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Preface

During the last decade, the method of finite elements (FEM) has proven
to be a universal tool for the analysis of complex structures in engineer-
ing. With increasing computing power, different nonlinear problems can be
treated nowadays.

This book describes, besides the physical and mathematical background
of the finite element method, special discretization techniques and algorithms
which have to be applied for nonlinear problems of solid mechanics. This in-
cludes the necessary basics of continuum mechanics, constitutive equations
for engineering materials and variational principles as well as the matrix for-
mulation of FEM with respect to different configurations and the development
of algorithms for the solution of the resulting nonlinear algebraic equation
systems. Furthermore, time dependent problems are discussed for nonlin-
ear dynamical systems and constitutive equations. Since nonlinear problems
exhibit singularities also formulations are included which facilitate a compu-
tation of limit and bifurcation points.

In addition, element formulations will be derived for nonlinear truss-,
beam- and shell structures and applied in an exemplary fashion. In the same
way, different discretization techniques for three-dimensional solids will be
developed.

Adaptive methods become more significant for a save and efficient appli-
cation of the finite element method. Hence the basic procedures of adaptive
techniques will be described and formulated such that they can be applied to
physically and geometrically nonlinear problems. Additionally, the formula-
tion and treatment of contact problems is included. Associated discretization
techniques and algorithms are presented for large sliding in contact interfaces.

The book is intended for graduate students of mechanical and civil engi-
neering who want to familiarize themselves with numerical methods applied
to problems in solid mechanics. This applies also to PhD-students and engi-
neers working in industry who need further background information on the
application of finite elements to nonlinear problems. Due to that several ex-
amples are included in the text for a deeper understanding of the formulations
and algorithms.

Numerical results stem from scientific collaboration with my former PhD
students E. Boerner, A. Boersma, R. Eberlein, C. S. Han, S. Löhnert, S.



VI Preface

Meynen, T. Raible, S. Reese, A. Rieger, J. Sansour, O. Scherf, H. Spiess and
H. Tschöpe which often enough resulted in joint work in which new papers or
reports were written. I would like to express my appreciation to all of them
since they helped with their constructive comments and criticisms to improve
the text.

A new chapter has been added in which my former PhD student Joze
Korelc, now full professor at the University of Ljubjana, discusses the meth-
ods and merits of automatic code development and creation for nonlinear
finite element analysis.

Finally I like to mention the German Science Council (DFG) which
supported my work on nonlinear finite element methods through different
projects over the years. The results of this work can be found at many dif-
ferent places throughout the book. Last but not least, I like to thank the
Springer Verlag for the pleasant collaboration during the last years.

Hannover, June 2008 Peter Wriggers



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Nonlinear Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Geometrical Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Large Displacements of a Rigid Beam . . . . . . . . . . . . . . . 7
2.1.2 Large Displacements of an Elastic System . . . . . . . . . . . 9
2.1.3 Bifurcation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Snap-Through Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Physical Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Nonlinearity Due to Boundary Conditions . . . . . . . . . . . . . . . . . 17

3. Basic Equations of Continuum Mechanics . . . . . . . . . . . . . . . . . 19
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Motion and Deformation Gradient . . . . . . . . . . . . . . . . . . 20
3.1.2 Strain Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Transformation of Vectors and Tensors . . . . . . . . . . . . . . 29
3.1.4 Time Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Balance of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Balance of Linear and Angular Momentum . . . . . . . . . . 34
3.2.3 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Introduction of Different Stress Tensors . . . . . . . . . . . . . 37
3.2.5 Balance Equations with Respect to Initial Configuration 38
3.2.6 Time Derivatives of Stress Tensors . . . . . . . . . . . . . . . . . . 38

3.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Elastic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Elasto-Plastic Material Laws . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Visco-Elastic and Visco-Plastic Material Behaviour . . . 65
3.3.4 Incremental Form of the Material Equations . . . . . . . . . 73

3.4 Weak Form of Equilibrium, Variational Principles . . . . . . . . . . 82
3.4.1 Weak Form of Linear Momentum in the Initial

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4.2 Weak Form of Linear Momentum in the Current

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



VIII Contents

3.4.3 Variational Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Linearizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5.1 Linearization of Kinematical Quantities . . . . . . . . . . . . . 92
3.5.2 Linearization of Constitutive Equations . . . . . . . . . . . . . 94
3.5.3 Linearization of the Variational Formulation . . . . . . . . . 96

4. Spatial Discretization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 General Isoparametric Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 One-Dimensional Interpolations . . . . . . . . . . . . . . . . . . . . 109
4.1.2 Two-Dimensional Interpolations . . . . . . . . . . . . . . . . . . . . 112
4.1.3 Three-Dimensional Interpolation . . . . . . . . . . . . . . . . . . . 119

4.2 Discretization of the Weak Forms . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.1 FE-Formulation of the Weak Form in Initial

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Linearization of the Weak Form in the Initial

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2.3 FE-Formulation of the Weak Form in the Current

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.4 Linearization of the Weak Form in the Spatial

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.5 Deformation Dependent Loads . . . . . . . . . . . . . . . . . . . . . 142

5. Solution Methods for Time Independent Problems . . . . . . . 149
5.1 Solution of Nonlinear Systems of Equations . . . . . . . . . . . . . . . . 152

5.1.1 Newton-Raphson Method . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.1.2 Modified Newton Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.1.3 Quasi-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1.4 Damped Newton Method, Line-Search . . . . . . . . . . . . . . 157
5.1.5 Path-Following or Arc-Length Method . . . . . . . . . . . . . . 160

5.2 Solvers for Linear Systems of Equations . . . . . . . . . . . . . . . . . . . 171
5.2.1 Direct Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2.2 Iterative Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.3 Parallel Equation Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.3 Examples Related to Algorithms and Equation Solvers . . . . . . 190
5.3.1 Rubber Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3.2 Solid with an Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.3.3 Elasto-Plastic Plate with Hole . . . . . . . . . . . . . . . . . . . . . 196
5.3.4 Problems Solved on Parallel Computers . . . . . . . . . . . . . 198
5.3.5 General Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.3.6 Problems, Which Occur when Running Actual

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Contents IX

6. Solution Methods for Time Dependent Problems . . . . . . . . . 205
6.1 Integration of the Equations of Motion . . . . . . . . . . . . . . . . . . . . 207

6.1.1 Explicit Time Integration Methods . . . . . . . . . . . . . . . . . 209
6.1.2 Implicit Time Integration Methods . . . . . . . . . . . . . . . . . 212
6.1.3 Conserving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.1.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.1.5 Reduction Techniques for Nonlinear Equations

of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.2 Integration of Inelastic Constitutive Equations for Small

Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.2.1 Viscoelastic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2.2 Elasto-Plastic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.2.3 Elasto-Viscoplastic Material . . . . . . . . . . . . . . . . . . . . . . . 243

6.3 Integration of Constitutive Equations for Finite Deformation
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.3.1 General Implicit Integration . . . . . . . . . . . . . . . . . . . . . . . 245
6.3.2 Implicit Integration with Respect to Principal Axes . . . 247
6.3.3 Consistent Tangent Modulus . . . . . . . . . . . . . . . . . . . . . . . 251

7. Stability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.1 Computation of Stability Points . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.1.1 Classical and Linear Buckling Analysis . . . . . . . . . . . . . . 257
7.1.2 General Investigations of Stability . . . . . . . . . . . . . . . . . . 258

7.2 Direct Computation of Singular Points . . . . . . . . . . . . . . . . . . . . 262
7.2.1 Formulation of an Extended System . . . . . . . . . . . . . . . . 262
7.2.2 Computation of the Directional Derivative of KT . . . . . 266
7.2.3 Example: Bifurcation Point of an Arc . . . . . . . . . . . . . . . 268

7.3 Algorithms for Nonlinear Stability Problems . . . . . . . . . . . . . . . 270

8. Adaptive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.2 Boundary Value Problems and Discretization . . . . . . . . . . . . . . 279

8.2.1 Boundary Value Problem for Finite Elasticity . . . . . . . . 280
8.2.2 The Linearized Boundary Value Problem . . . . . . . . . . . . 280
8.2.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.3 Error Estimators and Error Indicators . . . . . . . . . . . . . . . . . . . . 282
8.3.1 Error Estimation for Nonlinear Problems . . . . . . . . . . . . 283
8.3.2 Residual Based Error Estimator . . . . . . . . . . . . . . . . . . . . 285
8.3.3 Error Indicator Based on the Z2 Method . . . . . . . . . . . . 286
8.3.4 Error Estimators Based on Dual Methods . . . . . . . . . . . 288

8.4 Error Estimation for Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
8.5 Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
8.6 Adaptive Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

8.6.1 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.6.2 Transfer of History Variables . . . . . . . . . . . . . . . . . . . . . . . 299



X Contents

8.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.7.1 Hertzian Contact Problem . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.7.2 Elasto-Plastic Deformation of a Cylindrical Shell . . . . . 306

9. Special Structural Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.1 Nonlinear Truss Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9.1.1 Kinematics and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
9.1.2 Constitutive Equations for the Truss . . . . . . . . . . . . . . . . 316
9.1.3 Variational Formulation and Linearization . . . . . . . . . . . 317
9.1.4 Finite-Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

9.2 Two-dimensional Geometrically Exact Beam Element . . . . . . . 325
9.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
9.2.2 Weak Form of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 330
9.2.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
9.2.4 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . 334
9.2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.2.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.3 Axisymmetric Shell Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.3.1 Kinematics and Strains of the Axisymmetrical Shell . . 346
9.3.2 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
9.3.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
9.3.4 Finite Element Formulation . . . . . . . . . . . . . . . . . . . . . . . . 357

9.4 General Shell Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
9.4.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.4.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.4.3 Parametrization of the Rotations . . . . . . . . . . . . . . . . . . . 372
9.4.4 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
9.4.5 Constitutive Equations for Shells . . . . . . . . . . . . . . . . . . . 376
9.4.6 Finite Element Formulation for the 5-Parameter

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
9.4.7 Shell Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

9.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
9.5.1 Bending of a Clamped Beam . . . . . . . . . . . . . . . . . . . . . . . 393
9.5.2 Quadratic Plate under Internal Pressure . . . . . . . . . . . . . 394
9.5.3 Pinched cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
9.5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

10. Special Finite Elements for Continua . . . . . . . . . . . . . . . . . . . . . 399
10.1 Requirements for Continuum Finite Elements . . . . . . . . . . . . . . 399
10.2 Mixed Elements for Incompressibility . . . . . . . . . . . . . . . . . . . . . 406

10.2.1 Mixed Q1-P0 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
10.2.2 Linearization of the Q1-P0 Element . . . . . . . . . . . . . . . . . 410

10.3 Mixed Finite Elements for Finite Elasticity . . . . . . . . . . . . . . . . 411
10.4 Stabilized Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

10.4.1 Stabilization Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418



Contents XI

10.4.2 Weak Form and Linearization . . . . . . . . . . . . . . . . . . . . . . 420
10.5 Enhanced Strain Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

10.5.1 General Concept and Formulation . . . . . . . . . . . . . . . . . . 422
10.5.2 Discretization of the Enhanced Strain Element . . . . . . . 424
10.5.3 Combination of Enhanced Formulation and Hour-Glass

Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
10.5.4 Instabilities Related to Enhanced Elements . . . . . . . . . . 440
10.5.5 Stabilization of the Enhanced Strain Formulation . . . . . 447
10.5.6 Special Interpolation of the Enhanced Modes . . . . . . . . 449
10.5.7 Special One Point Integration and Enhanced

Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
10.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

10.6.1 Patch Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
10.6.2 Beam with Distorted Mesh . . . . . . . . . . . . . . . . . . . . . . . . 456
10.6.3 Nearly Incompressible Block . . . . . . . . . . . . . . . . . . . . . . . 458

11. Contact Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.1 Contact Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.2 Constitutive Equations at the Contact Interface . . . . . . . . . . . . 465

11.2.1 Normal Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
11.2.2 Tangential Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

11.3 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
11.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

11.4.1 NTS-Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
11.4.2 Matrix Form of Contact Residual . . . . . . . . . . . . . . . . . . . 477
11.4.3 Integration of the Friction Law . . . . . . . . . . . . . . . . . . . . . 478
11.4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
11.4.5 Linearization of the Contact Residual . . . . . . . . . . . . . . . 480

12. Automation of the Finite Element Method by J. Korelc . . 483
12.1 Advanced Software Tools and Techniques . . . . . . . . . . . . . . . . . . 483

12.1.1 Symbolic and Algebraic Computational Systems . . . . . . 484
12.1.2 Automatic Differentiation Tools . . . . . . . . . . . . . . . . . . . . 485
12.1.3 Problem Solving Environments . . . . . . . . . . . . . . . . . . . . . 485
12.1.4 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

12.2 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.2.1 Principles of Automatic Differentiation . . . . . . . . . . . . . . 487
12.2.2 Automatic Differentiation and FEM . . . . . . . . . . . . . . . . 489

12.3 Hybrid Symbolic-Numerical Approach . . . . . . . . . . . . . . . . . . . . . 491
12.3.1 Typical Example of the Automatic Code Generation

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.4 Abstract Symbolic Formulations in Computational Mechanics 495

12.4.1 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
12.4.2 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
12.4.3 Symbolic Formulation of Elasto-Plastic Problems . . . . . 498



XII Contents

12.5 Finite Strain Plasticity Example . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.5.2 AceGen Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
12.5.3 Efficiency of Automatically Generated Codes . . . . . . . . 507

A. Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
A.1 Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

A.1.1 Definition of a Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
A.1.2 Vectors and Tensors in a Base System. . . . . . . . . . . . . . . 510
A.1.3 Operations with Vectors and Tensors . . . . . . . . . . . . . . . 512
A.1.4 Special Forms of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 513
A.1.5 Eigenvalues and Invariants of Tensors . . . . . . . . . . . . . . . 514
A.1.6 Tensors of Higher Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

A.2 Tensor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
A.2.1 Differentiation with Respect to a Real Variable . . . . . . . 518
A.2.2 Gradient of a Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
A.2.3 Divergence of a Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
A.2.4 Rotation of a Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . 520
A.2.5 Derivation of an Invariant with Respect to a Tensor . . 520
A.2.6 Pull Back and Push Forward Operations . . . . . . . . . . . . 521
A.2.7 Lie-Derivative of Stress Tensors . . . . . . . . . . . . . . . . . . . . 522
A.2.8 Integral Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553



1. Introduction

Driven by the development of powerful and inexpensive computers, the field
of computer aided engineering emerged. It provides predictive tools as well as
insights in complex engineering processes. Hence engineers working in many
different application areas demand numerical simulation tools for their inves-
tigations which some years ago where only accessible by experiments. Mod-
eling of engineering problems leads in many cases to ordinary and partial
differential equations which often are of nonlinear nature. A powerful tool
to solve these differential equations is the finite element method which was
developed over the last 50 years. Applications in engineering include frames,
shells and continua in structural analysis within the disciplines of civil, me-
chanical or aerospace engineering, for an historical overview see e.g. Felippa
(2000). Furthermore, the method is used to solve heat conduction problems
as well as electrical and magnetic field problems and last but not least simula-
tions of fluids can be carried out using finite elements. The first book covering
this wider field of finite element applications was written by Zienkiewicz and
Cheung (1967).

Based on this demand, a number of all-purpose finite element codes were
developed which can be applied for the solution of many different problems.
Additionally, a huge number of special purpose codes have been developed
which are tailored for a specific engineering application. Many of these pro-
gram codes solve nonlinear problems. Often the theoretical background and
the associated solution algorithms of the codes are not completely transpar-
ent for the user who then is not informed properly and thus has difficulties in
judging and assessing the results obtained in the nonlinear analysis. Nonlin-
ear simulations can lead to solutions which are non-unique, e.g. localization
can occur in structural applications as well as limit points or bifurcation.
Convergence of the numerical analysis is not always obtained in nonlinear
applications. Often no mathematical error analysis is available for nonlinear
problems. Due to these circumstances, the user of a nonlinear finite element
code needs, besides practical experience, a good theoretical background re-
garding the finite element method and the underlying theory. This book was
written to provide the necessary background for problems stemming mainly
from solid mechanics.
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Nonlinearities which occur in practical applications in civil engineering
are of different nature. For example, in the area of steel constructions, elasto-
plastic analyzes are necessary to compute the limit loads of truss, frame or
shell structures. In case of cable constructions, geometrically nonlinear ef-
fects have to be included to describe the large displacements. In concrete
constructions or soil mechanics, complicated nonlinear material laws have to
be considered for a realistic description of the engineering problem. Also an-
choring constructions in which concrete and steel are highly nonlinear due
to possible frictional sliding at interfaces. During the manufacturing of con-
crete, heat is generated due to chemical reactions which lead together with the
change of the constitutive parameters to heat induced stresses. This process
is a thermomechanical coupled one and can only be realistically described by
a nonlinear model.

Many applications and constructions in mechanical engineering can only
be successfully simulated by nonlinear methods. Among these simulations
are the computation of bearing capacities of rubber bearings or forming pro-
cesses. All of them include finite deformation analysis and nonlinear consti-
tutive equations. Finally, the numerical simulation of crash problems can be
mentioned as a complex nonlinear problem which is applied widely in the
automotive industry.

All mentioned applications require large numerical finite element models
with several thousand up to ten million degrees of freedom. Thus, besides the
correct formulations of the problem in the continuum mechanics setting, it is
also necessary to provide efficient and robust methods for the solution.

Since the solution methods have to be adjusted with respect to the type
of nonlinearity, the main nonlinearities will be discussed which are related to
solid mechanics.

– Geometrical nonlinearity occurs in problems where large displacements
and rotations have to be considered like in structural elements as cables,
frames membranes or shells but the strains are still small. Geometrical
nonlinearity is sufficient in many cases to predict singular points in stability
analysis.

– Finite deformations can occur in problems like metal forming or tyre me-
chanics. Here not only the displacements are large but also the strains. Con-
trary to geometrically nonlinear applications, in which only small strains
occur, problem with finite deformations include arbitrarily large strains.

– Physical nonlinearity: Many materials depict nonlinear behaviour.
Among these are visco-elastic polymers or steel, concrete and soil which
show elasto-plastic responses. The material behaviour is characterized by
a nonlinear response function between stresses and strains or by a set of
evolution equations.

– Stability problems can be subdivided into structural mechanics into
two classes: geometrical and material instability. Geometrical instability
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includes bifurcations like buckling of frames or shells but can also be con-
nected to limit points which indicate snap-through behaviour of a structure.
Material instabilities come along with necking or shear bands in metals
but also geo-materials. The origin of these instabilities lies either in an
instability of the equilibrium equations or in the loss of positive definite-
ness of the acoustic tensor which is related to the incremental constitutive
tensor of the material. Both instabilities react in a very sensitive way to
imperfections.

– Nonlinear boundary conditions: Problems which are characterized by
nonlinearities stemming from the boundary are associated with contact
between two bodies or deformation dependent loading.

– Coupled problems occur when different interacting fields which describe
e.g. solids, heat conduction in solids or fluids are needed to formulate
a complex physical problem. Examples are thermomechanical coupling,
fluid-structure-interaction or problems in which chemical reactions, heat
generation and conduction and mechanical stresses have to be coupled to
model an engineering process, like the design of a new material. In all cases,
nonlinearities in each of the different field equations have to be considered.

During the last years, many breakthroughs were achieved worldwide for
each of these different areas which result in better approximative behaviour
of the finite elements and in better and more efficient algorithms. Goal of
these developments is the design of methods for nonlinear problems which
are robust, accurate and efficient. With the achievement of these goals, finite
element methods can more safely be applied to nonlinear problems in engi-
neering. Today’s problems with small to moderate strains can be solved for
elastic and inelastic materials using standard finite element codes. Problems
with finite deformations, material instabilities and contact cannot be solved
routinely with existing software. Here research is still necessary to enhance
the existing programs and tools.

This book includes the basic relations needed for the mathematical mod-
elling of an engineering problem in solid mechanics and the algorithmic treat-
ment used for its numerical simulation. The latter will be investigated with
respect to robustness, accuracy and efficiency. Since there are numerous differ-
ent nonlinear problems and associated solution methods, only an introduction
can be provided for this extensive field.

The book is subdivided into ten further chapters which include the fol-
lowing subject areas:

– Chapter 2 contains an introduction to the major nonlinearities which
occur in solid mechanics. Based on simple examples, which can be solved
analytically, different phenomena are discussed which are treated in general
form in-depth in the following chapters.

– The foundation of nonlinear continuum mechanics is summarized in
Chap. 3 to establish a basis for an unified treatment of finite element for-
mulations. Different strain measures for finite deformations are introduced,
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after that the associated stress tensors are presented together with the gen-
eral balance laws and related weak forms. The field of material theory is so
large that this area cannot be treated in-depth in this monograph. Hence
the constitutive material equations is restricted to hyperelastic and elasto-
plastic materials for finite deformations and does present visco-elastic and
visco-plastic constitutive laws for small strains only.

– Chapter 4 discusses the finite element approximations of the nonlinear
equations derived in Chap. 3. First the shape functions are described which
can be applied for one-, two- and three-dimensional problems. The approxi-
mation is based on the isoparametric concept which will be discussed in the
light of its excellent suitability for nonlinear problems. The chapter con-
tains also the discretization and matrix formulation of the nonlinear weak
forms within the classical displacement formulation leading to nonlinear
algebraic equation systems. Finally, linearizations of the nonlinear matrix
equations are presented which are needed within the solution algorithms.

– Chapter 5 discusses algorithms for the solution of nonlinear equation sys-
tems which stem from the discretization of the partial differential equations
of continuum mechanics. Besides the classical Newton method, arc-length
procedures are also included. Furthermore, methods for the direct and it-
erative solution of linear equations systems, which have to be solved within
the iterative solution procedures, are subject of this chapter. Finally algo-
rithms for parallel computers with distributed memory are discussed.

– Explicit and implicit algorithms for time dependent problems are described
in Chap. 6. These are classical and modern methods for time integra-
tion of the equations of motion used in nonlinear applications and inte-
gration methods for time dependent constitutive equations. The latter are
derived for visco-elastic, visco-plastic and elasto-plastic constitutive equa-
tions. The presented algorithms can be applied to problems with small and
large strains.

– The foundation for the treatment of stability problems is subject of
Chap. 7. Here the necessary algorithms for investigations regarding the
stability behaviour of structures are discussed. Besides the classical buck-
ling analysis, the computation of singular points using extended systems
is also presented. The chapter closes with algorithms for path switching
needed in post-buckling analysis.

– A new and relevant aspect of modern finite element methods is considered
in Chap. 8. The topic is automatic error control using error estimators
and indicators. The associated adaptive algorithms are derived for elastic
and elasto-plastic applications. Examples depict the behaviour of different
methods.

– Nonlinear structural members which can be formulated by a one- or
two-parametric description are presented in Chap. 9. Objects using a
one-parametric description are trusses, beams and axi-symmetrical shells
including axi-symmetrical membranes. A two-parametric description is
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applied to model nonlinear shells. The weak forms and associated finite
element discretizations are derived for all formulations in a geometrically
exact manner.

– Special two- and three-dimensional solid elements are contained in
Chap. 10. These are constructed especially for incompressible materi-
als and for thin solids with bending behaviour. All elements are formu-
lated either in the initial or current configuration. Special mixed element,
enhanced elements and stabilized elements are developed and compared
regarding their advantages and disadvantages.

– Chapter 11 discussed contact problems undergoing finite deformations
since many technical problems include contact constraints, especially when
large deformations have to be considered. Contact kinematics as well as dif-
ferent possibilities to solve the associated variational inequalities are pre-
sented. This chapter includes also constitutive equations for friction within
the contact interface and two-dimensional finite element discretization.

Within Chaps. 4–11, different matrix formulations based on the finite el-
ement method are derived. Numerical simulations of special examples are
presented to compare different formulations and to illustrate the general be-
haviour of finite element approximations and associated solution algorithms.

The book is written as a textbook for nonlinear applications of the finite
element method in solid mechanics. Due to that the chapters have to be read
in a chronological order. To obtain a general overview Chaps. 2–6 have to be
studied. Chapters 7–11 contain more specialized applications of the method.
These chapters can be studied on its own, in case that the reader possesses
already the corresponding knowledge. This is also true for Chaps. 4–6 in
case that the reader has already the necessary background in continuum
mechanics.



2. Nonlinear Phenomena

Numerous different nonlinearities can occur in solid mechanics which are
either of geometrical or of physical nature. The treatment of associated prob-
lems demands a large bandwidth of methods and algorithms which will be
discussed in the following chapters. Based on introductory examples, different
phenomena of nonlinear behaviour will be described to introduce the reader
the nature of the problems. Deliberately simplified mechanical models are
used, which are just complicated enough to represent the desired nonlinear
feature. All solutions can still be solved analytically which helps to under-
stand the problem. However, engineering problems cannot be formulated with
such simplified models. Due to that numerical methods have to be applied
for real world applications.

2.1 Geometrical Nonlinearity

In structural analysis, it is usually sufficient to consider only small deforma-
tions and strains since many parts of the structure can only undergo small
strains to maintain their usability. With this restriction, a linear constitutive
equation can be introduced when elastic deformations are present. However,
even under this assumption, there are many problems which depict large
displacements or rotations, such as cables, beams or shells. Such problems
require a nonlinear theory which includes the geometry in an exact way.
Some examples which represent different geometrically nonlinear behaviour
are discussed in the following.

2.1.1 Large Displacements of a Rigid Beam

The first example for geometrically nonlinear behaviour is a rigid beam of
length l, see Fig. 2.1a which is supported by an elastic rotational spring with
stiffness c at its left end.

Equilibrium at the deformed system yields directly, see Fig. 2.1b,

F l cos ϕ = c ϕ . (2.1)

Equation (2.1) relates the force F in a nonlinear way to the beam rotation
ϕ. The nonlinearity stems from the change of geometry in the equilibrium
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l

F

F

l cosϕ

ϕ

cc

Fig. 2.1a System and loading Fig. 2.1b Undeformed system

equation. Hence this type of behaviour is known as geometrical nonlinearity.
For small rotations ϕ the approximation cosϕ → 1 is obtained. With this
the linear solution F = c ϕ / l can be derived from (2.1). Figure 2.2 shows
the increase of the force as a function of the rotation ϕ for both cases. One
observes clearly that the linear solution deviates from the exact geometrically
nonlinear one for large rotations.

Rotation ϕ in degrees

00 10 20 30 40 50 60 70

1

2

3

4

5

second order theory
linear theory
exact theory

Fl

c

Fig. 2.2 Force versus rotation

Often the so-called second order theories are applied to include nonlinear
effects in the mechanical model. The idea is to descibe the nonlinear terms
using a Taylor series which is terminated after the second term. For the
presented example, the relation of the second order theory

F =
c ϕ̂

l (1 − ϕ̂2

2 )
(2.2)
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is obtained with cosϕ ≈ 1− ϕ̂2

2 . This equation approximates the exact solution
up to a rotation of ϕ̂ ≈ π/3 very well, see Fig. 2.2. The solution (2.2) deviates,
however, for larger rotations from the exact solution.

In case that the flexibility of the beam has to be considered too, we would
have to include also nonlinear strain–displacement relations for the beam. The
associated equations are derived in Sect. 6.2. Due to the fact that they are
quite complicated, an analytical solution cannot be derived for the nonlinear
elastic beam.

2.1.2 Large Displacements of an Elastic System

In this example, the influence of flexibility of a structure is investigated in the
context of geometrically nonlinear behaviour. Let us consider two horizontal
elastic springs which have a linear force–displacement relation. The structure
is loaded by a point force F , see Fig. 2.3a.

F

l l

ϕ

SF

c c
l

l + f
w

F
ϕ

Fig. 2.3a System and loading Fig. 2.3b Geometry and equilibrium

To obtain the load–deflection curve of the force F with respect to the
vertical displacement w, the kinematical relation between the vertical dis-
placement w and the elongation f of the spring has to be formulated as well
as the equilibrium and the constitutive law for the spring. The kinematical
relation is given by, see Fig. 2.3b,

w2 + l2 = ( l + f )2 −→ f = l

[√
1 +

(w
l

)2

− 1

]
(2.3)

and
sin ϕ =

w

l + f
. (2.4)

Equilibrium follows from Fig. 2.3b by considering symmetry as

SF sin ϕ =
F

2
. (2.5)
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Furthermore, the constitutive equation for the spring is assumed to be linear

SF = c f (2.6)

where c is the spring stiffness and SF denotes the force in the spring. Inserting
(2.4) in (2.5) yields with (2.6)

c f
w

l + f
=
F

2
. (2.7)

This equation can be reformulated using (2.3) in terms of the vertical dis-
placement w

w

l

⎡
⎣1 − 1√

1 +
(

w
l

)2
⎤
⎦ =

F

2 c l
. (2.8)

The associated load–deflection curve is depicted in Fig. 2.4.

Fl

2cl

0.5

0

0.4

0.3

0.2

0.1

0 0.2 0.6 0.8 1

second order theory
exact theory

0.4

Displacement w/l

Fig. 2.4 Load–deflection curve

The load–deflection curve has a horizontal tangent at zero displacement.
For that reason, this example cannot be formulated in terms of a linearized
theory. However, it is possible to derive a second order theory for small values
of w (w / l << 1) by a Taylor series expansion of the square root in (2.8):

1 /
√

1 +
(

w
l

)2 ≈ 1 − 1
2

(
ŵ
l

)2
. This approach yields the cubical polynomial

ŵ

l

[
1
2

(
ŵ

l

)2
]

=
F

2 c l
, (2.9)

which approximates the exact solution for w / l < 0.4 well, see Fig. 2.4.
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Remark 2.1: This example depicts, besides large displacements w, also large
elongations (strains) in the spring. For most technically relevant materials, a linear
relation between forces and elongation does not exist in such a case. For example, for
steel bars, plastic deformations for larger strains has to be considered, see Sect. 2.2.
For rubber bands, the spring stiffness depicts a nonlinear characteristic, see Chap. 3.
In the example, a linear relationship is assumed in (2.6), which can be found in real
springs. Thus only the effect of geometrically nonlinear behaviour was discussed,
omitting here nonlinear effects stemming from the material.

2.1.3 Bifurcation Problem

The solution of a nonlinear problem is not always unique. This feature will
be discussed by means of the stability problem described in Fig. 2.5a. This
example is equivalent to the first one; only the load acts now in horizontal
direction. Formulating equilibrium at the deformed system, see Fig. 2.5b,
yields

F l sin ϕ = c ϕ −→ ϕ

sin ϕ
=
F l

c
. (2.10)

l

F

F

l sinϕ
ϕ

c c

Fig. 2.5a System and loading Fig. 2.5b Deformed system

This equation has multiple solutions. The trivial solution is ϕ = 0, which
is valid for all values of F . For F l

c > 1 (|ϕ| ≥ | sin ϕ|), there exist two more
solutions which are depicted in Fig. 2.6. In total, three solutions of (2.10)
exist for F l

c > 1. Hence the solution is no longer unique. The point (F l
c = 1)

at which the three different solutions start is known as bifurcation point.
An essential question is now which solution path will be followed by the
system when the load is increased beyond the bifurcation point. The answer
for that is provided by the theory of stability. For the case at hand, it can
be shown that the trivial solution is instable. The physical meaning of this
is that for a small disturbance of the trivial solution ϕ = 0 equilibrium is
lost and the system will change to a new stable equilibrium state. Usually
large deformations and even dynamical effects occur in such situation. In
technical construction, such behaviour leads most of the times to a total
collapse. Hence the identification of such instable solution is of great practical
importance. The other solutions of (2.10) – shown in Fig. 2.6 by a – are stable
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Fig. 2.6 Load-deflection curve

and insensitive against small disturbances. An approximation of (2.10) using
second order theory yields with sin ϕ ≈ ϕ̂− ϕ̂3 / 6 and 1 / (1 − x) ≈ 1 + x̂

1 +
ϕ̂2

6
=
F l

c
. (2.11)

This equation reproduces the same behaviour as (2.10), since three solutions
are also present for F l

c > 1. (A more general formulation will be discussed
later in Chaps. 5 and 7.)

Remark 2.2: Often, in practical applications, it is only of interest to compute the

bifurcation point of a structure under a given loading. In its vicinity, see Fig. 2.6,

it can be assumed that ϕ is small and hence approximate sin ϕ ≈ ϕ̂. From (2.10),

the linear homogeneous equation

(F l − c ) ϕ̂ = 0 (2.12)

is obtained which is either fulfilled trivially for ϕ̂ = 0 or non-trivially for
F = Fc = c

l . One calls Fc the critical load (Fc is eigenvalue of the eigenvalue
problems (2.12)). The critical load Fc is equivalent to the load related to the
bifurcation point in the exact equation (2.10).

2.1.4 Snap-Through Problem

In this example, the system depicted in Fig. 2.7a is considered which consists
of two trusses – modelled as springs of length L0 – under the action of a
vertical point force F . The springs are supported at their left and right end,
respectively.
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l l

F

h

L0

l

N

F

w

α− ϕh− w
α− ϕ

L
ϕ

Fig. 2.7a System and loading Fig. 2.7b Geometry and equilibrium

With the kinematical relations (h− w)2 + l2 = L2 and h2 + l2 = L2
0, see

Fig. 2.7b, the length change of the spring is as follows

f = L− L0 = l

⎡
⎣
√

1 +
(
h− w
l

)2

−

√
1 +

(
h

l

)2
⎤
⎦ . (2.13)

Equilibrium with regard to the deformed system can be written as

N sin(α− ϕ ) = −F
2
, (2.14)

see Fig. 2.7b with the normal force N . This relation leads with sin(α−ϕ ) =
(h− w )/L to

N
h− w
L

= −F
2
. (2.15)

The spring characteristic is linear, hence N = c f , see also Remark 2.1. In-
serting (2.13) into (2.15) yields the nonlinear relation between force F and
displacement w

c (h− w)
L− L0

L
= −F

2
=⇒ w − h

l

⎡
⎣ 1 − L0

l

√
1 +

(
w−h

l

)2
⎤
⎦− F

2 c l
= 0 .

(2.16)

The associated load–deflection curve is plotted for L0 / l = 1.25 in Fig. 2.8.
The load increases until point D and decreases afterwards for increasing
displacement w. The latter situation cannot be reached in case of a static
loading. To model this process in a physically correct way a dynamic process
should be introduced once point D is passed. The system cannot not be in
static equilibrium until point E is reached for a load larger or equal than
the load at D. The associated process, in which the system changes from one
equilibrium state to another instantaneous, is called snap-through. Due to
that, point D is called snap-through point. Since the solution is not unique
at such point (equilibrium can be found for load F in D or E which is
associated with two different displacements w) a snap-through problem is a
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Fig. 2.8 Load–deflection curve

stability problem. Furthermore, the load is limited at point D which leads to
the notion of a limit point.

Depending on the geometry and the loading, snap-through behaviour can
be observed in many technical structures like trusses, beams or shells. Usu-
ally snap-through is connected with a total failure of the structure. How-
ever, there are also applications which rely on snap-through behaviour. One
of such problems is related to the opening of, e.g. a glass of jam. Here
a loud noise of the lid proves that the glass was not opened before and
that the contents are untouched. The noise is related to a snap-through
of a thin shell (the lid) following from a change of the internal pressure.
The deformations related to this process are very small, thus the lid is not
damaged.

From the previous examples, it can be concluded that geometrical nonlin-
earity leads to numerous different phenomena, which can occur individually
or in combined form. In principle, always nonlinear behaviour of a new struc-
tural design has to be considered until it can be proven that a linearized
treatment of the problem is adequate.

Remark 2.3: The application of approximate theories (e.g. second order theories)

is not necessary for the present examples since the geometrically exact equations

can be easily analyzed. Approximate theories always make sense when the exact

formulation of a problem is too complex and the approximate theory enables an

analytical treatment. If, however, a computational treatment is chosen – as in this

monograph – then the exact relations should always be used since the resulting

nonlinear equations can be solved on a computer without difficulties. Due to this,

we will abstain from the derivation of approximate theories in the following text.



2.2 Physical Nonlinearity 15

2.2 Physical Nonlinearity

Within the treatment of geometrically nonlinear problems, which have been
considered so far, only linear elastic stress–strain relations, such as the lin-
ear characteristic for the elongation of a spring, were used. This is a good
approximation for many materials but holds only under certain restrictive
assumptions like small strains. Simple examples show that this is not al-
ways true. An elongated rubber band depicts, e.g. with increasing elongation
a greater stiffness; furthermore a metal wire suffers permanent deformation
under bending which is due to elasto-plastic material behaviour. Permanent
deformations occur in the last case once a limiting stress is exceeded. This
behaviour is also called plastic flow and the limiting stress is known as yield
stress.

As an example for elasto-plastic deformations, the system depicted in
Fig. 2.9a is considered. It consists of two bars with same cross section but
different materials. Generally, elasto-plastic material behaviour is assumed
as shown in Fig. 2.9b where the stress is limited by the yield stress σy.
The material data for Young modulus are chosen as E1 = 2E2 = 2E;
furthermore the yield stresses of the two materials are different σy1 = 3σy2 =
3σy where the subscript is related to the bars.

l

F

E1

σ

σy

ε

E2

Fig. 2.9a System and loading Fig. 2.9b Material behaviour

Under the assumption that the loading is so small that the yield stress
will not be reached in one of the bars, a purely elastic response occurs. In
that case, equilibrium can be formulated

N1 +N2 = F −→ σ1 + σ2 =
F

A
, (2.17)

where the normal force Ni in bar i is related to the stress by Ni = Aσi. The
kinematical relations yield

u1 = u2 = u , ε =
u

l
(2.18)

for the displacements in normal direction ui and the associated strain ε.
Finally, the linear elastic material law of Hooke relates stresses to strains
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σi = Ei ε = Ei
u

l
. (2.19)

A combination of all equations results in a linear relation between force F
and displacement u:

E1A
u

l
+ E2A

u

l
= F −→ u =

F l

(E1 + E2)A
. (2.20)

The stresses in both bars follow as

σi = Ei
F

(E1 + E2)A
−→ σi = Ei

F

3EA
. (2.21)

Note that bar 2 starts to yield for F = 3Aσy while bar 1 is still elastic. The
associated displacement is u = σy l /E. In case of a further increase of the
load, the constant normal force N2 = Aσy in bar 2 has now to be considered,
see Fig. 2.9b. This results, analogous to (2.20), in a displacement of

u =
(
F

A
− σy

)
l

2E
. (2.22)

Finally, bar 1 yields with N1 min = 3Aσy at an applied force of F = 4Aσy.
After that, it is not possible to increase the load further and the load–
displacement diagram in Fig. 2.10 is obtained.

4

0

1

2

3

F

σy A

1 2 3 4 u

l

E

σy

Fig. 2.10 Load–displacement diagram

Again a nonlinear relation between load and displacement is observed as
in the previous examples. However, here this nonlinear behaviour stems from
the elasto-plastic material law defined in Fig. 2.9b.
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In many technical applications, nonlinear behaviour is observed which
results from a combination of geometrical and physical nonlinearities. Exam-
ples are deep drawing of metal sheets, bulk forming processes or car crashes.
The relevant treatment is considered in the following chapters.

2.3 Nonlinearity Due to Boundary Conditions

Another but different source for nonlinearities is related to special bound-
ary constraints. One major cause of such nonlinear behaviour are boundary
constraints which change with the deformation state of a system (e.g. during
the increase of a prescribed load). These occur when one body comes into
contact with another one during a deformation process. Here a penetration
of one body into the other is ruled out and the contact zone between the two
bodies changes depending on the load level.

The essential characteristics of contact problems are discussed using the
following simple model. We consider to bars with stiffness EA, see Fig. 2.11a.
The system is subjected to a point force F . Both bars are separated by a gap δ.
We look for the displacement and stress state in the bars on the condition that
one bar cannot penetrate the other one. This condition leads with Fig. 2.11a
to an inequality for the displacements

u1 − u2 ≤ δ . (2.23)

Here the “less” sign is correct in the case that bar 1 does not touch bar 2.
The “equal” sign is true for contact of the bars.

In case of u1 − u2 < δ displacement u2 is zero. Thus the displacement of
bar 1 is

4

0

1

2

3

F

E A

1 2

l l lδ

F

u1 u2

δ

l

Fig. 2.11a System and loading Fig. 2.11b Load deflection curve
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u1 =
F l

EA
. (2.24)

An increase of the force F such that F > EA δ
l is fulfilled leads to contact of

bars 1 and 2, then equation u1 − u2 = δ is valid. With the displacements of
both bars at x = 2 l

u1 =
F l

EA
+
N1 2 l
EA

and u2 = −N2 l

EA
(2.25)

and the condition that the normal force at the contact point has to be equal
for both bars (N1(2l) = N2(2l) = N) follows from u1 − u2 = δ:

F l

EA
+ 3

N l

EA
= δ −→ N =

1
3

(
EA

δ

l
− F

)
. (2.26)

Using (2.25) and (2.26) yields, in case of contact, a relation between force F
and displacement u1

F = EA

(
3
u1

l
− 2

δ

l

)
. (2.27)

This equation includes, for u1 = δ, the limiting case of the beginning contact
in which N = 0 is obtained from (2.26). Hence the displacement u1 of bar 1
can also be computed from (2.24). Figure 2.11b depicts the resulting nonlinear
load–deflection curve where the nonlinear behaviour stems only from the
contact mechanism.

Basically, geometrical constraints and equilibrium equations have to be
considered in contact formulations which are not differentiable since the sys-
tem can assume two different states of being in contact or being not in contact.
This is reflected by the kink in the load deflection curve.

Since contact nonlinearities are linked in many technical applications to
further nonlinearities, like finite or inelastic deformations, it is especially com-
plicated to construct robust end efficient algorithms for contact problems.

All discussed examples show that the source of nonlinear behaviour is
quite different. Besides geometrical effects, material properties or changing
boundary conditions yield nonlinear behaviour. In the following chapter, the
underlying theoretical basis is generalized for two- and three-dimensional
solids and the necessary numerical solution schemes based on the finite ele-
ment method will be developed.



3. Basic Equations of Continuum Mechanics

This chapter contains a summary of the continuum mechanics background
which is needed for the finite element formulation of solid mechanics and
structural problems. The kinematical relations, the balance laws with their
weak forms and the constitutive equations are described in detail in this
chapter.

Kinematical relations will be formulated for the current and the referen-
tial description of motion. Based on that strain measures will be introduced.
Variational formulations will be derived which are basis for nonlinear finite
element methods. Isotropic hyperelastic material behaviour will be discussed
as an example for nonlinear constitutive laws which can be applied to de-
scribe large strains not only in three-dimensional solids but also in structural
elements like trusses or shells. Furthermore, inelastic material behaviour will
be treated for small and finite strain applications within the framework of
classical material equations.

Since this book is devoted to nonlinear finite element formulations, the
underlying theory of continuum mechanics cannot always be treated in the
necessary depth. Hence several extensive derivations are not presented, but at
such point the relevant literature will be cited. The reader who needs a more
in-depth treatment of continuum mechanics is referred to standard books,
e.g. Truesdell and Toupin (1960), Truesdell and Noll (1965), Eringen (1967),
Malvern (1969), Becker and Bürger (1975), Altenbach and Altenbach (1994),
Chadwick (1999) or Holzapfel (2000) for the basics on continuum mechanics,
Ogden (1984) for the theory of elasticity and Marsden and Hughes (1983) or
Ciarlet (1988) for the mathematical background of the theory of elasticity.

3.1 Kinematics

The kinematical relations concern the description of the deformation and
motion of a body, the derivation of strain measures and the time derivatives
of kinematical quantities. All kinematical relations are needed within the
constitutive equations and the weak formulation of balance laws.
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3.1.1 Motion and Deformation Gradient

In this section, the motion and deformation of homogeneous bodies are con-
sidered. Here the continuum approach is applied in which a body B is de-
scribed in a formal way by a set of continuously distributed points P ∈ B,
also called particles or material points, which occupy a region within the
Euclidean point space IE3. The configuration of a body B is a one-to-one
mapping ϕ: B −→ IE3, which places the particles of B in IE3. With this
definition, the location of a particle X from B is given for the configura-
tion ϕ as x = ϕ (X). Thus, the placement of a body B is described by
ϕ(B) = {ϕ(X) |X ∈ B} and called configuration ϕ(B) of body B.

The motion of body B is then given as a one-parametric series of config-
urations ϕt: B → IE3. The location of a particle X at time t ∈ R

+ yields

x = ϕt (X) = ϕ (X, t) . (3.1)

This equation describes a curve in IE3 for a particleX. X = ϕ0 (X) defines the
reference configuration of body B, with X being the location of the particle
X for this configuration. Thus from (3.1)

x = ϕ (ϕ−1
0 (X), t) (3.2)

can be deduced.

Remark 3.1: It is not necessary that the body assumes the reference configu-

ration at any time. Since the reference configuration can be chosen arbitrarily, it

is often assumed for practical purposes that the configuration of body B at the

beginning of the deformation (initial configuration) is equivalent to the reference

configuration. However, there are applications like isoparametric interpolation func-

tions within finite element formulations for which reference configurations will be

defined which are purely fictitious.

Usually it is not necessary to distinguish between X and X. Then the nota-
tion simplifies and instead of (3.2), the relation

x = ϕ (X, t) (3.3)

is obtained, where X represents particle X in the reference configuration
B. Based on this, the placements x and X can be formulated as position
vectors in IE3 with respect the origin O, see Fig. 3.1. Point X is defined in
the reference configuration by the position vector X = XA EA. EA defines an
orthogonal base system in the reference configuration with origin O. Hence
(3.3) can be written in terms of components of the vector as

xi = ϕi (XA, t ) . (3.4)

If the motion is characterized with respect to the material coordinates
{X1 ,X2 ,X3 }, this is called material or referential description. In the ma-
terial description – often also referred to as Lagrangian description of mo-
tion – one follows the movement of a particle of body B in time.
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O

B

X

u(X, t)

x(X, t)

ϕ(B)

Fig. 3.1 Motion of body B

In the following, capital letters are used as indices for components of
vectors and tensors with respect to the basis EA of the reference configuration
where XA are the Lagrangian coordinates of the particle X.

Another possibility is the use of the spatial coordinates {x1 , x2 , x3 } when
the motion of body B has to be described. In this formulation, attention is
paid to a point in space and the change of the motion with time t at this
point. This description is called current, spatial or Eulerian description of
motion. Small letters are used for indices of vectors and tensors which are
related to the basis ei of the current or spatial configuration. The quantities
xi are the spatial coordinates of X.

For simplicity, an orthogonal cartesian basis will be assumed in the follow-
ing. This is in accordance with the formulation of numerical methods based
on FEM in which often isoparametric interpolations are used which rely on
an orthogonal base system. A more general description using curvilinear coor-
dinates is just technical but leads eventually to a significantly more complex
formulation.

The equations of continuum mechanics can be formulated with respect to
the deformed or undeformed configurations of a body. From the theoretical
point of view, there is no difference or preference whether the equations are
related to the initial or current configuration. Thus the configuration can be
chosen freely. However, physical implications as in the theory of plasticity
have to be taken into account, see e.g. (Lubliner (1990), p. 453) when select-
ing a certain description. Additionally, this selection can have consequences
regarding the selected numerical method. Here differences with respect to
efficiency can be observed which will be discussed in later chapters.
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Since it is not clear from the outset which formulation is preferable, the
following strain measures will be derived for the reference configuration B as
well as for the current configuration ϕ(B).

To describe the deformation process locally, a tensor F is introduced which
relates tangent vectors of initial and current configuration to each other. It
maps a material line element of the initial configuration dX in B, to a line
element dx of the current configuration ϕ(B).

dx = FdX or dxi = FiA dXA . (3.5)

By the structure of this equation, it is clear that F represents a gradient.
Hence F is called deformation gradient. From the symbolic form F = ∂ x / ∂X
follow the components of the deformation gradient as partial derivatives
∂xi / ∂XA = xi,A. With (3.3) and (3.4)

F = Gradϕ(X, t) = FiA ei ⊗ EA =
∂xi

∂XA
ei ⊗ EA (3.6)

is obtained. The matrix formulation of F yields

[FiA] =

⎡
⎣ x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

⎤
⎦ . (3.7)

Since the gradient in (3.6) is a linear operator, the local transformation in
(3.5) is also linear. To maintain the connection of B during the deformation
process, the mapping (3.5) has to be one-to-one which excludes a singularity
of F. The latter condition can be recast in the form

J = detF 	= 0 , (3.8)

where J defines a determinant named after Jacobi. Furthermore, to exclude
a self penetration of the body, the following constraint has to be fulfilled by
the deformation gradient: J > 0. Since F cannot be singular, the inverse F−1

exists, which can be applied to invert relation (3.5)

dX = F−1 dx . (3.9)

The inverse of the deformation gradient has the following form

F−1 = (F−1)iA EA ⊗ ei with (F−1)iA =
∂XA

∂xi
. (3.10)

Here X is given by X = ϕ−1 (x).
Knowing the deformation gradient allows to express further transforma-

tions of differential quantities between B and ϕ(B). The transformation of
surface area elements between B and ϕ(B) is given by the formula of Nanson

(see e.g. Ogden (1984), p. 88)
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dV

dA

N n

da

dv

ϕ(B)
B

ϕ, F

Fig. 3.2 Transformation of differential elements

da = n da = J F−T N dA = J F−T dA . (3.11)

In this equation, n is the normal vector of the surface of the deformed body
ϕ(B) and N is the normal vector in B, see Fig. 3.2. J is the Jacobi determi-
nant, defined in (3.8) and da and dA are the area elements of the associated
configurations, respectively.

The transformation between volume elements of initial and current con-
figuration is provided by the relation

dv = J dV . (3.12)

By introducing a displacement vector u(X, t) as difference between the
position vectors of current and initial configuration

u(X, t) = ϕ(X, t) − X, (3.13)

the deformation gradient (3.6) can be written as follows

F = Grad [X + u(X, t) ] = 1 + Gradu = 1 + H . (3.14)

The tensor H = Gradu is called displacement gradient.

3.1.2 Strain Measures

In this section, different strain measures are discussed which are used in
forthcoming formulations. The first strain tensor referred to the initial con-
figuration B is defined by

E :=
1
2

(FT F − 1 ) =
1
2

(C − 1 ) (3.15)

and called Green-Lagrange strain tensor. The tensor C := FT F in (3.15)
is the right Cauchy-Green tensor which expresses the square of the line
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element dx by the material line element dX: dx · dx = dX · CdX. Hence
the strain E describes the change of the square of the line elements from B
to ϕ(B). In component form, the strain tensor E can be written as

E = EAB EA ⊗ EB with EAB =
1
2

(FiA FiB − δAB ) .

The Kronecker symbol δAB denotes the components of the unit tensor 1.
Often the Green-Lagrange strain tensor E is expressed in analytical inves-
tigations by using the displacement gradient. This is actually not necessary
when a numerical approach is applied. We obtain with (3.14)

E =
1
2

(H + HT + HT H ) . (3.16)

The higher order term HT H depicts the nonlinear character of the Green-

Lagrange strain tensor. Within the geometrically linear theory, this term
is neglected by assuming that the displacement gradient is of small order
(‖H‖ � 1). In that case, the strain tensor E reduces to the linear strain
measure ε

ε =
1
2

(H + HT ) =
1
2

(uA,B + uB,A )EA ⊗ EB . (3.17)

Exercise 3.1: Determine the deformation gradient (3.6) and the Green-

Lagrange strain tensor (3.16) for a plane deformation. The deformation map
is given by x = X + u ( X1, X2 ), see Fig. 3.3.

ϕ(B)

X

B

u1(X1,X2)

X1, x1

u(X)

X1, x1

Fig. 3.3 Plane deformation

Solution: F is computed from (3.7) based on the components of x
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x1 = X1 + u1 ( X1, X2 ),

x2 = X2 + u2 ( X1, X2 ),

x3 = X3.

This yields the matrix form of F

[FiA] =

⎡
⎣ 1 + u1,1 u1,2 0

u2,1 1 + u2,2 0
0 0 1

⎤
⎦ .

The Green-Lagrange strain tensor E follows with F from (3.15). However, it
is also possible to compute E with (3.16) but more time-consuming. By matrix
multiplication

[
FT F

]
=

⎡
⎣ (1 + u1,1)

2 + u2
2,1 (1 + u1,1) u1,2 + (1 + u2,2) u2,1 0

(1 + u1,1) u1,2 + (1 + u2,2) u2,1 (1 + u2,2)
2 + u2

1,2 0
0 0 1

⎤
⎦

is obtained. Hence the components of the Green-Lagrange strain tensor are
given by

E11 = u1,1 +
1

2

(
u2

1,1 + u2
2,1

)
,

E22 = u2,2 +
1

2

(
u2

2,2 + u2
1,2

)
,

E12 =
1

2
( u1,2 + u2,1 ) +

1

2
( u1,1 u1,2 + u2,2 u2,1 ).

The components E33, E13 and E23 are zero for a plane deformation. The first term

on the right hand side is related to the linear part of the strain measure.

The Green-Lagrange strain measure is often used in nonlinear struc-
tural engineering applications. Mostly, this strain measure is applied for prob-
lems with large displacements but small strains (e.g. within beam or shell
theory), since it can describe arbitrary rigid body motions correctly. These
are defined by

xR = QX + c,

where c is a constant vector describing a translation and Q is constant proper
orthogonal tensor which rotates X. By inserting this motion in (3.6), FR = Q
is derived. Due to the property of the orthogonal tensor Q that QT Q = 1,
it follows immediately that E = 0 for a rigid body motion.

A generalization of (3.15) can be found e.g. in Ogden (1984) and is de-
fined by

Eα =
1
α

(Uα − 1 ) , α ∈ R . (3.18)

This strain tensor is referred to the initial configuration B. It is constructed
such that its linearization yields the classical linear strain measure (3.17).
For α = 0, the strain tensor

E(0) = ln U (3.19)
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follows which is known under the name of Hencky.
The equivalent to the generalized strain measure (3.18) which is formu-

lated with respect to the current configuration ϕ (B) is given by

eα =
1
α

(Vα − 1 ) , α ∈ R . (3.20)

The poplar decomposition of the deformation gradient was used within the
definition of the strain measures (3.18) and (3.20). This splits the deformation
gradient in a multiplicative way in a proper orthogonal rotation tensor R
(with R−1 = RT ) and the symmetrical stretch tensors U and V, see e.g.
(Ogden 1984, p. 92):

F = RU = VR , (3.21)
FiB ei ⊗ EB = (RiAei ⊗ EA ) (UCB EC ⊗ EB ),
FiB ei ⊗ EB = (Vikei ⊗ ek ) (RmB em ⊗ EB ).

Due to the orthogonality of R, the right Cauchy-Green tensor can be writ-
ten as C = FT F = UT RT RU = UT U = U2. The last result follows from
the symmetry of U. With this result, the Green-Lagrangestrain tensor
(3.15) can be written as E = 1

2 (U2 − 1) which is included in (3.18) for the
special case of α = 2.

When using the strain measures (3.18) and (3.20), attention has to be
paid to the fact that it is only possible to compute U or V via a spectral
decomposition (e.g. in case of α = 0.5 the square root U1/2 of the right
stretch tensor U has to be calculated which can only be achieved by spectral
decomposition). Spectral decomposition of U and V is provided by

U =
3∑

i=1

λi Ni ⊗ Ni, V =
3∑

i=1

λi ni ⊗ ni, (3.22)

where λi are the principal values of the stretch tensors, also called principal
stretches. They are equal for U and V. The eigenvectors Ni of U are related
to the reference configuration. The eigenvectors ni of V are referred to the
spatial configuration. The eigenvectors ni can be obtain from Ni via the
rotation ni = RNi. This result follows directly from (3.21): V = RURT =∑3

i=1 λi (RNI) ⊗ (RNI) using (3.22)2.
Since C = U2, it can be easily shown that the spectral decomposition of

the right Cauchy-Green tensor is given by

C =
3∑

i=1

λ2
i Ni ⊗ Ni . (3.23)

For the practical computation of the spectral decomposition we refer to
Appendix A.1.5.
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Exercise 3.2: Compute the principal stretches of a plate which is loaded in
plane. The deformation gradient F is given by

F =

⎡
⎣ 3 −1 0

2 2 0
0 0 1

⎤
⎦ .

Furthermore, the right stretch tensor U and the rotation tensor R have to be
determined.

Solution: The right Cauchy-Green deformation tensor can be written as

C = FT F = U2

by using the polar decomposition (3.21). The eigenvalues of C are the square of the
eigenvalues of U. Hence it is sufficient to compute the eigenvalues of C, which will
be denoted here by λ2

i . The eigenvalues follow as the zero values of the determinant:
det [C − λ21]. With the given deformation gradient F,

C =

⎡
⎣ 13 1 0

1 5 0
0 0 1

⎤
⎦

is obtained and furthermore

det [C − λ21] =

∣∣∣∣∣∣
(
13 − λ2

)
1 0

1
(
5 − λ2

)
0

0 0
(
1 − λ2

)
∣∣∣∣∣∣

is deduced. The associated characteristic polynomial has the form

(1 − λ2) (λ4 − 18 λ2 + 64) = 0 ,

and yields the solutions

λ2
1,2 = 9 ±

√
17 , λ2

3 = 1 .

Observe that the third spatial direction (trivial solution λ2
3 = 1) is completely

decoupled from the other solutions.
To compute U, the eigenvalues λ2

i have to be inserted in the homogeneous
equation system [C − λ2

i 1 ]Ni = 0. This provides, after normalising (‖Ni‖ = 1),
the eigenvectors of U

N1 =

⎧⎨
⎩

0.993
0.122

0.0

⎫⎬
⎭ , N2 =

⎧⎨
⎩

−0.122
0.993

0.0

⎫⎬
⎭ , N3 =

⎧⎨
⎩

0.0
0.0
1.0

⎫⎬
⎭ .

Now U follows as

U = λ1 N1 ⊗ N1 + λ2 N2 ⊗ N2 + λ3 N3 ⊗ N3 .

The dyadic products Ni ⊗Ni are given in matrix formulation by Ni N
T
i . Thus the

last equation can be written as

U = λ1 N1 NT
1 + λ2 N2 NT

2 + λ3 N3 NT
3 =

⎡
⎣ 3.60 0.17 0

0.17 2.23 0
0 0 1

⎤
⎦ .
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With this result U is known. The associated rotation tensor R is computed from the
relation R = FU−1. The corresponding matrix multiplication yields after inversion
of U

R =

⎡
⎣ 0.86 −0.51 0

0.51 0.86 0
0 0 1

⎤
⎦ .

The computation of R and U can be simplified when the knowledge of a plane
deformation state is used explicitly. The in-plane rotation is described by the ansatz

R =

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

as a rotation of two orthogonal eigenvectors. The rotation is described completely by
the still unknown angle θ. Since the relation RT = R−1 holds, U can be computed
with (3.21) from U = RT F. The symmetry condition U = UT

U12 = R11 F12 + R21 F22 ≡ R12 F11 + R22 F21 = U21

yields an equation for the unknown angle θ

tan θ =
F12 − F21

F11 + F22
,

leading in this example to the angle θ = −31.0. Hence the rotation tensor R is

known and the stretch tensor follows from U = RT F.

As another special case of the generalized strain measures (3.18) and
(3.20), the so-called Almansi strain tensor

e := e(−2) =
1
2

(1 − V−2 ) =
1
2

(1 − b−1 ) =
1
2

(1 − F−T F−1 ) (3.24)

is obtained with α = −2 from (3.20). In this equation, the left Cauchy-

Green tensor
b := FFT = VRRT VT = V2 (3.25)

was introduced. This tensor is related to the spatial configuration and will be
of significance in later chapters in which constitutive equations are formulated
and implemented in a numerical scheme.

The generalized strain measures (3.18) and (3.20) can be written based
on the spectral decomposition (3.22) of the stretch tensors U and V as

Eα =
1
α

3∑
i=1

(λα
i − 1)Ni ⊗ Ni and eα =

1
α

3∑
i=1

(λα
i − 1)ni ⊗ ni . (3.26)

With this result, the Green-Lagrange and the Almansi strain tensor are
obtained for the special case α = 2 and α = −2 in terms of the principal
stretches
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E =
3∑

i=1

1
2

(λ2
i − 1)Ni ⊗ Ni , and e =

3∑
i=1

1
2

(1 − λ−2
i )ni ⊗ ni . (3.27)

Remark 3.2: The principal directions are known before hand in several appli-
cations – such as e.g. truss structures or axi-symmetric membranes with isotropic
constitutive behaviour – which is shown, e.g. in Sect. 9.3. In such cases, a formula-
tion of the strain measures in principal stretches is advantageous. Furthermore, it
is much simpler to fit constitutive equations for elastic materials undergoing finite
strains to experimental data when they are formulated in principal strains, see Ex-
ercise 3.6. Hence, also in these cases, a formulation in principal stretches should be
applied.

For motions which are constraint by special conditions, it is often possi-
ble to incorporate these constraint conditions directly into the kinematical
relations. In case of incompressibility which plays a prominent role in rubber
materials and metal plasticity, the constraint condition det F = J = 1 has
to be fulfilled. The following multiplicative decomposition of the deformation
gradient

F = J
1
3 F̂, F̂ = J− 1

3 F (3.28)

was suggested in Flory (1961). It preserves a priori the volume of F̂ (isochoric
motion), since det F̂ ≡ 1.

By inserting (3.28) in (3.15), a relation between the isochoric part of the
right Cauchy–Green deformation tensor Ĉ and C is obtained

Ĉ = F̂
T

F̂ = J− 2
3 FT F = J− 2

3 C . (3.29)

The multiplicative split of F in a volume changing part (J ) and a volume
preserving part ( F̂ ) in the nonlinear theory corresponds to an additive de-
composition of the strain tensor in the geometrically linear theory in a devi-
ator eD and a volumetric part

ε = eD +
1
3

tr ε1 . (3.30)

Exercise 3.3: The deformation gradient given in Exercise 3.2 has to be decom-
posed in its isochoric and dilatoric part.

Solution: Using (3.28) yields with J = detF = 8 to the split

F = J
1
3 F̂ = 2

⎡
⎣ 1.5 −0.5 0

1 1 0
0 0 0.5

⎤
⎦ .

3.1.3 Transformation of Vectors and Tensors

Knowledge regarding the transformation between differential quantities in the
current and reference configuration is essential for many theoretical deriva-
tions and their applications in finite element methods. Tangent fields and
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one forms which are related to the current configuration can be expressed in
terms of quantities in the reference configuration. With the notation intro-
duced in Marsden and Hughes (1983) this is called pull back. Conversely a
push forward relates tangent fields and one forms referred to the reference
configuration to the current configuration ϕ(B). For a detailed mathematical
background, see e.g. Marsden and Hughes (1983).

Tangent fields or one forms are connected to the base vectors, see
Appendix A.2.6. For a covariant gradient of a scalar field G(X) = g(x) =
g[ϕ(X)] relation

GradG = FT grad g ⇐⇒ ∂G

∂XA
=
∂g

∂xi

∂xi

∂XA
, (3.31)

grad g = F−T GradG (3.32)

can be derived. In an analogous way, the transformation for the covariant
gradient of the vector field W(X) = w (x) = w [ϕ(X)] is obtained

GradW = gradwF ⇐⇒ gradw = GradWF−1 . (3.33)

As an application, the deformation gradient is computed from a displacement
field u [ϕ(X)] which is referred to the current configuration. With (3.14) and
(3.33) it follows

F = 1 + Gradu | F−1

1 = F−1 + GraduF−1 ,

=⇒ F−1 = 1 − gradu . (3.34)

Hence the inverse of the deformation gradient can be obtained directly with
displacements which are referred to the current configuration. This result will
be applied later in formulations of the finite element method.

A typical application of a pull back operation to tensors is given by
the transformation of the Almansi strain tensor to the Green-Lagrange

strains using (3.15) and (3.24)

E = FT 1
2

(
1 − F−T F−1

)
F = FT eF , (3.35)

which of course does not change the physical meaning of the strain measure.
It only chances the configuration.

Remark 3.3: Initial and current configuration are often parameterized in numer-
ical methods by the introduction of convective coordinates. These can be thought
as lines which are carved on the body B, see Appendix A.1.2, especially Fig. A.1.
In this parametrisation, it is assumed that the cartesian coordinates {XA} and
{xi} can be represented as functions of the convective coordinates {Θj}. Using
convective coordinates, the tangent vector can be computed in each point X in
B as
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Gj =
∂X

∂Θj
= X, j . (3.36)

This is also true for a point which is described with respect to the current configu-
ration ϕ (X, t) in ϕ(B)

gj =
∂ϕ (X, t)

∂Θj
= ϕ, j . (3.37)

Using the chain rule

gj =
∂ϕ (X, t)

∂X

∂X

∂Θj
= FGj (3.38)

is derived from both previous relations. This means that tangent vectors transform
like line elements dx and dX, see (3.5). With (3.38), it is possible to describe the
deformation gradient by the tangent vectors as follows

F = gi ⊗ Gi . (3.39)

The tangent vectors are covariant vectors which are connected to their contravariant
counter parts (one forms) by gi · gk = δ k

i . Using (3.38) relation

FGi · AGk = δ k
i −→ A = F−T (3.40)

is deduced, where A = F−T denotes the transformation tensor for the contravariant
base vectors. Hence the transformation gk = F−T Gk is valid.

The covariant or contravariant base vectors can serve as basis for a vector or
tensor. Once this basis is known, it is relatively easy to perform pull back or push
forward operations, see Appendix A.2.6. For the Green-Lagrange strain tensor,
this leads with FT F = (Gi ⊗ gi)(gk ⊗ Gk) to

E =
1

2
(gik − Gik)Gi ⊗ Gk (3.41)

=
1

2
(gik − Gik)FT gi ⊗ FT gk = FT

[
1

2
(gik − Gik) gi ⊗ gk

]
F .

This result is equivalent to the pull back operation in (3.35).

3.1.4 Time Derivatives

The dependence of the deformation ϕ (X, t) on time t has to be considered
in nonlinear problems in case that the constitutive behaviour is history de-
pendent (e.g. in plasticity or visco-elasticity) or in case that the complete
process is of dynamical nature. In such applications, time derivatives are
needed which will be derived here for kinematical quantities.

The velocity of a material point with respect to the reference configuration
is defined by the material time derivative

v (X, t) =
Dϕ

Dt
=
∂ϕ (X, t)
∂t

= ϕ̇ (X, t) . (3.42)

In the current configuration, the velocity v̂ of a particle which assumes point
x at time t in ϕ(B) is given by

v̂ (x, t) = v̂ (ϕ(X, t), t) = v (X, t) . (3.43)
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The acceleration is given in an analogous way by the second derivative
with respect to time

a = ϕ̈ (X, t) = v̇ (X, t) . (3.44)

Based on this definition, the acceleration can be determined with reference
to the current configuration. With (3.43) and the chain rule, it yields

â = ˙̂v =
∂

∂t
[ v̂ (ϕ(X, t) , t) ] =

∂v̂
∂t

+ grad v̂ v̂ . (3.45)

The first term is called local part and the second term is called convective
part of the acceleration. The local time derivative is computed holding the
current position x fixed. The time derivative (3.45) is of significance in fluid
mechanics.

The time derivative of the deformation gradient F yields with (3.6), (3.42)
and (3.33)

Ḟ = Grad ϕ̇ (X, t) = Gradv = grad v̂ F . (3.46)

In this equation, the spatial velocity gradient grad v̂ occurs which is often
denoted by l. It can be written with (3.46) as

l = Ḟ F−1 . (3.47)

Equation (3.46) can now be used to compute the time derivative of the
Green-Lagrange strain tensor (3.15)

Ė =
1
2

(
Ḟ

T
F + FT Ḟ

)
. (3.48)

Using (3.47) in (3.46) yields the time derivative of E

Ė = FT 1
2

(
l + lT

)
F = FT dF . (3.49)

This equation has an equivalent structure as (3.35) and hence denotes a pull
back of the symmetric spatial velocity gradient d = 1

2 ( l+ lT ) to the reference
configuration.

Finally, the convective time derivative of a spatial tensor is considered
which is also called Lie derivative. The Lie derivative is defined for a spatial
tensor g(x, t) with covariant basis by

Lv g := F
{
∂

∂t

[
F−1 gF−T

]}
FT . (3.50)

This means that tensor g must be transformed first to the reference con-
figuration by a pull back operation. Here the material time derivative can
be computed and afterwards the resulting quantity is related to the current
configuration by a push forward operation.
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The analogous rule for the Lie derivative of a spatial tensor ĝ with con-
travariant basis is given by

Lv ĝ := F−T

{
∂

∂t

[
FT ĝ F

]}
F−1 . (3.51)

Using this relation, the Lie derivative of the Almansi strain tensor

Lv e = F−T

{
∂

∂t

[
FT eF

]}
F−1 = F−T Ė F−1 (3.52)

is obtained which leads to

Ė = FT Lv eF . (3.53)

A comparison with (3.49) shows that the Lie derivative of the Almansi

strain tensor is equivalent to the symmetric spatial velocity gradient d.

Exercise 3.4: In finite deformation plasticity, often a multiplicative split of the
deformation gradient in an elastic and an inelastic part is postulated: F = Fe Fp,
see Fig. 3.8. Compute the Lie derivative of the spatial strain measure be = Fe FT

e .

Solution: The pull back of be to the reference configuration leads with (3.50) to

F−1 be F−T = F−1 (FF−1
p F−T

p FT )F−T = F−1
p F−T

p . (3.54)

The subsequent time derivative yields

∂

∂t
F−1

p F−T
p = Ḟ

−1
p F−T

p + F−1
p Ḟ

−T
p . (3.55)

This equation can be rewritten by using the identity Fp F−1
p = 111, which results in

Ḟ
−1
p = −F−1

p Ḟp F−1
p ,

∂

∂t
F−1

p F−T
p = −F−1

p Ḟp F−1
p F−T

p − F−1
p F−T

p Ḟ
−T
p F−T

p . (3.56)

The final transformation to the spatial configuration by a push forward operation
yields

Lv be = F

(
∂

∂t
F−1

p F−T
p

)
FT = −Fe

(
Ḟp F−1

p + F−T
p Ḟ

−T
p

)
FT

e . (3.57)

With the definition of a plastic velocity gradient L̃p = Ḟp F−1
p in the intermediate

plastic configuration analogous to (3.47), see Sect. 3.3.2, the Lie derivative of be is
obtained as

Lv be = −2Fe
1

2

(
L̃p + L̃

T
p

)
FT

e . (3.58)

This result can be interpreted as a push forward of the symmetric part of the

plastic velocity gradient from the intermediate plastic configuration to the current

configuration.
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3.2 Balance Equations

This section contains the differential equations which describe the local bal-
ance equations such as balance of mass, balance of linear and angular momen-
tum as well as the first law of thermodynamics. These equations represent
the fundamental relations of continuum mechanics. A detailed derivation of
these equations can be found in e.g. Truesdell and Toupin (1960), Truesdell
and Noll (1965), (Malvern (1969), Chap. 5), Marsden and Hughes (1983) and
Holzapfel (2000).

3.2.1 Balance of Mass

In this section, only processes are considered in which the mass of a system
is conserved. This means that the change of mass has to be zero (ṁ = 0).
Hence an infinitesimal mass element in initial and current configuration has
to be equal which leads with dm(X) = ρ0 dV and dm(x) = ρ dv to

ρ dv = ρ0 dV . (3.59)

Here ρ0 and ρ are the densities in initial and current configuration, respec-
tively. With (3.12), the volume elements dV and dv can be transformed lead-
ing to the Lagrangian description of the mass balance

ρ0 = J ρ . (3.60)

For completeness, the rate form of mass continuity in spatial form is pre-
sented as

ρ̇(x , t) + ρ(x , t) divv(x , t) = 0 (3.61)

which follows from the evaluation of

ṁ =
D

Dt

∫
B

ρ(x , t) dv = 0 .

3.2.2 Balance of Linear and Angular Momentum

The linear momentum or the translational momentum is given in the current
and initial configuration with (3.59) by

L =
∫

ϕ(B)

ρv dv =
∫
B

ρ0 v dV (3.62)

for the continuous case. The balance of linear momentum reads: The change
of linear momentum L in time (material time derivative) is equal to the sum
of all external forces (volume and surface forces) acting on body B.
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Mathematically, this statement can be expressed by

L̇ =
∫

ϕ(B)

ρ b̄ dv +
∫

ϕ(∂B)

t da . (3.63)

ρ b̄ defines the volume force (e.g. gravitational force). t is the stress vector
acting on the surface of the body. With Cauchy’s theorem which relates the
stress vector t to the surface normal n via the linear mapping

t = σ n , ti = σik nk ,

⎧⎨
⎩
t1
t2
t3

⎫⎬
⎭ =

⎡
⎣ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦
⎧⎨
⎩
n1

n2

n3

⎫⎬
⎭ (3.64)

(here presented in direct tensor notation, sum- and matrix formulation) the
stress vector can be expressed in terms of a stress tensor σ. Using now the
divergence theorem, see Appendix A.2.8, the local balance equation of linear
momentum is derived from (3.63). With reference to the current configuration
ϕ(B) relation

divσ + ρ b̄ = ρv̇ , σik,i + ρ b̄k = ρ v̇k (3.65)

is obtained. The stress tensor σ is called Cauchy stress tensor. ρv̇ describes
the inertial forces which can be neglected in case of purely static investiga-
tions.

The angular momentum with reference to a point O given by x0 is defined
with respect to the current and initial configuration with (3.59) as

J =
∫

ϕ(B)

(ϕ − x0) × ρv dv =
∫
B

(ϕ − x0) × ρ0 v dV . (3.66)

The balance of angular momentum can be phrased as follows: The change
in time (material time derivative) of angular momentum J with respect to a
point O is equal to the sum of all moments stemming from external volume
and surface forces with respect to point 0.

J̇ =
∫

ϕ(B)

(ϕ − x0) × ρ b̄ dv +
∫

ϕ(∂B)

(ϕ − x0) × t da . (3.67)

This equation yields after some manipulations the local balance of angular
momentum which simply demands the symmetry of the Cauchy stress tensor

σ = σT , σik = σki . (3.68)

Observe that the balance of linear and angular momentum leads, in the
special case of nonexisting external forces, to conservation of linear and an-
gular momentum

L̇ = 0 ⇔ L = const. , (3.69)
J̇ = 0 ⇔ J = const. (3.70)
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3.2.3 First Law of Thermodynamics

Another balance law which postulates the conservation of energy in a thermo-
dynamical process is known as the first law of thermodynamics. It reads: The
change in time (material time derivative) of the total energy E is equal to the
sum of the mechanical power P of all external loads plus the heat supply Q

Ė = P +Q . (3.71)

The mechanical power due to volume and surface loads is given by

P =
∫

ϕ(B)

ρ b̄ · v dv +
∫

ϕ(∂B)

t · v da . (3.72)

The heat supply

Q = −
∫

ϕ(∂B)

q · n da+
∫

ϕ(B)

ρ r dv (3.73)

consists of a conduction through the surface of the body which is described
by the heat flux vector q and the surface normal n and a distributed inner
heat source r (specific heat supply).

The total energy is composed of the kinetic energy

K =
∫

ϕ(B)

1
2
ρv · v dv (3.74)

and the internal energy

U =
∫

ϕ(B)

ρu dv . (3.75)

u is the specific internal energy. Inserting all these relations into equation
Ė = P +Q yields after several manipulations the local form of the first law
of thermodynamics

ρ u̇ = σ · d + ρ r − divq . (3.76)

The term σ · d is called specific stress power.
In the framework of constitutive theory, the free Helmholtz energy ψ is

often introduced by the relation

ψ = u− η θ . (3.77)

Here η denotes the entropy of the system and θ is the absolute temperature.
With this definition, the first law of thermodynamics can be recast as

ρ ψ̇ = σ · d + ρ r − divq − η̇ θ − η θ̇ . (3.78)

The special case that neither heat is supplied to an elastic body nor
external forces act on the body leads to conservation of total energy

Ė = K̇ + U̇ = 0 ⇔ E = const. (3.79)
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3.2.4 Introduction of Different Stress Tensors

Equations (3.65) and (3.68) are referred to the current configuration. Often
it is desirable to relate all quantities to the initial configuration B. For this
purpose, further stress tensors have to be introduced. Since a given stress vec-
tor does not change when referred to the current or initial configuration, the
following transformation can be performed using Nanson’s formula (3.11)
for surface elements∫

∂ϕ(B)

σ n da =
∫

∂B

σ J F−T N dA =
∫

∂B

PN dA , (3.80)

which defines the first Piola–Kirchhoff stress tensor P. Observe that the
first Piola-Kirchhoff stress can be written in terms of the Cauchy stress

P = J σF−T PAi = J σik(FAk)−1 . (3.81)

The spatial stress tensor σ in (3.81) is multiplied only from one side by F,
hence the tensor P is a two field tensor with one basis referred to the current
and the other to the initial configuration.

Naturally, it is simpler to work in the initial configuration with symmetri-
cal stress tensors the second Piola-Kirchhoff stress was introduced. This
tensor results from a complete transformation of the Cauchy stress to the
initial configuration of B

S = F−1 P = J F−1 σF−T , (3.82)
SAB = (FiA)−1 PBi = J (FiA)−1 σik(FBk)−1 . (3.83)

S does not represent a stress which can be interpreted physically. Hence it
is a pure mathematical quantity which however plays a prominent role in
constitutive theory, since S is work conjugated to the Green-Lagrange

strain tensor (3.15).
Besides the Cauchy stress tensor σσσ often the so-called Kirchhoff stress

tensor τττ is introduced which results from a push forward of the second Piola-

Kirchhoff stress tensor S to the current configuration

τττ = FSFT , τττ = J σσσ . (3.84)

Spectral decomposition can also be applied to the stress tensors. It yields
for the Cauchy, the Kirchhoff and the first and second Piola-Kirchhoff

stress tensors

σ =
3∑

i=1

σi mi ⊗ mi , τ =
3∑

i=1

τi mi ⊗ mi ,

P =
3∑

i=1

Pi mi ⊗ Mi , S =
3∑

i=1

Si Mi ⊗ Mi .

(3.85)
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3.2.5 Balance Equations with Respect to Initial Configuration

With the first Piola-Kirchhoff stress, the local balance of linear momen-
tum (3.65) can be recast with respect to the initial configuration as

DIV P + ρ0 b̄ = ρ0 v̇, (3.86)

where DIV denotes the divergence operation with respect to the initial config-
uration. Furthermore, the use of (3.81) in the balance of angular momentum
(3.68) yields

PFT = FPT . (3.87)

From this it is clear that the first Piola–Kirchhoff stress tensor is non-
symmetric. Using (3.82), the balance of angular momentum yields the sym-
metry of the second Piola-Kirchhoff stress tensor: S = ST .

Transformation of the first law of thermodynamics (3.76) to the initial
configuration can be obtained with the transformation of the stress power
using (3.49)

J σσσ · d = FSFT · F−T Ė F−1 = S · Ė (3.88)

and (3.59) as
ρ0 u̇ = S · Ė − DIVQ + ρ0R . (3.89)

Here the heat source R and the heat flux vector Q are referred to the initial
configuration. The stress power (3.88) can be written with (3.84) or (3.15) as

S · Ė =
1
2

S · Ċ = τττ · d . (3.90)

Here the first two terms are related to the initial configuration whereas the
last term is referred to the current configuration.

