


Lecture Notes in Computer Science 4376
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Eitan Frachtenberg Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

12th International Workshop, JSSPP 2006
Saint-Malo, France, June 26, 2006
Revised Selected Papers

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Volume Editors

Eitan Frachtenberg
Los Alamos National Laboratory
Computer and Computational Sciences Division, Los Alamos, NM 87545, USA
E-mail: eitanf@lanl.gov

Uwe Schwiegelshohn
University of Dortmund
Robotics Research Institute (IRF-IT), 44221 Dortmund, Germany
E-mail: uwe.schwiegelshohn@udo.edu

Library of Congress Control Number: 2007920905

CR Subject Classification (1998): D.4, D.1.3, F.2.2, C.1.2, B.2.1, B.6, F.1.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71034-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71034-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11980940 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Preface

This volume contains the papers presented at the 12th workshop on Job Schedul-
ing Strategies for Parallel Processing. The workshop was held in Saint-Malo,
France, on June 16, 2006, in conjunction with SIGMETRICS 2006.

This year, the presented papers covered a large variety of topics. The first
three papers address workflow problems. “Provably efficient two-level adaptive
scheduling” by Yuxiong He et al. provides a theoretical analysis of a schedul-
ing approach for independent jobs consisting of threads, that are represented
by a DAG. Job and thread scheduling are separately addressed with different
algorithms. The task graph is not known a priori in the paper “Scheduling dy-
namically spawned processes in MPI-2” by Márcia Cera et al., but processes are
spawned dynamically. This paper is based on the features of MPI-2 and evaluates
its scheduler with the help of an experiment. The DAG of a Grid job is known
at submission time in the problem discussed in the paper “Advance reservation
policies for workflows” by Henan Zhao and Rizos Sakellariou. Here, the tasks of
this job are automatically scheduled on heterogeneous machines using advance
reservation such that the overall execution time frame of the user is obeyed. The
proposed approach is again experimentally evaluated.

The next three papers describe classical job scheduling problems that arise
when parallel jobs are submitted to parallel systems with little or no node hetero-
geneity. The paper “On advantages of scheduling using Genetic Fuzzy systems”
by Carsten Franke et al. presents scheduling algorithms that support arbitrary
scheduling criteria. The algorithms are trained with recorded workloads using
Fuzzy concepts. Their performances are evaluated by simulations with those
workloads. In their paper “Moldable parallel job scheduling using job efficiency:
An iterative approach,” Gerald Sabin et al. show that scalability information of
a job can help to improve the efficiency of this job. As in the previous paper,
they use real workload traces for evaluation. The missing scalability information
is provided with the help of a well-established speedup model. This model is also
used in the paper “Adaptive job scheduling via predictive job resource alloca-
tion” by Lawrence Barsanti and Angela Sodan. Similar to the previous paper, the
scalability of jobs improves the schedule performance. In addition, the resource
allocation considers future job submissions based on a suitable prediction.

Many scientific applications are data intensive. For those applications, it is
important to consider the network latency to transfer data from the storage
facility to the parallel processing system. It is possible to improve schedule per-
formance by scheduling those jobs on compute resources that are local to the
storage resources. This is the subject of the paper “A data locality-aware online
scheduling approach for I/O-intensive jobs with file sharing” by Gaurav Kanna
et al. The next two papers address job migration issues. “Volunteer computing
on clusters” by Deepti Vyas and Jaspal Subhlok demonstrates that nodes of
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VI Preface

a compute cluster are often underutilized while executing parallel applications.
Exploiting this observation by a cycle stealing approach will lead only to a small
slowdown of the parallel host application while system throughput increases sig-
nificantly. Idleness of processors is also the subject of the paper “Load balancing:
Toward the Infinite Network and Beyond” by Javier Bustos-Jiménez. There, ac-
tive objects are sent to underutilized processors that are determined with the
help of a peer-to-peer approach. The performance of the approach is evaluated by
an experiment with a real application and also by simulations. Jonathan Wein-
berg and Allan Snavely observed in their paper “Symbiotic space-sharing on
SDSC’s DataStar system” that the hierarchical architecture of modern parallel
processing systems leads to a significant amount of resource sharing among in-
dependent jobs and thus to performance degradation. They propose to generate
better schedules by considering combinations of jobs with minimum interference
between them. Again the performance is evaluated with the help of experiments
with real applications.

The last two papers address job modeling issues in Grid computing. “Mod-
eling job arrivals in a data-intensive Grid” by Hui Li et al. analyzes job ar-
rival processes in workloads from high-energy physics and uses a special Markov
process to model them. Virtual organizations determine the granularity of the
model. The paper “On Grid performance evaluation using synthetic workloads”
by Alexandru Iosup et al. discusses various aspects of performance analysis. The
authors review different performance metrics and show important properties of
existing workloads. Then, they present workload modeling requirements that are
specific for Grid computing.

All submitted papers went through a complete review process, with the full
version being read and evaluated by an average of five reviewers. We would like
to thank the Program Committee members for their willingness to participate in
this effort and their excellent, detailed reviews: Su-Hui Chiang, Walfredo Cirne,
Allen Downey, Dror Feitelson, Allan Gottlieb, Andrew Grimshaw, Moe Jette,
Richard Lagerstrom, Virginia Lo, Jose Moreira, Bill Nitzberg, Mark Squillante,
John Towns, Jon Weissman, and Ramin Yahyapour.

The continued interest in this area is reflected by the longevity of this work-
shop, which has now reached its 12th consecutive year. The proceedings of pre-
vious workshops are available from Springer as LNCS volumes 949, 1162, 1291,
1459, 1659, 1911, 2221, 2537, 2862, 3277, and 3834 (and since 1998 they have
also been available online).

Finally, we would like to give our warmest thanks to Dror Feitelson and Larry
Rudolph, the founding co-organizers of the workshop. Their efforts to promote
this field are evidenced by the continuing success of this workshop.

November 2006 Eitan Frachtenberg
Uwe Schwiegelshohn
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Provably Efficient
Two-Level Adaptive Scheduling�

Yuxiong He1, Wen-Jing Hsu1, and Charles E. Leiserson2

1 Nanyang Technological University, Nanyang Avenue 639798, Singapore
yxhe@mit.edu, hsu@ntu.edu.sg

2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
cel@mit.edu

Abstract. Multiprocessor scheduling in a shared multiprogramming en-
vironment can be structured in two levels, where a kernel-level job sched-
uler allots processors to jobs and a user-level thread scheduler maps the
ready threads of a job onto the allotted processors. This paper presents
two-level scheduling schemes for scheduling “adaptive” multithreaded
jobs whose parallelism can change during execution. The AGDEQ al-
gorithm uses dynamic-equipartioning (DEQ) as a job-scheduling policy
and an adaptive greedy algorithm (A-Greedy) as the thread scheduler.
The ASDEQ algorithm uses DEQ for job scheduling and an adaptive
work-stealing algorithm (A-Steal) as the thread scheduler. AGDEQ

is suitable for scheduling in centralized scheduling environments, and
ASDEQ is suitable for more decentralized settings. Both two-level sched-
ulers achieve O(1)-competitiveness with respect to makespan for any set
of multithreaded jobs with arbitrary release time. They are also O(1)-
competitive for any batched jobs with respect to mean response time.
Moreover, because the length of the scheduling quantum can be adjusted
to amortize the cost of context-switching during processor reallocation,
our schedulers provide control over the scheduling overhead and ensure
effective utilization of processors.

1 Introduction

Multiprocessors are often used for multiprogrammed workloads where many par-
allel applications share the same machine. As Feitelson points out in his excellent
survey [27], schedulers for these machines can be implemented using two levels:
a kernel-level job scheduler which allots processors to jobs, and a user-level
thread scheduler which maps the threads belonging to a given job onto the
allotted processors. The job schedulers may implement either space-sharing ,
where jobs occupy disjoint processor resources, or time-sharing , where differ-
ent jobs may share the same processor resources at different times. Moreover,
both the thread scheduler and the job scheduler may be either adaptive (called
“dynamic” in [19]), allowing the number of processors allotted to a job to vary
� This research was supported in part by the Singapore-MIT Alliance and NSF Grants

ACI-0324974 and CNS-0540248.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, pp. 1–32, 2007.
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2 Y. He, W.-J. Hsu, and C.E. Leiserson

while the job is running, or nonadaptive (called “static” in [19]), where a job
runs on a fixed number of processors over its lifetime. A clairvoyant schedul-
ing algorithm may use knowledge of the jobs’ execution time, whereas a non-
clairvoyant algorithm assumes nothing about the execution time of the jobs.
This paper presents two provably efficient two-level adaptive schedulers, each of
which schedules jobs nonpreemptively and without clairvoyance.

With adaptive scheduling [4] (called “dynamic” scheduling in many other
papers [27,60,41,58,37]), the job scheduler can change the number of processors
allotted to a job while the job executes. Thus, new jobs can enter the system, be-
cause the job scheduler can simply recruit processors from the already executing
jobs and allot them to the new jobs. Without an adequate feedback mechanism,
however, both adaptive and nonadaptive schedulers may waste processor cycles,
because a job with low parallelism may be allotted more processors than it can
productively use.

If individual jobs provide parallelism feedback to the job scheduler, waste
can be avoided. When a job does not require many processors, it can release the
excess processors to the job scheduler to be reallotted to jobs in need. When a
job needs more processors, it can make a request to the job scheduler. Based
on this parallelism feedback, the job scheduler can adaptively change the allot-
ment of processors according to the availability of processors and the system
administrative policy.

A two-level scheduler communicates the parallelism feedback by each job re-
questing processors from a job scheduler at regular intervals, called quanta . The
quantum length is typically chosen to be long enough to amortize the schedul-
ing overheads, including the cost of reallotting processors among the jobs. The
job scheduler uses the parallelism feedback to assign the available processors to
the jobs according to its administrative policy. During the quantum, the job’s
allotment does not typically change. Once a job is allotted processors, the job’s
thread scheduler maps the job’s threads onto the allotted processors, reallocating
them if necessary as threads are spawned and terminated.

Various researchers [21,20,29,41,59] have proposed the use of instantaneous
parallelism — the number of processors the job can effectively use at the cur-
rent moment — as the parallelism feedback to the job scheduler. Unfortunately,
using instantaneous parallelism as feedback can either cause gross misallocation
of processor resources [49] or introduce significant scheduling overhead. For ex-
ample, the parallelism of a job may change substantially during a scheduling
quantum, alternating between parallel and serial phases. Depending on which
phase is currently active, the sampling of instantaneous parallelism may lead the
task scheduler to request either too many or too few processors. Consequently,
the job may either waste processor cycles or take too long to complete. On the
other hand, if the quantum length is set to be small enough to capture frequent
changes in instantaneous parallelism, the proportion of time spent reallotting
processors among the jobs increases, resulting in a high scheduling overhead.

A-Greedy [1] and A-Steal [2,3] are two adaptive thread schedulers that pro-
vide the parallelism feedback to the job scheduler. Rather than using
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Provably Efficient Two-Level Adaptive Scheduling 3

instantaneous parallelism, these thread schedulers employ a single summary
statistic and the job’s behavior in the previous quantum to make processor re-
quests of the job scheduler. Even though this parallelism feedback is generated
based on the job’s history and may not be correlated to the job’s future par-
allelism, A-Greedy and A-Steal still guarantee to make effective use of the
available processors.

Intuitively, if each job provides good parallelism feedback and makes produc-
tive use of available processors, a good job scheduler should ensure that all the
jobs perform well. In this paper, we affirm this intuition for A-Greedy and
A-Steal in the case when the job scheduler implements dynamic equipartition-
ing (DEQ) [55, 41]. DEQ gives each job a fair allotment of processors based on
the job’s request, while allowing processors that cannot be used by a job to be
reallocated. DEQ was introduced by McCann, Vaswani, and Zahorjan [41] based
on earlier work on equipartitioning by Tucker and Gupta [55], and it has been
studied extensively [21, 20, 29, 42, 41, 24, 36, 46, 45, 59, 40, 25].

This paper shows that efficient two-level adaptive schedulers can ensure that
all jobs can perform well. AGDEQ, which couples DEQ with A-Greedy, is
suitable for centralized thread scheduling, such as might be used to schedule
data-parallel jobs, wherein each job’s thread scheduler can dispatch all the ready
threads to the allotted processors in a centralized manner. ASDEQ, which cou-
ples DEQ with A-Steal, is suitable when each job distributes threads over the
allotted processors using decentralized work-stealing [16, 31, 47, 13].

The main contributions of this paper are as follows. In a centralized environ-
ment, AGDEQ guarantees O(1)-competitiveness against an optimal clairvoyant
scheduler with respect to makespan. For any set of batched jobs, where all jobs
have the same release time, AGDEQ also achieves O(1)-competitiveness with
respect to mean response time. In a decentralized settings where the scheduler
has no knowledge of all the available threads at the current moment, ASDEQ

guarantees O(1)-competitiveness with respect to makespan for any set of jobs
with arbitrary job release time. It is also O(1)-competitive with respect to the
mean response time for batched jobs. Unlike many previous results, which ei-
ther assume clairvoyance [38, 18, 43, 33, 34, 56, 48, 50, 57] or use instantaneous
parallelism [21,14, 22], our schedulers remove these restrictive assumptions. We
generate parallelism feedback after each quantum based on the job’s behavior
in the past quantum. Even though job’s future parallelism may not be corre-
lated with its history of parallelism, our schedulers can still guarantee constant
competitiveness for both the makespan and the mean response time. Moreover,
because the quantum length can be adjusted to amortize the cost of context-
switching during processor reallocation, our schedulers provide control over the
scheduling overhead and ensure effective utilization of processors.

The remainder of this paper is organized as follows. Section 2 describes the
job model, scheduling model, and objective functions. Section 3 describes the
AGDEQ algorithm. Section 4 and 5 analyze the competitiveness of AGDEQ

with respect to makespan and mean response time, respectively. Section 6
presents the ASDEQ algorithm and analyzes its performance. Section 7 gives a
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4 Y. He, W.-J. Hsu, and C.E. Leiserson

lower bound on the competitiveness for mean response time. Section 9 concludes
the paper by raising issues for future research.

2 Models and Objective Functions

This section provides the background formalisms for two-level scheduling, which
will be used to study AGDEQ and ASDEQ. We formalize the job model, define
the scheduling model, and present the optimization criteria of makespan and
mean response time.

Job Model
A two-level scheduling problem consists of a collection of independent jobs
J =

{
J1, J2, . . . , J|J |

}
to be scheduled on a collection of P identical processors.

This paper restricts its attention to the situation where |J | ≤ P , that is, the
number of jobs does not exceed the number of processors. (The situation where
the parallel computer may sometimes be heavily loaded with jobs remains an
interesting open problem.) Like prior work on scheduling of multithreaded jobs
[12,13,11,10,8,26,32,44], we model the execution of a multithreaded job Ji as a
dynamically unfolding directed acyclic graph (dag) such that Ji = (V (Ji), E(Ji))
where V (Ji) and E(Ji) represent the sets of Ji’s vertices and edges, respectively.
Similarly, let V (J ) =

⋃
Ji∈J V (Ji). Each vertex v ∈ V (J ) represents a unit-time

instruction. The work T1(i) of the job Ji corresponds to the total number of
vertices in the dag, that is, T1(i) = |V (Ji)|. Each edge (u, v) ∈ E(Ji) represents
a dependency between the two vertices. The precedence relationship u ≺ v holds
if and only if there exists a path from vertex u to vertex v in E(Ji). The critical-
path length T∞(i) corresponds to the length of the longest chain of precedence
dependencies. The release time r(i) of the job Ji is the time immediately after
which Ji becomes first available for processing. For a batched job set J , all jobs
in J have the same release time. (Without loss of generality, we assume that
r(i) = 0 for all Ji ∈ J .)

Scheduling Model
Our scheduling model assumes that time is broken into a sequence of equal-sized
scheduling quanta 1, 2, . . ., each of length L, where each quantum q includes
the interval [Lq, Lq +1, . . . , L(q +1)−1] of time steps. The quantum length L is
a system configuration parameter chosen to be long enough to amortize schedul-
ing overheads. These overheads might include the time to reallocate processors
among the various jobs and the time for the thread scheduler to communicate
with the job scheduler, which typically involves a system call.

The job scheduler and thread schedulers interact as follows. The job scheduler
may reallocate processors between quanta. Between quantum q − 1 and quan-
tum q, the thread scheduler (for example, A-Greedy or A-Steal) of a given
job Ji determines the job’s desire d(i, q), which is the number of processors Ji

wants for quantum q. The thread scheduler provides the desire d(i, q) to the job
scheduler as its parallelism feedback. Based on the desire of all running jobs,
the job scheduler follows its processor-allocation policy (for example, dynamic
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Provably Efficient Two-Level Adaptive Scheduling 5

equi-partitioning) to determine the allotment a (i, q) of the job with the con-
straint that a (i, q) ≤ d(i, q). Once a job is allotted its processors, the allotment
does not change during the quantum. Consequently, the thread scheduler must do
a good job in estimating how many processors it will need in the next quantum,
as well as scheduling the ready threads on the allotted processors. Moreover, the
thread scheduler must operate in an online and nonclairvoyant manner, oblivious
to the future characteristics of the dynamically unfolding dag.

A schedule χ = (τ, π) of a job set J on P processors is defined as two map-
pings τ : V (J ) → {1, 2, . . . , ∞} and π : V (J ) → {1, 2, . . . , P}, which map the
vertices in the job set J to the set of time steps and to the set of processors in
the machine, respectively. A valid mapping must preserve the precedence rela-
tionship of each job: for any two vertices u, v ∈ V (J ), if u ≺ v, then τ(u) < τ(v),
that is, the vertex u must be executed before the vertex v. A valid mapping must
also ensure that a processor is only assigned to one job at any time: for any two
distinct vertices u, v ∈ V (J ), we have τ(u) �= τ(v) or π(u) �= π(v).

Objective Functions
We can now define the objective functions that a two-level scheduler should
minimize.

Definition 1. Let χ be a schedule of a job set J on P processors. The com-
pletion time a job Ji ∈ J is

Tχ(i) = max
v∈Vi

τ (v) ,

and the makespan of J is

Tχ(J ) = max
Ji∈J

Tχ(i) .

The response time of a job Ji ∈ J is

Rχ(i) = Tχ(i) − r(i) ,

the total response time of J is

Rχ(J ) =
∑

Ji∈J
Rχ(i) ,

and the mean response time of J is

Rχ(J ) = Rχ(J )/ |J | .

That is, the completion time of Ji is simply the time at which the schedule
completes the execution of Ji. The makespan of J is the time taken to complete
all jobs in the job set. The response time of a job Ji is the duration between
its release time r(i) and the completion time Tχ(i). The total response time
of a job set is the sum of the response times of the individual jobs, and the
mean response time is the arithmetic average of the jobs’ response times. For
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6 Y. He, W.-J. Hsu, and C.E. Leiserson

batched jobs where r(i) = 0 for all Ji ∈ J , the total response time simplifies to
Rχ(J ) =

∑
Ji∈J Tχ(i).

Competitiveness
The competitive analysis of an online scheduling algorithm compares the algo-
rithm against an optimal clairvoyant algorithm. Let T∗(J ) denote the makespan
of the jobset J scheduled by an optimal clairvoyant scheduler, and χ(A) denote
the schedule produced by an algorithm A for the job set J . A deterministic
algorithm A is said to be c-competitive if there exist constants c > 0 and b ≥ 0
such that Tχ(A)(J ) ≤ c · T∗(J ) + b holds for the schedule χ(A) of each job set.
A randomized algorithm A is said to be c-competitive if there exists constants
c > 0 and b ≥ 0 such that E

[
Tχ(A)(J )

]
≤ c · T∗(J ) + b holds for the schedule

χ(A) of each job set. Thus, for each job set J , a c-competitive algorithm is
guaranteed to have makespan (or expected makespan) within a factor c of that
incurred in the optimal clairvoyant algorithm (up to the additive constant b).
We shall show that AGDEQ and ASDEQ are c-competitive with respect to
makespan, where c > 0 is a small constant. For the mean response time, we shall
show that our algorithm is O(1)-competitive for batched jobs.

3 The AGDEQ Algorithm

AGDEQ is a two-level adaptive scheduler, which uses A-Greedy [1] as its
thread scheduler and DEQ [41] as its job scheduler. Given a set J of jobs and P
processors, DEQ works at the kernel level, partitioning the P processors among
the jobs. Within each job, A-Greedy schedules threads at user level onto the
allotted processors. The interactions between DEQ and A-Greedy follow the
scheduling model described in Section 2. At the beginning of each quantum
q, the A-Greedy thread scheduler for each job Ji ∈ J provides its desire
d(i, q) as parallelism feedback to the DEQ job scheduler. DEQ collects the desire
information from all jobs and decides the allotment a (i, q) for each job Ji. In
this section, we briefly overview the basic properties of A-Greedy and DEQ.

The Adaptive Greedy Thread Scheduler
A-Greedy [1] is an adaptive greedy thread scheduler with parallelism feedback.
In a two-level adaptive scheduling system, A-Greedy performs the following
functions.

• Between quanta, it estimates its job’s desire and requests processors from
the job scheduler using its desire-estimation algorithm .

• During the quantum, it schedules the ready threads of the job onto the
allotted processors using its thread-scheduling algorithm .

We now describe each of these algorithms.
A-Greedy’s desire-estimation algorithm is parameterized in terms of a uti-

lization parameter δ > 0 and a responsiveness parameter ρ > 1, both
of which can be tuned to affect variations in guaranteed bounds for waste and
completion time.
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Provably Efficient Two-Level Adaptive Scheduling 7

Before each quantum, A-Greedy for a job Ji ∈ J provides parallelism feed-
back to the job scheduler based on the Ji’s history of utilization for the previous
quantum. A-Greedy classifies quanta as “satisfied” versus “deprived” and “effi-
cient” versus “inefficient.” A quantum q is satisfied if a (i, q) = d(i, q), in which
case Ji’s allotment is equal to its desire. Otherwise, the quantum is deprived .
The quantum q is efficient if A-Greedy utilizes no less than a δ fraction of
the total allotted processor cycles during the quantum, where δ is the utiliza-
tion parameter. Otherwise, the quantum is inefficient . Of the four possibilities
of classification, however, A-Greedy only uses three: inefficient, efficient-and-
satisfied, and efficient-and-deprived.

Using this three-way classification and the job’s desire for the previous quan-
tum, A-Greedy computes the desire for the next quantum using a simple
multiplicative-increase, multiplicative-decrease strategy. If quantum q − 1 was
inefficient, A-Greedy decreases the desire, setting d(i, q) = d(i, q − 1)/ρ, where
ρ is the responsiveness parameter. If quantum q − 1 was efficient and satis-
fied, A-Greedy increases the desire, setting d(i, q) = ρd(i, q − 1). If quantum
q − 1 was efficient but deprived, A-Greedy keeps desire unchanged, setting
d(i, q) = d(i, q − 1).

A-Greedy’s thread-scheduling algorithm is based on greedy scheduling [28,
15,12]. After A-Greedy for a job Ji ∈ J receives its allotment a (i, q) of proces-
sors from the job scheduler, it simply attempts to keep the allotted processors
as busy as possible. During each time step, if there are more than a (i, q) ready
threads, A-Greedy schedules any a (i, q) of them. Otherwise, it schedules all of
them.

The Dynamic-Equipartitioning Job Scheduler
DEQ is a dynamic-equipartitioning job scheduler [55,41] which attempts to give
each job a fair share of processors. If a job cannot use its fair share, however,
DEQ distributes the extra processors across the other jobs. More precisely, upon
receiving the desires {d(i, q)} from the thread schedulers of all jobs Ji ∈ J , DEQ
executes the following processor-allocation algorithm :

1. Set n = |J |. If n = 0, return.
2. If the desire for every job Ji ∈ J satisfies d(i, q) ≥ P/n, assign each job

a (i, q) = P/n processors.
3. Otherwise, let J ′ = {Ji ∈ J : d(i, q) < P/n}. Allot a (i, q) = d(i, q) proces-

sors to each Ji ∈ J ′. Update J = J − J ′. Go to Step 1.

Accordingly, for a given quantum all jobs receive the same number of pro-
cessors to within 1, unless their desire is less. To simplify the analysis in this
paper, we shall assume that all deprived jobs receive exactly the same number
of processors, which we term the mean deprived allotment for the quantum.
Relaxing this assumption may double the execution-time bound of a job, but
our algorithms remain O(1)-competitive. A tighter but messier analysis retains
the constants of the simpler analysis presented here.
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4 Makespan of AGDEQ

This section shows that AGDEQ is c-competitive with respect to makespan for
a constant c ≥ 1. The exact value of c is related to the choice of the utilization
parameter and responsiveness parameter in A-Greedy. In this section, we first
review lower bounds for makespan. Then, we analyze the competitiveness of
AGDEQ in the simple case where all jobs are released at time step 0 and the
scheduling quantum length is L = 1. Finally, we analyze the competitiveness of
AGDEQ for the general case.

Lower Bounds
Given a job set J and P processors, lower bounds on the makespan of any job
scheduler can be obtained based on release time, work, and critical-path length.
Recall that for a job Ji ∈ J , the quantities r(i), T1(i), and T∞(i) represent the
release time, work, and critical-path length of Ji, respectively. Let T∗(J ) denote
the makespan produced by an optimal scheduler on a job set J scheduled on P
processors. Let T1(J ) =

∑
Ji∈J T1(i) denote the total work of the job set. The

following two inequalities give two lower bounds on the makespan [14]:

T∗(J ) ≥ max
Ji∈J

{r(i) + T∞(i)} , (1)

T∗(J ) ≥ T1(J )/P . (2)

Analysis of a Simple Case
To ease the understanding of the analysis, we first consider the simple case where
all jobs are released at time step 0 and the quantum length L = 1. We show that
in this case, AGDEQ is O(1)-competitive with respect to makespan. Afterward,
we shall extend the analysis to the general case.

The next two lemmas, proved in [1], bound the satisfied steps and the waste
of any single job scheduled by A-Greedy when the quantum length is L = 1.
We restate them as a starting point for our analysis.

Lemma 1. [1] Suppose that A-Greedy schedules a job Ji with critical-path
length T∞(i) on a machine with P processors. Let ρ = 2 denote A-Greedy’s re-
sponsiveness parameter, δ = 1 its utilization parameter, and L = 1 the quantum
length. Then, A-Greedy produces at most 2T∞(i)+ lg P + 1 satisfied steps. 	


Lemma 2. [1] Suppose that A-Greedy schedules a job Ji with work T1(i)
on a machine. If ρ = 2 is A-Greedy’s responsiveness parameter, δ = 1 is its
utilization parameter, and L = 1 is the quantum length, then A-Greedy wastes
no more than 2T1(i) processor cycles in the course of the computation. 	


The next lemma shows that for the simple case, AGDEQ is O(1)-competitive
with respect to makespan. Let χ = (τ, π) be the schedule of a job set J produced
by AGDEQ. For simplicity we shall use the notation T(J ) = Tχ(J ) for the
remaining of the section.
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Lemma 3. Suppose that a job set J is scheduled by AGDEQ on a machine
with P processors, and suppose that all jobs arrive at time 0. Let ρ = 2 denote
A-Greedy’s responsiveness parameter, δ = 1 its utilization parameter, and L
the quantum length. Then, the makespan of J is bounded by

T(J ) ≤ 5T∗(J ) + lg P + 1 ,

where T∗(J ) is the makespan produced by an optimal clairvoyant scheduler.

Proof. Suppose that the job Jk is the last job completed in the execution of the
job set J scheduled by AGDEQ. Since the scheduling quantum length is L = 1,
we can treat each scheduling quantum as a time step. Let S(k) and D(k) denote
the set of satisfied steps and the set of deprived steps respectively for job Jk.
Since Jk is the last job completed in the job set, we have T(J ) = |S(k)|+ |D(k)|.
We bound |S(k)| and |D(k)| separately.

By Lemma 1, we know that the number of satisfied steps for job Jk is |S(k)| ≤
2T∞(i) + lg P + 1.

We now bound the number of deprived steps for Jk. If a step t is deprived for
job Jk, the job gets fewer processors than it requested. On such a step t ∈ D(k),
DEQ must have allotted all the processors, and so we have

∑
Ji∈J a (i, t) = P ,

where a (i, t) denotes the allotment of the job Ji on step t. Let a (J , D(k)) =∑
t∈D(k)

∑
Ji∈J a (i, t) denote the total processor allotment of all jobs in J

over Jk’s deprived steps D(k). We have a (J , D(k)) =
∑

t∈D(k)
∑

Ji∈J a (i, t) =∑
t∈D(k) P = P |D(k)|. Since any allotted processor is either working on the

ready threads of the job or wasted because of insufficient parallelism, the to-
tal allotment for any job Ji is bounded by the sum of its total work T1(i) and
its total waste w(i). By Lemma 2, the waste for the job Ji is w(i) ≤ 2T1(i),
which is at most twice its work. Thus, the total allotment for job Ji is at most
3T1(i), and the total allotment for all jobs is at most

∑
Ji∈J 3T1(i) = 3T1(J ).

Therefore, we have a (J , D(k)) ≤ 3T1(J ). Given that a (J , D(k)) ≤ 3T1(J ) and
a (J , D(k)) = P |D(k)|, we have |D(k)| ≤ 3T1(J )/P .

Thus, we have T(J ) = |S(k)| + |D(k)| ≤ 3T1(J )/P + 2T∞(k) + lg P + 1.
Combining this bound with Inequalities (1) and (2), we obtain T(J ) ≤ 5T∗(J )+
lg P + 1.

Since P is the number of processors on the machine, which is an independent
variable with respect to any job set J , Lemma 3 indicates that AGDEQ is
5-competitive with respect to makespan.

Analysis of the General Case
With the intuition from the simple case in hand, we now generalize the makespan
analysis of AGDEQ to job sets with arbitrary job release times and scheduled
with any quantum length L. First, we state two lemmas from [1] that describe
the satisfied steps and the waste of a single job scheduled by A-Greedy. Then,
we show that AGDEQ is O(1)-competitive with respect to makespan in the
general case.
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Lemma 4. [1] Suppose that A-Greedy schedules a job Ji with critical-path
length T∞(i) on a machine with P processors. Let ρ denote A-Greedy’s re-
sponsiveness parameter, δ its utilization parameter, and L the quantum length,.
Then, A-Greedy produces at most 2T∞(i)/(1−δ)+L logρ P +L satisfied steps.

	


Lemma 5. [1] Suppose that A-Greedy schedules a job Ji with work T1(i) on
a machine. Let ρ denote A-Greedy’s responsiveness parameter, δ its utilization
parameter, and L the quantum length. Then, A-Greedy wastes at most (1 +
ρ − δ)T1(i)/δ processor cycles in the course of the computation. 	


The following theorem analyzes the makespan of any job set J with arbitrary
release times, when J is scheduled by AGDEQ with quantum length L. The
makespan bound is based on the release time r(i), critical-path length T∞(i),
and work T1(i) of individual job Ji, and the total work T1(J ) of the job set J .

Theorem 1. Suppose AGDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Greedy’s responsiveness parameter, δ its utilization
parameter, and L the quantum length. Then, AGDEQ completes the job set in

T(J ) ≤ ρ + 1
δ

T1(J )
P

+
2

1 − δ
max
Ji∈J

{T∞(i) + r(i)} + L logρ P + 2L

time steps.

Proof. The proof is similar to that in the simple case for Lemma 3. Let job Jk be
the last job to complete among the jobs in J . Let S(k) and D(k) denote the set of
satisfied steps and the set of deprived steps for Jk, respectively. The earliest that
the job Jk can start its execution is at the beginning of the quantum immediately
after Jk’s release, which is the quantum q satisfying Lq < r(k) ≤ L(q+1). Thus,
we have T(J ) < r(k) + L + |S(k)| + |D(k)|. From Lemma 4, we know that the
number of satisfied steps is |S(k)| ≤ 2T∞(k)/(1 − δ) + L logρ P + L. It remains
to bound the quantity |D(k)|.

By definition, DEQ must have allotted all processors to jobs on any step
t ∈ D(k) where Jk is deprived. Thus, the total allotment of J over Jk’s deprived
steps D(k) is a (J , D(k)) =

∑
t∈D(k)

∑
Ji∈J a (i, t) = P |D(k)|. Since any allot-

ted processor is either working or wasted, the total allotment for any job Ji is
bounded by the sum of its total work T1(i) and total waste w(i). By Lemma 5,
the waste for the job Ji is at most (ρ − δ + 1)/δ times its work, and hence, the
total allotment for job Ji is at most T1(i) + w(i) ≤ (ρ + 1)T1(i)/δ, and the total
allotment for all jobs is at most

∑
Ji∈J (ρ+1)T1(i)/δ = ((ρ+1)/δ)T1(J ). Conse-

quently, we have a (J , D(k)) ≤ ((ρ + 1)/δ)T1(J ). Since a (J , D(k)) = P |D(k)|,
it follows that

|D(k)| <
ρ + 1

δ

T1(J )
P

.
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Combining these bounds, we obtain

T(J ) < r(k) + L + |D(k)| + |S(k)|

≤ r(k) + L +
ρ + 1

δ

T1(J )
P

+
2

1 − δ
T∞(k) + L logρ P + L

≤ ρ + 1
δ

T1(J )
P

+
2

1 − δ
(r(k) + T∞(k)) + L logρ P + 2L

≤ ρ + 1
δ

T1(J )
P

+
2

1 − δ
max
Ji∈J

{T∞(i) + r(i)} + L logρ P + 2L .

Since both T1(J )/P and maxJi∈J {T∞(i) + r(i)} are lower bounds of T∗(J ),
we obtain the following corollary.

Corollary 1. Suppose that AGDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Greedy’s responsiveness parameter, δ its utilization
parameter, and L the quantum length. Then, AGDEQ completes the job set in

T(J ) ≤
(

ρ + 1
δ

+
2

1 − δ

)
T∗(J ) + L logρ P + 2L

time steps, where T∗(J ) is the makespan of J produced by an optimal clairvoyant
scheduler. 	


When δ = 0.5 and ρ is approaching 1, the competitiveness ratio (ρ + 1)/δ +
2/(1−δ) approaches its minimum value 8. Thus, AGDEQ is (8+ ε)-competitive
with respect to makespan for any constant ε > 0.

5 Mean Response Time of AGDEQ for Batched Jobs

This section shows that AGDEQ is O(1)-competitive for batched jobs with
respect to the mean response time, an important measure for multiuser environ-
ments where we desire as many users as possible to get fast response from the sys-
tem. To analyze the mean response time of job sets scheduled by AGDEQ, we
first describe lower bounds and some preliminary concepts. Then, we prove that
AGDEQ is O(1)-competitive with respect to mean response time for batched jobs.

Lower Bounds and Preliminaries
Before stating the lower bounds on mean response time for a batched job set,
we first define some terms.

Definition 2. Given a finite list A = 〈αi〉 of n = |A| integers, define f :
{1, 2, . . . , n} → {1, 2, . . . , n} to be a permutation satisfying αf(1) ≤ αf(2) ≤
· · · ≤ αf(n). The squashed sum of A is defined as

sq-sum(A) =
n∑

i=1

(n − i + 1)αf(i) .
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The squashed work area of a job set J on a set of P processors is

swa (J ) =
1
P

sq-sum(〈T1(i)〉) ,

where T1(i) is the work of job Ji ∈ J . The aggregate critical-path length of
J is

T∞(J ) =
∑

Ji∈J
T∞(i) ,

where T∞(i) is the critical-path length of job Ji ∈ J .

The research in [56, 57, 22] establishes two lower bounds for the mean response
time:

R∗(J ) ≥ T∞(J )/ |J | , (3)
R∗(J ) ≥ swa (J ) / |J | , (4)

where R∗(J ) denotes the mean response time of J scheduled by an optimal
clairvoyant scheduler. Both the aggregate critical-path length T∞(J ) and the
squashed work area swa (J ) are lower bounds for the total response time R∗(J )
under an optimal clairvoyant scheduler.

We extend the classification of “satisfied” versus “deprived” from quanta to
time steps. A job Ji is satisfied at step t ∈ [Lq, Lq + 1, . . . , L(q + 1) − 1] if Ji

is satisfied at the quantum q. Otherwise, the time step t is deprived . At time
step t, let J S(t) denote the set of jobs that are satisfied, and let J D(t) denote
the set of jobs that are deprived. According to DEQ, all deprived jobs receive
the mean deprived allotment.

To assist in the analysis of the mean response time, we now define some
auxiliary concepts.

Definition 3. Suppose that a job set J is scheduled by AGDEQ on P pro-
cessors. For any job Ji ∈ J , let S(i) and D(i) denote the sets of satisfied and
deprived time steps, respectively. The total satisfied time of J is

sat (J ) =
∑

Ji∈J
|S(i)| .

The accumulated allotment of Ji is

a(i) =
∞∑

t=1

a (i, t) .

The accumulated deprived allotment of Ji is

a (i, D(i)) =
∑

t∈D(i)

a (i, t) .

The squashed deprived allotment area of J is

sdaa (J ) =
1
P

sq-sum(〈a (i, D(i))〉) .
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Thus, sat (J ) is the total number of satisfied steps of all jobs in J , a(i) is the job
Ji’s total allotment on all time steps, a (i, D(i)) is its total allotment during all
its deprived steps, and sdaa (J ) is 1/P of the squashed sum of the accumulated
deprived allotments for all jobs in J .

Analysis
We now turn to show that AGDEQ is O(1)-competitive with respect to mean
response time for batched jobs. Let χ = (τ, π) be the schedule of a job set J
produced by AGDEQ. For simplicity we shall use the notations R(J ) = Rχ(J )
and R(J ) = Rχ(J ). Let ρ and δ be A-Greedy’s responsiveness and utilization
parameters, respectively. We shall establish the bound

R(J ) ≤
(

2 − 2
|J | + 1

) ((
ρ + 1

δ
+

2
1 − δ

)
R∗(J ) + L logρ P + L

)
,

where R∗(J ) is the mean response time produced by an optimal clairvoyant
scheduler.

Our analysis comprises four major steps. First, we prove three technical lem-
mas concerning squashed sums. Second, we prove that

R(J ) ≤
(

2 − 2
|J | + 1

)
(sdaa (J ) + sat (J )) , (5)

thereby relating the total response time R(J ) to the squashed deprived allotment
area sdaa (J ) and the total satisfied time sat (J ). Third, we relate the squashed
deprived allotment area sdaa (J ) and the squashed work area swa (J ). Finally,
we relate the total satisfied time sat (J ) to the aggregate critical-path length
T∞(J ). Since both swa (J ) and T∞(J ) are lower bounds on the total response
time, we can derive an upper bound of the mean response time against the
optimal.

We begin with three technical lemmas that describe properties of the squashed
sum.

Lemma 6. Let 〈αi〉 and 〈βi〉 be two lists of nonnegative integers with m el-
ements each, and suppose that αi ≤ βi for i = 1, 2, . . . , m. Then, we have
sq-sum(〈αi〉) ≤ sq-sum(〈βi〉).

Proof. Let f : {1, 2, . . . , m} → {1, 2, . . . , m} be the permutation satisfying
αf(1) ≤ αf(2) ≤ · · · ≤ αf(m), and let g : {1, 2, . . . , m} → {1, 2, . . . , m} be
the permutation satisfying βg(1) ≤ βg(2) ≤ · · · ≤ βg(m).

We first show that αf(i) ≤ βg(i) for i = 1, 2, . . . , m. Suppose for the purpose
of contradiction that there exists a j ∈ {1, 2, . . . , m} such that αf(j) > βg(j).
Then, there must be at least j integers smaller than αf(j) in 〈βi〉, namely
βg(1), βg(2), . . . , βg(j). Since αi ≤ βi for i = 1, 2, . . . , m, we have αg(i) ≤ βg(i)
for i = 1, 2, . . . , j. Thus, there are at least j elements smaller than αf(j) in 〈αi〉,
namely αg(1), αg(2), . . . , αg(j). But, since αf(j) is the jth smallest number in 〈αi〉,
we obtain the contradiction that there are at most j − 1 integers smaller than
αf(j) in 〈αi〉, thereby establishing that that αf(i) ≤ βg(i) for i = 1, 2, . . . , m.
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Consequently, by Definition 2, we have

sq-sum(〈αi〉) =
m∑

i=1

(m − i + 1)αf(i)

≤
m∑

i=1

(m − i + 1)βg(i)

= sq-sum(〈βi〉) .

Lemma 7. Let l, h, and m be nonnegative integers such that l ≤ m. Suppose
that a list 〈αi〉 of m nonnegative integers has total value

∑m
i=1 αi = lh and that

each αi satisfies αi ≤ h. Assume that the elements in 〈αi〉 are sorted such that
α1 ≤ α2 ≤ · · · ≤ αm. Then, the list’s squashed sum satisfies sq-sum(〈αi〉) ≥
hl(l + 1)/2, and its minimum occurs when α1 = α2 = · · · = αm−l = 0 and
αm−l+1 = αm−l+2 = · · · = αm = h.

Proof. Suppose for the purpose of contradiction that a given list 〈αi〉 of integers
minimizes the function sq-sum(〈αi〉) but does not satisfy α1 = α2 = · · · =
αm−l = 0 and αm−l+1 = αm−l+2 = · · · = αm = h. Then, there must exist at least
one integer αi > 0 with index i < m−l+1, i.e. S = {i | αi > 0, i < m − l + 1} �=
∅. Similarly, there must exist at least one integer αj > 0 with index j ≥ m−l+1,
i.e. S′ = {j | αj < h, j ≥ m − l + 1} �= ∅. Let x = min {S} and y = max {S′}.
Because x = min {S} is the smallest index such that αx > 0, we have α1 = α2 =
· · · = αx−1 = 0. Since αx > 0 and it is an integer, we get α1 = α2 = · · · = αx−1 ≤
αx − 1. Similarly, given y = max {S′}, we can show αy + 1 ≤ αy+1 = · · · = αm.
Then we have

α1 ≤ · · · ≤ αx−1 ≤ αx − 1 ≤ αx+1 ≤ · · · ≤ αy + 1 ≤ αy+1 ≤ · · · ≤ αm (6)

Define another list 〈α′
i〉 of integers such that α′

x = αx − 1, α′
y = αy + 1, and

α′
i = αi if i �= x and i �= y. Given Inequality (6), we have α′

1 ≤ α′
2 ≤ · · · ≤ α′

m.
We know that

∑m
i=1 α′

i = lh and α′
i ≤ h for each index i = 1, 2, . . . , m. The

squashed sum difference of these two lists is given by

sq-sum(〈α′
i〉) − sq-sum(〈αi〉)

= (m − x + 1)α′
x + (m − y + 1)α′

y − ((m − x + 1)αx + (m − y + 1)αy)
= (m − x + 1)(α′

x − αx) + (m − y + 1)(α′
y − αy)

= −(m − x + 1) + (m − y + 1)
= x − y .

Since x < m − l + 1 and y ≥ m − l + 1, we have x < y, and thus we obtain the
contradiction sq-sum(〈α′

i〉) < sq-sum(〈αi〉). Since the minimum of the squashed
sum occurs when α1 = α2 = · · · = αm−l = 0 and αm−l+1 = αm−l+2 = · · · =
αm = h, the minimum value of the squashed sum is

∑m
i=1(m − i + 1)αi =∑m

i=m−l+1(m − i + 1)h = hl(l + 1)/2.
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Lemma 8. Let 〈αi〉 be a list of m nonnegative integers, and let h ≥ 0 be another
integer. Generate another list of integers 〈βi〉 by choosing any l integers from
〈αi〉 and increasing each of their values by h. Then, we have

sq-sum(〈βi〉) ≥ sq-sum(〈αi〉) + hl(l + 1)/2 .

Proof. Assume that the elements in both 〈αi〉 and 〈βi〉 are sorted such that
α1 ≤ α2 ≤ · · · ≤ αm and β1 ≤ β2 ≤ · · · ≤ βm. Observe that when viewed in
sorted order, if an element of 〈βi〉 was produced by increasing an element of 〈αi〉
by h, their indexes may now no longer correspond.

First, we show by contradiction that βi ≥ αi. If there exists an index j such
that βj < αj , there must exist at least j integers strictly less than αj in the
list 〈βi〉, namely β1, β2, . . . , βj . Each βx among these j integers corresponds
to a distinct αy ∈ 〈αi〉, where βx = αy or βx = αy + h. Thus, there are at
least j integers strictly less than αj in the list 〈αi〉. But, there can be only
at most j − 1 integers less than αj in the list 〈αi〉, namely α1, α2, . . . , αj−1.
Contradiction.

Second, we show by contradiction that βi ≤ αi + h. If there exists an index j
such that βj > αj +h, there must exist at least m−j+1 integers strictly greater
than αj + h in the list 〈βi〉, namely βj, βj+1, . . . , βm. Each βx of these m − j + 1
integers corresponds to a distinct αy ∈ 〈αi〉, where βx = αy or βx = αy + h.
Thus, there are at least m − j + 1 integers strictly greater than αj in the list
〈αi〉. But, there can be at most m − j integers greater than αj in 〈αi〉, namely
αj+1, αj+2, . . . , αm. Contradiction.

Now, define another list 〈γi〉 of integers by γi = βi − αi for i = 1, 2, . . . , m.
From Definition 2 we have

sq-sum(〈βi〉) − sq-sum(〈αi〉) =
m∑

i=1

(m − i + 1)(βi − αi)

=
m∑

i=1

(m − i + 1)γi

= sq-sum(〈γi〉) .

Since we obtain 〈βi〉 from 〈αi〉 by choosing l numbers and increasing each of
them by h, we have

m∑

i=1

γi =
m∑

i=1

βi −
m∑

i=1

αi

= lh .

Because we have 0 ≤ βi − αi ≤ h, it follows that 0 ≤ γi ≤ h. From Lemma 7,
we know that the squashed sum of the list 〈γi〉 is sq-sum(〈γi〉) ≥ hl(l+1)/2, and
its minimum occurs when γ1 = γ2 = · · · = γm−l = 0 and for γm−l+1 = γm−l+2 =
· · · = γm = h. Thus, we have sq-sum(〈βi〉)− sq-sum(〈αi〉) ≥ hl(l +1)/2, and the
minimum occurs when

βi =
{

αi if i = 1, 2, . . . , m − l,
αi + h if i = m − l + 1, m − l + 2, . . . , m.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



16 Y. He, W.-J. Hsu, and C.E. Leiserson

The second step of our analysis bounds the total response time R(J ) of AGDEQ

in terms of the squashed deprived allotment area sdaa (J ) and total satisfied time
sat (J ).

Lemma 9. Suppose that a job set J is scheduled by AGDEQ. The total re-
sponse time of J can be bounded as

R(J ) ≤
(

2 − 2
|J | + 1

)
(sdaa (J ) + sat (J )) , (7)

where sdaa (J ) is the squashed deprived allotment area of J and sat (J ) is the
total satisfied time of J .

Proof. Suppose that AGDEQ produces a schedule χ = (τ, π) for J . Let T =
Tχ(J ) be the completion time of the job set J .

First, let us define some notation. For any time step t, represent set of time
steps from t to the completion of J by −→

t = {t, t + 1, . . . , T}. We shall be
interested in “suffixes” of jobs, namely, the portions of jobs that remain after
some number of steps have been executed. To that end, define the t-suffix of a
job Ji ∈ J to be the job Ji

(−→
t

)
induced by those vertices in V (Ji) that execute

on or after time t, that is,

Ji

(−→
t

)
=

(
V

(
Ji

(−→
t

))
, E

(
Ji

(−→
t

)))
,

where v ∈ V
(
Ji

(−→
t

))
if v ∈ V (Ji) and τ (v) ≥ t, and (u, v) ∈ E

(
Ji

(−→
t

))
if

(u, v) ∈ E(Ji) and u, v ∈ V
(
Ji

(−→
t

))
. The t-suffix of the job set J is

J
(−→

t
)

=
{
Ji

(−→
t

)
: Ji ∈ J and V

(
Ji

(−→
t

))
�= ∅

}
.

Thus, we have J = J
(−→1

)
, and the number of incomplete jobs at time step t is

the number
∣
∣J

(−→
t

)∣∣ of nonempty jobs in J
(−→

t
)
. Since we only consider batched

jobs, the number of incomplete jobs is decreasing monotonically, and hence, we
have ∣

∣J
(−−→
t + 1

)∣∣ ≤
∣
∣J

(−→
t

)∣∣ . (8)

The total response times of J
(−→

t
)

and J
(−−→
t + 1

)
can also be related using this

notation. Since each incomplete job of J
(−→

t
)

adds one time step into its total
response time during step t, we have

R
(
J

(−→
t

))
= R

(
J

(−−→
t + 1

))
+

∣∣J
(−→

t
)∣∣ . (9)

We shall prove the lemma by induction on the remaining execution time of
the job set J

(−→
t

)
.

Basis: t = T +1. Since we have J
(−−−→
T + 1

)
= ∅, it follows that R

(
J

(−−−→
T + 1

))

= 0, sdaa
(
J

(−−−→
T + 1

))
= 0, and sat

(
J

(−−−→
T + 1

))
= 0. Thus, the claim holds

trivially.
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Induction: 1 ≤ t ≤ T . Suppose that the lemma holds for J
(−−→
t + 1

)
. We shall

prove that it holds for J
(−→

t
)
.

We first define some notation. At any time step t, the incomplete jobs can
be partitioned as J

(−→
t

)
= J S(t) ∪ J D(t), representing the set of satisfied and

deprived jobs at time t, respectively. For any job Ji ∈ J and time t, define

S (i, t) =
{

{t} if Ji ∈ J S(t) ,
∅ if Ji �∈ J S(t) ;

and similarly, define

D (i, t) =
{

{t} if Ji ∈ J D(t) ,
∅ if Ji �∈ J D(t) .

We can extend these definitions to suffix ranges:

S
(
i,

−→
t

)
=

T⋃

t′=t

S (i, t′) ,

D
(
i,

−→
t

)
=

T⋃

t′=t

D (i, t′) .

We now relate the total satisfied times of J
(−→

t
)

and J
(−−→
t + 1

)
. By definition

of total satisfied time and using the fact that
∑

Ji∈J |S (i, t)| = |J S(t)|, we have

sat
(
J

(−→
t

))
=

∑

Ji∈J

∣
∣S

(
i,

−→
t

)∣∣

=
∑

Ji∈J
|S (i, t)| +

∑

Ji∈J

∣
∣S

(
i,

−−→
t + 1

)∣∣

= |J S(t)| + sat
(
J

(−−→
t + 1

))
. (10)

We next relate the accumulated deprived allotments a
(
i, D

(
i,

−→
t

))
and

a
(
i, D

(
i,

−−→
t + 1

))
. Job Ji’s accumulated deprived allotment on −→

t is given by

a
(
i, D

(
i,

−→
t

))
=

∑

t′∈D(i,−→t )
a (i, t′) .

We consider two cases depending on whether Ji ∈ J S(t) or Ji ∈ J D(t). If
Ji ∈ J S(t), we have D (i, t) = ∅ and D

(
i,

−→
t

)
= D

(
i,

−−→
t + 1

)
, and thus, Ji’s

accumulated deprived allotment is

a
(
i, D

(
i,

−→
t

))
=

∑

t′∈D(i,−→t )
a (i, t′)

=
∑

t′∈D(i,−→t+1)
a (i, t′)

= a
(
i, D

(
i,

−−→
t + 1

))
. (11)
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18 Y. He, W.-J. Hsu, and C.E. Leiserson

If Ji ∈ J D(t), we have D (i, t) = {t} and D
(
i,

−→
t

)
= D

(
i,

−−→
t + 1

)
∪{t}. Moreover,

Ji has allotment a (i, t) = p (t), where p (t) denotes the mean deprived allotment
at time step t. Thus, Ji’s accumulated deprived allotment is

a
(
i, D

(
i,

−→
t

))
=

∑

t′∈D(i,−→t )
a (i, t′)

=
∑

t′∈D(i,−→t+1)
a (i, t′) + a (i, t)

= a
(
i, D

(
i,

−−→
t + 1

))
+ a (i, t)

= a
(
i, D

(
i,

−−→
t + 1

))
+ p (t) . (12)

Thus, going backwards from step t + 1 to step t, the accumulated deprived
allotment either stays the same or increases by p (t), depending on whether step
t is satisfied or deprived, respectively.

We now use Lemma 8 to relate the squashed deprived allotment areas of
J

(−→
t

)
and J

(−−→
t + 1

)
. Let n =

∣
∣J

(−→
t

)∣∣ denote the number of incomplete jobs
before step t. For i = 1, 2, . . . , n, let αi = a

(
i, D

(
i,

−−→
t + 1

))
, and let βi =

a
(
i, D

(
i,

−→
t

))
. If Ji ∈ J S(t), Equation (11) implies that βi = αi. If Ji ∈ J D(t),

Equation (12) implies that βi = αi+p (t). Thus, the list 〈βi〉 can be generated by
choosing l = |J D(t)| integers from 〈αi〉 and increasing each of them by h = p (t).
Applying Lemma 8 and the definition of squashed deprived allotment area, we
obtain

sdaa
(
J

(−→
t

))

=
1
P

sq-sum
(〈

a
(
i, D

(
i,

−→
t

))〉)

≥ 1
P

(
sq-sum

(〈
a

(
i, D

(
i,

−−→
t + 1

))〉)
+ p (t) |J D(t)| (|J D(t)| + 1) /2

)

= sdaa
(
J

(−−→
t + 1

))
+ p (t) |J D(t)| (|J D(t)| + 1) /2P . (13)

We now can complete the proof of the lemma by using Inequality (8),
Equations (9) and (10), and Inequality (13) to bound the total response time
of J

(−→
t

)
:

R
(
J

(−→
t

))

= R
(
J

(−−→
t + 1

))
+

∣
∣J

(−→
t

)∣∣

≤
(

2 − 2
∣
∣J

(−−→
t + 1

)∣∣ + 1

)
(
sdaa

(
J

(−−→
t + 1

))
+ sat

(
J

(−−→
t + 1

)))
+

∣
∣J

(−→
t

)∣∣

≤
(

2 − 2∣
∣J

(−→
t

)∣∣ + 1

)
(
sdaa

(
J

(−−→
t + 1

))
+ sat

(
J

(−−→
t + 1

)))
+

∣
∣J

(−→
t

)∣∣

≤
(

2 − 2
n + 1

) (
sdaa

(
J

(−→
t

))
− p (t) |J D(t)| (|J D(t)| + 1)

2P

)
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+
(

2 − 2
n + 1

)
(
sat

(
J

(−→
t

))
− |J S(t)|

)
+ n

≤
(

2 − 2
n + 1

)
(
sdaa

(
J

(−→
t

))
+ sat

(
J

(−→
t

)))

−
(

2 − 2
n + 1

) (
p (t) |J D(t)| (|J D(t)| + 1)

2P
+ |J S(t)|

)
+ n

We must show that

(
2 − 2

n + 1

) (
p (t) |J D(t)| (|J D(t)| + 1)

2P
+ |J S(t)|

)
− n ≥ 0

Using the facts that p (t) ≥ P/n, |J D(t)| = n − |J S(t)|, |J S(t)| is an integer,

and 0 ≤ |J S(t)| ≤ n, we obtain
(

2 − 2
n + 1

) (
p (t) |J D(t)| (|J D(t)| + 1)

2P
+ |J S(t)|

)
− n

≥ n

n + 1

(
p (t)
P

|J D(t)| (|J D(t)| + 1) + 2 |J S(t)| − (n + 1)
)

≥ n

n + 1

(
|J D(t)| (|J D(t)| + 1)

n
+ 2 |J S(t)| − n − 1

)

=
1

n + 1
(
|J D(t)| (|J D(t)| + 1) + 2n |J S(t)| − n2 − n

)

=
1

n + 1
(
(n − |J S(t)|) (n − |J S(t)| + 1) + 2n |J S(t)| − n2 − n

)

=
1

n + 1
|J S(t)| (|J S(t)| − 1)

≥ 0 .

The third step of our analysis bounds the squashed deprived allotment area
in terms of the squashed work area.

Lemma 10. Suppose that a job set J is scheduled by AGDEQ, where ρ and
δ are A-Greedy’s responsiveness and utilization parameters, respectively. The
squashed deprived allotment area of J can be bounded as

sdaa (J ) ≤ ρ + 1
δ

swa (J ) ,

where swa (J ) is the squashed work area of the job set J .

Proof. We first show that a (i, D(i)) ≤ cT1(i) for every job Ji ∈ J , where a(i)
and a (i, D(i)) are Ji’s accumulated allotment and accumulated deprived allot-
ment, respectively, and c = (ρ + 1)/δ. By Definition 3, we have a (i, D(i)) =∑

t∈D(i) a (i, t) ≤
∑∞

t=0 a (i, t) = a(i), since D(i) ⊆ {1, 2, . . . , ∞} and a (i, t) ≥ 0.
The processor allotments to any job are either used to make progress on the
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20 Y. He, W.-J. Hsu, and C.E. Leiserson

total work T1(i) or wasted. According to Lemma 5, any job Ji wastes at most
w(i) = ((ρ + 1 − δ)/δ)T1(i) processor cycles. For each job Ji, we have

a (i, D(i)) ≤ a(i)
= T1(i) + w(i)
≤ ((ρ + 1 − δ)/δ)T1(i) + T1(i)
= cT1(i) .

