, respectively. This includes the
first attacks on Noekeon and present using integral cryptanalysis. All at-
tacks manage to recover the full subkey of the final round.

Keywords: Block ciphers, integral cryptanalysis, Serpent, Noekeon,
present.

1 Introduction

The integral attack [11] is the basis for the best attacks on the AES, and has
become standard in a cryptanalyst’s toolbox. The basic idea of the attack is to
analyze how a specified property of a set of plaintexts will evolve through the
encryption algorithm and to use the existence of that property to verify key
guesses. Up until now, integral attacks have not been thought suitable for bit-
based ciphers. In these attacks the plaintext bytes are chosen to be constant, or
take on all values through the set of texts. The reason for this choice is that it
is unaffected by the application of a bijective S-box substituting bytes.

Using the traditional approach on a bit-oriented cipher, the bits output from
an S-box are not treated as a block. This normally implies that any all-values
property of the S-box output will be subsequently destroyed by the linear layer.
� This work done while visiting the Information Security Institute, Queensland Uni-

versity of Technology, Australia.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 363–381, 2008.
c© International Association for Cryptologic Research 2008

364 M.R. Z’aba et al.

In order to address this issue, we introduce a new bit-pattern based notation.
Each bit position within a structure holds a specific sequence of bit ‘0’ and ‘1’.
The pattern in which the bit sequence is repeated serves as the basis of the
notation. This means that the order of the texts in a bit-pattern based integral
attack plays an important part, in contrast to the usual integral attack where
the texts are regarded as an unordered set. This allows an attacker to gain
knowledge of bit patterns in the set of texts through some encryption rounds.
Instead of inputting all possible values into a single S-box in the first round, the
bit-pattern based structure is constructed such that the active bits are spread
over more than one S-box.

The bit-pattern based integral attack manage to penetrate up to 5 (out of 16),
6 (out of 32) and 7 (out of 31) rounds of Noekeon [9], Serpent [1] and present

[7], respectively. To the best of our knowledge, this is the first integral cryptanal-
ysis on Noekeon and present reported in the literature. For all three ciphers,
detailed analysis by the designers show the minimal complexity for a success-
ful differential attack on a few rounds. Bit-pattern based integral cryptanalysis
gives much better results for these reduced-round ciphers. Note, however, that
differential cryptanalysis can be easily extended to more rounds whereas integral
cryptanalysis can not be extended beyond a certain point.

This document is organized as follows. The integral attack and the new nota-
tions are explained in Section 2. The attacks on Noekeon, Serpent and present

are presented in Section 3. Section 4 highlights some related work. Discussions
and conclusion are given in Section 5.

2 Bit-Pattern Based Integral Attack

An integral attack works by choosing a set of plaintexts, where some bit positions
take on all values through the set, and the other bits are chosen to be arbitrary
constants. The set of cipher blocks used in an integral attack is commonly re-
ferred to as a structure. The part of the structure that takes on all values usually
forms the input to one or more bijective S-boxes in the first round. Then two
properties are achieved by the structure: it is unaffected by key-addition, and it
is unaffected by the application of bijective S-boxes. The diffusion of the cipher
will however mix the bits, so after some time the inputs of some S-boxes will
not have the constant or all-values property. When the cipher is byte-oriented
(like the AES), the bits in the output of an S-box are treated as a block, and
only mixed with blocks of bits that have either the all-values or the constant
property. This might delay the destruction of these properties in the structure,
and lead to good attacks.

For a bit-based cipher, the bits in the output of one S-box are treated indepen-
dently and are not mixed in a way that respects the S-box boundaries. Hence the
input bits to an S-box in the next round will have some constant bits, and some
bits that are not constant. The useful properties of a structure will then be lost al-
ready in the second round. We overcome this and make integral attacks possible on
bit-based cipher by introducing a more refined notation for the bits in a structure.

Bit-Pattern Based Integral Attack 365

2.1 Pattern-Based Notations

In our bit-pattern based approach, the status of each single bit position within
the overall structure is treated independently. Each bit position in a plaintext
structure holds a specific sequence of bit ‘0’ and/or ‘1’. The pattern in which the
bit sequence is repeated forms the foundation of the bit-based notations. The
following describes the notation.

– The pattern c in a position means that all bits in this position within the
structure consists of only bit ‘0’ or ‘1’. This pattern is called a constant bit
pattern.

– The pattern ai in a position means that the first block of 2i consecutive bits
in this position are constant, and the next block of 2i consecutive bits all
have the opposite value of the first. The alternating values of bits in 2i-blocks
is repeated throughout the structure. This pattern is called an active bit
pattern.

– The pattern bi in a position means that blocks of 2i consecutive bits in
this position are constant, but the values of the blocks are not necessarily
repeated in an alternating manner.

– The pattern di in a position means that the bits in this position may hold
either a c (constant) or an ai (active) pattern. This pattern is called a dual
bit pattern.

If the XOR sum of all the bits in one pattern equals 0, we say that the pattern is
balanced. Furthermore, if the cipher block which is the XOR sum of all the texts
in a structure only has 0-bits we say that the structure is balanced. All patterns
described above are balanced, except for the b0-pattern which may or may not be
balanced. In fact, any bit-string fulfills the definition of a b0-pattern. To make a
distinction between balanced and unbalanced b0-patterns, we will write b∗0 when
we know that the pattern is balanced and b0 otherwise.

As an example, possible values of a 4-bit text structure with the patterns
a0a3ca2 are {6x, Ex, 6x, Ex, 7x, Fx, 7x, Fx, 2x, Ax, 2x, Ax, 3x, Bx, 3x, Bx}. Table 4
in the Appendix lists out the possible values of c, ai and some bi patterns in a
structure of 24 texts.

2.2 Tracing Bit Patterns through the Cipher

Bit-patterns will be XORed together in the linear operations of the cipher. The
following properties are easy to verify.

– c ⊕ p = p for any pattern p.
– ai ⊕ ai = c.
– pj ⊕ qi = bi for j > i and p, q ∈ {a, b}. If i = 0 the right-hand side will be

b∗0.
– p ⊕ b∗0 = b∗0 when p �= b0.

These rules of XOR addition will be used when analyzing how the bit-patterns
in the cipher block evolves through the linear parts of a cipher.

366 M.R. Z’aba et al.

When the bit-patterns pass through an S-box, every output-bit of the S-box
will have a bi-pattern where i is the smallest index found in the input patterns.
This is because blocks of 2i inputs will all have the same value, and so the output
values will also appear in blocks of 2i equal values.

That is all that can be said in general when patterns pass through an S-box,
but there is another fact that can be useful when analyzing the effect an S-box
has on input patterns. It is summed up in the following lemma.

Lemma 1. Consider m bit sequences, expressed as linear combinations of ai-
patterns l1, . . . , lm, where i ≤ n. Write this using matrix notation as Ma = l,
where a = (a0, . . . , an)T and l = (l1, . . . , lm)T . The different values for the m
bits found in the same position in the sequences lie in an affine space of size
2rank(M).

Proof: Let r = m − rank(M). Then there exists r linearly independent vectors
v1, . . . ,vr such that viM = 0, i = 1, . . . , r. Since ai ⊕ ai = c in our context, a
0-row in M corresponds to the constant pattern. This means that all possible
values of the m bits lie in an affine space cut out by the r linear equations given
by v1, . . . ,vr and r right-hand sides. The size of this space is 2m−r and the
lemma follows. ��
The lemma above can be helpful when determining whether the balancedness
of a structure is lost through the application of an S-box. Assume we have an
m-bit S-box and a structure of 2n texts where m > n, and assume the input
bits to the S-box are expressed as linear combinations of ai-patterns. Suppose
Lemma 1 tells us the inputs to the S-box lie in an affine space of dimension
smaller than n. Then each distinct input value will occur an even number of
times, and so each distinct output value will occur an even number of times.
Hence the balancedness will not be lost after the S-box.

2.3 Generic Bit-Pattern Based Integral Attack

Here we describe a generic bit-pattern based integral attack that can be used
on Noekeon, Serpent and present. These ciphers are similar in structure, so we
will use the same notation on all of them.

The input to round i is denoted by Xi = (xi
0, x

i
1, x

i
2, x

i
3) where X0 is the

plaintext. The input and output of the S-box layer in round i are denoted by
Yi = (yi

0, y
i
1, y

i
2, y

i
3) and Zi = (zi

0, z
i
1, z

i
2, z

i
3), respectively. The round i subkey

is denoted by Ki = (ki
0, k

i
1, k

i
2, k

i
3). The blocks Xi, Yi, Zi and Ki consist of four

32-bit words for Noekeon and Serpent, and four 16-bit words for present. In
every word, the rightmost bit is Bit ‘0’ and x[�] denotes the �-th bit of x. All
non-linear components in these ciphers are composed of 4 × 4 bijective S-boxes.

The attacker first finds a structure of plaintexts, and sees how the bit-patterns
of the structure become affected through the cipher. Just before the S-box layer
in some round the structure will be balanced, but the balancedness is expected
to be destroyed after the S-box layer. If this happens in round r, the following
equation must hold:

Bit-Pattern Based Integral Attack 367

m−1⊕
j=0

Y (j)
r =

m−1⊕
j=0

S−1(Z(j)
r) = 0 (1)

where m is the size of the structure. We then guess enough key material so we
can partially decrypt the ciphertexts to find all the bits coming out of one of the
S-boxes in round r, and use Equation (1) to verify the guess.

Equation (1) puts a 4-bit condition on the guess, so we expect the number of
possible key-bit guesses to be reduced by a factor 2−4. If we are guessing on k
key-bits at the same time, we will then need approximately �k/4� structures to
identify the correct parts of the round keys used in the last rounds.

This can be summed up in Algorithm (1), where we assume we need to guess
k bits from the last round key(s).

Precomputation
Analyze round function to identify distinguisher;
begin

Choose a structure of plaintexts that matches distinguisher;
Encrypt all plaintexts in structure and get corresponding ciphertexts;
Initialize an array A[] of size 2k bits with all ‘1’s;
Set v = 0;
while number of entries such that A[v] = 1 is greater than one do

Partially decrypt all ciphertexts using the value v as partial subkey bits
to find the output bits of one S-box in round r;
if Equation (1) does not hold then

set A[v] = 0;
end
v = v + 1;

end
Output value v for which A[v] = 1 as correct subkey bits;

end
Algorithm 1. Algorithm for basic attack

We may also extend an attack by one round by adding one round in the
beginning. This can be done by letting the bits in the structure have a specific
pattern at the input of the second round, instead of in the plaintexts. These
patterns are then traced backwards through the first round, until they meet the
output of the S-box layer in the first round. S-boxes that have a sum of active
patterns in its output bits are called active S-boxes. By specifying a value of the
starting bit for patterns in the output of the active S-boxes, we specify some
values of these outputs, and can find the values of the inputs. Next we guess the
value of the bits in the key used for pre-whitening that affect the active S-boxes
in the structure. This allows us to find the structure of plaintexts that will have
the specific bit-pattern at the input of the second round, when the guess of bits
in the pre-whitening key is right.

If we need to guess k bits from the pre-whitening key, we must expect to use 2k

structures before we get one with the specified patterns in the second round. This

368 M.R. Z’aba et al.

increases the number of chosen plaintexts needed, but it may involve a smaller
guess on key-material than would be needed by adding a round at the end.

3 Application on Noekeon, Serpent and PRESENT

We have used bit-pattern based integral cryptanalysis on the block ciphers
Noekeon, Serpent and present. Here we show how the attacks worked.

3.1 Noekeon

Noekeon [9] accepts a 128-bit block of plaintext X0 and a 128-bit key. The 128-
bit block of ciphertext X17 is produced after iterating a round function 16 times,
followed by a final output function. The round function consists of two linear
layers, L0 and L1, and one non-linear layer S. The final round involves only L0.
The encryption scheme of Noekeon can be depicted as:

Xi+1 = L−1
1 (S(L1(L0(Xi, K)))), i = 0, 1, . . .15

X17 = L0(X16, K)

Figure 1 illustrates the round function of Noekeon. The same round subkey is
used in every round. Let x ≪ i and x ≫ i imply the rotation of the word x
by i bits to the left and right, respectively. The linear layer L0 of Noekeon is
described as:

ti0 = (xi
0 ⊕ ci ⊕ k0 ⊕ ui) (2)

ti1 = (xi
1 ⊕ k1 ⊕ vi) (3)

ti2 = (xi
2 ⊕ k2 ⊕ ui) (4)

ti3 = (xi
3 ⊕ k3 ⊕ vi) (5)

where ui = R(pi), vi = R(qi), pi = xi
1 ⊕ k1 ⊕ xi

3 ⊕ k3, qi = xi
0 ⊕ ci ⊕ xi

2,
R(x) = x ⊕ (x ≪ 8) ⊕ (x ≫ 8) and ci is a round constant. L1 simply consist
of three rotations of the words in the cipher block (yi

0, y
i
1, y

i
2, y

i
3) = (ti0, t

i
1 ≪

1, ti2 ≪ 5, ti3 ≪ 2).

3.5-Round Distinguisher. Prepare a structure of 216 plaintexts:

X
(j)
0 = (x0(j)

0 , x
0(j)
1 , x

0(j)
2 , x

0(j)
3) = (j‖c0, R(j‖c1), c2, R(j‖c3))

where 0 ≤ j ≤ 216 − 1, c0, c1, c3 are arbitrary 16-bit constants and c2 is a 32-bit
constant. By consulting Equations (2),(3),(4) and (5), it can be observed that
ui will become a constant and vi will cancel the active bits in x0

1 and x0
3. This

leaves the 16 leftmost bits of yi
0 to hold active patterns, i.e. a15a14 . . . a0. All

other bits hold c patterns. The propagation of bit patterns in this distinguisher
is shown in Figure 4 in the appendix.

Bit-Pattern Based Integral Attack 369

S

≪ 1 ≪ 5 ≪ 2

≪ 8 ≫ 8≪ 8 ≫ 8

xi
0 xi

1 xi
2 xi

3

ci k1 k3

k0 k2

≫ 1 ≫ 5 ≫ 2

pi qi

ui vi

xi+1
0 xi+1

1 xi+1
2 xi+1

3

yi
0 yi

1 yi
2 yi

3

zi
0 zi

1 zi
2 zi

3

L0

L1

L−1
1

Fig. 1. Round function of Noekeon in Round i

There are 16 active S-boxes at the input of S in the first round. The remaining
16 S-boxes receive an all c input patterns. Each active S-box has two inputs which
differ only in the leftmost bit. There exists a partial differential through the S-
box 8x → w‖3x with probability 1, where w ∈ {0x, 1x, 2x, 3x}. As a consequence,
the 16 leftmost bits of both z

0(j)
2 and z

0(j)
3 assume the same ai pattern as the

leftmost bit of the input. The rest of the output bits of the active S-boxes hold
a di pattern where 0 ≤ i ≤ 15.

In the second round, the linear combinations of c and ai bits inside L0 guaran-
tee that no c pattern remains in any bit position. Note that the partial differential
plays a critical role to ensure that this property occurs with certainty. Every bit
of u1 and v1 contains at least one ai pattern. L1 ensures that all bit patterns in
every column are linearly independent. According to Lemma 1 there are there-
fore 16 distinct values in the input and output of every S-box, which are repeated
212 times. After the linear operations in the second round, the number of times
each distinct value appears in the input of any S-box is still even, so the bits
assume a b∗0 pattern after the S-box layer.

Experimentally, it has been verified that L0 and L1 in the third round do
not cause any value in any input to an S-box to occur an odd number of times.
At the input of S, the number of different inputs into each S-box is even and
therefore, the number of different outputs is also even. This causes the structure
to remain balanced after S.

In the fourth round, the balancedness of the structure is ensured through L0

and L1, but is expected to be destroyed after the application of S.

Key Recovery. The 3.5-round distinguisher can be used to attack four and
five rounds of Noekeon using the attack strategy described in Section 2.3.

The key recovery procedure in a 4-round attack is a straightforward process.
Once the distinguisher is available, Equation (1) must hold for m = 216 and r = 3.

370 M.R. Z’aba et al.

The following equations provide the output bits of the S-boxes in the fourth
round:

z
3(j)
0[�] = (x4(j)

0 ⊕ R(x4(j)
1 ⊕ x

4(j)
3) ⊕ c4)[�] ⊕ k0[�] (6)

z
3(j)
1[�] = (x4(j)

1 ⊕ R(x4(j)
0 ⊕ x

4(j)
2))[�−1] ⊕ A1[�−1] (7)

z
3(j)
2[�] = (x4(j)

2 ⊕ R(x4(j)
1 ⊕ x

4(j)
3))[�−5] ⊕ k2[�−5] (8)

z
3(j)
3[�] = (x4(j)

3 ⊕ R(x4(j)
0 ⊕ x

4(j)
2))[�−2] ⊕ A3[�−2] (9)

where [�+n] is computed modulo 32 and A1[�] and A3[�] are linear combinations
of seven key bits as follows:

Ai[�] = (R(k0 ⊕ k2) ⊕ ki)[�]
= (k0 ⊕ k2)[�] ⊕ (k0 ⊕ k2)[�+8] ⊕ (k0 ⊕ k2)[�−8] ⊕ ki[�]. (10)

For the 4-round attack, we need to guess on 4 bits of key material at the
same time; the bits k0[�] and k2[�−5] and the values of the linear combinations
A1[�−1] and A3[�−2]. This means we should need approximately one structure
to identify a correct guess, in practice we sometimes need 2. This needs to be
repeated 32 times to get 128 bits of key material from the last round key. After
the correct values for k0[�], k2[�], A1[�] and A3[�] are identified for � = 0, 1, . . . , 31,
Equation (10) is rearranged and solved to uncover the unknown bits in k1 and k3.
The attack requirements are 2×216 = 217 chosen plaintexts and 2×216×24×32 =
226 partial decryptions.

In a 5-round attack, the values of the outputs from one S-box in the third
round can be obtained by guessing 92 selected bits of information from the keys
used in round 5 and 4. Here we make use of the fact that Noekeon uses the same
key in every round, so the key material we need to guess in round 4 overlaps
with what we need to guess in round 5.

In order to correctly identify all the 92 bits, we have to use 23 different struc-
tures. The remaining 128− 92 = 36 bits can be found by exhaustive search. The
number of plaintexts required is therefore 23×216 ≈ 220.6 chosen plaintexts. The
time complexity for the attack is (292 + 288 + . . . + 24 + 1) × 216 + 236 ≈ 2108.1

partial decryptions. Memory is required for storing 292 bits indicating possible
guesses remaining, thus the memory requirement is 289 bytes.

3.2 Serpent

Serpent [1] is a 128-bit block cipher with key sizes between 0 to 256 bits. It has
32 rounds and can be represented in non-bit-sliced and bit-sliced version. We
focus on the bit-sliced version of Serpent. The round function is composed of a
key mixing layer, a non-linear S-box layer Si, and a linear transformation layer
L. In the last round, the linear transformation is replaced with a key mixing
layer. The round function of Serpent in Round i is depicted in Figure 2. The
cipher can be expressed by the following equations:

Bit-Pattern Based Integral Attack 371

xi
0 xi

1 xi
2 xi

3

yi
0 yi

1 yi
2 yi

3

zi
0 zi

1 zi
2 zi

3

ki
0 ki

1 ki
2 ki

3

Si mod 8

≪ 13 ≪ 3

	 3
≪ 1 ≪ 7

	 7

≪ 22≪ 5

xi+1
0 xi+1

1 xi+1
2 xi+1

3

L

Fig. 2. Round function of Serpent in Round i

Xi+1 = L(Si mod 8(Xi ⊕ Ki)), i = 0, 1, . . . 30
X32 = S7(X31 ⊕ K31) ⊕ K32.

Serpent has eight different 4 × 4 S-boxes. Round i uses S-box Si mod 8 32
times in parallel. The input is taken one bit from each 32-bit word of the same
bit position. The linear transformation of Serpent can be expressed as:

xi+1
0[�] = zi

0[�−18] ⊕ zi
1[�−6] ⊕ zi

0[�−19] ⊕ zi
2[�−9] ⊕

zi
3[�−12] ⊕ zi

2[�−15] ⊕ (zi
0[((�−12)�3)−13])

xi+1
1[�] = zi

1[�−1] ⊕ zi
0[�−14] ⊕ zi

2[�−4]

xi+1
2[�] = zi

2[�−25] ⊕ zi
3[�−29] ⊕ zi

2[�] ⊕ (zi
0[((�−29)�3)−13]) ⊕

zi
1[((�−22)�7)−1] ⊕ zi

0[((�−22)�7)−14] ⊕ zi
2[((�−22)�7)−4]

xi+1
3[�] = zi

3[�−7] ⊕ zi
2[�−10] ⊕ zi

0[((�−7)�3)−13]

where [� 	 n] = [� − n] is not computed modulo 32. If (� 	 n) < 0 then the bit
at the position is a zero bit.

The cipher has endured extensive cryptanalysis [12,10,2,3,4,5,8] but no anal-
ysis on integral attack has been reported.

3.5-Round Distinguisher. Serpent reduced to 3.5 rounds can be distinguished
fromarandompermutationbychoosingastructureof210plaintexts.Theplaintexts

372 M.R. Z’aba et al.

are chosen such that the tenmost significantbitsofx0
2holdallpossible10-bitvalues.

The rest of the plaintext bits hold constant values such as the following:

X
(j)
0 = (x0(j)

0 , x
0(j)
1 , x

0(j)
2 , x

0(j)
3) = (c0, c1, j‖c2, c3)

where 0 ≤ j ≤ 210 − 1, c0, c1, c3 are 32-bit constants and c2 is a 22-bit arbitrary
constant. The ten leftmost bits of x

0(j)
2 therefore hold the pattern a9a8 . . . a0 and

the rest of the bits hold a c pattern. The bit pattern propagation of the 4-round
distinguisher is shown in Figure 5 in the appendix.

In the first round, the inputs to the ten affected instances of the S-box receive
a pair of inputs with a difference of 4x. Each input value is repeated 29 times.
These S-boxes will, therefore, output a pair of values repeated 29 times. Since
each of the eight S-boxes of Serpent behaves differently to the input difference,
the output bits of these S-boxes are denoted as a di-pattern. However, at least
two bits in each output will hold an ai-pattern. This is due to one of the design
criteria of the S-box, i.e., one-bit input change results in at least two-bit output
change. All other bits remain constant. The linear layer in the first round does
not affect the balancedness of the structure.

Each instance of the second round S-box may receive a single constant input
value, or between two to sixteen different input values. The input values are re-
peated between 26 and 210 times. The number of distinct outputs is therefore even
and this ensures that the structure is balanced after the S-box in the second round.

The linear layer in the second round ensures that the number of distinct values
in every column occurs an even number times, or that all values occur an odd
number of times. All bits will hold a b∗0-pattern except for a few positions which
still retain a b1-pattern. These bits are then fed to the third round S-box. The
number of repetition for each distinct output value matches that of its input and
this preserves the balancedness of the structure until after L in the third round.

The application of the fourth round S-boxes is expected to destroy the bal-
ancedness of the structure.

Key Recovery. Note that in the last round L is replaced with key addition,
so for four-round Serpent the ciphertexts and the output of the S-boxes in the
fourth round is only separated by a simple XOR of the last round key. Hence we
only need to guess four bits of the last round key to make use of Equation (1).
This attack requires 2× 210 chosen plaintexts, and it must be repeated 32 times
to recover the whole last round key. The time complexity is therefore 2 × 210 ×
24 × 32 = 220 partial decryptions.

In a 5-round attack, we verify Equation (1) three times, for the fourth round
S-boxes in bit positions 0,1 and 2. To compute the output of the S-box in position
0, we need to guess 11 bits of K4 and 36 bits of K5. For position 1 we need to
guess 32 bits of K5 and 10 bits of K4, and for position 2 we need to guess 20
bits of K5 and 10 more bits of K4. The remaining 40 bits of K5 can then be
found by exhaustive search. In order to correctly identify all bits 12 structures
are needed, so a total of 12× 210 ≈ 213.6 chosen plaintexts are needed. The time
requirement is approximately (247 + 243 + . . . + 1)× 210 × 3 + 240 ≈ 258.7 partial
decryptions. The memory for the possible key candidates are 244 bytes.

Bit-Pattern Based Integral Attack 373

Table 1. Bit patterns of Z0 in the 6-round attack

Word Bit Pattern

z0
0 c

z0
1 c a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

z0
2 a2 a1 a0 c a9 a8 a7 a6 a5 a4 a3

z0
3 c a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

The 5-round attack can be extended by adding one round at the beginning.
We want the 10 most significant bits of x1

2 to hold the pattern a9a8 . . . a0 and the
rest of the bits to hold a c pattern. If the active bits in x1

2 are traced backwards
until the input of the linear transformation of the first round (Round 0), the bits
assume the pattern shown in Table 1. Since the number of active S-boxes is 13,
we need to guess 52 bits of K0 to find a plaintext structure that will evolve into
the desired pattern in X1 when the guess is right. This requires 213.2×252 ≈ 265.2

chosen plaintexts and approximately 258.7×252 ≈ 2110.7 partial decryptions. The
memory requirement is the same as in the 5-round attack.

3.3 PRESENT

present [7] is a 64-bit block cipher with key sizes of 80 and 128 bits. It has
31 rounds and is developed exclusively for lightweight applications. Figure 3
illustrates the round function of this cipher. The encryption function is given as:

Xi+1 = L(S(Xi ⊕ Ki)), i = 0, 1, . . . 30
X32 = X31 ⊕ K31

For consistency with the other analyzed ciphers, the representation of the bits
are slightly modified so that the 16 S-boxes in S are implemented in bit-sliced
mode like Noekeon and Serpent. The linear layer L is described in Table 2.

xi
0 xi

1 xi
2 xi

3

ki
0 ki

1 ki
2 ki

3

yi
0 yi

1 yi
2 yi

3

S

zi
0 zi

1 zi
2 zi

3

xi+1
0 xi+1

1 xi+1
2 xi+1

3

L

Fig. 3. Round function of present in Round i

374 M.R. Z’aba et al.

Table 2. Linear layer L of present

Output Input
zi
0 zi

1 zi
2 zi

3

xi+1
0 15 11 7 3 15 11 7 3 15 11 7 3 15 11 7 3

xi+1
1 14 10 6 2 14 10 6 2 14 10 6 2 14 10 6 2

xi+1
2 13 9 5 1 13 9 5 1 13 9 5 1 13 9 5 1

xi+1
3 12 8 4 0 12 8 4 0 12 8 4 0 12 8 4 0

3.5-Round Distinguisher. A 3.5-round distinguisher can be built for present

by constructing a structure of 24 chosen plaintexts:

(x0(j)
0 , x

0(j)
1 , x

0(j)
2 , x

0(j)
3) = (c0, c1, c2, c3‖j)

where c0, c1, c2 are arbitrary 16-bit constants, c3 are random 12-bit constants
and 0 ≤ j ≤ 15. The bit propagation of this distinguisher is shown in Figure 6
in the appendix.

In the first round, each of the four rightmost S-boxes receives two different
input values repeated eight times. The rest of the S-boxes receives only a single
constant value repeated sixteen times. The output bits of the four rightmost
S-boxes assume the pattern dididiai since there is a differential 1x → w‖1x

occurring with probability 1 where w ∈ {1x, 3x, 4x, 6x}.
In the second round, these sixteen bit patterns are fed to S-boxes 0, 4, 8 and 12.

S-box 0 receives the pattern a3a2a1a0 which represents all possible 4-bit values. S-
boxes 4, 8 and 12 receive the pattern d3d2d1d0. The inputs to the other 12 S-boxes
have the pattern c. The input and output values of the active S-boxes are repeated
either once or an even number of times, the structure therefore is balanced.

The linear layer in the second round spreads the bits such that each S-box in
the third round has the pattern cccb∗0. Since only one bit position is non-constant,
all S-boxes receive at most two different input values. In the preceding round, the
output of S-box 0 consists of all possible 4-bit values. Therefore, due to the linear
transformation, the number of repetitions for the different input values for S-boxes
0, 4, 8 and 12 in the current round is exactly 8. The output bits of all S-boxes at
this point hold the pattern b∗0 and the structure remains balanced.

In the fourth round, the balancedness of the structure is expected to be de-
stroyed after the application of the S-box.

Key Recovery. The attack on 4 rounds is exactly the same as for Serpent.
The number of chosen plaintexts needed is 2 × 24 = 25 with time complexity of
2 × 24 × 16 × 24 = 213 partial decryptions.

In a 5-round attack, due to the linear layer, the attacker needs to guess an
additional 4 × 4 = 16 bits of key material from K5, so 5 structures are needed
to identify the correct guess. The attack can be repeated 3 times to get 60 bits
of K5, the remaining 20 bits of K5 can be found by exhaustive search. The
number of chosen plaintexts needed is 5 × 24 ≈ 26.4, and the time complexity
is (220 + 216 + . . . + 1) × 24 × 3 + 220 ≈ 225.7 partial decryptions. The memory
requirement is small.

Bit-Pattern Based Integral Attack 375

A 6-round attack can be made by adding one round at the beginning to
construct a 4.5-round distinguisher. The plaintexts are chosen such that the
inputs into the second round assume the pattern of the inputs of the 3.5-round
distinguisher described above. There are four active S-boxes in the first round,
and hence 16 bits of K0 needs to be guessed. This 6-round attack would require
216 × 26.4 ≈ 222.4 chosen plaintexts and 216 × 225.7 ≈ 241.7 partial decryptions.
The memory complexity is still small.

We can extend the attack to seven rounds by adding even another round in
the end, but this attack is only better than exhaustive search for 128-bit keys.
In a 7-round attack, the whole 64 bits of K7 is needed to be guessed. After
examining the key schedule for 128-bit keys, we find that 3 bits of K6 and 58
bits of K5 are given from guessing all of K7. These known bits overlap in one
of the bits needed from K6 and three of the bits needed from K5, so in total
we need to guess 1 + 15 + 64 = 80 bits of key material. The attack requires
20×216×24 ≈ 224.3 chosen plaintexts and (280 +276+ . . .+1)×24×216 ≈ 2100.1

partial decryptions. A total of 280 bits are required to keep track of possible
values for the 80 key bits, so the memory complexity is 277 bytes.

3.4 Summary

The complexities of key recovery attacks on Noekeon, Serpent and present de-
pend largely on the linear component of the round function. All 4-round attacks
have been implemented on a single desktop PC. The attacks took only a few
seconds to recover the last round subkey. A summary of attacks presented in
this paper is shown in Table 3.

Table 3. Summary of attacks

Cipher Rounds Complexity
Data Time Memory

Noekeon 4 217 CP 226 small
5 220.6 CP 2108.1 289 bytes

Serpent 4 211 CP 220 small
5 213.6 CP 258.7 244 bytes
6 265.2 CP 2110.7 244 bytes

present 4 25 CP 213 small
5 26.4 CP 225.7 small
6 222.4 CP 241.7 small
7 224.3 CP 2100.1 277 bytes

4 Related Work

The applicability of the integral attack on bit-oriented ciphers was mentioned
in Knudsen and Wagner’s work [11]. The attack is demonstrated on the Data
Encryption Standard (DES). The attack, however, works only for a very few

376 M.R. Z’aba et al.

rounds of the DES. Lucks [13] also attacked Twofish, which is not a purely byte-
based cipher, with integral cryptanalysis. In Piret’s thesis [14, pg 79-82], the
construction of an integral distinguisher for Serpent was discussed. The distin-
guisher, however, does not occur with certainty and the number of rounds of the
distinguisher was not explicitly mentioned.

In another work, Biryukov and Shamir [6] show how to attack a generic cipher
structure which consists of non-linear and linear layers which are unknown. The
technique, called the multiset attack, makes use of several multiset properties.
These properties take into account whether the multiset: (1) contains arbitrary
repetitions of a single value; (2) takes on all possible values; (3) contains values
which occur an even number of times; (4) XOR sum equals 0; (5) has either prop-
erty (2) or (3). Therefore, there is some similarities to the notations described
in our work.

5 Discussion and Conclusion

In this paper, we examined the integral attack using a bit-pattern based ap-
proach. It differs from classical integral cryptanalysis in that the order of the
texts in a structure becomes important, and gives the cryptanalyst a more re-
fined notation for the texts in the structure. This information allows an attacker
to gain a detailed analysis of the individual bit that propagates through the
rounds. This is especially useful in analyzing the attack on ciphers that have
bit-oriented round functions.

In the Noekeon document [9], it is stated that there are no 4-round differential
trails with a predicted prop ratio above 2−48. A prop ratio is the fraction of
input pairs with a fixed difference that propagates into a fixed output difference.
The Appendix of the Noekeon document describes that the differential trail
propagates until before the non-linear component in the fourth round. In this
paper, a 3.5-round distinguisher with probability 1 is discovered in which the
balancedness of the structure can be retained until just before the S-box layer in
the fourth round. This distinguisher is therefore comparable to the differential
trail described in the document. Since our distinguisher can be constructed using
just 216 chosen plaintexts (as opposed to the differential attack which requires
on the order of 248 plaintexts), attacks using this distinguisher are much more
efficient than using the best differential trail described by the authors.

The designers of Serpent have shown in their submission to the AES com-
petition [1] that the probability of the best 5-round differential characteristic
is less than 2−42, so a differential attack on 5-round Serpent would require on
the order of 242 chosen plaintexts. The 5-round bit-pattern based integral attack
described in this paper requires only 213.6 chosen plaintexts. It should be noted
that there exists better attacks on Serpent than what is reported here, the best
we are aware of is a linear attack that breaks 10 rounds of Serpent with 128-bit
keys [8]. The complexities of the six-round differential attack reported in [12] are
comparable to the bit-pattern based integral attack described here.

In the present document [7] resistance to integral cryptanalysis is explained
by noting that integral attacks are suited for ciphers with a word-wise structure,

Bit-Pattern Based Integral Attack 377

and that the design of present is bitwise. We have shown here that bit-pattern
based integral cryptanalysis is indeed suited for present. Moreover, the authors
show that a differential characteristic over five rounds has probability at most
2−20, so a differential attack on five rounds would need on the order of 220

plaintexts to succeed. In contrast, bit-pattern based integral cryptanalysis breaks
five-round present with 80 chosen plaintexts.

Over a few rounds, bit-pattern based integral cryptanalysis of the three ciphers
studied here is comparable to differential cryptanalysis in time complexity, but
require in general much less chosen plaintext. However, differential cryptanalysis
is easy to extend to more rounds whereas integral cryptanalysis can not be
extended beyond a certain point. Even though the attacks do not pose a serious
threat to the ciphers presented in this paper, it shows that the integral attack
can still be applied to bit-oriented ciphers.

Acknowledgements

We would like to thank Adi Shamir for pointing out a related work in [6]. We also
thank Leonie Simpson and anonymous referees that helped to improve this paper.

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced
Encryption Standard. In: NIST AES Proposal (1998),
http://www.cl.cam.ac.uk/∼rja14/serpent.html

2. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

3. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round
Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

4. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

5. Biham, E., Dunkelman, O., Keller, N.: Differential-Linear Cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

6. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Inscrypt 2007. LNCS, vol. 4990. Springer, Heidelberg (2008)

http://www.cl.cam.ac.uk/~rja14/serpent.html

378 M.R. Z’aba et al.

9. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: NOEKEON.
In: First Open NESSIE Workshop (2000), http://gro.noekeon.org/

10. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

11. Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

12. Kohno, T., Kelsey, J., Schneier, B.: Preliminary Cryptanalysis of Reduced-Round
Serpent. In: The Third Advanced Encryption Standard Candidate Conference, pp.
195–211. NIST (2000),
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3conf.htm

13. Lucks, S.: The Saturation Attack – A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

14. Piret, G.: Block Ciphers: Security Proofs, Cryptanalysis, Design, and Fault At-
tacks. PhD Thesis, Université Catholique de Louvain (2005),
http://www.di.ens.fr/∼piret/

Appendix

Table 4 depicts the possible values of bit patterns in a 24 structure. Each indi-
vidual pattern has two columns to indicate that a pattern may start with bit
value ‘0’ or bit value ‘1’. Recall that the pattern b∗0 and bi where i > 0 are not
restricted to hold the values of only the XOR combinations of ai patterns. If
the patterns are composed of XOR combinations of ai patterns, the number of
occurrences of bit ‘0’ is the same as bit ‘1’.

Table 4. Example of bit pattern values in a 24 structure

c a3 a2 a1 a0 b2 b1 b∗
0

a3⊕ a3 ⊕ a2 a2⊕ a3 ⊕ a1

a2 ⊕a1 a0 ⊕ a0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1

http://gro.noekeon.org/
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/aes3conf.htm
http://www.di.ens.fr/~piret/

Bit-Pattern Based Integral Attack 379

151413121110 9 8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 151413121110 9 8

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 151413121110 9 8
L1 ◦ L0 ↓

151413121110 9 8 7 6 5 4 3 2 1 0

S ↓
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0
151413121110 9 8 7 6 5 4 3 2 1 0

L1 ◦ L0 ◦ L−1
1 ↓

8 7 6 5 4 3 2 1 0 0 5 4 3 2 1 0 0 0 6 5 4 3 2 1 0 0 1413121110 9
6 5 4 3 2 1 0 4 3 2 1 0 2 1 0 0 3 2 1 0 2 1 0 4 3 2 1 0 10 9 8 7
3 2 1 0 0 6 5 4 3 2 1 0 0 2 1 0 3 2 1 0 0 1413121110 9 8 7 6 5 4
5 4 3 2 1 0 4 3 2 1 0 2 1 0 1 0 2 1 0 2 1 0 4 3 2 1 0 10 9 8 7 6

S ↓
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4
3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 6 5 4

L1 ◦ L0 ◦ L−1
1 ◦ S ◦ L1 ◦ L0 ◦ L−1

1 ↓
0 0
0 0
0 0
0 0

S ↓

c i ai i di i bi, b
∗
0 b0

Fig. 4. The 3.5-round integral distinguisher for Noekeon. Top row of cipher block is
word 0, bottom row is word 3. The rightmost column corresponds to the least significant
bit (bit 0) in each word.