3.2.6 Time Derivatives of Stress Tensors

The time derivative of stress tensors is of significance for the statement of
incremental forms of constitutive equations. For stresses which are referred to
the initial configuration (e.g. the second Piola-Kirchhoff stress tensor S),
the derivative with respect to time is given by the material time derivative

Ṡ =
∂S(X, t)
∂t

. (3.91)

Time derivatives for stress tensors like the Cauchy stress tensor σσσ which are
related to the current configuration are computed according to (3.45)

σ̇σσ =
∂σσσ

∂t
+ gradσσσ v , (3.92)

σ̇ik =
∂σik

∂t
+
∂σik

∂xl
vl . (3.93)
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It can easily be shown, see e.g. Truesdell and Toupin (1960), that the material
time derivative of the Cauchy stress tensor is not objective, but objectivity
is an inevitable prerequisite for the formulation of constitutive equations.
Hence numerous time derivatives were formulated – so-called objective time
derivatives – which can be applied to compute stress rates. The Lie derivative
of a stress tensor provides an objective stress rate, see, e.g. Truesdell and
Toupin (1960) or Marsden and Hughes (1983). It is given for the Kirchhoff

stress tensor using (3.50) as

Lv τττ = F
{
∂

∂t

[
F−1 τττ F−T

]}
FT . (3.94)

With Ḟ
−1

= −F−1 Ḟ F−1 and some algebraic manipulations,

Lv τττ = τ̇ττ − l τττ − τττ lT =
Δ
τττ (3.95)

can be derived using (3.47). The term
Δ
τττ is also called Oldroyd stress rate,

see, e.g. Marsden and Hughes (1983). It is equivalent to the Lie derivative
of the Kirchhoff stress tensor. Observe that the Lie derivative of τττ is
obtained as push forward of the material time derivative of the second Piola-

Kirchhoff stress if (3.84) is employed in (3.94)

Lv τττ = F ṠFT . (3.96)

Another objective stress rate called the Jaumann stress rate is applied in
many formulations of elasto-plastic material behaviour at finite strains. This
rate is defined by

∇
τττ= τ̇ττ − w τττ + τττ w , (3.97)

where w = 1
2 (l − lT ) = −wT is the skew symmetric part of the spatial

velocity gradient. Since l = d + w is valid, the Lie derivative of τττ can be
written with (3.95) as

Lv τττ =
∇
τττ −d τττ − τττ d . (3.98)

This relates the Jaumann stress rate to the Lie derivative (3.94).
By the exchange of the deformation gradient F by the rotation tensor

for the polar decomposition R in the Lie derivatives above further objective
stress rates can be defined. An example is given by

LR
v(τττ) = τ̇ττ −ΩΩΩ τττ + τττ ΩΩΩ with ΩΩΩ = ṘRT . (3.99)

This stress rate is called Green-Naghdi stress rate. In case that d ≡ 000, it can
be shown that the Jaumann stress rate is identical to the Green-Naghdi

stress rate since w = ΩΩΩ.
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3.3 Constitutive Equations

The kinematical relations and balance laws derived so far are not sufficient
to solve a boundary or initial value problem in continuum mechanics. For a
complete set of equations, a constitutive equation has to be formulated which
characterizes the material response of a solid body.

The constitutive theory describes, in relation to the nature of the task,
either the microscopic or the macroscopic behaviour of a material. For most
materials like steel or concrete which are used in technical applications, a
macroscopic description is sufficient. In that case the functional dependence
of stresses or heat flux with respect to the motion or temperature has to
be considered. Since real materials can exhibit very complex behaviour, ap-
proximations have to be applied within the derivation process of constitutive
equations. These, however, have to be extensive enough to cover all effects
observed in experimental investigations. Furthermore, basic principles from
mechanics have to be obeyed to obtain theoretically sound constitutive equa-
tions. These principles, which are listed in the following, can contribute on
their part to a simplification of the constitutive equations.

Using the principle of determinism, a decision will be made with regard to
independent and dependent variables which occur in the constitutive equa-
tions. Classically motion and temperature are chosen as unknowns. The prin-
ciple of equipresence demands the same set of variables for all constitutive
equations. By the principle of local action, the material functions are re-
stricted to a pointwise dependence on the deformation gradient, the temper-
ature and its gradient. Finally, the invariance of constitutive equations with
respect to rigid body motions is postulated. This specifies the form of the
material law, e.g. the deformation gradient F is exchanged as variable by the
right stretch tensor U or the right Cauchy-Green tensor C.

Another essential restriction for constitutive equations is provided by the
second law of thermodynamics. The second law of thermodynamics postu-
lates that heat cannot flow itself from a system with low temperature to a
system with a higher temperature. Another physical observation is that a
substance with equally distributed temperature which is free of heat sources
can only receive mechanical energy but not release it. These observations
lead to two inequalities, see Truesdell and Noll (1965, S.295), which contain
mathematical statements regarding the local entropy production and the en-
tropy production as a result of heat conduction. An essential postulate states
that for closed systems the entropy always increases (d η > 0) within an ir-
reversible process. With this the direction of process has to be considered.
Since only the weaker form of the second law of thermodynamics is needed
one inequality is sufficient, see e.g. Malvern (1969, S. 255). By introducing
the absolute temperature θ : (θ > 0), the entropy production is given by

Γ ≡ d

dt

∫
φ(B)

ρ η dv −
∫

φ(B)

ρ r

θ
dv +

∫
φ(∂B)

1
θ

q · n . da. (3.100)
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The postulate that entropy production Γ is always larger than zero, Γ ≥ 0,
leads by addition of the energy balance (3.76) to the second law of thermo-
dynamics

ρ η̇ ≥ ρ r

θ
− div

( q
θ

)
. (3.101)

With the introduction of the free Helmholtz energy (3.77), ψ = e−η θ, the
so-called reduced form of the second law of thermodynamics can be defined
by using (3.76)

ρ
(
θ̇ η + ψ̇

)
− σ · d +

1
θ

q · grad θ ≤ 0 . (3.102)

The free Helmholtz energy ψ denotes the part of inner energy which per-
forms work at constant temperature. The free Helmholtz energy is relevant
for the construction of constitutive equations, since its derivation with respect
to a strain measure yields the stresses.

With inequalities (3.101) and (3.102), the irreversibility of processes can
be described in which mechanical energy is transformed to heat energy (e.g.
in case of friction or inelastic deformations).

The material form of (3.101) is derived in the same way as the first law
of thermodynamics, leading to

ρR η̇ ≥ ρR
R

θ
− Div

(
Q
θ

)
. (3.103)

Some special cases of thermodynamical processes can now be stated: (1)
supply of heat energy is excluded as well in the interior as over the surface
of the body (R = 0 ,q = 000); such process is called adiabatic. (2) A process in
which the temperature in the body is kept constant (θ = const.) is known as
isothermal process.

3.3.1 Elastic Material

Purely elastic material behaviour is discussed in this section under the as-
sumption of so-called Green elasticity, also named hyper elasticity, see, e.g.
Ogden (1984, Chap. 4). This description is valid for many materials – like,
e.g. foam or rubbers – which undergo finite deformations. In case of small
strains, these constitutive equations reduce to the classical law of Hooke

known from the linear theory of elasticity.
The constitutive equation for the second Piola-Kirchhoff stress tensor

can be derived from the potential ψ in case of a hyper elastic material. ψ
describes the strain energy stored in the body (for this reason it is called strain
energy function). The derivative of ψ with respect to the right Cauchy-

Green tensor yields

S = 2 ρ0
∂ψ(C)
∂C

, SAB = 2 ρ0
∂ψ(CCD)
∂CAB

. (3.104)
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The exclusive dependence of ψ on C is substantiated by the general princi-
ples as discussed in the last section. For a more detailed treatment, see e.g.
Truesdell and Noll (1965), Malvern (1969) and Ogden (1984).

The material behaviour is independent on directions for technically im-
portant classes of isotropic materials which includes, e.g. steel, aluminium,
rubber or concrete. With this assumption, it is possible to specify the gen-
eral function ψ in (3.104). By introducing isotropy groups, a function can be
derived which only depends upon the invariants of the strain tensors, see e.g.
Ogden (1984). For the right Cauchy-Green deformation tensor C = FT F
and the left Cauchy-Green deformation tensors b = FFT , which have due
to their definition the same invariants, it follows

ψ(C) = ψ ( IC , IIC , IIIC ) = ψ ( Ib, IIb, IIIb ) = ψ(b) . (3.105)

The invariants IC , IIC and IIIC are defined in Appendix A.1.5.
The strain energy function ψ can be written with C = U2 or b = V2 as

a function of the right (U) or left (V) stretch tensor

ψ̄(U) = ψ̄ ( IU , IIU , IIIU ) . (3.106)

With the relations, see also Appendix A.1.5,

IC = λ2
1 + λ2

2 + λ2
3,

IIC = λ2
1 λ

2
2 + λ2

2 λ
2
3 + λ2

3 λ
2
1, (3.107)

IIIC = λ2
1 λ

2
2 λ

2
3,

the invariants can be expressed in terms of the principal stretches, see e.g.
Truesdell and Noll (1965). Thus the strain energy function assumes the form

ψ(C) ≡ ψ(b) = ψ (λ2
1, λ

2
2, λ

2
3 ) (3.108)

when using the principal stretches λ2
i of C or b.

This description of the material by an isotropic tensor function (3.105), see
e.g. Ogden (1984), leads by using the chain rule to the following relation be-
tween the second Piola-Kirchhoff stresses and the right Cauchy-Green

tensor

S = 2 ρ0

[(
∂ψ

∂IC
+ IC

∂ψ

∂IIC

)
1 − ∂ψ

∂IIC
C + IIIC

∂ψ

∂IIIC
C−1

]
. (3.109)

In this equation, the relations

∂IC
∂C

= 1 ,
∂IIC
∂C

= IC 1 − C ,
∂IIIC
∂C

= IIIC C−1 (3.110)

were applied. They describe the derivatives of the invariants of a tensor with
respect to the tensor itself.
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Exercise 3.5: Relate the constitutive equation (3.109) to the current configu-
ration and express the Cauchy stress tensor in terms of the left Cauchy-Green

tensors.
Solution: With (3.83) σσσ = J−1 FSFT is obtained and hence by considering

(3.104)

σσσ = 2 ρF
∂ψ(C)

∂C
FT

follows. This yields with (3.109)

σσσ = 2 ρ

[(
∂ψ

∂IC
+ IC

∂ψ

∂IIC

)
FFT − ∂ψ

∂IIC
FCFT + IIIC

∂ψ

∂IIIC
FC−1 FT

]
.

Since the invariants of C and b are equal, the required result

σσσ = 2 ρ

[(
∂ψ

∂Ib
+ Ib

∂ψ

∂IIb

)
b − ∂ψ

∂IIb
b2 + IIIb

∂ψ

∂IIIb
1

]

is obtained with FC−1FT = 1. By comparison with (3.109), it can be shown that
the equation is equivalent to

σσσ = 2 ρb
∂ψ(b)

∂b
. (3.111)

This relation can be used to compute the Cauchy stress tensor directly for a given

strain energy function ψ of an isotropic material.

Constitutive equations of the form (3.109) are still very complex because
ψ can be an arbitrary function of the invariants. This can result in a large
number of constitutive parameters which are not easily determined by ex-
periments. Hence it is desirable to formulate material functions in nonlinear
elasticity with a minimum number of constitutive parameters. First formu-
lations can be found in Mooney (1940) for incompressible rubber materials
and Rivlin (1948) who postulated1

W (IC , IIC) = c1 (IC − 3) + c2 (IIC − 3) . (3.112)

For a complete formulation of an incompressible problem, the constraint (J−
1 = 0) has to be introduced which can be achieved by using the method of
Lagrange multipliers.

For an in-depth discussion of further strain energy functions for rubber
materials, reference is made to the overview article by Ogden (1972). A very
good fit to experimental data is provided by a generalized strain energy func-
tion which was developed by Ogden (1972). An extension to compressible
materials like foams is possible by introducing further the term g(J)

W (λk) =
r∑

i=1

μiKi (λk) + g(J) with Ki(λk) =
1
αi

(λαi
1 + λαi

2 + λαi
3 − 3) .

(3.113)
1 In this equation and all following equations, the specific strain energy ρ0 ψ is

written as W to simplify notation.
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The construction of this constitutive equation using principal stretches is
motivated by the generalized strain measures (3.18) and (3.20). The con-
stitutive parameters μi and αi have to be determined from experiments.
However when fitting the experimental data, the condition has to be obeyed
that the constitutive equation has to reduce to Hooke law for small strains.
Furthermore, mathematical investigations regarding existence of solutions re-
strict the choice of the constitutive parameters further, see e.g. Marsden and
Hughes (1983), Ogden (1984) and Ciarlet (1988). The associated conditions
are

r∑
i=1

μi αi = 2μ and μi αi > 0 . (3.114)

The first restriction produces the effect that the strain energy function (3.113)
yields at λk = 1 the constitutive tensor of the classical linear theory (param-
eter μ corresponds to the shear modulus). The second restriction is related
to the existence of solutions in finite elasticity, see Ogden (1972). Parameters
determined from experiments have to obey both restrictions. To further ful-
fil polyconvexity which ensures existence of solutions in finite elasticity, the
inequalities μi > 0 and αi > 1 or μi < 0 and αi < 1 have to be met by
the constitutive parameters, see Marsden and Hughes (1983). This demand
is stronger than the second restriction in (3.114). Usually the constitutive
parameters μi and αi of real materials which obey restriction (3.114)2 also
fulfil the stronger restriction of polyconvexity.

The strain energy function of the Mooney-Rivlin material can be
obtained from (3.113) by using r = 2, c1 = 1

2 μ1 , c2 = − 1
2 μ2, and

α1 = 2, α2 = −2. This leads with g(J) = 0 to

W (λi) =
μ1

2
(λ2

1 +λ2
2 +λ2

3−3 )− μ2

2
(λ−2

1 +λ−2
2 +λ−2

3 −3 ) with μ1−μ2 = μ .

(3.115)

Neo-Hooke Material. The choice of W (λk) = μ1K1(λk)+g(J) with α1 =
2 and μ1 = μ yields the special case of a compressible Neo-Hooke material
which can be transformed with (3.108)1 to the form

W (IC , J) = g(J) +
1
2
μ (IC − 3) . (3.116)

The function g(J) in (3.113) and (3.116) has to be convex for compressible
materials. Furthermore, the growth conditions

lim
J→+∞

W → ∞ and lim
J→0

W → ∞ (3.117)

have to be fulfilled by the strain energy W . The latter conditions can be
physically interpreted in the way that stresses have to approach −∞ for a
volume going to zero and +∞ for a volume approaching ∞. These growth
conditions also play a role in the mathematical treatment of finite elasticity,
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e.g. for questions regarding existence and uniqueness of solutions, see e.g.
Marsden and Hughes (1983), Ciarlet (1988).

In Ciarlet (1988), a special ansatz was chosen for the compressible part
in (3.116) to fulfil the growth conditions

g(J) = c (J2 − 1) − d ln J − μ lnJ with c > 0 , d > 0 . (3.118)

Further choices for the function g(J) and a related discussion can be found
in Doll and Schweizerhof (2000).

By inserting relation (3.118) for g(J) into (3.116), a constitutive relation
for the second Piola-Kirchhoff stress tensor is obtained. With the special
choice of c = Λ/ 4 and d = Λ/ 2, it follows

S =
Λ

2
(J2 − 1 )C−1 + μ (1 − C−1 ) . (3.119)

The constitutive parameters Λ and μ are known as the Lamé constants.
It should be remarked that the constitutive relation for the second Piola-

Kirchhoff stress tensor does not have anything in common with a linear
relation between S and E which is often used in engineering applications of
structural members, see also Remark 3.4.

Equation (3.119) can be referred to the current configuration by express-
ing the second Piola-Kirchhoff stress tensor by the Cauchy stress tensor
via σ = J−1 FSFT . After some algebraic manipulations, relation

σ =
Λ

2J
(J2 − 1 )1 +

μ

J
(b − 1 ) (3.120)

is obtained where all terms are living in the spatial configuration.

Remark 3.4: Nonlinear elastic material behaviour is often described in engi-
neering literature by a linear relation between the second Piola-Kirchhoff stress
tensor and the Green-Lagrange strain tensor (St. Venant material)

S = Λ trE1 + 2 μE . (3.121)

This constitutive equation corresponds to Hooke’s laws of the infinitesimal theory
of elasticity with the Lamé constants Λ and μ (these constants can be converted

to the modulus of elasticity E = (3Λ+2μ) μ
Λ+μ

and Poisson’s ratio ν = Λ
2 (Λ+μ)

).

Generally, it can be shown that the constitutive equation (3.121) is restricted
to deformations with large displacements and finite rotations but small strains. St.

Venant’s law depicts major deficiencies in the compressible range: in the limit case
of the compression of a body to volume “0”the stress σ approaches zero instead of
limJ→0 σ → −∞. With such behaviour, the material equation provided in (3.121) is
not applicable for general simulations of solids within the finite deformation range.
However, it can be successfully used for large deflection analysis of thin structural
members like beams or shells.
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Split in Isochoric and Volumetric Parts. In finite elasticity of foam or
rubber materials, the deformation is split into a volumetric part represented
by J and an isochoric part described by Ĉ, see (3.29), since both parts can
depict different material behaviour, see e.g. Lubliner (1985). This split is also
useful when quasi-incompressible materials are described by special numer-
ical formulations – like mixed methods – since the split permits a different
treatment of the incompressible part.

One possibility for the formulation of the constitutive equation is given by
an additive split of the strain energy function in its volumetric and isochoric
parts: W (Ĉ, J) = Ŵ (Ĉ) + U(J) . This leads for the strain energy function
introduced in (3.116) to

W (Ĉ, J) = U(J) +
1
2
μ (IĈ − 3) . (3.122)

Here the term U(J) is different from g(J): U(J) = K
4 (J2 −1)− K

2 lnJ , since
the third term in the sum in (3.118) disappears and the Lamé constant Λ
has to be exchanged by the modulus of compression K.

The second Piola-Kirchhoff stresses are computed via

S = 2
∂W

∂C
= 2

∂Ŵ

∂Ĉ

∂Ĉ
∂C

+ 2
∂U

∂J

∂J

∂C
. (3.123)

For an explicit evaluation of this equation, the derivatives ∂J / ∂C and
∂Ĉ / ∂C are needed. These are given by

∂J

∂C
=
∂
√

detC
∂C

=
1
2
J C−1 , (3.124)

see also (3.110)3, and with (3.29) by

∂Ĉ
∂C

=
∂(J− 2

3 C)
∂C

=
∂J− 2

3

∂C
⊗ C + J− 2

3
∂C
∂C

= J− 2
3

(
E− 1

3
C−1 ⊗ C

)
=: PPP (3.125)

∂ĈEF

∂CAB
= J− 2

3

(
EABEF − 1

3
C−1

AB CEF

)
=: PABEF .

The fourth order unit tensor EABEF = 1
2 (δAEδBF + δAF δBE) follows from

∂C / ∂C. The explicit form of (3.123) can now be stated as

S = PPP

[
2
∂Ŵ

∂Ĉ

]
+
∂U

∂J
J C−1 = SISO + SV OL ,

SAB = PABEF 2
∂Ŵ

∂ĈEF

+
∂U

∂J
J C−1

AB . (3.126)
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For the special choice of the strain energy function (3.122), the volumetric
and isochoric stresses

SISO = μPPP [ 111 ] , SV OL =
K

2
(J2 − 1 )C−1 (3.127)

can be specified. For the isochoric part of the second Piola-Kirchhoff

stress tensor, the explicit form: SISO = μJ− 2
3 (111 − 1

3 trCC−1 ) can be
deduced.

The transformation to the current configuration yields for the Kirchhoff

stress tensor introduced in (3.84)

τττ = FSFT = F

{
2P

[
∂Ŵ

∂Ĉ

]
+
∂U

∂J
J C−1

}
FT

= F

{
2
∂Ŵ

∂Ĉ
− 1

3

(
∂Ŵ

∂Ĉ
· C
)

C−1

}
FT +

∂U

∂J
J 111 . (3.128)

By defining the operator dev(•) = (•) − 1
3 tr(•) 111, equation (3.128) can be

written as
τττ = J p111 + dev τ̂ττ = τvol 111 + τττ iso . (3.129)

This relation depicts clearly the split of the stress tensor into a volumetric
and an isochoric part. The following definitions were used in (3.129)

p =
∂U

∂J
and τ̂ττ = F̂ 2

∂Ŵ

∂Ĉ
F̂

T
. (3.130)

It is easily seen from Exercise 3.5 that the second term of the last equation
can also be formulated as τ̂ττ = b̂ 2 ∂Ŵ / ∂b̂. Here the definition b̂ = J− 2

3 b
has to be applied analogously to (3.29), see also Miehe (1994).

Formulation with Respect to Principal Stretches. In case that the
elastic strain energy is given in terms of the principal stretches λ1 , λ2 , λ3,
see (3.113), the second Piola-Kirchhoff stresses is computed with (3.104)
from

S = 2
∂W (λk)
∂C

= 2
3∑

i=1

∂W

∂λi

∂λi

∂C
. (3.131)

Here the derivative ∂W /λi is ascertainable directly from w when w is given
as a function of the principal stretches, see e.g. Ogden (1984, p. 482). The
partial derivative ∂λi / ∂C which occurs when the chain rule is applied in
(3.131) can be determined from the eigenvalue problems (C− λ2

i 1 )Ni = 000.
Using the results provided in Simo and Taylor (1991),

∂λi

∂C
=

1
2λi

Ni ⊗ Ni (3.132)

can be written. Thus the second Piola-Kirchhoff stresses follow as
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S =
3∑

i=1

1
λ(i)

∂W

∂λ(i)
N(i) ⊗ N(i) =

3∑
i=1

S(i) N(i) ⊗ N(i) . (3.133)

In this equation no sum is carried out over i. This is denoted by the bracket
around the index.

A comparison with the spectral decomposition (3.23) of the right Cauchy-

Green strain measure shows that S and C have the same eigenvectors.
This fact is consistent with the restriction to isotropic material behaviour.
Since the eigenvectors ni of the current configuration can be obtained via a
pure rotation of the eigenvectors Ni: ni = RNi, it is simple to transform
(3.133) to the spatial configuration. The Kirchhoff stress tensor follows
with τττ = FSFT as

τττ =
3∑

i=1

λ(i)
∂W

∂λ(i)
n(i) ⊗ n(i) =

3∑
i=1

τ(i) n(i) ⊗ n(i) . (3.134)

By comparison with (3.133), the principal values of the Kirchhoff stresses
can be related to the principal values of the second Piola-Kirchhoff

stresses via τi = λ2
i Si.

For numerical computations, it is necessary to transform the constitutive
equations (3.133) and (3.134) to a cartesian coordinate system. This trans-
formation can be performed via the relations NI = DEI and ni = Dϕ ei,
respectively. The transformation matrices are defined by D = NJ ⊗ EJ

and Dϕ = nj ⊗ ej . Using the component form of the transformation
tensors D (the DIK = EI · NK denote the directional cosines of the
eigenvectors NI with respect to the cartesian basis EI), (3.133) can be
written as

S =
3∑

i=1

S(i)D(i) J D(i) K EJ ⊗ EK . (3.135)

Hence the components of the second Piola-Kirchhoff stress tensor are
given by

SJK =
3∑

i=1

S(i)D(i) J D(i) K . (3.136)

Analogous relations are valid for the Kirchhoff stresses

τjk =
3∑

i=1

τ(i)D
ϕ
(i) j D

ϕ
(i) k, (3.137)

where the transformation matrix Dϕ has to be used with the components
Dϕ

ik = ei · nk.
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Remark 3.5:

a. A closed form for the eigenvector basis N(i) ⊗ N(i) can be found in Morman
(1987)

N(i)⊗N(i) =
λ2

i

(λ2
i − λ2

j ) (λ2
i − λ2

k)

[
C − (IC − λ2

i )1 + IIIC λ−2
i C−1 ] . (3.138)

Here the indices i , j , k have to be exchanged in a cyclic way by indices 1, 2, 3.
This description was applied in, e.g. Simo and Taylor (1991) for a finite element
implementation of the constitutive equation (3.131). The associated incremental
form is relatively complicated.

b. For numerical computation, a matrix formulation of the stresses is often chosen
in which the stresses are put in vector form (Voigt notation), see Chap. 4. For
the transformation of (3.136), the relation

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S11

S22

S33

S12

S23

S31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

D2
11 D2

21 D2
31

D2
12 D2

22 D2
32

D2
13 D2

23 D2
33

D11 D12 D21 D22 D31 D32

D12 D13 D22 D23 D32 D33

D13 D11 D23 D21 D33 D31

⎤
⎥⎥⎥⎥⎦
{

S1

S2

S3

}
= DS̄ (3.139)

is obtained considering that the stress vector, which represents the eigenvalues,
has only three components.

Exercise 3.6: The first Piola-Kirchhoff stresses have to be specified for a
Neo-Hooke-, a Mooney-Rivlin- and an Ogden-material under the assumption
of incompressibility and formulated for a uniaxially loaded bar and a bi-axially
loaded plate. Starting point is the strain energy function (3.113) with three terms.
The following set of parameters should be used which was determined by Ogden
(1972) based on the experimental work reported in Treloar (1944): μ1 = 6.3 , μ2 =
0.013 , μ3 = −0.1 and α1 = 1.3 , α2 = 5.0 , α3 = −2.0.

Solution: For simple uniaxial loading of a rod, the principal values can be stated
directly using (3.134) since for incompressibility the Cauchy stress tensor is equiv-
alent to the Kirchhoff stress tensor. However, in the case of incompressibility, the
unknown pressure p has to be computed from the constraint condition J = 1. The
Cauchy stresses are given by

σi = λi
∂W

∂λi
+ p . (3.140)

The stresses orthogonal to the axis of the rod are zero for uniaxial loading which
leads to the conditions

σ2 = λ2

3∑
i=1

μi λαi−1
2 + p = 0 ,

σ3 = λ3

3∑
i=1

μi λαi−1
3 + p = 0 .

From the incompressibility constraint J = λ1 λ2 λ3 = 1 and the assumption that
the stretches orthogonal to the axis of the rod are equal λ2 = λ3, it follows that

λ2 = λ3 = λ
− 1

2
1 . Inserting this result in the previous relation yields
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p = −
3∑

i=1

μi λ
− 1

2 αi

1

and leads finally with (3.140) to

σ1 =

3∑
i=1

[
μi λαi

1 − λ
− 1

2 αi

1

]
. (3.141)

The component P1 of the first Piola-Kirchhoff stress tensor is obtained from
(3.81) for J = 1 as P1 = σ1 / λ1, this results in

P1 =

3∑
i=1

[
μi λαi−1

1 − λ
− 1

2 αi−1

1

]
. (3.142)

For a bi-axial loading the stresses can be derived analogous to (3.142). Under the
assumption of equal stretches in both directions (λ1 = λ2, λ3 = λ−2 and with the
plane stress condition σ3 = 0), the component P bi

1 of the first Piola-Kirchhoff

stress tensor is given by

P bi
1 =

3∑
i=1

[
μi λαi−1

1 − λ−2 αi−1
1

]
. (3.143)

An approximation of the experimental data, see Ogden (1972), follows by inserting
the constitutive parameters μi and αi in (3.143) according to the given data, see
Fig. 3.4. Note that the restriction (3.114)2 is fulfilled by the constitutive parameters.
Condition (3.114)1 yields for the given parameters 2 μ = 8.45. One can furthermore
observe that the strain energy function with three terms (3.113) introduced by
Ogden (1972) approximates the experimental data of Treloar (1944) for rubber up
to strains of 700% very well.

Restriction (3.114)1 must also be met by the Neo-Hooke material which strain
energy function consists only of one term. With α1 = 2 follows μ1 = μ. This set
of parameters leads with the first Piola–Kirchhoff stress in case of the uniaxial
and bi-axial deformation to

P1 = μ1

[
λ1 − λ−2

1

]
and P bi

1 = μ1

[
λ1 − λ−5

1

]
. (3.144)

Figure 3.4a depicts that the Neo-Hooke material approximates the experimental
results only up to a stretch of λ1 ≈ 1.7 which denotes strain of 70 %.

For the Mooney-Rivlin material, two parameters are chosen according to
(3.115) to fit the experimental data. This leads to a better approximation at the
beginning of the curve. Again condition (3.114)1 has to be fulfilled. With the choice
of μ1 = 2.4 follows μ2 = −1.825 and the first Piola-Kirchhoff stress is given for
both cases by

P1 = μ1

[
λ1 − λ−2

1

]
+ μ2

[
λ−3

1 − λ1

]
, (3.145)

P bi
1 = μ1

[
λ1 − λ−5

1

]
+ μ2

[
λ−3

1 − λ3
1

]
. (3.146)

This stress–strain relation approximates the experimental data up to λ1 ≈ 1.7, as

can be seen in Fig. 3.4. However for larger strains, the stresses deviate more from

the experimental data than the ones computed with (3.144).
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Fig. 3.4 Approximation of experimental data after Treloar (◦) by different ma-
terial functions: Neo-Hooke ( ), Mooney-Rivlin ( ) and Ogden ( ),
(a) uniaxial and (b) biaxial tension

Exercise 3.7: Specify equations (3.120) and (3.121) for the case of a rod which
is subjected to a tension force. Compute the Cauchy stresses under the condition
that the contraction of the cross section of the rod is zero. Discuss the results.

Solution: The rod in tension undergoes only a stretch in axial direction, thus
the only unknown stretch is λ1 since λ2 = λ3 = 1. Due to that, it holds J = λ1 and
the remaining component of the deformation gradient F is F11 = λ1. With these
values, it is possible to evaluate (3.120) directly and it follows with γ = ( Λ / 2+μ )

σ1 =
Λ

2 λ1

(
λ2

1 − 1
)

+
μ

λ1

(
λ2

1 − 1
)

= γ

(
λ1 −

1

λ1

)
. (3.147)

This constitutive equation for σ1 is only zero at λ1 = 1 when no deformation is
present. One can easily observe that the limit cases are fulfilled: λ1 → +∞ =⇒
σ1 → +∞ and λ1 → 0 =⇒ σ1 → −∞.

The St. Venant material law can be stated with E11 = 1
2

(λ2
1 − 1) as

S1 =
Λ

2
( λ2

1 − 1 ) + μ ( λ2
1 − 1 ) = γ ( λ2

1 − 1 ) . (3.148)

This relation will now be transformed to the current configuration. Equation (3.83)
yields σ1 = λ1 S1 which leads to

σ1 = γ λ1 ( λ2
1 − 1 ) . (3.149)

This equation fulfils condition λ1 = 1 → σ1 = 0. But for the limiting cases, it

yields: λ1 → +∞ =⇒ σ1 → +∞ and λ1 → 0 =⇒ σ1 → 0. The last limiting case

does not make sense physically, see also Remark 3.4. Figure 3.5 depicts the stress
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Fig. 3.5 Comparison of the stresses obtained from Neo-Hooke and St. Venant

material

response which is completely different when compared to (3.147). Note that both

constitutive functions have the same tangent Λ + 2 μ at λ1 = 1. This is consistent

with Hooke material law of the linear theory.

3.3.2 Elasto-Plastic Material Laws

Many materials which are widely used in technical applications depict non-
linear behaviour even when only small deformations are present. A large class
of nonlinear materials can be described by the assumption of elasto-plastic
behaviour. Among these are materials like steel, aluminium, concrete but also
geo-materials such as rock and soils. Often the associated constitutive models
are very complex. In the following sections several equations will be discussed
which describe rate-independent constitutive behaviour for the general case
of isotropic and kinematic hardening of metals. For a detailed treatment of
such constitutive equations and their physical interpretation, see e.g. Hill
(1950), Prager (1955), Desai and Siriwardane (1984), Lubliner (1990) and
Khan and Huang (1995).

Elasto-Plastic Material Laws of Small Deformations. The phenomeno-
logical model of the theory of plasticity has to be based on the fact that plastic
flow of a material is an irreversible process. It is described in a solid by an
additional strain measure and additional variables, known as plastic strains
and hardening parameters.

An example for such constitutive equations is the classical model of elasto-
plasticity with isotropic (expansion of flow surface) and kinematic (shift of
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Fig. 3.6 Elasto-plastic constitutive behaviour

origin of flow surface) hardening. Figure 3.6 illustrates the behaviour of that
material for the one-dimensional case. Until point A the material reacts elas-
tically that means the loading and unloading path is the same. Plastic de-
formations occur once the stress reaches the flow stress σA in A; after that
the stress does not increase as much as in the elastic range. Observe that the
flow stress is larger in point B than in point A which is due to hardening. In
case of unloading in point B, the stress response follows a straight line which
is parallel to the elastic tangent between the origin and point A. Hence un-
loading is related to elastic behaviour. However, plastic flow occurs again at
point C. Here the flow stress has a smaller absolute value than at point B.
This observation is related to a movement of the origin of the elastic zone
which is called kinematic hardening. A possible softening which is related
to a decrease of the flow stress characterizes part BD in the stress–strain
diagram.

In the following, a three-dimensional generalization will be given for the
phenomenological behaviour described above. In the subsequent development
of the mathematical model of elasto-plastic constitutive behaviour, only small
deformations occur and the considerations are restricted to metal plasticity.
Later a generalized treatment is presented which includes plasticity models,
for e.g. concrete or geo-materials, such as sand, clay or rock. For an in-depth
treatment of such material laws, see e.g. Desai and Siriwardane (1984), Khan
and Huang (1995) and Hofstetter and Mang (1995).

The linear strain tensor (3.17) can be split additively into an elastic and
a plastic part when only small strains are present, see Fig. 3.6,

ε = εe + εp . (3.150)

The assumption of incompressible plastic deformations is often justified
for metals by experimental observations. In such case, it is appropriate to
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introduce deviatoric measures. This yields for the total strains with (3.30)
e = ε − 1

3 tr ε1 . (In the following, the deviator is described by e since the
Almansi strain tensor does not occur in this section and thus the notation
can be simplified compared to eD in Sect. 3.1.2.) An analogous relation can
be written for the stress tensor which then defines the stress deviator

s = σ − 1
3

tr σ 1 . (3.151)

The stresses σ and the internal variables q related to the hardening pa-
rameters α can be computed by a derivative of the strain energy function ψ

σ = ρ0
∂ψ(εe, α)
∂εe

, q = −ρ0
∂ψ(εe, α)
∂α

. (3.152)

For many applications, the assumption of a function ψ is valid which is de-
coupled in εe and α. This leads to

ρ0 ψ(εe, α) = We(εe) +Wv(α) , (3.153)

whereWe(εe) is the elastic strain energy function, see e.g. (3.116), andWv(α)
denotes a potential function for the hardening variables. The elastic strain
energy function We has the explicit form We = 1

2 εe ·Ce[εe] for small strains.
The partial derivative of this function with respect to the elastic strains yields
with

σ = ρ0
∂ψ(εe, α)
∂εe

= Ce[εe] , σij = Ce
ijkl ε

e
kl (3.154)

the classical Hooke’s law of the theory of linear elasticity. Note that (3.154)
can also be written in terms of the deviatoric quantities which leads for
isotropic elastic response to

s = 2μee and p = K divu . (3.155)

Here μ is the shear modulus and K the bulk modulus (with K = λ+ 2
3 μ). λ

and μ are also called Lame constants, see also Remark 3.4.
We assume the same structure, given in (3.154), for Wv, see e.g. Lubliner

(1990). Hence Wv = 1
2 Ĥα̂

2 + 1
3 H |α|2 is defined where α̂ are the isotropic

and α kinematic hardening variables. This definition leads with (3.152) to

q = −2
3
H α and q̂ = −Ĥ α̂ , qij = −2

3
H αij . (3.156)

The elastic domain of the deformation is restricted by the yield condition.
Mathematically an inequality constraint has to be formulated which depends
upon the stresses and the internal hardening variables. The flow condition
must be able to describe two different phenomena as already pointed out in
Fig. 3.6 for the one-dimensional case. This is the enlargement of the elastic
domain (isotropic hardening) and the shift of the permissible elastic range
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(kinematic hardening), depicted schematically in Fig. 3.7a for times to and
t. The flow condition or yield criterion can be written in general form as

f(σ ,q , q̂) ≤ 0 (3.157)

for isotropic and kinematic hardening. In case of the classical von Mises

plasticity, the flow condition f depends only upon the second invariant of the
stress deviator. Hence it can be expressed as

f(s ,q , q̂) =
√

(s − q) · (s − q) − k(q̂) ≤ 0 . (3.158)

For linear isotropic and kinematic hardening,

f(s,q, q̂) = ‖ s − q ‖ −
√

2
3

(Y0 − q̂) ≤ 0 (3.159)

is obtained explicitly. The generalized stress measure q which is related to
kinematic hardening is called back stress. A stress point lies for f < 0 in
the elastic domain. The stress point is located on the boundary of the flow
surface for f = 0. This can result in plastic deformations. Values f > 0 of
the flow condition are not admissible, see Fig. 3.7b.

qft0 = 0

ft = 0
n

elastic domain

Fig. 3.7a Flow condition Fig. 3.7b Admissible region

Irreversibility of the plastic flow process is expressed by a flow rule. For
most metals, an associated flow rule can be used in which the direction of
flow is given by the partial derivative of the flow condition with respect to
the deviatoric stresses

ėp = λ
∂f

∂s
. (3.160)

This equation describes the evolution of the deviatoric plastic strains. The
direction of plastic flow is given by ∂f

∂s and λ is a scalar which determines the
size of the plastic strain increment.
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Evolution equations have also to be formulated for the hardening vari-
ables. This leads to

α̇ = λ
∂f

∂q
, ˙̂α = λ

∂f

∂q̂
. (3.161)

Using the flow condition (3.159), the derivative of f yields

∂f

∂s
=

s − q
‖ s − q ‖ =: n and

∂f

∂q
= −n (3.162)

which defines the flow direction. Hence the evolution equations

ėp = λn , α̇ = −λn and ˙̂α = λ

√
2
3

(3.163)

can be written. Equation (3.163) yields the equivalent plastic strain increment
˙̂α =

√
2
3 ‖ė

p‖ since ‖ėp‖ = λ is valid. Time integration leads to the equivalent
(or effective) strain

α̂ =
∫ t

0

√
2
3
‖ε̇p‖dτ , (3.164)

which provides a measure for plastic distortion, see e.g. Hill (1950) or Lubliner
(1990).

In (3.163), the parameter λ describes the magnitude of plastic flow. Gen-
erally, three cases have to be distinguished when a stress point lies on the
flow surface f = 0:

ḟ < 0 =⇒ λ = 0 elasticunloading ,
ḟ = 0 =⇒ λ = 0 neutralloading ,
ḟ = 0 =⇒ λ > 0 plasticflow .

(3.165)

These different cases can be summarized in the so-called Kuhn–Tucker

conditions
λ ≥ 0 , f ≤ 0 , λ f = 0 . (3.166)

Furthermore, the consistency condition

λ ḟ = 0 , if f = 0 (3.167)

is contained in (3.165). With this, all evolution equations for plastic flow and
hardening parameters as well as the flow conditions of elasto-plastic flow are
known. The incremental form of these equations is derived in Sect. 3.3.4. An
algorithm which can be used to integrate the evolution equations is presented
in Sect. 6.2.
Generalized Elasto-Plastic Material Equations. Besides the elasto-
plastic constitutive equations discussed so far, there exist numerous other
models of plasticity which describe the material behaviour and the failure
of, e.g. sand, concrete. For a large class of elasto-plastic materials, it is pos-
sible to derive a generalized description of the constitutive equations. This
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will also reflect the fact that there exist many materials of technical interest
which can be either described by associative or non-associative flow rules or
need multi-surface flow conditions for a proper modelling.

For the general case of an elasto-plastic material with m independent flow
surfaces, the subsequent equations and evolution laws are obtained based on
the introduced notation. Associative and non-associative plasticity is distin-
guished in following:

– Stress σ and back stress q

σ = C [ ε − εp ]
q = −H [α ] (3.168)

– g flow conditions or yield criteria (restrictions for elastic domain)

fg (σ ,q ) ≤ 0 (3.169)

– Flow rule and evolution equation for hardening:
1. associative plasticity

ε̇p =
m∑

g=1

λg
∂fg(σ ,q)
∂σ

α̇ =
m∑

g=1

λg
∂fg(σ ,q)

∂q
(3.170)

2. non-associative plasticity

ε̇p =
m∑

g=1

λg rg(σ ,q)

α̇ =
m∑

g=1

λg hg(σ ,q) (3.171)

– Loading/unloading conditions in Kuhn–Tucker form

λg ≥ 0 , fg(σ ,q) ≤ 0 , λg fg(σ ,q) = 0 (3.172)

All relations hold for models of plasticity with m flow surfaces. The special
case of only one flow surface is naturally included by setting m = 1. In
(3.168), the two tensors of forth order, C and H, represent the elastic and
the hardening laws. Tensors r and h describe the flow direction and the
change of hardening for non-associative plasticity in (3.171).

Here the flow conditions depend upon the stress σ and not solely on the
deviatoric stresses s. The reason for this is that inelastic processes of general
non-metallic materials or of metals in which damage has to be considered are
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pressure sensitive and hence the flow condition has to depend upon the full
stress tensor.

Examples for such material behaviour are, e.g. the Gurson model which
describes damage in metals due to void nucleation, void growth and ductile
fracture in the micro-structure of the metal, see e.g. Gurson (1977). The
original model from Gurson was corrected by Tvergaard and Needleman
(1984) by introducing an effective porosity

g∗(g) =

{
g if g ≤ gc
gc + 1 / q1−gc

gf−gc
( g − gc ) if g > gc

(3.173)

with the critical volume fraction gc of the pores at which the voids start
to unite. q1 and gf are material parameters. With this definition, the flow
condition or yield criterion for the Gurson model can be written as

f(σ , σM , f) =
σ2

e

σ2
M

+ 2 q1 g∗ cosh
(
q2 trσ
2σM

)
− ( q1 g∗ )2 − 1, (3.174)

where σM is the stress in the matrix material, q2 another material parameter

and σe =
√

3
2 s · s is the von Mises equivalent stress, see e.g. Hill (1950).

The matrix stress σM is usually given as a function of the plastic matrix
strains εpM

σM = Y0

(
εpM
ε0

+ 1
) 1

n

(3.175)

as a micro-mechanical constitutive relation for the matrix material, see e.g.
Tvergaard (1989). Besides these equations, evolution equations for the plas-
tic flow are needed on macro- and micro-mechanical level and for the void
growth. These are given for the macro-material by

ε̇p = λ
∂f

∂σ
(3.176)

and for the matrix material on micro-scale by

ε̇pM =
σ · εp

(1 − g)σM
. (3.177)

Void growth is described by an evolution equation which takes into account
nucleation fN and growth fW of the voids

ġl = ġN + ġW (3.178)

with different evolution laws for each term. For the void growth, the relation

ġW = ( 1 − g ) tr ε̇p (3.179)
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can be used and for the nucleation of new pores Needleman and Rice (1978)
introduced

ġN = A (εpM ) ε̇pM , (3.180)
where the function A(εpM ) stems from experimental observations. It can be
defined by a Gaussian normal distribution

A(εpM ) =
gN

sN
√

2π
e
−1

2

(
εpM − εN
sN

)2

(3.181)

with the strain εN where nucleation occurs and with the standard deviation
sN . The model has several evolution equations and flow conditions and hence
can be treated as a generalized plastic material model.

Remark 3.6: The Gurson model describes softening behaviour of the material
due to the growth and nucleation of voids. Such material behaviour, which can
also be observed in other elasto-plastic constitutive models used, e.g. in engineer-
ing analysis of concrete or soil, depicts localizations and leads in the numerical
formulation and simulation to mesh dependent solutions, see Oliver (1995).

Several possibilities can be proposed to overcome this problem by regularization.
These are non-local extensions of the model where the evolution of damage in
(3.178) is replaced by a non-local description

ġ(X) =
1

Vr(X)

∫
V

ġl(X + S) ψ(S) dV (3.182)

with

Vr(X) =

∫
V

ψ(S) dV and ψ(S) = e‖s‖
2 / l2c ,

where ψ(S) is a weighting function and lc is a characteristic length which defines
the size of the influence region of the non-local model. The coordinate X describes
the local point at which the evolution equations have to be evaluated. For a detailed
theoretical and numerical treatment of such approach, see e.g. Bazant and Cedolin
(1991), Leblond et al. (1994) or Feucht (1999).
Another possible regularization is based on the introduction of gradient dependent
evolution equation for the void growth

ġ − l2c
4
∇2ġ = ġN + ġW . (3.183)

This method was proposed in Lasry and Belytschko (1988) for general strains in
transient problems and further developed in Sluys (1992), Pamin (1994) and Feucht
(1999).

Localizations represent the step from a continuum to a discontinuum in which

a part of the body slides along the other at the localization surface. Hence meth-

ods which directly introduce the discontinuous behaviour can also be applied to

solve such problems. These are based on so-called strong discontinuity approach,

see e.g. Simo et al. (1993a), Larsson et al. (1993), Miehe and Schröder (1994) and

Oliver (1995). They can be combined with adaptive techniques or special interface

elements, see e.g. Leppin and Wriggers (1997).
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Another criterion which is often used in soil mechanics is the Drucker-

Prager flow condition, see Drucker and Prager (1952) or Khan and Huang
(1995),

f(Iσ , IIs) =
√
IIs − α Iσ − Y0 ≤ 0 (3.184)

with the material parameters α and Y0. It depends not only upon the second
invariant IIs of the stress deviator s as in the classical von Mises theory of
metal plasticity, see (3.159), but also on a hydrostatic stress term represented
here by the first invariant Iσ of the stress tensor σ.

Many more different constitutive models which stem from experimental
observations and describe plastic flow can be formulated. These are related to
different types of materials, see for an overview, e.g. Desai and Siriwardane
(1984), Lubliner (1990), Hofstetter and Mang (1995) or Khan and Huang
(1995). Furthermore, different loading conditions like pulsating or dynamic
loads can lead to the so-called ratcheting strains, and hence special constitu-
tive descriptions are needed to model such effects, see e.g. Ekh et al. (2000)
and Johansson et al. (2005).

Remark 3.7: Inelastic processes result in mechanical dissipation which can only
grow when the plastic deformation increases. Based on the local principle of max-
imum dissipation, some basic properties can be deduced which are needed for the
description of plastic flow. The local dissipation is defined by the difference between
the stress power and the time derivative of the free energy function. Thus equations
(3.66) and (3.153) lead to

D = σσσ · ε̇εε − D

Dt
ψ(εεεe , ααα) . (3.185)

The evaluation of the time derivative yields together with (3.150) an expression for
the plastic dissipation

D = σσσ · ε̇εεp + q · α̇αα ≥ 0 . (3.186)

The principle of maximum plastic dissipation can be formulated as, see e.g. Hill
(1950) or Lubliner (1990),

D = max
τ ,p

τττ · ε̇εεp + p · α̇αα ∀ { (τττ ,p) | f(τττ ,p) ≤ 0 } . (3.187)

It leads to the inequality

(σσσ − τττ) · ε̇εεp + (q − p) · α̇αα ≥ 0 , (3.188)

where τττ and p characterize arbitrary stresses which are contained in the elastic
domain. From this variational inequality, it follows that the flow surfaces have to
be convex, see e.g. Lubliner (1990). However, this does not exclude flow surfaces
with corners which occur frequently in real materials. Such cases require a special
mathematical treatment within the framework of non-convex analysis which was
substantiated in Moreau (1976), see also Simo (1998).

Based on the variational inequality (3.188) with the constraint f ≤ 0, a saddle
point problem is formulated which yields as result of the flow rule. The actual stress
state follows then as extremal value of the functional

L(τττ ,p , λ) = −τττ · ε̇εεp − p · α̇αα + λ f(τττ ,p) −→ EXTREMUM . (3.189)
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The constraint f ≤ 0 is incorporated in this relation by the method of Lagrange

multipliers. The solution of this saddle point problem at τττ = σσσ and p = q leads to

ε̇εεp = λ
∂f

∂σσσ
, α̇αα = λ

∂f

∂q
, f(τττ ,p) = 0 , (3.190)

together with the Kuhn–Tucker conditions, see e.g. Luenberger (1984). Equations

(3.190) represent the associative flow rules (3.170), which determine plastic flow for

f = 0.

Elasto-Plastic Constitutive Equations for Finite Deformations. Mod-
els for finite plasticity are essential for engineering analysis, such as metal
forming, cutting or pile driving in soils. The formulation of the underlying
theoretical background has a long history. However, the possibility to ap-
ply such models within numerical simulations has shed new light on some
theoretical aspects.

Many authors start from a hypo-elastic constitutive equation for the elas-
tic part of the deformation when finite elasto-plastic deformations have to
be considered, see e.g. Khan and Huang (1995). Such material assumption
does not represent elasticity in the strict sense, see e.g. Truesdell and Noll
(1965) or Simo and Pister (1984). Besides this restriction which can result
in unwanted effects, see e.g. Atluri (1984), which are physically meaningless,
there exist also problems of numerical nature which will be discussed in the
following.

A hypo-plastic constitutive law is presented in a rate form and relates
a stress flux, see e.g. (3.97), to the symmetrical spatial velocity gradient d:
∇
τττ= C [de] with an incremental elasticity tensor C. The idea behind this is
an additive split of the spatial velocity gradient into an elastic and a plastic
part d = de + dp analogous to the assumptions made for the small strain
case in the last section. For the correct choice of the stress rates, see e.g.
Simo and Hughes (1998) and Khan and Huang (1995). The rate form re-
quires a time integration which results in a costly algorithm. To overcome
this disadvantage, algorithms for plasticity were developed based on hyper-
elastic constitutive equations defined in Sect. 3.3.1. These formulations use
a so-called operator-split technique in which the elastic part follows directly
via a function evaluation of the hyperelastic material law, see e.g. Simo and
Ortiz (1985) or Simo (1988). This circumvents the time integration of the
elastic constitutive equation.

Based on the single crystal model for metal plasticity, a multiplicative
split of the deformation gradient is introduced instead of the additive split
of the strain rates into elastic and plastic parts. For a theoretical foundation,
see e.g. Lee and Liu (1967) or Lubliner (1990). This split is defined by

F = Fe Fp , (3.191)

where an intermediate configuration was introduced besides the initial- and
spatial configuration, see Fig. 3.8.
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Fig. 3.8 Multiplicative decomposition of the deformation gradient F

Based on this split, the right and left “elastic”Cauchy–Green tensor is
introduced by using Fe

C̃
e

= FeT

Fe , be = Fe FeT

, (3.192)

where the tilde indicates in (3.192)1 that the right Cauchy–Green tensor
is referred to the intermediate configuration.

Analogous to the definition of the spatial velocity gradient l = Ḟ F−1, see
(3.47), the corresponding elastic and plastic parts are given by

le = Ḟ
e
Fe−1

, L̃
p

= Ḟ
p
Fp−1

. (3.193)

Again tensor le is referred to the spatial configuration while L̃
p

acts in the in-
termediate configuration. Since Fp can be written with (3.191) also as Fe−1

F,
the following expression is derived with Ḟ

−1
= −F−1 Ḟ F−1

L̃
p

=
∂

∂t

(
Fe−1

F
)

Fp−1
= Fe−1

[
Ḟ F−1 − Ḟ

e
Fe−1

]
Fe , (3.194)

which yields with (3.193)1 and (3.47)

Fe L̃
p
Fe−1

= l − le . (3.195)

This equation motivates the following definition of the spatial plastic velocity
gradient lp = Fe L̃

p
Fe−1

, which results as follows instead of (3.195)

lp = l − le . (3.196)

The decomposition of the spatial velocity gradient into its symmetric part
d and its antisymmetric part w yields, with the previous definitions, the
additive decomposition of the symmetric velocity gradient
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d = de + dp . (3.197)

This equation is often starting point of rate equations for finite elasto-plastic
deformations. Note however that the following definitions are used in (3.195):
dp = sym [Fe L̃

p
Fe−1

]. The additional equation w = we + wp for the anti-
symmetric part of the spatial velocity gradient (spin) results from (3.196) and
needs further considerations, see e.g. the discussion in Besseling and van der
Giessen (1994).

As in the geometrical linear theory of elasto-plastic deformations, the free
energy Ψ is written as function of the elastic deformation and of m inner
variables αk (k = 1, . . . ,m)

Ψ(C̃
e
, αk) = W̃ (C̃

e
) + H̃(αk) . (3.198)

The corresponding dependence of the strain energy function on C̃
e

can be
found, e.g. in Mandel (1974). By considering the specific stress power τττ · d,
the local dissipation D is stated as

D = τττ · d − Ψ̇(C̃
e
, αk) ≥ 0 . (3.199)

The time derivative of the free energy function yields with ˙̃C
e

= 2FeT

de Fe

D =

(
τττ − 2Fe ∂W̃

∂C̃
e FeT

)
· de + τττ · dp −

m∑
k=1

∂H̃

∂αk
α̇k ≥ 0 . (3.200)

From this inequality followed by using the standard arguments of material
theory, see e.g. Truesdell and Noll (1965) or Lubliner (1990), the constitutive
relations for stresses and hardening variables

τττ = 2Fe ∂W̃

∂C̃
e FeT

and qk = − ∂H̃
∂αk

, (3.201)

and furthermore the reduced form of the dissipation inequality

D = τττ · dp +
m∑

k=1

qk α̇k ≥ 0 , (3.202)

which represents a restriction for the evolution equations of plastic flow. The
equations derived above can also be referred to the intermediate configuration
which leads to the stress tensor in the intermediate configuration

S̃ = Fp SFp T = Fe−1 τττ Fe−T (3.203)

and the constitutive equations

S̃ = 2
∂W̃

∂C̃
e and qk = − ∂H̃

∂αk
. (3.204)
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The first term in the reduced dissipation inequality (3.202) can be formulated
with respect to the intermediate configuration

τττ · dp = S̃ ·
(
C̃

e
L̃

p
)S

= ΣΣΣ · Lp .

Here ΣΣΣ = C̃
e
S̃ is the Mandel stress tensor which can be non-symmetric in

the general case. Hence (3.202) can be rewritten as

D = ΣΣΣ · L̃p
+

m∑
k=1

qk α̇k ≥ 0 , (3.205)

see Mandel (1974). These relations are valid for general elasto-plastic mate-
rial behaviour. They will be specified in the following for isotropic materials.
For that the assumption of a free energy function is valid which does not
depend upon any orientation in the initial configuration. Furthermore, no
orientation will enter the constitutive relations in the intermediate configura-
tion which has the consequence of an undetermined plastic spin wp. In such
cases, often the constitutive assumption wp = 0 is chosen. Further physical
interpretations and considerations regarding the plastic spin can be found in
Dafalias (1985) or Besseling and van der Giessen (1994).

The elastic domain of a given deformation state is described by a yield
condition which is formulated in terms of the Kirchhoff stresses and the
hardening variables

f ( τττ , αk ) ≤ 0 . (3.206)

The assumption of maximum plastic dissipation at a fixed configuration is
valid in case of associative plasticity. This leads together with (3.202) to the
evolution equations for the plastic variables

dp = λ
∂f

∂τττ
, α̇k = λ

∂f

∂αk
, (3.207)

see e.g. Simo (1992) or Simo and Miehe (1992). The kinematic part of the
first equation in (3.207) can be reformulated using (3.58). This leads with
(3.195) and (3.196) to

Lv be = −2Fe sym (L̃
p
)FeT

= −2 sym (lp be) . (3.208)

With the further assumption that the plastic spin is zero (wp = 000), the
relation dp = lp follows with (3.196) from (3.197). Thus (3.207)1 can be
rewritten as

−1
2
Lv be = sym

(
λ
∂f

∂τττ
be

)
, (3.209)

see Simo and Miehe (1992), where be denotes the Lie derivative defined by

Lv be = −2Fe 1
2

(
L̃

p
+ L̃

p T
)

FeT . (3.210)
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For the isotropic case, the Kirchhoff stresses can be expressed as a function
of the left Cauchy–Green tensor be, see also (3.111),

τττ = 2
∂W̃

∂be be . (3.211)

The left Cauchy–Green tensor follows from

be = Fe FeT = FCp−1 FT with Cp = FpT Fp . (3.212)

This means that be is related to the inverse of the right Cauchy–Green

tensor Cp−1 which is referred to the initial configuration.
Experiments substantiate that plastic flow does not depend upon the

volume change in the body. This fact is synonymous with the assumption
tr(dp) = 0 or det Fp = 1 which corresponds to incompressibility of rubber
materials, see Sect. 3.3.1. There is a split of the deformation in isochoric
and volumetric parts lead to a decomposition of the strain energy function
(3.122). Such split can also be defined for the above equation. It yields with
(3.28) instead of (3.191) to

F = Je 1
3 F̂

e
Fp with det Fp = 1 . (3.213)

Since it is not obvious that the integration of evolution equation (3.209)
preserves this constraint condition, special care is needed in the design of
associated numerical algorithms, see Sect. 6.3.

3.3.3 Visco-Elastic and Visco-Plastic Material Behaviour

Many materials exhibit in experiments a behaviour which can only be de-
scribed by considering real time dependence of deformations and stresses. A
frequent application is, e.g. creep of concrete, of metals at high temperatures
or of saline rocks, at which the deformations grow under constant stress states
with time. Also many polymers depict such behaviour. In the mathematical
modelling process of such materials, the associated time dependent (rheolog-
ical) material behaviour has to be considered. This leads to many different
constitutive models which are used in the continuum mechanics description of
rheology. Some of them are based on the introduction of springs (elasticity),
dampers (viscosity) and friction (plasticity) elements which are combined to
match experimental results. For an introduction in the basic theoretical back-
ground, see e.g. Findley et al. (1989), which contains also a literature review
until 1988. Two simple visco-elastic models will be discussed and their three-
dimensional generalization is stated in the framework of finite deformations.
Furthermore, visco-plastic material behaviour is described for small and large
deformations.
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Fig. 3.9a Kelvin-Voigt material Fig. 3.9b Creep process

Kelvin-Voigt Material. The first model, called Kelvin-Voigt material,
consists of a spring and a damper which act in parallel. The spring describes
elastic effect whereas the damper is introduced for the viscous material re-
sponse, see Fig. 3.9a.

The strain ε due to elongation in damper and spring is equal, see Fig. 3.9a,
while the stresses in spring and damper sum up to the total stress (σ =
σE + σD). For the one-dimensional case, a constitutive equation, depending
on time t, is obtained with the elastic constitutive equation σE = E ε and
the constitutive relation for the damper σD = η ε̇

σ(t) = E ε(t) + η ε̇(t) = E [ ε(t) + τ ε̇(t) ] , (3.214)

in which the retardation time is defined by the constant τ = η/E. For a force
applied instantaneously, see Fig. 3.9b, the strain due to elongation can be
computed by integration of (3.214) easily, see e.g. Gross et al. (1999),

ε(t) =
σ0

E
( 1 − e−(t / τ)) . (3.215)

The solution in Fig. 3.9b depicts that creep occurs which is defined by an
increase of strain in time. Within the equilibrium state at time t → ∞, all
stress is in the spring (ε(∞) = σ0 /E). Hence, it can be concluded that the
Kelvin-Voigt-body behaves in the first stages like a fluid but in the end of
the process like a solid.

The three-dimensional extension of the one-dimensional constitutive model
can be found for finite deformations, e.g. in Eringen (1967) or Truesdell and
Noll (1965). In the simplest isotropic case, a constitutive equation is obtained
for the Kirchhoff stress tensor

τττ = α1(Ib , IIb , IIIb)1 + α2(Ib , IIb , IIIb)b + α3(Ib , IIb , IIIb)d, (3.216)

where the first two terms describe the elastic behaviour and the last term the
viscous behaviour. The scalar functions αi depend upon the invariants of the
left Cauchy–Green tensor b (3.25), d is the rate of deformation tensor, see
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(3.49). The constitutive equation (3.216) can be transformed to the initial
configuration using (3.49) and (3.84)

S = F−1 τττ F−T = α1(IC , IIC , IIIC)C−1 + α2(IC , IIC , IIIC)1
+α3(IC , IIC , IIIC)C−1 ĖC−1 . (3.217)

Here the invariants of the left Cauchy-Green tensor b are expressed by
the invariants of the right Cauchy-Green tensor C, see also (3.105). The
first two terms in (3.216) and (3.217) describe the elastic part. These can
be expressed by the simple hyper-elastic constitutive equation (3.120). The
additional choice of α3 = J η includes viscous effects leading to the following
constitutive equation in the current configuration

τττ =
Λ

2
(J2 − 1 )1 + μ (b − 1 ) + J η d . (3.218)

This equation can be transformed to the initial configuration, see also (3.119),

S =
Λ

2
(J2 − 1 )C−1 + μ (1 − C−1 ) + J ηC−1 ĖC−1 . (3.219)

Often materials which exhibit visco-elastic behaviour (e.g. rubber) are in-
compressible. In such case, the elastic constitutive relations have to be split
in volumetric and deviatoric part according to (3.127) or (3.129).

Neglecting the elastic deformations in the constitutive equation (3.218)
yields with (3.84) the following relation for the Cauchy stress tensor

σσσ = η d . (3.220)

This equation describes a linear relation between the rate of deformation
tensor and the stresses, and can be used to characterize a viscous compressible
fluid.

Maxwell Material. The second model to describe viscous behaviour of
materials consists contrary to the Kelvin-Voigt material of a spring and
damping device in series, see Fig. 3.10a.

It is obvious from the one-dimensional model that the stress in damper
and spring is equal. The rate of deformations related to spring and damper
are split additively (ε̇ = ε̇E + ε̇D) and are obtained from the constitutive
relations ε̇E = σ̇ /E and ε̇D = σ / η. Hence the total rate of deformation is
given by

E ε̇(t) =
1
τ̂
σ(t) + σ̇(t) , (3.221)

with the constant τ̂ = η /E, also called relaxation time. One can easily show
that the response of the material due to a constant stress σ0 describes a
fluid, since the strain increases after an instantaneous jump by σ0 /E linear
in time. However, if the strain (ε0 = σ0 /E) is kept constant, then the solution
of (3.221) is given by
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Fig. 3.10a Maxwell-material Fig. 3.10b Relaxation

σ(t) = σ0 e−(t / τ̂) (3.222)

and the stress relaxes from its initial value σ0 for t→ ∞ to zero.
Since this material does not describe a solid body a so-called generalized

Maxwell-model is often defined which consists of a parallel connection of
model (3.221) and a spring with constant E∞. Such a model responds to
a constant stress with an instantaneous elastic behaviour, but creeps with
time to a limit state. This model is also called linear standard solid. The
constitutive response of this model are described for the one-dimensional
case by

σ(t) = σM (t) + σE(t) ,

E ε̇(t) =
1
τ̂
σM (t) + σ̇M (t) , (3.223)

σE(t) = E∞ ε(t) .

Here stresses σM are related to the Maxwell-model and σE related to the
parallel connected spring, respectively, see Fig. 3.11.

The three-dimensional version of a linear standard solid is based on the
assumption that viscous deformations are only caused by deviatoric stress

σ σ

ηE

E∞

Fig. 3.11 Generalized Maxwell-model
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and strain states, see (3.30) and (3.151). For the Maxwell material parallel
connected to the spring follows

σσσ(t) = σσσE(t) + sM (t)
= K tr εεε111 + 2μ ( ν∞ e + ν q ) , (3.224)

ė(t) =
1
τ̂

q + q̇ ,

where ν∞ + ν = 1, which is equivalent to ν∞ = (1 − ν). The value μ ν∞

corresponds to μ∞, see (3.223)3, since the volumetric parts are purely elastic
such that K = K∞. Instead of the deviatoric stress sM the conjugated strain
q is used in (3.224)3, which saves the multiplication by the shear modulus.

The set of equations (3.224) presents a first order differential equation
system in time. Furthermore, the constitutive equation can be extended by
introducing time dependent parameters to consider aging processes, see e.g.
Argyris et al. (1976). It is possible to derive an integral form for the stresses for
the assumed linear material behaviour and constant constitutive parameters.
Since the volumetric part has no influence on the viscous behaviour, the stress
deviator is given by

s(t) =

t∫
−∞

G(t− τ) ė(τ) dτ , (3.225)

where the relaxation function G(t) is defined by

G(t) = 2μ
[
ν∞ + ν e−(t / τ̂)

]
. (3.226)

A generalization of this model for finite deformation can be found in
Simo (1987). For a hyper-elastic constitutive equation, the following relation
with respect to the initial configuration can be derived using the 2. Piola-

Kirchhoff stress tensor and (3.126) for pure deviatoric viscous response

S = SM + S∞
ISO + S∞

V OL ,

ṠM +
1
τ̂

SM =
d

dt
PPP

[
2
∂Ŵ

∂Ĉ

]
, (3.227)

S∞
ISO = PPP

[
2
∂Ŵ∞

∂Ĉ

]
and S∞

V OL = J C−1 ∂U
∞

∂J
.

In this equation, the stress S∞ is related to the parallel connected spring;
this stress was split into a volumetric and deviatoric part, see (3.126). The
stress SM is associated with the Maxwell-model; it is determined from the
evolution equation (3.227)2. With the assumption that the visco-elastic ma-
terial consists of identical polymer chains, the strain energy function Ŵ can
be expressed by the strain energy of the elastic part: ŴM (Ĉ) = β Ŵ∞(Ĉ),
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with β > 0, see Govindjee and Simo (1992). Thus the model depends upon
the volumetric (U∞) and deviatoric (Ŵ∞) part of the strain energy function.
The material behaviour described in (3.227) is called linear visco-elastic be-
haviour at finite deformations. A generalization for finite visco-elastic mate-
rial behaviour at finite deformations can be found, e.g. in Reese and Govindjee
(1998).

Visco-Plastic Materials. It is well known from experiments that a plastic-
ity model independent on the strain rate, as described in Sect. 3.3.2, is only
one possible model for the real physical behaviour. In the area of material
theory there exist many papers in which inelastic material models are advo-
cated which do not exhibit a yield surface. Such constitutive models are of-
ten employed to describe inelastic behaviour of metals at high temperatures.
Examples for such formulations can be found in, e.g. Bodner and Partom
(1975), Hart (1976) and Krempl et al. (1986). These constitutive models are
often called visco-plastic models in the relevant literature; however, they also
could be named nonlinear visco-elastic materials, see e.g. Lubliner (1990). In
the following, a visco-plastic material will be defined as a strain rate depen-
dent material with a well-defined yield surface, see Prager (1961) or Perzyna
(1966).

The main difference to the rate independent theory of plasticity is re-
lated to the fact that the elastic domain, defined by the yield condition
f ≤ 0 in stress space, can be violated. Hence overstresses can occur, see
Fig. 3.13, which are outside of the elastic domain defined by f ≤ 0. In case
of pure creep, see e.g. Fig. 3.9b, the elastic domain does not exist; only over-
stresses occur. Hence the visco-plastic behaviour is described by a coupling
of a viscous and a plastic model. The associated rheological model, which
is called Bingham model, is given by a parallel connection of a damper
and a plastic slip element which then is in series with an elastic spring, see
Fig. 3.12.

This model reacts elastic as long as the yield stress Y0 in the plastic slip
element is exceeded: |σ | ≥ Y0. After that plastic flow occurs in combination
with the rate dependent response due to the viscus damper. We obtain with
the notation, introduced above, and the visco-plastic strain rate ε̇V P

σ = Y0 + η ε̇V P = E εE . (3.228)

η

σ σE

Y0

Fig. 3.12 One-dimensional elasto-visco plastic material
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Reformulation of this relation yields for |σ | ≥ Y0

ε̇V P =
1
η

(σ − Y0 ) . (3.229)

Observe that the visco-plastic strain rate depends upon the difference between
the total stress (in this case given by the elastic material equation σ = E ε)
and the yield stress. In general, the projection of the stresses onto the elastic
domain f = 0 can be performed, see Fig. 3.13 for the multi-dimensional case
in which the plastic flow is a function of the stress deviator s. The difference
(σ − Y0) is the overstress in the one-dimensional model and s − s∗ in the
multi-dimensional case as depicted in Fig. 3.13. If the yield surface does not
exist (Y0 = 0) then the material behaviour reduces to the Maxwell-model.

Often the so-called Föppl symbol is introduced, also known as
Macauley bracket, to be able to consider the inequality condition |σ | ≥ Y0

directly within the constitutive equation. From the definition

〈Φ 〉 =
1
2

(Φ+ |Φ | ) =
{
Φ for Φ > 0
0 for Φ ≤ 0 (3.230)

follows a constitutive equation for a one-dimensional elasto-viscoplastic model,
which yields with ε̇ = ε̇E + ε̇V P

E ε̇ = σ̇ +
1
τ
〈σ − Y0 〉 , (3.231)

where τ is defined in the same way as in (3.221).
The three-dimensional generalization of this material model will be pre-

sented here for small deformations. In Perzyna (1963), the following ansatz
is chosen for the visco-plastic deviatoric strain rates

f = 0

initial yield surface

actual loading surface

overstress

f < 0

elastic
region

s

n

s∗

f > 0

Fig. 3.13 Visco-plastic material behaviour in the stress space
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ėvp =
1

2 η
〈Φ(f̄) 〉n . (3.232)

Here the definition n was chosen for q = 0 according to (3.162). The scalar η
is a material parameter which describes the visco-plastic behaviour. Observe
that this, widely accepted, material model represents a generalization of the
constitutive relations given in (3.229). A better approximation of experimen-
tal results is provided by an exponential or power function Φ. For the special
case of metals under dynamical loading, the following functions can be found
in the literature:

Power function: Φ = f̄ m ,

Exponential Function: Φ = ef̄ − 1 .

In this relations, the yield function f̄ is normalized. For the classical von

Mises plasticity without hardening, the normalized yield criterion is given

by: f̄ = ‖s‖/
√

2
3 Y0−1. However, the yield conditions described in Sect. 3.3.2

can be used for f̄ in (3.232) also. The simplest choice for a visco–plastic
material was stated already in Hohenemser and Prager (1932). It has the
form

ėvp =
1

2 η
〈 f 〉 ∂f

∂s
= γ 〈 f̄ 〉n . (3.233)

In case of elasto-visco-plastic material behaviour, equation (3.232) has to be
extended by an elastic constitutive equation for the stresses and the kinemat-
ical assumption of an additive split of the strains into elastic and visco-plastic
parts

σσσ = C [ εεεe ], εεεe = εεε− εεεvp . (3.234)

For the derivation of the constitutive equations for the visco-plastic strain
rates (3.232), the concept of overstresses can also be applied. The three-
dimensional extension of the one-dimensional model (3.229) for isotropic ma-
terial behaviour is then given by

ėvp =
1
2η

〈 s − s∗ 〉 ,= 1
τ

1
2μ

〈 s − s∗ 〉 , (3.235)

see e.g. Maugin (1992) or Simo (1998). Here the modulus of elasticity E is
replaced by the shear modulus μ in the definition of the relaxation time τ . In
(3.235), which is written in deviatoric quantities, s∗ is the projection of the
stress onto the yield surface, see Fig. 3.13. Due to that the difference s − s∗

defines the overstress, which is responsible for the visco-plastic strains. This
equation can be generalized

ėvp =
1
τ
〈Φ(f)〉 ( s − s∗ ) , (3.236)

see Simo (1998), which essentially corresponds to (3.232). In this relation,
the flow vector n, which determines the direction of flow, is replaced by the
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difference s − s∗. Based on the assumption of a convex yield surface, both
formulations determine the same direction such that (3.236) is equivalent to
(3.232), see Simo (1998). Furthermore, (3.233) corresponds to the flow rule
(3.160) when instead of the consistency parameter λ the constitutive relation
γ 〈Φ(f) 〉 is used. Such re-interpretation of the visco-plastic model can be
employed to construct efficient numerical algorithms. The integration of the
visco-plastic material equation can then be based on algorithms derived for
elasto-plastic problems, see Sect. 6.2.

Remark 3.8: The derivation of constitutive equations for visco-plastic material
behaviour can also be derived from the principle of maximum plastic dissipation,
see Remark 3.7. In that case, the constraint equation (yield condition) within the
optimization problem (3.189) describing the visco-plastic dissipation has to be in-
troduced by a penalty term instead of the Lagrange multiplier. This yields for
the material model (3.233)

D = −s · ėvp +
1

2
γ [ f(s) ]2 , γ > 0 , for f(s) > 0 . (3.237)

The scalar γ has to be interpreted as the penalty parameter. For γ → ∞, the
solution (3.189), describing rate-independent behaviour, follows as limit case. This
corresponds to a viscosity which approaches zero since γ ∼ 1

η
. The gradient of D

with respect to the stress deviator yields

ėvp = γ 〈 f 〉 ∂f

∂s
, (3.238)

which is equivalent to (3.233). Here the Föppl symbol was introduced to reflect

condition f > 0 in (3.237).

3.3.4 Incremental Form of the Material Equations

Incremental forms of the constitutive equations are discussed in this section.
For this purpose, the associated equations are differentiated with respect to
time.

Incremental Form of Hyper-Elastic Constitutive Equations. The
starting point for the development is the constitutive relation (3.104) which is
formulated in terms of the initial configuration. Differentiation with respect
to time yields with W = ρ0 ψ

Ṡ = 2
∂2W

∂C ∂C
[ Ċ ] . (3.239)

It provides an incremental relation between the time derivative of the 2.
Piola-Kirchhoff stress tensor S and the time derivative of the right
Cauchy-Green tensor C. With the definition of the incremental consti-
tutive tensor

C = 4
∂2W

∂C ∂C
, CABCD = 4

∂2W

∂CAB ∂CCD
, (3.240)
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equation (3.239) can be written also as

Ṡ = C

[
1
2

Ċ
]
, ṠAB = CABCD

1
2
ĊCD, (3.241)

where C depends upon the actual deformation state.
The transformation of (3.241) to the current configuration can be formu-

lated with the Lie-derivative of the Kirchhoff stress tensor (3.96). This
derivative is given in index notation as

(Lv τττ)ik = FiA ṠAB FkB . (3.242)

With the time derivative of the right Cauchy-Green tensor, see (3.15) and
(3.49),

ĊCD = 2FlC dlm FmD, (3.243)

the final result can be expressed by

(Lv τττ)ik = FiA FlC FmD FkB CABCD dlm , (3.244)

where d is the rate of deformation tensor. Since each basis vector of the in-
cremental constitutive tensor C in (3.244) is transformed to the current con-
figuration, the spatial incremental constitutive tensor cc can be introduced as

cciklm = FiA FlC FmD FkB CABCD . (3.245)

Hence equation (3.244) can be reformulated with this relation

(Lv τττ)ik = cciklm dlm , Lv τττ = cccccc [d ] . (3.246)

Often the Jaumann stress rate, defined in (3.97), is used in the literature to
describe elasto-plastic material behaviour. Hence the incremental constitutive
equation (3.246) will be rewritten for the Jaumann stress rate. Using (3.98)
the relation

∇
τττ = cccccc [d ] + τττ d + d τττ ,
∇
τik = cciklm dlm + τin dnk + din τnk (3.247)

follows which can be abbreviated by placing dlm outside the brackets

∇
τik= aaiklm dlm with aaiklm = cciklm + δil τkm + δkm τil . (3.248)

Equation (3.248) is from the physical point of view equivalent to (3.246).

Remark 3.9: Within the constitutive formulations of elasto-plastic material be-
haviour, it can be assumed in most cases that only small elastic strains occur.
Related to this fact the rate equation

∇
τik= aaL

iklm dlm (3.249)
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is often found in the literature for the elastic part of the deformation. Here aaL is

the classical constant material tensor of the linear theory of elasticity for isotropic

material: aaL
iklm = Λ δik δlm + μ ( δil δkm + δkl δim ). Such a material law, however,

does not represent a hyperelastic constitutive relation. It is known as hypo-elastic

behaviour, see e.g. Truesdell and Noll (1965), and may lead in case of finite plastic

deformations to physically wrong responses, see e.g. Atluri (1984).

Hyperelastic Material Equations with Split in Volumetric
and Isochoric Parts. Incremental constitutive tensors can be formulated
for the constitutive equation (3.125), which is split additively into volumetric
and isochoric parts. The derivation of the incremental constitutive relation
is based on (3.240) which yields with (3.123) and (3.126) in index notation

ĈABCD = 2
∂SAB

∂CCD
(3.250)

2
∂

∂CCD

[
J

∂U

∂J
C−1

AB + 2 J− 2
3

(
EABEF − 1

3
C−1

AB CEF

)
∂Ŵ

∂ĈEF

]
.

After some analysis, the incremental constitutive tensor is obtained which is
related to the volumetric and the isochoric part by using (3.125) or (3.126),
respectively,

ĈABCD = ĈV OL
ABCD + ĈISO

ABCD (3.251)

with

ĈV OL
ABCD =

(
J
∂U

∂J
+ J2 ∂

2U

∂J2

)
C−1

AB C
−1
CD − 2J

∂U

∂J
EC−1 ABCD ,

ĈISO
ABCD = −2

3

[
C−1

CD PABEF + C−1
AB PCDEF (3.252)

+ J− 2
3

(
1
3
C−1

AB C
−1
DC − C−1

AC C
−1
BD

)
CEF

]
2
∂Ŵ

∂ĈEF

+PABEF 4
∂2Ŵ

∂ĈEF∂ĈMN

PCDMN .

This can be expressed with (3.126) in direct notation

Ĉ̂ĈCV OL =
(
J
∂U

∂J
+ J2 ∂

2U

∂J2

)
C−1 ⊗ C−1 − 2J

∂U

∂J
EEEC−1 ,

Ĉ̂ĈCISO = − 2
3
[
C−1 ⊗ SISO + SISO ⊗ C−1

]
(3.253)

+
2
3
J− 2

3

(
C · 2 ∂Ŵ

∂Ĉ

)[
1
3

C−1 ⊗ C−1 −EEEC−1

]
+ 4PPP

∂2Ŵ

∂Ĉ∂Ĉ
PPP .

In these equations, the derivative of the inverse right Cauchy-Greentensor
∂C−1 / ∂C was used which can be expressed in index notation by
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∂C−1
AB

∂CCD
= −C−1

AC C
−1
BD = −EC−1 ABCD . (3.254)

Now ∂C−1 / ∂C = EEEC−1 is introduced to shorten notation. Due the symme-
try of C, the tensor EEEC−1 can be written as

EC−1ABCD =
1
2
(
C−1

AC C
−1
BD + C−1

AD C
−1
BC

)
. (3.255)

Hyperelastic Material Equations in Principal Stretches. In the case
that the stresses are defined in principal stretches, the formulation of the asso-
ciated incremental constitutive tensors is more complicated since the changes
of the eigenvectors have to be considered. A derivation will be given here for
the constitutive equation (3.133). Before the time derivative of the stresses
is computed, the time derivative of the right Cauchy-Greentensor will be
stated. The representation of C with respect to the principal axes is provided
by C =

∑3
i=1 C(i) N(i)⊗N(i). Based on this expression Ċ can be formulated,

see Ogden (1984),

Ċ =
3∑

i=1

Ċ(i) N(i) ⊗ N(i) +
∑
i�=k

Ω(ik) (C(k) − C(i) )N(i) ⊗ N(k) . (3.256)

The last term stems from the time derivative of the eigenvector Ṅ(i) = ΩΩΩN(i).
In this expression, ΩΩΩ represents a skew-symmetric tensor, which is given by
ΩΩΩ = ḊD. The tensor D describes the transformation between the eigenvec-
tors N(i) and the cartesian basis EK , see also (3.135).

An adequate equation to (3.256) follows also for the second Piola-

Kirchhoff-stresses. Since the eigenvalues of the stress tensor, S(i), depend
in (3.133) only upon λ(i) and hence upon C(i), the second Piola-Kirchhoff-
stresses are given by

Ṡ =
3∑

i,k=1

∂S(i)

∂C(k)
Ċ(k) N(i) ⊗ N(i)

+
∑
i�=k

Ω(ik) (C(k) − C(i) )
(
S(k) − S(i)

C(k) − C(i)

)
N(i) ⊗ N(k) . (3.257)

By inspection of (3.257), equation (3.241) can be rewritten analogously which
leads to an explicit representation of the incremental constitutive tensor

CCC =
3∑

i,k=1

IL(iikk) N(i) ⊗ N(i) ⊗ N(k) ⊗ N(k) (3.258)

+
∑
i�=k

IL(ikik) N(i) ⊗ N(k) ⊗ (N(i) ⊗ N(k) + N(k) ⊗ N(i) ) .

In this equation, the coefficients of the constitutive tensors are
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IL(iikk) = 2
∂S(i)

∂C(k)
,

IL(ikik) =
(
S(i) − S(k)

C(i) − C(k)

)
. (3.259)

Since the eigenvalues of C depend via C(i) = λ2
(i) upon the principal stretches,

it follows with 1
2 λ(i)

∂(...)
∂λ(i)

and S(i) = 1
λ(i)

∂w
∂λ(i)

, see (3.134), for the components
of the incremental constitutive tensor

IL(iikk) =
1
λ(k)

∂

∂λ(k)

(
1
λi

∂w

∂λ(i)

)
,

IL(ikik) =

(
S(i) − S(k)

λ2
(i) − λ2

(k)

)
. (3.260)

For practical purposes, it is essential to consider the symmetries of the incre-
mental constitutive tensor ILILIL. Due to the symmetry of S and C,

ILijkl = ILjikl = ILijlk (3.261)

follows and additionally for hyperelastic material

ILijkl = ILklij (3.262)

can be written.
Observe that principal stretches of the same magnitude yield an unde-

termined expression in (3.260) for the components IL(ikik). The components
IL(ikik) can then be determined by taking the limit, see Chadwick and Ogden
(1971). This leads to

lim
Ci→Ck

ILikik =
1
2

( ILiiii − ILiikk ) . (3.263)

In some cases, the stress divergence term in the weak form is not given by
the second Piola-Kirchhoff stress tensor. If it is formulated with the first
Piola-Kirchhoff stress tensor, see e.g. (3.289), then the incremental con-
stitutive tensor is computed analogous to (3.240) from

AAA =
∂2W

∂F∂F
. (3.264)

An explicit expression for this tensor, derived in Ogden (1984), is given by

AiJkL = FiM ILMJNL FkN + δik SJL , (3.265)

in which the components of the incremental constitutive tensor (3.258) are
determined from the deformation gradient, the Kronecker symbol and the
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second Piola-Kirchhoff stresses. The incremental constitutive tensor AAA

is referred to the initial as well as the current configuration like the first
Piola-Kirchhoff stress tensor P. Here the same notation is applied as in
the transformation (3.245) in which large indices refer to the initial and small
indices to the current configuration.

