
10. Special Finite Elements for Continua

10.1 Requirements for Continuum Finite Elements

The search for finite elements which can be applied to arbitrary problem
classes within solid mechanics has a long history. This can be seen from the
numerous scientific papers devoted to this topic. Main target of a development
of finite elements is summarized in the following enumeration.

1. Locking free behaviour for incompressible materials,
2. good bending performance,
3. no locking in thin elements,
4. no sensitivity against mesh distortions,
5. good coarse mesh accuracy,
6. simple implementation of nonlinear constitutive equations and
7. efficiency (e.g. few necessary integration points).

These points result from different demands and can also lead to different
element formulations.

The first point is associated with the numerical simulation of a special
problem classes which include in solid mechanics rubber like materials and
elasto-plastic material equations in the framework of J2-plasticity. During
the last years, different special finite elements were developed for this ap-
plications. This results from the fact that classical low order displacement
elements, which were described in Chap. 4, are not sufficient. The constraint
related to the incompressible behaviour leads even for geometrical linear el-
ements to locking, see e.g. Braess (2007), Zienkiewicz and Taylor (1989) and
Hughes (1987). Finite elements which are suitable for incompressible materi-
als will be described in detail in Sects. 10.2, 10.4 and 10.5.

The second and third points are of significance when three-dimensional
solid elements shall be employed to solve beam- or shell problems since beam
and shell structures are often dominated by bending behaviour and are, by
construction, thin in one or two spatial coordinated. Using three-dimensional
elements allow a simple implementation of three-dimensional constitutive
equations which is not so easily possible when classical beam or shell models
are used. Furthermore, the treatment of finite rotations are avoided by such
formulations, see Sect. 9.4.
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The fourth point is essential when modern methods for mesh genera-
tion are employed. These methods lead for arbitrary geometries to so-called
unstructured meshes which consist of finite elements shapes with arbitrary
geometry, see e.g. Figs. 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15. Another
source for the distortion of finite elements is the change of the nodal coor-
dinates during a nonlinear simulations which can lead to severely deformed
finite elements.

The fifth point is related to the fact that in real engineering applications
often three-dimensional components have to be analysed which size and com-
plexity cannot be modeled using a converged mesh, especially when the simu-
lation is nonlinear. Hence there is still need for elements which depict a good
accuracy, even when used within a coarse mesh. Of course, the importance
of this point will diminish with the increasing computing power, but at the
moment it is still of concern.

The sixth point follows from the fact that more accurate mathematical
and physical models have to be used within the simulation of nonlinear engi-
neering structures. Within this process, new complex nonlinear constitutive
equations have to be implemented. Here a simple interface to the finite el-
ement should support the user in order to efficiently change existing finite
elements and to be able to implement new complex constitutive equations.

Finally, it can be mentioned that efficiency is not only related to speed
of the element formulation but also to the memory requirement. The latter
demand is essential when e.g. inelastic problems with several hundred thou-
sand or millions of finite element have to be solved within a given time frame.
This speed of the element formulation is essential when iterative solvers are
applied since in that case the time for the computation of residuals and tan-
gent matrices is of the same order as the time used by the solver within one
iteration.

New developments show that finite elements with a high order of inter-
polations (so-called p-version of finite elements) can be applied successfully
to finite deformation problems for rubber-like materials, see Heisserer et al.
(2007).

Low order finite elements have been proven to be robust for many non-
linear simulations. This has to do with a low regularity of the analytical
solution which can exclude higher order interpolations, see also Sect. 8.1. A
further fact which supports lower order elements is the sparsity of the global
tangent matrices since low order elements yield a smaller bandwidth. Due
to that the global equation system can be solved more efficiently, which is
crucial for the simulation of large systems. In case of numerical simulations
which include inelastic material behaviour, one or more history variables
have to be stored per integration point. As an example, a problem with J2

plasticity is considered to obtain the variation of Fe for the ansatz (10.88),
see Sect. 6.2.2, in which six plastic strain components have to be stored
per integration point. This leads to the memory requirement for storing the
history variables when a finite element mesh of a cube with 106 finite el-
ements is used which is shown in Table 10.1. The memory requirement is
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Table 10.1: Memory requirement for history variables for 106 finite elements

Order of interpolation Number of Gauss-points Memory requirement
1 1 56 MByte

1 8 448 MByte

2 27 1512 MByte

larger when iterative solvers or special direct sparse solvers are used, see
Sect. 5.2, but is basically of the same order of magnitude. Hence it is ad-
vantageous to use elements with a minimum number of integration points in
order to optimize memory requirement. Of course, one has to be careful to
compare linear and quadratic or other higher order elements since the ele-
ments with higher order have a higher order of convergence when the solution
has the necessary regularity, see Sect. 8.1. In that case, less finite elements of
higher order can be used which yields results with the same accuracy. (As-
sume that half of the elements per side are sufficient for the discretization
of the above cube, then the memory requirement for the history variables
reduces for quadratic elements to 189 MByte.) However, in order to compare
the finite element discretizazions of different interpolation orders, the total
solution time needed to obtain a result with the same accuracy has to be
considered.

The memory requirement for history variables play an essential role when
explicit integrations schemes are employed to simulate impact or shock prob-
lems. Here only the residual has to be stored, see Sect. 6.1.1, which leads to
the storage of three values per node. In that case, the storage requirement for
the example above is roughly 3 × 1013 = 3.091 × 106 values for the residual
vector. The number of history variables for the correct two-point Gauss-
integration in each coordinate direction amounts to 2×2×2×103 = 8×106.
This is more than double of the storage needed for the residual vector. In or-
der to reduce the overall computing time, all quantities have to be retained in
the main memory. In such case, the storage of the history variables is a major
concern for explicit computations. Hence most of the explicit finite element
codes use specially stabilized finite elements with only one-Gauss-point. This
formulation will be discussed in Sect. 10.4.

It is well known that the pure displacement element with bilinear or tri-
linear ansatz function has bad convergence behaviour in bending problems,
especially if the length in one direction is a lot smaller than in the other ones,
e.g. for beam or shell structures. Hence special elements were developed for
such problems. With such elements, which is still based on linear ansatz
functions, the convergence order cannot be increased with regard to (8.6)
or (8.10), but the constant C is reduced considerably. Thus the required
accuracy of the finite element solution can be achieved with considerably less
elements. In this connection, the ideal element would be an element which is
well performing for bending as well as for incompressible problems.
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Different formulations have been developed in order to construct finite
elements which fulfil all seven requirements stated above. These are:

– techniques which base on a reduced integration of the integrals leading to
the element matrices,

– stabilization methods,
– hybrid or mixed variational principles which base on complimentary energy

written in terms of the stress field,
– mixed variational principle of Hu–Washizu type,
– mixed variational principle for rotational fields,
– mixed variational principle for special quantities,
– nodally based elements,
– composite or macro formulations for the element,
– higher order displacement elements and
– formulations based on the Cosserat point theory.

In the following, different possibilities are summarized and their differ-
ences are discussed. After that some of the techniques are presented in
detail.

1. Reduced integration and stabilization. The most simple method
is the “reduced integration” of the integrals leading to the finite element
vectors and matrices. It is also very efficient and safes memory for history
data storage since less integration points are used. Underintegration or
reduced integration means that less Gauss points are used for the inte-
gration of tangent matrices and residual vectors than necessary for the
chosen polynomial degree of the shape functions, for first applications see
e.g. Zienkiewicz et al. (1971). This reduced integration was developed to
avoid locking in case of incompressibility. In that case, it is often only
applied to the pressure part of the constitutive equation, see e.g. Malkus
and Hughes (1978), Hughes (1980) and Sect. 10.2. For reduced integration
techniques exist many variants. This stems from the fact that reduced
integration is always associated with a rank deficiency of the tangent
matrices which is cured by different methods. The related methods are
generally known as stabilization techniques. A literature review regarding
this topic is presented in Sect. 10.4, in which stabilization techniques from
Belytschko et al. (1984) are presented. Using the reduced integration to-
gether with stabilization leads to finite elements which fulfil conditions
1, 4, 5, 6 and 7. These elements are locking free in case of incompress-
ibility, they have a good coarse mesh accuracy; they are not sensitive
against mesh distortions and can be used for arbitrary constitutive equa-
tions. The reduced integration provides the most efficient possibility to
compute the element residual and the element tangent stiffness (e.g. for
an eight-node brick element, only one Gauss point is needed). However,
these elements need the choice of artificial stabilization parameters. In
the worst case, e.g. for some bending problems, the finite element solution
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can directly depend on the stabilization parameter, see also Sect. 10.4.
However, new developments show improvements, see e.g. Reese (2005).

2. Hybrid or mixed variational principles. When mixed variational
principles are used as basis for finite element discretization, different pos-
sibilities exist for the construction of the finite element matrices. This
is related to the many different existing mixed forms. Some of them
need conforming displacement fields together with non-conforming stress
or strain fields, others rely on conforming stress fields but allow non-
conforming displacement fields. Theoretical background for linear mixed
methods can be found in Washizu (1975) and in various monographs
and papers, for the mathematical literature, see e.g. Braess (2007) and
Brenner and Scott (2002). For the case of linear elasticity, hybrid elements
where first described in Pian (1964) which has lead to many different fi-
nite element formulations up to now. Within this approach, Pian and
Sumihara (1984) developed a finite element which is efficient and accu-
rate. However due to the need to invert the constitutive equations within
the formulation in order to obtain the constitutive equations in terms
of the stress field, there are only few elements for St. Venant materi-
als known which work for large deformations. A special formulation for
Neo–Hooke materials will be presented in Sect. 10.3.

3. Enhanced strain elements based on the Hu–Washizu principle.
Within the enhanced strain formulations, non-conforming strain mea-
sures are introduced within the Hu–Washizu principle. In a first paper,
Simo and Rifai (1990) developed enhanced strain elements for the geo-
metrical linear theory.

In follow up work, Simo and Armero (1992) and Simo et al. (1993b)
have derived a family of enhanced elements for large deformations and
inelastic constitutive equations based in the Hu–Washizu. This class
of elements is related to the incompatible mode elements which were
developed by Wilson et al. (1973) and Taylor et al. (1976) for linear
problems. The enhanced strain elements fulfil point 1 to 6 of the above
mentioned requirements. Hence they are well suited for all applications.
However, these elements have some disadvantageous. They need a stat-
ical condensation on element level. For the two-dimensional case, this
leads to the inversion of a 4 × 4 matrix and, depending on the formu-
lation, in the three-dimensional case a 9 × 9 or 12 × 12 matrix has to
be inverted. This reduces the efficiency of the enhanced strain elements.
Furthermore, storage of the degrees of freedom belonging to the enhanced
strains needs additional storage on element level, see also the comments
regarding Table 10.1. However, a special efficient formulation has been
developed in Puso (2000). A further point which is still under investiga-
tion is related to the hour-glassing of the enhanced strain elements under
pressure. This fact was discovered by Wriggers and Reese (1994), see also
Wriggers and Reese (1996). A detailed discussion of this phenomenon can



404 10. Special Finite Elements for Continua

be found in Sect. 10.5. Solutions which partly solve this problem are pro-
vided in Korelc and Wriggers (1996a), Glaser and Armero (1997), Reese
and Wriggers (2000), Reese (2005) and Mueller-Hoeppe et al. (2008),
where different methods have been used to overcome the hour glassing,
see also Sect. 10.5.4.

It is not possible to enhanced triangular and tetrahedral elements di-
rectly. The method is degenerate for triangular and tetrahedral elments,
see Reddy and Simo (1995). However, a mixed enhanced approach where
ansatz functions for displacements pressures and volume effects are intro-
duced can be employed to generate low order tetrahedral elements which
do not lock in incompressibility and perform reasonably well in bending,
see e.g. Taylor (1985) and Mahnken et al. (2008).

4. Mixed variational principles for problems with rotational de-
grees of freedom. When not only the momentum is weakly enforced,
but also the moment of momentum, which usually leads, see (3.68), to the
symmetry of the stress tensor, then rotational degrees of freedom can be
introduced as independent field variables. Finite elements which is based
on such formulation were constructed in e.g. Hughes and Brezzi (1989).
Further applications of such variational formulations can be found for
two-dimensional elements which are a basis for shell formulations, see
e.g. Ibrahimbegovic et al. (1990), Iura and Atluri (1992) and Gruttmann
et al. (1992). A three-dimensional technique using co-rotational formula-
tions for three-dimensional continua was developed in Moita and Crisfield
(1996).

5. Mixed variational principles for special quantities. Often prob-
lems have to be considered which include special constraint conditions.
In such cases, it is advantageous to formulate mixed principles which are
tailored to fulfil such constraint conditions. Examples are solid elements
for plates or shells where, for thin structures, the transverse shear be-
comes zero in the limit, see also Chap. 9.4. Another example is related to
contact problems where the zero gap condition introduces a constraint
which has to be considered when deriving associated finite element dis-
cretizations, see Chap. 11. The example standing out in solid mechanics
is the constraint related to incompressibility. This constraint occurs in
rubber elasticity and in case of plastic flow, when the J2 is applied for
mechanical modelling. The related special variational principle relies on
a split of the kinematical variables into volumetric and deviatoric parts,
details are provided in Sect. 10.2.

The related finite elements fulfil point 1, 4, 5 and 7 of the above
mentioned requirements. Due to the kinematical split, the formulation
of the constitutive equations is more elaborate than in the standard
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formulation. This is especially true for large deformations making the
linearizations, needed within the Newton method, more complex.

6. Nodally based elements. Nodally based elements are applied to en-
hance the bending behaviour of tetrahedral elements and to avoid lock-
ing in such cases. Besides a number of other formulations, average nodal
pressures or strains can be used to compute average volumetric strains
or strains at nodes based on surrounding triangles or tetrahedrals, see
Dohrmann et al. (2000) and Bonet and Burton (1998). These types of
element have been stabilized by Puso and Solberg (2006) in order to
alleviate spurious modes.

7. Composite or macro elements. Composite or macro element for-
mulations make use of the possibility to construct finite elements from
subelements which use simplified or special shape functions. These type
of elements can be developed for triangular and quadrilateral shaped el-
ements. For triangles, this type of formulation is, as well as the nodally
based formulation, one of the few possibilities to enhance the element
behaviour, see Guo et al. (2000) and Thoutireddy et al. (2002), since tri-
angles cannot be enhanced in the standard way using the Hu-Washizu

principle. This technique is not often employed for quadrilaterals and
hexahedral elements since the only gain is a more robust behaviour when
the elements are distorted severely at large strain states. Here formula-
tions were developed by Rubin and Jabareen (submitted), based on the
Cosserat point theory, and by Boerner and Wriggers (2008) based on
the standard continuum approach.

8. Higher order displacement elements. During the last years, finite
element discretization schemes were developed which is based on higher
order interpolation. These methods depict very good convergence charac-
teristics for finite hyperelastic deformations, see e.g. Düster et al. (2003)
but also for elasto-plastic problems undergoing small deformations, see
Düster et al. (2002). They can be formulated in an efficient way by hi-
erarchical shape functions using polynomials or NURBS and hence are
competitive with respect to low order approximations. However, still spe-
cial techniques have to be employed for incompressible materials in order
to recover optimal convergence rates also for lower order approximations,
see e.g. Elguedj et al. (2008) and Heisserer et al. (2007).

9. Cosserat point elements. Lately, elements have been formulated
which are based on the Cosserat point theory. This theory formu-
lates the continuum as a point then director vectors are introduced to
account for the deformation modes. For a theoretical background, see
Rubin (2000). This formulation transforms directly into a finite element
discretization, as was shown in Nadler and Rubin (2003). Furthermore,
due to an internal split of the deformation modes it is possible to use lin-
ear analytical solution to stabilize the element such that locking but also
hour glassing does not occur. The element has so far superior behaviour
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problems with hyperelastic materials for undistorted element geometries,
fulfilling points 1-5 and 7, but behaves like pure displacement Q1-element
for distorted meshes, see Loehnert et al. (2005). For initially distorted
element, geometries approaches to improve the element behaviour are
discussed in Boerner et al. (2007) and Rubin and Jabareen (2008).

10.2 Mixed Elements for Incompressibility

Pure is displacement elements are not suitable for problems in which the
constitutive behaviour exhibit incompressibility since they tend to locking.
Locking means, in this connection, that the constraint conditions due to in-
compressibility which are related to the pure volumetric mode (in the elas-
tic case the condition is J = detF = 1 and for plastic flow the condition
Jp = detFp = 1 holds) can only be fulfilled with a considerable stiffening
of the bending modes, see e.g. Hueck et al. (1994). Thus this behaviour is
also called volume locking. Mixed finite element methods can help to avoid
locking, see e.g. Zienkiewicz and Taylor (1989) and Brezzi and Fortin (1991).
There exist different possibilities to construct mixed elements. These are

shortly discussed in the following.