To complete the proof, we use Definition 2 and apply Lemma 6:

sdaa (J ) = (1/P ) sq-sum(〈a (i, D(i))〉)
≤ (1/P ) sq-sum(〈cT1(i)〉)
= c · (1/P ) sq-sum(〈T1(i)〉)
= c · swa (J ) .

The fourth step of our analysis relates the total satisfied time to the aggregate
critical-path length.

Lemma 11. Suppose that a job set J is scheduled by AGDEQ, where ρ and
δ are A-Greedy’s responsiveness and utilization parameters, respectively. The
total satisfied time of J can be bounded as

sat (J ) ≤ 2
1 − δ

T∞(J ) + |J | (L logρ P + L) ,

where T∞(J ) is the aggregate critical-path length of J .

Proof. We bound the total satisfied time using Lemma 4:

sat (J ) =
∑

Ji∈J
|S(i)|

≤
∑

Ji∈J

(
2T∞(i)
1 − δ

+ L logρ P + L

)

=
2

1 − δ
T∞(J ) + |J | (L logρ P + L) .

We can now apply the results of our four-step analysis to obtain a bound on
total response time.

Theorem 2. Suppose that a job set J is scheduled by AGDEQ. Let ρ be A-

Greedy’s responsiveness parameter, δ its utilization parameter, and L the quan-
tum length. The total response time R(J ) of the schedule is at most

R(J ) ≤
(

2 − 2
|J | + 1

) (
ρ + 1

δ
swa (J ) +

2
1 − δ

T∞(J ) + |J | L(logρ P + 1)
)

,

where swa (J ) is the squashed work area of J , and T∞(J ) is the aggregate
critical-path length of J .
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Proof. Combine Lemmas 9, 10, and 11.

Since both swa (J ) / |J | and T∞(J )/ |J | are lower bounds on R(J ), we obtain
the following corollary.

Corollary 2. Suppose that a job set J is scheduled by AGDEQ. Let ρ be A-

Greedy’s responsiveness parameter, δ its utilization parameter, and L the quan-
tum length. The mean response time R(J ) of the schedule satisfies

R(J ) ≤
(

2 − 2
|J | + 1

) ((
ρ + 1

δ
+

2
1 − δ

)
R∗(J ) + L logρ P + L

)
,

where R∗(J ) denotes the mean response time of J scheduled by an optimal
clairvoyant scheduler.

Proof. Combine Theorem 2 with Inequalities (3) and (4).

Since both the quantum length L and the processor number P are independent
variables with respect to any job set J , Corollary 2 shows that AGDEQ is O(1)-
competitive with respect to mean response time for batched jobs. Specifically,
when δ = 1/2 and ρ approaches 1, AGDEQ’s competitiveness ratio approaches
the minimum value 16. Thus, AGDEQ is (16 + ε)-competitive with respect to
mean response time for any constant ε > 0.

The competitive ratio of 16 for AGDEQ is a worst-case bound. We expect
that in practice, however, AGDEQ should perform closer to optimal. In par-
ticular, when the job set J exhibits reasonably large total parallelism, we have
swa (J ) � T∞(J ), and thus, the term involving swa (J ) in Theorem 2 dom-
inates the total response time. More importantly, the job scheduler DEQ is
not actually an adversary of A-Greedy, and simulations of A-Steal [2] sug-
gest that in practice A-Greedy should produce waste closer to (1/δ − 1)T1(i).
From the proof of Lemma 10, one can determine that the coefficient on the term
swa (J ) becomes (2−2/(|J |+1))/δ when a job’s waste is no more than (1/δ−1)
times its work. That is to say, in this scenario, the mean response time of a job
set scheduled by AGDEQ is about (2/δ) swa (J ). Since δ is typically in the
range of 0.5 to 1, if the job set has reasonably large total parallelism, AGDEQ

is likely to achieve the mean response time of less than 4 times the optimal.

6 ASDEQ Algorithm and Performance

ASDEQ is a distributed two-level adaptive scheduler that uses the A-Steal

algorithm [2,3] as its thread scheduler and DEQ as its job scheduler. A-Steal

is a decentralized thread scheduler that employs randomized work stealing [16,31,
47,13,4] to schedule and execute a job without central knowledge of all available
threads. The interactions between A-Steal and DEQ follow the scheduling
model described in Section 2. In this section, we briefly overview the A-Steal

algorithm. We show that ASDEQ is O(1)-competitive with respect to makespan
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for jobs with arbitrary release time and O(1)-competitive with respect to mean
response time for batched jobs.

The Adaptive Stealing Thread Scheduler
The A-Steal algorithm is a decentralized adaptive thread scheduler with paral-
lelism feedback, and like A-Greedy, A-Steal performs two functions. Between
quanta, it estimates its job’s desire and requests processors from the job scheduler.
A-Steal applies the same desire-estimation algorithm as A-Greedy to calculate
its job’s desire. During the quantum, A-Steal schedules the ready threads of the
job onto the allotted processors using an adaptive work-stealing algorithm.

Each processor allotted to a job whose threads are scheduled by A-Steal

maintains a deque (double-ended queue) of those threads that are ready to ex-
ecute. To handle an increase in allotment, A-Steal creates an empty deque for
each newly allotted processor. When the allotment decreases, A-Steal marks
the deques from deallotted processors as muggable deques. An allotted proces-
sor works on only one ready thread at a time. When the current thread spawns
a new thread, the processor pushes the current thread onto the top of the deque
and begins working on the new thread. When the current thread completes or
blocks, the processor pops the topmost thread off the deque and begins working
on it. If the deque of a processor becomes empty, however, the processor be-
comes a thief . The thief first looks for a muggable deque. If one is found, the
thief mugs the deque by taking over the entire deque as its own. Otherwise, it
randomly picks a victim processor and steals work from the bottom of the vic-
tim’s deque. If the victim has no available work, then the steal is unsuccessful ,
and the thief continues to steal at random from the other processors until it is
successful and finds work. At all time steps, every processor is either working,
stealing, or mugging.

Analysis
We now show that ASDEQ is O(1)-competitive with respect to both makespan
and mean response time. The methods used to analyze ASDEQ are similar
to those for AGDEQ. Since ASDEQ is a randomized scheduling algorithm,
however, we show that its makespan (or its expected mean response time) is
within a factor c of that incurred in an optimal clairvoyant algorithm in ex-
pectation, not in the worst case. Let χ = (τ, π) be the schedule of a job set J
produced by ASDEQ. For simplicity we shall use the notations T(J ) = Tχ(J )
and R(J ) = Rχ(J ).

The next two lemmas, proved in [3], bound the expected satisfied steps and
the waste of any single job scheduled by A-Steal. They provide a starting point
for the analysis.

Lemma 12. [3] Suppose that A-Steal schedules a job Ji with critical path
length T∞(i) on a machine with P processors. Let ρ denote A-Steal’s respon-
siveness parameter, δ its utilization parameter, and L the quantum length. Then,
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A-Steal produces at most 48T∞(i)/(1 − δ) + L logρ P + L satisfied steps in
expectation. 	


Lemma 13. [3] Suppose that A-Steal schedules a job Ji with work T1(i) on a
machine with P processors. Let ρ denote A-Steal’s responsiveness parameter, δ
is its utilization parameter, and L is the quantum length. Then, A-Steal wastes
at most

W ≤
(

1 + ρ − δ

δ
+

(1 + ρ)2

δ(Lδ − 1 − ρ)

)
T1(i) (14)

processor cycles in the course of the computation. 	


The next theorem shows that ASDEQ is O(1)-competitive with respect to
makespan for a job set J with arbitrary release time. The following bound
is based on the release time r(i), critical-path length T∞(i), and work T1(i) of
an individual job Ji ∈ J , as well as on the total work T1(J ) of the job set J .

Theorem 3. Suppose that ASDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Steal’s responsiveness parameter, δ its utilization
parameter, and L the quantum size. Then, we expect ASDEQ to complete J in

E [T(J )] =
(

ρ + 1
δ

+
(1 + ρ)2

δ(Lδ − 1 − ρ)

)
T1(J )

P

+O

(
maxJi∈J {r(i) + T∞(i)}

1 − δ

)
+ L logρ P + 2L (15)

time steps.

Proof. The proof is similar to that of Theorem 1. Let job Jk be the last job to
complete among the jobs in J . Let S(k) denote the set of satisfied steps for Jk,
and let D(k) denote the set of deprived steps for Jk. The earliest that the job
Jk can start its execution is at the beginning of the quantum immediately after
Jk’s release, which is the quantum q satisfying Lq < r(k) ≤ L(q + 1). Therefore,
we have

T(J ) < r(k) + L + |S(k)| + |D(k)| . (16)

Since Lemma 12 bounds the number of Jk’s satisfied steps, we focus on bound-
ing the quantity the number |D(k)| of Jk’s deprived steps. DEQ must allot
all processors to jobs on any deprived step, and hence we have a (J , D(k)) =∑

t∈D(k)
∑

Ji∈J a (i, t) = P |D(k)|. The allotted processor cycles are either work-
ing or wasted. Define the constant c to be

c =
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1 − ρ)
.

Lemma 13 shows that the waste w(i) for any job Ji is at most (c−1)T1(i). Since
the total allotment a (J , D(k)) is at most the sum of the total work and total
waste, we have P |D(k)| = a (J , D(k)) ≤

∑
Ji∈J (T1(i)+w(i)) ≤

∑
Ji∈J cT1(i) =

cT1(J ), which gives us |D(k)| ≤ cT1(J )/P .
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Combining this bound, the bound E [|S(k)|] ≤ 48T∞(k)/(1−δ)+L logρ P +L
from Lemma 12, and the bound E [T(J )] < r(k) + L + E [|S(k)|] + |D(k)| from
Inequality (16) completes the proof.

The next theorem shows that ASDEQ is O(1)-competitive with respect to mean
response time for batched jobs.

Theorem 4. Suppose that a job set J is scheduled by ASDEQ. Let ρ denote A-

Steal’s responsiveness parameter, δ its utilization parameter, and L the quan-
tum length. Then, the expected response time of the schedule satisfies

E [R(J )] =
(

2 − 2
|J | + 1

) (
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1 − ρ)

)
swa (J )

+O

(
T∞(J )
1 − δ

)
+ 2 |J | L(logρ P + 1) ,

where swa (J ) is the squashed work area, and T∞(J ) is the aggregate critical-
path length.

Proof. The proof of the theorem follows closely on that of Theorem 2. It turns
out that Lemma 9 holds for any two-level scheduler that uses DEQ, irrespective
of the thread scheduler. Lemma 10 holds with the new constant

c =
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1 − ρ)
.

Lemma 11 can be adapted by using Lemma 12 in place of Lemma 4 to produce
the bound

E [sat (J )] = O

(
T∞(J )
1 − δ

)
+ L logρ P + L .

Combining these bounds yields the theorem.

Theorems 3 and 4 show that ASDEQ is O(1)-competitive for both makespan
and, in the batch setting, mean response time. We anticipate that ASDEQ’s
competitive ratios would be small in practical settings, especially when many
jobs have total work much larger than critical-path length and the machine is
moderately or highly loaded. In this case, the term on T1(J )/P in Inequality (15)
is much larger than the term maxJi∈J {T∞(i) + r(i)}, which is to say, the term
on T1(J )/P generally dominates the makespan bound. The proof of Theorem 3
calculates the coefficient of T1(J )/P in Inequality (15) as the ratio of the total
allotment (total work plus total waste) versus the total work. When the job
scheduler is DEQ, which is not a true adversary, empirical results [2] indicate
that each job Ji only wastes about (1/δ − 1)T1(i) processor cycles, which is not
as large as the worst-case waste in Lemma 13. Therefore, when we use DEQ
as the job scheduler, the coefficient of T1(J )/P seems more likely to approach
1/δ. In other words, the makespan of a job set J scheduled by ASDEQ might
more typically be about T1(J )/δP . Since δ is typically in the range of 0.5 to 1,
ASDEQ may exhibit makespans that are only about 2 times optimal when the
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jobs have reasonably large parallelism and the machine is moderately or heavily
loaded. Similarly, ASDEQ may exhibit only 4 times optimal with respect to
mean response time for batched jobs under the same conditions.

7 Competitiveness of Mean Response Time for
Nonbatched Jobs

This section studies the competitiveness of deterministic algorithms for mini-
mizing mean response time for nonbatched job sets where jobs can be released
at arbitrary times. Let n = |J | be the number of jobs in a job set J , and let
P be the number of processors on which the jobs are scheduled. For jobs with
arbitrary release times, Motwani, Phillips, and Torng [42] study the scheduling
of serial jobs on single processor, and show that every deterministic algorithm
has competitiveness Ω(n1/3), and any randomized algorithm has competitive-
ness Ω(log n) by implicitly assuming that n > P . We extend their result for
deterministic scheduling of nonbatched jobs by showing that any deterministic
algorithm is Ω(n1/3)-competitive with respect to mean response time no matter
what the relation between n and P . Thus, our results for batched job sets in
Section 5 cannot be extended to yield strong results for nonbatched job sets,
except possibly if randomization is employed.

The following theorem provides the lower bound.

Theorem 5. Suppose that a nonbatched job set J is scheduled on P processors.
Any deterministic nonclairvoyant algorithm has competitive ratio Ω

(
n1/3

)
with

respect to the mean response time.

Proof. We exhibit a job set J on which any deterministic clairvoyant Algorithm
A must perform poorly with respect to the optimal offline clairvoyant algorithm.
We construct J with n = m3 − m2 + m jobs in two phases as follows. In the
first phase, we allow Algorithm A to execute on m jobs released at time 0 for
m(m−1) time steps during which no job completes no matter how Algorithm A
allocates the P processors. We give each of the m jobs the work it has executed
thus far plus P additional work. In the second phase, we release the remaining
jobs at times m(m−1), m(m−1)+1, m(m−1)+2, . . . , m(m−1)+m3 −m2 −1,
each with work P . Every job Ji ∈ J has a critical-path length of T∞(i) = 1.

We now analyze the total response time for Algorithm A. For the m jobs
released in the first phase, none completes within the m(m − 1) time steps. Im-
mediately after time m(m−1), we have m+1 jobs, each with P work remaining.
To minimize total response time, the best that Algorithm A can do on time step
m(m − 1) + 1 is to use all P processors to complete one job. At that point,
however, another job is released, and we once again have m + 1 jobs, each with
P work remaining. This process continues until all m3 − m2 + m jobs complete.
Let χ denote the schedule of the job set J produced by the algorithm A. By
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Definition 1 the total response time for Algorithm A is

Rχ(J ) =
∑

Ji∈J
(Tχ(i) − r(i))

=
∑

Ji∈J
Tχ(i) −

∑

Ji∈J
r(i))

=
m3−m2+m∑

k=m(m−1)+1

k −
m3−m2−1∑

k=m(m−1)

k

= −m(m − 1) +
m3−m2+m∑

k=m3−m2

k

= −m(m − 1) +
1
2
(2m3 − 2m2 + m)(m + 1)

= Ω(m4) .

The optimal algorithm works differently, because it knows the future. During
the first m(m − 1) time steps, the optimal algorithm ignores the largest of the
m jobs released at time 0 and works on the other m − 1 jobs. The total work
that can be accomplished in the first m(m − 1) time steps is Pm(m − 1). Since
the total work of the jobs released at time 0 is Pm(m − 1) + Pm = Pm2, the
largest job must have at least Pm work, and thus the remaining m − 1 jobs
have at most Pm2 − Pm = Pm(m − 1) work among them. Thus, by ignoring
the largest jobs during the first phase, the optimal algorithm can complete all
but the largest job. Immediately after time m(m − 1), we have 2 jobs, one with
Pm work remaining, and one with P work remaining. The optimal algorithm
completes the smaller job in 1 time step, at which point a new job with P work
is released. The process repeats, and the optimal algorithm always schedules
the newly released job on all processors, which completes in just 1 time step.
Finally, at time m(m − 1) + m3 − m2 = m3 − m, only the large job remains,
which completes at time m3−m+(Pm)/P = m3, because the optimal algorithm
schedules its Pm work on all P processors.

The optimal algorithm’s response time for each of the m−1 smaller jobs released
at time 0 is at most m(m − 1), for each of the m3 − m2 jobs released in the second
phase is 1, and for the largest job is m3. Thus, the total response time is

R∗(J ) ≤ (m − 1) · m(m − 1) + (m3 − m2) · 1 + 1 · m3

= O(m3) .

Hence, the competitive ratio is R(J )/R∗(J ) = Ω(m4)/O(m3) = Ω(m) =
Ω(n1/3).

8 Related Work

This section discusses related work on the problem of scheduling to minimize
makespan and mean response time. In the offline version of the problem, all the
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jobs’ resource requirments and release times are known in advance. In the online
clairvoyant version of the problem, the algorithm knows the resource require-
ments of a job when it is released, but it must base its decisions only on jobs
that have been released. In this paper, we have studied the online nonclairvoyant
version of the problem, where the resource requirements and release times are
unknown to the scheduling algorithm.

Extensive research [38,18,43,33,34,56,48,50,57] has been conducted on both
the offline and online clairvoyant versions of the problem. Since both adaptive
and nonadaptive task scheduling is strongly NP-hard even for a fixed number
(≥ 5) of processors [23], existing work has tended to focus either on finding
polynomial-time approximation algorithms or on the optimality of special cases.

The online nonclairvoyant version of the problem includes the scheduling of
a single parallel job, multiple serial jobs, and multiple parallel jobs.

Prior work on scheduling a single parallel job tends to focus on nonadaptive
scheduling [13, 9, 28, 15, 10, 44] or adaptive scheduling without parallelism feed-
back [4]. For jobs whose parallelism is unknown in advance and which may change
during execution, nonadaptive scheduling is known to waste processor cycles [53],
because a job with low parallelism may be allotted more processors than it can
productively use. Moreover, in a multiprogrammed environment, nonadaptive
scheduling may not allow a new job to start, because existing jobs may already
be using most of the processors. Although adaptive scheduling without paral-
lelism feedback allows jobs to enter the system, jobs may still waste processor
cycles if they are allotted more processors than they can use.

Adaptive thread scheduling with parallelism feedback has been studied em-
pirically [54,52,49] and theoretically [1,2,3]. Using an adaptive thread scheduler
with parallelism feedback, if a job cannot effectively use the allotted processors,
the job scheduler can repurpose those processors to the other jobs that can use
them. A-Greedy and A-Steal have been shown [1, 2] to achieve nearly linear
speedup and waste a relatively small number of processor cycles for individual
jobs. These algorithms model the job scheduler as the thread scheduler’s ad-
versary. An analytical technique called “trim analysis” shows that the thread
scheduler can perform poorly on at most a small number of time steps while ex-
hibiting near-optimal behavior on the vast majority. A-Greedy and A-Steal

focus on scheduling individual jobs well with respect to both time and waste,
but they do not offer any guarantee for the execution time of the overall job set.

Some researchers [17, 30, 35, 5, 7] have studied the online nonclairvoyant
scheduling of serial jobs to minimize the mean response time on single or mul-
tiple processors. For jobs with arbitrary release times, Motwani, Phillips, and
Torng [42] show that every deterministic algorithm has competitiveness Ω(n1/3)
with respect to mean response time, implicitly assuming that n > P . More-
over, any randomized algorithm has competitiveness Ω(log n), also assuming
that n > P . They also show that round-robin is (2 − 2P/(n + P ))-competitive.
Becchetti and Leonardi [7] present a version of the randomized multilevel feed-
back algorithm (RMLF) and prove an O(log n log(n/P ))-competitiveness result
against any oblivious adversary on a machine with P processors. This RMLF
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algorithm achieves a tight O(log n) competitive ratio against an oblivious adver-
sary on a machine with a single processor, thereby matching the lower bound
for this case.

Shmoys, Wein and Williamson in [51] study the lower bounds of online non-
clairvoyant scheduling of serial jobs with respect to makespan. They show that
the competitive ratio is at least (2−1/P ) for any preemptive deterministic online
algorithm, and at least (2 − 1/

√
P ) for any nonpreemptive randomized online

algorithm with an oblivious adversary.
Adaptive parallel job scheduling has been studied empirically [41,59,55,36,39]

and theoretically [29,20,42,24,25,6]. McCann, Vaswani, and Zahorjan [41] study
many different job schedulers and evaluated them on a set of benchmarks. They
also introduce the notion of dynamic equipartitioning, which gives each job a fair
allotment of processors based on the job’s request, while allowing processors that
cannot be used by a job to be reallocated to other jobs. Their studies indicate that
dynamic equipartitioning may be an effective strategy for adaptive job schedul-
ing. Brecht, Deng, and Gu [14] prove that dynamic equipartitioning with instan-
taneous parallelism as feedback is 2-competitive with respect to the makespan
for jobs with multiple phases, where the parallelism of the job remains constant
during the phase and the phases are relatively long compared to the length of a
scheduling quantum. Their job execution model assumes that the scheduler can
achieve linear speedup during each phase as long as the allotted processors are less
than the instantaneous parallelism. With similar settings and assumptions, Deng
and Dymond [22] prove that DEQ with instantaneous parallelism is 4-competitive
for batched multiphase jobs with respect to the mean response time.

9 Conclusion

Although the results in this paper are entirely theoretical, we are optimistic that
AGDEQ and ASDEQ will perform well in the real world. The original analyses
of A-Greedy [1] and A-Steal [2, 3] model the job scheduler as an adversary
and thereby produce pessimistic bounds. A more friendly job scheduler, such
as DEQ, should therefore allow jobs using A-Greedy and A-Steal to incur
less waste and shorter execution time than predicted by the theoretical bounds.
Since our analyses make use of these pessimistic bounds, we conjecture that in
practice the observed makespan and mean response time will be much smaller
than what the theoretical bounds predict. We are hopeful that our theoretical
work will be complemented by empirical research that can shed additional light
on the practicality of provably good two-level schedulers.
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Abstract. The Message Passing Interface is one of the most well known parallel
programming libraries. Although the standard MPI-1.2 norm only deals with a
fixed number of processes, determined at the beginning of the parallel execution,
the recently implemented MPI-2 standard provides primitives to spawn processes
during the execution, and to enable them to communicate together.

However, the MPI norm does not include any way to schedule the processes.
This paper presents a scheduler module, that has been implemented with MPI-2,
that determines, on-line (i.e. during the execution), on which processor a newly
spawned process should be run, and with which priority. The scheduling is com-
puted under the hypotheses that the MPI-2 program follows a Divide and Con-
quer model, for which well-known scheduling algorithms can be used. A detailed
presentation of the implementation of the scheduler, as well as an experimental
validation, are provided. A clear improvement in the balance of the load is shown
by the experiments.

1 Introduction

The Message Passing Interface (MPI) [12] has imposed itself since 1996 as the library
for parallel programming in High Performance Computing (HPC). MPI’s clean def-
inition of messages, as well as the natural and efficient extension that it provides to
classical sequential languages (C/Fortran), make it the most encountered parallel pro-
gramming interface for clusters and dedicated parallel machines. Virtually all the dis-
tributed benchmarks in HPC have been ported to MPI (e.g. Linpack [8], NAS [7]); and
nowadays the most challenging HPC applications are programmed in MPI (e.g. weather
forecast, astrophysics, quantum chemistry, earthquakes, nuclear simulations. . . [15]).

The MPI 1.2 norm builds upon PVM (Parallel Virtual Machine) [16] to define a
SPMD (Single Program, Multiple Data) programming approach, based on a fixed num-
ber of processes that can communicate through messages. MPI 1.2 defines groups of
processes, as well as a communication space (communicator) to isolate the communi-
cation within a group. In a group, each process is identified by a rank. Messages are
defined by a source and destination process, a basic type and a number of elements
of this type. The data is packed by the programmer into a buffer of appropriated size.
Communication may be synchronous or not, blocking or not. For non-blocking com-
munications, a set of primitives allows to test the completion and to wait for it.
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In spite of the success of MPI 1.2, one of PVM’s features, not implemented in
MPI 1.2, has long been missed: the dynamic creation of processes. The success of
Grid Computing and the necessity to adapt the behavior of the parallel program, dur-
ing its execution, to changing hardware, encouraged the MPI committee to include the
dynamic management of processes (creation, insertion in a communicator, communica-
tion with the newly created processes. . . ) in the MPI-2 norm. Other features have also
been added, such as Remote Memory Access - RMA (one-sided communication) and
parallel I/O. Although it has been defined in 1998, MPI-2 has taken some time to be
implemented, and was included in a few MPI distributions only recently.

Neither MPI 1.2 nor MPI-2 define a way to schedule the processes of a MPI program.
The processor on which each process will be executed, and the order in which the
processes could run, is left to the MPI runtime implementation and is not specified in
the norm. In the static case, for a regular application on homogeneous platforms, the
schedule is trivial, or can be guided by some information gathered on the program [14].
Yet, in the dynamic case, a scheduling module should be developed to help decide on
which processor each process should be physically started, during the execution. Since
MPI-2 implements the dynamic creation of processes, the scheduling decision has to be
taken on-line. As will be shown in Sec. 5, the native LAM solution is far from being
efficient and may lead to very poor run-times.

This paper presents an on-line scheduler which targets dedicated platforms and at-
tempts to minimize the execution time, regardless of other criteria. This contribution is
organized as follows: Section 2 presents the dynamic process creation part of the MPI-2
norm as well as the distributions of MPI that implement it, and how MPI-2 programs
can scheduled. Section 3 details the implementation of a scheduler for MPI-2 programs.
In Sec. 4, the programming model, used in our test-cases with MPI-2, is presented, and
Sec. 5 shows how the scheduler manages the balance of the load among the proces-
sors, with two distinct benchmarks. Finally, Sec. 6 concludes this article and hints at
the following work to be done.

2 Dynamic Creation of Processes in MPI

Since 1997, MPI-2 has provided an interface that allows the creation of processes during
the execution of a MPI program, and the communication by message passing. Although
MPI-2 provides more functionalities, this article is restricted to the dynamic creation of
processes. Sec. 2.1 details the MPI Comm spawn primitive which creates new MPI
processes, and show how they may exchange messages. Section 2.2 presents how to
schedule such spawned processes.

There is an increasing number of distributions that implement MPI-2 functionali-
ties. LAM-MPI is the first distribution of MPI to have implemented MPI-2. LAM also
ships some tools to support the run-time in a dynamic platform: the lamgrow and
lamshrink primitives allow to pass to the runtime information about newly entering
or leaving processors in the MPI virtual parallel machine. MPI-CH is the most classi-
cal MPI distribution, yet its implementation of MPI-2 dates back only to January 2005
only. This distribution aims at high-performance and scaling up to tens or hundreds of
thousands of processors. Open-MPI is a brand new MPI-2 implementation based on
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the experience gained from the developments of the LAM/MPI, LA-MPI, and FT-MPI
projects [9]. HP-MPI is a high-performance MPI implementation delivered by Hewlett-
Packard. It was announced in December, 2005, that it now implements MPI-2.

2.1 MPI-2

MPI Comm spawn is the newly introduced primitive that creates new processes af-
ter a MPI application has been started. It receives as arguments the name of an exe-
cutable, that must have been compiled as a correct MPI program (thus, with the proper
MPI Init and MPI Finalize instructions); the possible parameters that should be
passed to the executable; the number of processes that should be created to run the pro-
gram; a communicator, which is returned by MPI Comm spawn and contains an inter-
communicator so that the newly created processes and the parent may communicate
through classical MPI messages. Other parameters are included, but are not relevant to
this work. MPI Comm spawn is a collective operation over all processes of the original
communicator since it needs to be updated with the data about the children.

In the rest of this article, a process (or a group of processes) will be called spawned
when it is created by a call to MPI Comm spawn, where the process that calls the
primitive is the parent and the new processes are the children.

MPI Comm connect / MPI Comm accept. With MPI-2, it is possible to estab-
lish a connection among dynamically created processes to exchange information in a
client/server model. To do this, a process (the server) creates a port with
MPI Open port, to which another process can connect afterwards. After the creation,
the port name is published byMPI Publish name. Once the port is open and its name
is published, the process allows connections by MPI Comm accept which returns an
inter-communicator. This primitive is blocking and each process in the input communi-
cator (MPI Comm accept’s fourth argument) will be connected to a specific process
using the same port name.

On the other hand, the client process looks the name up of the port previously pub-
lished with MPI Lookup name. Afterwards, the client establishes connection to the
server through MPI Comm connect. The output of this primitive is an
inter-communicator to communicate with the server. When all communications are
done, the process can disconnect calling MPI Comm disconnect, and the server
can close the port with MPI Close port. More details about these primitives can
be found in [13].

2.2 On-Line Scheduling of Parallel Processes

The extensive work on scheduling of parallel programs has yielded relatively few results
in the case where the scheduling decisions are taken on-line, i.e. during the execution.
Yet, in the case of dynamically evolving programs such as those considered with MPI-2,
the schedule must be computed on-line. The problem is crucial, since a good, on-line,
schedule may grant both efficient run-time and portability.
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The most used technique is to keep a list of ready tasks, and to allocate them to
idle processors. Such an algorithm is called list scheduling. The description of the tasks
must be such that it allows to compute, at runtime, which tasks are ready. Thus, the
programming environment must enable the description of the tasks and of their depen-
dencies, typically the input and output data for each task [10]. The theoretical grounds
of list scheduling relies on Graham’s analysis [11]. Let T1 denote the total time of
the computation related to a sequential schedule, and T∞ the critical time on an un-
bounded number of identical processors. If the overhead OS induced by the list schedul-
ing (management of the list, process creation, communications) is not considered, then
Tp ≤ T1/p + t∞, which is nearly optimal if T∞ � T1. This bound is extended to non
identical processors by Bender and Rabin [1].

Workstealing is a distributed version of list scheduling that has been proven to be op-
timal for a class of programs called fully strict. In this case, with a high probability, each
processor makes O(T∞) steal attempts [4]. The total number of steal attempts made by
p processors is bound by O(p.T∞), which yields: Tp ≤ T1

p + O(p.T∞). The fully strict
model implies that a parent process be blocked until all of its spawned tasks return their
results. It includes all Divide and Conquer parallel programs for example. Some par-
allel programming environment that implement a “Divide & Conquer” programming
interface are for example Cilk [2,3] and Satin [17,18].

Three important characteristics motivate the use of this programming model:

1. some of the most rated parallel programming interfaces are based on this model;
2. its use allows to have some performance bounds on the schedules (using

workstealing);
3. a large set of important applications can be efficiently programmed with such a

model. The LU factorization, Branch and Bound search, or sorting are examples.

Workstealing (and list scheduling) only uses a basic information of “load” about the
available processors in order to allocate tasks to them when they turn idle (or under-
loaded). Typically, workstealing uses the number of processes in the local waiting list
of each processor to estimate its load.

Our scheduler is based on the assumption that the MPI-2 program is using a Di-
vide and Conquer programming model: basically, the idea is to use a Cilk-like pro-
gram, where the ‘fork’ construct would be substituted by the MPI Comm spawn, and
the ‘synch’ by the MPI Finalize. Processes migration is not allowed in this model,
which is also non-preemptive.

3 A Scheduler for MPI-2 Programs

The scheduler is constituted of two main parts: a set of header files that re-define some
of MPI-2’s constructs at compile-time; and a scheduler daemon that runs during the
execution of the application (the mpirun script has been tampered in order to run
this extra process along with the “normal” application MPI processes). The overloaded
primitives are used to enable the communication between the MPI processes and the
scheduler, so that the latter may update its data-structure about the MPI computation
and take the scheduling decisions.
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The scheduler must maintain a task graph, in order to compute the best schedule of
the processes. It is implemented in two modules: schedwhich is in charge of updating
the task graph; and libbetampi which implements the internal routines correspond-
ing to the overloaded MPI-2 routines.

3.1 The Scheduler

The task graph is maintained as a generalized tree, where a node may have p children,
p being the number of processes spawned by a parent. The implementation is made in
the graph module. Each node in the tree points to an internal data-structure, struct
process desc, that represents a MPI process. Each process has a state, which can
be Blocked, Ready or Running. To control the states of processes, the scheduler
maintains lists that represent each state; it moves the processes from one list to another
when the parallel program executes. In the current version, the scheduler does not con-
trol the states of processes but this functionality will be included in a future version. The
overloaded MPI-2 primitives send (MPI) messages to the scheduler process to notify it
of each event regarding the program. The scheduler waits for these messages, and when
it receives one, it proceeds with the necessary steps: update of the task graph; evolution
of the state of the process that sent the message; possible scheduling decision.

The scheduling decisions are to be taken:

– At process creation (as a result of a MPI Comm spawn call): the newly created
process(es) has to be assigned a processor where it will be physically forked;

– At process termination (MPI Finalize), since an occupied processor will be
freed; an already existing process may start running;

– When new processor(s) get(s) available. In the current version, this is not contem-
plated.

Since neither preemption nor migration are used, no other event may require a
scheduling decision between the creation and the termination of a process.

3.2 The Overloaded Primitives

To be consistent with the scheduling decisions, the MPI-2 primitives that require over-
loading are:

– MPI Comm spawn: the overloaded version has the following action: the parent
process first sends a MPI message to the scheduler, informing the number n of
processes that it wants to spawn, and its own pid. It then waits (with a blocking
MPI Recv) for a return from the scheduler.

At this point, there is an important issue about the physical creation of processes
(physical spawn), that may be done either by the parent process or by the scheduler.
In the first case, the scheduler will decide of the location of the children and return
the information to the parent process. After the creation of the children, the parent
process can determine their pids and send them back to the scheduler, so that it may,
later on, issue remote system call in order do priorize them. Thus, in this approach
there are two communications between the parent and the scheduler.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



38 M.C. Cera et al.

On the other hand, if the physical creation is done by the scheduler, it will decide
the location of the children, physically create them, and use the inter-communicator
returned by MPI Comm spawn to locally determine the children’s pids. Thus,
the scheduler can definitely update its task graph. But then, it has to send the
MPI Comm spawn return code back to the parent process, as well as the inter-
communicator. This second option needs only one communication between the
scheduler and the parent.

The current version of the scheduler has been implemented with the first op-
tion, where the physical spawn is done by the parent process. Figure 1 shows the
steps of the overloaded MPI Comm spawn. First, the parent process will create
new processes (children) through the MPI Comm spawn primitive (step 1). The
overloaded primitive will establish a communication (step 2) between the parent
and the scheduler, to notify the creation of the processes and the number of chil-
dren that will be created (in the diagram, only one process is created). The sched-
uler updates the task graph structure (step 3), decides on which node the children
should physically be created, and returns this physical location of the new processes
(step 4). The parent process, that had remained blocked in a MPI Recv, receives
the location and physically spawns the children (step 5). It then enters into a block-
ing receive of a message from the scheduler, until all his children complete, so that
the computation may be fully strict.

����

1

23

4

5

����
MPI_Comm_spawnscheduler

Fig. 1. MPI Comm spawn overload

Notice that the creation of new processes is delayed until the scheduler decides
where to execute them. This enables the manipulation of the (light) process de-
scriptor data-structure, until there is some idle processor. Then, the scheduler may
decide to allocate the created processes to this processor, and only then will the
physical creation occur. Thus, the overhead of the heavy process creation is de-
layed until an otherwise idle processor may do it.

– MPI Finalize: this serves to notify the scheduler that a process has terminated,
and therefore that a processor will be idle. The MPI Finalize just sends a mes-
sage to the scheduler.
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Figure 2 shows the MPI Finalize overload. Step 1 represents the call of
MPI Finalize, where is send a message to scheduler (step 2) notifying the
scheduler of the process completion. The scheduler updates the task graph structure
(step 3) and, if there are processes waiting for a processor, it will unblock a process
(shows in step 4).

1

����

4

3
2

����
MPI_Finalize

scheduler

Fig. 2. MPI Finalize overload

– MPI Init: in order to know if a MPI program is called as an “entry point” of the
computation, i.e. directly run by mpirun or mpiexec, or as a spawned program
(i.e. through MPI Comm spawn calls), the MPI Init function is overloaded and
tests the size of the MPI Parent group. It is zero if and only if the program has
been “mpirun”. In the other case, this call serves to get the parent communicator
and merge it together with the program’s MPI Comm world, so that all processes
may communicate through an unique communicator.

From the scheduler point of view, the decisions taken are:

– when it receives a message from a parent process, the scheduler updates its task
graph, associating the parent’s pid to n processes children (the pid and n are the in-
formation contained in the message). It then decides on which nodes the n children
will be created (the heuristics are detailed in Sec. 3.4), and send their locations to
the parent. Afterwards, the scheduler will receive another message from the parent,
with the pids of the children that have been created, in order to store them in the
task graph.

– when it receives a message from a terminating process, the scheduler updates its
task graph to delete the terminated process, and can take the appropriate schedul-
ing decision; for instance, it could remotely contact the source processor of the
message, to notify the process with the new highest priority that it can use the
processor. Finally, it sends a message to the parent process, that was blocked in a
receive that would notify it that its children had completed their computation.

3.3 The Task Graph Structure of the Scheduler

The scheduler needs to update the task graph of the application dynamically. This graph
must allow for an arbitrary number of children for each element that will be known at
execution time. To support this feature, the scheduler uses a rooted tree data-structure,
with left-child, right-selling representation [6]. Each graph node has a pointer that will
cast to a process desc structure with the information about the MPI processes.
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3.4 Scheduling Heuristics

The scheduler can apply scheduling heuristics in two levels: to schedule processes into
resources and to priorize the execution of the processes that are ready to run. In the first
level the heuristics find a good distribution of processes among the available resources.
In the other level it can change the processes priority to get a better resource utilization
and performance.

The LAM MPI-2 implementation provides a Round-Robin mechanism to distribute
processes on the nodes through a special key, lam spawn sched round robin,
that can be set into MPI Comm spawn’s MPI Info argument. In order to specify the
value of this information, the MPI Info set primitive is used. But this mechanism is
only efficient when more than one process are created by the same MPI Comm spawn
call. If only one process is created by the call into a loop structure (for example into
a while), all the children processes will be allocated in the same resource. To bypass
this restriction, our scheduler implements its own Round-Robin mechanism that is able
to distribute the processes in the available resources. With this mechanism, when only
one process is spawned by the call, the scheduler maintains information about the last
resource that has received a spawned process and allocates the new process to the
next available resource in the process topology (new resource = (last resource +
1)%total resources). If more than one process is spawned, then the MPI-2 standard
solution is used. The advantage of this approach is that the distribution occurs transpar-
ently, without any change in the implementation of the application.

The second level of scheduling isn’t implemented in the current version of the sched-
uler. The priority of the processes is left under the responsibility of the operating sys-
tem’s scheduler, on each node. But it is important to notice that it aims to execute
fully strict applications. To make it possible to enforce a coherent execution, one has
to provide a blocking mechanism to make the parent processes wait for the execu-
tion of their children. This is made through a blocking MPI Recv into the overloaded
MPI Comm spawn, that will wait until the scheduler sends a message (one by child),
triggered by the children’s MPI Finalize. This approach guarantees a hierarchical
execution where new processes have higher priority.

4 Programming with MPI-2: The Fibonacci Example

This section presents an example of how to program an MPI-2 application that dy-
namically spawns new processes. The example computes Fibonacci numbers and is
programmed in a recursive way following this definition:

fib(n):

{
if n < 2 → fib(n) = n
else fib(n) = fib(n − 1) + fib(n − 2)

Although the Fibonacci sequence may seem somewhat artificial, its main interest is
in the recursive computational scheme. It is frequently used to test Divide and Con-
quer parallel programs. The recursive calls will be implemented, in MPI-2, with the
MPI Comm spawn primitive. The most technical decision when programming this re-
cursive application is about the synchronization at the start and the termination of the
processes. The MPI-2 primitive that spawns new processes takes as argument, besides
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other information, the executable file name and the command line parameters. These
parameters may be used to pass data to the starting process without exchanging addi-
tional messages, but this may not be convenient for complex data-types. In this case, the
most portable way is to use normal message passing: the data is packed using a classical
MPI data-type and sent as a message. On the Fibonacci example, the first method has
been chosen, since only an integer has to be transmitted from the parent to the children.

The communication in MPI may be synchronous or not. In the contemplated case,
if synchronous send or receives were used, deadlock could occur: for example, a syn-
chronous send, in the parent, before spawning the children, would obviously prevent
them from being created and therefore from receiving the data and match the parent’s
send. In the case of the receives in the parent from the children, one wants them to
be synchronous, in order to implement a fully strict computation: the parent has to be
blocked until all its children end up their computation and send their output back.

From the children’s point of view, all they have to communicate is the result of their
computation. They have to send it back to their parent, and this communication must be
asynchronous in our implementation of the scheduler: remember that in order to block
the parent process until the return of its children, the overloaded MPI Comm spawn
blocks the parent into a receive. If the child process uses a synchronous send, it will
never complete, since it would wait for the matching receive from the parent’s side,
who is busy waiting for a message from the scheduler.

Figure 3 presents the example code that shows how the synchronization was im-
plemented, and this synchronization prevents any deadlock. MPI Comm spawn calls
the executable Fibo, that includes the code segment of the figure 3. Notice that the
MPI Comm spawn is a collective operation which imposes a synchronization among
all processes in a same communicator (since the latter must be updated with the de-
scriptors of the children processes). This feature does not influence the scheduling de-
cisions, but may impact the overhead imposed by the scheduler. Yet, in the case of
Divide and Conquer parallel programs, the children processes are recursively created
from one unique parent an its communicator. Thus, in the context of this work, the syn-
chronization occurs between one parent and each one of its children without any global
synchronization.

5 Experimental Evaluation of the Scheduler

This section presents and analyzes the executions of two example programs with three
different schedulers: the LAM scheduler, an scheduler directly embedded in the appli-
cation and the proposed scheduler, discussed in Sec. 3. All tests have been made on
a cluster of up to 20 Pentium-4 nodes dual, each one with 1 GB de RAM. The main
purpose of these tests is to find out how the spawned processes are distributed on the
processors, with each one of the three schedulers. Our claim is that the use of the pro-
posed scheduler enables a good distribution of the spawned processes.

In the following, the section 5.1 presents a Fibonacci test-case designed with MPI-2
and some results and conclusions about this experiment. Afterwards, Sec. 5.2 shows a
second benchmark that demonstrates the behavior of the schedulers in a situation that
is more CPU-involved and which is highly irregular.
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if (n < 2) {
MPI_Isend (&n, 1, MPI_LONG, 0, 1, parent, &req);

}
else{

sprintf (argv[0], "%ld", (n - 1));
MPI_Comm_spawn ("Fibo", argv, 1, local_info, myrank,

MPI_COMM_SELF, &children_comm[0], errcodes);
sprintf (argv[0], "%ld", (n - 2));
MPI_Comm_spawn ("Fibo", argv, 1, local_info, myrank,

MPI_COMM_SELF, &children_comm[1], errcodes);
MPI_Recv (&x, 1, MPI_LONG, MPI_ANY_SOURCE, 1,

children_comm[0], MPI_STATUS_IGNORE);
MPI_Recv (&y, 1, MPI_LONG, MPI_ANY_SOURCE, 1,

children_comm[1], MPI_STATUS_IGNORE);
fibn = x + y;
MPI_Isend (&fibn, 1, MPI_LONG, 0, 1, parent, &req);

}
MPI_Finalize ();

Fig. 3. Part of MPI-2 code from the Fibonacci example

5.1 The Fibonacci Test-Case with MPI-2

This implementation of the Fibonacci program is not designed for speed measurements,
since it implies two recursive calls (following the exact definition) and could be imple-
mented using only one recursion. Thus, the number N(p) of spawned processes to com-
pute fib(p) is exponential (it is trivial to obtain that N(p) = 1 + N(p − 1) + N(p − 2),
with N(2) = N(1) = 1, and thus N(p) ≥ fib(p) = � Φp√

5
�, Φ = 1+

√
5

2 .
In all experiments have been used the LAM-MPI distribution. To run the Fibonacci

test-case, three different configurations have been used:

1. Simple calls to MPI Comm Spawn were issued, using only LAM’s embedded
scheduling mechanism. With the default provided MPI Info, LAM uses the
Round-Robin policy.

2. The MPI Info Set primitive has been issued before each spawn, not with the
lam spawn sched round robin key, but directly with the hard-coded ID of
the node onto which should run the process. This is the internal mechanism di-
rectly written in the source code. The node ID is computed to implement a simple
Round-Robin allocation to the nodes. Notice that each process that issued a spawn
computes the round-robin allocation from the node ID on which it is executing.

3. A proposed scheduler has been used, with the scheduling heuristic as described
in Sec. 3.4 (Round-Robin), yet this time the scheduling decision is external to the
source application.

First, Table 1 presents the schedules obtained when computing the 6th Fibonacci
number with the three configurations using 5 nodes.
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Table 1. Comparing different schedules: number of processes spawned on each node

Environment Node 1 Node 2 Node 3 Node 4 Node 5
fib(6) with LAM standard scheduler 25 0 0 0 0
fib(6) with embedded scheduler 8 4 8 2 3
fib(6) with proposed scheduler 5 5 5 5 5

In the first case (LAM’s native schedule) all processes were spawned in the same
node. The second case just changed the starting node and this is reflected by a non-
constant number of processes allocated to each node. In the last case, our scheduler
provides an effective Round-Robin distribution of processes among the nodes and a
perfect load balance.

The question that remains is about the first case: if the LAM scheduler uses a Round
Robin algorithm, should it not spawn processes on all nodes? The reason why this does
not happen is that LAM does not keep scheduling information between two spawns.
That means that LAM will always start spawning on the same node and only if mul-
tiple processes are spawned in the same call the processes will be balanced. This sit-
uation gets clearer observing Table 2 with an experiment that compares the result of
spawning 20 processes in a single call, vs. in a loop of multiple, individual spawns
(MPI Comm Spawn).

Table 2. Spawning 20 processes in 5 nodes using single and multiple spawn calls with LAM
scheduler

Environment Node 1 Node 2 Node 3 Node 4 Node 5
20 spawns of 1 process 20 0 0 0 0
1 spawn of 20 processes 4 4 4 4 4

In order to stress the scheduler with a higher number of spawned processes, the exe-
cution of the computation of fib(13) has been used. It results in 753 processes. Table 3
shows the distribution of the processes among 5 nodes, obtained with our scheduler.

Table 3. Computing the 13th Fibonacci number with the new scheduler

Node 1 Node 2 Node 3 Node 4 Node 5 Total Number of Processes
fib(13) 151 151 151 150 150 753

Table 3 shows again the effect of our scheduler: besides the good load balance that
has been reached, the proposed scheduler makes it possible to compute the 13th Fi-
bonacci number, which is not practicable with the standard LAM mechanism: on our
experimental platform, LAM tries to run all the processes on a single node, reaches
an internal upper bound on the number of processes descriptors that it can handle, and
fails.
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5.2 Computing Prime Numbers in an Interval

In this test-case, the number of prime numbers in a given interval (between 1 and N ) is
computed by recursive search. As in the Fibonacci program, a new process is spawned
for each recursive subdivision of the interval. Due to the irregular distribution of prime
numbers and irregular workload to test a single number, the parallel program is natively
unbalanced.

Table 4 presents the distribution of the processes among 5 nodes when executing the
computation in an interval between 1 and 20 millions, using LAM’s native scheduler
and the proposed one.

Table 4. Comparing LAM’s standard scheduler and the proposed one: number of processes
spawned on each node

Environment Node 1 Node 2 Node 3 Node 4 Node 5 Time (s)
LAM’s standard scheduler 39 0 0 0 0 181.15
proposed scheduler 8 8 8 8 7 46.12

Table 4 shows, once more, the good load balance that has been reached with the pro-
posed scheduler. Measuring the execution time, the average duration of the parallel pro-
gram has been 181.15s using LAM’s standard scheduler and 46.12s with the proposed
scheduler. Clearly, the good load balance with our solution has a direct consequence
about the performance of the application.

In this kind of application where the tasks are irregular, a solution that gathers infor-
mation about the load on each node in order to decide where to run each process should
be more efficient. Future work on the proposed scheduler should tackle this issue.

6 Conclusion and Future Work

The implementation of MPI-2 is a new reality in distributed programming, which per-
mits the use of MPI’s based HPC codes with new infrastructures such as computational
grids. However, the diversity of programming models that can be supported by MPI-2
is difficult to match with efficient scheduling strategies. The approach presented in this
paper is to restrict MPI-2 programs to fully strict computations, which enable the use
of Workstealing.

This article has shown how MPI-2 can be used to program with such a model, and
how it can be coupled with a central scheduler. Some preliminary tests have been pre-
sented, that show that LAM MPI’s native scheduling functionalities are clearly outper-
formed by such a solution. Although a distributed solution would be much more scal-
able, this centralized prototype results in a simple implementation and already validates
the interest in such a scheduler of dynamic spawned processes in MPI.

It is therefore interesting to continue the development of such a scheduler, to imple-
ment a real workstealing algorithm: an easy way to do it is to decide on which processor
to execute the processes, based on information about their respective loads. The first ef-
fort in this perspective is shown in [5], where a better use of the available resources has
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been turned possible, through the information about the workload. Future work could
also include altering the priority of the processes on each node, through remote system
calls, to control the execution of the parallel, dynamic program.

Special thanks: this work has been partially supported by HP Brazil.
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Abstract. Advance reservation of resources has been suggested as a
means to provide a certain level of support that meets user expectations
with respect to specific job start times in parallel systems. Those ex-
pectations may relate to a single job application or an application that
consists of a collection of dependent jobs. In the context of Grid com-
puting, applications consisting of dependent tasks become increasingly
important, usually known as workflows. This paper focuses on the prob-
lem of planning advance reservations for individual tasks of workflow-
type of applications when the user specifies a requirement only for the
whole workflow application. Two policies to automate advance reserva-
tion planning for individual tasks efficiently are presented and evaluated.

1 Introduction

With the emergence of more and more sophisticated services, Grid computing
is becoming rapidly a popular way of providing support for many data inten-
sive, scientific applications that, among other, may have large computational
resource requirements. Such applications, without being embarrassingly paral-
lel, may demonstrate a reasonably large degree of task parallelism. The specific
paradigm we consider in this paper concerns Grid workflow applications. These
applications require the execution of a list of tasks in a specific order. Most of-
ten, tasks and their dependences can be represented by a Directed Acyclic Graph
(DAG). Several studies [4,19,30] indicate that such DAG-like applications would
constitute an important use case for emerging Grids.

DAG scheduling, as an optimization problem, has been well studied in the con-
text of traditional homogeneous (and recently heterogeneous) parallel comput-
ing [12,23,29]. However, in the context of the Grid, the underlying environment
is significantly different. Besides the heterogeneity and the possibly substantial
communication overheads, there are issues related to the different administration
domains that might be involved in providing resources for an application to run.
All these issues may hinder the exploitation of parallelism. However, the most
important characteristic of a Grid environment is that the traditional model of
running on homogeneous parallel machines, where a single local scheduler would
be in charge, is no longer the norm. The consequence is that it cannot be guar-
anteed that the attempt to exploit parallelism may result in any performance
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improvements. For example, the parallel tasks may not actually execute in paral-
lel on different resources (belonging to different administration domains) simply
because of different behaviours that the job queue of each resource may adopt.
In principle, this is due to the limited level of service that most current systems
can offer; essentially this is summarized to “run a job whenever it gets to the
head of the job queue”. From the user’s point of view, this might be perceived
as lack of acceptable quality in the service offered when running onto a large,
distributed, multi-site platform.

Advance Reservation of resources has been suggested as a means to guarantee
that tasks will run onto a resource when the user expects them to run [17,28]. Es-
sentially, advance reservation specifies a precise time that jobs may start running.
This allows the user to request resources from systems with different schedulers
for a specific time interval (e.g., start time, finish time), thereby obtaining a
sufficient number of resources for the time s(he) may need. Advance reservation
has already received significant attention and has been considered an important
requirement for future Grid resource management systems [25]. There has been
already significant progress on supporting it by several projects and schedulers,
such as the Load Sharing Facility platform (LSF) [16], Maui [10], COSY [6], and
EASY [15,27]; still, there is some scepticism in the community, especially with
respect to the degree to which advance reservations contribute to improving the
overall performance of a scheduler [9]. Various techniques have also been pro-
posed to solve a number of problems stemming from advance reservation, such as
reservation planning [31], Quality of Service [18] and resource utilization issues
[13,14,21].

All existing work on advance reservation assumes that the environment con-
sists of independent jobs competing for resources. However, in the context of
workflow applications, such as those considered in [4,19,30], the workflow con-
sists of a set of tasks linked by precedence constraints to a DAG. Although one
might consider the whole workflow as a single job for which resources are nego-
tiated and reserved for its whole duration (that is, start of the entry task until
the finish of the exit task), this solution may lead to a waste of resources and
low utilization: this is because precedence constraints and a varying degree of
parallelism may leave resources without work to do. In that case, one may want
to reserve resources for specific tasks. However, the reservation of tasks cannot
be done without taking into account all other tasks in the DAG and, in particu-
lar, precedence constraints as well as the time that each task may need in order
to complete (clearly, a child node in the DAG cannot start execution when a
parent node is still running).

This paper focuses on the problem of planning advance reservations for the
individual tasks of a DAG on a heterogeneous platform taking into account a user
constraint in terms of the latest possible time that the execution of the whole
DAG needs to be completed. In other words, we assume that the user specifies
a time interval for which resources for the whole DAG are required. This time
interval is determined by the time that the application can start running and
the latest possible time that it can finish. Given this time interval, the problem
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relates to how to reserve appropriate time intervals for each task taking also into
account the overall user constraint about the latest possible time that the whole
application (that is, the DAG) can finish.

This paper describes and evaluates two different strategies to solve the prob-
lem of finding individual task reservations. These strategies attempt to include
sufficient ‘extra time’ to individual task reservations based on a user’s request
for the latest time that the whole execution of the DAG must finish. To the
best of our knowledge, there has not been any prior work on this problem. The
increasing interest in workflows in the context of the Grid requires studies to
be undertaken at the level of finding appropriate strategies for planning reser-
vations.

The remainder of the paper is organized as follows. Section 2 provides some
background for the model used and the problem considered. Section 3 proposes
two novel heuristics for task reservation in DAGs. Six different variants of the
two heuristics have been implemented and are evaluated in Section 4. Finally,
Section 5 concludes the paper.

2 Background

The model we use to represent the application, that is the DAG, and its as-
sociated information (e.g., estimated execution time of tasks and communica-
tion costs) is based on a model widely used in other heterogeneous computing
scheduling studies [23,29,33]. A DAG consists of nodes and edges, where nodes
(or tasks) represent computation and edges represent precedence constraints be-
tween nodes. The DAG has a single entry node and a single exit node. There
is also a set of machines (resources) on which nodes can execute (usually, the
execution time is different on each machine) and which need different time to
transmit data. A machine can execute only one task at a time, and a task cannot
start execution until all data from its parent nodes is available. An estimate for
the execution time of each task on each machine is supposed to be known. Same,
the amount of data that needs to be communicated between tasks is also known;
along with an estimate for the communication cost between different machines,
the last two values give the estimated data communication cost between two
tasks that have a direct precedence constraint (that is, they are linked with an
edge in the DAG) and they are running on specific (different) resources.

A number of papers have addressed the problem of minimizing the makespan
when mapping the nodes of the DAG onto a set of heterogeneous machines;
several algorithms, such as HEFT [29] or HBMCT [23], are known to provide
good performance. It might be observed here that those algorithms could be used
to provide an initial solution to the problem of planning advance reservations. In
particular, these algorithms can provide a mapping of the tasks onto space and
time (meaning on what machine a task will execute and what its starting time
would be). As long as the overall makespan is smaller than the latest acceptable
finish time for the whole application, one could plan reservations on the basis of
this mapping.
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However, there is one more subtle point to be made. The algorithms above
provide a mapping on the basis of the estimated execution time of each task.
In practice, the execution time of a task may differ significantly from the static
estimate. Using advance reservation, if a job exceeds the time for which a re-
source has been reserved, it will, most likely, be killed (if re-negotiation is not
possible). In the case of a DAG, killing one task would imply that all children
tasks cannot start at their specified point in time (that is, the reservation slot
for the resource); this may lead to an application failure, or, at best, the need
to renegotiate the reservation of resources for the current task and all its de-
scendants. If, for a moment, we consider advance reservation in the context of
a single job rather than a DAG, it should be noted that, when making advance
reservations, users are expected to reserve resources for a somewhat longer pe-
riod of time than the time they predict their application will need. Certainly,
performance prediction can never be perfect, however, adding some ‘extra spare
time’ or ‘slack’ to the reservation will minimize the chances of their job getting
killed (because it is still running at the end of the reservation slot). It would
be against the whole concept of orchestrating and enacting workflows to expect
that users would reserve resources separately for each task of their workflows;
instead, it is anticipated that users would specify requirements (and hence add
some ‘slack’) for the whole workflow.

In previous work [24,32], it has been observed that, after scheduling a DAG,
individual tasks in a DAG might include some ‘slack’ anyway, as a result of
precedence and resource constraints (for example, think of the parent of a task,
which finishes much earlier than all other parents of the task). In [24], the notion
of spare time is introduced to represent the maximal time that a task can afford
to delay without affecting the start time of any of its dependent tasks (both on
the DAG or on the same machine). Using this notion, assume a DAG, where the
user has specified the latest acceptable finish time (or deadline) for the whole
DAG, and an initial schedule has been constructed, using any conventional DAG
scheduling algorithm, such as HEFT [29] or HBMCT [23]. Then, the problem
becomes how to distribute fairly any extra time left between the finish time of
the last task in the DAG and the latest acceptable finish time of the whole DAG,
to the individual reservations of each task of the DAG, in such a way that each
task gets the maximum possible amount of spare time comparing to the time
it is predicted it will need 1. Such a distribution would increase the spare time
of each task (the spare time defined as above); it can be assumed safely that
this would minimize the chances of an application failure due to the task still
running at the end of its reservation slot.