Remark 3.10: Analogous to the remarks in 3.5(b), it is convenient for compu-
tational purposes to bring the fourth order constitutive tensor ILILIL in matrix form.
Note that in this case, due to the time derivative of strain and stresses, components
can appear as off diagonal terms. Using the relation Ė = 1

2
Ċ yields⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ11

Ṡ22

Ṡ33

Ṡ12

Ṡ23

Ṡ31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

L1111 L1122 L1133 0 0 0
L2211 L2222 L2233 0 0 0
L3311 L3322 L3333 0 0 0

0 0 0 L1212 0 0
0 0 0 0 L2323 0
0 0 0 0 0 L3131

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ė11

Ė22

Ė33

2 Ė12

2 Ė23

2 Ė31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

Ṡ = L ( Ė ) . (3.266)

For an implementation within a finite element program all quantities have to be
transformed in this equation to the cartesian frame as in (3.139) which is done
based on (3.135). This relation can be applied to each base vector in (3.258) which
leads to an incremental constitutive tensor ILILILK given in terms of the cartesian frame

ILILILK =

3∑
i,k=1

IL(iikk) D(i) J D(i) K D(k) L D(k) M EJ ⊗ EK ⊗ EL ⊗ EM (3.267)

+
∑
i�=k

IL(ikik) D(i) J D(k) K D(i) L D(k) M EJ ⊗ EK ⊗ (EL ⊗ EM + EM ⊗ EL )

For a detailed description of the related matrices, see e.g. Reese (1994) or Reese
and Wriggers (1995).

Exercise 3.8: For the constitutive equations (3.119), (a), and (3.127), (b),
derive the incremental constitutive tensor which is related to initial and current
configuration. Furthermore stated the form of the constitutive tensor for the unde-
formed initial configuration.

Solution: (a) Neo Hooke material. The constitutive equation given in (3.119)

S =
Λ

2
( J2 − 1 )C−1 + μ (1 − C−1 )

is a function of the strain measure C−1 and the determinant J of the deformation
gradient. Their derivatives with respect to the right Cauchy-Green tensor C have
to be determined for the computation of C. The derivative ∂J /C is given in (3.124).
The derivative of C−1 was presented in (3.254). With these two results

CCC = Λ J2 C−1 ⊗ C−1 + [ 2 μ − Λ ( J2 − 1 ) ]EEEC−1 ,

CABCD = Λ J2 C−1
AB C−1

CD + [ 2 μ − Λ ( J2 − 1 ) ]EC−1 ABCD (3.268)

follows from the constitutive equation (3.119) in direct and index notation. The
transformation of the incremental constitutive tensor C to the current configuration
yields with (3.245) and using
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C−1
AC C−1

BD = F−1
pA F−1

pC F−1
qB F−1

qD FiA FlC FmD FkB = δpi δpl δqk δqm = δil δkm,

cccccc = Λ J2 1 ⊗ 1 + [ 2 μ − Λ ( J2 − 1 ) ]EEE ,

cciklm = Λ J2 δik δlm + [ 2 μ − Λ ( J2 − 1 ) ]Eiklm . (3.269)

Here 1 is the second order unit tensor and EEE is the fourth order unit tensor; both
are referred to the current configuration. In index notation EEE has the form

Eiklm =
1

2
(δil δkm + δim δkl ) , (3.270)

analogous to EEEC−1 . Within the numerical treatment of elasticity problems using the
finite element method, it makes sense to present equation (3.269) in matrix form.
For this purpose, the components of the Lie derivative of the Kirchhoff stress
tensor, which is, due to (3.95), equal to the Oldroyd stress rate are assembled in
a column vector. This procedure is also performed for the components of the rate
of deformation tensor, see also (3.266),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lvτ11

Lvτ22

Lvτ33

Lvτ12

Lvτ23

Lvτ31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

2μ + Λ Λ J2 Λ J2 0 0 0
Λ J2 2μ + Λ Λ J2 0 0 0
Λ J2 Λ J2 2μ + Λ 0 0 0

0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d11

d22

d33

2 d12

2 d23

2 d31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

Δ
τττ = Dd with α = μ − 1

2
Λ (J2 − 1) . (3.271)

In the undeformed initial configuration, the deformation gradient is given by F = 1,
from which immediately C−1 = 1 and J = 1 follow. If these quantities are inserted
in (3.268), one obtains

CCC0 = Λ1 ⊗ 1 + 2 μEEE . (3.272)

This equation can also be derived from (3.269), since for F = 1 initial and current
configuration are the same. Observe furthermore that the constitutive tensor CCC0 is
identical, the elasticity tensor of the geometrically linear theory, see e.g. Eschenauer
and Schnell (1993). Putting the last result in matrix form yields⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

2μ + Λ Λ Λ 0 0 0
Λ 2μ + Λ Λ 0 0 0
Λ Λ 2μ + Λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε11
ε22
ε33

2 ε12
2 ε23
2 ε31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

σσσ = D0 εεε . (3.273)

(b) Neo Hooke material split in volumetric and deviatoric terms. The
constitutive equation in (3.240) can be written as

S = μ J− 2
3

[
1 −

(
1

3
trC

)
C−1

]
+

K

2
(J2 − 1)C−1 = SISO + SV OL . (3.274)

In this equation, the stress depend as in (3.119) only on the right Cauchy-Green

tensor and the determinant of the deformation gradient F. Hence the derivative
(3.252) can directly be obtained from (3.252) using (3.124) and (3.254). With
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2
∂Ŵ

∂ĈEF

=
1

2
μ δEF and

∂2Ŵ

∂ĈEF ∂ĈMN

= 0

and with U(J) = K
4

(J2 − 1) − K
2

ln J :

∂U

∂J
=

K

2

(
J − 1

J

)
,

∂2U

∂J2
=

K

2

(
J +

1

J2

)

follows

ĈV OL
ABCD = K

[
J2 C−1

AB C−1
CD − ( J2 − 1 )EC−1 ABCD

]
,

ĈISO
ABCD = −2

3

[
C−1

CD SISO
AB + C−1

AB SISO
CD (3.275)

+ J− 2
3 CEE

(
1

3
C−1

AB C−1
DC −EC−1 ABCD

)]

or in direct notation

Ĉ̂ĈCV OL = K
[
J2 C−1 ⊗ C−1 − ( J2 − 1 )EEEC−1

]
,

Ĉ̂ĈCISO = −2

3
μ
[
C−1 ⊗ SISO + SISO C−1 (3.276)

+ J− 2
3 (trC)

(
1

3
C−1 ⊗ C−1 −EEEC−1

)]
.

The transformation to the current configuration is performed as in (3.245) and
yields

ĉĉcĉccvol = K
[
J2 1 ⊗ 1 − ( J2 − 1 )EEE

]
,

ĉĉcĉcciso = −2

3
μ

[
1 ⊗ τττ iso + τττ iso ⊗ 1 + J− 2

3 (trb)

(
1

3
1 ⊗ 1 −EEE

)]
. (3.277)

By introducing the following vectors and matrices

i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1
1
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, τ̂ττ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τiso 11

τiso 22

τiso 33

τiso 12

τiso 23

τiso 31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, EEE =

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1
1

⎤
⎥⎥⎥⎥⎦ (3.278)

the matrix form of (3.277) is given by

ĉĉcĉccvol = K
[
J2 i iT − (J2 − 1)EEE

]
,

ĉĉcĉcciso = −2

3
μ

[
i τ̂ττT + τ̂ττ iT + J− 2

3 (trb)

(
1

3
i iT −EEE

)]
.

In case of the undeformed configuration, the relations stated above yield with F = 1

Ĉ̂ĈCvol = K 1 ⊗ 1 ,

Ĉ̂ĈCiso = 2 μ

[
EEE − 1

3
1 ⊗ 1

]
, (3.279)
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which include the split in volumetric and isochoric parts. The tensors in (3.279) are
equivalent to the elasticity tensors of the linear theory for the case of an additive
split of stresses and strains in volumetric and deviatoric parts according to (3.30).
The associated matrix form is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= K

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ + μ

⎡
⎢⎢⎢⎢⎢⎣

4
3

− 2
3

− 2
3

0 0 0

− 2
3

4
3

− 2
3

0 0 0

− 2
3

− 2
3

4
3

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

σσσ = (Dvol + Diso ) εεε . (3.280)

Incremental Form of the Geometric Linear Elasto-Plastic Consti-
tutive Equation. The incremental constitutive equation can be obtained
for the case of isotropic and kinematic hardening based on the conditions
stated in Sect. 3.3.2. Since the consistency condition (3.167) yields

ḟ =
∂f

∂s
· ṡ +

∂f

∂q
· q̇ +

∂f

∂q̂
˙̂q = 0, (3.281)

the relation

ḟ =
∂f

∂s
·Ce[ė − ėp] +

∂f

∂q
· q̇ +

∂f

∂q̂
˙̂q

= n ·Ce[ė] − λ
(

n ·Ce[n] +
2
3
Hn · n +

2
3
Ĥ

)
= 0 (3.282)

can be deduced with (3.154), (3.156) and (3.163). By introducing the ab-
breviation A = n · Ce[n] + 2

3 H + 2
3 Ĥ, the latter relation can be solved for

λ
λ = A−1 n ·Ce[ė] . (3.283)

Inserting (3.163) into the elastic constitutive equation (3.154) leads finally to

ṡ = Ce[ė −A−1 (n ·Ce[ė] )n ] . (3.284)

Now isotropic material and linear elastic behaviour is assumed. Then Ce =
K 111⊗111 + 2μ (E− 1

3 111⊗1 ) can be written for (3.279) with the bulk modulus
K and the shear modulus μ. With these relations, the final expression for the
time derivative of the stresses can be completed by adding the compressible
part, which is purely elastic in case of von Mises plasticity,

ṗ =
1
3

tr σ̇ = Ktr ε̇e , (3.285)

ṡ = 2μ ė − 2μ

1 + H+Ĥ
3 μ

( ė · n )n . (3.286)
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This equation presents the classical form of the Prandtl Reu constitutive
equation for an elasto-plastic material. The combination σ̇ = ṡ + ṗ111 and by
placing ε̇ outside the bracket leads to the incremental form of the constitutive
equation of the so-called J2-plasticity: σ̇ = Cep [ ε̇ ]. In this relation, the
elasto-plastic tangent is explicitly given by

CCCep = K 1 ⊗ 1 + 2μ
(
EEE− 1

3
1 ⊗ 1

)
− 2μ

1

1 + H+Ĥ
3 μ

n ⊗ n . (3.287)

This incremental constitutive tensor is often called elasto-plastic continuum
tangent. Until around 1985, this tangent was used within the numerical inte-
gration of elasto-plastic processes within the finite element method, leading
to an explicit integration scheme for the rate equations, see e.g. Zienkiewicz
and Taylor (1991). The incremental tensor given in (3.287) is however not
sufficient when an efficient solution algorithm based on an implicit integra-
tion of the rate equations shall be constructed, see Simo and Taylor (1985). A
detailed discussion of such integration algorithms is presented in Sect. 6.2.2
and can be found also in Simo and Hughes (1998).

3.4 Weak Form of Equilibrium, Variational Principles

For the analysis of nonlinear initial boundary value problems in contin-
uum mechanics, a coupled system of partial differential equations has to be
solved which consist of kinematical relations, local balance of momentum and
the constitutive equations. The strong form of these equations is presented
in the following for hyperelastic solids by two alternative descriptions. These
are the description with respect to the initial and current configurations of
the bodies. For the description with respect to the initial configuration B, dif-
ferent stress measures can be used like the first Piola–Kirchhoff stresses
or the second Piola–Kirchhoff stresses which yield two different formula-
tions, see Sect. 3.2,

Kinematics: F E = 1
2 (FT F − 1)

Equilibrium: DivP + ρ0 b̄ = ρ0 v̇ Div (FS) + ρ0 b̄ = ρ0 v̇

Constitutive equation: P =
∂W

∂F
S =

∂W

∂E
Additionally the boundary conditions for the displacements have to be pre-
scribed on ∂Bu and boundary conditions for the tractions have to be formu-
lated on ∂Bσ which leads to

u = ū on ∂Bu and PN = FSN = t̄ on ∂Bσ.

All equations stated above can be transformed to the current configuration
ϕ(B) where the constitutive equations are formulated in terms of the Cauchy

stress tensor, σσσ, and the Kirchhoff stress tensor, τττ ,



3.4 Weak Form of Equilibrium, Variational Principles 83

Kinematics: b = FFT

Equilibrium: divσ + ρ b̄ = ρv̇ div ( 1
J τττ) + ρ b̄ = ρv̇

Constitutive equation: σ = 2 ρb
∂ψ

∂b
τττ = 2b

∂W

∂b

The displacement boundary conditions are given on ϕ(∂Bu) as u = ū. For
the tractions σn = t̂ on ϕ(∂Bσ) holds.

An analytical solution of these systems of nonlinear partial differential
equations is only possible for a selected number of simple initial boundary
value problems. Hence approximate methods like the method of finite dif-
ferences or finite elements have to be applied to solve this set of equations.
The use of the finite element method, which is based on a variational for-
mulation of the equations, summarized above, expands the solution range
to a broad spectrum of applications. The necessary variational formulation
will be described in the following sections based on a referential and spatial
description.

Several approaches can be applied to derive the variational formulation
which are related to the problem at hand. In case of hyperelastic material
responses a functional in the strain energy can be formulated, leading to
a variational principle. For arbitrary processes the equations, summarized
above, can be fulfilled in a weak sense, which yields a formulation minimizing
the error of the finite element approximation for arbitrary test functions, see
e.g. Johnson (1987). In the engineering literature, the principle of virtual
work is often basis for the derivation of the finite element approximations.
It can, however, easily be shown that this formulation is equivalent to using
the weak form.

In the following section, several variational formulations are derived which
can be applied in the context of finite elements.

3.4.1 Weak Form of Linear Momentum in the Initial
Configuration

When an approximation uh of the exact solution u is inserted in the above
set of equations, then an error will occur since the approximate solution is
usually not equal to the exact solution. Hence the insertion of the approximate
solution into the momentum balance equation DivP + ρ0 b̄ − ρ0 v̇ = 0 will
lead to

DivP(uh) + ρ0 b̄ − ρ0 v̇h = R.

The residual R, which denotes the error not fulfilling the momentum balance
equation by uh, will now be reduced to zero in a weak sense by multiplying
the residual by a weighting function η and by integrating the residual over
the whole domain. The vector-valued function η = {η |η = 0 on ∂Bu} is
often called virtual displacement or test function. This procedure leads to
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∫
B

DivP(uh) · η dV +
∫
B

ρ0 (b̄ − v̇h) · η dV = 0,

which of course also has to hold for exact solution u∫
B

DivP · η dV +
∫
B

ρ0 (b̄ − v̇) · η dV = 0 . (3.288)

The weak form is also known as principle of virtual work in engineering. Since
no further assumptions, like existence of a potential, are made, the weak
form is applicable to general problems such as inelastic materials, friction,
non-conservative loading, etc.

By partial integration of the first term in (3.288), application of the di-
vergence theorem and introduction of the traction boundary condition, the
weak form of linear momentum

G (ϕ,η) =
∫
B

P ·Grad η dV −
∫
B

ρ0 (b̄− v̇) ·η dV −
∫

∂Bσ

t̄ ·η dA = 0 (3.289)

is obtained. The gradient of the test function η can also be interpreted as
the directional derivative of the deformation gradient DF · η also known as
variation δF of the deformation gradient. In the weak form (3.289), the first
Piola-Kirchhoff stress tensor can be replaced through P = FS by the
second Piola-Kirchhoff stress tensor leading to

P·Gradη = S·FT Gradη = S· 1
2

(FT Grad η+GradT η F) = S·δE , (3.290)

where the fact has been used that the scalar product of a symmetrical tensor
(here S) with an antisymmetrical part of a tensor is zero. δE denotes the
variation of the Green-Lagrange strain tensor which is obtained via the
directional derivative

DE · η =
d

dα

1
2

[
FT (ϕ + αη )F (ϕ + αη ) − 1

]∣∣∣∣
α=0

=
d

dα

1
2

[
[Grad (ϕ + αη )]T Grad (ϕ + αη ) − 1

]∣∣∣∣
α=0

=
1
2

[
(Gradη)T F + FT Gradη

]
= δE . (3.291)

Using (3.290), equation (3.289) can be rewritten as

G (ϕ ,η ) =
∫
B

S · δE dV −
∫
B

ρ0 (b̄ − v̇) · η dV −
∫

∂Bσ

t̄ · η dA = 0 . (3.292)

The first term in (3.292) denotes the internal virtual work, also called stress
divergence term. The last two terms describe the virtual work of the applied
loading and the inertia term.
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Exercise 3.9: Within continuum mechanics, there exist several possibilities
to describe the internal virtual work in (3.289). If the generalized strain measure

(3.18) is evaluated for α = 1, then the strain measure E(1) = U − 1 follows. For
this strain measure, the work conjugated stress tensor has to be found.

Solution: Starting from F = RU, see (3.21), the variation of the strain can be
obtained with R−1 = RT

δE(1) = δU = δRT F + RT δF .

With this result, δF can be replaced in the first term of (3.289)

P · δF = P · (R δU − R δRT F ) .

Based on the trace operation A · B = tr(ABT ) and cyclic exchange, relation

P · δF = RT P · δU − PFT · R δRT

is deduced. In this relation, the symmetric Kirchhoff stress tensor which is defined
by τττ = PFT does not produce virtual work with the term R δRT since the latter
is skew symmetric [δ (RRT ) = R δRT + δRRT = 0 ]. Hence the work conjugated

stress tensor can be assigned to the strain measure E(1) by TB = RT P which is
known as the symmetric part of the Biot stress tensor. The associated weak form
is then given by

G ( ϕ, η ) =

∫
B

TB · δU dV −
∫
B

ρ0 (b̄ − v̇) · η dV −
∫

∂Bσ

t̄ · η dA = 0 . (3.293)

3.4.2 Weak Form of Linear Momentum in the Current
Configuration

The transformation of the weak form (3.289) to the current or spatial config-
uration is performed by kinematical operations in which the base vectors are
push forward to the configuration ϕ(B). With the transformation σ = 1

J PFT

of the first Piola-Kirchhoff stress tensor to the Cauchy stress tensor, see
(3.81), equation (3.33) can be rewritten as

P · Grad η = J σ F−T · Gradη = J σ · Gradη F−1 = J σ · grad η .

Furthermore, from (3.12) dv = J dV follows which is equivalent to ρ = ρ0 J .
With these relations, the weak form (3.289) can be written in terms of the
current configuration

g (ϕ,η) =
∫

ϕ(B)

σ·grad η dv−
∫

ϕ(B)

ρ (b̄−v̇)·η dv−
∫

ϕ(∂Bσ)

t̂·η da = 0 . (3.294)

In this relations, equation (3.80) has been used to transform the traction
vector t̄ to ϕ(B). The symmetry of the Cauchy stress tensor facilitates the
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replacement of the spatial gradient of the test function η by its symmetric
part. Hence with the definition

∇S η =
1
2

(grad η + gradT η ), (3.295)

the weak form follows with respect to the spatial configuration

g (ϕ,η ) =
∫

ϕ(B)

σ ·∇S η dv−
∫

ϕ(B)

ρ (b̄−v̇)·η dv−
∫

ϕ(∂Bσ)

t̂·η da = 0 . (3.296)

This relation is, in a formal sense, equivalent to the principle of virtual work
of the geometrically linear theory. But here the integral, the stress and virtual
strain measures have to be evaluated with respect to the current configura-
tion. Due to this, the nonlinearities do appear, however hidden.

In the further variational formulations presented in this section, the in-
ertia terms ρ v̇ are neglected in order to concentrate on static equilibrium
equations.

3.4.3 Variational Functionals

In this section, two variational functionals will be discussed which can al-
ternatively be applied within the discretization process of the finite element
method. For a more detailed background, see Washizu (1975).
Principle of Stationary Elastic Potential. In case of a hyper elastic
material, there exist a strain energy function W , which describes the elastic
energy stored in the solid. Based on this strain energy, the classical principle of
the minimum of potential energy can be formulated in the geometrically linear
theory. In finite deformation theory, it has in general to be considered that
deformations can occur which are non-unique. Hence only a stationary value
of the potential can be reached. Under the assumption that the applied loads
are conservative, which means path independent (non-conservative loads are
described in Exercise 3.12), the functional

Π (ϕ) =
∫
B

[W (C) − ρ0 b̄ · ϕ ] dV −
∫

∂Bσ

t̄ · ϕ dA =⇒ STAT (3.297)

can be stated for the static problem. Out of all possible deformations ϕ, the
ones which make Π stationary fulfil the equilibrium equation. The stationary
value of (3.297) can be computed by the variation of Π with respect to the
deformation. For this purpose, the directional derivative

δΠ = DΠ (ϕ) · η =
d

dα
Π (ϕ + αη )

∣∣∣∣
α=0

(3.298)

is applied which is also called first variation of Π. The application of this
mathematical operation yields
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DΠ(ϕ) ·η =
∫
B

[
∂W

∂C
·DC · η − ρ0 b̄ · η

]
dV −

∫
∂Bσ

t̄ ·η dA = G(u,η) = 0 .

(3.299)
The directional derivative of the right Cauchy-Green strain tensor can
easily be written in terms of the Green-Lagrange strain tensor, see (3.291)

DC · η = 2DE · η or δC = 2 δE .

The partial derivative of W with respect to C leads to the second Piola-

Kirchhoff stress tensor S, see (3.104): S = 2 ∂W /∂C. Hence equation
(3.299) is equivalent to the weak form (3.292) for a hyperelastic material.

The construction of such principle has several advantages. First of all,
it can be the basis for mathematical investigations regarding existence and
uniqueness of solutions (the latter is however only valid for the linear theory).
Secondly, it leads to the development of efficient algorithms for the solution
of the resulting non-linear equations on the basis of optimization strategies.
Hu-Washizu Principle. Another variational principle is the Hu-Washizu

principle, see Washizu (1975). It has gained significance early on for the con-
struction of finite elements. This principle can be derived by writing the weak
formulation with additional constraint equations which contain kinematics
and constitutive equations. Due to this deformations, strains and stresses
occur as independent variables. On the contrary, once the principle is con-
structed its variation with respect to all variables yields the static equilib-
rium equations, the kinematical relations and the constitutive equation. The
formulation of the nonlinear version of the Hu-Washizu principle can be
obtained by using any set of work conjugated variables. Here it will be stated
in terms of the deformation gradient F, the first Piola-Kirchhoff stress
tensor P and the deformation ϕ

Π(ϕ,F,P) =
∫
B

[W (F) + P · (Gradϕ − F ) ] dV

−
∫
B

ϕ · ρ0 b̄ dV −
∫

∂Bσ

ϕ · t̂ dA. (3.300)

The variation, according to the definition of the directional derivative, see
e.g. (3.291), yields now three independent equations

DΠ(ϕ,F,P) · η =
∫
B

(P · Gradη − η · ρ0 b̄ ) dV −
∫

∂Bσ

η · t̂ dA = 0 ,

DΠ(ϕ,F,P) · δP =
∫
B

δP · (Gradϕ − F ) dV = 0 , (3.301)

DΠ(ϕ,F,P) · δF =
∫
B

δF ·
(
∂W

∂F
− P

)
dV = 0 .
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Observe that they represent the weak form (3.289), the kinematical relation
(3.6) and a hyperelastic constitutive equation for P.

A special form of the Hu-Washizu variational principle can be applied
for the construction of finite elements which have to represent nearly in-
compressible material behaviour. Since incompressibility is associated with
a constraint for the volumetric deformation (J ≡ 1), the split (3.28) can be
used to distinguish volumetric and isochoric parts of the deformation. Based
on this idea, Simo et al. (1985a) formulated a three-field functional which is
only defined for the volumetric part of the deformation. Hence the indepen-
dent variable are now the deformation ϕ, the pressure p and a strain variable
θ which is equivalent to J . The last variable has to fulfil the constraint con-
dition θ = J . With the multiplicative split of the deformation gradient (3.28)

F̄ = θ
1
3 F̂, (3.302)

the split into volumetric and deviatoric parts is achieved. Note that F̂ =
J− 1

3 Gradϕ can be specified in relation (3.302). Furthermore C̄ = θ
2
3 J− 2

3 C =
θ

2
3 Ĉ holds with (3.29). In the variational principle also, the strain energy

function W (C), see (3.122), has to be defined on the basis of the new vari-
ables: W (C) = W (θ

2
3 Ĉ). Using the additive split W = W (θ) +W (Ĉ), see

(3.122), the following three-field variational functional can be constructed

Π(ϕ, p, θ) =
∫
B

[W (Ĉ) +W (θ) + p(J − θ ) ] dV

−
∫
B

ϕ · ρ0 b̄ dV −
∫

∂Bσ

ϕ · t̂ dA . (3.303)

By considering relations (3.125) and (3.126), the Euler-Lagrange equa-
tions obtained from this variational principle are

DΠ(ϕ, p, θ) · η =
∫
B

{ (
PPP

[
2
∂W

∂Ĉ

]
+ p J C−1

)
· 1
2
δC − η · ρ0 b̄

}
dV

−
∫

∂Bσ

η · t̂ dA = 0,

DΠ(ϕ, p, θ) δp =
∫
B

δp (J − θ ) dV = 0, (3.304)

DΠ(ϕ, p, θ) δθ =
∫
B

δθ

(
∂W

∂θ
− p

)
dV = 0 .

By comparison of relation (3.126) with (3.127), it is clear that the expression
SISO + SV OL can be used in (3.304)1 for the first term in the integral. This
explains the split into isochoric and volumetric parts.
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The terms in (3.304)1 are often written with respect to the spatial config-
uration since this simplifies the numerical implementation within the finite
element method. With the conversion of the variation of the right Cauchy-

Green tensor using (3.33)1

δC = FT Gradη + GradT η F = FT ( gradηηη + gradT η )F, (3.305)

relation

DΠ(ϕ, p, θ) · η =
∫
B

{(
FP

[
2
∂W

∂Ĉ

]
FT + p J 111

)
· ∇S η − η · ρ0 b̄

}
dV

−
∫

∂Bσ

η · t̂ dA = 0 (3.306)

is deduced with the definition (3.295): ∇S η = 1
2 ( grad η + gradT η ). The

final result follows with (3.129) and (3.130)

DΠ(ϕ, p, θ) · η =
∫
B

{ τττ iso · ∇S η + τvol divη − η · ρ0 b̄ } dV

−
∫

∂Bσ

η · t̂ dA = 0,

DΠ(ϕ, p, θ) δp =
∫
B

δp (J − θ ) dV = 0, (3.307)

DΠ(ϕ, p, θ) δθ =
∫
B

δθ

(
∂W

∂θ
− p

)
dV = 0 .

In this formulations, the integrands are given in terms of the spatial or cur-
rent configurations whereas the integration still is performed in the initial
configuration. The first equation denotes the weak form of the equilibrium
(3.296) with the Kirchhoff stresses instead of the Cauchy stresses. The
second equation reproduces the constraint condition J = θ and the third
equation yields the constitutive equation for the pressure p, see also (3.130)1.

3.5 Linearizations

Nonlinearities appear in continuum mechanics due to different phenomena.
In this respect, geometrical nonlinearities can be mentioned which occur due
to the nonlinear strain measures such as the Green-Lagrange strain ten-
sor introduced in Sect. 3.1.2. Physical nonlinearities stem from nonlinear
constitutive behaviour like elasto-plastic or visco-plastic response. Further,
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nonlinearities are related to one-sided or unilateral geometrical constraints as
appear in contact problems. These lead to variational inequalities and hence
include nonlinear effects.

Linearizations of the associated models have to be derived for several
reasons when the initial or boundary values are solved. At one hand, the
linearization process can be applied to derive approximate theories which
can still be solved analytically. This is, e.g. the case for the theory of linear
elasticity or for first and second order beam, plate and shell theories. On
the other, hand linearizations are needed within the algorithmic treatment of
the solution process for the nonlinear boundary value problems. This is, e.g.
the case for finite element methods where Newton-Raphson algorithms are
employed to solve the nonlinear algebraic equation systems, see e.g. Chap. 5.

Due to the different applications, it is desirable to have a general concept
for the linearization process when applied to nonlinear problems. The purpose
of this section is to provide such a background with a unified definition of
linearization and to illustrate the approach using examples. Mathematical
details will be omitted as much as possible.

The idea of a linearization shall be discussed by means of an example. We
assume a scalar valued function f which is defined in R. The function and
its first derivative are required to be continuous (C1-continuous). With this
assumption, a Taylor series expansion of the function f can be developed
at x̄

f(x̄+ u) = f̄ + D̄f · u+R. (3.308)

Here, the following notation was used: f̄ = f(x̄) and D̄f = Df(x̄). The oper-
ator D denotes the derivative of f with respect to the variable x. The symbol
“·”is at this stage a simple multiplication. u is the increment and the remain-
der R = R(u) goes to zero for a small u limu→0

R
|u| → 0. Figure 3.14 depicts

the geometrical interpretation of (3.308). In the case that u can be considered
as being an independent variable at fixed x̄ in (3.308) then

x̄ x̄+ u x

L[f ]x=x̄
f(x)

f(x̄)

Df(x̄) · u

Fig. 3.14 Linearization of function f
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f(u) = f̄ + D̄f · u (3.309)

is the tangent to the curve f(x) at the point (x̄, f̄). This result leads to the
definition of the linear part of f(x) at x = x̄, the linearization:

L [ f ]x=x̄ ≡ f(u). (3.310)

This one-dimensional result can be easily extended to scalar valued func-
tion of points in the three-dimensional space R3. In that case f is a function
of x. The Taylor series expansion yields

f(x̄ + u) = f̄ + D̄f · u +R , (3.311)

where x̄ is a point in the Euclidian space and u a vector having its origin
at point x̄. In more detail

f̄ = f(x̄) and D̄f = Df(x̄) =
∂ f(x)
∂ x

∣∣∣∣
x=x̄

(3.312)

can be written where D̄f is the gradient vector of f at x̄. With this notation,
equation (3.311) can be reformulated as

f(x̄ + u) = f̄ + Grad f(x̄) · u +R . (3.313)

The symbol “·” in (3.313) denotes here a scalar product between two vectors.
Let us introduce the directional derivative of the function f at x̄ in the

direction of the vector u. It is defined by

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

,

where ε is a scalar parameter. Due to the fact that x̄+εu describes a straight
line in R3, the directional derivative measures the increment of the function
f in the direction of this straight line at point x̄. The directional derivative
can be computed using the chain rule

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

=
[
∂ f(x̄ + εu)

∂ x
· ∂ (x̄ + εu)

∂ ε

]
ε=0

=
∂ f(x)
∂ x

· u.

A comparison of the coefficients yields the result

d

dε
[ f(x̄ + εu) ]

∣∣∣∣
ε=0

= D̄f · u,

which coincides with the tangent of f at x̄. Hence the linear part of the
function f at x̄ is determined by the value of the function as well as its
directional derivative at this point. Note that the directional derivative is
a linear operator. Hence all known rules for the differentiation of sums and
products can be applied.
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The directional derivative can be generalized for functional spaces in a
formal way. For this purpose, the C1-mapping G : E → F is used, where x̄
and u are points of the abstract space E . The Taylor series expansion yields
then

G(x̄ + u) = Ḡ + D̄G · u + R, (3.314)

where the symbol “·”denotes the inner product associated with the elements
of the space. Again

d

dε
[G(x̄ + εu) ]

∣∣∣∣
ε=0

= D̄G · u (3.315)

can be written. Due to that result, the linear part of the mapping G at x̄ is
given by

L [G ]x=x̄ = Ḡ + D̄G · u . (3.316)

Here the elements of the spaces E and F can be arbitrary fields, e.g. scalar-,
vector- or tensor fields.

To simplify notation the directional derivative is written instead of D̄G·u
in the following in the short form ΔḠ. Here the bar denotes evaluation at x̄.

3.5.1 Linearization of Kinematical Quantities

The linearization of different kinematical relations is derived in this section,
exemplarily. These quantities are selected such that they are formulated with
respect to the initial and the current configuration.

Green-Lagrange Strain Tensor. The linear part of the strain measure
(3.15) follows with (3.316) as

L [E ]ϕ=ϕ̄ = Ē + D̄E · u = Ē +Δ Ē . (3.317)

In this relation, the directional derivative D̄E · u = ΔĒ has to be computed
using (3.315)

D̄E · u =
d

dε

[
1
2

FT (ϕ̄ + εu)F(ϕ̄ + εu) − 111
]∣∣∣∣

ε=0

,

ΔĒ =
1
2

[
F̄T Gradu + GradT u F̄

]
. (3.318)

This result is linear in u but contains also parts of the deformation at ϕ̄,
which are represented by F̄. The evaluation of (3.318) at the initial state
ϕ = X yields the strain tensor (3.17) of the linear theory

L [E ]ϕ=X = 000 +
1
2

[Gradu + GradT u ] . (3.319)
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Inverse Cauchy-Green Tensor. The inverse Cauchy-Green tensor ap-
pears in several constitutive relations which describe finite elastic behaviour.
The linearization of inverse arbitrary tensors T−1 can be based on the prod-
uct TT−1 = 111. Starting from this, the linearization of the inverse tensor is
computed using the product rule. Thus for the Cauchy-Green tensor

D (CC−1) · u = [DC · u ]C−1 + C [DC−1 · u ] = 000 (3.320)

is obtained and for the directional derivative of the inverse

DC−1 · u = −C−1 [DC · u ]C−1 (3.321)

can be written which can be easily computed using the result (3.318), note
that E = 1

2 (C − 111),

ΔC−1 = D̄C−1 · u = −C̄−1 [ F̄T Gradu + GradT u F̄ ] C̄−1
. (3.322)

Based on this expression, the linear part of C−1 is given by

L [C−1 ]ϕ=ϕ̄ = C̄−1 + D̄C−1 · u . (3.323)

Equation (3.322) can be reformulated by introducing the spatial gradient
gradu = ∂x / ∂x̄

D̄C−1 · u = −F̄−1 [ gradu + grad
T
u ] F̄−T

. (3.324)

The evaluation of the linear part of the inverse Cauchy-Green tensor with
respect to the initial configuration yields with (3.17)

L [C−1 ]ϕ=X = 111 − 2 ε (3.325)

where ε is the linear strain tensor.

Jacobi Determinant. Another example is provided by the linearization of
a scalar quantity, the Jacobi determinant J = det F. The linear part of this
nonlinear function follows from the directional derivative of the determinant

D̄ J · u =
d

dε
[ det F(ϕ̄ + εu) ]

∣∣∣∣
ε=0

. (3.326)

By applying the chain rule, the result

D (det F) · u =
∂(det F)
∂F

· [DF · u ] (3.327)

follows. For the partial derivative of the determinant of a tensor with respect
to the same tensor, the result is

∂(det F)
∂F

= J F−T , (3.328)
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see also (3.110)3. Since F = Gradϕ is a linear function, the result D̄ J · u =
ΔJ̄ = 1 / J̄ F̄T ·Gradu follows and with this also the expression for the linear
part

L [J ]ϕ=ϕ̄ = J̄ + J̄ F̄−T · Gradu . (3.329)

This result can be expressed via F̄−T · Gradu = tr( F̄−T GradT u ) =
tr( grad

T
u ) = divu in the form

L [J ]ϕ=ϕ̄ = J̄ + J̄ divu . (3.330)

Evaluation of (3.329) with respect to the initial configuration yields

L [J ]ϕ=X = 1 + Divu . (3.331)

Almansi Strain Tensor. The linearization of spatial vectors and tensors
is derived by a pull back of the spatial objects to the initial configuration.
In this configuration, the linearization is performed and the linearized object
then is push forward to the spatial configuration. This procedure can now be
applied to linearize the Almansi strain tensor e = 1

2 (111 − b−1), see (3.24).
With the pull back of the strain tensor using (3.35), the linearization

D e · u = F̄−T {DE · u } F̄−1 =
1
2

(
Gradu F̄−1 + F̄−T GradT u

)
=

1
2

(
gradu + grad

T
u
)

= ∇S
x̄Δu (3.332)

is obtained. By comparing this result to (3.318), it can be observed that

ΔĒ = F̄T∇S
x̄Δu F̄ (3.333)

is valid. Furthermore, the linearization of the Almansi strain tensor has the
same structure as the Lie derivative for differentiation of a spatial object
with respect to time, see (3.53).

3.5.2 Linearization of Constitutive Equations

The linearization of constitutive equations can be determined for elastic ma-
terials based on the relations stated in Sect. 3.3.1. For inelastic constitutive
equations, the linearization for the continuous case can be derived; however
in the framework of the finite element method a time integration has to
be applied to evaluate the differential evolution equations describing such
materials. Due to that, the linearization depends also upon the integration
algorithm, see also Remark 3.11. This is also true for rate independent be-
haviour since in that case a “pseudo time” is introduced to capture the
loading history. Hence these linearizations cannot be derived without the
knowledge of the integration algorithms. Associated linearizations are pre-
sented in Sect. 6.2.
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The elastic constitutive equation (3.104) describes the dependence of the
2nd Piola-Kirchhoff stress tensor on the right Cauchy-Green tensor.
The linearization of this constitutive relation follows with (3.316) as

L [S ]ϕ=ϕ̄ = S̄ + D̄ S · u = S̄ +Δ S̄

= S̄ +
∂S
∂C

∣∣∣∣
ϕ=ϕ̄

[D̄C · u] . (3.334)

Using (3.240) and (3.318), relation

L [S ]ϕ=ϕ̄ = S̄ + C̄CC [ΔĒ] (3.335)

can be written. In comparison with (3.334), this yields

ΔS̄ = C̄CC [ΔĒ] . (3.336)

This relation has the same structure as the incremental constitutive equation
(3.241). The only difference is that the time derivatives have to be exchanged
by the directional derivatives. Hence it is not necessary to state the lin-
earizations of the other constitutive equations presented in Sect. 3.3.1. These
linearizations are obtained by an evaluation of the incremental constitutive
tensors in Sect. 3.3.4 at the deformation state ϕ̄.

Exercise 3.10: Derive the linearization of the hyper elastic constitutive equa-
tion (3.119)

S =
Λ

2
(J2 − 1)C−1 + μ (1 − C−1)

with respect to the initial configuration.
Solution: First the kinematical objects J and C−1, appearing in (3.119), have

to be linearized. With the results obtained so far, and by using (3.322) and (3.329),
the relations

L[J ]ϕ=ϕ̄ = J̄ +
1

J̄
tr(F̄

−T
GradT u),

L[C−1]ϕ=ϕ̄ = C̄
−1 − C̄

−1
( F̄

T
Gradu + GradT u F̄ ) C̄

−1

follow. The evaluation with respect to the initial configuration (ϕ = X) yields with

C̄
−1

= 111, F̄ = 111 and J̄ = 1

L[J ]ϕ=X = 1 + Divu,

L[C−1]ϕ=X = 1 − 2 εεε ,

where in the last equation the linear strain tensor εεε appears, see (3.17). The lin-
earization of the stress tensor S can now be computed as follows

D S · u|ϕ=X =

[
Λ

2

{
(2 J̄ (D J · u) C̄

−1
+
(
J̄2 − 1

)
D C−1 · u

}
− μ D C−1 · u

]
ϕ=X

.

By inserting the linearizations of the kinematical quantities, the final form

L[S]ϕ=X = D S · u|ϕ=X = Λ tr εεε1 + 2μεεε
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is derived at the initial configuration with Divu = tr εεε. This relation represents the
classical law of Hooke used within the linear theory of elasticity. The constitutive
parameters Λ and μ are known as Lamé constants.

This results could also be obtained by evaluation of the incremental constitutive

tensor (3.251) at the initial state ϕ = X, see also Exercise 3.8 (a).

3.5.3 Linearization of the Variational Formulation

The solutions of nonlinear initial boundary value problems in solid mechan-
ics can be obtained in general only by employing approximate solution tech-
niques. Since many of these methods – like the finite element method – rely
on a variational formulation of the field equations, the basis for numerical
methods are provided by the weak forms of the associated field equations.
In solid mechanics, the weak form is also known as principle of virtual work,
see (3.289) or (3.292). A discretization of the weak form leads to a set of
nonlinear algebraic equations, see Chap. 4.

For the solution of the set of nonlinear equations, many different algo-
rithms are known, for an overview see Chap. 5. Often Newton’s method
is applied since it possesses the advantage of a quadratic convergence close
to the solution point. In case of Newton’s method, an improved solution
is obtained from the Taylor series expansion of the nonlinear equation at
the already computed approximate solution. This Taylor expansion corre-
sponds in finite element applications to the linearization of the weak form,
or in solid mechanics to the linearization of the principle of virtual work, and
can be obtained by the directional derivative discussed above. Such lineariza-
tion will be computed here for solids consisting of hyper elastic materials,
further applications can be found in Chapts. 5, 6, 7, 9, 10 and 11.

The linearization will be stated first for the weak form with respect to the
initial configuration (3.289). In general, the linearization at a deformation
state of the solid is computed which is in equilibrium. This state will be
denoted by ϕ̄, see Fig. 3.15.

The linear part of the weak form is given by

L [G ]ϕ=ϕ̄ = G (ϕ̄,η) +DG (ϕ̄,η) ·Δu . (3.337)

ϕ̄

ϕ̄(B)
B

Δu

Fig. 3.15 Configuration belonging to the linearization



3.5 Linearizations 97

The operator G(ϕ̄,η) corresponds to (3.290), just the deformation ϕ̄ is
inserted instead of ϕ. By assuming that the load is conservative the direc-
tional derivative of G can be computed in the direction of Δu by only taking
the first term in (3.290) into account

DG (ϕ̄,η) ·Δu =
∫
B

[DP(ϕ̄) ·Δu] · Gradη dV , (3.338)

hence all other terms do not depend upon the deformation. The linearization
of the first Piola-Kirchhoff stress tensor yields with P = FS

DG (ϕ̄,η) ·Δu =
∫
B

{GradΔu S̄ + F̄ [DS(ϕ̄) ·Δu] } · Gradη dV . (3.339)

Terms with a bar have to be evaluated at the deformation state ϕ̄. The
linearization of the second Piola-Kirchhoff stress tensor can be based on
(3.336). It follows

DS(ϕ̄) ·Δu = C̄CC [ΔĒ ] , (3.340)

where the last term is the linearization of the Green-Lagrange strain ten-
sor E at ϕ̄, see also (3.318). The elasticity tensor CCC which is also referred to
the initial configuration B is given with (3.240) by

C̄CC = 4
∂2W

∂C ∂C

∣∣∣∣
ϕ=ϕ̄

(3.341)

at the state ϕ̄. The use of (3.341) in (3.339) completes the linearization

DG(ϕ̄,η) ·Δu =
∫
B

{GradΔu S̄ + F̄ C̄CC [ΔĒ ] } · Gradη dV . (3.342)

Note that C̄CC has also to be evaluated at state ϕ̄. By applying the trace oper-
ation to the second term and by using the symmetry of C̄CC, a more compact
form of (3.342) can be found

DG(ϕ̄,η) ·Δu =
∫
B

{GradΔu S̄ · Grad η + δĒ · C̄CC [ΔĒ ] } dV . (3.343)

Here the symmetry in η and Δu can be observed which results from the
linearization operation. The first term in (3.343) is often named initial stress
term since the stresses at the given state appear directly. The second term
contains, besides the incremental constitutive tensor C̄CC, the variation of the
Green-Lagrange strain tensor δĒ = 1

2 (F̄T Gradη + GradT η F̄) and the
increment of the Green-Lagrange strain tensor ΔĒ = 1

2 (F̄T GradΔu +
GradTΔu F̄).
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The linearization of the principle of virtual work can be obtained in terms
of the current configuration by a push forward of the linearization (3.343) to
the already computed configuration ϕ̄. Using the transformations for the
linearization of the Green-Lagrange strain tensor (3.333), which resulted
as push forward in ∇S

x̄Δu, it follows for the second term in (3.343)∫
B

∇S
x̄η · c̄ccccc

[
∇S

x̄Δu
]
dV .

In this equations, the fourth order tensor c̄ccccc can be computed by the trans-
formation (3.240) from C̄CC.
The first term in (3.343) can be directly recast with τ̄ττ = F̄ S̄ F̄T as

GradΔu S̄ · Grad η = F̄GradΔu F̄−1
τ̄ττ F̄−1 · Gradη = gradΔu τ̄ττ · gradη .

(3.344)

This results in the linearization with respect to the known current configu-
ration ϕ̄ where all quantities have to be evaluated at ϕ̄.

Dg(ϕ̄,η) ·Δu =
∫
B

{
gradΔu τ̄ττ · gradη + ∇S

x̄η · c̄ccccc
[
∇S

x̄Δu
] }
dV . (3.345)

The integral (3.345) can now be referred to the current configuration with
the relation dv̄ = J̄dV . For this purpose, the Cauchy stress tensor σ̄ = 1

J̄
τ̄ττ

is introduced and a further incremental constitutive tensor

¯̂cccccc =
1
J̄

c̄ccccc (3.346)

is defined, such that

Dg(ϕ̄,η) ·Δu =
∫

ϕ̄(B)

{
gradΔu σ̄ · gradη + ∇S

x̄η · ¯̂cccccc
[
∇S

x̄Δu
] }
dv (3.347)

is obtained.
The deformation state ϕ̄ to which the formulation is referred is not known

and can only be obtained within the nonlinear solution process by an update
of all deformation states in a successive manner. Hence relation (3.347) is
known in the literature also as updated Lagrange formulation, see e.g. Bathe
et al. (1975) or Bathe (1996).

With the above given linearizations all relations needed within the
Newton method are available as well as for formulations with respect to
the initial configuration as with respect to the current configuration. These
linearizations are basis for finite element simulations, for more see Chaps. 4
and 5.
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Remark 3.11: It should be emphasized that the linearization of the continuous

problem as stated in (3.290) does not coincide in all cases with the linearization of

the discrete problem which results from a finite element discretization. In case of a

finite element formulation of a static problem with continuous interpolations func-

tions for the displacements, the equivalence of the discretization of the linearizations

given above and the direct linearization of the discretization of the weak form using

finite elements can be shown. In case that the finite element method is applied to

problems of elasto-plasticity or other inelastic constitutive equations then the lin-

earization of the discrete form is no longer equivalent to the discretization of the so

far given linearizations since the integration algorithm for the evolution equations

of the inelastic material response plays a prominent role and hence the lineariza-

tion depends upon this algorithm, see e.g. Simo et al. (1985a) or for a more general

overview Simo and Hughes (1998).

Exercise 3.11: The weak form of equilibrium (3.292) was formulated in Ex-
ercise 3.10 depending upon the symmetrical Biot stress tensor TB and the right
stretch tensor U. Linearize (3.292) using the constitutive equation (3.119).

Solution: In order to obtain the linearization of the stress divergence term TB ·
δU the linearization of the Biot stress tenor and the variation of the right stretch
tensor have to be linearized on their own. For this purpose, the constitutive equation
(3.119) is rewritten such that it represents the Biot stress tensor in terms of the
right stretch tensor. With the relation TB = RT P, derived in Exercise 3.10, it
follows with P = FS, see (3.82),

TB = US .

Thus, after some manipulation, the Biot stress is deduced from the constitutive
equation (3.119)

TB =
Λ

2
(J2 − 1)U−1 + μ (U − U−1) .

Based on this result, the linearization of the Biot stress tensor yields

D TB(ϕ̄) · Δu =
∂TB

∂U

∣∣∣∣
ϕ=ϕ̄

[D U · Δu] = C̄CCU [ΔU] .

Here the incremental constitutive tensor

CCCU = ΛJ2 U−1 ⊗ U−1 + [ μ − Λ(J2 − 1)]EEEU−1 +EEEμ

has the same structure as (3.268). The tensor EEEU−1 is computed in an analogous
way as (3.255).

The linearization of the right stretch tensor can be determined as its variation,
see Exercise 3.10,

ΔU = ΔRT F + RT ΔF .

Finally the linearization of the variation of the right stretch tensor δU = δRT F +
RT δF has to be derived. Formally the result

ΔδU = ΔδRT F + δRT ΔF + ΔRT δF

is obtained such that the linearization of the weak form yields
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D G(ϕ̄, η) · Δu =

∫
B

{ δU · C̄CCU [ΔU] + TB · (ΔδRT F + δRT ΔF + ΔRT δF) } dV .

For the final evaluation of this equation, an explicit representation of the lin-
earization of the orthogonal rotation tensor R is needed. In the two-dimensional
case a representation is derived in Exercise 3.2 which is again stated here

R =

[
cos θ sin θ

− sin θ cos θ

]
, tan θ =

F12 − F21

F11 + F22
.

From this form, the variation of R is computed

δR =
∂R

∂θ
δθ = R,θ δθ =

[
− sin θ − cos θ

cos θ − sin θ

]
δθ .

The variation of the angle θ can be expressed by the variation of the components
of the deformation tensor as

δθ =
1

2

[
(1 + cos 2θ)

δF12 − δF21

F11 + F22
− sin 2θ

δF11 + δF22

F11 + F22

]
.

In an analogous way, the linearization ΔR follows by exchanging in the last two
equations the variation δ by Δ.

Corresponding equations – however, a little bit more complex – are derived for
the linearization of the variation of the rotation tensor

Δ δR = R,θ θ δθ Δθ + R,θ Δδθ ,

where R,θ θ denotes the second derivative of R with respect to θ. The term Δδθ
follows from linearization of δθ

Δδθ = − 1 + cos 2θ

2 ( F11 + F22)
[ sin 2θ (δF12 − δF21)(ΔF12 − ΔF21)

+ cos 2θ (δF12 − δF21)(ΔF11 + ΔF22)
+ cos 2θ (δF11 + δF22)(ΔF12 − ΔF21)
− sin 2θ (δF11 + δF22)(ΔF11 + ΔF22) ].

In the tree-dimensional case, all equations will be even more complex. Due to
the fact that the representation using the Biot stress tensor and the right stretch
tensor are equivalent to the weak form in (3.292) always the simpler form (3.292)
should be used, as long as no other reasons speak for the formulation based on the
Biot stresses, since the linearization of (3.292) is a lot simpler, see (3.343).

Exercise 3.12: The description of a pressure load resulting from a gas or
fluid pressure yields a surface load which depends upon the current state of the
deformation. The stress vector is then given by t̄ = pn with the pressure p and the
surface normal n. This leads in the weak form (3.283) to the additional term

g(ϕ , η) + gp(ϕ, η) = g(ϕ , η) +

∫
ϕ(∂Bp)

pn · η da . (3.348)

Derive the linearization for this expression.
Solution: It makes sense to write the term (3.348), referred to the current con-

figuration, with respect to the initial configuration when the linearization has to
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θ2

ϕ(∂Bp)

g2

n

θ1

da g1

Fig. 3.16 Deformation dependent loads in terms of convective coordinates

be performed. This can be achieved in two ways. The first is based on a transfor-
mation of the surface normal n da via the formula of Nanson (3.11) to the initial
configuration. This leads to the expression

∫
B

p J F−T N ·η dA which linearization
is quite complicated. Simpler is the second approach in which the surface normal
is expressed via a cross product in terms of the base vectors, tangent to the sur-
face of the solid. This can be achieved by introducing convective coordinates θα on
the surface, see Fig. 3.16. With the tangent vectors gα (α = 1, 2), introduced in
Figure 3.16, the surface normal is computed

n =
g1 × g2

‖g1 × g2‖
.

The tangent vectors follow with (3.38) from the deformation by gα = ϕ,α. Since,
furthermore, the area element da is given by da = ‖g1 × g2‖dθ1 dθ2 in terms of
convective coordinates, the virtual work of the pressure load can be written as

gp(ϕ , η) =

∫
(θ1)

∫
(θ2)

p ( ϕ,1 × ϕ,2 ) · η dθ1 dθ2 . (3.349)

By using these relations, the linearization follows with (3.13) ϕ,α = (X + u),α as

D gp(ϕ , η) · Δu =

∫
(θ1)

∫
(θ2)

p ( Δu,1 × ϕ,2 + ϕ,1 × Δu,2 ) · η dθ1 dθ2 . (3.350)

Here it was assumed that only the direction of the pressure load pn but not its
magnitude depends upon the deformation. The linearization is derived with respect
to the convective coordinates. However, it can be pushed forward to the current
deformation state with the relation for the area elements

D gp(ϕ , η) · Δu =

∫
ϕ(∂Bp)

p
Δu,1 × ϕ,2 + ϕ,1 × Δu,2

‖ϕ,1 × ϕ,2‖
· η da . (3.351)

This completes the linearization of the deformation dependent pressure term
(3.348).

Further theoretical considerations regarding deformation dependent loads which
also concern the conservative or non-conservative character of such loads can be
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found in Sewell (1967), Schweizerhof (1982), Bufler (1984), Ogden (1984) or Simo
et al. (1991). However, as a side remark, it should be mentioned that the appearance
of non-conservative loads stems most of the times from a non-complete mechanical
model.

The transformation of the integral in (3.351) to the initial configuration is de-
rived by the conversion of the area element, using the basis vectors. This leads to

da

dA
=

‖g1 × g2 ‖
‖G1 × G2‖

=
‖ϕ,1 × ϕ,2 ‖
‖X,1 × X,2 ‖

, (3.352)

which can be directly inserted into (3.351). However, within the nonlinear finite

element method, the formulation stated in (3.350) is completely sufficient and the

most efficient which will be discussed further in Sect. 4.2.5.



4. Spatial Discretization Techniques

Different approximations are made when the method of finite elements is
applied to discretize weak forms of the nonlinear problems discussed in the
previous chapters. On one hand, the real geometry of a given problem is
approximated by finite elements, and on the other hand the fields of the pri-
mary variables – displacements, stresses, etc. – are approximated. In the last
years, several approaches were developed in order to unify the approximation
of geometry and variables. These methods are based on an integration of the
finite element analysis software into CAD systems. Successful implementa-
tions can be found in Düster et al. (2001) and Hughes et al. (2005) for higher
order interpolation methods and in Cirak et al. (2000) for low order tech-
niques. Besides these new integrated general schemes, there is still a need for
a general understanding of the underlying theoretical aspects of finite element
discretization methods for solids undergoing finite strains. Hence this chapter
is focussed on the essential details needed to perform a standard nonlinear
analysis using finite elements. Besides the fact that all relevant equations are
presented in this chapter, it is assumed that the reader has an understanding
of finite element methods for linear problems since basic operations, such as
e.g. assembly processes are not discussed. For this, the reader has to consult
standard text books for finite elements which are then mentioned in the text.

We approximate the geometry of a body B in the initial configuration by

B ≈ Bh =
ne⋃

e=1

Ωe . (4.1)

With this the continuous body is subdivided into ne finite elements. The
configuration of one element is described by Ωe ⊂ Bh, see Fig. 4.1 for the
two-dimensional case. The boundary of the region ∂Bh consist of curves or
areas ∂Ωe of the elements Ωe: ∂Bh = ∪nr

e=1 ∂Ωe. This of course is generally
an approximation of the real geometry of the boundary ∂B.

An overlapping of finite elements is not allowed; hence the boundaries
between finite elements are points, curves or areas. Furthermore, gaps are not
allowed in a continuum due to compatibility reasons. Hence the assembled
elements have to be continuous in the region B.
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∂B
∂Bh

Ωe

B

∂Ωe

Fig. 4.1 Discretization of body B

4.1 General Isoparametric Concept

Within the finite element methodology, interpolation functions have to be
chosen in order to approximate the primary field variables. Hence the ex-
act solution of the mathematical model is approximated within one finite
element by

uexakt (X) ≈ uh (X) =
n∑

I=1

NI (X)uI , (4.2)

where the vector X denotes the position vector with respect to the initial
configuration in Ωe, NI (X) are the shape functions which are defined in Ωe

and the unknown nodal quantities of the primary variable are represented
by uI (these could be, e.g. the nodal displacements uI = {u1, u2, u3}T

I for a
three-dimensional displacement formulation using the weak form (3.292)).

One basic requirement for the choice of the approximation uh is the con-
vergence of the finite element solution to the true solution of the under-
lying partial differential equation. Different possibilities exist to construct
interpolation or ansatz functions for geometry and variables within the fi-
nite element method. For convergence reasons, these functions have to be
completed up to the approximation order (e.g. a polynomial including the
terms 1 , x , y , z , x2 , y2 , z2 , xy , yz , zx is complete up to second order), see
e.g. Zienkiewicz and Taylor (2000a).

Due to its general applicability, the isoparametric concept is mainly used
as interpolation scheme for many engineering problems. Within this con-
cept, geometry and variables are interpolated by the same ansatz func-
tions. Isoparametric elements allow a very good and sufficiently accurate
mapping of arbitrary geometries into a finite element mesh. Furthermore,
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this concept is extremely well suited for nonlinear problems since a dis-
cretization of the spatial formulation is easily obtained. This is due to
the fact that it makes no difference whether the mapping onto a refer-
ence element Ω�, needed in the isoparametric formulation is performed from
the initial or the spatial configuration. One further advantage stems from
the local orthogonal coordinate system at the reference element Ω�, which
means that neither co- nor contra-variant derivatives have to be computed,
even if the bodies under consideration, e.g. shells or beams, depict curved
geometries.

As said before, all kinematical variables as well as the geometry (e.g. the
geometry in the initial X or spatial configuration x) are interpolated by the
same ansatz functions NI within the classical isoparametric concept. This
can be expressed mathematically within one finite element Ωe by, see also
Fig. 4.2,

Xe =
n∑

I=1

NI(ξξξ)XI , (4.3)

xe =
n∑

I=1

NI(ξξξ)xI . (4.4)

Usually a polynomial is chosen for the ansatz function NI . It is defined in
the reference configuration Ω� in order to characterize arbitrary element
geometries in the initial or spatial configuration. The ansatz functions within
a finite element in the initial configuration Ωe have been replaced in Eq. (4.3)
by the shape functions NI(ξξξ) defined within the reference element Ω�. Thus,
for each element Ωe, a transformation (4.3) has to be performed, which relates

η

ξ

X2

X1

Ω�

η

ξ

Ωe or ϕ(Ωe)

Fig. 4.2 Isoparametric mapping onto the reference configuration
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the coordinates Xe = Xe (ξξξ) to the coordinates ξξξ of the reference element
Ω�. This transformation has to fulfil the following requirements:

– For each point within the reference element Ω�, there exists one and only
one point Ωe or ϕ(Ωe).

– The geometrical nodal points XI or xI of Ω� are related to points in Ωe

or ϕ(Ωe).
– Each part of the boundary on Ω�, which is defined by the nodal points

of XI or xI corresponds to the associated part of the boundary of Ωe or
ϕ(Ωe).

With these assumptions, such isoparametric transformations preserve the
type of element (e.g. a triangle remains a triangle in the initial or deformed
finite element configurations). This isoparametric transformation will be used
for all coordinate directions in identical manner. The volume or area Ω� of
the reference element will basically never be occupied by the real configura-
tion of an element undergoing a physical deformation process. However, the
reference configuration Ω� provides an easy way to handle different configu-
ration and can be used for the integration of the element matrices, etc. This
especially simplifies formulations related to the current configuration since
it is absolutely arbitrary whether the transformation is performed from the
reference element to the current or the initial configuration.

This transformation process is depicted in Fig. 4.3. The mapping of an
element from the initial configuration Ωe to the current configuration ϕ(Ωe)
is performed using the approximate deformation map ϕh which is described
by ϕe to show its relation to a specific finite element Ωe. For the mapping,
the deformations gradient is needed which is here denoted by Fe; hence it is
only related to the element Ωe.

η

ξ

ξ
η

η

Je
je

ϕe,Fe

Ω�

Ωe

ξ

ϕ(Ωe)

Fig. 4.3 Isoparametric mapping of the deformation of a finite element Ωe
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It is easy to see that the mapping in Fig. 4.3 is the discrete version of the
continuum mechanical description of the motion of a body, which is shown
in Fig. 3.1. Additionally, the reference configuration Ω� is introduced here in
order to be able to describe the isoparametric mapping. From Fig. 4.3, it is
easy to deduce the following kinematical relations valid for a finite element

Fe = je J−1
e and Je = detFe =

det je
detJe

. (4.5)

These show that the deformation gradient is defined by the isoparametric
mapping from Ω� to the initial configuration Ωe and to the current configu-
ration ϕ(Ωe). In this mapping, the gradients je and Je are defined as

je = Gradξ xe =
∂x
∂ξξξ

=
n∑

I=1

NI,ξ(ξξξ)xI ⊗ Eξ ,

Je = Gradξ Xe =
∂X
∂ξξξ

=
n∑

I=1

NI,ξ(ξξξ)XI ⊗ Eξ . (4.6)

Since the derivatives NI,ξ are scalar quantities, they can be moved in front
of the base vectors Eξ. Thus the gradients

je =
n∑

I=1

xI ⊗NI,ξ(ξξξ)Eξ =
n∑

I=1

xI ⊗∇ξNI ,

Je =
n∑

I=1

XI ⊗NI,ξ(ξξξ)Eξ =
n∑

I=1

XI ⊗∇ξNI (4.7)

are obtained explicitly. In these equations, ∇ξNI is the gradient of the scalar
function NI with respect to the coordinates ξξξ.

With these relations, it is relatively simple to compute gradients related
to the initial or current configuration. Exemplarily the gradients of the dis-
placement vector field uh = xh − X can be specified within the element
Ωe by

Gradue =
n∑

I=1

uI ⊗∇XNI ,

gradue =
n∑

I=1

uI ⊗∇xNI . (4.8)

In an analogous way, the transformations between the gradients of different
configurations, see (3.32), are derived

∇ξNI = JT
e ∇XNI and ∇ξNI = jT

e ∇xNI . (4.9)

The same holds for the inverse relations
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∇XNI = J−T
e ∇ξNI and ∇xNI = j−T

e ∇ξNI ; (4.10)

hence the gradients in (4.8) can be written completely in terms of the refer-
ence configuration Ω�

Gradue =
n∑

I=1

uI ⊗ J−T
e ∇ξNI ,

gradue =
n∑

I=1

uI ⊗ j−T
e ∇ξNI . (4.11)

The only difference in the formulation of both gradients in (4.11) consists of
the exchange of the gradient je by Je, and vice versa. Hence, especially for
nonlinear finite element methods, this formulation provides the most flexible
approach.

Remark 4.1: The computation of the derivatives related to the coordinates of
the initial configuration described above, see Eq. (4.10), is different from the clas-
sical approach used in many books describing the finite element method, see e.g.
Zienkiewicz and Taylor (2000a) and Bathe (1996). There, the relations

∂NI

∂X
=

∂NI

∂ξ

∂ξ

∂X
+

∂NI

∂η

∂η

∂X

∂NI

∂Y
=

∂NI

∂ξ

∂ξ

∂Y
+

∂NI

∂η

∂η

∂Y

are provided for the two-dimensional case which yield the form

∇XNI =

{
∂NI
∂X
∂NI
∂Y

}
=

[
∂ξ
∂X

∂η
∂X

∂ξ
∂Y

∂η
∂Y

] { ∂NI
∂ξ

∂NI
∂η

}
= J̄

−1
e ∇ξNI . (4.12)

Here the matrix J̄e is the transposed of the matrix JT
e in (4.10), see also the com-

putation of derivatives for the two-dimensional case in Sect. 4.1.2.

For continuum elements, shell or beam elements for shear elastic formula-
tions, an essential requirement for the ansatz or interpolation functions NI(ξξξ)
is the C0 continuity. Furthermore, ansatz functions NI(ξξξ) have to be used
which are complete polynomials in the coordinate space X1, X2 and X3 in
which the mechanical problem is formulated. Different possibilities exist to
construct such interpolation functions.

Ansatz functions which are also well suited for application within the
isoparametric concept are provided by the Lagrangian interpolation func-
tions, see e.g. Zienkiewicz and Taylor (2000a). In case of one dimension,

NI(ξ) =
n∏

J=1
J �=I

( ξJ − ξ )
( ξJ − ξI )

(4.13)
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is obtained for a Lagrangian polynomial of order n − 1. The index I de-
scribes the node at which the polynomial has to assume the value “1” while
the ansatz function has the value “0” at all other nodes J of the element Ωe.

For two- or three-dimensional interpolation, the product form

NJ (ξ , η) = NI(ξ)NK(η) or NJ(ξ , η , ζ) = NI(ξ)NK(η)NL(ζ) (4.14)

is used with J = 1, . . . , ndim and I,K,L = 1, . . . , n (dim denotes the spa-
tial dimension of the problem). The ansatz functions are defined in the local
coordinate system ξξξ = { ξ, η, ζ }. Thus a transformation to the physical co-
ordinates X1, X2 or X3 is necessary, see Figs. 4.2 or 4.3, which defines the
problems in the physical space. In the next sections, the isoparametric ansatz
functions are specified for one-, two- and three-dimensional applications.

Remark 4.2: For classical beam and shell theories, due to the fact that the math-

ematical models are of higher order, different interpolation functions are needed

which are, e.g. C1-continuous. The associated formulations and specifications of

the interpolation functions will be provided in the sections where the beam and

shell theories are described.

4.1.1 One-Dimensional Interpolations

Ansatz functions. Here one-dimensional ansatz or shape functions are dis-
cussed which are C0-continuous. These shape functions are derived from
(4.13) by inserting the proper local coordinates into the formula. Since only
one coordinate ξ is present, the general ansatz for the coordinates and dis-
placement field in one element is with (4.3) and (4.4) given by

Xe =
n∑

I=1

NI(ξ)XI , ue =
n∑

I=1

NI(ξ)uI , (4.15)

where Xe denotes the coordinate within the element and ue is the associated
displacement field. The value n is related to the number of interpolation
functions and n−1 determines the order of interpolation, e.g. n = 3 is related
to a quadratic element. The local coordinate ξ ∈ [−1, 1] is used within the
one-dimensional reference element, see Fig. 4.4.

The shape functions NI(ξ) follow from (4.13) and are different with re-
spect to the order of the polynomial approximation. The shape functions are
stated in the following up to quadratic order. Here the upper index denotes
the order of the polynomial, see Fig. 4.4.

– Constant shape function
N0

1 (ξ) = 1. (4.16)

– Linear shape functions

N1
1 (ξ) =

1
2

( 1 − ξ ), N1
2 (ξ) =

1
2

( 1 + ξ ). (4.17)
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ξ

N0
1

ξ

ξ

N1
2

ξ

N2
1

ξ

ξ

N2
3

N1
1 N2

2

Fig. 4.4 One-dimensional shape functions: constant, linear and quadratic

– Quadratic shape functions

N2
1 (ξ) =

1
2
ξ ( ξ − 1 ), N2

3 (ξ) = ( 1 − ξ2 ), N2
2 (ξ) =

1
2
ξ ( 1 + ξ ).

(4.18)

It can be easily shown that these shape functions fulfil the conditions dis-
cussed in the previous section. The isoparametric mapping of a function ue

onto the reference element is obtained by using Eq. (4.15)1.

Computation of Derivatives. To obtain strains, and associated variations
or linearizations of the strains, the derivatives of the displacement field have
to be computed with respect to the coordinates of the initial or current config-
uration. Within the isoparametric concept, these derivatives are given within
an element Ωe for a formulation with respect to the initial configurations by

∂ue

∂X
=

n∑
I=1

∂NI ( ξ )
∂X

uI . (4.19)

Due to the fact that the shape functions depend upon the local coordinates,
the chain rule is used to obtain the partial derivatives of NI with respect to
X. This leads for the displacement field ue to

∂ue

∂X
=
∂ue

∂ξ

∂ξ

∂X
=

(
n∑

I=1

∂NI ( ξ )
∂ξ

uI

)
∂ξ

∂X
. (4.20)

The derivative ∂ξ
∂X can be computed by using the interpolation functions for

the coordinates in (4.15)1

∂ξ

∂X
=
(
∂X

∂ξ

)−1

=

(
n∑

I=1

∂NI(ξ)
∂ξ

XI

)−1

= Je(ξ)−1 . (4.21)



4.1 General Isoparametric Concept 111

Here the abbreviation Je was introduced for the derivative ∂Xe

∂ξ .
For the special case of linear shape functions, see (4.17), the following

result holds
n∑

I=1

∂NI(ξ)
∂ξ

XI =
1
2

(X2 −X1) =
1
2
Le , (4.22)

with the definition of the element length Le = X2 − X1. This leads after
insertion in (4.20) to the simple relation

∂ue

∂X
=
u2 − u1

Le
, (4.23)

which is constant.

Exercise 4.1: The derivative Je has to be computed for the quadratic shape
functions (4.18). Thus results have to be discussed for the general choice of the
position of the middle node X3 = (1 − η) X1 + η X2; here especially the choices
η = 1/2 , 1/4 and 3/4 are of interest.

Solution: With (4.21), the derivatives of the shape functions NI with respect to
the coordinate ξ follow

N1,ξ = ξ − 1

2
, N2,ξ = ξ +

1

2
, N3,ξ = −2 ξ .

This leads with Le = X2 − X1 to the result

Je =
∂Xe

∂ξ
=

(
ξ − 1

2

)
X1 +

(
ξ +

1

2

)
X2 − 2 ξ X3 =

1

2
Le + ξ (X1 + X2 − 2 X3) .

An especially simple form of Je follows when node 3 is exactly in the middle between
nodes 1 and 2 (η = 1

2
). Then X3 = 1/2 (X1 + X2) and the second term in Je

disappears, and Je = 1/2 Le is constant.
For η = 1/4 and η = 3/4, the result

Je =
1

2
(1 ± ξ) Le

follows which leads to Je = 0 for ξ = ±1. Hence the derivative in (4.21) will
become singular. This is only in very special cases desired where also the solution
of the mechanical problem is singular (e.g. in some fracture mechanics problems).
To avoid such singularity, the location of the middle node has to be limited to
1
4

< η < 3
4
. Additionally, the derivative Je becomes negative for η < 1

4
and η > 3

4
which is equivalent with the fact that isoparametric mapping does not fulfil the
condition J = detF > 0 anymore, since detFe = det je / det Je. In such cases,
the requirements stemming from continuum mechanics are not fulfilled; hence these
limit the placement of the middle node within the element.

Integration Within the Reference Element. Within the finite element
method, the weak form contributions have to be integrated within each fi-
nite element Ωe. Using the isoparametric concept, these integrations are per-
formed within the reference element Ω�. Hence the integrals related to the
element Ωe are transformed
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∫
(Ωe)

g(X) dX =
∫

(Ω�)

g(ξ)
dX

dξ
dξ =

+1∫
−1

g(ξ)Je(ξ) dξ . (4.24)

The integration in the reference element Ω� is defined with respect to the
parameter space [−1 ≤ ξ ≤ +1].

In general, the integration is performed numerically since the product
g(ξ)Je(ξ) is usually not polynomial but a rational function. Thus the integral
in (4.24) is approximated by

+1∫
−1

g(ξ)Je(ξ) δξ ≈
np∑

p=1

g(ξp)Je(ξp)Wp . (4.25)

Wp are the weighting factors and ξp are the coordinates of the evaluation
points p.

Due to its accuracy and thus efficiency, the Gauss integration is applied.
Table 4.1 provides the weighting factors and the positions of the evaluations
points up to order np = 3. Note that a polynomial of order p = 2np − 1 is
integrated exactly by a Gauss integration with np points.

4.1.2 Two-Dimensional Interpolations

Shape Functions. Two-dimensional C0-continuous shape functions are
provided for triangles and quadrilaterals with linear and quadratic order of
interpolation. Some results concerning the approximation properties of such
interpolations can be found in Chap. 8.

Triangular Elements. The most simple two-dimensional element is a trian-
gle with three nodes. Its linear shape function can be constructed directly or
by using the isoparametric formulations. In the latter case, the same shape
functions are used for geometry and field variables. Figure 4.5 depicts the

Table 4.1 One-dimensional Gauss-Integration

np p ξp Wp

1 1 0 2
�� �� ξ

2 1 1 /
√

3 1

2 1 /
√

3 1
�� � ξ

� �

3 1 −
√

3 / 5 5 / 9

2 0 8 / 9
�� � ξ

� ��

3 +
√

3 / 5 5 / 9
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Fig. 4.5 3-Node triangular element

triangular element in its reference configuration Ω�, described by the ξ–
η-coordinates, and its initial configuration Ωe using the X1–X2 coordinate
system.

The shape functions are given by

N1 = 1 − ξ − η, N2 = ξ, N3 = η, (4.26)

which fulfil the condition of being “1” at their node I and “0” at node J , see
(k43). It is easy to verify that the partial derivatives of the shape functions
with respect to ξ and η are constant. Hence kinematical quantities, such as
the strains, are also constant within the element.

Remark 4.3: A pure displacement triangular element derived on the basis of
the linear shape functions has two degrees of freedom per node. Hence the element
has in total 2 × 3 = 6 unknowns. Of these, three are needed to describe the rigid
body motions (two translations and one rotation) and three needed to model the
constant strain states.

Besides that the element is very simple and also very robust in nonlinear ap-

plications, it does not perform very well since its approximation properties are not

too good. Due to that the element is very “stiff”, meaning its approximation will

yield smaller displacements than an analytical solution. This is especially negative

when a structure undergoes bending deformations or when incompressible material

has to be considered. In such cases, higher order elements or special elements have

to be applied, see also Chap. 10.

A better approximation is provided by the 6-node triangular element, see
Fig. 4.6, which is based on quadratic shape functions

N1 = λ ( 2λ− 1 ) , N4 = 4 ξ λ ,
N2 = ξ ( 2 ξ − 1 ) , N5 = 4 ξ η ,
N3 = η ( 2 η − 1 ) , N6 = 4 η λ .

(4.27)

where the abbreviation λ = 1 − ξ − η has been introduced.
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1
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Fig. 4.6 6-node triangular element

Quadrilateral Elements. The simplest quadrilateral element consists of
four nodes. The associated interpolation functions for geometry and field
variables are bilinear and follow from the product form (4.14) using the one-
dimensional shape functions (4.17)

NI (ξ, η) =
1
2

( 1 + ξI ξ )
1
2

( 1 + ηI η ) . (4.28)

where ξI and ηI are the corner coordinates defined in Fig. 4.7 for the reference
element Ω�.

ξξξ1 = (−1, −1), ξξξ2 = (1, −1), ξξξ3 = (1, 1), ξξξ4 = (−1, 1) . (4.29)

In the same way, the shape functions for the 9-node element in Fig. 4.7 follow
from the product form (4.14) using quadratic interpolation functions (4.18).
The shape function with respect to the reference element Ω� are given for

η

ξ ξ

η

9

1 2

4 3

Ω�

1 5 2

6

37

8

4

Ω�

Fig. 4.7 Isoparametric quadrilateral element
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– the vertex nodes (I = 1, 2, 3, 4):

NI (ξ, η) =
1
4

(ξ2 + ξI ξ ) (η2 + ηI η ) , (4.30)

– the middle edge nodes (I = 5, 6, 7, 8):

NI (ξ, η) =
1
2
ξ2I (ξ2 + ξI ξ ) ( 1 − η2 ) +

1
2
η2

I (η2 + ηI η ) ( 1 − ξ2 ) , (4.31)

– and the middle node (I = 9):

N9 (ξ, η) = (1 − ξ2 ) (1 − η2 ) . (4.32)

This is, however, not the only possibility to formulate the shape functions
for the 9-node element. Often a hierarchical formulation – starting from the
4-node element – is applied, see e.g. Zienkiewicz and Taylor (2000a).

Computation of the Derivatives. In order to compute the deformation
gradient, strains or the associated variations and linearizations in the weak
form of equilibrium (3.292), the derivatives of the deformation or the dis-
placement field are needed. Within the isoparametric concept, these follow
from (4.10), in more detail, for a displacement field in Ωe

∂ue

∂Xα
=

n∑
I=1

∂NI ( ξ, η )
∂Xα

uI (α = 1 , 2 ) (4.33)

can be written. The partial derivative of NI with respect to Xα was given in
(4.10). For the two-dimensional case, an explicit expression can be derived

∇XNI =
{
NI,1

NI,2

}
= J−T

e

{
NI,ξ

NI,η

}
(4.34)

with the Jacobi matrix Je. The latter describes the transformation between
the reference and the initial configuration of the element Ωe

Je =
n∑

I=1

XI ⊗∇ξNI =
n∑

I=1

{
X1 I

X2 I

}{
NI,ξ

NI,η

}T

=
[
X1,ξ X1,η

X2,ξ X2,η

]
,

and Xα,β =
n∑

I=1

NI,β Xα I . (4.35)

This explicit form can be used within (4.33) to compute the derivatives with
respect to the initial configuration X{

NI,1

NI,2

}
=

1
det Je

[
X2,η −X2,ξ

−X1,η X1,ξ

] {
NI,ξ

NI,η

}
. (4.36)

Exercise 4.2: Determine, for a 3-node triangular element, the deformation
gradient Fe within the element Ωe.
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Solution: The deformation gradient can be computed directly from the dif-
ferent isoparametric mappings between the reference configuration and the initial
and current configuration using (4.5) and (4.7). The evaluation of these equations
is performed for the shape functions (4.26) of the triangular element. With the
derivatives

N1,ξ = −1, N2,ξ = 1, N3,ξ = 0,

N1,η = −1, N2,η = 0, N3,η = 1,

the Jacobi matrix is obtained, using (4.35) and based on the notation in Fig. 4.5, as

Je =

{
X11

X21

}{
−1
−1

}T

+

{
X12

X22

}{
1
0

}T

+

{
X13

X23

}{
0
1

}T

=

[
X12 − X11 X13 − X11

X22 − X21 X23 − X21

]
.

The determinant of the transformation matrix detJe is then given by

det Je = (X12 − X11)(X23 − X21) − (X13 − X11)(X22 − X21) = 2 Ae ,

where Ae is the area of the element. In the same way, the matrix je can be com-
puted. Only the coordinates of the initial configuration have to be exchanged by
the coordinates of the current configuration

je =

[
x12 − x11 x13 − x11

x22 − x21 x23 − x21

]
.

Now the deformation gradient of the 3-node triangular element can be specified
explicitly by Fe = je J−1

e

Fe =
1

2 Ae

[
x12 − x11 x13 − x11

x22 − x21 x23 − x21

] [
X23 − X21 X11 − X13

X21 − X22 X12 − X11

]
.

Since the 3-node triangular element is based on linear shape functions, the defor-
mation gradient is constant within the element Ωe.

We also can specify the deformation gradient using the displacement variables
u. With the relation xαI = XαI + uαI ,

Fe = 111 +
1

2 Ae

[
u12 − u11 u13 − u11

u22 − u21 u23 − u21

] [
X23 − X21 X11 − X13

X21 − X22 X12 − X11

]

is obtained. This result is consistent with the continuum form F = 111 + Gradu, see
(3.14).

Integration Within the Reference Space. For the computation of the
weak form (3.292), an integration is necessary over the area of each finite
element Ωe which, in the isoparametric formulation, is performed in the pa-
rameter space of the reference element Ω�, see Fig. 4.7. Thus the integral has
to be transformed from the initial or current configuration to the reference
configuration

∫
(Ωe)

g(X) dA =
∫

(Ω�)

g(ξξξ) det Je(ξξξ) d� =

+1∫
−1

+1∫
−1

g(ξ , η) det Je dξ dη . (4.37)
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The integration over the reference area Ω� is performed numerically since
the product g(ξξξ) det Je(ξ) in general does not represent a polynomial but a
rational function. This yields for the integral in (4.37) the approximation

+1∫
−1

+1∫
−1

g(ξ , η) det Je dξ dη ≈
np∑

p=1

g(ξp , ηp) det Je(ξp , ηp)Wp . (4.38)

Normally Gauss integration is applied due to its efficiency. The weighting
factors Wp and the coordinates of the Gauss or evaluation points ξp and ηp

are summarized in Table 4.2. Table 4.2 contains Gauss points and weighting
factors up to np = 3 × 3. These integration formulae integrate polynomials
in ξi ηk exact up to the order i + k ≤ m. Let us remark that the integra-
tion formulae can be derived in the same way as the two-dimensional shape
functions by a product form, using one-dimensional Gauss integration in ev-
ery coordinate direction. The Gauss integration has been chosen within the
finite element method due to its accuracy and efficiency. Other integration

Table 4.2 Two-dimensional Gauss integration for quadrilateral elements

m np p ξp ηp Wp Position of points

�

��

�

�

�

�

ξ

η

1 1 1 0 0 4

3 4 1 −1 /
√

3 −1 /
√

3 1
2 +1 /

√
3 −1 /

√
3 1

�

��

�

�

�

ξ

η

�

��

�

3 −1 /
√

3 +1 /
√

3 1
4 +1 /

√
3 +1 /

√
3 1

5 9 1 −
√

3 / 5 −
√

3 / 5 25 / 81

2 0 −
√

3 / 5 40 / 81

3 +
√

3 / 5 −
√

3 / 5 25 / 81

4 −
√

3 / 5 0 40 / 81

�

��

�

�

�

ξ

η

� �

���

�

� � �

5 0 0 64 / 81

6 +
√

3 / 5 0 40 / 81

7 −
√

3 / 5 +
√

3 / 5 25 / 81

8 0 +
√

3 / 5 40 / 81

9 +
√

3 / 5 +
√

3 / 5 25 / 81
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rules which can be applied for numerical integration of (3.160) can be found
in, e.g. Dhatt and Touzot (1985).