– Method of Lagrangian multipliers. Here the constraint condition
of incompressibility will be directly introduced via the methods of La-

grangian multipliers. Hence the strain energy

W = Winkomp + pG(J) with G(J) = 0 (10.1)

is formulated. The constraint condition is then given for finite deformations
as G(J) = J − 1 with J = is e.g. given by the Mooney–Rivlin mate-
rial (3.112). Finite elements which are based on this methodology have
the disadvantage that contrary to the pure displacement elements addi-
tional unknowns occur. These are the Lagrangian multipliers which are
equivalent to the pressure p. Furthermore, special techniques are needed
to solve the associated incremental equation system for displacements and
Lagrangian multipliers[

KT uu BT up

BT
T pu 0

] {
Δu
Δp

}
= −

{
Ru

Rp

}
(10.2)

which has zero entries in the diagonal. The sub-matrix KT uu follows from
Winkomp while BT up is related to the discretization of the term pG(J). As-
sociated finite element formulations can be found in Oden and Key (1970)
and Duffet and Reddy (1983).

– Perturbed Lagrangian method. To have a greater variability for the
formulation of ansatz functions, the following strain energy function

W = Winkomp + pG(J) − 1
2 ε
p2 (10.3)
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can be introduced. The constraint condition is again given by G(J) =
J − 1. ε > 0 is a perturbation parameter. Choosing now continuous ansatz
function for displacements and pressure, the following incremental equation
system can be derived[

KT uu BT up

BT
T pu − 1

ε Kpp

] {
Δu
Δp

}
= −

{
Ru

Rp ε

}
. (10.4)

Here contrary to (10.2), the incremental displacements and pressures can be
computed using standard equation solvers. The pressures can be removed
from the system by using the Schur complement. This leads to[

KT uu + εBT up K−1
pp BT

T pu

]
Δu = −Ru − εBT up K−1

pp Rp,ε . (10.5)

When discontinuous ansatz functions are used for the pressure variables
then the pressures can be eliminated on element level. This yields an equa-
tion in which the inverse of Kpp is trivial[

KT uu + εBT up BT
T pu

]
Δu = −Ru − εBT up Rp,ε . (10.6)

This system of incremental equations is equivalent to a penalty formulation
for the incompressibility constraint. Note that the solution now depends on
the perturbation or penalty parameter. For small values of ε, the influence
of the constraint condition disappears. For large values of ε, the constraint
is fulfilled more and more exactly but the condition number of the linear
equation system (10.6) will be very large. Then special equation solvers
have to be applied. Papers regarding formulation (10.5) have been pub-
lished for the linear case by Malkus and Hughes (1978) and for the large
strain case of rubber elasticity by e.g. Häggblad and Sundberg (1983) and
Sussman and Bathe (1987).

– Hu–Washizu functional. In this functional, the incompressibility con-
straint is introduced as in the penalty method but is formulated via a
constitutive equations for the pressure. In that case the functional

H(ϕ , p , θ ) = W (Ĉ) +K [G(θ)]2 + p (J − θ) (10.7)

is formulated, see also Sect. 3.4.3. Within the finite element discretization,
ansatz functions are selected for the deformation ϕ, the pressure p and the
volumetric strain θ. G(θ) defines the constitutive equation for the pressure
term, here K is the modulus of compression. The formulation of W (Ĉ) is
provided by (3.122). The associated discretization within the finite element
method was firstly presented in Simo et al. (1985a).

Finite elements which are derived form mixed methods have to fulfil addi-
tional mathematical conditions which guarantee the stability of the element
formulation. This condition is known as BB-condition, named after its in-
ventors Babuska and Brezzi. Its fulfillment is related to the condition that
matrix BT pu in (10.4) is not rank deficient.
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Remark 10.1: With respect to the mathematical formalism, the BB-condition

will be stated here for incompressible linear elasticity. With the short hand notation,

see also Chap. 8 and Eq. (8.3), the incompressible problem cab be stated for mixed

interpolations as

a(u ,η) + b(p ,η) = f(η) ∀η ∈ V (10.8)
b(q ,u) = 0 ∀q ∈ Q

where the different terms are given by

a(u,η) = 2μ
∫
Ω

eD(η) · ed(u) dΩ ,

b(p ,η) =
∫
Ω

pdiv η dΩ , (10.9)

f(η) =
∫
Ω

b̂ · η dΩ +
∫
Γσ

t̂ · η dΓ .

The strain deviator ed(u), see (3.30), has to be applied in (10.9)1 on order to
obtain a clear split between the volumetric strains divu and the deviatoric
part. The incompressibility condition is described by divu = 0 in the lin-
ear case. It is introduced to the mixed form by the Lagrangian multiplier
method.

In the continuous case of solids with sufficiently smooth boundaries, the
displacements are in the Sobolev spaceH1 (v ∈ V = H1(Ω), for a definition
of the spaces see e.g. (8.7)). For the pressure interpolation, the space L2

(p ∈ Q = L2(Ω)) is sufficient since no derivatives of the pressure variable
occur in (10.9). With the finite element ansatz functions for the displacements
uh ∈ Vh ⊂ V and for the pressure ph ∈ Qh ⊂ Q, the discretized form of (10.8)
follows

a(uh ,ηh) + b(ph ,ηh) = f(ηh) ∀ηh ∈ Vh (10.10)
b(qh ,uh) = 0 ∀qh ∈ Qh.

The conditions for existence, uniqueness and stability of the solution are the
ellipticity condition and the BB-condition. The first one requires that the
ansatz functions ηh fulfil for a positive constant α > 0, the condition

a(ηh ,ηh) ≥ α ‖ηh ‖2
V . (10.11)

The fulfillment of the BB-condition means that a constant β > 0 exists so
that

inf
qh∈Qh

sup
ηh∈Vh

b(ηh , qh )
‖ηh ‖H1 ‖ qh ‖L2

≥ β . (10.12)

In case that the ansatz functions fulfil both conditions for incompressible
material then the derived finite element method is stable.
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For general nonlinear applications, there exists no formulation of the BB-
condition. One can apply the condition analogously for the tangent spaces
which belong to a given state of deformation and pressure, as e.g. provided in
(10.2). The BB-condition has the disadvantage that it cannot be formulated
for e single element. One always has to consider a patch of elements, see e.g.
B Brezzi and Fortin (1991) or Braess (2007). A numerical method to show
fulfillment of the BB-condition was derived in Chapelle and Bathe (1993).

10.2.1 Mixed Q1-P0 Element

In this section, a large deformation finite element is derived which is based
on the Hu–Washizu variational formulation. This element is implemented
in many existing finite element codes and uses linear shape functions for
the deformation field related to the deviatoric kinematical variables. Addi-
tionally, constant ansatz functions are applied to discretize the pressure and
volumetric strain.

The continuum mechanical basis for the mixed Q1-P0 element was already
discussed in Sect. 3.4.3. Equation (3.308) describes the weak form with re-
spect to the spatial configuration. Inserting the finite element approximation
into the weak form yields with (4.94)

∇Sηe =
n∑

I=1

B0 I ηηηI . (10.13)

The virtual strain divη, related to the change of volume, occurs additionally
in (3.308). Discretization of the divergence operator leads to

divηe =
n∑

I=1

BV I ηηηI , (10.14)

where the matrix
BV I =< NI ,1 , NI ,2 , NI ,3 > (10.15)

was introduced. The derivatives have to be computed with respect to the
current coordinates, as shown in Sect. 4.2.3.

Furthermore, constant ansatz functions are introduced for the pressure
J p = τvol, see (3.129), and the volume strain θe in Ωe

τvol e = J pe = J p̄ θe = θ̄ . (10.16)

With these interpolations, the weak form (3.308) can be written as

DΠ(ϕ, p, θ) · ηηη =

ne⋃
e=1

n∑
I=1

ηηηT
I

∫
Ωe

{ (BT
0 I τττ iso e + J BT

V I p̄ } dΩ − δPEXT = 0,
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DΠ(ϕ, p, θ) δp =
∫
Ωe

δp̄ (Je − θ̄ ) dΩ = 0, (10.17)

DΠ(ϕ, p, θ) δθ =
∫
Ωe

δθ̄

(
∂W

∂θ
− p̄

)
dΩ = 0 .

The integrals are evaluated with respect to the initial configuration. The
first equation denotes the weak form of equilibrium where τττ are the Kirch-

hoff stresses. The second equation is associated with the constraint equation
Je = θ̄ and the third equation yields the constitutive equation for the pressure
p̄, see also (3.130)1. The last two equations in (10.17) can be fulfilled locally
on element level since a discontinuous ansatz was selected for pressure and
volume strain. Hence both equations can be solved directly. This leads with
(3.12) to

θ̄ =
1
Ωe

∫
Ωe

Je dΩ =
ϕ(Ωe)
Ωe

p̄ =
1
Ωe

∫
Ωe

∂W

∂θ
dΩ =

∂W

∂θ
(θ̄) (10.18)

The discretization of the weak form (3.308) is now completed and summarized
in Eq. (10.17)1 and (10.18). Note that the volumetric variable θ follows simply
from the ratio of the element volume in the current configuration ϕ(Ωe) to
the element volume in the initial configuration Ωe.

10.2.2 Linearization of the Q1-P0 Element

The linearization of (10.17) yields a matrix form of the Q1-P0 element in
which all variables (ϕ , p , θ ) are present. From the first equation of (10.17),
the linearization follows with (3.277), (4.112) and (4.113) as

D2Π ·Δu =
ne⋃

e=1

n∑
I=1

ηT
I [

n∑
K=1

K̄
u
TIK

ΔuK + K̄
p
TI
Δp̄ ] (10.19)

where the matrices

K̄
u
TIK

=
∫
Ωe

[
(∇x̄NI)T ( p̄ J 1 + τ̄ττ iso e )∇x̄NK

+.B̄T
0 I

[
(1 ⊗ 1 − 2E ) p̄ J + cciso ] B̄0 K

]
dΩ , (10.20)

K̄
p
TI

=
∫
Ωe

BT
V I J dΩ .

occur. The linearization of the second equation (10.17) is derived with the
Jacobi determinant, see (3.330), and its associated discretization, see (10.14),
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Δθ =
1
Ωe

n∑
K=1

∫
Ωe

BV K J dΩΔuK . (10.21)

The third equation of (10.17) yields the linearization

Δp̄ =
∂2W

∂θ2
Δθ . (10.22)

Inserting now (10.21) in (10.22) and using this result in (10.19) and (10.20)
leads to the elimination of the variables for pressure Δp̄ and volumetric strain
Δθ on element level. Thus a pure displacement formulation is obtained. Its
tangent stiffness matrix has, for the element nodes I and K, the following
expression

K̄
Q1P0
TIK

=
∫
Ωe

[
(∇x̄NI)T ( p̄ J 1 + τ̄ττ iso e )∇x̄NK

+.B̄T
0 I

[
(1 ⊗ 1 − 2E ) p̄ J + cciso ] B̄0 K

]
dΩ (10.23)

+
1
Ωe

∫
Ωe

BT
V I J dΩ

(
∂2W

∂θ2
Ωe

)
1
Ωe

∫
Ωe

BV K J dΩ .

This element does not fulfil the BB-condition in the geometrical linear theory.
Thus it can lead to unstable solutions for the pressure when special loading
and boundary conditions are given. Often post-processing of the pressures
using L2 smoothing can help. In practical application, it has been observed
that this element is quite robust for many problems in solid mechanics which
depict quasi-incompressible material behaviour. Hence it is contained in many
commercial finite element codes. In case that this element is not sufficient,
its high order variant can be used which is the Q2-P1 element with quadratic
interpolations for the deformations and linear interpolation for the pressure.
It fulfils the BB-condition in case of the linear theory, see e.g. Brezzi and
Fortin (1991).

10.3 Mixed Finite Elements for Finite Elasticity

A mixed finite element, based on the Neo–Hooke material equation (3.119)
in Sect. 3.3.1, is developed by using a formulation equivalent to the
Hellinger–Reissner principle, see e.g. Washizu (1975). The main idea is
to use a similar approach as the one advocated by Pian and Sumihara (1984)
for the linear case. Within this hybrid approach, the constitutive equation
needed to be inverted. Here the Neo–Hooke material equation is given for
the 2nd Piola–Kirchhoff stress S in terms of the right Cauchy–Green

tensor C as
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S =
Λ

2
(J2 − 1)C−1 + μ (1 − C−1 ) . (10.24)

Under the assumption that it is possible to invert this equation form,

C = f (S) (10.25)

is obtained.
For the derivation of the mixed hybrid principle in Pian and Sumihara

(1984), the classical Legendre transformation 1
2εεε ·C[εεε] = σσσ · εεε− 1

2σσσ ·C−1[σσσ]
was applied. This transformation, a however, a is not valid in the nonlinear
case, see e.g. Ogden (1984) and hence cannot be applied the Neo–Hooke

material. Instead, a weak form of the equilibrium Gu and the constitutive
relation Gc is formulated which has as primary variables the displacement
field and the stress field as follows

Gu(u ,S ,η) =
∫
B

1
2

S · C(η) dV −
∫
B

b̂ · η dV −
∫

∂Bσ

t̂ · η dA = 0 ,

Gc(u ,S ,Q) =
∫
B

1
2

Q · [C(u) − f (S) ] dA = 0 . (10.26)

Here η and Q are the test functions, η is equivalent to the virtual displace-
ment and Q to the virtual stress. C(η) = FT Gradη + GradT η F is the
virtual strain and C(u) = FT F is the right Cauchy–Green tensor; the
latter depending only on the displacement field u. This weak form can be
viewed as the nonlinear version of the Hellinger–Reissner functional.

Note that the inverse (10.25) is not uniquely defined, either locally or
globally, see Ogden (1984). However, (10.24) can be inverted by looking at
different solution branches. For this (10.24) is rewritten as

Â(S) = β̂(C)C−1 (10.27)

with

β̂ = α− J2,

α = 1 +
2μ
Λ
, (10.28)

Â(S) =
2
Λ

(μ1 − S ).

Multiplication of (10.27) with Â
−1

from the left side leads to

C = β̂(C) Â
−1

(S) . (10.29)

Now it remains to compute β̂(C) in dependence of Â. The computation of
the determinant of (10.29) yields
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det Â =
β̂3

J2
(10.30)

since J2 = detC. With the abbreviation â = det Â and (10.28)1 this leads
to a cubic equation for β̂:

β̂3 + α̂ β̂ − âα = 0 . (10.31)

To obtain a simpler solution β = c1 β̂, A = c2 Â and a = detA can be
defined. Together with c1 and c2

c1 =
2

3α
, c2 =

1
3

[
4
α2

] 1
3

, (10.32)

which only depend on the Lame constants, this provides the cubic equation
for β

β3 + 3 a β − 2 a = 0 . (10.33)
Depending on the discriminant D = a3 +a2, three different solutions have to
be distinguished:

– D > 0: Equation (10.33) has only one real solution

β = r − a

r
with r =

[
a+

√
a3 + a2

] 1
3
. (10.34)

– D < 0: This case is equivalent to a < −1 and yields three solutions for
(10.33)

β = −2
√
−a cos

[
1
3

( arccos
1√
−a + 2π k )

]
, k = 0 , 1 , 2. (10.35)

In the physical problem, J > 0 has to be fulfilled. From (10.28)1 and
(10.32)1 it then follows that β < 2

3 . Hence only the solution with k = 0
remains under these circumstances

β = −2
√
−a cos

(
1
3

arccos
1√
−a

)
. (10.36)

– D = 0: Here the determinant a is either a = 0 or a = −1. For a = 0,
the only solution is β = 0 which yields with (10.28)1 and (10.32)1 for the
Jacobian J =

√
α. For a = −1, β can be obtained from (10.36), leading

in the limit to β = −2.

Based on this solution, the expression for the inverse of the Neo–Hooke

material (10.24) can be derived, by employing (10.28)1 and (10.28)3. With

A =
2

3Λ

[
4
α2

] 1
3

(μ1 − S ), (10.37)

the final result is obtained
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C = β
[α

2

] 1
3

A−1 =
3
4
β αΛ (μ1 − S )−1 . (10.38)

Hence it is possible to invert the constitutive equation; the weak formulation
(10.26) related to a Hellinger–Reissner functional can be used as starting
point for the finite element development.