To illustrate the above, consider the example schedule in Figure 1(a), where
a simple DAG with 5 tasks has been mapped onto 3 machines. The prob-
lem is how to distribute to individual tasks the overall application spare time
(that is, the user specified deadline for the overall application minus the finish

1 Clearly, the assumption is that the maximum acceptable finish time for the whole
application is greater than the finish time of the last task of the DAG as obtained
by the initial schedule of the DAG.
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(b) A Reservation Plan

Fig. 1. A Motivation Example

time of Task 4). A possible distribution that provides to each task an amount of
spare time approximately equal to its original execution time estimate is shown
in Figure 1(b).

It should be mentioned that in several cases, the initial allocation of the
tasks may give some spare time to some tasks as a result of parent-children
relationships (for example, where one parent with a single child task finishes
much earlier than the other parent) [24].

3 Towards a Solution of the Problem

3.1 Input and Notation

The input and the notation used is as follows:

– A workflow application is given; this is represented by a Directed Acyclic
Graph (DAG) G = (V, E), where V is a set of n tasks, and E is the set of
edges representing flow of data between tasks.

– A set of (heterogeneous) resources is given. We assume that each resource
in this set qualifies to run any task of the DAG.
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(1) Phase 1: Obtain initial assignment by allocating each task in the
given workflow (DAG) to a resource using a DAG scheduling algorithm.

(2) Phase 2:
Repeat
Compute the Application Spare Time
Obtain a new allocation by selecting a policy for allocating
this Application Spare Time to each task

Until the Application Spare Time is zero or reaches a pre-defined value.
The last allocation provides the final reservation plan.

Fig. 2. Advance Reservation Planning for DAG applications

– For each task of the DAG, an estimated execution time on each machine
is known. In addition, the amount of data that needs to be communicated
between tasks is known, as well as the communication cost per data unit
between different machines.

– An algorithm, alg, can be used to schedule the DAG onto the set of heteroge-
neous resources. This algorithm produces an initial mapping (or allocation)
of tasks onto machines. This allocation is denoted by alct; the finish time of
this allocation is FinishT imealct. As noticed in the motivating example in
the previous section, the initial allocation can be used to specify a reservation
slot for each task (for example, see the slots for each task in Figure 1.a).

– A user specified maximum acceptable time by which the whole application
(DAG) must finish is given by the user; this is denoted by DeadlineG. Note,
that in real practice, users are expected to specify an earliest possible start
time as well as a latest acceptable finish time. Without loss of generality, we
consider the earliest possible start time to be equivalent to time zero in our
setting.

– Finally, we define Application Spare Time (AST) to be the difference be-
tween DeadlineG and FinishT imealct, that is, ASTalct = DeadlineG −
FinishT imealct.

The purpose of this paper is to come up with an efficient strategy that would
distribute the ASTalct to individual tasks, thereby extending their reservation
slots (in a way similar to what we did in Figure 1(b) for the original schedule
in Figure 1(a)) and making them more resilient to unexpected delays in their
execution. This would minimize the chances that the application will need to
re-negotiate resources (or even fail), because the execution of a task exceeds the
time for which the resource has been reserved.

3.2 Outline of the Solution

Our strategy to come up with reservations for each task of the DAG consists
of two phases as shown in Figure 2. In the first phase, an initial allocation of a
given DAG application is constructed. Given a set of (heterogeneous) resources,
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the initial allocation is obtained using any algorithm for scheduling DAGs onto
those resources in a way that minimizes the makespan (such as, [23,29]). This
allocation is constructed by taking into account estimated execution times for
the tasks and for the communication. The initial allocation provides a start time
and a finish time for each task assigned to a particular resource. If the makespan
of this initial schedule exceeds the user deadline, this allocation is rejected and
the user can be informed that the DAG cannot be scheduled within the required
time.2 If the makespan is less than the user deadline, the next phase is invoked.

In the second phase, the problem becomes how to distribute the application
spare time to individual tasks in a way that each task has a sufficient spare
time of its own, and, ideally, the application finish time becomes equal to the
deadline specified by the user. Two strategies are used for this purpose — they
are explained below.

3.3 Recursive Spare Time Allocation

The key idea of the first strategy is to use a formula to compute an amount
of spare time to be added to each task on the basis of the overall application
spare time. After such an amount of extra spare time is added to each task, the
reservation slot of each task is appropriately extended and a new overall appli-
cation spare time (smaller than the original, because of the extended reservation
slots) is computed. This procedure is applied repeatedly until the overall appli-
cation spare time becomes smaller than a threshold. The strategy is illustrated
in Figure 3.

Four different formulae have been used to compute the amount of spare time
to be added to each task:

1. The application spare time is divided evenly amongst all the tasks (this is
the approach used in the description of the strategy in the Figure 3).

2. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time (equivalent to the initially estimated reservation slot).

3. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time, but, in the first iteration, spare time is given only to the
tasks in the critical path of the allocation.

4. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time. As opposed to the number 2 approach above, this approach
takes into account, each time, the spare time that a current task may exhibit
as a result of successor tasks starting not immediately after the end of the
current task.

2 This case, however, is beyond the scope of this paper. As already mentioned, we
assume that the deadline specified by the user is always greater than the makespan
achieved by the DAG scheduling algorithm.
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Fig. 3. The Recursive Spare Time Allocation Approach

3.4 The Critical Path Based Allocation

The critical path based policy tries to distribute the application spare time to the
tasks on the critical path first (since those tasks determine the finish time of the
application), and then it tries to balance the spare time of tasks in the remaining
execution paths. The critical path based approach is shown in Figure 4. Same
as before, two different formulae are used to compute the amount of spare time
to be added to each task on the critical path:

1. The application spare time is divided evenly amongst the tasks in the critical
path (this is the approach used in the description of the strategy in the
figure).
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Fig. 4. The Critical Path Based Allocation Approach

2. The application spare time is divided amongst tasks in the critical path
in such a way that each task gets the same percentage of spare time as a
proportion to its current execution time.

3.5 An Example

An example workflow with 10 tasks is used here to illustrate the two pro-
posed approaches. The example is shown in Figure 5(a); (b) gives the estimated
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Fig. 5. An example of reserving slots using a schedule generated by the HBMCT
algorithm

computation cost of each task on 3 different machines, and (c) gives the comm-
munication costs between machines. Using the HBMCT DAG scheduling algo-
rithm [23], the schedule is shown in Figure 5(d) with a makespan of 124.6; an
initial reservation for each task of the workflow is built from this schedule with
the starting time and finishing time of each task shown in Figure 5(e).

Assume a deadline of 200 to finish the whole workflow is requested from the
user. Then, using the schedule above, the initial Application Spare Time (AST)
to be distributed to tasks is equal to 200 − 124.6 = 75.4. Figure 6 shows the
first iteration of the Recursive Spare Time Allocation approach. The approach
computes the spare time of each task and allocates the same amount of spare
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task spare time allocated spare time Slot (start) Slot (finish)
0 0 7.54 0 24.54
1 0 7.54 44.14 74.68
2 4.6 2.94 57.78 75.72
3 0 7.54 62.08 73.62

Iteration 1 4 0 7.54 36.24 57.78
AST = 75.4 5 0 7.54 24.54 62.08

6 1.2 6.34 73.62 96.96
7 0 7.54 74.68 128.22
8 2.3 5.24 77.38 104.62
9 0 7.54 133.36 159.90

Fig. 6. An example to illustrate the steps of the Recursive Spare Time Allocation
Approach using the workflow in Figure 5

Fig. 7. An example to illustrate the steps of the Critical Path Based Allocation Ap-
proach using the workflow in Figure 5

time to each task apart from the ones already having some spare time. Those
tasks will be allocated the difference only. For instance, task 2 had spare time of
4.6 from the initial schedule, therefore, another 2.94(= 7.54 − 4.6) is allocated
to it in the new reservation slot. After two more iterations, where additional
spare time is added to each task, the reservation slots for each task and the final
schedule are shown in Figure 8(a).

Figure 7 shows the reservation steps using the Critical Path Based Allocation
approach. All paths in the initial schedule are found, and the tasks which are
in the critical path (which is {0, 1, 7, 9}) obtain the same amount of time by
dividing the AST evenly. The spare time for the remaining tasks is computed by
dividing the remaining amount of AST in the path. Only the smallest amount
of spare time that each task may obtain from different paths will count. For
instance, the spare time of task 5 on the (scheduled) path {0, 5, 3, 6, 9} is
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Fig. 8. The final reservation of each task of the workflow in Figure 5(a) using the
proposed two approaches

12.56, and on the other path {0, 5, 8, 9}, the amount for task 5 is 18.85; how-
ever, only the smallest amount, 12.56, counts to the final reservation slot. The
reservation slots for each task and the final schedule are shown in Figure 8(b).

4 Experimental Results

4.1 The Setting

We evaluated the performance of the proposed strategies in terms of their ability
to distribute the application spare time to the individual tasks as well as their
behavior with respect to possible failures at run-time due to differences from the
predicted task execution times. For the evaluation we used simulation.

Both strategies described above (and all their variants, that is, a total of
six variants) are implemented. The six variants are denoted by r even time,
r even percent1, r cp first, r even percent2, for the recursive spare time alloca-
tion strategy (in the order they were presented in Section 3.3), and cp even time,
and cp even percent for the critical path based strategy (again, in the order they
were presented in Section 3.4).
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Four different DAG scheduling algorithms have been used to obtain the initial
allocation: HBMCT [23], FCP [22], DLS [26] and HEFT [29].

Five different types of DAGs have been used for the evaluation. The first cor-
responds to a real-world workflow application, Montage [3,4]. The second corre-
sponds to generic Fork&Join DAGs; the structure can be seen an abstraction of
Montage. It consists of repetitive layers where in each layer a number of tasks
are spawned to be joined again in the next layer. The number of tasks that are
spawned each time is decreased by 1. The third and fourth types of DAGs corre-
spond to Fast-Fourier-Transform (FFT) and Laplace operations [11]; comparing
to the previous DAGs their structure is fully symmetric. These two graphs have
been extensively used in several studies related to DAG scheduling [2,22,23,24].
Finally, the fifth type aims to provide a more unstructured type of DAGs and
is randomly generated as follows. Each graph has a single entry and a single
exit node; all other nodes are divided into levels, with each level having at least
two nodes. Levels are created progressively; the numbers of nodes at each level
is randomly selected up to half the number of the remaining (to be generated)
nodes. Care is taken so that each node at a given level is connected to at least
one node of the successor level and vice versa.

All five types of DAGs have been used by a plethora of studies related to DAG
and workflow scheduling in the literature [4,19,2,22,24,23,30,33]. In our experi-
ments, we used DAGs of about 60 tasks each (this is approximately 60, because
some types of DAG cannot generate DAGs of exactly 60 tasks). We always as-
sumed that 5 machines were available. Regarding the estimated execution time
of each task on each different machine: this is randomly generated from a uni-
form distribution in the interval [10,100], for the last 4 types and the interval
[50,100] for Montage, while the communication-to-computation ratio (CCR) is
randomly chosen from the interval [0.1, 1].

Two sets of experiments were carried out. The first set evaluates the perfor-
mance of each variant in terms of the spare time assigned to each task. For the
comparison, we assume a fixed deadline. However, given that each algorithm may
generate a different schedule, the makespan of the initial allocation is expected to
differ; this means that the application spare time to be distributed to tasks may be
different (since the deadline is always the same) depending on the original DAG
scheduling algorithm used. Thus, we present the application spare time as a per-
centage ratio of the correspondingmakespan (i.e., the FinishT imealct), as follows:

α = (ASTalct/F inishT imealct) × 100.

In general, the smaller the value of α is, the tighter the required deadline
would be, comparing to the makespan of the initial schedule; consequently, the
less the spare time that can be distributed to each task (although, as a result
of a seemingly inefficient schedule in terms of the overall makespan, tasks may
have already a high spare time inherent in the schedule).

The second experiment considers run-time execution time deviations from the
estimated execution time of each task (that was used to plan their reservations)
and evaluates how well the strategies can accommodate those deviations.

Finally, we also evaluate the running time of each variant.
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4.2 Performance Results

Distribution of Spare Time. Using a common deadline in all cases (which
we assume it is at time 1500 after the start of the first task of the DAG), the
six variants are evaluated using four different DAG scheduling algorithms for
the initial allocation and five different types of DAGs. In each case, we are
interested to find out how well each variant distributes the application spare
time to individual tasks. Thus, for all tasks of the DAG, we find the minimum,
average, and maximum spare time for a task (denoted by Min, Avg, Max) as
a percentage of the task’s estimated execution time. The minimum spare time
percentage is the most important indicator, since it shows the highest percentage
of deviation from the estimated execution time of a task that can be afforded by
any task without exceeding the reserved timeslot.

The results, averaged over 100 runs, are shown in Table 1. Several observations
can be made:

– It appears that all six different variants manage to achieve a reasonable
distribution of the spare time to each task as can be seen by observing the
minimum spare time percentage (which is for each task analogous to what
the value of α is for the whole DAG). In most cases, this seems to be close to
or higher than the corresponding value of α. It also appears that the critical
path based approaches (cp even time and cp even percent) lead to slightly
higher values for the minimum spare time percentage. It is interesting to
notice that, for the Montage workflow, HBMCT manages to guarantee a
minimum spare time percentage of 47.8% for each task, even though the
value of α is only 34.

– On the DAG scheduling algorithm front, it is interesting to notice that
HBMCT generally shows the highest minimal spare time percentage (the
only exception being FFT graphs, where the DLS algorithm performs bet-
ter, by about 5%, in 4 out of the 6 variants). It is worth to notice also
that, even though it has a lower α value (that is, a longer makespan) the
FCP algorithm outperforms HEFT (which has a higher α value and hence
more application spare time to distribute to individual tasks) in terms of the
spare time percentage, for all types of DAG except Montage. This can be
attributed to the inefficient initial schedule that FCP builds, which already
gives a rather large amount of spare time to each task. Still, however, FCP
is outperformed by HBMCT.

– The different types of DAGs, although they generate different results, still
exhibit a consistent behaviour. The only exception arises for the Montage
workflow and in relation to the FCP algorithm. It can be speculated that,
although an originally inefficient schedule (as the one produced by the FCP
algorithm) may have some inherent spare time, this is not necessarily fairly
distributed amongst tasks. There might be an argument here in favour of
algorithms where a carefully produced original schedule (not necessarily op-
timized for minimum makespan) already includes some spare time carefully
distributed among tasks, but this remains to be investigated.
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Table 1. Minimum, maximum, and average spare time as a percentage of the estimated
execution time of each task using: 6 approaches to distribute spare time to tasks; 4
different DAG scheduling algorithms to obtain the initial schedule; 5 different types of
DAGs of about 60 tasks on average; and scheduling on 5 machines. In all cases, the
user specified deadline is 1500.

HBMCT α=34 FCP α=7 DLS α=32 HEFT α=24
Montage Min Max Avg Min Max Avg Min Max Avg Min Max Avg

r even time 38.3 110.2 66.5 20.4 157.7 48.2 36.7 108.6 62.7 26.8 140.4 56.9
r even percent1 40.8 107.5 69.8 22.3 146.8 45.8 34.1 108.0 68.4 27.5 132.0 58.3
r cp first 40.0 102.9 70.2 23.1 135.8 44.4 35.4 111.6 65.9 32.7 134.5 59.9
r even percent2 42.6 108.3 72.5 22.7 149.5 46.8 35.4 115.7 67.9 28.4 131.7 60.5
cp even time 43.9 111.6 78.7 24.4 159.6 50.5 35.7 122.7 70.2 30.7 148.2 62.5
cp even percent 47.8 98.7 78.8 23.9 160.6 55.1 40.1 115.9 68.4 34.9 145.1 61.6

HBMCT α=24 FCP α=9 DLS α=23 HEFT α=16
Random Min Max Avg Min Max Avg Min Max Avg Min Max Avg

r even time 21.2 200.6 55.3 18.3 186.4 47.6 18.2 193.2 46.9 15.6 172.7 42.6
r even percent1 25.9 178.6 60.4 19.9 179.0 48.2 17.5 187.9 44.1 15.0 160.6 41.1
r cp first 24.0 203.8 55.4 19.2 180.9 46.8 19.6 192.6 46.6 15.9 172.2 44.0
r even percent2 23.6 168.4 56.6 19.2 178.3 48.9 17.5 182.6 42.8 15.2 154.5 35.6
cp even time 27.6 194.7 58.3 20.8 177.1 48.7 20.2 184.4 48.4 16.5 169.9 37.2
cp even percent 25.6 172.2 55.3 19.6 178.2 49.9 22.0 170.4 50.7 16.6 155.4 40.1

HBMCT α=28 FCP α=11 DLS α=28 HEFT α=18
Laplace Min Max Avg Min Max Avg Min Max Avg Min Max Avg

r even time 25.4 205.7 62.3 23.0 188.1 55.5 24.3 208.4 66.2 18.7 175.4 56.9
r even percent1 23.3 187.7 70.4 21.6 166.0 62.4 21.7 182.1 64.9 18.7 168.4 57.1
r cp first 26.8 215.5 70.5 23.1 182.4 56.9 23.7 198.5 66.5 20.4 177.5 54.8
r even percent2 26.0 185.7 72.3 19.2 173.8 59.3 25.5 190.8 73.8 20.0 172.5 60.5
cp even time 27.1 206.4 66.9 23.0 178.2 55.5 24.1 197.4 67.4 23.8 189.4 56.9
cp even percent 28.4 196.9 68.6 24.6 171.7 56.6 25.9 192.7 67.3 21.2 172.6 58.8

HBMCT α=19 FCP α=7 DLS α=18 HEFT α=12
F&J Min Max Avg Min Max Avg Min Max Avg Min Max Avg

r even time 19.3 165.2 50.5 17.5 156.6 52.7 18.7 151.7 52.9 15.2 140.9 50.5
r even percent1 18.5 156.8 51.6 17.3 154.3 54.9 19.7 139.5 55.5 14.9 142.4 48.4
r cp first 20.2 161.8 55.8 19.5 163.9 56.8 21.0 158.7 55.0 18.4 151.6 50.6
r even percent2 18.9 150.5 53.0 18.2 159.8 59.3 20.3 145.1 57.9 17.0 151.4 50.7
cp even time 19.6 160.3 57.7 17.7 164.8 60.6 19.1 167.6 58.9 17.8 151.9 54.8
cp even percent 19.5 155.4 60.3 18.8 151.7 60.1 20.7 160.6 70.2 17.6 146.3 57.3

HBMCT α=21 FCP α=8 DLS α=21 HEFT α=15
FFT Min Max Avg Min Max Avg Min Max Avg Min Max Avg

r even time 21.6 198.7 56.7 17.9 170.6 54.0 22.3 193.7 57.5 18.2 180.6 55.7
r even percent1 23.6 185.3 58.3 16.7 165.6 57.4 22.2 176.6 60.9 20.2 164.9 58.6
r cp first 20.7 192.9 60.6 18.2 171.8 57.0 23.1 203.0 62.5 21.6 200.4 60.8
r even percent2 24.1 182.4 60.4 20.2 159.8 58.2 23.7 179.0 61.9 23.6 196.9 60.5
cp even time 23.2 191.9 60.6 21.9 181.6 59.1 25.7 190.4 62.4 24.6 199.8 62.0
cp even percent 24.6 187.1 61.8 20.4 176.6 60.2 24.9 195.1 65.8 23.9 191.7 62.5

Evaluation of the behaviour of our approach with run-time changes.
The second set of experiments examines how well the proposed approaches be-
have in a realistic environment, where they need to accommodate deviations
from the estimated execution time of each task at run-time. In order to emulate
run-time changes (in relation to the estimated execution times) we adopt the
notion of Quality of Information (QoI) [24]. This represents an upper bound on
the percentage of error that the statically estimated execution time may have
with respect to the actual execution time. So, for example, a percentage error
of 10% would indicate that the actual run-time execution time of a task will be
within 10% (plus or minus) of the static estimate for the task. Clearly, in this
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case, if the planned reservations for each task have a spare time higher than 10%
(as a percentage of the task’s estimated execution time), the actual execution
time of a task cannot exceed its reservation slot.

In this set of experiments, we used only the HBMCT algorithm, since it ap-
pears to perform generally better than the other algorithms considered earlier.
We also consider only the Montage workflow. We consider different values for α
(20, 50, 100, 150) and QoI (equal to 20%, 50%, 100%, 150% of the estimated
execution time). Our aim is to evaluate the number of failures (a failure means
that one task of the DAG could not complete its execution within its reserved
slot) as well as the utilization of the reserved slots (this is the average utiliza-
tion of the reserved slots for each machine). For comparison purposes, the six
variants proposed in this paper are compared against an approach which re-
serves all resources that might be needed for the entire execution of the DAG
(DAG Reserve). The results are shown in Table 2. Same as before, the experi-
ment is repeated 100 times and 5 machines are considered.

The main observation is that, generally, if the value of the QoI is less than the
value of α it is unlikely to have failures (the only exception seems to arise for the
largest value of QoI, 150%). This can be justified using the results in the previous
set of experiments, where it was observed that, generally, the minimum spare
time percentage that can be added to each task is close to the value of α. This
means that for deviations in the task execution time that are up to about α%, the
reservation plan is quite resilient and no (or very few) failures are expected. The
main lesson from this observation is that all that users need to do when asking
for resources for a workflow is to specify the amount of ‘slack’ that they would
be prepared to afford for the execution of the whole workflow: this should be
roughly related to the maximum deviation that they expect from the estimated
execution time of each task in the workflow. Individual reservation slots for each
task can then be derived automatically using appropriate heuristics.

Comparing the variants proposed in this paper with the approach that reserves
all resources throughout the entire DAG’s execution, it can be seen that the
former is more robust to failures (not surprising, given that in our variants the
spare time of the whole DAG is distributed to individual tasks) but it suffers
from low utilization within the reserved slots. It should be noted here that these
values do not take into account the fact that our variants, which are based on
individual task reservations, leave ‘gaps’ in the resources while the DAG is being
executed. Thus, our variants allow to regain unused resource time after a job
has been completed by backfilling [21] other, independent jobs that do not have
advance reservation. This creates a better potential to increase overall resource
utilization. Instead, in the case where the resources are reserved for the entire
DAG, backfilling would not be desirable until the exit task of the DAG has been
completed.

Running Time. Although the two strategies that were compared in the previ-
ous section perform similarly, the variants based on the recursive based strategy
achieve the same result at a significantly reduced cost. Figure 9 shows how the
running time varies for each variant considered. The experiment was carried out
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Table 2. Number of failures (reservation slot exceeded) and average reserved slot
utilization for each of 6 task reservation approaches and DAG reservation approach with
different QoI and α values. Results obtained over 100 runs using Montage workflows
each with 57 tasks and scheduling on 5 machines with HBMCT algorithm.

Number of Failures Reserved Slot Utilization
α QoI 20% 50% 100% 150% 0% 20% 50% 100% 150%
20 r even time 0 22 85 100 60.1 66.2 75.7 82.8 92.5

r even percent1 0 20 84 100 59.4 65.6 74.3 81.3 90.3
r cp first 0 22 84 100 59.3 66.8 76.0 81.9 92.0
r even percent2 0 21 80 100 58.7 65.4 76.1 81.5 91.1
cp even time 0 21 83 100 60.4 67.0 77.1 82.4 91.7
cp even percent 0 21 82 100 60.6 66.6 75.9 82.1 91.9
DAG Reserve 0 8 59 100 44.7 46.4 49.5 53.5 58.8

50 r even time 0 0 19 46 52.5 59.4 70.2 82.6 91.9
r even percent1 0 0 17 45 51.4 58.0 68.9 80.4 90.1
r cp first 0 0 17 44 52.7 58.5 68.7 80.8 90.2
r even percent2 0 0 17 44 52.4 58.7 69.3 81.0 90.4
cp even time 0 0 16 44 52.1 59.0 69.5 80.9 89.8
cp even percent 0 0 16 45 51.9 58.7 69.1 80.4 89.4
DAG Reserve 0 0 7 29 35.4 36.7 38.7 40.4 43.8

100 r even time 0 0 0 13 27.4 33.1 40.4 64.4 78.0
r even percent1 0 0 0 10 26.3 31.4 38.8 63.1 77.9
r cp first 0 0 0 11 25.9 32.0 38.7 63.2 77.0
r even percent2 0 0 0 10 26.4 32.7 39.0 63.7 76.6
cp even time 0 0 0 11 26.4 31.8 39.2 63.0 76.9
cp even percent 0 0 0 11 26.2 31.6 39.0 63.2 77.3
DAG Reserve 0 0 0 5 20.3 21.5 25.0 27.9 31.3

150 r even time 0 0 0 7 21.7 25.8 35.5 46.4 61.2
r even percent1 0 0 0 4 21.5 24.6 34.8 45.5 59.6
r cp first 0 0 0 5 21.2 24.8 34.6 46.0 59.8
r even percent2 0 0 0 5 20.9 24.7 34.0 46.0 60.5
cp even time 0 0 0 5 21.2 24.4 34.0 46.4 60.7
cp even percent 0 0 0 5 21.2 24.4 33.6 46.1 60.9
DAG Reserve 0 0 0 0 14.9 16.7 19.6 22.6 26.8

with random DAGs (since they provide us with more flexibility in specifying a
different number of tasks for the DAG) having 20 to 100 nodes each; the reser-
vation plans considered an alpha value of 50. It can been seen that the critical
path based policies lead to faster increases in the running time than the recur-
sive based ones as the number of nodes in the DAG increases. This is because
finding every path from the entry node to the exit node in the allocated schedule
takes a significant amount of time. This may indicate that the critical path based
variants, although they have the potential to perform slightly better, they come
with an extra cost.
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Fig. 9. Average running time (over 100 runs on randomly generated DAGs) of six
different reservation planning variants and four different DAG scheduling algorithms

5 Conclusion

This paper presented two novel advance reservation policies for workflows, which
attempt to distribute the spare time between an initial schedule (obtained by any
DAG scheduling algorithm) and the deadline for the execution of the workflow
gracefully to each task, in order to cope with run time execution time changes
for each task. The approaches are based on either recursively allocating the time
to each task or optimizing the critical path tasks. The strategies were designed
to be usable by any DAG scheduling algorithm.

The main outcome of this work has been the proposal of efficient heuristics
that can automate the process of coming up with reservation slots for schedul-
ing individual tasks of a workflow (DAG), in the context of a system allowing
advance reservations, without user intervention. In line with the philosophy for
workflow automation in current research, all that the user needs to specify is the
latest acceptable finish time for the whole workflow. As illustrated in the paper,
the rest can be automated using a combination of appropriate heuristics.
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Further evaluation could consider the heuristics presented in this paper in
conjunction with a more dynamic environment, where DAGs as well as other
jobs, not necessarily having advance reservations, co-exist. Such an environment
could allow more complete analysis of resource utilization and performance by
applying backfilling and/or techniques for dynamic re-planning advanced reser-
vations based on run-time information.
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Abstract. In this paper, we present a methodology for automatically
generating online scheduling strategies for a complex scheduling objective
with the help of real life workload data. The scheduling problem includes
independent parallel jobs and multiple identical machines. The objective
is defined by the machine provider and considers different priorities of
user groups. In order to allow a wide range of objective functions, we
use a rule based scheduling strategy. There, a rule system classifies all
possible scheduling states and assigns an appropriate scheduling strategy
based on the actual state. The rule bases are developed with the help
of a Genetic Fuzzy System that uses workload data obtained from real
system installations. We evaluate our new scheduling strategies again
on real workload data in comparison to a probability based scheduling
strategy and the EASY standard scheduling algorithm. To this end, we
select an exemplary objective function that prioritizes some user groups
over others.

1 Introduction

In this paper, we address the development of a methodology to automatically
generate scheduling strategies for Massively Parallel Processing (MPP) systems
that consider the providers’ preferences. The scheduling problem consists of n
independent non-clairvoyant jobs that are submitted by different users over time.
The scheduling strategy is responsible to assign the available processors of the
MPP system to those jobs. However, the machine providers in real scenarios
have different relationships to the various users or user groups. Those different
relationships lead to different prioritizations of the users and their corresponding
jobs. Consequently, the scheduling strategy needs to incorporate those priorities
during the scheduling process.

Many installations use partitions [14] or quotas [31] to implement this kind of
prioritizations of different user groups. However, those attempts result in a low
system utilization in most of the cases [14]. Hence, we present the development
of a rule based scheduling system that is able to generate schedules with a
higher quality in terms of the provider preferences while not decreasing system
utilization. To our knowledge, there is no similar work that is able to incorporate
the user group prioritizations in a similar way.
� Born Carsten Ernemann.
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The development of scheduling strategies for MPP systems is based on work-
load traces originating from real installations, see for example Heine et al. [16].
Such workload data include all hidden job dependencies, patterns and feedback
mechanisms. For MPP systems several workloads are available, see the standard
workload archive maintained by Feitelson [13], that are for instance described by
Chapin [5]. Although those data are rather old they suffice for our purpose. So
far, workload models are rarely used to develop scheduling algorithms as they
are not able to describe workload traces with an acceptable accuracy, see Song
et al. [28] and the given references there.

The online job scheduling on MPPs is usually non-clairvoyant as the process-
ing time pj of job j is not available at its release date rj . However, users are often
required to provide estimates p̄j of the processing time that are mainly used to
determine faulty jobs whose processing time exceeds the estimate. Further, par-
allel jobs on MPPs are typically not moldable or malleable, that is, they need
concurrent and exclusive access to mj ≤ m machines during the whole execution
phase. The value mj is provided at the release date rj by the user. Finally, the
completion time of job j in a schedule S is denoted by Cj(S). As preemption is
not allowed in many MPPs, each job starts its execution at time (Cj(S) − pj).
Unfortunately, the available workload data do not provide any user group infor-
mation nor define any complex scheduling objective. To address the user group
problem, we are using the work of Song et al. [29], who have shown that users
can be reasonably well partitioned into 5 groups for all available MPP workload
traces. Those groups are differentiated with respect to job characteristics and
frequency of job submissions. Within this work, we will also use 5 different user
groups. However, we will use the user’s resource consumption as the differentia-
tion criterion. The binary function �i(j) is used to state whether job j belongs
to user group i (�i(j) = 1) or not (�i(j) = 0).

We present a methodology to automatically generate a rule based scheduling
system that is able to produce good quality schedules with respect to a given
complex provider objective. Note that our methodology is not restricted to a
specific user group selection.

The individual preferences of the machine providers are expressed using a
complex objective function that is generated by combining well known simple
basic objectives. Even if different providers use the same objective functions
for the various groups, the transformation of a generic multi-objective scenario
into a specific scheduling problem with a single objective depends on the ac-
tual priorities assigned to the user groups and is likely to be individual. Hence,
we focus on the development of a suitable methodology and do not generate a
single scheduling strategy. Without loss of generality, we exemplarily select a
complex objective function to demonstrate the feasibility of our approach. Here,
we present a rule based scheduling that is able to adapt to various scenarios.
So far, the use of rule based systems in scheduling environments is rare. Nev-
ertheless, first attempts [10,4] have shown the feasibility of such an approach.
However, those scheduling systems are all based on single simple objective eval-
uation functions that are not optimized.
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The proposed scheduling process is divided into two steps. In the first step,
the queue of waiting jobs is reordered according to a sorting criterion. Then
an algorithm uses this order to schedule the jobs onto the available machines
in the second step. Based on the present scheduling state, the rules determine
the sorting criterion and the scheduling algorithm. In order to guarantee general
applicability, the system classifies all possible scheduling states. This classifica-
tion considers the scheduling decisions in the past, the actual schedule, and the
current waiting queue. Note that we have chosen some classification features ex-
emplarily. Other possible features can be used as well for this task. Our feature
selection only serves the purpose to illustrate our methodology.

As already stated in many other publications, see for example Ernemann
et al. [6,7], a local scheduling decision influences the allocation of future jobs.
Hence, the effect of a single decision cannot be determined individually. There-
fore, the whole rule base is only evaluated after the complete scheduling of all
jobs belonging to a workload trace. This has a significant influence on the learn-
ing method to generate this rule base as this type of evaluation prevents the
application of a supervised learning algorithm, see Hoffmann [17]. Instead, the
reward of a decision is delayed and determined by a critic. Furthermore, the
generation of an appropriate situation classification is not known in advance
and must be generated implicitly while constructing the rule based scheduling
system.

The various design concepts for Fuzzy logic controllers often use Evolutionary
Algorithms to adjust the membership function as well as to define the output
behavior of individual rules, see, for example, Hoffmann [17]. Especially Genetic
Fuzzy Systems have been proven to deal with such classification and automatic
rule base generation problems in a suitable way. All those Genetic Fuzzy Systems
either encode single rules (Michigan approach, Bonarini [3]) or complete rule
bases (Pittsburgh approach, Smith [27]).

Within this work, the determination of a Genetic Fuzzy System is realized
using the Pittsburgh approach. In this case, each individual represents a whole
rule base. During the evolution, the individual rules are adjusted in order to
better fit to the given situations. Furthermore, we will present a Coevolutionary
approach that uses two rule bases, one for the determination of the sorting
criterion and one for the scheduling algorithm that is applied. Both rule bases
evolve independently with the only exception that during the quality assignment
one individual from each rule base must be selected.

We use an Evolution Strategies for the optimization of the rule based schedul-
ing system. This is in contrast to the majority of Genetic Fuzzy Systems, see
Hoffmann [17]. As our membership functions include real valued parameters,
Evolution Strategies are superior to Genetic Algorithms in this case, see Bäck
and Schwefel [1].

To finally show the results of our approach, we use a linear priority function
which favors user group 1 over user group 2 over all other user groups. The
choice of another priority function may lead to different results but does not af-
fect the feasibility of our methodology. Due to the lack of a scheduling strategy
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supporting priority functions, no priority functions are available in practice.
Therefore, we had to define one.

For the evaluation of the derived scheduling strategy we present the distance
of this schedule from the Pareto front of all feasible schedules for this workload,
as generated by Ernemann et al. [8]. Although the generation of an approximate
Pareto front is not subject of this paper, two restrictions must be noted:

1. For real workloads, we are only able to generate approximate Pareto fronts.
Therefore, schedules of this front are not guaranteed to be lower bounds.

2. The schedules are generated off-line. On-line methods may not be able to
achieve as good results due to the on-line constraints.

On purpose, we selected a criterion where user groups with a high comput-
ing demand are preferred over user groups with a low demand. Then classical
scheduling algorithms will typically generate acceptable results. This is not true
for a prioritization of a user group with a low resource demand. Moreover, we
also show the results of the best conventional strategy that does not support
priorities.

The remainder of this paper is organized as follows. In Section 2, we introduce
the underlying scheduling system, Evolutionary Algorithms, and Genetic Fuzzy
Systems in more detail. The scheduling objectives and features are presented in
Section 3. Then the model of our approach is described in Section 4. This is
followed by a detailed analysis of the system behavior and an evaluation of the
results. The paper ends with a brief conclusion.

2 Background

This section introduces the main scheduling algorithms and their application
within our rule based scheduling system. Furthermore, the concept of Evolution
Strategies is presented. Those strategies are used to optimize the rule based
scheduling system.

2.1 Scheduling Concepts

As already mentioned, scheduling strategies of high performance parallel com-
puters need to pay more attention to certain users or user groups in order to
achieve a higher degree of satisfaction for them. Priority or membership informa-
tion are not available in the workloads. Hence, we use the resource consumption
as a grouping criterion such that user group 1 represents all users with a higher
resource consumption whereas all users in group 5 have a very low resource de-
mand. Details of the user group definitions are provided by Ernemann et al. [8].

As already introduced, a state of a scheduling system mainly consists of the
current schedule, that describes the actual allocation of processor nodes to cer-
tain jobs, the scheduling results achieved so far, and the queue of waiting jobs.
This waiting queue is typically ordered.
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In most cases, a static ordering like sorting by submission time or sorting by
estimated runtime is applied. In some other cases, the waiting queue is dynami-
cally reordered depending on the system state by using a more complex sorting
criterion that may for instance consider limits of the waiting time.

The various scheduling algorithms mainly differ in the way they select the next
job from the sorted waiting queue to insert it into the existing schedule, that
is, they obey different restrictions when choosing the next job. This results in
different algorithmic complexities and correspondingly different execution times
for the scheduling algorithms.

In the following, we present four selected scheduling algorithms in increasing
order of algorithmic complexity. Note that the first three algorithms use a stat-
ically sorted waiting queue while the last algorithm dynamically reorders this
queue.

– First Come First Serve (FCFS) starts the first job of the waiting queue
whenever enough idle resources are available. Thus, this algorithm has a
constant complexity as the scheduler always only tests whether the first
job can be started immediately if a job in the schedule has completed its
execution or a new job has risen to the top of the waiting queue.

– List Scheduling as introduced by Graham [15] is not applied in this work.
However, it serves as the basic template for the two backfilling variants. By
applying List Scheduling, the scheduler tries to find the first job within the
queue of waiting jobs, that can be started on the currently idle resources.
Again, the algorithm uses the sorted queue. The complexity is higher than
in the case of FCFS as in the worst case, the whole queue is tested each time
the scheduling procedure is initiated.

• EASY Backfilling (EASY) is similar to the original List Scheduling. How-
ever, if the first job within the waiting queue cannot be started imme-
diately the algorithm estimates the completion time of this job. To this
end, a runtime estimation provided by the user is needed. Then EASY
tries to find an allocation for the following jobs of the waiting queue on
the currently idle resources while ensuring that the first job is not further
delayed. This algorithm requires more time than List Scheduling, as the
scheduler needs to estimate the processing of the first job in case that it
cannot be started directly.

• Conservative Backfilling (CONS) extends the concept of EASY. Here,
the scheduler tries to find the next job within the waiting queue, that
can be started immediately while ensuring that no previous job within
the queue is further delayed. This results in a much higher complexity of
the scheduling algorithm as in the worst case, the completion time of all
jobs within the waiting queue except of the last job must be estimated
each time the scheduling process is initiated.

– Greedy Scheduling (Greedy) uses a dynamically sorted waiting queue contrary
to the already introduced scheduling algorithms. To this end, the algorithm
defines a complex sorting criterion. Each time, the Greedy scheduling process
in started, the queue is sorted according to this criterion. Then, a simple
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FCFS is applied. The complexity of this algorithm is potentially high as the
execution of the sorting function for each job within the waiting queue may
be computationally expensive. Furthermore, the necessary sorting of all jobs
must be taken into account. Greedy has the advantage to specify user or
user group dependent preferences within the complex sorting criterion. In
our case, the complex sorting function within the Greedy algorithm tries to
schedule jobs of the user groups 1 and 2 earlier unless jobs from other user
groups are already waiting for a very long time. This sorting criterion is
modeled according to our scheduling objective. For more details on the used
sorting criterion, see Ernemann et al. [8].

2.2 Evolution Strategies

To integrate those scheduling algorithms into an appropriate rule base system,
we use Evolution Strategies, see Beyer and Schwefel [2], which are a subclass of
Evolutionary Algorithms. Those algorithms are stochastic search methods that
mimic the behavior of natural biological evolution. They operate on a popula-
tion of μ individuals and apply genetic operators like selection, mutation and
recombination to breed λ offspring individuals from those μ parent individuals.
Within this paper, we do not provide a deeper insight into Evolution Strategies.
Furthermore, for all details about specific genetic operators, we simply refer to
references in the remainder of this paper.

2.3 Fuzzy Systems

Within this work, we aim to generate rule based scheduling systems. To this end,
several approaches can be used. On the one hand, a static approach of defining
strict boundaries for certain features and assigning a corresponding combination
of sorting criteria and scheduling algorithm is possible. On the other hand, one
may apply the more flexible approach of generating a Genetic Fuzzy System.

In our case, neither precise knowledge about the assignment of certain schedul-
ing strategies to certain situations nor training data are available. Furthermore,
individual scheduling decisions cannot be evaluated directly, but only after all
jobs have been assigned to resources, see Section 1. Hence, the award for the as-
signment of scheduling strategies to situations is given by a critic only at the end
of scheduling a whole workload trace. Furthermore, the generation of an appro-
priate situation classification is not known in advance and has to be generated
implicitly during the generation of the rule based scheduling system.

3 Scheduling Objectives and Features

Within this section, we will introduce several simple scheduling objectives, which
have been used to construct more complex evaluation functions for the whole
scheduling procedure. However, our methodology is not limited to the presented
objective and can be extended to any other criteria.
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Furthermore, we apply several features to classify possible scheduling situ-
ations within our rule based scheduling system. The concept of this work can
be extended to other features as well. Note that objectives evaluate the whole
scheduling process at the end of a simulation while features only describe the
current state of the system.

As mentioned in Section 1, the complex objective function of a machine
provider in our case is based on individual properties of users or user groups.
Therefore, both the objective and the feature set refer to those properties and
to the overall performance of the whole system.

First, we introduce some definitions and notations.

– (pj · mj) as the Resource Consumption of a single job j,

– τ the set of all n jobs within our scheduling system,

– ξ(t) the set of already finished jobs at time t,

– π(t) the set of running jobs at time t, and

– ν(t) the set of waiting jobs at time t.

3.1 Scheduling Objectives

During the development of scheduling systems, an evaluation function is needed
in order to describe the achieved quality. We generate our evaluation function
by combining simple, commonly used scheduling objectives. Within this work,
we exemplarily use 7 of those simple objectives.

Overall Utilization (U):

U =

∑

j∈τ

pj · mj

m ·
(

max
j∈τ

{Cj(S)} − min
j∈τ

{Cj(S) − pj}
) (1)

Average Weighted Response Time (AWRT) over all jobs of all users:

AWRT =

∑

j∈τ

pj · mj · (Cj(S) − rj)
∑

j∈τ

pj · mj
(2)

AWRT objective for user groups 1 to 5:

AWRTi =

∑

j∈τ

pj · mj · (Cj(S) − rj) · �i(j)
∑

j∈τ

pj · mj · �i(j)
, i ∈ {1, 2, . . .5} (3)

As we have the AWRTi for the 5 user groups, the AWRT for all users, and the
utilization U the complex objective function in our system can be defined by
using those 7 simple objectives.
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3.2 Feature Definitions

Next, we present 7 features that are used for classification of system states within
our rule base scheduling system.

In order to define our first feature, the Average Weighted Slowdown, we need
to introduce the Slowdown (SDj) for a single job j within schedule S:

SDj =
Cj(S) − rj

pj
(4)

SDj will reach its minimum value of 1 if job j does not wait before it starts
execution. Then the release date is identical with the job’s start time. Normally,
the range of this feature can be limited to the interval of [1,100] as values greater
than 10 occur very rarely in practice.

The feature Average Weighted Slowdown (SD) for all already processed jobs
j ∈ ξ(t) uses the same weighting as defined for the AWRT.

SD =

∑

j∈ξ(t)
pj · mj · (Cj(S) − rj)

∑

j∈ξ(t)
p2

j · mj
(5)

This measure indicates the average delay of jobs between their release and start
time for the past. Further, this feature represents the scheduling decisions in
the past as only already finished jobs are used to calculate this feature. Here,
we have not limited the window for SD. In practical cases, a limitation to, for
instance, the last month may be appropriate.

The Momentary Utilization (Um) of the whole parallel computer at time t:

Um =

∑

j∈π(t)
mj

m
(6)

The Proportional Resource Consumption of the Waiting Queue for User
Group i (PRCWQi):

PRCWQi =

∑

j∈ν(t)
p̄j · mj · �i(j)

∑

j∈ν(t)
p̄j · mj

(7)

Note that the real processing time pj is unknown for the jobs in the waiting
queue. Therefore, we use the estimated processing time p̄j instead. PRCWQi rep-
resents the relative part of the estimated resources consumption of user group i
to all jobs within the waiting queue. Remember, we are using 5 user groups
within our system. Hence, those five feature values represent the expected fu-
ture of the system. Using these features, the scheduling system is enabled to
react on a changed demand of the various user groups.
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4 Rule Based Scheduling Systems

As stated in Section 1, local scheduling decisions influence the allocation of fu-
ture jobs. Hence, the effect of a single decision cannot be determined individually.
Therefore, the whole rule base is only evaluated after the complete scheduling
of all jobs belonging to a workload trace. This has a significant influence on
the learning method to generate this rule base as the evaluation prevents the
application of a supervised learning algorithm. Instead, the reward of a decision
is delayed and determined by a critic. Furthermore, the generation of an appro-
priate scheduling situation classification is not known in advance and has to be
generated implicitly during the generation of the rule base scheduling system.

For a rule based scheduling approach, every possible scheduling state must be
assigned to a corresponding situation class that is described using the already
introduced features. A complete rule base RB consists of a set of rules Ri.
Each rule Ri contains a conditional and a consequence part. The conditional
part describes the conditions for the activation of the rule using the defined
features. The consequence part represents the corresponding scheduling strategy
recommendation.

In order to specify all scheduling states in an appropriate fashion each rule
defines certain partitions of the feature space within the conditional part. The
rule base system must contain at least one activated rule for each possible system
state.

As already mentioned, the scheduling strategy specifies

1. a sorting criterion for the waiting queue ν(t) and
2. a scheduling algorithm that uses the order of ν(t) to schedule one or more

jobs.

We use the term strategy to describe the whole scheduling process that consists
of both steps. An algorithm only describes the procedure of the second step that
uses the already sorted waiting queue.

First, the chosen sorting criterion is used to determine the sequence of jobs
within the waiting queue. Second, the selected scheduling algorithm is used to
find a processor allocation for at least one job of the sorted waiting queue.
We have chosen four different sorting criteria. Those sorting criteria are only
examples that are used to demonstrate our rule based scheduling approach. Other
sorting criteria are possible and could easily be incorporate into the system. Our
four sorting criteria are:

– Increasing Number of Requested Processors: Preference of jobs with little
parallelism and therefore higher utilization. This sorting provides the poten-
tial gain of being able to insert many jobs into the current schedule as jobs
with a smaller amount of requested processors are often easier to schedule.

– Increasing Estimated Run Time: Preference of short jobs and therefore
higher job throughput.

– Decreasing Waiting Time: Preference of long waiting jobs. This sorting cri-
terion provides a higher fairness as the jobs are processed according to their
submission. Jobs with a higher waiting time are selected first.
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– Decreasing User Group Priority: Preference of jobs from users with a higher
resource demand. The sorting by user groups provides a higher ranking for
all jobs of users with a higher overall resource demand according to their
user group assignment. This criterion reflects our objective function.

The selected scheduling algorithm is one of the four methods presented in
Section 2.1. Note that Greedy is already a complete scheduling strategy while
the other scheduling algorithms of Section 2 must be supplement with a sorting
criterion of ν(t). Again, the set of scheduling algorithm can be extended for other
rule base systems. The general concept of the rule based scheduling approach is
depicted in Figure 1.

As 4 different sorting criteria with 3 possible scheduling algorithms and the
combined Greedy strategy are available, we have to chose one of 13 strategies
for each possible system state. However, it is not practicable to test all possible
assignments in all possible states. For example, lets assume a very coarse division
of each feature into only 2 partitions. Then 13 possible strategies and 7 features
result in 1327 ≈ 3.84·10142 simulations if all combinations in all possible situation
states are tested. Additional problems occur during the generation of a rule based
scheduling system as the number and reasonable partitions of features, that are
required to describe the situation classes in an appropriate way, are generally
unknown in advance.

Hence, we introduce three possible approaches to derive a rule based schedul-
ing system using only a limited number of simulations.

4.1 Probability Driven Rule Base Development

A rigid rule base system uses NF features with a fixed number of intervals for
each feature ω. That is, each feature ω has (Npart,ω − 1) static bounds, that
divide the possible value range of ω into Npart,ω partitions. The static bounds
are specified before the assignment of sorting criteria and scheduling algorithms
to the various situation classes are extracted. The concept of such fixed partitions
is shown in Figure 2.

Generally, a larger number of partitions Npart,ω of a feature ω potentially
leads to a more accurate rule set while more situation classes must be optimized.
Overall, this results in Nr situation classes that must be provided to cover all
possible system states with

Nr =
NF∏

ω=1

Npart,ω .

The described rigid rule based system activates only a single rule in any system
state. Hence, the output recommendation of this single activated rule is the
output of the whole scheduling system.

In this work, we assume one division of the intervals of SD and PRCWQ1
to PRCWQ5 respectively. This leads to two partitions in each case. Further, we
use two divisions for the Um feature, resulting in three partitions. Overall, this
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Fig. 1. General Concept of the Rule Based Scheduling Approach
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Fig. 2. Example partitioning of the feature space and the resulting set of rules R1 . . . R4

produces (Nr = 26 · 3 = 192) different situation classes that are needed to build
a complete rule base.
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Furthermore, we have evaluated several different division values for the situ-
ation class features. The partitions which achieved the best results are used for
the rigid rule base system development,see Table 1.

Table 1. Feature Partitions for the Rigid Rule Based Scheduling Systems

Feature Intervals
SD [1-2], ]2-100]
Um[%] [0-75], ]75-85], ]85-100]
PRCWQ1[%] [0-20], ]20-100]
PRCWQ2[%] [0-20], ]20-100]
PRCWQ3[%] [0-25], ]25-100]
PRCWQ4[%] [0-25], ]25-100]
PRCWQ5[%] [0-25], ]25-100]

Such a rigid rule based scheduling system has the advantage of a simple imple-
mentation and easy interpretation. Future scheduling development may benefit
from knowledge gained through this kind of interpretation. The selected schedul-
ing algorithms and sorting criteria for a certain scheduling situation can directly
be extracted from the corresponding rules without further computation.

Rule bases are generated by assigning potential scheduling strategies to rules
in a random fashion such that each scheduling strategy is assigned to each rule
the same number of times. Hence, not all rule bases are generated in a completely
random way. Remember that the conditional part is rigid and does not vary.
Thus, a single rule describes a single scheduling situation class completely.

Then we use those rule bases to produce schedules for the given workload
data and evaluate those schedules with the help of the complex scheduling ob-
jective. Thus, each schedule results in a scalar objective value. The assignment
of a special scheduling strategy to a rule is evaluated by adding the scalar objec-
tive values of all schedules that were generated using this assignment. Finally,
we build the resulting rule base by assigning the scheduling strategies with the
smallest sum of the objective values to the individual rule as we assume a mini-
mization of the objective function. This approach is able to reduce the number
of required simulations significantly as we only approximate the optimal assign-
ments. In general, the performance can be increased by generating more rule
bases. However, the trade-off between a better performance and more required
simulations should be kept in mind.

A parameter p describes how often a scheduling strategy is assigned to a
single rule. This parameter p influences the number of required simulations that
is given by the product of the number of possible scheduling strategies (NΩ) and
the parameter p. In our simulations p = 50 turned out to be a good compromise
between the required number of simulations and the scheduling quality. This
results in our case in (13 · 50 = 650) simulations which is significantly less than
the required number of simulation for all possible assignments.
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Unfortunately, the fixed division of the whole feature space has a critical influ-
ence on the performance of the scheduling system. At the moment, no mechanism
is available that automatically adjusts the defined partitions.

Using this approach, we avoid the excessive amount of simulations that must
be performed in order to generate the rule base. Further, our approach pays
attention to the cooperation aspect of the rules within the final rule base as the
evaluation of the assignment of a special scheduling strategy to the consequence
part of a rule is based on several simulations with varying strategy assignments
for all other rules.

4.2 Scheduling Strategies Based on Genetic Fuzzy Systems

The previously presented scheduling system has several drawbacks regarding the
generation of an appropriate rule based scheduling system. Mainly, the static
number of feature partitions and the static pre-defined bounds for these parti-
tions are not flexible enough and may lead to bad scheduling results. Further-
more, the whole feature space needs to be divided and appropriate scheduling
strategies assigned to each individual partition. Hence, the number of rules can-
not be varied.

Consequently, we need a method that automatically adjusts the partition of
the feature space and assigns appropriate scheduling strategies to the resulting
regions in parallel. Genetic Fuzzy Systems, see Hoffmann [17], provide the capa-
bilities to solve those problems. As already mentioned within the introduction,
our Genetic Fuzzy System uses the Pittsburgh approach to encode a whole rule
base in a single individual. Further, we parameterize the resulting system with
Evolution Strategies.

Before the different rule base encoding schemes are explained in detail, we
introduce the encoding of individual rules and detail the computation of the
final Fuzzy controller output.

Coding of Fuzzy Rules. Our Genetic Fuzzy Systems are based on the tra-
ditional Takagi-Sugeno-Kang (TSK) model [30] for Fuzzy systems. The used
coding schemes and learning techniques are adapted and slightly modified from
the work of Juang et al. [21] and Jin et al. [20].

For a single rule Ri, every feature ω of all NF features is modeled from a
Gaussian Membership Function, (μ(ω)

i , σ
(ω)
i )-GMF

g
(ω)
i (x) =

1

σ
(ω)
i

√
2π

exp

⎧
⎨

⎩
−(x − μ

(ω)
i )2

2σ
(ω)
i

2

⎫
⎬

⎭
.

In Figure 3 a sample (5,0.75)-GMF is depicted.
A feature is then representedby a pair of real valuesμ

(ω)
i andσ

(ω)
i . Theμ

(ω)
i value

is the center of the feature GMF that is coveredby the ruleRi. Therefore, this value
defines a domain in the feature space where the influence of the rule is very high.
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Note that, when using a so defined GMF as feature description, the condition
∞∫

−∞
g
(ω)
i (z)dz = 1 ∀ i ∈ {1, . . .Nr} ∧ ω ∈ {1, . . .NF }

always holds. In other words, for increasing σ
(ω)
i values, the peak value of the

GMF decreases because the integral remains constant. Using this property of a
GMF, we are able to reduce the influence of a rule for a certain feature completely
by setting σ

(ω)
i to a very high value. Theoretically for σ

(ω)
i → ∞, a rule has no

influence for this feature anymore. With this approach, it is also possible to
establish a kind of default value that is used if no other peaks are defined in a
feature domain. Based on this feature description, a single rule can be described
by

Ri =
{
g
(1)
i (x), g

(2)
i (x), . . . g

(NF )
i (x), Ωi(Ri)

}
.

The consequence part Ωi of every rule Ri, i ∈ {1, . . .Nr}, includes a weighted
recommendation for all NΩ possible outputs. Therefore, the consequence part of
rule Ri is described by a vector

Ω(Ri) =
(
wi1 wi2 . . . wiNΩ

)
.

We restrict the possible weight values to elements of the set {−5, −1, 0, 1, 5}.
The value −5 represents a particularly unfavorable connection while 5 is partic-
ularly favorable one. The other possible weights can be interpreted accordingly.
We use a non-linear weight scaling in order to force distinct recommendations.
When considering the superposition of those weights similar weights may lead
to almost indistinguishable recommendations. Furthermore, we also include 0 as
possible weight to express that a rule behaves completely neutral with respect
to the recommendation of a scheduling strategy for a given situation. This may
also reduce the number of overall rules.
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The main advantage of using several GMFs for describing a single rule is
the automatic coverage of the possible feature space. In contrast to the rigid
approach, even one rule gives a scheduling strategy for all possible system states.
Hence, it is the focus of this approach to find a meaningful set of Nr rules that
generates a good rule base system RB. Thus,

RB = {R1, R2, . . . RNr}

is a complete rule base consisting of Nr rules.

Computation of the Controller Decision. For a given system state, we
compute the superposition of the weighted output consequence parts of all rules.
The system state is represented by the actual feature vector

x =
(
x1 x2 . . . xω . . . xNF

)T

of NF feature values. Then we compute the degree of membership φi(xω) =
g
(ω)
i (xω) of the ω-th feature of rule Ri for all Nr rules and all NF features. The

multiplicative superposition of all these values as ”AND”-operation leads to an
overall degree of membership

φi(x) =
NF∧

ω=1

g
(ω)
i (xω) =

NF∏

ω=1

1

σ
(ω)
i

√
2π

exp

{
−(xω − μ

(ω)
i )2

2σ
(ω)2
i

}

for rule Ri. For all Nr rules together, the corresponding values φi(x) are collected
in a membership vector

φ(x) =
(
φ1(x) φ2(x) . . . φNr (x)

)
.

Next, we construct a matrix C
˜

NF ×Nr of the weighted consequences Ω(Ri),

i ∈ {1, . . .Nr} of all rules by using the weighted consequence vectors for all
individual rules Ri. This yields

C
˜

NF ×Nr =
[
Ω(R1) Ω(R2) . . . Ω(RNr )

]
.

Now, we can compute the weight vector Ψ by multiplying the membership
vector φ(x) by the transposed matrix C

˜

T :

Ψ = φ(x) · C
˜

T =
(
Ψ1 Ψ2 . . . ΨNΩ

)
.

The vector Ψ contains the superpositioned weight values for all NΩ possible
scheduling strategy recommendations, that is, Ψ contains 13 elements.
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Finally, we choose the scheduling strategy with the highest overall value as
the output of the rule base system, that is

arg max
1≤h≤NΩ

{Ψh} .