The transformation of the integrals from the initial configuration to the
reference configuration is different for triangular elements. In general,

∫
(Ωe)

g(X) dA =

1∫
0

1−ξ∫
0

g(ξ , η) det Je dη dξ (4.39)

is obtained where the last integral can again be approximated by the numer-
ical integration (4.38). Table 4.3 contains the related evaluation points and
weighting functions. These formulae integrate polynomials in the reference
space ξk ηl up to order m (with m ≥ k + l) exact.

Many more rules for the numerical integration of triangular elements ex-
ists which have either different evaluation points and weighting factors or a
higher approximation order. Such rules can be found in, e.g Zienkiewicz and
Taylor (1989) and Dhatt and Touzot (1985).

Table 4.3 Two-dimensional integration for triangular elements

m np p ξp ηp Wp position of points

� �

�

�

�
η

ξ
�

1 1 1 1 / 3 1 / 3 1 / 2

2 3 1 1 / 2 1 / 2 1 / 6
2 0 1 / 2 1 / 6

� �

�

�

�
η

ξ

�

�

�3 1 / 2 0 1 / 6

2 3 1 1 / 6 1 / 6 1 / 6
2 2 / 3 1 / 6 1 / 6

� �

�

�

�
η

ξ� �

�

3 1 / 6 2 / 3 1 / 6

3 4 1 1 / 3 1 / 3 – 27 / 96
2 1 / 5 1 / 5 25 / 96

� �

�

�

�
η

ξ� �

�

�

3 3 / 5 1 / 5 25 / 96
4 1 / 5 3 / 5 25 / 96



4.1 General Isoparametric Concept 119

4.1.3 Three-Dimensional Interpolation

Three-dimensional finite elements can have a variety of different shapes.
These can be tetrahedral or hexahedral shapes but also mixtures of both
types for special geometries like prisms. In this section, the formulations are
restricted to the tetrahedral or hexahedral shaped elements. Shape functions
for other element types can be found, e.g. in Dhatt and Touzot (1985). Again
the isoparametric formulation is used to be able to generate general shape
functions for the discretization of arbitrary three-dimensional geometries.

The shape functions for the three-dimensional hexahedral element are
given by

NI(ξ , η , ζ) =
1
2

( 1 + ξI ξ )
1
2

( 1 + ηI η )
1
2

( 1 + ζI ζ ) , (4.40)

which follow from the product form (4.14) together with (4.17). Figure 4.8
describes the associated 8-node hexahedral element in its reference config-
uration Ω� and its initial configuration Ωe. The related quadratical shape
functions can be derived from (4.14) with (4.18). This yields an interpolation
with 27 nodes per element where the functions NI result from the 27 possible
combinations of the local coordinates ξ , η , ζ with their values −1 , 0 ,+1 at
the nodes within the reference element Ω�

NI(ξ , η , ζ) = NI(ξ)NI(η)NI(ζ) . (4.41)

The shape functions for tetrahedral elements can be defined analogous to
the two-dimensional formulation. This leads to the ansatz functions

2
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2

X3
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ξ
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3
4

5
6

78

Ωe

Ω�

Fig. 4.8 Isoparametric 8-node hexahedral element
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– 4-node tetrahedral element (linear shape functions)

N1 = 1 − ξ − η − ζ , N2 = ξ , N3 = η , N4 = ζ . (4.42)

– 10-node tetrahedral element (quadratic shape functions)

N1 = λ ( 2λ− 1 ) , N6 = 4 ξ η,
N2 = ξ ( 2 ξ − 1 ) , N7 = 4 η λ,
N3 = η ( 2 η − 1 ) , N8 = 4 ζ λ,
N4 = ζ ( 2 ζ − 1 ) , N9 = 4 ξ ζ,
N5 = 4 ξ λ , N10 = 4 η ζ,

(4.43)

with λ = 1 − ξ − η − ζ .

The associated node numbers of both elements are depicted in Fig. 4.9.

ξ

η

ζ

1

2

3

4

5 6

7

8
9

10

Fig. 4.9 Isoparametric 4 and 10 node tetrahedral

Computation of the derivatives. The derivatives of the shape functions
with respect to the coordinates in the initial and spatial configuration follow
from (4.9). This yields for the derivatives with respect to the coordinates in
the initial configuration

∇X NI =

⎧⎨
⎩
NI,1

NI,2

NI,3

⎫⎬
⎭ = J−T

e

⎧⎨
⎩
NI,ξ

NI,η

NI,ζ

⎫⎬
⎭ . (4.44)

The Jacobi matrix Je of element Ωe which is applied within the derivation
is computed with (4.7) from

Je =
n∑

I=1

XI ⊗∇ξNI =

⎡
⎣X1,ξ X1,η X1,ζ

X2,ξ X2,η X2,ζ

X3,ξ X3,η X3,ζ

⎤
⎦ . (4.45)
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The components of Je are given by

Xm,k =
n∑

I=1

NI,kXm I ,

where the partial derivative denoted by k is the corresponding derivative with
respect to ξ, η or ζ, e.g.

Xm,2 =
n∑

I=1

∂NI

∂η
Xm I .

Integration Within the Parameter Space. As in the two-dimensional
case, integration of the shape functions and their derivatives over the volume
of element Ωe is carried out in the parameter space of the reference element
Ω�. This yields

∫
(Ωe)

g(X) dA =
∫

(Ω�)

g(ξξξ) det Je(ξξξ) d� =

+1∫
−1

+1∫
−1

+1∫
−1

g(ξ , η , ζ) det Je dξ dη dζ .

(4.46)
The integration over Ω� is performed numerically. Hence the last integral in
(4.46) is approximated by

+1∫
−1

+1∫
−1

+1∫
−1

g(ξ , η ζ) det Je dξ dη dζ ≈
np∑

p=1

g(ξp , ηp , ζp) det Je(ξp , ηp , ζp)Wp.

(4.47)
Again Gauss point integration is applied. Due to the fact that the coordi-

nates of the Gauss point ξξξp can easily be derived from the two-dimensional
case, see Table 4.2, by expanding these coordinates into the third coordinate
direction, they are not explicitly stated here. In case of the tri-linear brick el-
ement a 2×2×2 integration with totally 8 Gauss points is necessary. Accord-
ingly, for the ansatz with quadratic shape functions, a 3×3×3 integration with
totally 27 Gauss points has to be used. Since this is rather time consuming,
integration rules are stated in Table 4.4 which only need 6 points for an ansatz
with tri-linear shape functions and 14 points for an ansatz with quadratic
shape functions, see Irons (1971). With this special integration rules, the com-
putational effort is reduced by 25% for linear and by almost 50% for quadratic
ansatz functions.

The integration rules for tetrahedral elements are provided in Table 4.5 for
linear and quadratic ansatz functions. The coordinates of the sampling points
ξp , ηp and ζp are related to the coordinate system used in Fig. 4.9. Further
integration rules for tetrahedral and hexahedral elements can be found in,
e.g. Zienkiewicz and Taylor (1989) or Dhatt and Touzot (1985).
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Table 4.4 Special integration for hexahedral elements

m np p ξp ηp ζp Wp

2 4 1 0
√

2 / 3 −1 /
√

3 2

2 0 −
√

2 / 3 −1 /
√

3 2

3
√

2 / 3 0 1 /
√

3 2

4 −
√

2 / 3 0 1 /
√

3 2
3 6 1 1 0 0 4 / 3

2 –1 0 0 4 / 3
3 0 1 0 4 / 3
4 0 –1 0 4 / 3
5 0 0 1 4 / 3
6 0 0 –1 4 / 3

5 14 1
√

19 / 30 0 0 320 / 361

2 –
√

19 / 30 0 0 320 / 361

3 0
√

19 / 30 0 320 / 361

4 0 –
√

19 / 30 0 320 / 361

5 0 0
√

19 / 30 320 / 361

6 0 0 –
√

19 / 30 320 / 361

7
√

19 / 33
√

19 / 33
√

19 / 33 121 / 361

8 –
√

19 / 33
√

19 / 33
√

19 / 33 121 / 361

9
√

19 / 33 –
√

19 / 33
√

19 / 33 121 / 361

10 –
√

19 / 33 –
√

19 / 33
√

19 / 33 121 / 361

11
√

19 / 33
√

19 / 33 –
√

19 / 33 121 / 361

12
√

19 / 33 –
√

19 / 33 –
√

19 / 33 121 / 361

13 –
√

19 / 33 –
√

19 / 33 –
√

19 / 33 121 / 361

14 –
√

19 / 33
√

19 / 33 –
√

19 / 33 121 / 361

Table 4.5 Three-dimensional integration
for tetrahedral elements

m np p ξp ηp ζp Wp

1 1 1 1 / 4 1 / 4 1 / 4 1 / 6

3 5 1 1 / 4 1 / 4 1 / 4 –2 / 15
2 1 / 6 1 / 6 1 / 6 3 / 40
3 1 / 6 1 / 6 1 / 2 3 / 40
4 1 / 6 1 / 2 1 / 6 3 / 40
5 1 / 2 1 / 6 1 / 6 3 / 40
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4.2 Discretization of the Weak Forms

The one-, two- and three-dimensional ansatz functions can now be used to
describe the geometry and to discretize the field variables within the kine-
matical relations and weak forms stemming from continuum mechanics. Here
this discretization process will be shown for the variational Eqs. (3.292) and
(3.296) derived in Chap. 3.

The region of interest, which is the volume of the solid to be discretized,
will be subdivided into ne finite elements as shown in Fig. 4.1. Within this
process, the geometry is approximated using (4.1). An ansatz, as given in
(4.3) and (4.4), is then selected for the displacement field u, the coordinates
X and the test function η to approximate these quantities within each finite
element Ωe. With these approximations, the integral describing the weak
forms is given by

∫
B

(. . .) dV ≈
∫

Bh

(. . .) dVh =
ne⋃

e=1

∫
Ωe

(. . .) dΩ =
ne⋃

e=1

∫
Ω�

(. . .) d� (4.48)

The operator ∪ is chosen here instead of the
∑

symbol in order to denote
that an assembly process takes place in which all element contributions have
not only to be added up but also the kinematical compatibility between the
elements has to be fulfilled. The whole process then leads to an algebraic
system of nonlinear equations for a given problem, as will be shown later.
Hence the assembly process denoted by ∪ stands for fulfilment of the inter-
element compatibility of the test functions and the displacement field and
for the fulfilment of the global displacement boundary conditions. Since the
assembly process is the same as the one used within the finite element method
for linear problems, it is here not described in detail; detailed descriptions of
this process can be found in, e.g. Bathe (1996) and Zienkiewicz and Taylor
(2000a).

4.2.1 FE-Formulation of the Weak Form in Initial Configuration

The finite element approximation of the weak form (3.292) is based on the dis-
cretization of the stress divergence term (virtual work of the internal forces)∫

B
S · δE dV , the inertia term

∫
B
ρ0v̇ ·ηηη dV and the prescribed volume forces

and surface tractions
∫

B
ρ0 b̄ · ηηη dV +

∫
∂B

t̄ · ηηη dA.
To formulate the stress divergence, the variation of the Green-Lagrange

strain tensor (4.48) has to be discretized within an element Ωe. With
Eqs. (3.290) and (4.8) relation,

δEe =
1
2

n∑
I=1

[
FT

e (ηηηI ⊗∇X NI) + (∇X NI ⊗ ηI)Fe

]
(4.49)
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is obtained. The finite element approximations of the deformation gradient
(3.6) which was applied in (4.49) follows from (4.8) for element Ωe

Fe =
n∑

K=1

(xK ⊗∇X NK ) . (4.50)

To derive the matrix formulation which is convenient for formulating the
finite element form, it is advantageous to go back to index notation which
yields for (4.49)

δEAB =
1
2

n∑
I=1

[FAkNI,B +NI,A FkB ] ηk I (4.51)

with the components of the deformation gradient: FkB =
∑n

J=1 xk J NJ,B .
Within the matrix formulation, also called Voigt notation, the symme-

try of the Green-Lagrange strain tensor and its variation is considered.
This leads, in the three-dimensional case, to a vector with six independent
components

δEe =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δE11

δE22

δE33

2 δE12

2 δE23

2 δE13

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
n∑

I=1

BL I ηηηI , (4.52)

which is computed by a sum over the nodes of the element using the matrix

BL I =

⎡
⎢⎢⎢⎢⎢⎣

F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1

F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2

F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1

⎤
⎥⎥⎥⎥⎥⎦ .

(4.53)
The index L in (4.52) denotes that the matrix BL I depends linearly from
the displacements since the deformation gradient can be written as F =
1 + Gradu.

The stresses in the weak form follow from the constitutive equations
which have to be employed to model the material behaviour of a given
problem. These will be specified in the following chapters in detail. Due
to the symmetry of the 2nd

Piola-Kirchhoff stress tensor, see (3.83),
only six independent components are used in the vector form of the stresses
Se = {S11 , S22 , S33 , S12 , S23 , S13 }T . Note that the factor 2 in front of the
last three components in (k447d) stem from the fact that the inner product
of two symmetric tensors (SIK δEIK need to be expressed in Voigt notation
by δET S. Thus the virtual work of the internal forces can be approximated
with finite elements by
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∫
B

δE · S dV =
ne⋃

e=1

∫
Ωe

δET
e Se dΩ

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ωe

BT
L I Se dΩ (4.54)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ω�

BT
L I Se det Je d� .

The last equation in (4.54) already contains the evaluation of the integrals
with respect to the isoparametric reference element. To shorten the notation,
we define the vector

RI (ue) =
∫
Ωe

BT
L I Se dΩ, (4.55)

which enables us to write the virtual internal work as∫
B

δE · S dV =
ne⋃

e=1

n∑
I=1

ηT
I RI (ue) = ηT R (u) . (4.56)

Within this formulations, η is the virtual displacement or test function and
R (u) denotes the force. Their inner product describe the virtual internal
work after assembly.

Elements which are purely based on an ansatz for the displacements are
generally called T or Q elements, depending upon the selection of shape func-
tions for a triangle or a quadrilateral in two-dimensions. Hence a quadrilateral
element with linear shape functions is labeled as Q1 while, e.g. a triangular
element with quadratic shape function will be abbreviated by T2. In three
dimensions often the abbreviation Q1 is also used for a linear hexahedral
element while H1 would also be appropriate. For tetrahedral elements, T is
used as well as in the two-dimensional case.

The inertia term is computed by using an ansatz for the velocity in the
form ve(X, t) =

∑
K NK(ξξξ)vK(t) within an element Ωe. This approach can

be viewed as a product form, in which spatial and temporal approxima-
tions are split. Thus the accelerations needed in the inertia term are approx-
imated by

v̇e(X, t) =
n∑

K=1

NK(ξξξ) v̇K . (4.57)

This yields

∫
B

η · ρ0 v̇ dV =
ne⋃

e=1

∫
Ωe

ηT ρ0 v̇e dV
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=
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫
Ωe

NI ρ0NK dΩ v̇K .

With the application of the unit matrix I to the acceleration v̇K = I v̇K , the
mass matrix

MIK =
∫
Ωe

ρ0NI NK dΩ I (4.58)

can be introduced and the inertia term takes the form∫
B

ρ0 η · v̇ dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I MIK v̇K = ηT Mv̇ . (4.59)

Here M is the mass matrix and v̇ is the acceleration vector after assembly
to the global system. The spatial integration of (4.58) yields a mass matrix
which belongs to the finite element Ωe. It has a similar structure as the first
part of the tangent matrix related to the linearization of the weak form, see
4.2.2. This mass matrix is known as consistent mass matrix.

Remark 4.4: In many cases, the consistent mass matrix given in (4.58) is not
applied in numerical simulations but a diagonal mass matrix is used instead due
to efficiency reasons. There are different ways to determine a diagonal mass matrix
which is also called (lumped mass matrix). However, all formulations have to obey
the condition of mass conservation, see e.g. Hughes (1987) and Bathe (1982). One
possibility for the derivation of a diagonal mass matrix is to apply a special quadra-
ture formulae for the integration of (4.58). Since the shape functions NI (4.14) have
the property that they assume at the element node I the value 1 and 0 at all other
nodes, a diagonal mass matrix is automatically obtained by using quadrature points
which are located at the nodes. This process yields

MIK =

∫
Ωe

ρ0 NI NK dΩ I =

∫
Ω�

ρ0 NI NK det Je d� I

=

np∑
p=1

ρ0(ξξξp) NI(ξξξp) NK(ξξξp) det Je(ξξξp) Wp I,

Mdiag
IK = ρ0(ξξξp) det Je(ξξξp) Wp I (for I = K). (4.60)

For I �= K, the numerical integration will be zero, since then at least one shape
function is equal to zero. Quadrature formulae which have their evaluation points at
element nodes are, e.g. the trapezoidal or Simpson rules, see Hughes (1987). When
selecting the quadrature rule, mass conservation has to be considered and the right
order for the shape functions has to be used. Due to that, the trapezoidal rule can
be applied for linear ansatz functions and the Simpson rule is useful for quadratic
ansatz functions. When performing this type of integrations, it can happen that
eventually negative masses are associated with nodes as, e.g. is the case when using
an 8-node serendipity element. This is, however, not advisable from the physical
point of view. To circumvent such problems, a different diagonalization process has
to be constructed.
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Another possibility to derive diagonal mass matrices can be found in Hinton
et al. (1976). It always leads to positive masses at the nodes. The idea here is to
start from a consistent mass matrix and to scale the diagonal terms in such a way
that the mass is constant within the element. This procedure yields

Mdiag
II = ϑe MII I with MII =

∫
Ωe

ρ0 N2
I dΩ. (4.61)

With the scaling factor

ϑe =
Me∑n

I=1 MII
, Me =

∫
Ωe

ρ0 dΩ .

Me is the total mass of element Ωe.

The load terms in the weak form are discretized in an analogous way.
After inserting the finite element approximation for the virtual displacement
or test function η, it follows

∫
B

ρ0 η · b̄ dV +
∫
Γσ

η · t̄ dA =
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ωe

ρ0 b̄NI dΩ

+
nr⋃

r=1

m∑
I=1

ηT
I

∫
Γr

NI t̄ dΓ ,

where nr denotes the number of element boundaries where loads are applied
and Γr is the surface of an element subjected to a traction vector t̄ which de-
scribes the surface loading, see Fig. 4.10a. Note that for the term describing
the surface loads shape function have to be defined for d−1 dimensions when d
is the dimension of the problem. In Fig. 4.10a, the body of a two-dimensional
continuum is described which requires the use of a one-dimensional ansatz
function within the integral for the surface loads, see Fig. 4.10b. These one-
dimensional shape functions are only defined with respect to m nodes de-
scribing the surface (in Fig. 4.10b: m = 2).

Also here a compact notation will be introduced. With

PI =
∫
Ωe

NI ρ b̄ dΩ and Pσ
I =

∫
Γr

NI t̄ dΓ, (4.62)

the loading terms in the weak form follow

∫
B

ρη · b̄ dV +
∫
Γσ

η · t̄ dA =
ne⋃

e=1

n∑
I=1

ηT
I PI +

nr⋃
r=1

n∑
I=1

ηT
I Pσ

I = ηT P . (4.63)

In this equation, the vector P stands for all applied loads acting on the
structure.
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ξ

ξ

t̄t̄
Γr

x1

x2
Ω

Ωe

Fig. 4.10 (a) Surface load (b) Discretization

With the matrix notation introduced in (4.56), (4.59) and (4.63), the weak
form (3.292) can be written in its discrete version

ηT [Mv̇ + R (u) − P ] = 0 . (4.64)

Due to the arbitrariness of the virtual displacement η, the above weak form
leads to a nonlinear system of ordinary differential equations

Mv̇ + R (u) − P = 0 ∀u ∈ R
N . (4.65)

All terms in (4.65) are related to the initial configuration. N denotes the
total number of degrees of freedom (dofs) of the system which are combined
in the vector of unknowns u. v̇ is the acceleration vector and M denotes the
mass matrix. Often also a damping term of the form Cv is introduced in
linear and nonlinear simulations to model different physical effects such as
material damping or friction in joints or supports. Since these effects result
from very different sources, it is very difficult to derive the damping terms in
a consistent way using continuum mechanics, see also Sect. 6.1.

In case of vanishing inertia effects and damping (Mv̇ = Cv = 0), a
nonlinear algebraic system of equations

R (u) − P = 0 ∀u ∈ R
N (4.66)

is obtained instead of the nonlinear system of ordinary differential equations
in (4.65). The solution of this algebraic system of equations will be discussed
in detail in Chap. 5.

4.2.2 Linearization of the Weak Form in the Initial Configuration

For an efficient numerical treatment of the nonlinear algebraic system of equa-
tions, which will either be obtained when a temporal discretization is used
in (4.65), see Sect. 6.1, or when (4.66) is used directly, Newton method is
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applied. Since this method needs the derivative of (4.66), the linearization of
this algebraic equation system has to be computed. A detailed description
of the solution methods is given in the following chapters; hence only the
linearization of (4.66) is provided here, the inertia terms are neglected at
the moment. As already stated in Remark 3.11, the linearization can be ob-
tained by a discretization of the linearization of the continuum terms provided
already in (3.343)

DG(ϕ̄,η) ·Δu =
∫
B

{GradΔu S̄ · Gradη + δĒ · C̄CC [ΔĒ ] } dV . (4.67)

By using

GradΔue =
n∑

K=1

ΔuK ⊗∇XNK ,

Gradηe =
n∑

I=1

ηI ⊗∇XNI , (4.68)

the discretization of the first term is obtained directly
∫
B

GradΔu S̄·Grad η dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

∫
Ωe

(ΔuK⊗∇XNK) S̄·(ηI⊗∇XNI) dΩ .

This term can be written as, by applying the rules for the dyadic and the
scalar product and by considering the matrix form of the scalar product
ΔuK · ηI = ηT

I ΔuK = ηT
I IΔuK ,

∫
B

GradΔu S̄ · Gradη dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫
Ωe

ḠIK I dΩΔuK , (4.69)

where the abbreviation

ḠIK = (∇XNI)T S̄e ∇XNK (4.70)

was introduced. The matrix form of the scalar product (4.70) can be speci-
fied as

ḠIK = [NI,1 NI,2 NI,3 ]

⎡
⎣ S̄11 S̄12 S̄13

S̄21 S̄22 S̄23

S̄31 S̄32 S̄33

⎤
⎦
⎧⎨
⎩
NK,1

NK,2

NK,3

⎫⎬
⎭ , (4.71)

when the gradients are provided in vector form. Relation (4.69) is independent
from the constitutive equation, only the stress – computed with respect to
the configuration ϕ̄ – appears. Hence the matrix defined by (4.69) is often
called initial stress matrix.
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The seconde term in (3.343)∫
B

δĒ · C̄CC [ΔĒ ] dV

depends upon the constitutive equation via the incremental material tensor C̄CC
which is computed with respect to the configuration ϕ̄. For elastic materials,
this tensor is given by, e.g. (3.268). The associated matrix formulation can
be found in (3.271). Since ΔĒ has the same structure as δĒ, see Remark 3.8,
it follows with (4.49)

ΔEe =
1
2

n∑
I=1

[
FT

e (ΔuI ⊗∇X NI) + (∇X NI ⊗ΔuI)Fe

]
. (4.72)

This yields with (4.53) the matrix form

ΔEe =
n∑

I=1

BL I ΔuI . (4.73)

Inserting this relation into the second term of (3.343) leads with the incre-
mental constitutive tensor D̄ to∫

B

δĒ · C̄CC [ΔĒ ] dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫
Ωe

B̄
T
L I D̄ B̄L K dΩΔuK . (4.74)

Adding all terms together, the discretization of the weak form is given by∫
B

{GradΔu S̄ · Grad η + δĒ · C̄CC [ΔĒ ] } dV =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄T IKΔuK ,

(4.75)
where the matrix K̄T IK is often called tangent matrix

K̄T IK =
∫
Ωe

[
(∇XNI)T S̄e ∇XNK + B̄

T
L I D̄ B̄L K

]
dΩ . (4.76)

This matrix is related to the nodal combination I ,K within one finite
element. When using this notation, the sub-matrix K̄T IK has the size
ndof × ndof , where ndof is the number of freedoms of a node (in three-
dimensional solid problems ndof = 3 and thus K̄T IK has the size 3 × 3).
Indices I and K are the nodes of the element, and hence directly related
to the discretization. Thus, for a 10-node tetrahedral element, it follows
that n = 10; hence the tangent matrix of one element K̄Te

has the size
(n · ndof ) × (n · ndof ) = 30 × 30. The element matrices of quadratic hexahe-
drals are even bigger since these have 27 nodes leading to a tangent matrix
K̄Te

of size 81 × 81.
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Exercise 4.3: Develop the matrix formulation for a two-dimensional finite el-
ement with 4-nodes with respect to the initial configuration. Use the St. Venant

constitutive equation under the assumption of plain strain. Derive as well the
residuum as the tangent stiffness matrix.

Solution: For the computation of the residuum, the virtual work expression given
in (4.55) has to be specified. For this, the response function for the second Piola-

Kirchhoff stress S and the virtual Green-Lagrangian strain δ E is needed.
Hence, to derive the weak form in terms of the displacements, the St. Venant

constitutive equation (3.121) has to be presented in matrix form. Equation (3.121)
can be rewritten with the fourth order unit tensor E as

S = ( Λ1 ⊗ 1 + 2 μE ) [E ] ,

which immediately leads to a matrix form. In case of the two-dimensional defor-
mation, the constitutive relation for the 2nd

Piola-Kirchhoff tensor is given by

S = DE =

{
S11

S22

S12

}
=

[
Λ + 2μ Λ 0

Λ Λ + 2μ 0
0 0 μ

] {
E11

E22

2 E12

}
, (4.77)

in which the Green-Lagrangian strain tensor E has to be specified.
The components of the Green-Lagrangian strain tensor (3.15), needed in

(4.77), follow with (4.50) in the two-dimensional case for a finite element Ωe by

Ee =
1

2
(FT

e Fe − I ) with Fe =
n∑

K=1

[
x1K NK,1 x1K NK,2

x2K NK,1 x2K NK,2

]
, (4.78)

where the nodal coordinates xα K = Xα K + uα K are related to the deformed
configuration ϕ̄.

The approximation of the virtual Green-Lagrangian strains δE given in
(4.52) have, by introducing the matrix BL I , the explicit form in the two-dimensional
case

BL I =

[
F11 NI,1 F21 NI,1

F12 NI,2 F22 NI,2

F11 NI,2 + F12 NI,1 F21 NI,2 + F22 NI,1

]
. (4.79)

Note that it is also possible to use the form F = 111 + Gradu when deriving the
virtual strain expression. Then

δ Ee =
4∑

I=1

[B0 I + BV I (u ) ] ηI (4.80)

is obtained. Here the matrices B0 and BL have the explicit form

B0 I =

[
NI,1 0

0 NI,2

NI,2 NI,1

]
; BV I =

[
u1,1 NI,1 u2,1 NI,1

u1,2 NI,2 u2,2 NI,2

u1,1 NI,2 + u1,2 NI,1 u2,2 NI,1 + u2,1 NI,2

]
.

(4.81)
The derivative uα,β has to be computed at each integration point analogous
to the components of the deformation gradient in (4.51). This yields uα,β =∑4

K=1 NK,β uα K , where the indices α and β assume values of 1 and 2. Note that
the matrix BV I which describes the nonlinear part in E disappears for u = const.

Inserting Eq. (4.80) into the virtual work expression for the internal forces (4.55)
yields the virtual internal work of one finite element Ωe



132 4. Spatial Discretization Techniques

RI (ue) =

∫
Ωe

(B0 I + BV I )T Se dΩ . (4.82)

The load vector can be computed using (4.62). This, however, will not be specified
here in detail.

The linearization of (4.82) at ϕ̄ yields the tangential stiffness matrix for a finite
element. It yields with (4.80) analogous to (4.76)

K̄TIK =

∫
Ωe

[
(B0 I + B̄V I )T D̄ (B0 K + B̄V K ) + ḠIK I

]
dΩ . (4.83)

Here all quantities with a bar on top have to be evaluated at ϕ̄. A more compact
notation of the tangent matrix follows with (4.79)

K̄TIK =

∫
Ωe

[
B̄

T
L I D̄ B̄L K + ḠIK I

]
dΩ . (4.84)

For two-dimensional problems, the scalar ḠIK can expressed by the product

ḠIK = [ NI,1 NI,2 ]

[
S̄11 S̄12

S̄21 S̄22

]{
NK,1

NK,2

}
. (4.85)

Both Eqs. (4.83) and (4.85) have to be evaluated at ϕ̄. The stresses in (4.85) follow
from the constitutive equation (4.77) and the discrete form of the strains (4.78).

The integrals in (4.82) and (4.83) have to be computed by numerical integration.
For this, a transformation to the reference configuration, see (4.54) and Fig. 4.11,
is advantageous. This yields with (4.55) for the residual a ndof × 1 = 2 × 1 vector
for the node I

Je

η

Fe

Ω�

1

3
4 1

2

3

4
η

X1

X3

ū1

ū3

x̄1

x̄3 =
{
x̄13

x̄23

}

1 2

34

2

ξ1

ξ3

ξ

ξ
ξ

η

Ωe
ϕ̄(Ωe)

Fig. 4.11 Configurations of the 4-node element
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RI (ue) =

∫
Ωe

(B0 I + BV I )T Se dΩ (4.86)

=

∫
Ω�

(B0 I + BV I )T Se detJe d� (4.87)

≈
np∑

p=1

Wp [B0 I(ξp , ηp) + BV I(ξp , ηp) ]T S(ξp , ηp) det Je(ξp , ηp) .

For this 4-node element np = 2 = 4, Gauss points are sufficient for the numerical
integration. The values for the Gauss point coordinates ξp, ηp and the associated
weights Wp can be found in Table 4.2. For the computation of the stresses at a
Gauss point S(ξp ηp), the deformation gradient has to be evaluated, see (4.78), in
(ξp , ηp). This leads to

Fe(ξp , ηp) =
n∑

K=1

[
x1K NK,1(ξp , ηp) x1K NK,2(ξp , ηp)
x2K NK,1(ξp , ηp) x2K NK,2(ξp , ηp)

]
. (4.88)

The stress at a Gauss point follows then from (4.77) by using the strains (4.78).
Note that in (4.88) a summation (index K) has to be performed overall since all
shape functions contribute to the deformation at a Gauss point within a finite
element. In an analogous way, the numerical integration of the tangent matrix
(4.83) has to be performed. The sub-matrices for nodes with indices I and K are
2 × 2 matrices. With Eq. (4.84),

K̄TIK =

∫
Ω�

[
B̄

T
L I D̄ B̄L K + ḠIK I

]
detJed� (4.89)

≈
np∑

p=1

Wp

[
B̄

T
L I(ξp, ηp)D̄ B̄L K(ξp, ηp) + ḠIK(ξp , ηp) I

]
det Je(ξp, ηp)

is obtained. The vectors RI and the sub-matrices K̄TIK have to be assembled into
a vector and a tangent matrix for the element Ωe as follows

Re =

⎧⎪⎨
⎪⎩

R1

R2

R3

R4

⎫⎪⎬
⎪⎭

8×1

K̄Te =

⎡
⎢⎢⎣

K̄T11 K̄T12 K̄T13 K̄T14

K̄T22 K̄T23 K̄T24

K̄T33 K̄T34

symm. K̄T44

⎤
⎥⎥⎦

8×8

. (4.90)

The total size follows from the number of nodes, here 4, and degree of freedoms per
node, here 2. Hence the element residual vector has the size 8 × 1 and the element
tangent is a 8 × 8 matrix.

With the last equations, all necessary relations, vectors and matrices are known
which are needed for a successful implementation of this element into a finite ele-
ment code. Let us close with the following remarks

– The degree of nonlinearity of (4.82) depends upon the chosen constitutive equa-
tion. For the St. Venant material, used here, the weak form (4.82) is a cubic
polynomial in u. This, however, does not hold when, e.g. a compressible Neo-
Hooke material (3.119) is applied.

– For a stress calculation within an actual design, the 2nd
Piola-Kirchhoff

stresses have to be transformed to real stresses, e.g. the Cauchy stresses us-
ing (3.83).
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– In the case that a linear theory for small strains and displacements is used,
then the terms ḠIK and B̄V I , B̄V K in (4.82) and (4.83) disappear since the
evaluation of the residual vector and the tangent matrix has to be evaluated at
the state ϕ̄ = 0. Due to this, the resulting equations become linear in u. Then
the resulting vectors and matrices are exactly equivalent to the finite element
formulation based on the linear theory of elasticity which yields with the two-
dimensional form of (3.273) the linear stiffness matrix

KIK =

∫
Ωe

BT
0 I D0 B0 K dΩ .

4.2.3 FE-Formulation of the Weak Form in the Current
Configuration

The discretization of the weak form with respect to the current configuration
(3.294) is derived analogous to the weak form in the initial configuration
(3.292). The internal virtual work depends in the current configuration upon
the variation of the strain measure ∇Sη, see (3.295), which is the push forward
of the variation of the Green-Lagrangian strain. The strain ∇Sη has to
be approximated using the finite element shape functions. With (4.8)2, this
leads to

∇S ηe =
1
2

n∑
I=1

[ (ηI ⊗∇xNI) + (∇xNI ⊗ ηI) ] . (4.91)

As in the previous section, it is convenient to use index notation to derive
the matrix formulation

(∇S ηe)im =
1
2

n∑
I=1

[ ηi I NI,m +NI,i ηm I ] . (4.92)

Here NI,m = ∂NI / ∂xm is the partial derivative of the shape functions with
respect to the spatial coordinates xm. The derivatives can be computed with
(4.10)2

NI,k = {j−1
e }1kNI,ξ + {j−1

e }2kNI,η + {j−1
e }3kNI,ζ , (4.93)

where {j−1
e }ik are the components of the inverse of the Jacobi-Matrix je.

Equation (4.92) yields the components of ∇S η, which can be written in
vector form

(∇S η)T = [ η1 ,1 , η2 ,2 , η3 ,3 , (η1 ,2 + η2 ,1) , (η2 ,3 + η3 ,2) , (η1 ,3 + η3 ,1) ]

when considering symmetry. This vector form can now be approximated by
finite elements

∇S ηe =
n∑

I=1

⎡
⎢⎢⎢⎢⎢⎣

NI,1 0 0
0 NI,2 0
0 0 NI,3

NI,2 NI,1 0
0 NI,3 NI,2

NI,3 0 NI,1

⎤
⎥⎥⎥⎥⎥⎦
⎧⎨
⎩
η1
η2
η3

⎫⎬
⎭

I

=
n∑

I=1

B0 I ηηηI . (4.94)
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Note that matrix B0 I contains no terms which depend directly upon the
displacement field; this is here depicted by the index “0”.

Remark 4.5: Contrary to matrix BL I , matrix B0 I is a sparse matrix. Half of
all entries are zero. Thus, when multiplying matrix B

0I with other matrices or
vectors, the zero elements can be neglected. This leads to a faster computation of
element matrices. Hence the finite element formulation with respect to the current
configuration is more efficient.

The structure of B0 I coincides exactly with the B-matrix of the linear the-
ory, see e.g. Hughes (1987). The only difference – however important – is that the
derivatives of the shape functions have to be computed for the geometrically linear
element with respect to the coordinates X of the initial configuration, whereas in
the nonlinear case the derivatives have to be computed using (4.92) and (4.93).

With the spatial virtual strains derived above and the vector form of
the Cauchy stress tensor σσσ = {σ11 , σ22 , σ33 , σ12 , σ23 , σ13 }T , the virtual
internal work in (3.294) can be written as

∫
ϕ(B)

∇S η · σσσ dv =
ne⋃

e=1

∫
ϕ(Ωe)

(∇S ηe)
T σσσe dω

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
ϕ(Ωe)

BT
0 I σσσe dω (4.95)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ω�

BT
0 I σσσe det je d� .

The last term is already referred to the isoparametric reference element. By
comparing this relation with the associated expression in (4.54), it can be
noticed that both weak forms differ only in the B matrix, the determinant
of the isoparametric map (4.6) and the stress tensor which is now referred to
the current configuration. By introducing

rI (ue) =
∫

ϕ(Ωe)

BT
0 I σσσe dω, (4.96)

the virtual internal work can be written as∫
ϕ(B)

∇S η · σσσ dv =
ne⋃

e=1

n∑
I=1

ηT
I rI (ue) = ηT r (u) . (4.97)

Since the transformation of the volume element is with (3.12) given by
dv = J dV and, since further, the Cauchy stress tensor can be expressed by
the Kirchhoff stress tensor via (3.84) as τττ = J σσσ, the virtual internal work
in (4.96) can be formulated as
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∫
ϕ(B)

∇S η · σσσ dv =
∫
B

∇S η · τττ dV . (4.98)

Now the integral is transformed from the spatial to the initial configuration.
Discretization by finite elements yields∫

B

∇S η · τττ dV =
ne⋃

e=1

∫
Ωe

(∇S ηe)
T τττe dΩ

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ωe

BT
0 I τττe dΩ (4.99)

=
ne⋃

e=1

n∑
I=1

ηT
I

∫
Ω�

BT
0 I τττe det Je d�,

and the vector related to the internal work has the form

rI(ue) =
∫

Ω�

BT
0 I τττe det Je d� . (4.100)

The total internal virtual work is then computed by using (4.97).
The approximation of the inertia terms follows the approach leading to

(4.59). Similarly, the dead loads are formulated as in (4.63). Thus the dis-
cretization of the spatial weak form (3.294) is completed, leading to

ηT [Mv̇ + r (u) − P ] = 0 . (4.101)

This from yields for arbitrary test functions η the nonlinear ordinary differ-
ential system

Mv̇ + r (u) − P = 0 . (4.102)

For static problems, this system reduces to a set of nonlinear algebraic equa-
tions for the unknown nodal displacements u

g (u) = r (u) − P = 0 . (4.103)

In this formulation, the vector r (u) representing the internal virtual work can
be computed using either (4.96) or (4.100). Both formulations are equivalent.
Relation (4.97) has the same form as the associated relation of the linear
theory. Only the gradient of the test function (virtual strains) ∇Sη and the
stress tensor σ (Cauchy stress) have to be computed with respect to the
current or spatial configuration.

4.2.4 Linearization of the Weak Form in the Spatial Configuration

In the previous section, two weak forms, (4.97) and (4.100), were developed
which differ with respect to the configuration, ϕ(B) or B. The associated
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linearization of the continuum formulation of these weak forms was described
in Sect. 3.5.3. Now these forms have to be discretized as in Sect. 4.2.2, where
the linearization of the weak form with respect to the initial configuration
was described.

The linearization of the spatial weak form (4.97) follows from Eq. (3.347)

Dg(ϕ̄,η) ·Δu =
∫

ϕ̄(B)

{gradΔu σ̄ · gradη + ∇S
x̄η · ¯̂cccccc [∇S

x̄Δu ] } dv . (4.104)

The first term has exactly the same structure as the associated term of the
linearization with respect to the initial configuration. Hence the discretization
(4.69) can be adopted directly. Only the derivatives have to be computed
with respect to the coordinates x̄i of the current configuration ϕ(B̄). With
the discretization of the gradients

gradΔue =
n∑

K=1

ΔuK ⊗∇x̄NK ,

grad ηe =
n∑

I=1

ηI ⊗∇x̄NI , (4.105)

the first term of the integral (4.104) is given by

∫
ϕ(B)

gradΔu σ̄σσ · grad η dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫
ϕ(Ωe)

ḡIK I dΩΔuK . (4.106)

Here the abbreviation

ḡIK = (∇x̄NI)T σ̄σσ∇x̄NK (4.107)

was utilized. As in (4.71) the matrix form of the scalar product yields

ḡIK = [ N̄I,1 N̄I,2 N̄I,3 ]

⎡
⎣ σ̄11 σ̄12 σ̄13

σ̄21 σ̄22 σ̄23

σ̄31 σ̄32 σ̄33

⎤
⎦
⎧⎨
⎩
N̄K,1

N̄K,2

N̄K,3

⎫⎬
⎭ . (4.108)

This equation is, like (4.69), independent on the constitutive equation, since
only the stresses of the spatial configuration ϕ̄ enter (4.108).

The second term in (3.347)∫
ϕ(B̄)

∇S
x̄η · ¯̂cccccc [∇S

x̄Δu] dv

includes the incremental constitutive tensor ¯̂cccccc which has to be computed at
configuration ϕ̄. Hence this term depends upon the material equation, see
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e.g. (3.269) in Sect. 3.3.4. With the same arguments as in Sect. 4.2.2 and the
relations (3.333) and (4.94), the discretization follows∫

ϕ(B̄)

∇S
x̄η · ¯̂cccccc [∇S

x̄Δu] dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I

∫
ϕ(Ωe)

B̄
T
0 I D̄

M
B̄0 K dΩΔuK .

(4.109)
Here the evaluations and derivations of all quantities have to be computed
at the state ϕ̄. Combining both terms leads to the discretization of the lin-
earization of the spatial weak form∫
ϕ̄(B)

{gradΔu σ̄ ·gradη +∇S
x̄η · ¯̂cccccc [∇S

x̄Δu ] } dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄

M
TIK

ΔuK .

(4.110)
Here the matrix K̄

M
TIK

K̄
M
TIK

=
∫

ϕ(Ωe)

[
(∇x̄NI)T σ̄σσe ∇x̄NK + B̄

T
0 I D̄

M
B̄0 K

]
dω (4.111)

is the tangent matrix related to the finite element nodes I ,K, see also
Sect. 4.2.2.

The discretization of the spatial weak form (4.100) is derived analogously.
Thus only the final result is presented∫
(B)

{gradΔu τ̄ττ · gradη + ∇S
x̄η · c̄ccccc [∇S

x̄Δu ] } dv =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄

MR
TIK

ΔuK .

(4.112)
The matrix K̄

MR
TIK

K̄
MR
TIK

=
∫
Ωe

[
(∇x̄NI)T τ̄ττe ∇x̄NK + B̄

T
0 I D̄

MR
B̄0 K

]
dΩ (4.113)

is the tangent matrix related to nodes I,K. The matrix form D̄
MR of the in-

cremental constitutive tensor c̄ccccc can be found, e.g. for a Neo-Hooke material
in (3.271). The corresponding relation for D̄

M follows from the transforma-
tion using the Jacobi determinant J in accordance with (3.346).

Exercise 4.4: Derive the matrix formulation for an axi-symmetrical finite ele-
ment undergoing finite elastic deformations with respect to the current or spatial
configuration. The constitutive behaviour has to be described by the compressible
Neo-Hooke material given in (3.120). For the approximation of geometry and
deformation, either bilinear or bi-quadratic shape functions have to be selected.

Solution: For an axi-symmetrical problem, the geometry of a structure under
consideration as well as the loading has to be axi-symmetrical, see Fig. 4.12. It is
assumed that the axis of symmetry coincides with coordinate X2.
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Ωe

X1, x1

X2, x2

Fig. 4.12 Axi-symmetrical finite 4-node element

Additionally, to the strains in the plane X1–X2, hoop strains occur in case of
axi-symmetrical deformations. The deformation gradient is then given by

F = Gradx =

⎡
⎢⎣

∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0

0 0 x1
X1

⎤
⎥⎦ . (4.114)

Since the space of the test function is two-dimensional, the scalar product in (3.294)
reduces to

σ · grad η = σ11
∂η1

∂x1
+ σ12

∂η1

∂x2
+ σ21

∂η2

∂x1
+ σ22

∂η2

∂x2
+ σ33

η1

x1
, (4.115)

where the components ηi,k of the spatial gradient have to be computed by partial
derivatives with respect to the current coordinates x. For the computation of these
spatial derivatives, the isoparametric map is applied, see (4.93).

By using linear or quadratic shape functions for the approximation of the dis-
placement field u, the coordinates x and the test function η, the symmetric gradient
of the test functions (virtual displacements)

(∇Sη)T =

[
η1 ,1 , η2 ,2 ,

η1

x1
, (η1 ,2 + η2 ,1)

]

can be discretized, which has the same form as (4.91). This leads to the matrix
form

BA
0 I =

⎡
⎢⎣

NI,1 0
0 NI,2

NI/x1 0
NI,2 NI,1

⎤
⎥⎦ (4.116)

which is analogous to (4.94).
A compact notation for the scalar product introduced in (4.115) will be stated

next for one element Ωe. Introduction of a vector σσσT = [ σ11 , σ22 , σ33 , σ12 ] which
represents the Cauchy stresses leads to

σ · grad η|Ωe
=

n∑
I=1

ηT BA T
0 I σσσ .
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Using this result, the virtual internal work of one element Ωe is given by

n∑
I=1

ηhT

I 2 π

∫
ϕ(Ωe)

BA T
0 I σ x1 dω . (4.117)

This expression can be inserted in formulation (4.96). Note that the integration
has to be performed as well over the coordinates x1 and x2 as in circumferential
direction. Due to that, the coordinate x1 appears in (4.117). For the node I of
element Ωe,

rA
I (ue) = 2 π

∫
ϕ(Ωe)

BT
0 I σσσ x1 dω (4.118)

is obtained. In (4.118), the vector of the Cauchy stress components σ has to be
expressed by the hyperelastic constitutive equation (3.120). It then depends, via
the strain measure directly, on the nodal displacements u. This dependency is
provided by the left Cauchy-Green tensor b = FFT . Since only the vector x is
known in the current configuration, the deformation gradient F cannot be specified
directly. However it can be computed from its inverse of which is obtained in the
spatial configuration ϕ(B) by using the spatial displacement gradient, see (3.34):
F−1 = 111 − gradu. Within the element Ωe,[

F11 F12

F21 F22

]−1

=

[
1 0
0 1

]
−

n∑
I=1

[
NI,1 uI1 NI,2 uI1

NI,1 uI2 NI,2 uI2

]
(4.119)

is derived for the two-dimensional case. The components F11, F12, F21, F22 of
the deformation gradient follow then from the inverse of (4.119). In case of axi-
symmetrical deformations, the component F33 has also to be considered. Due to
the special form of the deformation gradient (4.114), its value computation can
be obtained directly. Since the component of the displacement gradient is given
by u3 ,3 = u1 / x1 in circumferential direction, the component F−1

33 = 1 − u3 ,3 =
1 − u1 / x1 of the deformation gradient follows and thus

F33 =
x1

x1 − u1
.

Note that the component F33 is expressed solely by terms which are related to the
spatial configuration. It is clear that F33 could simply be computed from (4.114)
which is given in terms of the initial configuration. This, however, does not lead
to an efficient finite element code since the isoparametric mapping has then to be
carried out twice (for the spatial and the initial configuration).

Using (3.25), the left Cauchy-Green tensor b = FFT follows by a simple
matrix multiplication. The subsequent reordering of b into a column matrix b
leads to a form of b which can be used in the matrix formulation later on

b =

⎧⎪⎨
⎪⎩

b11

b22

b33

b12

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

F 2
12 + F 2

11

F 2
21 + F 2

22

F 2
33

F12 F22 + F21 F11

⎫⎪⎬
⎪⎭ . (4.120)

Now the dependency of the left Cauchy-Green tensor b on the nodal displace-
ments u is known and the Cauchy stresses can be computed from (3.120). With
the determinant of the deformation gradient J = detF and by introducing the unit

vector iT = [ 1, 1, 1, 0 ], the hyperelastic constitutive relation yields



4.2 Discretization of the Weak Forms 141

σ =
Λ

2 J
(J2 − 1) i +

μ

J
(b− i ) . (4.121)

The Lamé constants Λ and μ are material parameters, see Sect. 3.3.1. The matrix
form of the incremental constitutive tensor belonging to (4.121) can be found in
Exercise 3.8 for the three-dimensional case, see (3.271). Here it is specified for the
axi-symmetrical case which leads to

DA = Λ J2 i iT + [μ − 1

2
Λ (J2 − 1) ]E , (4.122)

where E is a diagonal matrix

E =

⎡
⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎦ . (4.123)

The linearization of the residual (4.118) yields the tangent matrix which is given
as in the three-dimensional case by (4.111). The initial stress matrix follows with
(4.106) from ∫

ϕ(B)

grad Δu σ̄ · grad η dv .

Within this expression, the spatial gradients are needed. In case of axi-symmetrical
deformations, the following matrix form of the gradient of the test functions η is
advantageous

grad ηe =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η̄1 ,1

η̄1 ,2

η̄3 ,3

η̄2 ,1

η̄2 ,2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
n∑

I=1

⎡
⎢⎢⎢⎣

N̄I,1 0
N̄I,2 0

N̄I/x̄1 0
0 N̄I,1

0 N̄I,2

⎤
⎥⎥⎥⎦
{

η1

η2

}
I

=
n∑

I=1

ḠI ηI . (4.124)

Using this relation, the initial stress matrix (4.106) is given with

ˆ̄σe =

⎡
⎢⎢⎢⎣

σ̄11 σ̄12 0 0 0
σ̄21 σ̄22 0 0 0
0 0 σ̄33 0 0
0 0 0 σ̄11 σ̄12

0 0 0 σ̄21 σ̄22

⎤
⎥⎥⎥⎦ (4.125)

as ∫
ϕ(B)

grad Δu σ̄ · grad η dv =

ne⋃
e=1

n∑
I=1

n∑
K=1

ηT
I 2 π

∫
ϕ(Ωe)

Ḡ
T
I ˆ̄σ ḠK x1 dω ΔuK .

(4.126)
By inserting matrices (4.124) and (4.125) in expression (4.126), many unneces-
sary numerical operations occur when (4.126) is coded, since many components are
zero. By hand multiplication of the integrand, these superfluous operations can be
avoided and hence the efficiency of the element is increased. With the abbreviation

ᾱ1 IK = ( N̄I,1 σ̄11 + N̄I,2 σ̄21 ) N̄K,1

ᾱ2 IK = ( N̄I,1 σ̄12 + N̄I,2 σ̄22 ) N̄K,2

ᾱ3 IK =
N̄I

x̄1
σ̄33

N̄K

x̄1
,
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the explicit form

Ḡ
T
I

ˆ̄σσσ ḠK =

[
ᾱ1 IK + ᾱ2 IK + ᾱ3 IK 0

0 ᾱ1 IK + ᾱ2 IK

]
(4.127)

is obtained.
By considering relations (4.116) and (4.122), the tangent matrix follows using

(4.126)∫
ϕ̄(B)

{gradΔu σ̄ · gradη + ∇S
x̄η · ¯̂cccccc [∇S

x̄Δu ] } dv =

ne⋃
e=1

n∑
I=1

n∑
K=1

ηT
I K̄

A
TIK

ΔuK .

(4.128)
Here the sub-matrix

K̄
A
TIK

= 2 π

∫
ϕ(Ωe)

[
Ḡ

T
I ˆ̄σe ḠK + B̄

A T
0 I D̄

A
B̄

A
0 K

]
x1 dω (4.129)

is referred to the spatial configuration and belongs to the nodal pair I, K of the

axi-symmetrical finite element. Again for the second term in K̄
A
TIK

, operations can

be saved by hand multiplication since matrices B̄
A
0 I and D̄

A
are sparse. Note that

all terms with a bar in (4.129) have to be evaluated at the deformation state ϕ̄.
Inserting the shape functions (4.28) or (4.30) to (4.32) yields then a 4- or 9-node
finite element. Of course, all integrals (4.118) and (4.129) have to be computed
using numerical integration. This will not be specified here in detail; the approach
is similar to the one in Exercise 4.3.

4.2.5 Deformation Dependent Loads

Applied loads can depend upon the deformation in some technical problems.
On one hand the load direction can change (in such case also the term fol-
lower loads is used) and on the other hand the magnitude of the load can
decrease or increase. As an example, loading of structures due to fluids or
wind can be mentioned. Interaction of structural systems with fluids and gas
are special engineering application of high relevance. A related treatment can
be found in Hassler and Schweizerhof (2008). An in-depth discussion of the
algorithmic treatment of deformation-dependent loads and their discretiza-
tion can be found in Schweizerhof (1982) and Schweizerhof and Ramm (1984)
for the general case and in Simo et al. (1991) and Yosibash et al. (2007) for
axi-symmetrical deformations, while the latter paper discusses discretization
using high order finite element interpolations.

In this section, only loads which are direction depending are considered.
Loads which are always normal to the deformed surface of a solid or structure
will be discussed in more detail. Thus the term describing the surface loads∫

Γσ
η · t̄ dA will be considered, where t̄ = p̂n was introduced in (4.62). This

leads to the surface load term

gp(ϕ ,η) =
∫

ϕ(Γσ)

η · p̂n da . (4.130)
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Here the integration has to be performed with respect to the current configu-
ration. Note that the normal vector n depends on the deformation. The dis-
cretization of (4.130) can be obtained by introducing convective coordinates
with base vectors gα, see also Exercise 3.12. The coordinates are depicted
in Fig. 4.11 for a discretization of the surface of a three-dimensional finite
element with quadratic shape functions.

The normal vector of the discretized surface is given in the spatial con-
figuration by

n =
g1 × g2

‖g1 × g2 ‖
. (4.131)

The base vectors are computed from the deformation field by a partial deriva-
tive with respect to the convective coordinates ξ and η, gα = ϕ,α, where
α = 1 stands for ξ and α = 2 for η. Hence the normal vector can be de-
scribed by

n =
ϕ,ξ ×ϕ,η

‖ϕ,ξ ×ϕ,η ‖ . (4.132)

Since the area element da can be computed with respect to the reference
configuration by da = ‖ϕ,ξ ×ϕ,η ‖ dξ dη, the deformation-dependent load
vector (4.130) can be transformed to the reference configuration of the loaded
element surface, see also Eq. (3.349) and the right part of Fig. 4.13,

gp(ϕ ,η) =
∫

ϕ(Γσ)

η · p̂n da =
∫

Γref

η · p̄ (ϕ,ξ × ϕ,η ) dξ dη . (4.133)

Based on this form, the finite element discretization is straight forward. Using
the isoparametric shape functions yields

ϕe = xe =
m∑

A=1

NA(ξ, η)xA (4.134)

and the derivatives of the components of the position vector xi

xi,α =
m∑

A=1

NA(ξ, η),α xi A (4.135)

ξ

n g2

g1

ξ

jeϕ(∂Ωe)

∂Ω�

η

η

Fig. 4.13 Coordinate systems for deformation dependent loads
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for the loaded element surface. Now the cross product in (4.133) can be
computed. The result, described in vector form, is

n̂e = ϕe,ξ × ϕe,η =

⎧⎨
⎩
x2,ξ x3,η − x3,ξ x2,η

x3,ξ x1,η − x1,ξ x3,η

x1,ξ x2,η − x2,ξ x1,η

⎫⎬
⎭ . (4.136)

The discretization of (4.130) follows with these definitions as

∫
ϕ(Γσ)

η · p̂n da =
nr⋃

r=1

m∑
A=1

ηT
A rA(xe) , with rA(xe) =

∫
∂Ω�

NA p̂ n̂e dξ dη

(4.137)
where

⋃nr

r=1 denotes the assembly of the nr loaded surfaces and ∂Ω� denotes
the surface of the reference element, see right part of Fig. 4.13.

The linearization of the virtual work expression for the deformation-
dependent or follower loads (4.137) has to be computed at state ϕ̄. This can
be derived for constant pressure p using the relations provided in Exercise
3.12. With (4.133), the linearization (3.350) yields

Dgp(ϕ ,η) ·Δu =
∫

Γref

η · p̂ (Δu,ξ × ϕ̄,η + ϕ̄,ξ ×Δu,η ) dξ dη . (4.138)

An explicit evaluation of the cross product leads together with the use of the
isoparametric shape functions for the discretization of the spatial coordinates
describing the element surface to

∫
Γref

η · p̂ (Δu,ξ × ϕ̄,η + ϕ̄,ξ ×Δu,η ) dξ dη =
nr⋃

r=1

m∑
A=1

m∑
B=1

ηT
A k̄AB ΔuB ,

(4.139)
where the sub-matrix k̄AB has the following form

k̄AB =
∫

∂Ω�

p̂ NA (NB ,ξ N̄,η −NB ,η N̄,ξ ) dξ dη . (4.140)

By N̄,α (for α the convective coordinate ξ or η has to be used), the skew
symmetric matrix

N̄,α =

⎡
⎣ 0 x̄3 ,α −x̄2 ,α

−x̄3 ,α 0 x̄1 ,α

x̄2 ,α −x̄1 ,α 0

⎤
⎦ (4.141)

is defined. Since the sub-matrix is non-symmetric for nodes A and B also, the
total element tangent matrix becomes non-symmetric for pressure loading.
Thus, in general, no potential is associated with the pressure load. However
under certain boundary conditions, the total assembled tangent matrix can be
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symmetrical, e.g. for internal pressure in a closed solid. An in-depth discussion
can be found in, e.g. Sewell (1967) and Schweizerhof (1982).

For two-dimensional problems, the description of the normal vector n is
a lot simpler, since then the base vector g2 is expressed by the unit vector e3

which is perpendicular to the x1–x2 plane, see Fig. 4.14. Hence the normal
vector

n̂e = e3 × ϕe,ξ =
{
−x2,ξ

x1,ξ

}
(4.142)

is obtained. Differentiation of the components of the position vector with
respect to the current configuration follows by using the isoparametric shape
functions to describe the element surface, see Fig. 4.10 b and Sect. 4.2.1,

xα,ξ =
m∑

A=1

NA(ξ),ξ xα A . (4.143)

The expression (4.142) can be inserted directly in (4.137). This leads to

∫
ϕ(Γσ)

η ·p̂n da =
nr⋃

r=1

m∑
A=1

ηT
A rA(xe) , with rA(xe) =

+1∫
−1

p̂ NA

{
−x2,ξ

x1,ξ

}
dξ .

(4.144)
The tangent matrix can be computed analogous to the three-dimensional

derivation. With (3.350) and (4.139), the tangent matrix follows directly from
(4.144)

∫
Γref

η · p̂ (e3 ×Δu,ξ ) dξ =
nr⋃

r=1

m∑
A=1

m∑
B=1

ηT
A k̄AB ΔuB , (4.145)

where the sub-matrix k̄AB has the form

ξ

Γref

2

ξ

n̂e

ϕe,ξ

ϕ(Γσ)

x2

e2

e3 x1e1

je

Fig. 4.14 2-D discretization of deformation dependent loads
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k̄AB =

+1∫
−1

p̂ NA NB ,ξ

[
0 −1
1 0

]
dξ . (4.146)

Exercise 4.5: A finite element undergoes axi-symmetrical finite deformations.
Derive the load vector and tangent matrix for a dependent but constant pressure
load. The equations are to be specified for an element with linear isoparametric
shape functions for the displacement field.

Solution: In case of axi-symmetric loading, an integration in circumferential
direction is necessary to compute the weak form of the load vector. Using (4.144),
relation

gp(ϕ , η) =

∫
ϕ(Γσ)

η · p̂n da = 2 π

+1∫
−1

η · p̂ (e3 × ϕ,ξ ) r(ξ) dξ (4.147)

is derived. Linear ansatz functions are chosen for the test function (virtual displace-
ment) η and the deformation ϕ, see (4.17). This yields the discretization depicted
in Fig. 4.15. Using such interpolation, the radius re can be described within an
element

re =
2∑

B=1

NB(ξ) rB with NB =
1

2
( 1 + ξA ξ ) . (4.148)

The coordinates ξA coincide with the nodal coordinates of the reference element
∂Ω�, see Fig. 4.15. This is equivalent to specifying ξ1 = −1 and ξ2 = 1. The test
function and the deformation are approximated in the same way. Hence, for linear
ansatz functions relations,

η =
2∑

B=1

NB(ξ) ηB , ϕe =
2∑

B=1

NB(ξ)xB and ϕe,ξ =
1

2
(x2 − x1) (4.149)

e3 r

n̂

ξ

2

1 2

2

1

ξ

je

ϕ(Ωe)

∂Ω�

p̂
z

Fig. 4.15 Discretization of an axi symmetrical follower load
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follow. The vector ϕ,ξ is tangent to the boundary defined by nodes 1 and 2. Insertion
of this discretization into (4.147) yields

∫
ϕ(Γσ)

η · p̂n da =

nr⋃
r=1

π p̂

2∑
A=1

ηT
A [e3 × (x2 − x1)]

+1∫
−1

NA

2∑
B=1

NB rB dξ . (4.150)

The integral in (4.150) can be solved exactly for linear shape functions

2∑
B=1

+1∫
−1

1

2
(1 + ξAξ)

1

2
(1 + ξBξ) dξ =

2∑
B=1

[
1

2
+

1

6
ξAξB

]
=

2∑
B=1

γAB .

Now the discretized load vector (4.150) can be computed explicitly by using the
coordinates defined in Fig. 4.15 and

e3 × (x2 − x1) =

{
−(z2 − z1)

(r2 − r1)

}
.

This leads to ∫
ϕ(Γσ)

η · p̂n da =

nr⋃
r=1

2∑
A=1

ηT
A rR

A(xe) . (4.151)

The nodal vector rR
A depends upon the deformation state

rR
A = π p̂

{
−(z2 − z1)

(r2 − r1)

}
(γA1 r1 + γA2 r2) . (4.152)

The tangent matrix follows directly from the linearization of (4.147)

D gp(ϕ , η) · Δu = 2 π

+1∫
−1

η · p̂ [ (e3 × Δu,ξ ) r(ξ) + (e3 × ϕe,ξ ) Δu1 ] dξ, (4.153)

where the second term considers the change of the radius due to deformation. With
the explicit form (4.152) and with the matrix form of the cross product

e3 × (x2 − x1) =

[
0 −1
1 0

]
(x2 − x1),

the result

D gp(ϕ , η) · Δu =

nr⋃
r=1

ηT
A π p̂

{[
0 −1
1 0

]
(Δu2 − Δu1)

2∑
C=1

γAC rC

+

[
0 −1
1 0

]
(x2 − x1)

2∑
B=1

γABΔu1 B)

}
(4.154)

is obtained. This relation can be rewritten from

nr⋃
r=1

2∑
A=1

2∑
B=1

ηT
A k̄

R
AB ΔuB (4.155)
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by using Δu2−Δu1 =
∑2

B=1 ξB ΔuB . The matrix k̄
R
AB follows after sum algebraic

manipulations

k̄
R
AB = π p̂

[
− (z2 − z1) γAB −βA ξB

βA ξB + (r2 − r1) γAB 0

]
, (4.156)

where the abbreviation βA =
∑2

B=1 γAB rB was introduced. Now all necessary

matrices are known which have to be implemented in a finite element program. Note

that the analytical integration was only possible since the Jacobi determinant je,

which performs the isoparametric mapping to the reference element, see e.g. Fig.

4.15, disappears in the integrals (4.151) and (4.153).



5. Solution Methods for Time Independent
Problems

The mathematical modelling of technical applications in solid mechanics leads
in general to nonlinear partial differential equations, which characterize the
associated initial and boundary value problems. Once a problem is spatially
discretized by finite elements, a system of ordinary differential equations in
time results. If the time dependency can be neglected then the system of
non linear ordinary differential equations reduces to a nonlinear algebraic
equations system stemming from the finite element discretization

G(v) = 0 ,

see (4.65). Here the unknown variables v ∈ R
N have to be determined (N is

the total number of unknowns). Two different aspects have to be considered
when solving the above equation. They are

1. the general solvability of the nonlinear equation systems and
2. the formulation of adequate numerical methods and algorithms.

The first aspect involves the examination of

– existence of solutions in a defined region,
– number of solutions in this region and
– the influence of the change of function G with respect to the solution.

Clarification of these questions needs methods of nonlinear functional analysis
which have to be applied to the nonlinear partial differential equations re-
sulting from the modelling procedure. This area cannot be treated in-depth
in the framework of this book. However, for applications which fall in the
range of the nonlinear theory of elasticity, results can be found in Marsden
and Hughes (1983), Ciarlet (1988), Johnson (1987), Brenner and Scott (2002)
and Braess (2007). Further, books which contain a general treatment of the
above-mentioned questions are provided by Vainberg (1964) or Ortega and
Rheinboldt (1970). We will assume, in the following, that the solutions of
the equation system G(v) = 0 exist in the considered regions and will de-
vote ourself to the numerical methods for the determination of solutions of
G(v) = 0.

The approximation of solutions of the nonlinear equation system G(v) =
0 can be obtained by different methods. Among these are
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1. methods for the construction of sets which contain solutions,
2. procedures to find all solutions and
3. methods which just approximate one solution.

The first two methods need, in general, deeper knowledge of the underlying
mathematical structure of the associated partial differential equations. Due
to that fact only procedures will be considered which yield one approximate
solution at a time, but which can be applied to find successively other so-
lutions of G(v) = 0. Since a direct solution of G(v) = 0 is in general not
possible, iterative solution procedures have to be constructed. These methods
permit different ways to solve the problem which will be described in detail
in the next sections. In general, different procedures can be distinguished:

– methods which base on linearizations,
– minimization schemes or
– reduction methods, which lead to simpler nonlinear equation systems.

When choosing a solution method, the following fundamental questions have
to be clarified which constitute the success of an iterative method and its
associated algorithm:

– Does the iterative method converge to the solution?
– How fast is the convergence? Does the rate of convergence depend upon

the problem size?
– How efficient is the algorithm?

– How many numerical operations are needed within one iteration step?
– How many iterations are necessary to converge within a given accuracy?
– How much memory of the cpu does the iterative method need?

The first question concerns the global convergence characteristics of the it-
erative method and is essential for the user who needs a robust and reliable
iterative method for his/her problem. Also the other questions are of impor-
tance. The efficiency depends on several factors which are determined, e.g.
by the linear solver within an iterative method, the finite element formula-
tion itself and the convergence properties of the iterative solution method. In
case of large problem sizes, a nonlinear finite element equation system with
a great number of unknowns is obtained which requires a lot of memory and
many numerical operations in the solution process. When the number of op-
erations increases quadratically with respect to the number of unknowns, the
method is said to be of order O(N2). Such method cannot be applied to large
problems. Here methods which need only O(N) operations are advantageous
and thus present a vivid research area, for an overview, see e.g. Rheinboldt
(1984), Hackbusch (1994), Elman et al. (2005), Douglas et al. (2003) and
Saad (2003).

In solid mechanics and nonlinear structural mechanics, the range of prob-
lems is wide and areas are quit different (geometrical nonlinearity, physical
nonlinearity, stability, etc.). Thus there exists up to now no iterative method
which can be applied to all different problem areas in an efficient and robust
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way. Due to that, several methods will be presented which were developed
for the solution of the nonlinear equation system G(v) = 0.

Finite element approximations with the interpolations described in Chap. 4
lead to a system of nonlinear algebraic equations with N unknowns, see (4.65)
in Sect. 4.2.1. This system of equations can be recast for the following con-
siderations in the form

G(v, λ) = R(v) − λP = 0 , v ∈ R
N . (5.1)

The scaling factor λ in front of the load term P is called loading parameter.
It is introduced to be able to change the load level with an iterative method.
The parameter λ is usually determined by the problem at hand, e.g. as total
given load. However, in special iterative methods, it makes sense to consider
λ as an unknown variable.

Equation (5.1) will be solved by an iterative method. For the choice of the
best method for a special application, the aspects discussed above have to
be considered. For nonlinear problems in structural mechanics, there exist a
large number of algorithms and solution procedures. The most common ones
applied within finite element methods are

- fix-point methods,
- Newton-Raphson methods,
- quasi-Newton methods,
- dynamical relaxation and
- continuation or arc-length methods.

Linear equation solvers provide an essential ingredient for the efficient
solution of nonlinear finite element equation systems. This stems from
the fact that linearization is used to construct iterative solution schemes
leading to very large finite element linear equation systems. The iterative
procedures then arrives at the global solution via the solution of several
linear sub-problems. While standard elimination methods are often success-
fully applied to solve the linear equation system of small and middle size
finite element discretizations, see e.g. Taylor (2000), one relies on large sys-
tems on sparse solvers, see e.g. Duff et al. (1989), Duff (2004) and Schenk
and Gärtner (2004). For large systems also iterative equation solvers can
be applied successfully. Here the method of pre-conditioned conjugate gra-
dients and multi-grid methods are often employed for symmetrical matrix
systems, for mathematical details, see e.g. Ciarlet (1989), Hackbusch (1994),
Schwetlick and Kretschmar (1991), Douglas et al. (2003) and Saad (2003).
Applications within the method of finite elements in solid mechanics can be
found, e.g. in Braess (2007), Kickinger (1996), Korneev et al. (2003). The
method of dynamical relaxation makes a “detour”via dynamics to construct
a memory saving iterative solver based on an explicit integration method,
details can be found in Sect. 6.1.1.

The efficiency of the different methods for the solution of nonlinear equa-
tion systems depends also upon the application and its size in terms of number
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of unknowns. As an example, the method of Newton-Raphson can be very
efficient in combination with direct elimination methods for problems with
low number of unknowns. For problems with large number of unknowns,
quasi-Newton methods or the dynamical relaxation can be more efficient
since, even with more iterations, they need less computation time. However,
also a combination of the Newton-Raphson method together with iterative
linear solvers can be very efficient and faster than quasi-Newton procedures,
see e.g. Hackbusch (1994), Meyer (1990), Boersma and Wriggers (1997) and
Jung and Langer (2001).

5.1 Solution of Nonlinear Systems of Equations

Three common algorithm which are applied for the solution of nonlinear finite
element problems, characterized by Eq. (5.1), will be presented and compared
in this section.

5.1.1 Newton-Raphson Method

The most frequently applied scheme for the iterative solution of systems
of nonlinear algebraic equation is the Newton-Raphson algorithm. It
is based on a Taylor series development of (5.1) at an already known
state vk

G (vk +Δv, λ̄ ) = G (vk, λ̄ ) +DG (vk, λ̄ )Δv + r (vk, λ̄ ) . (5.2)

The loading parameter λ̄ denotes the load level for which the solution has
to be determined. In (5.2) DG ·Δv characterizes the directional derivative
of G at vk, also referred to as linearization, see Sect. 3.5. The linearization
of the vector G yields a matrix, which is also known as Hesse-, Jacobi- or
tangent matrix. This matrix will be abbreviated in the following by KT , see
Sect. 4.2.2 and 4.2.4. The vector r is the residuum of the Taylor series. By
neglecting the residuum, the linear equation system G (vk +Δv, λ̄ ) = 0 is
obtained from (5.2) which is the basis of the following iterative algorithm for
the solution of Eq. (5.1).

This algorithm, so far, determines the solution for the load level defined
by the load parameter λ̄. The associated convergence behaviour is depicted
in Fig. 5.1 for a one-dimensional problem. For this purpose, the nonlinear
equation G(v, λ̄) = R(v) − λ̄ P = 0 was normalized as: R̂(v) − λ̄ = 0.

The rate of convergence of the Newton-Raphson scheme is character-
ized by the inequality ‖vk+1 − v ‖ ≤ C ‖vk − v ‖2, where v is the solu-
tion of (5.1), see e.g. Isaacson and Keller (1966, pp. 115) or Schwetlick and
Kretschmar (1991, pp. 195). The quadratic convergence of the Newton-

Raphson scheme, which is apparent from the above inequality, has a local
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Box 5.1 Algorithm for the Newton-Raphson scheme

Initial values: v0 = vk .

Iteration loop i = 0, 1, . . . until convergence

1. Compute G (vi, λ̄) and KT (vi)
2. Compute the displacement increments: KT (vi) Δvi+1 = −G (vi, λ̄)
3. Compute new displacement: vi+1 = vi + Δvi+1

4. Test for convergence

‖G (vi+1, λ̄) ‖
{
≤ TOL −→ Set : vk+1 = vi+1 , STOP
> TOL −→ Set i = i + 1 go to 1)

character since it is only valid near the solution point. This convergence
behaviour is advantageous since most of the time only a few iterations are
needed to obtain the solution of (5.1). A drawback of the Newton-Raphson

scheme stems from the fact that, in every iteration step, the tangent matrix
KT has to be computed and a linear equation system has to be solved, which
can be quite time consuming and hence expensive. To shorten the notation,
the term Newton scheme will be used instead of the historically more correct
Newton-Raphson scheme.

Since it is often very complicated to derive the tangent matrix analytically,
different other approaches are possible. One is related to a combination of
automatic and symbolic differentiation, see Korelc (1997), and another com-
puted the derivatives by difference quotients. In combination with Newton

method, the latter approach is called a discrete Newton scheme. One pos-
sibility is to apply the forward difference quotient. Using its definition, the
approximation

vv1 v2 v3

λ

λ̄

R̂(v)

Δv1 Δv2

vk+1vk

∂R̂(v)
∂v

∣∣∣∣∣
v1

Fig. 5.1 Illustration of the Newton-Raphson scheme
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km ≈ 1
hm

[G(vi + hm em , λ̄) − G(vi , λ̄) ] (5.3)

is obtained for the m-th column of the tangent matrix. In this relation, hm

is the step size and em is a vector, which contains zeros everywhere besides
at the position m, where it has the value 1. In case of N total unknowns, the
tangent matrix can be obtained by N rows km as follows

KT = [k1 k2 · · · km · · · kN ] . (5.4)

The step size in (5.3) has to be chosen such that the approximation of the
tangent matrix is as good as possible. Optimal is a very small value for hm.
This choice is, however, not possible due to the limited computer accuracy.
Suggestions for the practical choice of step size hm can be found, e.g. in
Dennis and Schnabel (1983) or Schwetlick and Kretschmar (1991). In case of
a computer accuracy of η, the following estimate is valid

hm = ν ( | (vm)i | + τ ) with ν = 10−3 . . . 10−5 <
√
η , (5.5)

where the number τ should be chosen as τ = 10−3 to prevent that hm becomes
zero for (vm)i = 0. Using such a step size leads even for the discrete Newton

scheme to quadratic convergence near the solution point.
A disadvantage of this simple scheme is the large number of evaluations of

the residual G needed for the approximation of the tangent matrix in (5.4).
In detail, when the equation system has N unknowns then also N evaluations
are needed which makes the method inefficient for large equation systems. A
more efficient way is to use the numerical differenciation procedure on ele-
ment level; then only n evaluations related to the size of the element residual
vector are needed. Furhtermore, this methodology can be helpful during the
development of nonlinear finite elements since the analytical derivation of
the tangent matrix can be validated with the help of the numerical tangent
obtained from (5.4). Also, for complicated constitutive equations, the incre-
mental constitutive tensor can be determined at each Gauss point of a finite
element using the finite difference scheme. Such applications will be discussed
in more detail in Sect. 6.2.

5.1.2 Modified Newton Scheme

A simple modification of the Newton-Raphson algorithm is related to a
scheme in which the tangent matrix is not changed in every step of the
iteration in Box 5.1. The most simple procedure is to compute and assemble
the tangent matrix only in the first step of each load step, see Fig. 5.2.
This procedure is known as modified Newton method. It has the obvious
advantage that the tangent matrix KT (vi) has to be inverted or triangulated
only once when the equation system KT (vi)Δvi+1 = −G(vi, λ̄) in Box 5.1
is solved. This leads to considerable savings of computing time since the
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vv1

λ

λ̄

R̂(v)

Δv1

vk vk+1
vi

Fig. 5.2 Modified Newton-Raphson method

inversion or triangulation of KT (vi) needs in the worst case O(N3) operations
while the backward substitution needed to compute a new solution with the
unchanged tangent matrix only needs O(N2) operations which is one order
of magnitude less.

However these savings may be counterbalanced by the fact that the mod-
ified Newton method only converges linearly close to the solution point.
This behaviour is illustrated in Fig. 5.2 which shows the convergence of the
method for a constant tangent matrix during the iterations within one load
step. In structural applications, this scheme is also known as method of initial
stiffness since KT (v0) represents the stiffness of the structure at the initial
deformation state v0. Due to its poor convergence behaviour, the modified
Newton method can only be applied successfully in cases where weak non-
linearities are present.

5.1.3 Quasi-Newton Method

Since the tangential matrix KT has to be computed, assembled and trian-
gulated at every iteration step within the Newton-Raphson method, it
can be appropriate in case of large dimensional problems to approximate the
tangent by a secant. The secant is computed approximately from the known
deformation states of the previous iterations. This constitutes the main idea
of a quasi-Newton method in which the inverse of KT (vi), which is needed
within the algorithm described in Box 5.1, is approximated with minimal
computational effort. Within this process, the equation

KQN
T i (vi − vi−1) = −(Gi − Gi−1) (5.6)

has to be fulfilled which clearly shows that instead of the tangent matrix
KT (vi) the secant matrix KQN

T i is introduced. This relation can also be
written for the inverse HQN

i of KQN
T leading to
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HQN
i gi = wi . (5.7)

Here the following abbreviations for the vectors gi = −(Gi − Gi−1) and
wi = vi −vi−1 were introduced. The matrix HQN

i denotes a quasi-Newton

approximation to the inverse of the tangent matrix KT . A number of update
algorithms exist for the explicit determination of HQN

i . Here the BFGS-
method will be discussed in more detail since it has been observed that the
associated update formula yields the best convergence properties for solid
mechanics problems, see e.g. (Luenberger (1984) for the underlying mathe-
matics and Matthies and Strang (1979)) for finite element applications. An
illustration of the associated convergence behaviour can be found in Fig. 5.3,
which, for comparison, also contains the tangent of Newton method and
the slope related to the modified Newton method. In this simplified de-
piction, it can be observed that the evaluation at points vk = v0 and v1
leads to a secant which yields a better approximation of the tangent than
the modified scheme. However, the secant method does not converge as good
as the classical Newton method. Mathematically it can be shown that the
quasi-Newton method converges super linear, see e.g. Luenberger (1984)
and Bazaraa et al. (1993).

The BFGS method – named after the originators Broyden, Fletcher,

Goldfarb and Shanno – was originally developed for nonlinear opti-
mization problems. It belongs to the class of methods which try to ap-
proximate the inverse of the tangent matrix in every iteration step of
Newton method by a secant, see Eq. (5.7). Hence also in case of the
application of the BFGS-update, still the algorithm stated in Box 5.1 can
be used. Only the equation system under point (2) has to be reformu-
lated by introducing the BFGS-update of the inverse of the secant
matrix.

vv1

λ

λ̄

Δv1

vk vk+1

Δv2

v2

R̂(v)

Fig. 5.3 Illustration of the BFGS method
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Since a detailed derivation which leads to the BFGS-updates goes beyond
the scope of this book, only the basic idea behind the update formulae are
discussed and the end result are stated. The associate mathematical back-
ground and a detailed derivation can be found in, e.g. Luenberger (1984).
Applications within the finite element method can be found in Matthies and
Strang (1979) or Bathe (1982).

The change of the inverse of the matrix KT is computed by a rank-two
update within the BFGS-method. It is defined as follows

K−1
T i ≈ HQN

i = (1 + ai b
T
i )HQN

i−1 (1 + bi a
T
i ) . (5.8)

Within this equation, the following definitions have been used

wi = vi − vi−1,

gi = Gi−1 − Gi,

ai =
1

gT
i wi

wi, (5.9)

bi = −

⎧⎨
⎩gi −

[
wT

i gi

wT
i KQN

i−1 wi

] 1
2

Gi−1

⎫⎬
⎭ .

This update scheme preserves the symmetry of KQN
i−1 . Observe that KQN

i−1 wi =
−Gi−1, and hence this product is already known in (5.9). Due to the form
of Eq. (5.8), matrix KT has to be factorized only once in the beginning of
the iteration. This is most time consuming step for an equation system with
a large number of unknowns. Furthermore, it can be easily seen that the
multiplication of KT (vi)−1 with Gi+1, needed for the computation of Δvi+1

(see point 2 in Box 5.1), involves only scalar products which can be com-
puted in a very fast way. Hence the new approximation of the inverse has
not to be computed explicitly. It is sufficient to perform the multiplication
with the already known vectors from the iteration steps 0 ≤ j ≤ i− 1. This
however requires the storage of all j vectors aj , bj and gj . In practical ap-
plication, the number of stored vectors aj , bj will be limited to a certain
number to minimize storage usage. It has been observed that a good value
for the number of stored vectors lies in the range 0 < j < 15. Such procedure
is also called partial BFGS-update. Finally, it should be remarked that the
simple multiplication of the inverse of KT , according to Eq. (5.8), will destroy
the sparse structure of KT (v)−1; hence the dyadic products ai b

T
i yield full

matrices.