Interpolation has to be selected for the displacement field and the stresses.
Here a four-node quadrilateral is derived based on the isoparametric concept.
For the displacement field and its variation, the standard shape functions are
used

u =
4∑

I=1

NI(ξ , η)uI , η =
4∑

I=1

NI(ξ , η)ηI . (10.39)

As usual, the coordinates are expressed by the same approximation

X =
4∑

I=1

NI(ξ , η)XI , (10.40)

where the nodal coordinates XI are related to the initial configuration and
ξ, η are convective coordinates with regard to the reference element. The
interpolation function is given by, see Sect. 4.1.2,

NI =
1
4

( 1 + ξ ξI ) ( 1 + η ηI ) . (10.41)

The interpolation introduced by Pian and Sumihara (1984) is chosen for
the stress field. It leads to the matrix form

⎧⎨
⎩
Sξ ξ

Sηη

Sξη

⎫⎬
⎭ =

⎡
⎣ 1 0 0 η 0

0 1 0 0 ξ
0 0 1 0 0

⎤
⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s̄1
s̄2
s̄3
s̄4
s̄5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.42)

with respect to the reference element. Note that the stress components are
usually contravariant which is in accordance with the stress power Sik Ċik

and the definition of the strain measures via the deformation gradient.
The stresses in the reference element (S = Sαβ Gα ⊗Gβ) have now to be

transformed to the global coordinate system which is obtained by

Sik = Ei · SEk = Ei · (Sαβ Gα ⊗ Gβ )Ek

= Sαβ(Ei · Gα)(Ek · Gβ).

For the orthogonal basis, the relation Ei = Ei holds. Furthermore, a ma-
trix form of this transformation can be defined which is given by S(X) =
TS(ξξξ)TT . In detail[

Sxx Sxy

Syx Syy

]
=
[
T11 T12

T21 T22

] [
Sξξ Sξη

Sηξ Sηη

] [
T11 T21

T12 T22

]
(10.43)
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is derived, where Tiα = Ei · Gα.
The base vectors can be computed from the isoparametric interpolation

since Gα = X,α

Gα =
4∑

I=1

NI(ξ , η),α XI . (10.44)

Hence

Tiα =
4∑

I=1

NI(ξ , η),αXi I , (10.45)

where Xi I = Ei · XI . Using the interpolation (10.41), the derivatives are

NI ,ξ =
ξI
4

( 1 + η ηI ), NI ,η =
ηI

4
( 1 + ξ ξI ) . (10.46)

The transformation matrix will be evaluated at the element centre ξ = η = 0
leading to

N0
I ,ξ =

ξI
4
, N0

I ,η =
ηI

4
. (10.47)

and

T 0
iξ =

4∑
I=1

ξI
4
Xi I and T 0

iη =
4∑

I=1

ηI

4
Xi I . (10.48)

Due to this, the transformation matrix is given by

T0 =
1
4

4∑
I=1

[
ξI X1 I ηI X1 I

ξI X2 I ηI X2 I

]
. (10.49)

By performing the multiplication in (10.43) and rearranging the components
of the stress tensor in Voigt notation, the stress transformation can be
written as⎧⎨

⎩
Sxx

Syy

Sxy

⎫⎬
⎭ =

⎡
⎣ T 2

11 T 2
12 2T11 T12

T 2
21 T 2

22 2T21 T22

T11 T21 T22 T12 T12 T21 + T11 T22

⎤
⎦
⎧⎨
⎩
Sξξ

Sηη

Sξη

⎫⎬
⎭ . (10.50)

Since the stress interpolation (10.42) is constant for the shear stresses
and the transformation matrix is constant element wise, a different rep-
resentation can be found using the element wise constant matrix sT =
{ s1 , s2 , s3 , s4 , s5 }. This ansatz can be written in global coordinates using
the transformation (10.50) at the mid point of the element and leads to the
simpler form⎧⎨

⎩
Sxx

Syy

Sxy

⎫⎬
⎭ =

⎧⎨
⎩
s1
s2
s3

⎫⎬
⎭+

⎡
⎣ η (T 0

11)
2 ξ (T 0

12)
2

η (T 0
21)

2 ξ (T 0
22)

2

η T 0
11 T

0
21 ξ T 0

22 T
0
12

⎤
⎦ { s4

s5

}
. (10.51)

These interpolations can now be used within the mixed weak form (10.26)
and its linearization to derive the matrix form of the associated finite element
formulation.
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10.4 Stabilized Finite Elements

Stabilized finite elements are formulated in order to obtain efficient elements
for which the residual vector and tangent matrix can be computed in a fast
way and which need, as few as possible, memory to store history variables
related to the chosen constitutive equations. The simplest method to achieve
these two goals is to apply reduced integration which is based on a mini-
mum number of Gauss points and hence has less computational effort and
storage requirement for history data. The drawback is that these elements
are generally unstable since reduced integration is associated with rank de-
ficiency. Thus underintegrated elements have to be stabilized. Stabilization
is performed based on the eigenmodes of the elements. These follow from an
eigenvalue analysis of a single finite element matrix. Here zero eigenvalues
occur for rigid body modes which naturally do not contribute to the element
stiffness. Additional zero eigenvalues have to be stabilized and hence an ar-
tificial stiffness has to be introduced to prevent non-physical occurrence of
these modes within a finite element analysis.

For the two-dimensional linear elastic case, the eigenvectors computed
from the spectral decomposition of the stiffness matrix are depicted in
Fig. 10.1, excluding the rigid body modes. The eigenvectors related to the
volume change, the elongation and shear can be found in the first row. The
second row shows the bending modes of the element. It is well known from
the linear theory that the eigenvalues related to the bending modes are zero
when reduced integration is applied. In that case, no strain energy is asso-
ciated with these modes. Hence deformations related to the bending modes
can occur in an analysis depending on the loading and boundary conditions.
Since two of the bending modes can form an hour-glass, these modes are also
called hour-glass modes, see Fig. 10.2b.

Thus stabilization has to be used to avoid hour-glassing when underin-
tegrated elements are applied within a finite element analysis. In this case,

Fig. 10.1 Eigenvectors of the quadrilateral 4-node element
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the eigenvectors related to hour-glassing are determined in the initial config-
uration and then stabilized. This procedure is however not trivial: the mode
of a distorted element has to be determined and the magnitude of the stiff-
ness to be added cannot be derived directly from the underlying variational
equation.

Two basic approaches are possible.

1. Hour-glass modes can be filtered from the global solution as discussed
in Jaquotte and Oden (1986). This however is only possible for elastic
problems.

2. The displacement interpolation can be decomposed within a finite ele-
ment into an linear part and the related orthogonal part. The latter is
then used to derive a stabilization matrix. This idea was developed in
Kosloff and Frazier (1978) for linear problems. A follow up paper from
Belytschko et al. (1984), see also Hughes (1987, p. 251), introduces the
so-called γγγ vectors. Their explicit form can be used to construct the sta-
bilization matrix.

While it is possible to compute the stiffness parameters for the stabilization
matrix from the equivalence of mixed methods and stabilized reduced inte-
gration procedures, see e.g. the element formulation developed in Pian and
Sumihara (1984), this has so far not been achieved for nonlinear problems
in a satisfactory way. Approaches can be found in Belytschko and Bindeman
(1991), Belytschko and Bindeman (1993), Bonet and Bhargava (1995), Reese
et al. (1998) and Reese (2005), see also Sect. 10.5.

The classical stabilization procedure for underintegrated element will be
developed in the following for three-dimensional hexahedral elements with lin-
ear displacement interpolation. Basically, the tangent stiffness matrix (4.76)
which was already derived in Sect. 4.2.2 is evaluated by using a one point
Gauss integration instead of the rank preserving 2 × 2 × 2 integration

K̄
1×1
TIK

=
∫
Ωe

[
(∇XNI)T S̄∇XNK + B̄

T
L I D̄ B̄L K

]
dΩ .

The matrix form is provided for the nodal combination I ,K of a finite ele-
ment Ωe. Within this notation, the sub matrix K̄TIK

has the size ndof ×ndof

where ndof is the number of degrees of freedom needed to describe the dis-
placement field (for three-dimensional problems ndof = 3 holds). The indices
I and K are nodes of the element and directly related to the discretization.
Summation over all 8 nodes of the hexahedral element yields the tangent ma-
trix for the finite element e: K̄

1×1
Te

. Note that a 1-point-integration requires
only one evaluation within the element mid point, see Table 4.1

K̄
1×1
Te

= K̄Te

∣∣
ξ=η=ζ=0

. (10.52)
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Hence all terms can be neglected which depend on the coordinates ξ , η or ζ.
This procedure simplifies the coding of such element and thus leads to a high
efficiency.

The stabilization matrix K̄
stab
Te

is added to (10.52) which leads to

K̄Te
= K̄

1×1
Te

+ K̄
stab
Te

(10.53)

with the diagonalized form, see Belytschko et al. (1984),

K̄
stab
Te

=
12∑

k=1

αk γ̄γγk γ̄γγ
T
k . (10.54)

The scalar parameters αk > 0 can be chosen arbitrarily. However, their mag-
nitude has to be selected such that the parameters avoid hour-glassing on
one side and do not influence the solution of the problem on the other side.
This however is not always possible, see examples in Reese (1994). Hence the
user of stabilized elements has to have sufficient experience when applying
this method.

The determination of the γ̄γγk vectors for stabilization will be presented in
the next section. Kosloff and Frazier (1978) have already shown that the diag-
onal form of K̄

stab
Te

using 12 scalar parameters, see (10.54), is not sufficient to
obtain optimal bending behaviour for generally distorted three-dimensional
meshes. Thus the stabilization matrix in (10.54) yields good results for ap-
plication which do not exhibit bending.

10.4.1 Stabilization Vectors

The isoparametric ansatz functions presented in Sect. 4.1.3 can also be writ-
ten in an equivalent vector form. This is advantageous when stabilization
vectors have to be derived. Instead of (4.40), the interpolation functions are
given by

N (ξξξ) =
1
8

[a1 + ξ a2 + η a3 + ζ a4 + η ζ a5 + ξ ζ a6 + ξ η a7 + ξ η ζ a8 ] (10.55)

with the constant vectors

aT
1 = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }

aT
2 = {−1 , 1 , 1 ,−1 ,−1 , 1 , 1 ,−1 }

aT
3 = {−1 ,−1 , 1 , 1 ,−1 ,−1 , 1 , 1 }

aT
4 = {−1 ,−1 ,−1 ,−1 , 1 , 1 , 1 , 1 }

aT
5 = { 1 , 1 ,−1 ,−1 ,−1 ,−1 , 1 , 1 }

aT
6 = { 1 ,−1 ,−1 , 1 ,−1 , 1 , 1 ,−1 }

aT
7 = { 1 ,−1 , 1 ,−1 , 1 ,−1 , 1 ,−1 }

aT
8 = {−1 , 1 ,−1 , 1 , 1 ,−1 , 1 ,−1 } .
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By using this notation, the interpolation of the components of the displace-
ment vector ue = ui Ei can be written as

u1 = NT v1 , u2 = NT v2 , u3 = NT v3 , (10.56)

where the vectors vi contain the components of the nodal displacements
in coordinate direction i. The stabilization vectors follow from a Taylor

expansion of the shape functions with respect to the midpoint of the element
ξξξ = 000 up to first order terms. This yields for the ansatz functions

N = N0 +
∂N

∂X

∣∣∣∣
ξξξ=000

(X − X| 0 ) + Nγ (10.57)

with a constant term N0, a linear term and a residual term Nγ . X0 is the
position vector of the element midpoint. Since it is not possible to differentiate
in (10.57) with respect to X, the chain rule and thus the Jacobi matrix Je

has to be used, see Sect. 4.1, to obtain

N = N0 +
(
∂N

∂ξξξ
J−1

e

) ∣∣∣∣
ξξξ=000

(X − X| 0 ) + Nγ

= [ I − (N,ξ J−1
e )| 0 Xkn ]

1
8

a1 + (N,ξ J−1
e )| 0 X + Nγ . (10.58)

The matrix Xkn of dimension 3 × 8 was introduced for a more compact no-
tation. It contains the coordinates {XI , YI , ZI } of the position vectors to
the element nodes I = 1, 8. The index 0 at J| 0 means that Je has to be eval-
uated at ξξξ = 000. The first two terms in (10.58) represent a vector of the shape
functions which is linear in X. Note that this relation is valid for arbitrarily
deformed element geometries in the initial configuration. The residual term
can now be determined from Nγ = N − Nlin. Within this procedure, the
convergence criteria for finite elements have to be fulfilled, see the prelimi-
nary remarks in Sect. 8. For this rigid body modes and constant strains have
to be recovered for arbitrary element geometries. This requires that vector
Nγ has to be orthogonal to the linear part of the shape functions; other-
wise it is impossible to obtain constant strain states. This is associated with
the classical requirement of the fulfillment of the patch tests, see e.g. Bathe
(1982) and Hughes (1987). By considering the aforementioned orthogonality,
the stabilization vector also called hour-glass part

Nγ =
1
8

[ I − (N,ξ J−1
e )| 0 Xkn ]( η ζ a5 + ξ ζ a6 + ξ η a7 + ξ η ζ a8 )

= η ζ γγγ1 + ξ ζ γγγ2 + ξ η γγγ3 + ξ η ζ γγγ4 (10.59)

is derived after some algebraic manipulations, see Belytschko et al. (1984).
The 12 stabilization vectors γ̄γγ can now be computed from the components of
vectors γγγk (k = 1, 4) by using four γγγ vectors for each component. Hence the 8
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components of the γγγ vectors yield 12 γ̄γγ vectors with 3 × 8 = 24 components.
Explicitly, the vectors are given by

γ̄γγ1 = {γ1
1 , 0 , 0 , γ

2
1 , 0 , 0 , . . . , γ

8
1 , 0 , 0 }T

γ̄γγ2 = {γ1
2 , 0 , 0 , γ

2
2 , 0 , 0 , . . . , γ

8
2 , 0 , 0 }T

γ̄γγ3 = {γ1
3 , 0 , 0 , γ

2
3 , 0 , 0 , . . . , γ

8
3 , 0 , 0 }T

γ̄γγ4 = {γ1
4 , 0 , 0 , γ

2
4 , 0 , 0 , . . . , γ

8
4 , 0 , 0 }T

γ̄γγ5 = {0 , γ1
1 , 0 , 0 , γ

2
1 , 0 , . . . , 0 , γ

8
1 , 0 }T

γ̄γγ6 = {0 , γ1
2 , 0 , 0 , γ

2
2 , 0 , . . . , 0 , γ

8
2 , 0 }T

γ̄γγ7 = {0 , γ1
3 , 0 , 0 , γ

2
3 , 0 , . . . , 0 , γ

8
3 , 0 }T

γ̄γγ8 = {0 , γ1
4 , 0 , 0 , γ

2
4 , 0 , . . . , 0 , γ

8
4 , 0 }T

γ̄γγ9 = {0 , 0 , γ1
1 , 0 , 0 , γ

2
1 , . . . , 0 , 0 , γ

8
1 }T

γ̄γγ10 = {0 , 0 , γ1
2 , 0 , 0 , γ

2
2 , . . . , 0 , 0 , γ

8
2 }T

γ̄γγ11 = {0 , 0 , γ1
3 , 0 , 0 , γ

2
3 , . . . , 0 , 0 , γ

8
3 }T

γ̄γγ12 = {0 , 0 , γ1
4 , 0 , 0 , γ

2
4 , . . . , 0 , 0 , γ

8
4 }T .

Here the terms γm
k (k = 1, 4 and m = 1, 8) are the components of the γγγ

vectors defined in (10.59).

10.4.2 Weak Form and Linearization

The weak form for the hour-glass stabilized 8-node elements follows from the
results derived in Sect. 4.2.1. The matrices and vectors are now evaluated us-
ing 1 point Gauss integration. In detail, the internal virtual work is obtained
from (4.54)∫

B

δE · S dV =
ne⋃

e=1

8∑
I=1

ηT
I

∫
Ω�

(BT
L I Se )| 0 det J| 0 d� , (10.60)

where index 0 denotes the evaluation of the integrals at the element midpoint
ξξξ = 000. The residual term due to the stabilization vectors is given by

Gstab =
ne⋃

e=1

12∑
i=1

ηT
e αi ( γ̄γγT

i ue ) γ̄γγi . (10.61)

The vectors ηe and ue contain all 24 components of the test functions and
displacements within element Ωe,; hence the sum over all element nodes used
in (10.60) disappears. By combining both terms and by evaluating (10.60),
using the one-point integration, the residual vector of one finite element is
given, see also (4.55),

Re (ue) = Re0 (ue) + Kstab ue

= 8
8∑

I=1

[
BT

L I S
]
| 0

det J| 0 +
12∑

i=1

αi ( γ̄γγT
i ue ) γ̄γγi . (10.62)
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The linearization of the residual vector yields the tangential stiffness matrix
which is needed within the Newton method. From (4.76),

K̄Te
= K̄Te0 + Kstab

=
8∑

I=1

8∑
K=1

8
[
(∇XNI)T S̄ (∇XNK) + B̄

T
L I D̄ B̄L K

]
| 0

det J| 0

+
12∑

i=1

αi γ̄γγi γ̄γγ
T
i (10.63)

is obtained for a one-point integration.
The solution of a problem using the discretized weak form (10.62) de-

pends on the choice of the parameters αi. The values of αi do not play a
significant role for standard three-dimensional engineering problems in solid
mechanics. The parameters can be selected within a certain range and then
do not influence the result of the computation. However, when bending dom-
inates the solution behaviour, the solution can depend on the stabilization
parameters ai.