380 M.R. Z’aba et al.

9 8 7 6 5 4 3 2 1 0

Si ↓
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

L ↓
0 2 1 0 9 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 0 2 1 0 2 1 0 2 1
5 4 3 2 1 0 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6
8 7 6 6 5 4 3 2 1 0 1 0 0 3 2 1 0 9 8 7 6 5 4 3 2 1 0 1 0 9
2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Si+1 ↓
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0
0 1 0 0 1 0 2 1 0 0 1 0 0 0 2 1 0 1 0 3 2 1 0 0 2 1 0 0 0 0 0 0

L ↓
0 0
1 0 0 1 0 0 1 0
0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

L ◦ Si+2 ↓
0 0
0 0
0 0
0 0

Si+3 ↓

c i ai i di i bi, b∗0 b0

Fig. 5. The 3.5-round integral distinguisher for Serpent. Top row of cipher block is word
0, bottom row is word 3. The rightmost column corresponds to the least significant bit
(bit 0) in each word.

Bit-Pattern Based Integral Attack 381

3 2 1 0
S ↓

3 2 1 0
3 2 1 0
3 2 1 0
3 2 1 0

L ↓
3 3 3 3
2 2 2 2
1 1 1 1
0 0 0 0

S ↓
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

L ↓

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L ◦ S ↓

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S ↓

c i ai i di i bi, b
∗
0 b0

Fig. 6. The 3.5-round integral distinguisher for present. Top row of cipher block is
word 0, bottom row is word 3. The rightmost column corresponds to the least significant
bit (bit 0) in each word.

Experiments on the Multiple Linear

Cryptanalysis of Reduced Round Serpent

B. Collard, F.-X. Standaert�, and J.-J. Quisquater

UCL Crypto Group, Microelectronics Laboratory, Louvain-la-Neuve, Belgium

Abstract. In 2004, Biryukov et al. presented a new theoretical frame-
work for the linear cryptanalysis of block ciphers using multiple approx-
imations. Although they provided first experimental results to confirm
the relevance of their approach, a scope for further research was to apply
this framework to other ciphers. In this paper, we present various attacks
against reduced-round versions of the AES candidate Serpent. Our re-
sults illustrate that the hypotheses of Crypto 2004 hold (at least) as long
as the number of approximations exploited in the linear attack are com-
putationally tractable. But they also underline the limits and specificities
of Matsui’s algorithms 1 and 2 for the exploitation of such approxima-
tions. In particular, they show that the optimal application of algorithm 2
requires good theoretical estimations of the approximation biases, which
may be a problem when the linear hull effect is non-negligible. These
results finally confirm the significant reductions of the attacks data com-
plexity that can be obtained from multiple linear approximations.

1 Introduction

The linear cryptanalysis [10] is one of the most powerful attacks against modern
block ciphers in which an adversary exploits a linear approximation of the type:

P [χP] ⊕ C[χC] = K[χK] (1)

In this expression, P , C and K respectively denote the plaintext, ciphertext and
the expanded key while A[χ] stands for Aa1 ⊕Aa2 ⊕· · ·⊕Aan , with Aa1 , · · · , Aan

representing particular bits of A in positions a1, · · · , an (χ is usually denoted as
a mask). In practice, linear approximations of block ciphers can be obtained by
the concatenation of one-round approximations and such concatenations (also
called characteristics) are mainly interesting if they maximize the deviation (or
bias) ε = p − 1

2 (where p is the probability of a given linear approximation).
In its original paper, Matsui described two methods for exploiting the linear

approximations of a block cipher, respectively denoted as algorithms 1 and 2.
In the first one, given an r-round linear approximation with sufficient bias, the
algorithm simply counts the number of times T the left side of Equation 1 is
equal to zero for N pairs (plaintext, ciphertext). If T > N/2, then it assumes
either K[χK] = 0 if ε > 0 or K[χK] = 1 if ε < 0 so that the experimental value
� Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 382–397, 2008.
c© International Association for Cryptologic Research 2008

Experiments on the Multiple Linear Cryptanalysis 383

(T − N/2)/N matches the theoretical bias. If T < N/2, an opposite reasoning
holds. For the attack to be successful, it is shown in [10] that the number of
available (plaintext, ciphertext)-pairs must be proportional to 1

ε2 .
In the second method, a r-1-round characteristic is used and a partial de-

cryption of the last round is performed by guessing the key bits involved in the
approximation. As a consequence, all the guessed key bits can be recovered rather
than the parity K[χK] which yields much more efficient attacks in practice. In
addition, since it exploits a r-1-round approximation rather than a r-round one,
it also takes advantage of a better bias which reduces the data complexity.

Among the various proposals to improve the linear cryptanalysis of block ci-
phers, Kaliski and Robshaw proposed in 1994 an algorithm using several linear
approximations [7]. However, their method imposed a strict constraint as it re-
quires to use only approximations implying the same bits of subkeys K[χK]. This
restricted at the same time the number and the quality of the approximations
available. As a consequence, an approach removing this constraint was proposed
in 2004 [2] that can be explained as follows. Let us suppose that one has access
to m approximations on r block cipher rounds of the form:

P [χi
P] ⊕ C[χi

C] = K[χi
K] (1 ≤ i ≤ m), (2)

and wishes to determine the value of the binary vector of parity:

Z = (z1, z2, ..., zm) = (K[χ1
K], K[χ2

K], ..., K[χm
K]) (3)

The improved algorithm associates a counter Ti with each approximation, that
is incremented each time the corresponding linear approximation is verified for
a particular pair (plaintext-ciphertext). As for algorithm 1, the values of K[χi

K]
are determined from the experimental bias (Ti − N/2)/N and the theoretical
bias εi by means of a maximum likelihood rule. The extension of algorithm 2 to
multiple approximations is similarly described in [2].

An important consequence of this work is that the theoretical data complexity
of the generalized multiple linear cryptanalysis is decreased compared to the
original attack. According to the authors of [2], the attack requires a number
of texts inversely proportional to the capacity of the system of equations used
by the adversary that is defined as: c = 4 ·

∑m
i=1 ε2i . Therefore, by increasing

this quantity (i.e. using more approximations), one can decrease the number of
plaintext/ciphertext pairs necessary to perform a successful key recovery.

In this paper, we aim to apply the previously described cryptanalytic tools
to the Advanced Encryption Standard (AES) candidate Serpent [1] in order to
confirm the analysis of Crypto 2004 and put forward a number of intuitive facts
about its implementation. Our results confirm the significant reductions of the
attacks data complexity that can be obtained from multiple linear approxima-
tions but also their computational limitations. From a more theoretical point of
view, multiple linear cryptanalysis is also the best understood technique to take
advantage of the linear hull effect [11]. Therefore it allows to fill the gap between
the practical [8] and provable security approaches for block ciphers.

Finally, our results underline the specificities of Matsui’s algorithms 1 and 2
for the exploitation of multiple approximations. In particular, they show that

384 B. Collard, F.-X. Standaert, and J.-J. Quisquater

the optimal application of algorithm 2 requires good theoretical estimations of
the approximation biases, which may be a problem when the linear hull effect is
non-negligible. As a consequence, sub-optimal strategies sometimes have to be
applied. By contrast, our application of algorithm 1 nicely follows the predictions
of [2], even if the approximation biases are underestimated.

The rest of the paper is structured as follows. Section 2 refers to our linear
approximation search algorithm. Section 3 describes preliminary observations on
the linear cryptanalysis of Serpent and highlights the existence of a linear hull ef-
fect. Sections 4 and 5 respectively provide the experimental results of our attacks
against reduced-round Serpent, using algorithms 1 and 2. Finally, conclusions
are in Section 6 and a description of the Serpent cipher is in Appendix A.

2 Linear Approximations Search

The first step in a linear cryptanalysis attack consists in finding linear approxi-
mations of the cipher with biases as high as possible. But the problem of search-
ing such approximations is not trivial, because of the great cardinality of the set
of candidates. In 1994, Matui proposed a branch-and-bound algorithm making
possible to effectively find the best approximation of the DES [12]. However, for
practical reasons that are out of the scope of this paper, this method hardly
applies to block ciphers with good diffusion such as the AES candidates. As a
consequence, we rely on approximations found with a modified heuristic that is
described in [3]. Although it does not ensure to obtain the best approximations
of Serpent, it provided the best-reported ones in the open literature. Note that,
given a r-round approximation found with the branch-and-bound algorithm, the
first round masks and last round masks can be replaced by any other mask pro-
vided that the biases are left unchanged. Due to the properties of the Serpent
S-boxes, several similar approximations can easily be generated with this tech-
nique. This allowed us to obtain large sets of approximations involving the same
key bits to guess at the cost of dependencies in the linear trails1.

3 Preliminary Observations

Prior to the investigation of multiple linear approximations, we performed ex-
periments with single approximations. We started with algorithm 1 of which the
principle is as follows. For each plaintext-ciphertext pair, we evaluate the left
part of equation 1 and increment or decrement a counter given the result. This
way, the counter can be used to evaluate the experimental bias of the approxi-
mation. If the experimental and theoretical biases have the same sign, then we
can presume that the parity of the subkey bits in the right part of Equation 1 is
zero. Otherwise, we guess that this parity is one, so that empirical and theoretical
results match. As it is suggested in [10], this heuristic relies on a maximum like-
lihood approach in which we choose the parity so that theoretical and practical
1 A linear trail is a set of r + 1 masks describing a r-round approximation [11].

Experiments on the Multiple Linear Cryptanalysis 385

results fit well. Thus, the unknown parity can be guessed with an arbitrary high
probability by computing the experimental mean of the bias and choosing the
parity that minimizes the distance between theory and practice. As an illustra-
tion, we used a 4-round linear approximation of Serpent with a theoretical bias
of 2−12 and observed its experimental value for a number of plaintext-ciphertext
pairs proportional to 224. Figure 1 illustrates that the bias value becomes stable
after approximately 8/ε2 encrypted pairs. It also shows that the theoretical bias
(provided by the branch-and-bound algorithm in [3]) was underestimated, which
suggests that the linear hull effect is not negligible in our experiments [11]: there
are several approximations with the same input/output mask that contribute to
the bias in a non negligible way. This effect can cause the complexity of a linear
cryptanalysis attack to be overestimated [6].

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

number of texts (*1/ε2)

bi
as

experimental bias
theoretical bias

Fig. 1. Evolution of the experimental bias w.r.t. the number of known-plaintexts used

Next to this first experiment, we observed the behavior of 64 linear approxi-
mations with various biases, as illustrated in Figure 2. It shows that, provided
a sufficient number of encrypted plaintexts, the approximations separate in two
classes: the ones with positive bias and the ones with negative bias. This exper-
iment suggests the interest of exploiting multiple linear approximations: since
any of these experimental biases provide the adversary with some information
on the block cipher key, it is worth trying to exploit them in an efficient way.

Following Kaliski and Robshaw [7], Biryukov et al. proposed a general ap-
proach to extend Matsui’s linear cryptanalysis to multiple linear approximations
[2]. As in the simple approximation case, an experimental bias is derived for each
approximation in a distillation phase during which counters are extracted from
the data. Then, in the analysis phase, an euclidian distance between the theoret-
ical prediction and the experiment is evaluated for each possible parities of the
key bits involved in the approximations. The parity minimizing this distance is
guessed to be the correct one. The expectation is that the number of encrypted
plaintexts required to achieve a given success rate can be reduced when the
number of approximation is increased, according to the value of the capacity

386 B. Collard, F.-X. Standaert, and J.-J. Quisquater

0 250 500 750 1000 1250 1500
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

number of texts (*1/ε2)

ex
pe

rim
en

ta
l b

ia
s

Fig. 2. Evolution of 64 experimental biases w.r.t. the number of known-plaintexts used

c = 4 ·
∑m

i=1 ε2i . In the next sections, we experimentally evaluate the extent to
which these expectations can be fulfilled, both for Matsui’s algorithm 1 and 2.

4 Experimental Attacks with Algorithm 1

4.1 Selection of the Approximations

A significant drawback of Matsui’s algorithm 1 compared to the second one is
that the adversary does not recover master key bits, but a linear equation involv-
ing key bits in all the cipher rounds. In the context of non-linear key-scheduling
algorithms, this makes the practical exploitation of the attack results difficult
since it does not straightforwardly reduce the complexity of an exhaustive key
search. When using multiple linear approximations, this drawback can be par-
tially relaxed in the following way2. First, the best approximation provided by
the branch-and-bound algorithm is selected. Then, only the input/output masks
are modified in order to generate large sets of equations. Finally, the adversary
progressively increases the size of its system of equations: each time he adds an
equation to the system, he also checks the rank r of the corresponding matrix,
indicating the number of linearly independent relations in his system. By choos-
ing the system of equations such that the independencies between the equations
only relate to meaningful key bits, the adversary ends up with an exploitable
information on the cipher key. For example, if the adversary only modifies the
input masks to generate a system of the form:

P [χi
P] ⊕ C[χi

C] = K[χi
K] (1 ≤ i ≤ m), (4)

he can recover first round key bits. Only one bit (corresponding to the non-
variable part of the trail in the system) has to be guessed additionally. As an
2 Of course, it remains that algorithm 1 uses a r-round approximation compared to a

r − 1-round approximation in algorithm 2 which increases its data complexity.

Experiments on the Multiple Linear Cryptanalysis 387

illustration, we performed attacks against 4-rounds of Serpent, using 64 approx-
imations such that the resulting system of equations has rank r = 10.

4.2 Attacks Results

Figure 3 depicts the evolution of the distance between the theoretical and exper-
imental biases, for various values of the parity guess and number of encrypted
plaintexts. The correct key candidate is expected to minimize this distance which
is verified in practice: 32/c encrypted plaintexts are sufficient to uniquely deter-
mine the correct parity guess. As expected, increasing the number of encrypted
plaintexts improves the confidence (or reduces the noise) in the attack result. For
example, Figure 4 illustrates the result of a similar attack when 4096/c encrypted
plaintexts are provided to the adversary. Interestingly, the attack result has a
very regular structure underlining the impact of the Hamming distance between
different key candidates: close keys have close biases. However, such figure does
not tell us (or quantify) how much the exploitation of multiple approximations
allowed reducing the attack data complexity.

For this purposes, we ran another set of experiments in which we computed
the gain of the attack. As defined in [2], if an attack is used to recover an n-bit

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

di
st

an
ce

 b
et

w
ee

n
th

eo
re

tic
al

 a
nd

 e
xp

er
im

en
ta

l b
ia

s

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000
parity guess

n=2/c

n=4/c

n=8/c

n=16/c

n=32/c

n=64/c

n=128/c

Fig. 3. Evolution of the distance between the theoretical and experimental biases w.r.t.
the parity guess when the number of encrypted plaintexts increases (64 4-rounds ap-
proximations with a capacity of 5.25 ·10−6). The horizontal line in each graph indicates
this distance for the correct parity guess. The scale is the same in each figure.

388 B. Collard, F.-X. Standaert, and J.-J. Quisquater

0 200 400 600 800 1000
1

1.5

2

2.5

3

3.5
x 10

−3

di
st

an
ce

 b
et

w
ee

n
th

eo
re

tic
al

 a
nd

 e
xp

er
im

en
ta

l b
ia

s

parity guess

Fig. 4. Evolution of the distance between the theoretical and experimental biases (same
as Figure 3) w.r.t. the parity guess when using 4096/c encrypted plaintexts

key and is expected to return the correct key after having checked on the average
M candidates, then the gain of the attack, expressed in bits, is defined as:

γ = −log2
2 · M − 1

2n
(5)

Intuitively, it is a measure of the remaining workload (or number of key candi-
dates to test) after a cryptanalysis has been performed. In the context of multiple
linear cryptanalysis attacks, the gain is simply determined by the position of the
correct key (or parity) candidate in the weighted list of candidates obtained from
the analysis phase. For example, if an attack is used to recover 8 key bits and the
correct key candidate is the most likely (resp. second most likely), it has a gain
of 8 bits (resp. 6.42 bits). Importantly, when algorithm 1 is used, the maximum
gain of an attack depends on the rank of its systems of equations.

2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28

0

1

2

3

4

5

6

7

8

9

10

number of texts

ga
in

 o
f t

he
 a

tta
ck

64 appr.
10 appr.
1 appr.

Fig. 5. Evolution of the gain with respect to the number of encrypted plaintexts

Experiments on the Multiple Linear Cryptanalysis 389

2^−2 2^−1 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7
0

1

2

3

4

5

6

7

8

9

10

number of texts (*1/c)

ga
in

 o
f t

he
 a

tta
ck

64 appr.
10 appr.
1 appr.

Fig. 6. Evolution of the gain w.r.t. the number of plaintexts normalized by the capacity

In Figure 5, the gain of three attacks are given with respect to the data
complexity. The first attack (in red) recovers one bit of parity using only one
approximation (i.e. it is a simple linear cryptanalysis). The second attack (in
green) uses 10 approximations and recovers up to 10 parity bits, while the third
attack (in blue) recovers 10 parity bits using 64 linearly dependent approxima-
tions. As expected, the gain obtained using 64 approximations increases about 8
times faster than with 10 approximations. This example shows the flexibility of-
fered by multiple approximations when algorithm 1 is applied: they can be used
both to get a better gain for a fixed number of plaintext or to get a lower data
complexity for a fixed gain. This observation is even better quantified in Figure 6
where the evolution of the gain is given according to the number of encrypted
plaintexts normalized by the capacity (i.e. the number of plaintexs divided by
the joint capacity of the approximations used in the attack). It clearly illustrates
the tradeoff between attack complexity and gain. It also confirms that N ∝ 1/c
is the number of plaintexts required for the attack to reach its maximum gain.

4.3 Gain Versus Success Rate and Further Insights

Let us introduce the following definition:

Definition 1 (success rate). The success rate of an attack using n approxi-
mations (for a given number of plaintexts/ciphertexts) is the number of parity
bits guessed correctly among the n parities derived from the distance between the
experimental and theoretical bias values.

Figure 7 represents the evolution of the gain and of the success rate when the
number of encrypted plaintexts increases. Interestingly, we can see that the gain
increases much faster than the success rate. For example, after about 223 en-
crypted plaintexts, the gain of the attack reaches its maximum, while the success
rate only equals 0.8 at this point. This is a consequence of the linear dependan-
cies between the approximations. Suppose we are given m linear approximations:

390 B. Collard, F.-X. Standaert, and J.-J. Quisquater

2^16 2^18 2^20 2^22 2^24 2^26 2^28

0

2

4

6

8

10

number of texts

ga
in

 o
f t

he
 a

tta
ck

2^16 2^18 2^20 2^22 2^24 2^26 2^28

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

Fig. 7. Evolution of the gain and success rate w.r.t. the number of encrypted plaintexts

P [χi
P] ⊕ C[χi

C] = K[χi
K] (1 ≤ i ≤ m), (6)

Such that the following relation holds (case of dependant text masks):

χ1
P ⊕ χ2

P ⊕ ... ⊕ χm
P = χ1

C ⊕ χ2
C ⊕ ... ⊕ χm

C (7)

Approximation m is linearly dependant in the sense that no additionnal infor-
mation is given in the deterministic case (i.e. if the approximations hold with
probability 1). However, in the probabilistic case, some information can still be
extracted (as shown in [13]), as the bias of the m− th approximation is not nec-
essarily related to the bias of the m − 1 first. When performing multiple linear
approximations cryptanalysis, the left part of each approximation is evaluated
for a large number of plaintext-ciphertexts pairs and then the parity of the right
part (involving subkey bits) is choosen so as to minimize the distance between
experimental and theoretical bias. However, some of the parity guess might be
wrong in which case the system of equations (where pi is the parity guess for
approximation i): ⎧⎪⎪⎨⎪⎪⎩

K[χ1
K] = p1

K[χ2
K] = p2

...
K[χm

K] = pm

can be inconsistent given the linear dependancies, and one or more parity guess
must be changed. This can be verified only if there are linear dependancies
between the approximations. As the consistency check can be performed before
the exhaustive search for the remaining unknown bits, this increases the gain of
the attack. Intuitively, this shows that using more approximations than the rank
of the system in an attack provides an effect similar to an error correcting code:
some parity candidates can be rejected a-priori. By contrast, the success rate of
an attack is expected to remain the same when the number of approximations
increases (provided that the theoretical biases of each approximation are equal).

Experiments on the Multiple Linear Cryptanalysis 391

As an illustration, we can study the relation between the success rate and the
gain of an attack. Suppose that at least n′ out of the n approximation parity
are guessed correctly. Obviously, the succes rate is higher than n′/n. In order to
recover the key (and evaluate the gain), we must generate a list of candidates
from the value of the parity bits and then try each candidate until the correct
one is found. This can be done using the following strategy:

– Choose the first candidate so as to minimize the euclidian distance
between theoretical and experimental bias.

– Assume one guess is incorrect; choose one parity bit and take its com-
plement; try the

(
n
1

)
possible candidates;

– Assume two guesses are incorrect; choose two parity bits and take
their complements; try the

(
n
2

)
possible candidates;

– ...
– Assume n−n′ guesses are incorrect; choose n−n′ parity bits and take

their complements; try the
(

n
n−n′

)
possible candidates;

After n − n′ steps, we have necessarily found the correct candidate as there is
maximum n − n′ wrong guesses, thus the gain of the attack equals:

γ = −log2

(∑n−n′

i=0

(
n
i

)
2n

)
(8)

In this equation, we implicitly assume the independence between the approxima-
tions (i.e. we assume the maximum gain can be n). However, experiments using
up to 416 approximations (including 15 linearly independent ones) show that this
prediction fits reasonably well even when the approximation are not indepen-
dent, as long as the gain does not saturate to its maximum value (see Figure 8).
We observe that for a given success rate, the gain of the attack increases with

0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

16

success rate

ga
in

 o
f t

he
 a

tta
ck

approx: 1−2−4−8−16−32−64−128−256−416 || gain: 15

Fig. 8. Evolution of the gain w.r.t. the success rate for various number of approxima-
tions. This number ranges from 1 to 416 when moving from the bottom curves to the
top curves. The black smooth curves are the theoretical predictions.

392 B. Collard, F.-X. Standaert, and J.-J. Quisquater

the number of approximations. This example highlights (from a different point of
view) the advantage of multiple linear approximations compared to single linear
cryptanalysis in which the success rate is equivalent to the gain.

5 Experimental Attacks with Algorithm 2

In this section, we perform experimental attacks against 5-round Serpent us-
ing multiple linear approximations with Algorithm 2. It allows the adversary to
recover subkey bits in the first/last round of the cipher as follows. An attack
against r cipher rounds deals with a linear approximation of the r − 1 last/first
rounds. For each plaintext-ciphertext pair and subkey candidate, the ciphertext
is then partially en/decrypted with the subkey candidate, and the approximation
is evaluated for the partial en/decryption. A counter indexed by the keyguess
value is incremented/decremented according to the parity of the evaluation. For
a wrong candidate, the partial en/decryption is expected to produce a random
output, thus leading to an null experimental bias (meaning that its statistical
evaluation is sufficiently close to zero). For the correct key guess, the experimen-
tal bias is expected to converge toward the theoretical bias. In order to speed-up
the computations, we used the FFT trick proposed in [4].

5.1 Differences between Algorithms 1 and 2

Compared with algorithm 1, the exploitation of multiple linear approximations
with algorithm 2 faces an additional problem that we detail in this section. In
multiple linear cryptanalysis, an adversary has a system of m linear approxima-
tions. Each approximation has a theoretical value for its bias εi and the adversary
additionally obtains an experimental value for this bias ε∗i . When algorithm 1 is
used, this experimental value is used to minimize the Euclidean distance:

min
g

m∑
i=1

(εi − (−1)g(i) · ε∗i)2, (9)

where g is the parity guess of the linear approximations. But when algorithm 2
is used, this experimental bias also depends on the round subkey that is used to
perform the first (or last) round partial decryption: ε∗i,k. Therefore, the following
Euclidean distance has to be computed:

min
k

(
min

g

m∑
i=1

(εi − (−1)g(i) · ε∗i,k)2
)

(10)

The practical consequence of these different conditions can be explained as fol-
lows. While the condition in Equation 9 leads to a correct value for the guess,
even if the theoretical bias values are underestimated, the condition in Equation
10 only leads to a correct key candidate if a good theoretical estimation of these
biases is available. This is due to the key dependencies of the experimental biases

Experiments on the Multiple Linear Cryptanalysis 393

in algorithm 2. Unfortunately, in the context of the Serpent algorithm investi-
gated in this paper, it has been shown in Section 3 that these theoretical values
are not accurate, due to the linear hull effect. As a consequence, the framework
of [2] cannot be straightforwardly applied in our context. This is in contrast, e.g.
with the DES, where such a linear hull effect is negligible [6].

5.2 Attack Results

The usual solution to overcome this problem is to look at the maximum experi-
mental bias values. For example, when multiple approximations are considered,
a vector of experimental biases can be derived for each approximation. Then the
average is taken over all the approximations and its maximum value is expected
to indicate the correct key candidate. But the theoretical framework of Crypto
2004 is not applied anymore and such an approach is more closely related to the
experiments of Kaliski and Robshaw [7]. As an illustration, Figure 9 illustrates
the evolution of the experimental biases averaged over 32 4-rounds approxima-
tions, for different numbers of plaintext/ciphertext pairs and 12 bits of keyguess.
Figure 10 shows a comparison between simple and multiple linear cryptanalysis.

Fig. 9. Evolution of the experimental bias averaged over 32 4-rounds approximations
for each guess of the 212 key guesses, when the number of pairs increases (c = 2.08 ·
10−7).

394 B. Collard, F.-X. Standaert, and J.-J. Quisquater

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

subkey guess

(m
ea

n
of

 th
e)

 e
xp

er
im

en
ta

l b
ia

s

Fig. 10. Comparison of the noise levels between simple and multiple linear cryptanal-
ysis (104 approximations vs. 1 approximation, n=64/c)

2^24 2^25 2^26 2^27 2^28 2^29 2^30

0

2

4

6

8

10

12

number of texts

ga
in

 o
f t

he
 a

tta
ck

2 appr.
8 appr.
32 appr.

Fig. 11. Evolution of the gain of algorithm 2 w.r.t. the number of encrypted plaintexts

This latter picture illustrates that multiple linear approximations still allow re-
ducing the noise level in the modified attacks which improves their efficiency.

On the other hand, increasing the number of linear approximations does not
involve reductions of the data complexity according to the capacity values as
in the previous section. This is caused by the modified analysis phase, in which
the exploitation of the information provided by the different approximations is
not optimal anymore. This fact can be emphasized by investigating the gain
of the attacks, for different number of approximations. For example, Figure 11
illustrates how the gain of three attacks with respectively 2, 8 and 32 approxi-
mations (having the same individual biases) increases. But the benefits are not
as spectacular is in the context of algorithm 1. Namely, the 32-approximations
gain is not increasing 16 times faster than when 2 approximations are used.
Compared to the attack results with algorithm 1 (e.g. in Figure 4), it is finally
interesting to notice that Figures 9 and 10 show no particular structure in the

Experiments on the Multiple Linear Cryptanalysis 395

biases distribution. This is due to the partial en/decryption of one round that
cancels the effects caused by close keys in the Hamming distance sense.

6 Conclusion and Further Works

This paper presented experimental results of multiple linear cryptanalysis at-
tacks against reduced-round versions of the block cipher Serpent. It allowed us
to highlight the following observations:

1. The hypotheses stated in [2] about the possible influence of dependencies
(between the masks or linear trails) generally appear to be reasonably ful-
filled, even for approximations of which a large part of the trail is identical.

2. Our experiments only considered a limited number of approximations. De-
pendencies effects could appear with more approximations. Note that the
number of exploitable approximations is limited anyway, for computational
reasons: because of the approximation matrix rank with algorithm 1 and
because of the amount of partial en/decryptions to perform in algorithm 2.

3. By contrast with previous experiments against the DES, we observed a sig-
nificant linear hull effect, with the following consequences:
(a) Optimal attacks using Matsui’s algorithm 1 closely followed the data

complexities predicted with the capacity value (defined in [2]), even if
the theoretical values of the approximation biases were underestimated.

(b) Optimal attacks using Matsui’s algorithm 2 did not lead to successful
key recoveries because of the lack of good theoretical estimations of the
bias values. Modified heuristics allowed us to take advantage of multiple
approximations. But the improvement of the modified attack complexity
is not following the predictions of the capacity values.

4. More generally, the analysis of Crypto 2004 leads to meaningful results as
long as the branch-and-bound algorithm used to derive the linear approxi-
mations provides the adversary with the best possible biases.

In practice, our experiments finally confirmed the significant improvement of
multiple linear cryptanalysis attacks compared to Matsui’s original attack. Open
questions include the optimal exploitation of multiple approximations using al-
gorithm 2 when good estimations of the bias values are not available or the
extension of these experiments towards more cipher rounds, e.g. using [9].

Description of the Approximations

A detailed description of the linear approximations used in our experiments is
available at the following address:
http://www.dice.ucl.ac.be/∼fstandae/PUBLIS/50b.zip

Acknowledgements

This work is partially supported by the Walloon Region under the projectNanotic-
Cosmos and by the Belgian Interuniversity Attraction Pole P6/26 BCRYPT.

396 B. Collard, F.-X. Standaert, and J.-J. Quisquater

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced En-
cryption Standard. In: The Proceedings of the First Advanced Encryption Standard
(AES) Conference, Ventura, CA (1998)

2. Biryukov, A., De Cannière, C., Quisquater, M.: On Multiple Linear Approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

3. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) InsCrypt 2007. LNCS, vol. 4990, pp. 47–61. Springer, Heidelberg (2008)

4. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the Time Complexity
of Matsui’s Linear Cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007.
LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

5. Daemen, J., Rijmen, V.: The Wide-Trail Strategy. In: Honary, B. (ed.) Cryptogra-
phy and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)

6. Junod, P.: On the Complexity of Matsui’s Attack. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 199–211. Springer, Heidelberg (2001)

7. Kaliski, B.S., Robshaw, M.J.B.: Linear Cryptanalysis using Multiple Approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

8. Knudsen, L.R.: Practically Secure Feistel Ciphers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 211–221. Springer, Heidelberg (1994)

9. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with
COPACOBANA - A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Mat-
sui, M. (eds.) CHES 2006. LNCS, vol. 4249, Springer, Heidelberg (2006)

10. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

11. Nyberg, K.: Linear Approximations of Block Ciphers. In: De Santis, A. (ed.) EU-
ROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

12. Matsui, M.: On Correlation Between the Order of S-boxes and the Strength of
DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375.
Springer, Heidelberg (1995)

13. Murphy, S.: The Independence of Linear Approximations in Symmetric Cryptology.
IEEE Transactions on Information Theory 52, 5510–5518 (2006)

A The Serpent Algorithm

The Serpent block cipher was designed by Ross Anderson, Eli Biham and Lars
Knudsen [1]. It was an Advanced Encryption Standard candidate, finally rated
just behind the AES Rijndael. Serpent has a classical SPN structure with 32
rounds and a block width of 128 bits. It accepts keys of 128, 192 or 256 bits and
is composed of the following operations:

– an initial permutation IP ,
– 32 rounds, each of them built upon a subkey addition, a passage through 32

S-boxes and a linear transformation L (excepted the last round, where the
linear transformation is not applied),

– a final permutation FP .

Experiments on the Multiple Linear Cryptanalysis 397

In each round Ri, only one S-box is used 32 times in parallel. The cipher uses
8 distinct S-boxes Si (0 ≤ i ≤ 7) successively along the rounds and consequently,
each S-box is used in exactly four different rounds. Finally, the linear diffusion
transform is entirely defined by XORs (⊕), rotations (≪) and left shifts ().
Its main purpose is to maximize the avalanche effect within the cipher. If one in-
dicates by X0, X1, X2, X3 the 4 ·32 bits at the input of the linear transformation,
it can be defined by the following operations:

input = X0, X1, X2, X3

X0 = X0 ≪ 13
X2 = X2 ≪ 3
X1 = X1 ⊕ X0 ⊕ X2

X3 = X3 ⊕ X2 ⊕ (X0 	 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕ X1 ⊕ X3

X2 = X2 ⊕ X3 ⊕ (X1 	 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

output = X0, X1, X2, X3

Impossible Differential Cryptanalysis of CLEFIA

Yukiyasu Tsunoo1, Etsuko Tsujihara2, Maki Shigeri3, Teruo Saito3,
Tomoyasu Suzaki1, and Hiroyasu Kubo3

1 NEC Corporation, 1753, Shimonumabe, Nakahara, Kawasaki 211-8666, Japan
{tsunoo@BL,t-suzaki@cb}.jp.nec.com

2 Y.D.K.Co., Ltd., 1288, Oshitate, Inagi-Shi, Tokyo 206-0811, Japan
etsuko-t@ghn.ydkinc.co.jp

3 NEC Software Hokuriku, Ltd., 1,Anyoji, Hakusan, Ishikawa 920-2141, Japan
{m-shigeri@pb,t-saito@qh,h-kubo@ps}.jp.nec.com

Abstract. This paper reports impossible differential cryptanalysis on
the 128-bit block cipher CLEFIA that was proposed in 2007, including
new 9-round impossible differentials for CLEFIA, and the result of an
impossible differential attack using them. For the case of a 128-bit key, it
is possible to apply the impossible differential attack to CLEFIA reduced
to 12 rounds. The number of chosen plaintexts required is 2118.9 and the
time complexity is 2119. For key lengths of 192 bits and 256 bits, it
is possible to apply impossible differential attacks to 13-round and 14-
round CLEFIA. The respective numbers of chosen plaintexts required
are 2119.8 and 2120.3 and the respective time complexities are 2146 and
2212. These impossible differential attacks are the strongest method for
attacking reduced-round CLEFIA.

Keywords: block cipher, CLEFIA, diffusion switching mechanism, gen-
eralized Feistel structure, impossible differential cryptanalysis.

1 Introduction

Differential attacks [2] and linear attacks [3] are the most common methods of
attack applied to block ciphers. Guaranteeing security against differential attacks
and linear attacks is an important problem in the design of block ciphers. One
known method of evaluating security against such attacks uses the minimum
number of active S-boxes. Shirai et al. proposed in 2004 the diffusion switching
mechanism (DSM), a method of designing a Feistel structure block cipher that
can guarantee a large minimum number of active S-boxes [4,5]. In 2007, CLEFIA,
a 128-bit block cipher designed using DSM, was proposed [6]. The designers of
CLEFIA adopted a four-branch generalized Feistel structure to achieve both
a small implementation size and high speed. The generalized Feistel structure
tends to require more rounds to guarantee security than does an ordinary Feistel
structure, but CLEFIA can guarantee resistance to differential attacks and linear
attacks with a small number of rounds because of the use of DSM.

The impossible differential attack [1] is a method that was first applied against
Skipjack to reject wrong key candidates by using input difference and output

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 398–411, 2008.
c© International Association for Cryptologic Research 2008

Impossible Differential Cryptanalysis of CLEFIA 399

difference pairs whose probabilities are zero (impossible differentials). Impossi-
ble differentials that are dependent on the basic structure of the data processing
part are often used, and this method is a particular threat to the generalized
Feistel structure. Since CLEFIA is a generalized Feistel structure, the impossi-
ble differential attack is an effective attack against CLEFIA. According to the
designers, an evaluation of CLEFIA with respect to an impossible differential at-
tack [6,7] shows that there are 9-round impossible differentials in CLEFIA, and
for a 128-bit key, a 10-round impossible differential attack is possible. For key
lengths of 192 bits and 256 bits, 11-round and 12-round impossible differential
attacks are possible.

In this paper, we show that there are previously unknown 9-round impossible
differentials in CLEFIA and report the result of impossible differential attacks
using those impossible differentials. These impossible differentials exist in struc-
tures that are designed using DSM. In the impossible differential attacks on
CLEFIA described in this paper, 12-round CLEFIA can be broken for a 128-bit
key. For key lengths of 192 bits and 256 bits, impossible differential attacks are
respectively possible for 13-round and 14-round CLEFIA.

There have been no reports on the cryptanalysis of CLEFIA other than the
evaluation by the designers. Accordingly, the strong attack method for CLEFIA
up to now is the differential attack and linear attack described in the design-
ers’ evaluation, which shows the possibility of 12-round, 13-round, and 14-round
attack for the respective key lengths of 128 bits, 192 bits, and 256 bits. Neverthe-
less, these results are values for guaranteeing security with respect to differential
attacks or linear attacks; the numbers of rounds for establishing actual differen-
tial attacks or linear attacks are probably smaller. Accordingly, the impossible
differential attacks described in this paper are the result for the most number of
rounds as an actual attack method on CLEFIA.

In this paper, we describe the CLEFIA structure in Sect. 2, explain the newly
discovered impossible differentials and present attack procedures against CLE-
FIA using those differentials in Sect. 3. Section 4 concludes this paper.

2 Description of CLEFIA

2.1 Notation

We use the following notation in this paper.
a(b) b is the bit length of a

If the bit length of a is known, (b) is omitted.
a | b The concatenation of a and b
[a, b] The vector representation of a | b
ta Transposition of vector a or matrix a

[x{i,0}, x{i,1}, x{i,2}, x{i,3}] i-round output data, x{i,j} ∈ {0, 1}32

The plaintext is [x{0,0}, x{0,1}, x{0,2}, x{0,3}].
[C{i,0}, C{i,1}, C{i,2}, C{i,3}] The i-round CLEFIA ciphertext

400 Y. Tsunoo et al.

a ⊕ b Bit-wise exclusive OR of a and b
(addition over GF(2n))

∆a Difference for a (difference over GF(2n))
wb(a) For an 8n-bit string

a = a0(8) | a1(8) | . . . | an−1(8),
wb(a) denotes the number of non-zero ais.