5.1.4 Damped Newton Method, Line-Search

Often it is not possible to apply the full load within one step within a nonlin-
ear solution, even if the problem is purely elastic. This is due to the fact that
the Newton-Raphson method only converges locally, see e.g. Luenberger
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Fig. 5.4 Convergence region of the Newton-Raphson method

(1984), and that more than one solution is possible in nonlinear problems.
In general, convergence to a specific solution can be expected only within a
special region. This region is depicted in Fig. 5.4 by the grey region in which
the initial starting value of the iteration must be located to obtain a solution
related to path (1). Starting values outside the grey region yield tangents
which result in an intermediate solution outside the grey region, see path (2)
in Fig. 5.4.

Despite these difficulties, there exist several possibilities to compute a
solution of the nonlinear problem. At first, the loading can be applied in nink

incremental steps. In that case, the total load, defined by the load parameter
λ̄, will be split as follows: λ̄ =

∑nink

i=1 Δλi. Now the algorithm stated in Box
5.1 has to be executed within a loop over all load increments Δλi. Hence
the nonlinear problem is solved nink-times which results in a considerable
additional expenditure with respect to the original problem. However often in
path or history-dependent nonlinear problems (like elasto-plastic or frictional
contact problems), it is anyway necessary to apply the load in several steps
to capture the correct physical behaviour.

Another possibility is to construct a global method by damping the
Newton-Raphson iteration. For this purpose, the Newton-Raphson al-
gorithm, see Box 5.1, can be rewritten such that the computation of the new
displacement increments, see point (3), is performed by

vi+1 = vi + αiΔvi+1 = vi − αi K
−1
T i Gi . (5.10)

With the procedure, a situation is avoided – as depicted by path (2) in
Fig. 5.4 – where the solution jumps to another minimum. Such behaviour
results usually in a divergence of the Newton scheme, especially for large
nonlinear equation systems, and hence no solution is obtained at all.

For the damping of the Newton method, the damping parameter αi has
to be chosen such that its value is limited by 0 and 1. The selection of ai

could be done heuristically. However, it is more reliable to develop a sound
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mathematical method for the selection of the damping parameter which of
course should not be too costly. Based on the idea of a descent method in
which the residuum is reduced in every iteration step

‖Gi+1 ‖ = ‖G(vi + αiΔvi+1) ‖ < ‖Gi ‖ ,

it makes sense to minimize the energy of the system in order to stay in the
region of attraction of the solution to point P . Besides the energy, also the
function

f(v) = G(v)T G(v) (5.11)

can be minimized since the associated solution is also solution of G(v) = 0.
For the determination of the damping parameter αi, either the energy of the
system or Eq. (5.11) has to be formulated in terms of αi which yields a scalar
relation for the determination of the damping parameter αi.

As an example, a damped Newton scheme for a hyperelastic solid will be
discussed. Here the energy Π(v) can be written, see (3.297), with respect to
αi. Now the requirement for a minimum is Π(αi) −→MIN . This minimum
will be assumed for

∂Π

∂αi
=
∂Π

∂v

∂v

∂αi
= G(αi)T Δvi+1 = 0, (5.12)

and hence condition

g(αi) = ΔvT
i+1 G (vi + αiΔvi+1 , λ̄) = 0 (5.13)

can be obtained which the damping parameter αi has to fulfil. Note that
(5.13) represents a nonlinear function with respect to αi.

A similar result is derived when (5.11) is used

g(αi) = −GT
i G (vi + αiΔvi+1 , λ̄) = 0 . (5.14)

To compute the damping parameter αi from (5.13) to (5.14), Newton

method can be applied. Since such a procedure is too costly, other efficient
methods to approximately determine αi have been introduced. These are the
so-called inexact line-search methods. The solution of (5.13) can be deter-
mined by a secant method which is also known as method of regula falsi.
Within this procedure, only the function G has to be evaluated. The line-
search is executed only if the function in (5.13) is zero within the interval.
With this restriction, which excludes αi > 1, the region of attraction is lim-
ited. The solution g(αi) = 0 in the interval 0 ≤ αi ≤ 1 can be computed
iteratevely once the sign of the function g(αi) changes: g(0) · g(1) < 0. For
this, the values of g(αi) at 0 and 1 have to be computed. If this condition is
fulfilled, then the iteration (with iteration index k = 1, 2, . . .) is started

αk+1
i = αk

i − g(αk
i )

[
αk

i − αk−1
i

g(αk
i ) − g(αk−1

i )

]
(5.15)
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to compute αi for which g(αi) = 0. As already mentioned, it is not necessary
to determine the value of αi for which (5.13) is zero exactly. In most practical
applications, the iteration (5.15) can be terminated once the condition

| g(αk+1
i ) | ≤ 0.8 | g(0) | (5.16)

is fulfilled, see e.g. Crisfield (1991). Further criteria for the determination of
the iteration (5.15) are provided, e.g. by the Armijo rule or the Goldstein

test. These are described in detail in Luenberger (1984) and Bazaraa et al.
(1993).

5.1.5 Path-Following or Arc-Length Method

As depicted in Fig. 5.4, the solution path of G(v, λ) = 0 does not have a
unique solution for every load parameter λ. In such case, it is not possible to
reach solution paths behind the maximum of the load deflection curve with
the methods described so far. In more detail, possible nonlinear solution paths
are described in Fig. 5.5. Between points L1 and L2, this path even exhibits
a decrease of the displacement.

Following the entire solution path of the nonlinear systems of Eq. (5.1)
is of practical interest in the case that the overcritical behaviour of a struc-
ture has to be known, like in shell buckling. But also material instabilities in
softening areas of, e.g. soils or metals have to be determined. Due to this de-
mand, path-following methods were developed which allow to follow arbitrary
nonlinear solution paths. The path-following is even possible when singular
points are present in which the determinant of the tangent matrix is equal
to zero. Methods which allow general path-following are called arc-length or
continuation methods. We will describe different variants of these methods
in more detail since they present the most general tool to obtain solutions of
nonlinear equation systems even on paths in which stable solutions do not
exist.

λ

v

L1

L2

B

Fig. 5.5 Nonlinear load–deflection diagram
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Figure 5.5 characterizes a general nonlinear solution curve of G(v, λ) = 0.
This curve has two limit points L1 and L2, which denote a local minimum
and maximum of the load level λ. At these points, the determinant of the
tangent matrix is zero. This holds also for the bifurcation point B, in which
a secondary solution path branches off the primary solution path. For a more
precise definition of these points, see Chap. 7, which includes also special
algorithms for the determination of these singular points. Here methods will
be developed which allow the successive determination of solution points of
the nonlinear equation G(v , λ) = 0.

Since path-following methods are well established, a number of different
methods are available and documented in the literature. The first work in
this field can be found in Riks (1972). Various variants were developed in the
following years and investigated with respect to their efficiency and robust-
ness. We refer to Keller (1977), Ramm (1981), Crisfield (1981), Schweizerhof
and Wriggers (1986) and Wagner (1991). Overviews can be found in, e.g.
Riks (1984), Wagner and Wriggers (1988) and Crisfield and Shi (1991).

The essential idea of a path-following method is to add a constraint con-
dition to the set of nonlinear equations (5.1) from which the unknown load
parameter λ can be determined. This extends equation (5.1) and thus the
equation system

G̃(w) =
{

G(v, λ)
f(v, λ)

}
= 000 , w =

{
v
λ

}
(5.17)

is obtained where the generalized displacement vector w was introduced.
Here the general form of the constraint condition is denoted by f(v, λ) = 0
which is written in terms of the unknown displacement vector and load level.
Special techniques can be developed within this framework which include
besides different variants of the arc-length methods also load- and displace-
ment control. When the Newton-Raphson method is be applied to solve
Eq. (5.17), a linearization of this set of equations is necessary, see e.g. Schweiz-
erhof and Wriggers (1986). The result of such linearization at a known state
wi = (vi, λi) can be stated for the system (5.17) as

D G̃(wi) ·Δw =
{
DG(vi, λi) ·Δv +DG(vi, λi) ·Δλ
D f(vi, λi) ·Δv +Df(vi, λi) ·Δλ

}
. (5.18)

The terms which have to be computed within the linearization process are
specified in the following. DG(v, λ) = KT represents the tangent ma-
trix which was already introduced in the Newton-Raphson method, see
Sect. 5.1.1. Using Eq. (5.1), the linearization with respect to λ can be de-
termined explicitly: DG(v, λ) · Δλ = −PΔλ. Furthermore, the definition
Df · Δv = fT Δv is introduced, where fT = ∇v f is the gradient of the
constraint equation f with respect to the displacement vector v. Finally, the
term Df(v, λ) ·Δλ = f,λΔλ denotes the partial derivative of f with respect
to the load parameter λ. With these definitions, the linearization of (5.17)
can be stated in matrix form
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(
KT −P
fT f,λ

)
i

{
Δv
Δλ

}
i

= −
{

G
f

}
i

. (5.19)

The matrix of this equation system for the unknown incremental values of
displacement vector and load parameter is non-symmetric. One can show
that this matrix does not become singular at limit points although the tan-
gent matrix KT is singular at such points. The matrix in (5.19) is, however,
singular at bifurcation points. The non-symmetric equation system (5.19) is
usually solved by a partitioning technique to be able to use the symmet-
ric structure of the tangent matrix KT . This procedure leads to an efficient
algorithm. However, the property of non-singularity at limit points is lost.
This is in practical application of no great significance since the incremental
algorithm does not hit, in general, the spot of a limit point directly during
path-following.

The partitioning technique – also called block elimination – leads to two
equations for the displacement increments Δvi+1 and the increment of the
loading parameter Δλi+1. By rewriting the first equation of (5.19), the dis-
placement increment is obtained as

Δvi+1 = Δλi+1ΔvPi+1 +ΔvGi+1 (5.20)

with the definitions

ΔvPi+1 = (KTi)−1 P , ΔvGi+1 = −(KTi)−1 Gi . (5.21)

The unknown increment of the loading parameter λ is now determined by
the second equation of (5.19). By inserting (5.20), the increment of λ follows
as

Δλi+1 = − fi + fT
i ΔvGi+1

(f,λ)i + fT
i ΔvPi+1

. (5.22)

This procedure yields, besides the displacement increment, also the magni-
tude of the load parameter. The additional effort is not big since the time
consuming triangularization of the tangent matrix KT has only to be per-
formed once. In total, using the block elimination, two scalar products have
to be computed for the determination of λi with respect to (5.22), and addi-
tionally one backward substitution step for the determination of ΔvPi+1 in
(5.21)1.

Since the relations derived so far are linearized in a consistent way, the
algorithm based on Eqs. (5.21) to (5.22) will converge quadratically. Contrary
to the standard Newton-Raphson method, the arc-length method needs a
predictor step. In this step, the linear equation system (5.21)1 is solved with
the right hand side P. After that, the load factorΔλ0 is determined by scaling
of the tangent vector which consist of ΔvP0 and Δλ0. This scaling is based
on an increment Δs of the arc-length and yields ±Δλ0 ‖ΔvP0‖ = Δs, see
e.g. Ramm (1981) and Wagner (1991). Figure 5.6 presents a sketch of the
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Δv1
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f(v, λ) = 0

G(v, λ) = 0

s

λkP

Δλ0P
Δs

λP

Δvi

vi vk+1

Fig. 5.6 Arc-length method

arc-length method and depicts the fact that the name of the method stems
from the parameterization of the solution path by using the arc-length s.

The sign of the incremental loading factor Δλ0 depends upon the tangent
to the solution path and thus will change when the path is followed, see
e.g. Fig. 5.5 for the case that the limit point L1 is bypassed. For positive
slopes a positive and for negative slopes a negative sign in front of Δλ0

has to be chosen. The decision for the correct sign in front of the loading
factor can be based on the definiteness of the tangent matrix. However, this
leads to difficulties since the tangent matrix is no longer positive definite
once a bifurcation point has been bypassed, see e.g. point B in Fig. 5.5.
Hence another criterion is needed which is not sensitive to bifurcation points.
A simple and easily computable measure is the so-called current stiffness
parameter, which was introduced in Bergan et al. (1978). This parameter is
defined as follows

CSi =
κi

κ0
with κi =

PTΔvi+1

ΔvT
i+1Δvi+1

. (5.23)

Clearly the scalar product PTΔvi+1 does not change its sign when a bifur-
cation point is bypassed, since at that point the load P and the displacement
increment Δvi+1 have the same direction. This is, however, no longer true
when a limit point is bypassed. Hence the current stiffness parameter can be
used as a measure for the change in direction of the load increment. Further
measures which can be defined with respect to a nonlinear solution path can
be found in Eriksson (1988).

The complete algorithm for the arc-length method is summarized in
Box 5.2. The starting point is given by the displacement vector vk and
its associated load state λk, see Fig. 5.6. The notation is conformed to
the Newton-Raphson method. This algorithm differs from the classical
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Box 5.2 Algorithm for the arc-length method

1. Initial values: v0 = vk and Δs

2. Predictor step KT0 ΔvP0 = P

3. Compute load increment λ0 = λk + Δλ0 = λk ± Δs√
(ΔvP0)T ΔvP0

4. Iteration KTi ΔvPi+1 = P
loop i = 0, 1, 2, . . .

KTi ΔvGi+1 = −G(vi, λi)

5. Compute increments Δλi+1 = − fi + fT
i ΔvGi+1

f,λi + fT
i ΔvPi+1

Δvi+1 = Δλi+1ΔvPi+1 + ΔvGi+1

6. Update λi+1 = λi + Δλi+1 , vi+1 = vi + Δvi+1

7. Convergence test ‖G(vi+1, λi+1)‖ ≤ TOL =⇒ Stop
otherwise go to 4.

Newton-Raphson method by the fact that load parameter is computed
from the constraint condition f(v, λ) = 0 for a given arc-length Δs. Opti-
mal is a choice of the constraint in a form which crosses the solution path
G(v , λ) = 0 perpendicularily. This would lead to the most robust method.
Unfortunately, the form of the solution path is not known; hence this condi-
tion can only be met approximately.

Some selected forms of the constraint condition for the arc-length method
are shown in the following table. These are illustrated in Figs. 5.6 to 5.9. Note
that the last constraint fulfils the condition of perpendicularity in the best
way. Figure 5.7 depicts the classical method of load control which in the frame
work of the arc-length method is described by the constraint condition f =
λ−λ̄. For a given value λ̄, this constitutes a straight line parallel to the v-axis.
The evaluation of (5.22) for the constraint condition yields λk +Δλk = λ̄ or
Δλk = 0, and hence with (5.20) leads to Δvk = ΔvGk which are exactly the
equations of the standard Newton-Raphson method. However, the region
behind λ∗ cannot be reached by the load control constraint.

This is possible by displacement control which can be observed for the
constraint condition f = vA − v̄ in Fig. 5.8. The constraint condition of the
displacement control can only be formulated for one component vA of the
displacement field. Hence the user of this method has to select a component
of the displacement field which is decisive for the nonlinear process. The
specification of Eq. (5.22) leads with ∇v(vA−v̄) = eT

A (the vector eA contains
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Table 5.1 Examples for constraint conditions

Nr. Name Constraint condition

1. Load control f = λ − λ̄

2. Displacement control
Batoz, Dhatt (1979)

f = vA − v̄

3. Arc-length method
Riks (1972)

f = (v0 − v̄)T (v− v0)
+(λ0 − λ̄) (λ − λ0)

4. Arc-length method
Crisfield (1981)

f =
√

(v− v̄)T (v− v̄) + (λ − λ̄)2 − Δs

λ

λ̄

λ

v∗ vv̄v

λ∗

Fig. 5.7 Load control Fig. 5.8 Displacement control

zeros and only at the position A the value 1) to the relation

Δλk = −vAk
− v̄ + eT

AkΔvGk

eT
AkΔvPk

= −vAk − v̄ +ΔvAGk

ΔvAPk
. (5.24)

By using a displacement control for the nonlinear solution, the region on
the other side of v∗ cannot be reached. This is only possible when the arc-
length method is applied in conjunction with one of the constraint conditions
summarized in Table 5.1. These depend upon the displacement v as well as
on the load parameter λ. The constraint equation introduced by Riks (1972),
Table (5.1)3, is linear in v and λ. It describes a normal plane perpendicular
to the tangent w0 − w̄ = (v0 − v̄ , λ0 − λ̄) of the curve computed at the last
obtained equilibrium state (G̃(w̄) = 000). The vector w0 denotes the solution of
the predictor step, see Fig. 5.9. The linearization of the constraint condition,
Table (5.1)3, yields

fT
k = (v0 − v̄)T , f,λk = λ0 − λ̄ , (5.25)
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f(v, λ)
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G(v, λ)
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w̄

f(v, λ)

ds

Fig. 5.9 Normal plane Fig. 5.10 Spherical surface

which is used in (5.22) to compute Δλk. In the case that the tangent from
the last iteration, wk, is chosen instead of w0, then a rotation of the normal
plane constraint results which is adapted to the solution, see Ramm (1981).

An arc-length method based on a nonlinear constraint was developed by
Crisfield (1981) who introduced a sphere around the last converged step, see
Table (5.1)4. This spherical constraint is depicted in Fig. 5.10 where the last
converged equilibrium state is denoted by w̄. The advantage of this condi-
tion is that there will be at least one intersection between the spherical con-
straint and the nonlinear solution path. This is not always the case when the
constraint condition introduced by Riks (1972) is applied. The drawback of
Crisfield methods relates to the fact that the sphere intersects the solution
path in most cases at two different points, see Fig. 5.10. Here the “correct”one
has to be chosen, see Crisfield (1981). A consistent linearization of the spheri-
cal constraint was not provided by Crisfield (1981); it can be found in Schweiz-
erhof and Wriggers (1986). With g(v, λ) =

√
(v − v̄)T (v − v̄) + (λ− λ̄)2,

relation

fT
k = (vk − v̄)T / g(vk, λk), f,λk = (λk − λ̄)T / g(vk, λk) . (5.26)

is derived for the incremental step k. Further constraint conditions for the
arc-length method were discussed in, e.g. Ramm (1981), Fried (1984) and
Wagner (1991).

The vector v contains in shell or beam problems besides the nodal dis-
placements also nodal rotations which are, contrary to the displacements,
dimensionless. Due to this, it can be advantageous to weight the compo-
nents of vector v in the constraint conditions, see Box 5.2, by different scal-
ing factors. A discussion related to such weighting of the nodal degrees of
freedom (different weights for the displacement and rotations) can be found
in Schweizerhof and Wriggers (1986). In the same paper, also the differ-
ent constraint conditions, summarized in Table 5.1, were compared. It was
shown by means of different examples that almost all constraint conditions
yield the same robustness of the continuation algorithm with respect to the
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convergence of the solution. A slightly better performance for large steps can
be obtained with the spherical constraint of Crisfield (1981); however this is
also the most costly algorithm since always the intersection of two points of
the sphere with the solution path has to be checked.

Finally it has to be said that a continuation method, while more robust
than the standard undamped Newton-Raphson scheme, is not a globally
convergent algorithm. This means that there exist cases in which algorithms
ensuring global convergence have to be applied. One of these algorithm is the
line-search technique which can be combined with the arc-length method. The
procedure corresponds essentially to the algorithm discussed in Sect. 5.1.4.
For a detailed description of a combination of arc-length and line-search meth-
ods, see Crisfield (1997).

Besides an introduction of line-search algorithms to guarantee global con-
vergence of a continuation methods several methods based on heuristics were
developed. These have the goal to adjust the step-length – here the incre-
ment of the arc-length Δs – automatically during the solution. This is es-
sential since often regions exist within the nonlinear solution path given by
G(v , λ) = 0 where some solution points can be computed using large step
sizes. On the other hand, there can be regions with sharp changes in the
curvature (e.g. close to limit points) where a small step size is necessary to
obtain a convergent solution. Since the form of the nonlinear solution path
is not known a priori, the step size cannot be changed beforehand. A simple
but efficient and reliable rule which automatically controls the step size is as
follows:

In the case that the number of Newton iterations needed to achieve con-
vergence is larger than 9 steps, the step length is divided into half (note that
one has to start from the last computed solution point again). In the case
that the number of Newton iterations is below 5 steps, the step size can be
doubled.

The threshold values 5 and 9 depend upon the solution accuracy TOL,
see Box 5.1, and have to be adjusted for different values of TOL. Further
algorithms which can control the step size within the arc-length method are
discussed in, e.g. Crisfield (1991).

An example in which the arc-length method has to be applied will be
considered next. Here the nonlinear response of a relatively simple structure,
a star shape dome, is investigated. Its bifurcation behaviour was studied in
Wriggers et al. (1988). Here only the primary path of the solution will be
computed.

The star shaped dome consists of nonlinear truss elements, see Sect. 9.1,
which are modelled by the St. Venant elastic constitutive equation with
a Young modulus of E = 1079.6. The cross sectional area of all trusses is
A = 10. Top view and front view of the dome are depicted in Fig. 5. 11.

The outer nodes of the finite element mesh are located on a cirlcle with
radius Ro = 50 while the inner nodes lye on a circle with radius Ri = 25.
The inner nodes are located at a height of Hi = 6, 216 and the mid node is
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Fig. 5.11 (a) Top view and (b) front view of the star shaped dome

located at a height of Hi = 8, 216. The structure is simply supported at all
outer nodes. A point load is applied at the apex of the dome.

The resulting load displacement curve is plotted in Fig. 5.12. It depicts
the complex nonlinear behaviour of this simple structure. It is based on a
first snap-through of the inner part of the dome followed by a complex snap-
through of the outer part of the dome together with a snap-back of the inner
part. Finally, the inner part snaps through again and after that the entire
dome depicts again a stable behaviour. To overcome the different limit points
in the load displacement curve, the current stiffness parameter was used to

Fig. 5.12 Load displacement curve of the star shaped dome
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change load directions. Furthermore, the automatic load stepping scheme,
mentioned above, needs to be applied for an efficient solution of this prob-
lem. This is due to the fact that the load steps have to be reduced around
limit points while they can be increased again once a limit point has been
bypassed. In total, 320 load steps were necessary to obtain the load displace-
ment curve in Fig. 5.12.

Exercise 5.1: The system given in Fig. 5.13 is loaded by a prescribed dis-
placement v̄ along the boundary. Derive the equations needed to construct an
arc-length method under the condition that the boundary loading is enforced
via a penalty method.

Solution: Since no external forces are acting on the system, the load vec-
tor P in (5.1) is zero. For an enforcement of the boundary displacement, the
penalty method is applied. It can be used to include the boundary displace-
ment via the constraint condition

v − λ v̄ = 0

defined at the boundary. This constrains, for a given “load factor”λ, the
displacement on the boundary v to be equal to the prescribed displacement
v̄. This constraint condition can now be considered within the matrix form
of the discretized nonlinear equilibrium condition. It yields

R(v) + εEv̄ (v − λ v̄ ) = 0 . (5.27)

The term Ev̄ denotes a diagonal unit matrix which only contains values
at nodal points corresponding to the degrees of freedom at which the dis-
placement v̄ is prescribed. ε is the penalty parameter which has to be cho-
sen sufficiently large such that the constraint is fulfilled accurately enough.
This method described in (5.27) for prescribing displacements at the bound-
ary is used since a long time in different finite element programs, see e.g.
Bathe (1986). In addition to (5.27), the constraint condition given in (5.17):
f(v , λ) = 0 has now to be formulated for the arc-length method. The lin-
earization yields an equation system for the unknown increments of the nodal
displacements v and the load parameter λ

λv̄

Fig. 5.13 Enforcement of a given displacement within the arc-length method
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[
KT + εEv̄ −εEv̄ v̄

f T
, u f, λ

] {
Δv
Δλ

}
= −

{
R(v) + εEv̄ (v − λ v̄)

f(v , λ)

}
. (5.28)

The solution of this equation system can be obtained analogous to (5.17)
leading after some manipulations to

K̂T = KT + εEv̄ and Ĝ = R(v) + εEv̄ (v − λ v̄) (5.29)

and
ΔvG = −K̂

−1

T Ĝ and ΔvP = K̂
−1

T εEv̄ v̄ (5.30)

with an equation for the displacement increments

Δv = ΔvG +ΔλΔvP , (5.31)

and for the increment of the load parameter

Δλ = − f + fTΔvG

(f,λ) + fTΔvP

. (5.32)

These relations are equivalent, besides the definitions in (5.29), to the
Eqs. (5.20) and (5.22) of the classical arc-length method.

As an example, the arc depicted in Fig. 5.14 is considered which spans a
width related to an angle of α = 60◦. The inner radius of the arc is Ri = 100
and its thickness is t = 3. The arc is clamped at both sides. Additionally, a
special constraint is introduced which is located at the left half, see Fig. 5.14.
It has the width of b = 2 and an initial gap of δ = 0.1 with respect to the
arc, and hence represents a contact condition. The computation is performed
by using isoparametric finite elements with quadratic shape functions to cap-
ture the bending behaviour. Three elements are used in thickness direction.
In total, 150 elements are applied to discretize the arc. The nonlinear fi-
nite element formulation corresponds to the one derived in Exercise 4.3. The
constitutive parameters of the St. Venant material are the Young mod-
ulus E = 40000 and the Poisson ratio ν = 0.2. A detailed description of

t=3

R =100i

60°

b=2

14°

12°

F

Fig. 5.14 Arc with contact boundary constraints
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Fig. 5.15 FE-discretization of the arc

the applied contact formulation can be found in Chap. 11. The discretized
system is depicted in Fig. 5.15. The computation of the nonlinear solution
path is performed by using the arc-length method. Two cases are considered:
solution with and without contact. The contact is enforced via the penalty
method, see Sect. 11.3. As depicted in Fig. 5.16, the contact constraint leads
to a stabilization of the arc structure once the limit point (maximum of the
load–displacement curve) is bypassed. This behaviour is related to the acting
additional constraint due to contact.

5.2 Solvers for Linear Systems of Equations

As could be observed in the previous sections, the solution of nonlinear prob-
lems which lead to systems of the form (5.1) G(v , λ) = 0 require iterative
solution methods. Most of the times Newton-Raphson schemes are applied
for the solution. These are based on algorithms as described in Box 5.1 in
which a linear system of equations KT (vi)Δvi+1 = −G(vi) has to be solved
in each iteration step i.

The equation system stated above is usually symmetrical. However, it can
become non-symmetric for special inelastic constitutive models, deformation-
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dependent loads or beams with finite rotations. A characteristic feature of
the tangent matrix KT (vi) is its banded structure which results from the
locality of the element shape functions. Hence often additional zeros appear,
especially in three-dimensional problems, within the band. Thus the notion
of sparse matrices is associated with finite element systems.

Since the solution of the above linear equation system requires most of
the computing time, it is of great interest to construct fast solvers for such
systems, especially since todays, finite element discretizations lead also for
nonlinear problems often to systems having wide over 100.000 unknowns. This
size actually is one of the factors for the choice of the equation solver, but
what “large system”means depends nowadays just on the available computing
power. Furthermore, the spatial dimension of the problem has an influence,
as will be seen in the following sections which present an overview of some
direct and iterative methods for the solution of linear equation systems.

5.2.1 Direct Solvers

Methods which solve linear systems of equations without an iterative process
are called direct solvers. There are several algorithms available:

– Gauss elimination,
– Cholesky decomposition,
– frontal solvers,
– sparse solvers and
– block elimination methods.

The associated algorithms will not be described here in detail since these
methods can be found in numerous software libraries for mathematical soft-
ware, see e.g. the references in Golub and van Loan (1989) and Gould et al.
(2005). Specially tailored methods for finite elements use the sparsity of the
tangent matrix KT . The associated algorithms apply band or profile storage
techniques to minimize the storage of zero components of the matrix. In the
case that the equation system is so large that it does not fit into core memory,
block elimination methods are applied or frontal solvers are used which work
on parts of the matrix in core memory while the rest is still on disc space.
This leads to a more timely process in which the equation system is solved
successively. Codes written in FORTRAN can be found for Gauss elimi-
nation with profile storage in, e.g. Taylor (2000), for block elimination, see
Wilson and Dovey (1978). Frontal solver can be found in Owen and Hinton
(1980) or Irons and Ahmad (1986). A comparison between block elimination
and frontal solvers is provided in, e.g. Taylor et al. (1981). However, these
solvers are nowadays outdated since powerful sparse solvers are available, see
below.

The advantage of direct solvers lies in their ability to solve even ill-
conditioned and negative definite systems of equations as long as round-off
does not effect the solution. This is especially interesting for nonlinear appli-
cations when singular points are bypassed and the tangent matrix is no longer
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positive definite. Direct solvers require a lot of operations which is a disad-
vantage since for large systems these will be of the order O(N b2) for band or
profile solvers. Here N is the number of unknowns and b is the width of the
band or profile. For really large systems in three-dimensions, this contributes
to large solution times. Additionally, so-called fill-in takes place during the
elimination phase which changes zero components to non-zero ones. Hence
the tangent matrix KT cannot be stored in compact form without any zero
elements. Especially in three-dimensional application, there are many zero
components in the tangent matrix KT .

The following table, see Langer (1996), illustrates for a simple case of the
Laplace equation (only one unknown per node in the discretized system)
the increase of the size of the equation system and of the computing times for
standard direct solvers. It is assumed in Langer (1996) that the computer has
a CPU with 100 MFLOPS which results in the predicted solution times stated
in Table 5.2. Especially, for three-dimensional equation systems, it can be
observed that a direct solver needs for a discretization with 1003 = 106 finite
elements already 38 GB memory and a computing time of approximately
six days. The situation becomes even worse for problems of solid mechanics
which have three unknowns per node in the three-dimensional case.

Table 5.2 CPU-time and memory requirement of direct solvers

n CPU (2D) Memory (2D) CPU (3D) Memory (3D)

20 0.8 ms 31 kB 6.4 s 12.2 MB

50 30 ms 488 kB 65 Min 1192 MB

100 0.5 s 3.6 MB 5.8 days 38.1 GB

200 8 s 30.5 MB 2.1 years 1220 GB

500 5.2 Min 476 MB — —

However, as the examples will show, modern sparse solvers have less stor-
age requirements and thus can tackle problems of several million unknowns.
In this area, much research was devoted to minimize the disadvantages related
to memory requirements and number of operations. In the last ten years, spe-
cial techniques were developed, based on a compact storage, in which only
the elements of the matrix are stored which will obtain a value (fill-in) dur-
ing the elimination phase. Such solution procedures are subsumed under the
term sparse solvers. The associated algorithms and their coding have proved
to be efficient for large scale three-dimensional problems. For the mathemat-
ical background, see e.g. Duff et al. (1989). A relevant software package is
UMFPACK, which contains the multi-frontal solver for sparse unsymmetrical
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Table 5.3 Memory usage for problems of solid mechanics using
direct solvers

n MProfile (2D) MSparse (2D) MProfile (3D) MSparse (3D)

5 2.7 kB 1.7 kB 212 kB 56 kB

10 19 kB 7.3 kB 5.2 MB 480 kB

20 140 kB 29.7 kB 136.8 MB 3.9 MB

40 1.07 MB 120 kB 4.01 GB 31.3 MB

coefficient matrices, see Davis and Duff (1999). Another sparse solver which
has a very good performance is PARDISO, see Schenk and Gärtner (2004).
It works for large sparse symmetrical and unsymmetrical equation systems
in a parallel version on shared memory machines. An overview with respect
to advantages and disadvantages of different solvers can be found in Gould
et al. (2005).

The memory requirement for the two-dimensional plate and the three-
dimensional cube depicted in Fig. 5.17 is given in Table 5.3. The edge of
plate and cube is subdivided into n finite elements. A point load is applied
to one node. Furthermore, the edges of plate and cube are fixed in normal
direction at the sides opposite to the load. The memory usage of a profile
solver due to Taylor (2000) is compared with a variant of a sparse solver.
As already shown in Table 5.2, the extreme increase of memory usage in the
three-dimensional case can also be observed in Table 5.3. This is reduced
clearly when a direct sparse solver is applied, see e.g. Schenk and Gärtner
(2004).

With the growing demand of reliable solutions and the complex problems
of today’s engineering practice, it is often necessary to apply discretizations

                                    

Fig. 5.17 Example for the comparison of memory usage
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with over one million finite elements in order to obtain sufficient accurate
results. If the problem is, in addition, nonlinear then the equation system
has to be solved using Newton method. Within this iterative method, a
linear equation system of full size has to be solved several times. Hence such
large nonlinear engineering problems cannot be solved with direct profile
solvers. A way out provide sparse solvers or iterative solution methods since
the order with which the size of the system of equation increases cannot be
reduced by classical band- or profile solvers.

When band- or profile solvers are used (e.g. in two-dimensional appli-
cations), it is of utmost importance to minimize the band or profile of the
matrix KT . This reduces as well the memory requirement as the number
of operations and with this the total computing time. Several optimization
strategies have been developed for this purpose. An overview with regard to
problems of structural mechanics can be found in, e.g. Baumann et al. (1990).
An essential requirement for band- or profile optimization is that the com-
puting time for the optimization of the band or profile is only a fraction of
the total solution time for the equation system. A well known method is the
method of Cuthill and McKee (1969). An implementation in FORTRAN can
be found, e.g. in Schwarz (1981). A faster technique is described in Hoit and
Wilson (1983) who also provided the source code. A detailed discussion of
different techniques can be found in Bremer (1986) or Baumann et al. (1990).

5.2.2 Iterative Solution Methods

Finite-element discretizations of nonlinear problems and the associated lin-
earizations lead to large systems of equations with a sparse coefficient matrix
within Newton method. This is most pronounced in three-dimensional ap-
plications within structural mechanics. Besides direct solution methods, also
iterative solvers can be applied for the solution of the linear equation systems.
Table 5.4, see Langer (1996), depicts the reduction of the memory require-
ment for the example underlying the results of Table 5.2 when iterative solvers
are used. A comparison with Table 5.2 shows clearly that compact storage is
a must in three-dimensional problems of large size. Since the compact stor-
age eliminates all zero elements it cannot be applied for direct solvers due to
fill-in. Hence compact storage can only be applied within iterative solution
procedures.

Table 5.4 Memory requirement for compact storage

n 20 100 200 1000 2000

M (2D) 3.8 kB 81.3 kB 319 kB 7.9 MB 31 MB

M (3D) 83.2 kB 8.3 MB 64.4 MB 7.8 GB 64 GB
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Iterative solution strategies are different for symmetric and unsymmet-
ric coefficient matrices. For equation systems with a symmetric coefficient
matrix, different methods can be used which are listed below

– method of conjugated gradients (CG-method) for positive definite equation
systems,

– Lanczos algorithm,
– Jacobi- or over-relaxation methods or
– multi-grid methods.

For equation systems with unsymmetric coefficient matrices

– the method of bi-conjugated gradients,
– the GMRES method or
– the CGSTAB algorithm

can be applied.
Iterative solvers are always advantageous when large systems of equa-

tions have to be solved since the memory requirement and also the total
number of operations is less when compared to direct solvers. However, it-
erative methods are only efficient when pre-conditioners can be constructed
for the problem at hand. These have to be designed such that the number of
iterations is low and does not depend upon the number of unknowns. In an
optimal case, this would reduce the number of operations to the order O(N).
An extensive overview from the mathematical point of view can be found for
iterative solvers in Hackbusch (1994). In case of nonlinear problems, an iter-
ative solver will be used within the iterative method to solve the nonlinear
system of equations which is, in general, in solid mechanics Newton method
leading to a sequence of linear problems. The efficient use of iterative solvers
within Newton type methods needs further considerations since, in the first
phases of Newton method, the solution can be far away from the correct
one. Hence also iterative solvers have not to solve the associated linear equa-
tion system with high accuracy which then leads to fewer iterations at this
stage.

Method of Pre-conditioned Conjugated Gradients. As an example
for iterative solvers, the most popular algorithm applied in solid mechanics is
discussed which is the method of pre-conditioned conjugated gradients (PCG-
method). It can be applied for the solution of linear equation systems within
the i-th iteration step of Newton method in Box 5.1: KT iΔvi+1 = −Gi.
To simplify notation, the iteration index is omitted which yields KT v = f
with f = −G.

The gradient method is based on the fact that if v̄ is solution of KT v = f
then v̄ is also minimum of

f(v) =
1
2

vT KT v − fT v . (5.33)
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Thus this method includes the assumption of positive definiteness and sym-
metry of KT which is not always given in nonlinear analysis, see e.g. de-
scending pathes which have to be solved by arc-length procedures discussed
in Sect. 5.1.5. By searching for the zero point of the minimal problem, an
iterative method can be constructed. In detail, the minimum of

f(vk + αk sk) = min
α
f(vk + α sk) (5.34)

is determined for a descent direction s. This yields an equation for the scalar
αk

αk =
rT

k sk

sT
k KT sk

rk = f − KT vk . (5.35)

The direction sk follows from

sk = C−1 rk, (5.36)

where C is a pre-conditioning matrix (for details see Sect. 5.2.2). With ∇v f =
−(f − KT v ), the form sk = −C−1 ∇v f(vk) is obtained from (5.33). Thus
the descent direction corresponds to the negative gradient of the function f
which explains the name gradient method.

Better convergence properties and thus less number of iterations for the
solution of a linear equation provides the method of conjugated gradients.
In this method, the descent direction to the minimum is given by the linear
combination

pk = sk + βk pk−1 . (5.37)

The parameter βk is determined from the condition

pT
k KT pk−1 = (sk + βk pk−1)

T KT pk−1 = 0 . (5.38)

Hence pk and pk−1 are conjugated with respect to the coefficient matrix
KT . This method is stated in Box 5.3 in its algorithmic version where matrix
reformulations were introduce to enhance the efficiency of the method.

In the case that KT is unsymmetric, the method described in Box 5.3
does not work since KT is no longer positive definite which, however, was
presumed in the derivation of the PCG-method. In that case a variant of
the PCG-method has to be developed. One possibility is to replenish the
unsymmetric equation system with its symmetric part as shown below[

0 KT

KT
T 0

] {
w
v

}
= −

{
f
0

}
. (5.39)
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Box 5.3 Method of pre-conditioned conjugated gradients

PCG (v, f,K )

Choose starting vector: v0

r0 = f − KT v0

FOR k = 0, 1, 2, . . .
Csk = rk(Pre-conditioning)
αk = (sk)T rk

IF k = 0 THEN
p0 = s0

ELSE
βk = αk /αk−1

pk = sk + βk pk−1

END IF
zk = KT pk

δk = (pk)T zk

γk = αk / δk

rk+1 = rk − γk zk

vk+1 = vk + γk pk

εk = (rk+1)T rk+1

UNTIL CONVERGENCE( εk ≤ TOL )

Having now again a symmetric equation system (5.39), the PCG-method
can be applied. Additionally, the special structure of (5.39) can be explored
leading to an efficient implementation. In total, this procedure yields an al-
gorithm which is two times as expensive as it is for the symmetric problem,
see e.g. Fletcher (1976). More stable and robust methods were constructed
after that. These are the GMRES-method, see Saad and Schultz (1986), and
the CGSTAB algorithm, see den Vorst (1992). The algorithm for CGSTAB
is provided in the following. In this method, the vectors s, u, w, y and z are
vectors which are needed for intermediate storage during the computation.

The main cost for the algorithms in Boxes 5.3 and 5.4 is related to the
solution of the equation system for pre-conditioning and to the multiplication
of matrix KT with the vectors pk, y and z. Often more than 100 iterations
are needed to converge to the solution within the PCG-method; hence it is
essential to optimize multiplications KT pk in order to obtain a competitive
algorithm. Thus compact storage of KT is a must such that only non-zero
elements of the coefficient matrix are multiplied with the components of the
vector. Furthermore, the storage requirement for KT decreases considerably,
see Table 5.3. Another approach is to perform the computation at element
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level and then to assembly the resulting vector. This method avoids storage
of KT completely but needs more computational effort; however, one may fit
the vector/matrix multiplications into the computer cash which then leads
to high efficientcy. For a more in-depth treatment of such algorithms, see e.g.
Golub and van Loan (1989).

Techniques for Pre-conditioning. As already mentioned, the condition
number κ(KT ) = ‖KT ‖ ‖K−1

T ‖ of the large sparse equation system KT v−
f = 0 has a considerable influence on the accuracy of direct solvers and
on the rate of convergence of iterative solvers. The method of conjugated
gradients reduces in the worst case in every step the residual by the factor
(
√
κ− 1)/(

√
κ+ 1), see Golub and Ortega (1996). The smaller the condition

number κ(KT ) the better will be the convergence rate. Hence it is desirable
to perform a pre-conditioning within the algorithm in Box 5.3. The aim is to
lower the condition number, and hence to decrease the number of iterations
needed to solve KTΔv = f.

The main idea of pre-conditioning is to find a matrix
bisC which is similar to KT but considerablly simpler to invert. By assuming
that the pre-conditioning matrix C is symmetric and positive definite and
that H is regular, then relation

C = HHT (5.40)

Box 5.4 CGSTAB Algorithm

CGSTAB (v, f,KT )
Choose starting values:

v0 , r0 = f−KT v0 ,u0 = p0 = 0 , γ0 = 0 , δ0 = 1030

FOR k = 0, 1, 2, . . .

αk+1 = rT
0 rk

βk+1 = ( αk+1 γk) / ( δk αk )

pk+1 = rk + βk+1(pk − δk uk )

Cz = pk+1 (Pre − conditioning)

uk+1 = KT z

γk = αk+1 / (uT
k+1r0)

w = rk − γk+1 pk+1

Cy = w (Pre − conditioning)

s = KT y

δk+1 = (sT rk+1) / (sT s)

rk+1 = w− αk+1 s

vk+1 = vk + γk+1 z + δk+1 y

εk = (rk+1)
T rk+1

UNTIL CONVERGENCE( εk ≤ TOL )
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can be written where H can, for example, be the left upper triangular matrix
of a Cholesky decomposition of C. The linear equation system KT v−f = 0
can then be reformulated as

H−1KT H−T HT v − H−1 f = K̃T ṽ − f̃ = 0 (5.41)

with K̃T = H−1KT H−T , ṽ = HT v and f̃ = H−1 f. The matrices C or
H have to be selected such that the condition number κ(K̃T ) < κ(KT ) is
reduced. To define the matrix C, consider

H−T K̃T HT = H−T H−1KT H−T HT = C−1KT . (5.42)

The choice of C = KT yields K̃T = I, and the condition number is optimal
(κ(K̃T ) = 1). This, however, does not make sense since the original equation
system for pre-conditioning has to be solved. However, it can be derived from
Eq. (5.42) that C has to be chosen similar to KT to obtain a reduction of the
condition number κ. Since C has to be inverted within each iteration step,
the choice of C has to be such that the solution of the equation system in the
pre-conditioning phase is as efficient as possible. By decomposing the sparse
matrix KT into KT = E + D + F, the following form for C can be selected
after Axelsson (1994)

C = (D + ωE )D−1 (D + ωF )
= D + ωE + ωF + ω2ED−1F , (5.43)

where ω is a relaxation parameter, E denotes the lower triangular matrix, F
the upper triangular matrix and D the diagonal of KT . In the following, four
“classical” methods for pre-conditioning will be discussed.

– Diagonal Scaling: The most simple possibility to improve the condition
number of KT is diagonal scaling, see Golub and Ortega (1996). For ω = 0,
the pre-conditioning in (5.43) reduces to scaling using diagonal elements
since H = D1/2. In this case, the matrix C is replaced by the diagonal D
of KT . It is obvious that this scaling requires only few operations since the
solution of the equation system in the pre-conditioning phase in Box 5.3 is
with C = D trivial.

– JOR Pre-conditioning: Another possibility to improve the condition
number κ(KT ) is the application of several JOR relaxation loops, see
Schwetlick and Kretschmar (1991). The associated iteration is given by:

vi+1 = vi − ωD−1(KT vi − f ) . (5.44)

In this case, pre-conditioning in Box 5.3 is carried out implicitly by an
algorithm. Comparisons in Boersma and Wriggers (1997) for several solid
mechanics applications show that a sufficient pre-conditioning for the CG-
method in Box 5.3 is obtained for ω = 0.3 and by using just four JOR
relaxation loops. Carrying out more JOR relaxation loops did not lead to
a considerable acceleration of convergence of the iterative equation solver
in the test cases.
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– Polynomial pre-conditioning: The inverse of the tangent matrix K−1
T

can be approximated by a finite weighted Neumann series as a polynomial
P (K) of low order

C = P (K) =
k∑

i=0

γiK
i (5.45)

with small k (k ≈ 2 or 3 is optimal), see Saad (1985). The parameters γi

have to minimize the polynomial

‖ I − P (K)K ‖2 = max
λi∈σ(K)

|1 − λiP (λi)|, (5.46)

where σ(K) = {λ}i=1,···,N is the spectrum of K. Following Golub and van
Loan (1989), this goal can be reached by using Chebychev-polynomials or
by alternatively using a polynomial of least squares with Jacobi-weighting
functions.

γ(λ) = λα−1 (1 − λ)β (5.47)
with α = 1/2, β = −1/2. These polynomials P (K) of order k−1 minimize

max
λ∈[a,b]

|1 − λP (λ)| , (5.48)

where the parameters a and b follow from a = λmin and b = λmax. The
polynomials of least squares work quite well despite the fact that no eigen-
value estimation is needed as for the Chebychev-Polynomials. The latter
can be advantageous, especially for computers with vector- or parallel ar-
chitecture.

– Incomplete Factorization: The incomplete Cholesky-pre-conditioning,
see Golub and van Loan (1989), uses an incomplete factorization (IC) of
the tangent matrix

KT = LT LT
T , (5.49)

where only the entries of KT in LT are stored which are non-zero. By this
procedure, no additional storage is required in the pre-conditioning phase
since the fill-in obtained in a Cholesky decomposition is suppressed.
Alternatively, the incomplete decomposition can be enhanced by a diagonal
stabilization leading to the modified incomplete pre-conditioning (MIC). In
this case, all entries of LT , which are associated with the zero-entries of
KT are added to the diagonal terms of LT . This method leads to a more
stable factorization. The pre-conditioning matrix is given for both variants
by C = LT LT

T .

Mainly, direct solvers are applied in classical finite element codes for the
solution of sparse equation systems. The reason for this is that iterative
solvers cannot be viewed as a general tool (“black box”) which are appli-
cable to arbitrary problems in an efficient way. Examples are solids with
incompressible materials which are not satisfactorily solvable with the tech-
niques described so far. Here special pre-conditioning schemes are needed,
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see e.g. Haase et al. (2001). The same problem applies to engineering struc-
tures which consist of different structural members, such as solids, shells
and beams. Hence iterative solvers need special pre-conditioning techniques
for the problem at hand, and are thus “one” pre-conditioning technique
cannot be applied in general. This will be shown in Sect. 5.3 by means of
examples.

5.2.3 Parallel Equation Solvers

Real engineering problems lead often to discretized systems with a large num-
ber of unknowns ( 105–107 ) and hence demand high computing power and
capacity for the solution. Examples are complex structures such as drilling
rigs, car bodywork, air crafts or shiphulls. Optimization and dynamic analy-
sis of large structures needs extensive computations. Often nonlinear effects
have to be considered additionally like inelastic material behaviour or large
deformations.

The speed and performance of serial computers grows still very fast; how-
ever, at the same time the engineering models become more and more refined.
Thus parallel computers are employed for complex simulations. Advantage is
a higher computing power and often more essential large main memory. The
use of a shared memory parallel computer needs relatively few changes within
the finite element code, see e.g. for equation solvers Schenk and Gärtner
(2004). On the contrary, the application of distributed memory computers
demands new software development with regard to domain decomposition
and equation solution. Hence, in the latter case, new algorithms and software
structures have to be developed in order to efficiently use parallel comput-
ers. One of the most time consuming tasks in a finite element simulation is
the solution of the system of equations. Since direct solvers require a lot of
communication between the different processors, they can only be efficiently
applied in a parallel solver with a small amount of processors. Hence, for mas-
sive parallel systems with several hundred nodes, iterative solution strategies
have to be used. These need less communication and also less storage. In the
last years, a number of different solution algorithms were created with the
goal to minimize the number of necessary operations to the order O(N) (with
N–number of equations). The relevant algorithms are based on the method
of pre-conditioned conjugate gradient methods, hierarchical bases or multi-
grid methods, see e.g. Hackbusch (1994) and Hackbusch (2003). Practical
implementations can be found in, e.g. Balay et al. (2001) and Balay et al.
(2004).

The basic ideas which lead to a parallel finite element program will be
described in the following, for details, see e.g. Papadrakakis (1993). In this
section, the concept of domain decomposition without overlapping domains,
see Fig. 5.18, will be described in more detail.

The communication between the domains Ωs proceeds via the outer nodes
of the discretization of Ωs while the inner nodes are only relevant for the
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Fig. 5.18 Assignment of a finite element mesh to a processor within domain de-
composition

prevailing processors. The domain decomposition is realized by a coarse grid
or graph. Each coarse grid element or graph represents a subdomain Ωs

which is associated with exactly one processor PS, see Fig. 5.18. Hence mesh
generation can be performed without communication when non-matching
meshes are used, see e.g. Farhat and Roux (1991). For matching meshes,
the information of number and spacing of finite elements on the boundaries
of the subdomains must be known. Residual vectors and tangent matrices
resulting from the elements Ωe can be assembled without communication.
When the division of the mesh in subdomains is performed, care of a good
load balancing has to be taken which is needed in order to obtain the same
computational load on every processor used for the parallel solution. For this
task, there exist different strategies which try to equalize the load on each
processor, for an overview see e.g. Axelsson and Barker (2001).

The following steps have to be performed during the solution of a finite
element problem using a parallel computer with distributed memory:

1. preparation of input and output for the individual processors,
2. parallel mesh generation,
3. parallel assembly of residuals and tangent matrices,
4. parallel solution of the equation system and
5. parallel postprocessing of the solution.

Here the parallel solution of the finite element equations is the main fo-
cuss. For input and output, the specific communication routines have to be
considered related to the used parallel computing system. Since mesh genera-
tion can be generally performed in parallel on each subdomain, standard tools
can be applied, once the spacing of nodes is known on the inter subdomain
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boundaries. Related software which constructs the sub-domains from a given
finite element mesh can be found in Balay et al. (2004). Differences to stan-
dard meshing depends upon the load balancing which has to be taken into
account during the mesh generation phase, see further Axelsson and Barker
(2001). For the communication within the iterative solution of the finite ele-
ment equation system, a special numbering technique can be applied in which
first the corner nodes of the subdomain are numbered, after that nodes C
along the interface between the subdomains and finally all inner nodes I are
numbered. Using this procedure, a special form of the tangent matrices is
obtained which allows for an eventually necessary different treatment of the
nodes in a simple way, see Meyer (1990). Since non-overlapping domain de-
composition is applied, see Fig. 5.18, neither the computation of the element
contributions nor the assembly of the matrices and vectors needs communi-
cation; hence these two processes run naturally in parallel.

Conjugated Gradient Method. Within the parallel solution of the finite
element equation system, differences to serial versions of the same algorithms
are found. The problem is that, due to the coupling of the subdomains, it
is not possible to solve for the unknowns without taking the coupling into
account. This coupling has to be considered within the solution phase. Here
first a parallel version of the pre-conditioned gradient method is discussed,
see Sect. 5.2.2.

As in the serial solution of equations, the choice of the adequate pre-
conditioner is important for an efficient solver. Instead of classical pre-
conditioning techniques, e.g. diagonal scaling or incomplete Cholesky de-
composition, see Sect. 5.2.2, a parallel Schur-complement pre-conditioner for
the CG-method will be presented which was developed in Meisel and Meyer
(1995). This approach employs an iterative solver for the unknowns related
to nodes which couple the subdomains. A direct solver will be applied for the
unknowns related to the nodes within a domain. The method is described
in detail in Meisel and Meyer (1995). Within this approach, the mentioned
special numbering of the nodes is used within the subdomains Ωs which yield
the following structure of the stiffness matrix

Ks =

⎡
⎣ KC KCI

KIC KI

⎤
⎦

s

. (5.50)

Such numbering simplifies the treatment of the coupling nodes C and the
internal nodes I since no sorting is necessary. Based on this numbering, the
stiffness matrix of one subdomain on processor PS has the form

K =
(

I KCIK−I

0 I

)(
S 0
0 KI

)(
I 0

K−IKIC I

)
(5.51)

with the Schur-complement S = KC−KCIK−IKIC . Matrices with negative
superscript denote inverse matrices. When a suitable pre-conditioner VC is
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found for the Schur-complement S and a pre-conditioner VI is selected
for the inner matrix then a positive definite pre-conditioner for KT can be
constructed as follows

Cs =
(

I KCIV−I

0 I

)(
VC 0
0 VI

)(
I 0

V−IKIC I

)
. (5.52)

This pre-conditioner can be applied within the conjugated gradient method
described in Box 5.5. The form (5.52) is especially well suited since its inverse
form can be determined explicitly, see Axelsson (1994),

C−1
s =

(
I 0

−V−I KIC I

)(
V−C 0

0 V−I

)(
I −KCI V−I

0 I

)
. (5.53)

The degrees of freedom can be condensed out in the inner parts of the sub-
domains when choosing of VI = KI as pre-conditioner. Within the pre-
conditioning procedure, it is necessary to further distinguish between edge or
vertex and boundary nodes. Vertex nodes belong to more than two bound-
aries. For the unknowns of these nodes, a simple diagonal pre-conditioning
will be applied since communication is minimized that way. The unknowns
belonging to the boundary will be pre-conditioned by a linear Laplace op-
erator where the resulting equation system is solved by fast Fourier trans-
form. The parallel version of the PCG-method is depicted in Box 5.5. In this
algorithm, two different types of communication between the processors are
employed. These are related to the update of a vector at the coupling bound-
aries between two domains and the summation of a scalar over the entire
region Ω which was computed in the domains Ωs. A local vector in Box 5.5
is denoted by the index (s) while a global vector does not have any index. The
subroutine comm[x(s)] is used in Box 5.5 to update a vector at the coupling
boundaries; an example is x = comm[x(s)]. This operation is necessary since
the matrix-vector product can only be computed with a global vector due to
compatibility of the displacement field. The result yields a local vector, e.g.
y(s) = K

(s)
T x, since the matrix K

(s)
T is only defined on the processor PS.

Furthermore, several scalar products have to be computed within the
PCG-method. Within the discussed parallel version, a scalar product can be
computed only between a local and a global vector. The part h(s) = xT x(s)

is computed in processor PS. The complete scalar product follows then from
a global communication h = sum [h(s)] which is equivalent to h =

∑
s h

(s).
Another possibility to pre-condition the PCG-solver can be obtained by

using a multi-grid method. These methods are either based on a hierarchical
mesh structure or an algebraic decomposition of the stiffness matrix, see e.g.
Hackbusch (1994), Boersma and Wriggers (1997), Meynen et al. (1997) and
Wriggers and Boersma (1998).

Multi-grid method. Another possibility for the parallel solution of systems
of equations is provided by the multi-grid method (MG)), see e.g. Bastian
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Box 5.5 Parallel version of the pre-conditioned conjugate gradient method

PCG(v , f ,KT )

r(s)
0 = K(s)

T v0 − f (s)

r0 = comm(r(s)
0 )

FOR k = 0, 1, 2, . . .

sk = C−1 rk (pre-conditioning using (5.53))

α
(s)
k = sT

k r(s)
k

αk = sum(α
(s)
k )

IFk = 0 THEN

p0 = s0

ELSE

βk = αk/αk−1

pk = sk + βk pk−1

END IF

z(s)
k = K(s)

T pk

δ
(s)
k = pT

k z(s)
k

δk = sum (δ
(s)
k )

γk = αk/δk

r(s)
k+1 = r(s)

k − γkz
(s)
k

vk+1 = vk − γk pk

zk = comm(z(s)
k )

rk+1 = rk − γk zk

ε
(s)
k = rT

k+1 r(s)
k+1

εk = sum(ε
(s)
k )

UNTIL CONVERGENCE ( εk < TOL )

and Wittum (1994) and Hackbusch (2003). A special variant of the multi-
grid method is the algebraic multi-grid method (AMG) which can easily be
implemented (as black box) into finite element programs, see e.g. Stueben
(1983), Ruge (1986), Koc̆vara and Mande (1987) and Haase et al. (2001).
The AMG does not need a special hierarchical mesh structure. It computes
the coefficient matrices which belong to different meshes directly from the
given tangent matrix of the system, see Brandt et al. (1985), Brandt (1986)
and for engineering applications Boersma and Wriggers (1997).

Four points have to be considered within multi-grid methods:

1. a mesh hierarchy with l levels,
2. the determination of transfer operators,
3. an algebraic equation of the form KT l v = f at each level l and
4. the determination of smoothing operators.
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Ωs

master nodes

C-nodes

F-nodes

Fig. 5.19 Partitioning of the finite element mesh in coarse and fine grid nodes C-

and F

These points are also valid for an algebraic method. However, there are small
deviations in the definition of the transfer and smoothing operators when
compared to the classical multi-grid method.

The four points are discussed in more detail in the following.

1. Mesh hierarchy: The classical multi-grid method is based on a mesh hi-
erarchy which derives from a coarsening of the fine grid by appropriate
geometrical operations. Within the AMG method, the coarse mesh is de-
fined as a subset of the nodes which are associated with the fine mesh
without reference to the geometrical mesh structure. Hence there is no
geometrical interpretation of the coarse meshes in AMG. The set of all
nodal points is subdivided into coarse grid nodes C and fine grid nodes
F , see Fig. 5.19. It illustrates the above definitions by using a typical
regular mesh. Additionally, the master nodes are depicted which are in-
troduced to define the shape of the mesh. Before mesh coarsening, it has
to be decided how many levels are needed to solve the problem. These
levels depend upon the number of nodes (nk) of the fine mesh and the
spatial dimension of the problem (ndm). The following relations yield an
estimate for the number of levels

lmax =
⌊
log(nk) / log(2ndm)

⌋
.

For a regular mesh with 2l nodes in each spatial direction l levels are
obtained. This number is usually selected for a multi-grid solution.
The definition of the coarse grid nodes C is a linear process which has
to be performed over all nodes (with numbers 1, . . . , nl). Let U{node}
be the set of all neighbouring nodes of the node under consideration
(node). Then a coarsening follows by executing the algorithm specified in
Box 5.6.
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Box 5.6 Coarsening procedure

a) Determine the essential coarse grid nodes
b) Define F = ∅, C = {1, . . . , nl}
c) FOR node = 1, 2, . . . , nl DO

IF node ∈ C THEN
F = F + U{node}/C
C = C − U{node}/C

This procedure has to be performed within every mesh related to a level
l = 1, . . . , lmax − 1. Essential coarse grid points are the ones which have
a physical meaning, e.g. for the description of the correct boundary con-
ditions.

2. Transfer-operators: Information between two different levels is transfered
by a prolongation, P, and a restriction operator R. Operator P will be
computed directly from the entries in the coefficient matrix in case of the
AMG method. In standard multi-grid methods, this task is performed
by using the shape functions related to the coarse mesh. The restriction
operator R is defined by R = PT . Starting from a row of the linear
equation system KT v = f, the transfer operators can be constructed

KT ii vi = −
∑

j

KT ij vj + fi . (5.54)

The prolongation operator P follows from an approximation of Eq. (5.54).
The value vi in a fine grid node F is then approximated in terms of coarse
grid nodes C by

vi =
1∑

k∈C
|KT ik|

∑
j∈C

KT ij vj . (5.55)

This relation guarantees that the sum of all weights for each fine grid
node is equal to one. Then an entry in the transfer operator for a degree
of freedom i and a neighbouring degree of freedom k is given by

Pik =
|KT ik |∑
j∈CKT ij

. (5.56)

Details of this procedure can be found, in e.g. Boersma and Wriggers
(1997).

3. Equation systems on each level: The coarse grid matrix will be computed
algebraically using the transfer operators R and P which yields KC =
RKF P. In the case that R is chosen as PT , then all symmetry properties
of the fine grid matrix KF are preserved within the coarse grid matrix
KC .
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4. Smoothing operator: Within the AMG-method, smoothing follows as in
standard multi-grid methods by a Gauss-Seidel iteration or the method
of conjugated gradients. The smoothing operation will be described by
the operator S.

The parallel version of the AMG-method can then be obtained in two steps.
In a starting phase, the coefficient matrix, the transfer operators and the
associated coarse grid matrices are determined for all levels. After that the
iterative solution of the equation system follows in a second phase.

Starting Phase: Determination of coarse grid points by mapping the
distribution of the nodes onto the associated processors which are located
on the boundaries of the subdomains. Since these nodes belong to different
processors, an exchange of data is necessary. Also the partitioning of inner
nodes in fine and coarse grid nodes has to be performed within a processor.
For these tasks, first the transfer operators will be computed on the subdo-
main boundaries (data exchange) then the transfer operators are determined
within the subdomain. With this, the coarse grid matrix is computed in par-
allel. After RKF P are computed, a coarse grid matrix KC is obtained on
each subdomain. Note that the matrix product for the determination of the
coarse grid matrix RKF will never be executed directly since this destroys
the efficiency of the method. A possibility for a fast computation of KC is
described, e.g. in Boersma and Wriggers (1997).

Iteration Phase: A smoothing operation has to be performed within the
iterative solution of the equation system. This will be executed by using the
parallel smoothing operator SP(v, f ). Within this step, several different meth-
ods can be applied, e.g. a parallel Gauss-Seidel algorithm, an incomplete
Cholesky triangulation or the method of conjugated gradients. Within the
iterative solution, vectors have to be transferred between the different compu-
tational steps. This is - besides the treatment of coupling nodes - a fully par-
allel task. Box 5.7 describes the algorithm of the parallel algebraic multigrid

Box 5.7 The parallel algebraic multi-grid method (pAMG)

pAMG( l,v, f, ν )

1) v ← SP(v, f )
2) r = comm(KT l v ) − f
3) f l+1 = comm(Rr )
4) IF l = lmax THEN

Solve KT l max w = fl max

ELSE
Perform ν steps:
AMG(l + 1,w, f l+1, νl+1)

END IF
5) v ← v− comm(Pw )
6) v ← SP(v, f )
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l=1

l=3
l=2

V -cycle W -cycle F -cycle

Fig. 5.20 The different cycles

method (pAMG). For a solution of the linear equation system KT v = f,
the algorithm is started with the initial conditions pAMG(1,v, f, ν). Here
the tangent matrix KT belongs to the finest grid – now denoted by KT 1 -
and the vector f describes the loading. The operator SP is used to perform a
smoothing step which is adapted with respect to the parallel computer. The
necessary communication routines were already described within the parallel
CG-method.

Here the index l is used, which characterizes the grid sequence for all
operators applied within the parallel algebraic multi-grid method. Index 1
is related to the finest grid, whereas the index lmax is associated with the
coarsest grid. Furthermore, the parameter ν has been introduced which in-
dicates how often the multi-grid method has been called. The choice ν = 1
leads to the so-called V -cycle, ν = 2 results in the W -cycle, see Fig. 5.20
(l = 3 belongs here to the coarsest grid). The F -cycle is a mixture of the V -
and W -cycle. The V -cycle only needs one step at the coarsest grid level, see
Fig. 5.20. Contrary, within the W -cycle, there are l2max steps at the coarsest
grid level necessary. The F -cycle needs lmax steps. Hence the V -cycle has a
higher parallel efficiency than the W - or F -cycle.

By applying parallel multi-grid methods to solid mechanics problems, it
has been observed that the parallel algebraic multi-grid method (pAMG)
can act as a robust pre-conditioner for other iterative methods such as the
CG-algorithm described in Box 5.5.

5.3 Examples Related to Algorithms and Equation
Solvers

The following numerical examples illustrate the behaviour of the iterative so-
lution strategy of some in Chap. 5 mentioned algorithms. The computations,
regarding single processor systems, were performed using the finite element
program FEAP, see Zienkiewicz and Taylor (2000b), on a PC with an Intel
dual core processor and 2.3 GHz clock rate.

5.3.1 Rubber Block

2d Rubber Block. The block shown in Fig. 5.21 is constrained by a rigid
plate on the top. This plate is moved downward under the assumption that
there is a frictionless interface between plate and block. The initial geometry
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v

10 Λ = 10
μ = 6.3

10

Fig. 5.21 Elastic rubber block
under pressure load

Deformed configuration of
the last load step

is depicted in Fig. 5.21 with the geometrical data of the block and the values of
the constitutive parameters Λ and μ for a Neo-Hooke material, see Sect. 3.5.

The basis of the finite element formulation is explained in Sect. 4.2.3;
hence details of the implementation will not be discussed, we just note that
a standard displacement formulation is used.

Since the problem is symmetric, only one half of the system is discretized
by 60 × 120 elements. The total load is applied in different numbers of load
steps. First 10 load steps are used, after that the problem is solved by applying
the load in 5 steps, 2 steps and finally only one step. Since the problem
is elastic, it is path independent, and hence the different numbers of load
steps do not influence the final solution. The deformed configuration which
belongs to the final load step is depicted in Fig. 5.21. It corresponds to a final
compression of 30%.

Four different solution methods were applied to simulate the response of
the structure. These are the Newton-Raphson method with two direct and
one iterative solver and the BFGS-method. For all methods, the iterations
where terminated when the residual norm was below the tolerance of 10−8.
The Newton-Raphson method needs the smallest number of equilibrium
iterations when compared with the BFGS-method, as can be seen in Table 5.5.

Furthermore, the number of iterations increases over proportional within
the higher load steps when the BFGS-method is applied. This is related to
the increase in nonlinear deformations. For larger load steps (load applied in
two and one step), the BFGS method does not converge any longer. However,
looking at the total time needed to solve the problem with ten load steps,
the BFGS-method is the most efficient method.

The choice of the termination tolerance has a considerable influence on the
number of iterations within the solution algorithm. The choice of a tolerance
of 10−4 leads to a decrease of the number of iterations for all three methods.
However, within the Newton method combined with the direct solver, the
number of iterations is not so much reduced since often only one step reduces
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Table 5.5 Iteration numbers and computing times for the example in Fig. 5.21

Load step Newton (direct) Newton (Pardiso) Newton (PCG) BFGS

1 4 4 4 (987) 6

10 6 6 6 (2047) 16

Time 8.6 s 15.1 s 10.9 s 8.5 s

1 4 4 4 (1127) 7

5 6 6 6 (2330) 21

Time 4.5 s 7.9 S 6.3 s 5.4 s

1 5 5 5 (1309) 17

2 7 7 7 (2500) -

Time 2.3 s 4.1 s 3.2 s -

1 8 8 8 (2546) -

Time 1.5 s 2.7 s 2.2 s -

the residual norm from 10−4 to 10−8. This is not true for the BFGS method.
Hence it is important for a user to pick the right tolerance for termination so
that on one hand the physical problem is solved correctly and on the other
hand the solution effort is minimized.

It is also interesting to note that the conjugated iterative solution method
with diagonal preconditioning needs many iterations to solve the linear equa-
tion system within each load step, see number of all iterations in a load step
in brackets in Table 5.5. These iteration numbers have to be compared with
the total number of unknowns in the equation system which is here 14.459.
Hence the cg-method with diagonal preconditioning is not competitive in
this example. Note that the number of cg-iterations increases for higher load
steps; this is related to the worsening of the condition number of the tangent
matrix KT with increasing deformation due to the influence of the material
tangent and the geometric stiffness terms.

The difference in the computing time of the two direct equation solvers, a
standard skyline solver, see Taylor (2000), and the sparse solver PARDISO,
see Schenk and Gärtner (2004), is related to the overhead needed wthin the
sparse solver which slows its computing time down for this small problem.

3d Rubber Block. Next the corresponding three-dimensional problem
is investigated. For this purpose, a block made of a compressible hyperelastic
material will be discretized and solved by the same methods as in the example
above. Again a two direct and one iterative solver are applied in conjunction
with the Newton-Raphson method. The iterative algrithm uses the cg-
method, described in Box 5.3, with diagonal preconditioning.

The block, shown in Fig. 5.22, has the dimensions 10 × 10 × 5. The con-
stitutive parameters are chosen such that Lamé-constants assume the values
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Fig. 5.22 Three-dimensional example for the comparison of different solution al-
gorithms

Λ = 830 and μ = 50. The block is pressed downwards by a rigid plate; the
total compression is 30%. Friction between plate and block is neglected. The
load will be applied in 2 and in 3 load steps to compare the different behaviour
of the iterative solution methods.

Due to symmetry reasons, only one quarter of the block is discretized by
20× 20× 20 eight node brick elements; hence the system has a total of 25620
unknown nodal displacements.

The deformed configuration and the contour of the normal stress σ33

in vertical direction is depicted in Fig. 5.23 for a compression of 30%. The
number of iterations and the total computing time can be found in Table 5.6.
The termination criterion, TOL in Box 5.1, for the residual norm is set to
TOL = 10−4.
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               Fig. 5.23 Deformed block and normal stresses σ33 in vertical direction
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Table 5.6 Number of iterations and computing times for the example in Fig. 5.22

Load step Newton (direct) Newton (Pardiso) Newton (PCG) BFGS

1 5 5 5 (773) 16

2 5 5 5 (837) 23

3 6 6 6 (967) 24

Comp. time 348 s 66 s 18 s 105 s

1 5 5 5 (875) 27

2 6 6 6 (1046) 24

Comp. time 241 s 46 s 13 s 79 s

It can be observed that in this example the combination of the Newton

method with the iterative cg-solver yields the most efficient solution scheme
since its total solution time is one order of magnitude less than the times for
the other solvers. Only the sparse solver PARDISO seems to be competitive
since it is “only” four times slower. The numbers in brackets are related to the
number of iterations within each load step. The cg-solver needs 160 iterations
on average to solve the linear equation system within each Newton iteration.

When a larger load step is selected, the number of Newton iterations
do not increase much. This is different for the BFGS-method. Here the total
computing time is increasing with larger load steps.

5.3.2 Solid with an Inclusion

Homogenization is needed for the determination of effective material prop-
erties of heterogeneous materials. Within this process, often large three-
dimensional representative volume elements (RVE) have to be analysed. In
this example, a heterogeneous material is subjected to a constant strain field.
The sample consists of a unit cell of a hyperelastic matrix material with
Young modulus of E = 30 and Poisson ratio of ν = 0.3 and a nearly in-
compressible particle, Young’s modulus E = 8 and Poisson ratio ν = 0.499.
The finite element mesh of the unit cell of size 2×2×2 is shown in Fig. 5.24a.
It consists of 56000 elements with 74536 nodes leading in total to 164697 de-
grees of freedom.

The unit cell is loaded by a prescribed displacement which stems from
the constant strain state u = HX with

H =

⎡
⎣ 0.01 0.03 0.03

0.03 0.01 0.03
0.03 0.03 0.01

⎤
⎦ .

The finite element simulation is performed using Newton method. It yields
the deformation of the RVE depicted in Fig. 5.24b. Different load steps were
used to obtain the final state. The solution times for the different solvers as



5.3 Examples Related to Algorithms and Equation Solvers 195

Fig. 5.24 Unit cell, finite element mesh: (a) undeformed and (b) deformed

well as the number of iterations of the cg-solvers are reported in Table 5.7.
The standard skyline solver in FEAP produced a tangent stiffness matrix
which could not be storered in main memory, and thus this solver could
not be applied for the solution of this problem. The sparse solver PARDISO
was still able to generate a solution; however, the solution times are 4 to
5 times higher when compared to the iterative cg-solvers. The latter also
differ depending upon the applied pre-conditioner. The Gauss-Seidel pre-
conditioner needs less iterations than the cg-solver with diagonal scaling. The
total number of iterations is about three times less when the load is applied
in only one step. However, the total computing time is 5% higher since the
Gauss-Seidel pre-conditioning is more time consuming.

The situation changes when either concentrated forces are applied or
bending dominates the response of the solid. Then the iterative solver with
diagonal pre-conditioning will need a lot more iterations, the cg-solver with
Gauss-Seidel pre-conditioning will use more iterations, but then solve the

Table 5.7 Number of iterations and computing times for the example in Fig. 5.24a

Load step direct (Pardiso) iter (CG-diag) iter (cg-Gauss-Seidel )

1 4 4 (5252) 4 (1741)

10 4 4 (5714) 4 (1817)

Comp. time 8452 s 1629 s 1795 s

1 5 5 (7425) 5 (2368)

2 5 5 (7743) 5 (2403)

Comp. time 2114 s 443 s 467 s

1 5 5 (9643) 5 (3033)

Comp. time 1054 s 276 s 290 s
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Material data:

E = 30000

ν = 0.30

Y0 = 30

H = 1

Dimensions:

Height h = 8

Width b = 4

Fig. 5.25 Plate with hole with elasto-plastic material

problem in shorter time. The sparse solver PARDISO is not affected by these
differences in loading and thus will use the same time for a linear solution
within Newton method.

5.3.3 Elasto-Plastic Plate with Hole

Within this example, which exhibits elasto-plastic behaviour, iterative and
direct solution methods are compared. The plate with a hole, see Fig. 5.25, is
made up of steel and undergoes elasto-plastic deformations during the loading
process. To model the hardening behaviour of the steel, a linear isotropic
hardening rule, see Sect. 3.3.2, is applied. The derivation of the integration
procedures for the evolution equations for the plastic flow can be found in
Sect. 6.2.2. This section also contains the associated incremental material
tensor, consistent with the integration procedures.

Material data for E , ν , Y0 ,H and the dimensions (h , b) of the plate can be
found in Fig. 5.25. The simulations are performed by assuming geometrically
linear behaviour. Due to symmetry, only a quarter of the plate is modelled
by 3750 six node triangular finite elements. This leads to an equation system
with 15199 unknown nodal displacements. The plate is loaded by a constant
displacement of v = 0.15 at its upper side which is employed in 25 load steps.

Table 5.7 summarizes the behaviour of the different algorithms used also
in the last examples. The first load step is purely elastic. In the other load
steps, the plastic zone evolves until the cross section at the hole is almost
completely plastic, see Fig. 5.26.

The termination criterion for the equilibrium iteration was chosen to be
TOL = 10−4. The convergence behaviour of the different algorithms can
be found in Table 5.8. Clearly, the Newton method in combination with a
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Table 5.8 Number of iterations and computing times for
the example in Fig. 5.25

Load step Newton Newton Newton Newton
(direct) (Pardiso) (PCG/Diag) (PCG/GS)

1 2 2 2 (3030) 2 (825)

5 2 2 2 (3032) 2 (825)

10 6 6 6 (6056) 6 (1622)

15 8 8 8 (10412) 8 (2797)

20 9 9 9 (15458) 9 (4144)

25 10 10 10 (18044) 10 (4961)

Time 72,8 s 68,5 s 187 s 125 s

direct equation solver is the most efficient. The iterative conjugate gradient
solver with diagonal scaling needs many iterations, and thus is the slowest
method. However, the iterative Gauss-Seidel scheme is also slower than
the direct solvers. This is due to the fact that two-dimensional problems
have a larger condition number than adequate three-dimensional problems,
and thus more iterations are needed for solving the linear equation system by

Fig. 5.26 Distribution of stresses σz in the 6th load step
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the iterative method. Here the Gauss-Seidel scheme is working better and
needs one fourth of the iterations of the diagonally scaled method. However,
since it needs more computational effort it is only 1.5-times faster. Note
that the condition number of the tangent matrix KT becomes larger when
the response of the plate is dominated by plasticity, see Fig. 5.26. This is
the case in the last two load steps which again leads to more iterations for
the solution of the linear systems within Newton method. Since the sparse
solver PARDISO needs some overhead to compute the sparse structure of the
tangent matrix it is only marginally faster for a problem of this size. The plot
of the out of plane stresses σz is shown in Fig. 5.26 for 100-times magnified
deformed configuration.

5.3.4 Problems Solved on Parallel Computers

Iterative solvers are often used on parallel computing platforms, as discussed
in the last section. Here examples will show the influence of pre-conditioning
and the convergence of algorithms; the results were also discussed in Wrig-
gers and Meynen (1995). While the results are relatively old, they can
still be used to depict the general features of the underlying methods and
algorithms.

A plate with a hole, see Fig. 5.25, is considered in the first example. It
will be solved using a conjugated gradient method (CG). Hence the influence
of different pre-conditioners will be of interest and discussed next.

Only a quarter of the plate will be discretized due to symmetry reasons.
The load is applied using displacement control. The material behaviour of
the plate is assumed to be elasto-plastic with linear isotropic hardening. The
constitutive parameters are chosen as E = 70000 N/mm2, H = 2000 N/mm2,
Y0 = 243 N/mm2 and ν = 0.2 which is different from the data reported in
Fig. 5.24. The length and width is 36 × 20 mm. The behaviour of different
pre-conditioner can be observed for different numbers of finite elements from
Fig. 5.27. The number of iterations decrease for increasing effort for pre-
conditioning. The best results are provided by the Schur complement pre-
conditioner which does not depend upon the number of finite elements and
thus is well suited for parallel computing.

The structure shown in Fig. 5.28 is used in the second example to discuss
the efficiency of the parallel algorithms. For this purpose, the two measures

Table 5.9 speed-up and scale-up for the problem related to Fig. 5.27

speed-up

NP np

∑
n np

∑
n

16 882 3362
32 462 14112 1722 53792
64 242 882

scale-up

NP np

∑
n np

∑
n

16 14112 53792
32 882 28224 3362 107584
64 56448 215168
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speed-up and scale-up will be introduced. The problem in Fig. 5.28 was com-
puted on 16, 32 and 64 nodes (processors) of the parallel system which lead to
a number of unknowns from 14112 to 215168, depending on the discretization
level. The structure of the mesh was not changed within these computations.

Efficiency of a parallel solution can be measured through two factors,
speed-up and scale-up.

Speed-up monitors the quality of the parallelization

Sp (n) =
computing time with 1 processor

computing time with n processors
=
T1

Tn
(5.57)

Ideally, the speed-up function has a value of 1 for its tangent. This means that
a problem can be solved in half time when doubling the number of processors.
However, loss due to communication leads in reality to longer computing
times when the number of processors is enlarged which is monitored by Sp (n),
see (5.57).

The problem depicted in Fig. 5.28 was solved for a constant size of 14112
and 53792 unknowns on different numbers of processors, see Table 5.9. Here
NP denotes the number of processors, np the number of unknowns per pro-
cessor and

∑
n the total number of unknowns. A parallel solution with 16

and 64 nodes was compared in Fig. 5.29a. The loss of efficiency can be ob-
served clearly for the larger number of processors since the computing load
per node is getting smaller, and then communication times play a mayor role.
Thus efficiency can not purely be measured using the definition of speed-up
in (5.57).

Based on that observation, another measure for monitoring the efficiency
was introduced. It is called scale-up and can be used to see how good pre-
conditioning and communication work for increasing numbers of processors.

Fig. 5.27 Influence of different pre-conditioners when applied to an elasto-plastic
plate problem
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Sc (n) =
n×l Unknowns on n processors
l Unknowns on 1 processor

=
Tn(l×n)
T1(l)

(5.58)

To demonstrate the scale-up measure, a problem with increasing number
of unknowns is solved on a system with increasing number of processor such
that the computing load on each processor is constant. In an ideal case, the
computing time will be constant. Since, however, a cg-solver is not indepen-
dent upon the element size which reduces within a scale-up simulation, it is
possible to observe a decline of the scale-up factor for increasing number of
total unknowns.

The problem shown in Fig. 5.28 was again solved by holding the com-
puting load on each processor constant. This was achieved by increasing the
number of processor nodes with 882 and 3362 unknowns per processor, see
Table 5.9. The total number of unknowns increases within these simulations.
All computing times are scaled the simulation time on 16 processors, see
Fig. 5.29b.

The hardware for these investigations was at that time a Parsytec Super-
cluster with 64 nodes each with 8 MB of main memory which is not adequate
in standard anymore. However, this system was transputer based and thus
had a communication power which was directly adjusted to the computing
power. Hence this system was good for general comparison of different solu-
tion techniques.

The behaviour of the parallel algebraic multi-grid method (pAMG) is dis-
cussed by means of an inelastic shell problem of a pinched cylinder, described
in Sect. 9.5.3, see also Meynen et al. (1997). Geometry, loading and material
data follow from Fig. 9.25. The cylinder is discretized by the shell elements
described in Sect. 9.4.6. Due to symmetry, only one eights of the shell is dis-
cretized. Here the influence of the problem size and processor load on the

(a) (b)

Fig. 5.28 (a) Structure and loading, (b) Distribution of the mesh onto 14 processors
using subdomains
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Fig. 5.29 (a) speed-up Fig. 5.29 (b) scale-up

solution time are investigated. Different finite element discretizations, from
32×32 up to 320×320 elements, were considered which lead to a total number
of unknowns from 5445 to 515205 . The finite element discretizations were
run on 4, 8 and 16 nodes which consist of a PowerPC processor for computing
and a transputer for communication. This system had a fast processor while
the transputer for communication was relatively slow.