Within the linear theory, it was possible for Kosloff and Frazier (1978)
to show that a special choice of the parameter αi leads to a finite element
which is equivalent to the incompatible mode element of Taylor et al. (1976).
In that way, a very efficient element with excellent bending behaviour was
obtained. For nonlinear problems, there exists no simple way to compute
the stabilization parameters. Here the bending solution depends on the pa-
rameter αi, as already shown in Reese (1994) using the example of a simple
cantilever under point load. Thus it is desirable to develop a procedure for
bending dominated problems in which the parameters αi can be derived such
that a solution dependence disappears. A related method is formulated in
Sect. 10.5.3.1

10.5 Enhanced Strain Element

It is important to construct finite elements for problems of solid mechanics
which can be applied to a wide range of problems. Such elements should be
able to model finite strain states for arbitrary elastic and inelastic materi-
als. Furthermore, they should work in the presence of constraints such as
incompressibility which lead for standard displacement elements to locking,
see Sect. 10.2. Good element performance for bending dominated structural
problems is also necessary when arbitrary structural parts have to be dis-
cretized and simulated using three-dimensional solids. Last but not least
1 The stabilized finite element formulation derived above for the initial configu-

ration can also be developed with respect to the current configuration. In that
case, all quantities have to be mapped to the current configuration using the
standard transformations, see Sect. 4.2.3.
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elements should be robust when large mesh distortion occur due to large
deformations.

In the last twenty years, many different finite elements were developed
for finite deformation problems and successfully applied to special problem
classes. One example is the Q1-P0 element which is well suited for incom-
pressible materials.

In case of linear elastic applications, there exist many possibilities for
the design of finite elements which are locking free, have good bending per-
formance and are robust against mesh distortions, see e.g. the hybrid for-
mulations Pian and Sumihara (1984), or the incompatible mode elements of
Taylor et al. (1976). Also the stabilized elements from Kosloff and Frazier
(1978) have the same good properties.2 A variational formulation of the
discretization using the incompatible modes was derived in Simo and Ri-
fai (1990). This concept has the advantage that it can also be applied to
nonlinear problems like finite elastic or inelastic deformations.

The concept followed in the work by Simo and Armero (1992) and Simo
et al. (1993b) is based on the principle of Hu–Washizu. The finite elements
derived by this formulation are called enhanced strain or enhanced assumed
strain (EAS) elements.

While very well suited for linear elastic problem, the enhanced strain el-
ements do not provide a solution for all problem classes mentioned above
in nonlinear applications. The elements become instable under compression
which was shown for the first time in Wriggers and Reese (1994), see also
Wriggers and Reese (1996). Stabilized versions of the enhanced strain ele-
ments have been formulated to overcome this disadvantage. However, until
lately, these stabilizations could not solve all defects found in Wriggers and
Reese (1996) in a satisfactory way. Refined ansatz functions for the enhanced
modes solved the instabilities for two-dimensional problems in the compres-
sion range, see Korelc and Wriggers (1996a) and Glaser and Armero (1997).
But they lead to instabilities in tension states. An in-depth discussion of these
phenomena and possible solutions can be found in Sect. 10.5.4.

In the following section, elements based on the enhanced strain concept
will be derived, using on one hand the shape functions provided in Simo
and Armero (1992) and on the other hand shape functions stemming from a
Taylor series expansion which was developed in Wriggers and Hueck (1996).

10.5.1 General Concept and Formulation

The development of the nonlinear version of the enhanced strain elements
is generally based on a mixed variational principle. Following Simo and
Armero (1992), Hu–Washizu’s principle is applied, see Sect. 3.4.3. Here

2 An interesting observation is that the aforementioned formulations can be trans-
ferred to each other, see Bischoff et al. (1999a). Thus different mechanical for-
mulations lead to the same element stiffness matrices.
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Hu–Washizu principle is formulated in terms of the deformation ϕ, the de-
formation gradient F and the first Piola–Kirchhoff stress tensor P which
act as independent variables

Π(ϕ,F,P) =
∫
B

[W (F) + P · (Gradϕ − F ) ] dV

−
∫
B

ϕ · ρ0 b̂ dV −
∫

∂Bσ

ϕ · t̂ dA . (10.64)

W (F) denotes the strain energy function of the elastic material under consid-
eration. This formulation is equivalent to the principle provided in (3.300).
To simplify notation, the last two terms in (10.64) which describe external
forces will be combined and denoted by PEXT .3

The variational principle of Hu–Washizu was formulated in this way in
order to be able to additively decompose the deformation gradient, see Simo
and Armero (1992). In this decomposition, the local deformation gradient
Grad ϕ is complemented by the independent gradient F̄

F = Gradϕ + F̄ . (10.65)

Thus the deformation gradient F is enriched by the enhanced gradient F̄
which can be incompatible with the deformation. With Eq. (10.65), relation

Π(ϕ , F̄ ,P) =
∫
B

[W (F) − P · F̄ ] dV − PEXT (10.66)

is obtained from (10.64). Its variation yields∫
B

Gradηηη · ∂W
∂F

dV − δPEXT = 0,

∫
B

δF̄ ·
(
−P +

∂W

∂F

)
dV = 0, (10.67)

∫
B

δP · F̄ dV = 0 .

Grad η denotes the variation of the deformation gradient, see (3.289). The
first equation denotes the weak form of equilibrium. The second equations
3 It is also possible to formulate the Hu–Washizu principle in other work conju-

gate variables. Examples are the 2nd Piola–Kirchhoff stress tensor and the
Green–Lagrangian strain tensor E or the application of the Biot stress tensor
TB together with the right stretch tensor U. From the viewpoint of continuum
mechanics, these formulations are equivalent. However, due to the fact that the
strain measures F, E and U are different, their enhancement will lead to different
finite element approximations and discretizations.
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leads to the constitutive relation. Equation (10.67)3 represents an orthogo-
nality condition between the stress tensor and the variation of the enhanced
gradient F̄.

Equations (10.65) and (10.67) provide a variational basis which can be
employed to incorporate the incompatible (enhanced) modes in a consistent
way to the finite element formulation.

An efficient implementation of the enhanced element can be obtained by
transforming all quantities in (10.67) to the current configuration, see also
Sect. 4.2.3. By computing the deformation gradient from (10.65), relation∫

B

∇S ηηη ·
(

2F
∂W

∂C
FT

)
dV − δPEXT = 0,

∫
B

δ h̄S ·
(
−τττ + 2F

∂W

∂C
FT

)
dV = 0, (10.68)

∫
B

δ τττ · h̄ dV = 0

is deduced based on (10.67). Here the gradient ∇S η = sym [GradηηηF−1] is the
symmetric part of the variation of the deformation gradient with respect to
the current configuration. The tensor C = FT F is the right Cauchy–Green

strain tensor, see (3.15). The enhanced gradient in the current configuration is
computed from h̄ = F̄F−1. The symmetric Kirchhoff stress tensor follows
with the 1st Piola–Kirchhoff stresses from τττ = PFT or with (3.84) from
the 2nd Piola–Kirchhoff stress tensor: τττ = FSFT . Since τττ is a symmetric
tensor, only the symmetric parts of the deformation gradient ∇S ηηη and the
enhanced gradient h̄S contribute to the scalar product with the Kirchhoff

stresses in Eq. (10.68).
To complete the model, a strain energy function W is needed. Differ-

ent variants can be found for hyperelastic materials in Sect. 3.3.1. The
Kirchhoff stresses follow then from the 2nd Piola–Kirchhoff stresses
via (3.104).

10.5.2 Discretization of the Enhanced Strain Element

An isoparametric ansatz, see (4.4), is introduced to discretize the displace-
ment field and the geometry of the current configuration in (10.65)

xe = Xe + ue =
n∑

I=1

NI(ξξξ)xI with xI = XI + uI . (10.69)

In the two-dimensional case, the bilinear shape functions (4.28) are applied.
In case of three-dimensional discretizations, the shape functions (4.40) are
used.
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The conforming part of the deformation gradient can now be determined
from (10.69). With (4.8) and (4.11), the deformation gradient follows

Gradϕe =
n∑

I=1

xI ⊗∇XNI(ξξξ) =
n∑

I=1

xI ⊗ J−T
e ∇ξNI(ξξξ) . (10.70)

For the enhanced part of the deformation gradient, an interpolation has to
be selected which even can be incompatible. Following Glaser and Armero
(1997), a product form is defined for the enriched part F̄

F̄ = F0 M̄ααα . (10.71)

ααα denote the enhanced parameters, M̄ contains the interpolation functions.
F0 is the constant part of the conform deformation gradient (10.70), which
is evaluated at the element midpoint

F0 =
n∑

I=1

xI ⊗∇XNI(000) . (10.72)

The ansatz (10.71) fulfils the requirements for objectivity of the enhanced
element formulation for arbitrary interpolations M̄, see Glaser and Armero
(1997).4

The interpolations of the enriched part M̄ are related to the initial con-
figuration of a finite element Ωe. Since the incompatible interpolations have
to be formulated with respect to the reference configuration Ω�, like the
isoparametric interpolations, M̄ has to be transformed to Ω� (for the relevant
notation, see Fig. 4.3). This is performed by using the tensor transformation

M̄ =
j0
j

J0 M(ξξξ)J−1
0 . (10.73)

Here J0 defines the mapping between Ωe and Ω�, see (4.7), which is evaluated
at the element midpoint (ξξξ = 000). The determinant of the transformation is
denoted by j = detJe. Its evaluation at the element midpoint is denoted by
j0 = detJ0.

Now the interpolation for the enhanced modes have to be selected. These
can be incompatible since no derivatives of the enriched deformation gradient
appear in (10.67). In general, the ansatz

M(ξξξ)ααα =
nenh∑
L=1

ML(ξξξ)αL (10.74)

4 This representation deviates from the form advocated in Simo and Armero (1992)
in such a way that M̄ was introduced as a gradient and hence could be interpo-
lated without using F0, see also Exercise 10.1.
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can be introduced with nenh interpolations for the additional incompatible
modes. The ansatz can be written for two-dimensional elements in the com-
pact form

M(ξξξ)ααα =
[
M1 (ξ, η) α1 M2 (ξ, η) α2

M3 (ξ, η) α3 M4 (ξ, η) α4 .

]
. (10.75)

The interpolations ML have to obey the orthogonality condition (10.67)3
within the element ∫

Ωe

δPe · F̄e dΩ = 0 . (10.76)

By assuming constant stresses in Ωe, condition∫
Ωe

M̄ dΩ = 0 (10.77)

is obtained based on (10.71). It yields with (10.73)∫
Ω�

M(ξξξ) d� = 0 . (10.78)

The interpolationsML in (10.75) have to fulfil this condition which is the case
for polynomials with uneven exponents. Hence the simplest interpolation with
four enhanced or incompatible modes is given by

M(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 η α2

ξ α3 η α4

]
. (10.79)

The finite element based on this ansatz is called Q1/E4 element, see Simo
and Armero (1992). This element is equivalent in the linear case with the
incompatible mode element by Taylor et al. (1976).

The corresponding interpolation for the three-dimensional case leads to
an ansatz for the enhanced deformation gradient with nine modes

M3D ααα =
9∑

L=1

M(ξξξ)3D
L αL =

⎡
⎣ ξ α1 η α2 ζ α3

ξ α4 η α5 ζ α6

ξ α7 η α8 ζ α9

⎤
⎦ . (10.80)

It is simply the extension of the two-dimensional interpolation and yields the
so-called Q1/E9 element. As already shown in Simo et al. (1993b), this ansatz
is not sufficient to prevent locking. Thus additional enhanced modes have to
be introduced in order to prevent volume locking. The related element has
12 incompatible modes and hence is called Q1/E12 element.

The matrix formulation of the enhanced finite element is based on a de-
scription of the deformation gradient in vector form. It will be developed here
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for the two-dimensional case. A different formulation is provided in Exercise
10.1 in detail.

Basis of the implementation is the mixed form (10.67) with respect to the
initial configuration, but form (10.68) could also be employed which is referred
to the current configuration. Essential for an efficient implementation is the
use of formulations which lead to sparse matrices. As already discussed in the
standard formulation of isoparametric elements, see Sects. 4.2.2 and 4.2.4,
the formulation (10.68) with respect to the current configurations provides
the most efficient variant.

The quantities ∇S η and δ hS have to be discretized in (10.68). Further-
more, the Kirchhoff stresses are computed from τττ = 2F ∂W

∂C FT using
(10.65). The variation of the deformation dependent part of the deformation
gradient follows with (3.32) within the element Ωe in the current configura-
tion as

∇ηe = Gradηe F−1
e =

[
n∑

I=1

ηI ⊗∇XNI(ξξξ)

]
F−1

e . (10.81)

Here the enriched deformation gradient has to be introduced for F, see
(10.65). The symmetrical part follows as in (4.94). Its matrix form is given
by

∇S ηe =
n∑

I=1

⎡
⎣NI,1 0

0 NI,2

NI,2 NI,1

⎤
⎦ { η1

η2

}
I

=
n∑

I=1

BI ηηηI , (10.82)

where the derivatives have to be determined using (10.81). For the enhanced
modes, the vector form is given by

δh̄S
e =

nenh∑
L=1

⎡
⎣ ML

11

ML
22

ML
12 +ML

21

⎤
⎦ δαL =

nenh∑
I=L

GL δαL . (10.83)

In this relation, the components ML
11 ,M

L
12 ,M

L
21 and ML

22 have to be com-
puted based on (10.73) and (10.74) from

M̄L =
[
ML

11 ML
12

ML
21 ML

22

]
= F0

j0
j

J0 M(ξξξ)L J−1
0 F−1

e . (10.84)

M(ξξξ)L denotes the Lth mode, see (10.79). The weak form (10.68) can now
be rewritten as

ne⋃
e=1

⎡
⎣∑

I

δηI
T

∫
Ωe

BI
T τττe dΩ

⎤
⎦− δPEXT = 0

∑
L

δαL

∫
Ωe

GL
T τττ e dΩ = 0 . (10.85)
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Note that (10.68)3 is directly fulfilled by construction of the enhanced inter-
polations, see (10.73).

The solution of this nonlinear algebraic equation system will be obtained
by Newton’s method. Hence the linearization of (10.85) has to be derived.
Analogous to the procedure given in Sect. 4.2.4, the incremental equation
system [

Ku u Ku α

Kα u Kα α

] {
Δu
Δααα

}
= −

{
Gu

Gα

}
(10.86)

can be deduced. In this form, the sub matrices are given by

Ku u =
ne⋃

e=1

n∑
I=1

n∑
K=1

∫
Ωe

[BT
I DMR BK + (∇xNI)T τττe ∇xNK ] dΩ,

Ku α =
ne⋃

e=1

n∑
I=1

nenh∑
M=1

∫
Ωe

[BI
T DMR GM (10.87)

+(∇xNI)T τττe GM + (∇xNI

∣∣
0
)T τττe GM ] dΩ,

Kα α =
ne⋃

e=1

nenh∑
L=1

nenh∑
M=1

∫
Ωe

[GT
L DMR GM + M̄Lτττ · M̄M ] dΩ.

The residuals Gu and Gα follow directly from (10.85). As in the previous
equations, the derivatives have to be determined with respect to x via (10.81).
The definition of DMR can be found in (4.113). (∇xNI

∣∣
0
) denotes the evalua-

tion of the gradient at the element midpoint, see also (10.72). For the solution
of equation system (10.86), block elimination can be employed. It provides an
efficient implementation since Kαα can be inverted directly on element level
due to the incompatible interpolation functions. This procedure is explicitly
shown in Exercise 10.1.