As already mentioned, within the Pittsburgh approach, each individual rep-
resents a complete rule base. We construct such a complete rule base RB with a
fixed number of rules Nr. A single rule consists of (2·NF ) elements per rule within
the conditional part. Furthermore, we include the vector Ω(Ri) for the conse-
quence part, which consists of NΩ = 13 elements. Thus, a rule based scheduling
system with constant number of rules can also be modeled using the following
encoding. As such,

ok = {

R1︷ ︸︸ ︷
μ

(1)
1 σ

(1)
1︸ ︷︷ ︸

GMF

, . . . , μ
(NF )
1 σ

(NF )
1 , Ω(R1)︸ ︷︷ ︸

Ω1 ... ΩNΩ

,

R2 ... RNr︷ ︸︸ ︷
μ

(1)
2 σ

(1)
2 , . . . , μ

(NF )
Nr

σ
(NF )
Nr

, Ω(RNr )}

is the coding scheme of the object parameter vector ok of individual ak which
is a complete rule base. Hence, the number of elements u within the object
parameter vector ok of the individual ak can be computed by

u = Nr · (2 · NF + NΩ).

We have chosen a non-isotropic mutation, see Bäck and Schwefel [2], as this
allows the individual adaptation of the mutation for the different dimensions.
Therefore, each object parameter of the individuals consists of a correspond-
ing strategy parameter that specifies its mutation strength. Further, we apply a
standard Evolution Strategy with μ = 3 parent and λ = 21 offspring individu-
als. The ratio of 1/7 is suggested by Schwefel [26]. Further, we do not use any
recombination.

Within our Evolution Strategy, we used 40 generations with a randomly ini-
tialized first generation. Our (3+21)-Evolution Strategy leads to 3 + (40 · 21) =
843 evaluations for the development of a single rule base.

We use a constant number of rules Nr = 10 for each rule base. This results
in a constant number of object and strategy parameters within each individual.
Hence, u = Nr · (2 · NF + NΩ) = 10 · (2 · 7 + 13) = 270 parameters must
be determined. Thus, the two exogenous learning rates for the non-isotropic
mutation are defined as:

τ0 =
1√
2 · u

= 0.043, and τ1 =
1

√
2
√

u
= 0.174,

see Bäck and Schwefel [2].

Coevolutionary Genetic Fuzzy System Development. As presented in
Section 4, the rule based scheduling system needs to determine for each schedul-
ing state a corresponding sorting criterion and a scheduling algorithm. In the
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previously introduced rule based scheduling systems, a whole scheduling strategy,
consisting of both, a sorting criterion and a scheduling algorithm, was assigned
to the different scheduling states. However, this combined assignment is not nec-
essary. Moreover, the assignment of the same sorting criterion to two scheduling
states within the features space does not always lead to the assignment of the
same scheduling algorithm. This motivates the usage of a Coevolutionary Algo-
rithm as the assignment problem can easily be decomposed into two subproblems.

Concept of Cooperative Coevolutionary Algorithms. Coevolutionary Algorithms
potentially lead to better solutions compared with standard Evolutionary Algo-
rithms, if the problem can be decomposed into two subproblems, see for example
Jansen et. al [19]. Furthermore, Potter and De Jong [25] have proven that Co-
eveolutionary Algorithms achieve better results with fewer generations compared
with standard Evolutionary optimization techniques.

In this work, we apply the commonly called Cooperative Coevolutionary Algo-
rithm (CCA), see Paredis [24]. This model uses two distinct species. Both species
are genetically isolated. Hence, the genetic operations are only applied to indi-
viduals of the same species. The two different species are evolved in two different
populations in parallel by using standard Evolution Strategies. However, during
the fitness evaluation, two individuals of each species must cooperate. In general,
this concept allows a larger number of species.

First, two species with μ individuals each are randomly generated. Then, the
individuals of both species are evaluated by randomly combining two individuals,
one from each species. Note that other selection schemes are also possible and
discussed in the literature, see for example Panait et al. [22]. However, those
methods need more evaluations and additional simulations in our case. In order
to avoid this effort, we use our simple heuristic. After evaluation, the genetic
operators produce λ offsprings for each species separately. Then, the resulting
offspring individuals are again evaluated by a randomly chosen cooperation.
Finally, normal evolutionary selection determines the next parent generation.

Rule Based Scheduling Development by applying Coevolutionary Algorithms. As
already mentioned, our scheduling problem can be decomposed into two separate
subproblems. This concept is shown in Figure 4. Contrary to the general rule based
scheduling, see Figure 1, we use two separate rule bases within the same feature
space. One determines the sorting criterion depending on the system state and
the other calculates the scheduling algorithm. However, the partitioning of this
feature space differs between the two species. To this end, the different GMF-μ(ω)

i

and GMF-σ(ω)
i values are determined separately for the two species. The resulting

scheduling system is expected to react on certain system states very accurately.
Such a coevolutionary approach yields several potential advantages for the re-

sulting scheduling system and for the extraction process of appropriate rule bases.
First, each of the two separate rule bases has fewer output recommendations.

In detail, for the sorting criterion as well as for the scheduling algorithm, we have
only NΩ = 4 possible output recommendations instead of 13 as in the combined
scenario. This reduces the length of the individuals within the populations and
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Fig. 4. General Concept of the Rule Based Scheduling Approach with Dedicated Rule
Bases for Scheduling and Sorting

enables a better and faster adaptation. However, note that the sorting criterion
is redundant if the Greedy scheduling algorithm is selected since Greedy includes
its own sorting. Second, as the feature space partition can be optimized for both
species separately, fewer rules might be required for each species.

The Evolution Strategies for both populations are identical. We apply the Pitts-
burgh approach with the same genetic operators and no recombination for both
populations. In detail, we use a constant number of rules Nr = 10 and a (3+21)-
Evolution Strategy for both populations. The optimization is limited to 40 gen-
erations. Consequently, each individual within the populations consists of

u = Nr · (2 · NF + NΩ) = 10 · (2 · 7 + 4) = 180

object parameters. Hence, we adapt the learning rates for the non-isotropic mu-
tation to

τ0 =
1√
2 · u

= 0.053, and τ1 =
1

√
2
√

u
= 0.193,

see Bäck and Schwefel [2].
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5 Evaluation

For the evaluation, we execute various discrete event simulations with real paral-
lel computer workload traces. To this end, six well known workloads are selected.
They were recorded at the Cornell Theory Center (CTC) [18], the Royal Insti-
tute of Technology (KTH) [23] in Sweden, the Los Alamos National Lab (LANL)
[11] and the San Diego Supercomputer Center (SDSC 00/ SDSC 95/ SDSC 96)
[12,32]. Each of these workloads provides information about the job requests for
the computational resources. In order to make those workloads comparable they
are scaled to a standard machine configuration with 1024 processors as described
by Ernemann et al. [9]. The characteristics of the used workloads are presented
in Table 2.

Table 2. Scaled Workload Traces from Standard Workload Archive [13] using the
Scaling Procedure by Ernemann et al. [9]

Identifier CTC KTH LANL SDSC 00 SDSC 95 SDSC 96

Machine SP2 SP2 CM-5 SP2 SP2 SP2
Period 06/26/96 -

05/31/97
09/23/96 -
08/29/97

04/10/94 -
09/24/96

04/28/98 -
04/30/00

12/29/94 -
12/30/95

12/27/95 -
12/31/96

Processors (m) 1024 1024 1024 1024 1024 1024
Jobs (n) 136471 167375 201378 310745 131762 66185

As no real life objective functions are available from the workload traces, we
exemplarily use the objective function (fobj = 10 ·AWRT1 +4 ·AWRT2). Clearly,
this objective prioritizes user groups 1 and 2, with user group 1 having a higher
priority than user group 2.

As already mentioned, we present our achieved results relative to the Pareto
front (PF) of all feasible schedules for the simulated workloads. Noteworthy, the
Pareto front was generated off-line and it cannot be taken for granted that this
front can be reached by our proposed online scheduling systems at all. Therefore,
we refer to this front as a reference for the best achievable solution. Note that our
Pareto front is only an approximation as it is derived by heuristics. Although
we do not know the real Pareto front, the high density of our approximation
indicates that the quality of the approximation is very good, see Figure 7.

In Table 3, the absolute results are presented. We show the AWRT values for
the user groups, the objective and the overall Utilization. It is obvious that all
proposed concepts achieve better results than the EASY standard algorithm. We
restricted the comparison to EASY as this is in most cases the best scheduling
algorithm for the examined workloads with respect to the AWRT objective. Note
that U remains constant and is not affected by the rule based scheduling concept
although it is not explicitly included in the objective. As such we are able to
prioritize different user groups without any reduction of the system utilization.
Further, the results show that we are very close to the off-line generated Pareto
front, see Figure 7.
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Table 3. AWRT, fobj (in Seconds), and U (in %) of the Pareto Front (PF), EASY
Scheduling, the Pittsburgh Approach (PITTS), the Cooperative Coevolutionary Algo-
rithm (CCA), and the Probability Procedure (PROB) for the CTC Workload

Approach AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 U fobj

PF 49652.04 56330.98 60691.71 59698.30 32726.87 66.99 721844.268
EASY 59681.28 64976.07 50317.47 46120.02 31855.68 66.99 856717.0
PITTS 49639.195 56722.796 49541.757 59212.093 81268.331 66.99 723283.134
CCA 49676.087 56522.699 48723.312 57488.074 74983.133 66.99 722851.666
PROB 53780.183 59448.484 53185.9 53417.769 45390.11 66.99 775595.766

In Figure 5 we presents the results for all six examined workloads. The very
simple and rigid probability driven procedure is already able to improve the
objective significantly. Apart from the KTH workload the rule system improves
the objective value by 10 % on average compared to EASY scheduling.

However, the two Genetic Fuzzy Systems outperform this procedure. It is
noteworthy that the on-line rule based scheduling systems produce schedules
almost as good as those achieved in the off-line case. Despite the approximative
character of the Pareto front, one can reasonably say that the results are quite
close to the fronts of all workloads.

The results listed in Table 4 demonstrate that the objective improvements
really result in a shorter AWRT for the desired user groups. As we have al-
ready shown that the results are close to the Pareto front we now compare the
Genetic Fuzzy System, created regarding to the Pittsburgh approach, with the
EASY standard algorithm. The improvements of the AWRT in the gray shaded
columns show that it is possible to shorten AWRT1 and AWRT2 significantely
compared to EASY for most workloads. Apart from the SDSC 00 workload this
prioritization is realized without deterioration of the utilization.

Table 4. AWRT and Utilization Improvements Achieved with the Genetic Fuzzy Sys-
tem in Comparison to the EASY Scheduling Algorithm (in Percent)

Workload AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 U fobj

CTC 16.83 12.7 1.54 -28.39 -155.11 0 15.58
KTH 25.35 8.44 -57.64 -199.49 -744.53 0 19.82
LANL 19.75 14.84 -24.09 -47.2 -269.06 0 18.24
SDSC 00 60.83 42.37 -12.72 -3234.66 -14360.76 -5.57 55.79
SDSC 95 9.05 0.08 -20.7 -43.56 -38.55 0 6.37
SDSC 96 1.35 1.2 -20.03 -26.15 -4.09 0 1.31

In Figure 6, we exemplarily show the achieved AWRT improvements for all 3
approaches for the CTC workload. We can realize the desired group prioritization
with all proposed approaches. Note that we limited this chart at the y-axis as the
AWRT values for user group 5 are extremely large. As the utilization remains
constant these user groups have to pay the price for the short AWRT of the
favored user groups. This is acceptable as we did not take these user groups into
account for our objective formulation.
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Fig. 5. Objective Improvements of all 3 Approaches in Comparison to EASY Scheduling

Finally, we show in Figure 7 the AWRT values of the two user groups to prior-
itize. This chart also depicts the Pareto front of all feasible schedules. Remember
that we have 7 simple objectives. Each point within this chart represents a fea-
sible schedule that is not dominated by any other generated feasible solution
within the 7-dimensional objective space. As we show only a projection of the
actual 7-dimensional Pareto front approximation, the elements cover an area in
this 2-dimensional chart.

As the EASY standard algorithm does not favor any user groups, the achieved
AWRT values are located in the mid of the projected front area. With the proba-
bility driven procedure, it is already possible to move the AWRT values towards
the actual front. Obviously, this approach is capable to improve AWRT2 sig-
nificantly but it does only slightly improve AWRT1. However, the two proposed
Genetic Fuzzy Systems almost reach the front in our example. Thereby, the CCA
leads to a little bit better results than the classic Pittsburgh approach.

5.1 Estimation of Computational Effort to Establish the Rule
Based Scheduling System

Our chosen objective is just an example and the proposed methods can be used
with any other objective as well. However, we restricted our analysis to these
example as this already required a high computational effort. For the probabil-
ity driven procedure, we simulated (50 · 13 = 650) rule systems per workload.
Of course this value is scalable by choosing a smaller number of guaranteed
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Fig. 6. AWRT Improvements of all 3 Approaches in Comparison to EASY Scheduling
and the CTC Workload.

participations, but values smaller 50 did not yield good results. Nevertheless,
this procedure established the rule bases with a comparatively small number of
simulations.

The Genetic Fuzzy Systems are realized by an (3+21)-Evolution Strategy. In
order to obtain good results, we simulated 40 evolutionary generations. There-
fore, (3 + 21 · 40 = 843) objective evaluations per workload were necessary.
Further, a single simulation of a complete workload takes about 4 hours com-
puting time on average. For the Genetic Fuzzy System this resulted in 4 months
computing time per workload and objective assuming only one available machine
for the scheduling strategy generation.

Obviously, we are only able to present our results here because we used a
compute cluster with 120 processors. With this installation, we can simulate
all objective evaluations in parallel as they are completely independent from
each other. Therefore, the simulation of one objective and one workload takes ap-
proximately one week. Furthermore, the parallel computation of the six
workloads can also be realized. Despite the highly parallel execution of our sim-
ulations it still took more than 4 months to obtain the results presented in this
paper.

Nevertheless, the presented effort estimates are only related to the generation
of the rule bases. But remember that the execution of our scheduling algorithm
in the runtime environment is not slower than the execution of a conventional
scheduling algorithm.
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6 Conclusion

In this paper, we have presented a novel approach to automatically generating
online scheduling systems for a complex provider defined objective. The schedul-
ing systems are based on rules that include standard scheduling algorithms. We
used simulations with workload traces from existing installations during the de-
velopment of the systems and during the evaluation process.

Even for a rather simple scheduling objective that prioritizes some user groups
over others, we have demonstrated that a probability driven assignment proce-
dure already leads to rule bases that typically produce better scheduling results
than existing standard algorithms. The more sophisticated approaches using Ge-
netic Fuzzy Systems significantly improve the achieved quality of the schedules.
First, we compared our achieved results with the EASY standard scheduling al-
gorithm. We achieved an improvement of about 10 % for our objective function
with the adopted rule based scheduling system. Second, we compared our ap-
proaches with the off-line generated Pareto front of all feasible schedules. Here,
we are even able to almost reach this front with the proposed Genetic Fuzzy
Systems.
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Abstract. Currently, job schedulers require “rigid” job submissions
from users, who must specify a particular number of processors for each
parallel job. Most parallel jobs can be run on different processor partition
sizes, but there is often a trade-off between wait-time and
run-time — asking for many processors reduces run-time but may require
a protracted wait. With moldable scheduling, the choice of job partition
size is determined by the scheduler, using information about job scal-
ability characteristics.We explore the role of job efficiency in moldable
scheduling, through the development of a scheduling scheme that utilizes
job efficiency information. The algorithm is able to improve the average
turnaround time, but requires tuning of parameters. Using this explo-
ration as motivation, we then develop an iterative scheme that avoids
the need for any parameter tuning. The iterative scheme performs an
intelligent, heuristic based search for a schedule that minimizes average
turnaround time. It is shown to perform better than other recently pro-
posed moldable job scheduling schemes, with good response times for
both the small and large jobs, when evaluated with different workloads.

1 Introduction

Parallel job scheduling in a space-shared environment[1,2,3,4,5] is a research
topic that has received a large amount of attention. Traditional approaches to
job scheduling operate under the principle that jobs are rigid — that they are
submitted to run on a certain number of processors, and that number is inflexible.
Previously considered rigid scheduling schemes range from an early and simple
first-come-first-serve (FCFS) strategy, which suffers from severe fragmentation
and leads to poor utilization, to current backfilling policies which attempt to
reduce the number of wasted cycles. Backfilling creates reservations for N jobs
from a sorted queue (often based on arrival time, job size, or current wait time),
and then allow jobs to start “out of order” provided that no reservations are
violated. Variations of N , such as N = 1 (aggressive or EASY backfilling) or
N = ∞ (conservative backfilling) exhibit different behaviors and have been
studied in detail. The vast majority of this work assumes that the user provides
the number of nodes the job must run on as well as the job’s estimated runtime.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, pp. 94–114, 2007.
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However, many jobs do not actually require a specific number of processors;
they can run on a range of processors. This range may be limited by constraints
due to the nature of the job. For example, a job may require a minimum number
of processors (possibly for memory or other hardware constraints), or it may
not be able to effectively use a large number of processors. Thus, the user must
balance these factors when determining the number of processors to request
from the scheduler. In addition, in order to achieve a satisfactory wait time, the
user must also consider the state of the job queue, the running jobs, and the
scheduling policy in place.

In recent work, there has been interest in moldable scheduling, an alternative
model to the traditional rigid scheme. In a moldable scheme, a job is submitted
by the user accompanied by a range of processor choices and run times or the
speedup characteristics and constraints of the job. In this way, the scheduler is
given the ability to make the final decision regarding the size of the partition the
job is given. In such a scheme, the increased flexibility the scheduler is afforded
allows it to not only provide the user with a better response time than the rigid
case but also be better suited to adapt to changes of job mix and load.

A fundamental issue in moldable job scheduling is the determination of the
partition size for each job. Cirne [6,7] proposed and evaluated a moldable schedul-
ing strategy using a greedy submit-time determination of each job’s partition
size. Later studies [8] showed that under a number of circumstances, a greedy
strategy was problematic. Improved schemes were proposed and evaluated [9],
but a shortcoming of previously proposed approaches is that the scalability of
jobs is not taken into consideration. Given two similarly sized jobs with different
scalabilities that are submitted at the same time, clearly it would be desirable
to preferentially allocate more processors to the more scalable job. However, job
mixes typically contain jobs with very different sizes. This paper addresses the
issue of incorporating consideration of job scalability into a moldable schedul-
ing strategy and demonstrates that the the importance of efficiency varies with
respect to the characteristics of the workload a scheduler encounters. With this
knowledge in hand, an iterative scheduling scheme is introduced which elimi-
nates the need for scheduler parameterization based on workload characteristics
and implicitly considers efficiency.

The remainder of the paper is organized as follows: Section 2 discusses related
moldable job scheduling work. Section 3 describes the event-based simulator as
well as the workloads used. Section 4 discusses the effects of “overbooking” in-
troduced in previous work in a moldable scheduling model. Section 5 explores a
scheme which uses efficiency and overbooking to outperform schemes which ignore
job scalability. Section 6 introduces an iterative scheduling strategy which elimi-
nates the need for tunable parameters. Finally, section 7 concludes the paper.

2 Related Work

There has been extensive research on parallel job scheduling in a non-preemptive
space shared environment [1,2,4,10,11,12]. Much of the recent work focuses on
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scheduling “rigid” jobs, even though jobs may be able to run on a range of parti-
tion sizes. Previous work that focuses on moldable job scheduling aims primarily
to minimize makespan or is set in the context of offline scheduling. Further, the
realistic workloads [13] available today were not available when previous research
into moldable scheduling was undertaken. This paper focuses on minimizing av-
erage turnaround time in an online scenario using realistic workloads.

Du and Leung [14] introduce a “Parallel Task System” (PST) for moldable
jobs. The system is comprised of m processors, and n moldable jobs, whose
speedups are assumed to be non-decreasing functions. They show that find-
ing the minimal completion time for a PST is NP-hard. Krishnamurti and Ma
[15] develop an offline approximation algorithm that attempts to minimize the
makespan of a set of moldable tasks. The number of tasks is defined to be
less than the number of partitions and the number of partitions is bounded.
They propose an algorithm that incrementally reduces the execution time of
the longest job. Other work studied the problem of reducing the makespan in
an offline, multi-resource context [16,17] while others assumed processor subset
constraints [18,19].

Eager, Zahorjanm, and Lazowska [20] suggest using the average parallelism of
each task as a basis for processor allocation. They do not propose detailed schedul-
ing algorithms. Ghosal, Serazzi, and Tripathi [21] extend the Eager et. al. work by
introducing the concept of the processor working set (PWS). The PWS maximizes
the number of processors that a job can efficiently use. The scheduling algorithms
developed increase the average “power” [20] of the schedule. They develop online
algorithms based on PWS for a setting similar to that of this paper.

Kleinrock and Huang [22] determine the number of processors to allocate in
a parallel system where only one job can be executing at any given time. Again,
the goal is to maximize power. This system is clearly not ideal for minimizing
average turnaround time, as jobs are run sequentially in an FCFS manner.

Mccann, Vaswani, and Zahorjan [23] present a policy for a multi-processor
system where jobs which can be resized dynamically (malleable). The scheduling
policy transfers processors between running jobs based on the current parallelism
of a job.

Sevick [24] provides a generic scheduling algorithm designed to reduce the
average turnaround time in a wide range of environments (e.g., preemptive,
non-preemptive, online, offline). The algorithm, based on Least Work First, de-
termines a number of tasks to start simultaneously and then uses heuristics to
assign each of the chosen tasks a set of processors.

Rosti et. al. [25] perform an analysis of non-work conserving scheduling al-
gorithms. The analysis highlights the importance of realistic workload models
when evaluating moldable schedulers. The non-work conserving algorithms are
effective when there is large variance in the workload trace (as seen in real
workloads) and with varying job types (as seen in real workloads). Non-work
conserving algorithms outperform work conserving algorithms for the realistic
workloads considered.
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Downey [26,27] presents a careful analysis of job characteristics and mix in
real traces; this analysis [26] is used to create predictors for the queue time of
jobs in synthetic workloads. Downey describes a moldable scheduling scheme
which aims to optimize the performance of each job by determining a partition
size n such that the run time on n processors plus the predicted queue time on n
processors is minimized. However, jobs are scheduled in a strict first-come-first-
serve order which, again, hinders the ability of the system in improve average
user metrics. Also, the greedy selection of partition size for individual jobs may
harm the performance of other jobs in the system.

Downey [27] examines the performance of existing algorithms [28,29] under
his workload model. He defines two variations of moldable schemes—those that
make greedy decisions for individual jobs, resulting in smaller partition sizes,
and those that schedule jobs on only the “ideal” number of processors that each
algorithm chooses. Both variations suffers from the issue described above and
from the strict first-come-first-serve order imposed on the scheduler.

Cirne et. al. [6,7] proposed a submit-time-based algorithm for moldable
scheduling, where the desired processor allocation is decided upon submission to
the scheduler in order to minimize response time. Once the desired allocation is
determined the scheduler functions essentially the same as in the rigid case. As
such, the scheduler is not able to take into account the inherently dynamic infor-
mation about jobs and new job arrivals. Also, each job makes a greedy decision,
which may not be a wise global decision [8]. However, using simulations and
moldable traces based on real rigid traces, Cirne et. al. were able to show that
their moldable scheduler can outperform a standard rigid parallel job scheduler.

Srinivasan et. al. [9,8] use lazy processor allocation, delaying this allocation
decision until schedule time. This allows the scheduler to obtain more infor-
mation regarding job runtimes and job arrivals before finalizing the number of
processors a job will run on. In this context, an unbounded greedy choice will
not lead to a good schedule. Therefore, techniques to limit the number of pro-
cessors a job can take are developed. The authors are able to show that their
new methods can improve the schedule for many moldable workloads.

3 Simulation Setup

This work uses an event based simulator in which we are able to evaluate pro-
posed scheduling policies using varying workload characteristics. The simulator
uses workload traces in the Standard Workload Format [13], which can be ob-
tained from Dror Feitelson’s publicly available Parallel Workload Archive [13].
This allows us to perform multiple simulations on identical workloads in order
to achieve comparable results across proposed scheduling policies.

3.1 Workload Generation

The simulations were run with workloads based on a trace from a 512-node IBM
SP2 system at the Cornell Theory Center (CTC) obtained from Feitelson’s work-
load archive. The trace, supplied in the Standard Workload Format, contains the
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submit time, number of processors, actual runtime, and user estimated runtime
of each job. To generate different offered workloads we multiply both the user
supplied runtime estimate and the actual runtime by a suitable factor to achieve
the desired offered load. As an example, assume that the original trace had a
utilization of 65%. To achieve an offered utilization of 90%, the actual runtime
and the estimated runtime are multiplied by a factor of 0.9/0.65. We use this
method in lieu of shrinking the inter-arrival time between jobs to keep the du-
ration of the trace consistent. In all simulations, the scheduler uses the runtime
estimates provided by the user for scheduling purposes.

The data presented in the paper shows effective load, which is the load after
adjusting for the scalability of the jobs. For instance, assume a job originally ran
for 1000 seconds on 5 processors and had an efficiency of 50% (using our scala-
bility model). Then the job contributes 2500 processor seconds to the effective
load. In other words, the effective load represents the load for all jobs assuming
the scheduler is able to run the jobs with ideal efficiency.

The trace used, as well as every other trace that we are aware of, does not
contain any information regarding the scalability of the jobs. Therefore, we use
the Downey model [30] of speedup for parallel programs and assign speedup
characteristics to a job either by using fixed values or a random distribution.

3.2 The Downey Model

Downey’s work [30] describes a model of speedup for parallel jobs. Speedup is
defined as the ratio of the job’s runtime on a single processor to the job’s runtime
on n processors. If L is the sequential runtime of the job and T (n) is the runtime
of the job on n processors, then S(n) = L/T (n) where S(n) is the speedup of the
job. Downey’s model is a non-linear function of two parameters:

– A denotes the average parallelism of a job and is a measure of the maximum
speedup that the job can achieve.

– σ (sigma) is an approximation of the coefficient of variance in parallelism
within a job. It determines how close to linear the speedup is. A value of 0
indicates linear speedup and higher values indicate greater deviation from
the linear case. Previous work has shown that a sigma between 0 and 2 can
be expected for many workloads [27].

Downey’s speedup function is defined as follows:

For low variance (σ ≤ 1)

S(n) =

⎧
⎪⎪⎨

⎪⎪⎩

An
A + σ(n − 1)/2 1 ≤ n ≤ A

An
σ(A − 1/2) + n(1 − σ/2) A ≤ n ≤ 2A − 1

A n ≥ 2A − 1
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and for high variance (σ ≥ 1)

S(n) =

{
nA(σ + 1)

σ(n + A − 1) + A
1 ≤ n ≤ A + Aσ − σ

A n ≥ A + Aσ − σ

4 Fair-Share Allocation and Overbooking

In this section, we review the fair-share strategy proposed in [8] along with an
examination of the effect of varying the “weight factor” used in the fair-share
schemes and how it affects jobs with different speedup characteristics.

4.1 Fair-Share Based Allocation

The fundamental problem with using an unrestricted greedy approach to choose
partition sizes for jobs is that most jobs tend to choose very large partition
sizes. In the extreme case, this degenerates to a scenario where each job chooses
a partition size equal to the number of processors in the system, with jobs being
run in FIFO order. In order to rectify this problem, fair-share-based limits were
introduced [8]. Fair-share-based schemes impose an upper bound on a job’s allo-
cation based on its fractional weight (resource requirement in processor-seconds)
in the mix of jobs. The partition size for each job is then chosen to optimize its
turnaround time, subject to its fair-share upper bound. A proportional-share
limit was first evaluated [8], where the upper-bound for a job’s partition size
was set in direct proportion to the job’s weight. A later study [9] showed that
better turnaround times were achieved by using a “square-root” based fair-share
limit, where the bound was set in proportion to the square root of job’s weight:
Weight fraction of job i =

√
Weight of job i∑

j∈jobs

√
Weight of job j

.

We restrict our discussion of the fair-share moldable scheduling schemes to the
schedule-time aggressive scheme, where the backfilling policy allows for N = 1
reservations from the queue and the decision of partition size is delayed until
reservation time.

Srinivasan et. al. [8,9] use an additional system-wide “weight factor” which is
multiplied with the weight fraction to raise the limit on the number of processors
allocated for all jobs. Rajan [31] further examined the use of a system-wide weight
factor. We will call this the overbooking factor and it will be the focus of our
examination. Specifically, we describe how changes in the overbooking factor can
benefit or harm jobs with different speedup characteristics and weight fractions.

4.2 Perfect Scalability

The “overbooking factor” (ObF) is a multiplicative factor used to scale up the
weight-fraction of a job in determining the upper bound on partition size. With
an overbooking factor of one (i.e., no overbooking), the sum of fair-share based
partition limits of all jobs add up to the total number of available processors.
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With an overbooking factor of two, the sum of upper bounds add up to twice the
number of processors, etc. As ObF increases, average turnaround time improves
at low load, but worsens at high load. An increase in ObF has several effects:

– It tends to increase the average number of waiting jobs in the queue; since
each job’s maximum partition size is increased, the number of jobs that can
concurrently run decreases. This causes the average turnaround time of light
jobs to increase, since turn-around of these jobs is dominated by queue time.

– The average run-time of heavy jobs tends to decrease, causing the average
response time to also decrease, since it is dominated by the run-time and
not queue time.

– When several similarly sized jobs are present, where as with ObF of one, they
could all run concurrently, with higher ObF their execution gets serialized,
but lowers average response time. For example, with two identically sized
jobs, with ObF of one, they both could run concurrently using half the
processors each. With ObF of two, each job would run using all the processors
for one half the time, giving an average response time that is (T/2 + T)/2,
i.e., 75% of that with ObF=1.

As the system approached saturation, the queue size increases rapidly with high
ObF, causing the deterioration of performance of light jobs to overshadow the
benefits of high ObF for the heavy jobs.

4.3 Non-ideal Job Scalability

The effect of the overbooking factor on performance changes under non-ideal
scalability conditions [31]. Unlike the case where all jobs share a value of σ = 0
(perfect scalability), when σ is higher (poorer job scalability), it can be seen that
increasing ObF causes an increase in average response time, even at low loads.
This is because a higher ObF causes jobs to receive wider partition choices, and
therefore uses more processor cycles for job execution than narrower partition
choices. The detrimental effect of increasing ObF is more pronounced at high
loads, where the waste of processor cycles by inefficient wide jobs causes an
increase in queuing delays. This points to a need to take job scalability into
consideration when performing moldable job scheduling.

5 Efficiency Considerations

In the previous section, we considered how overbooking, by itself, can either be
helpful or harmful to the average response time of jobs within the fair-share
scheme and that a job’s efficiency needs to be taken into consideration when
computing its processor allocation. In this section, we describe a scheduling
policy that corrects for this oversight by optimizing for efficiency.

We must be careful when discussing “optimal efficiency,” though. A schedule
that is optimally efficient for the whole would be a schedule where every job is
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simply allocated a single processor.This schedule, while maximizing efficiency and
throughput, obviously falls short of providing users with adequate response times.

Therefore we choose to maximize the “instantaneous” effective utilization.
This is the sum of the number of processors a job runs on Ni multiplied by
the efficiency of that job on that number of processors e(Ni) for all jobs. We
can see that maximizing the effective utilization is then the same as maximizing
the speedup s(Ni) of all jobs (

∑
[Ni ∗ e(Ni)] =

∑
[Ni ∗ s(Ni)

Ni
] =

∑
[s(Ni)]). In

situations where there are less jobs than processors, each job’s partition size will
be computed such that processors are being used in a locally optimal manner.

5.1 Incorporating Efficiency into Fairshare

An optimally efficient schedule is one that makes the most efficient use of avail-
able cycles. However, response time is an important metric, so we still need to
incorporate job size. Thus the thrust of this scheme is to close the gap between
the weight-based allocation of the fair-share scheme, where jobs receive a pro-
portion of the system ignoring how well they scale to fit their allocation, and an
efficiency-based allocation, where the relative sizes of the jobs are ignored and
the effective utilization is optimized.

In order to maintain this balance, we define a system-wide efficiency factor
(EF). The efficiency factor limits how much a job’s maximum allocation can
change from its fair-share limit:

max(1, FairshareLimit ∗ (1 + EF )) ≤
EfficiencyLimit ≤ min(SystemSize, FairshareLimit ∗ (1 − EF ))

In order to maximize the “instantaneous” effective utilization, or the sum of
the speedups of all jobs, we take processors away from the fair share limit of the
job with the smallest slope of its speedup curve for its current allocated limit
and give processors to the job with the highest slope of its speedup curve, this
leads towards equivalent derivatives of the speedup.

The algorithm for determining a job’s maximum processor allocation is shown
in Figure 1.

By including a job’s speedup characteristics in its allocation we are able to
take advantage of the benefits of overbooking for jobs that scale well enough
to efficiently use additional processors without wasting processors on jobs that
cannot efficiently use them.

5.2 Experimental Results

We evaluated our algorithm over a set of input traces, varying the efficiency
and overbooking parameters of the scheduler. Traces were modified to contain
speedup characteristics of jobs subject to the Downey model. For the sake of
brevity we limit our discussion to overbooking factors of 1 and 4 and efficiency
factors of 0, 0.5, and 1. We show two sets of results — one which assumes that
each job can scale to the size of the system (A = system size) and another
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void selectMaxProcessorLimit(){
OrderedList jobs;
/** All jobs start with the
original fair share limit **/
foreach j in jobs{

j.nodeLimit = getFairshare(j);
j.maxNodesLimit =

min(SYS_SIZE, (1+EF)*j.nodeLimit);
j.minNodeLimit =

max(1,(1-EF)*j.nodeLimit);
}

/**Transfer processors from jobs with a small
speedup slope to jobs with a high speedup
slope, to optimize instantaneous effective
utilization **/

while(!complete){
complete=true;
sortBySlope(jobs);
while(!canMove(sJob=jobs.getFirst()))

jobs.removeFirst();
while(!canMove(lJob=jobs.getLast()))

jobs.removeLast();
if(sJob.getSlope()<lJob.getSlope()){

sJob.nodeLimit--;
lJob.nodeLimit++;
sortBySlope(jobs);
complete=false;

}
}

}

/** Each job’s original limit is between the max and
the min. During each call to selectMaxProcessorLimit
each job will either gain or lose processor (not both). **/

boolean canMove(Job j){
if(j.nodeLimit >= j.maxNodeLimit ||

j.nodeLimit <=j.minNodeLimit){
return false;

}
return true;

}

Fig. 1. The efficiency based moldable scheduling algorithm

that assigns each job a random value of A from a random uniform distribution
between 1 and 2 times the number processors the job requests in the unmodified
trace. In both sets of results, we chose the value of σ for each job from a uniform
distribution between 0 and 2.
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Fig. 2. With an increased overbooking factor, increasing the efficiency factor improves
average turnaround time

Figure 2 shows that in the first scalability scenario (A = system size), a high
overbooking factor and an efficiency sensitive strategy (EF=1.0) outperforms
other scheduling strategies; the overall average turnaround time (TAT) is better
than when using the fair-share alone (EF=0). We also note that increasing the
efficiency factor in low overbooking hurts the average turnaround time due to
poor utilization and a negative effect on large jobs (shown below).

In Figure 3 we examine the effects of overbooking on various job sizes. In
general, we see that small jobs (200-3,200 processor seconds and 3,200 to 100,000
processor seconds) benefit from a low overbooking factor. When overbooking is
low, large jobs (greater than 2,000,000 processor seconds) have limited partition
sizes and processors remain free for small jobs. As the turnaround time of small
jobs is dominated largely by time spent waiting in the queue, any increase in
their runtime due to a smaller maximum partition size is negligible. We also see
that a high efficiency factor boosts the performance of small jobs; they are able
to gain processors at the expense of larger and more inefficient jobs.

As a job’s size grows, its turnaround time becomes less dominated by the time
it spends waiting in the queue and more dominated by its run time. The medium
sized jobs illustrate the point where this transition begins to occur; the effect
of a low overbooking factor and high efficiency factor becomes less pronounced.
Allowing large jobs to claim more processors is the dominating factor in their
turnaround time, as they can afford to wait in the queue to reduce runtime.
A high overbooking factor plays the biggest role with these large jobs and the
efficiency factor has little effect on their performance. However, when a low
overbooking factor is used, a high efficiency factor becomes detrimental to large
jobs — precisely for the same reason this scenario was beneficial for small jobs.
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Fig. 3. Small jobs benefit from low overbooking and higher efficiency consideration,
as their turnaround time is dominated by wait time. As job size grows, the benefit
of efficiency consideration is diminished and eventually becomes detrimental to large
jobs. However, in order for the larger jobs to perform well, a large overbooking factor
is required.
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The extreme end of the spectrum illustrates this clearly; efficiency plays almost
no role when combined with a high overbooking factor for the largest jobs in the
system.

To provide further contrast from the scenario presented in Figure 2, Figure 4
presents the situation where jobs do not all share a uniform maximum partition
size. In this perhaps more realistic situation, each job’s value of A is chosen
randomly between 1 and 2 times the partition size requested in the original trace.
Now that jobs do not all scale to the size of the system, we notice that the scheme
which performs the best uses the plain fair-share scheme with no overbooking
(ObF=1) and doesn’t take efficiency into consideration at all (EF=0)! With
overbooking, jobs can no longer effectively use the once-helpful large partitions
given to them in the fair-share scheme and essentially waste machine cycles.
The effects of this wastage become even more pronounced in higher load. Taking
efficiency into account can reduce the detrimental effect of high overbooking,
but at the cost of severely reducing the allocation of all but the most scalable
jobs.
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Fig. 4. With more variably scaling jobs, neither efficiency nor overbooking achieve
better performance

Figure 5 shows category based results for this scalability scenario. Here it can
be seen that taking efficiency into account is helpful for all job sizes. Due to the
poor scalability, overbooking is detrimental to all job categories.

The results here make it clear that the choice of an effective overbooking factor
and efficiency factor not only depend on the relative size of jobs in the system,
but also their relative scalabilities and overall system load. With good overall
scalability, using a high overbooking factor in combination with the efficiency
based scheme provides the best results. However, with poorer scalability, a higher
overbooking factor is very detrimental.
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Fig. 5. With more variability in the speedup characteristics of jobs, overbooking is no
longer helpful. Using the efficiency-based scheme is helpful for most jobs.
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6 An Iterative Approach for Moldable Scheduling

The efficiency-sensitive moldable scheduling approach presented in the previous
section was seen to provide benefits over the base fair-share strategy (EF=0).
However, a difficulty with the approach is the need to choose appropriate pa-
rameters — the choice of the best overbooking factor and efficiency factor are
dependent on the overall scalability characteristics of the job mix. If a job mix
were to contain jobs of relatively uniform weight and similar maximum partition
size, a high overbooking factor produces the best response times. However, if jobs
differ considerably in their maximum partition size, a high overbooking factor
leads to poor performance. It is equally problematic to choose the efficiency fac-
tor. Small jobs benefit from efficiency-based schemes but large jobs suffer under
the same schemes.

A desirable moldable scheduling strategy would inherently take into account
the efficiency, job size, system load and job mix without the need to “tune”
parameters. In this section, we develop an iterative backfilling approach that
does so.

Before describing the algorithm, we first provide a high level contrast of this
approach with the previous section’s strategy. The previous section’s moldable
scheduler associates a maximum allowable partition size with each job and uses
a greedy scheduling strategy to choose an actual partition size (subject to a job’s
upper limit) in order to minimize response time. A job’s size limit was determined
using a fair-share proportion adjusted via the overbooking and efficiency factors.
Although the idea of incorporating efficiency was effective, the problem with the
approach was that the best choice for the overbooking factor and efficiency factor
was dependent on the job mix. In order to avoid this problem, we consider
a completely different approach to moldable scheduling — instead of simply
setting an upper bound on job partition sizes, generate schedules incrementally
and iteratively using global information.

6.1 The Iterative Algorithm

Our iterative algorithm begins by giving each job an initial minimal partition of
one processor. A conservative backfilling schedule is generated; this schedule is
then iteratively modified by giving a processor to the “most worthy” job — the
job that, if given an additional processor, has the greatest decrease in runtime.
If the addition of a processor to the most worthy job decreased the average
response time of the schedule, the addition is accepted, otherwise not. Note that
a job given an additional processor may have a start time later than previously
reserved if its “waiting” allows it to improve the average turnaround time of the
schedule.

Fig. 6 shows pseudocode for the iterative algorithm. Initially, each job is as-
signed one node. This allocation results in optimal per job efficiency, but may
result in poor average turnaround and/or system utilization.

The next step (lines 3 to 12) searches for a schedule with an improved aver-
age turnaround time. Step 4 chooses the job which will benefit the most from
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1. void iterativeNodeAssignment(OrderedList reservedJobs){
2. unmark all jobs in the reservedJobs list and

set partition sizes to 1
3. while(unmarked jobs exist)
4. find unmarked candidate job j (see line 15)
5. add one to partition size of job j
6. create a conservative schedule for all jobs
7. if(average turnaround time did not improve)
8. mark job j
9. decrement partition size of candidate job j
10. create a conservative schedule for all jobs
11. end if
12. end while
13. }
14.
15. Job findUnmarkedCandidate(OrderedList reservedJobs){
16. set bestImprovement to zero
17. for each unmarked job j in the reserved job list
18. let n be the current node assignment of job j
19. let i be the expected runtime on n processors
20. let i’ be the expected runtime on n+1 processors
21. if(i - i’ > bestImprovement)
22. set bestImprovement to i - i’
23. set bestJob to j
24. end for
25. return bestJob
26. }

Fig. 6. The iterative moldable scheduling algorithm

receiving an extra processor. This job is a “good” candidate to try increasing its
processor allocation. Steps 5 to 11 determine if the increased allocation results
in a better schedule. If the increase produces a worse schedule, the job is marked
as a “bad” choice and the remaining jobs are considered.

This approach takes all the aspects discussed previously into account: load,
scalability, job size, and utilization. If a job is small, the improvement from
adding a processor will be minimal, and thus it will be less likely to receive
an increased allocation. Likewise, if a job scales poorly, it will benefit less from
receiving more processors, and will be less likely to be chosen as the candidate.
If the load is low, “wider” jobs will result in a better average turnaround time,
and wider allocations will be given. If the load is high, increasing the allocation
of poorly scalable jobs will increase average turnaround time, and such jobs will
be left “narrow”. Finally, the system achieves good utilization, as processors will
not be wasted unless there is no work to be done or using the processor reduces
the average turnaround time.

Using turnaround time as the scheduling metric, selecting the job with the
best absolute improvement in expected runtime, and iteratively searching and
marking jobs provides a flexible, adaptable algorithm that is able to handle
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a diverse set of job scalability characteristics. This flexibility and adaptivity
present here is not achievable with other algorithms without the addition of a
complicated and dynamic tuning system, which while plausible, would not have
the elegance of the simple iterative scheme.
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Fig. 7. In the situation where jobs scale to the size of the system, the iterative scheme
outperforms even the best previous scheme

6.2 Results

In this section we compare the iterative algorithm described in Figure 6 to
schemes which have been shown to be effective in certain contexts. The results
show that the iterative algorithm is indeed able to perform very well in a variety
of contexts and is competitive with the best previous algorithm (which varies
when the scalability varies).

Figure 7 is the case where jobs scale to the size of the system
(A = system size). As discussed previously, overbooking alone is not helpful
as its generous allocation of processors leads to “wastage” of resources. Explic-
itly taking efficiency into account when choosing job widths allows more scalable
jobs to receive more processors than non-scalable jobs, proving a better average
turnaround time. In contrast, the iterative scheme is able to choose the “cor-
rect” job sizes, implicitly considering job size and scalability, and is better than
even with the best of the previous scheduling scheme (ObF = 4, EF = 1). This
search does come at a small cost: the scheduling time increases to a few hun-
dred milliseconds. However, this cost is much lower than the time between useful
scheduling events.

Figure 8 shows the iterative scheme’s performance within job size categories.
We can see that small jobs actually receive better performance in the iterative
scheme than in other schemes, which was a major issues with earlier moldable
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Fig. 8. The iterative scheme is able to mirror the performance of the best overbooking
efficiency choices for different job categories
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A = random
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Fig. 9. When jobs vary more videly in scalability, the interactive scheme performs
better than all previous schemes, especially as load increases

scheduling strategies. Further, this improvement does not coincide with a de-
terioration in performance for the largest jobs. This is because the larger jobs
are more likely to receive more processors — but this allocation is limited by a
large job’s effect on the other jobs in the queue. The iterative scheme is able to
balance the needs of both small and large jobs.

Finally, Figure 9 shows the situation where each job’s A value varies, as previ-
ously described. Recall that in this situation, the poor scalability becomes a prob-
lem for the schemes discussed. Increasing the overbooking factor was not helpful,
nor was explicitly considering efficiency. Therefore, it was beneficial to use an
efficiency factor of 0 or 1 and no overbooking. However, the iterative scheme
outperforms all schemes previously considered — without having to “tune” any
parameters. Figure 10 illustrates that the improvement in performance carries
across all job size categories as well.

7 Conclusions

Current schedulers require users to examine the set of queued and running jobs
when deciding upon a partition size for a job. It is left up to them to decide
whether to request few resources and reduce the wait time of their job or request
more resources and reduce the job’s run time. A moldable scheduler shifts this
responsibility from the user to the scheduler.

The work presented in this paper examines the effects of the overbooking
factor introduced in previous work and demonstrates that overbooking in work-
loads consisting of jobs which scale well is beneficial, while overbooking can
have a negative affect in workloads consisting of jobs of varying scalability.
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Fig. 10. Even when the scalability of jobs has more variety (A random), the iterative
scheme is able to match the performance of the best overbooking and efficiency choices
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Additionally, we explore the role efficiency can play in the selection of parti-
tion size and how the explicit consideration of job scalability can either reduce
or increase the response time of a system, depending on job mix and scalability.
Additionally, the “best” scheme for a particular job depends on the job’s size.
The results show that in order to achieve good performance, parameters must
be heavily tuned according to expected job characteristics.

The iterative scheme eliminates the need for fine grained performance tuning.
The approach provides a flexible, robust moldable scheduling policy that pro-
vides good performance in all situation studied. Without requiring tuning, the
scheme achieves average response times comparable or better than the best of
efficiency/overbooking schemes, across differing scalability scenarios.
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Abstract. Standard job scheduling uses static job sizes which lacks flex-
ibility regarding changing load in the system and fragmentation handling.
Adaptive resource allocation is known to provide the flexibility needed
to obtain better response times under such conditions. We present a
scheduling approach (SCOJO-P) which decides resource allocation, i.e.
the number of processors, at job start time and then keeps the allocation
fixed throughout the execution (i.e. molds the jobs). SCOJO-P uses a
heuristic to predict the average load on the system over the runtime of a
job and then uses that information to determine the number of proces-
sors to allocate to the job. When determining how many processors to
allocate to a job, our algorithm attempts to balance the interests of the
job with the interests of jobs that are currently waiting in the system and
jobs that are expected to arrive in the near future. We compare our ap-
proach with traditional fixed-size scheduling and with the Cirne-Berman
approach which decides job sizes at job submission time by simulating
the scheduling of the jobs currently running or waiting. Our results show
that SCOJO-P improves mean response times by approximately 70% vs.
traditional fixed-size scheduling while the Cirne-Berman approach only
improves it 30% (which means SCOJO-P improves mean response time
by 59% vs. Cirne-Berman).

Keywords: adaptive job scheduling, molding, prediction.

1 Introduction

Most job-scheduling approaches for parallel machines apply space sharing which
means allocating CPUs/nodes to jobs in a dedicated manner and sharing the
machine among multiple jobs by allocation on different subsets of nodes. Some
approaches apply time sharing (or better to say a combination of time and
space sharing), i.e. use multiple time slices per CPU/node [23]. This is typically
done via so-called gang scheduling which explicitly synchronizes the time slices
over all nodes. Such time sharing creates multiple virtual machines which offers
more flexibility for scheduling. Consequently, gang scheduling is shown in several
studies to provide better response times and higher machine utilization (see, e.g.,
[9][10]). On the downside, gang scheduling involves process-switching overhead
and increases the memory pressure.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, pp. 115–140, 2007.
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A different option of flexible scheduling that avoids additional memory pres-
sure is adaptive CPU/node-resource allocation. The standard resource-allocation
approach in job schedulers uses static job sizes: jobs request a certain number of
CPUs/nodes to run (therefore, called rigid). Adaptive resource allocation means
that the number of resources can be decided dynamically by the system. The
precondition is that the jobs can deal with this dynamic resource allocation:
either being moldable, i.e. able to adjust to the resource allocation at job start
time, or being malleable, i.e. able to adjust to changes in the resource allocation
during the job’s execution. Then, adaptation may be used 1) to reduce fragmen-
tation by adjusting the jobs’ sizes to better fit into the available space, and 2)
to adapt to varying system loads by reducing sizes if the system load is high and
increasing sizes if the system load is low.

Malleability requires a special formulation of the program because the work
to be performed per node changes dynamically–thus, we cannot expect every
job to be malleable (though, in separate work, we address making applications
malleable [22]). Moldability is easier to accomplish because often programs any-
way initialize themselves according to the size with which they are invoked: a
survey conducted among supercomputing-center users [5] found that most jobs
(98%) were moldable, i.e. able to configure themselves as needed at start time.
Based on the exploitation of moldability, Cirne-Berman [5] present a scheduler
that employs an egoistic model and lets each job, after schedule simulation with
different sizes, select the size which provides the best response time for the job.
Response times are significantly improved by this approach which made molding
a well-known alternative to standard space sharing. Indeed, results in [3][16] al-
ready found that molding provides good and sufficiently good results. However,
our results with SCOJO [21] suggest that adaptation with runtime changes of
job sizes performs clearly better.

Our SCOJO scheduler presented in [21] supports both start time adaptation
for moldable and runtime adaptation for malleable jobs, while avoiding molding
and only applying runtime adaptation if the jobs are long. In this paper, we
present SCOJO-P, an extension of SCOJO that supports simpler workloads with
only rigid and moldable jobs and also molds long jobs. To solve the problem of
determining proper sizes, which is especially critical for long jobs, we employ a
heuristic system-load prediction model.

In summary, SCOJO-P provides the following innovative contributions:

– employment of adaptation for both reduction of fragmentation and adjust-
ment to differently high system load

– provision of heuristics for choosing job sizes under molding that are based
on knowledge about the overall system load

– a solution with low time complexity
– consideration of the system load (including estimated future arrivals of jobs)

over the whole runtime of the job
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We compare SCOJO-P to a traditional non-adaptive scheduler and to the
Cirne-Berman approach by evaluating all approaches in a simulation study. For
both, the workload modeling and the prediction, we employ the Lublin-Feitelson
model [13]. Our results show that SCOJO-P outperforms the other approaches.

2 Related Work

Almost all existing work on adaptive scheduling is done in the context of space
sharing. A number of such approaches aim at minimizing the makespan, i.e.
the overall runtime, for a static set of jobs, while focusing on the provision of
tight worst-case bounds [8] [27]. These approaches apply a two-phase scheduling:
they first determine the size for the jobs and then schedule the jobs. Realistic
approaches need to consider dynamic job submission and they aim at a reduction
of average response times and average slowdowns (response times in relation to
runtimes). Furthermore, most adaptive approaches apply molding only. Mere
molding of jobs bears the problem that a job might run earlier with fewer CPUs
but get a better response time if started later with more CPUs/nodes. Thus,
the prediction quality regarding what the best solution for the job is becomes
critical. The approach of Cirne and Berman [5] molds jobs at the time of job
submission without using any central control: predictions are based on simulating
the schedule for different job sizes and then selecting the size for which the best
response time is obtained. We discuss this approach in more detail below. This
approach is modified in [25] by setting limits for the maximum size that depend
on the current system load and on the job’s size requests, by making decisions at
job start time rather than submission time, and by using aggressive backfilling
without any reservations. Though the results of the evaluations are presented
with two below-average scalability factors (and one of them—scalability factor
σ = 0—leading to an extreme curve which is linear for half of the relevant
parameter range and then stays constant at maximum speedup), they suggest
that the approach performs clearly better than Cirne-Berman. A few approaches
are based on runtime adaptation for malleable jobs [6][15][17]. Most of these
approaches exploit adaptation with the goal to adapt to varying system load.
The approach by Naik et al. [15] adapts resource allocation only for medium- and
long-running jobs. Short jobs are molded. The approach attempts to schedule
all jobs from the queue but sets a limit for medium and long jobs to prevent
starvation of short jobs. Dynamic adaptation for malleable jobs may keep jobs
scheduled while adjusting the resource allocation [6][15] or checkpoint/preempt
jobs and re-decide the job allocation [17].

The two basic approaches to decide about the job sizes are resource-based
partitioning and efficiency-based partitioning [9]. Resource-based partitioning
typically comes in the form of EQUI partitioning which means assigning the
same number of resources to each job. This approach yields suboptimal per-
formance in the general case as it does not consider how well the jobs use the
resources [3][14]. However, resource-based allocation can be improved by defin-
ing different job-size classes like small, medium, large [15][2] and applying EQUI

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



118 L. Barsanti and A.C. Sodan

per job-size class-which comes close to efficiency-based partitioning. Efficiency-
based partitioning exploits the efficiency characteristics of the applications and
allocates more resources to jobs that make better use of them, which typically
leads to the overall best results [3][14]. Similar to resource-based partitioning,
efficiency-based partitioning may be applied in the form of providing equal ef-
ficiency to all jobs in the system (EQUI-EFF). In [12], the ratio of runtime to
efficiency is used for efficiency-based partitioning. Job sizes may also be chosen
to keep some CPUs/nodes idle in anticipation of future job arrivals. The work of
Rosti et al. [18] combined this idea with EQUI partitioning and limiting the job
sizes to a certain percentage of the machine size, either statically or in depen-
dence of the waiting-queue length. In the approach of Parsons and Sevcik [17],
first the minimum size is allocated and, then, any leftover resources are assigned
to reduce fragmentation.

If exploiting the jobs’ efficiency characteristics, speedup/efficiency functions
are needed. Secvik’s model presented in [19] addresses dynamically changing par-
allelism but the ideas are related to changing job sizes to obtain better efficiency:
the model uses phase-wise linearly approximation for CPU/node allocations be-
tween minimum, average, and maximum parallelism. Downey [7] presents a more
sophisticated model which also originally was meant to describe variations in
parallelism and is adopted by the Cirne-Berman scheduler for speedup-curve
modeling. It is briefly discussed in Section 4.6.

Furthermore, all partitioning approaches should consider minimum alloca-
tions (potentially defined by memory constraints), maximum allocations (beyond
which speedup drops), and potential other job-size constraints like power-of-two
[5][13][15].

3 The Cirne-Berman Scheduler

The scheduler presented by Cirne and Berman in [5] decides the best job size at
job-submission time. The scheduler takes a list of different possible job sizes and
corresponding runtimes. The number of different sizes is determined randomly
as well as the probability that the sizes are power-of-two. The scheduler then
simulates the scheduling of the job for each possible size separately, taking into
account the current system load, i.e. the jobs currently in the waiting queue or
running. After performing all simulations for all possible sizes, the size is chosen
which provides the best response time for the job, and the job is submitted to the
waiting queue with this size. This means that the approach can be set on top
of an existing scheduler, provided that a simulator is available with the same
scheduling algorithm as employed in the actual job scheduler. The scheduler
uses conservative backfilling with best-fit selection. The scheme used for priority
assignment and aging is not specified. The approach was evaluated with traces
from supercomputer centers (considering all jobs to be moldable), combined with
Downey’s speedup model which we briefly discuss in Section 4.6. When compar-
ing to our SCOJO-P scheduler, we employ, however, EASY backfilling. This
appears to be no major disadvantage for the Cirne-Berman approach as molding
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can anyway more easily fit jobs into the schedule and, therefore, makes reserva-
tions less critical. As another consideration, conservative backfilling may preserve
the original schedule more closely because no additional delays are allowed to
be created. However, whichever backfilling approach is used, the problem vs. the
simulated schedule is that new jobs with higher priority may arrive—especially
under high load—and that job runtimes may have been overestimated. In both
cases, the original schedule is changed. Furthermore, in our implementation of
Cirne-Berman, we also have given no special consideration for power-of-two sizes
and try all sizes in the range between minimum and maximum rather than gen-
erating certain limited sets of possible sizes. Otherwise, we are following the
implementation as described in [5].

4 The SCOJO-P Space Sharing Scheduler

4.1 The Original SCOJO Scheduler

SCOJO [20][21] incorporates standard job-scheduling approaches like priority
handling (classifying jobs into short, medium, and long and assigning higher
priorities to shorter jobs), aging (to prevent starvation), and EASY backfilling.
EASY backfilling means to permit jobs to be scheduled ahead of their normal
priority order if not delaying the start time of the first job in the waiting queue.

The original SCOJO scheduler applies either standard space sharing or gang
scheduling and can combine both with adaptive resource allocation. SCOJO can
handle mixtures of rigid, moldable, and malleable jobs. SCOJO supports

– Adaptation to varying system load (jobs running and jobs in the waiting
queue)

– Fragmentation reduction

The former exploits the fact that speedup curves are typically approximately
concave (due to increasing relative overhead), i.e. if job sizes are reduced, the
jobs run at higher levels of efficiency which improves the effective utilization
of the system towards the progress of the jobs’ execution. Then, running more
jobs while reducing their sizes utilizes the resources better if the system load is
high. Though the jobs run longer, in the end, all jobs (on average) benefit by
shorter wait and shorter response times. If the system load is low, the jobs can
use more resources to reduce their runtime up to their maximum size (Nmax)
beyond which the runtime would decline. Furthermore, SCOJO adjusts job sizes
in certain situations to fit jobs into the machine that otherwise could not run,
while leaving resources unused.