Figure 5.30 depicts the speed-up for a parallel CG method which employs
the pAMG method as pre-conditioner. The results were computed using a V -
cycle which has superior behaviour in this case. The simulation with largest
load on a node yield the best speed-up. Due to the bad balancing between
computing power and communication only a speed-up of 2.23 was reached
instead of 4 when the system was solved on 16 nodes instead of 4. More
computing nodes did not make sense in this example since the load on a
node would be low due to the small coarse grids in the pAMG scheme. Note
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Fig. 5.32 Influence of plasticity on the number of iterations

that it is theoretically possible to achieve a problem independent convergence
rate for the multi-grid method but not for the cg-method. Hence, in Fig. 5.31
a deviation from the optimal line can be observed. This is valid for different
computing load on the nodes.

The influence of inelastic material behaviour on the number of iteration
of the pAMG scheme is depicted in Fig. 5.32. Here the number of iterations
within the first Newton step and the total number of iterations are plot-
ted for a given load step versus time. The number of Newton steps are
constant within the first load level. Once plastic flow occurs, the number
of Newton steps increase within a load level; however, there is no influ-
ence of the inelastic behaviour on the iterative solver. The convergence rate
is not optimal in this example. It stems from the fact that the shell prob-
lem is badly conditioned. Here special pre-conditioners have to be applied,
see e.g. Arnold et al. (1997) and Schöberl (1999) in order to enhance the
convergence rate. The load deflection curve related to this example is pre-
sented in Fig. 9.26; additionally the deformation of the cylinder can be found
in Fig. 9.27.

5.3.5 General Observations

As it can be observed from these examples, there is now general concept for
the choice of efficient and robust algorithms. This is due to the fact that the
solution algorithm, which has to be applied, depends on the spatial dimen-
sion, the problem size, the capacity of the main memory of the computer, the
condition number of the equation system and last not least on the physical
behaviour of the problem. Hence the user of nonlinear finite element meth-
ods has to choose the solution algorithms according to his/her knowledge
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by considering the engineering problem at hand. However, from the exam-
ples, some general rules can be extracted for the choice of the right solution
procedure:

– The Newton-Raphson method is advantageous when strongly nonlinear
problems are present and high solution accuracy is needed. Often the com-
putation can be performed with large load steps which yields an efficient
method. This is especially true for problems related to finite elasticity (like
rubber materials) which are path independent.

– Secant methods – like the BFGS method – can be applied efficiently to
large two- and three-dimensional problems when weak nonlinearities are
present, and the conditioning of the tangent matrix does not allow the use
of iterative solvers.

– The combination of iterative solvers and the Newton method is efficient
for three-dimensional problems, when good pre-conditioning techniques are
available for the problem at hand.

– The combination of direct solvers and the Newton method is efficient for
two- and three-dimensional problems, when sparse solvers like UMFPACK
or PARDISO are applied. This strategy is especially suited for problems
which are ill-conditioned, like the analysis of incompressible solids or the
numerical simulation of structures which consist of a mixture of beams,
shells and solids.

– Parallel solvers are adequate for large three-dimensional problems. Espe-
cially when coupled with iterative solvers. Still work has to be done in this
area to design efficient solvers for general problems of structural and solid
mechanics.

5.3.6 Problems, Which Occur when Running Actual Simulations

In this section, some difficulties are discussed which can materialize when a
nonlinear problem is solved. Of course, the possibilities of male function of
finite element programs and algorithms are quite wide, but some problems
are mentioned which might occur more frequently.

– The Solution Does not Converge During a Specific Load Step
Using Newton’s Method. This means that the load increment is too
large for the algorithm being in the convergence region. In such case, use
either a method which increments the load automatically, like the arc-
length method (Sect. 5.1.5) or the line-search technique (Sect. 5.1.4), or
reduce the load step. As a hint, the load steps should be adjusted such that
the number of Newton steps nsteps is in the range 3 ≤ nsteps ≤ 7.

– The Residual Does not Reduce Further in Newton’s Method.
Here possibly a problem occurs which is ill-conditioned due to high differ-
ences of stiffness in different parts of the discretization. In such cases, the
stiffness has to be reduced in order to avoid ill-conditioning or a different
discretization has to be used.
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– The Solution Stops with a Zero or Negative Diagonal Element.
This occurs when a singular point on the solution path is bypassed. In
such case, the arc-length method can be applied to overcome such points
together with an equation solver which is able to compute solutions for
negative definite matrices.



6. Solution Methods for Time Dependent
Problems

When dealing with nonlinear partial differential equation which describe the
deformation process of solids, then the change of state variables and defor-
mations in time has to be considered. These problems are known as initial
boundary value problems which additionally depend upon the time. Among
engineering applications, related to initial value problems, are vibration anal-
ysis of structures or impact problems like car-crash simulations. In such cases,
the inertia term in the linear momentum equation, see (4.65) or (4.102), can-
not be neglected. Another class of problems is related to inelastic constitutive
behaviour, such as elasto-plasticity, visco-plasticity or visco-elasticity. The in-
elastic response is governed by evolution equations, and thus in general a time
dependent process.

Methods and algorithms are discussed in this chapter which can be applied
to the above mentioned problem classes with special emphasis to dynamical
systems in solid mechanics and nonlinear time dependent constitutive equa-
tions. Before starting with the specific application, some general remarks are
made concerning the integration of algebraic differential systems or ordinary
differential equations systems. These generally appear when the weak forms
(3.289) or (3.296) describing a solid are spatially discretized by finite elements
which then results to a system of ordinary differential equations in time.

The ordinary differential equation system (4.65) with N unknowns stem-
ming from the spatial discretization can in general be written as

L̇(t) = P(t) − R [u(t) ] . (6.1)

The quantity L(t) denotes the linear momentum which follows for the dis-
crete system from (4.65) as L(t) = Mv(t). The vector R represents the
vector of internal nodal forces which is equivalent to the stress divergence
term. It depends upon the deformation u and the stress states σ(u), since no
constitutive equations has been introduced in (4.65). The vector P contains
the prescribed nodal forces due to the applied loading. The type of nonlin-
earity of (6.1) is determined by the stress divergence term R. It depends
upon the model which defines the discrete equation of motion (4.65). This
can either be a structural model for trusses, beams or shells, see Chap. 9, or a
the continuum model, see Chaps. 4 and 10. So far, no constitutive equations
are specified in the term R (u). These could be stated as time independent
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(elastic) response functions or as time dependent (inelastic) constitutive equa-
tions. Hence it is not possible to present here a more specific form for the
residual vector R. Detailed information can be found in the chapters describ-
ing special applications.

By introducing the velocity v(t) as a new independent variable, the dif-
ferential equations system (6.1) can be rewritten as nonlinear ordinary dif-
ferential system of first order

ẏ(t) = g [y(t) ] , (6.2)

where the vector yT (t) = {u(t) ,v(t) } now contains 2 N unknowns (dis-
placements and velocities).1

In general, different algorithms are applied to solve the system (6.1), since
the type of the underlying partial differential equation can be different as well
as the solution spectrum. Inelastic constitutive behaviour is often of local
nature (due to the loading state only parts of a solid will undergo inelastic
deformations). Contrary to that the inertia terms in a dynamical system
are of global nature since they are present in all parts of a solid. The local
behaviour of, e.g. inelastic responses can be considered by devising special
algorithms. This will be discussed in detail in Sect. 6.2.

All algorithms, however, rely on an approximation of the time derivatives
which have to be chosen within a given time step. As an example, the velocity
v(t) can be approximated by a difference quotient using the displacements
at different times

v(t) =
d

dt
u(t) ≈ 1

Δt
[αu(tn−1) + β u(tn) + γ u(tn+1) ] . (6.3)

The notation used here to describe the time dependent behaviour is depicted
in Fig. 6.1 which shows the function of component ui(t) of the displacement
vector u(t) and its evaluation at different times tn. A time interval in which
the solution of (6.1) is determined is defined as 0 ≤ t ≤ T . This time interval
is subdivided into m time steps Δt. The time tn is then given by (nΔt); in
general tn+j = (n+ j)Δt follows.

It is often advantageous, especially in nonlinear applications, to change
the time step size during the numerical integration of the equations of motion
since the behaviour of the nonlinear term R (u ) can change drastically. For
that an error analysis is needed. Such analysis is quite complex and will not
be discussed here in depth, for an overview and related literature, see e.g.
Wood (1990), Sloan et al. (2001) and Ramm et al. (2003).

1 In this chapter, it is assumed that all variables are time dependent. In order
to simplify notation this will not be stated explicitly when not needed, e.g. the
displacement u(t) will be written as u to shorten notation.
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Fig. 6.1 Time dependent behaviour of a displacement component ui

6.1 Integration of the Equations of Motion

The discrete equations of motions were derived from the weak form of linear
momentum in Sect. 4.2. With (6.1), the equation

Mü + R (u) = P (6.4)

is obtained where M stands for the mass matrix, R (u) denotes the vector
of the internal forces (stress divergence) and P contains the time dependent
prescribed loads.

From experimental evidence, it is known that damping effects occur in
structures undergoing dynamic motion. These are related, e.g. to viscose ef-
fects in the material, internal friction or friction in connections. Such effects
occur often in a combined way and are described using the assumption of
damping which is proportional to the velocity.2 Then an additional term has
to be introduced in (6.4). For this a damping matrix C is introduced. Often
the damping matrix C is assumed to be constant such that the damping force
has the form Cu̇. Then it is mostly described by a combination of mass and
stiffness matrix (C = d1 M+d2 K). Such approximation is denoted as modal
damping. This form has advantages in linear analysis, since a decoupling of
the discrete equation system is possible by modal analysis, see e.g. Bathe
(1982) or Zienkiewicz and Taylor (1989). Such decomposition can be applied
to nonlinear systems as well, however, only in the incremental form of the
equations of motion, see also Sect. 6.1.5. Since damping has different origins,
as described above, an experimental verification of the damping matrix C or
of the parameters d1 and d2 is essential in real engineering applications.

2 Other posible damping forces are related to the action of fluids. Then, for a
creeping fluid, the damping is also proportional to the velocity; however for
turbulent flow the damping force depends quadratically upon the velocitiy.
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Remark 6.1: It is also possible to define a nonlinear damping term C(u , u̇) in-
stead of the linear approximation Cu̇. However, such term is not easy to construct
and to identify by experiments. Also, a more accurate description of the material
damping by a visco-elastic or visco-plastic constitutive model, see Sect. 3.3.3, is
possible. This would then effect the vector of internal forces R but not the damp-
ing matrix C. The same is true for damping due to frictional forces in connections.
These can be modelled correctly by a fine finite element discretization using contact
elements, see e.g. Chap. 11.

By including linear damping, the general form of the equations of motions
follows as

Mü + Cu̇ + R (u) = P . (6.5)

This equation can be transformed to a first order differential equation system
by introducing the independent variables u̇ = v and ü = v̇

u̇ = v ,

v̇ = M−1 [P − Cv − R (u) ] . (6.6)

For the description of the algorithms, the letter a is chosen to denote the
accelerations ü and the letter v denotes the velocities u̇. With this nota-
tion, the discretized equation of the linear momentum (6.5) has at time tn+1

the form
Man+1 + Cvn+1 + R (un+1) = Pn+1 . (6.7)

The index (..)n+1 means that the relevant quantity has to be computed at
time tn+1.

Finally, for the definition of an initial value problem, the initial conditions
have to be described. These are conditions for the displacements ū and the
velocities v̄ at time t = t0 (usually t0 = 0 is selected):

u0 = ū ,

v0 = v̄ . (6.8)

The choice of numerical methods for the determination of the time de-
pendent response of the deformation u(t) depends upon the characteristics
of the problem. Basically, two options are available for the solution of (6.5)
which are known as explicit or implicit integration schemes:

– Explicit methods can be easily implemented since the solution at time
tn+1 depends only upon quantities at time tn. Explicit methods are very
efficient when the mass matrix M in (6.5) is replaced by a lumped mass
matrix which has diagonal structure, see also Remark 4.4. The disadvan-
tage of explicit methods is the limitation of the time step size due to a
stabilization criterion.

– Implicit integration schemes replace the time derivatives by quantities
which depend as well upon the last time step in (time tn) as upon the still
unknown quantities at time tn+α. This requires the solution of a nonlinear
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algebraic equation system at every time step. Hence implicit methods have
to be combined with methods described in Chap. 5 (e.g. Newton method).
The advantage of implicit methods is related to the fact that they can be
constructed such that they are unconditional stable. Thus the time step
size is not limited.

The selection of time step sizes, used either in explicit or implicit algorithms,
has to be justified by physics. In case of impact problems (e.g. car-crash
analysis) or shock waves moving through a solid, small time steps have to
be selected to resolve high frequency parts and travelling waves in order to
capture the correct physical behaviour. Hence explicit methods are ideal for
such engineering applications. Implicit methods are advantageous for prob-
lems where the response of the dynamical system depends mainly upon lower
frequencies (e.g. simulation of engine vibrations or vibration of structures).
Since both types of physical behaviour occur frequently in engineering ap-
plications, explicit and implicit methods will be discussed in the next two
sections.

From a mathematical and efficiency point of view, integration algorithms
for the solution of the nonlinear equations of motions (6.5) have to be con-
structed in such a way that they have the same order of accuracy as the
spatial finite element approximation, see e.g. Chap. 8, and that they fulfil
the essential balance equations. This includes the conservation of linear and
angular momentum and – in case of hyper elastic materials – the conserva-
tion of mechanical energy. Since classical algorithms used in linear dynamics
do not fulfil all of the above requirements when applied to nonlinear prob-
lems governed by (6.5), new developments throughout the last years lead to
so-called conserving algorithms, see e.g. Simo and Tarnow (1992), Crisfield
(1997), Sansour et al. (1997) and Betsch and Steinmann (2000). Two dif-
ferent approaches, derived in Simo and Tarnow (1992) and Sansour et al.
(1997), will be discussed in more detail in Sect. 6.1.3. Further conserving
integration methods, e.g. starting from the symplectic structure of the equa-
tion of motions, will not be discussed, but a literature overview is provided
in Sect. 6.1.3.

6.1.1 Explicit Time Integration Methods

When high frequencies (e.g. stemming from impact) or shock waves dominate
the solution of a physical problem described by (6.5), then small time steps
are required. In such case, the most efficient way to integrate the equations
of motions is provided by an explicit method.

The central difference scheme is one of the favourite methods applied
to solve the equations of motions in case of solid mechanics or structural
problems. Within this scheme, the velocities v and the accelerations a are
approximated at time tn by
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vn =
un+1 − un−1

2Δt
,

an =
un+1 − 2un + un−1

(Δt)2
. (6.9)

By inserting these relations into the discretized form of the linear momentum
balance (6.5) at time tn

M (un+1 − 2un + un−1) +
Δt

2
C (un+1 − un−1) + (Δt)2R (un) = (Δt)2 Pn,

(6.10)
an equation system is obtained from which the unknown displacement un+1

at time tn+1 can be computed(
M +

Δt

2
C

)
un+1 = (Δt)2 [Pn−R (un) ]+

Δt

2
Cun−1 +M (2un−un−1) .

(6.11)
Here the mass matrix M and the damping matrix C are constant. Hence, for
the coefficient matrix M +Δt/2C, a triangular decomposition can be used
which leads to an efficient algorithm for the solution of (6.11). Note that the
term R (un) which contains all nonlinearities appears only on the right hand
side.

In the case that M and C are given in diagonal form, (lumping), then the
inversion of M+Δt/2C is trivial and only the vectors on the right hand side
of (6.11) have to be evaluated.

The initialization of the finite difference scheme needs some special con-
siderations since in (6.11) the values for the displacements u−1 have to be
determined in order to start the integration process in a consistent way. These
displacements can be computed from the initial values at time t0 by using
the initial conditions u0 and v0. Based on a second order accurate Taylor

series expansion for the displacements at time t−1, the relation

u−1 = u0 −Δtv0 +
(Δt)2

2
a0 (6.12)

is obtained where the accelerations at time t0 can be computed from the
balance of linear momentum (6.7)

a0 = M−1 [−Cv0 − R (u0) + P0 ] . (6.13)

A variant of the above stated central difference scheme for the solution of
(6.5) can be found in Wood (1990). It is equivalent to the already described
method but uses the approximations

un+1 = un +Δtvn +
(Δt)2

2
an,

vn+1 = vn +
1
2
Δt (an + an+1 ) (6.14)
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for displacements and velocities. Equation (6.7) can be applied to determine
the accelerations. This yields the algebraic equation system(

M +
Δt

2
C

)
an+1 = Pn+1 − R

(
un +Δtvn +

(Δt)2

2
an

)
− Δt

2
Can ,

(6.15)
which has on the right hand side, besides the loading vector Pn+1, only
quantities which are measured at time tn. Thus the initial conditions for
displacements and velocities can be incorporated directly in this scheme.
Displacements and velocities follow after the solution of (6.15) from (6.14).
The coefficient matrix in (6.15) does not change when compared to (6.11);
hence the same efficiency as in the first formulation is obtained, especially
when lumping procedures are applied.

However, as already mentioned, explicit methods are not unconditionally
stable. The critical time step is given for linear problems by

Δt ≤ TN

π
. (6.16)

In this criterion which is named after Courant, the time TN denotes the
smallest period for a given finite element discretization. It can be estimated
based on the element size and the speed of a wave travelling through a solid
by, see e.g. Bathe (1996),

Δt ≈ h

cL
. (6.17)

h is a characteristic dimension of the smallest element in the FE-mesh and cL
is the velocity of a compression wave in a linear solid (cL = 3K (1−ν)/ρ (1+ν)
with the modulus of compressionK, the Poisson ration ν and the density ρ).

A critical time step limit can be found for nonlinear problems in
Belytschko et al. (1976)

Δt ≤ δ h
cL
. (6.18)

The constant δ (0.2 < δ < 0.9) is a reduction factor which has to be selected
according to the nonlinear properties of the problem under consideration.

Dynamical Relaxation. Finite element programs exist which can only in-
tegrate the equations of motions explicitly. Due to this limitation, only dy-
namical problems can be solved. In order to apply such programs to time
independent statical problems, the method of dynamical relaxation can be
used. Within this method, the equations of motions are solved by introducing
so much damping such that the solution converges quickly to the statical one.
A simple possibility is to assume that the damping matrix in (6.10) can be
replaced by a multiple of the mass matrix ϑM, see e.g. Skeie et al. (1995).
With this assumption, an equation system for the unknown displacements
un+1 follows from (6.10)
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(
1 + ϑ

Δt

2

)
Mdiag un+1 = (Δt)2 [Pn −R (un) ] +

[(
ϑ

Δt

2
− 1

)
un−1 + 2un

]
,

(6.19)

where the mass matrix is approximated by a diagonal matrix M = Mdiag.
The value of ϑ will be selected such that the damping of the system is close
to the aperiodic limit case. A value for ϑ can be derived from the ordi-
nary differential equation of a simple one dimensional linear vibrating sys-
tem (mẍ + d ẋ + k x = 0). The Lehr damping measure can be determined
with d = ϑm as D = d / 2mω = ϑ / 2ω. The aperiodic limit case occurs
for D = 1 which yields ϑ = 2ω. This of course is only an approximation for
a multi-dimensional problem since more than one eigenvalue influences the
solution.

The value ϑ = 2ω is only an approximation for the aperiodic limit case in
nonlinear applications since it is assumed that the first natural frequency ω is
responsible for the decay of the motion of a dynamical system. However, the
first natural frequency will change due to the changing stiffness of a nonlinear
system. Thus, it might be necessary to recompute the eigenvalue ω during
the dynamic relaxation algorithm.

The first natural frequency is associated with the smallest eigenvalue
of the nonlinear finite element system, evaluated at a given state ū. Thus
the natural frequency can be computed approximately from the Rayleigh

quotient

ω2 =
ϕT KT (ū)ϕ

ϕT Mϕ
, (6.20)

when the associated eigenvector ϕ is known. The natural frequency ω is
not constant since the tangent stiffness depends upon the deformation state.
Hence it is reasonable to determine the parameter ϑ as a function of the
deformation. For this task, it is assumed that the eigenvector can be ap-
proximated by the displacement increment Δun+1 = un+1 − un. Since the
displacement are related to a statical analysis, this assumption is reasonable.
With this choice, the following approximation of the first natural frequency
and the damping factor ϑn+1 is given by

ω2
n+1 ≈ ΔuT

n+1 KT Δun+1

ΔuT
n+1 MdiagΔun+1

=
ΔuT

n+1 [Pn − R(un)]
ΔuT

n+1 MdiagΔun+1
−→ ϑn+1 = 2ωn+1 .

(6.21)
In this derivation, the incremental equation system related to Newton

method [KT Δun+1 = −G(un)] was used. The computation of ϑn+1 is based
on the evaluation of two scalar products, and hence is very efficient. The
factor ϑn+1 from (6.21) can now be inserted in (6.19) within each time step.

6.1.2 Implicit Time Integration Methods

Implicit methods can be applied alternatively to solve the nonlinear discrete
equations of motion (6.5) for many engineering applications in structural
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and solid mechanics. The most popular scheme is the Newmark method,
see Newmark (1959). It is based on the following approximations for dis-
placements and velocities at time tn+1

un+1 = un +Δtvn +
(Δt)2

2
, [ (1 − 2β)an + 2β an+1 ] ,

vn+1 = vn +Δt [ (1 − γ)an + γ an+1 ] . (6.22)

These relations not only depend upon quantities at time tn but also on the
accelerations at time tn+1. The parameters β and γ are constants which de-
termine the behaviour of the integration method. They can be selected by
the user. A mathematical analysis of Newmark method for the linear equa-
tions of motions leads to the following inequalities which limit the parameter
values: 0 ≤ β ≤ 0.5 and 0 ≤ γ ≤ 1, see e.g. Bathe (1982) and Zienkiewicz
and Taylor (2000a).

The still unknown accelerations an+1 follow from the spatial discretized
form of the linear momentum equation (6.7). By using the approximations
for un+1 and vn+1, the accelerations an+1 have to be determined from the
nonlinear algebraic equation system

(M+γ ΔtC )an+1+R (an+1 ,un ,vn ,an) = Pn+1−Ḡ (un ,vn ,an) . (6.23)

All terms which depend linear upon the displacements, velocities and acceler-
ations at time tn, when (6.22) is inserted in (6.7), are assembled in the vector
Ḡ. Equation (6.23) can be solved by using Newton method. It yields the
accelerations an+1. When these are known, the displacements and velocities
follow from (6.22).

Remark 6.2: For the parameter choice γ = 0.5 and β = 0, the approximations
for displacements and velocities of the explicit central difference methods can be
derived from (6.22), see also Eq. (6.14).

Often approximations (6.22) are rewritten in such a way that the velocities
and accelerations depend upon the displacements

an+1 = α1 (un+1 − un) − α2 vn − α3 an ,

vn+1 = α4 (un+1 − un) + α5 vn + α6 an . (6.24)

Here the following constants were introduced

α1 = 1
β (Δt)2 , α2 = 1

β Δt , α3 = 1−2 β
2 β ,

α4 = γ
β Δt , α5 = (1 − γ

β ) , α6 = (1 − γ
2 β )Δt .

The insertion of relations (6.24) in to the linear momentum equation (6.7)
yields now a nonlinear algebraic equation system for the unknown displace-
ments un+1:
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G (un+1) = M [α1 (un+1 − un) − α2 vn − α3 an ]
+C [α4 (un+1 − un) + α5 vn + α6 an ] (6.25)
+R (un+1) − Pn+1 = 0 .

Again Newton method can be applied to determine the unknown displace-
ments at time tn+1. This leads with the tangential stiffness matrix

KT (ui
n+1) =

∂R

∂un+1

∣∣∣∣
ui

n+1

(6.26)

to the iterative scheme (iteration index i)[
α1 M + α4 C + KT (ui

n+1)
]
Δui+1

n+1 = −G (ui
n+1) ,

ui+1
n+1 = ui

n+1 +Δui+1
n+1 , (6.27)

which has to be carried out at each time step of the Newmark method.
The starting value for this iteration is the last converged displacement vector
from the last time step : u0

n+1 = un. The iteration described in (6.27) is
terminated when the criterion provided in Box 5.1 is fulfilled.

The accuracy and stability of the Newmark method can be analyzed
for linear dynamical problems. The results stated in Table 6.1 are due to
Wood (1990). It can be observed from this table that the Newmark method
is optimal for the parameter choice γ = 0.5. In the case of damping free
vibrations, the error in the amplitude is equal to zero. This is equivalent
to the conversation of energy. Of equal order of accuracy is the method of
central differences (γ = 0). However, as already mentioned in Sect. 6.1.1, this
method is not unconditional stable and has a critical time step ofΔt ≤ TN/π,
with TN being the smallest period for a given finite element discretization.

Since the spatial finite element discretization approximates the lower
eigenmodes a lot better than the higher one, see Strang and Fix (1973),
it is sometimes advantageous to damp the higher modes during the numer-
ical integration process. This often makes in engineering applications sense,
since implicit time integration methods are used for problems where the re-
sponse is governed by the low frequency modes. For the Newmark method,
the parameter γ > 0.5 has to be selected. However, following the results in
Table 6.1, this leads to a loss of accuracy. Due to that reason, modifications of

Table 6.1 Accuracy and stability of the Newmark- and central
difference method

Parameter Error in amplitude Error in amplitude stability

(C = 0) (C �= 0)

γ = 0.5 0 O (Δt2) β ≥ 0.25

γ �= 0.5 O(Δt) O (Δt) 2β ≥ γ ≥ 0.5

γ = 0 0 O (Δt2) Δt ≤ TN
π
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the Newmark method have been proposed which preserve the order O(Δt2)
but damp the high frequencies, see e.g. Hilber et al. (1977) and Wood et al.
(1981). The method due to Bossak, see Wood et al. (1981), is based on a
changed discrete equation of motion (6.7)

(1 − α)Man+1 + αMan + Cvn+1 + R (un+1) − Pn+1 = 0, (6.28)

but still uses the approximations (6.22) for displacements and velocities.
The method developed by Hilber et al. (1977) for problems of linear elasto-

dynamics applies a different approximation to the equations of motion which
weighs the displacements. Its nonlinear extension yields, instead of (6.28), to
the system of equations

Man+1+(1−α) [Cvn+1−Pn+1]+α [Cvn−Pn]+R [(1−α)un+1+αun)] = 0 .
(6.29)

Also, here the displacements and velocities are computed at time tn+1 as
in the method of Wood et al. (1981) or Newmark by (6.22). The Hilber

method damps high frequencies for a parameter choice 0.5 < α < 1. However,
this method needs an evaluation of the vector of internal nodal forces R at
time tn+α = (1−α) tn+1 +α tn, which is not trivial when complex nonlinear
constitutive equations dictate the response of a system, and thus history
variables have to be considered.

6.1.3 Conserving Algorithms

The implicit time integration methods, which where discussed so far, were
essentially developed for linear problems. When these methods are applied to
general nonlinear problems in solid mechanics, then they might not preserve
all physical quantities, e.g. the balance principles of continuum mechanics.
The related quantities are linear momentum, angular momentum and me-
chanical energy.

When the Newmark method is applied to a nonlinear system undergo-
ing finite rotations, the angular momentum is not preserved. Often also the
energy is not conserved for elastic systems. It has been shown in Simo and
Tarnow (1992) that the Newmark method preserves the angular momentum
only for the choice of the parameters γ = 1/2 and β = 0. The Newmark

method is then equivalent to the explicit method of central differences, as
shown in Remark 6.2. Hence this integration method is even, for the optimal
choice of the parameters (β = 1/4 and γ = 1/2, no damping of amplitudes),
not angular momentum preserving. Contrary to that, the explicit central
difference method preserves angular momentum.

The method of Hilber et al. (1977) damps out high frequencies for a choice
of the parameter α (0.5 < α < 1). But again Simo and Tarnow (1992) showed
that this method, even for undamped systems (C = 0), does not preserve
angular momentum.
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Hence time integration algorithms which preserve angular momentum,
linear momentum and energy, have to be developed knowing that energy
conservation can only be achieved for elastic systems. These algorithms have
to be especially applied to problems undergoing finite rotations and for long
time integration of systems. The latter is essential when dynamical stability
of nonlinear systems is investigated.

Starting from the initial work of Simo and Tarnow (1992), different au-
thors developed variants of such schemes. Among these are papers by Kane
et al. (1999) who derived variational integrators for conservative mechani-
cal systems that are symplectic and energy and momentum conserving. A
scheme based on co-rotational formulations can be found in Crisfield and
Shi (1996). Algorithms which include finite deformations of general hypere-
lastic materials including compressible and incompressibie material response
were developed in Gonzalez (2000) independently of the spatial discretiza-
tion. Another scheme is due to Laursen and Meng (2001) which bases on
the extension of a critical stress update formula to encompass generic stored
energy functions for the hyperelastic continuum.

A co-rotational energy–momentum scheme which guaranteed conservation
was obtained by Kuhl and Crisfield (1999) but additionally was also able to
control the decay of total energy by numerical dissipation of unwanted high
frequency response. Finally, these schemes were applied within structural
elements like beams, see e.g. Doblare (1995), and shells, see e. g. Kuhl and
Ramm (1996) and Brank et al. (1998).

The derivation of time integration methods which conserve linear momen-
tum, angular momentum and energy will be based on the following assump-
tions:

– hyper-elastic constitutive behaviour,
– no action of prescribed loads and
– no prescribed displacements at boundaries such that the body can move

freely.

Under these conditions, the conservation of linear and angular momentum as
well as of energy can be shown from (3.69), (3.70) and (3.79). These equations
lead to the discrete form, written for two time instants at tn and tn+1

Ln = Ln+1, Jn = Jn+1, and En = En+1 . (6.30)

In Simo and Tarnow (1992), the following ansatz is chosen for displacements
and velocities

un+α = αun+1 + (1 − α)un ,

vn+α = αvn+1 + (1 − α)vn (6.31)

with 0 ≤ α ≤ 1. This approximation is now inserted in the system (6.6) which
yields
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1
Δt

(un+1 − un ) = vn+α ,

1
Δt

(vn+1 − vn ) = M−1 [Pn+α − R(un+α) ] . (6.32)

Damping is neglected due to the assumptions made above. An analysis of
the time integration method based on (6.32) shows that linear momentum
is preserved for 0 ≤ α ≤ 1. The conservation of angular momentum follows
then the special choice α = 1/2. Note that the discretized form of the stress
tensor is still arbitrary. The proof of these results is based on the weak form
of the balance of linear and angular momentum in which the time discretiza-
tion (6.31) is inserted. Since the test functions, used in the weak form, are
arbitrary, it is possible to select a constant value for it, see last assumption.
With this choice, linear and angular momentum is preserved for symmetric
stress tensors. When also energy has to be preserved then the stresses have to
be computed from the constitutive equation such that the energy is constant:
En+1 = En. The kinetic energy K which is part of E is exactly approximated
by (6.31) and (6.32), see Simo and Tarnow (1992). Hence the change in the
internal energy U has to be considered in more detail. From (3.89) follows for
a pure mechanical deformation that ρ0 u̇ = S · Ė = FS ·Gradv. The integral
form of the change of strain energy can be written as

U̇ =
∫
B

FS · Gradv dV. (6.33)

The time integration yields with (6.32) evaluated at α = 1
2 (conservation of

angular momentum)

Un+1 − Un = Δt

∫
B

Fn+ 1
2
S · Gradvn+ 1

2
dV . (6.34)

With (6.31)1, here written for the deformation ϕ, the deformation gradient
at time tn+ 1

2
is obtained

Fn+ 1
2

=
1
2

Grad (ϕn+1 + ϕn) =
1
2

(Fn+1 + Fn) .

The velocity gradient can be approximated with (6.32)1 by

Gradvn+ 1
2

=
1
Δt

Grad(ϕn+1 − ϕn) =
1
Δt

(Fn+1 − Fn) .

After elementary algebraic computations, the change of strain energy can be
expressed in terms of the Green-Lagrange strain tensor (3.15)

Un+1 − Un =
∫
B

S · (En+1 − En )dV = 0 . (6.35)
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This constitutes a restriction which has to be fulfilled by the algorithmic
evaluation of the constitutive equation. For the St. Venant material, it is
fulfilled exactly. This can be seen from the strain energy for the St. Venant

material
U =

1
2

∫
B

E ·C [E ] dV ,

such that the 2nd Piola-Kirchhoff stress tensor which has to fulfil

Un+1 − Un =
1
2

∫
B

En+1 ·C [En+1 ] − En ·C [En ] dV

=
1
2

∫
B

(En+1 − En) ·C [En+1 + En ] dV

follows by comparison with (6.35) as

S =
1
2
C [En+1 + En ] . (6.36)

The virtual internal work, see (4.56), can be written with respect to the
initial configuration as∫

B

δEn+ 1
2
· S dV = ηηηT R (un+ 1

2
) =

ne⋃
e=1

n∑
I=1

ηT
I RI (un+ 1

2
) , (6.37)

where the residual vector belonging to element node I is given with (6.36) by

RI (un+ 1
2
) =

∫
Ωe

BT
L I n+ 1

2

1
2
C [En+1 + En ] dΩ . (6.38)

This completes the set of discrete equations needed for the time integration
method which preserves linear and angular momentum as well as energy. A
disadvantage of this method is related to the fact that the tangent matrix
associated with the linearization of (6.38) is non-symmetric. This is due to
the fact that the B-Matrix in (6.38) is evaluated at time tn+ 1

2
while the

stresses are evaluated at the midpoint of the time step. The linearization
can be derived using (4.69), (4.72) and (4.73). Additionally (6.31)1 has to be
considered for the computations of the gradients. This yields

KT =
ne⋃

e=1

n∑
I=1

n∑
K=1

ηT
I K̄TIK

ΔuK , (6.39)

where the second term in matrix K̄IK

K̄TIK
=

1
2

∫
Ωe

[
(∇XNI)T S̄e ∇XNK + B̄

T
L I n+ 1

2
D̄ B̄L K n+1

]
dΩ (6.40)
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is non-symmetric.
The algorithm, related to this time integration method, can be con-

structed by inserting (6.32)1 into (6.32)2 which eliminates the velocities. This
leads to a nonlinear algebraic equation system for the displacements un+1

G (un+1) =
2

(Δt)2
M (un+1 − un −Δtvn)−Pn+ 1

2
+ R(un+ 1

2
) = 0 , (6.41)

which can be solved by Newton method. Its linearization yields with (6.39)
the iterative scheme[

2
(Δt)2

M + KT

]
Δui+1

n+1 = −G (ui
n+1) ,

ui+1
n+1 = ui

n+1 +Δui+1
n+1 , (6.42)

which has to be executed in each time step of the integration method. As
initial value for the displacements, the converged value from the last time
has to be used: u0

n+1 = un. The stopping criterion for the iteration described
in (6.42) is the same as the one given in Box 5.1.

The time integration method developed above has the disadvantage that
it does not preserve angular momentum for shell problems where rotation
fields have to approximated, see Sect. 9.4.6. Additional considerations are
necessary to derive preserving algorithms which can be applied for beam or
shell problems undergoing finite rotations, see e.g. Crisfield and Shi (1994)
and Kuhl and Ramm (1996).

Another development, provided in Sansour et al. (1997) for shells, will be
discused below. Here the displacement field u and the rotation field θθθ are
approximated by

un+ 1
2

=
1
2

(un+1 + un ),

θθθn+ 1
2

=
1
2

( θθθn+1 + θθθn ) . (6.43)

Furthermore, it is assumed that the velocities can be computed using

vn+ 1
2

=
1
Δt

(un+1 − un ),

θ̇θθn+ 1
2

=
1
Δt

( θθθn+1 − θθθn ) . (6.44)

The membrane and bending strains, given in (9.191) for the general shell and
in (9.97) for an axisymmetric shell, are however approximated directly. By
using, e.g. (9.97) for membrane- and bending strains relations

Em
n+ 1

2
= Em

n +
1

2Δt
Ė

m

n+η,

Eb
n+ 1

2
= Eb

n +
1

2Δt
Ė

b

n+η (6.45)
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Fig. 6.2 Simply supported shallow arch

are deduced. Sansour et al. (1997) have shown that the energy of a shell is
preserved for η = 1

2 . For the derivation of the weak form of linear momentum,
a specific shell formulation has to be applied. This can be found in Sect. 9.3
for the general shell and in Sect. 9.4 for an axisymmetric shell. The associ-
ated discretization in time can then be obtained using the scheme presented
above. This however will not be discussed here. The relevant relations and
derivations can be found in Sansour et al. (1996).

6.1.4 Numerical Examples

The next two examples are related to the nonlinear dynamical behaviour of
beams and shells and their time integration using the methods and algorithms
developed in Sect. 6.1.3.

Shallow Arc. In the first example, the shallow arch depicted in Fig. 6.2 is
investigated. It has a curvature radius of R = 400 and a area of the cross
section A = 1t. The modulus of elasticity is given by E = 2 × 107 and the
density by ρ = 7.5 × 10−5. Linear damping with d = 6 × 10−3 is assumed.
The applied load P = F cosΩt acts periodically. Its maximum amplitude was
selected as F = 360 such that it is below but close to the load asociated with
the limit point of the arc under statical loading. Under these circumstances,

Fig. 6.3 General load–deflection diagram of the shallow arch
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Fig. 6.4 Phase diagram of shallow arch under point load

see Fig. 6.3, an instable saddle point can be expected, and hence chaotic
behaviour of the structure will be observed.

The eigenfrequency of the applied point load is selected as Ω = 1000. The
time increment was chosen as Δt = 10−5 and used throughout the entire
computation. The arch is discretized by 20 nonlinear finite beam elements.
The dynamical structural response is computed with the algorithm based
on (6.45). It yields the phase diagram shown in Fig 6.4. Over 10000 time
steps were necessary to obtain the phase diagram in Fig. 6.4. Hence a time
integration algorithm is needed which does not depict numerical damping, so
that the final result only depends upon the physical damping d. It should be
noted that the chaotic behaviour of nonlinear dynamical system can depend
upon its spatial discretization. Here a spatial discretization is selected which
can describe the complete nonlinear behaviour of the solution accurately. The
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Fig. 6.5 Poincare map, related to the chaotic solution of the shallow arch
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free

free
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P

L

L

R

Θ

R = 254

L = 25.4

Θ = 0.1 rad

E = 31027.5

ν = 0.3

h = 1.27

ρ = 1E-08

P = 40 (1 + 0.92 cos Ωt)

Ω = 2000π

c = 1.0E-05

Fig. 6.6 Cylindrical shell under harmonic loading

dynamical behaviour of the arc under the chosen point load is chaotic as can
be seen from the Poincare map in Fig. 6.5. A discretization with fewer finite
elements suppresses eventually the chaotic behaviour, as shown in Sansour
et al. (1996).

Cylindrical Shell. The shell shown in Fig. 6.6 is subjected to an applied
periodic point load which can lead to chaotic motions.

It is simply supported along the sides in longitudinal direction and is free
at its other sides. The point load acts in the middle of the shell segment.
Its amplitude and frequency as well as the material and geometry data of
the shell can be found in Fig. 6.6. The static load (P0 = 40) is close to the
limit load of the shell. Hence the system has an instable saddle point and
undergoes a chaotic motion. The nonlinear dynamical behaviour is depicted
in the phase diagram in Fig. 6.7. The related Poincare map is shown in
Fig. 6.8. In total, 105 time steps were needed to obtain the Poincare map.
The Newmark algorithm, described in Sect. 6.1.2, cannot be applied here
since only a specific number of time steps can be computed; after that the
solution explodes (the displacements and velocities increase beyong limits),
see Sansour et al. (1997).
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Fig. 6.7 Phase diagram for cylindrical shell

6.1.5 Reduction Techniques for Nonlinear Equations of Motion

Real engineering structures lead to large finite element systems with sev-
eral hundred thousand unknowns. When the nonlinear dynamical behaviour
of such problem has to be investigated using implicit methods, then it is,
even for the current available computing power, impossible to perform such
computations in an acceptable time frame. Thus methods which reduce the
overall computing time have to be found. In linear analysis model, analysis
techniques are well established which diagonalize and hence reduce the equa-
tion systems, see e.g. Bathe (1996). The basic idea is that most of the energy
of the system can be related to a few eigenmodes, and hence the behaviour
of the dynamical system is described by these modes. This works well for
linear systems; however, for nonlinear systems the modes which contain most

-6000

-4000

-2000

0

2000

4000

6000

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

V
E

LO
C

IT
Y

 

DISPLACEMENT 

Fig. 6.8 Poincare map for cylindrical shell
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of the energy depend upon the deformation state of the dynamical system.
This deformation state changes in time during the solution. Hence the clas-
sical modal methods which select a fixed set of eigenvectors as reduced basis
for a problem at the beginning of the solution algorithm do not work in a
nonlinear setting.

Reduction methods exist for explicit and implicit time integration algo-
rithms. Explicit time integration algorithms are used for shock and wave
propagation problems. They are applied basically to short-time computa-
tions, and the time step is limited by the Courant criterion (6.16). Thus
the goal for a reduction method within an explicit integration schemes is to
allow larger time steps, see Idelsohn and Cardona (1984), and for nonlin-
ear applications, See Bucher (2001). In case of implicit methods, especially
for nonlinear applications, the main drawback is the solution of large linear
systems within the time and incremental loop, see Sect. 6.1.2. Hence reduc-
tion methods decrease the size of the equation system by an appropriate and
efficient technique.

Here a number of methods exist which speed up computation time. How-
ever, there does not exist a unique way of treating the nonlinear dynamical
equations. Methods have been developed for different applications and de-
grees of nonlinearity, for an extensive review see Noor (1994). Methods based
on modal analysis in tangent space can be found in, e.g. Nickell (1976), Leger
(1993) and Kirsch et al. (2005). Other methods are the pseudo-force method,
see e.g. Bathe and Gracewski (1981). Direct update methods of the eigenvec-
tors which can be found in stability analysis, see e.g. Wriggers et al. (1988),
have been employed for dynamic systems in Spiess (2006). The use of modal
derivatives was proposed in Idelsohn and Cardona (1985). Since a truncated
modal superposition is not very efficient for nonlinear systems, more general
bases for reductions were developed such as the Ritz vectors, see e.g. Wil-
son et al. (1982). Other approaches use substructuring in which a system is
subdivided into different smaller substructures. Such technique is related to
dynamic condensation, see e.g. Geradin and Rixen (1997), Castanier et al.
(2001) and Archer (2001).

Several feasible methods are described in this section. These are projection
based methods like

– modal analysis in tangent space,
– methods based on updated eigen- or Ritz vectors and
– the POD (proper orthogonal decomposition) method.

The methods have different properties and hence are optimal for different
applications. All methods act in general on the equation system (6.1).
Projection Based Reduction Methods. A projection of the motion of a
system onto a subspace reduces the total number of unknowns from N to M
in a nonlinear finite element system. The motion of the system is described
by a vector u(t) ∈ R

N , which is replaced by its projection onto a subspace
q(t) ∈ R

M with
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u(t) = Ψ q(t) . (6.46)

The projection matrix
Ψ = [Ψ1, . . . , ΨM ] (6.47)

contains M base vectors Ψi which span the subspace.
The basic formulations starts from the equation of motion (6.4): Mü +

R (u) = P. By inserting the projection (6.46) and by pre-multiplication with
the projection matrix (related to the multiplication of (6.4) by the test func-
tion), the reduced matrix equation

ΨT MΨ q̈(t) + ΨT R (Ψ q(t)) = ΨT P(t) (6.48)

is obtained. Here the damping term was neglected. Adding this term is just
a technical matter, and thus will not be discussed, for details, see e.g. Spiess
(2006). With the definitions M∗ = ΨT MΨ , R∗(q(t)) = ΨT R (Ψ q(t)) and
P∗(t) = ΨT P(t), the reduced set of equations with M unknowns

M∗ q̈(t) + R∗(q(t)) = P∗(t) (6.49)

is derived.
The problem is now to find an optimal base with a minimum number of

base vectors which results in a good approximation of the nonlinear dynamic
problem, see Fig. 6.9 for the deviation of the solution resulting from a pro-
jection. There are several demands which lead to a good approximation of a
nonlinear system:

– The base vectors have to fulfill the essential boundary conditions.
– The base vectors should be orthogonal: ΨT Ψ = 1.

It will be necessary to determine the error related to the projection onto the
subspace. This is especially needed when the deformation of the nonlinear

Fig. 6.9 Subspace approximation of a solution
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system requires a different selection of the base vectors and thus an update
of the base used for the projection. The error related to the reduced projection

eRP =
‖R(Ψ q(t)) − P ‖
‖P ‖ + ‖MΨ q̈(t) ‖ (6.50)

can be computed, see e.g. Idelsohn and Cardona (1984) and Spiess (2006).
Note that the solution was obtained with (6.49) and the error is computed
for the full system.

Besides the use of eigenvectors of the nonlinear system at a specific state
u, it is possible to use the so-called Ritz vectors, see Wilson et al. (1982).
These base vectors are computed from the load case, starting with the first
vector

ψ1 = K−1
T P (6.51)

which corresponds to the static load. The further Ritz vectors are a Krylov

sequence of the first vector

ψi = K−1
T Mψi−1 , i = 2, . . . (6.52)

These vectors have to be orthogonalized, see above, which can be achieved
by a Gram-Schmidt or a QR orthonormalization.

As an example, the two-dimensioanl T-beam, depicted in Fig. 6.10, is used
to show the performance of the reduction method using Ritz vectors, see also
Spiess (2006). The T-beam consists of an elastic St. Venant material with
E = 1000 and ν = 0.2. The data of the geometry are given in Fig. 6.10 as well
as the discretization using quadrilateral displacement elements with quadratic
shape functions. A time dependent point load of F (t) = 0.1 sin(0.5 t) is ap-
plied at the end of the beam. The system is solved using 20 Ritz vectors
and compared to a solution of the unreduced system. The resulting vertical
displacement at the load point is shown in Fig. 6.11.

Fig. 6.10 T-beam: geometry and discretization
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The full line is the solution which uses updates at given intervals. The
dotted line is a Ritz approximation without updates where the Ritz vectors
were computed at the beginning of the solution. The dashed, updated refer-
ence solution cannot be distinguished from the Ritz reduction with updates
and thus underlines, that the base vectors have to be updated in a nonlinear
analysis.

Other base vectors, like Lanczos vectors could also be used within the
projection based reduction method as well. A discussion can be found in
Vukazich et al. (1996).

POD Method. The Proper Orthogonal Decomposition (POD) method is
also known as Karhunen-Loeve expansion. It is a method developed for
the analysis of data and often used to evaluate experimental data. Its goal is
to identify a subspace of the solution space which includes the most relevant
parts. The method determines the most energetic modes, the so-called POD
vectors, as well as the fraction of energy included in each mode. This enables
a better understanding of the dynamics of a system and enhance the analysis
of the dynamics when a projection onto some lower dimensional spaces is
performed. Although the route of the method is very old and goes back to
the beginning of the last century, not many relevant publications can be found
applying the method in the field of continuous solid dynamics.

The POD is often used for the analysis of experimental data, in control
systems and fluid mechanics. It was first applied to nonlinear dynamics by
Kreuzer and Kust (1995); further utilizations are reported in Krysl et al.
(2001). Besides these applications, it is also possible to use the vectors ob-
tained by a proper orthogonal decomposition as basis in a projection-based
reduction method, see above. These vectors are called POD vectors in the

Fig. 6.11 Vertical displacement from solution with Ritz



228 6. Solution Methods for Time Dependent Problems

following. POD- based reduction methods were recently introduced in nonlin-
ear finite element analysis by Krysl et al. (2001), Meyer and Matthies (2003)
and also used in Spiess (2006).

To obtain a reduced model within the frame of the POD method from a
given high dimenionsal finite element model requires two steps.

1. Extract the basis functions by detailed simulations of high-dimensional
systems. This step is also known as Karhunen-Loeve Decomposition
(CLD) or Singular Value Decomposition (SVD).

2. Projection of the basis functions to a low-dimensional dynamical model
using the Galerkin method.

In the mode extraction step of POD, the displacements u(t) are approxi-
mated over some domain of interest as a finite sum in the form of separation
of variables:

u(t) ≈
m∑

k=1

ak(t)ψk . (6.53)

This representation is not unique. If the domain bounded, then the vectors
ψk can be characterized by a Fourier series, by Legendre polynomials or
by Chevyshev polynomials. In the case of the POD method, the vectors
ψk are chosen from modes, extracted from a singular value decomposition
(SVD) analysis.

In the case of discrete data, the displacement vector u(t) is evaluated at
P instants of time. In a finite element discretization, this leads to P sets
of N finite element unknowns. The motion is regarded as a variation of the
displacement vector u(t) around the centre ũ which defines the time-average
of the motion. Thus the motion can be written as

u(t) = w(t) + ũ . (6.54)

Here w(t) denotes the centred motion. It can be represented in the same way
as u(t) in (6.53)

w(t) ≈
n∑

i=1

qi(t)ψi (6.55)

with the constant basis vectors ψi and the time dependent amplitudes qi(t).
The amplitudes are the projections of the centred motion using the associated
basis veector: qi(t) = ψT

i w(t). By requiring that the basis vectors have to be
the best possible representation of w(t), the objective function

J(ψ) =
1
2

P∑
i=1

[wT
i ψ]2 − λ (ψT ψ − 1) (6.56)

can be created where normalization of the basis vectors ψT ψ − 1 was built
in as a constraint. Maximizing this function yields the eigenvalue problem
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(C − λ1)ψ = 0 (6.57)

with the so, called covariance matrix

C =
P∑

i=1

wi w
T
i . (6.58)

The eigenvectors of system (6.57) can be obtained by using a singular value
decomposition technique, see e.g. Golub and van Loan (1989). Note that
pre-multiplication of the eigenvaue problem by ψT yields the relation

λ =
P∑

i=1

[wT
i ψ]2 (6.59)

which is a measure of the participation of a basis vector ψ in the motion of
the system.

Since the displacement ui can be interpreted as a cloud of points in the N -
dimensional space, it is clear that the mean value ũ describes the location of
the centre of gravity of the cloud. It can be proven that the proper orthogonal
decomposition corresponds to a line which points in the main direction of the
cloud, i.e. the square sum of the distances of all points to this line are minimal,
see e.g. Holmes et al. (1996).

A drawback of the Proper Orthogonal Decomposition is the need to com-
pute the covariance matrix C in (6.58). Its size is N ×N and thus extremely
large for finite element problems; additionally C does not have a sparse struc-
ture. The matrix size alone can thus render computations of a POD basis
impossible. If the number of sample vectors wi is smaller than the num-
ber of degrees of freedom, P << N , the computation of the POD can be
obtained with less computational effort by using the method of snapshots,
see Holmes et al. (1996). This method yields a P × P matrix C̃ = WWT

with W = [w1 . . . wP ] which only has size P × P . The resulting eigenvalue
problem is given by

(C̃ − λ1)a = 0. (6.60)

The POD vector is then given by

ψi = Wai . (6.61)

These basis vector can now be applied within a reduction method leading to
a system as described in (6.49). To show the behaviour of this method, the
example of the two-dimensional T-beam, depicted in Fig. 6.10, is considered.

The simulation of the system was performed with a Newmark algorithm
for the full system. A load of F (t) = 1.0 sin(0.5t) was applied which has
relatively high load level.

This motion was analysed using the proper orthogonal scheme which leads
to a set of, POD vectors, depicted in Fig. 6.12. The associated eigenvalues
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decrease significantly from one POD vector to the next. This fact leads to a
faster convergence of the algorithm used to computed the eigenvectors. These
POD vectors are then as basis vectors in recomputations of the problem
solved by the Newmark method. Within this application, it can be shown
that the POD method is able to capture the nonlinear motion with a few
eigenvectors, and that it converges to the Newmark solution of the entire
problem, see Fig. 6.13. As can be observed from Fig. 6.12, only the very first
vectors are necessary to capture a large portion of the motion. The last two
vectors represent deformations which are not directly related to a vibration;
however, they are essential to capture the long time response of the motion,
see second graph of Fig. 6.13.

A criterion which can be utilized to estimate the completeness of a set
of POD vectors can be generated from the fact that the first invariant of
matrix C in (6.58) can be computed also by the sum of its eigenvalues; hence
trC =

∑P
i=1 λi. From this relation, it is possible to find a truncation criterion

which determines how many POD vectors should be included into a basis.
The part of the motion which is captured by a given basis of R vectors is

ϕ =
1

trC

R∑
i=1

λi . (6.62)

Thus the value ϕ stands for the completeness of the POD vector basis. The
latter should be chosen such that ϕ > 1 − ε, with a truncation limit ε that
determines the exactness of the basis. The value ϕ is reported in Fig. 6.12.
It can be observed that its value converges very fast against 1 which is in
accordance with the very good approximation of the motion in Fig. 6.13.

In the case that similar problems have to be solved or a set of different
load cases has to be analysed. Then the POD vector basis computed from one
solution can be applied for all other ones. During a computation, the quality
of the result can be checked by an error measure, see e.g. (6.50). In the case

Fig. 6.12 POD vectors
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Fig. 6.13 Convergence of the POD method for increasing POD vectors

that the estimated error is beyond a certain threshold a simultation should
be recomputed without a reduction technique and the gained data can then
be used to improve the set of basis vectors. As the approach is based on
resutls from previous simulations, it can only be applied to problems, where
the results of the different load cases are not completely different.

6.2 Integration of Inelastic Constitutive Equations
for Small Deformations

The constitutive equations discussed in Sect. 3.3.2 describe elasto-plastic,
visco-plastic and viscous material behaviour for small deformations (geomet-
rically linear theory). The inelastic behaviour is governed by time dependent
evolution equations which can be scalar or vector valued differential equa-
tions. These have to be solved by numerical integration algorithms.

The rate equations which have to be integrated are ordinary differential
equations which lead in general to an initial value problem of the form

ė(t) = f [ e(t) ], (6.63)
e(0) = e0 .

The integration (I − ALGO) is usually be performed by a generalized mid
point rule

en+1 = en +Δt f ( en+θ ) (6.64)

with en+θ = ( 1 − θ ) en + θ en+1 , 0 ≤ θ ≤ 1. Here the same notation, as in
Sect. 6.1, is chosen with en = e( tn ) and en+1 = e( tn+1 ). The approximation
(6.64) leads to the following integration algorithms:
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– for θ = 0 to the explicit Euler scheme,
– for θ = 1 to the implicit Euler scheme and
– for θ = 1/2 to the midpoint-rule.

The scheme (6.64) is for θ = 1
2 of second order accuracy. Otherwise, the inte-

gration schemes are first order accurate. Further investigations with respect
to consistency, stability and accuracy of algorithms based on (6.64) can be
found in the mathematical literature, see e.g. Gear (1971) or Stoer and Bu-
lirsch (1990) but also in Simo (1998). Consistency and stability are properties
which are essential for establishing convergence of the numerical solution for
arbitrary small time steps.

The constitutive equations have to be fulfilled at every point of the solid.
It is efficient to preserve this local character within the integration schemes. In
case of the spatial discretization, using finite elements, the algorithm will be
partitioned in such a way that the integration of the constitutive equations
(I − ALGO) is performed locally on element level. Hence the constitutive
equations have to be fulfilled at each integration point (Gauss point) within
an element Ωe. Besides this, the weak form of the equilibrium (6.1) must be
obeyed. From these two requirements follows an iteration which has to be
performed within each time step of the solution.

Starting with the known displacements un, the inelastic strains ein
n , the

stresses σn and the internal variables αn at time tn, an algorithm can be
constructed which yields as result the displacements, stresses and inelastic
variables at time tn+1

1. Set initial conditions:

u0
n+1 = un , σ0

n+1 = σn ,

ein 0
n+1 = ein

n , α0
n+1 = αn ,

2. Iteration loop: DO i = 0, 1, 2, . . .
– Global: Solve the weak form for ui+1

n+1

Gi+1
n+1 = R (ui+1

n+1 ,σ
i
n+1) − Pn+1 = 0 .

This yields the total strain increment Δεi+1
n+1.

– Convergence: ‖Gi+1
n+1 ‖ < TOL −→ STOP

– Local (I − ALGO): Compute with Δεi+1
n+1 the stresses σi+1

n+1, which
fulfil the inelastic constitutive equations at the Gauss point.

ENDDO

A schematic description of the algorithm can be found in Fig. 6.14.

6.2.1 Viscoelastic Material

The basic equations which describe viscous materials are summarized for
a the linear standard body in relations (3.224) to (3.226). An integration
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algorithm for this type of constitutive behaviour is constructed. Additionally,
it is assumed that the viscous behaviour is related entirely to the deviatoric
strains e. The constitutive relation is given for the linear standard body with
Eq. (3.224) and ν∞ = (1 − ν) by

σ(t) = K tr ε1 + 2μ [ (1 − ν) e + ν q ],

ė(t) =
1
τ̂

q + q̇.

q is the strain associated with the deviatoric stress sM in (3.224)3. The last
relation is a differential equation of first order in time. It can be integrated by
using different schemes, see also last section. Here an implicit Euler scheme
is employed, which has first order accuracy and is unconditionally stable.

Inserting the integration rule (6.64) with θ = 1 into the rate equation
within a time step Δt = tn+1 − tn yields

1
Δt

(qn+1 − qn ) +
1
τ̂

qn+1 =
1
Δt

(en+1 − en ) . (6.65)

This relation can be solved for qn+1

qn+1 =
τ̂

τ̂ +Δt
en+1 +

τ̂

τ̂ +Δt
(qn − en ) . (6.66)

Inserting (6.66) into the first equation leads with

σn+1 = K tr εn+1 1 + 2μ ( 1− ν Δt

τ̂ +Δt
) en+1 + ν

τ̂

τ̂ +Δt
(qn − en ) (6.67)

global

Ωe

Ωe Ωe

tn tn+1

I −ALGO

local

Δεn+1

{εn, ε
in
n ,αn} {εn+1, ε

in
n+1,αn+1}

Fig. 6.14. Algorithm for the integration of elasto-plastic material
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to an equation for the computation of the stresses at the end of the time
step. There is no need for an iteration within the time step since the above
relation is linear in the strains. Within the solution procedure, the material
tangent which is consistent with (6.67) has to be applied for the computa-
tion of the associated tangential stiffness matrix. The material tangent or
incremental constitutive tensor follows by considering the definition of the
deviatoric strains with (3.279) from ∂σn+1 / ∂εn+1 as

CCCve =
∂σn+1

∂εn+1
= K 1 ⊗ 1 + 2μ ( 1 − ν Δt

τ̂ +Δt
)[EEE− 1

3
1 ⊗ 1 ] . (6.68)

The material tangent differs from the tangent associated with linear elastic
constitutive behaviour (3.280) only by the factor (1 − ν Δt/τ̂ + Δt). Hence
the associated finite element code deviates only very little form a code for a
linear elastic element. Besides a change in the stress computation, see (6.67),
and the necessity to store the strains e and q at time tn, only the above
defined factor has to be inserted in the material tangent CCCve. For the explicit
matrix form of CCCve, see (3.280).

Instead of using the implicit Euler scheme for the integration of (6.65),
relation (3.225) can be used

s(t) =

t∫
−∞

G(t− τ) ė(τ) dτ

with a direct evaluation of the integral. Under the assumption that a strain
acts first at time t = 0, the integral can be split with Δt = tn+1 − tn into

t∫
0

(•) dτ =

tn∫
0

(•) dτ +

tn+Δt∫
tn

(•) dτ (6.69)

which constitutes a recursion formula. By inserting relation (3.226), an equa-
tion for the stresses can be derived

sn+1 = 2μ
[
(1 − ν) en+1 + ν

(
e−(Δt / τ̂) hn +Δhn+1

)]
(6.70)

with the definitions

hn = e−(tn / τ̂)

tn∫
0

e(τ / τ̂) ė(τ) dτ ,

Δhn+1 = e−(tn+Δt / τ̂)

⎛
⎝ tn+Δt∫

tn

e(τ / τ̂) ė(τ) dτ

⎞
⎠ . (6.71)

Under the assumption that the strain increment is constant within a time
step Δt,
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ė(τ) ≈ 1
Δt

( en+1 − en ) ,

the integral in (6.71)2 can be solved analytically, see Taylor et al. (1970).
After some algebraic manipulations

Δhn+1 =
τ̂

Δt
(1 − e−(Δt / τ̂) ) ( en+1 − en ) (6.72)

is obtained. Since hn is already known from the previous steps, all quantities
for the computation of the deviatoric stresses are known. The associated
incremental constitutive tensor is derived from ∂σn+1 / ∂εn+1

CCCve =
∂σn+1

∂εn+1
= K 1⊗1+2μ [ (1− ν)+ ν

τ̂

Δt
(1− e−(Δt / τ̂) ) ][EEE− 1

3
1⊗1 ] .

(6.73)
Again, only the factor changes which has to be multiplied by the shear mod-
ulus μ when compared to the linear elastic material tangent. Contrary to the
implicit Euler scheme, the integration method using (6.70) and (6.72) is of
second order accurate, see e.g. Simo and Hughes (1998).

Note that (6.72) has to be divided by Δt. This can lead to numerical
difficulties for Δt → 0. By using a Taylor series expansion of the factor
around zero, Δhn+1 can be computed also for very small values of Δt in an
accurate way. This leads to the following approximation:

τ̂

Δt
( 1 − e−(Δt / τ̂) ) ≈ 1 − 1

2
Δt

τ̂
+

1
6

(
Δt

τ̂

)2

. (6.74)

For the case Δt = 0, both Eqs. (6.68) and(6.73) lead to the material tensor
of the linear elastic constitutive equation (3.280).

6.2.2 Elasto-Plastic Material

Elasto-plasticity is described by the general constitutive equations (3.168) to
(3.172) in Sect. 3.3.2. For these equations, a general integration algorithm will
be constructed. However, for simplicity, we will restrict ourselves to materials
which are described by one flow surface. Algorithms for the more general case
are, e.g. described in Simo (1998) or for the special case of non-cohesive soils
in Leppin and Wriggers (1997).

Since the differential equations which describe elasto-plastic deformations
are stiff in the mathematical sense, see e.g. Nagtegaal (1982), Simo and Taylor
(1985) and Simo and Hughes (1998), implicit integration methods, such as
the Euler scheme, have to be applied.

This leads, for the case of non-associated plasticity, to a finite difference
approximation of Eqs. (3.168–3.172)
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σn+1 = C [ εn+1 − εp
n+1 ] , (6.75)

qn+1 = H [αn+1 ] , (6.76)
1
Δt

( εp
n+1 − εp

n ) = λ̇n+1 r(σn+1 ,qn+1) , (6.77)

1
Δt

(αn+1 − αn ) = λ̇n+1 h(σn+1 ,qn+1) , (6.78)

f(σn+1 ,qn+1) ≤ 0 . (6.79)

This constitutes a set of implicit equations for the unknown stresses and
strains. It has to be fulfilled at each Gauss point of a spatial finite element
discretization.

The solution of the equation set (6.75–6.79) is not trivial since the inequal-
ity constraint in (6.79) has to be fulfilled. A so-called operator split algorithm
has proven to be most efficient for this task. The idea of this procedure is to
freeze the plastic variables at the beginning of a time step from tn to tn+1:

εp tr
n+1 = εp

n , αtr
n+1 = αn . (6.80)

The superscript ()tr denotes trial quantities which is being fixed for a mo-
ment, but may change during the iteration associated with the algorithm.
The frozen plastic variables are inserted in Eqs. (6.75) and (6.76)

σtr
n+1 = C [ εn+1 − εp tr

n+1 ] ,
qtr

n+1 = H [αtr
n+1 ] . (6.81)

These relations can now be used to check the status (elastic or plastic) within
a time step. For this, the trial state is inserted into the yield function

f(σtr
n+1 ,q

tr
n+1 )

{
≤ 0 ⇒ elastic,
> 0 ⇒ plastic. (6.82)

In the case that f denotes an elastic state at tn+1, then all plastic variables
are updated at the end of the time step by the trial quantities:

εp
n+1 = εp tr

n+1 , αn+1 = αtr
n+1 (6.83)

and the local algorithm is terminated for that time step.
In the case that f denotes a plastic state at tn+1, the stress state has to

be corrected such that it fulfils the yield condition (6.79). This leads with
γn+1 = λ̇n+1Δt, (6.75) and (6.79) to

Ri
σ = −εn+1 + εp

n + C−1[σi
n+1 ] + γn+1 r(σi

n+1 ,q
i
n+1 ) = 0,

Ri
q = H

−1[qi
n+1 ] − αn − γi

n+1 h(σi
n+1 ,q

i
n+1 ) = 0, (6.84)

Ri
f = f(σi

n+1 ,q
i
n+1 ) = 0.

These three equations constitute a nonlinear system for the unknowns
σi

n+1 ,q
i
n+1 and γi

n+1. For its solution, Newton method is applied (iter-
ation index i). This leads to the algorithm
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Ai
n+1Δpi+1

n+1 = −Ri
n+1

pi+1
n+1 = pi

n+1 +Δpi+1
n+1 . (6.85)

Matrix A follows from the linearization of the residuals defined in (6.84). It
has the explicit form

Ai
n+1 =

⎡
⎢⎢⎢⎣
C−1 + γi

n+1
∂ri

n+1
∂σ γi

n+1
∂ri

n+1
∂q

∂(γi
n+1 ri

n+1)

∂γ

−γi
n+1

∂hi

n+1
∂σ H

−1 − γi
n+1

∂hi

n+1
∂q −∂(γi

n+1 h
i

n+1)

∂γ

∂fi
n+1

∂σ
∂fi

n+1
∂q

∂fi
n+1
∂γ

⎤
⎥⎥⎥⎦ (6.86)

with the definitions of the vectors:

pi
n+1 =

⎧⎨
⎩

σi
n+1

qi
n+1

γi
n+1

⎫⎬
⎭ and Ri

n+1 =

⎧⎨
⎩

Ri
σ

Ri
q

Ri
f

⎫⎬
⎭ . (6.87)

At the end of this Newton iteration, the stresses and plastic variables are
known at a single Gauss point.

Besides the fulfilment of the inequality constraints imposed by plasticity,
the global weak form (equilibrium) has to be fulfilled, see also the introduc-
tory remarks and Fig. 6.14. For the construction of a global Newton method,
it is necessary to determine the constitutive tangent D̄

p
n+1. It occurs in the

linearization (4.111) of the weak form (4.97). Note that the geometrical ma-
trix is zero for small strain problems and that all derivatives have to be
computed with respect to the initial configuration. Hence the tangent matrix
assumes the form

K̄
p
TIK

=
∫

ϕ(Ωe)

B̄
T
0 I D̄

p
n+1 B̄0 K dω . (6.88)

The material tangent follows from

D̄
p
n+1 =

∂σn+1

∂εn+1
=
∂Δσn+1

∂εn+1
. (6.89)

With the inverse of Ai
n+1, which has to be computed in the converged state

of the Newton iteration given above,

(Ai
n+1)

−1 =

⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

i

n+1

, (6.90)

the derivative is explicitly derived from

∂Δσn+1

∂εn+1
= A11 . (6.91)
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This yields the material tangent

D̄
p
n+1 = A11 , (6.92)

which is needed within the linearization of the weak form. Hence it is possible
to compute the material tangent simply by using matrix A of the last New-

ton step in (6.85). As can be observed, contrary to elasticity, the material
tangent depends upon the chosen integration algorithm. Due to this reason,
the material tangent is often called consistent tangent in the literature, since
it is consistent with the elasto-plastic algorithm, see e.g. Simo and Taylor
(1985) and Simo and Hughes (1998).

The algorithm described above will be discussed now in more depth for a
special elasto-plastic material exhibiting nonlinear isotropic and linear kine-
matic hardening. The plastic flow is determined by the second invariant of the
stress deviator IIS (von Mises material). This material behaviour is known
in the literature as J2-plasticity since the second invariant of the stress devi-
ator is denoted also by J2. The constitutive equations for such material were
described in Sect. 3.3.2 where the internal plastic variables ep ,α , α̂ were in-
troduced together with the generalized stresses s ,q , q. The quantities s and
ep denote the deviators of the stress tensor σ, see (3.151), and the strain ten-
sor ε, respectively. Furthermore, volume change due to plasticity is assumed
to be zero (tr εp = 0).

The associated material equations can be deduced from (3.150), (3.159),
(3.160) and (3.161) in compact form by insertng the movement of the flow
surface q and the equivalent strain α̂ directly. Besides the split of the devia-
toric strains in elastic and plastic parts

e = ee + ep, (6.93)

the elastic constitutive equation (shear modulus μ, modulus of compression
K)

s = 2μ ee, p = K tr εe (6.94)

can be formulated for the deviator stresses s and the pressure p. Furthermore,
the evolution equations for the plastic strains, and the hardening variables
are given by

ėp = λ̇
∂f

∂s
, q̇ = −2

3
H λ̇

∂f

∂s
, ˙̂α =

√
2
3
λ̇ . (6.95)

The generalized stresses have to obey the yield condition

f(s̄ , α̂) = ‖s̄‖ −
√

2
3

[Y0 + Ĥ(α̂)] ≤ 0 (6.96)

where, to shorten notation, s̄ = s − q was introduced.
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This set of equation, describing the elasto-plastic material behaviour, rep-
resents a stiff ordinary differential system. For the integration of such sys-
tems which include inequality constraints, operator split methods, based on
implicit integration rules are well suited, see e.g. Simo and Hughes (1998)
and Simo (1998). They are unconditionally stable. Here a first order scheme,
the implicit Euler method, is employed; higher order schemes can be found
in e.g. Simo (1998).

Insertion of the implicit Euler rule into the evolution equations for the
plastic variables (6.95) yields within the time step Δt = tn+1 − tn the plastic
strains

1
Δt

(ep
n+1 − ep

n) = λ̇

[
∂f

∂s

]
n+1

=
1
Δt

(λn+1 − λn)nn+1 . (6.97)

Here the notation ∂f
∂s = s̄

‖ s̄ ‖ = n is used which was introduced in Sect. 3.3.2.
In the same way, relation

1
Δt

(qn+1 − qn) =
1
Δt

(λn+1 − λn)
2
3
H nn+1 (6.98)

is obtained for the kinematic hardening values as well as for the isotropic
hardening

1
Δt

(α̂n+1 − α̂n) =
1
Δt

(λn+1 − λn)

√
2
3
. (6.99)

Equations (6.97–6.99) are now reformulated with Δγn+1 = λn+1 − λn as

ep
n+1 = ep

n +Δγn+1 nn+1,

qn+1 = qn +Δγn+1
2
3
H nn+1, (6.100)

α̂n+1 = α̂n +

√
2
3
Δγn+1 .

The stresses can be determined at time tn+1

sn+1 = 2μ (en+1 − ep
n+1) = 2μ (en+1 − ep

n) − 2μΔγn+1 nn+1 . (6.101)

Observe from (6.101) that the time integration of the elasto-plastic consti-
tutive equations can be written as a predictor–corrector algorithm. Within
the predictor step, it is assumed that the plastic variables are “frozen”. This
yields the generalized trial stresses

str
n+1 = 2μ (en+1 − ep

n) ,
s̄tr
n+1 = str

n+1 − qn , (6.102)
α̂tr

n+1 = α̂n ,

which represent the first terms in (6.100)3 and (6.101)1,2.
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Since the plastic variables { ep
n ,αn , ân } are known from the last time step

and en+1 = en +Δen+1 was determined form the global solution of the weak
form, the trial quantities can be computed directly, see also Fig. 6.14. When
the trial quantities fulfil the yield condition (6.96), then the constitutive
behaviour is elastic within the time interval [ tn , tn+1 ], see Fig. 6.15a. If this
is the case, the local algorithm for the determination of the plastic variables
is terminated.

s̄n+1

s̄n

fn = 0

s̄n

fn+1 = 0

s̄n+1

s̄tr
n+1

fn = 0

Fig. 6.15 (a) Elastic step (b) Projection of the stresses

In the case that the trial quantities violate the yield condition at time
tn+1 – as depicted in Fig. 6.15b – computation of the magnitude of the
plastic flow Δγn+1 as well as its direction nn+1 is needed within the stress
computation in (6.101). With Eq. (6.102)1,2, relation

(sn+1 − qn+1) = (s̄tr
n+1 − [ 2μ+

2
3
H ]Δγn+1 nn+1 ,

s̄tr
n+1 = s̄n+1

[
1 + ( 2μ+

2
3
H )

Δγn+1

‖ s̄n+1 ‖

]
(6.103)

can be determined from (6.101). It is clear that the term in the square bracket
is a scalar. Hence

ntr
n+1 =

s̄tr
n+1

‖ s̄tr
n+1 ‖

= nn+1 (6.104)

is deduced. With this result, the plastic correction step is reduced to the
determination of Δγn+1.

By scalar multiplication of (6.103) with nn+1, relation

‖ s̄n+1 ‖ = ‖ s̄tr
n+1 ‖ − ( 2μ+

2
3
H )Δγn+1 (6.105)

is obtained with (6.104) and s̄ · n = ‖s̄‖. This relation can be inserted into
the yield condition (6.96) which has to be fulfilled at time tn+1. This leads
with
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fn+1 = ‖ s̄tr
n+1 ‖− ( 2μ+

2
3
H )Δγn+1 −

√
2
3

[
Y0 + Ĥ( α̂n +

√
2
3
Δγn+1)

]
= 0

(6.106)
to a nonlinear equation for Δγn+1, which can be solved by Newton method.
Hence a local iteration has to be performed at each Gauss point

ΔΔγj+1
n+1 = −

(
∂fn+1

∂Δγn+1

∣∣∣∣
j

)−1

f j
n+1 , (6.107)

Δγj+1
n+1 = Δγj

n+1 +ΔΔγj+1
n+1 . (6.108)

The derivative of fn+1 with respect to Δγn+1 can be stated explicitly

∂fn+1

∂Δγn+1
= −2μ

(
1 +

H + Ĥ ′(Δγn+1)
3μ

)
, (6.109)

where Ĥ ′ was introduced for the derivative of Ĥ with respect to Δγn+1.
Hence the stresses are projected radially back onto the yield surface, see
Fig. 6.15b, the integration algorithms is also known in the literature as radial
return algorithm.

For the special case of linear hardening, relation Ĥ(α̂) = Ĥ α̂ is valid. In
this case, the increment Δγn+1 can be determined explicitly from (6.106)

2μΔγn+1 =
f tr

n+1

1 + H+Ĥ
3 μ

(6.110)

with f tr
n+1 = ‖ s̄tr ‖ −

√
2
3 (Y0 + Ĥ α̂n ).

Once the increment of the plastic flow is known the stresses, the plastic
strains and the internal variables can be computed from (6.100). The stresses
are then given by

σn+1 = K tr εn+1 + 2μ ( en+1 − ep
n ) − 2μΔγn+1 ntr

n+1 . (6.111)

From the stresses at time tn+1, the consistent or algorithmic tangent of
the elasto-plastic constitutive equation can be computed using the relations
in Sect. 3.3.4. It is needed within the global Newton iteration, see Fig. 6.14.
From

Cep
n+1 =

∂σn+1

∂εn+1
, (6.112)

the elasto-plastic tangent follows as

Cep
n+1 = Cel − 2μntr

n+1 ⊗
∂Δγn+1

∂εn+1
− 2μΔγn+1

∂ntr
n+1

∂εn+1
(6.113)

with Cel = K 1⊗ 1+ 2μ (E− 1
3 1⊗ 1 ). The partial derivatives with respect

to the strains which occur in (6.113) are given by
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∂Δγn+1

∂εn+1
=
∂Δγn+1

∂fn+1

∂fn+1

∂s̄n+1

∂s̄n+1

∂εn+1
=

(
1 +

H + Ĥ ′(Δγn+1)
3μ

)−1

ntr
n+1

(6.114)
and

∂ntr
n+1

∂εn+1
=
∂ntr

n+1

∂sn+1

∂sn+1

∂εn+1
= − 2μ

‖s̄tr
n+1‖

[E− 1
3

1⊗ 1 + ntr
n+1 ⊗ ntr

n+1 ] . (6.115)

By inserting (6.114) and (6.115) into Eq. (6.113), the algorithmic tangent
follows for elasto-plastic material as

Cep
n+1 = K 1 ⊗ 1 + 2μan+1 (E− 1

3
1 ⊗ 1 ) − 2μ bn+1 ntr

n+1 ⊗ ntr
n+1 ,

an+1 = 1 − 2μΔγn+1

‖s̄tr
n+1‖

, (6.116)

bn+1 =

(
1 +

H + Ĥ ′(Δγn+1)
3μ

)−1

− 2μΔγn+1

‖s̄tr
n+1‖

.

This tangent differs from the incremental elasto-plastic continuum material
tensor (3.287) by the scalar factors an+1 and bn+1. For Δγn+1 → 0, the
algorithmic tangent and the continuum tangent become equivalent. This is
only the case for Δt→ 0. This shows the consistency between the integration
algorithm and the continuous problem.

The above described integration algorithm is valid for three-dimensional
and two-dimensional problems; for the latter plane strain conditions have
to be assumed. In case of a plane stress problem, additional considerations
are necessary to fulfil the plane stress assumptions within the radial return
algorithm. A solution of this problem is provided in Simo and Taylor (1986)
where the projection is directly performed in the subspace of the plane stress
state. This formulation which is given in similar form in Gruttmann and Stein
(1988) will not be described here in detail; related derivations can be found
in Simo and Hughes (1998). A projection algorithm for plane stress problems
is developed in Sect. 9.4.5 for finite deformations.

It is well known that several constitutive formulations depicts softening
behaviour, and hence can lead to localization, see e.g. Remark 3.6. These
models can have non-unique solutions and thus are not easily treated by
numerical algorithms. Especially, implicit schemes have their problems with
such constitutive models. Thus, for geo-materials, explicit schemes using sub-
stepping were constructed in, e.g. Sloan (1987b), Sloan et al. (2001) and Sheng
and Sloan (2001). Another approach which combines implicit and explicit
methods for plasticity and general damage models can be found in Oliver
et al. (2006).
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6.2.3 Elasto-Viscoplastic Material

Based on the relations in Sect. 3.3.3 for elasto-visco-plastic material, time
integration algorithms can be derived for time dependent viscous material
behaviour. An essential difference with respect to elasto-plastic materials is
dependence of the constitutive relations upon the true rate. Hence the con-
sistency parameter λ follows from a constitutive equation. The constitutive
equation from Perzyna, see (3.233), leads to the relation

λ =
1

2 η
〈 f 〉 . (6.117)

With the elastic constitutive equation for the deviatoric quantities, the set of
equations describing visco-plastic constitutive behaviour with linear isotropic
hardening are obtained

ėvp =
1

2 η
〈 f 〉n , s = 2μ (e − evp ) , α̂ =

√
2
3

1
2 η

〈 f 〉 . (6.118)

The yield function f is given for linear isotropic hardening by

f(s , α̂) = ‖s‖ −
√

2
3

[Y0 + Ĥ α̂ ] ≤ 0 . (6.119)

Integration of (6.117) within the time step Δt = tn+1− tn is performed using
an implicit Euler scheme. It leads to

evp
n+1 = evp

n +
Δt

2 η
〈 fn+1 〉nn+1,

α̂n+1 = α̂n +

√
2
3
Δt

2 η
〈 fn+1 〉 .

The constitutive equation can now be written for the deviatoric stresses at
time tn+1

sn+1 = 2μ (en+1 − evp
n+1 ) = str

n+1 − 2μ
Δt

2 η
〈 fn+1 〉nn+1 . (6.120)

Within this relation fn+1 is still unknown. As in the previous section, trial
stresses are defined which indicate the excess of the yield limit

str
n+1 = 2μ (en+1 − evp tr

n+1 ) , (6.121)

where the visco-plastic strains were set equal to the visco-plastic strains of
the last time step: evp tr

n+1 = evp
n . Using the same arguments as in the last

section in (6.103), relation

‖ sn+1 ‖ = ‖ str
n+1 ‖ − 2μ

Δt

2 η
〈 fn+1 〉 (6.122)
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is obtained from (6.120) to (6.121). Contrary to plasticity, where the consis-
tency parameter follows from the fulfillment of the yield condition at time
tn+1, the evaluation of the yield condition

fn+1 = ‖ sn+1 ‖ −
√

2
3

[Y0 + Ĥ (α̂+

√
2
3
Δt

2 η
fn+1 )] (6.123)

leads to the parameter

Δγn+1 =
Δt

2 η
〈 fn+1 〉 =

1
2μ

〈 f tr
n+1 〉

2η
Δt + ( 1 + Ĥ

3 μ )
. (6.124)

With this result, the vicso-plastic strains in (6.120) and hence the stresses in
(6.120) are determined, depending on the trial values.