Exercise 10.1: Derive the discretization and resulting matrix formulation
for a two-dimensional 4-node element based on the Hu–Washizu principle.
Use for the derivatives of the shape functions and for the interpolation of the
enhanced modes a Taylor series expansion up to order 2 with respect to
the element mid point. The element has to be constructed for finite elastic
deformations.

Solution: Within the element Ωe, the displacements will be approximated
by isoparametric shape functions. The use of a Taylor series expansion of
order 2 for the standard shape functions and enhanced mode interpolations
leads to explicit expressions for the gradients. Within the range of small
strains, it was shown in Hueck and Wriggers (1995) that this method can be
applied to all terms which are associated with the enhanced element.

In case of finite deformations explicit expressions are developed for the
standard and the enhanced displacement gradients in (10.65). These gradients
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are related to the initial configuration X. After that the equations will be
transformed to the current configuration x.

The bilinear isoparametric form functions (4.28) are used for the interpo-
lation

NI(ξ, η) =
1
4

(1 + ξ ξI)(1 + η ηI) =
1
4

( 1 + ξI ξ + ηI η + ξIηI ξη ) . (10.88)

ξI and ηI are the coordinates of node I in the ξ–η reference configuration of
the element. The coordinates within the element are given by

X = a0 + a1 ξ + a2 ξη + a3 η

Y = b0 + b1 ξ + b2 ξη + b3 η, (10.89)

where the constants ai are defined as follows

a0 =
1
4

4∑
I=1

XI , a1 =
1
4

4∑
I=1

ξI XI ,

a2 =
1
4

4∑
I=1

ξI ηI XI , a3 =
1
4

4∑
I=1

ηI XI .

The constants bi are computed in an analogous way where XI is exchanged
by YI . The deformation gradient within the element follows with (10.88)

Gradϕe =
4∑

I=1

[
NI,X xI NI,Y xI

NI,X yI NI,Y yI

]
. (10.90)

In this relation, xI and yI are the coordinates of node I in the current con-
figuration. In Eq. (10.90), the derivatives of the form functions have to be
computed with respect to X and Y . A Taylor series expansion up to order
1 yields with respect to the element midpoint ξ = η = 0

NI = NI |0 +
∂NI

∂X

∣∣∣∣
0

(X −X0 ) +
∂NI

∂Y

∣∣∣∣
0

(Y − Y0 ) +NγI . (10.91)

The remaining higher order terms are denoted by NγI . From (10.88) NI |0 =
1/4 is obtained. The evaluation of the chain rule at the element midpoint
leads to ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂NI

∂X

∣∣∣∣
0

∂NI

∂Y

∣∣∣∣
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= J−1
0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂NI

∂ξ

∣∣∣∣
0

∂NI

∂η

∣∣∣∣
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (10.92)

J0 is the Jacobi matrix J evaluated at the element midpoint. The derivatives
of the shape functions can be computed at the element mid point by, as shown
in Hueck and Wriggers (1995),
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∂NI

∂X

∣∣∣∣
0

=
1

4 j0
( b3 ξI − b1 ηI ) , (10.93)

∂NI

∂Y

∣∣∣∣
0

=
1

4 j0
(−a3 ξI + a1 ηI ) . (10.94)

The determinant J is given by j = j0 + j1 ξ + j2 η with

j0 = a1 b3 − a3 b1 , j1 = a1 b2 − a2 b1 and j2 = a2 b3 − a3 b2 .

This leads to detJ0 = j0. The solution of (10.91) yields with (10.93) and
(10.94) after some algebraic manipulations the higher order term

NγI = γI ξη with γI =
1
4

(
ξIηI −

j2
j0
ξI −

j1
j0
ηI

)
, (10.95)

where the so-called stabilization- or γ-vector has been introduced, see also
Sect. 10.4 and Belytschko et al. (1984).

The interpolation functions for the enhanced gradient F̄ in (10.65) are
determined analogous to (10.90). Wilson et al. (1973) have introduced the
classical incompatible modes by

M1 = ( 1 − ξ2 ), M2 = ( 1 − η2 ) . (10.96)

These represent a discontinuous interpolation between different elements Ωe.
An expansion using the Taylor series around the element midpoint yields,
for the incompatible modes,

ML = ML|0 +
∂ML

∂X

∣∣∣∣
0

(X −X0 ) +
∂ML

∂Y

∣∣∣∣
0

(Y − Y0 ) +MγL . (10.97)

The constant term is MI |0 = 1. By the chain rule, it can be shown that all
terms of first order are zero in (10.97). The remaining terms of higher order
in (10.97) are

Mγ1 = −ξ2 and Mγ2 = −η2 . (10.98)

Now the higher order terms in Eqs. (10.95) and (10.96) will be expanded in X
and Y by a Taylor series of second order with respect to the element mid-
point. To simplify notation, the terms are combined in qT = { q1, q2, q3} =
{ ξ2, ξη, η2 } . Taylor series expansion yields

q =
1
2

(
∂2q
∂X2

∣∣∣∣
0

ΔX2 + 2
∂2q
∂X∂Y

∣∣∣∣
0

ΔXΔY +
∂2q
∂Y 2

∣∣∣∣
0

ΔY 2

)
+ r3 (10.99)

with ΔX = X − X0 and ΔY = Y − Y0. Constant terms and terms of first
order do not appear in this equation since q only consists of terms of higher
order, which appear as remainders in the expansion of NI (10.91) and ML

(10.97). The term r3 contains terms of third order and will be neglected in the
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following derivations. The computation of the second derivatives in (10.99)
are described in detail in Hueck and Wriggers (1995). They lead to the form

NγI = − 1
j20

[ b1 b3ΔX2 − ( a1 b3 + a3 b1 )ΔXΔY + a1 a3ΔY
2 ] γI ,

Mγ1 = − 1
j20

[ b23ΔX
2 − 2 a3 b3ΔXΔY + a2

3ΔY
2 ] , (10.100)

Mγ2 = − 1
j20

[ b21ΔX
2 − 2 a1 b1ΔXΔY + a2

1ΔY
2 ] .

The shape functions and the incompatible interpolations can be approxi-
mated by these equations and by (10.93) and (10.94). Finally, with
Eqs. (10.91) and (10.100), the derivatives of the shape functions with respect
to X and Y yield

NI,X = NI,X |0 +NIγ,X

=
1

4 j0
( b3 ξI − b1 ηI ) − 1

j20
[ 2 b1 b3ΔX − (a1 b3 + a3 b1)ΔY ] γI .

(10.101)
Since Eq. (10.89) leads to ΔX = a1ξ+a2ξη+a3η and ΔY = b1ξ+b2ξη+b3η,
explicit expressions can be derived for the derivatives of NI with respect to
X

NI,X =
1

4 j0
( b3 ξI − b1 ηI ) +

1
j0

[
−b1ξ +

1
j0

(j1 b3 − j2 b1) ξη + b3 η
]
γI .

(10.102)
Analogously the derivatives of NI with respect to Y follow as

NI,Y =
1

4 j0
( a1 ηI − a3 ξI ) +

1
j0

[
a1ξ +

1
j0

(j2 a1 − j1 a3) ξη − a3 η

]
γI .

(10.103)
The derivatives of the incompatible modes are obtained using (10.97) and
(10.100)

M1,X = − 2
j0
b3

(
ξ +

j2
j0
ξ η

)
, M1,Y =

2
j0
a3

(
ξ +

j2
j0
ξ η

)
,

M2,X =
2
j0
b1

(
η +

j1
j0
ξ η

)
, M2,Y = − 2

j0
a1

(
η +

j1
j0
ξ η

)
.

(10.104)
It is possible to compute the gradients (10.90) and (10.105) with respect to
the reference configuration X by using expressions (10.102) to (10.104). For
the enhanced deformation, gradient F̄ follows

F̄e =
2∑

L=1

αααL Ḡ
T
L with αααL =

{
αL

φL

}
and ḠL =

{
ML,X

ML,Y

}
,

(10.105)
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where αL and φL are the variables with respect to the coordinate directions
related to the enhanced modes.

Remark 10.2: In Eqs. (10.102), (10.103) and (10.104) only the constant term
J0 of the Jacobi determinant appears in the denominator. This expression is pro-
portional to the element area and cannot become zero or negative, even when an
element is highly distorted. Hence this formulation is more robust against geometric
mesh distortion.

By using (10.68) as a basis for the nonlinear finite element formulation, the
gradients have to be transformed to the current configuration. The standard
displacement gradient is transformed by ∇u = (Gradu)F−1 to the spatial
displacement gradient

∇ue =
4∑

I=1

[
NI,x uI NI,y uI

NI,x vI NI,y vI

]
(10.106)

with the nodal displacements uI and vI . The derivatives of the shape func-
tions with respect to x follow for the two-dimensional case in explicit form{

NI,x

NI,y

}
=

1
detFe

{
F22NI,X − F21NI,Y

−F12NI,X + F11NI,Y

}
. (10.107)

Here Fik are the components of the deformation gradient F, see (10.65).
At the same time the enhanced gradient is transformed to the current

configuration. This yields – as for the displacement gradient – h̄ = F̄ F−1.
Together with (10.105), it follows

h̄e =
2∑

L=1

αααL ḡT
L with ḡL = F−T

e ḠL , (10.108)

where

ḡL =
{
ML,x

ML,y

}
=

1
detF

{
F22ML,X − F21ML,Y

−F12ML,X + F11ML,Y

}
(10.109)

is valid. Thus the enhanced gradient is transformed to the current configura-
tion in a similar way as the displacement gradient.

The discretization of the weak form (10.68) requires, for plane strain, the
matrices

τττ =

⎧⎨
⎩

τ11

τ22
τ12

⎫⎬
⎭ , b =

⎧⎨
⎩

b11
b22
b12

⎫⎬
⎭ , ∇S η =

⎧⎨
⎩

η,x

η,y

η,y + η,x

⎫⎬
⎭ , δh̄

S
=

⎧⎨
⎩

δh11

δh22

δh12 + δh21

⎫⎬
⎭ .

(10.110)

From the constitutive relation (3.120), the Kirchhoff stresses

τττe =

⎧⎪⎨
⎪⎩
τ11

τ22

τ12

⎫⎪⎬
⎪⎭

e

=
Λ

2
[J2−1 ]

⎧⎪⎨
⎪⎩

1
1
0

⎫⎪⎬
⎪⎭+μ

⎡
⎢⎣
⎧⎪⎨
⎪⎩
b11

b22

b12

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

1
1
0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ (10.111)
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can be deduced. In this expression, the discrete approximation for the left
Cauchy–Green tensor b is given by

be =

⎧⎪⎨
⎪⎩

(F11)2 + (F12)2

(F22)2 + (F21)2

F11 F21 + F12 F22

⎫⎪⎬
⎪⎭ . (10.112)

The components of the deformation gradient F are computed from (10.65)
together with (10.90) and (10.105)[
F11 F12

F21 F22

]
e

=
4∑

I=1

[
NI,X xI NI,Y xI

NI,X yI NI,Y yI

]
+

2∑
L=1

[
ML,X αL ML,Y αL

ML,X φL ML,Y φL

]

(10.113)
within an element Ωe. The variation of the symmetric displacement gradient
is provided in Ωe by

∇S ηe =
4∑

I=1

BI ηηηI =
4∑

I=1

⎡
⎣ NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ { ηx I

ηy I

}
. (10.114)

This defines the B-matrix, see also (4.94). The derivatives of the shape func-
tions are computed from (10.107) with (10.102) and (10.103) with respect
to the current configuration. Analogously, the variation of the enhanced dis-
placement gradient h̄ is given with (10.108) and (10.105) by

δh̄S
e =

2∑
L=1

GL δαααL =
2∑

L=1

⎡
⎣ ML,x 0

0 ML,y

ML,y ML,x

⎤
⎦ { δαL

δφL

}
. (10.115)

The relations (10.104) and (10.109) have to be applied in (10.115) to compute
ML,x and ML,y.

The discretization of (10.68) yields with (10.110) to (10.115) the residuals
of the enhanced element

ne⋃
e=1

⎧⎨
⎩

4∑
I=1

ηηηT
I

∫
Ωe

BT
I τττe dΩ

⎫⎬
⎭− δPEXT = 0

2∑
L=1

δαααT
L

∫
Ωe

GT
L τττ e dΩ = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒
gu(u, ααα ) = 0

ge
α(u, ααα ) = 0 ,

(10.116)
where the abbreviations gu = 0 and ge

α = 000 were introduced for the first and
second equation. The last equation in (10.68) has only to be fulfilled on ele-
ment level. This follows from the fact that the interpolation functions for the
enhanced modes are discontinuous over the element domains. Furthermore,
the interpolation of the stress field can be selected in (10.67) and (10.68) such
that (10.68)3 is automatically fulfilled, see Simo and Armero (1992).
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Remark 10.3: Equation (10.116)2 leads for constant stresses to the condition∫
Ωe

ḠL dV = 0. This has to be considered in order to fulfil the patch test for piece-

wise constant stress fields. With the enhanced functions in (10.104), this condition

is fulfilled exactly when the following approximation is used for the integration∫
B

f(x, y) dV =
∫ 1

−1

∫ 1

−1

f(ξ, η) j dξ dη ≈
∫ 1

−1

∫ 1

−1

f(ξ, η) j0 dξ dη.

Due to this the use of j0 instead of j is important for the mapping onto the
reference configuration within this element formulation, see also (10.78).

Newton’s method is usually applied to solve the nonlinear algebraic
equation system (10.116) for the unknown displacements u and the enhanced
variables ααα, see Sect. 5.1.1. This iterative scheme requires the linearization
of (10.116). As was shown in Sect. 3.5.3, Eq. (10.68) is transformed for this
operation to the initial configuration

Gu =
∫
B

Gradηηη ·
(

2F
∂W

∂C

)
dV − δPEXT = 0 ,

Gα =
∫
B

δ F̄ ·
(

2F
∂W

∂C

)
dV = 0 .

(10.117)

The linearization will be denoted by Δ(•), as introduced in Sect. 3.5.3.
The linearization of F yields with (10.65) ΔF = GradΔu + ΔF̄. This

relation is used to linearize C = FT F

ΔC = Δ(FT F) = [ (GradΔu )T +ΔF̄T ]F+FT [ GradΔu+ΔF̄ ] . (10.118)

Use of the linearized kinematical quantities in (10.117) leads to

ΔGu =
∫
B

Gradη · 2
[

(GradΔu +ΔF̄ )
∂W

∂C
+ F

∂2W

∂C ∂C
ΔC

]
dV = 0,

ΔGα =
∫
B

δ F̄ · 2
[

(GradΔu +ΔF̄ )
∂W

∂C
+ F

∂2W

∂C ∂C
ΔC

]
dV = 0 .

(10.119)
This result is pushed forward to the current configuration. Employing the
relation between the 2nd Piola–Kirchhoff stress tensor S and the Kirch-

hoff stress tensor τττ = FSFT , see (3.84), and using the incremental material
tensor in the current configuration cc, see (3.245), relations
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Δgu =
∫
B

{
∇S η · cc [∇S (Δu) ] + ∇S η∇S (Δu) · τττ

}
dV

+
∫
B

{
∇S η · cc [Δh̄ ] + ∇S ηΔh̄ · τττ

}
dV = 0,

Δgα =
∫
B

{
δh̄S · cc [∇S (Δu) ] + h̄S ∇S (Δu) · τττ

}
dV

+
∫
B

{
δh̄S · cc [Δh̄ ] + δh̄Δh̄ · τττ

}
dV = 0

(10.120)

are deduced after some algebraic manipulations.
In case of a plane strain state, the explicit expression for the constitutive

tensor (3.120), see also (3.271), is given by

D =

⎡
⎢⎣
e1 e2 0
e2 e1 0
0 0 g

⎤
⎥⎦ with

e1 = μ+ Λ
e2 = ΛJ2

g = μ− Λ
2 [J2 − 1 ] .

(10.121)

The operators for determining ∇S η and δh̄S are stated in discrete form
in (10.114) and (10.115). The same operators can also be applied for the
determination of ∇S(Δu) andΔh̄S . With this notation, the following tangent
matrices are defined as

Ku u =
ne⋃

e=1

4∑
I=1

4∑
J=1

∫
Ωe

[
BT

I DBJ +G1
IJ I2×2

]
dΩ

Ku α =
ne⋃

e=1

4∑
I=1

2∑
L=1

∫
Ωe

[
BT

I DGL +G2
IL I2×2

]
dΩ (10.122)

Kα α =
ne⋃

e=1

2∑
L=1

2∑
M=1

∫
Ωe

[
GT

L DGM +G3
LM I2×2

]
dΩ (10.123)

with

G1
IJ =< NI,x , NI,y >

[
τ11 τ12
τ21 τ22

] {
NJ,x

NJ,y

}

G2
IL =< NI,x , NI,y >

[
τ11 τ12
τ21 τ22

] {
ML,x

ML,y

}

G3
LM =< ML,x , ML,y >

[
τ11 τ12
τ21 τ22

] {
MM,x

MM,y

}
.