B(P) Branch number for function P
B(P) = mina�=0{wb(a) + wb(P (a))}

2.2 Structure

In this section, we explain only the data processing part of CLEFIA.
CLEFIA is a block cipher that has a block length of 128 bits and key lengths

of 128, 192, and 256 bits.
The data processing part is a four-branch generalized Feistel structure with

two parallel F functions (F0, F1) per round. The number of respective rounds r
for 128-bit, 192-bit and 256-bit keys are 18, 22 and 26. The encryption function
ENCr generates 128-bit ciphertext from 128-bit plaintext, 2r 32-bit round keys
(RK0(32), . . . , RK2r−1(32)), and four 32-bit whitening keys (WK0, . . . , WK3).
The structure of the encryption function ENCr is shown in Fig. 1. ENCr is
defined as follows.

ENCr:
Step 1. T0 |T1 |T2 |T3 ← x{0,0} | (x{0,1} ⊕ WK0) |x{0,2} | (x{0,3} ⊕ WK1)
Step 2. For i=0 to r − 1 do the following:
Step 2.1. T1 ← T1 ⊕ F0(RK2i, T0), T3 ← T3 ⊕ F1(RK2i+1, T2)
Step 2.2. T0 |T1 |T2 |T3 ← T1 |T2 |T3 |T0

Step 3. C{r,0} |C{r,1} |C{r,2} |C{r,3} ← T3 | (T0 ⊕ WK2) |T1 | (T2 ⊕ WK3)

The two F functions, F0 and F1, have 32-bit data x and 32-bit key RK as input;
they output the 32-bit data y. F0 is defined as follows.

F0:
Step 1. T ← RK ⊕ x
Step 2. Let T = T0(8) |T1(8) |T2(8) |T3(8)

T0 ← S0(T0), T1 ← S1(T1), T2 ← S0(T2), T3 ← S1(T3)
Step 3. Let y = y0(8) | y1(8) | y2(8) | y3(8)

t[y0, y1, y2, y3] = M0
t[T0, T1, T2, T3]

F1 is defined by replacing the terms in F0 as follows: S0 is replaced with S1, S1

with S0, and M0 with M1. The structures of F0 and F1 are shown in Fig. 2.
S0 and S1 are non-linear 8-bit S-boxes.
The two matrices M0 and M1 are defined as

M0 =

⎛⎜⎜⎝
0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎞⎟⎟⎠ , M1 =

⎛⎜⎜⎝
0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

⎞⎟⎟⎠ .

Impossible Differential Cryptanalysis of CLEFIA 401

C{r,2}C{r,0}

WK3

C{r,1} C{r,3}

F0

x{0,0} x{0,1} x{0,2} x{0,3}

WK1WK0

WK2

RK0 RK1

RK2 RK3

RK2r-2 RK2r-1

F0

F0

F1

F1

F1

Fig. 1. Encryption function ENCr

S1

S0

S1

S0

M0

x0

x1

x2

x3

k0 k1 k2 k3

y0

y1

y2

y3

F0

S0

S1

S0

S1

M1

x0

x1

x2

x3

k0 k1 k2 k3

y0

y1

y2

y3

F1

Fig. 2. Functions F0 and F1

The multiplications between these matrices and vectors are performed in
GF (28) defined by the primitive polynomial z8 + z4 + z3 + z2 + 1.

M0 and M1 satisfy

B(M0) = B(M1) = 5, B(M0 |M1) = B(tM−1
0 | tM−1

1) = 5.

3 Impossible Differential Attacks on CLEFIA

In this section, we present the new 9-round impossible differentials in Sect. 3.1,
and explain the procedure for using those impossible differentials to attack CLE-
FIA in Sect. 3.2 and subsequent sections.

3.1 Nine-Round Impossible Differentials of CLEFIA

The following two new 9-round impossible differentials are found in CLEFIA,

[0(32), 0(32), 0(32), αin(32)] �→9r [0(32), 0(32), 0(32), αout(32)]
[0(32), αin(32), 0(32), 0(32)] �→9r [0(32), αout(32), 0(32), 0(32)]

where αin and αout are the differences shown in Table 1. The X(8) and Y(8) in
αin and αout are arbitrary non-zero values. These impossible differentials are
entirely different from the impossible differentials found by the designers. The
first impossible differential is represented in Fig. 3.

Here, we prove that where αin = [0(8), 0(8), 0(8), X(8)], and αout = [Y(8), 0(8),
0(8), 0(8)], the probability of [0(32), 0(32), 0(32), αin] occurring nine rounds after
[0(32), 0(32), 0(32), αout] is zero, which is to say that [0, 0, 0, αin] �→9r [0, 0, 0, αout]
is an impossible differential. Other impossible differentials can be proven in the
same way.

402 Y. Tsunoo et al.

Table 1. Differential values for αin and αout

αin αout

[0(8), 0(8), 0(8), X(8)] [0(8), 0(8), Y(8), 0(8)], [0(8), Y(8), 0(8), 0(8)], [Y(8), 0(8), 0(8), 0(8)]

[0(8), 0(8), X(8), 0(8)] [0(8), 0(8), 0(8), Y(8)], [0(8), Y(8), 0(8), 0(8)], [Y(8), 0(8), 0(8), 0(8)]

[0(8), X(8), 0(8), 0(8)] [0(8), 0(8), 0(8), Y(8)], [0(8), 0(8), Y(8), 0(8)], [Y(8), 0(8), 0(8), 0(8)]

[X(8), 0(8), 0(8), 0(8)] [0(8), 0(8), 0(8), Y(8)], [0(8), 0(8), Y(8), 0(8)], [0(8), Y(8), 0(8), 0(8)]

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

F0 F1

Contradiction

0 0 0 αin

0 0 0 αout

αin

αin

αout

αout

Fig. 3. Nine-round impossible differential

Proof. Assume that the input difference ∆x{4,0} of the fifth-round F0 function
for when the input difference is [0(32), 0(32), 0(32), [0(8), 0(8), 0(8), X(8)]] and the
input difference ∆x′{4,0} of the fifth-round F0 function for when the output
difference is [0(32), 0(32), 0(32), [Y(8), 0(8), 0(8), 0(8)]] are the same.

∆x{4,0} = ∆x′{4,0}. (1)

The ∆x{4,0} can be expressed using the fourth-round matrix M0 and second-
round matrix M1 as

∆x{4,0} = M0
t[0, 0, 0, X ′] ⊕ M1

t[0, 0, 0, X ′′]
= (M0 |M1) t[0, 0, 0, X ′, 0, 0, 0, X ′′], (2)

Impossible Differential Cryptanalysis of CLEFIA 403

where X ′ is the output difference for when the S1 input difference is X , and X ′′

is the output difference for when the S0 input difference is X ; both are non-zero
values.

Also, the ∆x′{4,0} can be expressed using the 8th-round matrix M0 and the
6th-round matrix M1 as

∆x′{4,0} = M0
t[Y ′, 0, 0, 0]⊕ M1

t[Y ′′, 0, 0, 0]
= (M0 |M1) t[Y ′, 0, 0, 0, Y ′′, 0, 0, 0], (3)

where Y ′ is the output difference for when the S0 input difference is Y and Y ′′

is the output difference for when the S1 input difference is Y ; both are non-zero
values.

From (1), (2) and (3), we obtain

(M0 |M1) t[Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′] = t[0, 0, 0, 0] (4)

because

∆x{4,0} ⊕ ∆′x{4,0}

= (M0 |M1) t[0, 0, 0, X ′, 0, 0, 0, X ′′] ⊕ (M0 |M1) t[Y ′, 0, 0, 0, Y ′′, 0, 0, 0]
= (M0 |M1) t([0, 0, 0, X ′, 0, 0, 0, X ′′] ⊕ [Y ′, 0, 0, 0, Y ′′, 0, 0, 0])
= (M0 |M1) t[Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′].

From the CLEFIA specifications, the branch number of the concatenation
matrix M0 |M1 is 5. Therefore

wb([Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′]) + wb((M0 |M1) t[Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′]) ≥ 5.

From wb([Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′]) = 4, for the left side of (4),

wb((M0 |M1) t[Y ′, 0, 0, X ′, Y ′′, 0, 0, X ′′]) ≥ 1. (5)
Furthermore, for the right side of (4),

wb([0, 0, 0, 0]) = 0. (6)

Equations (5) and (6) contradict (4).
Accordingly, ∆x{4,0} and ∆x′{4,0} cannot be equal and [0, 0, 0, [0, 0, 0, X]] �→9r

[0, 0, 0, [Y, 0, 0, 0]] is thus an impossible differential. ��

3.2 Key Recovery Attack on 11-Round CLEFIA

In this section, we explain an impossible differential attack on 11-round CLEFIA
using the 9-round impossible differentials presented in Sect. 3.1 as preparation for
an impossible differential attack on 12-round CLEFIA which we show in Sect. 3.3.
For simplicity of explanation in the next section, we regard the first-round output
to be plaintext and present the attack procedure for the 11 rounds from the
second round to the 12th round. Of the 9-round impossible differentials shown
in Sect. 3.1, we describe the case for the input difference of [0, 0, 0, [0, 0, 0, X]]
and the output difference of [0, 0, 0, [Y, 0, 0, 0]] as shown in Fig. 4. It is possible
to recover RK22, RK23, and the most significant byte of WK2 ⊕ RK21, which
we represent as RK ′

21,0(8).

404 Y. Tsunoo et al.

F0 F1

∆C{12,2}=β∆C{12,0}=0

F0

WK2

WK3

∆x{10,0}=0

γ

9-round impossible
differential
characteristic

RK23

∆C{12,1}=αout

F0 F1
0 0 αout=[Y,0,0,0]

β

∆C{12,3}=γ

F1

RK22

WK2⊕RK21

F0 F1

∆x{1,0}=0 ∆x{1,1}=0 ∆x{1,2}=0 ∆x{1,3}=αin=[0,0,0,X]

∆x{10,1}=0 ∆x{10,2}=αout ∆x{10,3}=0

0

Fig. 4. Impossible differential attack on 11-round CLEFIA

Movement of Whitening Key WK2. Move the whitening key WK2, and
place it at the bit-wise exclusive OR with the 10th-round output x{10,2} and bit-
wise exclusive OR with RK21. This movement is an equivalent transformation.

Key Recovery. Of the ciphertext pairs that correspond to the plaintext pairs
for which the difference is [0, 0, 0, [0, 0, 0, X]], choose those for which the cipher-
text difference is [0, [Y, 0, 0, 0], β(32), γ(32)]. Here, β represents the 255 values that
can be obtained as the output difference when the input difference for M1 is
[Y, 0, 0, 0]; γ is a non-zero value. The probability of obtaining such ciphertext
pairs is 1/232 · 255/232 · 255/232 · (232 − 1)/232 ≈ 2−80.

For the chosen ciphertext pair, all of the keys that are obtained by differ-
ential table1 look-up indexed on the input differences and the output differ-
ences of the 11th-round F1 and the 12th-round F1 as the key are wrong keys.
Those keys are marked as wrong keys in a key table for distinguishing whether
RK ′

21,0 |RK22 |RK23 candidates2 are correct keys or wrong keys. This method
is generally used with the objective of finding the correct key by differential at-
tacks; in impossible differential attacks, it can be used to find wrong keys without
exhaustive search. The probability of a candidate for RK ′

21,0 |RK22 |RK23 be-
ing a wrong key as the result of using two F1 differential tables is 2−40 from the
average 2−8 probability for the 11th-round F1 and the average 2−32 probability
for the 12th-round F1. Accordingly, the number of ciphertext pairs required to
1 A table that records the input value pairs for which occur the input-output differ-

ences for each of the input differences and output differences.
2 To calculate the input value of the 11th-round F1, it is necessary to try all of RK22.

It is therefore useful to have the RK′
21,0 | RK23 key table when guessing RK22, but

we chose to add RK22 to the key table as well to simplify the explanation of the
12-round attack in Sect. 3.3.

Impossible Differential Cryptanalysis of CLEFIA 405

narrow the candidates down to a single 72-bit correct key RK ′
21,0 |RK22 |RK23,

N , is about 245.7, from
272(1 − 2−40)N = 1.

From the above facts, 245.7/2−80 = 2125.7 plaintext pairs are required for
attack. If we choose two different plaintexts from a set of 28 plaintexts (referred
to simply as ‘structure’ below) for which the first three words and the first three
bytes of the fourth word of the plaintext are fixed, we can make 28C2 ≈ 214.9

pairs for which the difference is [0, 0, 0, [0, 0, 0, X]]. In other words, it is possible
to obtain the number of ciphertext pairs that are required for the attack by
choosing 2110.8 (= 2125.7−14.9) structures. In that case, the number of plaintexts
is 2110.8 · 28 = 2118.8.

The time complexity for attack is as follows.

1. For obtaining the ciphertexts : 2119 encryptions
2. For reducing the key candidates : 246 · 232 = 278 F-function computations

< 273 encryptions
(In detail, 245.7 ciphertext pairs · 232 RK22 guesses)

Accordingly, the time complexity is 2119 encryptions.
The memory used for attack is occupied by the key table and the ciphertext

table. The size of the key table, if indexed by the key values, is 272 bits. The
size of the ciphertext table is 28 blocks (128 bits per block), if indexed by the
plaintext values. Accordingly, the memory required for attack is about 265 blocks.

3.3 Key Recovery Attack on 12-Round CLEFIA

We extend the impossible differential attack of the 11-round CLEFIA described
in Sect. 3.2 by one round on the plaintext side. In addition to RK22, RK23, and
RK ′

21,0, we can obtain the least significant byte of RK0.

Movement of Whitening Key WK0. Move the whitening key WK0, and
place it at the bit-wise exclusive OR with the first round output x{1,0}.

Plaintext Choice Method. Prepare a data set that comprises 240 plaintexts
in which the first three bytes of the first word, and the third and fourth words of
the plaintext are fixed as shown in Fig. 5. In other words, there are 240 plaintexts
for which the first three bytes of the fourth word x{1,3}, the second word x{1,1},
and the third word x{1,2} are fixed, if taken as the first-round output. If, for each
value of the first word x{1,0} of the first-round output, it is possible to choose
28 plaintexts for which the least significant bytes of the fourth word x{1,3} are
different (i.e., structures), the attack described in Sect. 3.2 can be applied.

Let the first word x{0,0} of the plaintext be [a(8), b(8), c(8), d(8)] and let RK0

be [k0(8), k1(8), k2(8), RK0,3(8)]. Here, a,b, and c are arbitrary fixed values, and
d is a variable that takes values from 0 to 255 in order. Using this variable to
express the first word x{1,0} of the first-round output, we get

x{1,0} = M0
t[S0(a ⊕ k0), S1(b ⊕ k1), S0(c ⊕ k2), 0]

⊕ M0
t[0, 0, 0, S1(d ⊕ RK0,3)] ⊕ x{0,1}. (7)

406 Y. Tsunoo et al.

F0 F1

x{1,0}=All(32) x{1,1}=Fix x{1,2}=Fix x{1,3}

=[Fix(8),Fix(8),Fix(8),All(8)]

F0 F1

WK1

WK0

x{0,0}

=[Fix(8),Fix(8),Fix(8),All(8)]
x{0,1}=All(32) x{0,2}=Fix x{0,3}=Fix

RK0

Fig. 5. Choice of plaintext for a one-round extension

The first term on the right side of (7) is a fixed value.
To choose 28 plaintexts (structure) such that the least significant bytes of

x{1,3} are all different for each value of x{1,0}, we guess RK0,3 and choose the
data for which x{0,1} is x{1,0} ⊕M0

t[0, 0, 0, S1(d⊕RK0,3)] corresponding to the
change in d. Here, x{1,0} is actually the unknown value x{1,0} ⊕ M0

t[S0(a ⊕
k0), S1(b ⊕ k1), S0(c ⊕ k2), 0], but when choosing a single structure, we can fix
the value of x{1,0}. As a result, 232 structures can be chosen for the first-round
output.

Key Recovery. Because an attack in the same way as described in Sect. 3.2 is
possible, this description follows the procedure of that section.

From among the ciphertext pairs that correspond to the plaintext pairs for
which the second-round input difference is [0, 0, 0, [0, 0, 0, X]], choose those for
which the ciphertext difference is [0, [Y, 0, 0, 0], β, γ]. The probability of obtaining
such ciphertext pairs is 2−80.

For the chosen ciphertext pair, the keys for which the 10th-round output
difference [∆x{10,0}, ∆x{10,1}, ∆x{10,2}, ∆x{10,3}] is [0, 0, [Y, 0, 0, 0], 0] are wrong
keys. Prepare a key table to distinguishing whether the RK ′

21,0 |RK22 |RK23

candidate is correct or wrong for each first-round guessed key RK0,3. Keys ob-
tained by differential table look-up with the input differences and the output
differences for the 11th-round F1 and the 12th-round F1 are wrong keys. The
probability of a wrong key obtained as an RK ′

21,0 |RK22 |RK23 candidate using
the two differential tables is 2−40. Accordingly, the number of ciphertext pairs
needed to narrow the 8-bit keys RK0,3 and 72-bit keys RK ′

21,0 |RK22 |RK23

down to the correct key, N , is 245.8 according to

280(1 − 2−40)N = 1.

When key RK0,3 is wrong, all of the keys are wrong.
From the above description, 245.8/2−80 = 2125.8 plaintext pairs are required

for attack. Here, by changing the order of choosing the plaintext-ciphertext pairs
according to the guessing of key RK0,3, the number of chosen plaintexts does
not increase when guessing key RK0,3. If we choose two different plaintexts from
a single structure seen in the first-round output, we can make 28C2 ≈ 214.9

Impossible Differential Cryptanalysis of CLEFIA 407

F0 F1

∆C{13,2}=γ∆C{13,0}=αout

F0

∆x{10,0}=0

γ

9-round impossible
differential
characteristic

∆C{13,1}=β'

F0 F1
0 0 αout=[Y,0,0,0]

β

∆C{13,3}=δ

F1

WK3⊕RK22

RK21

F0 F1

∆x{1,0}=0 ∆x{1,1}=0 ∆x{1,2}=0 ∆x{1,3}=αin=[0,0,0,X]

∆x{10,1}=0 ∆x{10,2}=αout ∆x{10,3}=0

F0
δ

RK25

F1

RK24

WK2⊕RK23

WK3
∆x{11,0}=0 ∆x{11,1}=αout ∆x{11,2}=β ∆x{11,3}=0

WK2

0

Fig. 6. Impossible differential attack on 13-round CLEFIA

pairs for which the difference is [0, 0, 0, [0, 0, 0, X]]. That is to say, if we prepare
278.9 (= 2125.8−32−14.9) sets of 240 plaintexts (232 structures) for which the first
three bytes of the first word and the third and fourth words of the plaintext
are fixed, we can obtain the number of ciphertext pairs required for attack. The
number of plaintexts in that case is 278.9 · 240 = 2118.9. The difference in the
required number of plaintexts with Sect. 3.2 (2118.8) arises from the difference in
the number of ciphertext pairs N required to narrow down the keys to the one
correct remaining key using the key table.

The time complexity required for attack is as follows.

1. For obtaining the ciphertexts : 2119 encryptions
2. For reducing the key candidates : 28 ·246 ·232 = 286 F-function computations

< 282 encryptions
(In detail, RK0,3 guesses 28· ciphertext pairs 245.8 · RK22 guesses 232)

Accordingly, the time complexity is 2119 encryptions.
The memory used for attack is occupied by the key table and the ciphertext

table. The key table size is 280 bits and the ciphertext table size is 240 blocks.
Accordingly, the memory size required for attack is about 273 blocks.

3.4 Key Recovery Attacks on 13 and 14-Round CLEFIA

We present a 13-round CLEFIA attack for the key length of 192 bits or more
shown in Fig. 6 and a 14-round CLEFIA attack for the key length of 256 bits.

In the 13-round attack, it is possible to obtain RK0,3, the most significant
byte of RK21 (denoted as RK21,0(8)), WK3 ⊕ RK22, WK2 ⊕ RK23, RK24 and

408 Y. Tsunoo et al.

RK25. In the 14-round attack, it is possible to obtain RK0,3, the most significant
byte of WK3⊕RK21, RK22, RK23, WK3⊕RK24 and WK2⊕RK25, RK26, and
RK27. In the same way as done in Sects. 3.2 and 3.3, we first present the attack
procedure for the 12 rounds from the second round to the 13th round. Then, we
extend one round on the plaintext side. Finally, we explain the 14-round attack.

Movement of Whitening keys WK0, WK2, and WK3. The whitening
keys WK0, WK2, WK3 are moved in the same way as in Sects. 3.2 and 3.3.

Key Recovery on 12-Round CLEFIA. We choose the ciphertext pairs for
which the first round output difference is [0, 0, 0, [0, 0, 0, X]] and the 12th-round
output difference is [[Y, 0, 0, 0], β, γ, 0] for use in attack. Here, β represents the 255
values that can be obtained as the output difference when the input difference
for M1 is [Y, 0, 0, 0]; γ is a non-zero value.

From among the ciphertext pairs that correspond to the plaintext pairs for
which the first round output difference is [0, 0, 0, [0, 0, 0, X]], select those for
which the differences are [[Y, 0, 0, 0], β′

(32), γ, δ(32)]. Here, β′ is the bit-wise ex-
clusive OR of the 255 values that β can take with the 255 values that the M0

output difference can take for the case in which the input difference of M0 is
[Y, 0, 0, 0], or 255 · 255 ≈ 216. The γ and δ are non-zero values. The probability
of obtaining such ciphertext pairs is

255/232 · (255 · 255)/232 · (232 − 1)/232 · (232 − 1)/232 ≈ 2−40.

From among the chosen ciphertext pairs, classify the ciphertext pairs for which
the 12th-round output difference is [[Y, 0, 0, 0], β, γ, 0] by guessing the most sig-
nificant byte of RK24. Among the ciphertext pairs for which the difference is
[[Y, 0, 0, 0], β′, γ, δ], the probability that a usable ciphertext pair exists for each
value of the most significant byte RK24 is 2−8.

The keys for which the 10th-round output difference is [0, 0, [Y, 0, 0, 0], 0] are
wrong keys. Prepare a table (key table) for distinguishing RK21,0 | (WK2 ⊕
RK23) |RK25 candidates as correct or wrong. Then, use the input differences and
output differences for the 11th-round and 12th-round F1s and the 13th-round
F1 for look-up in the differential table and mark the obtained keys as wrong.
Here, to calculate the input values of the 11th-round F1 and the 12th-round F1,
we guess the least significant three bytes of RK24 and all of WK3 ⊕ RK22. The
input of the 12th-round F0 can be calculated using the RK25 candidates.

The probability of knowing that a RK21,0 | (WK2⊕RK23) |RK25 candidate is
wrong by using the differential table for the three F1s is 2−72, from the average of
2−8 for the 11th-round F1 and the average of 2−32 for the 12th-round and 13th-
round F1. Accordingly, the number of ciphertext pairs, N , required to narrow the
72-bit key RK21,0 | (WK2 ⊕RK23) |RK25 and 64-bit key RK24 | (WK3 ⊕RK22)
down to the correct key is about 278.6 from

2136(1 − 2−72)N = 1.

From the above description, the number of plaintext pairs required for attack is
278.6−40−8 = 2126.6.

Impossible Differential Cryptanalysis of CLEFIA 409

If we choose two plaintexts from the same structure, we can make 28C2 ≈ 214.9

pairs for which the difference is [0, 0, 0, [0, 0, 0, X]]. That is to say, if we choose
2111.7(= 2126.6−14.9) structures, we can obtain the number of ciphertext pairs
required for attack. In that case, the number of plaintexts is 2111.7 · 28 = 2119.7.

Key Recovery on 13-Round CLEFIA. We extend the method for attack
the 12-round CLEFIA that is described above by one round on the plaintext
side to break 13-round CLEFIA.

The number of ciphertext pairs, N , required to narrow down the 8-bit key
RK0,3, the 72-bit key RK21,0 | (WK2 ⊕RK23) |RK25 and the 64-bit key RK24 |
(WK3 ⊕ RK22) to the one correct key using the key table is 278.7 according to

2144(1 − 2−72)N = 1.

The method for choosing structures for each value of the first word x{1,0} of the
first round output is the same as described in Sect. 3.3, so the number of chosen
plaintexts on the plaintext side is extended by N . Accordingly, the number of
plaintexts required is 2119.8.

Prepare 279.8 sets of 240 plaintexts for which the first three bytes of the first
word and the third and fourth words are fixed (2119.8 plaintexts in total). Re-
garding these plaintexts at the first round output, we can consider them to be
279.8 sets of 240 plaintexts with the first three bytes of the fourth word and
second and third words fixed. We save these 2119.8 plaintexts in a table, guess
RK0,3, and choose the plaintext pairs and use them in attack. The reason for
saving all of the data, which differs from the procedure of Sect. 3.3, is that there
are more keys to be guessed on the ciphertext side, and it is not possible to have
a key table for them.3

The time complexity required for attack is as follows.

1. For obtaining the ciphertexts : 2119.8 encryptions
2. For reducing the key candidates : 28 · 278.7 · 264 = 2150.7 F-function compu-

tations < 2146 encryptions
(In detail, 28 RK0,3 guesses · 278.7 ciphertext pairs · 264 WK3 ⊕ RK22 and
RK24 guesses)

Accordingly, the time complexity is 2146 encryptions.
The memory used for attack is occupied by the key table and the ciphertext

table. The size of the key table is 272 bits; the size of the ciphertext table is
2119.8 blocks. Accordingly, the memory required for attack is about 2120 blocks.

Key Recovery on 14-Round CLEFIA. 14-round CLEFIA can be broken by
adding exhaustive search of the 14th-round keys RK26 and RK27 to the 13-round
attack. The number of chosen plaintexts required for attack is 2120.3, because
the number of ciphertext pairs, N , required for narrowing the keys down to the
correct key using the key table is about 279.2, from

2208(1 − 2−72)N = 1.

3 In this paper, it is not possible to have a table that exceeds 2128 blocks.

410 Y. Tsunoo et al.

The time complexity is as follows.

1. For obtaining the ciphertexts : 2120.3 encryptions
2. For reducing the key candidates : 28 · 279.2 · 2 · 2128 = 2216.2 F-function

computations < 2212 encryptions
(In detail, 28RK0,3 guesses ·279.2 ciphertext pairs · 2128 guesses for RK22,
WK3 ⊕ RK26 and RK27 guesses)

Accordingly, the time complexity is 2212 encryptions.
The memory used for attack is occupied by the key table and the ciphertext

table. The size of the key table is 272 bits; the size of the ciphertext table is
2120.3 blocks. Accordingly, the amount of memory required for attack is about
2121 blocks.

4 Conclusion

We have presented previously unknown 9-round impossible differentials in CLE-
FIA, which are impossible differentials that exist in structures designed by using
DSM. We used these impossible differentials to apply impossible differential at-
tacks on CLEFIA. The result showed that an impossible differential attack that
is more efficient than exhaustive search is possible for 128-bit key, 12-round
CLEFIA. Furthermore, attack of 13-round CLEFIA and 14-round CLEFIA is
possible for key lengths of 192 bits and 256 bits, respectively. The number of
chosen plaintexts, the time complexity, and the amount of memory required for
attack are listed in Table 2.

Table 2. Results of impossible differential attacks

Reference Number of Key length Chosen Time complexity Amount of memory
rounds plaintexts (encryptions) (blocks)

[6,7] 10 128, 192, 256 2101.7 2102 232

[6,7] 11 192, 256 2103.5 2188 2121

[6,7] 12* 256 2103.8 2252 2153

This paper 12 128, 192, 256 2118.9 2119 273

This paper 13 192, 256 2119.8 2146 2120

This paper 14 256 2120.3 2212 2121

* Without whitening key

Even though the 9-round impossible differentials presented in this paper have
the same number of rounds characteristic as the impossible differentials iden-
tified by the designers, our impossible differential attacks exceed the designers’
evaluation by two more rounds that can be broken for each key length. That is
true for the following reason. For the impossible differentials found by the design-
ers, the length of the parts of the plaintext differences and ciphertext differences
that are not zero is 32 bits, and the plaintext differences and ciphertext differ-
ences must be the same. For our impossible differentials, however, the length of

Impossible Differential Cryptanalysis of CLEFIA 411

those parts is 8 bits, and it is not necessary for the plaintext differences and the
ciphertext differences to be the same, that is, they are truncated differences. If
the number of bits for which the difference is non-zero is small, the number of
round key bits related to the difference is also small. Because it is possible to
obtain round keys that span many rounds, the number of rounds that can be
broken can be increased. Also, because it is a truncated difference, the probabil-
ity of obtaining ciphertext that can be used in attack is high, and we were able
to increase the number of rounds that can be broken by reducing the number of
chosen plaintexts that are required. Other reasons for the successful attack are
the movement of the whitening key and the use of the differential table method
that is often used in differential attacks. Because the number of CLEFIA rounds
is 18 for a key length of 128 bits, 22 for a 192-bit key and 26 for a 256-bit key,
the impossible differential attacks presented in this paper do not affect the secu-
rity of CLEFIA. These attacks can, however, break more rounds of than other
CLEFIA attack methods.

There is currently no method for guaranteeing resistance to an impossible
differential attack and no method for designing a block cipher that is resistant
to an impossible differential attack. Accordingly, much time should be allocated
to evaluation of block cipher with respect to impossible differential attacks. Fur-
thermore, methods for guaranteeing resistance to an impossible differential at-
tack and methods for designing block ciphers that resist impossible differential
attacks are important topics for future research.

Acknowledgments. The authors would like to thank Takeshi Kawabata,
Hiroki Nakashima, Takahiko Syouji, and AkiraNozawa for their helpful comments.

References

1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A. J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

3. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

4. Shirai, T., Preneel, B.: On Feistel Ciphers Using Optimal Diffusion Mappings Across
Multiple Rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 1–15.
Springer, Heidelberg (2004)

5. Shirai, T., Shibutani, K.: On Feistel Structures Using a Diffusion Switching Mech-
anism. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,
Heidelberg (2006)

6. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Blockcipher
CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593,
pp. 181–195. Springer, Heidelberg (2007)

7. Sony Corporation. The 128-bit Blockcipher CLEFIA, Security and Performance
Evaluations, Revision 1.0, June 1 (2007),
http://www.sony.co.jp/Products/clefia/

http://www.sony.co.jp/Products/clefia/

MD4 is Not One-Way

Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

Gaetan.Leurent@ens.fr

Abstract. MD4 is a hash function introduced by Rivest in 1990. It is
still used in some contexts, and the most commonly used hash func-
tions (MD5, SHA-1, SHA-2) are based on the design principles of MD4.
MD4 has been extensively studied and very efficient collision attacks are
known, but it is still believed to be a one-way function.

In this paper we show a partial pseudo-preimage attack on the com-
pression function of MD4, using some ideas from previous cryptanalysis
of MD4. We can choose 64 bits of the output for the cost of 232 compres-
sion function computations (the remaining bits are randomly chosen by
the preimage algorithm).

This gives a preimage attack on the compression function of MD4
with complexity 296, and we extend it to an attack on the full MD4 with
complexity 2102. As far as we know this is the first preimage attack on a
member of the MD4 family.

Keywords: MD4, hash function, cryptanalysis, preimage, one-way.

1 Introduction

Hash functions are fundamental cryptographic primitives used in many con-
structions and protocols. A hash function takes a bitstring of arbitrary length
as input, and outputs a digest, a small bitstring of fixed length n.

F : {0, 1}∗ '→ {0, 1}n

When used in a cryptographic context, we expect a hash function to behave
somewhat like a random oracle. The digest is used as a kind of fingerprint: it
can be used to test whether two documents are equal, but should neither reveal
any other information about the input nor be malleable. More concretely, we ask
a cryptographic hash function to resist three major attacks:

Collision: Given F , find M1 �= M2 s.t. F (M1) = F (M2).
Second-preimage: Given F and M1, find M2 �= M1 s.t. F (M1) = F (M2).
Preimage: Given F and H , find M s.t. F (M) = H .

Due to the birthday paradox, we have a generic collision attack with complexity
2n/2, while brute force preimage or second-preimage attacks have complexity
2n: this defines the security requirements of a n-bit hash function. Collision

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 412–428, 2008.
c© International Association for Cryptologic Research 2008

MD4 is Not One-Way 413

resistance is the strongest notion, so most constructions use a collision resistant
hash function, and most cryptanalysis target collision attack. For a more formal
definition of these properties, and the relations between them, see [18,17].

Unfortunately, many currently used hash functions have been broken by colli-
sion attacks: MD4 [5,21,19] (the best attack has complexity 21), MD5 [23,10] (best
attack: 223), and SHA-1 [22,13] (best attack: 260). These functions are now consid-
ered unsafe but in practice very few constructions or protocols are really affected.

In this paper we consider preimage resistance, which is a weaker security
notion and is still believed to hold for these hash functions. In particular MD4
is broken by collision attacks since 1996 but it is still used in some applications
where speed is important and/or a one-way function is needed but collision
resistance is not important:
– to “encrypt” passwords in Windows NT and later (as the NTLM hash);
– for password derivation in the S/KEY one time password system [8];
– to compare file blocks in the incremental file transfer program rsync;
– for file identification and integrity in the eDonkey peer-to-peer network.

S/Key and rsync even use a truncated MD4 and rely on the partial one-wayness
of MD4.

Preimage attacks are rather rare in the world of hash function cryptanalysis;
the most notable example is the preimage attack against MD2 by Muller [15],
later improved by Knudsen and Mathiassen [11] which has a complexity of 297.
A preimage attack has much more impact than a collision attack: it can be
used to fool integrity checks, to forge signatures using only known messages, to
break “encrypted” password files,... Moreover, when the hash function follows the
Merkle-Damgård paradigm (this is the case for MD4) we can add any chosen
prefix: given a message M and a target hash value H , we can actually compute N
such that MD4(M ||N) = H . For instance, this can be used to create a malicious
software package with a given signature when trailing garbage is allowed (eg.
this is the case with zip, gzip, and bzip2 files).

1.1 Our Results
Our main result is a preimage attack against MD4 with complexity 2102. This
attack uses messages of 18 blocks or slightly more (more precisely 9151 bits,
about one kilobyte), and we can add any chosen prefix.

This is based on a partial pseudo-preimage attack on the compression function:
we can choose 64 bits of the output (the other bits being randomly chosen by
the preimage algorithm) and 32 bits of the input for the cost of 232 compression
function (brute force would require 264).

Our attack uses many ideas from previous cryptanalysis of MD4 [5,20,6,21].
We consider MD4 as a system of equation, we use some kind of differential path
and use the Boolean functions to absorb some differences, we fix many values of
the internal state using some particularities of the message expansion.

1.2 Related Work
Md4 has been introduced as a cryptographic hash function by Rivest [16], in
1990 and many cryptanalytic effort has been devoted to study its security. The

414 G. Leurent

design principles of MD4 are used in MD5 and the SHA family, which are the
most widely used hash function today. Any result about MD4 is interesting by
itself, and also gives some insight to the security level of the other members of
the MD4 family.

Shortly after the introduction of MD4, collision attacks were found on reduced
variants of MD4: den Boer and Bosselaers [4] found an attack against the last
two rounds, and Merkle had an unpublished attack against the first two rounds.
Another attack against the first two rounds was later found by Vaudenay [20].
The first collision attack against the full MD4 is due to Dobbertin [5] in 1996. More
recently, Wang et. al. found a very efficient collision attack on MD4 [21], which was
later improved by Sasaki et. al. [19] and only costs 2 compression functions. Due
to all these attacks MD4 is no longer used as a collision-resistant hash function.

The main result concerning the one-wayness of MD4 is due to Dobbertin [6]. He
showed that if the last round of MD4 is removed, preimages can be found in the
resulting hash function with a complexity of 232 compression function calls. This
work was studied and improved using SAT solvers by De et al. [2]. They managed
to invert up to 2 rounds and 7 steps of MD4. To the best of our knowledge, no
preimage attack has been found on the full MD4 with three rounds.

Recently, Yu et al. found a kind of second-preimage attack on MD4 [24].
However this kind of attack is not what we usually call a second-preimage attack
because it only works for a small subset of the message space. This attack has a
complexity of one compression function, but it works only with probability 2−56

and cannot be repeated when it fails. If we want to build an attack that works for
any message out of this, we will use a brute-force search when the attack fails: it
will have a workload of 1 with probability 2−56, and a workload of 1+ 2128 with
probability 1 − 2−56; the average workload is still extremely close to 2128. More
interestingly, we can use this with long messages: if the message is made of 263

blocks (there is not limitation to the size of the message in MD4, as opposed to
SHA-1), we will be able to find a second-preimage for at least one of the blocks
with a probability of 1 − exp(−263−56) ≈ 1 − 2−184. Thus, the cases where we
have to run a brute-force search become negligible, and the average workload is
just the time needed to test each block until a good one is found, so we expect
it to be 256.

Another related work due to Kelsey and Schneier [9] introduced a generic
second-preimage attack against iterated hash functions using long messages. This
is a nice result showing the limitations of the Merkle-Damgård paradigm, but an
attack on messages of 264 bits is not really practical. Our attack typically uses
messages of 20 blocks (about 1 kilobyte in total).

1.3 Description of MD4

MD4 is an iterated hash function following the Merkle-Damgård paradigm. The
message is padded and cut into blocks of k bits (with k = 512 for MD4), and
the digest is computed by iterating a compression function cF , starting with an
initial value IV .

MD4 is Not One-Way 415

cF : {0, 1}n+k '→ {0, 1}n

h0 = IV, hi+1 = cF (hi, Mi)
F (M0, M1, ...Mp−1) = hp

The padding of MD4 uses the MD strengthening: it is designed to be invertible,
and includes the size of the message. The message is first padded with a single
1 bit followed by a variable number of 0’s, so that the size of the message is
congruent to 448 modulo 512. This first step adds between 1 and 512 bits to the
message. Then the last 64 bits are filled with the size of the original message
modulo 264. Note that MD4 can hash any bitstring: it is not restricted to hash
bytes, and there is no limit to the size of the message.