The linearization within the time step Δt is derived as in the last section
by differentiation of the stresses with respect to the total strains

Cvp
n+1 =

∂σn+1

∂εn+1
. (6.125)

From that follows the incremental constitutive tensor at time tn+1 by using
(6.120) and (6.124)

Cvp
n+1 = K 1 ⊗ 1 + 2μan+1 (E− 1

3
1 ⊗ 1 ) − 2μ bn+1 ntr

n+1 ⊗ ntr
n+1,

an+1 = 1 − 2μΔγn+1

‖str
n+1‖

, (6.126)

bn+1 =

(
η

2μΔt
+ ( 1 +

Ĥ

3μ
)

)−1

− 2μΔγn+1

‖str
n+1‖

.

It has the same structure as the elasto-plastic algorithmic tangent (6.116),
only the factor and bn+1 is different. Hence implementation of this viscoplastic
model is very simple when the code for the elaso-plastic model of last section
is already available.

6.3 Integration of Constitutive Equations for Finite
Deformation Problems

Constitutive equations for finite deformation problems can be formulated in
different ways. This was subject - especially in view of numerical algorithms
for finite element analysis - of many different research efforts, see e.g. Argyris
and Kleiber (1977), Nagtegaal (1982), Argyris et al. (1982), Simo (1988),
Nagtegaal et al. (1990), Peric et al. (1992), Simo and Hughes (1998) and Simo
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(1998). The choice of the mathematical description depends upon the mate-
rial at hand but also upon the efficiency of specific solution methods. Two
possible formulations and associated integration algorithms are discussed in
this section for elasto-plastic material with isotropic hardening which was al-
ready described in Sect. 3.3.2. Interesting applications and examples of finite
deformation plasticity can be found, e.g. in Peric and Owen (1997).

6.3.1 General Implicit Integration

Implicit Euler schemes were developed for the integration of inelastic consti-
tutive equations of problems undergoing small strains. Such algorithms will
now be developed for inelastic constitutive equations at finite strains. These
algorithms are developed for a time interval [ tn , tn+1 ] where it is assumed
that the deformation ϕ and its gradient F are known at time tn. This shall
also be true for the internal variables {Fe , ξα }. Hence the set of initial values

Fn = Gradϕn , {Fe
n , ξαn

} (6.127)

is known. Now the algorithmic approximation of the evolution equations for
plastic flow

lp =
m∑

g=1

λg
∂fg(τ , qα)

∂τ
, (6.128)

ξ̇α =
m∑

g=1

λg
∂fg(τ , qα)
∂qα

(6.129)

with the Kuhn-Tucker conditions

λg ≥ 0 , fg(τ , qα) ≤ 0 , λg fg(τ , qα) = 0 (6.130)

has to be constructed. More details related to the derivation of the plastic
evolution equations can be found in Sect. 3.3.2. Kinematic hardening is not
considered.

The evolution equations in (6.129) include multi-surface plasticity. The
summation sign can be neglected in case of only one yield surface.

In Sect. 3.3.2, several relations were derived and definitions were intro-
duced. These can be used to write the spatial plastic rate lp as

lp = Fe LpFe−1 with Ḟ
p

= Lp Fp . (6.131)

The structure of the last equations leads to an exponential approximations of
the evolution of the plastic deformation gradient, see e.g. Simo (1992), Simo
and Hughes (1998) and Miehe (1993),

Fp
n+1 = exp [ ( tn+1 − tn)Lp

n+1]F
p
n . (6.132)
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Some reformulations – considering the multiplicative split of the deformation
gradient Fn+1 = Fe

n+1 Fp
n+1 – yield with (6.132)

Fn+1 = Fe
n+1 exp [ ( tn+1 − tn)Lp

n+1]F
e−1
n+1F

e
n+1F

p
n

= exp [ ( tn+1 − tn)Fe
n+1 Lp

n+1 Fe−1
n+1 ]Fe

n+1F
p
n , (6.133)

where the standard properties of an exponential map where utilized. Equa-
tion (6.133) can be resolved with the definition in (6.131)1 and Δt = tn+1−tn
and with Fe tr

n+1 = Fn+1 Fp−1
n with respect to Fe

n+1

Fe
n+1 = exp [ (Δt ) lpn+1]F

e tr
n+1 . (6.134)

The definition of the trial value Fe tr
n+1 is physically motivated since the

computation of the elastic part of the deformation gradient is performed
for frozen plastic variables Fp

n+1 = Fp
n. By inserting (6.129)1 into equation

(6.134), relation

Fe
n+1 = exp

[
−

m∑
g=1

λgΔt
∂fg(τ , qα)

∂τ

]
Fe tr

n+1 (6.135)

can be determined. The definitions of the flow increment Δλg = Δtλg and
the implicit Euler approximation of (6.129)2 lead to the algorithmic version
of the flow rule (6.129)

Fe
n+1 = exp

[
−

m∑
g=1

Δλg
∂fg(τ , qα)

∂τ

]
Fe tr

n+1, (6.136)

ξαn+1 = ξαn
+

m∑
g=1

Δλg
∂fg(τ , qα)
∂qα

(6.137)

and the Kuhn-Tucker conditions

Δλg ≥ 0 , fg(τ , qα) ≤ 0 and
m∑

g=1

Δλg fg(τ , qα) = 0 . (6.138)

The stresses in these equations is given by

τn+1 = Fe
n+1

[
∂W (Ce

n+1)
∂Ce

]
Fe T

n+1 (6.139)

and the hardening variables follow from

qαn+1 = −∂H(ξαn+1)
∂ξα

. (6.140)

The solution of the nonlinear system (6.136) to (6.140) has to be performed
locally at each Gauss. It can be obtained by using Newton method.

Note that the constraint condition of incompressibility of the plastic flow,
Jp = 1, is exactly fulfilled by the algorithmic flow rule (6.136), see e.g. Simo
(1992).
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6.3.2 Implicit Integration with Respect to Principal Axes

In case of isotropic elasto-plastic material behaviour with isotropic hardening,
it is possible to simplify the relations derived above. Based on Eq. (3.212),
the elastic predictor can be written as

be tr
n+1 = Fn+1 Cp−1

n FT
n+1 , αtr

n+1 = αn . (6.141)

Within these equations, it is assumed that the plastic flow is frozen at time tn.
Hence the inverse plastic right Cauchy-Green tensor Cp−1 can be used as
field to store the loading history as irreversible part of the plastic deformation.

When the predictor step does not leave the admissible region of elastic
deformations (this is equivalent with the fulfillment of the yield condition
f(τ , q) < 0), then the stresses follow directly from relations (3.201) and the
local integration step is terminated

τn+1 = 2
∂Ŵ

∂be

∣∣∣∣∣
be=be tr

n+1

be tr
n+1 ; qn+1 = − ∂Ĥ

∂α

∣∣∣∣∣
α=αtr

n+1

. (6.142)

When the yield condition is not fulfilled, then a plastic corrector step has
to be employed to fulfil the flow condition f(τ , q) = 0. The correction of
stresses and internal variables is computed by a projection scheme as in the
previous sections. It projects the stresses onto the yield surface f(τ , q) = 0.
The momentary position of the vectors x = xtr is fixed within this procedure.
This reduces (3.209) to an ordinary differential equation of first order in time

Lv be = −2 γ
∂f

∂τ
be . (6.143)

As in the sections above, it will be integrated by an implicit Euler backward
scheme, see e.g. Weber and Anand (1990), Cuitino and Ortiz (1992), Peric
et al. (1992) and Simo (1992),

be
n+1 = exp [−2 (tn+1 − tn) γ︸ ︷︷ ︸

Δγn+1

∂f

∂τ

∣∣∣∣
n+1

]be tr
n+1 . (6.144)

The term Δγ ( ∂f
∂τ ) is constant within the time interval [tn+1, tn].

Since isotropic material was assumed from the beginning, the eigenvector
bases of be and τ are equal. Furthermore, the bases are fixed during the
projection onto the yield surface. Thus a spectral decomposition of the elastic
strains and the Kirchhoff stresses leads to an efficient implementation. For
this, the strain and stress tensors are written with respect to their spectral
decomposition

be
n+1 =

3∑
A=1

(λe
A n+1)

2 ntr
A n+1 ⊗ ntr

A n+1 ,
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btr
e =

3∑
A=1

λe tr 2
A n+1 ntr

A n+1 ⊗ ntr
A n+1 , (6.145)

τn+1 =
3∑

A=1

τA n+1 ntr
A n+1 ⊗ ntr

A n+1 .

A detailed description of the spectral decomposition of strains and stresses
can be found in Eq. (3.23) or (3.131). With such formulation, the algorithmic
flow rule (6.144) can be reformulated in principal strains

(λe
A n+1)

2 = exp [−2Δγn+1
∂f

∂τA

∣∣∣∣
n+1

]λe tr 2
A n+1 . (6.146)

By introducing logarithmic strains εeA = ln[λe
A], an even simpler relation can

be deduced

εe tr
A n+1 = εeA n+1 +Δγn+1

∂f

∂τA

∣∣∣∣
n+1

. (6.147)

This formulation is equivalent with an additive decomposition of the elastic
trial strain in elastic and plastic parts. In Simo (1992), it is shown that the
incompressibility of plastic flow is automatically fulfilled by Eq. (6.146) and
(6.147) which are presented in principal strains.

For further derivations, it is convenient to write (6.147) in vector form

εe tr
n+1 = εe

n+1 +Δγn+1
∂f

∂τ

∣∣∣∣
n+1

with ε = { ε1 , ε2 , ε3 } . (6.148)

The equivalent plastic strains α are integrated by the implicit Euler method

αn+1 = αn +Δγn+1
∂f

∂q

∣∣∣∣
n+1

. (6.149)

Now the following nonlinear system has to be solved for the projection of the
stresses onto the yield surface; note that fn+1 is zero in case of plastic flow.

r = εe tr
n+1 − εe

n+1 −Δγn+1
∂f

∂τ

∣∣∣∣
n+1

= 0 ,

r = αn+1 − αn −Δγn+1
∂f

∂q

∣∣∣∣
n+1

= 0 ,

f = f(τn+1 , qn+1) = 0 .

(6.150)

As in the previous sections, Newton method will be applied. Within this
procedure, the values εe tr

n+1 and αn are fixed, see above. This leads to an
algorithm in which the plastic variables and projected stresses are determined
iteratively.

First equation (6.150) is linearized. This lead for the ith Newton step to
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ri+1 = ri −Δεe i
n+1 −ΔΔγi

n+1 ni
n+1 −Δγi

n+1 Di CiΔ εe i
n+1 = 0 ,

ri+1 = ri +Δαi
n+1 −ΔΔγi

n+1n
i −Δγi

n+1D
i CiΔαi

n+1 = 0 , (6.151)

f i+1 = f i + ni T
n+1C

iΔεe i
n+1 + ni CiΔαi

n+1 = 0 ,

where the matrices

Di =
∂2f

∂τ∂τ

∣∣∣∣
i

, Ci =
∂τ

∂ε

∣∣∣∣
i

,

scalars

Ci =
∂q

∂α

∣∣∣∣
i

, Di =
∂2f

∂q∂q

∣∣∣∣
i

, ni =
∂f

∂q

∣∣∣∣
i

and the vector

ni =
∂f

∂τ

∣∣∣∣
i

were used. Increments of the strain Δεi
n+1 of the hardening variable Δαi

n+1

and the flow parameter ΔΔγi
n+1 can now directly be obtained from the lin-

earized form (6.151). After some algebraic manipulations, these increments
follow as

Δεe i
n+1 = (Ei)−1 (ri −ΔΔγi

n+1 ni
n+1 ) , (6.152)

Δαi
n+1 = (Ei)−1 ( ri −ΔΔγi

n+1 n
i
n+1 ) , (6.153)

with
Ei = 1 +Δγi

n+1 Di Ci and Ei = −1 +Δγi
n+1D

i Ci .

Here the increment of the flow parameter is given by

ΔΔγi
n+1 =

f i + ni T Hi ri + niHi ri

ni T Hi ni + niHi ni
, (6.154)

where the abbreviations

Hi = Ci(Ei)−1 and Hi = Ci (Ei)−1

were introduced. Once the increments are known, the standard update of the
variables yields

εe i+1
n+1 = εe i

n+1 +Δεe i
n+1 ,

αi+1
n+1 = αi

n+1 +Δαi
n+1 , (6.155)

Δγi+1
n+1 = Δγi

n+1 +ΔΔγi
n+1 .
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The Kirchhoff stresses follow by function evaluation from the strain energy
function

τ i+1
n+1 =

∂W

∂εe
n+1

∣∣∣∣
i+1

. (6.156)

The strain energy function, the hardening law and the yield function have
to be specified for a given problem. So far - except the assumption of isotropy
- no further restrictions are introduced for the choice of a strain energy func-
tion. Thus the strain energy function presented in (3.113), see Ogden (1982),
can be employed in this algorithmic setting. This strain energy function has
to be formulated here in terms of the logarithmic principal strains

W =
∑

r

{
μr

αr
(exp [εe1 αr] + exp [εe2 αr] + exp [εe3 αr] − 3) − μr lnJ

}

+
Λ

4
(J2 − 1 − 2 ln J)

(6.157)
with lnJ = ln(λ1λ2λ3) = ε1+ε2+ε3. The material parameters αr are dimen-
sionless quantities, Λ can be interpreted as Lamé constant of the classical
Hooke law, see also Sect. 3.3.1.

Remark 6.2: An alternative strain energy function WLin was suggested in Simo
(1992) for the case of finite plastic deformations but small elastic strains

WLin = μ (εe 2
1 + εe 2

2 + εe 2
3 ) +

Λ

2
(εe

1 + εe
2 + εe

3)
2 (6.158)

which often occurs in metal plasticity. Λ and μ are the Lame constants. This func-
tion has the advantage that a closed form solution of (6.150) can be derived for
linear isotropic hardening

q = −Ĥ α (6.159)

with the hardening parameter Ĥ. Furthermore, J2 plasticity after von Mises is
assumed with the yield function

f = ‖dev τ‖ −
√

2

3
(τY − q), (6.160)

where τY denotes the yield stress. It follows

Δγn+1 =
f tr

n+1

μ + 2
3

Ĥ
,

αn+1 = αn + Δγn+1

√
2

3
, (6.161)

εe
n+1 = εe tr

n+1 − Δγn+1 ntr
n+1

with ntr
n+1 = dev τ tr

n+1 / ‖dev τ tr
n+1‖. Here the Kirchhoff stress is computed via

τ n+1 = C εe tr
n+1 − 2 μΔγn+1 ntr

n+1 . (6.162)
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This relation corresponds to the computation of the stresses performed in the geo-
metrically linear theory for von Mises plasticity, see (6.101).

Within this formulation, it is necessary to determine the principal values
and directions for strain and stress tensors. Within a finite element simula-
tion, all relations given in principal values have to be transformed back to the
underlying coordinate system, basically to a Cartesian frame. This trans-
formation was already described in (3.135) for the 2nd Piola-Kirchhoff

stresses. The principal directions follow in case of the left Cauchy-Green

tensor from the eigenvalue problem

(be tr
n+1 − λe tr 2

i n+1 1)ntr
i n+1 = 0 . (6.163)

The base vector ntr
i n+1 can be related to Cartesian bases EI via

ntr
i n+1 =

3∑
J=1

(EJ ⊗ EJ) · ntr
i n+1 = (EJ · ntr

i n+1)EJ = DiJ n+1 EJ . (6.164)

The principal strains be H
ij of be

n+1 can be written in component form (the
index ()n+1 is neglected in the following transformations to simplify notation)

be H
ii = exp [2 εei ] , be H

ij = 0 for i 	= j . (6.165)

The transformation to cartesian bases follows using relation (6.164)

be tr
n+1 = bH

ij ntr
i ⊗ ntr

j = DKi b
e H
ij DLjEK ⊗ EL = beKL EK ⊗ EL . (6.166)

The components of the stress tensor are transformed in the same way, see
(3.137). Writing be and τ in vector form, see (6.148), yields the modified
transformations

b̄eA = TAB b̄
e H
B , τ̄A = TAB τ̄

H
B with A,B = 1, 2, . . . , 6 , (6.167)

where the components of the vectors {b̄eA} and {τ̄A} are given by

{b̄eA}T = {be11, be22, be33, be12, be13, be23},

{τ̄A}T = {τ11 , τ22 , τ33 , τ12 , τ13 , τ23}.
(6.168)

The transformation matrix TAB is a 6 × 6 matrix. It has the same structure
as in (3.139) and can be found in explicit form in Reese (1994). Note that
only the first three components of the vector τ̄H

B are non-zero, since all shear
stresses disappear in principal directions, see (3.139) and (6.165).

6.3.3 Consistent Tangent Modulus

When Newton method is applied to solve a boundary value problem un-
dergoing finite inelastic deformations, the linearization of the weak form of
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equilibrium is needed, see e.g. (3.339). Within the linearization of the weak
form, it is necessary to compute the material tangent (3.338). As already dis-
cussed for small plastic deformations, the projection method derived in the
last section will lead to a special form of the material tangent, see algorithmic
tangent (6.92), which has to be employed within the Newton iteration in
order to obtain quadratic convergence.

The derivation of the tangent modulus for elastic constitutive equations,
given in principal strains, was already stated in Sect. 3.3.4. Now the material
or algorithmic tangent is derived for finite plastic deformations under the
restriction of isotropic material behaviour.

First the 2nd Piola-Kirchhoff stress tensor S̃ is defined with reference
to the intermediate plastic configuration

S = F−1 τ F−T = F−1
p n S̃ Fp−T

n with S̃ = Fp tr −1 τ Fe tr −T .
(6.169)

The spectral decomposition of S̃ assumes the form

S̃ =
3∑

i=1

τi
λtr 2

i e

Ñi ⊗ Ñi =
3∑

i=1

S̃i Ñi ⊗ Ñi . (6.170)

The stress increment ΔS̃ can be determined based on (6.170)

ΔS̃ =
∂S̃
∂C̃e

ΔC̃e =
3∑

i=1

∂S̃
∂εe tr

i

⊗ ∂εe tr
i

∂C̃e
ΔC̃e with C̃e = Fe tr T Fe tr .

(6.171)
The partial derivative of the principal stresses with respect to the logarithmic
strains (6.171) yields

∂S̃i

∂εe tr
j

=
1

λe tr 4
i

(
∂τi
∂εe tr

j︸ ︷︷ ︸
CALG

ij

λe tr 2
i − τi 2λe tr

i

∂λe tr
i

∂εe tr
j︸ ︷︷ ︸

λe tr
i δij

) , (6.172)

where τi are Kirchhoff stresses. The algorithmic tangent modulus CALG
ij

is given for purely elastic behaviour (f < 0) by

CALG
ij =

∂2Ŵ

∂εe tr
i ∂εe tr

j

or Ce ALG =
∂2Ŵ

∂εe tr ∂εe tr
. (6.173)

In case of plastic flow, a stress point fulfils f = 0 and the following incremental
form is derived from the relations of the converged Newton iteration (6.151)

0 = Δεe tr
n+1 −Δεe i

n+1 −ΔΔγi
n+1 ni

n+1 −Δγi
n+1 Di CiΔ εe i

n+1 ,

0 = Δαi
n+1 −ΔΔγi

n+1n
i −Δγi

n+1D
i CiΔαi

n+1 = 0 , (6.174)

0 = ni T
n+1C

iΔεe i
n+1 + ni CiΔαi

n+1 = 0 .
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These relations are valid for the global Newton step at time tn+1. Here the
elastic trial strains εe tr

n+1 are no longer frozen as was the case within the local
Newton iteration. Equation (6.174) can now be solved for the increment of
the flow parameter

ΔΔγn+1 =
nT

n+1 Hn+1Δεe tr
n+1

nT
n+1 Hn+1 nn+1 + nn+1Hn+1 nn+1

. (6.175)

All quantities in this equation have to be evaluated at the end of the local
Newton iteration. The algorithmic tangent modulus stemming from the
implicit integration scheme follows from (6.152). The incremental form of
the Kirchhoff stress tensor Δτn+1 = Cn+1Δεe

n+1 is given by

Δτn+1 = Hn+1 (Δεe tr
n+1 −ΔΔγn+1 nn+1 ) = CALG pΔεe tr

n+1 . (6.176)

The explicit form of the material tangent CALG
p for finite plastic deformations

can be written as

CALG p = Hn+1 −
Hn+1nn+1 ⊗ nT

n+1 Hn+1

nT
n+1 Hn+1 nn+1 + nn+1Hn+1 nn+1

. (6.177)

Here the tensors and scalars were defined in (6.151).
The second partial derivative in (6.171) is computed as

∂C̃e

∂εe tr
j

=
3∑

i=1

∂λe tr 2
i

∂εe tr
j

Ñi⊗Ñi =
3∑

i=1

2λe tr
i δij λ

e tr
j Ñi⊗Ñi = 2λe tr 2

j Ñj ⊗Ñj .

(6.178)
This leads to the relation

2
∂εe tr

i

∂C̃e
=

1
λe tr 2

i

Ñi ⊗ Ñi . (6.179)

The increment of the stress tensor ΔS̃ follows together with (6.172)

ΔS̃ =
1
2

⎛
⎝ 3∑

i=1

3∑
j=1

CALG
ij − τi 2 δij
λe tr 2

i λe tr 2
j

Ñi ⊗ Ñi ⊗ Ñj ⊗ Ñj

⎞
⎠

[
2

3∑
k=1

(λe tr
k Δλe tr

k Ñk ⊗ Ñk)

]
+

3∑
i=1

S̃iΔ(Ñi ⊗ Ñi) .

(6.180)
In this equation, the increment of the eigenvector Ñi is still unknown. It is
given by

ΔÑi =
3∑

i=1

(Ñj ·ΔÑi︸ ︷︷ ︸
Ωji

) Ñj .
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The stress and strain increments can be written, based on the already derived
relations (3.256) and (3.257), as

ΔS̃ =
3∑

i=1

ΔS̃i Ñi ⊗ Ñi +
3∑

i=1

3∑
j �=i=1

(S̃j − S̃i)Ωji Ñi ⊗ Ñj ;

ΔC̃ =
3∑

i=1

2λe tr
i Δλe tr

i Ñi ⊗ Ñi +
3∑

i=1

3∑
j �=i=1

(λe tr 2
j − λe tr 2

i )Ωji Ñi ⊗ Ñj .

(6.181)
By comparison of (6.180) with (6.181), the incremental constitutive equa-

tion is derived as in (3.241)

ΔS̃ = IL [
1
2
ΔC̃ ] . (6.182)

Here IL is the consistent or algorithmic tangent modulus with reference to
the frozen plastic intermediate configuration

IL =
3∑

i=1

3∑
j=1

(
CALG

ij − τi 2 δij
λe tr 2

i λe tr 2
j

Ñi ⊗ Ñi ⊗ Ñj ⊗ Ñj

)
+

1
2

∑
i�=j

2
S̃j − S̃i

λe tr 2
j − λe tr 2

i

(Ñi ⊗ Ñj ⊗ Ñi ⊗ Ñj + Ñi ⊗ Ñj ⊗ Ñj ⊗ Ñi)

= LH
ijkl Ñi ⊗ Ñj ⊗ Ñk ⊗ Ñl .

(6.183)
The associated tangent modulus cc is referred to the spatial configuration and
follows from the push forward of (6.182)

cc = LH
ijkl λ

e tr
i λe tr

j λe tr
k λe tr

l ntr
i ⊗ ntr

j ⊗ ntr
k ⊗ ntr

l

= cHijkl n
tr
i ⊗ ntr

j ⊗ ntr
k ⊗ ntr

l .

(6.184)

The transformation of the tangent moduli to a Cartesian basis can be
obtained via relation (6.166). The final result is given with the transformation
matrix TAB , see (6.167), and the matrix notation in (6.184) by

C̄AB = TAC C̄
H
CD TBD . (6.185)



7. Stability Problems

Real structures respond to external loading often in a nonlinear way. Some
nonlinearities are associated with sudden changes of the system behaviour.
Among such effects are buckling of cylindrical shells, lateral buckling of beams
or snap-through of flat shells but also localization of deformation in inelastic
materials.

Points at the load–deflection diagram which are associated with such
changes are called instability points since the structural system looses its
stability and cannot bear additional loads or has a loss of stiffness and hence
can collapse. Simple examples which depict such behaviour are discussed in
Sects. 2.1.3 and 2.1.4. The computation of instability points is thus an im-
portant part of a structural analysis in which always nonlinear effects have to
be considered. Hence it is of interest to develop reliable and efficient methods
for the determination and classifications of stability points.

The discussion of stability problems is restricted in this chapter to static
and elastic problems. Stability of dynamical systems are discussed from a
theoretical point of view, in e.g. Bolotin and Armstrong (1965), Marsden
and Hughes (1983) and Simitses (1990). For dynamical stability problems,
treated with finite element methods, see e.g. Wriggers and Carstensen (1992)
and Briseghella et al. (1998). Stability of inelastic material problems is de-
scribed, in e.g. Nguyen (2000) and Bazant and Cedolin (2003) theoretically.
Applications within the finite element method are treated in, e.g. Petryk
and Thermann (1992), Schreyer and Neilsen (1996), Stein et al. (1995) and
Steinmann et al. (1997).

7.1 Computation of Stability Points

Instable behaviour of structures is either associated with multiple equilibrium
solutions at a certain load level or with the loss of stiffness during loading.
Both cases can only occur in nonlinear systems and hence need to be treated
on the basis of an adequate theoretical model. A mechanical interpretation
for instability was provided, e.g. in Pflüger (1975). It says that a neighbouring
equilibrium state N exists, which belongs to the same load level as the given
equilibrium state G. Starting from the given equilibrium state, also called
ground state,
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G(G) = R(G) − λ(G)P = 0, (7.1)

it is possible to compute a neighbouring state by an infinitesimal deviation
from the linearized equation which can be computed using the linearization
at the ground state

K
(G)
T Δv = −(R(N) − λ(N)P) . (7.2)

As assumed, the load level is the same for both states such that λ(N) = λ(G).
The neighbouring state is also an equilibrium state which can be expressed
by

G(N) = R(N) − λ(N)P = 0 . (7.3)

This yields R(N) = R(G), such that the homogeneous equation system occurs

K
(G)
T Δv = 0 . (7.4)

The ground and neighbouring state for the Euler buckling behaviour of
a beam is depicted in Fig. 7.1 together with the associated load–deflection
diagram.

From a mathematical point of view the computation of instability points
is related to the investigation of tangent stiffness matrix with respect to sin-
gularities. The homogeneous equation system (7.4) has non-trivial solutions
for detKT = 0. This condition is equivalent to

(KT − ωj1)φj = 0 (7.5)

with the eigenvalue ωj and the eigenvector φj of the jth eigen solution. An
instability point is now denoted by a zero eigenvalue.

v
v

λ
λ F

(G)
(N)

(N)

(G)

Fig. 7.1 Deformation of a beam and load–deflection diagram
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7.1.1 Classical and Linear Buckling Analysis

In the engineering literature and thus also in the engineering codes, linear
buckling analysis is mostly applied. This procedure yields the first load level
where a system becomes instable. It is based on the formulation of a general
eigenvalue problem for the load parameter λ which was introduced in (5.1).
The derivation of the eigenvalue problem is provided by the development
of the displacements, which occur before reaching the instability point, in a
power series relative to the load parameter

v = λv(1) + λ2v(2) + λ3v(3) + · · · . (7.6)

By considering only linear terms, a linear eigenvalue problem follows. The
idea behind this approach is that instability is reached for a stress state
which is independent on the displacements close to the instability point. This
is often true for structures like beams and shells where the normal forces or
membrane states do not depend upon the deformation before the instable
behaviour occurs, see also the example in Fig. 7.1.

The linear eigenvalue problem is derived by splitting the tangent stiffness
matrix KT , see e.g. (4.76), in the parts

KT = KL + KU + Kσ, (7.7)

where KL is the linear stiffness matrix, KU the part of the matrix related
to the initial deformations and Kσ is the geometric or initial stress matrix.
Restriction to the linear part vL of the displacement yields the “linearized”
stiffness matrices

K̂U = KU (vL ) ,

K̂σ = Kσ (vL ) . (7.8)

With this split of the tangential stiffness matrix KT , a linear eigenvalue
problem for the load parameter can be deduced, see e.g. Brendel and Ramm
(1982),

[KL + λ ( K̂U + K̂σ ) ]φ = 0 . (7.9)

The associated algorithm can be found in Box 7.1. The influence of the dis-
placement state (initial buckling state) is suppressed when the matrix K̄U is
neglected. Then Eq. (7.9) reduces to the classical eigenvalue problem

[KL + λ K̂σ ]φ = 0 . (7.10)

The solution of this eigenvalue problem yields as smallest eigenvalue the crit-
ical load factor λc and hence the critical load Pc = λc P. The eigenvector
φ belonging to λc depicts the form of the failure mode. With relations (7.8)
and (7.9), the associated algorithm follows:
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Box 7.1 Algorithms for classical linear buckling analysis

1. Solve the linear problem KL vL = P

2. Solve [KL + λc( K̂U + K̂σ ) ]φ = 0
3. Compute critical values Pc = λc P , vc = λc vL

This method yields generally sufficient accurate results for practical prob-
lems, in which only small displacements and deformations occur before an
instability point is reached.

7.1.2 General Investigations of Stability

In case of highly nonlinear problems, solutions depend upon the displacement
and stress states in the structure. Then the instable points deviate from the
ones obtained by the linear buckling analysis. Hence a complete nonlinear
computation is necessary. As described in Sect. 5.1.5, an incremental iter-
ative arc-length strategy can be employed to solve the nonlinear problem.
Within the arc-length method, the stability behaviour has to be checked by
an accompanying investigation.

A simple method for the detection of instability or singular points is the
observation of the determinant or equivalently the check of the change of sign
of the diagonal elements of the tangential stiffness matrix KT . A zero element
of the diagonal denotes a nontrivial solution of Eq. (7.4). Furthermore, change
of sign of the determinant of KT characterizes the occurence of an instability
point. The computation of detKT can be obtained nearly without additional
effort during the triangularization of KT . This can be seen from

det KT =
ndof∏
i=1

Dii (7.11)

with KT = LT DL, where Dii is an element of the diagonal D. The de-
terminant however is not a well-suited indicator since even for small finite
element systems its value is extremely large. Thus it will exceed the limit of
the number representation of the computer very fast. By using the logarithm
of the determinant, the product formula in (7.11) becomes a sum and thus
the numerical value of the determinant will be a lot smaller. However, even
this value can be too large for, e.g. a finite element discretization of a shell
structure with several thousand unknowns. Thus, in standard simulations,
the change of sign of the diagonal elements Dii are used as indicator for the
occurrence of a stability point.

Since a finite element discretization leads usually to a positive definite
tangent matrix, the first negative diagonal element describes the first in-
stability point. Thus if a computation of a system emplying the arc-length
method depicts for a part of the load–deflection curve a negative diagonal
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element Dii then this part of the path is instable. It can even occur that
more than one diagonal elements are negative which of coure is also related
to instable paths. Note that an even number of negative diagonal elements
lead to a positive determinant of the tangent matrix, but still the system is
unstable. Using the sign of the determinant of KT , the following statements
regarding the equilibrium state can be made:

Box 7.2 State of equilibrium depending on the sign of the diagonal elements of KT

all Dii > 0 → KT pos. def.: stable equilibrium
at least 1 Dii = 0 → KT pos. semidef.: indifferent equilibrium
at least 1 Dii < 0 → KT neg. def.: instable equilibrium

The condition for instability, detKT = 0, can also be expressed by the
eigenvalue problem (KT −ω1)φ = 0, see (7.5). Another often used approach
stems from the linear stability analysis. Then an eigenvalue problem of type

[KL + KU + λcKσ]φ = 0,
[KL + λc(KU + Kσ)]φ = 0

is solved, see e.g. Ramm (1976) and Brendel and Ramm (1982). However,
this is not very efficient.

Remark 7.1 :

1. There is no stringent mathematical reasoning for the split of the tangential
stiffness matrix KT in (7.12) with respect to the load factor λ.

2. The split of the tangential stiffness matrix in three parts does not occur natu-
rally within the finite element formulation. Hence more coding effort is needed,
but the computation of the three parts is also more time consuming than com-
puting KT in one piece.

3. The eigenvalue problem (7.9) is a general one. On the contrary, the eigenvalue
problem in (7.5) is a special eigenvalue problem which needs less effort for its
solution.

4. The solution of eigenvalue problem (7.12) can only be obtained using special
eigenvalue solver since matrices KU and Kσ are generally not positive definite.
This can be observed directly from matrix Kσ where terms associated with
normal stresses appear on the diagonal (which can be plus or minus).

Within the incremental-iterative computation using the arc-length
method, see Sect. 5.1.5, the instable points are not determined accurately
since only the nonlinear solution path is of concern. However, the appear-
ance of negative diagonals is depicted during the solution with the arc-length
method, see Box 7.2. Thus further methods have to be introduced when the
singular points need to be computed accurately. A simple method is provided
by a bi-section algorithm which can be applied to determine instability points,
see e.g. Wagner and Wriggers (1988). This procedure is also propagated in the
mathematical literature, see e.g. Keller (1977). The related algorithm needs
an arc-length method which can change the loading direction (return on the
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Fig. 7.2 Iteration series for the bi-section method

already computed path) and a possibility to change the arc-length (smaller
steps).

Within the bi-section method, the algorithm runs backward on the loading
path with half arc-length once a singular point is bypassed from step (i) to
(i+1). Starting from the last reached equilibrium state (k+n), this procedure
is executed until the eigenvalue ωj in (7.5) related to the singular point is
close to zero within a given tolerance (ωj ≤ TOL), see Fig. 7.2. In practical
application, it is often sufficient to choose a tolerance of TOL = 10−5. The
series of iterations needed within this procedure is denoted in Fig. 7.2 by
(k) , (k+1) , . . . . In Fig. 7.2, the equilibrium state related to (k+2) is already
close to the critical point.

When the bi-section method is applied, it is necessary to change the load
direction when the instability point is bypassed during the iteration. Details
of such method when applied to structural stability problems can be found
in, e.g. Wagner and Wriggers (1988) and Wagner (1991).

The bi-section method can be applied to problems including all possible
nonlinearities including inelastic material behaviour. However, in the latter
case, the algorithm has to be reformulated since change of loading direction
leads in case of plasticity to unloading and thus will not return on the already
computed path. Hence the bi-section method has to be formulated in such a
way that always loading occurs. This can be done by applying the scheme in
such a way that it approaches the stability point from one side, for details
see e.g. Wriggers and Simo (1990).

Further possibilities to compute instability points directly are discussed
in the next section.

The solution of the eigenvalue problem yields an eigenvector φj related to
the critical or instability point with eigenvalue ωj = 0 , see e.g. Spence and
Jepson (1984). Using this eigenvector, it is possible to determine the type
of the instability at this singular point. This investigation starts from the
equilibrium state (ū , λ̄) provided by Eq. (7.1). Its linearization yields
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G(u , λ) = R(ū) + KT (ū)Δu − λ̄P − PΔλ = 0 . (7.12)

In this equation, equilibrium demands: R(ū)− λ̄P = 0. When the remaining
part of this relation is multiplied from the left side by the transposed eigenvec-
tor φT

j associated with the zero eigenvalue, then the term φT
j KT (ū)Δu = 0.

This relation follows from (7.5) since the eigenvalue is zero at the singular
point. Hence the only remaining part is φT

j PΔλ = 0 which has two possi-
ble interpretations. For φT

j P 	= 0, the load increment has to be zero at the
instability point which denotes a snap-through behaviour, see e.g. Fig. 7.2
and the example in Sect. 2.1.4. On the other hand, when φT

j P = 0, the
load increment can be arbitrary and thus instability occurs on the load path
which is called bifurcation, see e.g. Fig. 7.1 and the example in Sect. 2.1.3.
The result can be summarized as

φT
j P =

{
= 0 .. bifurcation point
	= 0 ........... limit point . (7.13)

This relation is valid for snap-through and limit points (L) and simple bifur-
cation points (B), see also Fig. 5.5. The solution branches at a bifurcation
point off in two or more paths, as can be seen in Figs. 5.5 and 7.1. The generic
loading path (the computation starts along this path) is called primary path
while the paths leaving the primary path are called secondary paths. Further
classifications of special limit and stability points can be found in, e.g. Jepson
and Spence (1985) and Wagner (1991).

When the complete load deflection curve has to be determined for a sta-
bility problem, then not only the primary but also the secondary solution
paths need to be computed. Thus, at a singular point, the algorithm has to
be able to switch to the secondary path. This switch is not always simple
since two equilibrium states (on the primary and on the secondary path) are
close to each other. A good choice is to use the eigenvectors associated with
the zero eigenvalues at the singular point as starting values for an iteration
since they provide a tangent to the secondary path, see Jepson and Spence
(1985). Relation

vj = v̄ + ξj
φj

‖φj‖
(7.14)

denotes the deformation state which can be employed as starting vector in a
combined Newton and arc-length method to approach the secondary path.
The vector v̄ contains the displacement state at the singular point. The mag-
nitude of the factor ξj is essential for a successful switch to the secondary
path. Related strategies can be found, in e.g. Rheinboldt (1981) and Riks
(1984). In the case that the described procedure does not work, Eq. (7.14)
can be amended such that instead of the displacement field the coordinates
of the structure are updated by the eigenvector belonging to the singularity.

Remark 7.2 : When many bifurcation points are close to each other, it is very
difficult to change to a secondary path. This is especially true for shell structures
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where clustering of singular points can occur. Moreover, the main interest in engi-
neering analysis is the path which yields the minimum load-bearing capacity of the
structure under investigation. In order to reach this path or to change to another
path, inertial effects have to be considered. Examples are snap-through or buckling
of shells when a dynamical process is initiated by the physics after passing a sin-
gular point. Related algorithms using a static/dynamic approach can be found in,
e.g. Riks et al. (1996) and Schweizerhof et al. (2002).

7.2 Direct Computation of Singular Points

Stability points can be detected, computed and classified with the methods
described so far. This was performed by monitoring the sign of the diagonals
of the tangent stiffness matrix by using the bi-section method and computing
eigenvectors at a singular point. However, the bi-section method only leads
to linear convergence behaviour; hence for faster (quadratically) convergence
different methods have to be applied.

A method which directly determines a singular point and has quadratic
convergence properties, see Fig. 7.3, will be developed in the following.

The idea of this method is to use the standard incremental iterative strat-
egy together with the arc-length methods initially. Close to a singular point,
the strategy is then switched to an iterative method which is able to compute
the singular point directly. Within the following, the questions of designing
a direct scheme and of when to switch to a direct method will be addressed.

7.2.1 Formulation of an Extended System

A direct computation of singular points is based on the idea to restrict the
set of solution to equilibrium states which are singular. Hence a constraint
condition has to be added to the standard finite element weak form which
reduces the solution space to singular points.

v

λ

L

i

vi vkrit

λkrit

Fig. 7.3 Direct method for the computation of a singular point
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One possibility is to add the condition det KT = 0 since this condition is
fulfilled at a singular point, but the resulting equations are quite complicated,
especially the linearization and its implementation. Furthermore, the deter-
minant of a large finite system is represented by a very large number which
can easily be outside the number range of a standard computer. However,
the determinant criterion can be applied successfully to stability problems of
beams, see Planinc and Saje (1999).

Another formulation uses the eigenvalue problem (KT − ω 1 )φ = 0. The
eigenvalue ω of the tangent matrix KT is zero at a singular point. Hence the
equation KT φ = 0 can be applied at snap-through and bifurcation to define
a singular point. Now the following extended system can be constructed

Ĝ(v, λ,φ) =

⎧⎨
⎩

G(v, λ)
KT (v, λ)φ
l (φ)

⎫⎬
⎭ = 0 . (7.15)

The last equation was introduced to exclude the trivial solution φ = 0. This
equation can be formulated, e.g. as

l (φ) = ‖φ ‖ − 1 = 0 . (7.16)

To compute either snap-through or bifurcation points, Eq. (7.13) can be used.
The condition leading to the determination of snap-through points is then
given as

l (φ) = φT P − 1 = 0 . (7.17)

Due to the choice of the constraint equation, the formulation of the extended
system in (7.15) is limited to the computation of simple snap-through and
bifurcation points.

The use of extended systems is described in the mathematical literature
and applicable to many different problems, see the overview of Mittelmann
and Weber (1980). The extended system formulated above was, e.g. applied
by Werner and Spence (1984) for the computation of snap-through and sym-
metrical bifurcation points. In the mathematical literature, these methods are
usually only employed for systems with few degrees of freedoms. The extended
system was firstly formulated and implemented in the paper of Wriggers et al.
(1988) within the finite element method using a consistent linearization, to
discuss the stability behaviour of three-dimensional truss systems. Extension
to beam and shell problems are reported, e.g. in Wriggers and Simo (1990)
and in Fujii and Ramm (1997). Application of the method in optimization
can be found in Reitinger and Ramm (1995).

The formulation of a Newton procedure for the extended system in (7.15)
needs a consistent linearization. This leads to

K̂T iΔwi+1 = −Ĝ(wi)
wi+1 = wi +Δwi+1 (7.18)
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with

K̂T i =
∂Ĝ

∂w

∣∣∣∣∣
i

and w =

⎧⎨
⎩

v
φ
λ

⎫⎬
⎭ . (7.19)

In order to judge the costs for the solution of the extended system, the Eq.
in (7.18) are discussed in detail. In the general case of deformation dependent
loads, see Sect. 4.2.5, the tangent matrix not only depends upon the defor-
mations but also on the load parameter λ. For this case, the linearization is
given by⎡

⎣ KT 0 −P
∇v (KT φ) KT ∇λ (KT φ)

0 ∇φ l (φ) 0

⎤
⎦
⎧⎨
⎩
Δv
Δφ
Δλ

⎫⎬
⎭ = −

⎧⎨
⎩

G(v, λ)
KT (v, λ)φ
l (φ)

⎫⎬
⎭
(7.20)

with

∇v (KT φ) =
∂

∂v
(KT φ) ,

∇λ (KT φ) =
∂

∂λ
(KT φ) ,

∇φ l (φ) =
∂

∂φ
l (φ) .

The first view on this equation system leads to the impression that the solu-
tion of the system (7.20) requires large computational effort. The introduced
vector w contains 2n+1 unknowns, the tangent matrix K̂T is nonsymmetric
and derivatives of the tangential stiffness matrix KT have to be computed.
However, a closer look to K̂T reveals that (7.20) can be solved efficiently by
a partitioning scheme since the tangent matrix KT occurs two times on the
diagonal of the equation system. The solution algorithms follows the idea
of block elimination (equivalent to the scheme used within the arc-length
method, see Sect. 5.1.5). Within the iteration step i, the steps described in
Box 7.3 have to be executed to solve (7.20).

To start the algorithm, stated in Box 7.3, initial values have to be provided
for displacements v, load parameter λ and eigenvector φ. While v and λ are
known from the last step of the incremental solution procedure, e.g. the
arc-length method, the eigenvector is unknown. To fulfil condition (7.16),
it cannot be selected as zero vector. However, several possibilities can be
followed for the proper selection of a the initial eigenvector φ0. Below two
different choices are described.

1. Unit vector:

φ0 =
1

‖e‖ e with e = {1 , 1 , . . . , 1} (7.21)

This starting vector for φ contains the entire spectrum and hence during
the solution procedure the eigenvector φ can assume the correct form.
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2. Eigenvector of KT :

φ0
0 = e / ‖e‖
LOOP k = 1 , . . . ,m

φk
0 = K−1

T φk−1
0

ENDLOOP

m steps of a vector iteration are performed within the algorithm. This
leads to a starting vector φ0 for the extended system which is associated
to the current state of KT . Such choice of the starting vector can accel-
erate the convergence of the computation considerably, especially when
the eigenvector belonging to the singular point is close to φ0. Often only
a few iterations (e.g. m = 3 to 5) are sufficient to determine φ0 with suf-
ficient accuracy. Note however that a choice of the starting vector related
to KT can lead to slow convergence when the eigenvector associated with
the singular point is orthogonal to φ0.

It is obvious from the algorithm in Box 7.3 that the matrix KT has only
to be factorized once. This operation is – especially for large systems – essen-
tial for computational efficiency, see Sect. 5.2. Hence only a relatively small
additional computational effort is needed for the extended system when com-
pared to the standard Newton method. Besides the computation of vectors
h1 and h2, the equation system has to be solved for three additional right
hand sides to compute the vectors Δv1, Δφ1 and Δφ2. The non-symmetry of
K̂T has not to be considered within the algorithm. A judgement concerning
the additional effort to compute the derivative of KT is discussed next.

Box 7.3 Algorithm for the computation of singular points using the extended

system

1. Solve KT ΔvP = P , KT ΔvG = −G .
2. compute directional derivatives

h1 = ∇v (KT φ) ΔvP + ∇λ (KT φ) ,

h2 = KT φ + ∇v (KT φ) ΔvG .

3. Solve KT Δφ1 = −h1 , KT Δφ2 = −h2 .
4. compute increments

Δλ = −∇φ l (φ) Δφ2 + l(φ)

∇φ l (φ) Δφ1

,

Δv = Δλ ΔvP + ΔvG Δφ = Δλ Δφ1 + Δφ2 .

5. Update displacements, eigenvector and load parameter.

λ = λ + Δλ , v = v + Δv , φ = φ + Δφ .
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7.2.2 Computation of the Directional Derivative of KT

The formulation of the tangential stiffness matrix follows the rules derived in
Sect. 4.2.2

KT =
ne⋃

e=1

∫
Ωe

{ B̄
T
L D̄ B̄L + GT S̄G } dΩ . (7.22)

The directional derivative of KT which is needed within the algorithm in
Box 7.3 can be described by using the already defined B̄L matrices, see
(4.53). In order to obtain an explicit form of the directional derivative, the
B̄L matrices are split into a constant part and a part which depends linearly
upon the displacements ve

B̄L = B0 + B̄Li(ve) . (7.23)

The vector h is written as

h = ∇v (KT φ)Δv

=
ne⋃

e=1

ηT
e

∫
Ωe

{B̄T
Li(Δve) D̄ B̄L(ve) + B̄

T
L(ve) D̄ B̄Li(Δve) (7.24)

+GT ΔS̄G}φe dΩ .

The vector ΔS̄ in (7.22) contains the incremental stresses which follow for a
St. Venant with constant D̄ from

ΔS̄ = D̄ B̄(ve)Δve . (7.25)

A detailed derivation of the above result can be found in Wriggers et al.
(1988). It is necessary for the solution of the extended system (7.15) to com-
pute the right hand sides h1 and h2, see Box 7.3. The basis for this is provided
by (7.24). The first term of h1 follows with Δve = Δv1e while Δve = Δv2e is
necessary for the computation of the second term of h2. The term ∇λ(KT φ)
in h1 is zero for conservative loading.

An estimate for the effort to compute the vectors h1 and h2 can be ob-
tained as follows. The B̄ matrices are known, see (4.53). The modifications of
these matrices needed in (7.24) are trivial. All matrices can be compute ele-
ment wise. Hence the effort to computed the vectors h1 and h2 are basically
equivalent to the computation of the residual vector G.

The discussed analytical determination of the derivative of the tangent
matrix KT with respect to the displacements has a relative simple structure
since the constitutive equation is linear with respect to Green-Lagrange

strain tensor and the 2. Piola-Kirchhoff stress. For the class of hyperelas-
tic materials, see Sect. 3.3.1, it is a lot more complex to analytically determine
the derivative of KT . For the class of Ogden type materials – formulated in
principal stretches – the analytical form can be found in Reese (1994) and
Reese and Wriggers (1995). The analytical determination of the derivative
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of KT for structural elements like shells or beams for finite rotations is even
more complex since here the rotations are in SO(3), see Sect. 9.4. Thus it
can be advantageous to determine the directional derivative of the tangent
KT numerically. A related procedure was developed in Wriggers and Simo
(1990). It starts with the definition of KT which follows from the directional
derivative of the residual G

KT φ = ∇v G (v , λ)φ =
d

dε
G (v + εφ , λ)

∣∣∣
ε=0

. (7.26)

By using the symmetry of the second derivative of G, the derivative of KT φ
in the direction of Δv can be written in the following equivalent form

∇v [KT φ ]Δv = ∇v [∇v G(v , λ)φ ]Δv

= ∇v [∇v G(v , λ)Δv ]φ . (7.27)

Using these results, the vectors h1 and h2, which appear in the algorithm in
Box 7.3, can be determined. For this task, only one additional evaluation of
the tangent matrix KT is necessary, leading to

∇v [KT φ ]Δv =
d

dε
[KT (v + εφ) ]Δv

∣∣∣
ε=0

. (7.28)

This relation is now reformulated which yields directly the numerical approx-
imation

∇v [KT φ ]Δv = lim
ε=0

1
ε

[KT (v + εφ)Δv − KT (v)Δv ] . (7.29)

Using a fixed parameter ε, see Remark 7.3, the approximation

∇v [KT φ ]Δv ≈ 1
ε

[KT (v + εφ)Δv − KT (v)Δv ] (7.30)

follows. The application of such approximation, to compute the directional
derivative within the algorithm described in Box 7.3, yields expressions for
vectors h1 and h2:

h1 ≈ 1
ε

[ (KT (v + εφ)ΔvP − P ] ,

h2 ≈ KT φ +
1
ε

[ (KT (v + εφ)ΔvG + G ] . (7.31)

Observe that the load vector P and the residual G are known. Hence the
numerical effort to determine vectors hα (α = 1, 2) is limited and does only
involve an additional evaluation of the tangent matrix: KT γ(v + εφ).

Remark 7.3 : The following additional considerations are necessary in order
to devise an efficient scheme for the computation of the approximate directional
derivative:
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1. The function evaluation of KT should only be performed once. All matrix
multiplications (7.31) can be carried out at element level such that the matrix
KT (v + εφ) does not have to be assembled. The assembly is only needed for
the vectors hα.

2. The choice of the parameter ε in (7.31) is an essential ingredient for a successful
application of the numerical directional derivative. Its choice depends upon the
vector φ and the accuracy of the computer. An estimation for ε can be found
in Dennis and Schnabel (1983). It yields

ε = max
1<k<n

φk η TOL . (7.32)

Here φk is the k-th component of the vector φ ∈ R
n. η TOL is the constant

represents the machine accuracy. For double precision, η TOL ≈ 10−6 can be
set.

7.2.3 Example: Bifurcation Point of an Arc

The direct method for the computation of singular points, discussed above,
will be applied to the arc structure depicted in Fig. 7.4.

The inner radius of the arc is given as Ri = 100 while the outer radius
has the magnitude Ra = 103. Thus the thickness of the arc is t = 3. The
arc spans an area with an angle of α = 60◦ and is simply supported on both
ends.

The mechanical model is derived with respect to the initial configuration.
Its formulation is based on the weak form (3.292) including all nonlinear
terms and uses St. Venant elastic constitutive equation. The parameters
of the St. Venant material are E = 40000 and ν = 0.2. The finite element
formulation is equivalent to the one discussed in Exercise 4.3. The arc is
discretized using isoparametric quadrilaterals with quadratic shape functions.
Three elements are used in thickness direction; in total 150 elements were
applied.

It is now possible to compute the singular point B directly by starting
from point S on the load deflection curve, as can be seen in Fig. 7.5. For
this, the starting eigenvector was computed using the algorithm described in
Remark 7.3.2.

The convergence behaviour of the Newton iteration is shown in the
following table for the application of the direct scheme to the arc under point

�

�� ��

�
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�������� ��������

Fig. 7.4 Arc under point load
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Fig. 7.5 Direct computation of the bifurcation point B

load. It is obvious that the method converges fast and quadratically. Note
that the first iterative solution yields already a value for the load parameter
λ which only deviates by 2% from the converged value and hence is already
very close to the solution.

Residual λ v
1.3041823E+02 198.6 −3.0446E+00
9.6354141E+02 202.8 −3.4496E+00
4.9948826E+01 195.8 −3.6558E+00
2.1673679E+01 195.5 −3.6649E+00
3.0736882E−02 195.5 −3.6649E+00
2.6957110E−07 195.5 −3.6649E+00

Once the point is computed, its type of singularity can be evaluated. By
using (7.13), a bifurcation point is detected.The eigenform which is associated
with the bifurcation point follows also directly from the extended system
algorithm in Box 7.3. It is depicted in Fig. 7.6.
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Fig. 7.6 Eigenform of the arc at bifurcation point B
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7.3 Algorithms for Nonlinear Stability Problems

The extended systems provide a tool for the direct computation of singular
points. Since more than one singular points can occur within a nonlinear
solution path, it is advantageous to combine the extended system with the
arc-length method described in Sect. 5.1.5. The arc-length method is em-
ployed within such strategy to follow the nonlinear solution path. Once a
singular point is detected, the method is switched to the extended system for
the efficient and direct computation of the singular point. Hence a criterion
is needed which indicates when to switch from one method to the other.

Two different heuristic criteria can be used. The first is based on monitor-
ing the determinant of the tangent matrix det KT along the solution path.
Once turning points occur in the course of det KT then a switch from arc-
length method to the extended system has to be performed. The turning point
of the determinant is chosen to avoid convergence of the direct scheme to the
previous singular point. The second possibility is to use the arc-length method
until the number of negative diagonal elements of KT changes. This depicts
that a singular point was bypassed along the nonlinear solution path. After
that, the extended system can be applied to exactly determine the singular
point. As already noted, for elasto-plastic problems, a one-sided bi-section
method has to be executed which avoids unloading. The entire algorithm is
summarized in Box 7.4.

Once a stability point is found, it is possible to switch back to the arc-
length method to follow the post-critical paths. In case of bifurcation points
there are two possibilities, either to follow again the primary or the secondary
path. The switch to a secondary path needs a special procedure, see e.g.
Wagner and Wriggers (1988) and Eq. (7.14). The related procedure is based
on the knowledge of the eigenvector φ which belongs to the bifurcation load.
This vector is provided either by the solution of (7.5) at the equilibrium
point, or it will automatically be computed within the extended system, see
Box 7.3. Thus an additional computation of the eigenvector φ using (7.5) is
not necessary when the extended system is applied. More refined algorithms
for the switch from a primary to secondary points can be found in Wagner
(1991) and Riks (1984).

Finally, the computation of limit and bifurcation points of elasto-plastic
problems is discussed. Under the assumption of an associated flow rule, see
Sect. 3.3.2, a so-called linear comparison solid can be introduced following
Hill (1958) and Raniecki and Bruhns (1981). This comparison solid can be
applied to determine, e.g. the bifurcation points of cylindrical specimen un-
der tension. Two neighbouring solution states are assumed at one load level
within an incremental formulation. The associated material tensor is taken to
be constant. This approach excludes explicitly unloading during the stabil-
ity analysis. It yields limits for plastic bifurcation loads, see e.g. Needleman
(1972).
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Algorithms which can be employed to analyze elasto-plastic finite defor-
mations within a finite element method were described in Sect. 6.3.2. These
formulations lead to explicit expressions for the material tangent, consistent
with the algorithms, see Sect. 6.3.3. Inserting the material tangent into the
relations for the tangent matrix KT needed within the Newton method
leads to the same structure as a discretization of the comparison solid. Hence
the incremental formulations needed for the Newton method can be used to
compute elasto-plastic bifurcation loads. For this, it is necessary to keep KT

constant at the equilibrium point to exclude unloading. The eigenvector be-
longing to the elasto-plastic bifurcation load follows then from (7.5). Related
analysis and computations can be found in, e.g. Wriggers and Simo (1990)
and Wriggers et al. (1992).

Box 7.4 Combined algorithm for the computation of instability points

1. Computation of equilibrium points at the solution path using arc-length
method, see algorithm in Box 5.2

G(v, λ) = R(v) − λP = 0

2. Monitoring of diagonal elements or the determinant of KT :
a) Turning point in the progression of determinant or change of the num-

ber of negative diagonal elements: Go to 3
b) otherwise: Go to 1

3. Computation of a singular point
a) In case of an elastic problem use extended system:

i. Compute starting vector for eigenvector φ by one or two iterative
steps (i = 0, 1, 2,) of an inverse iteration

φi+1 = K−1
T φi with φ0 = 1

ii. Compute singular point by extended system, see Box 7.3

Ĝ(v, λ, φ) = 0

b) In case of an elasto-plastic problem use one sided bi-section:
i. Start with last solution
ii. Choose half arc-length
iii. Compute next point on solution path
iv. If det KT < TOL: Go to 4
v. When number of neg. diagonal elements is constant: Go to 3(b)ii
vi. otherwise: Go to 3(b)i

4. Type of stability point

φT P =

{
�= 0 . . . limit point Go to 1
= 0 . . . bifurcation point Go to 4(a)(b)

a) Continue on primary path: Go to 1
b) Continue on secondary path: Use (7.14) and Go to 1
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The solution of problems in solid mechanics using finite elements always
is an approximation of the analytical solution, besides a few cases, where
exact solutions can be obtained for one dimensional linear elastic problems
(e.g. trusses or beams). Errors of the finite element approximation consist
of discretization errors in space and time and approximations of the real
geometry. Each has different influence depending on the type of differential
equation to be solved.

Additional error sources are modelling errors which result from the choice
of a differential equation to describe real engineering problems. Classically,
the choice of a one- or two-dimensional model to describe a three-dimensional
engineering problem is an approximation, but also the selection of a consti-
tutive equation does often not represent the physical behaviour adequately.
This type of error, which is related to the validation of the mathematical
model (question: do we solve the right equations), while very important, is
not discussed in the following. Information can be found in, e.g. Stein and
Ohnimus (1996), Oden et al. (1996) or Ladeveze and Pelle (2005) and the
literature cited in these papers.

8.1 Introduction

To judge the accuracy of finite element solutions, and thus to verify that
the equations of the mathematical model are solved correctly, the magnitude
of the error of the finite element solutions has to be estimated. Even better
would be a method which allows to solve the equations of mathematical model
automatically up to a prescribed accuracy by the finite element method. This
is, e.g. essential for problems with high local gradients in stress fields which
locations are not known a priori. Hence scientists have developed adaptive
methods which yield automatically a finite element mesh in which the error is
distributed equally over the entire mesh. Different methods were introduced
to change mesh or interpolation. These are h-, p- and r-adaption techniques.
They are described in Fig. 8.1 where the different refined meshes are depicted
assuming that a refinement is necessary in the left lower corner.
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– When using h-adaption, the element size is adapted based on computed
errors. This technique yields finite element meshes with increasing number
of nodes; hence the effort to solve the related finite element problems in-
creases too. Usually three different methods are used to refine a mesh. In
the first, the refined part is coupled via constraint equations to the exist-
ing mesh. Here so-called hanging nodes are allowed which are constraint to
the movement of the element edge they are connected to, see first mesh in
Fig. 8.1. The second mesh refinement introduces transition elements which
lead to a conform mesh, see second mesh in Fig. 8.1. Finally, in the third
method, a completely new mesh is generated based on the computed error
distribution.

– The p-adaption increases the degree of the interpolation polynomials. This
results in a higher order of approximation, but also leads to more un-
knowns. Furthermore, the bandwidth of the tangent matrix increases and
considerably more time is needed to compute the element matrices for a
high polynomial degree.

– Finally, the r-adaption method replaces finite element nodes such that the
element sizes are optimized within a finite element mesh in order to reduce
the overall error of the finite element solution. Within this approach, the
structure and size of the finite element equations are preserved. However,
negative Jacobians can occur at certain Gauss due to large element dis-
tortions. This methods cannot guarantee convergence to the exact solution
since the number of elements and the interpolation order are kept constant.

Since the exact solution of a partial differential equation is usually not known,
it is not possible to compute the absolute error. Thus methods are needed
which can estimate the error of the finite element solution. Hence techniques
have to be developed which allow the computation of the finite element error
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based on the geometry, material data and approximate solution. The related
theory is well developed for linear problems and yields error estimation and
rules to adapt the element size within a given finite element mesh.

Basically, the approximation of an elliptic variational problem discretized
by finite elements converges only if the polynomial degree k of the inter-
polation functions fulfils the inequality k + 1 > m where the order m of
the variational problem is equal to the highest derivative occurring in the
problem. This condition can be interpreted in the engineering sense by the
requirement that finite element have to be able to reproduce constant strain
states exactly.

The order m of a variational problem is equivalent to the order 2m of
the related differential equation of the problem. For linear elasticity or the
Poisson equation, m = 1 is obtained while the value m = 2 is valid for a
plate.

The error in displacements between an exact solution u, living in the
function space V , and an approximate solution uh, in the space of ansatz
functions Vh of the finite element method, is defined by e = u − uh.

For an elliptical variational problem, the estimate

‖u − uh ‖V ≤ C ‖u − η ‖V ∀η ∈ Vh (8.1)

is valid, see e.g. Strang and Fix (1973). The norm in (8.1) is defined with
respect to the space V in which a unique solution u of the variational problem
exists. This variational problem can be written as bi-linear form

a(u ,η) = f(η) . (8.2)

The operators a and f of this abstract notation can be specified, e.g. for the
case of linear elasticity using (3.17) and (3.273)

a(u,η) =
∫
Ω

ε(η) ·C [ ε(u) ] dΩ ,

f(η) =
∫
Ω

b̂ · η dΩ +
∫
Γσ

t̂ · η dΓ . (8.3)

Let us remark that the result in (8.1) follows from the error orthogonal-
ity which can be deducted by taking the difference of (8.2) and by using
a(uh ,η) = f(η):

a(u − uh ,η) = 0 . (8.4)

The inequality (8.1) yields another remarkable result: of all functions, η in
the space Vh, the finite element solution uh is the best approximation of
the exact solution. That means without knowing the exact solution the best
possible approximation is provided by finite elements.

Equation (8.1) can be written with the choice η = πh u as
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h
h

Fig. 8.2 Definition of a characteristic element size h

‖u − uh ‖V ≤ C ‖u − πh u ‖V , (8.5)

where πh u ∈ Vh is a short hand notation for an interpolation of u with an
ansatz function as discussed in Sect. 4.1. The interpolation error on the right
hand side ‖u−πh u ‖V can be estimated, see e.g. Johnson (1987), Brenner and
Scott (2002) and Braess (2007). For linear tetrahedral elements, see (4.42),
the result is

‖u − uh ‖H1 ≤ C h |u |H2 . (8.6)

The quantity h describes in this inequality a characteristic element size of the
finite element approximation, e.g. the diameter of the element, see Fig. 8.2.
The constant C depends upon the chosen mesh, but does not depend upon
h. The constant C becomes smaller for regular meshes. In the case that the
inner angle of a triangular finite element goes to zero then C goes to infinity
and the approximate solution does not converge. The norm ‖u‖Hs in (8.6) is
defined as

‖u‖Hs =
{∫

Ω

[ui ui + ui,j ui,j + · · · + ui,jk...s ui,jk...s ] dΩ
} 1

2

<∞ . (8.7)

Derivatives of the vector u occur in this equation up to the degree s. The
mathematical spaces related to these norms are called Sobolev spaces. A
solution u which fulfils condition (8.7) lies in the Sobolev space Hs. The
special case

‖u‖H0 =
{∫

Ω

[ui ui ] dΩ
} 1

2

<∞ (8.8)

is also denoted as L2-norm ( ‖u‖H0 = ‖u‖L2 ).
A natural norm for elasticity problems is the energy norm

‖u‖2
E = a(u ,u) . (8.9)

This norm is under the condition

c ‖u‖V ≤ ‖u‖E ≤ C‖u‖V
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with positive constants c > 0 and C > 0, equivalent to a Sobolev norm. The
solution of elasticity problems with sufficient smooth boundaries lies in the
space H1. However, since engineers are more often interested in good stress
approximations, it might be advantageous to use the L2-norm of the stresses
as an error measure.

Generally, the following asymptotic convergence statement can be made
for an elliptical variational problem of order m, which is approximated by a
conform finite element method with interpolations of order k, see e.g. Strang
and Fix (1973),

‖u − uh‖Hs = O(hmin [ k+1−s ,2(k+1−m) ]) . (8.10)

Evaluation of this equation for different interpolations yields different con-
vergence orders. As an example, a linear displacement ansatz (k = 1) is used
to discretize a linear elasticity problem (m = 1) and a norm with (s = 1)
measures the error. The result is O(hmin [ 2−1 ,2(2−1) ]) = O(h); it is equivalent
to the statements in (8.6). The general statement (8.10) can be applied to
other elliptical problems (e.g. beams, plates and shells) or can be evaluated
for interpolation functions of higher polynomial degree. It is obvious that
interpolations with higher polynomial degrees yield faster convergence, e.g. a
polynomial degree of k = 3 yields for the elasticity problem m = 1, s = 1 the
convergence order O(h3). Numerical results which underline these theoretical
statements for different orders of polynomials can be found, e.g. in Ramm
et al. (2003), Hughes et al. (2005) and Elguedj et al. (2008).

These results are restricted to problems with smooth boundaries and con-
tinuous loading functions. A violation of these assumptions leads eventually
to singularities in the solution and the convergence orders stated in (8.10)
cannot be obtained. Examples are re-entrant corners in the boundary, like
cracks, or point loads. In such cases, higher order polynomials do not en-
hance the solution since the solution is not smooth enough. Here an h- or r-
adaption is preferable.

The mathematical analysis, leading to the results reported so far, is based
on a deep knowledge of functional analysis. However, a treatment of this topic
is beyond the scope of this book. The interested reader can find the related
mathematical background in, e.g. Strang and Fix (1973), Johnson (1987),
Verfürth (1996), Brenner and Scott (2002) and Braess (2007).

An adaptive finite element method leads to an approximate solution uh

which fulfils the inequality for a given error measure, e.g. a condition like

‖u − uh ‖H1 ≤ TOL . (8.11)

Here TOL is a prescribed limit. In the case that the error has to be restricted
to be, e.g. δ̄ = 5 % then instead of (8.11)

δ =
‖u − uh ‖H1

‖u ‖H1
× 100% (8.12)
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can be used which is a relative error measure. Here the termination criterion
for the adaptive computation is

δ ≤ δ̄ . (8.13)

In engineering applications, often the energy norm is employed for the com-
putation of the relative error leading to

δ =
‖u − uh ‖E

‖u ‖E
× 100% ≤ δ̄ . (8.14)

The asymptotic results reported so far are not directly applicable for the
computation of the relative error. But it is possible to estimate the error on
the left side of (8.12) using an approximate solution. The error estimators
and indicators needed for this task are discussed in the next sections. These
were basically developed by assuming linear elastic behaviour and small de-
formations, see e.g. Braess (2007).

For nonlinear problems which are of interest within this monograph, only
investigations are known which work in the tangent space (linearized prob-
lem). However, many demanding engineering tasks can be solved using adap-
tive schemes by using heuristic extensions of the error measures known from
the linear theory which then are called error indicators. The construction of
adaptive methods for such problems is the subject of ongoing research, see
e.g. Verfürth (1996). In the following, error estimators and indicators will be
defined which are based on quantities like deformations or stresses defined in
the tangent space. The related quantities for a linear application are then sim-
ply given by evaluation of the terms with respect to the initial configuration.

Generally, the following steps have to be executed when applying an adap-
tive method within finite element techniques, see Box 8.1.

Box 8.1 Adaptive refinement process

1. Select an appropriate initial mesh, which approximates the geometry
of the problem accurately.

2. Solve the discrete problem.
3. Compute error estimators or error indicators.
4. Test, whether the global error lies within the given tolerance.

If yes, the computation is finished.
If no, a new mesh has to be constructed.
Within this process the already computed deformations and internal
variables have to projected onto the new mesh.
Then go to step 2.

The new mesh will usually include areas with refinement and areas with
coarsening of the element sizes.

In the case of time dependent problems, distinction is made between a
dynamical problem, see Sect. 6.1 and an inelastic application, see Sect. 6.2.
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Both problem types require additional considerations which are related to
accuracy of the approximation in time and, in case of inelasticity, the error
made when history-dependent data are transferred from one mesh to the
next, e.g. the plastic variables introduced in Sect. 6.2.2. Hence an adaptive
time step control has to be introduced and an adequate projection scheme for
the plastic variables has to be constructed, see e.g. Rannacher and Suttmeier
(1998) and Johnson and Hansbo (1992).

8.2 Boundary Value Problems and Discretization

The error analysis, natural in numerical mathematics, and the resulting en-
hancement of the approximate solutions is in standard commercial software
only realized in a rudimentary way. However, in practical applications, prob-
lems are extremely complex and thus the user of nonlinear finite element
software has a hard time to judge the results of such analysis with respect
to accuracy of the chosen discretization. With increasing computing power,
this problem will be even more pronounced. Thus engineers require that they
can compute solutions with controlled and required accuracy. Furthermore,
the algorithms have to be reliable and robust which leads to certain demands
with respect to the quality of finite element meshes and of nonlinear solvers,
see e.g. Chap. 5.

The concept of mesh refinement due to a posteriori estimates will be first
discussed by means of “linear” elasticity problems which can be formulated
with respect to the tangent space of finite elasticity. With this, the method-
ology error estimation can be also applied to nonlinear problems.

The following methods for estimation and indication of errors can be
distinguished in solid mechanics:

– residual error estimators, see e.g. Babuska and Rheinboldt (1978) and
Johnson and Hansbo (1992),

– error indicators based on projection methods, see e.g. Zienkiewicz and Zhu
(1987), or on the superconvergent patch recovery method, see Zienkiewicz
and Zhu (1992),

– error estimation based on equilibrated stresses at element patches, see
Ladeveze and Leguillon (1983), Ainsworth and Oden (1992) or Stein and
Ohnimus (1996), as well as

– error estimation using dual methods, see e.g. Becker and Rannacher (1996),
Rannacher and Suttmeier (1997a) and Ramm and Cirak (1997).

The application of some of these methods will be shown in the context of finite
elasticity. Form that, the incremental or linearized boundary value problem
of finite elasticity is formulated first.
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8.2.1 Boundary Value Problem for Finite Elasticity

The equations which lead to the formulation of boundary value problems
in solid mechanics, needed as a basis for the finite element method, were
discussed in Chaps. 3 and 4. Especially in detail for the finite element method,
the weak form of equilibrium is needed, see (3.292). Here it is formulated using
the Kirchhoff stresses in the current configuration, see (3.296),∫

Ω

τ · ∇S
x η dV =

∫
Ω

f̄ · η dV +
∫
Γ

t̄ · η dA . (8.15)

The integration is carried out with respect to the initial configuration Ω. The
Kirchhoff stress tensor τ = PFT and the symmetrical gradient operator
∇S

x (•) = 1
2 [∇x(•) + ∇T

x (•)] are computed in the current configuration, see
(4.98). Short hand notation for Eq. (8.15) is provided by

R (ϕ ,η) = g (ϕ ,η) − λ f (η) = 0 . (8.16)

ϕ denotes the deformation and η denotes the associated variation. The load
parameter λ is introduced to be able to scale the magnitude of the applied
load. The quantities g and f in (8.16) are defined as

g (ϕ ,η) =
∫
Ω

τ · ∇S
x η dV ,

f (η) =
∫
Ω

f̄ · η dV +
∫
Γσ

t̄ · η dA . (8.17)

Deformation dependent loads, as discussed in Exercise 3.12, are not
considered.

8.2.2 The Linearized Boundary Value Problem

The linearization of the weak from (8.16) is derived with respect to the known
deformation state ϕ̄

R (ϕ̄ +Δu ,η) = R (ϕ̄ ,η) +Dg (ϕ̄ ,η) ·Δu + · · · = 0 (8.18)

with g (ϕ̄ ,η) from (8.17). The explicit form of the linearizationDg (ϕ̄ ,η)·Δu
is computed via the directional derivative g (ϕ̄ ,η), see Sect. 3.5. With (8.17)

Dg (ϕ̄ ,η) ·Δu =
∫
Ω

(
∇S

x̄ η ·Cx̄ [∇S
x̄ Δu ] + grad η · gradΔu τ̄

)
dV (8.19)

can be written, see also (3.345). All derivatives in (8.19) have to be evaluated
with respect to the known deformation state ϕ̄; this is denoted in (8.19) by
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x̄. The linearization of the stresses leads to the incremental material tensor
Cx̄, see Sect. 3.3.4.

The evaluation of the incremental weak form (8.18) with respect to the
undeformed initial configuration ϕ̄ = X yields the weak form of the linear
theory. This can be written as a bi-linear form, see also (8.2),

a(Δu ,η) = f(η) (8.20)

with the definition

a(Δu ,η) = Dg (X ,η) ·Δu =
∫
Ω

[∇S
X η ·CX ∇S

X Δu ] dV . (8.21)

The constitutive tensor CX is equivalent to the classical Hooke material
tensor when evaluated at the initial configuration, see (3.273). Furthermore,
the gradient ∇S

X Δu coincides with the strain tensor ε(u) = 1
2 [gradu +

gradT u ] of the linear theory of elasticity, where the displacement increment
Δu in tangent space is equal to the displacement vector u of the linear theory.

8.2.3 Discretization

A discretization of the weak form (8.16) is necessary when the boundary value
problem of finite elasticity has to be solved by the finite element method. For
this, the region B is subdivided into T non-overlapping finite elements with
radius hT , see Chap. 4. This yields an ansatz space for the finite elements of
the form

Vh = {η ∈ V | η ∈ C(Ω), η|T ∈ [P (T )]ndim, ∀T}, (8.22)

where the polynomials P (T ) of order pT are defined on T . ndim is the spatial
dimension of the problem. Using this ansatz in (8.16) yields the discrete
version

R (ϕh ,η) = g (ϕh ,η) − λ f (η) = 0 ∀η ∈ Vh , (8.23)

which represents a nonlinear equation with respect to the deformation state.
The solution ϕh ∈ Vh for this equation has to fulfil R(ϕh,η) = 0. With the
matrix notation introduced in Sect. 4.2, Eq. (8.17) has the form

g(ϕh ,η) =
ne⋃

e=1

ηT
e

∫
Ωe

BT τh dV = ηT G(v),

f(η) =
ne⋃

e=1

ηT
e

∫
Ωe

NT f̄ dV +
nσ⋃
e=1

ηT
e

∫
Γσe

NT t̄ dA = ηT P .

N contains the ansatz functions and B contains the associated gradients,
which are here related to the current configuration, see also (4.100). For an
arbitrary test function η ∈ Vh follows, instead of (8.23), equation
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R(v) = G(v) − λP = 0 , (8.24)

with the load parameter λ, see also (5.1). Equation (8.24) defines a nonlinear
algebraic equation system which has to be solved for every load level λn+1 =
λn +Δλ. In most cases, Newton method is employed for this task, see Box
5.1 in Sect. 5.1.1. This yields an algorithm at each load level λn+1 in which,
for k = 0, 1, . . . until convergence, the following set of equations has to be
solved:

DG(vk
n+1)Δvk

n+1 = −R(vk
n+1) ,

vk+1
n+1 = vk

n+1 +Δvk
n+1 . (8.25)

The linearization needed in the first equation is given by

DG(vk
n+1) =

ne⋃
e=1

∫
Ωe

(BT Cx̄ B + HT τ̄ H ) dV (8.26)

with the incremental material tensor Cx̄ and the discretization of the gradient
H, see also (4.76). All terms in the integral in (8.26) are related to the already
computed displacement states vk

n+1.

8.3 Error Estimators and Error Indicators

The application of the Gauss theorem to the incremental boundary value
problem (8.19) yields an incremental operator

Lx̄(u) = divx̄

(
Cx̄ [∇S

x̄ u ] + τ̄ ∇S
x̄ u

)
, (8.27)

which belongs to the deformation state ϕ̄. Using this operator, equation (8.19)
can be formulated as

Lx̄(u) = Δλ f . (8.28)

The vector f denotes the volumetric loads. The term u represents the exact
solution. In the linear case, the operator

LX(u) = div
(
CX

[
∇S

X u
] )

(8.29)

is obtained by inserting the linear elastic constitutive equation (3.273) in the
local form of the momentum balance equation (3.65). This yields the linear
boundary value problem

LX(u) = f . (8.30)

It is assumed that u is the exact solution of (8.28) or (8.30). uh denotes
the discrete finite element solution. The difference

eu = u − uh (8.31)
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defines then the error in the displacements. Analogously, an error can be
formulated

eτ = τ − τh, (8.32)

which is related to the stresses. The task in the next sections is to quantify
these errors.

8.3.1 Error Estimation for Nonlinear Problems

The error estimators, known for linear problems, have to be augmented ap-
propriately to estimate errors which occur within the numerical simulation
of nonlinear problems. To achieve this, the method of Rheinboldt (1985) is
employed who computes the error estimators and indicators for the linearized
problem at an equilibrium point, here denoted by ϕ̄. The idea of the associ-
ated mathematical formulation is sketched in the following.

Let G be a nonlinear operator, see e.g. (8.16), which maps ϕ ∈ V from
the deformation space V onto the force space V ∗

G(ϕ) = λP . (8.33)

λ is the scalar load parameter, see (8.24), and P ∈ V ∗ represents the applied
load. In general, the vector valued function G is obtained from (8.16) by
variation. By excluding that the equilibrium point under consideration is
a singular point (limit- or bifurcation point), the inverse of the directional
derivative of G exists and is for all ϕ bounded by ‖ϕ− ϕ̄‖ ≤ δ2. With these
assumptions, the two inequalities hold

‖DG−1(ϕ)‖ ≤ C1 and ‖D2 G(ϕ)‖ ≤ C2 . (8.34)

Rheinboldt (1985) derives, by using a series expansion of function G(ϕ)
at the approximate solution ϕh, see Fig. 8.3, with the estimates (8.34), the
result

ϕ

λ

λ̄

uϕh ϕ̄

Gh(ϕh, λ) = 0 G(ϕ, λ) = 0

Fig. 8.3 Error estimation for a nonlinear problem



284 8. Adaptive Methods

‖G(ϕ̄) − G(ϕh) −DG(ϕh) (ϕh − ϕ̄)‖ ≤ 1
2
C2 δ

2
2 , (8.35)

where (ϕ̄ , λ̄) is the exact equilibrium point which describes the deformation
state at which the linearization is computed. After some manipulations, the
result

‖ϕ̄ − ϕh +DG−1(ϕh) (G(ϕh) − λ̄P)‖ ≤ 1
2
C1 C2 δ

2
2 (8.36)

follows with (8.34)1. The introduction of

w = ϕh −DG−1(ϕh) (G(ϕh) − λ̄P ) (8.37)

yields the linear problem

DG(ϕh) (w − ϕh) = −G(ϕh) + λ̄P (8.38)

whose solution is w. From (8.36), the inequality

‖w − ϕ̄‖ ≤ 1
2
C1 C2 δ

2
2 (8.39)

can be deduced which can be rewritten as

‖ϕ̄ − ϕh‖(1 + c) = ‖ϕ̄ − uh‖ (8.40)

with |c| ≤ 1
2 C1 C2 δ

2
2 . Using (8.40), the discretization error ‖ϕ̄ − ϕh‖ of the

nonlinear problem is expressed by the difference between ϕh and the solution
of the linearized problem u, in the case that c is sufficiently small, see also
Fig. 8.3. Thus all error estimators and indicators, developed for the linear
theory, can be applied for nonlinear problems provided the assumptions con-
tained in (8.34) hold. Here it is necessary that the incremental problem is used
which has to be formulated at the computed equilibrium point. The residuals
or stresses needed within the error estimation follow from the solution of the
linearized problem (8.18) at (ϕ̄h, λ̄)

Dg(ϕ̄h, λ̄) · uε
h = −R(ϕ̄h, λ̄+ ελ) . (8.41)

Dg(ϕ̄h, λ̄) denotes the linearization which was defined in (8.19). ε is a param-
eter, for which ε� 1 holds. Hence λ̄+ ελ describes a perturbed loading state
in the neighbourhood of (ϕh, λ̄). The residuals and stresses, needed for the
error estimation, are computed from the deformation state uε

h belonging to
the perturbed loading state. Instead of (8.18), the solution of the discretized
problem (8.25) is used in case of the finite element method. This leads to

DG(v̄, λ̄)Δvε
n+1 = −R(v̄, λ̄+ ελ) . (8.42)
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8.3.2 Residual Based Error Estimator

The error in the displacement field eu = u−uh belonging to the incremental
problem (8.42) can be expressed in a bi-linear form for the error equivalent
to the energy norm

γi(eu) = ai(eu, eu) =
∫

ΩPi

∇S
x (u − uh) ·Cx [∇S

x (u − uh)] dΩ, (8.43)

where ∇S
x is the symmetric part of the gradient operator. ΩPi

denotes a patch
which consists of a certain number of finite elements Ωe. With Babuska and
Rheinboldt (1978), the inequality

C1

M∑
i=1

‖γi(eu)‖2
E ≤ ‖eu‖2

H1 ≤ C2

M∑
i=1

‖γi(eu)‖2
E (8.44)

holds for the error, when the sum over all patches is computed. For the
boundary value problems defined in (8.27) and (8.29), the following com-
putable estimation is valid

‖γi(eu)‖2
E ≤ h2

i

∫
ΩPi

[L (uh) + f ]T [L (uh) + f ] dΩ + hi

∫
∂ΩPi

J(τ̄h)T J(τ̄h) ds,

(8.45)
where J denotes the jumps of the stresses of the approximate solution at the
patch boundaries. In the case of linear ansatz functions, the integrals over
the region disappear. However, they can often also be neglected within the
error estimation when interpolations of higher order are applied.