Since the interpolation functions for the enhanced strains are discontinu-
ous, it is possible to invert the matrix Kα α on element level. By writing the
equation system for one element as
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Ke
u uΔue + Ke

u αΔααα
e = −ge

u

Ke
α uΔue + Ke

α αΔααα
e = −ge

α

(10.124)

a block elimination technique, as employed in Simo and Rifai (1990), is effi-
cient in combination with Newton’s method to solve (10.124). Within this
procedure, the variables αααe are eliminated on element level

Δαααe = −Ke−1
α α (Ke

α uΔue + ge
α ) . (10.125)

This leads to the displacement formulation

(Ke
u u − Ke

u α Ke−1
α α Ke

α u )Δue = −ge
u + Ke

u α Ke−1
α α ge

α (10.126)

and hence to the definition of the element residual and tangent matrix for
the enhanced element

ĝu = ge
u − Ke

u α Ke−1
α α ge

α and K̂u u = Ke
u u − Ke

u α Ke−1
α α Ke

α u . (10.127)

An efficient implementation which avoids the storage of Ke−1
α α Ke

α u and
Ke−1

α α gα on element level can be found in Simo et al. (1993b).

10.5.3 Combination of Enhanced Formulation and Hour-Glass
Stabilization

A possibility in which the advantage of the stabilized hour-glass elements of
Belytschko et al. (1984) (high efficiency) is combined with the advantage of
the enhanced strain elements (locking free behaviour) was developed in Reese
et al. (1998) and has been refined since then in Reese (2003) and Reese (2005).
Staring point of this development are the relations (10.62) and (10.63). These
lead after assembly to the nonlinear equation

R0 + Kstab v = P (10.128)

and its linearization

(KT0 + Kstab )Δv = P − R0 − Kstab v . (10.129)

In order to derive the explicit form of Kstab for this formulation, the defor-
mation gradient F and its enhanced part F̄ in (10.65) is written as

Fe = Bxe Gradηe = Bηηηe and
F̄e = Gαααe δF̄e = G δαααe , (10.130)

where vector notation is introduced.
In the two-dimensional case, the explicit form
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Gradηe =

⎧⎪⎨
⎪⎩
η1,1

η1,2

η2,1

η2,2

⎫⎪⎬
⎪⎭ =

4∑
I=1

BI ηI =
4∑

I=1

⎡
⎢⎣
NI,X 0
NI,Y 0

0 NI,X

0 NI,Y

⎤
⎥⎦
{
ηX I

ηY I

}
(10.131)

is obtained for the variation of Fe using the ansatz (10.88). This relation can
be written in a compact way as

Gradηe = [B1 ,B2 ,B3 ,B4 ]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηX 1

ηY 1

. . .
ηX 4

ηY 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Bηe . (10.132)

Starting from the Taylor series expansion of the shape functions, see (10.91),
the B-matrix can be split into linear and hour-glass parts. This leads after
Reese and Wriggers (2000) to

B = j (Blin Mlin + Bhg Mhg ) . (10.133)

For two-dimensions, the matrices in (10.133) have the form

j =

⎡
⎢⎢⎣

∂ξ
∂X

∂η
∂X 0 0

0 0 ∂ξ
∂Y

∂η
∂Y

∂ξ
∂Y

∂η
∂Y 0 0

0 0 ∂ξ
∂X

∂η
∂X

⎤
⎥⎥⎦ , (10.134)

Blin =

⎡
⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎦ , Bhg =

⎡
⎢⎣
η 0
ξ 0
0 η
0 ξ

⎤
⎥⎦ , (10.135)

and

MT
lin =

[
N0 N,X 0 N,Y 0 O O O
O O O N0 N,X 0 N,Y 0

]
,

MT
hg =

[
γγγ O
O γγγ

]
. (10.136)

The components NI |0, ∂NI

∂X

∣∣
0

and ∂NI

∂Y

∣∣
0
, computed in (10.91), (10.93) and

(10.94), are contained in vectors N0, N,X 0 and N,Y 0. In vector γγγ, the com-
ponents of the γ vector, see (10.95), are assembled.

The enhanced strain parts will now be specified based on the application
of the ansatz (10.96). The variation of the enhanced strain gradient in (10.65)
follows analogously to (10.131)
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δF̄e =

⎧⎪⎨
⎪⎩
δF̄11

δF̄12

δF̄21

δF̄22

⎫⎪⎬
⎪⎭ =

2∑
L=1

GL δϕL =
4∑

I=1

⎡
⎢⎣
ML,X 0
ML,Y 0

0 ML,X

0 ML,Y

⎤
⎥⎦
{
δϕL

δφL

}
.

(10.137)
This can be written in compact form

δF̄e = [G1 ,G2 ]

⎧⎪⎨
⎪⎩
δϕ1

δφ1

δϕ2

dφ2

⎫⎪⎬
⎪⎭ = G δαααe . (10.138)

Since the approximation for the enhanced strain term does not contain con-
stant and linear parts, the G matrix can be expressed by a Taylor series
expansion

G = j Ĝ with Ĝ =

⎡
⎢⎣
ξ 0 0 0
0 η 0 0
0 0 ξ 0
0 0 0 η

⎤
⎥⎦ . (10.139)

The variational equation (10.67) follows from the Hu–Washizu principle. Its
discretization uses the above defined matrices

ne⋃
e=1

ηT
e

∫
Ωe

[ j (Blin Mlin + Bhg Mhg)]T Pe dΩ − δPEXT = 0

δαααT
e

∫
Ωe

( j Ĝ )T Pe dΩ = 0. (10.140)

For the fulfillment of the last equation in (10.67), the ansatz G = j0
j j0 Ĝ has

to be selected for distorted element geometry. This leads with the incremental
constitutive matrix A = ∂2 W

∂F ∂F , for the linearization of the second equation
of (10.140), to

δαααT
e

⎡
⎣∫

Ωe

Ĝ
T
ÂBlin dΩMlinΔue +

∫
Ωe

Ĝ
T
ÂBhg dΩMhgΔue

+
∫
Ωe

Ĝ
T
ÂĜ dΩΔαααe

⎤
⎦ = −δαααT

e

∫
Ωe

Ĝ
T

P̂e dΩ . (10.141)

Here the abbreviation Â = jT Aj was introduced together with the abbre-
viation for the 1st Piola–Kirchhoff stress tensor P̂e = jT Pe. The form
(10.141) can now be simplified by assuming that Â, P̂ and j dV are constant
within an element Ωe. These assumptions are approximations for arbitrary el-
ement geometries. The assumption of constant stress states and rhomboidal



10.5 Enhanced Strain Element 439

element forms enables an exact evaluation of (10.141). Hence the solution
converges for arbitrary meshes when a sufficient number of finite elements is
used. In that case, the stress fields in the elements are nearly constant. Due
to this simplification, the first integral in (10.141) disappears, since Blin is
constant and Ĝ is linear in ξ and η. With the definitions

Kα u =
∫
Ωe

Ĝ
T
Â0Bhg dΩ0 and Kα α =

∫
Ωe

Ĝ
T
ÂĜ dΩ0, (10.142)

the matrix relation
Δααα = −K−1

α αKα u MhgΔv (10.143)

follows for the incremental enhanced variables Δααα on element level. In
(10.142), the index ()0 denotes evaluation of a quantity at element midpoint
(this is equivalent to a 1-point-integration). The increments of the gradients
follow from (10.133) and (10.139) with (10.143)

ΔF +Δ F̄ = j (Blin Mlin + Bstab Mhg )Δv , (10.144)

where the new B-matrix, Bstab, is defined by

Bstab = Bhg − ĜK−1
α αKα u . (10.145)

This relation can be inserted in the linearized form of (10.140)1. It leads to the

tangent matrix, by noting that
∫

Ωe
BT

linÂ0Bstab dΩ0 and
∫

Ωe
Ĝ

T
Â0Bstab dΩ0

are zero,
KT = MT

lin K0 Mlin + MT
hg Kstab Mhg (10.146)

with

K0 =
∫
Ωe

BT
linÂ0Blin dΩ0 and Kstab =

∫
Ωe

BT
stabÂ0Bstab dΩ0 . (10.147)

Since Blin is constant, K0 is integrated exactly by a 1-point-Gauss integra-
tion. Kstab can be integrated analytically. Thus an efficient computation of
the tangent matrix KT is possible. A further advantage is that the consti-
tutive tensor has to be evaluated only at the element midpoint. Since the
element volume is also computed using the element midpoint, the element is
insensitive against mesh distortions.

Since the first matrix in (10.146) is equivalent to matrix KT0 (10.129), the
second matrix in (10.146) can be interpreted as stabilization matrix which is
here computed by using the enhanced formulation. With this all matrices in
(10.129) are known.

Since a constant stabilization matrix is used within the concept of sta-
bilization, see Sect. 10.4, the stabilization matrix in (10.146) also has to be
kept constant during the Newton iterations within a load step. For large
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Fig. 10.2a Homogeneous deformation Fig. 10.2b Hourglass eigenvector

load steps, however, the stabilization matrix in (10.146) is not optimal in the
sense of the enhanced strain method, since e.g. the incremental constitutive
tensor may change. Then a post-iteration is required to update the matrix
according to the computed deformation and stress state. Such procedure can
be viewed as an Uzawa algorithm known from optimization, see e.g. Luen-
berger (1984). In a recent paper, Reese (2005) presented a new formulation
which basically overcomes this problem.

10.5.4 Instabilities Related to Enhanced Elements

Enhanced strain elements were developed over the last 15 years for finite
strain problems which include bending dominated response or incompressible
behaviour. The advantage of this element formulation is its relatively simple
implementation in which complex constitutive equations for finite elastic and
inelastic strains can be included. An additional advantage is a good coarse
mesh accuracy for different applications. However, there is one disadvantage
which is, in the classical formulation of enhanced strain elements, related to
instability, see Wriggers and Reese (1994) and Wriggers and Reese (1996). In
these papers, it was shown that a block under homogeneous pressure state
will lead to a non-physical instability which is related to the enhanced element
formulation, see Fig. 10.2a for the problem definition. This instability occurs
at a finite deformation state, independently on the constitutive equation.5

By applying loading and boundary conditions as depicted in Fig. 10.2a,
the loss of uniqueness of the solution occurs and the tangent matrix becomes
singular. The eigenmode related to the zero eigenvalue of the tangent stiffness
has the form shown in Fig. 10.2b which is well known as hour-glass mode.
5 Enhanced elements derived for geometrical linear elastic problems are known

to be stable for all strain and stress states. However, a even a geometrically
linear formulation of the enhanced strain element with an inelastic constitutive
equation can depict such instable behaviour.
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Thus the instability has nothing to do with the stability problems as discussed
in Chap. 7. It can be shown, see below, that the enhanced strain element is
rank deficient for this deformation state. This loss of rank can of course also
be observed under more complex loading states where pressure occurs locally
or for different types of material behaviour.

Interesting enough this phenomena will even occur for a single element.
Hence an analytical investigation of this element behaviour is feasable in
which all matrices can be presented in closed form.

Here one element will be investigated, assuming hyperelastic constitutive
behaviour. A compressible Neo–Hooke material is selected where the strain
energy, after (3.116) and (3.118), is given in terms of the principal strains λ2

i

of the right Cauchy–Green tensor, see (3.15), as

W =
1
2
μ [ (λ2

1 + λ2
2 + λ2

3) − 3 ] − μ ln J +
Λ

4
(J2 − 1 − 2 ln J ) . (10.148)

J = λ1 λ2 λ3 denotes the Jacobi determinant of the deformation gradient.
A homogeneous plain strain state is considered in a rectangular plate, see

Fig. 10.2a. Thus it is possible to perform the analysis with respect to the
principal strains since the principal directions coincide in this case with the
cartesian coordinates. From the strain energy, the 1st Piola–Kirchhoff

stresses P =
∑3

i=1 Pi ni ⊗ Ni, can be computed, see e.g. Ogden (1984), as

Pi =
∂W

∂λi
=

1
λi

[
μ (λ2

i − 1) +
Λ

2
(J2 − 1)

]
. (10.149)

Furthermore, the coefficients of the incremental constitutive tensor related
to a formulation using P are needed. After some algebra and analogous to
the derivation in (3.265), the incremental constitutive tensor follows with
(10.149) from A iJkL = ∂PiJ / ∂FkL. Hence the non-zero elements of this
tensor are given with respect to the principal strains with (i , j = 1 , 2 and
i 	= j) as

A iiii = μ

(
1 +

1
λ2

i

)
+

Λ

2λ2
i

(J2 + 1)

A iijj = ΛJ (10.150)
A ijij = μ

A ijji =
1

λi λj

[
μ+

Λ

2
(1 − λ2

i λ
2
j )
]
,

where it is not necessary to distinguish between derivations with respect to
the initial- and current configuration.

As already mentioned, it is sufficient to show the rank deficiency for a sin-
gle finite element. Here an isoparametric bilinear element will be considered
which is chosen such that the local ξ , η-axis coincide with the global X ,Y -
axis in Fig. 4.2. Hence initial- and reference configuration are the same, see
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Fig. 10.3a. For such a discretization all vectors and matrices can be presented
explicitly in closed form. The bilinear shape functions are given in this special
case in terms of the cartesian coordinates

NI(X ,Y ) =
1
4

(1 +XXI)(1 + Y YI) . (10.151)

This leads directly to the derivatives needed for the computation of the de-
formation gradient after (10.131)

NI,X =
XI

4
( 1 + YI Y ) and NI,Y =

YI

4
( 1 +XI X ) . (10.152)

Hence the BI matrix in (10.131) is linear in X and Y .
The deformation gradient is enhanced in Eq. (10.65) by F̄. Using the

interpolation of the incompatible modes ML(X ,Y ), see Taylor et al. (1976)
and (10.96), it follows for the derivatives in the enhanced gradient (10.137)

M1,X = −X , M1,Y = 0 , M2,X = 0 and M2,Y = −Y . (10.153)

Now the first two equations of the mixed formulation (10.67) can be formu-
lated with this interpolation. Since a plain stress state is assumed (P33 = 0),
the four stress components

PT = {P11 , P12 , P21 , P22 } (10.154)

have to be determined. These components of P can be obtained from (10.149)
using the deformation gradient from (10.65). This leads to the weak form of
the single element Ωe in Fig. 10.3a

4∑
I=1

ηT
I

∫
Ωe

BT
I P dΩ − δPEXT = 0

λ1

λ2

1 2

344 3

1 2

y

2

2

X x

Y

Fig. 10.3 Finite element and homogeneous deformation
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2∑
L=1

δϕT
L

∫
Ωe

GT
L P dΩ = 0 (10.155)

which is referred to the initial configuration. In case of a homogeneous stress
field, the stress P22 is constant and P11 = P12 = P21 = 0. This yields

P22

1∫
−1

1∫
−1

4∑
I=1

NI,Y ηY I t dX dY − δPEXT = P22

4∑
I=1

(−YI) ηY I t− δPEXT

= ηT Gu = ηT (Ru − PEXT ) = 0 (10.156)

with RT
u = { 0 ,−P22 , 0 ,−P22 , 0 , P22 , 0 , P22 } t.

In the same way, the explicit form of Eq. (10.155)2 is given for P22 = const.

P22

1∫
−1

1∫
−1

2∑
L=1

ML,Y δφL t dX dY = δαααT Gα = 0 . (10.157)

In this special situation GT
α = { 0 , 0 , 0 , 0 } follows from (10.153).