We will use the following definitions for attacks on the compression function cF :

Pseudo-Preimage: Given cF and H, find IV, M s.t. cF (IV, M) = H .
Preimage: Given cF , IV and H , find M s.t. cF (IV, M) = H .

The compression function of MD4 is an unbalanced Feistel ladder with an inter-
nal state of four 32-bit registers. It is made of 48 steps, where each step updates
one of these registers. The 48 steps are divided into 3 rounds of 16 steps; each
round reads the 16 message words in a different order (this is a very simple
message expansion). To better describe our attack, we will assign the name Qi

to the value computed in the step i: we now have 48 internal state variables, and
each one is computed from the 4 preceding ones (we use Q−4 to Q−1 to denote
the IV):

Step update: Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mπ(i) � ki) ≪ si

Input: Q−4 || Q−1 || Q−2 || Q−3

Output: Q−4 � Q44 ||Q−1 � Q47 ||Q−2 � Q46 || Q−3 � Q45

First round: 0 ≤ i < 16 Φi = IF ki = K0 = 0
Second round: 16 ≤ i < 32 Φi = MAJ ki = K1 = 0x5a827999

Third round: 32 ≤ i < 48 Φi = XOR ki = K2 = 0x6ed9eba1

π(0...15): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
π(16...31): 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15
π(32...47): 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

We will use the fact that we can fix some values of the internal state instead
of only fixing values of the message words: since the step update function is
invertible, when Qi−1, Qi−2 and Qi−3 are known, we can compute any one of
Qi, Qi−4 or mi from the two others (see Algorithm 1 for explicit formulas).

we consider MD4 as a big system of equations over the variables Q−4 to Q47

and m0 to m15 (we consider only words, and never look at individual bits); we
have 48 step update equations, and 4 equations for the output value. We consider
the input chaining variables IV0, IV1, IV2, IV3 as free: this makes the attack on
the compression function easier (it’s a pseudo-preimage attack), but we will have
some work to do to turn it into a preimage attack on the full hash function. We

416 G. Leurent

Algorithm 1. Step functions
1: function MD4StepForward(i)
2: Qi ← (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mπ(i) � ki) ≪ si

3: end function
4: function MD4StepBackward(i)
5: Qi−4 ← (Qi ≫ si) � Φi(Qi−1, Qi−2, Qi−3) � mπ(i) � ki

6: end function
7: function MD4StepMessage(i)
8: mπ(i) ← (Qi ≫ si) � Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � ki

9: end function

use X to denote the desired value of a variable X , which is given as an input to
our attack. The system we are trying to solve can be written as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mπ(i) � ki) ≪ si for i ∈ {0...47}
H0 = Q−4 � Q44 = H0

H1 = Q−3 � Q45 = H1

H2 = Q−2 � Q46 = H2

H3 = Q−1 � Q47 = H3

To make the equations more readable, we will use a grey background to show
the variables whose value has already been chosen in a previous step of the
algorithm.

We will use x[k] to represent the (k + 1)-th bit of x, that is x[k] = (x ≫
k) mod 2 (note that we count bits and steps starting from 0). We also use �

and � to denote the 32-bit words whose bits are all zeroes and all ones (i.e.
� = 0x00000000 and � = 0xffffffff).

1.4 Road Map

First we will describe our attack against the compression function cMD4. Then
we will show how to extend it to an attack against the full MD4, with a better
complexity than the generic attack.

2 Pseudo-preimage on the Compression Function

The general idea of the attack comes from a simple observation: we know that
MD4 is very sensitive to differential attacks — there is a collision attack that
costs less than 2 calls to the compression function [19]. However, in a preimage
attack, we are looking for a single message and differential tools seem unsuitable
for this task. Our idea is to start with an initial message (IV, M) with very
specific properties, and the digest cMD4(IV, M) of this message. Now we will use
differential paths to create a family of related messages (IV (i), M (i)) so that the
computation of cMD4(IV (i), M (i)) differs from the computation of cMD4(IV, M)
in a controlled way. This will allow us to choose a particular (IV (i0), M (i0)) so

MD4 is Not One-Way 417

that some bits of cMD4(IV (i0), M (i0)) agree with a target value. Alternatively,
we could try to mount a second preimage attack using differential tools, as done
in [24], but this will probably only work for a small fraction of the message space,
because differential paths à la Wang impose many constraints on the message.

Following this idea, we look for a set of constraints on the initial message
and a way to derive the related messages. We managed to easily select a related
message that agrees with 32 bits of the target hash. We can compute 232 good
related messages for a cost of 232 compression function calls: our attack has an
amortized cost of 1. When we run it 232 times, we will test 32 more bits of
the target hash, and we expect to find a partial pseudo-preimage on 64 bits.
Similarly, to find a full pseudo-preimage we expect to repeat it 296 times.

2.1 The Initial Message

The key part is to choose a set of constraints that allow to place many differential
paths in MD4, in order to have as many related messages as possible. Instead of
looking at single bits, we will consider the 32-bit words of MD4, and try to have
32 paths at once. We will use some properties of the Boolean functions in MD4,
and some properties of the message expansion.

The Boolean functions used in the first and second round of MD4 have the
nice property to be able to absorb some difference. This key property was used
in early cryptanalysis of MD4 [20,6] and is the starting point of the construction
of differential paths [7] à la Wang. Notably, we have the following properties,
where � is a constant, and x is variable:

Absorb 1st input Absorb 2nd input Absorb 3rd input
IF(x, ,) = IF(, x,) = IF(, , x) =

MAJ(x, ,) = MAJ(, x,) = MAJ(, , x) =

This can be used to let one message word be free in the first round or in the
second round, as shown by Figure 1. If we fix some internal state variables, a
change of mi will only change Qi, Qi+4, ... Qi+4k and can be corrected by a
change in mi+4k. Additionally, we are free to change mi+4,mi+8,... mi+4(k−1)

without breaking any extra internal state.
To choose the step i0 where we introduce the difference, and i1 where we

cancel it, we will look at the message expansion. We want i0 and i1 to be quite
far away so as to skip a big part of the compression function and to maximize
the number of free message words in between, but we do not want to use the
same message word twice between i0 and i1. This leave us with 3 possibilities:

– (i0, i1) = (0, 16): m0 , m4 , m8 and m12 are free
– (i0, i1) = (15, 31): m15, m12, m13 and m14 are free
– (i0, i1) = (16, 32): m0 , m1 , m2 and m3 are free

Note that Vaudenay [20] and Dobbertin [6] used the same idea in their attacks,
with (i0, i1) = (15, 31). Here we choose (i0, i1) = (16, 32) because the free mes-
sage words are used in the very beginning of the first round. To fix the first

418 G. Leurent

1st round: m4 is free

Q2 =
Q3 =

Q4

Q5 =
Q6 =
Q7 =

Q8

Q9 =
Q10 =
Q11 =

IF(Q4, Q3, Q2) =
IF(Q5, Q4, Q3) =
IF(Q6, Q5, Q4) =
IF(Q7, Q6, Q5) =
IF(Q8, Q7, Q6) =
IF(Q9, Q8, Q7) =

. . .

2nd round: m20 is free
Q18 =
Q19 =

Q20

Q21 =
Q22 =
Q23 =

Q24

Q25 =
Q26 =
Q27 =

MAJ(Q20, Q19, Q18) =
MAJ(Q21, Q20, Q19) =
MAJ(Q22, Q21, Q20) =
MAJ(Q23, Q22, Q21) =
MAJ(Q24, Q23, Q22) =
MAJ(Q25, Q24, Q23) =

. . .

Fig. 1. Absorption of a difference. The step update function is: Qi = (Qi−4 �
Φi(Qi−1, Qi−2, Qi−3) � mπ(i) � ki) ≪ si.

round, we will correct a modification of the free message words using the IV,
and this correction will only involve the first 4 steps of the compression function.

We now have a very good differential path with m0 and m3: if we consider
the set of 232 pairs that keep Q32 constant, their effect on the final hash only
involves the first 4 steps and the last 4 steps of MD4. The other free variables
will be used to simplify the equations so as to make this path easier to use.
Schematically, the differential path looks like this:

m3 m3 m3m0 m0 m0

Q0 Q4 Q8 Q12 Q16 Q20 Q24 Q28 Q32 Q36 Q40 Q44

We can now choose what will be fixed by the initial message and what will
be free for the related messages. The message words m4 to m15 will be fixed by
the initial message, while m0 to m3 are part of the related message. The internal
state variables Q14, Q15, Q17, Q18, Q19, Q21, ...Q30 need to be equal and will be
part of the initial message. Q13 is in the initial message because it is fixed by
the step 17, and similarly Q31 is fixed by step 31. We will add Q12 in the initial
message to fix the internal state of the first round. See Figure 2 for a graphical
representation.

To select an initial message, we choose random values for �, Q12, Q13 and
m15; this allows us to compute Q31 and m4 to m14 in the second round, and
Q0 to Q11 in the first round. Thus we can build 2128 different initial messages.
Each initial message have 2128 related messages (by choosing the value of m0,
m1, m2, m3).

2.2 The Related Messages

When an initial message is fixed, we have to choose m0, m1, m2 and m3 in a way
that will give us some control on the hash value. We will first isolate the third

MD4 is Not One-Way 419

Q−4

Q−3

Q−2

Q−1

Q0m0

Q1m1

Q2m2

Q3m3

Q4m4

Q5m5

Q6m6

Q7m7

Q8m8

Q9m9

Q10m10

Q11m11

Q12m12

Q13m13

Q14 =m14

Q15 =m15

Q12

Q13

Q14 =
Q15 =

Q16m0

Q17 =m4

Q18 =m8

Q19 =m12

Q20m1

Q21 =m5

Q22 =m9

Q23 =m13

Q24m2

Q25 =m6

Q26 =m10

Q27 =m14

Q28m3

Q29 =m7

Q30 =m11

Q31m15

Q28

Q29 =
Q30 =

Q31

Q32m0

Q33m8

Q34m4

Q35m12

Q36m2

Q37m10

Q38m6

Q39m14

Q40m1

Q41m9

Q42m5

Q43m13

Q44m3

Q45m11

Q46m7

Q47m15

fixed by the initial message

modified by the related messages

Fig. 2. Initial message and related message

round from the second round, by choosing the value of Q32. Then the choice of
m2, m1 and m3 will give the final state Q44, ...Q47, and m0 will be chosen last:
we expect that one value of m0 will be consistent with the choice of Q32. Note
that since m0 is used in step 0, we can compute H1, H2 and H3 without knowing
m0. Thus, we can choose a good value of m2, m1 and m3 by looking only at the
last round and the first 4 steps of the first round, and compute m0 later in order
to correct the second round.

We now study the first steps and the last steps. Our goal is to find efficiently
a value of m2, m1, and m3 that solves some of the equations. The message words
m2 and m1 are used quite far for the last steps, so it will be hard to study how
they affect the final state Q44, ...Q47: we will only use m3 to control the hash,
while m2 and m1 will be used to simplify the equations.

First Steps. We assume that an initial message has been chosen. Let us first
study the initial steps of MD4:

Q0 = (Q−4 � IF(Q−1, Q−2, Q−3) � m0) ≪ 3 (1)
Q1 = (Q−3 � IF(Q0 , Q−1, Q−2) � m1) ≪ 7 (2)
Q2 = (Q−2 � IF(Q1 , Q0 , Q−1) � m2) ≪ 11 (3)
Q3 = (Q−1 � IF(Q2 , Q1 , Q0) � m3) ≪ 19 (4)

420 G. Leurent

Equation (4) shows that Q−1 is completely determined by m3. Additionally,
we will ask that Q1 = �: this simplify Equation (3) and make Q−2 completely
determined by m2, independently of Q−1:

Q2 = (Q−2 � Q0 � m2) ≪ 11 (3’)

Last Steps. Let us now study the final steps of MD4. We will assume that a
value has been chosen for Q32, m2, m1: we can now compute Q32 to Q43 in the
third round, and Q−2 by equation (3’). This gives us Q46 = H2 − Q−2.

Q44 = (Q40 � XOR(Q43, Q42, Q41) � m3 � K2) ≪ 3 (5)
Q45 = (Q41 � XOR(Q44, Q43, Q42) � m11 � K2) ≪ 9 (6)
Q46 = (Q42 � XOR(Q45, Q44, Q43) � m7 � K2) ≪ 11 (7)
Q47 = (Q43 � XOR(Q46, Q45, Q44) � m15 � K2) ≪ 15 (8)

Here we see that (7) gives the value Q44 ⊕ Q45. Moreover, we will ask that
Q41 � m11 � K2 = � so as to simplify (6). We let V be Q42 ⊕ Q43 ⊕ Q44 ⊕ Q45,
which is a known constant, and equation (6) becomes:

Q45 = XOR(Q44, Q43, Q42) ≪ 9
Q45 = (Q45 ⊕ V) ≪ 9 (6’)

This last equation is actually a system of linear equations over the bits of Q45;
it is easy to check whether it is satisfiable, and to compute the solutions (see
Appendix B for an optimization). From Q45, we compute Q44 by (6) and m3

by (5), and we know that this particular choice of m3 will give the right value
for Q46, and we will have H2 = H2.

Simplifications. We have introduced two extra conditions to simplify the
equations:

Q1 = � (C1)
Q41 � m11 � K2 = � . (C2)

(C1) : Q1 = � and (C2) : Q41 � m11 = �. (C1) can only be satisfied statistically,
by computing about 232 initial messages and keeping the good ones, but this
cost can be amortized over the many choices of Q32, m2, and m1. On the other
hand, (C2) can be satisfied by choosing an appropriate m1 when Q32 and m2

have been chosen:

Q40 = (Q36 � XOR(Q39, Q38, Q37) � m1 � K2) ≪ 3 (9)
Q41 = (Q37 � XOR(Q40, Q39, Q38) � m9 � K2) ≪ 9 (10)

The choice of Q41 gives Q40 by (10), which gives m1 by (9). Conversely, with
this choice of m1 (C2) will be satisfied. Every initial message can now be used

MD4 is Not One-Way 421

Algorithm 2. Partial Pseudo Preimage
Input: H0, H2, IV 2

Output: M, IV st. H0 = H0, H2 = H2 and IV2 = IV 2

Running Time: 232

1: loop � Expect 1 iteration
2: Choose an initial message with Q1 = � � 296 possibilities
3: for all Q32 do � 232 iterations
4: Compute Q33, Q34, Q35.
5: Choose m2 so that Q−2 = IV 2. � Q−2 is IV2

6: Compute Q36, Q37, Q38, Q39.
7: Choose m1 so that Q41 = −m11 − K2.
8: Compute Q40, Q41, Q42, Q43.
9: Choose m3 so that Q46 = H2 � Q−2. � Q46 � Q−2 is H2

10: Compute Q44, Q45, Q46, Q47, and Q−1, Q−2, Q−3.
11: Choose m0 so that Q−4 = H0 � Q44. � Q44 � Q−4 is H0

12: if m0 matches Q32 then � OK with prob. 2−32

13: return
14: end if
15: end for
16: end loop

with 264 choices of Q32 and m2, so we still have some extra degree of freedom:
we can use the freedom of m2 to choose the value of Q−2. In the end we can
choose both Q−2 and Q46 (hence H2) for an amortized cost of one compression
function.

Partial Pseudo-Preimage. When we put this all together, we can compute m3

so that H2 = H2 for an amortized cost of 1 compression function, and we can also
choose IV2. The full algorithm, given in Algorithm 2, is a partial pseudo-preimage
attack, which is 232 times more efficient than exhaustive search. It should be
repeated about 264 times to find a full pseudo-preimage, and we have enough
different initial messages for that. Note that Algorithm 2 finds pseudo-preimages
on (H0, H2), but if we change a little bit the end of the algorithm we can have
pseudo-preimages on (H1, H2) or (H2, H3) just as easily. See Appendix A for an
example of a partial pseudo-preimage.

3 Preimage of the Full MD4

To extend this attack to the full MD4, we will use an idea similar to the un-
balanced meet-in-the-middle attack of Lai and Massey [12]. We compute many
pseudo-preimages of H , we hash many random messages, and we use the birthday
paradox to meet in the middle. If we have a pseudo-preimage attack with com-
plexity 2s, the generic attack uses the pseudo-preimage attack 2(n−s)/2 times
starting from the target digest H (we assume there is no problem with the
padding), and hashes 2(n+s)/2 random blocks, starting from the standard IV.

422 G. Leurent

Thanks to the birthday paradox, we expect one match. This gives a preimage
attack with complexity 21+(n+s)/2. In our case this would be 2113 (we have
s = 96), but we will show how to use some specific properties of our pseudo-
preimage attack to build a preimage attack with complexity 2102.

3.1 The Padding

First, we need to handle the padding in the last block. When looking for a
padded message of b blocks, we will use a message length of 512b− 65 bits. The
last block is correctly padded if and only if m15 = 0, m14 = 512b − 65, and
m

[0]
13 = 1. The condition on m15 is easy to satisfy since we can choose m15 in the

initial message, and on the other hand m14 depends only on �:

Q27 = (Q23 � MAJ(Q26, Q25, Q24) � m14 � k27) ≪ 13
� = (�� �� m14 � K1) ≪ 13

m14 = � ≫ 13 � �� �� K1

Thus, we just run an exhaustive search over �, and we expect to find one value
that gives the correct m14. Similarly, we have m13 = � ≫ 13�����K1 = m14,
so the condition m

[0]
13 = 1 will be satisfied.

Note that we can not set a size that is a multiple of 8 this way since m14 = m13

is used both as the padding and as the length. If we really need to use a message
made of bytes and not of bits, we can build a second-preimage attack by reusing
the last block of the original message (and keeping the same padding).

When searching for the last block, we only have 232 initial messages available.
We will not chose the value of IV2, but keep m2 as a degree of freedom. Each initial
message can be used to compute 264 related messages with H2 = H2. There is
probability of 1 − 1/e ≈ 0.63 that at least one of these messages will give the full
correct hash, so we might have to repeat this a few times. The extra freedom will
come from the message length: if we change the number of blocks b, this gives us
a new m14 and a new �, and we can try again to find a padding block.

We start with b = 34 or b = 18 (see next section), and increase b until we
find a padding block. Note that some values of b will give no suitable value of �,
but this is not a problem. Additionally, if one wants to choose a prefix for the
preimage attack, one just has to start with a bigger b.

3.2 Layered Hash Tree

To improve over the basic meet-in-the-middle attack, we will use an extra prop-
erty of our pseudo-preimage attack on the compression function: we need a
workload of 2s (in our case, s = 96) to find a pseudo-preimage of a single target
value, but if have a set of k target values (with some extra conditions on the set),
we can find a pseudo-preimage of one of them in time 2s/k. This is because our
pseudo-preimage attack is based on the repetition of a partial pseudo-preimage
attack, where the remaining bits are random. Thus, we can find 2k pseudo-
preimages in time 2s+1, and if we can also make sure that the pseudo-preimage

MD4 is Not One-Way 423

set satisfy the extra conditions, we can iterate this operation. We will start with
a set H0 of size 1, and after n − s iterations we have a set Hn−s of size 2n−s,
which we use for the unbalanced meet-in-the-middle. The resulting structure is
shown in figure 3. In the end, we will find a preimage in time 2(n − s)2s + 2s,
using a memory of size O(2n−s).

A similar idea based on multi-target pseudo-preimage was used by Mendel
and Rijmen to attack HAS-V [14]. In that attack, they could run a multi-target
pseudo-preimage attack on a set of size 2s (this is not possible in our case), and
this result in an attack with time complexity 2s+1 and a memory requirement
of O(2s).

Our attack against MD4 can be used as a multi-target pseudo-preimage attack
following Algorithm 3, if the target set H satisfies the following extra properties:

– {H2 : H ∈ H} is a singleton: a single m3 can be used for the whole set;
– |H| ≤ 264: the loop of line 11 is negligible.

Since our algorithm allows us to choose the value of IV 2 in the pseudo-preimages,
we can build the pseudo-preimage set so that the extra conditions are still
satisfied.

H32 H0H1H2H3

232
296

11
296

2
297

4
297

8. . .
297

H
pad

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

IV

Fig. 3. Preimage attack on the full MD4 with a layered hash tree

The tree costs 32 × 297 = 2102 to build, and gives 232 pseudo-preimages of
H ; this is significantly better than the generic attack which find 2t pseudo-
preimages in time 296+t. In the forward step, we compute the hashes of 296

random messages, and we expect to find a match thanks to the birthday paradox.
The full preimage search has time complexity 2102, and require a memory of
about 233 message blocks to store the tree (we do not have to store the 296

hashes in the forward step).

Tweaking the Tree. We can tweak the parameters of the tree so as to slightly
improve the attack. First, instead of doubling the size of the set at each iteration,
we can triple it (the length of the preimage starts from 23, and the cost of the
attack is about 2101.92) or quadruple it (the length of the preimage starts from
18, and the cost of the attack is about 2102).

424 G. Leurent

Algorithm 3. Multi-Target Pseudo Preimage
Input: IV 2, H2 and a target set H st. ∀X ∈ H, X2 = H2.
Output: preimage set I st. ∀(IV,M) ∈ I, F (IV,M) ∈ H and IV2 = IV 2.
Running Time: 297

1: while |I| < 2|H| do � Expect 265 iterations
2: Choose an initial message with Q1 = � � 296 possibilities
3: for all Q32 do � 232 iterations
4: Compute Q33, Q34, Q35.
5: Choose m2 so that Q−2 = IV 2. � Q−2 is IV2

6: Compute Q36, Q37, Q38, Q39.
7: Choose m1 so that Q41 = −m11 − K2.
8: Compute Q40, Q41, Q42, Q43.
9: Choose m3 so that Q46 = H2 � Q−2. � Q46 � Q−2 is H2

10: Compute Q44, Q45, Q46, Q47, and Q−1, Q−2, Q−3.
11: for all H ∈ H st. H3 = H3, H4 = H4 do � Expect 2−64|H| values
12: Choose m0 so that Q−4 = H0 � Q44. � Q44 � Q−4 is H0

13: if m0 matches Q32 then � OK with prob. 2−32

14: Add the solution to I
15: end if
16: end for
17: end for
18: end while

We can also replace the layered tree by another structure. We start with a set
of 1 target value, and every time we find a pseudo-preimage of one element of
the set, we add it to the set. The first pseudo-preimage will cost 296, the second
one 296/2, then 296/3 and so on... the set will have size 232 after an expected
workload of:

296
232∑
k=1

1
k

≤ 296(ln 232 + 1) ≤ 2100.54.

In this case, we do not control the length of the preimage, so we will use an
expendable message [3,9] in the forward step.

4 Conclusion

Our attack on MD4 is still theoretical due to the high complexity, but it shows
that MD4 is even weaker than we thought. Our attack relies on the absorption
property of some of the Boolean functions, and exploits the message expansion.
It is the first preimage attack on the full MD4 and it is much less efficient than
Dobbertin’s attack on a two round version [6].

We did not find any direct application of the attack on the compression func-
tion, but constructions relying on the partial one-wayness of cMD4 should be
carefully analysed: our attack might be practical depending on the exact as-
sumptions made on cMD4.

MD4 is Not One-Way 425

This attack reduces the security margin of other members of the MD4, but
it is not a direct threat. The features introduced in later members of the family
make the attack unsuitable:

– The rounds function of MD5, SHA-1, and SHA-2 have a much better diffusion
that MD4 due to the summation of Qi−1 to compute Qi (we can not absorb
a difference);

– The number of rounds is more important;
– The message expansion in the SHA family is much harder to control.

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, and by the
French government through the Saphir RNRT project.

References

1. Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

2. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion Attacks on Secure Hash
Functions Using SAT Solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT
2007. LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

3. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (January 1999)

4. den Boer, B., Bosselaers, A.: An Attack on the Last Two Rounds of MD4. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 194–203. Springer, Hei-
delberg (1992)

5. Dobbertin, H.: Cryptanalysis of MD4. J. Cryptology 11(4), 253–271 (1998)
6. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.

(ed.) FSE 1998. LNCS, vol. 1372, pp. 284–292. Springer, Heidelberg (1998)
7. Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in

MD4. In: ECRYPT Hash Worshop – Cryptology ePrint Archive, Report 2007/206
(2007), http://eprint.iacr.org/

8. Haller, N.: The S/KEY One-Time Password System. RFC 1760 (Informational)
(February 1995)

9. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: [1], pp. 474–490.

10. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105 (2006), http://eprint.iacr.org/

11. Knudsen, L.R., Mathiassen, J.E.: Preimage and Collision Attacks on MD2. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255–267.
Springer, Heidelberg (2005)

12. Lai, X., Massey, J.L.: Hash Function Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

13. Mendel, F., Rechberger, C., Rijmen, V.: Update on SHA-1. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622. Springer, Heidelberg (2007),
http://rump2007.cr.yp.to/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://rump2007.cr.yp.to/

426 G. Leurent

14. Mendel, F., Rijmen, V.: Weaknesses in the HAS-V Compression Function. In: Nam,
K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 335–345. Springer, Hei-
delberg (2007)

15. Muller, F.: The MD2 Hash Function Is Not One-Way. In: Lee, P.J. (ed.) ASI-
ACRYPT 2004. LNCS, vol. 3329, pp. 214–229. Springer, Heidelberg (2004)

16. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

17. Rogaway, P.: Formalizing Human Ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

18. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

19. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: New Message Difference for MD4. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 329–348. Springer, Heidelberg
(2007)

20. Vaudenay, S.: On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995)

21. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: [1], pp. 1–18

22. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: [1], pp. 19–35
24. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.

In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 1–12. Springer, Heidelberg (2005)

A A Partial Pseudo-preimage of MD4

Here is an example of a partial pseudo-preimage of MD4. We ran our algorithm
with H1 = 0, H2 = 0, and IV 2 = 0. It would cost 264 hash evaluations to find
this message by exhaustive search, but our algorithm finds it in about 20 minutes
on a desktop computer.

IV
72 fa 31 aa a0 6e 27 95 00 00 00 00 13 c9 dc ce

Message block
8e 34 9e ad 6c 36 1e 1c 21 b7 0e bd 14 1e 98 d9
79 67 c3 19 d7 3c 6a 19 d7 3c 6a 19 d7 3c 6a 19
14 61 85 33 14 61 85 33 14 61 85 33 14 61 85 33
58 13 27 05 58 13 27 05 58 13 27 05 17 46 57 27

MD4
34 5e 59 ae c5 6a 3b 8e 00 00 00 00 00 00 00 00

The internal state variables for this message are given by:

MD4 is Not One-Way 427

Q−4=0xaa31fa72 Q−3=0xcedcc913 Q−2=0x00000000 Q−1=0x95276ea0
Q0 =0x1545809d Q1 =0xffffffff Q2 =0xa1bdf692 Q3 =0x1a9925ec
Q4 =0xa8473548 Q5 =0x92125811 Q6 =0x9b4aaa1d Q7 =0x00a73054
Q8 =0x6ef7f38b Q9 =0xa3789cab Q10 =0x3de0878e Q11 =0x2f9cbd24
Q12 =0x0ffc6391 Q13 =0x1e2a88f4 Q14 =0x1e83b396 Q15 =0x1e83b396
Q16 =0xb5062a71 Q17 =0x1e83b396 Q18 =0x1e83b396 Q19 =0x1e83b396
Q20 =0x51547062 Q21 =0x1e83b396 Q22 =0x1e83b396 Q23 =0x1e83b396
Q24 =0x3b4aa594 Q25 =0x1e83b396 Q26 =0x1e83b396 Q27 =0x1e83b396
Q28 =0x6f4786bc Q29 =0x1e83b396 Q30 =0x1e83b396 Q31 =0x24db97dc
Q32 =0x84d9f63d Q33 =0xc9a584fe Q34 =0x475e7886 Q35 =0x508d517f
Q36 =0x79ca3034 Q37 =0x3bd701b4 Q38 =0x980fef11 Q39 =0x9784cf50
Q40 =0xc8f3a1b1 Q41 =0x5da0b34b Q42 =0x5fa99919 Q43 =0x2d166b40
Q44 =0x042763c2 Q45 =0x312336ed Q46 =0x00000000 Q47 =0xf913fc25

Note that MD4 uses a little-endian convention to convert a sequence of bytes to
a sequence of words, and that the order of the words in the IV and in the hash
is not the same as in the internal state.

B Solving the Equation x = (x ⊕ V) ≪ 9

In Section 2.2 we find that Q45 has to be the solution of the following equation:

x = (x ⊕ V) ≪ 9. (1)

where V is a constant that depends on the choices made on the previous steps
of the algorithm. We have to solve this equation 296 times for each pseudo-
preimage, so we want to solve it very efficiently (it should cost less that one
evaluation of cMD4).

We can write this equation as a linear system over the bits of x and V :

(1) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x[0] = x[23] ⊕ V [23]

x[1] = x[24] ⊕ V [24]

...

x[31] = x[22] ⊕ V [22]

And we can express each bit of x as a function of x[0] and V :

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x[9] = x[0] ⊕ V [0]

x[18] = x[0] ⊕ V [0] ⊕ V [9]

...

x[23] = x[0] ⊕ V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14]

x[0] = x[0] ⊕ V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14] ⊕ V [23]

428 G. Leurent

The system is consistent if and only if the last equation holds, i.e.
⊕31

i=0 V [i] = 0.
In this case we have a first solution x0 given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x
[0]
0 = 0

x
[9]
0 = V [0]

x
[18]
0 = V [0] ⊕ V [9]

...

x
[23]
0 = V [0] ⊕ V [9] ⊕ V [18] ⊕ V [27] · · · ⊕ V [14]

and a second solution x1 = x0 ⊕ �. Note that the expression of the bits of
x0 is linear in the bits of V : x0 = ϕ(V). We will split V into 4 bytes, V =
V3||V2||V1||V0, and we precompute 4 tables (each one contains 256 words):

T0[u] = ϕ(0||0||0||u) T1[u] = ϕ(0||0||u||0) T2[u] = ϕ(0||u||0||0) T3[u] = ϕ(u||0||0||0)

Then we have x0 = ϕ(V) = T0[V0] ⊕ T1[V1] ⊕ T2[V2] ⊕ T3[V3]. We can solve the
equation, with only:

– the computation of the parity of the hamming weight of V ;
– 4 table look-ups when there is a solution.

Improved Indifferentiability Security Analysis of

chopMD Hash Function

Donghoon Chang1,� and Mridul Nandi2

1 Center for Information Security Technologies (CIST)
Korea University, Seoul, Korea
dhchang@cist.korea.ac.kr

2 CINVESTAV-IPN, Mexico City
mridul.nandi@gmail.com

Abstract. The classical design principle Merkle-Damg̊ard [13,6] is scru-
tinized by many ways such as Joux’s multicollision attack, Kelsey-Schneier
second preimage attack etc. In TCC’04, Maurer et al. introduced a strong
security notion called as “indifferentiability” for a hash function based
on a compression function. The classical design principle is also insecure
against this strong security notion whereas chopMD hash is secure with
the security bound roughly σ2/2s where s is the number of chopped bits
and σ is the total number of message blocks queried by a distinguisher.
In case of n = 2s where n is the output size of a compression function,
the value σ to get a significant bound is 2s/2 which is the birthday com-
plexity, where the hash output size is s-bit. In this paper, we present an
improved security bound for chopMD. The improved bound shown in this
paper is (3(n − s) + 1)q/2s + q/2n−s−1 + σ2/2n+1 where q is the total
number of queries. In case of n = 2s, chopMD is indifferentiably-secure
if q = O(2s/(3s + 1)) and σ = O(2n/2) which are beyond the birth-
day complexity. We also present a design principle for an n-bit hash func-
tion based on a compression function f : {0, 1}2n+b → {0, 1}n and show
that the indifferentiability security bound for this hash function is roughly
(3n+1)σ/2n. So, the new design of hash function is second-preimage and
r-multicollision secure as long as the query complexity (the number of
message blocks queried) of an attacker is less than 2n/(3n+1) or 2n(r−1)/r

respectively.

1 Introduction

In TCC 2004, Maurer et al. [11] introduced the notion of indifferentiability which
is more stronger notion than classical indistinguishability security notion. They
have shown that if a cryptosystem P(G) based on a random oracle G is secure
then the security of P(HF) based on Merkle-Damg̊ard (MD) [13,6] hash function

� The first author was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)
(IITA-2008-(C1090-0801-0025)).

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 429–443, 2008.
c© International Association for Cryptologic Research 2008

430 D. Chang and M. Nandi

H with a random oracle [1,15] as an underlying compression function, is secure
provided the hash function is indifferentiable. Informally, HF is indifferentiable
from random oracle if there is no efficient attacker (or distinguisher) which can
distinguish F and the hash function based on it from a random oracle R and
an efficient simulator of F . Here R is a random oracle with (finite) domain
and range same as that of H . In case of Indistinguishability, the distinguisher
only needs to tell apart H from G without any help of oracle F . Thus, the
notion of indifferentiability is stronger and it is important when we consider
attacks on a cryptosystem based on some ideal primitive where the attacker has
some access on the computation of the primitive. In the case of hash function
HF , the attacker can also compute F as it is a random oracle which can be
computed publicly. On the other hand, if the attacker does not have that access
(to the random oracle) then merely indistinguishability will suffice to preserve
the security of the cryptosystem.

In Crypto 2005, Coron et al. [5] proved that the classical MD iteration is not
indifferentiable with random oracle when the underlying compression function is
random oracle. They have also stated indifferentiability for chopMD, prefix-free
MD (or pfMD), NMAC construction, HMAC construction, and provided a bound
for these as O(σ2/2n) where σ is the total number of message blocks queried by
a distinguisher, the hash output size is n, and the number of chopped bits is
n. Thus, according to their claim, chopMD is secure in this strong notion as
long as the total number of message blocks queried is σ = O(2n/2). In Asiacrypt
2006, Chang et al. [4] also have provided a concrete security analysis of the many
indifferentiable hash constructions. They have provided a security analysis for
double length hash function based on prefix free padding. In Asiacrypt 2006,
Bellare and Ristenpart [2] proposed an indifferentiably-secure domain extension
called by EMD which also preserves pseudorandomness and collision resistance.
Very recently in Asiacrypt 2007, Hirose et al. [7] introduced an indifferentiably-
secure domain extension called by MDP which also preserves pseudorandomness,
collision resistance and unforgeability. All of these constructions have bounds
of the form of birthday collision probability. Recently in Crypto 2007, Maurer
and Tessaro [12] firstly presented a construction which has security beyond the
birthday barrier. Table 1 summarizes the security bound of above constructions.

Our Results. In this paper, we prove a better bound of chopMD which is
beyond the birthday bound. We prove that chopMD is secure if σ = O(2n/2)
and the number of queries Q = O(min(2n−s−1, 2s

3(n−s)+1)), where n is the output
length of the compression function and s is the chopped bit length and σ is the
total number of message blocks queried. When s = n/2 our bound shows that
chopMD is secure as long as the number of queries is less that 2s/(3s+1) which
is better than the original proposal (where security is guaranteed only when the
number of queries is less than 2s/2). As a result we propose a wide pipe version of
MD-hash function which is second-preimage and r-multicollision secure as long
as the query complexity (the number of message blocks queried) of an attacker
is less than 2n/(3n + 1) or 2n(r−1)/r respectively. This hash function is more

Improved Indifferentiability Security Analysis of chopMD Hash Function 431

Table 1. Comparison of Indifferentiable Security when the hash output size is s and
the chopped bit size is s and σ is the total number of message blocks queried by a
distinguisher. Note that q is less than σ.

Domain Extensions The value σ to get a significant bound

chopMD [5]
prefix-free MD [4,5]

NMAC construction [5] 2s/2 : the Birthday Bound
HMAC construction [5]

EMD [2]
MDP [7]

prefix-free chopMD [12] 2s : Beyond the Birthday Bound

chopMD [This paper] 2s/(3s + 1) : Beyond the Birthday Bound

efficient to the Lucks’ [10] wide pipe hash design as our hash function does not
need the post-processor.

Organization. In section 2, we first state some important definitions and results
related to our paper. We state an important result known as strong interpolation
theorem in this section. Then in Section 3, we provide a concrete and improved
security analysis for chopMD. As an application of the improved security analysis
of chopMD, we propose a secure chopDBL hash design in section 4. Finally, we
conclude.

2 Some Notations and Results

Counting. Let F := Func(n+b, n), the set of all functions f : {0, 1}n×{0, 1}b →
{0, 1}n. It is easy to see that |F| = 2n2n+b

. Now, for any distinct ai’s, the number
of functions f such that f(a1) = z1, · · · , f(aq) = zq is exactly 2n(2n+b−q) because,
the outputs of q elements are fixed and the rest (2n+b − q) many outputs can be
chosen in (2n)(2

n+b−q) many ways. Thus, Pru[u(a1) = z1, · · · , u(aq) = zq] = 1
2nq

where u is the uniform random function on F (an uniform random variable
taking values on F).

Inequalities. P(m, r) = m(m − 1) · · · (m − r + 1) where 0 ≤ r ≤ m. By our
convention, P(m, 0) = 1. We state two inequalities which will be used in this
paper.

[ineq-1] For any 0 ≤ ai ≤ 1,
∏k

i=1(1 − ai) ≥ 1 −
∑k

i=1 ai. One can prove
it by induction on k.

[ineq-2] P(m − x, r) ≥ mr × (1 − (x+r)2

2m) where m ≥ x + r. This is followed
from ineq-1, by choosing ai = x+i

m , 0 ≤ i ≤ r − 1.

MD-hash. We fix an initial value IV ∈ {0, 1}n throughout the paper. Given a
function f : {0, 1}n+b → {0, 1}n we define

MDf (m1, · · · , m�) = f(f(· · · f(f(IV, m1), m2), · · ·), m�)

432 D. Chang and M. Nandi

where mi ∈ {0, 1}b. MDf is popularly known as Merkle-Damg̊ard hash function
with underlying compression function f . We define MDf (λ) = IV where λ is the
empty string. Given p = (m1, · · · , m�) ∈ ({0, 1}b)� with � ≥ 1 we define

– last(p) = m�.