To implement system-load adaptation and fragmentation reduction, SCOJO
divides into the following major steps (details can be found in [21]):

– Determine the job target sizes in dependence on the system load
– Shrinkage or expansion of running malleable jobs to their target sizes; allo-

cation of all new malleable/moldable jobs with their target sizes
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– During backfilling, potentially further shrinkage of new short or medium
adaptable (moldable or malleable) jobs to fit them into the machine

– Potentially expansion of new moldable or malleable jobs to exploit any un-
used resources

The system load is estimated by calculating the needed number of nodes
Nneeded =

∑
i in running,waiting Nopt,i which represents the sum of the optimum

size requirements of all currently running and waiting jobs. We then classify
the current resource needs into a) low, b) normal, and c) high according to
whether all jobs in running and waiting queue with their optimum sizes Nopt:
a) fit into the machine with a multiprogramming level of 1 while still leaving
some space, b) fit with a potentially higher multiprogramming level, or c) do
not fit with even the maximum multiprogramming level. This means we have
either unused space, utilize the machine well, or have more jobs than fit without
adaptation. If the system load is normal, optimum sizes are used. A high system
load suggests to shrink sizes; and a low system load suggests to expand sizes.
The exact factors for expanding and shrinking are calculated by trying to fit all
jobs into the machine (high load) or utilize all resources (low load). This is done
by decreasing or increasing all adaptable jobs’ sizes relative to their optimum
size, i.e. by the same percentage vs. their optimum size. This approximates an
efficiency-based partitioning though it is EQUI-EFF only if all jobs have the
same shape of speedup curves. At least, the proportional change in sizes makes
sure that long jobs are not given any advantage if having high efficiency. In
addition, the minimum job size considered during adaptation is set as the limit
where further reduction in size does not provide much efficiency gain anymore,
i.e. the curve is close to linear. Using sizes below this limit would not provide
any benefit related to system load (though occasionally benefits in fragmentation
reduction might be obtained).

To avoid configuration thrashing and adaptation with minor benefits, we con-
sider reconfiguration only in certain time intervals and only if the change in the
resource needs is relevant. Note that the system load is likely to change with
day-night cycle as otherwise the machine would be overcommitted/saturated.

SCOJO does not apply any special measures to address power-of-two sizes
as studies found the power-of-two sizes appear in most cases to be superficial,
i.e. to stem more from standard practice rather than inherent properties of the
applications [4].

Jobs are classified according to runtime. The original SCOJO takes long jobs
as either rigid or malleable but does not mold them because the system load is
likely to change over the runtime of long jobs. Then with a lack of prediction
and consideration of details in the schedule, the initial size may prove to be
disadvantageous to the job (if chosen smaller than desirable during a high-load
phase) or disadvantageous to other jobs (if chosen too large during a low-load
phase). Similarly, size reduction or size expansion to reduce fragmentation may
especially be harmful regarding long jobs. Short jobs are not worth runtime
adaptation and are treated as either rigid or moldable. Medium jobs can be
rigid, moldable, or malleable.
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The adaptive resource allocation of SCOJO was shown to improve response
times and bounded slowdowns by up to 50% and to also tolerate reservations
for local or grid jobs well [20][24]. These results were obtained with artificial
workloads and the Lublin-Feitelson workload model, and combination with ei-
ther space sharing or gang scheduling. Thus, for space sharing with the Lublin-
Feitelson workload model and 60% moldable / 40% malleable jobs, we obtain
43% improvement in average response times and even 60.5% improvement in
slowdowns [24].

4.2 The New SCOJO-P Scheduler

SCOJO-P [1] extends SCOJO in various ways, while restricting it regarding ap-
plication characteristics. SCOJO-P is strictly space sharing and only handles
rigid and moldable jobs. This makes SCOJO-P suitable for jobs which are not
especially designed for adaptation and matches standard job mixes in super-
computer centers as found by Cirne and Berman [5]. It also makes the results
comparable to the Cirne/Berman approach.

The most important extensions of SCOJO-P are to consider the average load
on the system over the runtime of a job when choosing a size for the job and to
include the prediction of future job submissions. Moreover, SCOJO-P does not
try to schedule all running and waiting jobs on the machine at the same time
but rather aims at a long-term balanced high utilization of the machine. This
is important if the load changes significantly over time. The overall algorithm
includes the following steps:

– Adaptive target-size determination: selects a size (Ntarget) for the candidate
job under concern for being scheduled (Js) that will help the system maintain
a consistent workload.

– Try to start Js: if the target size of Js is greater than the number of currently
available processors (i.e. Navail < Ntarget), then Js can start with less than
Ntarget processors if doing so provides a benefit (shorter response time) to
Js vs. being scheduled at a later time (when Ntarget ≤ Navail).

– Adaptive backfilling: adaptation is considered during backfilling in a simpli-
fied form.

Note that whereas SCOJO applies adaptation both at start time and, for
malleable jobs, during their runtime, SCOJO-P only applies adaptation at start
time as it exclusively supports molding. Fragmentation reduction is, however,
considered when trying to fit a job into the system by shrinking its size below
Ntarget. Below we describe the different steps in detail.

4.3 Adaptive Target-Size Determination

When determining the target size (Ntarget) of a job (Js), all jobs that are cur-
rently running, that are in the waiting queue, or that are expected to arrive
during the execution of Js, are considered (the latter considers the correspond-
ing statistical distribution of runtimes/sizes and of the jobs’ interarrival times).
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The target size of Js is calculated using the following heuristic. The Load (av-
erage load per processor) is estimated over the runtime of Js, assuming that Js,
the waiting jobs, and future jobs will all run with their optimal size, whereas,
for running jobs, their allocated size is taken, i.e. initially

Load(Js) =
∑

i in Js,running,waiting,future work(jobi, Js)/(MN ∗ Js) with

work(jobi, Js) =
{

min(runtimeremain,jobi), Js) ∗ Nalloc,jobi if running
min(runtime(Nopt,jobi), Js) ∗ Nopt,jobi if waiting/future

with MN being the number of nodes in the machine. Since the load is calculated
over the runtime of Js, for all jobs, only the overlapped runtime is considered.
For future jobs, average optimum sizes and corresponding optimum runtimes are
used. For the prediction of future jobs, we employ statistics from the workload
regarding how many short, medium, and long jobs arrive in certain 30-minute
time intervals of the day. This permits to predict how many short, medium, and
long jobs will arrive during the runtime of Js. To determine their work, we use
average runtimes and sizes for each of the three job classes. For a visualization,
see Fig. 1.

curr_target_runtime_Js 

work of  
running jobs 

work of waiting jobs work of  
future jobs 

MN 

curr_target_size_Js 

Fig. 1. Visualization of the load-estimation heuristic. The graphic shows a situa-
tion where not all jobs would fit into the machine with current size and correspond-
ing runtime during the runtime of Js. If relating the workload to the runtime of Js,
Load > 1. Whether the resulting load is considered ideal or not, depends on the setting
of the parameters. However, with our settings, we would normally modify the job size
to obtain a Load < 1.

If Load is lower or higher than the ideal load per processor, a modifying
factor (determined by the fail ratio of the ideal load vs. the resulting load) is
calculated and used to resize all jobs proportionally, and the load is recalcu-
lated. This recalculation of modifying factor and load is done iteratively until a
load close to the ideal load (or as close as possible) is obtained. Note that the
load calculation has to be redone as the runtime of Js and the overlaps change.
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The ideal load cannot always be obtained because moldable jobs cannot ex-
pand/shrink beyond a maximum/minimum value and rigid jobs cannot be re-
sized at all. If the ideal load is set ideal avg load < 1, it means that all waiting
and future jobs should ideally be scheduled immediately (rather than being
queued) by reducing their size. The load then corresponds to utilization. Since
the algorithm does not consider packing but only the load, it may be the case
that neither the currently considered job nor any of the waiting or future jobs
can actually fit into the machine at the current point in time; even with ideal
Load. If set near the expected utilization the ideal Load can take average frag-
mentation loss from packing problems into considerations. For the details of the
algorithm, see Fig. 2.

Note that, though the calculation changes all sizes of the job considered for
scheduling, waiting jobs, and future jobs proportionally, the target size is only
determined for Js. The other sizes are not recorded but are determined when
the jobs are up for scheduling. Nevertheless the algorithm considers the global
picture of the overall load.

Furthermore, by calculating the average load over the entire runtime of the
job, the job gets a size which is appropriate for both potential high load and
low load phases. This is important when scheduling long running moldable jobs
because it prevents the jobs from starving the system in order to help themselves
and from starving themselves to help the system.

The complexity of this algorithm depends on how quickly it converges to the
ideal load. In the worst case, every size of the job being scheduled will be tested.
Because the runtime changes with every iteration step, the load incurred by
running, waiting, and future jobs also changes. Thus, using the modifier does not
always provide better results and could even cause the algorithm to thrash. We
prevent this from happening by comparing the load produced by each modifier
to the best load obtained so far (i.e. the load that came closest to the ideal load).
If after a couple iterations no new modifier has produced a load that is better
than the current best load the algorithm terminates and uses the modifier that
provided the current best load. In practice, we found only very few iteration
steps to be needed.

4.4 Trying to Schedule the Job with Adaptive Target Size and
Adaptive Backfilling

After determining the target size of the job, the scheduler tries to allocate the
job to the machine. It is possible that, however, not enough nodes are currently
available to schedule the job. Rather than considering the attempt of scheduling
the job as failed, the scheduler decides whether to start the job right away with
smaller than the target size (i.e. allocate fewer resources) or whether to start the
job at a later point of time with more processors (up to the calculated target
size).

To make this decision, the scheduling of all currently running jobs is simulated
to determine the different times at which the job can be started with larger sizes.
Note that this simulation is very simple as it only needs to check when currently
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isOk_load = false; sizeModifier = 1.0; best_avg_load = Max_Integer;
curr_target_size_Js = Js.optSize;
curr_target_runtime_Js = Js.runtime (curr_target_size_Js);

do {
// calculate the average system load via formula described in text
// but all size parameters (except for running and current) multiplied
// by sizeModifier
relevant_work = overlapSizeModified_work

(running_jobs, waiting_jobs, future_jobs,Js);
available_workProcessing = n_machine * curr_target_runtime_Js;
avg_load = relevant_work / available_workProcessing;

// check whether sufficient approximation of ideal load
if ((avg_load >= ideal_avg_load-deltaSize) &&

(avg_load <= ideal_avg_load+deltaSize))
isOk_load = true;

else { // determine size modifier
prev_sizeModifier = sizeModifier;
sizeModifier = sizeModifier * ( ideal_avg_load / avg_load);
if (prev_sizeModifier == sizeModifier) break; // no change
curr_target_size_Js = sizeModifier * Js.optSize;
curr_target_runtime_Js = Js.runtime(curr_target_size_Js);

}

// check whether better approximation found
// if not, count bad trial to avoid endless search
if ( |avg_load - ideal_avg_load| < |best_avg_load - ideal_avg_load| ) {

best_avg_load = avg_load;
best_sizeModifier = prev_sizeModifier; counter=0;

} else {
counter++; if (counter == maxBadModifiers) break;

}
} while (! isOk_load);
// loop terminates if load o.k. or if no significant change anymore

Fig. 2. Algorithm applied when calculating target size Ntarget for job Js

running jobs terminate. The latest possible start time would be when it can run
with the calculated target size. Then, it is decided whether the current or any
later start time with increased size (Navail < size ≤ Ntarget) provides a better
response time for the job. If the current time provides the best response time, the
job is started with that size. Otherwise, the size with the calculated best response
time is memorized and guaranteed as the job’s later minimum size (worst-case
scenario) with which it will be run. If the job is started with size < Ntarget, this
can be considered fragmentation reduction. For the algorithm, see Fig. 3.

SCOJO-P also considers size adaptation during backfilling, applying the same
sizeModifier as calculated when attempting to schedule the first job in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Adaptive Job Scheduling Via Predictive Job Resource Allocation 125

bestStartTime = currentTime; bestResponseTime = Js.runtime (freeProcs);
bestSize=Js.target_size;

while (freeProcs < Js.target_size) {
startTime = sim.time (sim.nextJob_finished);
size = min(target_size_Js,sim.freeProcs);
responseTime = startTime - currentTime + Js.runtime (size);
if (responseTime < bestResponseTime)
{bestResponseTime=responseTime; bestStartTime=startTime;
bestSize=size; }

}
if (bestStartTime == currentTime) schedule (Js, freeProcs);
else fixJobSize (bestSize);

Fig. 3. Finding the start time that delivers the best response time

queue. First, all jobs are uniformly resized by this same factor. Then, normal
EASY backfilling applied.

4.5 Discussion of Expected Behavior and Benefits

The main benefits of the SCOJO-P algorithm as presented above are that the
workload is estimated over the whole runtime of the job that is the candidate for
scheduling. This estimation provides a good global picture, though it is heuristic.
Thus jobs that encounter periods of both high and low usage can run with a size
that is reasonable for the average load. This reduces the risk that sizes are chosen
too high which would benefit the candidate job or too small which would benefit
the other jobs. Moreover, Cirne-Berman is more likely to choose large partition
sizes because the job tries to maximize its own benefit.

If comparing SCOJO-P to the Cirne-Berman approach, Cirne-Berman makes
decisions per job at job submission time based on simulation of the sched-
ule. However, new jobs with higher priorities can change the picture though
the Cirne-Berman scheduler may still work well as long as only short jobs can
get ahead. The approach in [25] has already shown that decisions at job start
time work better than decisions at submission time. Furthermore, if priorities
would be assigned with a different scheme such as giving long jobs higher pri-
ority, the Cirne-Berman approach is likely not to work well anymore whereas
SCOJO-P considers them as part of the statistically based estimate. Further-
more, in SCOJO-P, prediction and runtime overestimates are easier to inte-
grate. As shown above, predication only adds a term in the estimation of the
load. Regarding overestimates, for future jobs, anyway statistics based on actual
runtimes are used. For running and waiting jobs, the workload estimation from
above can be refined by taking the runtimes as user-estimated runtimes and
adding a statistical over-estimate model such as [26]. This may not correctly
estimate the runtime per job but, at least with a large number of jobs in the sys-
tem, provide a reasonable statistical approximation of the overall load in which
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we are interested only. Alternatively performance databases may be employed to
obtain estimates of the actual runtimes [11] which would work well for
Cirne-Berman, too.

Both approaches depend on reasonable estimates of the speedup curves as
decisions about sizes and scheduling times take the changing job runtimes into
consideration. However, SCOJO-P appears to be slightly less dependent on cor-
rect estimates of speedup curves as job sizes are changed proportionally for all
jobs whereas Cirne-Berman depends more on detailed decisions in the simula-
tion. Our evaluation below does not investigate dependence on correct estimates
(nor does Cirne-Berman).

4.6 The Speedup Model Used

The implementation of the function runtime(size) requires a speedup model.
The Cirne-Berman approach [4] uses a statistical model to generate random
min/max sizes and a random speedup curve for each job. The Cirne-Berman
model is based on the Downey speedup model [7], originally meant to model par-
allelism behavior as does [19]. With adoption to speedup-up curves, this model
defines the curve by the maximum speedup Smax a job can achieve (originally
the average parallelism) and the scalability factor (originally the job’s variance
in parallelism) which determines how fast the job reaches its maximum speedup.
Furthermore, the following relationship holds: σ = (Smax − Sopt)/(Sopt − 1).
Cirne-Berman obtained distribution functions for these two parameters and co-
efficients’ values fitting the observed data from their study and, based on the
resulting statistical model, randomly generate speedup curves for the jobs. The
moldability model is combined with the general workload by randomly gener-
ating the maximum speedup (independently from the runtime generated by the
workload model) and mapping the generated runtime onto this curve. We imple-
mented this model and found that the created speedup curves are not correlated
with the runtimes/sizes produced by the Lublin-Feitelson model. Thus, the com-
bined workload model often produces jobs with a maximum size far beyond the
machine size. Furthermore, it can produce, for example, a job that runs in 20
seconds on 4 processors, while the Cirne-Berman speedup model could produce
a speedup curve where the optimum job size is 32 processors yielding a runtime
of 2 seconds. This would be similar to generating job runtimes and job sizes
independently (though indeed they are correlated). Basically, the assumption of
the the Cirne-Berman approach is that the user does not choose optimum sizes
for submission, either because not knowing which they are or by e.g. choosing
smaller than optimum sizes for strategic reasons (getting the job run earlier).
This lack of correlation does not affect the Cirne-Berman scheduler as it simply
chooses the size/runtime combination that produces the best simulation results.
However, this approach does not work for a scheduler like SCOJO-P which con-
siders relative efficiency, i.e. tries to run all jobs using their optimum size and
only shrinks and expands when appropriate. Under the Cirne-Berman model,
however, the optimum sizes are larger than the originally generated sizes in
the workload which changes the target size of the workload. Larger sizes—as
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especially chosen under low load—are also harder to fit into the schedule, es-
pecially if not simulating possible fits. Furthermore, under high load, SCOJO-P
tries to fit all jobs into the system which especially provides a benefit as long as
jobs are in a range where the curve flattens. Since with the Cirne-Berman model
the optimum sizes may be much larger than the submitted sizes, significant
shrinking may be required into the range of closer-to-linear speedup.

Considering these problems with the lack of correlation between generated
sizes and calculated optimum sizes, for our main tests, we have reverted back
to a simpler model as used in [21]. This model assumes that the sizes produced
by the workload model (or given by the user) represent a size for which a good
cost/efficiency ratio is obtained. Though not required by the scheduler, this size
is ideally the processor working set (PWS), i.e., the number of processors for
which the ratio of runtime to efficiency is optimal [12]:

NPWS = {N | withTN/EN = T1/N ∗ 1/E2
N) is minimal}

with TN being the runtime and EN the efficiency for a corresponding job size
N . No larger size should be chosen unless otherwise resources are idle. Then, we
calculate the speedup curve in the following way:

– We take the size created for the job by the statistical workload model as its
optimum size Nopt. The assumption is that the user approximately knows
which is the most meaningful size for the job. If the job is rigid, this will
remain its size, if the job is moldable, this is the base size of the job. Though
it is not necessarily NPWS , we can perceive it as the size which makes sense
under normal load conditions. Then, consequently, runtime(Nopt) is the time
generated by the workload model. In the specific test setting which we use,
Nopt = NPWS .

– We define Nmax and Nmin relative to Nopt with always the same propor-
tional factor, and interpolate the speedup curve between these points linearly
(which is similar to [19]). Nmax represents the size beyond which the speedup
curve declines and Nmin the minimum size needed by the job, e.g. because of
memory constraints, or the size below which no further significant efficiency
benefits can be obtained. Note, that typically Nmin > 1.

The SCOJO-P algorithm always considers Nmax and Nmin as bounds when
determining sizes (this consideration is omitted above in the pseudo code to keep
it readable).

This model assumes the same shape of speedup curves for all jobs (though
stretched according to where Nopt, Nmin, and Nmax lie). The scalability factor is
σ = 0.23 for large numbers of nodes, σ = 1 for Nopt = 2, σ = 0.46 for Nopt = 4,
and σ = 0.29 for Nopt = 8. This means scalability is worse for smaller Nopt and
approaches σ = 0.23 quickly.

We also show results for using the Cirne-Berman adoption of Downey’s model.
Note that this model generates different scalability behavior randomly. To have
a proper comparison to the Cirne-Berman implementation, we follow their ap-
proach in not correlating the generated speedup curve to the generated
sizes/runtime though we agree with Downey’s comment that user submissions
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are likely to be proportional to the maximum speedup [7]. (The latter means that
a user is likely to choose a larger size—even if the machine is very busy—if the
maximum speedup is very high.) Then, we calculate Nopt by finding NPWS from
the speedup formula. For predictions of speedup for future jobs, we use mean
maximum speedups and mean variances. The σ values created by this model
are random with a mean value of 1.2 which represents a rather poor scalability.
Thus, significant benefits can be obtained if shrinking sizes in the range above
Nopt. However, as we will detail in Section 5.4, the generated Nopt values are
significantly higher with this model. Thus, if shrinking sizes under high load,
they fall more likely in the range below Nopt where the curve is steeper and less
likely a benefit can be obtained from shrinking job sizes (if the curve is close to
linear, little efficiency gain is possible). If load is low, less benefit can be obtained
from expanding sizes. Note that with the Cirne-Berman model, the relative size
modification of SCOJO-P is only a heuristic regarding efficiency but no exact
EQUI-EFF.

By testing our approach with both models, we cover the two extremes of, on
one hand, the user having a good idea about the speedup curves and choosing
the size according to what is optimum and, on the other hand, the user not
knowing or not caring about the optimum at all when choosing the job size.

5 Experimental Evaluation

5.1 Test Environment and Measured Metrics

We evaluate utilization, wait times, response times (elapsed runtimes plus wait-
ing times), and bounded slowdowns (response times in relation to runtimes
with adjustment to a minimum runtime bound). The bounded slowdown (BSl),
however, needs to be redefined for moldable jobs. We relate the slowdown to
runtime(Nopt) as Nopt represents the standard size as it would be used without
molding:

runtime(Nopt) < bound →
BSl = max(Tresponse/max(runtime(Nopt), bound), 1)

runtime(Nopt) ≥ bound → BSl = Tresponse/runtime(Nopt)

We have set the bound to 30 seconds. Rather than using the geometric mean
like Cirne-Berman [5] to avoid too much influence from long jobs, we not only
calculate the overall arithmetic mean, but also perform separate evaluations for
short jobs, medium jobs, and long jobs.

5.2 Workload Model

We evaluate SCOJO-P via simulation. As already mentioned above, we apply
the Lublin/Feitelson statistical model for the workload generation [13], including
runtimes, sizes, and interarrival times. This model is derived from existing work-
load traces and incorporates correlations between job runtimes and job sizes and
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daytime cycles in job-interarrival times. We cut off the head and the tail of the
created schedule (the first and last 5% of the jobs in the schedule) to avoid that
the fill and drain phase influence the results. We test two different variations of
the Lublin-Feitelson workload: the basic one and a higher workload (one with
shortened interarrival times).

Since there is no information yet about speedup curves from real application
traces, we apply the model as described in Section 4.6. Regarding moldability,
the study in [5] suggests that 98% of the jobs are moldable. The figure, however,
sounds a bit too optimistic–if users say that they can submit jobs as moldable,
it does not necessarily mean that, in practice, they would do so and that ap-
plications are moldable in such a high percentage of cases. Furthermore, these
are so far results from a single study only. Thus, we test different percentages of
moldable jobs, including 100%. If less than 100% jobs are moldable, moldabil-
ity is distributed over the different job classes short, medium, long with equal
probability.

We assume all generated runtimes to represent correct runtimes (i.e. we do
not consider over-estimates as would be possible if adding the model presented
in [26]) which is sufficient for our evaluation. For SCOJO-P, wrong estimates
would actually be relatively easy to incorporate: only the average percentage of
the overestimate would be needed to model the predictions for running, waiting,
and future jobs as we consider averages of runtimes only. The Cirne-Berman ap-
proach is more heavily depending on estimates as the approach determines sizes
by simulating the actual schedule. Since we apply the same workload model to
all approaches, comparing to the Cirne-Berman approach on the bases of cor-
rect runtimes is a conservative comparison regarding SCOJO-P. In other words,
if including wrong estimates into the model, we expect SCOJO-P to perform
relatively even better.

For details of the workload parameters, see Table 1. We have set the efficiency
values E = speedup/MN such that, in our test cases, Nopt = NPWS . Note that
in addition, we model the Cirne-Berman-Downey speedup model as described
above. For this model, the parameters for the statistical generation and calcu-
lation of the maximum speedup and the scalability factor are chosen according
to [4]. This model creates σ via a standard distribution with mean = 1.209 and
deviation = 1.132.

Future job submissions in different time intervals are determined by using 30-
minute intervals as in the Lublin-Feitelson model and evaluating actual workload
simulations to extract the numbers of short, medium, and long jobs submitted
on average in each of 48 time intervals per day.

5.3 Approaches Tested

As mentioned above, SCOJO-P employs EASY backfilling and priority assign-
ment according to runtime, giving highest priority to short jobs. Long and
medium jobs are aged to prevent starvation; that is, their priority is increased
after they have waited 5 times as long as their optimum runtime. We use the
same basic approaches, including the priority handling and EASY backfilling, for
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Table 1. Workload parameters used for basic and additional evaluation

Parameter Value
Machine size MN 128
Number of jobs in workload 10,000
Cut-off for fill and drain phase 5% of overall jobs each
α parameter of Lublin/Feitelson α = 10.23 (basic Workload W1)

model with impact on system load α = 9.83 (heavier Workload W2)
Classification of short jobs runtime(Nopt) < 60sec
Classification of medium jobs 60sec ≤ runtime(Nopt) < 1hour
Classification of long jobs 1hour ≤ runtime(Nopt)
percentage moldable jobs 80% and 100%
Nopt as created by Lublin-Feitelson model
Nmin max{1/2Nopt, 1}
Nmax min{2 ∗ Nopt, MN}
E(Nopt) 0.65
E(Nmin 0.8
E(Nmax) 0.4
runtime(Nopt) as created by Lublin-Feitelson model
runtime(Nmin) runtime(Nopt) ∗ 2 ∗ E(Nopt)/E(Nmin)
runtime(Nmax) runtime(NOpt) ∗ 1/2 ∗ E(Nopt)/E(Nmax)

all approaches used in our comparison to have a fair comparison. (Note that the
original Cirne-Berman approach applied conservative backfilling.) We also do
not impose any size constraints in neither of the approaches though the original
Cirne-Berman approach generates only a certain number of sizes and imposes
a certain probability that the jobs’s sizes have power-of-two constraints. We
compare the following approaches:

– Basic scheduler without any adaptation (traditional)
– SCOJO-P with adaptation with prediction (predictive) or without prediction

(non-predictive)
– Cirne-Berman approach for adaptation

The non-predictive variant of SCOJO-P is introduced to investigate how much
the prediction contributes to the final results. For SCOJO-P, we additionally
tested different load values for the target utilization. The one that performed
best is 90% utilization. This is not surprising as this value corresponds to the
maximum utilization which typically can be achieved on a machine, considering
that there is always some fragmentation.

5.4 Experimental Results

We ran all tests four times with different random seeds and use the average for
our results. We first test the scheduling approaches using our simple speedup
model. The results for Workload W1 and 100% moldable jobs are shown in
Fig. 4 to Fig. 7.
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Fig. 4. Mean response times with basic Workload W1 (in hours), 100% moldable
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Fig. 5. Mean wait times for basic Workload W1 (in hours), 100% moldable

From Fig. 4, it can be seen that mean response times for jobs scheduled with
SCOJO-P vs. Cirne-Berman are better for all job classes. Short and medium jobs
are reduced to about 1/3 of their response times and long jobs to about 1/2. Re-
garding wait times, short and medium job again are cut to 1/3 but long jobs to 1/4,
see Fig. 5. This suggests that SCOJO-P typically starts long jobs earlier, but with
fewer processors than the Cirne-Bermanapproachdoes.Thus, runtime is increased
but response time is actually decreased because of the earlier start time. Further-
more, using fewer processors for long jobs also leaves more room for short and
medium jobs to squeeze through which explains their marginal improvement. To
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Fig. 6. Mean bounded slowdowns for basic Workload W1, 100% moldable

get a better insight into the behavior than the averages can provide for the highly
varying result values and skeweddistributions, we have calculatedhistograms.The
corresponding response-time graph is shown in Fig. 7 (the other graphs are sim-
ilar in their trend). We can see that SCOJO-P schedules more jobs with shorter
response times (except for the initial classes of long jobs) and fewer jobs with ex-
cessively long response times. This applies to all job classes short, medium, and
long, and supports that SCOJO-P produces better overall results.

Fig. 8 shows the number of adaptations that took place with each approach.
Because it is considering the system as a whole, the SCOJO-P scheduler tends
to shrink jobs rather than expand them; conversely, because the Cirne-Berman
approach is trying to optimize each job individually it tends to expand jobs.
The Cirne-Berman approach actually produced higher system utilization than
SCOJO-P (89.69% vs 78.6%). The reason is most likely that SCOJO-P shrinks
more jobs during phases with high load and may leave processors empty so they
can service jobs in the near future. However, SCOJO-P still obtains better mean
response times which makes sense if shrinking jobs to run with higher efficiency.
Furthermore, we checked by how much jobs are shrunk or expanded and how the
results distribute over the different job classes. On average, jobs are scaled by
0.4 to 0.5, i.e shrunk to 40% to 50% of their optimal size. Short and medium jobs
are scaled by 0.44 to 0.58 (depending on the test run) and long jobs by 0.3 to
0.4. Without prediction, the factor for long jobs is 0.36 to 0.47 This shows that
the classes are treated fairly equally though long jobs are shrunk a little more,
especially if including predictions about future job arrivals. The Cirne-Berman
approach shrinks jobs less: overall by about a factor of 0.8 and short jobs by
about a factor of 0.72, i.e. short jobs are shrunk slightly more.

Looking at the results for the non-predictive SCOJO-P, we find them to be
only a little worse. This means that the prediction-at least, in its current version-
does not provide as much benefit as we had originally expected.
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Fig. 7. Histograms for response times and short (top), medium (middle), and long
(bottom) jobs. Note that the histogram categories are not equidistant to accommodate
the skewed distributions. The labels mean: label value of the preceding category <
result values ≤ label valueof the current category. The histogram shows the number
of job results falling into each category.

Similar results were achieved with a workload where only 80% of the jobs were
moldable. However, SCOJO-P actually performed slightly better (4%) with 80%
moldable jobs, while Cirne-Berman performed a bit worse (-5%). This indicates
that job shrinking in SCOJO-P might be a little too aggressive.
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Fig. 8. Number of adaptations (W1, 100% moldable) that shrink (S*) or expand (E*)
the job size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long jobs
(*L)

Fig. 9 to Fig. 12 show results for the higher Workload W2. As with the lower
workload, SCOJO-P produces much better (67%) mean wait times for long jobs
than the Cirne-Berman approach. This translates into a 48% improvement in
the mean response time of long jobs which now benefit most. Looking at the
adaptation statistics in Fig. 12, we see that even when there is a heavy workload
on the system, the Cirne-Berman approach still tends to expand jobs. On the
other hand, SCOJO-P is shrinking a greater number of jobs, thus allowing a
greater number of jobs to run simultaneously. SCOJO-P is also benefiting from
the increased processor effectiveness obtained from smaller job sizes.

We also found that SCOJO-P is consistently running faster (in our tests by
more than a factor of 10 though the details depend on how many different sizes
are tried with Cirne-Berman) confirms our claims regarding our algorithm being
an efficient yet effective heuristic.

For comparison, we checked the results from the original SCOJO. Since our
test environment and the generated random workloads are not exactly the same,
a direct comparison is not possible. However, SCOJO reduces average response
times by 50% if 80% of the long jobs are malleable (while 80% of the short and
medium jobs are moldable). Adaptation with all classes being 80% moldable
improves response times by approx. 35% vs. scheduling without adaptation. This
means that the approx. 50% improvement which we get with SCOJO-P can in
SCOJO only be accomplished with dynamic adaptation for malleable jobs.

Finally, we ran the tests (using two test runs) for W1 and 100% moldable
again with the Cirne-Berman-Downey speedup model. The results for response
times and bounded slowdowns are shown in Fig. 13 and Fig. 14. SCOJO-P
still performs better: only slightly in average response times but clearly better
in bounded slowdowns. However, also Cirne-Berman does not perform as well
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Fig. 9. Mean response times for Workload W2 (in hours), 100% moldable jobs
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Fig. 10. Mean wait times for Workload W2 (in hours), 100% moldable jobs

anymore and is not much better in average response times than the traditional
priority scheduler. We found that Nmax and therefore Nopt are created very high.
Thus, with our speedup model, the average Nopt is 12 (8 for short, 9 for medium,
and 20 for long jobs) and with the Cirne-Berman-Downey model it is 69. There is
not much difference for the different job classes with the latter (61 for short, 89 for
medium, and 65 for long jobs). The high values of Nopt greatly reduce the benefit
of shrinking job sizes. However, as discussed above, we consider the created sizes
as too large and as not properly correlated to the submitted sizes. Note that the
classification into short, medium, and long is based on the Nopt runtimes which
changes the overall distribution of the jobs: if using for classification the Nopt
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Fig. 11. Mean bounded slowdowns for Workload W2, 100% moldable jobs
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Fig. 12. Number of adaptations (W2, 100% moldable jobs) that shrink (S*) or expand
(E*) the job size vs. Nopt, calculated for short jobs (*S), medium jobs (*M), and long
jobs (*L)

runtimes derived by the Cirne-Berman-Downey model, the workload has 61%
short jobs, 28% medium jobs, and 11% long jobs, whereas with the runtimes
originally generated by Lublin-Feitelson, the percentages are 42.7% short jobs,
26.6% medium, and 30.7% long jobs. This underlines that the Cirne-Berman-
Downey model significantly reshapes the jobs in the workload. Using this model,
the non-predictive variant of SCOJO-P now performs better than the predictive
variant. The reason is that the overly high Nopt values (which are far beyond the
sizes with which the jobs are finally scheduled) negatively affect the predictions.
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Fig. 13. Response times for W1 and 100% moldable jobs, using the Cirne-Berman-
Downey speedup model
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Fig. 14. Bounded slowdowns for W1 and 100% moldable jobs, using the Cirne-Berman-
Downey speedup model

Regarding the size modification, we found that SCOJO-P now shrinks jobs
significantly more vs. Nopt (certainly because Nopt is larger than in the simple
model). The size modification factor is now around 0.1 with short jobs shrunk
a little less (0.15), medium jobs shrunk more (0.07), and long jobs less (0.17).
The latter is different from the simple model where long jobs are shrunk more.
Without prediction, long jobs are shrunk relatively less (the factor is 0.23) as
for the simple model. If comparing to the size generated by the Lublin-Feitelson
model, the factors are about 3 for short jobs and about 5.5 for medium jobs,
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i.e. the job sizes are expanded significantly vs. the original size with which the
jobs are submitted. Long jobs are still shrunk vs. the submit size (the factor is
0.62). For Cirne-Berman, the factor vs. the optimal size is about 0.22 for short
and medium and 0.6 for long jobs, i.e. jobs are shrunk less than with SCOJO-P
as found for the simple model.

We finally tried to improve SCOJO-P by artificially limiting the minimum
size of the jobs: for medium and large jobs, we set the minimum to the point
where E ≥ 0.9 because we found the Nmin generated by the Cirne-Berman-
Downey model to be much smaller than Nopt and often to be close to 1. The
limitation of the minimum size prevents jobs from being shrunk into a range
where no or hardly any efficiency gain can be obtained. However, the modified
version did not bring the expected benefits. We found the minimum now to be
rather large; but small sizes apparently are important for increasing the chances
to pack jobs into the schedule, especially with the large Nopt sizes generated
by the Cirne-Berman-Downey model. However, these effects demonstrate that
SCOJO-P works well as it is and exploits all–efficiency gain, better utilization,
and better packing (fragmentation reduction)–when molding the jobs.

6 Summary and Conclusion

We have presented the SCOJO-P scheduler for adaptive resource allocation at
job start time. SCOJO-P considers the estimated load of the machine over the
whole runtime of the job to determine its ideal size. The load estimation in-
cludes an estimate about future job submissions. The Cirne-Berman approach
for molding jobs, tries to maximize the benefits per jobs, which still converges
to a situation where each job (on average) benefits. SCOJO-P directly considers
the whole picture to balance the interests of the scheduled jobs with the inter-
ests of the other jobs. SCOJO-P also approximates an efficiency-based allocation
by shrinking/expanding job sizes by certain factors and by using minimum sizes
that keep the size adaptation in the range where efficiency gains can be obtained
if choosing smaller sizes. SCOJO-P is an efficient yet effective approach which
does not require any simulation of whole schedules. In the experimental study,
SCOJO-P improves response times by 70% vs. traditional scheduling and by
about 59% vs. the Cirne-Berman approach (which improves traditional schedul-
ing by about 30%) if using a simple speedup model which takes the submission
size as the optimal one. Investigating the effect of prediction, we found it con-
tribute less to the good results than originally expected (though improvements
are possible) and the main benefit stemming from considering the whole set of
jobs on the system together. With the Cirne-Berman-Downey speedup model,
optimal sizes for the generated curves are not correlated with the sizes originally
generated in the workload and are much higher, leading to less efficiency gain
if shrinking jobs and therefore to SCOJO-P only being slightly better than the
Cirne-Berman scheduler but also Cirne-Berman not being much better in aver-
age response time than traditional non-adaptive scheduling. This appears to be
less an argument against the schedulers but a call for further improvements in
the statistical speedup/workload model.
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Abstract. Many scientific investigations have to deal with large
amounts of data from simulations and experiments. Data analysis in such
investigations typically involves extraction of subsets of data, followed by
computations performed on extracted data. Scheduling in this context
requires efficient utilization of the computational, storage and network
resources to optimize response time. The data-intensive nature of such
applications necessitates data-locality aware job scheduling algorithms.
This paper proposes a hypergraph based dynamic scheduling heuristic
for a stream of independent I/O intensive jobs with file sharing behavior.
The proposed heuristic is based on an event-driven, run-time hypergraph
modeling of the file sharing characteristics among jobs. Our experiments
on a coupled compute/storage cluster show it performs better compared
to previously proposed strategies, under a varying set of parameters for
workloads from the application domain of biomedical image analysis.

1 Introduction

Data-driven approaches that make use of large datasets to solve complex prob-
lems in science and engineering have become increasingly important. Data anal-
ysis is a key component in data-driven science and engineering, enabling a better
understanding of the problem under study and more efficient refinement of the
search space of solutions. Data analysis applications often involve access and
processing of many subsets of a dataset. Most scientific datasets are stored in
files. A request for the region of interest specifies a subset of data files and/or
segments in data files – either directly as input parameters or after an index
lookup that finds the files and file segments of interest.The data of interest is
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retrieved from the storage system and transformed into a data product that is
more suitable for examination by the scientist.

When several data-intensive jobs are submitted to a high-performance system,
they have to be scheduled to compute nodes for execution. Unlike traditional
compute intensive jobs, data analysis jobs may require access to a large num-
ber of files and high data volume. When mapping such data-intensive jobs to
compute nodes, scheduling mechanisms need to take into account not only the
computation time of the jobs, but also the overheads of retrieving files requested
by those jobs. Moreover, the staging of files should be carefully coordinated to
minimize I/O overheads. Traditional job schedulers for compute-intensive jobs
running at supercomputer centers are not designed for data intensive jobs, since
they take into account CPU related metrics (e.g. user estimated job run times)
and system state (e.g. queue wait times) for making scheduling decisions, but
they do not take into account data related metrics.

This paper addresses the efficient execution of a stream of dynamically ar-
riving data-intensive jobs exhibiting file-shared I/O behavior [14]. In our model,
the files required by the jobs are initially resident on a storage cluster. When
a job is scheduled to a compute node, the files accessed by the job are staged
from remote storage nodes to the compute node before the job is executed. Since
disk space on compute nodes is limited, effective management of data on the lo-
cal disk of compute nodes is also important. Obviously, by running jobs on the
storage nodes the cost of data staging can be avoided; however, in real setups
storage nodes are designed to maximize storage space and I/O bandwidth, and
have only limited computation power1. Thus, we assume that jobs cannot be
executed directly on storage nodes.

We propose a new algorithm to schedule a stream of dynamically arriving
jobs that share input files. The algorithm is based on a hypergraph formulation
of the workload and a K-way partitioning of the hypergraph to yield a locality
aware and load-balanced allocation of jobs on the compute cluster. The pro-
posed approach formulates the sharing of files among jobs as a hypergraph. The
hypergraph representation also models the load on the compute nodes due to
currently executing jobs. It also takes into account the fact that some files might
already have been staged or are currently being staged to the compute nodes due
to previously executed or currently running jobs. The experimental results show
that when there is high degree of file sharing among jobs, our formulation results
in much better schedules compared to the JobDataPresent + DataLeastLoaded
algorithm [13] and the Minimum Execution Time, Minimum Completion Time,
Switching Algorithm heuristics [10,2,3], modified to handle data intensive jobs.
We have also observed that as the average job inter-arrival times decrease, the
proposed approach outperforms the other heuristics.

1 Even though per node storage nodes might have comparable power to compute
nodes, generally the number of storage nodes are much less than the number of
compute nodes. For example, at Ohio Supercomputer Center 0.5 Petabyte Mass
Storage System is derived from 24 storage nodes, whereas they have thousands of
compute nodes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Data Locality Aware Online Scheduling Approach 143

2 Problem Definition and Use-Case Applications

We target streams of dynamically arriving jobs which consist of independent
sequential programs. Each job requests a subset of data files from a dataset
and can be executed on any of the nodes in the compute cluster. The data
files required by a job should be staged to the compute node where the job is
allocated for the job to execute correctly; a data file is the unit of I/O transfer
from the storage cluster to the compute cluster. The jobs may share a number
of files with previously scheduled jobs or with jobs arriving in future.

NETWORK

Compute 
1 2

F File G HFile

Storage 1

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

File

C3

Storage 2 Storage 3 Storage s

Compute Compute Compute 

COMPUTE NODES

STORAGE NODES

stream of Jobs
Dynamically arriving

File E

File A BFile CFile DFile

Fig. 1. Scheduling problem

Our objective is, given a stream of dynamically arriving jobs and a set of files
required by these jobs, 1) to schedule the jobs in an efficient manner, 2) to decide
which files need to be remotely transferred and their respective destination nodes,
so as to minimize the average job response time. Figure 1 depicts an illustration
of this problem. Each job in the job stream is represented by a computation
weight, a list of input files, and their file sizes.

Formally, let S =< j1, j2, . . . , jn > be a stream of n jobs arriving dynamically.
Let Arrival(ji) be the arrival time of the job ji and Exec(ji) be the total time
the job ji spends in execution. Some of the jobs will not be able start execution
as soon as they have been submitted. Let Start(ji) be the time instant when
the job ji starts execution. In our case, this corresponds to the case when the
first data transfer for the job ji starts. If the job finds all its files locally, then it
is the time when the job starts its computation. The wait time of a job Wait(ji)
is the time it spends in the queue before it starts execution.

Wait(ji) = Start(ji) − Arrival(ji) (1)

The response time Response(ji) of the job is the turnaround time which refers
to the total time spent by job in the queue and in execution.

Response(ji) = Wait(ji) + Exec(ji) (2)
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Completion(ji) refers to the instant when the job finishes execution.

Completion(ji) = Arrival(ji) + Response(ji) (3)

And the AverageResponseT ime is defined as the overall average of response
times of the jobs in the stream.

AverageResponseT ime =
∑i=n

i=1 Response(ji)
n

(4)

We have evaluated our approach using application scenarios from Biomedi-
cal Image Analysis application class. Biomedical imaging is a powerful method
for disease diagnosis and for monitoring therapy. State-of-the-art studies make
use of large datasets, which consist of time dependent sequences of 2D and 3D
images from multiple imaging sessions. Systematic development and assessment
of image analysis techniques requires an ability to efficiently invoke candidate
image quantification methods on large collections of image data. A researcher
may apply several different image analysis methods on image datasets containing
thousands of 2D and 3D images to assess ability to predict outcome or effective-
ness of a treatment across patient groups.

3 Related Work

Relatively little scheduling research so far has given importance to the issues of
data locality and I/O contention. Ranganathan et. al. [13] proposed a decoupled
approach to scheduling of computations and data for data-intensive applications
in a grid environment, and evaluated its effectiveness via simulation studies.
The algorithm combines a scheduling scheme, called Job Data Present with a
replication heuristic, referred to as Data Least Loaded in a decoupled fashion.
The algorithm incorporates a notion of eligible nodes for each job, which are the
set of nodes that store the file required by the job. It works by picking a job from
a FIFO queue and assigning it to the node that already has the required data. If
more than one compute nodes are eligible candidates, then it chooses the least
loaded node. The replication mechanism Data Least Loaded is decoupled from
the scheduling policy. The replication mechanism keeps track of the popularity
of files, and when the popularity of a file exceeds a threshold, then the file is
replicated to the least loaded node in the compute cluster. As the replication
threshold decreases, the number of dynamic data replications increases. This in
turn increases the possibility of increased end-point contention on the storage
cluster. Therefore, there is a tradeoff between the benefit of a low replication
threshold and the increased contention. In our case, we allow multiple files per
job which means that there may exist compute nodes which store subsets of the
files required by a job. This essentially amounts to allocating a job to a node
such that the expected data transfer time to stage in the set of files required by
a job is minimized.

Casanova et al. [3] modified the MinMin, MaxMin, and Sufferage job schedul-
ing heuristics to take into account the cost of inter-site file access, in the context
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of scheduling parameter sweep applications in a Grid environment. Jain et.al. [5]
model scheduling of I/O operations (with certain assumptions) as a bipartite
graph coloring problem with two separate sets of nodes namely, disks and pro-
cessors. Our difference is that we consider grouping and mapping of jobs to
compute nodes in tandem with ordering of jobs and scheduling of remote I/O
operations for file transfers. Mohamed et al. [12] presented a Close-To-Files (CF)
job placement algorithm which tries to place jobs on clusters with enough idle
processors that are close to the storage sites where the files reside.

Multi-query workloads also arise in the context of database applications. The
work of Mehta et al. [11] is one of the first to address the problem of schedul-
ing queries in a parallel database by considering batches of queries. In [1], An-
drade et.al. propose a dynamic scheduling model for multi-query workloads in
data analysis applications. The goal is to maximize data and computation reuse
and concurrent execution on SMP nodes through semantic caching and ordering
of queries based on priority metric. These strategies mainly target efficient reuse
of results from previously executed queries.

Kotz et al. [8] propose a technique called disk-directed I/O to organize multiple
overlapping I/O operations with a view to optimize disk performance which is the
bottleneck. The work of Kavas et al. [6] focusses on loading of executables on the
compute nodes and not just data. They propose reliable multicast mechanisms to
load a file to multiple nodes at once thereby reducing the storage node overheads.

In an earlier work [7], we looked at the problem of scheduling a batch of data-
intensive jobs with batch-shared I/O behavior. We modeled the sharing of files
among jobs as a hypergraph and employed hypergraph partitioning to obtain a
partitioning of jobs onto compute nodes that computationally balanced the work-
load and reduced remote I/O operations for file transfers. In this paper, we are
targeting an online scenario where a set of file-shared data-intensive jobs arrive
over time. To accomplish this, we have extended our previous work [7] in such a
way so as to dynamically model the state of the system at each scheduling instant
which includes the content of disk caches at the compute nodes, the remaining
execution time of the running jobs, and the pending jobs that are present in the
system. Our approach for the batch mode case involves a one time hypergraph
modeling and partitioning which looks at the entire set of jobs that have arrived
together as a batch and the initial system state which is cold, to yield a load-
balanced connectivity minimizing allocation of jobs. Whereas for this work, we
propose repeated partitioning and remapping of jobs at each scheduling instant
by taking into account the current state of the system at each scheduling instant.

4 Dynamic Job Scheduling

We propose an Online Hypergraph partitioning based scheduling (Online-HPS)
heuristic, a two stage dynamic scheduling framework. In the first stage, jobs are
mapped to compute nodes, and in the second stage, the order of the jobs in each
compute node are determined. These two stages are then applied in a repeated
fashion at certain scheduling events which may correspond to job arrivals or job
completions.
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For mapping jobs to compute nodes we employ a hypergraph-based formu-
lation, hence we start with a brief description of hypergraphs and hypergraph
partitioning followed by our proposed mapping technique. We will continue with
a description of job ordering stage.

4.1 Hypergraph Partitioning

A hypergraph H = (V , N ) is defined as a set of vertices V and a set of nets
(hyper-edges) N among those vertices. Every net nj ∈ N is a subset of vertices,
i.e., nj ⊆V . The size of a net nj is equal to the number of vertices it has, i.e.,
sj = |nj | . Weights (wi ) and costs (cj ) can be assigned to the vertices (vi ∈V )
and edges (nj ∈ N ) of the hypergraph, respectively. P = {V1, V2, . . . , VP } is a
P-way partition of H if 1) each part is a nonempty subset of V , 2) parts are
pairwise disjoint and 3) union of P parts is equal to V .

In a partition P of H , connectivity λj of a net nj denotes the number of parts
connected by nj . A net nj is said to be cut if it connects more than one part, i.e.
λj > 1. The cost of a partition Π is computed as χ(Π) =

∑
nj∈NE

cj(λj − 1),
where NE is the set of cut nets and each cut net nj contributes cj(λj −1) to the
cutsize. This cost metric is also known as connectivity-1 metric. The hypergraph
partitioning problem can be defined as the job of dividing a hypergraph into
two or more parts such that the cutsize is minimized, while a given balance
criterion among the part weights is maintained. Algorithms based on the multi-
level paradigm, such as PaToH [4], have been shown to compute good partitions
quickly for this NP-hard problem.

4.2 Runtime Hypergraph-Based Mapping of the System State

We develop a hypergraph formulation to model the sharing of files among the jobs
present in the system. At each scheduling event, a new hypergraph is constructed
which models 1) the current state of the system that includes the pending jobs
and the files requested by them, 2) the currently executing jobs, and 3) the files
already cached on the compute nodes due to previously executed jobs. This is
followed by K-way partitioning of the hypergraph to obtain a load-balanced cut
minimizing mapping of the pending jobs onto the compute nodes. The currently
executing jobs are incorporated in the partitioner to take into account the current
value of load on each of the compute nodes and thereby facilitate load balance
as a result of the new partitioning.

Our hypergraph model consists of two sets of vertices, one set of vertices
represents the pending jobs which are present in the system and the other set
represents jobs currently in execution on the compute nodes. A particular job ji

is represented by a vertex vi in the hypergraph. Each hyper-edge nj represents
a file fj and connects to two different set of vertices, one set is the set of vertices
corresponding to pending jobs that require this file as input, and the other is
the vertices corresponding to running jobs which are running on a node already
having a cached a copy of file fj . This hypergraph is partitioned into P groups,
where P is the number of compute nodes, and each group is mapped to a
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Fig. 2. a) A snapshot of the system at t=0. Jobs 1,2,3 and 4 have arrived into the
system. Letters represent files and numbers represent the jobs. Lines connecting the jobs
to files represent the associated file requests for each job. b) Hypergraph partitioning
across two compute nodes at t=0.

compute node. The partitioning is done so that the compute and I/O weight of
the clusters are balanced and the cost of transferring shared files across clusters
is minimized. The partitioning should ensure that the vertices corresponding to
running jobs are allocated to the same compute node on which they are already
running. This is made sure by pinning the vertices corresponding to running jobs
onto the nodes in which they are running.

Figure 2(a) illustrates the state of the system at time t=0. It shows the arrival
of 4 jobs into the system and their associated file requests. The boxes next to each
file represent the storage locations for each file at t=0. Figure 2(b) illustrates
a partitioning of the hypergraph representation of the system state shown in
Figure 2(a). The figure shows that the hypergraph partitioning tries to cluster
jobs sharing files together. Figure 3(a) illustrates the state of the system at time
t=10. The figure shows two sets of vertices corresponding to pending jobs and
running jobs respectively. Job 1 and Job 2 have run to completion and hence
the corresponding vertices are not present. Replicas of files (i.e., multiple copies
of files on the compute nodes) have been created as files had been staged onto
the compute cluster for previous jobs. The solid lines show the file requests by
running jobs which can be served locally whereas the dotted lines represent the
file requests which may or may not be served locally based on the result of the
subsequent partitioning.

Figure 3(b) illustrates a partitioning of the hypergraph representation of the
system state shown in Figure 3(a). The solid boxes represent the running jobs
which have been mapped to the same nodes as in Figure 2(b). This is accom-
plished by pinning down the running jobs onto the nodes on which they are
already running. The dotted boxes represent the pending jobs which have been
been mapped to one of the compute nodes. The partitioning in Figure 3(b) shows
that the jobs have been mapped to nodes with which they have strong affinity in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
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Fig. 3. a) A snapshot of the system at t=10. Jobs 5,6,7 and 8 have arrived into the
system. Jobs 1 and 2 have finished execution. Jobs 3 and 4 are currently in execution
on nodes 1 and 2 respectively. b) Hypergraph partitioning across two compute nodes
at t=10.

terms of the files already cached on those nodes while maintaining load balance.
The figure shows two sets of lines. The dotted lines represent the file requests
associated with the jobs. The solid lines connect each running job to the files
that are already cached on the node on which the job is running. These asso-
ciations between a net representing a file already cached on a node with the
vertex representing the job running on that node are done to exploit the file
affinities of certain pending jobs to nodes which have copies of one or more files
requested by these jobs. Any pending job which requests a lot of files already
cached on a node will therefore have greater inter-job affinity with the running
job on that node. Therefore, in essence, we have modeled both the inter-job file
sharing affinities and the job-node affinity due to caching of files.

The weight of a vertex representing a pending job is equal to the estimated
execution time of the corresponding job. The estimated execution time of a job
is calculated as the sum of I/O overhead (the transfer time of files from storage
nodes plus the I/O time to read files from local disk) and the computation cost
of the job. The hypergraph based strategy globally partitions all the existing
jobs into groups before any order for job execution is determined for a group.
Hence it has to use a static vertex weights. The expected execution time of a
job can possibly vary depending upon the node allocated to the job. This is
because different nodes may have staged in different sets of files and therefore
the job will have different locality of reference with each node. In other words,
the execution times of jobs are not fixed but vary based on the allocation of the
nodes and in time. In order to alleviate this issue and provide a better estimate
of the execution time of a job, we compute the weight of a vertex as follows.
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Let the set of files a job ji needs be Fi . The cost of transferring one byte of
file fj , Trj , for job ji is equal to

Tr(ji) =
ProbFNE

RBW
+ (1 − ProbFNE) × (1 − ProbFE)

RBW
. (5)

Here, RBW is the I/O bandwidth between a storage node and a compute node,
ProbFNE is the probability that job ji will be the first job to execute in its group
that requires fj , and ProbFE is the probability that ji executes on a node, to
which file fj has already been transferred. In our current implementation, we
assume uniform probability distribution. Hence, we have used ProbFNE = 1

sj

and ProbFE = 1
P . Recall that sj is the size of the hyper-edge nj that represents

file fj . Hence it also denotes the number of jobs that shares the file fj .
We assume that the computation time of a job is linear with the size of the

input files it requires. This is a reasonable assumption since we assume that
multiple instances of only a single application are being run on the system and
there is no interference effect due to multiple different applications. With this
assumption, the estimated execution time of job ji is computed as

EstimatedExec(ji) =
∑

fj∈Fi

filesize(fj) × (Trj +
1

LBW
+ C) (6)

where LBW is the I/O bandwidth from local disk on a compute node and C is
the compute cost of one byte. By assigning the files sizes as hyper-edge costs, the
proposed method reduces the job mapping problem to the P -way hypergraph
partitioning problem according to the connectivity-1 cutsize definition [4]. Each
and every file needed by the jobs in the job trace will be transfered to the
compute system at least once. More specifically, if the jobs that share the file fj

is assigned to λj compute nodes, file fj needs to transfered λj − 1 more times
after its first transfer.

The weight of a vertex representing an already running job is equal to the
remaining estimated execution time of the corresponding job. This is computed
in a similar fashion as explained above except that it models the fact that some
of the files required by a running job may already have been staged and therefore
would not contribute to its remaining execution time.

By using expected execution times as vertex weights, the algorithm aims to
balance computational load across the compute nodes. The expected execution
time as calculated in equation 6 is based on a probabilistic model for estimating
the cost of file transfer which assumes a uniform distribution. In scenarios where
the data-staging costs are high and much more significant as compared to the
computational costs, the impact of making such an assumption could affect load
balance but the overall system performance would depend more on the connec-
tivity metric. Therefore, the impact of the inaccuracy of this assumption would
be lesser in such scenarios.
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4.3 Job Ordering in a Compute Node and Scheduling of Remote
File Transfers

Once the jobs have been mapped to a node, the local scheduling algorithm within
each compute node decides the order in which to schedule the queued jobs and
their associated file transfers. When a node becomes idle, the local scheduling
algorithm running at the node decides the next job to execute on that node
and also decides the schedule for its remote file transfers. Two jobs that are in
different compute nodes may have their input files stored on the same set of
nodes. Thus, ordering of jobs in each compute node and transfer of files should
be done in a way to minimize end-point contention on the storage cluster.

We employ a strategy in which jobs within a group are scheduled based on
their earliest completion time. Therefore, when a node becomes idle, the al-
gorithm computes the completion time of each of the queued jobs present on
that node and schedules the job with the earliest completion time. The earliest
completion time of a job is computed iteratively and dynamically based on the
availability of resources.

The algorithm maintains a Gantt chart for storage nodes. When a job in a
group is scheduled for execution, time slots are reserved on storage nodes for
file transfers required for this job. These time slots for a job are marked on the
Gantt chart. In calculating the duration of time slots and marking them on the
Gantt chart, we assume that multiple requests to the same storage node are
serialized and that a compute node can receive a file after it has finished storing
the previously received file on local disk.