The solution of the nonlinear equations (10.156) and (10.157) follows usu-
ally by employing Newton’s method which needs the tangent matrix of the
weak form. It is obtained from the general form, see e.g. (10.124), and can
be stated explicitly for the square element Ωe

Ku u =

⎡
⎣K1

uu K2
uu

K2 T
uu K1

uu

⎤
⎦ with

K1
u u =

⎡
⎢⎢⎣

2a+ 2e c+ d −2a+ e c− d
c+ d 2b+ 2e −c+ d b− 2e

−2a+ e −c+ d 2a+ 2e −c− d
c− d b− 2e −c− d 2b+ 2e

⎤
⎥⎥⎦ t

K2
u u =

⎡
⎢⎢⎣

−a− e −c− d a− 2e −c+ d
−c− d −b− e c− d −2b+ e
a− 2e c− d −a− e c+ d
−c+ d −2b+ e c+ d −b− e

⎤
⎥⎥⎦ t

Kα u =

⎡
⎢⎢⎣

0 4
3c 0 − 4

3c 0 4
3c 0 − 4

3c
4
3d 0 − 4

3d 0 4
3d 0 − 4

3d 0
0 4

3d 0 − 4
3d 0 4

3d 0 − 4
3d

4
3c 0 − 4

3c 0 4
3c 0 − 4

3c 0

⎤
⎥⎥⎦ t = KT

u α

Kα α =

⎡
⎢⎢⎣

8a 0 0 0
0 8e 0 0
0 0 8e 0
0 0 0 8b

⎤
⎥⎥⎦ t. (10.158)
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The coefficients in these matrices are given by

a =
A1111

6
; b =

A2222

6
; c =

A1122

4
=

A2211

4

d =
A1221

4
=

A2112

4
; e =

A1212

6
=

A2121

6
.

Using block elimination within the solution of the linear equation system
(10.124), the enhanced variables ααα can be eliminated. With K = Kuu −
Kuα K−1

αα KT
uα, an equation system for the unknown displacements can be

written as

K = Kuu −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 0 −f 0 f 0 −f 0
0 g 0 −g 0 g 0 −g
−f 0 f 0 −f 0 f 0
0 −g 0 g 0 −g 0 g
f 0 −f 0 f 0 −f 0
0 g 0 −g 0 g 0 −g
−f 0 f 0 −f 0 f 0
0 −g 0 g 0 −g 0 g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t (10.159)

where

f =
2
9

(
d2

e
+
c2

b

)
g =

2
9

(
d2

e
+
c2

a

)
.

This relation constitutes the explicit structure of the element matrix for the
homogeneous stress field with P22 = const. at finite deformations. Specifica-
tion of boundary conditions which are related to the homogeneous deforma-
tion, see Fig. 10. 3b, yields a further reduced matrix system.

For the computation of the eigenvector which is associated with the rank
deficiency of the enhanced strain element, it is sufficient to consider only the
nodal displacements (u2 , u3). The vertical displacements (v3 = v4) follow
from condition P11 = 0. Hence they are known values within the analysis.
These considerations yield the nodal displacement vector for the element
depicted in Fig. 10.3b: v = { 0 , 0 ,u2 , 0 ,u3 , v3 , 0 , v4 }. Additionally, in case
of a homogeneous stress state, it can be concluded: u2 = u3. However, both
unknowns u2 and u3 have to be kept within the analysis; otherwise the hour
glass form of the eigenvector cannot be detected.

The unknown increments of the enhanced variables Δααα follow from
(10.125). Since Gα = 0 can be deduced from (10.157), it follows from (10.125)
and the special structure of Ku α, see (10.158), that ααα is generally zero for a
homogeneous stress state.

The reduced form of (10.159) results from the specification of the bound-
ary conditions

K =
[

2a+ 2e− f a− 2e+ f
a− 2e+ f 2a+ 2e− f

]
t =

[
A− f B + f
B + f A− f

]
t. (10.160)
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A rank deficiency of K is present once the eigenvalue of the matrix are less or
equal zero. The eigenvalues can be computed from K−ω I and are determined
from
1
t2

det (K− ω I) = ω2 + 2ω(f −A) +K , with K = A2 −B2 − 2f(A+B) .

(10.161)
This yields

ω1,2 = A− f ±
√

(A− f)2 −K =⇒
{

ω1 = A+B
ω2 = A−B − 2 f .

(10.162)
The coefficients A, B and f depend upon the coefficients of the constitutive
tensor (10.150) and also on the principal stretches λ1 and λ2. Since the normal
stress P11 is equal to zero, which is also true for the principal stress P1, it is
possible to determine the stretch λ2 as a function of λ1

P1 = 0 =
1
λ1

[
μ (λ2

1 − 1 ) +
Λ

2
(J2 − 1)

]
−→ λ2 =

1
λ1

√
1 − 2μ

Λ
(λ2

1 − 1) .

(10.163)
Now the eigenvalues ω1 and ω2 of the tangent matrix KT can be written as
a function depending on λ1. Since

A+B =
A1111

2
= μ+

Λ

2λ2
1

, (10.164)

the eigenvalue ω1 is for μ > 0 and Λ ≥ 0 always positive. Thus the hour glass
instability can only be observed by looking at the second eigenvalue

ω̂2(λ1) = A−B − 2f =
1
6

A1111 +
2
3

A1212 −
1
6

(
A

2
1221

A1212
+

A
2
1122

A2222

)
< 0 .

(10.165)
The function ω2 = ω̂2(λ1) is shown in Fig. 10.4 for a value of the Láme

constant Λ = 100.000 and the shear modulus μ = 20. As can be seen in
Fig. 10.4, a negative eigenvalue ω2 occurs for a stretch λ1 > 1.6344. From
(10.163), it follows that λ2 < 0.6116.

The eigenvector associated with ω2 = 0 can be computed from (KT −
ω2 1)φφφ2 = 0. With (10.158), (10.161) and (10.162), the eigenvector

φφφT
2 = {φφφu T , φφφα T } = {1 ,−1 , 0 , αα , 0 , βα } (10.166)

is obtained. In this result, the first two components are the displacements φφφu

in X-direction. The last four components belong to the enhanced modes φφφα

with

αα =
d

3 e
=

1
2

A1221

A1212
=

1
2J

[
1 +

Λ

2μ
( 1 − J2)

]

βα =
c

3 b
=

1
2

A1122

A2222
=

1
2

λ2
2 J

μ
Λ (λ2

2 + 1) + 1
2 (J2 + 1)

. (10.167)
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Fig. 10.4 Eigenvalue as function of the stretch λ1

For the above selected values of Λ and μ, the eigenvectors follow which are,
depicted in Fig. 10.5.

Remark 10.4:

1. In the linear elastic case, the stretches are λ1 ≈ 1, λ2 ≈ 1. Then it follows
from (10.165)

ω̂2(1) =
1

6

(
Λ − Λ2

Λ + 2μ

)
+

5

6
μ .

The eigenvalue is for μ > 0 always positive. Thus the hour-glassing described
above does not occur.

2. The eigenvectors of the pure Q1-displacement element can be determined in
the same way. In that case, f in (10.165) is equal to zero which yields

ω1,2 = A ± B −→
{

ω1 = μ
2
(1 + 1

λ2
1
) + Λ

4λ2
1
(J2 + 1) > 0

ω2 = μ
6
(5 + 1

λ2
1
) + Λ

12λ2
1
(J2 + 1) > 0 .

Also in this case the hour-glass instability does not occur for parameters of the
Láme constants (μ > 0 , Λ ≥ 0) which make physically sense.

3. It can be shown that the hour-glass instability does not depend on the material
model. In Reese (1994) and Glaser and Armero (1997), the same effects were
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Fig. 10.5a X-component φφφu Fig. 10.5b Y -component φφφα
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observed for Ogden materials. Furthermore, rank deficiency of the enhanced
strain element was observed in de Souza Neto et al. (1995) for elasto-plastic
deformations.

4. For the class of enhanced strain interpolations discussed in this section, hour-
glass instabilities are only observed for pressure states since for 0 < λ1 ≤ 1 no
zero eigenvalue occurs, see Fig. 10.4.

The hour-glass modes discussed above can also be found when using stan-
dard enhanced strain elements for inhomogeneous stress states. The rank defi-
ciency occurs only for elements which are situated in areas where compressive
stresses occur.

10.5.5 Stabilization of the Enhanced Strain Formulation

Once the phenomenon was detected, different research groups started to work
on methods to overcome instable behaviour of the enhanced strain elements.
Within this research work different methods were developed. One method is
related to classical hour-glass stabilization, as discussed in Sect. 10.4. Another
technique is related to the choice of a different interpolation of the enhanced
strains. A third method uses different strain energies within the enhanced
formulation. These methods are discussed below.

Hour-Glass Stabilization. The hour-glass stabilization is performed as
well for the displacements as for the enhanced modes. For the displacements,
the stabilization can be obtained using γ-vectors as defined in (10.59). The
two-dimensional form is presented in (10.95) explicitly. When additionally
the eigenvectors, related to the enhanced modes, are stabilized then in the
two-dimensional case the stabilization vectors

γ̄γγ1
T = {γ1 , 0 , . . . , γ4 , 0 , 0 , αα , 0 , βα} ,

γ̄γγ2
T = {0 , γ1 , . . . , 0 , γ4 , αα , 0 , βα , 0} (10.168)

are obtained. Here αα and βα are defined by (10.167). The last four terms
define the stabilization of the enhanced modes.

With these stabilization vectors, the incremental equation system for the
unknowns vT = {uT , αααT } can be written as(

KT +
2∑

s=1

cs γ̄γγs γ̄γγ
T
s

)
Δv = −G −

2∑
s=1

cs γ̄γγs(γ̄γγ
T
s v) , (10.169)

see also (10.124) and (10.63). This equation system is solved as (10.126) by
block-elimination.

This stabilization is only used when negative eigenvalues are found within
an element. This requires for general quadrilaterals a generalized computation
of the eigenvalues, see e.g. Glaser and Armero (1997). Here the problem is
that the components of the eigenvector belonging to the enhanced modes
depend upon the deformations, see (10.167). A simplified version for the
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determination of the constants αα and βα follows from the computation of
the constants for λi −→ 1 and J −→ 1

αα =
1
2

βα =
1
2

Λ

2μ+ Λ
. (10.170)

This procedure was implemented in a two-dimensional Q1E4 element. For
the basic formulation, see Simo and Armero (1992) or Wriggers and Hueck
(1996) and Exercise 10.1. The resulting enhanced elements are rank deficient
in compression states.

In order to investigate the influence of the described stabilization, a block
under compression is considered under plane strain conditions. Its initial
configuration is depicted in Fig. 10.6a for a finite element mesh with 16 ×
16 elements. At the upper side, a constant vertical displacement is applied
such that a constant stress state occurs. The constitutive parameters were
selected as Λ = 100.000 and μ = 20. The first physical eigenvector is shown
in Fig. 10.6b. Convergence of the solution is obtained for a discretization
with 64 × 64 elements. For this mesh the critical stretch, belonging to the
physical eigenvector, is λ2 = 0.575. Several computations were performed in
order to investigate the dependency of the stabilization parameter on the so-
lution. This also included a convergence study regarding the necessary mesh
refinement. The computation of the system depicted in Fig. 10.6a yields a
stretch λ2 which belongs to the first physical eigenvector. This value is pro-
vided for the parameter cs depending on the mesh refinement in Table 10.2.
For comparison, the stretch which belongs to the first singularity of the non-
stabilized enhanced element is documented in the first row of Table 10.2. The
stretch belonging to the nonphysical hour-glass mode, see also Fig. 10.2b, is
λ2 = 0.695. This result is independent on mesh refinement, since the rank
deficiency is a local phenomenon, see above. For the discretization with one
element, the solution from Fig. 10.5a was used. It is different since in this
special case different boundary conditions were employed.

It is clear from the values reported in Table 10.2 that the stabilization
procedure avoids the hour-glass instability of the enhanced element. Fur-
thermore, the solution only depends slightly upon the stabilization param-
eter cs. The formulation converges to the stretch λ2 = 0.575. For compar-
ison reasons, the solution of the Q1-displacement element is reported too.

Table 10.2 Stretch λ2 belonging to singularity

FEM 1x1 8x8 16x16 32x32 64x64

cs = 0 0.612 0.695 0.695 0.695 0.695
cs = 10 μ 0.260 0.475 0.555 0.575 0.580
cs = 100 μ 0.245 0.470 0.550 0.570 0.575
cs = 1000 μ 0.245 0.470 0.550 0.570 0.575
cs = 10000 μ 0.245 0.470 0.550 0.570 0.575
Q1-Element — 0.040 0.085 0.165 0.370
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Fig. 10.6a FEM discretization Fig. 10.6b 1st physical eigenvector

However it shows the locking of the displacement element which results from
the quasi-incompressible material behaviour.

10.5.6 Special Interpolation of the Enhanced Modes

The rank deficiency occurs as well for distorted as for undistorted element
geometries within the enhanced strain formulation. Hence a finite element for-
mulation has to be developed which does not degenerate to a Q1E4 element.6

In some cases, an interpolation of the enhanced modes can be constructed
such that negative eigenvalues are avoided in (10.165). The associated formu-
lation was presented in Korelc and Wriggers (1996b) and Glaser and Armero
(1997). Starting from the two-dimensional formulation (10.79), the interpo-
lation of the incompatible modes can be written in more general form as

M̂(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 M2(ξ , η)α2

M3(ξ , η)α3 η α4

]
. (10.171)

The interpolation on the main diagonal of M2D cannot be changed in order
to avoid volume locking. Korelc and Wriggers (1996a) developed orthogo-
nality conditions for the ansatz polynomials M12 and M21 which resulted
from the eigenvalue analysis (10.161). These were designed to avoid negative
eigenvalues and hence rank deficiency. The conditions are∫

Ωe

M2(ξ , η)M3(ξ , η) dΩ = 0 ,

∫
Ωe

M2(ξ , η) dΩ = 0 , (10.172)

6 Note that higher order integration does not solve the problem.
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∫
Ωe

M3(ξ , η) dΩ = 0 .

The application of these conditions yield in the simplest case

M̂(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 ξ α2

η α3 η α4

]
= [M(ξξξ)2D]T , (10.173)

which is the transpose of the interpolation in (10.79). With such interpolation,
called CG4 or Q1/E4T, no instabilities occur in compression states, see Korelc
and Wriggers (1996a) and Glaser and Armero (1997).7

However, this formulation (CG4 or Q1/E4T) is not totally free of sin-
gularities which can occur in the case of large elasto-plastic deformations
in tension states and hence lead to rank deficiency of these enhanced strain
formulations. This is also true for the three-dimensional formulation (CG9),
which is based on the transposed of the interpolation matrix (10.80), see
Korelc and Wriggers (1996b).

Additionally, several other approaches were proposed to stabilize the en-
hanced element formulation when applied to the numerical simulation of the
finite deformation problems. Some of these methods are discussed below.

1. A possibility to avoid rank deficiency of the Q1/E4 element is provided by
a change in the continuum formulation. Crisfield et al. (1995) have used
the right stretch tensor U in the Hu–Washizu functional instead of the
deformation gradient F = RU. This however is not sufficient to prevent
instabilities. Hence the authors have additionally evaluated the rotation
tensor R only at the element mid point as in a co-rotational formulation.
This element does not hour-glass in compression states. However, the
formulation is quite complex since the rotation and the stretch tensor
have to be determined and all constitutive equations must be provided
for Biot stresses, see also Exercise 3.10. Furthermore, it seems that this
formulation tends to lock in some applications.

2. de Souza Neto et al. (1996) developed an element which is based on an
interpolation of the strains using a constant deformation gradient. This
element depicts no rank deficiency but has several drawbacks. First, the
formulation results in a non-symmetric tangent matrix - even for elastic
materials - and second it locks in bending situations.

3. Another stabilization technique was developed by Glaser and Armero
(1997) based on the Q1/E4T element. In this formulation, the authors
add to the functional (10.64), after elimination of the stresses a stabiliza-
tion term which acts on the volumetric part of the deformation

Πα(ϕ,F) = Π(ϕ,F) +
∫
B

α

2
[ detF − 1 ]2 dV . (10.174)

7 The CG4 and Q1/E4 interpolations cannot be distinguished in the linear theory,
see Korelc and Wriggers (1996b).
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This approach avoids hour glassing of the Q1/E4T or CG4 formulation
under tension states if a small value for α/μ is selected, see Glaser and
Armero (1997). A scheme, how to determine α depending on a problem
at hand, is however not provided by the authors.

4. Bischoff et al. (1999b) employ least square methods using stabilization
concepts known from work in the area of numerical flow simulations. With
such techniques, the authors circumvent hour - glassing of the enhanced
elements at finite deformation states. The stabilization is obtained via a
deformation dependent function; however in the cited paper all results
are valid only for rectangular elements.

5. Reese and Wriggers (2000) use the stability analysis discussed in the last
section to develop a technique which automatically changes the element
formulation such that hour glassing does not occur. In this approach,
it is necessary to do the stability analysis for elements with arbitrary
distorted geometries. Once an eigenvalue in (10.165) is equal zero or neg-
ative, the element formulation is changed such that instability is circum-
vented. Different cases have to be distinguished, for details see Reese and
Wriggers (2000). These techniques have been successfully employed for
three-dimensional simulations of finite elasto-plastic problems, see Reese
(2003) and Reese (2005).