– If � ≥ 2 we write cut(p) = (m1, · · · , m�−1), otherwise cut(m1) = λ.

– Note that p = (cut(p), last(p)) and MDf (p) = f(MDf (cut(p)), last(p)).

chopMD. For 0 ≤ s ≤ n we define chops(x) = xR where x = xL ‖ xR and |xL| =
s. In this paper, we fix 0 < s < n and define chopMDf (M) = chops(MDf (M)).

Padding. Note that both MD and chopMD have domain ({0, 1}b)+. We write
||M || = k if M ∈ ({0, 1}b)k and k is called as the number of blocks of M . We
say M ′ is a prefix of M if M ′, M ∈ ({0, 1}b)+ and M = M ′ ‖ x for some x ∈
({0, 1}b)∗. We say any injective function pad : {0, 1}∗ → ({0, 1}b)+ as a padding
rule. A padding rule pad is called a prefix free if M1 �= M2 ⇒ pad(M1) is not
a prefix of pad(M2). For any such prefix-free padding rule pad, pfMD is defined
as follows. pfMDf

pad(M) = MDf (pad(M)). We also write choppfMDf
pad(M) =

chops(MDf (pad(M))).

View. In this paper we consider a distinguisher A which has access of two
oracles O1 and O2. We assume that A is deterministic and computationally
unbounded1. We assume that all queries are distinct and it makes at most
Qi queries to the oracle Oi. Suppose A makes Mi as O1-query and obtains
responses hi, 1 ≤ i ≤ q1. Similarly, the tuple of all query-responses of O2

is ((x1, m1, z1), · · · , (xq2 , mq2 , zq2)). The combined tuple v = ((M1, h1), · · · ,
(Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2)) is called as the view of A. We also
denote vO1,O2 to specify that the view is obtained after interacting with O1 and
O2. We also denote i-th query-response pair by (Xi, Yi), where Xi = (xj , mj) or
Xi = Mj for a j. So we can define the first i query-response pairs of the tuple v
by vi = ((X1, Y1), · · · , (Xi, Yi)).

Advantage. Let Fi, Gi be probabilistic oracle algorithms. We define advantage
of the distinguisher A at distinguishing (F1, F2) from (G1, G2) as

AdvA((F1, F2), (G1, G2)) = |Pr[AF1,F2 = 1] − Pr[AG1,G2 = 1]|.

Theorem 1. (Strong Interpolation Theorem) If there is a set of good views
Vgood such that

1. for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) × Pr[vG1,G2 = v] and
2. Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′

then for any A we have AdvA((F1, F2), (G1, G2)) ≤ ε + ε′.

1 Computationally unbounded deterministic algorithms are as powerful as randomized
algorithms.

Improved Indifferentiability Security Analysis of chopMD Hash Function 433

Proof. Intuitively, a view of AG1,G2 is good with probability at least 1−ε′. More-
over, A obtains a good view v with almost same probability for both pairs of
oracles up to a factor of (1−ε). Then intuitively the distinguishing advantage of
A should be bounded by ε+ ε′. More precisely, we prove it as in below where V1

denotes the set of all views v such that A returns 1 after obtaining the view2.
V0 denotes the set of all views v such that A doesn’t returns 1 after obtaining
the view. And let α(v) = Pr[A(vi−1) = Xi for all 0 ≤ i ≤ q1 + q2]. Our proof is
directly from the idea explained in [3].

Pr[AG1,G2 = 1] − Pr[AF1,F2 = 1]
=
∑

v∈V1∩Vgood
α(v)Pr[vG1,G2 = v] +

∑
v∈V1\Vgood

α(v)Pr[vG1,G2 = v]
−
∑

v∈V1∩Vgood
α(v)Pr[vF1,F2 = v] −

∑
v∈V1\Vgood

α(v)Pr[vF1,F2 = v]
≤ ε′ +

∑
v∈V1∩Vgood

α(v)Pr[vG1,G2 = v] −
∑

v∈V1∩Vgood
α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V1∩Vgood
α(v)(Pr[vG1,G2 = v] − Pr[vF1,F2 = v])

≤ ε′ + ε
∑

v∈V1∩Vgood
α(v)Pr[vG1,G2 = v]

≤ ε′ + ε
∑

v∈V1∩Vgood
Pr[vG1,G2 = v]

≤ ε′ + ε.

Pr[AF1,F2 = 1] − Pr[AG1,G2 = 1] = Pr[AG1,G2 �= 1] − Pr[AF1,F2 �= 1]
=
∑

v∈V0∩Vgood
α(v)Pr[vG1,G2 = v] +

∑
v∈V0\Vgood

α(v)Pr[vG1,G2 = v]
−
∑

v∈V0∩Vgood
α(v)Pr[vF1,F2 = v] −

∑
v∈V0\Vgood

α(v)Pr[vF1,F2 = v]
≤ ε′ +

∑
v∈V0∩Vgood

α(v)Pr[vG1,G2 = v] −
∑

v∈V0∩Vgood
α(v)Pr[vF1,F2 = v]

≤ ε′ +
∑

v∈V0∩Vgood
α(v)(Pr[vG1,G2 = v] − Pr[vF1,F2 = v])

≤ ε′ + ε
∑

v∈V0∩Vgood
α(v)Pr[vG1,G2 = v]

≤ ε′ + ε
∑

v∈V0∩Vgood
Pr[vG1,G2 = v]

≤ ε′ + ε.

Indifferentiability

We give a brief introduction of indifferentiability and state significance of it. The
following definition is a slightly modified version of the original definition [11,5],
where the condition that the maximum number of message blocks queried by a
distinguisher is σ is not described.

Definition 1. [11] A Turing machine C with oracle access to an ideal primitive
F is said to be (tA, tS , q, σ, ε)-indifferentiable from an ideal primitive G if there
exists a simulator S such that for any distinguisher A it holds that :

AdvA((C,F), (G, S)) = |Pr[AC,F = 1] − Pr[AG,S = 1]| < ε

The simulator S is an interactive algorithm which has oracle access to G and
runs in time at most tS. The distinguisher A runs in time at most tA and makes
at most q queries. The total message blocks queried by A is at most σ.
2 Since A is deterministic algorithm the output of A is completely determined by the

view.

434 D. Chang and M. Nandi

The following Theorem [11] due to Maurer et al. is related to this paper. We
explain the theorem for random oracle model of hash functions. Suppose a hash
function (in some design of iteration) H based on a random oracle (or an ideal
cipher) F is indifferentiable from a random oracle G. Then a cryptosystem P
based on the random oracle G is at least as secure as the cryptosystem P based
on the hash function H in the random oracle model (or an ideal cipher model)
F . Here, F is the underlying compression function of H (or block-cipher in case
of block cipher based hash function). The original theorem as stated below is a
more general statement.

Theorem 2. [11] Let P be a cryptosystem with oracle access to an ideal prim-
itive G. Let H be an algorithm such that HF is indifferentiable from G. Then
cryptosystem P is at least as secure in the F model with algorithm H as in the
G model.

In this paper we consider G and F as the arbitrary input length random oracle R
and the fixed input length random oracle f , respectively. And C is the chopMD
hash function. If chopMDf is (tA, tS , q, σ, ε)-indifferentiable from the random or-
acle R, we also say that the indifferentiability insecurity bound of chopMDf is ε.

3 Improved Indifferentiability Analysis of chopMD

Coron et al. [5] stated MD hash function is not indifferentiability-secure whereas
prefix free MD construction or chopMD construction in random oracle (or in
ideal cipher model) is secure against indifferentiability attack. In [5], they had
proved the following statement for a distinguisher which makes queries whose
total number of message blocks is σ. And u is the random oracle from the set of
all n + b bits to the set of n bits.

1. The indifferentiability insecurity for pfMDu
pad is upper bounded by O(σ2/2n)

where pad is any prefix-free padding.

2. The indifferentiability insecurity for chopMDu
pad is upper bounded by O

(σ2/2s).

Very recently, Maurer and Tessaro considered the combination of prefix free MD
and chopMD [12], i.e., choppfMDu

pad. They proved that the indifferentiability
insecurity for this combination is bounded by O(σ2/2n). This is an improved
bound compare to the bound for chopMD. Since choppfMD outputs n − s bits,
the security bound is beyond the birthday barrier. A prefix-padding may cost
extra overhead in terms of efficiency and designs. In this section, we show that
the the prefix-padding is not necessary to obtain the similar kind of bound. In
other words, we provide an improved bound of chopMD and the improved bound
stated in this paper is (3(n− s) +1)q/2s + q/2n−s−1 +σ2/2n+1 where q denotes
the the maximum number of queries for two oracles and σ is the total number
of message blocks queried by a distinguisher. If we choose s = n/2 then to have

Improved Indifferentiability Security Analysis of chopMD Hash Function 435

a significant advantage, the total number of blocks of all queries should be at
least 2s/(3s + 1) which is far beyond the birthday attack complexity.

The organization of section 3 is as follows. In subsection 3.1, we define a set
of good views Vr

good and give a lower bound of Pr[vF1,F2 = v] for all v ∈ Vr
good,

where F1 is chopMDu and F2 is u. In subsection 3.2, we give an upper bound
of Pr[vG1,G2 = v] for all v ∈ Vr

good, where G1 is the random oracle R and G2 is
the simulator SR described in subsection 3.2. In subsection 3.3, we compute ε
and ε′ such that for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) × Pr[vG1,G2 = v] and
Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′. Finally, based on Theorem 1 (strong interpolation
theorem), we conclude in Theorem 3 that the indifferentiability insecurity bound
of chopMDu is ε∗ = ε + ε′.

3.1 Interpolation Probability of chopMD and Its Underlying
Random Oracle

We first provide a lower bound on the number of functions when some inputs-
outputs of f and MDf are known. More precisely, we want to compute the
number of functions f such that

MDf (Mj) = hj and f(ai) = zi, 1 ≤ j ≤ q1, 1 ≤ i ≤ q2

where ai ∈ {0, 1}n+b are distinct, Mj ∈ ({0, 1}b)+ are distinct. Intuitively, we say
the above set of relations is irreducible (see definition 2 in below) if MDO2(Mi) is
not determined from O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 and MDO2(Mj) =
hj for all j �= i. Thus, q1 many outputs of MDf add q1 more restrictions on the
outputs of f besides q2 many input-output relations of f . Hence the number
of functions f should be close to 2n(2n+b−q1−q2). In lemma 1 we will show that
the number of functions is at least (1 − ν) × 2n(2n+b−q1−q2) for some positive ν
(stated in the lemma 1) close to zero. The above statement is also equivalent to

Pru[MDu(Mj) = hj , u(ai) = zi ∀1 ≤ j ≤ q1, 1 ≤ i ≤ q2] ≥
1

2n(q1+q2)
× (1 − ν).

Definition 2. The set of relations

MDO2(M1) = h1, · · · , MDO2(Mq1) = hq1 ,
O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 · · · · · · (rel-A)

is said to be irreducible if M1, · · · , Mq1 ∈ ({0, 1}b)+ are distinct, (x1, m1),
· · · , (xq2 , mq2) ∈ {0, 1}n+b are distinct, h1, · · · , hq1 ∈ {0, 1}n are distinct from
xi’s and IV and finally the value of MDO2(Mi) is not determined from the re-
lations O2(x1, m1) = z1, · · · , O2(xq2 , mq2) = zq2 . A tuple of elements v =
((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2)) is irreducible if the
above rel-A is irreducible3.
3 From the definition it is clear that irreducibility of the relation does not depend on

the choice of the functions or oracles O1 and O2. This only depends on Mj ’s, hj ’s,
(xi, mi)’s and zi’s, 1 ≤ j ≤ q1 and 1 ≤ i ≤ q2.

436 D. Chang and M. Nandi

Remark 1. Intuitively, it says that there is no redundant relation in rel-A. All
the inputs of O1 and O2 are distinct. O1(Mi) = MDO2(Mi) is also not deter-
mined from the relations O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 . Moreover,
as hi’s are distinct from xi’s and IV, MDO2(Mi) is also not determined from
O2(x1, m1) = z1, · · · ,O2(xq2 , mq2) = zq2 and MDO2(Mj) = hj for all j �= i.

Lemma 1. Let a tuple v = ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 ,
mq2 , zq2)) be irreducible then the number of functions f such that

1. MDf (M1) = h1, · · · , MDf (Mq1) = hq1 and
2. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 .

is at least |F|
2n(q1+q2) × (1 − σ2

2n+1) where σ is the total number of message blocks
queried. In other words,

Pru[MDu(M1)=h1, · · · , MDu(Mq1)=hq1 , u(x1, m1) = z1, · · · , u(xq2 , mq2) = zq2]

≥ 1
2n(q1+q2)

× (1 − σ2

2n+1
).

Proof. See the appendix.

Now we compute the joint probability for chopMDu and u. The next lemma is
analogue version of Lemma 1 for chopMD hash function instead of MD hash
function. Here, we allow collisions among outputs of chopMD. Intuitively, if
chopMDu behaves as an uniform random function then Pru[chopMDu(Mj) =
yj , u(xi, mi) = zi, 1 ≤ j ≤ q1, 1 ≤ i ≤ q2] ideally should be 1

2nq2+(n−s)q1
. Since

chopMDu(Mj) = yj has some influence on the intermediate computations we
would rather expect a probability close to the above probability. In lemma 2 we
show that the for a given choices of inputs and outputs satisfying some conditions
(stated in the lemma 2) the above probability is at least 1−∆

2nq2+(n−s)q1
for some

positive ∆ (defined in the lemma 2) which is close to zero for reasonable choices
of parameters.

Lemma 2. The number of functions f such that

1. chopMDf (M1
1) = · · · = chopMDf (M1

r1
) = y1, · · · , chopMDf (M t

1) = · · · =
chopMDf (M t

rt
) = yt and

2. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 .

is at least |F| × 1−∆
2nq2+(n−s)q1

where

∆ =
r(q1 + q2)

2s
+

σ2

2n+1
, r = maxiri,

∑
i

ri = q1.

Here, σ is the total number of message blocks queried. M i
j ’s are distinct elements

from ({0, 1}b)+ such that the value of MDf (Mi) is not determined from the
relations f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 . The values of (xi, mi)’s are
distinct elements from {0, 1}n × {0, 1}b. In terms of probability, we have

Improved Indifferentiability Security Analysis of chopMD Hash Function 437

Pru[chopMDu(M i
j) = yi, u(x1, m1) = z1, · · · , u(xq2 , mq2) = zq2 , ∀i, j] ≥

1 − ∆

2nq2+(n−s)q1
.

Proof. See the appendix.

Definition 3. A view v = ((M1, h1), · · · , (Mq1 , hq1),(x1, m1, z1), · · · , (xq2 , mq2 ,

zq2)) is said to be r-good if (xi, mi)’s are distinct, Mj’s are distinct, MDO2(Mj) is
not determined from the relations O2(xi, mi) = zi and there is no r-multicollision
in chop(zi)’s and hi’s. The set of all r-good views is denoted by Vr

good.

By using lemma 2 we have similar result for chopMDu and u.

Proposition 1. For any r-good view v = ((M1, h1), · · · , (Mq1 , hq1),(x1, m1, z1),
· · · , (xq2 , mq2 , zq2)), the probability that v is a view when A is interacting with
chopMDu and u, is at least 1−∆

2nq2+(n−s)q1
where ∆ = r(q1+q2)

2s + σ2

2n+1 and σ is the
total number of message blocks queried.

3.2 Interpolation Probability of a Simulator and Random Oracle

Now we define a simulator S which almost behaves as a random oracle. Moreover,
for an (n−s)-bit outputting random oracle R, responses of MDS will match with
R. By the notation x ∈R A we mean that x is chosen uniformly from A and it
is independent with all previously defined random variables.

Definition of Simulator

Initialization :

1. A partial function e1 : {0, 1}n+b → {0, 1}n initialized as empty,
2. a partial function e∗1 = MDe1 : ({0, 1}b)∗ → {0, 1}n initialized as e∗1(λ) = IV.
3. a set C = {IV}.

On query SR(x, m) :

001 if (e1(x, m) = x′)
return x′;

002 else if (∃ M ′, e∗1(M
′) = x)

y = R(M ′, m);
choose w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪ {x}};
define e1(x, m) = z := w ‖ y;
define C = C ∪ {x, z};
define e∗1(M

′, m) = z;
return z;

438 D. Chang and M. Nandi

003 else
y ∈R {0, 1}n−s;
choose w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪ {x}};
define e1(x, m) = z := w ‖ y;
define C = C ∪ {x, z};
return z;

In 002, we have w ∈R {0, 1}s \ {w′ : w′ ‖ y ∈ C ∪ {x}}. This is not possible if
and only if the above set becomes empty. Note that after ith query the size of C
is less than or equal to (2i + 1). Thus we assume that q2, the maximum number
of queries to the simulator (and hence for oracle O2) satisfies the condition
2q2 + 2 < 2s equivalently q2 ≤ 2s−1 − 2.

Some Important Observations

Distinct Query. Suppose AO1,O2 is an oracle algorithm where O1 = R and
O2 = SR. Note that SR responses identically in identical queries and so does R.
Same property is true for chopMDf and f . Hence we assume that all queries to
O1 and O2 are distinct.

chopMDS= R. All responses of S are distinct and distinct from IV and the first
n-bits of all previous S-queries. Whenever MDS(M) is computable from the all
previous query-responses, we have chopMDS(M)= R(M). Thus, chopMDO2(M)
= O1(M) whenever chopMDO2(M) is computable from O2 query-responses only.
Obviously this is true when O1 = chopMDf and O2 = f . Thus, we assume that
A do not make any O1-query which is computable from the previous query-
responses of O2. More particularly, we can remove all those O1-queries from the
final view which are computable from the query-responses of O2.

Distribution. Because of the above two assumptions, the last (n − s) bits of
outputs of SR(·) and outputs of R(·) are uniformly and independently distributed
over the set {0, 1}n−s. By our assumption, whenever line002 is executed, A does
not make (M ′, m)-query to R. Thus, the output distribution of R(·) and S(·) are
independent.

Now, a typical view of AO1,O2 is a tuple

v = ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1), · · · , (xq2 , mq2 , zq2))

where O1(Mj) = hj and O2(xi, mi) = zi. Moreover, (xi, mi)’s are distinct, Mj ’s
are distinct and MDO2(Mj) is not determined from the relations O2(xi, mi) = zi.
Now we compute the joint interpolation probabilities for S and R. More precisely,
p := Pr[R(Mj) = hj ∀j and S(xi, mi) = zi ∀i]. Since outputs of S and outputs of
R are independently distributed, it is sufficient to compute the joint probabilities
of S and R separately. Obviously, Pr[R(Mj) = hj ∀j] = 1

2(n−s)q1
. Now on ith

query of S, the response of (xi, mi) is zi with probability at most 1
2n−s × 1

2s−�i

where
�i = |{k : 1 ≤ k ≤ q2, chop(xk) = chop(zi)}|

+ |{k : 1 ≤ k ≤ q2, chop(zk) = chop(zi)}| + 1.

Improved Indifferentiability Security Analysis of chopMD Hash Function 439

�i is the upper bound of the size of the set {w′ : w′ ‖ y ∈ C ∪ {x}} appeared in
the ith query of S. Multiplying all these probabilities we obtain Pr[S(xi, mi) =
zi ∀i] ≤ 1

2nq2 × 1
1−
∑

i �i/2s .
It is easy to see that for any r-good view

∑
i �i ≤ (2r + 1)q2. Thus, we have

proved the following result.

Proposition 2. For any r-good view v= ((M1, h1), · · · , (Mq1 , hq1), (x1, m1, z1),
· · · , (xq2 , mq2 , zq2)), the probability that v is a view when A is interacting with
the simulator S and a random oracle R, is at most 1

2nq2+(n−s)q1
× 1

1−(2r+1)q2/2s .

3.3 Indifferentiability Security Bound of chopMD

Now we compute ε and ε′ such that for all v ∈ Vgood, Pr[vF1,F2 = v] ≥ (1 − ε) ×
Pr[vG1,G2 = v] and Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′, where F1 is chopMDu, F2 is u, G1

is the random oracle R and G2 is the the simulator SR.

The Value of ε. By proposition 1 and 2, for all v ∈ Vgood, we have a lower
bound of Pr[vF1,F2 = v] and an upper bound of Pr[vG1,G2 = v]. So, we can choose
ε= (3r+1)q2+rq1

2s + σ2

2n+1 . When r = n − s, ε= (3(n−s)+1)q2+(n−s)q1
2s + σ2

2n+1 .

The Value of ε′. Now we compute ε′ such that Pr[vG1,G2 ∈ Vgood] ≥ 1 − ε′,
where G1 is the random oracle R and G2 is the simulator SR. vG1,G2 ∈ Vgood

means that the view vG1,G2 is r-good. Therefore, we have to prove that the upper
bound of the probability that there is a r-multicollision among q uniformly and
independently chosen (n − s)-bits is ε′. Let’s compute this ε′ as follows. Let us
denote the µ(n−s, r, q) for the probability that there is a r-multicollision among
q uniformly and independently chosen (n − s)-bits. Now it is easy to see that

µ(n − s, r, q) ≤ (q
r)

2(n−s)(r−1) . Now we choose r = n − s and hence µ(n − s, r, q) ≤
(q/2n−s−1)r ≤ q/2n−s−1 if q ≤ 2n−s−1. Since chop(S(·)) and R(·) uniformly
and independently distributed over {0, 1}n−s, a (n − s)-good view is obtained
by AS,R with probability at least 1 − q/2n−s−1, where q = q1 + q2. Therefore,
we can choose ε′= q/2n−s−1 when r = n − s.

Now, by using proposition 1 and 2 and strong interpolation theorem we obtain
our following main theorem of the section. Here, ε∗ = ε + ε′.

Theorem 3. The chopMD construction is (tA, tS , q, σ, ε∗)-indifferentiable from
a random oracle, in the random oracle model for the compression function, for
any tA, with tS = � · O(q2) and ε∗= (3(n−s)+1)q2+(n−s)q1

2s + q
2n−s−1 + σ2

2n+1 =O(nq
2s +

q
2n−s + σ2

2n), where q = q1 + q2.

4 chopDBL Hash Functions and Its Security Analysis

A r-multicollision for a hash function H is a r-set {X1, · · · , Xr} such that
H(X1) = · · · = H(Xr). In [8] it is shown that the r-multicollision can be found in
the classical MD hash function in roughly 2n/2 complexity. For a random oracle

440 D. Chang and M. Nandi

it needs [14] roughly 2n(r−1)/r complexity. Moreover, Kelsey-Schneier [9] found a
second preimage attack which needs roughly 2n/2 queries for classical MD hash
function. But for a random oracle to have a second preimage attack we need at
least 2n queries. Thus MD hash function is not good in terms of multicollision
and second-preimage attack. Lucks designed a wide pipe hash which is secure
against these attacks.

We first define Lucks wide pipe design. In his design let F : {0, 1}w+b →
{0, 1}w and g : {0, 1}w → {0, 1}n be two independently distributed random ora-
cles. The wipe pipe hash [10] is defined as g(MDF (M)) for any padded message
M . In [10], it was shown that

– the second preimage attack for the wide pipe hash needs min{2w/2, 2n} com-
plexity.

– the k-multicollision for the wide pipe hash needs min{2w/2, 2n} complexity.

Here we show that the random oracle assumption of g is redundant. More pre-
cisely, we obtain almost similar bound when g is a simply chop function. Thus
we define a chopDBL hash function as

chopDBLF (m1, · · · , m�) = chopn(MDF (m1, · · · , m�)).

One can compute F : {0, 1}2n+b → {0, 1}2n based on two independent random
oracles f1, f2 : {0, 1}2n+b → {0, 1}n as F (X) = f1(X) ‖ f2(X). As shown in
the last section, we have an improved security analysis for chopMD. By using
Theorem 3 we know that chopnMDF is 2n/(3n + 1)-indifferentiable secure.

Theorem 4. The chopDBL construction is (tA, tS , q, σ, ε)-indifferentiable from
a random oracle, in the random oracle model for the compression function, for
any tA, with tS = � · O(q2) and ε = O(nq

2n + q
2n + σ2

22n).

The above theorem says that to have an indifferentiability attack we need at least
2n/(3n + 1) query complexity (the number of message blocks queried). Thus, if
we can have second preimage attack of chopDBL with q query complexity then
q ≥ 2n/(3n + 1). Otherwise we can distinguish chopDBL from a random oracle
with less queries than 2n/(3n+1). A similar argument shows that r-multicollision
attack needs at least minimum of 2n(r−1)/r and 2n/(3n+1) queries. Thus in the
random oracle model our new design of hash function is almost optimally secure
(with respect to second preimage and multicollision).

5 Conclusion

In this paper, we present an improved security analysis for chopMD. This im-
proved security analysis helps us how to get security beyond the birthday barrier.
More precisely, we design an n-bit wide pipe hash function which has security
level close to 2n and hence we have beyond birthday barrier. The new design is
much simpler and efficient. It would be interesting to see whether it preserves
other properties more particularly, second preimage security.

Improved Indifferentiability Security Analysis of chopMD Hash Function 441

Acknowledgement

Thank Anonymous referees for giving us valuable comments.

References

1. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Design-
ing Efficient Protocols. In: 1st Conference on Computing and Communications
Security, pp. 62–73. ACM Press, New York (1993)

2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bernstein, D.J.: A short proof of the unpredictability of cipher block chaining
(2005), http://cr.yp.to/antiforgery/easycbc-20050109.pdf

4. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable Security Analysis of
Popular Hash Functions with Prefix-Free Padding. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)

5. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

6. Damgard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

7. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

8. Joux, A.: Multicollisions in iterated hash functions. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

9. Kelsey, J., Schneier, B.: Second pre images on n-bit hash functions for much less
than 2n work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

10. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

11. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

12. Maurer, U., Tessaro, S.: Domain Extension of Public Random Functions: Beyond
the Birthday Barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

13. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

14. Nandi, M., Stinson, D.R.: Multicollision Attacks on Some Generalized Sequential
Hash Functions. Information Theory 53(2), 759–767 (2007)

15. Shannon, C.: Communication theory of secrecy systems. Bell Systems Technical
Journal 28(4), 656–715 (1949)

Appendix

Proof of Lemma 1. Let D be the set of all elements from ({0, 1}b)+ whose
MDf values are determined from the relations f(x1, m1) = z1, · · · , f(xq2 , mq2)

http://cr.yp.to/antiforgery/easycbc-20050109.pdf

442 D. Chang and M. Nandi

= zq2 . Since v is irreducible, Mi �∈ D for all 1 ≤ i ≤ q1. Let P denotes the set of
all nonempty prefixes of Mi’s. More precisely,

P = {M ∈ ({0, 1}b)+ : M is a prefix of Mi for some 1 ≤ i ≤ q1}.

We enumerate the set P \ (D ∪ {M1, · · · , Mq1}) := {N1, · · · , Nσ′}. Note that,
|P | ≤

∑
i ||Mi||. Now, we have

σ = q2 +
∑

i

||Mi|| ≥ q2 + |P | ≥ q2 + σ′ + q1 := σ′′,

where σ is the total number of message blocks queried. Now we choose σ′ dis-
tinct elements z′1, · · · , z′σ′ ∈ {0, 1}n which are distinct from xi’s and IV. These
values will be assigned as intermediate outputs of f during the computation of
MDf (Mi)’s. We can choose such z′i’s in at least P(2n − q2 − 1, σ′) ways. Now
given any such choices of z′i’s we count the number of functions f such that

1. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 ,
2. MDf (M1) = h1, · · · , MDf (Mq1) = hq1 and
3. MDf (N1) = z′1, · · · , MDf (Nσ′) = z′σ′ .

Claim: relation 1,2,3 ⇔ relation 1 and f(a1) = h1, · · · f(aq1) = hq1 , f(a′
1) =

z′1, · · · , f(a′
σ′) = z′σ′ , where (xi, mi)’s, ai’s and a′

i’s are all distinct. Moreover, the
values of ai’s and a′

is are completely determined from the tuples v=((x1, m1, z1),
· · · , (xq2 , mq2 , zq2), (M1, h1), · · · , (Mq1 , hq1)) and (z′1, · · · , z′σ′). More precisely,
ai = (ci, last(Mi)) where

ci = z′j if cut(Mi) = Nj

= IV if cut(Mi) = λ

= hj if cut(Mi) = Mj

= zj if MDf (cut(Mi)) = zj is determined from the relation 1

Similarly, a′
i = (c′i, last(Ni)) where

c′i = z′j if cut(Ni) = Nj

= IV if cut(Ni) = λ

= hj if cut(Ni) = Mj

= zj if MDf (cut(Ni)) = zj is determined from the relation 1

From the above discussion it is clear that the relations 1,2 and 3 equivalently
correspond to the σ many distinct input-outputs of f . Thus the number of
functions f satisfying 1,2 and 3 is exactly 2n(2n+b−σ′′) where σ′′ = q1 + q2 + σ′.
By multiplying the number of choices of z′is with 2n(2n+b−σ′′), we obtain the
number of functions satisfying 1 and 2 is at least

2n(2n+b−σ′′)×P(2n−q2−1, σ′) ≥
|F|

2n(q1+q2)
×(1−

(σ′ + q2 + 1)2

2n+1
) ≥

|F|

2n(q1+q2)
×(1−

σ2

2n+1
).

Improved Indifferentiability Security Analysis of chopMD Hash Function 443

This follows from ineq-2 (stated in the beginning of the section). This proves
the first part. The second part is trivial from the first part since u has uniform
distribution on F and hence we need to divide the above quantity by |F|.
Proof of Lemma 2. We denote �i as the number of pairs (xk, mk) such that
chop(xk) = yi. More precisely, �i = |{k : 1 ≤ k ≤ q2, chop(xk) = yi}|. Since yi’s
are distinct, �1 + · · ·+ �t ≤ q2. Now we choose wi

j ∈ {0, 1}s, 1 ≤ j ≤ ri, 1 ≤ i ≤ t
such that

hi
j = (wi

j ‖ yi)’s are distinct and also distinct from xi’s and IV. (A)

The number ways we can choose wi
j ’s satisfying the above condition (A) is at

least

I1 := (2s − �1 − 1)(2s − �1 − 2) · · · (2s − �1 − r1) · · · (2s − �t − 1) · · · (2s − �t − rt).

We can choose w1
1 in 2s − �1 −1 ways as there are �1 many xk’s with chop(xk) =

y1 and chop(IV) can be equal to y1. After choosing w1
1 we can choose w1

2 in
(2s − �1 − 2) ways and so on. Now, after choosing all w1

1 , · · · , w1
�1

we can choose
w2

1 in 2s − �2 − 1 ways since y2 �= y1 and so on. Thus we have I1 many wi
j ’s with

the condition (A). A straight forward simplification shows that I1 ≥ 2sq1(1 −
r(q1 + q2)/2s) (we use the relations

∑
i �i ≤ q2, ri ≤ r and

∑
i ri = q1). Now

for any fixed such choice of wi
j ’s, the values hi

j’s are distinct from xi’s and IV.
Thus, the tuple

v = ((x1, m1, z1), · · · , (xq2 , mq2 , zq2), (M1
1 , h1

1), · · · , (M1
r1

, h1
r1

), · · · ,
(M t

1, h
t
1), · · · , (M t

rt
, ht

rt
))

is irreducible. Hence the number of functions f ∈ Func(n + b, n) such that

1. f(x1, m1) = z1, · · · , f(xq2 , mq2) = zq2 and

2. MDf (M1
1) = h1

1, · · · , MDf (M1
r1

) = h1
r1

, · · · , MDf (M t
1) = ht

1, · · · , MDf (M t
rt

)
= ht

rt

is at least |F|
2n(q1+q2) ×(1− σ2

2n+1) (by using Lemma 1). So, the number of functions
satisfying the relation in this lemma is at least

|F|
2n(q1+q2)

× (1 − σ2

2n+1
) × 2sq1(1 − r(q1 + q2)

2s
) ≥ |F| × 1 − ∆

2nq2+(n−s)q1
,

where ∆ = r(q1+q2)
2s + σ2

2n+1 . The second part is followed from the first part.

New Techniques for Cryptanalysis of Hash

Functions
and

Improved Attacks on Snefru�

Eli Biham

Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel
biham@cs.technion.ac.il

http://www.cs.technion.ac.il/∼biham/

Abstract. In 1989–1990, two new hash functions were presented, Snefru
and MD4. Snefru was soon broken by the newly introduced differential
cryptanalysis, while MD4 remained unbroken for several more years. As
a result, newer functions based on MD4, e.g., MD5 and SHA-1, became
the de-facto and international standards. Following recent techniques of
differential cryptanalysis for hash function, today we know that MD4 is
even weaker than Snefru. In this paper we apply recent differential crypt-
analysis techniques to Snefru, and devise new techniques that improve
the attacks on Snefru further, including using generic attacks with dif-
ferential cryptanalysis, and using virtual messages with second preimage
attacks for finding preimages. Our results reduce the memory require-
ments of prior attacks to a negligible memory, and present a preimage
of 2-pass Snefru. Finally, some observations on the padding schemes of
Snefru and MD4 are discussed.

1 Introduction

Snefru [7] and MD4 [13] are two hash functions designed in 1989–1990. Soon
after, an attack on Snefru based on the newly introduced differential cryptanal-
ysis was published [2,1]. As a result, MD4 became the de-facto standard. Later,
MD5 [14] and SHA-1 [8], which are improved functions of the MD4 family, re-
placed MD4 as the official and de-facto standards. Following the recent attacks
of Wang [15] we know that collisions of MD4 can be found by hand, with com-
plexity between 22 and 26, so that MD4 is even weaker than Snefru. Snefru
has several variants, varying in the number of passes and the hash sizes. The
supported hash sizes are 128 and 256 bits. The number of passes in the orig-
inal 2-pass variant of Snefru is two passes, while a more secure 4-pass version
is also available. After the prior attacks were published, an 8-pass version was
introduced as well. This 8-pass version is still considered secure.
� This work was supported in part by the Israel MOD Research and Technology Unit.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 444–461, 2008.
c© International Association for Cryptologic Research 2008

New Techniques for Cryptanalysis of Hash Functions 445

The most basic and standard attacks on hash functions are the birthday at-
tacks. Their standard implementation requires a large memory (whose complex-
ity is typically the same as the time complexity). Memoryless generic attacks, in
which only a negligible amount of memory is required, can also be performed with
the same time complexity. The most well known of those is the Floyd [4, Page 7]
two-pointer cycle detection algorithm, for which there is a variant that finds a
collision. Floyd algorithm is also used in other cryptographic contexts, e.g., the
Pollard Rho factoring algorithm [11]. The algorithms of [12,10] are more efficient
and parallelized versions. Another interesting algorithm (which is between three
and five times faster than Floyd) was designed by Nivasch [9]. This algorithm uses
a single pointer and a small stack, and saves the overhead of advancing two point-
ers, and applying the iterated function three times at each step.

Soon after the introduction of Snefru, Biham and Shamir applied their newly
introduced techniques of differential cryptanalysis [2,1] to Snefru, and presented
efficient second preimage and collision attacks on 2-pass Snefru, as well as many
instances of collisions and second preimages. Their attack could also find second
preimages and collisions of 3-pass and 4-pass Snefru, but the higher time complex-
ities and memory requirements prevented them from implementing these attacks.

In this paper we present two main techniques that extend these attacks on
Snefru: one that combines differential cryptanalysis with generic collision search
techniques, in order to get the best of both worlds, i.e., the complexity of differ-
ential cryptanalysis, with the memory requirements of the generic memoryless
collisions search techniques. Using this technique, the first collision of 3-pass
Snefru was found. The other contribution presents a method that allows to use
a second preimage attack for finding preimages of the compression function of
Snefru, using specially crafted virtual messages, which are not preimages of the
function, but on which the second preimage attack can be applied, and find
a preimage of the function. Many such preimages of the compression function
of 2-pass Snefru were found using this technique. The same attack can also be
used for 3-pass and 4-pass Snefru, with higher complexities. We also discuss the
importance of the particular padding scheme of the hash function, and how it
affects the ability to find preimages of the full hash function. Finally, a very long
preimage of 2-pass Snefru is presented.

The paper is organized as follows. Section 2 describes Snefru. Prior attacks
on Snefru are described in Section 3. Section 4 describes generic memoryless
collision search algorithms. In Section 5 memoryless collision attacks based on the
combination of differential cryptanalysis with generic attacks are described, and
Section 6 describes the preimage attacks on Snefru. Finally, Section 7 summarizes
the paper.

2 Description of Snefru

Snefru [7] is an iterative hash function that follows the Merkle-Damg̊ard con-
struction [5,6,3]. It was designed to be a cryptographic hash function which
hashes messages of arbitrary length into 128-bit values (a 256-bit variant based

446 E. Biham

IV C C C C C C C

Length0

Output

Message

Fig. 1. The Mode of Operation of Snefru

on the same design was also introduced). Snefru uses a padding scheme that
always adds an additional padding block with the length of the message (unlike
the more compact padding scheme of MD4 [13], which adds another block only if
necessary). Messages are divided into 384-bit blocks, M1, . . . , Mn−1, where the
last block is padded by ‘0’s. An additional block Mn containing only the message
length (in bits) is appended. Each block is then mixed with the chaining value
(initially using IV = 0) by a compression function C. The compression function
C takes a 512-bit input composed of the chaining value and the current block,
and calculates a new chaining value. More formally, hi = C(hi−1‖Mi) for any
1 ≤ i ≤ n, where ‘‖’ is the concatenation operator of bit vectors, Mi is block
number i, and h0 = 0. The final hash is hn. This mode of operation is outlined
in Figure 1.