The earliest completion time of a job ji is estimated as the sum of time to
stage its input files Fi and its execution time. The staging time is the time spent
to make the input files ready in the compute node. If all of the input files are
already in the compute node, the staging time will be zero. Otherwise, it will be
the amount of time spent to transfer the last input file from the storage node.
The transfer completion time for each file fj ∈ Fi (TCTj ) is estimated as the
sum of the earliest time a transfer can start (first available slot in the Gantt
chart after the time that the compute node becomes available) and the actual
transfer time (size of fj divided by the storage bandwidth; computed as the
minimum of remote disk bandwidth and network bandwidth). The file fj with
the minimum TCTj is picked and tentatively scheduled for transfer. TCT s of
the rest of the input files are recomputed and the next file with the minimum
TCT is picked and tentatively scheduled. This process is repeated until all of the
input files are scheduled. TCT of the last file scheduled actually gives the stag-
ing time. Then the earliest estimated completion time for ji is computed as the
sum of 1) the completion time of file transfers from storage nodes, 2) I/O time
to read the files on local disk, and 3) CPU time to process the files. The schedul-
ing algorithm determines the job with the least completion time in each group,
and the job ji with the lowest earliest completion time out of these is sched-
uled first. Once ji is scheduled, out of the other job groups (excluding the one
containing ji ), the job with the minimum earliest completion time (taking into
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Fig. 4. a) Hypergraph representation of a queue of jobs at a certain point in execution.
The numbers next to the alphabets representing the files are the storage node ids on
which the corresponding files are resident. b) An illustration of the execution of the
ordering algorithm on the set of queued jobs.

account the current reservations) is now picked and scheduled. When a running
job completes, the job with earliest completion time from that group is scheduled.

Let us consider a hypergraph partitioning of a stream of six jobs which were
submitted to a system of two compute nodes and 4 storage nodes. Figure 4(a) il-
lustrates the corresponding hypergraph partitioning. Figure 4(b) illustrates the
execution of the ordering algorithm on the set of mapped jobs shown in Fig-
ure 4(a) . In this figure transfer of each file takes 1 unit of time, and I/O and
processing of a file takes 0.3 and 0.2 units of time, respectively. Since job 4 de-
pends on two files, its earliest completion time is 3. Hence it has been scheduled
first and 1 unit of time on storage node 1 and 1 unit of time on storage node
3 have been reserved. Since a job has been scheduled from group 2, next the
job with the earliest completion time from group 1 is scheduled. Since all of the
job in the group depends on 3 files, and they can be scheduled to transfer all of
the files in 3 units, we pick one of them, say job 1. The algorithm continues by
reserving the transfer of files for job 1, and another job from group 2 is picked.

4.4 File Eviction Policy

If the transfer of file for a particular job violates the disk space constraint on
the compute cluster, a disk file eviction mechanism is invoked which deletes
files in the increasing order of their value metric. The value of a file V alue� , is
calculated as follows.

V alue� =
AccessFreq(f�) × filesize(f�)

Numcopies(f�)
(7)

AccessFreq(f�) represents the number of accesses to the file so far and is
representative of its frequency of access. filesize(f�) represents the size of the
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file f� . Numcopies(f�) represents the number of copies of file f� in the compute
cluster. If two files have the same frequency of access up to the current time in
execution, and the same size, the file with fewer copies gets a higher popularity
value as evicting that file is more likely to result in a remote file transfer when
the file is again needed. The intuition behind including the file size in popularity
computation is that greater the size of the file is, greater the cost of getting the
file back to a node will be. The algorithm evicts smaller files, since the cost of
staging such files again in future will be less.

We have integrated this file eviction mechanism into our proposed approach
as well as MCT, MET, and SA approaches for the purpose of performance com-
parison. For the algorithm Job Data Present with Data Least Loaded, we employ
an LRU based eviction mechanism as described in [13].

5 Existing Job Mapping Techniques

In this paper, we examine the JobDataPresent + DataLeastLoaded algorithm
proposed in [13] in the context of data grids and the Minimum Execution Time
(MET), Minimum Completion Time (MCT), Switching Algorithm (SA) heuris-
tics, which were originally proposed for scheduling independent computational
jobs to compute resources [10]. As in [2,3,7], we modify MET, MCT and SA to
take into account 1) the time it takes to transfer input and output files to and
from compute nodes in the environment, 2) files that have already been staged
to a compute node in estimating the minimum completion time of a job and 3) in
case of MCT and SA, also the files that are being staged to a compute node due
to currently running job on that node. We also integrate the Gantt chart based
explicit scheduling of remote file transfers as explained in Section 4.3 into the
MET, MCT and SA algorithms.

JobDataPresent + DataLeastLoaded: The algorithm combines a schedul-
ing scheme, called Job Data Present with a file replication heuristic, referred to
as Data Least Loaded in a decoupled fashion. The details of the algorithm have
been explained in Section 3.

Minimum Execution Time (MET): The MET heuristic assigns each job to
a node that results in the least execution time (Execi ) for that job. As a job
arrives, all the compute nodes in the cluster are examined to determine the node
that gives the best execution time for the job. When computing the expected
execution time of a job on a node, MET takes into account the files already
available on the node. If none of the files required by a job are found in any
compute node, then the first available node is chosen to run the job. In other
words, if the minimum execution time of a job an each node of the cluster is the
same, then the first available node is chosen to execute the job. Therefore, MET
heuristic inherently favors data locality since nodes which cache files required by
a particular job are the ones which will get its best execution time.
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Minimum Completion Time (MCT): The MCT heuristic assigns each job
to a node that results in that job’s earliest completion time (Completioni ). As a
job arrives, all the compute nodes in the cluster are examined to determine the
node that gives the earliest completion time for the job. When computing the
expected completion time of a job on a node, MCT takes into account the files
already available on the node and files which be available on the compute node
in future due to staging of data caused by the currently executing job on the
node, as well as the completion time of the currently assigned jobs to that node.
Hence, MCT may discard data locality and assign a new job to node which does
not have any of its files cached because the wait times on the nodes with which
the job have very good file locality may be high.

Switching algorithm (SA): The MET heuristic has a potential drawback
in that it can lead to load imbalance across nodes by assigning many more
jobs to some node than to others since it blindly looks at data locality without
considering possible load imbalance. The MCT heuristic assigns jobs to nodes
to achieve earliest completion time thereby ensuring load balance but does not
necessarily exploit data locality since it may not allocate a job to a node which
already has its files cached due to excess waiting times on that node. SA heuristic
is motivated by the fact that it is possible to use MET at the expense of load
imbalance until a given threshold and then use MCT to smooth the load across
the cluster. Similar to [10], let ib be the load balance index defined as ib =
loadmin/loadmax where loadmin and loadmax are the loads (completion time
of the last job on that node) of minimum and maximum loaded nodes. We
define two thresholds l and h . SA starts mapping jobs with MCT heuristic
until the load balance index reaches to h , after that point it switches to MET
and continues until load balance index decreases below l at that point it switches
to MCT again and this cycle continues. In our experiments we have used l = 0.3
and h = 0.7. The goal of SA is to have a heuristic with the desirable properties
of load balance as well as data locality optimization.

6 Experimental Results

We now present an experimental evaluation of the proposed strategies along with
the MET, MCT, SA and JobDataPresent-DataLeastLoaded (JDPDLL) strate-
gies. For evaluation, we used an application class: biomedical image analysis. We
compared the performance of the various scheduling schemes under a varying set
of scenarios covering multiple job-file sharing patterns and different distributions
of job inter-arrival times.

6.1 Application Workloads

For the image analysis application, we implemented a program to emulate studies
that involve analysis on images obtained from MRI and CT scans (captured on
multiple days as follow-up studies). An image dataset consists of a series of 2D
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images obtained for a patient and is associated with meta-data describing patient
and study related information (in our case, we used patient id and study id as
the meta-data). Each image in a dataset is associated with an imaging modality
and the date of image acquisition and stored in a separate file. An image analysis
program can select a subset of images based on a set of patient ids and study
ids, image modality, and a date range.

We evaluated the scheduling schemes using job traces where several aspects
were varied: 1) job inter-arrival rate (to vary system load), 2) extent of file
sharing among jobs, 3) temporal clustering characteristics of file-sharing behavior
between jobs, and 4) burstiness of job arrivals.

We generated workloads with different degrees of file sharing among jobs:
high sharing, medium sharing, and low sharing. The different degrees of sharing
is achieved by varying the values of patient and time attributes across requests
by different jobs. We generated workloads with 85%, 40%, and 10% overlap, on
average, in terms of files requested by different jobs in the job trace for high,
medium, and low overlap cases.

The dataset generated by the emulator corresponded to a dataset of 2000
patients and images acquired over several days from MRI and CT scans. Each
job on an average accessed 6 files. The number of files accessed by a job varied
from 4 to 10. The sizes of images were 4 MB and 64 MB for MRI and CT scans,
respectively. The overall size of the dataset was around 2 Terabytes. Images
for each patient were distributed among all the storage nodes in a round robin
fashion.

The image analysis application typically involve computations equivalent of
two floating point operations per word. We, therefore, emulated it with 2 FP
operations per word and measured that this translates to a processing time of
approximately 0.001s/MB of data in our test-bed2.

6.2 Modeling the Load

In traditional compute-intensive job scheduling, the offered load on the system
is calculated as:

OfferedLoad =
∑

∀i Exec(ji) × n(ji)
P × max∀i(Arrival(ji))

(8)

where n(ji) represents the number of nodes allocated to a job ji , P is the number
of nodes in the system. In compute-intensive job scheduling, the
OfferedLoad metric is entirely dependent on the job trace under considera-
tion and is independent of the scheduling policy being employed. However, in
the data-intensive scheduling scenario we are focusing on, the metric defined in

2 It can be expected that when computation time dominates the overall execution
time, the traditional job scheduling strategies would work well. The CPU power and
memory bandwidth are increasing very rapidly and faster than the bandwidth of I/O
devices. With such a trend, the I/O cost will become more pronounced thus entailing
the need to develop scheduling algorithms which target data intensive applications.
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Equation 8 is no longer dependent only on the job trace but is also a function
of the scheduling policy. This is because in the data-intensive scenario, the job
execution times are not fixed. Instead, they vary with time due to staging of
files by previously run jobs and also vary based on the node allocated to the job
because of varying degrees of locality. Therefore, the job execution times depend
upon the scheduling policy. To address this issue, we propose the following new
characterization of load which is dependent only on the characteristics of the job
trace and is independent of the scheduling policy.

Let ArrivalRate be the job arrival rate in Jobs/sec. Let ServiceRate be the
expected Job service rate in Jobs/sec. The expected load is defined as follows.

Load =
ArrivalRate

ServiceRate
(9)

Let us consider a trace of N jobs, where each job has an associated set of file
transfers. Let the set of files needed by job ji be Fi .

Let AvgExectime denote the average of the execution times over all the jobs.

AvgExecT ime =
1
N

×
∑

∀i

EstimatedExec(ji) (10)

The EstimatedExec time is same as calculated based on the probabilistic
model explained in Section 4.2. To achieve an overall load of 1, The time of
arrival of the last arriving job TLarrival in the system is calculated as follows.

TLarrival = AvgExectime × N

P
(11)

To summarize, we first determine the arrival time of the last job by using the
information about the files accessed by each job so as to achieve a load value of 1.
We then generate job traces with different values of load by varying the number
of jobs which arrive over a fixed period of time. The modeling of load is based on
estimated execution times which are based on a probabilistic model as shown in
equation 6. In reality, some jobs will require a lower actual execution time than
their expected execution time if some needed files are locally available since they
were staged by previously executed jobs. On the other hand, the execution time
may be higher in reality, due to contention at the storage server node for file
transfer.

6.3 Modeling the Arrival Process

We model the arrival process as a Poisson random process and evaluate it with
two distributions corresponding to different job orderings - clustered distribu-
tion and random distribution. Clustered distribution refers to the case where
jobs sharing files among themselves occur closer together in time. Random dis-
tribution refers to the case where jobs come in any random order. Here, the
arrival times of file-sharing jobs may be widely separated from each other over
time. We also model the arrival times using the model proposed by Lublin [9].
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Fig. 5. Performance of Job Data Present coupled with Data Least Loaded under various
replication thresholds

Fig. 6. Average Response time achieved by different algorithms for the (a) Clustered
Distribution and (b) Random Distribution

The Lublin model is based on analysis of different production logs and uses sta-
tistical methods in order to achieve a good match of synthetic traces and actual
trace data. The job arrival model takes into account both the stationary arrival
process during peak hours and also the daily cycle. Since the model is based on
long-running jobs from production supercomputer installations, we scaled down
the arrival times to reduce the overall time to run our experiments.

6.4 Performance Evaluation on a Cluster

We conducted our experiments using a memory/storage cluster at the Depart-
ment of Biomedical Informatics at the Ohio State University. The cluster consists
of 64 nodes with an aggregate 0.5 TBytes of physical memory and 48TB of disk
storage. These nodes are connected to each other through Infiniband.

One of the comparison schemes - JDPDLL - uses a critical ”threshold” pa-
rameter to decide when a file should be replicated at another node. We first
ran JDPDLL with different values of the replication threshold parameter. Fig-
ure 5 shows the variation in performance. The replication threshold represents
the minimum number of references to a file by a compute node needed to trig-
ger a replication of that file to a least-loaded node. Three different threshold
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Fig. 7. Number of remote file transfers in different algorithms for the (a) Clustered
Distribution and (b) Random Distribution

values were used: 1, 2 and 4. Figure 5 show that the choice of the threshold has
a significant effect on the performance of this algorithm - there is a trade off
between benefits of increased replication and the storage node end-point con-
tention caused by an increasing number of dynamic data replications. In our
experiments, we noted that a threshold value of 2 gave the best results and
therefore this threshold is used for comparing the performance of this scheme
against others.

Figure 6 shows the relative performance of the various scheduling schemes in
terms of the average response time. These experiments were conducted using 4
compute nodes and 4 storage nodes. The number of jobs in the traces used for
this experiment varied from 800 to 1600 and the time of arrival of the last job in
each trace was around 600 secs. The value of load based on our characterization
as explained in Section 6.2 varied from being around 1 for the 800 job trace to
around 2 for the 1600 job trace. Each compute node used for this experiment
had an available space of 15GB. The figures show that hypergraph-partitioning
scheme (Online-HPS) performs better than the other schemes in most of the
cases. This is because it models the inter-job affinity due to file-sharing and
clusters jobs that share files transfers transfer of the same file multiple times.
The benefit of the proposed scheme is higher as the inter-arrival times decrease
since the partitioning scheme has information about more jobs at its disposal and
it exploits this information to make more informed global decisions. The base
schemes MCT, MET, SA, and JDPDLL consider one job at a time when making
local greedy job mapping decisions and therefore do not take into account the
implicit inter-job affinities due to file sharing.

At very low loads, JDPDLL performs the best since the average inter-arrival
times are high and there are significant idle periods during which file replication
occurs without interfering with other file transfers. of storage node end-point of
both the job play a job-inter arrival time decreases, the performance of JDPDLL
deteriorates compared to Online-HPS because the file replication activity causes
contention with I/O from jobs reading input files from the storage nodes. The
effect of end-point contention becomes more and more significant as the system
load increases.
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Fig. 8. (a) Average Response time achieved by the various algorithms with varying num-
ber of compute nodes for the (a) Clustered Distribution and (b) Random Distribution

Fig. 9. (a) Performance of the various algorithms under the Lublin arrival model and
(b) Performance of the different algorithms with variation in the degree of file sharing
across jobs

Figure 7 shows the number of remote file transfers for all the algorithms for
the same set of experiments as shown in Figure 6. As might be expected, Online-
HPS causes fewer remote transfers compared to MCT, SA and JDPDLL. This
is because it attempts to cluster together jobs that share files, thereby reducing
the need for multiple transfers of the same file. The MET heuristic results in
the least number of remote file transfers over all the schemes. This is because
it maps each job to a node with which the job has maximum affinity in terms
of the files already cached on it and required by the job. However, while doing
so, it does not model the queue wait times at each node, thereby causing severe
load imbalance across the nodes. Therefore, it gives the worst average response
time in spite of being the best in terms of minimizing the remote file transfers.

To analyze the scalability of the proposed scheme with respect to the number
of compute nodes, we ran experiments with the high overlap workload consisting
of 1600 jobs. The number of compute nodes were varied from 2 to 16. These ex-
periments were run using 4 storage nodes. Figure 8 shows the results with varying
number of compute nodes. As is seen from the figure, Online-HPS achieves the
best performance in terms of average response time in all the cases.

Figure 9(a) shows the relative performance of the various scheduling schemes
in terms of the average response time by employing the Lublin arrival model to
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generate the job inter-arrival times. The results show that Online-HPS consis-
tently performs well compared to the other schemes. The relative performance
improvement under the Lublin model is higher compared to the traces modeling
a Poisson arrival process. With the bursty nature of job arrival with the Lublin
arrival process, the partitioning heuristic makes better job allocation decisions
during bursts where a large number of queued jobs are available and inter-job
file affinities can be exploited.

Figure 9(b) shows the relative performance of the various scheduling schemes
on job traces with different degrees of shared I/O among jobs. These experiments
were conducted using 4 compute nodes and 4 storage nodes. The high overlap
job had 1200 jobs with an average inter-arrival time of 0.51. The medium and
low overlap workloads had 800 and 400 jobs, respectively. These workloads were
generated to have a uniform value of expected load. However, in reality, the
medium and low overlap workloads took a longer time to execute since end-
point contention became more significant as the degree of file sharing decreased
(due to increase in the number of remote file transfers). The results in Figure 9(b)
show that the benefit of the Online-HPS scheme is greatest for the high overlap
workload and reduces as the degree of overlap decreases.

7 Conclusions

This paper proposes a novel hypergraph based dynamic scheduling heuristic
for a stream of dynamically arriving independent I/O intensive jobs. The ap-
proach is based on a run-time hypergraph based modeling of the system state,
followed by locality-aware and load balanced mapping and scheduling of jobs
onto the compute nodes. The performance results obtained on a coupled com-
pute/storage cluster show that it achieves significant performance improvement
over previously proposed heuristics - MET, MCT, SA and JobDataPresent with
Data Least Loaded - when there is a high degree of file sharing among jobs. The
previous schemes do not explicitly consider inter-job dependences arising out of
file-sharing and thus make local decisions based on greedy heuristics. The choice
of the best scheduling algorithm for a particular scenario depends upon param-
eters such as inter-arrival times and inter-job file sharing. Under very lightly
loaded conditions, when the average job inter-arrival time is high, data repli-
cation proves to be more beneficial if a good choice of replication threshold is
made. As inter-arrival times decrease, the proposed approach, which takes an
integrated view of scheduling of computation and data placement, outperforms
the other heuristics.
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Abstract. Clusters typically represent a homogeneous, well maintained pool of
high-end computation resources. This makes them particularly attractive for vol-
unteer computing, where unused compute cycles are utilized for scientific guest
applications. Cluster nodes are not idle as often as public PCs, but they are fre-
quently underutilized while actively executing parallel applications. Hence, fully
exploiting clusters for volunteer computing requires the ability to efficiently and
invisibly steal the unused cycles at a fine grain from the currently running host
applications, without slowing them down. In this paper we present measurements
on a production compute cluster that show long periods of CPU and memory
underutilization patterns that could be used to execute guest applications. In our
experiments with NAS benchmarks on a small Linux cluster, cycle stealing led
to a 3.6% average slowdown of host applications in the best case. This was ac-
companied by an overall improvement in the system throughput of 38%, when
progress of the guest applications was included. We introduce simple guidelines
on using clusters for volunteer computing. We also argue for the support of “zero
priority” processes in OS schedulers which could virtually eliminate the impact
of volunteer computing on host applications.

1 Introduction

Volunteer computing, also referred to as public-resource computing or global comput-
ing, is based on exploiting unused cycles on ordinary desktop computers. The concept
was pioneered by SETI@home [1], and is being increasingly employed to solve im-
portant real life problems. BOINC [2,3], a framework to support volunteer computing,
is being used by a variety of scientific simulation projects such as protein folding, cli-
mate prediction, and biomedical computing. Condor [4] pioneered the employment of
idle periods on organizational desktop systems for useful computing. We use the term
volunteer computing for all scenarios where a low priority guest application can run on
unused resources without significantly impacting high priority host applications. Ex-
amples of other projects with similar goals include Entropia [5], OpenMosix [6], and
GridMP [7]. Availability of computation and storage resources that can be effectively
employed for volunteer computing has been studied in [8,9].

A growing source of computation power today is compute clusters consisting of 10s
to 1000s of processors. In addition to the high performance computing centers, it is
becoming increasingly common for individual computational scientists and research
groups to maintain their own clusters. In our estimate the combined compute power
of all clusters on our campus (University of Houston) is comparable to the combined
compute power of all desktops on campus, and we believe this is not uncommon.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2006, LNCS 4376, pp. 161–175, 2007.
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Computation clusters are particularly attractive for volunteer computing for a number
of reasons.

– Clusters are typically built from high end computing and communication
components.

– Clusters typically offer a homogeneous and well maintained pool of processors.
– While many supercomputing centers are heavily used, many clusters are also fre-

quently idle, although the usage of a typical cluster node is certainly higher than a
typical home PC. A recent study [10] of one group of clusters for scientific research
found that their average usage varied between 7% and 22%.

In this paper we empirically demonstrate the following additional properties of clus-
ter behavior that are relevant to volunteer computing.

1. CPU usage on clusters is frequently not close to the maximum while they are exe-
cuting parallel scientific applications. The reason is that synchronization delays are
fundamental to parallel processing, and increase as a fixed size problem is scaled up
to a larger number of processors. For illustration, our experiments with NAS class
B parallel benchmarks on 4 nodes show that their average CPU utilization varied
from 53% to 100% as listed in Table 1. Further, the average speedup from 4 nodes
(8 threads) to 8 nodes (16 threads) was 1.51 implying that the added 4 nodes were
used only half as efficiently as the first 4 nodes. Other classes of applications, such
as sparse matrix computations, are fundamentally more prone to synchronization
delays due to load imbalance. We report on measured usage of a production clus-
ter at the University of Houston that shows average CPU utilization of 64% even
though applications are running on the nodes almost the entire time.

2. Usage of cluster nodes shows significant predictability, i.e., computation behavior
in the recent past is a good predictor of the usage in the near future. The reason
is that clusters are typically employed for long running scientific applications, and
node usage for a single application is usually similar over the course of execution.

Table 1. Average CPU utilization of Class B NAS benchmarks on 4 cluster nodes

Benchmark BT CG EP FT LU MG SP
CPU utilization (%) 90 65 100 53 94 73 81

Sometimes, techniques like backfilling [11,12] and interstitial computing [13] are
used to increase the cluster utilization by scheduling small jobs on idle nodes. Since
free cycles are available on many clusters only at a fine grain, a cluster is far more
attractive for volunteer computing if guest applications can execute when CPU and
memory are being underutilized, not just when the nodes are idle. Scheduling support
for such fine-grained cycle stealing has been studied in [14,15,16]. However, the impact
of resource sharing within a cluster node is difficult to predict although related research
has addressed some aspects [17,18].
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This paper focuses on fine-grained cycle stealing on Linux, which is the operating
system of choice for cluster computing. We demonstrate that execution of low prior-
ity guest applications only have a small impact on regular host applications. We also
discuss how various system and application factors affect the slowdown of host ap-
plications. This information, along with the fact that cluster usage shows significant
predictability, helped us develop guidelines for employing volunteer computing on clus-
ters that can minimize the impact on host applications while maximizing the benefit to
guest applications. We argue that fine-grain cycle stealing on clusters with negligible
impact on host applications is possible, but would require simple changes to the Linux
scheduler.

The paper is organized as follows. Section 2 presents results on CPU and mem-
ory utilization of a production cluster. Section 3 presents results on cycle-stealing on a
Linux cluster and its dependence on system and application factors. Section 4 outlines
our approach to volunteer computing on clusters and recommends beneficial changes
to OS schedulers, and section 5 contains conclusions.

2 Utilization of Clusters

The study presented in this section empirically measures the CPU and memory utiliza-
tion on cluster nodes when they are busy executing scientific applications. Performance
data was collected from a Beowulf cluster at the High Performance Computing Center
at University of Houston, one of the most busy clusters on campus. The cluster con-
sisted of 30 Intel Xeon dual processor nodes, running Linux (2.4.21 SMP kernel) with
2Gb RAM. The nodes were interconnected with a Gigabit ethernet network.

The data was collected over a period of 1 month and measurements were made at
5 minute intervals. The information was gathered from various files under the /proc
file system of each node. CPU and memory utilization of representative nodes is plotted
in Figure 1. Several small groups of nodes had very similar usage patterns. The nodes
plotted in Figure 1 were not selected randomly, but chosen to represent different pat-
terns. Figure 2 shows a zoomed in CPU utilization representing the first 12 hours of the
periods covered in Figure 1 for two of the nodes. The graphs are in descending order of
average CPU utilization within each figure.

Following are the main observations from this study of cluster utilization:

– The CPU utilization often shows fluctuation from point to point, as seen in Figure 2
which zooms in on the beginning part of the first two graphs in Figure 1. However,
CPU utilization shows remarkable stability when it is considered over windows of
several points. The average CPU utilization typically stays in a very narrow band
from hours to days, and even weeks, in some cases, as seen in Figure 1. We presume
this is a result of the same or similar applications running on the same group of
nodes for extended periods of time.

– While nodes show long periods where CPU utilization is high, they also show long
periods when CPU utilization is moderate or low. The average CPU utilization of
a node varied between 25% to 85% with a mean around 64% and median around
65%.
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Fig. 1. CPU and Memory utilization of sample nodes of a busy cluster plotted every 5 minutes
over a period of 1 month (14 Jun 2005 to 16 Jul 2005)
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Fig. 2. CPU utilization for selected nodes plotted every 5 minutes over a period of 12 hours
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– The memory utilization either stays steady or slowly increases linearly and then
drops, over extended periods of time. The memory usage does not exhibit the short
term fluctuations of CPU usage. However, we should point out that the reported
memory utilization does not necessarily reflect the active set of pages and may
include memory that has been released by the application, but is pending release at
the system level.

– The average memory utilization can be close to 100% for a node for extended
periods of time, but it is frequently around or well below 50% for extended periods
of time. The average memory utilization of the nodes varied between 30% and 90%
with a mean utilization around 52% and median utilization around 44%.

The main conclusion from this study, that is relevant to volunteer computing, is that
cluster nodes show long and predictable periods of low CPU and memory utilization.
The implication is that a substantial fraction of resources are available for volunteer
computing, and when a scenario with good resource availability is identified, it is likely
to continue for hours to days. The reason for such behavior is that clusters are typically
employed for long running scientific applications. Hence, even though this study was
limited, we expect the conclusions to be valid for other clusters employed for parallel
scientific computing.

As pointed out earlier, the particular cluster that was monitored is known to be heav-
ily utilized. The purpose was to investigate available resources while applications are
running. Of course, if a cluster node is idle, it is an even more attractive option for vol-
unteer computing (although perhaps not as predictable). The usage of clusters is likely
to be higher than the average desktop, and indeed major supercomputing centers are
known to be very busy. However, our observation is that smaller clusters often have
considerable idle periods. A recent study of a 5 cluster research environment observed
that the average time a system was busy ranged from 7.3% to 22% and a large fraction
of jobs had a very small memory requirement [10].

We summarize this discussion as follows:

1. Many clusters nodes are idle and not running any applications a substantial fraction
of the time. Of course, these can be directly exploited for volunteer computing.

2. When cluster nodes are busy running applications, a substantial fraction of the
memory and CPU resources are often not utilized for extended periods of time.
These idle resources can be exploited with fine-grain cycle stealing making clus-
ters even more attractive for volunteer computing.

3 Fine Grain Cycle Stealing on Clusters

A critical consideration in making a cluster available for volunteer computing is how
a high priority host application will be affected when a low priority guest application
is stealing unused cycles for execution. Ideally, there should be no impact at all; the
guest process should be scheduled only when the host process is blocked, and the guest
process should be evicted as soon as the host process is ready to execute again. How-
ever, this is difficult to achieve for fine-grained cycle stealing when a host and guest
application are executing concurrently because one of the goals of commercial operat-
ing system schedulers is to prevent starvation of low priority processes. Research has
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shown that it is possible to construct schedulers where the impact on the host applica-
tion is negligible [14,16]. However, we are most interested in volunteer computing with
mainstream operating systems since installing a new scheduler is not likely to be accept-
able. All our experimentation is on Linux since that is the dominant cluster operating
system.

The goal of the experiments was to see how to best run guest applications on Linux
with minimum impact on host applications. Dependence on system factors such as pri-
ority mechanism and scheduler versions, as well as dependence on characteristics of
host and guest applications, are also analyzed.

3.1 Experimental Setup

Our experimental environment consists of a ten-node cluster. Each node has 1GB of
main memory and dual Pentium Xeon processors running at 1.8 GHz. The nodes are
connected through a 1 Gbps ethernet switch. The cluster was running Rocks 4.0 Beta
and a MPICH 1.2.6 version of MPI. This configuration is representative of small and
midsize clusters employed for scientific computing.

To achieve fine-grained cycle stealing, the guest applications were run simultane-
ously with host applications, but at a lower priority using the UNIX nice mechanism.
The execution times of the host and guest applications were measured when run individ-
ually (dedicated mode), and when run simultaneously (shared mode). Percentage slow-
down, defined as the percentage increase in execution time when executing in shared
mode as compared to dedicated mode, is used to quantify and compare the effect of
sharing in different scenarios.

NAS Class B parallel benchmarks were used as host applications and guest applica-
tions. Unless otherwise noted, the experiments were run on 4 (dual processor) nodes,
and each node ran 2 threads of the host application at normal priority (nice = 0) and
1 thread of the guest application at lowest priority (nice = 19). NAS benchmark EP
(Embarrassingly Parallel) was used as the default guest application. The EP program
has virtually no communication, and hence it represents a sequential compute intensive
application.

3.2 Slowdown on Linux

We study the slowdown of host applications when running with a guest application on
Linux, and examine how the slowdown can be minimized. The slowdown for the NAS
benchmarks running as host applications, with the compute intensive EP benchmark as
the guest application, is shown in Figure 3. Results are shown for Linux 2.4 and 2.6
kernels, as well as “2.6(tuned)”, that will be explained later in this section.

The slowdown of the host application on Linux 2.4 kernel was relatively high when
running concurrently with a minimum priority guest application, averaging 25% for the
benchmark suite. This validates similar observations in [14,16]. As seen from
Figure 3, the 2.6 kernel performs significantly better than the 2.4 kernel in this regard.
The average slowdown is reduced from approximately 25% to 16%, but is still simply
too large to be acceptable. This was surprising since the new O(1) scheduler in the 2.6
kernel was designed to respect the nice priorities more strictly.
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Fig. 3. Comparison of percent slowdown of the host application in shared mode when executing
on different Linux kernels

Detailed investigation revealed the following. Unlike the 2.4 kernel, the 2.6 kernel
has separate run queues for each of the two processors on a single node. In our sce-
nario, one queue will have two processes, and the other queue will have one process,
since there are 3 active processes (two host processes and one guest process). In some
situations, both the host processes would get assigned to the same processor queue, with
the one guest process assigned to the other processor’s run queue. Clearly, this would
lead to a nominal 50% slowdown of the host processes. The situation will eventually
get corrected as the queues are periodically “load balanced”. However, the default load
balancing frequency is 200 milliseconds, implying that a phase of 50% slowdown could
last for a significant amount of computing time. In order to mitigate this effect, we de-
creased the period between the invocation of the kernel load balancer to 10 milliseconds.
Linux kernel 2.6 with this setting is referred to as “kernel 2.6 tuned” in Figure 3. We
observe a dramatically reduced slowdown of the host application - down from an aver-
age of 16% to 3.6%. We believe that these are the lowest reported slowdowns for host
applications when sharing the processors with a guest application on a widely deployed
cluster operating system.

We would like to point out that “tuning” the Linux 2.6 kernel as discussed above tech-
nically contradicts our goal that an unmodified mainstream operating system should be
employed. However, the tuning we have done is to mitigate the impact of an undesirable
and unexpected side-effect of a new Linux feature. Hence we consider it to be a “per-
formance bug fix” and expect that it will not be needed with continued development of
Linux.

In the results discussed above, the host was assigned normal priority (nice = 0) while
the guest was assigned the lowest priority available on the system (nice = 19). The
lowest priority for the guest is expected to yield the least slowdown for the host, and
this was validated. However, it would appear logical that the host application should
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be assigned the highest priority (nice = -20), rather than normal priority (nice = 0), to
minimize the slowdown. The measured slowdown with normal and highest priority for
the host is shown in Figure 4.
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Fig. 4. Comparison of percent slowdown of the host application when running at normal priority
(nice = 0) vs. when running at the highest priority (nice = -20) in shared mode

The slowdown was reduced dramatically with a higher priority when the host
application was EP (the only application in the suite with no communication).
Surprisingly the slowdown increased significantly for some of the communicating
applications, in particular, CG (Conjugate Gradients) and MG (Multigrid). The aver-
age slowdown across the benchmark suite was virtually the same. The reasons for the
higher slowdown for some applications are not understood and need to be investigated
further. Related work has shown an increase in slowdown for some communicating ap-
plications when a larger time slice is given to all applications [18]. However, an increase
in priority should result in a larger time slice only for the host application, so there is
no apparent reason for its slowdown. Overall, there seems to be little benefit in raising
the priority of the host applications.

Linux also supports a realtime priority level which appears attractive for host jobs for
volunteer computing. However, this priority level blocks interrupts that are necessary
for execution of parallel programs. Most applications in our benchmark were unable to
complete execution with realtime priority.

3.3 Impact on Cluster Throughput

The goal in volunteer computing is for a guest application to make progress without
any significant negative impact on the host application. Until now we have focused
on analyzing the impact on the host application. We now study the progress of guest
applications. However, instead of directly reporting on the performance of guest ap-
plications, we report on the increase in system throughput, which is a measure of the
overall benefit of fine-grained cycle stealing, as a consequence of a guest application
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executing in addition to the host application. Any increase in throughput is due to the
work that is accomplished by the guest application, after any negative impact on the
host application has been accounted for.

We define normalized throughput as the number of units of work completed per unit
time on the cluster. The normalized throughput when a cluster is executing a single ap-
plication is always considered to be 1. In shared mode both the host application and the
guest application run simultaneously. Depending on the rate at which the host and guest
applications proceed while sharing nodes, the normalized throughput can be greater
than or less than 1. The normalized throughput of the cluster in shared mode is repre-
sented as follows:

Normalized throughput =
ThD

ThS
+

TgD

TgS
where

ThD: Execution time of the host application in dedicated mode
TgD: Execution time of the guest application in dedicated mode
ThS: Execution time of the host application in shared mode
TgS: Execution time of the guest application in shared mode

Figure 5 shows the percentage increase in the normalized throughput of the system
when each host application is run in shared mode with EP as the guest application, as
compared to dedicated execution of the host application.

We observe that there is a significant system throughput improvement that averages
38% for the benchmark suite. This comes at the cost of a relatively low 3.6% slowdown
of the host applications. This demonstrates that a significant number of unused CPU
cycles are available when the host application is executing in dedicated mode, and the
guest application was able to utilize them successfully in shared mode.

The throughput improvement is the lowest for EP, LU (LU Matrix Factorization),
and FT (Fast Fourier Transforms) benchmarks. We recall from Table 1 that these are the
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Fig. 5. Percent increase in the normalized system throughput with different benchmarks as host
applications
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benchmarks that show the highest CPU utilization in dedicated execution, all of them
over 90%. Hence fewer CPU cycles were available for the guest application in these
cases. If these applications were removed from the suite, the average increase in system
throughput would be 52%. This is relevant, since execution of the guest applications
can be managed to avoid periods of high CPU usage or other system activity.

3.4 Parallel Guest Applications

Volunteer computing with communicating parallel guest applications is an important
challenge [19] that can be met more effectively with clusters. In order to investigate this
possibility, we performed a set of experiments with the CG benchmark, which is the
most communication intensive application in the NAS benchmark suite, as the guest
application. This is in contrast to EP which has negligible communication. “Tuned”
Linux 2.6 kernel, as discussed earlier, was employed in these experiments. Figure 6
presents a comparison of the slowdown of the host application with CG and EP as guest
applications.

We observe that the slowdown for all host applications, with the exception of EP, is
considerably higher when CG is the guest application. As seen in Figure 6, the aver-
age percentage slowdown of the host application when running with CG as guest, as
compared to EP as guest, increases from 3.6% to 9%. One obvious reason is that EP
being completely CPU bound just competes for CPU with the host application, while
CG being communication intensive competes for CPU and network resources. How-
ever, a possibly more significant factor is the impact of the synchronization structure of
the host and guest applications. CG being a communication intensive guest application
is frequently blocked for communication, and hence cannot use the free CPU cycles
when the host application itself is blocked for communication. As a result, the dynamic
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priority of the guest application rises and it is more likely to force an eviction of the host
application later. We note that host application EP slows down less with CG as guest
versus EP as guest. This is not surprising as they do not compete for communication
resources. Further, unlike the case of EP as guest, CG as guest will sometimes not claim
a proportional share of the CPU time since it can be blocked on communication.

The conclusion is that high communication parallel applications are not suitable
for execution as guests on the current Linux operating system. However, parallel
applications with moderate or low communication may be appropriate for volunteer
computing.

3.5 Scalability

One of the factors that exacerbates the slowdown of a host application in shared exe-
cution is synchronization. When one node is slowed down due to sharing, it can have
a cascading slowdown effect on the others. This effect is likely to be larger when the
number of executing threads is higher. In order to investigate this, we compared the
slowdown associated with execution on 4 nodes (8 threads) and 8 nodes (16 threads).
The results are plotted in Figure 7.

The primary observation is that the the slowdown is slightly higher for a larger num-
ber of threads; the average slowdown was 3.6% for 8 threads and 4.5% for 16 threads.
While this is encouraging, more experiments are needed to establish the impact of guest
applications on large clusters.

4 Discussion

The following is a list of observations that are relevant for volunteer computing on
clusters, based on the results in this paper and related research:

– Clusters show diverse usage patterns - many clusters are frequently idle.
– When a cluster is actively executing an application, a substantial fraction of the

CPU and memory resources are often not used.
– The usage pattern of a cluster node can be similar for hours to days.
– If a host application uses most of the available CPU resources, there is little benefit

from running a guest application simultaneously.
– Only guest applications that are sequential or have low communication require-

ments can generally execute with minimal effect on the host applications.
– We have shown in related work [18] that memory usage has little relation to per-

formance with sharing, but when the combined memory requirement of all execut-
ing threads approaches the total system memory, the performance can deteriorate
sharply. While these results were collected for applications with equal priority, it
is reasonable to conclude that both host and guest applications will not be able to
execute effectively when their combined memory requirement exceeds available
memory.

Based on these observations we present a set of guidelines for volunteer comput-
ing on clusters. Note that the above observations are based on a recent Linux release.
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Fig. 7. Comparison of percent slowdown of the host application when running on 4 nodes vs. 8
nodes

Operating system support for zero priority processes that do not compete for resources
can considerably ease the task of volunteer computing on clusters, and is discussed later
in this section.

4.1 Guidelines for Volunteer Computing on Clusters

In the scenarios in which we performed our experiments, the slowdown of the host
applications with a sequential guest application averages around 3.6% and the improve-
ment in throughput (indicating the progress of the guest application) averages around
38%. However, in individual cases, the slowdown can be higher and improvement in
throughput significantly lower. With the following basic considerations, we can limit
the use of volunteer computing to scenarios where the cost is minimized and the benefit
is maximized:

1. Only consider sequential applications and parallel applications with a low com-
munication bandwidth as guest applications. While this condition cannot be en-
forced by a system, such applications will get very poor service and hence the
procedure should be self correcting. Note that current volunteer computing frame-
works are generally applicable only to “embarrassingly parallel” or “bag of tasks”
applications.

2. Monitor the CPU, memory, and network usage on volunteered cluster nodes. Con-
sider invoking a guest application only when a stable usage pattern emerges.

3. If the usage pattern shows CPU or network or memory usage above preset thresh-
olds (say 85% for CPU) then do not invoke the guest application.

4. Before invocation, verify that the available memory exceeds the memory require-
ment of the guest application by a significant threshold.

5. If the resource usage pattern of the machine shows a significant change, suspend
the guest application and restart after examining the criteria listed above.
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Employing these guidelines will reduce the scenarios when volunteer computing can
be applied on a cluster node, but also reduce the cost and increase the benefits when
it is applied. Typically the resources available for volunteer computing exceed the de-
mand, and the challenge is to exploit those resources effectively. Hence, eliminating
potentially unattractive nodes is not a major concern.

4.2 Case for Zero Priority Processes

Ideally a guest application should only use idle resources and have no impact on the
host applications. Our experiments demonstrate that the latest version of the Linux op-
erating system allows the guest applications to execute with a small impact on executing
the host applications, but it is not negligible. Volunteer computing on clusters will be
considerably simplified with support for zero priority processes that would not consume
any resources that other processes can potentially use. Such a zero priority process will
never be scheduled so long as a higher priority process is able to execute, and would
immediately relinquish the CPU when a higher priority process is ready to execute. De-
veloping such schedulers is technically feasible and prototypes have been demonstrated
in other research [14,16]. However, widely deployed operating systems have a concept
of fairness that implies that even the lowest priority process must get a certain share of
resources and should not starve. Support for zero priority processes, that never compete
for resources, can be done without compromising other design goals of an operating
system, although a detailed discussion is beyond the scope of this paper. Fairness and
starvation are not issues if a process is explicitly designated as zero priority, except to
ensure freedom from deadlocks and any other unintended consequences.

There will always be some performance impact due to guest jobs - some factors,
e.g., the overhead of warming the cache after a context switch, cannot be eliminated.
However, with a well designed implementation of zero priority processes and a good
model for volunteer computing, we believe that the slowdown of host jobs can be made
negligible, possibly well below 1%, which increases the appeal of volunteer computing
dramatically.

5 Conclusions

Computation clusters present a vast and attractive resource of unused compute cycles
that can be used for volunteer computing. Based on a study of a production cluster, we
show that long periods of significant CPU and memory underutilization are common.
However, utilizing these free cycles for guest applications, while other applications are
executing, is a challenge. Based on our experiments on the most recent version of Linux,
we show that these cycles can be exploited with only a small slowdown of the host appli-
cations. The contribution of this paper is to present evidence that clusters are attractive
for volunteer computing and can be used efficiently for that purpose. The paper also of-
fers guidelines on how slowdown of the host applications can be minimized and cluster
throughput maximized for volunteer computing. Additional discussion emphasizes that
simple support for zero priority processes will make the case of clusters for volunteer
computing more compelling.
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Abstract. We present a contribution on dynamic load balancing for distributed
and parallel object-oriented applications. We specially target peer-to-peer sys-
tems and their capability to distribute parallel computation. Using an algorithm
for active-object load balancing, we simulate the balance of a parallel application
over a peer-to-peer infrastructure. We tune the algorithm parameters in order to
obtain the best performance, concluding that our IFL algorithm behaves very well
and scales to large peer-to-peer networks (around 8,000 nodes).

1 Introduction

One of the most useful features of current distributed systems in the context of a desktop
Grid, is the ability to redistribute tasks among its processors. This requires a redistribu-
tion policy to gain in efficiency by dispatching the tasks in such a way that the resources
are used efficiently, i.e. minimising the average idle time of the processors and improv-
ing application performance. This technique is known as load balancing [1]. Moreover,
when the redistribution decisions are taken at runtime, it is called dynamic load bal-
ancing. With the objective of scaling up to very large scale Grid systems, we placed
ourselves in the context of using peer-to-peer (P2P) principles and frameworks. In this
work we use the definition of Pure peer-to-peer (P2P) [2]: each peer can be removed
from the network without any loss of network service.

In a previous work [3], we presented a P2P infrastructure developed within ProAc-
tive [4]. ProActive is an open-source Java middleware which aims to achieve seamless
programming for concurrent, parallel, distributed, and mobile computing, implement-
ing the active-object programming model (see Section 2). In its P2P infrastructure, all
peers have to maintain a list of “known nodes” (also known as acquaintances). Initially,
when a fresh peer joins the network, it only knows peers from a list of potential net-
work members. A peer inside the network will receive a fresh-peer request and it has
a certain probability of accepting the fresh peer as an acquaintance. If the fresh peer
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was accepted by the one inside the network, the latter forward the fresh-peer request
to its own acquaintances. We exploited the P2P nature of this network in a randomised
load-balancing algorithm and demonstrate that this approach performs better than a
server-oriented scheme in a proprietary network [3].

Dynamic load balancing is a well-studied issue for distributed systems [5]. For in-
stance, well-known load-balancing algorithms have been studied in the heterogeneous
network context by Shivaratri, Krueger and Singhal [6] and in the P2P context by
Roussopoulos and Baker [7]. However, these studies focus on balancing tasks (units
of processing), while load-balancing of active objects is achieved by redistribution of
queues.

Randomised load-balancing algorithms were popularised by work-stealing
algorithms [8,9], where idle processors randomly choose another processor from which
to “steal” work. A work-stealing algorithm aims to maintain all processors working,
but its random nature causes the algorithm to respond slowly to overloading. Therefore,
due to the fact that processors connected to a P2P network share their resources not
only with the network but also with the processor owner, new constraints like reaction
time against overloading and bandwidth usage become relevant [10].

Most of the research in load-balancing for P2P networks is based on a structured
approach using a distributed hash table (DHT) [11], where each machine can be rep-
resented by several keys, and parallel applications are mapped into this DHT. As a
consequence, load balancing becomes now a search problem on key/data spaces [12].
Our P2P infrastructure is unstructured and shared resource are computational nodes
(JVMs). Therefore it is not necessary to identify resources uniquely as would be the
case for P2P data. Another approach for load balancing on P2P environments is the
use of agents which traverse the network equalising the load among them. The agents
follow a model of an ant colony [13,14], carrying load among computers, and eventu-
ally making the system stable. Such a scheme focuses on load equalisation instead of
the search of an optimal distribution. Our load balancing algorithm follows the same
principles than MOSIX Distributed Operating System [15], but oriented to active ob-
jects, which are portable by definition and have no access to kernel calls. Moreover,
information dissemination procedures are different: while MOSIX uses periodical ran-
domised information sharing, we use on-demand information sharing because in [10]
we demonstrate that no periodical information sharing provides scalability and updated
load information [16] together.

In this paper we test this algorithm in a new setting: a simulated peer-to-peer net-
work, trying to find its limits and analysing its behaviour. We show that the algorithm
behaves very well but that some parameters need to be tuned for this kind of large
networks.

This article is organised as follows. Section 2 presents ProActive as an implemen-
tation of active-object programming model. Section 3 explains the fundamentals of
the randomised active-object load-balancing algorithm for P2P networks. Section 5
presents the simulated environment of our tests, the fine tuning of algorithm
parameters, and the scalability tests. Finally, conclusions and future work are
presented.
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2 ProActive

The ProActive middleware is a Java library which aims to achieve seamless program-
ming for concurrent, parallel, distributed and mobile computing. As it is built on top of
the standard Java API, it does not require any modification of the standard Java execu-
tion environment, nor does it make use of a special compiler, pre-processor, or modified
virtual machine.

The base model is a uniform active-object programming model. Each active object
has its own control thread and can independently decide in which order to serve incom-
ing method calls. Incoming method calls are automatically stored in a queue of pending
requests (called a service queue). When the queue is empty, active objects wait for the
arrival of a new request; this state is known as wait-for-request.

Active objects are accessible remotely via method invocation. Method calls with ac-
tive objects are asynchronous with automatic synchronisation. This is provided by auto-
matic future objects as a result of remote methods calls, and synchronisation is handled
by a mechanism known as wait-by-necessity [17]. Another communication mechanism
is the group communication model. Group communication allows triggering method
calls on a distributed group of active objects with compatible type, dynamically gener-
ating a group of results [18].

ProActive provides a way to move any active object from any Java Virtual Machine
(JVM) to another, called a migration mechanism [19]. An active object with its pend-
ing requests (method calls), futures, and passive (mandatory non-shared) objects may
migrate from JVM to JVM through the migrateTo(. . . ) primitive. The migration can be
initiated from outside the active object through any public method, but it is the respon-
sibility of the active object to execute the migration, this is known as weak migration.
Automatic and transparent forwarding of requests and replies provide location trans-
parency, as remote references toward active mobile objects remain valid.

3 IFL: A Randomised Load-Balancing of Active-Objects on P2P
Networks

In a previous work [3] we exploited the results of Litzkow, Livny and Mutka, who re-
ported that desktop processors are idle 80% of the time [20] (this value is reported up
to 90% in 2005 [21,22]) and we followed the recommendations of [10] about minimi-
sation of load-balancing messages to make a randomised algorithm of load-balancing.
This algorithm, first called “Robin Hood” algorithm and later called “Inter-flops” (IFL)
algorithm, is a sender-initiated scheme which use a minimal subset of the known peers
to perform balance.

In this section we will present first the definitions used by the algorithm and then a
description of original IFL algorithm and its extension for clustering of active objects.

3.1 Definitions

Assume loadA is the usage percentage of processor A. Defining two thresholds, OT
and UT (OT > UT ), we say that a processor A is overloaded (resp. underloaded)
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if loadA > OT (resp. loadA < UT ). Additionally, aiming to minimise the number
of migrations until a stable state in load-balancing, we use a rank value which gives
the relative processing capacity of a node. Ranks and loads are stored locally by each
node. The idea of using a rank to generate a total order relation among processors was
popularised by the Matchmaking scheme [23] of Condor [20]. While Condor uses its
rank to measure the desirability of a match, we used it to discard slow nodes at runtime.

3.2 Original Version of the IFL Algorithm

In a previous work [3], we have developed a load-balancing algorithm, which we called
IFL. The IFL algorithm works as follows. Every time-step:

1. If a node (also known as computation entity or processor) is overloaded, it ran-
domly chooses a minimal subset of (three, four or five of) its acquaintances. In
Figure 1 (b) and (c), grey nodes represent the subset of acquaintances.

2. Only underloaded nodes who satisfy the rank criteria requester rank < RB ∗
my rank (where RB ∈ [0, 1] constant) will be able to reply the request. In
Figure 1 (c), two nodes are discarded using this criteria (those marked by X).

3. Nodes that satisfy the criteria reply to the request. Then, the overloaded node will
send an active object to the owner of the first received reply (Figure 1 (d)). We use
this scheme because we want to maintain the active objects close to each other to
avoid communication latency at runtime.

4. If no nodes satisfy the criteria, no balance is made during this time-step.

(a) (b) (c) (d)

Fig. 1. Load-balancing algorithm for active-objects over Peer-to-Peer networks

This algorithm performs load balancing only until a stable state, reaching a local
optimum of balance. If there are no overloaded nodes, no active object has incentive to
migrate; thus, no incentive to search better machines (and increase speedup).

3.3 New Version of the IFL Algorithm

Considering that the communication scheme of ProActive is based in RMI that has a
high-cost in bandwidth-usage and latency [24,25], we aimed to optimise the application
performance by clustering active objects on the best qualified processors. Therefore, in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
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this version of load balancing algorithm (the IFL algorithm), we add a work-stealing
[1] step. Every time-step:

1. If a node is underloaded, it randomly chooses one of its acquaintances to which it
sends a work-stealing request.

2. If the receiver satisfies the rank criteria RS ∗ requester rank > my rank, it
returns an active object to the caller.

3. If the node does not satisfy the criteria, no steal is made during this time-step.

Note that if we consider that each node made its first contact with a “near” peer
(usually in the same physical network), it is more probable that stealing occurs between
close nodes than remote ones.

4 Experimental Verification

To verify our theoretical reasoning, we experimented with a small-scale real laboratory
environment. We tested the two versions of our algorithm (with and without work-
stealing), we used Jacobi matrix calculus to solve a 3,600x3,600 matrix with 36 workers
implemented as active objects (implementation details available in [3]). We run the test
on a set of 25 of INRIA desktop computers, having 10 Pentium III 0.5 - 1.0 GHz, 9
Pentium IV 3.4GHz and 6 Pentium XEON 2.0GHz, all of them with a Linux operating
system and connected by a 100 Mbps Ethernet switched network. Starting from random
initial distributions, we measured the execution time of 1000 sequential calculus of
Jacobi matrices.

For both versions we used as load index the CPU load and as rank the CPU speed.
Also, using our knowledge of the lab networks, we experimentally defined the algo-
rithm parameters as OT = 0.8 and UT = 0.5. We experimentally discovered that a
value of RB between 0.5 and 0.9 produced similar performance. We explain this by
the existence of a correlation between processing capacity and load state: it is highly
probable to find a low capacity node overloaded than underloaded. Therefore, we fixed
RB = 0.7. Also, given the primary results of Section 5.1, we experimentally defined
RS = 0.9.

Figure 2 shows the mean execution time of the Jacobi application and the number
of migrations. A low number of migrations corresponds to an initial distribution of
active-objects near to an optimal state (local or global), and a high number of migra-
tions corresponds to an initial distribution far from an optimal state. Also, the mean time
performed by the Jacobi application without load balancing is represented by the hori-
zontal line marked by (*), this value was obtained using a subset of the 10 best-ranked
nodes, having the nodes full availability for Jacobi application. Note that this value is an
approximation of the static optimal distribution, because all active objects have similar
incoming service ratio.

Figure 2 shows that, for the first version of our algorithm, the presence of a local
optimum attempts against a good performance of the application. For the second version,
a performance near the global optimal state is reached for all migration counts.

In the next section we experiment IFL in the context of Desktop Grids to see if it can
reach a near optimal state for a large number of nodes (around 8,000).
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Fig. 2. Mean execution time for different number of migrations of the Jacobi Parallel Application,
using the load balancing algorithm with and without work-stealing

5 Scaling Tests Using Simulation

In the study of Grids, one of the most important characteristics of nodes is its pro-
cessing capacity [26,27]. In load-balancing, a function using both, processing capacity
and amount of work that a node has to perform, determines if a node is on an over-
loaded or underloaded state. To have a reliable model of processing capacity, we made
a statistical study of desktop computers registered at the Seti@home project [28]. This
project aims to analyse the data obtained from the Arecibo Radio telescope, distributing
units of data among personal computers and exploiting the processing capacity of up
to 200, 000 processors distributed around the world to analyse the data [29]. We con-
sider Mflops as a good metric to determine the processing capacity for parallel scientific
calculus, because we are interested in processing balance, not data balance.

We grouped all desktop computers Mflops (dr) in 30 clusters (Ct) using the following
formula:

dr ∈ Ct iif � r

106 � = t

The resultant frequency histogram is shown in Figure 3.
Defining a normal distribution nor(x) (equation (1)), we compared the real distri-

bution against our nor(x) model function using Kolmogorov-Smirnov test statistics
(KST ), giving us a value of KST = 0.0605. Therefore, we can deduce that using
a level of significance 0.01, the capacity of processors in a Large-Scale network can be
modelled by a normal distribution.

nor(x) = 16000 × e
(−(x−1300)2

2×4002 (1)

We implemented in C a network simulator, using an n × n matrix for the nodes and
an n2 ×n2 matrix for the edges. We assigned the nodes processing capacities (called μ)
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Fig. 3. Frequency distribution of Mflops for 200,000 processors registered at Seti@home and the
normal distribution which model it

using a normal distribution N(1, 1
9 ). Even thought this simple model seems to be naı̈ve,

it permits us to control the topology generated by the P2P Infrastructure of ProActive
[3]. Simple models could be very powerfully as Kleinberg shows in his work about
Small-world network algorithms [30].

In our simulations, we assume that all active objects are parts of a parallel ap-
plication; therefore, we assume all service queues to have equal incoming message
ratios λ. Clearly, real Grids run different parallel applications from different sources,
having different service queue ratios and workloads. Nevertheless, from the point of
view of a given parallel application, we consider other applications only as a reduction
of processing capacity of network nodes.

Denoting by j the number of active objects in the node i at a given time, we say that
the node i is overloaded if jλ ≥ μi and underloaded if jλ < Tμi, where T is a given
threshold between [0.5, 0.9]. The processor capacity μi is also used as the node rank.
For consistency with the previous section, we use UT = T × μi and OT = μi. As in
section 4, we use RB = 0.7.

We randomly placed m active objects in (0 + x, 0 + y) (x and y defined on run-
time) and tested the load-balancing algorithm, measuring the total number of migra-
tions and the kind of processors used by the algorithm on each time-step. Each
experimental sample is the mean number of 100 repetitions, fixing the parameter
set {n, m, λ, T, RB, RS} (see Table 1) and recalculating μ for all nodes in each
repetition.

Our goals are first to perform a fine-tuning of the constant RS and second to deter-
mine whether our algorithm can reach a stable state near to the optimal on large-scale
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P2P networks using a minimal subset of acquaintances. Even though migration cost
seems to be a key issue for load balancing algorithms, the time spent in migration
process is recuperated after a while because the increasing in service ratio of the active
object in its new placement.

Table 1. Parameters and variables used in the simulation

Simulation parameters Model parameters Algorithm parameters
n × n Number of nodes μ processor’s capacity

and ranking
UT threshold to determine

an underloaded state
m Number of active ob-

jects
λ incoming ratio of an

active object service
queue

OT threshold to determine
an overload state

x, y Initial deployment,
length and high of
nodes subset

T factor used to determine
UT

RB Load-balancing similar-
ity factor

RS Work-stealing similar-
ity factor

5.1 Fine-Tuning

We placed m = 50 active-objects in a simulated P2P network of 100 nodes, mea-
suring the number of accumulated migrations performed by the algorithms until a
given time-step (Figure 4a) and the mean number of overloaded nodes per time-step
(Figure 4b), because it is imperative for all load-balancing algorithms to avoid increas-
ing the number of overloaded nodes. As we expected, a lower value for RS generates
a larger number of migrations: a low value of this factor will produce bad decisions
of balance, migrating active objects to underloaded nodes with low processing capac-
ity. Then, those active objects could cause overload in subsequent nodes, or an infinite
migration among underloaded nodes.