10.5.7 Special One Point Integration and Enhanced Stabilization

The enhanced variational methods provide a high flexibility for the generation
of different finite elements. This will be shown by the following formulation
in which an element will be derived which can be applied successfully to solid
problems of finite elasticity and is based on a split of the element deformation
into a homogeneous and inhomogeneous part, as introduced in Nadler and
Rubin (2003) for the Cosserat point element. It does not depict, as well
as the Cosserat point element, any nonphysical instabilities and does not
rely on any analytical solutions. The difference is that simply the inhomoge-
neous part of the deformation is enhanced, as it is responsible for the locking
behavior. Within this formulation, the deformation gradient F, see (3.14), is
additively split into its homogeneous and inhomogeneous part

F = F̄ + F̂ , (10.175)

with
F̄ =

1
V

∫
Ω

F dV (10.176)

being the volume average of the displacement gradient and V the element
volume in the initial configuration. The strain energy density function is split
accordingly, leading to

W (F) = WH

(
F̄
)

+WI(F̂) . (10.177)
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For the homogeneous part of the deformation, a compressible Neo–Hooke
material introduced for the strain energy function WH , see (3.116) with
g(J) = Λ

2

(
J̄ − 1

)2. Substituting the overall deformation measures by their
homogeneous parts yields for the 1st Piola–Kirchhoff stresses

P̄ =
∂WH

∂F̄
= ΛJ̄

(
J̄ − 1

)
F̄−T + μ

(
F̄ − F̄−T

)
, (10.178)

where
J̄ = det

(
F̄
)

and C̄ = F̄T F̄

are the volume averaged values of the deformation gradient, the Jacobian

and the right Cauchy–Green tensor, respectively.
For the inhomogeneous part of the element deformation, the strain energy

density function is defined by a linear elastic model model, see (3.121), since
the inhomogeneous deformation part consists mainly of bending and torsion
deformations, see Nadler and Rubin (2003), which can be described well by
this model.

WI(Ĥ) =
1
2
Ĥ ·CCC0 [ Ĥ ] (10.179)

with a constant elasticity tensor CCC0, see (3.272). The 1st Piola–Kirchhoff

stress tensor is then given by

P̂ = Λtr(Ĥ)1 + μ ( Ĥ + Ĥ
T

) . (10.180)

Now the inhomogeneous part of the displacement gradient is enhanced such
that

Ĥ = H̃ + Ĥ (10.181)
where

H̃ = H (ϕ) − H̄ (10.182)

is the displacement gradient following from the deformation and Ĥ is the
enhanced displacement gradient.

By using the above definitions, the Hu–Washizu functional (10.64) can
be rewritten as

Π
(
ϕ, Ĥ,P

)
=
∫
Ω

[
WH(H̄) +WS(Ĥ) − P̂ · Ĥ

]
dV − Pext = 0 . (10.183)

The variation of Eq. (10.183) w.r.t. its independent variables ϕ, Ĥ and P
leads to ∫

Ω

δH̄ · ∂WH

∂F̄
dV +

∫
Ω

δH̃ · ∂WS

∂Ĥ
dV − δPext = 0,

∫
Ω

δĤ ·
(
∂WS

∂Ĥ
− P̂

)
dV = 0,

∫
Ω

δP̂ · Ĥ dV = 0. (10.184)
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Equation (10.184)1 yields the standard weak form of the equilibrium and
Eq. (10.184)2 the constitutive equation. In a weak sense, Eq. (10.184)3 pro-
vides an orthogonality condition between the stress tensor and the displace-
ment gradient. Hence the finite element interpolations for the enhanced dis-
placement gradient have to be chosen such that the orthogonality conditions∫

Ω

δĤ · P̂ dV = 0,
∫
Ω

δP̂ · Ĥ dV = 0 (10.185)

are fulfilled. Then, Eqs. (10.184) become∫
Ω

δH̄ · ∂W
∂F̄

dV +
∫
Ω

δH̃ · ∂W
∂Ĥ

dV − δPext = 0,

∫
Ω

δĤ · ∂W
∂Ĥ

dV = 0 . (10.186)

These equations are the basis for the subsequent development of the enhanced
finite element formulation.

Finite Element Discretization. A standard finite element discretization
is employed within a single element Ωe where the position of a material point
in the current configuration ϕ is approximated by trilinear isoparametric
shape functions

ϕh =
n∑

I=1

NIϕI =
n∑

I=1

NI (XI + uI) , (10.187)

where XI are the positions of the nodes of Ωe with respect to the initial con-
figuration and uI are the nodal displacements. The formulation is presented
here for an eight-node brick element as shown in Fig. 4.8. For the interpo-
lation functions NI standard trilinear shape functions, defined in (4.40), are
used.

With the transformation, see also (4.44),

∂NI

∂X
= J−T ∂NI

∂ξ
, (10.188)

where J = ∂X
∂ξ is the standard Jacobian of the isoparametric map and

(ξ, η, ζ) are the coordinates of the point ξ in the reference configuration, the
displacement gradient can be written as
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Hh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hh
11

Hh
22

Hh
33

Hh
12

Hh
21

Hh
23

Hh
32

Hh
13

Hh
31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
8∑

I=1

BI uI with BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI,X 0 0
0 NI,Y 0
0 0 NI,Z

NI,Y 0 0
0 NI,X 0
0 NI,Z 0
0 0 NI,Y

NI,Z 0 0
0 0 NI,X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10.189)
The discrete form of the homogeneous part of the displacement gradient is
obtained by inserting Eq. (10.189) into Eq. (10.176), leading to

H̄h =
1
Ωe

∫
Ωe

Hh dΩ =
8∑

I=1

1
Ωe

∫
Ωe

BI dΩ uI =
8∑

I=1

B̄I uI . (10.190)

Note that a numerical integration over the element volume can be avoided in
this equation by using the ansatz functions introduced by Belytschko et al.
(1984) which allow an analytical integration.

With Eqs. (10.189) and (10.190), the discrete form of the inhomogeneous
part of the displacement gradient H̃ is written as

H̃
h

=
8∑

I=1

(
BI − B̄I

)
uI =

8∑
I=1

B̃I uI . (10.191)

For the enhanced displacement gradient H̃, the ansatz functions have to
be chosen such that they fulfil the orthogonality condition given in Equa-
tions (10.185). Here, three quadratic functions are used to interpolate the
enhanced modes, as introduced in Wilson et al. (1973)

M1 =
(
1 − ξ2

)
M2 =

(
1 − η2

)
M3 =

(
1 − ζ2

)
. (10.192)

Then, the enhanced displacement gradient can be discretized on the element
level as

Ĥ
h

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥh
11

Ĥh
22

Ĥh
33

Ĥh
12

Ĥh
21

Ĥh
23

Ĥh
32

Ĥh
13

Ĥh
31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
3∑

L=1

GLαL withGL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ML,X 0 0
0 ML,Y 0
0 0 ML,Z

ML,Y 0 0
0 ML,X 0
0 ML,Z 0
0 0 ML,Y

ML,Z 0 0
0 0 ML,X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.193)
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and αL are the enhanced variables,

αT
L = [α1L , α2L , α3L] . (10.194)

Linearization and Solution Procedure. With the help of Eqs. (10.190),
(10.191) and (10.193), the discrete form of the variational equations (10.186)
is given by

ne⋃
e=1

⎛
⎝ 8∑

I=1

δuT
I B̄

T
I P̄Ωe +

8∑
I=1

δuT
I

∫
Ωe

B̃
T

I P̂ dΩ

⎞
⎠− δPEXT = 0

3∑
K=1

δαT
K

∫
Ωe

GT
K CCC0

[
H̃

h
]
dΩ = 0(10.195)

where Eq. (10.195)2 is defined on the element level. This leads to the nodal
residual vectors within an element Ωe

Ru
I = B̄

T
I P̄

h
Ωe +

∫
Ωe

B̃
T

I P̂
h

dΩ − PEXT
I ,

Rα
L =

∫
Ωe

B̃
T

I C0H̃
h

dΩ, (10.196)

where PEXT
I is the nodal vector related to the external loads. The lineariza-

tion of equations (10.195) yields on element level

Kuu
IJ = B̄

T
I DB̄J Ωe +

∫
Ωe

B̃
T

I C0B̃J dΩ

Kuα
IL =

∫
Ωe

B̃
T

I C0GL dΩ

Kαu
KJ =

∫
Ωe

GT
KC0B̃J dΩ

Kαα
KL =

∫
Ωe

GKC0GL dΩ . (10.197)

With Eqs. (10.195) and (10.197), the system of linear equations which has
to be solved in every Newton iteration can be constructed by standard
assembly, see Sect. 4.2. Here, as discussed already in Sect. 10.5.2, a block
elimination of the variables α can be obtained based on the linear system on
element level, for details see Exercise 10.1.

This element is called Q1/EI9 due to the fact that standard tri-linear
ansatz functions are used to interpolate the volume averaged and the en-
hanced part and that additionally nine enhanced modes are applied to de-
scribe the small strain elastic enhanced stabilization part.
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10.6 Examples

The performance of the different elements is shown by means of examples
suitable to point out important properties of the different elements such as
high coarse mesh accuracy, low mesh distortion sensitivity and locking free re-
sponse for bending and incompressibility dominated problems. Furthermore,
it can be shown that some of the elements do not hour-glass for arbitrary
problem classes and loading.

The element formulation which are compared in this section are standard
isoparametric as well as special elements for good bending performance and
for incompressible problems. The following elements were selected:

– two standard elements Q1 and Q2 which use tri-linear and tri-quadratic
interpolations, respectively, see Sect. 4.2,

– the mixed Q1/P0 element as proposed by Simo et al. (1985a) for finite
deformations, see also Sect. 10.2.1,

– the classical enhanced element QM1/E12, developed in Simo et al. (1993b),
and

– the Q1/EI9 element described in the last section.

All elements use a hyperelastic material model, see (3.116) with g(J) =
Λ
2

(
J̄ − 1

)2.

10.6.1 Patch Test

The patch test proposed by MacNeal and Harder (1985) is used for a dis-
placement patch test. The the finite element mesh is shown in Fig. 10.7(a).
Boundary conditions are set such that a rotation around the x3-axis is pos-
sible, but no other rigid body motion. A displacement in the x2-direction is
applied at point P , resulting in a rotation around the x3-axis. All elements
fulfil this patch test; hence the computed stresses are zero. For the traction
controlled patch test, the same mesh is used. The nodes at x1 = 0, x2 = 0
and x3 = 0 are fixed in the x1-direction, x2-direction and x3-direction, re-
spectively. A surface load is applied in the x1-direction, see Fig. 10.7(b). This
configuration should lead to a uniform stress σ11, while all other stresses
should be zero. The force patch test is fulfilled by all elements except for the
QM1/E12.

10.6.2 Beam with Distorted Mesh

A cantilever beam of length l, width 2w and height h is loaded with an
equally distributed shear force F = 12N at its free end, as shown in Fig. 10.8.
The boundary conditions are such that the clamped end is fixed in the
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P

x3

x1 x2

x3

x1 x2

Fig. 10.7 (a) displacement and (b) force patch test

x1-direction. Additionally, the node at x1 = x2 = x3 = 0 is fixed in the
x2-direction to avoid rigid body motion. All nodes at x3 = 0 are fixed in the
x3-direction. Due to the loading, the rectangular cross section and the bound-
ary conditions, symmetry conditions can be enforced. In order to circumvent
a stress singularity at the clamped end, the shear load is applied there in
the opposite direction instead of fixing these points in the x2-direction. The
geometry and the material data of the beam as well as the load applied and
the boundary conditions are provided in Fig. 10.8.

The convergence of the deflection vP in x2-direction of point P depicted
in Fig. 10.8 is investigated for the Q1/EI9 element as well as the Q1, Q2 and
QM1/E12 element. Four different meshes are used, with 16× 4× 2,32× 8× 4,
64× 16× 8 and 128× 32× 16 elements, respectively.

In Table 10.3, the displacement vP in x2-direction of point P is depicted
for all elements, as a function of the number of degrees of freedom. As ex-
pected, the Q1 element locks. Both enhanced strain elements are softer than
the Q2 element, where the QM1/E12 is closer to the Q2 element than the
Q1/EI9 element. This shows the good coarse mesh accuracy of the enhanced
elements. As expected, all elements converge to the same solution. For better
visualization, only the results for the elements which do not lock are shown
in Fig. 10.9 where the displacement vP is plotted for the Q1/EI9, the Q2 and

x1

x3

x2

a

h

w

l

l = 10mm

Load
F = 6N

h = 2mm
w = 1mm
a = 3mm

MaterialF

F

P

Geometry
Λ = 600MPa
μ = 600MPa

Fig. 10.8 Beam: system, load and material data
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Table 10.3 Beam with distorted mesh: Displacement vP [mm] for the Q1/EI9,
Q1, Q2 and QM1/E12 element

Degrees of freedom Q1/EI9 Q1 Q2 QM1/E12

664 1.0379 0.5778 1.0128 1.0299
4112 1.0314 0.7840 1.0257 1.0279
28576 1.0283 0.9358 1.0270 1.0273
28576 1.0275 1.0007 1.0271 1.0272

the QM1/E12 with respect to the number of elements. The pure displacement
element Q2 converges from below, as the mathematical theory predicts. Both
mixed elements, QM1/E12 and Q1/EI9, converge from above.

dof

v P
[m

m
]

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1000 10000 100000

QM1/E12
Q2
Q1/EI9

Fig. 10.9 Beam with distorted mesh: Displacement vP for the Q1/EI9, Q2 and
QM1/E12 element

10.6.3 Nearly Incompressible Block

A nearly incompressible block of length l, width w and height h is loaded by
an equally distributed surface load q at its top centre, as shown in Fig. 10.10.
Furthermore, all nodes on the top of the block are fixed in the x1- and x2-
directions. For symmetry reasons, only a quarter of the block is discretized.
The bottom face of the block is fixed in the x3-direction. The symmetry
boundary conditions are set such that nodes at x1 = 0.5w are fixed in x1-
direction and nodes at x2 = 0.5 l are fixed in x2-direction. These boundary
conditions are chosen according to a similar test presented in Reese et al.
(2000).



10.6 Examples 459

Geometry

Load

h = 50mm
w = 100mm
l = 100mm
a = 25mm

q = 3MPa

b = 25mm

Material
Λ = 499.92568MPa
μ = 1.61148MPa

h

w
l

P

x2 x1

x3

a
q

b

Fig. 10.10 Nearly incompressible block: system, load and material data

The geometry and the material as well as the applied load and the bound-
ary conditions are provided in Fig. 10.10. The convergence of the vertical
displacement wP in x3-direction at the point P , in Fig. 10.10, is investigated
for the Q1/EI9 and the Q1, Q2, Q1P0 and the QM1/E12 element for regu-
lar meshes with 4 × 4 × 4, 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 and
64 × 64 × 64 elements.

dof

w
P
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m

]

QM1/E12
Q1P0
Q2
Q1/EI9

18.5

19

19.5

1000 10000 100000

20

Fig. 10.11 Nearly incompressible block: Displacement wP for the Q1/EI9, Q2,
Q1P0 and QM1/E12 element

In Table 10.4, the vertical displacement wP in x3-direction of point P is
shown as a function of the number of degrees of freedom for all elements. It
can be observed that the Q1 element locks, as can be expected for this nearly
incompressible problem. Both enhanced strain elements and the Q1P0 ele-
ment are softer than the Q2 element. Thus still mild locking occurs for the
higher order quadratic displacement element. Again, all elements except the
QM1/E12 element converge to the same solution. For the QM1/E12 element,
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Table 10.4 Nearly incompressible block: Displacement wP [mm] for the Q1/EI9,
Q1, Q2, Q1P0 and QM1/E12 element

Degrees of freedom Q1/EI9 Q1 Q2 Q1P0 QM1/E12

260 19.342 7.656 18.354 19.898 20.2097
1800 20.023 13.083 19.569 20.049 20.1549
13328 20.038 17.492 20.008 20.040
102432 20.028 19.493 20.040 20.028
802880 20.025 19.951 20.026 20.025

solutions can only be obtained for the two coarsest meshes. For finer mesh res-
olutions, the QM1/E12 element depicts nonphysical hour-glass instabilities.
The displacement wP are plotted for the Q1/EI9, Q2, Q1P0 and QM1/E12
element in Fig. 10.11 to visualize the results for the elements that are known
to perform well for this test. It can be seen that the Q1P0 and the Q1/EI9
element perform extremely well, even for very coarse meshes. The Q2 element
converges slower which is related to a mild locking of this element.