The compression function is based on an invertible 512-bit to 512-bit permu-
tation (which can be viewed as a keyless block cipher). The permutation mixes
the data in two passes in the standard two-pass version of Snefru, and in four
passes in the more secure four-pass Snefru. Each pass is composed of 64 mixing
rounds. In round i, the least significant byte of word i mod 16 is used as an input
to an 8x32-bit S box, whose 32-bit output is XORed into the two neighboring
data words (all word indices are taken mod 16). After every set of 16 rounds
(to which we call a quarter), a rotation of each of the words is performed, in
order to ensure that each of the 64 bytes is used as an input to an S box once
every pass (64 rounds). The output of the compression function is the XOR of
the input chaining value with the last words of the output of the permutation.
The details of the compression function are described in Figure 2. A complete
description on Snefru, including the S boxes, can be found in [7].

3 Prior Attacks

Prior attacks on Snefru are discussed in [2,1]. These attacks include collision
attacks as well as second preimage attacks. Some of the prior attacks even work
if the attacker does not know the details of the S boxes. In this section we
describe the main ideas and basic techniques of the attacks, concentrating on
the variants with 128-bit hash values.

The second preimage attack is as follows: choose a random block-sized message
and prepend the given 128-bit input chaining value to form a 512-bit input to the
permutation of the compression function. We create a second message from the

New Techniques for Cryptanalysis of Hash Functions 447

function C (int32 input[16]) returns int32 output[4]

{
int32 block[16];

int32 SBoxEntry;

int i, index, byteInWord;

int shiftTable[4] = {16, 8, 16, 24};

block = input;

for index = 0 to NO OF PASSES-1 do { (pass index)
for byteInWord = 0 to 3 do { (quarter index*4+byteInWord)
for i = 0 to 15 do { (round index*64+byteInWord*16+i)

SBoxEntry = SBOX[2*index+((i/2) mod 2)][block[i] mod 256];

block[(i + 1) mod 16] ⊕= SBoxEntry;

block[(i - 1) mod 16] ⊕= SBoxEntry;

}
for i = 0 to 15 do

block[i] = block[i] ≫ shiftTable[byteInWord];

}
}

for i = 0 to 3 do

output[i] = input[i] ⊕ block[15-i];

return(output);

}

Fig. 2. The Compression Function of Snefru

first one by modifying two or more bytes in words 5–11, which are used as inputs
to the S boxes at rounds 53–59 (i.e., those bytes that do not affect the computation
before the fourth quarter). We hash both messages by the compression function
and compare the outputs of the two executions. A fraction of 2−40 of these pairs of
messages are hashed to the same value. Therefore, by hashing about 241 messages
we can find a second preimage. As described later in this section, the number can
be greatly reduced by using more structured messages.

The characteristic used in this attack is outlined in Figure 3. In the figure
each column represents a word of data and each row represents a quarter (16
rounds), where each round is marked by a thin line along the edges. The input
appears at the top of the figure, and the calculation is performed downwards.
The gray area in the middle represents arbitrary non-zero differences, while the
white areas represent zero differences. The two thick black lines at the top-
left and the bottom-right corners point to the words which are used in the
calculation of the hash value by the compression function. Since both of them
occur in the white part of the block, such two messages hash to the same value.
In this characteristic, no difference is propagated till round 53 (fourth quarter),

448 E. Biham

Fig. 3. Graphic Description of the Characteristic

in which the difference affects the input of the S box for the first time. The
output of the S box then affects the two neighboring words, and so repeatedly
in the next rounds till round 58. With some luck, which comes with probability
2−8, the output of the S box of round 58 cancels the difference of the least
significant byte in the next word, leading to a zero difference in the input to
the S box in round 59, and then to zero differences in the inputs to the S boxes
of the following rounds till the next quarter. The difference propagates again in
round 68–74 (fifth quarter), and with some luck, the difference in the S box of
round 75 is zero again. Similarly, if we are lucky three more times (in rounds 91,
107, and 123), then the difference of the last four words of the permutation is
zero, which after XORed with the input chaining value, is leading to a collision
of the output. We call this pillar of lucks a wall (as all lucks stand on top of each
other), and the slow propagation of the differences at the left hand side a stairs
shape. The total probability of all the five “lucks” in the wall is 2−8·5 = 2−40.
As the first two “lucks” can be assured deterministically by a simple selection
of the changes, the actual probability is 2−24. Thus, a second preimage attack
using this characteristic and all these techniques has complexity 2 · 224 = 225.

These ideas lead to very efficient collision attacks, by using structures of mes-
sages. We randomly choose about 212.5 messages in which all the inputs in the
white area are the same in all messages, while the messages differ in (up to seven)
graybytes. For each message, we apply the needed (deterministic) modifications to
fix the difference of the “lucky” S boxes of quarters 4 and 5. We then hash all these

New Techniques for Cryptanalysis of Hash Functions 449

Fig. 4. A Characteristic with Modification at an Intermediate Round

messages. We get about (212.5)2

2 = 224 pairs of messages which are then subjected
to the second preimage attack. With high probability such a structure contains a
right pair, i.e., a pair whose two messages hash to the same value. Such a pair can
be easily found by sorting the 212.5 hashed values. The memory complexity of this
attack is the same as the time complexity, due to the need to keep all the com-
puted values, for performing the tests for collisions. This attack can also be used
when Snefru is considered as a black box, which hides the choice of the S boxes.

An important observation is that whenever the S boxes are known to the at-
tacker, the modification of the bytes may be performed at an intermediate round
rather than in the message itself. In this case we choose a message and partially
hash it, in order to get the value of the data block at some intermediate round.
Figure 4 describes such a characteristic, which modifies the data at the interme-
diate round denoted by the dashed line. The attack modifies the gray bytes at
the marked location, rather than in the message itself. Then, the input of the
permutation is calculated by performing the inverse of the compression function
backwards from the marked location, and its output is calculated forward. From
the input and the output of the permutation, the output of the compression
function is then calculated. The remaining details of the attacks are the same as
in the prior case.

Characteristics may also have differences in all the bytes of words in the
marked location (rather than just one in each word). Such characteristics are
very useful for longer versions of the hash function, i.e., 3-pass and 4-pass Snefru.

450 E. Biham

Table 1. Summary of the Complexities of the Prior Attacks

No. of passes Second Preimage Collision
(time) (time & memory)

2 224 212.5

3 256 228.5

4 288–2112 244.5–256.5

A summary of the prior second preimage and collision attacks on Snefru is
given in Table 1.

4 Generic Memoryless Collision-Search Algorithms

In this section we briefly describe two generic memoryless collision-search
algorithms.

4.1 Floyd Algorithm

Floyd algorithm [4, Page 7] traverses the graph generated by iterative application
of a function f . It is used by Pollard’s Rho factoring algorithm [11], and variants
of which are used in the attacks on hash functions of Oorschot and Wiener [10].
In this algorithm, two pointers to the graph are used, one advances by one edge
at a time, while the other advances by two at a time. At some moment, the
slower pointer enters a cycle, and some time afterwards, their distance would be
a multiple of the cycle size, i.e., they will both point to the same location inside
the cycle. Once we identify this fact, we deduce the size of the cycle (actually
a multiple of the cycle size), and an approximate information on the length of
the path from the starting point to the cycle. The collision search variant of
Floyd algorithm repeats the process, one pointer starts from the starting point,
and the other from the reached location on the cycle, and both advance at the
same speed of one edge at a time. After some time they will both point to the
first location of the cycle. The previous values of these two pointers form the
collision. A detailed description is given in Figure 5. The expected complexity
of this attack is about 2m/2, and it calls the function f up to five times for each
value in the path to the collision.

4.2 Nivasch Algorithm

In 2004, Nivasch described another cycle detection algorithm [9] that uses only a
single pointer into the graph, but keeps a small stack that consists of increasing
values of the vertices. At each step, the stack contains all the values in the
path that satisfy the property that no smaller value exists in the path anywhere
between them and the current point. Therefore, the current value is at the top
of the stack, just below it resides the last value in the path that is smaller than

New Techniques for Cryptanalysis of Hash Functions 451

1. Let f be the hash function.
2. Select some starting point v0 at random.
3. u = f(v0), v = f(f(v0)).
4. while u �= v do

(a) u = f(u).
(b) v = f(f(v)).

5. If v = v0, the starting point v0 is in the cycle – stop, and try again with another
starting point.

6. u = v0.
7. repeat

(a) u′ = u, v′ = v.
(b) u = f(u).
(c) v = f(v).
until u = v.

8. Now u′ �= v′, and f(u′) = f(v′).

Fig. 5. Floyd Algorithm with Collision Search

1. Let f be the hash function.
2. Initialize a stack.
3. Select some starting point v0 at random, and assign u = v0.
4. while stack is empty or u �= top(stack)

(a) Push u to the stack.
(b) Compute u = f(u).
(c) While stack is not empty and top(stack) > u, remove the top entry from the

stack.
5. Once this line is reached, u is the minimal value in the cycle.

Fig. 6. Nivasch Cycle Detection Algorithm

it, and so on. The idea is that once we reach the minimal point in the cycle the
second time, the minimal point is the only point in the cycle that remains on
the stack, so it is easy to identify this point. This cycle detection is described
in Figure 6. The expected size of the stack is logarithmic with the number
of computations of f(u), which in practical cases is only a few tens up to an
hundred. This algorithm is up to three times faster than Floyd’s. The difference
is especially meaningful when the tail of the path is larger than the cycle. A multi-
stack variant of Nivasch algorithm can detect the cycle even earlier by utilizing
several stacks without loss of efficiency [9]. An adaptation of the multi-stack
variant of Nivasch’s algorithm, with collision search (using a second pointer),
which makes an optimal use of the values in the stacks, is given in Figure 7. At
first reading, it is advisable to follow the cycle detection part of this algorithm up
to Step 8 in order to understand the stacks method, and then follow it again with
a single stack (by assuming that S = 1 and g(·) ≡ 0), and ignore Steps 11–12
(which are optimization steps, and the algorithm would work correctly without
them), so that only the collision search is added on top of the original algorithm.

452 E. Biham

1. Let f be the hash function.
2. Initialize an array of S stacks.
3. Let g : range(f) → {0, . . . , S −1} be an efficient balanced function, e.g., a function

that truncates the input to log2 S bits.
4. Select some starting point v0 at random, and assign u = v0.
5. Compute s = g(u).
6. Initialize a counter c = 0.
7. while stack[s] is empty or u �= top(stack[s])

(a) Push the pair (u, c) to stack[s].
(b) Compute u = f(u).
(c) Compute s = g(u).
(d) Increment c.
(e) While stack[s] is not empty and top(stack[s]).u > u, remove the top entry from

stack[s].
8. Compute the size of the cycle p = c−top(stack[s]).c.
9. Assign c = cm = top(stack[s]).c.

10. Assign v = v0 and d = 0.
11. For each stack[s], s ∈ {0, . . . , S − 1}

– If there is a pair (u′, c′) in stack[s] (including in popped entries that were not
yet overwritten) such that d < c′ < cm, assign v = u′ and d = c′ (if there are
several such pairs, use the one with the largest c′).

12. For each stack[s], s ∈ {0, . . . , S − 1}
– If there is a pair (u′, c′) in stack[s] (including in popped entries that were not

yet overwritten) such that c < c′ ≤ d + p, assign u = u′ and c = c′ (if there
are several such pairs, use the one with the largest c′).

– Otherwise, there is a pair with a minimal c′ such that cm ≤ c′, if also c < c′

assign u = u′ and c = c′

13. if c − p > d, iteratively compute v = f(v), c − p − d times.
14. if c − p < d, iteratively compute u = f(u), d − c + p times.
15. If u = v, the starting point v0 is in the cycle – stop, and try again with another

starting point.
16. repeat

(a) u′ = u, v′ = v.
(b) u = f(u).
(c) v = f(v).
until u = v.

17. Now u′ �= v′, and f(u′) = f(v′).

Fig. 7. Nivasch Multi-Stack Algorithm with Collision Search

5 Using Generic Algorithms for Attacking Snefru

The main drawback of the prior attacks on Snefru is the requirement for a large
memory, which in the case of a 3-pass Snefru is about eight gigabytes, and in
the case of a 4-pass Snefru is many thousands of terabytes.

In this section we describe a new technique which uses a generic collision
search algorithm in conjunction with differential cryptanalysis. This combination

New Techniques for Cryptanalysis of Hash Functions 453

Fig. 8. A Three-Pass Characteristic

was not known in the past, and shows that seemingly unrelated techniques may
be combined to form better attacks.

The collision attack on 3-pass Snefru uses the characteristic given in Figure 8.
In this characteristic, more than 64 bits may be modified in the marked location.
As the conditions of the first six quarters (on the marked location and above
it) can be ensured with probability 1 by various simple changes to the message
block, the probability of this characteristic is 2−56, i.e., a second preimage can
be found after about 256 trials, and a collision may be found after 228.5 trials
but using 228.5 records of memory. Let k be the number of trials required for the
collision attack (e.g., k = 228.5 in the case of 3-pass Snefru).

We observe that the prior attack on Snefru makes various tweaks to a message
block (or intermediate data) with the hope that some of the tweaks will have
the same hash result. The attack can be summarized as follows:

454 E. Biham

1. Select a block, and compute the values in the location marked by a dashed
line.

2. Do about k times:
(a) Select a “random” tweak for the active bytes in marked location.
(b) Assign the tweak to the active bytes in the marked location.
(c) Modify the required bytes to control the first six quarters.
(d) Compute backwards to get the message block.
(e) Compute forward to get the output of the permutation.
(f) Compute the XOR of the last output words with the chaining

value, resulting with the output of the compression function
for that block.

(g) Insert to a hash table.
(h) If a collision is found: report the collision and stop.

Though it is not impossible these days to apply this attack on 3-pass Snefru
using about 8GB of RAM, this is certainly a limit on the practicality of the
attack. For 4-pass Snefru the required memory size ensures that the attack would
be impossible to apply for many years to follow. We would thus prefer to need
a smaller amount of memory.

We observe that Steps 2b–2f can be viewed as a function f of the tweak. With
this notation, the attack becomes:

1. Select a block, and compute the values in the location marked by a dashed
line.

2. Do about k times:
(a) Select a “random” tweak for the active bytes in marked location.

(b–f) Compute y = f(tweak).
(g) Insert to a hash table.
(h) If a collision is found: report the collision and stop.

However, once we model the attack as a repetitive application of the function
f and a search for a collision of the outputs, we are able to use memoryless
collision search techniques instead, using the same function f .

Note that for using the memoryless algorithms, f should have the same number
of input and output bits, which is reached by truncating the output to the size of
the tweak. In the case of the 3-pass example, f processes 64-bit values into 64-bit
values (by truncating the 128-bit output to 64 bits). We expect a random collision
(of the truncated values) after 232 iterations — such a collision is a false alarm.
We expect a real collision, due to the differential characteristic, after about 228.5

iterations — such a collision is a collision on the full 128-bit original output. As the
probability that a random collision would occur within the first 228.5 iterations is
small, with a very high probability the collision found by the memoryless collision
search algorithm is a collision of the attacked hash function.

An example collision of 3-pass Snefru found by this technique is given in
Table 2. Using Nivasch algorithm, this collision was found in about half an hour
on a personal computer (Intel Core Duo, 1.6GHz), using an unoptimized code.

New Techniques for Cryptanalysis of Hash Functions 455

Table 2. An Example Collision of 3-Pass Snefru (in hexadecimal)

First message: 00000000 00000000 00000000 014A2500 D5717D14 06A9DE9B
12DB2554 304D2ECE 421F027B 063C73AD 1AF7BDC1 A1654FED

Second message: 00000000 00000000 00000000 9F713600 69B6241A 25DE987C
D142F521 F1A56064 D9BF9D7E E03501DA 680D062F D136E7EA

Common
compressed value: 70DE98A5 4FA2634A E57E0F2D 7F93FCD9

In the case of a collision of 4-pass Snefru, the time complexity remains as in
the prior attack (244.5–256.5), but without the need for a huge memory.

6 Virtual Messages and Preimages of the Compression
Function

6.1 A Preimage Attack on the Compression Function

In this section we describe a technique that uses the second preimage attack
in order to find preimages of the compression function. The second preimage
attack on 3-pass Snefru has complexity 256 using the characteristic of Figure 8.
In order to use the second preimage attack, we need to find a message block with
the same chaining value and output of a compression function. But this message
block would also form a preimage, which would cause the rest of the technique
to be redundant. Moreover, it would require to find a preimage in order to find
a preimage, which makes such an attack impossible.

We observe that the second preimage attack can actually find blocks with dif-
ferent chaining values and/or different outputs than the given message, as long
as they satisfy several compatibility criteria related to the values of the bytes in
the walls, the input chaining value, and the output of the permutation. We call
such a compatible message, which is not a preimage, but can be used with the
second preimage attack to find a preimage, a virtual message. Thus, in order to
find a preimage, we only need to apply the second preimage attack on the virtual
message, and control the output so that the attack will find a collision.

We emphasize that the virtual message does not have the required chaining
value nor output. In some cases, it could be viewed as a combination of two parts,
one corresponding to the chaining value and the wall that protects it (the top
left white area of the characteristic), and one to the output and the walls that
protects it (the bottom right white area of the characteristic). During the second
preimage attack the two parts would be fully combined into a real preimage.

Consider the characteristic of Figure 8. During a compression of a second
preimage, the original message and the second preimage should have the same
values in all the white areas. In case the original message is a virtual message,
the situation is more complicated, as the virtual message does not fulfill the
requirements of a real original message. Instead, it should satisfy the following
extra conditions

456 E. Biham

1. It should be possible to replace the input chaining value of the virtual mes-
sage by the required input chaining value (the one needed by a real preimage)
without affecting the other requirements (with minimal additional changes).

2. It should be possible to replace the output area after the last round by the
required output (the one needed by a real preimage) without affecting the
other requirements.

If those two requirements would be independent, the attack may have been
easy. However, these two replacements affect the first words and last words of
the data block (words 0 and 15), which in turn affect each other (cyclically).
Therefore, they should be performed without disturbing each other, meaning
without affecting the input to the S boxes of the first and last words (in rounds 0,
16, . . . , 176 for the first word, and rounds 15, 31, . . . , 191 for the last word).
Therefore, it also should satisfy the following condition

3. When replacing any of the above values, no changes are allowed in the inputs
of the S boxes of rounds 0, 16, . . . , 176, and 15, 31, . . . , 191.

We now observe that once these inputs (and corresponding outputs) of the S boxes
of the last word (rounds 15, 31, . . . , 191) are fixed, the input chaining value fully
controls the inputs to the S boxes of rounds 0, 16, 32, and 48. In the case of round 0,
the input to the S box is just one of the bytes of the chaining value. In the case of
round 16 the input is an XOR of the first word of the chaining value, the output
of the S box at round 1 (whose input is the XOR of the output of the S box of
round 0 with another byte of the chaining value), and the fixed output of the S
box of round 15. The other two cases (in rounds 32 and 48) are more complex
functions of the fixed values and the input chaining value.

The search for a virtual message block starts by selecting the output of the
last round (where the last four words are the value needed for the preimage),
and computing backwards to receive the input chaining value and block. The
probability to receive the required input chaining value is negligible (2−128).

Recall that the original second preimage attack fixes all the white areas in
Figure 8, and fixes the wall of the least significant bytes of word 6 in the first six
quarters and the wall of the bytes that become least significant bytes of word 11
in the last eight quarters. The values that are fixed in the walls are selected to
be their values in the original message.

In our case, we fix the wall of the last rounds to be equal to the message
we start with (as the output of the last round has the required value), and we
fix the wall of the first rounds to be compatible with both the required input
chaining value and the required values of word 0 in all the quarters (which also
behaves like a wall of 12 quarters height). This compatibility is not automatic,
as the input chaining value reached by computing backwards is not expected to
be compatible.

We can view our attack as having two sets of requirements, one ensures the
expected behavior in the white left hand side (without difference compared to
the message we start with), and ensures compatibility to the required initial
value at that side. Similarly, the other ensures the expected behavior in the

New Techniques for Cryptanalysis of Hash Functions 457

right hand side, and ensures compatibility of the output. Both are protected
from each other by the three requirements mentioned above, including the walls.
The virtual message block tries to emulate both requirements simultaneously,
the first as if it had the required input chaining value, and the latter as if it
had the required output value (while still satisfying the requirements on words 0
and 15).

This latter compatibility is achieved by replacing the chaining value resulting
from the backward computation mentioned above, along with fixation of the
wall of word 0, and selection of the wall of word 6 as becomes necessary. These
changes in the wall in word 6 can then easily be compensated later during the
second preimage attack.

Only in one of every 232 trials of a backward computation, the replacement of
the chaining value results with compatibility with the required chaining value,
without affecting the wall of word 0. The search for the virtual message starts by
about 232 such trials, till a message in which we can replace the chaining value to
the one we want, and in which the first four quarters of the wall at word 0 remain
valid, is found. Once such a message is found, the remainder of the quarters of
the wall at word 0 can be directly controlled by modifying words 4 and 5 and by
changing the fixation of the wall at word 6. This direct control is very efficient.
For example, assume that all the wall of word 0 but the last quarter is already
selected as required, then the input to the S box in round 176 is 1-1 related to
the least significant byte in the sixth quarter of the wall at word 6 (as the S
boxes are byte-wise invertible).

Once all these changes are made, and the values of the wall in word 6 are
decided, the computation can be performed in the forward direction from round 0
to the marked round, starting with the modified chaining value and modified
values of words 4 and 5. The walls at words 0 and 6 ensure that words outside
this range do not affect the values of words 0–5 at the marked location. These
six words are now injected to replace the original values of these words at the
marked location as received from the original backward computation.

As a result, words 0–5 are computed by this last forward computation, and fit
to the change in the chaining value (the left white area). Words 12–15 remain as
decided by the original backward computation. If only the wall at word 11 and
the wall at word 15 are kept as decided, the result at the output is necessarily
as required, independently of any changes in other words. Words 6–11 may be
freely selected by the attacker, just as in the second preimage attack, and whose
role is to allow the attacker to control the walls of words 6 and 11 as required.

Note that the received intermediate block, located at the marked location
is now a combination of three parts. If we would take this block and compute
backwards and forward to receive an input chaining value, and output, without
the extra control and changes of the second preimage attack, the received values
would not be those that we want, as each side would be affected by the other.
But when used with the second preimage attack, with the selected values of the
walls, the second preimage attack is able to find a preimage.

458 E. Biham

Table 3. An Example Preimage of the Compression Function of Snefru (in
hexadecimal)

Input chaining value: 00000000 00000000 00000000 00000000 (standard IV)
Message block: 79F6A75E 0397C368 F60C88DE 3133A55E 6D00251C 8ED3567B

CA49F82B A32E5DC4 8F86E479 DD3FF4D6 14DD88C1 A2322E00
Compressed value: 00000000 00000000 00000000 00000000

We applied this attack on 2-pass Snefru (where the complexity of the second
preimage attack is practical), and found many preimages. An example preimage
of the compression function of 2-pass Snefru is given in Table 3. Note that this
preimage is also a fixpoint of the compression function, and thus it can be easily
repeated, without changing the output chaining value.

6.2 Preimage Attacks and the Importance of Padding Schemes

The padding scheme of MD4/SHA optimizes the last block, so that no additional
padding block is added unless absolutely necessary (i.e., no extra block is added
if the message length and single ‘1’ bit of the padding fit at the end of the last
existing block). Thus, the content of the last block can mostly be controlled by
the attacker, by selecting messages that are 65-bit short of a multiple of a block.
We expect that in such a case, our attack on the compression function would be
applicable to the last block, thus leading to a preimage attack on the full hash
function (rather than on the compression function only).

However, the padding scheme of Snefru always adds a padding block containing
the length only (left filled by ‘0’s). Assuming that the length is bounded by 64 bits,
the more restrictive padding scheme of Snefru makes it much more complicated (or
maybe impossible using our techniques) to find the preimage of the length block,
as the words that the attacker needs to control are fixed to zero. Therefore, the
attack on the compression function, as described, cannot work.

It may be the case that an attack can still be found, with a huge complexity
(still faster than a generic attack), by changing the locations of the controlled
words to the area of the input chaining value and the length, and performing a
much more complicated computation, but this would require further research.

Though it looks impossible, we observe that such an attack does not have to
follow all the requirements of a preimage attack on the compression function.
In particular, such an attack does not have to fix the input chaining value in
advance — input chaining value can thus be the output of the attack — making
the attack a free-start preimage of the compression function on the length block.
This kind of attack may be simpler to find, due to the weaker requirements.

A free-start preimage of the length block suffices for finding a preimage of the
full hash function, as after this last block along with it’s input chaining value are
found, we know the output chaining value required from the previous block. All
we need to do at that stage, is to apply the preimage attack on the compression
function of that previous block. This situation can be seen in Figure 9, which

New Techniques for Cryptanalysis of Hash Functions 459

IV C C C C C C C

LengthLast Block

Output

(1) free-start(2) preimage

Message

fixed fixed
Result
of (1)

Fig. 9. A free-start preimage of the length block suffices for finding a preimage

describes the mode of operation used by Snefru, where the attack needs to control
only the last two blocks (the last block of the message as well as the length block),
but in the reverse order (starting from the last block).

6.3 A Preimage of Snefru

We carefully checked the definition of Snefru, and in particular the definition of
the padding block. There is no mentioned limit on the message size, as long as
the length fits in the last block. Therefore, the attacker can fully control the last
block, at the expense of creating messages with a huge number of blocks. There
is no difficulty in creating such huge messages, as fixpoints can be found (e.g.,
the one from Table 3), and iterated as many times as required.

As the length of the block is 384 bits, the length of the iterated message
must be a multiple of 384 bits. We would thus need a length block whose con-
tent divides by 384. The block of Table 3 is congruent to 256 modulo 384, thus
cannot be used as the length block. On the other hand, the preimage of the com-
pression function described in Table 4 represents a multiple of 384, and is also
a fixpoint. Therefore, when this block is iterated 79F6A75E CB8E7368 A8532FD9

81175859 CCE2C60C 734D51CF 5E8B7F23 F48893F9 EE56676D 6E565530 9864E5B1 A

2322E00x/384≈ 2374 times, it becomes a preimage of the zero hash value! This
huge message is a preimage of 2-pass Snefru. By iterating this fixpoint, and using
an alternate padding block, it is possible to find preimages for any hash value.

Note that, unfortunately, sending this message would take a huge time. Even
verification of this message by the receiver would take a huge time (much more
than the preimage attack itself). It would even be faster for the receiver to
find another single-block preimage (with complexity 2128), than to receive this
message and verify it (which takes about 2374 time in the standard verification
procedure).

Table 4. The Block Used for the Preimage of Snefru (in hexadecimal)

Input chaining value: 00000000 00000000 00000000 00000000
Message block: 79F6A75E CB8E7368 A8532FD9 81175859 CCE2C60C 734D51CF

5E8B7F23 F48893F9 EE56676D 6E565530 9864E5B1 A2322E00
Compressed value: 00000000 00000000 00000000 00000000

460 E. Biham

Table 5. Summary of the Attacks on Snefru

Number of Second preimage of Preimage of Collision
Passes Compression Function Compression Function Attack

(time) (time) (time)

Novelty: Old New Memoryless

2 224 232 212.5

3 256 256 228.5

4 288–2112 288–2112 244.5–256.5

7 Summary

In this paper, we described new techniques for cryptanalysis of Snefru:

1. A preimage attack based on the second preimage attack with a virtual mes-
sage.

2. Differential cryptanalysis using generic algorithms.

Table 5 summarizes the complexities of the attacks on Snefru with 2, 3, and 4
passes (and 128-bit hash values). The second column gives the complexities of the
second preimage attacks of [2,1]. The third column gives the complexities of the
preimage attack on the compression function described in this paper. The last col-
umn gives the complexity of the collision attacks of [2,1], which require same size
of memory. The memoryless collision attacks described in this paper eliminated
the need to that size of memory, without changing the time complexity.

We also discussed the importance of the padding scheme to protect against
applying a preimage attack on the compression function for finding preimages
of the full hash function.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer (extended abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576, pp. 156–171. Springer, Heidelberg (1992)

3. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, 3rd
edn., vol. 2. Addison-Wesley, Reading (1997)

5. Merkle, R.C.: Secrecy, Authentication, and Public Key Systems. UMI Research
press (1982)

6. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

7. Merkle, R.C.: A Fast Software One-Way Hash Function. Journal of Cryptol-
ogy 3(1), 43–58 (1990)

New Techniques for Cryptanalysis of Hash Functions 461

8. National Institute of Standards and Technology, Secure Hash Standard, U.S. De-
partment of Commerce, FIPS pub. 180-1 (April 1995)

9. Nivasch, G.: Cycle Detection using a Stack. Information Processing Letters 90(3),
135–140 (2004)

10. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Applications to
Hash Functions and Discrete Logarithms. In: Proceedings of 2nd ACM Conference
on Computer and Communications Security, pp. 210–218. ACM Press, New York
(1994)

11. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numerical Mathemat-
ics 15(3), 331–334 (1975)

12. Quisquater, J.-J., Delescaille, J.-P.: How Easy is Collision Search? Application to
DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 429–434. Springer,
Heidelberg (1990)

13. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

14. Rivest, R.L.: The MD5 Message Digest Algorithm, Internet Request for Comments,
RFC 1321 (April 1992)

15. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis for Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

On the Salsa20 Core Function

Julio Cesar Hernandez-Castro1, Juan M.E. Tapiador2,
and Jean-Jacques Quisquater1

1 Crypto Group, DICE, Universite Louvain-la-Neuve
Place du Levant, 1 B-1348 Louvain-la-Neuve, Belgium
2 Computer Science Department, Carlos III University

Avda. de la Universidad, 30, 28911 Leganes, Madrid, Spain
julio.hernandez@uclouvain.be,jestevez@inf.uc3m.es,

jjq@uclouvain.be

Abstract. In this paper, we point out some weaknesses in the Salsa20
core function that could be exploited to obtain up to 231 collisions for
its full (20 rounds) version. We first find an invariant for its main build-
ing block, the quarterround function, that is then extended to the
rowround and columnround functions. This allows us to find an in-
put subset of size 232 for which the Salsa20 core behaves exactly as the
transformation f(x) = 2x. An attacker can take advantage of this for
constructing 231 collisions for any number of rounds. We finally show
another weakness in the form of a differential characteristic with proba-
bility one that proves that the Salsa20 core does not have 2nd preimage
resistance.

Keywords: Salsa20, hash function, cryptanalysis, collision.

1 Introduction

Salsa20 is a very interesting design by Daniel Bernstein [1]. It is mostly known
because of its submission to the eSTREAM Project, where it passed to Phase
3 without major known attacks, although some interesting weaknesses over
reduced-round versions have been pointed out [6,8,11]. As mentioned in [2], “The
core of Salsa20 is a hash function with 64-byte input and 64-byte output. The
hash function is used in counter mode as a stream cipher: Salsa20 encrypts a 64-
byte block of plaintext by hashing the key, nonce, and block number and xor’ing
the result with the plaintext.” Note, however, that in spite of its name, the Salsa20
“hash” function was never really intended for hashing.

Reduced-round versions Salsa20/12 and Salsa20/8 (respectively using 12 and
8 rounds) have been proposed [3], although the author acknowledges that the
security margin for Salsa20/8 is not huge, in view of the attack against Salsa20/5
presented in [6]. However, the speed gain over the full Salsa20 is very significant.
Unfortunately, serious doubts over the security of Salsa20/8 were raised later
over the publication of [11], which essentially breaks Salsa20/6 and successfully
attacks Salsa20/7.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 462–469, 2008.
c© International Association for Cryptologic Research 2008

On the Salsa20 Core Function 463

Salsa20 represents quite an original and flexible design, where the author
justifies the use of very simple operations (addition, xor, constant distance rota-
tion) and the lack of multiplication or S-boxes to develop a very fast primitive.
Moreover, its construction protects it from timing attacks.

We find that, although this paper shows some vulnerabilities in its underly-
ing cryptographic core, Bernstein’s approach is indeed valuable and should be
further investigated. For more information about Salsa20 design, please refer to
the rationale presented by its author in [4].

The rest of the paper is organized as follows. Section 2 presents the main
results in the form of various theorems, and Section 3 shows how these results
can be practically used to find collisions for the full Salsa20 “hash” function.
Section 4 ends the paper with some conclusions. In the Appendix, we show two
collisions (out of the 231 presented in this paper) for testing purposes.

2 Main Results

The main building block of the Salsa20 “hash” is the quarterround function,
defined as follows:

Definition 1. If y =
(

y0 y1

y2 y3

)
then quarterround(y) =

(
z0 z1

z2 z3

)
, where:

z1 = y1 ⊕ ((y0 + y3) ≪ 7) (1)
z2 = y2 ⊕ ((z1 + y0) ≪ 9) (2)

z3 = y3 ⊕ ((z2 + z1) ≪ 13) (3)
z0 = y0 ⊕ ((z3 + z2) ≪ 18) (4)

and X ≪ n is the rotation of the 32-bit word X to the left by n positions.

Theorem 1. For any 32-bit value A, an input of the form
(

A −A
A −A

)
is left

invariant by the quarterround function, where −A represents the only 32-bit
integer satisfying A + (−A) = 0 (mod 232).

Proof. Simply by substituting in the equations above, we obtain that every
rotation operates over the null vector, so zi = yi for every i ∈ (0..3) ��
Similarly, the rowround function, defined below, suffers from the same problem:

Definition 2. If y=

⎛⎜⎜⎝
y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

⎞⎟⎟⎠then rowround(y)=

⎛⎜⎜⎝
z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

⎞⎟⎟⎠
where:

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3) (5)
(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4) (6)

464 J.C. Hernandez-Castro, J.M.E. Tapiador, and J.-J. Quisquater

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9) (7)
(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14) (8)

Theorem 2. Any input of the form

⎛⎜⎜⎝
A −A A −A
B −B B −B
C −C C −C
D −D D −D

⎞⎟⎟⎠, for any 32-bit values

A, B, C and D, is left invariant by the rowround transformation.

Proof. This trivially follows from the repeated application of Theorem 1 to the
four equations above. ��
Remark. It is important to note that any other rearrangement of the equations
from its canonical form:

(z4∗i, z4∗i+1, z4∗i+2, z4∗i+3) = quarterround(y4∗i, y4∗i+1, y4∗i+2, y4∗i+3) (9)

will suffer from the same problem whenever the rearranging permutation keeps
on alternating subindex oddness.

It is worth observing that this result implies that, from the 2512 possible
inputs, at least one easily characterizable subset of size 2128 remains invariant
by the rowround transformation.

The same happens with the Columnround function, which is defined below:

Definition 3. If y =

⎛⎜⎜⎝
y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

⎞⎟⎟⎠then columnround(y)=

⎛⎜⎜⎝
z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

⎞⎟⎟⎠
where:

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12) (10)
(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1) (11)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6) (12)
(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11) (13)

Theorem 3. Any input of the form

⎛⎜⎜⎝
A −B C −D

−A B −C D
A −B C −D

−A B −C D

⎞⎟⎟⎠, for any 32-bit values

A, B, C and D, is left invariant by the columnround transformation.

Proof. This follows directly from the repeated application of Theorem 1, and
can be seen as a dual of Theorem 2.

Theorem 4. Any input of the form

⎛⎜⎜⎝
A −A A −A

−A A −A A
A −A A −A

−A A −A A

⎞⎟⎟⎠ for any 32-bit value

A, is left invariant by the doubleround transformation.

On the Salsa20 Core Function 465

Proof. This is quite obvious. The point is that, due to the arrangement of the
indexes in the columnround and the rowround function, we cannot have as
free a hand. Here we are forced to make B = −A, C = A, and D = −A.

Taking into account that doubleround is defined as the composition of a
columnround and a rowround operation:

doubleround(x) = rowround(columnround(x)) (14)

a common fixed point should be also a fixed point of its composition. ��

3 Collision Finding for the Salsa20 “Hash” Function

Theorem 5. For any input of the form

⎛⎜⎜⎝
A −A A −A

−A A −A A
A −A A −A

−A A −A A

⎞⎟⎟⎠ and for any 32-bit

value A, the Salsa20 core function behaves as a linear transformation of the form
f(x) = 2x, and this happens independently of the number of rounds.

Proof. As the Salsa20 “hash” is defined as:

Salsa20(x) = x + doubleround10(x) (15)

and every input of the above form is an invariant (fixed point) for the doubler-
ound function, then:

Salsa20(x) = x + doubleround10(x) = x + x = 2x (16)

(And this happens independently of the number of rounds) ��
The previous result is of great use in collision finding. All what is left now is to
find two different nontrivial inputs, x and x′, of the said form such that:

x �= x′ but 2x = 2x′ (17)

Fortunately, this is possible thanks to modular magic, i.e. the fact that all
operations in Salsa20 are performed mod 232.

3.1 Modular Magic

Let us assume that X is a 32-bit integer such that X < 231. Then, we define
X ′ = X+231. The interesting point here is that, even though X �= X ′, 2X = 2X ′

(mod 232).

Theorem 6.Any pair of inputs

⎛⎜⎜⎝
Z −Z Z −Z

−Z Z −Z Z
Z −Z Z −Z

−Z Z −Z Z

⎞⎟⎟⎠and

⎛⎜⎜⎝
Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′

Z ′ −Z ′ Z ′ −Z ′

−Z ′ Z ′ −Z ′ Z ′

⎞⎟⎟⎠,

such that Z < 231 and Z ′ = Z + 231, generate a collision for any number of

466 J.C. Hernandez-Castro, J.M.E. Tapiador, and J.-J. Quisquater

rounds of the Salsa20 “hash” function, producing

⎛⎜⎜⎝
2Z −2Z 2Z −2Z

−2Z 2Z −2Z 2Z
2Z −2Z 2Z −2Z

−2Z 2Z −2Z 2Z

⎞⎟⎟⎠ as a

common hash value.

Proof. This follows directly from the observations and definitions above. Sub-
stitution of the proposed input values into the formulæ for the Salsa20 “hash”
will confirm this hypothesis. ��

Corollary 1. Theorem 6 implies that there are at least (these conditions are
sufficient but probably not necessary) 231 input pairs that generate a collision in
the output, proving that indeed Salsa20 is not to be used as-is as a hash function.
As an example, two of these pairs are provided in the Appendix.