Figure 5a presents the mean number of active-objects in nodes with capacity higher
than one per total number of active objects during 100 repetitions, and Figure 5b
presents the mean number of active objects in nodes with capacity higher than 1 1

3 by
total number of active objects during 100 repetitions. Because we are using a normal
distribution for the processor capacity μ, 50% of nodes will have μ ≥ 1 and 25% of
nodes will have μ ≥ 1 1

3 .
Two behaviours are present in Figure 5 (a) and (b). First, because our algorithm

aims to cluster active-objects on the best processors, for high values of RS, the num-
ber of active objects in the best quadrant of the processors increase. Second, for low
values of RS, some active objects are stolen by worse processors. We can see from the
plots that RS ≥ 0.9 behaves very well, placing all of active objects in nodes with pro-
cessing capacity greater than one. Therefore, in the following experiences we will use
RS ≥ 0.9.
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Fig. 4. Tuning for RS considering: a) mean number of accumulated migrations until each time-
step; and b) mean number of overloaded nodes in each time-step. Using RB = 0.7, acquaintances
subset size = 3, |x − y| ≤ 3, λ = 0.1, 0.2, 0.3 and T = 0.7.

5.2 Scaling

As seen in the previous section, we aimed at optimising the application performance
clustering active-objects on the best qualified processors. Therefore, using the values
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of μ, we sorted the nodes from higher to lower processing capacity and we defined the
optimal subset as the first OPT nodes that satisfy the condition:

OPT∑

i=1

μi > m × λ

Simulating an application of m = 100 active objects using different network size (n ×
n), we have:

– OPT (n = 10) = 13,
– OPT (n = 20, 30) = 11,
– OPT (n = 40) = 10,
– OPT (n ∈ [50, 90]) = 9.

These results of the optimal subset size (OPT ) are because we modelled processing
capacity following a normal distribution. Therefore, larger the network size, higher the
processing capacity of best nodes, then lower the number of nodes in the optimal subset.

In order to measure the performance of the IFL algorithm for large-scale networks,
we define the “Algorithm Optimum” (ALOP ) ratio as:

ALOP =
Number of nodes used by IFL

OPT

At the same time, we calculate the mean number of accumulated migrations performed
by all active objects from time-step 0 until time-step t.

An increase in the acquaintances subset size results in an increase in the probability
to find a node to migrate, and hence an increase in the probability to reach the optimal
state. Looking for the worst treatable scenario, and following the recommendations of
[3], we only show the results for subset size = 3.

We measured scaling of the IFL algorithm in terms of ALOP and the number of
migrations, for networks of 100 (Figures 6 (a) and (b)) and 400 nodes(Figures 6 (c) and
(d)). Even though in Section 5.1, a value of RS = 0.9 was promising, these plots show
that the total number of migrations generated by this value makes the algorithm not
scalable. Scalability in terms of migrations is presented in Figures 6 (b) and (d) only
for values of RS ≥ 1.0. The optimal scalability, in terms of ALOP , is presented in
Figures 6 (a) and (c) for a value of RS = 1.0.

Considering that a 20x20 network can be still considered as a small network, we test
the scalability in terms of ALOP and number of migrations over n × n P2P networks
using n = [10, 90], fixing the parameter RS in 1.0 and RB in 0.7. The results are
shown in Figure 7 and Figure 8.

Figure 7 presents two behaviours at the same time:

1. Number of nodes used by IFL algorithm through time, because the number of
optimal nodes used by a static distribution (OPT ) is constant for each number of
nodes (n × n). We aim to cluster all active objects in a minimal set of nodes to
avoid communication delays.

2. ALOP ratio (number of nodes used by IFL algorithm versus number of nodes used
by an optimal statical distribution OPT ), evaluating “how good” are the minimal
subsets found by the IFL algorithm.
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Fig. 5. Tuning the value of RS considering: a) mean number of active objects on a node with
μ ≥ 1 per total number of active objects; and b) mean number of active objects on a node with
μ > 1 + 1

3 per total number of active objects. Using RB = 0.7, acquaintances subset size = 3,
|x − y| ≤ 3, λ = 0.1, 0.2, 0.3 and T = 0.7.

In the beginning the IFL algorithm increases the number of nodes used, because ac-
tive objects are first placed in a small subset of the network generating a high overload
in this subset. Then, the algorithm quickly performs migrations to reduce the overload.
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Fig. 6. Scalability for a network using RS = 0.9, 1.0, 1.1, RB = 0.7

Experiments report no overloaded nodes over 30 time-steps. After that, the
work-stealing step of IFL algorithm works alone, clustering active-objects on the best
nodes and thus, reducing the number of nodes used by the algorithm.

For networks of until 40 × 40 nodes, the IFL algorithm uses less than two times the
optimal number of nodes. In other words, IFL algorithm uses less than 20 nodes from
all the network until 1000 time-steps. For networks of 50 × 50 to 70 × 70 nodes, the
algorithm uses less than three times the number of optimal nodes (i.e: 27). For larger
networks, the algorithm uses more than three times the optimal number of nodes at
time-step 1000; nevertheless, the curves seem to decrease before that value.

We expected the previous behaviour, because the distribution of processing capacity
μ follows an exponential distribution; therefore, values of μ in the subset of the “best
X nodes” will be higher for larger values of n (larger the network, smaller the subset
size); and, because the IFL algorithm tries to use the nearest nodes while balancing an
overloaded node. Therefore, as the network size increase, the probability of finding a
node from the optimal subset decreases.

The plot in Figure 7 shows how at the first 10 time-steps the IFL algorithm reacts
against an overloading distributing the active objects among the network and then, when
a stable state is reached, it begins the clustering of active objects. Similar behaviour can
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be seen in Figure 8, having a high number of accumulated migrations at the beginning
and then the system becomes stable (for small-size networks) or there are some migra-
tions in order to group the active objects on the “best processors” (large-size networks).
Remember that plots present the mean number of accumulated migrations for m active
objects; therefore, the contribution in plots of a each new migration is 1/m.

For all studied network size, the curves remain under 6.5 migrations. Moreover, con-
sidering only the time-step 1000, we can see that the number of migrations is of order
O(log(n)). Both are promising results in terms of scalability of the IFL algorithm.
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6 Conclusions

We studied the IFL load-balancing algorithm on P2P networks, aiming at reaching a
near-optimal distribution of active objects using only local information provided by a
P2P infrastructure. Using a simulated P2P network, we showed that, using only a low
number of fixed links among nodes and a careful tuning of the algorithm parameters,
a near-optimal distribution is reachable even for large-scale networks. We suggested to
use a value near 1.0 for the stealing factor, which allows using around 1.7 times the
optimal number of nodes for networks until 400 nodes, using less than 5.5 migrations
per active object. Moreover, the number of migrations appears to be of order O(log(n))
after the first optimal state (without overloaded nodes) is reached.

As seen in Section 5.1, the value of RS is a key factor for a low cost and efficient
load balancing and we had many experimental tuning to find “optimal values” of it. RS
seems to depend of network topology and we are studying its behaviour to calculate it
automatically and dynamically.

As future work, we plan to test the algorithm using a large-scale P2P infrastructure
deployed over real desktop computers, balancing a communication-intensive parallel
application. It is the continued goal of this work to optimise this algorithm, looking for
the best performance in migration decisions and the global distribution using only local
information.

Acknowledgements

This work was supported by CoreGrid NoE.
The authors want to thank Satu Elisa Schaeffer for proofreading an earlier version of

this paper and the anonymous reviewers for their helpful comments.

References

1. T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-purpose distributed
computing systems,” IEEE Transactions on Software Engineering, vol. 14, no. 2, pp. 141–
154, 1988.

2. R. Schollmeier, “A definition of peer-to-peer networking for the classification of peer-to-peer
architectures and applications,” in 2001 International Conference on Peer-to-Peer Comput-
ing (P2P2001), (Department of Computer and Information Science Linkopings Universitet,
Sweden), IEEE Computer Society, August 2001.
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Abstract. Using a large HPC platform, we investigate the effectiveness of “sym-
biotic space-sharing”, a technique that improves system throughput by executing
parallel applications in combinations and configurations that alleviate pressure
on shared resources. We demonstrate that relevant benchmarks commonly suffer
a 10-60% penalty in runtime efficiency due to memory resource bottlenecks and
up to several orders of magnitude for I/O. We show that this penalty can be often
mitigated, and sometimes virtually eliminated, by symbiotic space-sharing tech-
niques and deploy a prototype scheduler that leverages these findings to improve
system throughput by 20%.

1 Introduction

On SDSC’s DataStar [3], as on all parallel systems, processes must share resources.
Because the system does not time-share, each process receives its own processor with
a dedicated level 1 cache. However, two processors must share a level two cache. The
eight processors on each node must share a level 3 cache, main memory, an on-node
file system, and bandwidth to off-node I/O.

Sharing, by its very nature, entails compromise. In the realm of parallel processing,
that compromise may lead to performance degradation. The more heavily coexisting
processes make use of a shared resource, the more likely it is that the performance of
that resource will suffer. Heavy use of a shared cache might lead to lower hit rates, and
consequently, lower per-processor throughput. As more processes make simultaneous
use of a shared I/O system, blocking times increase and performance degrades.

Because the consequences of resource sharing are often ill-understood, scheduling
policies on production space-shared systems avoid inter-job sharing wherever possible.
On DataStar, for instance, nodes are never time-shared and parallel jobs have exclusive
use of the nodes on which they run. Even then, the system’s General Parallel File System
(GPFS) remains a shared resource among all running jobs.

This is not an ideal policy in several circumstances. Resource utilization and through-
put suffers when small jobs are forced to occupy an entire node while making use of
only a few processors. The policy also encourages users to squeeze large parallel jobs
onto the fewest number of nodes possible since doing otherwise is both costly and detri-
mental to system utilization. Such configurations are not always optimal;the processes
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of parallel jobs often perform similar computations, consequently stressing the same
shared resources and exacerbating the slowdown due to resource contention.

In such situations, a more flexible and intelligent scheduler could increase the sys-
tem’s throughput by more tightly space-sharing symbiotic1 combinations of jobs that
interfere with each other minimally. Such a scheduler would need to recognize rele-
vant job characteristics, understand job interactions, and identify opportunities for non-
destructive space-sharing.

The purpose of this study is to investigate the feasibility of such an approach and
quantify the extent to which it could improve throughput if implemented. To address
these questions, we must determine:

* To what extent and why do jobs interfere with themselves and each other?
* If this interference exists, how effectively can it be reduced by alternative job mixes?
* Are these alternative job mixes feasible for parallel codes and what is the net gain?
* How can a job scheduler create symbiotic schedules?

We explore each of these questions in sections 3 through 5 respectively. This discus-
sion is preceded by details of our hardware environment in section 2 and succeeded by
comments on related and future work in sections 7 and 8.

2 Hardware Environment

The results described in this paper were derived from application runs on the San Diego
Supercomputer Center’s DataStar. The machine contains 272 IBM P655+ nodes, each
consisting of 8 Power4 processors. Of those nodes, 171 are composed of 1.5 GHz pro-
cessors while the others 1.7. Only the former were utilized for this study.

Each POWER4 processor contains a 32 KB L1 data cache. Two processors together
comprise a chip and share a 1.5 MB L2 cache. The L3 cache on each chip is combined
with that on the others to create a single node-wide, address-interleaved L3 cache of
128 MB.

Each node is also equipped with 16 GB of memory and a local scratch file system
of approximately 64GB. Nodes are directly connected to the GPFS (IBM’s parallel file
system) through a Fibre Channel link and to each other by the Federation interconnect.

DataStar schedules jobs using a batch queueing model implemented by LoadLeveler
[12]. Because the scheduler interface does not allow users to directly request that jobs
be coscheduled, we achieved this effect when necessary by deploying MPI jobs that
execute the desired sub-jobs on specified processors depending on rank.

3 The Effects of Sharing Resources

As an initial starting point, we can broadly divide the resources shared by processors on
DataStar’s nodes into two categories: memory and I/O. The memory resources consist

1 Symbiosis is a term borrowed from Biology meaning the graceful coexistence of organisms in
close proximity. We generalize the term to co-scheduled processes and emphasize the form in
which neither does harm to the other.
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of the three levels of cache along with the node’s 16GB of main memory. The I/O re-
sources consist of the on-node file system along with bandwidth to the system’s GPFS.

To gauge the performance effects of resources sharing, we run a set of single-
processor benchmarks meant to stress each resource. We then measure the slowdown
incurred by each benchmark as we increase the number of its instances running con-
currently on a single node. The maximum slowdown is displayed. When we refer to N
concurrent instances of a benchmark, we refer to N independent, single-processor runs
of some benchmark running concurrently on a single node. We calculate slowdown as
(TN − T1)/T1 where Ti is the runtime of the benchmark while i instances of it run
concurrently on the node.

3.1 Memory Sharing

To test performance degradation of the memory subsystem, we choose the following
three benchmarks, each meant to stress different sections of the system:

GUPS - Giga-Updates-Per-Second measures the time to perform a fixed number of
updates to random locations in main memory [8,1]. We use it to investigate the
effects of high demand on main memory bandwidth.

STREAM - A simple synthetic benchmark that measures sustainable memory band-
width for vector compute kernels, commonly encountered in high-performance
computing, by performing a long series of short, regularly-strided accesses through
memory [8,2]. STREAM is highly cacheable and prefetchable and we therefore use
it stress the machine’s cache structure.

EP - Embarrassingly Parallel is one of the NAS Parallel Benchmarks [6]. It evaluates
an integral by means of pseudorandom trials and is a compute-bound code. We use
this as a control group to discern between performance degradation in the other
benchmarks due to resource sharing and that attributable to other overheads.

Figure 1 shows the slowdown of each type of application. EP appears only slightly
sensitive to the number of concurrent instances running on the node while GUPS and
STREAM show a slowdown of up to 18% and 30% respectively.

Of note is the non-linear increase in slowdown. Since the majority of the slowdown
is caused by the latter instances, we can speculate that running symbiotic jobs on those
processors has the potential to eliminate a disproportionate share of the performance
degradation.

The large jump in slowdown caused by adding a fifth instance of GUPS is particu-
larly indicative of resource sharing. When fewer than five processes run on the node,
DataStar is able to spread them onto separate chips and minimize resource sharing.
Once a fifth instance of GUPS is added however, at least two processes must share
one of the four chips and consequently an L2 cache. When sharing the L2 cache, each
processes receives degraded service from it. Table 1 shows the L2 miss rates of each
processor as more instances of GUPS are added. When two processes cohabitate a sin-
gle chip, the miss rate increases from around .62 to .78, causing the sharp drop in
performance.
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Fig. 1. Slowdown of memory intensive benchmarks as more instances of each run concurrently
on a single node

Table 1. L2 miss rates as more processors of a node run GUPS concurrently

Chip 0 Chip 1 Chip 2 Chip 3
P0 P4 P1 P5 P2 P6 P3 P7

61 - - - - - - -
.61 - .61 - - - - -
.61 - .61 - .61 - - -
.62 - .62 - .62 - .62 -
.76 .76 .60 - .60 - .60 -
.76 .76 .76 .76 .60 - .60 -
.78 .78 .78 .78 .78 .78 .67 -
.78 .78 .78 .78 .78 .78 .78 .78

To verify that our observations from these benchmarks are representative of other
applications and can be generalized, we repeat part of this experiment using single-
processor runs of the NAS Parallel Benchmarks [6]. We use version 3.2 and problem
sizes of class B. None of these benchmarks performs any significant I/O.

Table 2. Percent Slowdown of NPB while 4 and 8 instances of each run concurrently on a node

APP BT MG FT DT SP LU CG IS
4P 8 15 1 20 20 16 14 14
8P 12 48 30 38 33 41 54 58

The results in Table 2 confirm that slowdown from memory subsystem sharing tends
to fall in the range of 10-60% and that the majority of performance degradation is
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often resultant of using the second half of a node. Further, we notice that the slowdown
incurred by each benchmark due to the first four instances varies minimally, generally
within 5%.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8

Concurrent Instances

%
 S
lo
w
d
o
w
n

IOBench

(on Node)

IOBench

(off Node)

Fig. 2. Slowdown of I/O Bench as more instances run concurrently on a single node

3.2 I/O Sharing

To extend our investigation to shared I/O resources, we repeat the experiments from
Section 3.1 using I/O Bench [4], a synthetic benchmark that measures the rate at which
a machine can perform reads and writes to disk. The benchmark performs a series of
sequential, backward, and random read and write tests.

We configure I/O Bench to use a file size of 600MB and block size of 4K. Each
benchmark instance writes and reads its own set of three distinct files via sequential,
backward, and random access. Concurrent processes never operate on the same files.
We repeat the tests once for the on-node scratch file system and again for the off-node,
shared, GPFS.

Figure 2 graphs the slowdown induced when concurrent, independent instances of
I/O Bench run on a single node. The slowdown factors are far greater than those exhib-
ited by the memory-intensive benchmarks, with the on-node numbers demonstrating
super-linear slowdown. The off-node performance numbers, while not as egregious as
their on-node counterparts, are nonetheless considerable. The erratic performance of
the off-node measurements are likely an artifact of the varying demand placed on it by
other applications concurrently executing on the system.

4 Mixing Jobs

Now that we have determined the ways in which resource sharing can degrade perfor-
mance, we turn to investigate the extent to which this degradation can be mitigated by
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alternate job mixes. To gauge the performance effects of the benchmarks on each other,
we repeat the experiments in Section 3, but utilize the unused processors in each experi-
ment to concurrently execute other benchmarks instead of leaving those processors idle.
We refer to the benchmark being tested as the primary benchmark and the one being
executed by the spare processors as the background benchmark. To adjust for runtime
discrepancies between primary and background benchmarks, the processors executing
the background benchmark repeat execution until the primary benchmark completes.

Figures 3 through 6 graph these results. In each graph, the line labeled “[BENCH]
w/ idle” is the performance curve as depicted in Figures 1 and 2, meaning that there is no
background benchmark and consequently, the unused processors were idle
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Fig. 6. I/O Bench

during the experiment. The other lines, labeled “[BENCH1] w/ [BENCH2]”, indicate
that instead of sitting idle, all unused processors were running the background bench-
mark BENCH2.

These graphs indicate that with only a single exception, utilizing unused processors
to execute the other benchmarks has little to no effect on runtimes. These results clearly
demonstrate that it is possible to mitigate resource-sharing slowdown by mixing mem-
ory, compute, and I/O intensive jobs.

The lone exception arises from combining the two memory-bound applications,
STREAM and GUPS. Although GUPS has little effect on the performance of STREAM
(Figure 3), the converse is untrue (Figure 4). This one-way interference is likely due to
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Table 3. Percent slowdown of row application when all other processors on node execute column
application

Background Benchmark
BT MG FT SP LU CG IS EP I/O

BT 12 21 20 16 17 12 12 1 5
MG 11 48 25 25 25 11 11 1 4
FT 6 31 30 15 18 15 12 1 1
SP 21 48 36 33 31 23 19 2 5
LU 18 69 41 38 41 24 28 1 2
CG 26 82 64 42 55 54 36 3 7
IS 14 88 50 39 50 32 58 1 3

EP 2 4 4 4 4 3 2 1 2

I/O -6 -2 2 -2 -6 -6 -2 -2 1108

STREAM’s heavy cache use and the relatively low rate of memory operations achieved
by GUPS. STREAM increases the L2 and L3 miss rates of GUPS by around .2 each
while the presence of GUPS does not affect STREAM’s cache miss rates.

To confirm that these results are generalizable, we repeat part of these experiments
using the NAS Parallel Benchmarks. Again, we use EP as the compute-intensive code
and I/O Bench as the I/O-intensive code. Table 3 lists the percentage slowdown in-
curred by each primary benchmark, listed on the vertical axis, when all the remaining
processors on the node concurrently execute the background benchmarks listed on the
horizontal axis.

The first item to note is that EP and I/O Bench are symbiotic with all of the NAS
benchmarks. The degradation imposed by these benchmarks both to and by the others
is negligible and appears to be within the margin of measurement error.

Secondly, the slowdown imposed by each benchmark on itself tends to be among the
highest observed. This implies that opportunities for symbiotic combinations may be
forthcoming in large enough application sets.

As we observed in Figure 4, the interactions between the NAS benchmarks can some-
times be one-sided when one benchmark makes heavier use of shared resources than
another. The most flagrant example is MG, which causes the most performance degra-
dation both to itself and to others.

Degenerate cases aside, ample opportunities exist for symbiotic sharing, even among
those applications we consider memory-intensive. Pairing CG and IS, for example,
would be substantially beneficial to both. BT appears to be another possible candidate.

5 Symbiotic Space-Sharing and Parallel Codes

In the previous two sections we have shown that resource-sharing among concurrent
jobs can cause performance degradation and that this degradation can be effectively
mitigated by symbiotic job mixes. This is sufficient motivation to begin sharing sin-
gle nodes among two or more small jobs in a more intelligent way. However, the
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question still remains as to whether or not symbiotic job scheduling can help speed
larger, parallel, multi-node applications. This section aims to address this question.

Generally, parallel codes employ every processor on each node. The scheduler’s mo-
tivation to use fewer nodes is to minimize the occurrence of slower, inter-node commu-
nications and therefore, ostensibly reap performance benefits. The results presented in
the previous two sections should give us pause as to whether this is a good scheduling
strategy. Can the processor performance benefits of symbiotic space-sharing outweigh
the penalty of additional inter-node communications?

To answer this question we again use the NAS Parallel Benchmarks, only this time,
instead of using multiple single-processor runs, we employ a single 16-processor run
for each benchmark. We execute each parallel benchmark first on 16 processors spread
evenly across two 8-way nodes and then again on 16 processors spread evenly across
four 8-way nodes, effectively utilizing only four processors per node.

To model the increased complexity of parallel I/O, we replace I/O Bench, which is a
serial application, with BTIO [31], NPB’s parallel I/O benchmark. BTIO is the same as
the BT benchmark, but with frequent checkpointing to disk. There are several flavors of
I/O that BTIO can utilize. We conduct our experiments using the following three:

MPI IO FULL - The full MPI-2 I/O implementation uses collective buffering, mean-
ing that data scattered in memory among the processors is collected on a subset of
the participating processors and rearranged before being written to file.

MPI IO SIMPLE - The simple MPI-2 I/O implementation does not leverage collec-
tive buffering, meaning that many seek operations may be required to write the data
file.

EP IO - Using Embarrassingly Parallel I/O, every processor writes its own file and
files are not combined to create a single file.

Table 4. Speedup of 16-processor runs when executing across four nodes instead of two

Benchmark Speedup
BT 1.13

MG 1.34
FT 1.27
LU 1.47
CG 1.55
IS 1.12

EP 1.00
BTIO EP 1.16

BTIO SIMPLE 4.97
BTIO FULL 1.16

The results in Table 4 were derived using the MPI implementation of the NPB ver-
sion 3.2 with problem class C. Because we run these benchmarks across multiple nodes,
the I/O tests cannot utilize the on-node I/O, but rather only the system’s GPFS. Speedup
is calculated using the traditional definition T2/T4 where TN is the runtime of the
benchmark on N nodes.
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The results reveal that speedup from reduced resource contention in this bench-
mark set not only outweighs communication overheads, but does so significantly and
consistently.

DataStar’s current interface does indeed allow a user to request that his or her job be
spread across more nodes than necessary and therefore attain these performance bene-
fits. However, because the system does not node-share, such a request would be both a
detriment to overall system utilization and costly to the user who is charged per node
instead of per processor. Can a system-level, symbiotic space-sharing scheme help?

To find out, we re-run some of the 4-node tests, but allow two benchmarks to run
on the nodes concurrently. For each result presented in Table 5, we execute two parallel
benchmarks concurrently on four nodes with each benchmark using exactly half of each
node.

Table 5. Speedup attained when parallel benchmarks share four nodes instead of running sepa-
rately on two each

Bench A Bench B Speedup A Speedup B

CG

IS 1.18 1.17
BT 1.05 1.04
EP 1.36 1.03

BTIO(E) 1.38 1.07
BTIO(S) .55 1.03
BTIO(F) 1.36 1.12

IS

BT 1.04 1.03
EP 1.07 1.03

BTIO(E) 1.11 1.07
BTIO(S) 1.00 2.41
BTIO(F) 1.13 1.13

These results show that speedup can be maintained even while no processors are
idle. Speedup can be induced both by mixing categories of benchmarks and even by
mixing some memory-bound codes. For the first time however, we observe some cross-
category slowdown. CG and the BTIO benchmark with simple IO both slow consider-
ably when paired. Nevertheless, these results demonstrate that executing parallel codes
in symbiotic combination can indeed yield significant performance benefits. The aver-
age speedup increase is 15%, showing that for this set of benchmarks, the benefits of
reduced resource sharing outweigh the increased cost of inter-node communications.

6 Towards a Symbiotic Scheduler

In the previous three sections, we have shown that symbiotic space-sharing can improve
system throughput by reducing runtime inefficiencies while maintaining high system
utilization. The most important question remaining is how to build schedulers that can
leverage these concepts.
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6.1 Identifying Symbiosis

The effectiveness of any symbiotic space-sharing scheduler is naturally contingent
upon the level of symbiosis the scheduler can identify in a given job stream. In this
section, we discuss some preliminary approaches for uncovering symbiotic space-
sharing opportunities under various assumptions.

In the most restrictive input scenario, the scheduler has no history of the execution
characteristics of jobs in the stream. In such circumstances, users could be asked to
submit the application’s bottleneck, if any, to the scheduler. It is not unreasonable to
assume that a user might know that a certain application is I/O or compute intensive.
These are the two categories in which we are most interested since they afford us the
most likely opportunity for symbiotic job mixing. The scheduler would then pair I/O
and compute intensive jobs to execute with memory-intensive ones. As we will see in
Section 6.2, even this naive approach can reap significant benefits.

If a scheduler, however, were able to recognize and maintain statistics regarding jobs
that commonly recur in the stream, then other techniques would be possible. Work-
load traces have revealed that users tend to frequently resubmit similar or even identical
jobs [9,10], a phenomenon that automated runtime predictors have leveraged in the past
[11,22]. A symbiotic scheduler may utilize these same techniques to identify applica-
tions and associated resource bottlenecks. A user-supplied job category may be a good
starting point, but the scheduler could improve on a strategy of random, cross-category
pairing.

The most straight-forward approach is experimentation. The scheduler can be con-
figured to space-share randomly selected cross-category pairs and learn the best combi-
nations. Better combinations would be identified by metrics such as memory operations
per second or floating point operations per second as reported by commonly available
lightweight hardware counters. While sampling, the scheduler would exhibit a config-
urable bias towards choosing combinations known to be more efficient. This approach
has been shown effective in multithreading scenarios [23,24].

A yet more intricate approach may be to deploy those hardware counters to col-
lect statistics on applications as they run alone. The scheduler may subsequently use
the results to predict optimal combinations, thereby decreasing its learning overhead.
Figure 7 exemplifies one possible predictive strategy.

Figure 7 graphs the memory operations per second achieved by the single-processor
NAS benchmarks while running alone versus the percentage slowdown incurred by
each when four or eight concurrent instances of it run on a single node. For the full node
runs, we can see a strong correlation between these two parameters. Among the NAS
benchmarks, those able to perform memory operations at a faster rate are less likely to
cause themselves slowdown. Since the slowdowns incurred by the half-node runs of all
benchmarks are comparable, it is likely that applications with lower memory operations
per second will benefit more from symbiotic scheduling. In this approach, the scheduler
might increase utility by preferring to space-share applications that achieve a lower rate
of memory operations per second.

Aided by the proper hardware counters, a scheduler could ideally discover symbiotic
combinations relatively quickly. Given that, there is still a need for effective scheduling
heuristics that can exploit these findings. We should keep in mind however that an
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optimal symbiotic scheduler is not a necessary first step. The results presented hitherto
suggest that much benefit would be achievable even by a naive implementation.

6.2 Prototype Symbiotic Scheduler

To test whether symbiotic space-sharing can indeed improve system throughput, we im-
plemented a rudimentary symbiotic scheduler to compete against DataStar’s production
counterpart.

Experimental Setup. The scheduler was deployed on DataStar and given an ordered
stream of one hundred randomly selected 4 and 16-processor jobs to execute using a
total of 32 processors on four nodes. We refer to these job sizes simply as small and
large. The jobs in the stream consisted of I/O Bench and variations of the NAS Par-
allel benchmarks from the following set: {EP.B.4, BT.B.4, MG.B.4, FT.B.4, DT.B.4,
SP.B.4, LU.B.4, CG.B.4, IS.B.4, CG.C.16, IS.C.16, EP.C.16, BTIO FULL.C.16}2. The
job stream was generated by iteratively enqueueing jobs selected by weighted proba-
bility; small jobs were favored over large jobs in a 4:3 ratio and memory-intensive jobs
were favored over compute and I/O intensive jobs in a 2:1:1 ratio.

Each job was submitted with an expected runtime that was used by the scheduler
for backfilling. These runtime estimates were determined by executing each job using
DataStar’s default configuration. To constrain backfilling opportunities, at most twelve
jobs occupied the queue at any given time.

The symbiotic scheduler mimics DataStar priorities by favoring large jobs and back-
filling small ones whenever possible. The exact queueing algorithm is EASY backfilling
[16] with the modification that large jobs are always moved ahead of small ones upon
entering the queue.

2 For small jobs, each of the 4 processors actually performs a full serial run of the benchmark at
class B with collective communication at the beginning and end.
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For each job, the processor allocation strategy employed by the symbiotic sched-
uler is the most simplistic of those we have previously discussed. The scheduler parti-
tions each node evenly into top and bottom halves. It then executes jobs designated as
memory-intensive on the top halves and all others on the bottom halves. The symbiotic
scheduler spreads large jobs across all four nodes while the DataStar scheduler executes
each on only two.

Scheduler Results. DataStar’s makespan for the first eighty seven jobs was 5355s
while the symbiotic scheduler completed the same jobs in 4451s, a speedup of 1.20.
We ignore the final thirteen jobs because the eighty seventh job completed was the
final memory-intensive job in the stream. The symbiotic scheduler’s memory half was
thereafter starved while the non-memory intensive half executed the final thirteen jobs,
an artifact of the testing procedure.

The magnitude of speedup, however, is dependent on the runtime distribution of
the jobs. Figure 8 provides a more insightful analysis. The figure illustrates the aver-
age per-processor speedup (across the entire workload) of applications executed by the
symbiotic scheduler versus those executed using the default policies.

The 16-processor jobs each speed up where expected. The compute-bound EP code
is unaffected while the I/O-bound BTIO benchmark and the memory-bound CG bench-
mark speed up by 11% and 25% respectively.

While the large jobs experience a decreased wallclock execution time, the small jobs,
as expected, see an increase. This is because the symbiotic scheduler concurrently exe-
cutes two small jobs on each node for 100% cpu utilization, while the DataStar sched-
uler executes only one. The symbiotic scheduler can only hope that by making intelli-
gent choices it can mitigate this slowdown.

A perfect symbiotic schedule would therefore yield a per-processor speedup of 2. As
expected, only EP achieves this, though the other slowdowns are relatively palatable,
most often within 5-10%. Such modest runtime penalties are tenable tradeoffs for a
doubling of system utilization.
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7 Related Work

Many previous investigations of multi-resource aware job scheduling have been con-
ducted, though none under assumptions applicable to today’s scientific supercomput-
ing installations. Our approach revisits the issue by starting with a modern production
policy on a large MPP machine and relaxing some procedures to achieve higher per-
formance and utilization. We assume rigid job sizes, FCFS-type queued space-sharing,
and run-to-completion scheduling with no preemption.

We characterize previous related work into the following non-discrete categories:

7.1 Multithreading

Symbiotic job scheduling was originally proposed for machines utilizing Simultaneous
Multithreading[23,24], later known as Hyperthreading, and was subsequently refined
by McGregor et. al. [19]. Such examples are concerned with intimate, cycle-by-cycle
resource sharing of multithreaded processors where sharing and contention involve
functional units on the processor. Contrastingly, this work focuses on space-sharing
contention for off-chip resources by multiple processors.

7.2 Paging

Some studies have sought to schedule job combinations that may limit the amount of
paging induced by the workload. In 1994, Peris modelled the cost of paging behavior in
parallel applications when working sets would not fit into local memory [21]. Batat and
Feitelson suggest limiting the multiprogramming level of gang schedules in order to en-
sure that job combinations do not exceed a total memory limit [7]. Suh and Rudolf have
proposed that if such a limit must be breached, then previously obtained application
profile information can inform the scheduler of the best way to do so [26].

Though ensuring a job’s ability to fit into memory is encompassed by this work, it
is not the sole focus. We address contention for all resources on each node including
caches, memory bus bandwidth, and local I/O in addition to global resources shared
among multiple nodes. We also study the effects of allocating a job’s processes across
multiple nodes in order to compare slowdowns from resource contention and inter-node
communications.

7.3 Time-Sharing

Application-aware job scheduling for time-sharing scenarios has also been studied.
Many have proposed affinity techniques that mitigate cache perturbations by avoiding
process migrations [25,29,28]. Such considerations are unique to time-sharing.

Wiseman and Feitelson have suggested that I/O and compute-intensive jobs can be
symbiotically coallocated on the same processor set in a gang scheduled environment
[30]. The focus of that work is on a relaxation of gang scheduling that allows two com-
plementary jobs to cooperate via timely per-processor context switching. In contrast
to this effort, our work targets resource sharing and contention in pure space-shared
systems.
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7.4 SMP Memory Bus Contention

It is well known that contention on the memory bus of an SMP is a scaling bottle-
neck. Several studies have therefore investigated the possibility of relieving pressure
on this bottleneck through appropriate job mixes. Liedtke introduced the topic in 2000
[15]. Both Antonopoulos [5] and Koukis [13] have built upon his work by proposing
techniques for scheduling jobs on SMP nodes in a manner cognizant of memory bus
contention.

These studies are similar to ours in spirit, but target different environments. Koukis,
for instance, targets serial applications which are time-shared on a cluster of dual-way
SMP servers running Linux. The possibility of parallel applications is addressed but not
evaluated. Contrastingly, we are concerned with space-sharing parallel scientific appli-
cations in production supercomputing environments under the assumptions detailed at
the start of this section. We also study the effects of the cache hierarchy and I/O.

7.5 Other Related Work

Some previous studies of multiple-resource allocation have also been conducted. Par-
sons and Sevcik investigated the coordinated allocation or processors and memory [20];
subsequently, Leinberger et. al generalized the problem to k-resource scheduling where
the idea is to choose optimal job working sets when multiple resource requirements
exist [14]. Unlike our study, this work assumes independently allocatable resources and
well defined requirements for each job. On our target architecture, a predetermined bun-
dle of resources is provided to a job along with each processor.

It has been observed that spacing I/O-intensive jobs in time on a parallel file system
improves performance [18]. Our emphasis is primarily to spread these in space, and
also to identify specific symbiotic partners for such jobs.

Mache and Garg have focused on finding a spatial layout for concurrent jobs in a
parallel space-shared machine to minimize communication and maximize access to I/O
nodes for I/O-intensive jobs [17]. We address a related but different problem in consid-
ering not only the physical layout but also the sets of jobs contending for resources.

Also described has been an approach for deriving beneficial symbiosis (i.e. com-
mensalism), wherein one version of a program, executing concurrently with the main
program, helps the main program resolve control-flow for instruction fetching [27]. Al-
ternatively, we search the existing job-stream for sets to co-schedule that interfere as
little as possible with each other. We expect the existence of commensal job combina-
tions in realistic production environments to be unlikely.

8 Conclusions and Future Work

In this work, we have introduced symbiotic space-sharing as a promising technique
for improving the performance efficiency of large-scale parallel machines. We have
shown that a wide range of benchmarks commonly suffer between 10-60% slowdown
due to memory resource contention and up to several orders of magnitude for I/O. We
have shown that this effect can be mitigated by deploying alternate job mixes and have
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extended these results to parallel codes, demonstrating that node-sharing among paral-
lel applications can increase throughput by increasing performance while maintaining
high system utilization levels. We synthesized these findings by exhibiting a prototype
scheduler that improves throughput by 20%.

Our results are derived from DataStar, a production machine at the San Diego Su-
percomputer Center, and the NAS Parallel Benchmarks, a widely used benchmark suite
designed with the express purpose of evaluating the performance of parallel Supercom-
puters.

Through this work, we have explored the opportunity space for and confirmed the
viability of symbiotic space-sharing. Future work may proceed in the following direc-
tions:

The confirmed promise of symbiotic space-sharing warrants the effort to conduct a
study on its applicability to real-world production workloads. The effectiveness of our
techniques remains to be seen for highly parallel, resource-intensive, scientific applica-
tions. Further, a study characterizing the job mixes in today’s production queues would
help us understand more extensively the opportunity for symbiotic job mixes and the
heuristics that could exploit them.

The relationship between hardware counter statistics and symbiotic space-sharing
should be further explored. Such efforts could help create automated algorithms to iden-
tify the limiting resource of applications. A more advanced result might be to use such
counters to automatically identify symbiosis, even among applications bound by the
same resource.

Research on production workloads and prediction of job interactions can facilitate
the development of symbiotic scheduling heuristics. Particularly interesting would be
a framework for evaluating tradeoffs between system throughput and fairness in queue
times or between other policy objectives.

We are currently also extending this feasibility study onto grid schedulers in an at-
tempt to understand the degree to which a grid-wide scheduler can improve the ef-
ficiency of its resource pool by scheduling symbiotic job combinations at each site.
Through this approach, we also hope to study the degree to which a scheduler can in-
crease throughput by lessening site load on resources such as a parallel I/O file system.
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Abstract. In this paper we present an initial analysis of job arrivals in a produc-
tion data-intensive Grid and investigate several traffic models to characterize the
interarrival time processes. Our analysis focuses on the heavy-tail behavior and
autocorrelation structures, and the modeling is carried out at three different levels:
Grid, Virtual Organization (VO), and region. A set of m-state Markov modulated
Poisson processes (MMPP) is investigated, while Poisson processes and hyperex-
ponential renewal processes are evaluated for comparison studies. We apply the
transportation distance metric from dynamical systems theory to further charac-
terize the differences between the data trace and the simulated time series, and
estimate errors by bootstrapping. The experimental results show that MMPPs
with a certain number of states are successful to a certain extent in simulating the
job traffic at different levels, fitting both the interarrival time distribution and the
autocorrelation function. However, MMPPs are not able to match the autocorre-
lations for certain VOs, in which strong deterministic semi-periodic patterns are
observed. These patterns are further characterized using different representations.
Future work is needed to model both deterministic and stochastic components in
order to better capture the correlation structure in the series.

1 Introduction

Performance evaluation of computer systems, such as comparing different scheduling
strategies on parallel supercomputers, requires the use of representative workloads to
produce dependable results [9,13]. On single parallel machines, a significant amount of
workload data has been collected [33], characterized [23,27], and modeled [7,25,41].
Benchmarks and standards are also proposed for workloads in evaluations of parallel
job schedulers [6].

In a production Grid environment, however, few work has been done because the
Grid infrastructure is still emerging and it is difficult to collect traces at the Grid level.
Let us take the LHC Computing Grid (LCG) [21] as an example. The LCG testbed
currently has approximately 180 active sites with a total number of 24,515 CPUs and
3 Petabytes storage, which is primarily used for high-energy physics data processing.
Resource brokering or superscheduling in such an environment is challenging given
the fact that Grid schedulers do not have control over the participating resources. In
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Fig. 1. Job distribution (cern - EU Center for
Nuclear Research, fnal - Fermi Lab, the rest
are country domain names)
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Fig. 2. Daily arrival rate in three cons-
ecutive days in November, 2005. The time is
in Greenwich Mean Time (GMT).

such contexts different scheduling and resource management systems have been pro-
posed [31]. The current scheduling system deployed in LCG is a distributed version
of the centralized resource broker, which originated in the EU DataGrid. It has multi-
ple resource broker instances distributed in different regions/countries [11]. The Virtual
Organization (VO) based scheduler with usage SLAs is proposed in a similar comput-
ing environment with similar workloads [10]. The evaluations of these different su-
perscheduling architectures and strategies require proper workload models at different
levels.

In this paper we present an initial analysis and modeling of Grid job arrival patterns.
Our data is obtained via the Real Time Monitor [36] in the LCG production Grid. Our
analysis focuses on the heavy-tail behavior and autocorrelations of job arrival processes.
The modeling is carried out at the Grid, VO, and region level for facilitating evaluations
of different scheduling strategies. A set of m-state Markov modulated Poisson processes
(MMPP) is investigated for modeling, while Poisson processes and hyperexponential
renewal processes are also evaluated for comparison. We apply the transportation dis-
tance metric from dynamical systems theory [28] to further characterize the differences
between the data trace and the simulated time series.

The rest of the paper is organized as follows. Section 2 describes the workload, an-
alyzes the daily arrival rate and summary statistics from different VOs and users, and
presents the self-similarity measurements in terms of the Hurst parameter and the au-
tocorrelation function (ACF). Section 3 introduces the selected traffic models and de-
scribes how to estimate parameters for each model. The transportation distance metric
as an analysis tool is also presented. Section 4 presents the detailed modeling of job
arrivals at the Grid, VO, and region level. The goodness of models are evaluated by the
interarrival time distribution, the autocorrelation function and transportation distance
of simulated traces. Section 5 discusses related work in the analysis and modeling of
arrival processes in a broader perspective. Conclusions and future work are presented
in Section 6.
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2 Statistical Analysis

2.1 Workload Description

As mentioned above, LCG is a worldwide production Grid developed and operated for
physics data processing. Almost all the jobs are trivially parallel tasks, requiring one
CPU to process certain amount of data. Most of the jobs come from multiple large-
scale physics experiments, such as lhcb, cms, atlas and alice. These experiments are
also named as Virtual Organizations (VOs), in which users worldwide participate. The
computing and storage resources define local sharing policies based on VOs and users.
At the meta level workloads are managed and routed to resources via resource brokers
(RBs), which do the matchmaking for jobs and try to balance the load at a global level.

There are resource brokers distributed over the Grid by regions, such as one in Ger-
many, one in the UK, and so on. A majority of jobs come from CERN in Switzerland
and there are around eight RB instances at CERN to share the workloads. The Real
Time Monitor developed by Imperial College London [36] monitors jobs from all the
major RBs in the LCG testbed, therefore the trace data it collects is representative at the
Grid level. The job characteristics includes VO name, user DN (Distinguished Name),
RB name, UI (User Interface), CE (Computing Element), submission time, run time
and status. These attributes enable us to categorize, analyze and model job arrivals at
different levels.

The LCG Real Time Monitor was in operation since October, 2005 and we use a
period of eleven consecutive days (from Nov 20th to 30th, 2005) without missing data1

in this study. Figure 1 shows the number of jobs in each day, number of jobs coming
from different regions, and number of jobs in CEs where jobs get executed. We can see
that a total number of 188,041 jobs distributed quite evenly over the period. More than
75% of jobs come from User Interfaces at CERN while the rest originated in around
twenty different countries. The workloads are routed by resource brokers to computing
resources in more than twenty countries, in which jobs are distributed in quite different
orders than job origins. Job turnaround times are frequently used as the metric for the
resource brokers to rank resources after matchmaking.

2.2 Job Arrival Analysis

Figure 2 shows the daily arrival rate in three consecutive days (GMT) on LCG in
November, 2005. As we can see at the Grid level there are no clearly observable daily
patterns, which are evident on single parallel machines [7,23,25]. Jobs are scattered in
daily hours more evenly with peaks in the middle day or in the afternoon. The even
distribution of jobs is explainable by the fact that users are simultaneously active across
different time zones in the Grid. The peaks in the middle day or in the afternoon are
mainly attributed to users at CERN, who submit a majority of jobs during the period
under study.

Figure 3 and 4 show the number of jobs submitted by VOs and users. There is an
interesting pattern that the job distribution for VOs can be fitted by an exponential

1 Only jobs submitted to RBs are recorded and those who directly go to the Computing Elements
are not available.
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function quite well. The top five VOs, namely lhcb, cms, dteam, alice, and atlas, submit
almost 90% of the total number of jobs. The job distribution for users decreases even
more sharply and a two-phase hyperexponential function has a better fit. The top 10%
of users contribute to 90% of the whole workload and the top three account for 50%.
This type of pattern is also observed in many social and physical phenomena, such
as database transactions and Unix file sizes [13]. It is argued in [2] that it essentially
originates in a priority selection mechanism between tasks and non-tasks waiting for
execution. From a modeling perspective this pattern makes the VO an appropriate level
for categorization since the limited number of main components represent most of the
workloads.

2.3 Self-similarity

Self-similarity means that a process looks statistically the same over a wide range of dif-
ferent scales and is closely related to so-called “bursty” behavior and long range depen-
dence [4]. The degree of the self-similarity of a stochastic process can be summarized
by the Hurst parameter (0 < H < 1). A value of H > 0.5 indicates self-similarity with
positive near neighbor correlation and the more H is close to 1, the more self-similar
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the process. As there is no consensus on how to best estimate the Hurst parameter,
we use three estimation techniques, namely R/S statistic, variance plot, Periodogram,
and try to find agreement among them2. Figure 5 shows the means and standard devia-
tions of Hurst parameter estimates of the interarrival time processes for the Grid trace
and different VOs. We can see that the overall Grid job arrivals are self-similar with
H ≈ 0.84. The VO lhcb is also strongly self-similar with the Hurst parameter reaching
0.85. The other VOs show moderate to weak self-similarity. These observations are also
confirmed if we look at the autocorrelation function (ACF) of interarrival times, illus-
trated in Figure 6. Strongly self-similar processes (overall, lhcb) have a longer memory
than the weakly self-similar counterparts (dteam, atlas), whose ACFs quickly approach
zero as the lag increases. Autocorrelation is used as one of the statistical properties to
measure the goodness of fit in the following sections.

3 Methodology

Job traffic can be mathematically described as a point process, which consists of a se-
quence of arrival instances. Two equivalent descriptions of point processes are counting
processes and interarrival time processes [5,17]. In this paper we describe the traffic
using the interarrival time process, sometimes also called the embedded process. Based
on the analysis of job arrivals, several basic principles can be derived for model se-
lection. Firstly, models should be parameterizable and flexible enough to represent the
Grid job traffic at different levels. Secondly, models must be able to approximate both
the interarrival time distribution (heavy-tail behavior) and the autocorrelation function.
Thirdly, models should be analytically simple and there should exist proven methods
to estimate their parameters from the data trace. Bearing these points in mind, we in-
vestigate a set of m-state Markov modulated Poisson processes to model job arrivals.
Phase-type renewal processes and Poisson processes are also evaluated for comparison.
We discuss the selected models and their corresponding parameter estimation methods
in this section. The recently proposed transportation distance metric for the comparison
of two time series is presented as a tool to further characterize the goodness of fit.

3.1 Markov Modulated Poisson Processes

A Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson process
whose intensity is controlled by a finite state continuous-time Markov chain (CTMC).
Equivalently, an MMPP process can be regarded as a Poisson process varying its arrival
rate according to an m-state irreducible continuous time Markov chain. Following the
notations in [14], an MMPP parameterized by an m-state CTMC with infinitesimal
generator Q and m Poisson arrival rates Λ can be described as

Q =

⎡

⎢
⎢
⎣

−σ1 σ12 ... σ1m

σ21 −σ2 ... σ2m

. . ... .
σm1 σm2 ... −σm

⎤

⎥
⎥
⎦ , (1)

2 Estimations of the Hurst parameters are calculated using a self-similarity analysis tool called
SELFIS [19].
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Fig. 7. MMPP models of state 2, 3, and 4, respectively

σi =
m∑

j=1,j �=i

σij , (2)

Λ = diag(λ1, λ2, ..., λm). (3)

MMPPs with state 2, 3, and 4 are illustrated in figure 7. The MMPP model is commonly
used in telecommunication traffic modeling [16,17] and has several attractive proper-
ties, such as being able to capture correlations between interarrival times while still
remaining analytically tractable. We refer to [14] for a thorough treatment of MMPP
properties as well as its related queuing network models.

A natural problem which arises with the applications of MMPPs is how to estimate
its parameters from the data trace. In [37] methods based on moment matching and max-
imum likelihood (MLE) are surveyed and it is proven that MLE methods are strongly
consistent. In [38] Ryden proposed an EM algorithm to compute the MLE estimates
of the parameters of a m-state MMPP. Recently, Roberts et al. improved Ryden’s EM
algorithm and extended its applicability in two important aspects [35]: firstly a scaling
procedure is developed to circumvent the need for customized floating-point software,
arising from the exponential increase of the likelihood function over time; secondly,
evaluation of integrals of matrix exponentials is facilitated by a result of Van Loan,
which achieves significant speedup. We implemented the improved version of Ryden’s
EM algorithm in Matlab and this is by far the best MLE estimator that we can find
for m-state MMPPs. Given the difficult numerical issues involved, estimation errors
could still be substantial, though. It should also be mentioned that the estimation for
higher order MMPPs is increasingly difficult, since there are more parameters to take
into account.

3.2 Hyperexponetial Renewal Processes

In a renewal process the interarrival times are independently and identically distributed
but the distribution can be general. A Poisson process is characterized as a renewal pro-
cess with exponentially distributed interarrival times. In phase-type renewal processes
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the interarrival times are distributed in so-called phase-type, e.g. as a n-phase hyper-
exponential distribution. In theory any interarrival distribution can be approximated by
phase-type ones, including those which exhibit heavy-tail behavior [34].

However, a major modeling drawback of renewal processes is that the autocorrelation
function (ACF) of the interarrival times vanishes for all non-zero lags so they cannot
capture the temporal dependencies in time series. Unlike the renewal models, MMPPs
introduce dependencies into the interarrival times so they can potentially simulate the
traffic more realistically with non-zero autocorrelations.

There are special cases where an MMPP is a renewal process and the simplest one
is the Interrupted Poisson Process (IPP). The IPP is defined as a 2-state MMPP with
one arrival rate being zero. Stochastically, an IPP is equivalent to a 2-phase hyperexpo-
nential renewal process. Following the formulations in [14] the IPP can be described as

Q =
[
−σ1 σ1
σ2 −σ2

]
, Λ =

[
λ 0
0 0

]
, (4)

and the 2-phase hyperexponential distribution (H2) has the density function

fH2(t) = pμ1e
−μ1t + (1 − p)μ2e

−μ2t. (5)

The parameters of H2 can be transformed to parameters of IPP by

λ = pμ1 + (1 − p)μ2, (6)

σ1 =
p(1 − p)(μ1 − μ2)2

λ
, (7)

σ2 =
μ1μ2

λ
, (8)

while the H2 parameters (p, μ1, μ2) can be obtained from the data by applying an EM
algorithm as described in [1], whose implementation is freely available [12].

3.3 Transportation Distance of Time Series

Coming from a dynamical systems theory background, Moeckel and Murray have given
a measure of distance between two time series [28] that, from a time series perspective,
excellently analyzes (short-time) correlations. It is based on recent research on nonlin-
ear dynamics [18,3]. Given a time series, the data is first discretized, i.e. binned, with
a certain resolution (a parameter of the method), and then transformed into points in
a k–dimensional discrete space, referred to as the reconstruction space, using a unit-
delay embedding. In dimension 2, for example, all n − 1 consecutive pairs (xi, xi+1),
1 ≤ i < n, of n given data points thus constitute a point yi = (xi, xi+1) in the
reconstruction space. The idea is, that the essential dynamics of generic systems can
usually be reconstructed sufficiently in a low dimensional space. The normalized k–
dimensional probability distributions of these data points from the two series will then
be considered as a transportation problem (also called a minimum cost flow problem):
What is the optimal way, given the first probability distribution, to arrive at the second,
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just by transporting weight, i.e. probability, from some boxes to some others? With each
movement a transportation cost is given, which is the normalized (by mass) taxi–cab
distance from the first box to the second, measured in units of the discretization size3,
which is given by the resolution parameter of the method. The minimal such trans-
portation cost can be computed by linear programming. We have written some code to
generate a linear program from two time series which then will be fed into a special-
ized minimum-cost flow solver4. For details on linear programming, the transportation
problem and algorithmic improvements, we refer to [39].

The transportation distance measures to which extent two given time series show
the same k–correlation structure, and is thereby quite sensitive to (1) correlations, and
(2) the underlying probability distributions. It is robust against small perturbations and
outliers, too. A value of the transportation distance can be roughly interpreted as the
average distance each data point of the first time series lies from a corresponding point
in the second series.

Table 1. Transportation distances in dimension 1, i.e. for single interarrival times, between real
data and simulated series of fitted Poisson, m-MMPP and IPP models. The time resolution is
10s intervals. All entries are normalized to mean taxi-cab distance (with a unit of 10s). Values
depicted are bootstrap means and standard mean error, estimated by bootstrapping 50 times.

Level Name Poisson IPP MMPP2
Grid lcg 0.039 ± 0.001 0.029 ± 0.001 0.024 ± 0.001

lhcb 0.35 ± 0.01 0.35 ± 0.01 0.47 ± 0.01
cms 1.35 ± 0.01 0.40 ± 0.01 0.81 ± 0.01

VO dteam 4.57 ± 0.02 1.03 ± 0.02 17.07 ± 0.05
alice 1.57 ± 0.02 0.98 ± 0.02 1.21 ± 0.02
atlas 16.38 ± 0.19 6.54 ± 0.15 56.94 ± 0.29
cern 3.38 ± 0.02 0.78 ± 0.02 2.95 ± 0.02

Region de 9.60 ± 0.09 3.77 ± 0.06 35.97 ± 0.14
uk 28.91 ± 0.16 7.58 ± 0.10 95.83 ± 0.51

Level Name MMPP3 MMPP4
Grid lcg 0.035 ± 0.001 0.058 ± 0.001

lhcb 0.50 ± 0.01 0.54 ± 0.01
cms 0.70 ± 0.01 5.34 ± 0.01

VO dteam 21.65 ± 0.06 N/A
alice 3.28 ± 0.02 3.36 ± 0.03
atlas 47.70 ± 0.50 5.49 ± 0.19
cern 2.53 ± 0.03 25.17 ± 0.08

Region de 43.73 ± 0.24 437.18 ± 0.95
uk 98.68 ± 0.46 N/A

3 This is equivalent to considering all the points in each discrete box to be located at the center
of their box.

4 We use the MCF network simplex solver developed by Andreas Löbel [26], as well as the
general purpose lp solve linear programming solver [24] for comparing performance.
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Table 2. Parameters of fitted Poisson, MMPP2 and IPP models as found by the EM algorithm

Level Name Poisson MMPP2 IPP
λ σ1 σ2 λ1 λ2 p μ1 μ2

Grid lcg 11.90 0.17 0.08 22.10 7.16 0.22 139.20 10.46
lhcb 4.35 0.04 0.01 8.43 3.18 0.11 4.35 4.35
cms 3.11 0.10 0.07 6.92 0.44 0.95 6.21 0.31

VO dteam 1.64 0.83 0.08 17.86 0.10 0.91 18.31 0.17
alice 2.38 0.16 0.06 6.67 0.73 0.78 6.79 0.71
atlas 0.54 0.10 0.01 4.98 0.02 0.95 5.05 0.03
cern 1.41 0.10 0.06 3.43 0.13 0.94 3.36 0.15

Region de 0.83 0.17 0.03 4.98 0.03 0.94 5.08 0.06
uk 0.19 0.36 0.01 4.93 0.03 0.75 5.82 0.05

Table 3. Transportation distances in dimension 2, i.e. comparing pairs of interarrival times, be-
tween real data and simulated series of fitted Poisson, m-MMPP and IPP models. The time res-
olution is 30 seconds. All entries are normalized to mean taxi-cab distance (with a unit of 30
seconds), and should therefore be about a factor of 3 smaller than the corresponding values in Ta-
ble 1. Values depicted are bootstrap means and standard mean errors, estimated by bootstrapping
25 times.

Level Name Poisson IPP MMPP2
Grid lcg 0.0038 ± 0.0001 0.0010 ± 0.0001 0.0139 ± 0.0001

lhcb 0.179 ± 0.001 0.182 ± 0.001 0.244 ± 0.001
cms 0.747 ± 0.004 0.394 ± 0.003 0.500 ± 0.004

VO dteam 2.708 ± 0.012 1.141 ± 0.008 11.249 ± 0.029
alice 0.813 ± 0.011 0.661 ± 0.011 0.686 ± 0.011
atlas 11.041 ± 0.123 5.601 ± 0.084 37.764 ± 0.175
cern 2.174 ± 0.012 0.818 ± 0.010 1.917 ± 0.016

Region de 6.080 ± 0.063 2.962 ± 0.039 24.007 ± 0.110
uk 20.490 ± 0.108 8.504 ± 0.064 64.765 ± 0.370

Level Name MMPP3 MMPP4
Grid lcg 0.0233 ± 0.0002 0.0035 ± 0.0001

lhcb 0.274 ± 0.001 0.295 ± 0.001
cms 0.458 ± 0.004 3.279 ± 0.008

VO dteam 14.285 ± 0.038 N/A
alice 1.936 ± 0.022 1.963 ± 0.018
atlas 31.906 ± 0.376 3.480 ± 0.099
cern 1.641 ± 0.023 16.674 ± 0.062

Region de 28.786 ± 0.196 290.859 ± 0.618
uk 65.414 ± 0.429 N/A

Unfortunately, the transportation distance is difficult to compute for higher lags,
since the computational effort rises polynomially in the lag. We are working on ap-
proximation methods though, which might overcome this problem in the future [29].
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Table 4. Error estimates for fitted MMPP2 model, standard mean errors have been estimated by
bootstrapping 25 times with a geometrical blocksize distribution of mean length 100. Correlations
between parameters have not been indicated.