Corollary 2. Let us call inputs of the form discussed by Theorem 5 A-states.
Then, as a direct consequence of Theorem 6 the output by the Salsa20 “hash”
function of any A-state is also an A-state (where, in this case, A is even).
It could be interesting to check whether these states could be reached at any
intermediate step during a computation beginning with a non-A state. This would
have important security implications. However, it could be easily shown that this
is not the case, so any state leading to an A-state should be an A-state itself.

This property has an interesting similitude with Finney-states for RC4 [7] and
could be useful in mounting an impossible fault analysis for the Salsa20 stream
cipher, as Finney-states were of key importance on the impossible fault crypt-
analysis of RC4 [5]. A-states, on the other hand, have the interesting advantage
over Finney-states that their influence over the output is immediately recognized,
so they can be detected in an even simpler way. On the other hand, it is much
less likely to reach an A-state by simply injecting random faults, as the set of
conditions that should hold is larger than for the RC4 case.

Once we have shown that the Salsa20 “hash” function is not collision resistant,
we focus on its security against 2nd preimage attacks. The next result1 reveals
that 2nd preimage attacks are not only possible but even easy.

Theorem 7. Any pair of inputs A, B with a difference of

A − B = A
⊕

B =

⎛⎜⎜⎝
0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000
0x80000000 0x80000000 0x80000000 0x80000000

⎞⎟⎟⎠
will produce the same output over any number of rounds.

Proof. This depends on two interesting observations. The first one is that addition
behaves as xor over the most significant bit (that changed by adding 0x80000000).
So the result in each of the four additions on Definition 1 is the same when both
its inputs are altered by adding 231 (differences cancel out mod 232).
1 This property was presented informally before by Robshaw [10] and later by

Wagner [12].

On the Salsa20 Core Function 467

The second one is that in the quarterround function, all partial results
z0, ..., z3 are computed after an odd number (three in this case) of addition/xor
operations. As a result, quarterround conserves the input difference, and so
it does rowround, columnround and doubleround. As in the last stage of
the Salsa20 core function the input is added to the output; This forces input
differences to cancel out. ��

Corollary 3. Theorem 7 could now be seen as a particular instance of 6 (because
2 ∗ 0x80000000 = 0x00000000). It is interesting to point out that this result has
some common points with the one on the existence of equivalent keys for TEA
made by Kelsey et al. [9], and also with the exact truncated differential found by
Crowley in [6] for a reduced-round version of the Salsa20 stream cipher.

A direct consequence of this result is that the effective key/input space of the
Salsa20 “hash” is reduced by half, so there is a speed up by a factor of 2 in any
exhaustive key/input search attack. This also means that Salsa20(x) = y has
solution for no more than (at most) half of the possible y’s.

4 Conclusions

The Salsa20 “hash” function was never intended for cryptographic hashing, and
some previous results showed that finding a good differential for the core func-
tion was not as hard as might have been expected [10]. Even though its author
acknowledges that the Salsa20 core is not collision-free, to the best of our knowl-
edge no work has so far focused on finding and characterizing these collisions.
In this paper we explicitly show that there is a relevant amount (231) of eas-
ily characterizable collisions, together with an undesirable linear behavior over
a large subset of the input space. In a sense, Theorem 6 is a generalization of
Robshaw’s previous observation.

Since the stream cipher uses four diagonal constants to limit the attacker’s
control over the input (thus making unreachable the differences needed for a colli-
sion), these results have no straightforward implications on its security. However,
these undesirable structural properties might be useful to mount an impossible
fault attack for the stream cipher. Particularly, what we have called A-states
could play a role analogous to Finney states for RC4, in way similar to that pre-
sented by Biham et al. at FSE’05 [5]. We consider this as an interesting direction
for future research.

That being said, we still consider that Salsa20 design is very innovative and
well-motivated. Further work along the same guidelines should be encouraged.
Particularly, we believe that a new, perhaps more complex and time consuming
definition of the quarterround function should lead to a hash that would not be
vulnerable to any of the presented attacks and could, in fact, provide a high-level
security algorithm. This will, obviously, be more computationally expensive, but
there may exist an interesting trade-off between incrementing the complexity
of the quarterround function and decreasing the total number of rounds. The
use of the add-rotate-xor chain at every stage of the quarterround function

468 J.C. Hernandez-Castro, J.M.E. Tapiador, and J.-J. Quisquater

considerably eases the extension of these bad properties to any number of rounds.
Although the author justified this approach because of performance reasons, we
believe that alternating this structure with xor-rotate-add and making all output
words depending on all input words will present the cryptanalyst with a much
more difficult task. This should be the subject of further study.

On the other hand, in the light of our results we can also conclude that the
inclusion of the diagonal constants is absolutely mandatory. An additional con-
clusion from our results is that less diagonal constants might suffice for stopping
these kinds of undesirable structural properties, with a significant efficiency im-
provement that can vary from a 16% (from processing 384 bits to 448 bits in
the same amount of time, that is, using only two diagonal constants) up to a
33% (in the extreme case of fixing the most significant bit of two diagonal 32-bit
values).

Acknowledgments

The authors want to thank the anonymous reviewers, who contributed to im-
prove this paper with their comments and suggestions. We specially want to
thank Orr Dunkelman for his insights and many useful remarks.

References

1. Bernstein, D.J.: The Salsa20 Stream Cipher. In: SKEW 2005, Symmetric Key
Encryption Workshop, 2005, Workshop Record (2005),
http://www.ecrypt.eu.org/stream/salsa20p2.html

2. Bernstein, D.J.: Salsa20 Specification, http://cr.yp.to/snuffle/spec.pdf
3. Bernstein, D.J.: Salsa20/8 and Salsa20/12, http://cr.yp.to/snuffle/812.pdf
4. Bernstein, D.J.: Salsa20 design, http://cr.yp.to/snuffle/design.pdf
5. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and

Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

6. Crowley, P.: Truncated Differential Cryptanalysis of Five Rounds of Salsa20. In:
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/073

7. Finney, H.: An RC4 Cycle that Cant Happen. sci.crypt newsgroup (September
1994)

8. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.: Non-Randomness
in eSTREAM Candidates Salsa20 and TSC-4. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

9. Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

10. Robshaw, M.: The Salsa20 Hash Function is Not Collision-Free June 22 (2005)
11. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential Crypt-

analysis of Salsa20/8 (submitted, 2007-01-02),
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

12. Wagner, D.: Message from discussion “Re-rolled Salsa-20 function” in the sci.crypt
newsgroup on September 26th (2005),
http://groups.google.com/group/sci.crypt/msg/0692e3aaf78687a3

http://www.ecrypt.eu.org/stream/salsa20p2.html
http://cr.yp.to/snuffle/spec.pdf
http://cr.yp.to/snuffle/812.pdf
http://cr.yp.to/snuffle/design.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf
http://groups.google.com/group/sci.crypt/msg/0692e3aaf78687a3

On the Salsa20 Core Function 469

Appendix: Collisions for the Full Salsa20 Hash Function

Here we show a couple of collisions for testing purposes:

If

Z =

⎛⎜⎜⎝
0xAAAAAAAA 0x55555556 0xAAAAAAAA 0x55555556
0x55555556 0xAAAAAAAA 0x55555556 0xAAAAAAAA
0xAAAAAAAA 0x55555556 0xAAAAAAAA 0x55555556
0x55555556 0xAAAAAAAA 0x55555556 0xAAAAAAAA

⎞⎟⎟⎠
and

Z ′ =

⎛⎜⎜⎝
0x2AAAAAAA 0xD5555556 0x2AAAAAAA 0xD5555556
0xD5555556 0x2AAAAAAA 0xD5555556 0x2AAAAAAA
0x2AAAAAAA 0xD5555556 0x2AAAAAAA 0xD5555556
0xD5555556 0x2AAAAAAA 0xD5555556 0x2AAAAAAA

⎞⎟⎟⎠
then, the common Salsa20 hash value is

Salsa20(Z)=Salsa20(Z ′)=

⎛⎜⎜⎝
0x55555554 0xAAAAAAAC 0x55555554 0xAAAAAAAC
0xAAAAAAAC 0x55555554 0xAAAAAAAC 0x55555554
0x55555554 0xAAAAAAAC 0x55555554 0xAAAAAAAC
0xAAAAAAAC 0x55555554 0xAAAAAAAC 0x55555554

⎞⎟⎟⎠
Alternatively, if

W =

⎛⎜⎜⎝
0xFFFFFFFF 0x00000001 0xFFFFFFFF 0x00000001
0x00000001 0xFFFFFFFF 0x00000001 0xFFFFFFFF
0xFFFFFFFF 0x00000001 0xFFFFFFFF 0x00000001
0x00000001 0xFFFFFFFF 0x00000001 0xFFFFFFFF

⎞⎟⎟⎠
and

W ′ =

⎛⎜⎜⎝
0x7FFFFFFF 0x80000001 0x7FFFFFFF 0x80000001
0x80000001 0x7FFFFFFF 0x80000001 0x7FFFFFFF
0x7FFFFFFF 0x80000001 0x7FFFFFFF 0x80000001
0x80000001 0x7FFFFFFF 0x80000001 0x7FFFFFFF

⎞⎟⎟⎠
then, the common Salsa20 hash value is

Salsa20(W)=Salsa20(W ′)=

⎛⎜⎜⎝
0xFFFFFFFE 0x00000002 0xFFFFFFFE 0x00000002
0x00000002 0xFFFFFFFE 0x00000002 0xFFFFFFFE
0xFFFFFFFE 0x00000002 0xFFFFFFFE 0x00000002
0x00000002 0xFFFFFFFE 0x00000002 0xFFFFFFFE

⎞⎟⎟⎠

New Features of Latin Dances:

Analysis of Salsa, ChaCha, and Rumba

Jean-Philippe Aumasson1, Simon Fischer1, Shahram Khazaei2,
Willi Meier1, and Christian Rechberger3

1 FHNW, Windisch, Switzerland
2 EPFL, Lausanne, Switzerland

3 IAIK, Graz, Austria

Abstract. The stream cipher Salsa20 was introduced by Bernstein in
2005 as a candidate in the eSTREAM project, accompanied by the re-
duced versions Salsa20/8 and Salsa20/12. ChaCha is a variant of Salsa20
aiming at bringing better diffusion for similar performance. Variants of
Salsa20 with up to 7 rounds (instead of 20) have been broken by differen-
tial cryptanalysis, while ChaCha has not been analyzed yet. We introduce
a novel method for differential cryptanalysis of Salsa20 and ChaCha, in-
spired by correlation attacks and related to the notion of neutral bits.
This is the first application of neutral bits in stream cipher cryptanaly-
sis. It allows us to break the 256-bit version of Salsa20/8, to bring faster
attacks on the 7-round variant, and to break 6- and 7-round ChaCha.
In a second part, we analyze the compression function Rumba, built as
the XOR of four Salsa20 instances and returning a 512-bit output. We
find collision and preimage attacks for two simplified variants, then we
discuss differential attacks on the original version, and exploit a high-
probability differential to reduce complexity of collision search from 2256

to 279 for 3-round Rumba. To prove the correctness of our approach we
provide examples of collisions and near-collisions on simplified versions.

1 Introduction

Salsa20 [5] is a stream cipher introduced by Bernstein in 2005 as a candidate in
the eSTREAM project [12], that has been selected in April 2007 for the third and
ultimate phase of the competition. Three independent cryptanalyses were pub-
lished [11,13,16], reporting key-recovery attacks for reduced versions with up to 7
rounds, while Salsa20 has a total of 20 rounds. Bernstein also submitted to pub-
lic evaluation the 8- and 12-round variants Salsa20/8 and Salsa20/12 [6], though
they are not formal eSTREAM candidates. Later he introduced ChaCha [4,3,8],
a variant of Salsa20 that aims at bringing faster diffusion without slowing down
encryption.

The compression function Rumba [7] was presented in 2007 in the context of
a study of generalized birthday attacks [17] applied to incremental hashing [2],
as the component of a hypothetical iterated hashing scheme. Rumba maps a
1536-bit value to a 512-bit (intermediate) digest, and Bernstein only conjectures
collision resistance for this function, letting a further convenient operating mode
provide extra security properties as pseudo-randomness.

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 470–488, 2008.
c© International Association for Cryptologic Research 2008

New Features of Latin Dances 471

Related Work. Variants of Salsa20 up to 7 rounds have been broken by differ-
ential cryptanalysis, exploiting a truncated differential over 3 or 4 rounds. The
knowledge of less than 256 key bits can be sufficient for observing a difference
in the state after three or four rounds, given a block of keystream of up to seven
rounds of Salsa20. In 2005, Crowley [11] reported a 3-round differential, and built
upon this an attack on Salsa20/5 within claimed 2165 trials. In 2006, Fischer et
al. [13] exploited a 4-round differential to attack Salsa20/6 within claimed 2177

trials. In 2007, Tsunoo et al. [16] attacked Salsa20/7 within about 2190 trials,
still exploiting a 4-round differential, and also claimed a break of Salsa20/8.
However, the latter attack is effectively slower than brute force, cf. §3.5. Tsunoo
et al. notably improve from previous attacks by reducing the guesses to certain
bits—rather than guessing whole key words—using nonlinear approximation of
integer addition. Eventually, no attack on ChaCha or Rumba has been published
so far.

Contribution. We introduce a novel method for attacking Salsa20 and ChaCha
(and potentially other ciphers) inspired from correlation attacks, and from the
notion of neutral bit, introduced by Biham and Chen [9] for attacking SHA-0.
More precisely, we use an empirical measure of the correlation between certain
key bits of the state and the bias observed after working a few rounds backward,
in order to split key bits into two subsets: the extremely relevant key bits to
be subjected to an exhaustive search and filtered by observations of a biased
output-difference value,and the less significant key bits ultimately determined
by exhaustive search. To the best of our knowledge, this is the first time that
neutral bits are used for the analysis of stream ciphers. Our results are summa-
rized in Tab. 1. We present the first key-recovery attack for the 256-bit version
of Salsa20/8, improve the previous attack on 7-round Salsa20 by a factor 239,
and present attacks on ChaCha up to 7 rounds. The 128-bit versions are also
investigated. In a second part, we first show collision and preimage attacks for
simplified versions of Rumba, then we present a differential analysis of the orig-
inal version using the methods of linearization and neutral bits: our main result
is a collision attack for 3-round Rumba running in about 279 trials (compared to
2256 with a birthday attack). We also give examples of near-collisions over three
and four rounds.

Table 1. Complexity of the best attacks known, with success probability 1/2

Salsa20/7 Salsa20/8 ChaCha6 ChaCha7 Rumba3

Before 2190 2255 2255 2255 2256

Now 2151 2251 2139 2248 279

Road Map. We first recall the definitions of Salsa20, ChaCha, and Rumba in
§2, then §3 describes our attacks on Salsa20 and ChaCha, and §4 presents our
cryptanalysis of Rumba. The appendices give the sets of constant values, and
some parameters necessary to reproduce our attacks.

472 J.-P. Aumasson et al.

2 Specification of Primitives

In this section, we give a concise description of the stream ciphers Salsa20 and
ChaCha, and of the compression function Rumba.

2.1 Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as input a 256-bit key
k = (k0, k1, . . . , k7) and a 64-bit nonce v = (v0, v1), and produces a sequence of
512-bit keystream blocks. The i-th block is the output of the Salsa20 function,
that takes as input the key, the nonce, and a 64-bit counter t = (t0, t1) corre-
sponding to the integer i. This function acts on the 4× 4 matrix of 32-bit words
written as

X =

⎛⎜⎜⎝
x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞⎟⎟⎠ =

⎛⎜⎜⎝
c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3

⎞⎟⎟⎠ . (1)

The ci’s are predefined constants (see Appendix A). There is also a mode for a
128-bit key k′, where the 256 key bits in the matrix are filled with k = k′‖k′. If
not mentioned otherwise, we focus on the 256-bit version. A keystream block Z
is then defined as

Z = X + X20 , (2)

where “+” symbolizes wordwise integer addition, and where Xr = Roundr(X)
with the round function Round of Salsa20. The round function is based on the fol-
lowing nonlinear operation (also called the quarterround function), which trans-
forms a vector (x0, x1, x2, x3) to (z0, z1, z2, z3) by sequentially computing

z1 = x1 ⊕
[
(x3 + x0) ≪ 7

]
z2 = x2 ⊕

[
(x0 + z1) ≪ 9

]
z3 = x3 ⊕

[
(z1 + z2) ≪ 13

]
z0 = x0 ⊕

[
(z2 + z3) ≪ 18

]
.

(3)

In odd numbers of rounds (which are called columnrounds in the original specifica-
tion of Salsa20), the nonlinear operation is applied to the columns (x0, x4, x8, x12),
(x5, x9, x13, x1), (x10, x14, x2, x6), (x15, x3, x7, x11). In even numbers of rounds
(which are also called the rowrounds), the nonlinear operation is applied to
the rows (x0, x1, x2, x3), (x5, x6, x7, x4), (x10, x11, x8, x9), (x15, x12, x13, x14). We
write Salsa20/R for R-round variants, i.e. with Z = X + XR. Note that the r-
round inverse X−r = Round−r(X) is defined differently whether it inverts after
an odd or and even number of rounds.

2.2 ChaCha

ChaCha is similar to Salsa20 with the following modifications

New Features of Latin Dances 473

1. The input words are placed differently in the initial matrix:

X =

⎛⎜⎜⎝
x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15 .

⎞⎟⎟⎠ =

⎛⎜⎜⎝
c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

⎞⎟⎟⎠ . (4)

2. The nonlinear operation of Round transforms a vector (x0, x1, x2, x3) to
(z0, z1, z2, z3) by sequentially computing

b0 = x0 + x1, b3 = (x3 ⊕ b0) ≪ 16
b2 = x2 + b3, b1 = (x1 ⊕ b2) ≪ 12
z0 = b0 + b1, z3 = (b3 ⊕ z0) ≪ 8
z2 = b2 + z3, z1 = (b1 ⊕ z2) ≪ 7 .

(5)

3. The round function is defined differently: in odd numbers of rounds, the non-
linear operation is applied to the columns (x0, x4, x8, x12), (x1, x5, x9, x13),
(x2, x6, x10, x14), (x3, x7, x11, x15), and in even numbers of rounds, the non-
linear operation is applied to the diagonals (x0, x5, x10, x15), (x1, x6, x11, x12),
(x2, x7, x8, x13), (x3, x4, x9, x14), see [3] for details.

As for Salsa20, the round function of ChaCha is trivially invertible. R-round
variants are denoted ChaChaR. The core function of ChaCha suggests that “the
big advantage of ChaCha over Salsa20 is the diffusion, which at least at first
glance looks considerably faster” [4].

2.3 Rumba

Rumba is a compression function built on Salsa20, mapping a 1536-bit message
to a 512-bit value. The input M is parsed as four 384-bit chunks M0,. . . ,M3,
and Rumba’s output is

Rumba(M) = F0(M0) ⊕ F1(M1) ⊕ F2(M2) ⊕ F3(M3)
= (X0 + X20

0) ⊕ (X1 + X20
1) ⊕ (X2 + X20

2) ⊕ (X3 + X20
3) ,

(6)

where each Fi is an instance of the function Salsa20 with distinct diagonal con-
stants (see Appendix A). The 384-bit input chunk Mi along with the corre-
sponding 128-bit diagonal constants are then used to fill up the corresponding
input matrix Xi. A single word j of Xi is denoted xi,j . Note that the functions
Fi include the feedforward operation of Salsa20. RumbaR stands for R-round
variant.

3 Differential Analysis of Salsa20 and ChaCha

This section introduces differential attacks based on a new technique called prob-
abilistic neutral bits (shortcut PNB’s). To apply it to Salsa20 and ChaCha, we
first identify optimal choices of truncated differentials, then we describe a general
framework for probabilistic backwards computation, and introduce the notion of
PNB’s along with a method to find them. Then, we outline the overall attack,
and present concrete attacks for Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7.
Eventually, we discuss our attack scenarios and possibilities of improvements.

474 J.-P. Aumasson et al.

3.1 Choosing a Differential

Let xi be the i-th word of the matrix-state X , and x′
i an associated word with the

difference ∆0
i = xi ⊕ x′

i. The j-th bit of xi is denoted [xi]j . We use (truncated)
input/output differentials for the input X , with a single-bit input-difference
[∆0

i]j = 1 in the nonce, and consider a single-bit output-difference [∆r
p]q af-

ter r rounds in Xr. Such a differential is denoted ([∆r
p]q | [∆0

i]j). For a fixed key,
the bias εd of the output-difference is defined by

Pr
v,t

{[∆r
p]q = 1 | [∆0

i]j} =
1
2
(1 + εd) , (7)

where the probability holds over all nonces and counters. Furthermore, consider-
ing key as a random variable, we denote the median value of of εd by ε�

d. Hence,
for half of the keys this differential will have a bias of at least ε�

d. Note that our
statistical model considers a (uniformly) random value of the counter. In the
following, we use the shortcuts ID and OD for input- and output-difference.

3.2 Probabilistic Backwards Computation

In the following, assume that the differential ([∆r
p]q | [∆0

i]j) of bias εd is fixed,
and the corresponding outputs Z and Z ′ are observed for nonce v, counter t
and key k. Having k, v and t, one can invert the operations in Z = X + XR

and Z ′ = X ′ +(X ′)R in order to access to the r-round forward differential (with
r < R) from the backward direction thanks to the relations Xr = (Z−X)r−R and
(X ′)r = (Z ′ − X ′)r−R. More specifically, define f(k, v, t, Z, Z ′) as the function
which returns the q-th LSB of the word number p of the matrix (Z−X)r−R⊕(Z ′−
X ′)r−R, hence f(k, v, t, Z, Z ′) = [∆r

p]q. Given enough output block pairs with
the presumed difference in the input, one can verify the correctness of a guessed
candidate k̂ for the key k by evaluating the bias of the function f . More precisely,
we have Pr{f(k̂, v, t, Z, Z ′) = 1} = 1

2 (1 + εd) conditioned on k̂ = k, whereas for
(almost all) k̂ �= k we expect f be unbiased i.e. Pr{f(k̂, v, t, Z, Z ′) = 1} = 1

2 .
The classical way of finding the correct key requires exhaustive search over all
possible 2256 guesses k̂. However, we can search only over a subkey of m = 256−n
bits, provided that an approximation g of f which effectively depends on m key
bits is available. More formally, let k̄ correspond to the subkey of m bits of the
key k and let f be correlated to g with bias εa i.e.:

Pr
v,t

{f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)} =
1
2
(1 + εa) . (8)

Note that deterministic backwards computation (i.e. k̄ = k with f = g) is a
special case with εa = 1. Denote the bias of g by ε, i.e. Pr{g(k̄, v, t, Z, Z ′) =
1} = 1

2 (1 + ε). Under some reasonable independency assumptions, the equality
ε = εd · εa holds. Again, we denote ε� the median bias over all keys (we verified
in experiments that ε� can be well estimated by the median of εd · εa). Here, one
can verify the correctness of a guessed candidate ˆ̄k for the subkey k̄ by evaluating

New Features of Latin Dances 475

the bias of the function g based on the fact that we have Pr{g(ˆ̄k, v, t, Z, Z ′) =
1} = 1

2 (1 + ε) for ˆ̄k = k̄, whereas Pr{g(ˆ̄k, v, t, Z, Z ′) = 1} = 1
2 for ˆ̄k �= k̄. This

way we are facing an exhaustive search over 2m subkey candidates opposed to
the original 2256 key candidates which can potentially lead to a faster attack.
We stress that the price which we pay is a higher data complexity, see §3.4 for
more details.

3.3 Probabilistic Neutral Bits

Our new view of the problem, described in §3.2, demands efficient ways for
finding suitable approximations g(k̄, W) of a given function f(k, W) where W
is a known parameter; in our case, it is W = (v, t, Z, Z ′). In a probabilistic
model one can consider W as a uniformly distributed random variable. Finding
such approximations in general is an interesting open problem. In this section
we introduce a generalized concept of neutral bits [9] called probabilistic neutral
bits (PNB’s). This will help us to find suitable approximations in the case that
the Boolean function f does not properly mix its input bits. Generally speaking,
PNB’s allows us to divide the key bits into two groups: significant key bits (of
size m) and non-significant key bits (of size n). In order to identify these two
sets we focus on the amount of influence which each bit of the key has on the
output of f . Here is a formal definition of a suitable measure:

Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion f(k, W) is defined as γi, where Pr = 1

2 (1 + γi) is the probability (over all k
and W) that complementing the key bit ki does not change the output of f(k, W).

Singular cases of the neutrality measure are:

– γi = 1: f(k, W) does not depend on i-th key bit (i.e. it is a neutral bit).
– γi = 0: f(k, W) is statistically independent of the i-th key bit (i.e. it is a

significant bit).
– γi = −1: f(k, W) linearly depends on the i-th key bit.

In practice, we set a threshold γ and put all key bits with γi ≤ γ in the set of
significant key bits. The less significant key bits we get, the faster the attack will
be, provided that the bias εa (see Eq. 8) remains non-negligible. Having found
significant and non-significant key bits, we simply let k̄ be the significant key
bits and define g(k̄, W) as f(k, W) with non-significant key bits being set to a
fixed value (e.g. all zero). Note that, contrary to the mutual interaction between
neutral bits in [9], here we have directly combined several PNB’s without altering
their probabilistic quality. This can be justified as the bias εa smoothly decreases
while we increase the threshold γ.

Remark 1. Tsunoo et al. [16] used nonlinear approximations of integer addition
to identify the dependency of key bits, whereas the independent key bits—with
respect to nonlinear approximation of some order—are fixed. This can be seen
as a special case of our method.

476 J.-P. Aumasson et al.

3.4 Complexity Estimation

Here we sketch the full attack described in the previous subsections, then study
its computational cost. The attack is split up into a precomputation stage, and
a stage of effective attack; note that precomputation is not specific to a key or
a counter.

Precomputation

1. Find a high-probability r-round differential with ID in the nonce or counter.
2. Choose a threshold γ.
3. Construct the function f defined in §3.2.
4. Empirically estimate the neutrality measure γi of each key bit for f .
5. Put all those key bits with γi < γ in the significant key bits set (of size

m = 256 − n).
6. Construct the function g using f by assigning a fixed value to the non-

significant key bits, see §3.2 and §3.3.
7. Estimate the median bias ε� by empirically measuring the bias of g using

many randomly chosen keys, see §3.2.
8. Estimate the data and time complexity of the attack, see the following.

The cost of this precomputation phase is negligible compared to the effective
attack (to be explained later). The r-round differential and the threshold γ
should be chosen such that the resulting time complexity is optimal. This will
be addressed later in this section. At step 1, we require the difference to be in the
nonce or in the counter, assuming that both variables are user-controlled inputs.
We exclude a difference in the key in a related-key attack due to the disputable
attack model. Previous attacks on Salsa20 use the rough estimate of N = ε−2

samples, in order to identify the correct subkey in a large search space. However
this estimate is incorrect: this is the number of samples necessary to identify a
single random unknown bit from either a uniform source or from a non-uniform
source with ε, which is a different problem of hypothesis testing. In our case, we
have a set of 2m sequences of random variables with 2m − 1 of them verifying
the null hypothesis H0, and a single one verifying the alternative hypothesis H1.
For a realization a of the corresponding random variable A, the decision rule
D(a) = i to accept Hi can lead to two types of errors:

1. Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.
2. False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N ≈
(√

α log 4 + 3
√

1 − ε2

ε

)2

(9)

samples suffices to achieve pnd = 1.3× 10−3 and pfa = 2−α. Calculus details and
the construction of the optimal distinguisher can be found in [15], see also [1] for

New Features of Latin Dances 477

more general results on distributions’ distinguishability. In our case the value of ε
is key dependent, so we use the median bias ε� in place of ε in Eq. 9, resulting in
a success probability of at least 1

2 (1−pnd) ≈ 1
2 for our attack. Having determined

the required number of samples N and the optimal distinguisher, we can now
present the effective (or online) attack.

Effective attack

1. For an unknown key, collect N pairs of keystream blocks where each pair is
produced by states with a random nonce and counter (satisfying the relevant
ID).

2. For each choice of the subkey (i.e. the m significant key bits) do:
(a) Compute the bias of g using the N keystream block pairs.
(b) If the optimal distinguisher legitimates the subkeys candidate as a (pos-

sibly) correct one, perform an additional exhaustive search over the n
non-significant key bits in order to check the correctness of this filtered
subkey and to find the non-significant key bits.

(c) Stop if the right key is found, and output the recovered key.

Let us now discuss the time complexity of our attack. Step 2 is repeated for all
2m subkey candidates. For each subkey, step (a) is always executed which has
complexity1 of N . However, the search part of step (b) is performed only with
probability pfa = 2−α which brings an additional cost of 2n in case a subkey
passes the optimal distinguisher’s filter. Therefore the complexity of step (b) is
2npfa, showing a total complexity of 2m(N + 2npfa) = 2mN + 2256−α for the
effective attack. In practice, α (and hence N) is chosen such that it minimizes
2mN +2256−α. Note that the potential improvement from key ranking techniques
is not considered here, see e.g. [14]. The data complexity of our attack is N
keystream block pairs.

Remark 2. It is reasonable to assume that a false subkey, which is close to the
correct subkey, may introduce a non-negligible bias. In general, this results in
an increased value of pfa. If many significant key bits have neutrality measure
close to zero, then the increase is expected to be small, but the precise practical
impact of this observation is unknown to the authors.

3.5 Experimental Results

We used automatized search to identify optimal differentials for the reduced-
round versions Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7. This search is
based on the following observation: The number n of PNB’s for some fixed
threshold γ mostly depends on the OD, but not on the ID. Consequently, for
each of the 512 single-bit OD’s, we can assign the ID with maximum bias εd, and
estimate time complexity of the attack. Below we only present the differentials
leading to the best attacks. The threshold γ is also an important parameter:
1 More precisely the complexity is about 2(R − r)/RN times the required time for

producing one keystream block.

478 J.-P. Aumasson et al.

Given a fixed differential, time complexity of the attack is minimal for some
optimal value of γ. However, this optimum may be reached for quite small γ,
such that n is large and |ε�

a| small. We use at most 224 random nonces and
counters for each of the 210 random keys, so we can only measure a bias of
about |ε�

a| > c · 2−12 (where c ≈ 10 for a reasonable estimation error). In our
experiments, the optimum is not reached with these computational possibilities
(see e.g. Tab. 2), and we note that the described complexities may be improved
by choosing a smaller γ.

Attack on 256-bit Salsa20/7. We use the differential ([∆4
1]14 | [∆0

7]31) with |ε�
d| =

0.131. The OD is observed after working three rounds backward from a 7-round
keystream block. To illustrate the role of the threshold γ, we present in Tab. 2
complexity estimates along with the number n of PNB’s, the values of |ε�

d| and
|ε�|, and the optimal values of α for several threshold values. For γ = 0.4, the
attack runs in time 2151 and data 226. The previous best attack in [16] required
about 2190 trials and 212 data.

Table 2. Different parameters for our attack on 256-bit Salsa20/7

γ n |ε�
a| |ε�| α Time Data

1.00 39 1.000 0.1310 31 2230 213

0.90 97 0.655 0.0860 88 2174 215

0.80 103 0.482 0.0634 93 2169 216

0.70 113 0.202 0.0265 101 2162 219

0.60 124 0.049 0.0064 108 2155 223

0.50 131 0.017 0.0022 112 2151 226

Attack on 256-bit Salsa20/8. We use again the differential ([∆4
1]14 | [∆0

7]31) with
|ε�

d| = 0.131. The OD is observed after working four rounds backward from an 8-
round keystream block. For the threshold γ = 0.12 we find n = 36, |ε�

a| = 0.0011,
and |ε�| = 0.00015. For α = 8, this results in time 2251 and data 231. The list of
PNB’s is {26, 27, 28, 29, 30, 31, 71, 72, 120, 121, 122, 148, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 176, 177, 210, 211, 212, 224, 225, 242, 243, 244,
245, 246, 247}. Note that our attack reaches the same success probability and
supports an identical degree of parallelism as brute force. The previous attack
in [16] claims 2255 trials with data 210 for success probability 44%, but exhaustive
search succeeds with probability 50% within the same number of trials, with
much less data and no additional computations. Therefore their attack does not
constitute a break of Salsa20/8.

Attack on 128-bit Salsa20/7. Our attack can be adapted to the 128-bit version
of Salsa20/7. With the differential ([∆4

1]14 | [∆0
7]31) and γ = 0.4, we find n = 38,

|ε�
a| = 0.045, and |ε�| = 0.0059. For α = 21, this breaks Salsa20/7 within 2111

time and 221 data. Our attack fails to break 128-bit Salsa20/8 because of the
insufficient number of PNB’s.

New Features of Latin Dances 479

Attack on 256-bit ChaCha6. We use the differential ([∆3
11]0 | [∆0

13]13) with |ε�
d| =

0.026. The OD is observed after working three rounds backward from an 6-round
keystream block. For the threshold γ = 0.6 we find n = 147, |ε�

a| = 0.018, and
|ε�| = 0.00048. For α = 123, this results in time 2139 and data 230.

Attack on 256-bit ChaCha7. We use again the differential ([∆3
11]0 | [∆0

13]13) with
|ε�

d| = 0.026. The OD is observed after working four rounds backward from an
7-round keystream block. For the threshold γ = 0.5 we find n = 35, |ε�

a| = 0.023,
and |ε�| = 0.00059. For α = 11, this results in time 2248 and data 227. The list
of PNB’s is {3, 6, 15, 16, 31, 35, 67, 68, 71, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
103, 104, 127, 136, 191, 223, 224, 225, 248, 249, 250, 251, 252, 253, 254, 255}.

Attack on 128-bit ChaCha6. Our attack can be adapted to the 128-bit version
of ChaCha6. With the differential ([∆3

11]0 | [∆0
13]13) and γ = 0.5, we find n = 51,

|ε�
a| = 0.013, and |ε�| = 0.00036. For α = 26, this breaks ChaCha6 within 2107

time and 230 data. Our attack fails to break 128-bit ChaCha7.

3.6 Discussion

Our attack on reduced-round 256-bit Salsa20 exploits a 4-round differential, to
break the 8-round cipher by working four rounds backward. For ChaCha, we
use a 3-round differential to break 7 rounds. We made intensive experiments for
observing a bias after going five rounds backwards from the guess of a subkey,
in order to attack Salsa20/9 or ChaCha8, but without success. Four seems to
be the highest number of rounds one can invert from a partial key guess, while
still observing a non-negligible bias after inversion, and such that the overall
cost improves from exhaustive key search. Can one hope to break further rounds
by statistical cryptanalysis? We believe that it would require novel techniques
and ideas, rather than the relatively simple XOR difference of 1-bit input and
1-bit output. For example, one might combine several biased OD’s to reduce the
data complexity, but this requires almost equal subsets of guessed bits; according
to our experiments, this seems difficult to achieve. We also found some highly
biased multibit differentials such as ([∆4

1]0⊕ [∆4
2]9 | [∆0

7]26) with bias εd = −0.60
for four rounds of Salsa20. However, exploiting multibit differentials, does not
improve efficiency either. Note that an alternative approach to attack Salsa20/7
is to consider a 3-round biased differential, and observe it after going four rounds
backward. This is however much more expensive than exploiting directly 4-round
differentials. Unlike Salsa20, our exhaustive search showed no bias in 4-round
ChaCha, be it with one, two, or three target output bits. This argues in favor of
the faster diffusion of ChaCha. But surprisingly, when comparing the attacks on
Salsa20/8 and ChaCha7, results suggest that after four rounds backward, key
bits are more correlated with the target difference in ChaCha than in Salsa20.
Nevertheless, ChaCha looks more trustful on the overall, since we could break
up to seven ChaCha rounds against eight for Salsa20. For the variants with a
128-bit key, we can break up to seven Salsa20 rounds, and up to six ChaCha
rounds.

480 J.-P. Aumasson et al.

4 Analysis of Rumba

This section describes our results for the compression function Rumba. Our goal
is to efficiently find colliding pairs for R-round Rumba, i.e. input pairs (M, M ′)
such that RumbaR(M)⊕RumbaR(M ′) = 0. Note that, compared to our attacks
on Salsa20 (where a single biased bit could be exploited in an attack), a collision
attack targets all 512 bits (or a large subset of them for near-collisions).

4.1 Collisions and Preimages in Simplified Versions

We show here the weakness of two simplified versions of Rumba, respectively an
iterated version with 2048-bit-input compression function, and the compression
function without the final feedforward.

On the Role of Diagonal Constants. Rumba20 is fed with 1536 bits, copied
in a 2048-bit state, whose remaining 512 bits are the diagonal constants. It is
tempting to see these values as the IV of a derived iterated hash function, and
use diagonal values as chaining variables. However, Bernstein implicitly warned
against such a construction, when claiming that “Rumba20 will take about twice
as many cycles per eliminated byte as Salsa20 takes per encrypted byte” [7]; in-
deed, the 1536-bit input should contain both the 512-bit chaining value and the
1024-bit message, and thus for a 1024-bit input the Salsa20 function is called
four times (256 bits processed per call), whereas in Salsa20 it is called once
for a 512-bit input. We confirm here that diagonal values should not be re-
placed by the chaining variables, by presenting a method for finding collisions
within about 2128/6 trials, against 2256 with a birthday attack: Consider the
following algorithm: pick an arbitrary 1536-bit message block M0, then com-
pute Rumba(M0) = H0‖H1‖H2‖H3, and repeat this until two distinct 128-bit
chunks Hi and Hj are equal—say H0 and H1, corresponding to the diagonal
constants of F0 and F1 in the next round; hence, these functions will be iden-
tical in the next round. A collision can then be obtained by choosing two dis-
tinct message blocks M1 = M1

0 ‖M1
1‖M1

2‖M1
3 and (M ′)1 = M1

1 ‖M1
0‖M1

2‖M1
3 , or

M1 = M1
0 ‖M1

0‖M1
2 ‖M1

3 and (M ′)1 = (M ′
0)

1‖(M ′
0)

1‖M1
2‖M1

3 . How fast is this
method? By the birthday paradox, the amount of trials for finding a suitable
M0 is about 2128/6 (here 6 is the number of distinct sets {i, j} ⊂ {0, . . . , 3}),
while the construction of M1 and (M ′)1 is straightforward. Regarding the price-
performance ratio, we do not have to store or sort a table, so the price is 2128/6—
and this, for any potential filter function—while performance is much larger than
one, because there are many collisions (one can choose 3 messages and 1 differ-
ence of 348 bits arbitrarily). This contrasts with the cost of 2256 for a serial
attack on a 512-bit digest hash function.