Level Name MMPP2
σ1 σ2 λ1 λ2

Grid lcg 0.262 ± 0.034 0.387 ± 0.064 17.300 ± 0.590 5.118 ± 0.291
lhcb 0.632 ± 0.117 0.396 ± 0.153 9.051 ± 0.753 3.261 ± 0.093
cms 0.106 ± 0.002 0.075 ± 0.001 6.833 ± 0.041 0.435 ± 0.015

VO dteam 0.824 ± 0.016 0.079 ± 0.001 17.651 ± 0.211 0.100 ± 0.003
alice 0.172 ± 0.004 0.069 ± 0.004 6.692 ± 0.022 0.728 ± 0.023
atlas 0.102 ± 0.003 0.012 ± 0.001 5.020 ± 0.055 0.020 ± 0.001
cern 0.099 ± 0.003 0.063 ± 0.002 3.436 ± 0.021 0.129 ± 0.003

Region de 0.174 ± 0.006 0.035 ± 0.002 5.095 ± 0.064 0.032 ± 0.002
uk 2.279 ± 0.261 0.128 ± 0.033 4.925 ± 0.530 0.054 ± 0.006

Table 5. Bootstrapped rate parameters of fitted MMPP3 model, standard mean errors have been
estimated by bootstrapping 25 times with a geometrical blocksize distribution of mean length
100. Correlations between rates have not been indicated.

Level Name MMPP3
λ1 λ2 λ3

Grid lcg 1.979 ± 0.205 2.290 ± 0.209 13.812 ± 0.210
lhcb 1.913 ± 0.135 2.092 ± 0.162 5.087 ± 0.150
cms 0.257 ± 0.032 0.672 ± 0.099 7.098 ± 0.098

VO dteam 0.046 ± 0.006 0.097 ± 0.040 15.901 ± 0.545
alice 0.295 ± 0.038 0.537 ± 0.083 5.954 ± 0.152
atlas 0.001 ± 0.054 0.163 ± 0.091 4.839 ± 0.174
cern 0.094 ± 0.014 0.284 ± 0.052 4.050 ± 0.077

Region de 0.015 ± 0.001 0.905 ± 0.124 6.321 ± 0.039
uk 0.013 ± 0.002 0.039 ± 0.012 4.217 ± 0.334

3.4 Bootstrapping

Error estimates for arbitrary functions of stochastic variables can be produced by boot-
straping/resampling [8] techniques. The finite data trace is thereby assumed to be a real-
ization of an underlying probabilistic process, i.e. data points are assumed to be drawn
randomly from a (usually unknown) probability density. Each data value is sampled
with an empirical probability that converges to this density, in the limit of an infinite
data trace. The size of the variations in finite traces can be estimated by looking at addi-
tional data traces of the same length, sampled from the same distribution. Bootstrapping
methods achieve this by resampling from the observed data trace itself, i.e. instead of
choosing data points randomly from the unknown true density, points are chosen by its
approximation, the known empirical density.

Since the transportation distance compares two probability densities, error estimates
for this measure can be produced by the bootstrap method easily. We have implemented
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Table 6. Bootstrapped transition parameters of fitted MMPP3 model, standard mean errors have
been estimated by bootstrapping 25 times with a geometrical blocksize distribution of mean
length 100. Correlations between parameters have not been indicated.

Level Name MMPP3
σ12 σ13 σ21

Grid lcg 1.25 ± 0.16 2.35 ± 0.40 0.24 ± 0.05
lhcb 1.07 ± 0.17 2.14 ± 0.30 0.29 ± 0.05
cms 0.33 ± 0.06 0.19 ± 0.03 0.53 ± 0.06

VO dteam 0.35 ± 0.05 0.13 ± 0.03 0.57 ± 0.07
alice 0.50 ± 0.06 0.27 ± 0.04 0.48 ± 0.05
atlas 0.35 ± 0.06 0.04 ± 0.01 0.71 ± 0.08
cern 0.43 ± 0.06 0.22 ± 0.05 0.56 ± 0.08

Region de 0.011 ± 0.001 0.016 ± 0.001 0.089 ± 0.006
uk 0.42 ± 0.05 0.10 ± 0.02 0.74 ± 0.08

Level Name MMPP3
σ23 σ31 σ32

Grid lcg 0.72 ± 0.10 0.06 ± 0.01 0.10 ± 0.02
lhcb 1.07 ± 0.17 0.12 ± 0.02 0.17 ± 0.03
cms 0.31 ± 0.06 0.13 ± 0.02 0.15 ± 0.02

VO dteam 0.18 ± 0.04 0.50 ± 0.06 0.51 ± 0.06
alice 0.31 ± 0.06 0.25 ± 0.04 0.27 ± 0.03
atlas 0.19 ± 0.05 0.22 ± 0.05 0.24 ± 0.03
cern 0.34 ± 0.06 0.19 ± 0.03 0.29 ± 0.04

Region de 0.053 ± 0.006 0.117 ± 0.001 0.049 ± 0.006
uk 0.17 ± 0.04 0.96 ± 0.13 0.95 ± 0.10

this method with 50 bootstraps of the same length in embedding dimension 1, and 25
in dimension 2, for each of the two time series fed into the distance algorithm. Results
can be seen in Tables 1 and 3, where the bootstrap means and standard mean errors
are shown. All of the results for the original series’ distances lie scattered around the
bootstrap means within one sampled standard deviation. This shows the appropriateness
of the bootstrapping methodology, and we only give the bootstrap means in the tables
for this reason.

For time series, where not only the distribution of values, but also the correlation
structure is important, the simple bootstrap has to be replaced by more sophisticated
methods. The block bootstrapping technique, developed by Künsch [20] and further an-
alyzed in [32], instead of randomly choosing data points, randomly chooses sequences
of consecutive points. The length of these blocks is again randomly chosen from a ge-
ometric distribution to smoothe boundary effects. We have applied this method with
25 bootstraps to the estimation of the MMPP model parameters by the EM algorithm.
The mean block length has been chosen to be 100 interarrivals. Results can be seen in
Table 4 for MMPP2, and Tables 5 and 6 for MMPP3, where we show bootstrap means
and standard mean errors. Since there are strong correlations between parameters, these
estimates have to be considered with some caution. This also explains the few discrep-
ancies with the parameter estimation for the original data trace in Table 2.
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4 Modeling

In a large-scale Grid environment different superscheduling architectures require mod-
eling of job arrivals at different levels. By applying the methodology discussed above,
we model the job traffic at the Grid, the Virtual Organization, and the region level,
respectively in this section.

4.1 Grid Level

Figure 13 shows the fittings of the interarrival time in terms of complementary cu-
mulative distribution function (CCDF) by five models, namely Poisson, IPP, MMPP2,
MMPP3, and MMPP4. We can see that globally there is no heavy-tail behavior and
all the models fit the job arrivals quite well. The transportation distances of dimension
1 given in Table 1 quantitatively measure the goodness of fit for interarrival time dis-
tributions. Since the values are all quite low, all models seem to reproduce correctly
the probability distribution (1d), with MMPP2 being the best. The fittings of the auto-
correlation function (ACF) of the interarrival time process are shown in Figure 14. As
expected ACFs of Poisson and IPP vanish for all none-zero lags and they cannot capture
the interdependencies of job arrivals. The MMPPs can introduce dependencies into the
interarrival times, but they are not able to match the long memory of the original trace.
By taking both CCDF and ACF into account we can conclude that MMPP2 is a better
model for the Grid level job arrivals than the Poisson or IPP model. The transportation
distances of dimension 2 given in Table 3 show the differences in pair correlations (2d),
which are also quite small in value.

Figure 8 visually plots the sequences of interarrival times for the original trace and
several models. We can see that both Poisson and IPP lack the kind of variability com-
pared to the trace although their CCDFs fit quite well. MMPP2 looks more similar to
the original data in terms of variability, therefore it can simulate the job traffic more
realistically5.

4.2 Virtual Organization Level

We model the five largest VOs, namely, lhcb, cms, dteam, alice, and atlas, in descendant
order with respect to the number of jobs submitted. Figure 15 and 16 show the CCDFs
and ACFs of the fitted models for the interarrival time process by lhcb. Being the largest
VO in terms of the submitted jobs, lhcb has no heavy tail distribution of interarrivals
and exhibits a long memory. It contributes significantly to the properties of overall Grid
job arrivals shown in the last section. As to the models we can see that IPP produces
identical fitting with Poisson. Both of them have slightly better results than MMPPs in
terms of transportation distances of dimension 1 and 2. However, MMPP2 and MMPP3
have similar autocorrelations that come the closest to the original trace. Considering the
tradeoffs, MMPP2 is selected as the best fit among the evaluated models. Clearly better

5 This visual comparison should be replaced by objective, quantitative measures, of course, and
this is exactly what the transportation distance achieves, when sufficiently high orders can be
compared.
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Fig. 8. Sequences of interarrival times of the Grid trace and the fitted models

models are needed to closely match the long memory in the series; we will elaborate
why stochastic models fail to capture the autocorrelations in the coming sections, as
well as indicate some future directions for research.

We observe that increasing the number of states in MMPPs would not necessarily
improve the fitting. For instance, in the Grid and lhcb case MMPP4 is an overfitted
model both in terms of CCDF and ACF. This phenomenon is seen with the transporta-
tion distance, too. It seems paradox at first, since MMPP4 is a more flexible model
than MMPP3/MMPP2, but can be attributed to the following issues: (1) the parameter
estimation by the EM algorithm does not easily give error estimates, so errors in the
parameters could be substantial6, (2) the data trace is finite, and actually rather small
for fitting large interarrival times (which occur seldomly), (3) the compromise between
fitting a lot of small interarrival times and some rarely occurring large events seems to
favor the smaller times: there are too many large events generated by the higher order
MMPPs, (4) there is a strong deterministic component in the lhcb data, as can be seen in
Figure 9 and Figure 10 where we show the pair distribution for real data and simulated
MMPP2 data. The large peak at about (24s, 24s) interarrival times is very difficult to
model with a Poisson-based model, since waiting times in such models will always be
from an exponential family, thereby monotonously decreasing with distance from the
origin.

From Figure 17 to Figure 24 CCDF and ACF fittings are shown for the remaining
four VOs. We can see that the less job submissions in the VO, the longer the tail the
CCDF has. In those situations with heavy tails, the Poisson process fails to match the in-
terarrival time distribution. For cms data with moderate interarrival time dependencies,

6 In this respect, a Bayesian analysis by Monte-Carlo Markov Chain methods [40] would be
desirable, since this would produce the probability distribution of the estimated parameters
directly.
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we can see that MMPP3 has very good fittings for both CCDF and ACF (Figure 17
and 18). For dteam, MMPPs exhibit longer memory which is not present in the data
and IPP is shown to be the most suitable model (Figure 19 and 20). For alice both
MMPP3 and MMPP4 can model the interarrival process better than others (Figure 21
and 22), although they tend to generate too many large times7. In the last VO we stud-
ied, namely atlas, MMPP4 is shown to be the best fitted model. MMPP2 and MMPP3
have too long memories and cannot fit the interarrival time distribution closely, while
IPP has no memory and fails to match the heavy tail of the data (Figure 23 and 24).

Although no general conclusions can be reached, some observations are found to be
very interesting. As the VO size decreases from lhcb to cms, then to alice and atlas, the
models with the best fit are MMPPs with an increasing number of states, from 2 to 3 then
to 4, although deterministic components can complicate this. This observation suggests
that MMPPs have very attractive properties for modeling job traffic in the VO level,
being general and analytically simple. With the VO size decreasing in an exponential

7 This can be seen from their transportation distances, for example, which are more sensitive to
large data values than to small ones.
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manner (see Figure 3), we can model the job arrivals of the corresponding VOs using
MMPPs by increasing the number of states and/or further modeling of deterministic
components. As a special case dteam will be discussed in detail in Section 4.4.

4.3 Region Level

Resource brokers in the current LCG testbed are distributed in regions, so it is important
to model the job arrivals at the region level as well. Figure 25 to Figure 30 show the
model fitting for cern (European Center for Nuclear Research), de (Germany), and uk
(United Kingdom), respectively. Since a majority of jobs are originated in cern and
routed by one of its eight resource broker instances, we use job arrivals by one randomly
chosen resource broker in this study. From Figure 25 and 26 we can see that MMPP3
is the model with the best fit for cern data. MMPPs do not perform well for de and
uk, introducing autocorrelations which are not observable in the real data. In these two
cases IPP is shown to be the most suitable model, matching both the CCDFs and ACFs
of the interarrival time processes.

4.4 Stochastic vs. Deterministic

In the modeling process, we find that for certain data such as dteam and uk the EM
algorithm does not converge for estimating MMPP4 parameters (indicated by ’N/A’ in
the tables). This motivates us to plot the interarrival time sequences for all the data to
see what kind of structures exist. The results are surprising: we find strong deterministic
semi-periodic behavior for lhcb, dteam and uk. This is illustrated in Figure 11 and Fig-
ure 9. To further understand these patterns, we form a time series by counting number of
jobs in intervals of 1 minute duration and plot the autocorrelation function (ACF) of this
’binned’ counting process. Figure 12 shows these ACFs for the above mentioned data.
The periodic behavior is clearly observed, with the period for lhcb, dteam and uk being
240 minutes, 180 minutes, and 120 minutes, respectively. For dteam, which stands for
“deployment team”, this pattern is explainable because jobs from this VO are mostly
testing and monitoring jobs initiated by human or automatically by software. Jobs from
uk during the period of study are mostly dteam jobs. It is interesting to see that the
biggest VO lhcb also shows periodic behavior. If we take into account that close to 90%
of lhcb jobs (around 60,000 jobs) are from one single user during the eleven days under
study, we can assume that scripts are written to submit such production jobs, which are
deterministic in nature.

We cannot say that the periodic behavior for large production VOs is a general fea-
ture and can be used in modeling. However, it is safe to assume that certain VOs are
partly dedicated to testing and monitoring the Grid. In this case, for a realistic model to
capture the behavior of such mixed deterministic (periodic) and stochastic components,
we could follow the traditional route of time series analysis by either fitting and then
subtracting the periodic components, or by introducing time-varying model parameters
and change points [43].
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5 Related Work

Traditionally, job arrivals have been analyzed and modeled on single parallel supercom-
puters. In [7] polynomials of degree from 8 to 13 are used to fit the daily arrival rates.
In [25] a combined model is proposed where the interarrival times fit a hyper-Gamma
distribution and the job arrival rates match the daily cycle. Time series models such
as ARIMA are studied in [42], which try to capture the traffic trends and interdepen-
dencies. The impact of such models on the performance of parallel scheduling is also
investigated.

The recent work by Medernach [27] is closely related to ours as he analyzes and
models job arrivals on one cluster in LCG. The model developed is a ON-OFF Markov
chain model, which essentially is a 2-phase hyperexponential renewal process (IPP). It
is shown that for single users 2-phase hyperexponential distributions can fit the interar-
rival times well, although no analysis on dependencies of the series is available. As we
model the job traffic at the VO and the Grid level, it can be regarded as a superposition
of single user activities. It is well known that the superposition of individual renewal
processes can be a correlated, nonrenewal stream [16,30], which justifies our choice
of MMPPs as the candidate models. A further advantage of MMPPs is their stability
in superposition: two or more superposed MMPPs are equivalent to some higher-order
MMPP [14].

MMPPs have been very popular in modeling telecommunication traffic for more than
twenty years. We refer to [17] for a comprehensive survey on stochastic modeling of
traffic processes. Self-similarity based models have also been proposed in performance
modeling of high-speed networks and we refer to [44] for a bibliographical guide.

6 Conclusions and Future Work

In this paper we present an initial analysis of job arrivals in a production data-intensive
Grid, focusing on heavy-tail behavior and self-similarity of the interarrival time pro-
cesses. Based on the analysis we investigate a set of m-state MMPPs to model the job
traffic at different levels. Our conclusions can be summarized as follows:

1. There are no clearly observable daily patterns at the Grid level. Empirically, the
number of jobs submitted by different VOs follows an exponential distribution.

2. The interarrival time process at the Grid level is distributed without a heavy tail and
is strongly self-similar with H ≈ 0.84. The best fitted model we find is MMPP2,
but it still could not match the autocorrelation in the original trace.

3. The interarrival time processes of different VOs show strong, moderate, and weak
self-similarity. The tail becomes longer as the number of jobs in the VO decreases.
Experimental results suggest that with the VO size decreasing in an exponential
manner, we can model the job arrivals of the corresponding VOs using MMPPs by
increasing the number of its states.

4. At the region level, MMPPs are more suitable for processes with longer memories,
while IPP can fit the interarrival time distributions very well, which is superior for
those processes with very short memories.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Modeling Job Arrivals in a Data-Intensive Grid 229

5. The interarrival time processes for certain VOs show strong deterministic semi-
periodic behavior. This explains the strong autocorrelations (long memory) of the
data series. One source for such behavior is from large production VOs (e.g. lhcb),
where scripts may be used for submitted production jobs. Others could be jobs for
testing and monitoring purposes, which is essential for the operation and develop-
ment of the Grid. Realistic modeling of job arrivals with mixed deterministic and
stochastic components requires more future research.

We plan to release our Matlab programs developed for estimating and simulating
MMPPs via [15]. Tools for calculating transportation distance are also available [29].
One interesting direction for further research is to correlate job arrivals with job run
times to create a complete workload model for performance evaluation in a
data-intensive Grid.
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Abstract. Grid computing is becoming a common platform for solving
large scale computing tasks. However, a number of major technical issues,
including the lack of adequate performance evaluation approaches, hinder
the grid computing’s further development. The requirements herefore are
manifold; adequate approaches must combine appropriate performance
metrics, realistic workload models, and flexible tools for workload gen-
eration, submission, and analysis. In this paper we present an approach
to tackle this complex problem. First, we introduce a set of grid perfor-
mance objectives based on traditional and grid-specific performance met-
rics. Second, we synthesize the requirements for realistic grid workload
modeling, e.g. co-allocation, data and network management, and failure
modeling. Third, we show how GrenchMark, an existing framework for
generating, running, and analyzing grid workloads, can be extended to
implement the proposed modeling techniques. Our approach aims to be
an initial and necessary step towards a common performance evaluation
framework for grid environments.

1 Introduction

Grid computing facilitates the aggregation and sharing of large sets of hetero-
geneous resources spread over large geographical areas. This proves beneficial
in many situations, for example when applications require more resources than
locally available, or when work needs to be balanced across multiple computing
facilities [16]. With the industrial and scientific communities tackling increas-
ingly larger problems, grid computing is becoming a common infrastructural
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solution, and is starting to replace traditional parallel environments, at least in
terms of offered computational power (see Appendix A).

However, key features of grids are still ardent research subjects, e.g., sophis-
ticated resource planning strategies or the adaptation of existing applications
to grids. Many of these features require in-depth knowledge of the behavior of
grids, and realistic performance evaluation and comparison of existing and new
approaches.

Grid performance evaluation raises very different challenges for the procedure
and the adoption aspects. Also, the motivation of an evaluation may have a
major impact on the approach that is taken during the evaluation itself. The
various existing approaches to tackle the performance evaluation problem in the
area of parallel environments [27,51] cannot be directly applied in grids, due
to the grids’ dynamic and large-scale nature. Other grid-oriented approaches,
though valuable, either do not use realistic workloads [10] or use non-validated
measurement data as input for the evaluation process [37], and cannot be used
for reliable system comparisons and evaluations, cf. [8,24,12]. Furthermore, the
actual adoption of an evaluation procedure as a benchmark is a community ap-
proach which requires the agreement of a sufficient number of grid stakeholders;
this hinges on the existence of one or more established procedures, currently
lacking in grids.

In addition, performance evaluation and comparison require the existence of
workload traces within a grid, which at the moment simply do not exist. The
main difficulty in obtaining such traces is not only one of obtaining access to data,
but also that required data may not exist. In a recent analysis of (incomplete)
traces obtained from grid environments [30], we observe that these traces log
partially or even not at all information regarding the actual job origins (e.g.,
when users are mapped randomly to pools of usage certificates), the resource
consumption (e.g., when the local resource managers do not log the actual CPU,
I/O, and bandwidth consumptions, or when information about jobs running
across grid sites cannot be correlated), job the coupling/dependencies (e.g., when
job batches or jobs belonging to an organization are not recorded as such), or the
failures. To ameliorate the lack of grid traces, synthetic, that is, generated on the
foundation of an appropriate model, workloads are used for evaluation purposes.
The main and, in fact, very hard problem is to create a good model without
having any workload instances (i.e., real system traces). While there exist good
models in the parallel processing community, there is no comprehensive workload
model for grids available.

This paper aims to provide a starting point for grid performance evaluation
from a practical point of view: a selection of requirements, objectives, and guide-
lines (including both well-known metrics from parallel workload modeling and
newer, more grid-specific measurement gauges) is suggested to give an overview
of what could be considered within a Grid performance evaluation system, and
steps towards a common framework for adoption in real-world environments for
the purpose of verification, analysis and benchmarking are shown. Our main con-
tribution is thus twofold: (1) our approach is the first to deal programmatically
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with different critical grid modeling issues like co-allocation, job flexibility, data
management, and failures; and (2) we gauge our approach as a standardization
effort, by providing the necessary theoretical framework, and an early toolset to
work with it.

The remainder of the paper is organized as follows. Section 2 presents three dif-
ferent evaluation scenarios. Section 3 analyzes a set of typical performance objec-
tives which are commonly used in grids. Sections 4 and 5 focus on the features and
requirements for modeling workloads for grids. While the modeling aspects in Sec-
tion 4 contain strong links to existing work from the High-Performance Comput-
ing (HPC) community, Section 5 discusses in detail a selection of six grid-specific
aspects: computation management, data management, locality/origin manage-
ment, failure modeling, and economic modeling. Section 6 describes the Grench-
Mark system, its current status, and the foreseen extensions towards the addi-
tional requirements presented in this paper. The discussion in Sections 4 and 5
acts as a guideline for added functionality to the GrenchMark framework. We
conclude with a brief summary and a preview of our future research in this area,
in Section 7.

2 System Scenarios

The common definition and proposed visions for grids go in the direction of a
large-scale heterogenous computing platform with varying resource availability.
This inherently dynamic and distributed nature is the root of the specific problem
of evaluating grids: the sheer size and the dynamic behavior of grids renders
difficult the evaluation of their performance. In this context, two questions need
to be answered: 1. What is the actual scenario for which performance evaluation
is done? and 2. What kind of performance objectives are sought after?

Clearly, a single evaluation system will not be able to fulfill all needs. For
example, performance evaluation in simulated systems can be done by restrict-
ing the environmental description to a few1 parameters (the number of clusters
and of machines, the machine’s speed distribution etc.) and allows the analy-
sis of long-term usage as well as non-typical configurations. Simulated systems
are, however, restricted to whatever the simulation designer has considered, and
their results should not be seen as actual performance values, but more as in-
dicators towards them. In contrast, the use of an actual grid system allows the
derivation of current system data on the performance, stability, and usability
of a real installation. Still, long-term assessments are inherently difficult, due
to the non-exclusive access to the system itself or its configuration. Moreover,
the evaluation produces results that are difficult to reproduce, even in the same
scenario. To avoid the disadvantages of the previous two scenarios, emulated sys-
tems come into place: here, a high-accuracy simulation is done, and performance
evaluation is occurs just like in a real environment. This, of course, requires the
representation of the simulated infrastructure to match as closely as possible the
1 Of course, the description of the simulation environment can also influence evalua-

tion, but this discussion is out of the scope of this work.
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technical description of the system to be emulated, which leads to a trade-off
between the achieveable precision and the evaluation speed. Furthermore, the
emulated environment needs to run itself on top of a large-scale distributed sys-
tem. While the theoretically reachable precision of the evaluation results is very
high, it is extremely difficult to prove the correctness of the emulation due to
the combinatorial explosion of parameter values that can be varied.

We assume that all three approaches, simulation, emulation, and real system
testing, are of significance in their domain. Thus, a performance evaluation sys-
tem should ideally (a) support all of them and (b) allow a comparison of results
on a technical level.

Nevertheless, the applied workload and job models, as well as the underlying
grid model, are crucial for the evaluation. It is clear that, in a scenario in which
a scheduling and management strategy for grids is quantitatively analyzed, the
applied workload and the examined grid configuration are highly dependent. If
for instance the requested load extends the system’s saturation level, more and
more jobs will be queued over time: the wait time for users will increase over
time to an unrealistic level, which destabilises many performance objectives and,
in the end, makes the results from such evaluations mostly useless. As a counter
example, if the requested load is significantly lower than the saturation level,
the scheduling problem degenerates to trivial job dispatching. Due to the strong
dependence between a grid configuration and the applied workload, evaluation
is very complex, as it is not possible to re-use the same workload for grid config-
urations which deviate largely in performance. One solution to the problem can
be the dynamic adaption of workload generation based on the grid performance.
However, such an approach has high impact on the performance objectives that
can be assessed. We will investigate this problem in more detail in Sections 4
and 5.

3 Performance Metrics

The evaluation of the Grid performance highly depends on the given scenario
(see Section 2), and the provider and user objectives. However, some typical
standard evaluation metrics exist that can be applied in most cases. In this
section we shortly present many of these metrics, and propose a selection of
metrics for general purpose use.

Although we base the evaluation of grid systems on the seminal work in the
context of parallel production environments by Feitelson et al. [25,24], our nota-
tion is in some cases modified according to the standards defined for operational
research scheduling by Graham et al. [28]. For an overview of this notation we
refer to [43]. Rooting our work in these approaches enables us to build on estab-
lished results, and to have a good base of comparison with previous performance
evaluations.

Within the Grid we assume m machines2 and a job system τ . Within the
system, each job j ∈ τ can further be divided into tasks k ∈ j. The number of
2 Note that this term is used loosely and may specify any type of resource.
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jobs in the system is | τ |; the number of tasks for job j is | j |. Sometimes,
such tasks are modeled as individual jobs that are connected by precedence
constraints; especially then, the tasks of a job j are not executed in parallel.

Each job j and all its corresponding tasks k ∈ j are released at time rj . Grids
typically work in an online scenario, that is, rj is not known in advance for most
jobs and tasks. As they arrive, jobs are scheduled to run, that is, a suitable set
of resources is allocated for the future job run. For rescheduling capabilities, we
define the final schedule for a period of time T as the schedule of all jobs arriving
during time 0 and time T in which no job can be further rescheduled.

3.1 Time-, Resource- and System-Related Metrics

Within the final schedule S, the task k ∈ j is completed at time Ck(S). Hence,
job j leaves the system at time Cj(S) = max

k∈j
Ck(S). The processing time of

task k ∈ j is pk. Hence, the processing time pj of job j can be calculated by
Cj(S) − min

k∈j
(Ck(S) − pk). Besides the maximum lateness Lmax = max

j∈τ
(Cj(S) −

dj), which may be used as an analysis criterion (and needs to be minimised for
grid systems), the number of tardy jobs TJ =

∑

j∈τ∧Cj>dj

1 also is of interest,

as it provides information about the number of user requests that could not be
fulfilled.

The resource consumption RCk of a task is defined by the product of the
corresponding processing time and the used machines (RCk = pk · mk). Conse-
quently, we can define the resource consumption of a job by RCj =

∑

k∈j

RCk and

of a whole schedule by RC(S) =
∑

j∈τ

RCj . Using this total resource consumption

we can also define the utilization U of the available machines, see Equation 1.
The resource provider usually3 selects as objective the maximization of the sys-
tem utilization.

U =
RC(S)

m · (max
j∈τ

Cj(S) − min
j∈τ

(Cj(S) − pj))
(1)

With task execution failures being common in grids (see Section 5.6), jobs
may fail during execution, and be run several times before they successfully
complete. We therefore define the true resource consumption RC{k, j}true and
the true utilization U true as corollaries respectively, so that also the failed job’s
consumption of resources is measured. The sum of the resource consumption
of such faulty jobs is defined as the waste metric WASTE = U true − U , which
gives a hint on the dynamic reaction to failures of the grid system and is to be
minimized by the resource owner.

3 In some cases (when certain users or user groups are willing to pay for the utilisation
of a machine or have an affiliation to a certain organisation, etc.), the utilization
might be of less importance.
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As grid systems are belonging to several stakeholders, measuring the fairness
of use is becoming an interesting point. A possible, but rather simple metric
for measuring resource use fairness is the average wait time deviation [46], as
defined in Equation 2; here, the objective is to minimize the AWDT for each
grid stakeholder.

AWTD =
1

| τ |

√∑

j∈τ

(WTj)2 − (
∑

j∈τ

WTj

| τ | )2 (2)

3.2 Workload Completion and Failure Metrics

In nowadays grids, the ability to complete the execution of a given workload
can be even more important than the speedup obtained through this execution4.
Grids require the redefinition of the application failure notion: a grid application
which was not able to finish successfully within its budget generates an applica-
tion failure event upon the first detection of its inability to complete successfully.
For example, an application fails if its requested computation resources cannot
be found, because of having a deadline assigned, but exceeding it, or because of
running out of credits (even during execution). Using this notion, fault tolerance
becomes postponing the application failure as much as possible, while there are
realistic chances of finishing the application, possibly to the point where the ap-
plication finishes successfully. In this section we describe metrics pertaining to
workload completion and failures.

We propose as a metric the workload completion (WC), computed as given
by Equation 3. This helps to identify the limitations of the grid system, and
its maximization should be used as a major objective both by the user and by
the resource owners. However, the workload completion has limitations from the
resource owners’ point of view, as jobs with a smaller number of tasks have a
higher influence on this value. As complementary metrics, we propose the task
completion (TC), given by Equation 4, and the enabled task completion (ETC),
given by Equation 5. Note that in the latter the enabled tasks are those tasks
which can be run, after their previous tasks dependencies have been completed.
The resource owners’ objective is to maximize the enabled task completion. If
the TC and the ETC metrics differ greatly, special care must be taken by the
resource owners to fulfill critical tasks (tasks which are present in the dependency
lists of many other tasks), for example by automatically launching redundant
runs of these tasks.

WC =

∑

j∈τ∧j completed

1

| τ | (3)

4 Note that the jobs executed in grids may be much more complex than the jobs
executed in traditional parallel environments, e.g., workflows vs. batches of jobs.
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TC =

∑

j∈τ∧k∈j∧k completed

1
∑

j∈τ

| j | (4)

ETC =

∑

j∈τ∧k∈j∧k completed

1
∑

j∈τ∧k∈j∧k enabled

1
(5)

We further propose as a metric the system failure factor (SFF), as the ra-
tio between the number of failures observed for all the tasks that were started
and the number of tasks that were started. Note that SFF is equal to 1 − ETC
for a system with no retry capabilities, but may vary greatly otherwise. The
SFF metric may be an effective performance evaluator for the ability of the grid
system to detect and correct failures in the system, e.g., if a resource becomes
unavailable, repeatedly sending jobs to it for execution would increase the num-
ber of observed failures, and prove a lack of dynamic response to partial system
failures. The objective of the resource owner is minimize the value of the SFF
metric. Note that it is possible to have a high value for the waste metric and a
small value for the system failure factor at the same time, for instance when a
few tasks fail, but their failure occurs or is observed after the tasks have been
running for an extensive period of time. Besides this system-oriented metric,
the expected task failure, that is, the probability that a task will fail upon being
run, may be used to evaluate the performance of grids where the availability of
resources is very dynamic [37].

3.3 Metrics Selection

Given the number of proposed metrics, the selection of an appropriate subset is
still an open question. Recent works by Feitelson et al. show that all quantitative
metrics should be reported and considered for a representative systems evalua-
tion [22,23]. Therefore, a scheduling performance evaluation could be done after
considering the detailed resource consumption report, and the following afore-
mentioned metrics: the system utilization U, the workload completion percent-
age WC, the enabled task completion ETC, the wasted resources WASTE, the
system failure factor SFF, and the average wait time deviation AWTD. Besides
that, we also consider the response time AWRT, the wait time AWWT, the
slowdown AWSD, (all average), all used in their weighted versions, by which
all jobs with the same resource demand have the same influence on the sched-
ule quality. Without the weighting mechanism, a job using few machines would
have the same impact on these metrics as a job that uses many machines, see
Schwiegelshohn et al. [45]. To prevent this effect, bounds can be imposed for these
metrics, e.g., bounded slowdown [25]. Specific time-based summaries of the con-
sumption report and the nine metrics are sometimes needed, e.g., for normal,
peak, and clear months, or for week days and week-end. Different providers will
then be able to weight those metrics according to their system use scenario.
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In some cases, metrics need also be computed per user or per user group, in ad-
dition to metrics for the full system. This may be needed, for example, for grids
where the machine providers have different commercial relationships to different
grid participants, and therefore specific objectives for different users or user
groups [3]. An early example is the fair-share utilization concept used in the Maui
scheduler [33], where separate policies are defined for different users and groups.

4 General Aspects for Workload Modeling

Most research on workload modeling for single HPC parallel computers focus on
the characterization of the overall features of workloads. Since the evaluation of
scheduling strategies for parallel computers focus on the optimization of a global
performance metric, like to minimize the overall response time, or the makespan
or to increase machine utilization, a general descriptive model is often sufficient
for workload modeling [39,11]. Here, a collection of probabilistic distributions
are sometimes suitable for various workload attributes (e.g. runtime, parallelism,
I/O, memory). By sampling from the corresponding distributions, a synthetic
workload is generated. The construction of such a workload model is done by
fitting the global workload attributes to mathematical distributions.

In a grid environment the scheduling objectives depend more on the individual
choice of the users. Here, some users may prefer the minimization of cost, while
others accept a longer waiting time in favor of a better quality of service, e.g.
more or faster processor nodes available. Therefore, a different knowledge of
the workload characteristics is needed for a realistic evaluation of grid systems.
Unfortunately, there is currently no actual grid workload trace publicly available,
such that only assumptions can be made about the actual use of grids. For the
time being, it can however be assumed that the current user communities from
HPC sites are at the forefront of using grids. Thus, we argue that modeling
techniques that have been employed for HPC traces can be (at least partly)
applied also in the case of grids, and that existing workload traces taken from
parallel computers at HPC sites may be useful as a first start for modeling grid
workloads. Within the context of this assumption, the 17 HPC traces from the
Parallel Workloads Archive5 provide valuable modeling data. In this section we
present the general aspects of HPC workload modeling.

4.1 User Group Model

While it is clear that the individual users’ characteristics need to be emphasized
in grid environments, the main challenge in the construction of a group and/or
user model is to find a trade-off between two extremes: the summarization in a
general probability model for all job submissions on the one hand, and unique
models which are created for each user based on information about her past
actions on the other. We further address the dimensions of the required modeling
effort.
5 Available at http://www.cs.huji.ac.il/labs/parallel/workload/.
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Fig. 1. Dominant set of groups of size 2 for the KTH workload

We call a set of users or a set of groups dominant if it covers the majority
of jobs and is responsible for the majority of consumed resources (from hereon,
squashed area, or SA). When the size of the dominant set of groups or users
is reduced, e.g., less than 10, the detailed modeling approach may be used.
In [38], the top-5 groups and the top-10 users form dominant sets, respectively,
and unique models for each group and user are created. However, this approach
does not scale for larger communities, e.g., using hundreds of distributions for
different users. In this case, the approach suffers from two significant problems.
First, there is usually not enough information available for all users, as some
only have a few job submissions. Second, the overall number of parameters will
be quite large so that the interpretability and scalability of the model is lost.
As a consequence, a trade-off on the level of user groups is anticipated. That
is, users are clustered into groups with similar but distinct submission features.
This user group model allows to address the user submission behaviors while
maintaining simplicity and manageability.

In [48] such a user group model has been proposed which clusters users into
groups according to their job submissions in real workload traces. The analysis
showed that for the examined workload, there exists a dominant set of groups of
size 4. If the clustering would be even more pronounced, a dominant set of size 2
can be found, with the first group covering more than 95% of the squashed area
(see Fig. 1).

In the presented research work, the analysis and modeling was restricted to
the job parameters run time and number of requested processors which were
sufficient for single parallel computer scheduling. However, modeling on the level
of these groups provides the possibility to assign additional workload features,
e.g. necessary for grids, to these groups. Some examples of such additionally
required features are discussed in Section 5.
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Fig. 2. Job arrivals during the daily cycle

4.2 Submission Patterns

The users of grids have their own habits to request resources and to submit jobs,
which is referred to as patterns. Here, we take the daily cycle as an example.
The daily cycle could refer to the habit of submitting more jobs during day time
than night, and to the considerably distinct submission distributions during the
day and the night. Fig. 2 shows the daily arriving patterns of jobs, for the
KTH workload. There is an obvious daily cycle: most jobs arrive during the day
and only a few of them at night. Obviously, these patterns might blur in grid
environments because of users living in different timezones [17]; however, they
are still important to the local sites (and the local schedulers).

Similar patterns can be found through the week, e.g., users tend to submit
more jobs during the week-days than during the week-end, or year, e.g., an
outstanding increase in the number of job submissions may be observed during
several months of the year [38], or during short periods [9].

These effects can be described by classical statistical methods. For exam-
ple, Downey [13] modeled the daily cycle using combined Poisson distributions;
Calzarossa [7] found that an eight-degree polynomial function is a suitable repre-
sentation of all the analyzed arrival processes. However, this does not necessarily
hold because of dependencies within the workload (see [19,18]), e.g. sequential
dependencies.

Therefore, temporal modeling is an important aspect. For example, one of
these temporal effects is repeated submission [19], namely, users do not submit
one job once but several similar jobs in a short time frame. Even if the succes-
sively appearing jobs are disregarded, temporal relations can still be found, as
shown in [18]. It can be seen that the successors of jobs with a large parallelism
value also tend to require more nodes.

Such temporal characteristics are useful for the many grid scheduling scenar-
ios, including resource reservation and load balancing. The application of vari-
ous techniques, e.g., stationary and non-stationary analysis as well as stochastic
processes, provides a good representation of the temporal relations in users’

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



242 A. Iosup et al.

submissions. In [47], correlated Markov chains are used to model the temporal
characteristics of job sequences. The idea to correlate the Markov chains is that
since the job parameters are correlated, the transformations of their correspond-
ing Markov chains are related as well. In [41], a model based on Markov chains
is used for the number of jobs consecutively submitted by a user during a single
submitting session.

Besides that, analysis has shown that users also tend to adapt to the perfor-
mance of the available system. That is, users may change their job submissions
according to the available online information, e.g. system states and quality of
services as shown in [20,21]. Therefore, it is reasonable to model the users’ sub-
missions with the considerations of such feedback behaviors. Thus, the workload
generation should be coupled to the system with a feedback loop.

In many cases, the explicit feedback tags are missing; therefore it is not feasible
to determine whether feedback factors do affect job delivery. For example, if a
user seldom delivers jobs at noon, it might result from a regular lunch at this
time, or has a real feedback implication: the user finds many waiting jobs at
noon and then stops his or her submissions.

However, it is possible to elicit whether feedback factors affect a job’s profile
(like parallelism and runtime), since the job profiles can be compared along
different situations of influential factors. To this end, the correlations between
the feedback factors and the job attributes should be analyzed.

5 Grid-Specific Workload Modeling

In this section we present the grid-specific workload modeling requirements. Due
to the lack of publicly available traces6 of real grids operation, we restrict our
presentation to the main characteristics that could become subject of near-future
modeling.

5.1 Types of Applications

Grid jobs may have a complex structure which may be handled only with ad-
vanced support from the submission middleware. From this point of view, we
consider two types of applications that can run in grids, and may be included
in generated grid workloads: i. unitary applications, which include sequential or
parallel (e.g. MPI) applications and at most require taking the job program-
ming model into account (launching additional naming or registry services, for
example) and ii. composite applications, which include bags, chains or DAGs of
tasks and additionally require special attention by the grid scheduler regarding
inter-dependencies, advanced reservation and extended fault tolerance.

6 There is, of course, one public trace of a HPC site participating in the EGEE/LCG
production grid; however, due to the fact that only the batch system log is avail-
able, but no information whatsoever on the grid infrastructure layer, this workload
degenerates to a standard HPC site trace.
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Note, in the remainder of this section we use the term application at some
points. By this we understand a certain user problem that has to be calculated.
In this sense, application and job are the same.

5.2 Computation Management

Another grid-specific problem is the processor co-allocation, that is, the simulta-
neous allocation of processors located at different grid sites to single applications
which consist of multiple components. Co-allocation models need to describe
the application components and the possible resource co-allocation policies. To
model the application components, we need to define the number of compo-
nents (NoC ) and the component size (CS ), and furthermore must allow multiple
configurations, such that sets of (Noc, CS) tuples or even ranges can be then
specified. In practice, the typical configurations for processor co-allocations are
selected such that they fill completely clusters of resources, to keep the inter-
cluster communication low [5]; load-balancing across the number of sites can
also be used for jobs requiring large numbers of resources [4]. Obviously, there
are three possible resource co-allocation policies: 1. fixed, where each job has
predefined resource preferences; 2. non-fixed, where jobs have no resource pref-
erences at all and 3. semi-fixed, where only some job components require certain
resources, whilst others can be dispatched at the scheduler’s discretion. Experi-
ence with co-allocation in a real environment is described in [42,31]. However, no
statistical data regarding the use of co-allocation by real communities of users
is publicly available.

In addition, job flexibility, that is, the (in)ability of a job to run on a changing
number of resources, raises many more problems in grids than in traditional par-
allel environments. Flexibility models need to describe the flexibility type and
(possibly) the number and dynamics of computing resources that may be allo-
cated to a job. There are four possible flexibility types: rigid, moldable, evolving,
and malleable [25]. To model the application flexibility, at least one job shape
(cf. [12], a tuple comprising the minimum and maximum number of comput-
ing resources, the configuration constraints, e.g., n2 processors, and the resource
addition / subtraction constraints) must be defined per job. Statistical data
for moldable jobs for a real supercomputing community is given by Cirne and
Berman [12]; experiments with moldable applications in a real environment have
been presented by Berman et al. [2].

Finally, one has to consider that, in production grid environments, there often
exists a certain background load : many processing resources are shared with the
grid by a local community, and may have local jobs running outside the grid
resource management. Also, it is expected that usage of resources must differ
greatly depending on the project stage of a certain user community which gener-
ates the usage. Considering a long-term project, there might be a startup and a
transition phase, in which infrastructure and application test are produced, an
execution phase, which contains the main body of work for the project, and an
ending phase, in which jobs with characteristics and submission patterns totally
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different from the previous stages might appear. From such a projects’ point of
view, the modeler needs to be able to characterize each individual stage.

5.3 Data Management

We now discuss the modeling requirements of data management. Grid jobs need
input data for processing, and generate output data to make the computed
results persistent. The data needs to be present before7 the job can start, and
the stored results must be fetched after the job has finished, or streamed as they
are produced. Hence, the modeler needs to specify at least the identifiers of the
input and of the output files. For composite applications (see Section 5.1), it is
also necessary to specify data dependencies between the jobs, that is, which of a
job’s output files represent another’s input, and which input files are shared by
several jobs.

Similarly to specifying an estimated computation time or size for their ap-
plications, it would be desirable that users specify an estimation of the needed
input and output space within the job description. Also similarly to the esti-
mated/actual runtime discrepancies, the information specified by the user may
not be reliable and available, e.g., the user provides imprecise estimations or the
job determines result data sets during runtime. We argue that such information
can be added easily, as many applications have well-studied I/O requirements,
both when running individually, or when running in batches [49].

For many applications, data is obtained from remote large-scale storage de-
vices, usually with very different access times than the locally available data.
Additionally, unexpected difficulties can occur regarding the access time for files
which appear to be locally available, i.e., files might seem to be accessible on
a local filesystem but essentially have been moved to tertiary storage. This is
especially the case for HSM8 systems, where the restoration of files can take a
long time. In this case, a model should provide detailed information about the
source and destination storage, for the input and output files, respectively.

Sometimes, the same file is replicated on several storage sites in the grid.
Modeling this aspect can be reduced to specifying lists of input and/or output
files locations for each unique file identifier. Note that the information in the list
may need to be combined with information on the data storage device.

5.4 Network Management

When introducing data management into workload models for grids, it is obvious
that also networks between sites have to be considered. The available bandwidth
for transfers of input or output data is limited and thus has an impact on the
data transfer time. This can influence the decision which site is used for a cer-
tain computation and whether data has to be replicated to this site in order
7 There also exist I/O models that introduce remote data access with read-ahead

and/or caching mechanisms, but these are out of the scope of this work.
8 Hierarchical Storage Management.
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to run the job. There are also other application scenarios in which network
management is a critical feature, like the management of bandwidth in Service
Level Agreements between remote resource allocations, e.g. for parallel compu-
tation, large-scale visualization, or consistent data streaming from experimental
devices [26]. Therefore, the end-to-end bandwidth between different nodes in the
grid must be described and managed.

Ideally, the total bandwidth of every end-to-end connection would be known
and dedicated reservations could be enforced. However, this is often not sup-
ported: in IP networks, end-to-end connections are virtual (since the packet
route can change) with a maximum weakest-link-in-chain bandwidth. Hence, in
many realistic scenarios often no precise information about the service quality
between two ends is available. However, there are means which can ameliorate
this situation. For example, the NWS system [52] measures and records the
available bandwidth between two nodes periodically. This data is then used to
predict the expected average bandwidth in the future based on historic patterns.
In cases where reservation of bandwidth is not feasible, there are still possibilities
to shape network traffic. However, abiding agreements on an certain QoS level
cannot be settled normally. Regarding network latency, which is important for
applications requiring large numbers of small network packets (e.g. streaming),
the situation is akin.

Besides that, there is always a certain amount of background (not grid
workload-related, that is) traffic on a network, which lowers both bandwidth and
latency. However, due to the lack of reservation capabilities, the impact of back-
ground traffic is not predictable at all. Even when predictions expect high net-
work availability and the known future utilization is low, a single data-intensive
file transfer can suddenly produce a high, previously unexpected network load.

On the whole, realistic network depiction in workload models is difficult and
will have to be subject to further research; first steps into the direction of grid-
specific data staging and network modeling have been taken in the SDSC HPSS
work [44] and Tan et. al [50]. However, it would be useful that a grid performance
evaluation system provides support for network resources and consequently for
network related workload requirements in order to have a testing platform for
future models. Such an extension would include the addition of network informa-
tion and requirements to jobs as well as evaluated grid configurations on which
the workload is executed.

5.5 Locality/Origin Management

Another requirement for some evaluation scenarios in grids is the realistic mod-
eling of the origin of job submissions. While some may argue that grid workload
is created decentralized and on a global scale, many usage scenarios still need in-
formation about the locality of job creation. A typical example of such a scenario
is the collaboration between HPC centers which want to share their workload
to improve quality of service to their local user community. While the sites may
agree on sharing the workload, it is quite common that certain policies or rules
exist for this sharing (balancing between local and "foreign" users, for instance).
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Other examples can be conceived, in which the submitting user plays a role,
as he may belong to a certain virtual organization and may have subsequently
special privileges on certain grid resources [33]. Support for these scenarios can
be helpful for P2P grids, where resource access is mostly user-centric and not
dependent on a particular site policy.

5.6 Failure Modeling

Due to the natural heterogeneity of grids and their sheer size, failures appear
much more often than in traditional parallel and distributed environments, occur
at infrastructure, middleware, application, and user levels, and may be transient
or permanent. Furthermore, different fault tolerance mechanisms can be selected
by the user, for each job or workflow in the workload. Hence, the modeler must
use a dynamic grid model, combined with a realistic failure model. Then, she
must take into account the fault tolerance mechanisms, i.e., the failure response
mechanism selected by the user or employed automatically by the system. Fur-
thermore, experiments such as comparing two middleware solutions may require
deterministic failure behavior.

Failures in the grid infrastructure may be caused by resource failures (e.g.
node crashes), or by other resource outages (e.g. maintenance). To model re-
source failures, the traditional availability metric, mean-time to failure [34], the
length of failure (failover duration), and the percentage affected from the re-
source, must be specified for each resource. To model other resource outages,
the following parameters must be specified: outage period, announced and real
outage duration, percentage affected from the resource affected, and (optional)
the details of the failures, e.g., which resources or resource parts did fail [8].

Failures in the grid middleware may have various causes. One source of errors
is the scalability of the middleware; another is due to the middleware configura-
tion: according to the survey in Medeiros et al. [40], 76% of the observed defects
are due to configuration problems. For modeling purposes, starting points could
be static mechanisms like mean-time to failure, and the length of the failures,
again.

Regarding failures in grid applications, it has been observed by Kondo
et al. [37] that jobs submitted during the weekend are much more error-prone.
Therefore, an application failure model should contain a fault inter-arrival time
distribution.

User-generated failures can be modeled similarly to the distribution of the
jobs’ inter-arrival time. Faults due to user-specified job runtimes have been a
topic of interest in parallel workload modeling, other issues like missing or expired
credentials and disk quota overrun [10,14,31], invalid job specifications [36] or
user-initiated cancellations [11] are other sources of user-generated failures.

To respond to the numerous sources of failure, various fault tolerance schemes
may be applied in grid, and possibly need to be modeled (see for example [29]);
the technique type then needs to be specified for each job or workflow in the
workload, coupled with the specific technique parameters.
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5.7 Economic Models

There is a lot of discussion on the connotation of access to grid resources not
being free of charge [35,15,6]. Especially the support for commercial business
models will include support for economic methods in grids. Therefore, it is clear
that the allocation of jobs to resources may incur cost in certain grid scenarios.
Adopting cost has many implications to the allocation of jobs to grid resources:
providers will require the implementation of pricing policies for the access to
resources. To the same extend, users will need support for managing budgets for
job executions and preference constraints on how jobs should be executed (e.g.,
price vs. performance). First economic models have been published by Ernemann
et al. [15] and Buyya et al. [6].

While it is not the task of an evaluation system to tackle the technical impli-
cations of economic models, like whether cost occurs in virtual credits or actual
money, it can be conceived that there are requirements to model budget infor-
mation for either jobs, users or virtual organizations. This is even necessary if
grids are modeled in which users or groups have a certain quota on resources; a
precondition to optionally support budget constraints in the evaluation system.

Another step could be the support for different optimization goals that are
economy-related. For instance, users may prefer a cheaper (in terms of cost)
execution of a job in contrast to an early execution. This, however, requires
the extension of the performance metrics to include cost-related parameters,
in a possibly parametric fashion. For example, in Ernemann et al. [15], grid
users provide parametric utility functions, and the systems performs automated
request-offer matching.

6 GrenchMark: A Framework for Grid Performance
Evaluation

GrenchMark is a framework for synthetic grid workload generation, execution,
and analysis of execution results. It is extensible, in that it allows new types of
grid applications to be included in the workload generation without a change in
the design, parameterizable, as it permits the user to parameterize the workloads
generation and submission, and flexible, as it can be used for analyzing, testing,
and comparing common grid settings. GrenchMark is currently developed at
TU Delft9.

6.1 Current Features

In our previous work we have shown how GrenchMark can be used to generate
and submit workloads comprising unitary and composite applications, to replay-
scale-mix traces from the Parallel Workloads Archive, and in general to analyze,

9 A reference implementation is available from
http://grenchmark.st.ewi.tudelft.nl/
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test, and compare common grid settings [32,31]. Therefore, we only point out
prominent features, and invite the reader to consult our work.

GrenchMark offers support for the following workload modeling aspects.
First, it supports unitary and composite applications as well as single-site and
co-allocated jobs. Second, it allows the user to define the job submission pat-
tern based on well-known statistical distributions. Third, it allows the workload
designer to combine several workloads into a single one (mixing). This allows
for instance the definition of separate user groups (see Section 4.1), further
combined into a single grid workload. Furthermore, it supports the generation,
storage, modification, replay and analysis of workloads based on user-defined
parameters.

6.2 Extension Points

GrenchMark has been designed with an incremental approach in mind, and
facilitates future extensions at many levels.

Based on the dynamics of the grid workload generation process, we iden-
tify two types of grid workload generation: statically-generated workloads, and
dynamically-generated workloads. Statically-generated workloads do not change
at execution time with modifications in the execution environment. Currently,
GrenchMark incorporates rather simple models (statistical distributions for
submission patterns, for example, without correlations to other parameters or
feedback functionality). However, due to the extensibility, more complex notions
such as temporal models and parameters correlation (see Section 4.2), data and
network management (see Sections 5.3 and 5.4), or locality/origin management
(see Section 5.5) can be easily adapted. To introduce support for dynamically-
generated workloads into GrenchMark, the framework design needs to be ex-
tended with the ability to react to system changes for both workload generation
and submission. Since the reference implementation already uses feedback for
the submission process (for composite job submission and reacting to execution
errors [31]), the implementation of such functionality seems feasible and, as such,
we plan to address this issue in future work.

From the perspective of operating in a dynamic system, GrenchMark can
already respond to the situation when the background load can be extracted from
existing traces and, as such, is known, and offers adequate modeling capabilities.
For handling the background load as a separate workload, an extension is still
required. For a variable background load in a real environment (the most difficult
case), the desired load could, for example, be controlled by coupling Grench-
Mark to existing monitoring services. Then, dummy jobs can be launched to
ensure a fixed level of background load during all experiments, as in Mohamed
and Epema [42]. However, the modeling itself remains an open issue.

Another important extension issue is the use of GrenchMark in different
system scenarios (cf. to Section 2). We have already used GrenchMark in real
environments. For simulated environments, the reference implementation needs
to be extended to event-based simulation, which is work in progress.
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Summarizing, GrenchMark provides a framework for Grid performance
evaluation which already contains basic modeling techniques, but needs to incor-
porate more sophisticated modeling capabilities in order to generate and analyse
Grid workloads.

7 Conclusion

In this work we have presented an integrated approach for generic grid perfor-
mance evaluation. For this purpose, we have first presented several grid per-
formance objectives, and made a selection for the general case. We have then
combined traditional and grid-specific workload modeling aspects, and synthe-
sized the requirements for realistic grid workload modeling. Finally, we have pre-
sented an existing framework for workload generation and analysis and pointed
out extension points on both modeling and infrastructure issues.

In order to validate our work with experimental results, we are currently work-
ing on extensions to the GrenchMark framework to accommodate the changes
detailed in Section 6.2 with the goal to have a powerful, yet extensible frame-
work for workload modeling and analysis. We hope that this work will become
the basis for a common performance evaluation framework for grid environments.
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A Grid vs. Parallel Production Environments

In this section we make a brief comparison of offered computational power for the
parallel production environments with traces in the Parallel Workloads Archive,
and Grid systems for which we have analyzed partial traces in our previous
work [30].

Table 1. Grid vs. Parallel Production Environments: processing time consumed by
users, and highest number of jobs running in the system during a day. The ”Type”
column shows the environment type: PProd for parallel production, or Grid.

Environment Type Data Source CPUYears/Year Jobs Spike
NASA iPSC PProd [1] 92.03 876
LANL CM5 PProd [1] 808.40 5358
SDSC Par95 PProd [1] 292.06 3407
SDSC Par96 PProd [1] 208.96 826
CTC SP2 PProd [1] 294.98 1648
LLNL T3D PProd [1] 202.95 445
KTH SP2 PProd [1] 71.68 302
SDSC SP2 PProd [1] 109.15 2181
LANL O2K PProd [1] 1,212.33 2458
OSC Cluster PProd [1] 93.53 2554
SDSC BLUE PProd [1] 876.77 1310
LCG 1 Cluster Grid [30] 750.50 22550
DAS-2 Grid [30] 30.34 19550
Grid3 1 VO Grid [30] 360.75 15853
TeraGrid Grid [30] n/a 7561
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Fig. 3. Running jobs during daily intervals for grid and parallel environments: (a)
comparative display over all data for grid and parallel environments; (b) comparative
display for data between June 2005 and January 2006, for grid environments only.

Table 1 depicts the processing time consumed by users (averaged and ex-
pressed in CPUYears/Year), and the highest number of jobs running in each
environment during a day; Figure 3 shows the number of running jobs in all the
environments from Table 1 as a function of time.

The users of current grid systems have already consumed more than 750+
CPUYears/year in a cluster (the RAL cluster in CERN’s LCG), and 350+
CPUYears/year in combined use by one VO (ATLAS VO in Grid3). Spikes in
number of jobs running in a system can be around or over 20000/cluster (DAS-2
and LCG RAL cluster, respectively). The number of jobs completed per day in
current grid systems is on average over 4000 jobs/day in LCG’s RAL cluster,
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and 500 to 1000 for Grid3 and DAS2, rates sustained for periods spanning more
than one year [30]. By comparison, large parallel production environments offer
50 to 1300 CPUYears/year, have on average less than 500 completed jobs/day,
and spikes below 5500 jobs (results hold for each individual parallel production
environment trace from the Parallel Workloads Environments; note that LPC
EGEE and DAS FSx are not parallel production environments, but clusters in
grid environments).
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