On the Importance of Feedforward. In Davies-Meyer-based hash functions
like MD5 or SHA-1, the final feedforward is an obvious requirement for one-
wayness. In Rumba the feedforward is applied in each Fi, before an XOR of
the four branches, and omitting this operation does not trivially lead to an

New Features of Latin Dances 481

inversion of the function, because of the incremental construction. However, as
we will demonstrate, preimage resistance is not guaranteed with this setting. Let
Fi(Mi) = X20

i , i = 0, . . . , 3 and assume that we are given a 512-bit value H , and
our goal is to find M = (M0, M1, M2, M3) such that Rumba(M) = H . This can
be achieved by choosing random blocks M0, M1, M2, and set

Y = F0(M0) ⊕ F1(M1) ⊕ F2(M2) ⊕ H . (10)

We can find then the 512-bit state X0
3 such that Y = X20

3 . If X0
3 has the

correct diagonal values (the 128-bit constant of F3), we can extract M3 from X3
0

with respect to Rumba’s definition. This randomized algorithm succeeds with
probability 2−128, since there are 128 constant bits in an initial state. Therefore,
a preimage of an arbitrary digest can be found within about 2128 trials, against
2512/3 (= 2512/(1+log2 4)) with the generalized birthday method.

4.2 Differential Attack

To obtain a collision for RumbaR, it is sufficient to find two messages M and
M ′ such that

F0(M0) ⊕ F0(M ′
0) = F2(M2) ⊕ F2(M ′

2) , (11)

with M0 ⊕ M ′
0 = M2 ⊕ M ′

2, M1 = M ′
1 and M3 = M ′

3. The freedom in choosing
M1 and M3 trivially allows to derive many other collisions (multicollision). We
use the following notations for differentials: Let the initial states Xi and X ′

i have
the ID ∆0

i = Xi ⊕ X ′
i for i = 0, . . . , 3. After r rounds, the observed difference is

denoted ∆r
i = Xr

i ⊕ (X ′
i)

r, and the OD (without feedforward) becomes ∆R
i =

XR
i ⊕ (X ′

i)
R. If feedforward is included in the OD, we use the notation ∇R

i =
(Xi + XR

i) ⊕ (X ′
i + (X ′

i)
R). With this notation, Eq. 11 becomes ∇R

0 = ∇R
2 ,

and if the feedforward operation is ignored in the Fi’s, then Eq. 11 simplifies to
∆R

0 = ∆R
2 . To find messages satisfying Eq. 11, we use an R-round differential

path of high-probability, with intermediate target difference δr after r rounds,
0 ≤ r ≤ R. Note that the differential is applicable for both F0 and F2, thus we
do not have to subscript the target difference. The probability that a random
message pair with ID δ0 conforms to δr is denoted pr. To satisfy the equation
∆R

0 = ∆R
2 , it suffices to find message pairs such that the observed differentials

equal the target one, that is, ∆R
0 = δR and ∆R

2 = δR. The naive approach is to
try about 1/pr random messages each. This complexity can however be lowered
down by:

– Finding constraints on the message pair so that it conforms to the difference
δ1 after one round with certainty (this will be achieved by linearization).

– Deriving message pairs conforming to δr from a single conforming pair (the
message-modification technique used will be neutral bits).

Finally, to have ∇R
0 = ∇R

2 , we need to find message pairs such that ∇R
0 = δR⊕δ0

and ∇R
2 = δR ⊕ δ0 (i.e. the additions are not producing carry bits). Given a ran-

dom message pair that conforms to δR, this holds with probability about 2−v−w

where v and w are the respective weights of the ID δ0 and of the target OD δR

482 J.-P. Aumasson et al.

(excluding the linear MSB’s). The three next paragraphs are respectively dedi-
cated to finding an optimal differential, describing the linearization procedure,
and describing the neutral bits technique.

Remark 3. One can observe that the constants of F0 and F2 are almost similar, as
well as the constants of F1 and F3 (cf. Appendix A). To improve the generalized
birthday attack suggested in [7], a strategy is to find a pair (M0, M2) such that
F0(M0)⊕F2(M2) is biased in any c bits after R rounds (where c ≈ 114, see [7]),
along with a second pair (M1, M3) with F1(M1) ⊕ F3(M3) biased in the same c
bits. The sum F0(M0)⊕F2(M2) can be seen as the feedforward OD of two states
having an ID which is nonzero in some diagonal words. However, differences in
the diagonal words result in a large diffusion, and this approach seems to be
much less efficient than differential attacks for only one function Fi.

Finding a High-Probability Differential. We search for a linear differential
over several rounds of Rumba, i.e. a differential holding with certainty when addi-
tions are replaced by XOR’s, see [13]. The differential is independent of the diag-
onal constants, and it is expected to have high probability for genuine Rumba if
the linear differential has low weight. An exhaustive search for suitable ID’s is not
traceable, so we choose another method: We focus on a single column in Xi, and
consider the weight of the input (starting with the diagonal element, which must
be zero). With a fixed relative position of the non-zero bits in this input, one can
obtain an output of low weight after the first linear round of Rumba (i.e. using the
linearized Eq. 3). Here is a list of the mappings (showing the weight only) which
have at most weight 2 in each word of the input and output:

g1 : (0, 0, 0, 0) → (0, 0, 0, 0) g8 : (0, 1, 2, 0) → (1, 1, 1, 0)
g2 : (0, 0, 1, 0) → (2, 0, 1, 1) g9 : (0, 1, 2, 2) → (1, 1, 1, 2)
g3 : (0, 0, 1, 1) → (2, 1, 0, 2) g10 : (0, 2, 1, 1) → (0, 1, 0, 0)
g4 : (0, 1, 0, 1) → (1, 0, 0, 1) g11 : (0, 2, 1, 2) → (0, 0, 1, 1)
g5 : (0, 1, 1, 0) → (1, 1, 0, 1) g12 : (0, 2, 2, 1) → (0, 1, 1, 1)
g6 : (0, 1, 1, 1) → (1, 0, 1, 0) g13 : (0, 2, 2, 1) → (2, 1, 1, 1)
g7 : (0, 0, 2, 1) → (2, 1, 1, 1) g14 : (0, 2, 2, 2) → (2, 0, 2, 0)

The relations above can be used to construct algorithmically a suitable ID with
all 4 columns. Consider the following example, where the state after the first
round is again a combination of useful rows: (g1, g10, g1, g11) → (g1, g2, g4, g1).
After 2 rounds, the difference has weight 6 (with weight 3 in the diagonal words).
There is a class of ID’s with the same structure: (g1, g10, g1, g11), (g1, g11, g1, g10),
(g10, g1, g11, g1), (g11, g1, g10, g1). The degree of freedom is large enough to con-
struct these 2-round linear differentials: the positions of the nonzero bits in a
single mapping gi are symmetric with respect to rotation of words (and the re-
quired gi have an additional degree of freedom). Any other linear differential
constructed with gi has larger weight after 2 rounds. Let ∆i,j denote the dif-
ference of word j = 0, . . . , 15 in state i = 0, . . . , 3. For our attacks on Rumba,
we will consider the following input difference (with optimal rotation, such that
many MSB’s are involved):

New Features of Latin Dances 483

∆0
i,2 = 00000002 ∆0

i,8 = 80000000
∆0

i,4 = 00080040 ∆0
i,12 = 80001000

∆0
i,6 = 00000020 ∆0

i,14 = 01001000

and ∆0
i,j = 0 for all other words j. The weight of differences for the first four

linearized rounds is as follows (the subscript of the arrows denotes the approxi-
mate probability pr that a random message pair conforms to this differential for
a randomly chosen value for diagonal constants):⎛⎜⎜⎝

0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0

⎞⎟⎟⎠ Round−→
2−4

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0

⎞⎟⎟⎠ Round−→
2−7

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1

⎞⎟⎟⎠ Round−→
2−41

⎛⎜⎜⎝
2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6

⎞⎟⎟⎠ Round−→
2−194

⎛⎜⎜⎝
8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9

⎞⎟⎟⎠
With this fixed ID, we can determine the probability that the OD obtained
by genuine Rumba corresponds to the OD of linear Rumba. Note that integer
addition is the only nonlinear operation. Each nonzero bit in the ID of an
integer addition behaves linearly (i.e. it does not create or annihilate a sequence
of carry bits) with probability 1/2, while a difference in the MSB is always
linear. In the first round, there are only four bits with associated probability 1/2,
hence p1 = 2−4 (see also the subsection on linearization). The other cumulative
probabilities are p2 = 2−7, p3 = 2−41, p4 = 2−194. For 3 rounds, we have
weights v = 7 and w = 37, thus the overall complexity to find a collision after
3 rounds is about 241+37+7 = 285. For 4 rounds, v = 7 and w = 112, leading
to a complexity 2313. The probability that feedforward behaves linearly can be
increased by choosing low-weight inputs.

Linearization. The first round of our differential has a theoretical probability of
p1 = 2−4 for a random message. This is roughly confirmed by our experiments,
where exact probabilities depend on the diagonal constants (for example, we
experimentally observed p1 = 2−6.6 for F0, and p1 = 2−6.3 for F2, the other two
probabilities are even closer to 2−4). We show here how to set constraints on the
message so that the first round differential holds with certainty, using methods
similar to the ones in [13].

Let us begin with the first column of F0, where c0,0 = x0,0 = 73726966. In
the first addition x0,0 + x0,12, we have to address ∆0

0,12, which has a nonzero
(and non-MSB) bit on position 12 (counting from 0). The bits of the constant
are [x0,0]12−10 = (010)2, hence the choice [x0,12]11,10 = (00)2 is sufficient for
linearization. This corresponds to x0,12 ← x0,12 ∧ FFFF3FFF. The subsequent
3 additions of the first column are always linear as only MSB’s are involved.
Then, we linearize the third column of F0, where c0,2 = x0,10 = 30326162. In
the first addition x0,10 + x0,6, we have to address ∆0

0,6, which has a nonzero bit
on position 5. The relevant bits of the constant are [x0,10]5−1 = (10001)2, hence
the choice [x0,6]4−1 = (1111)2 is sufficient for linearization. This corresponds
to x0,6 ← x0,6 ∨ 0000001E. In the second addition z0,14 + x0,10, the updated
difference ∆1

0,14 has a single bit on position 24. The relevant bits of the constant

484 J.-P. Aumasson et al.

are [x0,10]24,23 = (00)2, hence the choice [z0,14]23 = (0)2 is sufficient. Notice
that conditions on the updated words must be transformed to the initial state
words. As z0,14 = x0,14 ⊕ (x0,10 + x0,6) ≪ 8, we find the condition [x0,14]23 =
[x0,10 + x0,6]16. If we let both sides be zero, we have [x0,14]23 = (0)2 or x0,14 ←
x0,14 ∧ FF7FFFFF, and [x0,10 + x0,6]16 = (0)2. As [x0,10]16,15 = (00)2, we can
choose [x0,6]16,15 = (00)2 or x0,6 ← x0,6 ∧ FFFE7FFF. Finally, the third addition
z0,2 + z0,14 must be linearized with respect to the single bit in ∆1

0,14 on position
24. A sufficient condition for linearization is [z0,2]24,23 = (00)2 and [z0,14]23 =
(0)2. The second condition is already satisfied, so we can focus on the first
condition. The update is defined by z0,2 = x0,2 ⊕ (z0,14 + x0,10) ≪ 9, so we set
[x0,2]24,23 = (00)2 or x0,2 ← x0,2 ∧ FE7FFFFF, and require [z0,14 + x0,10]15,14 =
(00)2. As [x0,10]15−13 = (011)2, we can set [z0,14]15−13 = (101)2. This is satisfied
by choosing [x0,14]15−13 = (000)2 or x0,14 ← x0,14 ∧ FFFF1FFF, and by choosing
[x0,10 + x0,6]8−6 = (101)2. As [x0,10]8−5 = (1011)2, we set [x0,6]8−5 = (1111)2
or x0,6 ← x0,6 ∨ 000001E0. Altogether, we fixed 18 (distinct) bits of the input,
other linearizations are possible.

The first round of F2 can be linearized with exactly the same conditions.
This way, we save an average factor of 24 (additive complexities are ignored).
This linearization with sufficient conditions does not work well for more than
one round because of an avalanche effect of fixed bits. We lose many degrees of
freedom, and contradictions are likely to occur.

Neutral Bits. Thanks to linearization, we can find a message pair conforming to
δ2 within about 1/(2−7+4) = 23 trials. Our goal now is to efficiently derive from
such a pair many other pairs that are conforming to δ2, so that a search for three
rounds can start after the second round, by using the notion of neutral bits again
(cf. §3.3). Neutral bits can be identified easily for a fixed pair of messages, but
if several neutral bits are complemented in parallel, then the resulting message
pair may not conform anymore. A heuristic approach was introduced in [9],
using a maximal 2-neutral set. A 2-neutral set of bits is a subset of neutral
bits, such that the message pair obtained by complementing any two bits of the
subset in parallel also conform to the differential. The size of this set is denoted
n. In general, finding a 2-neutral set is an NP-complete problem—the problem
is equivalent to the Maximum Clique Problem from graph theory, but good
heuristic algorithms for dense graphs exist, see e.g. [10]. In the case of Rumba,
we compute the value n for different message pairs that conform to δ2 and
choose the pair with maximum n. We observe that about 1/2 of the 2n message
pairs (derived by flipping some of the n bits of the 2-neutral set) conform to
the differential2. This probability p is significantly increased, if we complement
at most � 	 n bits of the 2-neutral set, which results in a message space (not
contradicting with the linearization) of size about p ·

(
n
�

)
. At this point, a full

collision for 3 rounds has a reduced theoretical complexity of 285−7/p = 278/p

2 In the case of SHA-0, about 1/8 of the 2n message pairs (derived from the orig-
inal message pair by complementing bits from the 2-neutral set) conform to the
differential for the next round.

New Features of Latin Dances 485

(of course, p should not be smaller than 2−3). Since we will have p > 1
2 for a

suitable choice of �, the complexity gets reduced from 285 to less than 279.

4.3 Experimental Results

We choose a random message of low weight, apply the linearization for the first
round and repeat this about 23 times until the message pairs conforms to δ2. We
compute then the 2-neutral set of this message pair. This protocol is repeated a
few times to identify a message pair with large 2-neutral set:

– For F0, we find the pair of states (X0, X
′
0) of low weight, with 251 neutral

bits and a 2-neutral set of size 147. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.52.

X0 =

⎛⎜⎜⎝
73726966 00000400 00000080 00200001
00002000 6d755274 000001fe 02000008
00000040 00000042 30326162 10002800
00000080 00000000 01200000 636f6c62

⎞⎟⎟⎠
– For F2, we find the pair of states (X2, X

′
2) of low weight, with 252 neutral

bits and a 2-neutral set of size 146. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.41.

X2 =

⎛⎜⎜⎝
72696874 00000000 00040040 00000400
00008004 6d755264 000001fe 06021184
00000000 00800040 30326162 00000000
00000300 00000400 04000000 636f6c62

⎞⎟⎟⎠
Given these pairs for 2 rounds, we perform a search in the 2-neutral set by
flipping at most 10 bits (that gives a message space of about 250), to find pairs
that conform to δ3. This step has a theoretical complexity of about 234 for each
pair (which was verified in practice). For example, in (X0, X

′
0) we can flip the bits

{59, 141, 150, 154, 269, 280, 294 ,425} in order to get a pair of states (X̄0, X̄
′
0)

that conforms to δ3.In the case of (X2, X
′
2), we can flip the bits {58, 63, 141,

271, 304, 317, 435, 417, 458, 460} in order to get a pair of states (X̄2, X̄
′
2) that

conforms to δ3.

X̄0 =

⎛⎜⎜⎝
73726966 08000400 00000080 00200001
04400000 6d755274 000001fe 02000008
01002040 00000002 30326162 10002800
00000080 00000200 01200000 636f6c62

⎞⎟⎟⎠

X̄2 =

⎛⎜⎜⎝
72696874 84000000 00040040 00000400
0000a004 6d755264 000001fe 06021184
00008000 20810040 30326162 00000000
00000300 00080402 04001400 636f6c62

⎞⎟⎟⎠

486 J.-P. Aumasson et al.

At this point, we have collisions for 3-round Rumba without feedforward, hence
∆3

0 ⊕ ∆3
2 = 0. If we include feedforward for the above pairs of states, then

∇3
0 ⊕∇3

2 has weight 16, which corresponds to a near-collision. Note that a near-
collision indicates non-randomness of the reduced-round compression function
(we assume a Gaussian distribution centered at 256). This near-collision of low
weight was found by using a birthday-based method: we produce a list of pairs
for F0 that conform to δ3 (using neutral bits as above), together with the cor-
responding value of ∇3

0. The same is done for F2. If each list has size N , then
we can produce N2 pairs of ∇3

0 ⊕ ∇3
2 in order to identify near-collisions of low

weight.
However, there are no neutral bits for the pairs (X̄0, X̄

′
0) and (X̄2, X̄

′
2) with

respect to δ3. This means that we cannot completely separate the task of finding
full collisions with feedforward, from finding collisions without feedforward (and
we can not use neutral bits to iteratively find pairs that conform to δ4). To find a
full collision after three rounds, we could perform a search in the 2-neutral set of
(X0, X

′
0) and (X2, X

′
2) by flipping at most 20 bits. In this case, the resulting pairs

conform to δ2 with probability at least Pr = 0.68, and the message space has a
size of about 280. The overall complexity becomes 278/0.68 ≈ 279 (compared to
285 without linearization and neutral bits). Then, we try to find near-collisions
of low weight for 4 rounds, using the birthday method described above. Within
less than one minute of computation, we found the pairs (¯̄X0,

¯̄X ′
0) and (¯̄X2,

¯̄X ′
2)

such that ∇4
0 ⊕ ∇4

2 has weight 129. Consequently, the non-randomness of the
differential is propagating up to 4 rounds.

¯̄X0 =

⎛⎜⎜⎝
73726966 00020400 00000080 00200001
00002400 6d755274 000001fe 02000008
00000040 00220042 30326162 10002800
00000080 00001004 01200000 636f6c62

⎞⎟⎟⎠

¯̄X2 =

⎛⎜⎜⎝
72696874 00001000 80040040 00000400
00008804 6d755264 000001fe 06021184
00000000 80800040 30326162 00000000
00000300 00000450 04000000 636f6c62

⎞⎟⎟⎠

5 Conclusions

We presented a novel method for attacking reduced-round Salsa20 and ChaCha,
inspired by correlation attacks and by the notion of neutral bits. This allows to
give the first attack faster than exhaustive search on the stream cipher Salsa20/8
with a 256-bit key. For the compression function Rumba the methods of lin-
earization and neutral bits are applied to a high probability differential to find
collisions on 3-round Rumba within 279 trials, and to efficiently find low weight
near collisions on 3-round and 4-round Rumba.

New Features of Latin Dances 487

Acknowledgments

The authors would like to thank Dan Bernstein for insightful comments on a
preliminary draft, the reviewers of FSE 2008 who helped us to improve the
clarity of the paper, and Florian Mendel for his proofreading. J.-Ph. Aumasson
is supported by the Swiss National Science Foundation (SNF) under project
number 113329. S. Fischer is supported by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS),
a center of the SNF under grant number 5005-67322. W. Meier is supported
by Hasler Foundation (see http://www.haslerfoundation.ch) under project
number 2005. C. Rechberger is supported by the Austrian Science Fund (FWF),
project P19863, and by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

2. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

3. D.J. Bernstein. ChaCha, a variant of Salsa20, See also [8],
http://cr.yp.to/chacha.html

4. Bernstein, D.J.: Salsa20 and ChaCha. eSTREAM discussion forum, May 11 (2007)
5. Bernstein, D.J.: Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT Stream

Cipher Project (2005), http://cr.yp.to/snuffle.html
6. Bernstein, D.J.: Salsa20/8 and Salsa20/12. Technical Report 2006/007, eSTREAM,

ECRYPT Stream Cipher Project (2005)
7. Bernstein, D.J.: What output size resists collisions in a XOR of independent ex-

pansions? ECRYPT Workshop on Hash Functions (2007),
http://cr.yp.to/rumba20.html

8. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: SASC 2008 – The State of the
Art of Stream Ciphers. ECRYPT (2008), http://cr.yp.to/rumba20.html

9. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

10. Burer, S., Monteiro, R.D.C., Zhang, Y.: Maximum stable set formulations and
heuristics based on continuous optimization. Mathematical Programming 64, 137–
166 (2002)

11. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. In: SASC
2006 – Stream Ciphers Revisited (2006)

12. ECRYPT. eSTREAM, the ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

13. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM candidates Salsa20 and TSC-4. In: Barua, R., Lange, T.
(eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

14. Junod, P., Vaudenay, S.: Optimal key ranking procedures in a statistical cryptanal-
ysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer,
Heidelberg (2003)

http://www.haslerfoundation.ch
http://cr.yp.to/chacha.html
http://cr.yp.to/snuffle.html
http://cr.yp.to/rumba20.html
http://cr.yp.to/rumba20.html
http://www.ecrypt.eu.org/stream

488 J.-P. Aumasson et al.

15. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE
Transactions on Computers 34(1), 81–85 (1985)

16. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential cryptanal-
ysis of Salsa20/8. In: SASC 2007 – The State of the Art of Stream Ciphers (2007)

17. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

A Constants

Here are the diagonal constants for Salsa20 and ChaCha (function Round) and
for Rumba (functions F0 to F3).

Round F0 F1 F2 F3

c0 61707865 73726966 6f636573 72696874 72756f66
c1 3320646E 6d755274 7552646e 6d755264 75526874
c2 79622D32 30326162 3261626d 30326162 3261626d
c3 6B206574 636f6c62 6f6c6230 636f6c62 6f6c6230

Author Index

Aumasson, Jean-Philippe 36, 470

Bard, Gregory V. 97
Biham, Eli 73, 270, 444
Biryukov, Alex 1

Carmeli, Yaniv 270
Chakraborty, Debrup 289
Chang, Donghoon 189, 429
Collard, Baudoin 382
Contini, Scott 207
Courtois, Nicolas T. 97

Dawson, Ed 363
Debraize, Blandine 235
Demirci, Hüseyin 116
Dottax, Emmanuelle 127
Dunkelman, Orr 73

Fischer, Simon 470

Goubin, Louis 235
Guo, Jian 207

Henricksen, Matt 363
Hernandez-Castro, Julio Cesar 462
Hilewitz, Yedidya 173
Hojśık, Michal 158
Hong, Seokhie 189

Kamara, Seny 303
Katz, Jonathan 303
Keller, Nathan 73
Khazaei, Shahram 470
Kim, Jongsung 189
Kubo, Hiroyasu 398

Lacharme, Patrick 334
Lee, Eunjin 189
Lee, Ruby B. 173
Leurent, Gaëtan 412
Ling, San 207
Lyubashevsky, Vadim 54

Maitra, Subhamoy 253
Manuel, Stéphane 16

Matusiewicz, Krystian 207
Meier, Willi 36, 470
Mendel, Florian 224
Micciancio, Daniele 54

Nandi, Mridul 289, 429
Nikolić, Ivica 1

Paul, Goutam 253
Peikert, Chris 54
Peyrin, Thomas 16
Phan, Raphael C.-W. 36
Pieprzyk, Josef 207
Pramstaller, Norbert 224
Prouff, Emmanuel 127

Quisquater, Jean-Jacques 382, 462

Raddum, H̊avard 363
Rechberger, Christian 224, 470
Rivain, Matthieu 127
Röck, Andrea 343
Rosen, Alon 54
Rudolf, Bohuslav 158

Saito, Teruo 398
Selçuk, Ali Aydın 116
Shamir, Adi 144
Shigeri, Maki 398
Standaert, François-Xavier 382
Steinfeld, Ron 207
Sung, Jaechul 189
Suzaki, Tomoyasu 398

Tapiador, Juan M.E. 462
Tsujihara, Etsuko 398
Tsunoo, Yukiyasu 398

Wagner, David 97
Wang, Huaxiong 207

Yasuda, Kan 316
Yin, Yiqun Lisa 173

Z’aba, Muhammad Reza 363

	Title Page
	Preface
	Organization
	Table of Contents
	Collisions for Step-Reduced SHA-256
	Introduction
	Description of SHA-2
	Technique for Creating Collisions
	Conditions for the Local Collision
	Solution of the System of Equations

	Full, Semi-free and Near Collisions for Step-Reduced SHA-256
	20-Step Collision
	21-Step Collision
	23-Step Semi-free Start Collision
	25-Steps Semi-free Start Near Collision

	Conclusion
	References

	Collisions on SHA-0 in One Hour
	Introduction
	Previous Collision Attacks on $\tt {SHA-0}$
	A Short Description of SHA-0
	First Attacks on $\tt {SHA-0}$
	The Wang Approach
	Naito $\it {et al.}$

	A New Perturbation Vector
	Boomerang Attacks for $\tt {SHA-0}$
	The Final Collision Attack
	A Method of Comparison
	Without Collision Search Speedup
	Using the Boomerang Improvement

	Conclusion
	References

	The Hash Function Family LAKE
	Introduction
	Specification
	Building Blocks
	The $\tt {LAKE}$ Structure
	Instances

	Design
	HAIFA as the Operating Mode
	Building Blocks
	Core Functions f and g
	Wordwise Operators
	Parameters

	Performance
	Algorithmic Complexity
	Implementation

	Security
	Introduction
	One-Wayness and Collision Resistance
	Algebraic Attacks
	Differential Attacks
	Empirical Tests

	References

	SWIFFT: A Modest Proposal for FFT Hashing
	Introduction
	Our Proposal: SWIFFT
	Related Work

	SWIFFT Compression Functions
	Algebraic Description
	Concrete Parameters

	Implementation
	Properties of SWIFFT
	Statistical Properties
	Cryptographic Properties
	Properties $\it {Not Satisfied}$ by SWIFFT

	Security Analysis
	Interpretation of Our Security Proofs
	Known Attacks
	Cryptanalysis of Similar Functions

	References

	A Unified Approach to Related-Key Attacks
	Introduction
	Previous Work
	Related-Key Attacks Exploiting Related-Key Plaintext Pairs
	Slide Attacks
	Attacks Adapting Standard Techniques to the Related-Key Model

	The Unified Related-Key Framework
	A New Approach for Generating Multiple Related-Key Plaintext Pairs
	A New Approach for Attacking the Underlying Round Functions
	Comparison with Other Related-Key Attacks

	Attacking 4r-Round IDEA
	Observations on IDEA Used in the Attack
	The Attack Algorithm
	The Time Complexity of the Attack
	Dealing with Multiple Chains
	Changes for 4r-Round IDEA with r �= 2

	Summary and Conclusions
	References

	Algebraic and Slide Attacks on KeeLoq
	Introduction
	Notation

	Cipher Description
	Cipher Usage

	Block Ciphers with Small Blocks and Large Key Size
	On Key Recovery Attacks and Ciphers with Small Blocks

	Preliminary Analysis and Useful Combinatorial Facts
	Preliminary Analysis of KeeLoq
	Useful Facts about Fixed Points and Random Permutations

	Attacks on KeeLoq That Use the Whole Dictionary
	Setup and Assumptions
	Our Slide-Determine Attack

	Direct Algebraic Attacks on KeeLoq
	How to Write the Equations
	Direct Algebraic Attacks on KeeLoq Vs. Brute Force
	Frontal Assault – Elimination and Gr¨obner Bases Attacks
	Cryptanalysis of KeeLoq with SAT Solvers

	Combining Slide and Algebraic Attacks on KeeLoq
	Slide-Algebraic Attack 1
	Slide-Algebraic Attack 2

	Conclusions
	References

	A Meet-in-the-Middle Attack on 8-Round AES
	Introduction
	The AES Encryption Algorithm
	The Square Property

	A 4-Round Distinguisher of AES
	A 5-Round Distinguisher of AES
	The Attack on AES
	A Time-Memory Tradeoff
	Extension to 8 Rounds
	An Improved Attack

	Conclusion
	References

	Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis
	Introduction
	Block Ciphers Implementations Secure Against 2O-SCA
	Block Ciphers
	Securing Block Ciphers Against 2O-SCA
	Security Model

	Generic S-Box Implementations Secure Against 2O-SCA
	A First Proposal
	A Second Proposal
	Improvement

	Conclusion
	References

	SQUASH – A New MAC with Provable Security Properties for Highly Constrained Devices Such as RFID Tags
	Introduction
	The New Approach
	The Generic SQUASH Proposal
	The Concrete SQUASH-128 Proposal
	References

	Differential Fault Analysis of Trivium
	Introduction
	Related Work
	Notation
	Trivium Description
	Differential Fault Analysis of Trivium
	Attack Prerequisites
	Attack Outline
	Fault Position Determination
	First Attack, Using Linear Equations
	Second Attack, Using Pair Quadratic Equations
	Possible Extensions, Future Work

	Conclusion
	References

	Accelerating the Whirlpool Hash Function Using Parallel Table Lookup and Fast Cyclical Permutation
	Introduction
	Whirlpool
	Algorithm Overview
	A Useful Observation by the Designers

	Motivation for Our Fast Implementation
	ISA Extensions
	Parallel Table Lookup
	Byte Permutations

	Fast Software Implementation of Whirlpool
	Using PTLU for Substitution and Diffusion (Step A2)
	Novel Algorithm for Cyclical Permutation
	Register Usage and Instruction Counts
	Extending the Techniques to PTLU-128

	Performance Analysis
	Security Advantages
	Conclusions
	References

	Second Preimage Attack on 3-Pass HAVAL and Partial Key-Recovery Attacks on HMAC/NMAC-3-Pass HAVAL
	Introduction
	Preliminaries
	Description of HAVAL
	Description of HMAC/NMAC
	Notations

	Second Preimage Attack on 3-Pass HAVAL
	Second Preimage Differential Path of 3-Pass HAVAL
	Attack on 3-Pass HAVAL

	Partial Key-Recovery Attacks on HMAC/NMAC-3- Pass HAVAL
	Conclusion
	References

	Cryptanalysis of LASH
	Introduction
	Description of LASH
	Notation
	The LASH-x Hash Function

	Initial Observations
	LASH is Not a PRF
	Absorbing the Feed-Forward Mode

	Attacks Exploiting Zero IV
	Short Message Preimage Attack on LASH with Arbitrary IV
	Attacks on the Final Compression Function
	Generalized Birthday Attack on the Final Compression
	Heuristic Lattice-Based Attacks on the Final Compression

	Conclusions
	References

	A (Second) Preimage Attack on the GOST Hash Function
	Introduction
	Description of GOST
	State Update Transformation
	Key Generation
	Output Transformation

	Constructing Pseudo-preimages for the Compression Function of GOST
	A Preimage Attack for the Hash Function
	STEP 1: Multicollisions for GOST
	STEP 2: Pseudo-preimages for the Last Iteration
	STEP 3: Preimages Including the Length Encoding
	STEP 4: Constructing $Σ^{m}$
	A Remark on Second Preimages

	Conclusion
	References

	Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator
	Introduction
	Preliminaries
	SAT Solvers
	Trade-Off between Guessing and Exploiting Information
	Description of the Self-Shrinking Generator

	Previous Work and Known Attacks
	The Meier and Staffelbach Attack
	Improvement
	Mihaljevi$\'{c}$ Attack

	Principle of Our Attack
	Guessing Information
	Exploiting the information

	Generalisation of the Attack
	Guessing Information
	Solving the Polynomial System - Computational Results

	Improvement of the General Attack
	Conclusion
	References

	New Form of Permutation Bias and Secret Key Leakage in Keystream Bytes of RC4
	Introduction
	Notations, Contributions and Outline

	Bias of $\it {S[S[y]]}$ to Secret Key
	New Biases in RC4 Keystream
	Bias in the 256-th Keystream Output Byte
	Bias in the 257-th Keystream Output Byte
	More Biases in Initial Bytes of RC4 Keystream
	Cryptanalytic Applications

	Further Biases When\it{j} Is Known During PRGA
	Conclusion
	References

	Efficient Reconstruction of RC4 Keys from Internal States
	Introduction
	Previous Attacks
	Outline of Our Contribution
	Organization of the Paper

	The RC4 Stream Cipher
	Properties of RC4 Keys
	Notations

	Previous Techniques
	Our Observations
	Subtracting Equations
	Using Counting Methods
	The Sum of the Key Bytes
	Adjusting Weights and Correcting Equations
	Refining the Set of Equations
	Heuristic Pruning of the Search

	The Algorithm
	Efficient Implementation
	Discussion
	References

	An Improved Security Bound for HCTR
	Introduction
	The Construction
	Improved Bound for HCTR
	Definitions and Notation
	Statement of Results

	The Game Sequence
	Bounding Collision Probability in $\mathcal {D}$ and $\mathcal {R}$

	Discussions
	Conclusion
	References

	How to Encrypt with a Malicious Random Number Generator
	Introduction
	Related Work

	Notation and Preliminaries
	Cryptographic Tools

	Definitions
	Comparison to Previous Definitions

	Achieving CRA-Security
	A Fixed-Length CRA-Secure Construction
	A CRA-Secure Construction for Variable-Length Messages
	A CPA-to-CRA Transformation

	Achieving CCRA-Security
	References

	A One-Pass Mode of Operation for Deterministic Message Authentication— Security beyond the Birthday Barrier
	Introduction
	Previous Work
	Preliminaries
	Description of the Proposed Mode
	Proofs of Security beyond the Birthday Barrier
	Optimization for Better Performance
	OpenProblems
	Concluding Remarks
	References

	Post-Processing Functions for a Biased Physical Random Number Generator
	Introduction
	A Linear Corrector
	Non Linear Corrector
	A Resilient Corrector
	Bias and Minimal Entropy
	Conclusion
	References

	Entropy of the Internal State of an FCSR in Galois Representation
	Introduction
	Notations
	FCSR in Galois
	State Entropy
	Outline

	Entropy after One Iteration
	Final State Entropy
	Notations
	Final Entropy Case by Case
	Complexity of the Computation

	Lower Bound of the Entropy
	Basis of Induction
	Induction Step

	Conclusion
	References

	Bit-Pattern Based Integral Attack
	Introduction
	Bit-Pattern Based Integral Attack
	Pattern-Based Notations
	Tracing Bit Patterns through the Cipher
	Generic Bit-Pattern Based Integral Attack

	Application on Noekeon, Serpent and PRESENT
	Noekeon
	Serpent
	PRESENT
	Summary

	Related Work
	Discussion and Conclusion
	References

	Experiments on the Multiple Linear Cryptanalysis of Reduced Round Serpent
	Introduction
	Linear Approximations Search
	Preliminary Observations
	Experimental Attacks with $\it {Algorithm 1}$
	Selection of the Approximations
	Attacks Results
	Gain Versus Success Rate and Further Insights

	Experimental Attacks with $\it {Algorithm 2}$
	Differences between $\it {Algorithms}$ 1 and 2
	Attack Results

	Conclusion and Further Works
	References

	Impossible Differential Cryptanalysis of CLEFIA
	Introduction
	Description of CLEFIA
	Notation
	Structure

	Impossible Differential Attacks on CLEFIA
	Nine-Round Impossible Differentials of CLEFIA
	Key Recovery Attack on 11-Round CLEFIA
	Key Recovery Attack on 12-Round CLEFIA
	Key Recovery Attacks on 13 and 14-Round CLEFIA

	Conclusion
	References

	MD4 is Not One-Way
	Introduction
	Our Results
	Related Work
	Description of MD4
	Road Map

	Pseudo-preimage on the Compression Function
	The Initial Message
	The Related Messages

	Preimage of the Full MD4
	The Padding
	Layered Hash Tree

	Conclusion
	References

	Improved Indifferentiability Security Analysis of chopMD Hash Function
	Introduction
	Some Notations and Results
	Improved Indifferentiability Analysis of chopMD
	Interpolation Probability of chopMD and Its Underlying Random Oracle
	Interpolation Probability of a Simulator and Random Oracle
	Indifferentiability Security Bound of chopMD

	chopDBL Hash Functions and Its Security Analysis
	Conclusion
	References

	New Techniques for Cryptanalysis of Hash Functions and Improved Attacks on Snefru
	Introduction
	Description of Snefru
	Prior Attacks
	Generic Memoryless Collision-Search Algorithms
	Floyd Algorithm
	Nivasch Algorithm

	Using Generic Algorithms for Attacking Snefru
	Virtual Messages and Preimages of the Compression Function
	A Preimage Attack on the Compression Function
	Preimage Attacks and the Importance of Padding Schemes
	A Preimage of Snefru

	Summary
	References

	On the Salsa20 Core Function
	Introduction
	MainResults
	Collision Finding for the Salsa20 “Hash” Function
	Modular Magic

	Conclusions
	References

	New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba
	Introduction
	SpecificationofPrimitives
	Salsa20
	ChaCha
	Rumba

	Differential Analysis of Salsa20 and ChaCha
	Choosing a Differential
	Probabilistic Backwards Computation
	Probabilistic Neutral Bits
	Complexity Estimation
	Experimental Results
	Discussion

	Analysis of Rumba
	Collisions and Preimages in Simplified Versions
	Differential Attack
	Experimental Results

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