The methodology used so far is applied in Johnson and Hansbo (1992)
differently where the error terms are determined directly from the element
and not from the patch contributions. These authors write for linear elastic
problems a residual-based error estimator in terms of stresses which consist
of different parts related to volume and boundary terms. In more detail, the
estimation is given by

‖ τ̄ − τ̄h ‖2
E−1 ≤ ‖hC1R1(τ̄h) ‖2

L2(Ω) + ‖hC2R2(τ̄h) ‖2
L2(∂Ω) (8.46)

with the following terms defined on a finite element

R1(τ̄h) = |R1(τ̄h) | = |div τ̄h + f | inT,

R2(τ̄h) = max
S∈∂T

sup
S

1
2hT

| [ τ̄h nS ] | on ∂T,

or R2(τ̄h) =
1
hT

( t̄ − τ̄h n ) on ∂T ∩ Γσ . (8.47)

Ω is the discretized region and ∂Ω its boundary. Furthermore, hT is a char-
acteristic element size, see Fig. 8.2. T denotes the finite element volume or
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area and ∂T its surface or boundary. The jump of the stress vector at two
adjacent boundaries is described by the operator [t] = t+−t−. The L2 norm
was already defined in (8.8); the norm ‖ ·‖E−1 in (8.46) is the complimentary
energy norm (here written in stress space)

‖ τ̄ − τ̄h ‖2
E−1 =

∫
Ω

( τ̄ − τ̄h ) ·C−1
x̄ [ τ̄ − τ̄h ] dΩ (8.48)

with the inverse incremental elasticity tensor C−1
x̄ .

Equation (8.47) has to be evaluated on element basis within the compu-
tation. This leads to

‖ τ̄ − τ̄h ‖2
E−1 ≤ C

∑
T

[ET (hT ,uh, fT )]2 . (8.49)

The error related to an element ET is computed for every element as

E2
T = h2

T

∫
T

|divτ̄h + f |2dΩ + hT

∫
∂T∩Ω

1
2
| [th] |2dΓ +

hT

∫
∂T∩Γσ

| t̄ − th |2 dΓ . (8.50)

The inequality (8.49) yields an upper bound for the error. It depends upon the
element size and the deviation from the discrete solution. The first and third
term on the right hand side describe the error in the local equilibrium and in
the stress vectors at the boundary. Local equilibrium means that [th] = 0,
see the second term. The jump in the stress vectors at the element boundaries
is denoted by [th].

A problem related to error estimators which are based on the evaluation of
residuals is the determination of the constants Ci. If these constants cannot
be estimated accurately then the bounds are not tight enough to control
the finite element mesh refinement within an adaptive process. However, the
distribution of the error within the finite element mesh can be estimated.
When the value for, e.g. the constant C1 for the volume error is too large
compared to the other values Ci, then eventually the errors belonging to
these other constants will be neglected while important for the computation
of the total error. Often the constants are selected to have the value “1”.
Furthermore, estimates of the constants can be found in, e.g. Johnson and
Hansbo (1992). These estimates are not always precise enough for general
problems with arbitrary geometry. However, it is possible to estimate the
constants from previous finite element computations within an adaptive mesh
refinement procedure as described in Box 8.1 in Sect. 8.1.

8.3.3 Error Indicator Based on the Z2 Method

Another possibility to determine errors of finite element computations starts
directly from the complementary elastic energy (8.48). A simple, but in many
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case, efficient error indicator can be computed based on a projection method,
see Zienkiewicz and Zhu (1987), or based on the so-called superconvergent
patch recovery techniques described in Zienkiewicz and Zhu (1992). New
investigations have shown that this way of computing finite element errors
has a high effectiveness. This means that the error indicated by this methods
is very close to the real error, see e.g. Babuska et al. (1994) and Carstensen
and Funken (2001). Additionally, it was proven in Carstensen and Bartels
(2002) and Bartels and Carstensen (2002) that averaging techniques yield
reliable a posteriori error control even for unstructured grids.

Within a single finite element of the discretization there exist points at
which the stresses have higher order of accuracy. This property is called
super convergence, see e.g. Zienkiewicz and Taylor (1989). This fact can be
illustrated by means of a simple example. Consider a truss element with
linear interpolation. Such ansatz leads to a constant strain, and hence stress
in the element which of course is not correct for general loading conditions.
Interestingly enough, the stresses at the midpoint of the truss element are
very close to the exact solution (and for some special cases actually identical
with the exact solution), whereas all other points deviated more or less from
the analytical solution. This means that these midpoints can be considered as
super convergent points. The same observation holds for quads with bi-linear
or triangular elements with linear interpolation. Here also the mid-point has
this special feature of super convergence.

The stress values at these superconvergent points can now be used to
construct an enhanced stress field which is continuous, see Zienkiewicz and
Zhu (1992). This stress field is denoted by τ̄ ∗. Numerical verification of this
method is provided in Babuska et al. (1994).

To formulate the described procedure in an abstract way, a projection
operator P is introduced whose application yields the enhanced stress field τ̄ ∗∫

Ω

P [ τ̄ ∗ − τ̄h ] dΩ = 0 . (8.51)

An efficient technique to compute this projection is based on a least squares
minimum functional, see Zienkiewicz and Taylor (1989). Within this method,
the enhanced continuous stresses τ̄ ∗ are computed from the stresses at the
superconvergent points τ̄h via the least squares integral which minimizes the
error ∫

Ω

[ τ̄ ∗ − τ̄h ]2 dΩ →MIN . (8.52)

Within this functional, an ansatz for the continuous stresses is made

τ̄ ∗ =
n∑

I=1

NI τ̂ I , (8.53)

which then leads to an equation system for the computation of the nodal
stresses τ̂ I . The minimum of (8.52) is obtained for
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Mp τ̂ = tp (8.54)

with the matrices and vectors being defined as

Mp =
ne⋃

e=1

n∑
I=1

n∑
K=1

∫
Ωe

NI NK I dΩ,

tp =
ne⋃

e=1

n∑
I=1

∫
Ωe

NI τ̂h dΩ . (8.55)

The matrix Mp is, besides the missing density ρ0, equivalent to the mass
matrix defined in (4.58). The most efficient solution of this Eq. (8.54) is ob-
tained by using a lumped matrix instead of the structure of Mp obtained by
using the interpolation (8.53) since a lumped matrix leads to a diagonal form
of Mp, see also Remark 4.2. However, this yields a different and thus only
approximate result for the nodal stresses tp.

There exist many different possibilities to compute the enhanced contin-
uous stress field. One method which is based on the introduction of patches
can be found in, e.g. Zienkiewicz and Zhu (1992).

The straightforward application of these methods does not yield the best
results at boundaries or at interfaces at which material properties change.
Enhanced methods which take boundaries into account were proposed, e.g.
by Wiberg et al. (1994).

Based on the projected enhanced stress field (8.53) computed in (8.54),
it is possible to indicate the finite element error with (8.48) by

‖ τ̄ − τ̄h ‖2
E−1 ≤

∫
Ω

( τ̄ ∗ − τ̄h ) ·C−1[ τ̄ ∗ − τ̄h ] dΩ . (8.56)

The total error in (8.56) is now computed from the sum of the errors related
to the elements T :

‖ τ̄ − τ̄h ‖2
E−1 = ‖ eτ ‖2

E−1 ≤
∑
T

‖ eτ ‖2
T (8.57)

with
‖ eτ ‖2

T =
∫
T

( τ̄ ∗ − τ̄h ) ·C−1[ τ̄ ∗ − τ̄h ] dΩ . (8.58)

It is obvious that a great advantage of this method lies in the fact that no
constants have to be computed.

8.3.4 Error Estimators Based on Dual Methods

Strategies for the indication and estimation of errors within finite element so-
lutions, so far, are based on global quantities like the L2-norm of stresses or
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the energy norm. These lead to errors for the stress fields as discussed in the
last two sections. In practical applications, however, the engineer wants even-
tually not to control global quantities but local quantities or other quantities
of interest like a specific displacement or stress or more global but specific
quantities like the J-integral in fracture mechanics or a drag coefficient in
fluid mechanics. Based on this demand, methods which employ local error
functionals were developed. Related mathematical analysis can be found in
Becker and Rannacher (1996) and Rannacher and Suttmeier (1997b). Engi-
neering applications with respect to shell problems were considered in Ramm
and Cirak (1997) and for problems including contact in Wriggers et al. (2000),
for an overview see also Ramm et al. (2003).

The error estimation is computed from another evaluation of the equation
system related to the finite element problem and by application of known
error estimators and indicators. In total, the combination of discretization
error for the given problem and a related dual problem yields the desired local
error quantity. The formal approach is discussed in the following sections.

Error Control of the Displacements. Starting point for the derivation
of the local error estimation is, as for the computation of the residual error
estimator, the differential equation (8.29) for the discretization error eu =
u − uh

Lx̄(u − uh) = L(eu) = f − Lx̄(uh) = R1 . (8.59)

Lx̄ denotes the differential operator of the incremental or linear problem. R1

is the residuum associated with the internal energy of the element. With the
test function η, the weak form of equilibrium is given by the bi-linear form

a(eu,η) =
∑
T

⎡
⎣ ∫

T

( div τ̄h + f ) · η dΩ

+
∫

∂T∩Γσ

(t̂ − τ̄hn) · η dΓ +
∫

∂T∩Ω

1
2
[th] · η dΓ

⎤
⎦ . (8.60)

The first integral represents the virtual work, which stresses and body forces
perform along the virtual displacement. The second integral contains the vir-
tual work of the jump related to the stress vectors τ̄hn along the boundaries
at which stress vectors t̂ are inscribed. The third integral is associated with
the virtual work of the stress vector jumps between adjacent finite elements
within the mesh. The factor 1/2 results from the fact that two finite elements
have always only one common edge (2d) or surface (3d) within the mesh.

To simplify notation, all element related quantities are summarized in R1

while R2 contains all jump terms

a(eu,η) =
∑
T

{(R1,η)T + (R2,η)ΓT
} . (8.61)
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An additional dual problem is formulated to estimate the error of a certain
displacement (e.g. the displacement component i at point x = x̂)

div τ (G) + δi(x̂) = 0 . (8.62)

Its weak form is given by

a(G,η) = (δi,η) . (8.63)

δi is the Dirac delta vector in this dual problem pointing at x̂ in direction
i. This is equivalent to applying a point load. G denotes the Green function
associated to a point load at x̂ in direction i.

From the linear theory of elasticity, the theorem of Betti-Maxwell is
known. Its application to the bi-linear form of the error (8.61) and to the
dual problem (8.63) yields the relation

(eu, δi) =
∑
T

{(R1,G)T + (R2,G)ΓT
} . (8.64)

The term on the left hand side denotes the work of a point load along the
error eu. Thus it is equal to the local error ei(x̂) of the ith component of
the displacement at point x̂. By inserting G in Eq. (8.61) instead of the test
function η, the local error is expressed by the bi-linear form

ei(x̂) = a(eu,G) . (8.65)

The solution of the dual problem is not known. However, it can be de-
termined numerically. For this, the same discretization and tangent matrix
is used, however, with a different right hand side which is given by a point
load in the direction of the ith displacement component. Hence only a further
load case has to be computed using the same tangent matrix.

Considering further Galerkin orthogonality (the error is orthogonal to
the ansatz space: a(eu ,Gh) = 0, see e.g. (8.4) or Johnson 1987), the local
error can be written, by introducing the finite element approximation of the
dual problem Gh, as

ei(x̂) = a(eu ,G − Gh) . (8.66)

Application of Cauchy-Schwarz inequality (| (u ,v) | ≤ ‖u‖ ‖v‖ with
(u ,v) =

∫
Ω

u ·v dΩ and ‖u‖2 =
∫

Ω
u ·u dΩ) yields an estimation for the lo-

cal error. It follows from weighting of the error energy of the primal problem
a(eu , eu) (8.61) and the error energy of the dual problem a(G − Gh,G − Gh)
(8.63)

e2i (x̂) ≤ a(eu , eu) a(G − Gh,G − Gh) . (8.67)

The second term acts like a weighting function which filters the influence of
the total error distribution related to the local displacement error. Inequality
(8.67) can be computed element wise
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e2i (x̂) ≤
∑
T

a(eu , eu)T a(G − Gh,G − Gh)T . (8.68)

The single terms can now be estimated using the methods of the last section.
By employing the error indicator derived by Zienkiewicz and Zhu (1987), the
terms in (8.68) can be approximately computed from

a(e, e)T =
∫

ΩT

( τ ∗(uh) − τ (uh) ) ·C−1[ τ ∗(uh) − τ (uh) ] dΩ (8.69)

and

a(G − Gh,G − Gh)T =
∫

ΩT

( τ ∗(Gh) − τ (Gh) ) ·C−1[ τ ∗(Gh) − τ (Gh) ] dΩ.

(8.70)
The stresses, necessary to evaluate (8.69) and (8.70), are computed from the
associated linearized equation system (8.42) with the same argument as in
the previous sections. This is mathematically not completely consistent but
leads usually to good estimations. For a mathematically correct approach, see
Rannacher and Suttmeier (1997b)). The stresses τ̄ (ϕh) and the associated
enhanced stresses τ̄ ∗(ϕh) follow from the perturbed loading state λ̄ + ελ,
which yields a solution close to the equilibrium point (ϕ̄h, λ̄) and thus a solu-
tion of the linearized problem. The values τ (Gh) and τ ∗(Gh) are determined
in the same way. These follow from an increase of the displacement due to
an additional point load δi.

Analogous to Eq. (8.12), the absolute error in (8.68) can be replaced by
the relative error measure

η =

√
e2(x̂)

e2(x̂) + u2
h(x̂)

. (8.71)

Computation of the Stress Error. Local error of the stresses at a given
point x̂ can be estimated using the same approach as for the displacement at
x̂. In this case, however, a discontinuity has to be prescribed for the related
displacements of the dual problem. This leads to

div τ (z) +
∂

∂xj
δi(x̂) = 0 . (8.72)

Again the application of the Betti-Maxwell theorem and the Galerkin

orthogonality together with the Cauchy-Schwarz inequality yields the er-
ror in the displacement gradient or in the associated stress value

(eu,
∂

∂xj
δi) =

∂ei(x̂)
∂xj

=
∑
T

{(R1, z)ΩT
+ (R2, z)ΓT

} = a(eu , z − zh) .

(8.73)
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The discontinuity of a displacement cannot be applied directly within a two-
or three-dimensional problem. Here a regularization is necessary. The simplest
approach is to replace the jump in the displacement component by a group
of point loads being in equilibrium. This means in practice that two point
loads of equal magnitude are attached to two neighbouring nodes in the finite
element mesh which act in opposite direction. This pair of forces has to be
near the point x̂ of displacement discontinuity.

8.4 Error Estimation for Plasticity

In the case of inelastic problems, additionally, an error in time has to be con-
sidered besides the discretization error in space. The error in time depends
upon the selected integration algorithm, see Sect. 6.2. Error estimation in
time is not well developed for inelastic constitutive equations; however some
recent results can be found in, e.g. Rannacher and Suttmeier (1997b), Lade-
veze (1998), Rannacher and Suttmeier (1999) and Ladeveze and Pelle (2005).

Here only the spatial discretization error is considered within a time step
Δt = [ tn , tn+1 ]. The applied methodology was proposed in Wriggers and
Scherf (1995). Further error estimations for elasto-plastic problems are dis-
cussed in Bass and Oden (1987), Johnson and Hansbo (1992), Peric and Owen
(1994), Fourment and Chenot (1995), Rannacher and Suttmeier (1998) and
Perić et al. (1999).

To simplify the formulation and derivation of an error indicator for an
elasto-plastic material, linear hardening is considered, see Sect. 6.2.2. There
however is no limitation for the application of this error indicator to more
complex elasto-plastic constitutive equations also.

In case of J2
von Mises plasticity with linear isotropic hardening, the

plastic strains εp
n and the hardening variable α̂n are known at time tn. The

radial return or projection method described in 6.2.2 for the integration of
the elasto-plastic material equations starts from the trial state of the deviator
stresses and the hardening variable

str
n+1 = 2μ ( en+1 − ep

n ) ,
α̂tr

n+1 = α̂n .

The projection onto the yield surface produces with (6.100)3 and (6.101) the
stresses and hardening variable at time tn+1

sn+1 = str
n+1 − 2μΔγn+1 nn+1 ,

α̂n+1 = α̂tr
n+1 +

√
2
3 Δγn+1 .

The consistency parameterΔγn+1 can be stated for linear isotropic hardening
explicitly, see also (6.110),
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Δγn+1 =
f tr

n+1

2μ+ 2
3 Ĥ

, (8.74)

where f tr
n+1 is the yield condition evaluated using the trial quantities

f tr
n+1 = ‖ str

n+1 ‖ −
√

2
3

(Y0 + Ĥ αtr
n+1 ) . (8.75)

These relations can be solved for the total strains εn+1 at time tn+1 by
considering the elastic constitutive equations for isotropic material

εn+1 − ep
n =

1
2μ

sn+1 +
1

9K
tr τ̄n+11 +

3
2Ĥ

[sn+1 −Π(sn+1)] . (8.76)

K is the modulus of compression and μ the shear modulus of the elastic
constitutive equation. Here

Π(sn+1) =

⎧⎨
⎩

sn+1 : for an elastic step
‖ sn ‖

‖ sn+1 ‖
sn+1 : for a plastic step

is a projection which describes the increase of the plastic strains in (8.76).
With these relations, the error in the strain field can be determined within a
time step Δt

(ε − ep
n) − (εh − ep

h n) =
1
2μ

(s − sh) +
1

9K
tr (τ̄ − τ̄h)1

+
3

2Ĥ
[ s −Π(s) − (sh −Π(sh)) ] .

(8.77)

The multiplication by (τ̄ − τ̄h) and the integration over the region Ω yields
by using the monotony relation [Π(q) −Π(p) ] · (q − p) ≥ 0 (which relates
to the dissipation inequality (3.188))

‖ τ̄ − τ̄h ‖2
E−1 ≤

∫
Ω

[ (ε − εh) − (ep
n − ep

h n) ] · (τ̄ − τ̄h) dΩ . (8.78)

This relation can be employed to estimate the error within a time step. By
splitting the strains in (8.78) into an elastic and incremental plastic part,

εn+1 = εe
n+1 + εp

n+1 =⇒ εn+1 − ep
n = εe

n+1 +Δ ep
n+1 (8.79)

can be deduced. The error is then

‖ τ̄ − τ̄h ‖2
E−1 ≤

∫
Ω

(Δ ep −Δ ep
h ) · (τ̄ − τ̄h) dΩ

+
∫
Ω

( εe − εe
h ) · (τ̄ − τ̄h) ] dΩ .

(8.80)
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Improved strains and stresses can be computed based on the methods de-
veloped in Sect. 8.3.3. By inserting these values in (8.80), the error can be
determined for every finite element

(Eep
T )2 = (‖ eτ ‖ep

T )2 ≈
∫
T

(Δ e∗ p −Δ ep
h ) · (τ̄ ∗ − τ̄h) dΩ

+
∫
T

( ε∗ e − εe
h ) · (τ̄ ∗ − τ̄h) dΩ.

(8.81)

Hence this method is an augmentation of the methods described in Sect. 8.3.3
to elasto-plastic problems. It can easily be implemented and yields good
results in practical applications, see the example in Sect. 8.7.2 or in Han
(1999).

8.5 Mesh Refinement

The adaptive refinement of a mesh defines mathematically an optimization
problem since the goal is to find a mesh which yields the best finite element
approximation. Mathematically the problem can be stated as: construct a
finite element mesh such that the solution of the inequality

‖ τ − τh ‖E−1 ≤
∑
T

[ET (hT ,uh, f̄T )]2 ≤ TOL (8.82)

is fulfilled. Here TOL is a given tolerance. The given constraint is that the
costs to compute uh or τh which fulfil (8.82) are minimal. The element error
ET in (8.82) can be computed either from

E2
T1 = E2

T , see Eq. (8.50), or from

E2
T2 = ‖ eτ ‖2

T , see Eq. (8.58), or from

E2
T3 = e2i , see Eq. (8.68), or from

E2
T4 = (Eep

T )2 , see Eq. (8.81) . (8.83)

One measure for the numerical effort needed to solve a finite element
problem is the maximum number of unknown, since it is related directly to
the computing time. Of course other measures would be possible too, but
here the first criterion will be employed.

Since the exact solution of the partial differential equation is not known,
it is additionally required that the error should be equally distributed over
the mesh and hence be equal in all the elements.

With (8.82), the inequality
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EK

EJ

EI

ΩK

ΩI ΩJ

Ωh

Fig. 8.4 Equally distributed error with a finite element mesh

∑
T

E2
T ≤ TOL , (8.84)

has to be fulfilled. This inequality provides also a criterion for the termination
of the adaptive algorithm.

With the requirement that the error is equal within all finite elements of
a mesh and fulfils (8.84), an optimal mesh is created. For the finite elements
I, J and K, the relation

EI = EJ = EK (8.85)

is valid, see Fig. 8.4. The total error can be written under this assumption
as ∑

T

E2
T = neE

2
T . (8.86)

Here ne is the number of finite elements in the mesh. Equation (8.84) leads
together with the last equation to a criterion which indicates when a finite
element has to be refined

E2
T ≤ TOL

ne
. (8.87)

Another possibility to determine which elements have to be refined can
be found in Zienkiewicz and Taylor (1989). The authors start from a relative
error δ, see (8.14), with the goal that it has to be less than a given tolerance
δ̄. As in (8.87), the error will be distributed equally over the mesh. With the
notation ‖ e ‖e for the error within a single finite element condition,

‖ e ‖e ≤ δ̄

√
‖ eτ ‖2 + ‖ τh ‖2

ne
= ēne

(8.88)

is obtained. ēne
denotes the maximum error related to a finite element Ωe.

The error in inequality (8.88) is computed from the stresses. However, this
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inequality can also be formulated with respect to displacements and strains.
By defining the dimensionless factor

βe =
‖ eτ ‖e

ēne

, (8.89)

the refinement criterion can be written as

βe

{
> 1 refinement,
≤ 1 no refinement or mesh coarsening. (8.90)

Different strategies can be employed to refine or coarsen a finite element mesh.
One possibility is to subdivide an element into two, once the error measure βe

indicates refinement. This leads to a so-called hierarchical refinement. This
procedure, however, can lead to a large number of refinement steps in order
to obtain a solution which fulfils the tolerance δ̄. A positive feature of this
method is related to the fact that the hierarchical structure can be directly
used within a pre-conditioning method for an iterative equation solver, see
also Sect. 5.2.2.

A method which often leads to faster convergence with less adaptive
remeshing is based on the introduction of a density function. This function
is used to construct a new FE-mesh Ωh

n+1. The general idea is to start from
Eq. (8.10) which states that the error within a finite element is proportional
to O(hk+1−s). This proportionality can be used to specify the new element
size of the adapted mesh as

he n+1 = β
− 1

k+1−s
e he n . (8.91)

In this expression, value k denotes the complete polynomial order of the finite
element ansatz and s is the norm which measures the error. The error norm
for the stresses in, e.g. (8.88) is then related to s = 1.

Based on the above considerations, the general algorithm can be stated
for an h-adaptive method. Based on Eq. (8.87), the following steps have to
be performed.

Generate the starting mesh: Mi, set i = 0
1. Loop over all load steps: t = kΔt, k = 1, . . .
2. Iteration for the solution of the problem using (8.25)
3. Optimization of the mesh

– Compute E2
T

– IF
∑
E2

T < TOL =⇒ k = k + 1, GO TO 1
– IF E2

T > TOL/N =⇒ refine element T
– Set i = i+ 1
– Generate new mesh Mi

• Transfer the history data, if necessary
• Mesh smoothing, if necessary

– GO TO 2
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Within the algorithm an arbitrary method can be applied to generate
the new mesh. This is also valid for the transfer of the history data which
has to be performed when inelastic material behaviour has to be consid-
ered. The additional error which stems from this transfer will be discussed in
Sect. 8.6.2. Mesh smoothing is always used when the geometry of the finite
elements deteriorates within the refinement process, e.g. when the inner an-
gles of elements become too small which would lead to a degradation of the
convergence rates. Details of related implementations can be found in Scherf
(1997) and Han (1999). The algorithms can be applied in a similar way when
the relative error measure (8.89) is used.

8.6 Adaptive Mesh Generation

A large number of algorithms for automatic mesh generation was developed
within the last years. Hence different approaches exist for two- and three-
dimensional meshes consisting of triangles, quadrilaterals, tetrahedra or hex-
ahedra. Here some of the most popular methods are described.

Within adaptive procedures refined and coarsened meshes have to be con-
structed automatically; hence robust meshing tools are needed which yield
new meshes with good sized elements. Furthermore the case, that history
data have to be transferred from one mesh to the other, has to be considered.
The same holds for deformation states when finite deformation processes are
simulated by an adaptive scheme.

8.6.1 Mesh Generation

Adaptive finite element simulations require automatic schemes for the gen-
eration of new finite element meshes. The region under consideration is
discretized by triangles or quadrilateral in a two-dimensional problem. In
the three-dimensional case, the elements are either tetrahedra or hexahe-
dra. Additionally, a two-dimensional surface has to be discretized in three-
dimensional space when a shell problem is investigated. The form and distri-
bution of finite elements is ideally generated automatically by the algorithm.
These algorithms base on a geometry description which is mostly provided by
a CAD model, e.g. by Bezier, NURBS or other smooth functions. In order
to obtain a convergent solution for such a geometry model, the mesh refine-
ment algorithm has to use the geometry model defined by the CAD system,
for special issues related to this problem, see e.g. Yagawa et al. (1995) and
Ribó et al. (2002).

Basically, algorithms for the generation of structured and unstructured
mesh have to distinguished. Within adaptive finite element refinements, the
latter algorithms can be applied in a more flexible way, and hence these
algorithms will be discussed in more detail. Meshing algorithms for triangles
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and tetrahedra are different from the ones needed to generate quadrilateral or
hexahedral element meshes. Hence both type of algorithms will be discussed
separately.

Mesh algorithms for triangles and tetrahedrons are constructed by using
different methods. Among them are:

– The octree technique places a mesh of cells on a surface or in a volume of
a body. At the boundaries, the mesh has to be adapted. This is done by a
recursive subdivision of the cells until the boundary of the geometrical is
sufficiently approximated, see e.g. Shepard and Georges (1991).

– The Delaunay method relies on a good placement of coordinate points
within the area to be meshed. These control the density of the mesh. Several
algorithms are available to generate these points. The Delaunay method
is then applied to create a triangularization by triangles or tetrahedrons.
Algorithms for two-dimensional meshing can be found, e.g. in Sloan (1987a)
and Sloan (1993).

– The advancing front method starts the triangularization at the boundary of
the area to be meshed and introduces there a layer of finite elements which
defines the boundary for the next layer of elements. Here overlapping has
to be avoided when the gap between the fronts closes. Related algorithms
are described, e.g. in Löhner (1996).

– The algorithm of recursive region splitting places nodes on the boundary of
the region to be meshed by considering a certain density distribution. After
that, starting from the boundary, the area to be meshed is subdivided into
smaller areas recursively. This yields a region which is in the end subdivided
in triangles and quadrilaterals. To obtain a mesh consisting purely out of
triangles, the quadrilaterals are then simply divided into two triangles using
the shortest diagonal, see e.g. Bank (1990).

Meshing algorithms for quadrilaterals or hexahedrals base either on indirect
methods which start from a triangularization using triangles or tetrahedra or
methods which generate quadrilateral or hexahedral meshes directly.

– An indirect method is based on the fact that four quadrilaterals can be gen-
erated from two triangles. Furthermore, single triangles can be subdivided
into three quadrilaterals. The combination of both leads to the construc-
tion of a quadrilateral mesh, see e.g. Rank et al. (1993). In the same way,
one can proceed in three dimensions. However, so far these methods do not
lead to satisfactory results.

– Direct methods use, in the two-dimensional case, either the advancing front
technique, see e.g. Zhu et al. (1991), or rely on algorithms, which subdivide
the area into simpler regions which can easily be meshed by quadrilaterals,
see e.g. Joe (1995).

– Other algorithms, for the generation of three-dimensional hexahedral meshes,
use medial surfaces together with a so called plastering or directly adjust
meshes. An overview can be found in Owen (1999) for related techniques.
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Fig. 8.5 Mesh smoothing for quadrilaterals

Shell problems with arbitrary free form surfaces are located between two- and
three-dimensional mesh generation since a mesh has to be constructed on a
two-dimensional surface in three-dimensional space. Associated algorithms
are often based on a two-dimensional generation which then is mapped from
a plane surface to the free form surface in space. However, often this map-
ping is not valid globally and hence subregions have to be mapped and tied
together. Furthermore, the elements generated on a plane surface which are
then projected onto the free form surface can be distorted by the mapping.
Possible solutions are discussed in, e.g. Rehle (1996).

The algorithms described above are first applied to generate the starting
mesh within an adaptive calculation. During the adaptive mesh refinement
steps, the mesh is altered either by computing a density function which leads
to a complete remeshing of the problem or a subdivision of existing ele-
ments related to the error measures. A mesh smoothing procedure has to be
applied often in the last case in order to avoid elements which are highly
distorted, which then effects the quality of the solution, see also Sect. 8.6.
Mesh smoothing can be performed using different algorithms. A very simple
one minimizes the number of elements which are connected to a node, see e.g.
Fig. 8.5. Within this procedure, new nodes are inserted, see e.g. Han (1999).
This procedure is only applied to elements which are too distorted; it results
to slightly more elements. Based on the better aspect ratios of the elements,
the constant in the error measure (8.6) is reduced, and hence better results
are obtained. Another possibility to enhance meshes is related to an elimi-
nation of nodes, associated strategies can be found, in e.g. Zhu et al. (1991).
Algorithms which smooth meshes for shell discretizations were developed in
Riccius et al. (1997).

8.6.2 Transfer of History Variables

Evolution equations which occur in the modelling of inelastic problems in-
clude often history variables, see e.g. Sect. 3.3.2. These history variables have
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Fig. 8.6 Transfer of history variables
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to be transferred from one mesh to the next within an adaptive refinement
scheme. Different algorithms can be applied for the transfer of these vari-
ables, see e.g. Ortiz and Quigley (1991) and Peric et al. (1996). The following
algorithm is often applied. It is presented next and partly depicted in Fig. 8.6.

1. L2-projection of history variables α, which are related to Gauss-points,
onto the nodes within mesh i⇒ αi

K . This is performed by the methods
described in Sect. 8.3.3, see left part of Fig. 8.6.

2. Interpolation of the data within mesh Ωi
e by isoparametric shape func-

tions:

αi =
n∑

K=1

NK(ξi)αi
K .

3. Search for point ξi+1
L (Ωi+1

e ) in the previous mesh Ωi
e. For this, the closest

point and its associated elements have to be located in the previous
mesh. This procedure leads to a local nonlinear equation system since
the inverse of the nonlinear isoparametric mapping is needed.

4. Evaluation of the interpolation at the nodes ξi+1
L of the new mesh Ωi+1

e :

αi+1
L =

n∑
K=1

NK(ξi+1
L )αi

K .

5. The isoparametric mapping defines the history variables at the Gauss

points ξi+1
p of the new mesh:

αi+1
p =

n∑
L=1

NK(ξi+1
p )αi+1

L .
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After executing these steps, all history data are transferred to the new mesh.
Using these data, equilibrium has to be fulfilled before the next load incre-
ment can be applied since the global equilibrium is violated by the above
procedure. The associated error in the equilibrium is provided with (4.54) by

Gi+1 =
ne⋃

e=1

n∑
I=1

ηT
I

∫
(Ωe)

[BT
I Se(αi+1) −NI p ] dΩ 	= 0 . (8.92)

The aberration from equilibrium can be eliminated by an iteration before the
next load step is executed. This iteration can be computationally intensive,
see e.g. Han (1999). The underlying strategy is named strategy I through-
out the remaining part of this chapter. An alternative method includes the
residuum Gi+1 after the transfer of the history data directly within the next
load step. This however yields often a large deviation from the equilibrium
such that Newton method will often not converge in the next load step,
even when a line search is applied, see Sect. 5.1.4).

There exists no explicit error measure for the transfer error such that it is
not clear beforehand how big this error is. Exemplary simulations show how-
ever that the transfer error is not negligible, see e.g. Habraken and Cescotto
(1990). Since variables have to be transferred which represent the history
of the material at a Gauss point and hence are necessary for a successful
analysis, this error has to be controlled.

A simple way to control the error is to avoid the transfer of history variable
completely; however also this strategies has disadvantages. It will be named
strategy II throughout the remaining chapter. The idea is to compute, with a
given starting mesh, the complete nonlinear response of a system. Within the
individual load step, the discretization error is computed and its distribution
is used to determine the distribution of the element sizes for that load step,
based on the methods described before. At the end of the nonlinear compu-
tation, the information gained within all different load steps will be added
up and used to construct a new mesh. Technically, the density functions of
all load steps are overlaid in order to determine the location and size of the
refinement. After that, the computation will be repeated for all load steps
starting from the very first load step. This adaptive simulation is terminated
once the prescribed tolerance (δ ≤ δ̄) is fulfilled. Strategy II has following
advantages:

– No transfer of history variables is needed. Thus the associated error is
eliminated.

– Singular points are naturally included in this type of adaptive analysis.
This is not the case by the first strategy since a singular point can be
distinctly different for refined meshes.

– The code development is a lot easier since the necessary search processes
needed for the transfer of the history variables are omitted.
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– Complex element formulations as the enhanced strain elements need addi-
tional transfer of internal variables. This is not required when the nonlinear
computation is repeated using a new mesh.

Naturally strategy II also has disadvantages:

– Due to repeated computations of the nonlinear problem using different
meshes, a high computational effort is required.

– The mesh generated by this adaptive process does not lead to optimal
meshes for all load steps.

– Finite strain problems with large distortion of the elements cannot be han-
dled by this strategy. Here a remeshing of the deformed geometry is nec-
essary at certain load steps.

This discussion shows that the best strategy depends upon the particular
problem. As example forming processes have to be simulated using strategy I
with remeshing, see e.g. Ortiz and Quigley (1991) and Fourment and Chenot
(1995). However, strategy II proves to be successful for the elasto-plastic
analysis of shell structures, see Han (1999).

8.7 Examples

The different error estimators and indicators are compared in this section by
means of two examples depicting different nonlinearities. All simulations were
performed using an extended version of the finite element program FEAP,
see Zienkiewicz and Taylor (1989). The finite element meshes were generated
based on algorithms developed in Bank (1990) and Rank et al. (1993). The
mesh generation for triangular elements is carried out by using the algorithm
provided in Sloan (1987a) and Sloan (1993). Quadrilateral element meshes
were created by a complete remeshing based on density functions as discussed
in Rank et al. (1993).

8.7.1 Hertzian Contact Problem

The first example is a Hertz contact problem of a cylinder and a rigid sur-
face. The elastic cylinder has a Young modulus of E = 7000 and a Poisson

ratio of ν = 0.3. The rigid surface is modelled by an elastic material with
high stiffness (E = 100000 and ν = 0.45). The cylinder has a radius of
r = 1 and is loaded at its upper part by a distributed load with a result-
ing force of F = 100. Due to symmetry, only one half of the problem is
discretized.

For the Hertz contact problem, there exist analytical solutions. Hence
the computations of the adaptive methods can directly be compared with
the analytical solution. The analytical solution, however, contains approx-
imations regarding the geometry, see e.g. Szabó (1977), but these do not
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influence the results for small deformations. The maximum contact pressure
between the cylinder of radius r and a rigid plate is given for plane strain
conditions by

pmax =

√
F

π r

E

(1 + ν)(1 − ν) .

This value will be used to discuss the quality of the different error measures
applied within a finite element analysis.

The three different error measures are used in this example to control
the adaptive computation and to obtain a converged result. One measure
is the residual based error estimator of Johnson and Hansbo (1992) which
was enhanced for contact in Carstensen et al. (1999). The Z2 error indicator
presented in Zienkiewicz and Zhu (1987) is also applied, as well as the dual
error estimator, for local quantities derived by Rannacher and Suttmeier
(1997b).

All error estimators and indicators were described in this chapter. They
have to be adapted to contact problems, see Wriggers et al. (2000), which
however is not essential for the general behaviour of the different error mea-
sures and the discussion of the results. The maximum contact pressure was
selected at the contact interface as a goal quantity for the local error esti-
mation. Then, with respect to (8.73), a group of two forces, being in equi-
librium, was applied at the contact interface. These yield the appropriate
displacement jump needed for the computation of the error within the dual
method.

The starting mesh which only consist of 258 finite elements is depicted in
Fig. 8.7.

Fig. 8.7 Initial mesh: 258 el
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Fig. 8.8 Convergence behaviour
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Fig. 8.9 Mesh refinement: dual error estimator

Fig. 8.10 Mesh refinement: Z2 error indicator

Fig. 8.11 Mesh refinement: residual based error estimator

Figures 8.9–8.11 show meshes which were generated by the adaptive
method based on the different error measures. The last mesh, on the right
hand side, is related to the converged solution.
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The maximum value of the contact pressure is compared in Figure 8.8 with
the analytical solution pmax = 494, 83. It can be seen clearly that the dual
error estimator, whose target was to produce the best mesh for the contact
pressure, does only need half of the number of finite elements to converge.
The associated mesh depicts that the mesh is only refined within the area
of interest close to the contact surface, stemming from the superposition of
primal and dual solution.

Contrary to that, the residual method and the Z2 error indicator refine
the mesh where gradients in the stress field occur. Hence also the area beneath
the applied load is refined as well. Both methods control the error within the
entire mesh.

Hence the dual or local estimation is more efficient. This, however, this
is only true when only one quantity is of interest for the design engineer.
This could be a displacement, a stress as in this example, but also an inte-
gral measure like the J-integral or a total load. Within complex structures,
however, it is not always clear from the beginning where maximal values, like
e.g. stresses, occur. These values, however, are often essential for the design
of a structure. Thus an error measure - as provided by the residual method
or the Z2 indicator - has to be applied which includes all quantities and then
leads to refined meshes where the error is globally limited by the prescribed
tolerance δ̄.

B
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L = 300.
R = 300.

  
   

F

A

clamped

clamped

E1

E2

E3

Shell thickness t = 3.0
Young’s modulus E = 3000.
Poisson ratio ν = 0.3

Yield stress σY = 24.3
linear hardening H = 300.

Point load F = 3.0

Fig. 8.12 Cylinder under point load
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8.7.2 Elasto-Plastic Deformation of a Cylindrical Shell

The second example describes the application of adaptive techniques to in-
elastic deformations. A cylindrical shell will be subjected to a point load.
It consists of an elasto-plastic material and will undergo large deflections
and rotations. This example is selected to depict the difference between the
approaches for the transfer of history data as described in Sect. 8.6.2.

Geometry, boundary conditions and constitutive data can be found in
Fig. 8.12, see also Eberlein (1997) and Wriggers et al. (1996). The shell theory
applied in this example is discussed in Sect. 9.4.

The computation is performed using a displacement driven approach.
Hence a displacement is prescribed at point A which relates to the loca-
tion of the point load, see Fig. 8.12. Symmetry of the shell geometry and
loading allows to only discretize one eighth of the cylindrical shell.

The prescribed displacement at point A is incrementally increased up to
the value of 120 which is 40% of the cylinder radius and thus relates to a
large deflection of the shell. Due to the nonlinearity of the problem, the step
size has to be changed throughout the computation. Thus, for the first 20
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Fig. 8.14 Strategy I: Number of used elements and relative error of the adaptive
computation

steps, an increment of ΔuA = 1 was used. For the next 60 steps, the step size
amounted to ΔuA = 0.5 and for the last steps ΔuA = 0.25 was selected. Note
that no adaptive load incremental procedure is employed what usually should
be done in such simulations. However, in this way, the adaptive computation
affects only the spatial discretization.

By means of test computations, it was secured that the chosen load steps
were small enough to correctly reproduce the load history.

A further necessity is to limit the minimum element size to 1/8 of the
shell thickness, leading to hmin = 3/8. This avoids the singularity which
would occur due to the point load (here prescribed displacement) at point A.
It is equivalent to the distribution of the load over an area which is related
to the minimum element size and from the practical point sufficient.

The adaptive solutions are computed using relative tolerances of 15 and
10% with respect to the relative error ηK in the energy norm written in stress
space, see (8.48). However, here the relative error could also be measured
using the L2-norm for the stresses. The results are compared with a reference
solution which was obtained by a simulation with a regular mesh of 5000
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1. mesh
uA = 1.00 − 41.50

2. mesh
uA = 41.50 − 57.00

3. mesh
uA = 57.25 − 85.50

4. mesh
uA = 85.75 − 120.0

uA = 120.0
Plastic zones

Fig. 8.15 Strategy I: Adaptive meshing in the deformed configuration of an adap-
tive computation with a tolerance of 15%

elements. Strategies I and II described in Sect. 8.6.2 – with and without
transfer of history variables – were applied.

The load–displacement curves are depicted in the first graph of Fig. 8.13
for strategy I. The results of the adaptive computation are in good agreement
with the reference solution for a displacement up to uA = 80.0. This is
especially true after a remeshing was performed. In that case, related to
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Fig. 8.16 Strategy II: Load–displacement curve, energy norm ‖τττ‖K and relative
error

the increase of the number of elements, the discretized shell becomes more
flexible and thus the reaction force at point A is reduced.

Between uA = 80 and uA = 100, both adaptive solutions depict an over
proportional, non-physical decrease in the load which is linked to the equilib-
rium state after a remeshing step where a transfer of all variables took place.
Cause of this strong decrease are the “soft” response of the shell with finer
discretization and the error due to the transfer of the plastic part of the right
Cauchy-Green tensor Cp and the hardening variable α, see Sect. 9.4. An
additional error occurs within the transfer process since a plane stress state
is assumed locally for the projection of Cp and due to the curvature of the
shell; then a transformation to the global coordinate system is necessary.

Further error originates from the plastic bend which moves with increasing
load over the shell surface and is characteristic for this problem. Since this is
a localization phenomenon, the results are strongly dependent on the element
size in this area, and hence also the refined mesh has to move with the plastic
bend. The shell exhibits high bending strains in this area. Thus the results
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are sensible with respect to errors which are related to the transfer of Cp

and α. With finer meshes, the error due to this transfer decreases. Thus
an adequately refined mesh, using smaller tolerances, will not lead to the
sudden decrease of the load F , see first diagram in Fig. 8.13. The error norm
‖ τ̄ − τ̄h ‖E−1 smoothes this behaviour; the sudden change can be observed,
but the value of the norm stays very close to the norm related to the reference
solution, see second diagram in Fig. 8.13. This underlines that local effects
originate the strong decrease in F .

Four adaptive steps were performed within the simulations with the rel-
ative tolerance of 10 and 15%. The number of adaptively generated ele-
ments and the relative error are depicted in Fig. 8.14 depending on the load
steps. The deformation states with overlayed generated meshes are shown
in Fig. 8.15 for the simulation with 15% relative tolerance; furthermore the
plastic zone is depicted for the final state.

Within strategy II, the entire loading process is simulated using a given
finite element mesh, see Sect. 8.6.2. The starting mesh of the computation
was already refined around the point load since here, due to the singularity, a
mesh refinement will occur in any case. By this pre-refining, using engineering

TOL=15%
1. mesh
(297 elements)

TOL=15%
2. mesh
(970 elements)

TOL=10%
1. mesh
(438 elements)

TOL = 10%
2. mesh
(1703 elements)

Fig. 8.17 Strategy II: Mesh in its final configuration of the adaptive computations
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knowledge of the solution behaviour, unnecessary simulations over all load
steps are avoided. Within each simulation of the loading process, the error is
determined and stored.

Due to the above described choice of a starting mesh, only one additional
mesh had to be constructed within the adaptive procedure to keep the er-
ror below the prescribed tolerances throughout all load steps. This can be
observed from the diagram depicted in Fig. 8.16. Again ηK is related to the
norm ‖ τ̄ − τ̄h ‖E−1 , which has a dimensionless form, see (8.89).

The first diagram in Fig. 8.16 represents the load–displacement curve
computed within the adaptive simulation. Contrary to strategy I, no jumps
occur and thus this strategy is much more robust. It can also be observed
that the solution converges rapidly to the reference solution, even for rela-
tive large tolerances. This however is only true for the global values like the
load–displacement curve. Once local stresses or strains are of interest, smaller
tolerances have to be selected which then leads to further refinement. How-
ever, when local stresses are of interest, the better strategy is to apply the
dual method in order to zoom in on specific stress values, see also the last
example. Fig. 8.17 depicts the deformed shell in its final configuration. It is
interesting to note that strategy I and II yield basically the same number
of finite elements; also the density distribution of the finite element sizes is
equal for both strategies.



9. Special Structural Elements

Trusses, beams and shells belong to the most important structural elements
in engineering practise. Many structures in civil engineering – like masts,
domes, frames or cooling towers – consist of such structural elements. But
also in mechanical engineering – car bodies, robots or general machines – can
be modelled by beams and shells. The reliable mechanical and mathematical
description of trusses, beams and shells is of great significance. Hence it is,
since a long time, under investigation and assoicated with great names like
Galileo, Leibniz, Mariotte, Bernoulli, Euler and Kirchhoff. Lin-
ear and approximate nonlinear theories are known for a long time and have
been introduced to the engineering codes. Especially stability problems were
solved by different approximate theories and associated numerical methods,
see also the introduction, Sect. 2.1, and Chap. 7. However, due to the devel-
opment of inexpensive computer hardware, it is possible today to perform
numerical simulations based on completely nonlinear theories. Thus the gen-
eral description of finite deformation states of such structural members has
found its way into modern numerical simulation tools like the finite element
method. Due to this development, it is not necessary to discuss the validity
of approximate theories since no restrictions with respect to deflections and
rotations are made in this approach.

The structural elements are modeled in case of trusses and beams by
one-dimensional models which, however, are imbedded in three-dimensional
space. The same holds for two-dimensional shell models. All models are char-
acterized by a description of the geometry as a curve or surface in space.
Formulations which can be applied to describe the spatial curves or surfaces
are provided by introduction of arc-length of a curve, convective coordinates
for surfaces or simply reference to a cartesian coordinate system using an ap-
proximation of the initial geometry by polynomial patches. The last is often
chosen within finite element approximations since it naturally fits into the
isoparametric concept, see Sect. 4.1.

The latter leads often to a discretization of curved spatial beams by a num-
ber of straight finite elements with linear interpolation. Such approximation
of the geometry, however, will create additional errors besides the discretiza-
tion error of the deformation field. Often this error, due to the approximation
of the geometry, vanishes with increasing number of finite elements. In that
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case, it is essential that the additional element coordinates are always related
to the exact geometry. These considerations also hold for shells. However,
they react more sensitive to errors in geometry since the surface properties
can easily be changed locally. A bi-linear isoparametric element, for example,
approximates in general hyperbolic surfaces for unstructured meshes, even if
the global surface is a sphere or a cylinder. These errors diminish for higher
order finite element approximations. Additionally, in the last few years, dif-
ferent approaches have been proposed which link the geometry directly to
the finite element approximation by using the same ansatz, like NURBS, for
geometry and finite element interpolation.

In the following, first truss, beam and axisymmetrical shell elements will
be discussed and then general shell elements for arbitrary three-dimensional
surfaces will be derived.

9.1 Nonlinear Truss Element

This section is concerned with the derivation of a three-dimensional truss
element. Truss structures are assumed to consist of straight members which
are connected by hinges and are loaded only at their connection points. Thus
trusses will only endure tension and compression forces but no bending and
torsional moments. There are no kinematical restrictions related to the mag-
nitude of the deformation; hence this formulation will be geometrically exact.
The constitutive equations are first formulated for purely elastic behaviour.
Especially the material relation small strain of St. Venant, see (3.121), and
the hyperelastic Ogden material for finite strain, see (3.113), are applied. Fi-
nally, elasto-plastic constitutive relations are introduced which can describe
small elastic but finite plastic deformations under the assumption of isotropic
hardening.

9.1.1 Kinematics and Strains

For trusses, the three-dimensional kinematical relations have to be specialized
for the one-dimensional case, see Sect. 3.1. Such formulation is sufficient for
trusses since these are only loaded along their axis.

The formulation will be presented with respect to the initial configuration
Ω. The deformed configuration of the truss ϕ(Ω) can be described by, see
also Fig. 9.1,

ϕ(X) = (X + u(X))e1 + (Y + v(X))e2 + (Z + w(X))e3. (9.1)

Here X,Y andZ are the coordinates with respect to a cartesian basis in the
initial configuration. The associated displacements are denoted by u, v, w.
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Fig. 9.1 Truss: deformed and undeformed configuration
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Remark 9.1: Note that a special location of the truss element is assumed with
the local axis of the truss being the X-axis. A general initial position of the truss
can be described by appropriate transformations in which the local truss axis (here
X-axis) is related to the global coordinate system in which a truss structure is
described. The transformation of the local initial configuration to the global initial
configurations is the same as in the linear theory, see e.g. Crisfield (1991). Between
the local cartesian frame with base vectors {El

i} and the global cartesian frame
with base vectors {Eg

k}, the relation

El
i = (El

i · Eg
k )Eg

k (9.2)

is obtained. Here the scalar product El
i ·Eg

k denotes the directional cosine between
the local i and the global coordinate axis k.

Using (9.1), the deformation gradient (3.6) can be specified

F = Grad x =

⎡
⎣ 1 + u,X 0 0

v,X 1 0
w,X 0 1

⎤
⎦ (9.3)

with the Jacobi-determinant J = det F = 1 + u,X . Inserting F in the
Green-Lagrange strain E = 1

2 (FT F− 1), (3.15) yields the relevant strain
component related to the X-coordinate for a truss

EX = u,X +
1
2
(u,2X +v,2X +w,2X ). (9.4)
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9.1.2 Constitutive Equations for the Truss

Two elastic constitutive equations are presented here for the truss. These are
the St. Venant material for small strains and the Ogden material for finite
strains.

St. Venant Material. If a truss undergoes large displacements but only
endures small strains then St. Venant material (3.121), see Sect. 3.3.1, is
adequate for the constitutive description. It provides a linear relation between
the Green-Lagrange strains E and the 2nd Piola-Kirchhoff stresses S.
Since the truss element is loaded only along its local axis, it is sufficient to
consider the first component of the three-dimensional constitutive equation.
This leads with Young modulus E to

SX = E EX . (9.5)

For completeness also strains induced by a change of temperature are
introduced in this equation. These thermal strains can be computed from

EΘ = αT (Θ −ΘA) (9.6)

with the thermal expansion coefficient αT . ΘA is a given reference tempera-
ture. Relation (9.6) is only valid for small strains since the Green-Lagrange

strains are work conjugate to the 2nd Piola-Kirchhoff stress which is not
real physical stress, see Sect. 3.2.4. However, for small strains, this stress de-
viates only very little from the Kirchhoff stresses. With (9.4) and (9.6),
the thermo-elastic St. Venant constitutive equation for the truss

SX = E [EX −EΘ ] = E

[
u,X +

1
2

(u,2X +v,2X +w,2X ) − αT (Θ −ΘA)
]

(9.7)

is obtained.

Ogden Material. Finite elastic deformations can be described by the ma-
terial equation of Ogden (3.113), see Sect. 3.3.1. The strain energy is given
in terms of the principal stretches

W (λi) =
∑

r

μr

αr
[λαr

1 + λαr
2 + λαr

3 − 3 ] . (9.8)

The constants μr and αr are material parameters. λi denote the principal
stretches which follow in general from the spectral decomposition of the strain
tensor. Due to the one-dimensional loading of a truss element, only the prin-
cipal stretch λ1 is relevant. It can be directly computed from (3.23) and(9.4).
Hence EX = 1

2 (λ2
1 − 1) is obtained which leads to

λ1 =
√

2EX + 1 . (9.9)
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The constitutive relations of Ogden are often applied to rubberlike ma-
terials. In that case, incompressible material behaviour has to be considered
additionally. The Cauchy stresses are then given with (3.134) by

σi = λi
∂W

∂λi
+ p , (9.10)

where p is the pressure. It can be determined from the condition of incom-
pressibility F = 1. The stresses follow from (3.142), as described in Exercise
3.6,

σ1 =
∑

r

μr [λαr
1 − λ−

1
2 αr

1 ] . (9.11)

Since the truss element will be formulated with respect to the initial
configuration, the Cauchy stress σ1 has to be transformed (pulled back)
to the 2nd Piola-Kirchhoff stress. The relation S = J F−1 σ F−T , see
also (3.82), yields – by considering incompressibility (J = 1) – for the stress
component in direction of the local truss axis

SX =
1
λ2

1

σ1 . (9.12)

Thus the Ogden material can be formulated for the truss element in terms
of the 2nd Piola-Kirchhoff stresses and the Green-Lagrange strains
by

SX =
∑

r

μr [λαr−2
1 − λ−

1
2 αr−2

1 ]. (9.13)

Here the stretch λ1 can be expressed by EX when using (9.9).
Since both constitutive equations, the Ogden and the St. Venant mate-

rial, are related to the initial configuration and expressed in terms of the 2nd
Piola-Kirchhoff stresses and the Green-Lagrange strains it is possible
to derive a uniform variational formulation for both materials.

9.1.3 Variational Formulation and Linearization

The finite element formulation of the nonlinear truss element is based on
the weak form of equilibrium. With respect to Sect. 3.4.1, the following one-
dimensional version of the weak form can be stated for a truss element

G(u) =
∫

(X)

δEXSXAdX −
∫

(X)

ηXbXAdX −
∑

k

ηXkPk = 0 , (9.14)

where SX is provided by one of the constitutive Eqs. (9.5) or (9.13). bX are
the body forces, Pk denote applied nodal forces and A is the cross sectional
area of the initial configuration. ηX is the X-component of the test function.
The variation of the Green-Lagrange strains δEX is given with (9.4) by
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δ EX = (1 + u,X ) ηX,X + v,X ηY,X + w,X ηZ,X , (9.15)

where ηX,X , ηY,X and ηZ,X are the derivatives of the components of the test
function. The constitutive equations of the last section for SX yield a strongly
nonlinear weak form (9.14).

Newton method is usually applied for the solution of (9.14), see Sect.
5.1.1. In that case, the linearization of (9.14) is needed which leads to the
tangent stiffness of a truss element. By using the concept of directional deriva-
tives, see Sect. 3.5, the tangent stiffness is derived

DG(u) =
∫

(X)

δ EXΔSX AdX +
∫

(X)

ΔδEX SX AdX . (9.16)

Here the linearization of the strains is given by (9.4)

ΔEX = Δu,X (1 + u,X ) +Δv,X v,X +Δw,X w,X (9.17)

as well as the linearization of the variation of the strains (9.15)

ΔδEX = Δu,X ηX,X +Δv,X ηY,X +Δw,X ηz,X . (9.18)

The linearization of the constitutive Eqs. (9.5) yields the increment of stresses

ΔSX = EΔEX = E [Δu,X (1 + u,X ) +Δv,X v,X +Δw,X w,X ]. (9.19)

Analogously for the Ogden material, see (9.13), the linearization

ΔSX = C(λ1)ΔEX (9.20)

is derived. The relation (9.9) leads to Δλ1 = λ−1
1 ΔEX , and thus the incre-

mental material tensor is given by

C(λ1) =
∑

r

μr

[
(αr − 2)λ(αr−4)

1 + (
1
2
αr + 2)λ−( 1

2 αr+4)
1

]
. (9.21)

9.1.4 Finite-Element Model

The discretization of Eqs. (9.14) and (9.16) is obtained using finite elements.
For that, the displacements u, v, w and the test functions ηX , ηY , ηZ are
approximated by linear shape functions. Of course, also quadratic or higher
order interpolations could be introduced, but for most applications linear
elements are sufficient since the linear shape functions are the solution of
the homogeneous differential equations of the truss in the geometrically lin-
ear case when linear elastic constitutive behaviour is assumed. Thus the
interpolation
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Fig. 9.2 Finite truss element

Ωe

�

ue =
2∑

K=1

NK(ξ)uK , ve =
2∑

K=1

NK(ξ) vK and we =
2∑

K=1

NK(ξ)wK ,

(9.22)

is used. Here NK(ξ) are given in terms of the linear shape functions (4.17).
The quantities uK , vK and wK represent the nodal degrees of freedom which
are related to the truss element Ωe which has the length Le, see Fig. 9.2.

Using the shape functions (9.22), the displacement gradients follow with
(4.23) by

ue,X =
u2 − u1

Le
, ve,X =

v2 − v1
Le

and we,X =
w2 − w1

Le
. (9.23)

By inserting (9.22) and (9.23) into the variational formulation (9.14), the
matrix form

Gh(uh,η) = ηT G (v) = ηT
nel⋃
e=1

Ge(v) = ηT
nel⋃
e=1

(Re − Pe) (9.24)

is obtained. Here v is the vector of the nodal displacements related to the
element Ωe

vT = {u1 , v1 , w1 , u2 , v2 , w2 } (9.25)

and η denotes the vector of the nodal testfunctions

ηT = { ηX1 , ηY 1 , ηZ1 , ηX2 , ηY 2 , ηZ2 } . (9.26)

The residual Re describes the stress divergence



320 9. Special Structural Elements

Re(v) = A

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 + ue,X)SX

ve,X SX

we,X SX

−(1 + ue,X)SX

−ve,X SX

−we,X SX

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.27)

This formulation is valid as well for the material model of St. Venant as
for the model of Ogden. One only has to insert the associated constitutive
equation for SX given by (9.5) or (9.13).

The matrix form of the linearization follows from (9.16) and (9.24). It
leads to the tangential stiffness matrix KT

KT =
nel⋃
e=1

DGe(v) . (9.28)

KT represents the global tangent operator, which results from the assembly
of the (6 × 6) element stiffness matrices. The element stiffness K e

T can be
written explicitly as

K e
T =

[
(A1 + A2) −(A1 + A2)
−(A1 + A2) (A1 + A2)

]
. (9.29)

The first term of (9.29) is given by

A1 =
HA

Le

⎡
⎣ (1 + ue,X)2 (1 + ue,X)ve,X (1 + ue,X)we,X

(1 + ue,X)ve,X v2e,X ve,Xwe,X

(1 + ue,X)we,X ve,Xwe,X w2
e,X

⎤
⎦ . (9.30)

H describes the tangent modulus of the material model. For the St. Venant

material, it is given by H = E, while for the Ogden material it has the form
H = C(λ1). The second term of (9.29)

A2 =
SX A

Le

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (9.31)

is often denoted as initial stiffness matrix. The associated equation for the
stresses, St. Venant or Ogden material, has to be used in (9.31). The in-
dex h, often used to indicate the approximation of the field quantities, was
suppressed to simplify the notation. The finite element formulation for the
truss can now be implemented in a finite element program for the discussed
elastic constitutive equations based on this matrix form.

Exercise 9.1: Consider a truss element undergoing elasto-plastic deformations.
For the assumption of von Mises plasticity, the algorithm for the stress computa-
tion as well as the associated linearization have to be developed using the relations
derived in Sect. 6.3.2. Two different material models should be considered:
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(a) Formulate the constitutive relations for the truss by assuming small elastic
strains using (6.158). Here the finite plastic strains can be modelled for isotropic
hardening, see (6.159).

(b) Formulate a constitutive equation for finite incompressible elastic deformations
using Ogden material and large plastic deformations with the nonlinear hard-
ening q = −(Hl α + Hnlαδ).

Solution: The three-dimensional continuum equation are provided in Sect. 3.3.2.
All quantities can be related to principal axes since a one-dimensional structure is
considered. Hence the algorithms stated in Sect. 6.3.2 can be applied. The stretches
are split, based on (3.191), by

λ = λe λp .

To derive a truss element which can describe the elasto-plastic deformations, all
relations which follow from the integration of the constitutive equations have to be
inserted in Eqs. (9.27) to (9.31). Hence the 2nd Piola-Kirchhoff stress SX and
the tangent modulus H have to be determined within a time step [ tn , tn+1 ]. The
equations from Sect. 6.3.2 simplify considerably for the one-dimensional case. Here
the trial stretch

λe tr
n+1 =

λn+1

λp
n

is obtained together with its associated logarithmic strain

εe tr
n+1 = ln [λe tr

n+1] .

In case (a), the one-dimensional flow condition follows from (3.159) as

f(τ) = | τ | − ( Y0 + Ĥ α ) ≤ 0

and from (3.210) the flow rule. The elastic constitutive equation relates the Kirch-

hoff stress τ via
τ = E εe

to the logarithmic strains εe = ln λe, see Sect. 6.3.2. The only material parame-
ter E is Young modulus which results from the strain energy function defined in
Remark 6.2 for small strains. E does not represent the modulus of elasticity intro-
duced in (9.5) since it relates different strains and stresses. The trial Kirchhoff

stress is then given by
τ tr

n+1 = E εe tr
n+1 .

This stress has to be inserted in the flow condition

f tr
n+1 = | τ tr

n+1 | − ( Y0 + Ĥ αtr
n+1 ) ,

where the trial value of the hardening parameter αtr
n+1 = αn is determined from the

last time step. With f tr
n+1, it can be distinguished whether a truss element behaves

elastically or plastically. The relations presented in Sect. 6.3.2 yield explicitly:

– f tr
n+1 < 0 =⇒ elastic:

1. 2nd Piola-Kirchhoff stress: SX n+1 =
τ tr

n+1

(λe tr
n+1)

2

2. Tangent modulus (see Sect. 6.3.3): Hn+1 =
E − 2 τ tr

n+1

(λe tr
n+1)

4

– f tr
n+1 ≥ 0 =⇒ plastic:
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1. Increment of the consistency parameter: Δγn+1 =
f tr

n+1

E + Ĥ
.

2. Elastic strain: εe
n+1 = εe tr

n+1 − Δγn+1
τ tr

n+1

| τ tr
n+1 |

.

3. Hardening parameter: αn+1 = αn + Δγn+1.

4. Kirchhoff stress: τn+1 = E εe
n+1.

5. Algorithmic tangent modulus: CALG
p =

E Ĥ

E + Ĥ
.

6. Update of the plastic variables: λp
n+1 =

λn+1

exp[εe
n+1]

.

7. 2nd Piola-Kirchhoff stress: SX n+1 =
τn+1

(λe tr
n+1)

2
.

8. Tangent modulus (see Sect. 6.3.3): Hn+1 =
CALG

p − 2 τn+1

(λe tr
n+1)

4
.

With the above relations, all equations needed for the elasto-plastic analysis of
a truss element are known. They just have to be inserted into the finite element
formulation presented in the previous section.

The truss structure depicted in Fig. 9.3a in its initial and deformed configu-
ration is computed using the model described above. The material parameters are

E = 21000, A = 10, Y0 = 24 and Ĥ = 10. Under loading, the system first deforms
elastically. From a specific load level on, see load–displacement curve in Fig. 9.3b,
the trusses close to the support undergo plastic deformations. Thus a type of plas-
tic hinge develops within the first segment at the support and the stiffness of the
system reduces drastically which is expressed in the graph by the almost horizontal
part of the load deflection curve.

In case (b), the flow condition

f(τ) = |τ | −
(
Y0 + Ĥl α + Ĥnlαδ

)
≤ 0

               

Fig. 9.3a Truss structure: system
and deformation
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Fig. 9.3b Load–displacement curve of the
truss structure
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is used which exhibits nonlinear hardening. Additionally, a one-dimensional incom-
pressible Ogden material, see (9.11), is applied which is formulated here in terms
of the Kirchhoff stress

τ =
∑

i

μi

(
λβi − λ−βi/2

)
=
∑

i

μi (exp(βi ε) − exp(−βi ε/2)) .

For the algorithmic treatment, the trial stresses are needed. They follow from the
elastic strains by assuming frozen plastic variables (λe tr

n+1 = λn+1 / λp
n)

τ tr
n+1 =

∑
i

μi

(
exp(βi εe tr

n+1) − exp(−βi εe tr
n+1/2)

)
.

The elastic tangent modulus is deriveed from

Ẽn+1 =
∂τ tr

n+1

∂εe tr
n+1

=
∑

i

μi βi

[
(λe tr

n+1)
βi + 0.5 (λe tr

n+1)
−βi/2

]
.

The trial stresses are inserted in the flow condition to check whether elastic or
plastic behaviour is related to the stress state

f tr
n+1 = |τ tr

n+1| −
[
Y0 + Ĥl αtr

n+1 + Ĥnl(αtr
n+1)

δ
]

.

The following cases can be distinguished

– f tr
n+1 < 0 elastic leading to:

1. 2nd Piola-Kirchhoff stresses: SX n+1 =
τ tr

n+1

(λe tr
n+1)

2
.

2. Tangent modulus: Hn+1 =
Ẽn+1 − 2 τ tr

n+1

(λe tr
n+1)

4
.

– f tr
n+1 > 0 plastic. Here the following steps are needed to determine stresses and

associated tangent modulus:
1. First, the increment of the consistency parameter Δγn+1 is computed from

fn+1 = 0. Here fn+1 has the form

fn+1 = τ(εe tr
n+1 − Δγn+1) −

[
Y0 + Hl (αn + Δγn+1) + Hnl (αn + Δγn+1)

δ
]

.

τ(x) means that the argument x has to be inserted into the constitutive equa-
tion of Ogden. Contrary to the last example, the flow condition is a nonlinear
function in Δγn+1. This requires a local iteration to find the roots. After that
the remaining quantities can be computed.

2. Elastic strains εe
n+1 = εe tr

n+1 − Δγn+1
τ tr

n+1

|τ tr
n+1|

.

3. Hardening parameter αn+1 = αn + Δγn+1 .

4. Kirchhoff stresses (from the Ogden material)

τn+1 =
∑

i

μi (exp(βi εe
n+1) − exp(−βi εe

n+1/2)) .
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5. The algorithmic tangent modulus, needed within the FE-formulation, follows
with respect to Sect. 6.3.2

CALG
p =

∂τ(εe
n+1)

∂εe tr
n+1

=
∂τ(εe

n+1)

∂εe
n+1

· ∂εe
n+1

∂εe tr
n+1

.

The first term on the right hand side is equivalent to the elastic tangent mod-
ulus Ẽn+1 stated above. The second term is computed from

∂

∂εe tr
(εe

n+1) =
∂

∂εe tr

(
εe tr

n+1 − Δγn+1

)
=

(
1 − ∂Δγn+1

∂εe tr

)
,

where the derivative of the consistency parameter can be determined by using
the flow condition

∂f

∂εe tr
n+1

· dεe tr
n+1 +

∂f

∂Δγn+1
· dΔγn+1 ≡ 0 .

This yields

dΔγn+1

dεe tr
n+1

= −

(
∂f

∂εe tr
n+1

)
(

∂f

∂Δγn+1

) =
Ẽn+1

Ẽn+1 + H̃n+1

with
H̃n+1 = Hl + δ (αn + Δγn+1)

δ−1 Hnl .

Hence CALG
p has the form

CALG
p =

H̃n+1 Ẽn+1

H̃n+1 + Ẽn+1

.

6. The update of the plastic variables yields a plastic stretch at the end of the
time step:

λp
n+1 =

λn+1

exp[εe
n+1]

.

7. The 2nd Piola-Kirchhoff stress which has to be inserted in (9.27) is com-
puted from the Kirchhoff stress:

SX n+1 =
τn+1

(λe tr
n+1)

2
.

8. The incremental tangent modulus, needed in (9.29), is given by:

Hn+1 =
CALG

p − 2 τn+1

(λe tr
n+1)

4
.

The constitutive equations discussed in (b) exhibit nonlinear isotropic hardening
and nonlinear elastic behaviour. They can, e.g. be used to model the material
response of polymer strings, see e.g. Bidmon (1989), which occur in composite
materials.

A one dimensional test model of such string is shown on the left hand side
of Fig. 9.4 where a point load is applied at the end of the string. Adaption of
the material parameters of this model to experimental results, provided in Bidmon
(1989), leads to the elastic constants μ and α, the yield limit σY 0 and the hardening
parameters Hlin, Hnl and k as depicted in Fig. 9.4.
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l

AStab = 0.12 mm2 Δl

F

Material parameters

μ = 195.95 N/mm2

α = 30.37
σY 0 = 111.5 N/mm2

Hlin = 5969.49 N/mm2

Hnl = 43977191 N/mm2

k = 4.37

Fig. 9.4 One-dimensional elasto-plastic truss model for polymer strings

The load–displacement curve of the truss shown in Fig. 9.4 is now computed
using the algorithm stated above by increasing the point load incrementally. This
curve, see Fig. 9.5, is in good agreement with the experimental results in Bidmon
(1989). Note that the nonlinear behaviour is matched as well for the loading as for
the unloading phase by the chosen constitutive equation.

9.2 Two-dimensional Geometrically Exact Beam
Element

Nonlinear theories for beams were developed in the last three decades. They
all can be applied for finite element discretization. Generally, three ap-
proaches have to be distinguished.

– The first is based on the assumption of small strains. It introduces a frame
undergoing finite rigid rotations and formulates the strains and stresses
relative to the rotations of the frame and is known as co-rotational formu-
lation. Thus the strains have to be small but large deflections and rotations
can be investigated. Finite element schemes which is based on such formula-
tions can be found in z.B. in Oran and Kassimali (1976), Wempner (1969),
Rankin and Brogan (1984), Lumpe (1982), Crisfield (1991) and Crisfield
(1997).
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plastic 1D truss

Fig. 9.5 Load-displacement of a polymer strings
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– The second approach uses the continuum equations and introduces the
beam kinematics by special isoparametric finite element interpolations.
This approach is known as degenerated continuum approach, see e.g. Bathe
and Bolourchi (1979), Dvorkin et al. (1988) or the textbooks by Bathe
(1996) and Crisfield (1997).

– The third approach is based on the formulation of nonlinear rod and beam
theories which have, as only restriction, the classical assumption of “plane
cross sections remain plane”. Here no other approximations are made;
hence the strains, deflections and rotations can be finite and these the-
ories are called geometrically exact. The development of these beam the-
ories goes back to the work by Reissner (1972). A generalization for the
three-dimensional case can be found in Simo (1985). Based on this the-
oretical background, several authors developed associated finite element
formulations, see Simo and Vu-Quoc (1986), Pimenta and Yojo (1993), Je-
lenic and Saje (1995), Gruttmann et al. (1998) and Mäkinen (2007). For
a nonlinear formulation of curved beam elements, see e.g. Ibrahimbegovic
(1995). In Gruttmann et al. (2000) elasto-plastic material and in Romero
and Armero (2002) dynamics were considered within the geometrically ex-
act framework.

The latter beam theories include also arbitrary loading of truss and cable
structures and thus can be applied in a general way to one-dimensional con-
struction elements.

Besides very limited and simplified examples these nonlinear beam the-
ories cannot be solved analytically. However, within the framework of finite
element methods, there is no difficulty to apply the nonlinear beam formula-
tions. Thus many complex engineering problems like the starting of a rotor
blade or the opening of an antenna structure in space can be solved.

However even now many software tools for civil engineering still use the
so-called second order theories as basis for the finite element implementation.
These theories include nonlinear effects but are restricted to small rotations.
They can be applied for limit load computations and stability investigations.
These theories stem from the times where analytical solutions where needed
to solve such problems; however when using modern computers the geomet-
rically exact theories can be applied instead.

In this chapter different beam theories are considered for the two-dimen-
sional case. Additionally, associated numerical formulations are derived for
finite element implementations. The theories are then compared by means of
an example which depicts the limits in application of different approaches.

9.2.1 Kinematics

The two-dimensional theory for the geometrically exact beam element is
based on the assumptions of plane cross sections. It was derived in Reissner
(1972) and is valid for finite deflections, rotations and strains.
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Often it is sufficient to consider only small strains in beams which leads to
the use of the St. Venant constitutive equations. Of course, also constitutive
equations describing finite elastic strains or elasto-plastic deformations can
be included, see e.g. Kahn (1987) and Ehrlich and Armero (2005), where a
plastic hinge theory within the framework of geometrically exact beams was
developed.

The nonlinear strain measures for the shear elastic beam can be found in
Reissner (1972). They are based on the kinematical assumption for the beam
deformation

ϕ =
{
X1 + u(X1)
w(X1)

}
+X2

{
− sinψ(X1)
cosψ(X1)

}
= ϕ|X2=0 +X2 t , (9.32)

see also Fig. 9.6. Here the initial configuration of the beam is straight and
the local axis coincides with the global axis. When the beam is arbitrarily
located in space then an additional transformation has to be applied, see
Remark 9.1.

The associated strain–deflection relations were derived in Reissner (1972)
by using the principle of virtual work. This leads to strain measures for the
axial strain ε, the shear strain γ and the curvature κ:

ε = (1 + u′) cosψ + w′ sinψ − 1 ,
γ = w′ cosψ − (1 + u′) sinψ ,
κ = ψ′ , (9.33)

where u is the displacement in axial direction, w the deflections and ψ is the
rotation, see Fig. 9.6. By ()’ the derivative with respect to the coordinate X1

E1

t

X1

w′

ϕ(X1)

n

ψ

u

w
X2

E2

Fig. 9.6 Beam kinematics
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are denoted. Note that the strain (9.33)3 for the curvature is linear in ψ. The
strain measures can also be formulated in matrix notation

ε = T(ψ)u′ − N, (9.34)

where the matrices

ε =

⎧⎨
⎩
ε
γ
κ

⎫⎬
⎭ , T(ψ) =

⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦ , u′ =

⎧⎨
⎩

1 + u′

v′

ψ′

⎫⎬
⎭ , N =

⎧⎨
⎩

1
0
0

⎫⎬
⎭

are introduced. Relation (9.34) shows the simple structure of these nonlinear
strain measures. The nonlinearity is only associated with the sin and cos
functions in which the rotation angle ψ occurs. These act on u′ and w′ by the
rotation matrix T. Note that the rotation matrix T describes the rotation of
the basis (E1 ,E2) to (n , t), see Fig. 9.6.

Remark 9.2 :

1. The vector u′ in (9.34) is equivalent to the components of the deformation
gradient (9.3). Since the right stretch tensor U = RT F follows from (3.21),
the strain ε with T = RT can be viewed as a strain measure equivalent to
the right stretch tensor. This relates ε to the generalized strains in (3.18) for
α = 1.

2. Based on (9.32), the Green-Lagrange strains can be determined for the beam
model. These follow with (3.15) and (3.41) from

E =

{
E11

2 E12

}
=

{
1
2

( g11 − G11 )
g12 − G12

}

with
g11 = ϕ,1 · ϕ,1 G11 = E1 · E1 = 1
g12 = ϕ,1 · ϕ,2 G12 = E1 · E2 = 0 .

These strains can be used to formulate the kinematics of the beam instead of
(9.33). Such approach was used in, e. g. Gruttmann et al. (2000).

Based on a Taylor series at ψ0 of the sin- and cos function

sin(ψ0 + ψ) = sinψ0 + cosψ0 ψ +
1
2

sinψ0ψ
2 + · · ·

cos(ψ0 + ψ) = cosψ0 − sinψ0 ψ − 1
2

cosψ0ψ
2 + · · ·

a consistent linearization of (9.33) can be derived, see Sect. 3.5. Including all
terms up to second order this yields with sinψ ≈ ψ and cosψ ≈ 1− 1

2 ψ
2 for

ψ0 = 0

ε =
γ =
κ =

u′ + w′ ψ − 1
2 ψ

2

w′ − (1 + u′)ψ
ψ′

⎫⎬
⎭ −→ ε = T̄(ψ)u′ − ψ̄ − N . (9.35)
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The skew symmetric matrix T̄ is the linearization of T|ψ0=0. It is, together
with the vector ψ̄, defined as

T̄(ψ) =

⎡
⎣ 1 ψ 0
−ψ 1 0
0 0 1

⎤
⎦ and ψ̄ =

⎧⎨
⎩

1
2 ψ

2

0
0

⎫⎬
⎭ .

The approximation (9.35) contains all quadratic terms. The strain measures
are not much simpler than the exact ones provided in (9.33); only the trigono-
metric functions of the angle ψ disappear.

A further approximation can be obtained by neglecting the strain part u′

in axial direction when the shear strains in (9.35) are derived. By additionally
enforcing the Bernoulli assumption (w′ = ψ), the strains for a theory of
moderate rotations can be formulated based on the Bernoulli kinematics:

ε = u′ +
1
2
w′2 , κ = w′′ . (9.36)

Here the only nonlinear term is w′2.

Exercise 9.2: Derive the strains related to the Bernoulli beam assumption
for a geometrically nonlinear kinematic by using the strain measures (9.33).

Solution: The Bernoulli assumption prevents the occurrence of shear strains.
Hence γ is always zero. With this constraint condition, the strain measures of the
Bernoulli theory can be derived. The constraint γ = 0 yields

w′ cos ψ = (1 + u′) sin ψ .

In order to eliminate the angle ψ, the first equation in (9.33) is squared which leads
to

(ε + 1)2 = (1 + u′)2 cos2 ψ + w′2 sin2 ψ + 2 (1 + u′) w′ sin ψ cos ψ .

By inserting the shear constraint, the strain in axial direction is obtained depending
upon u and the deflection w

ε =
√

(1 + u′)2 + w′2 − 1 . (9.37)

In the same way, a relation for the curvature κ can be derived. The derivative of
the shear constraint yields with (9.33)1

w′′ cos ψ − u′′ sin ψ = (ε + 1) ψ′ .

The multiplication of this equation by (9.33)1 leads after some algebra to

κ =
w′′ (1 + u′) − u′′ w′

(ε + 1)2
=

w′′ (1 + u′) − u′′ w′

(1 + u′)2 + w′2 , (9.38)

which can already be found in, e.g. Kappus (1939). It is obvious that the strain–
displacement relation of the shear elastic beam has a simpler form.
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9.2.2 Weak Form of Equilibrium

The weak form of equilibrium which is equivalent to the principle of virtual
work can be stated for shear elastic beams as

G(u,η) =

l∫
0

(N δε+Qδγ +M δκ ) dx−
l∫

0

(n δu+ q δw ) dx = 0 . (9.39)

N ,Q ,M are the stress resultants and n and q, respectively, are the loading
in axial and perpendicular direction related to the beam axis. The definition
of the stress resultants can be found in the next section. By introducing the
vector containing the stress resultants ST = {N ,Q ,M }, Eq. (9.39) can be
written in the compact form

G(u,η) =

l∫
0

δεT S dx−
l∫

0

ηT q dx = 0 , (9.40)

where the loads are combined in q = {n , q , 0 }T and the variations of the
deformations are given by η = { δu , δw , δψ}T . The strains ε stem from the
definition given in (9.34). For the geometrically exact model, the variation of
the strains in (9.34) yields

δε = T(ψ)η′ +
∂T(ψ)
∂ψ

u′ δψ . (9.41)

By inserting this relation in the weak form (9.40), the first term can be
specified as

l∫
0

δεT S dx =

l∫
0

[
η′T T(ψ)T + δψ u′T

(
∂T(ψ)
∂ψ

)T
]

S dx . (9.42)

This is the stress divergence term of the geometrically exact beam model.
This weak form represents a nonlinear functional with respect to the dis-

placements and rotations. Since analytical solutions are only available for
special cases, the finite element method will be applied to solve (9.40).

Before the finite element discretization is formulated, the weak forms as-
sociated with the strain measures (9.35) and (9.36) are stated. Since the
weak form (9.39) for the beam does not change in general, only the related
variation of the strains has to be inserted. The variation of (9.35) leads to

δε = T̄(ψ)η′ +
[
∂T̄(ψ)
∂ψ

u′ − ∂ψ̄

∂ψ

]
δψ , (9.43)

which can be inserted in (9.40). In the same way, the variation of (9.36) is
obtained
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δε = δu′ + w′ δw′ ,
δκ = δw′′ , (9.44)

which leads, neglecting the shear term in (9.39), to the weak form related to
the theory of moderate rotations

G(u,w, δu, δw) =

l∫
0

( (δu′+w′ δw′)N+δw′′M ) dx−
l∫

0

(n δu+q δw ) dx = 0 .

(9.45)

9.2.3 Constitutive Equations

Within the simulation of beam structures, it can be assumed for most ap-
plications that the strain are small, even for large deflections and rotations.
Hence it is possible to describe elastic material behaviour by the classical
Hooke law of the linear theory. It relates within the geometrically exact
theory the 1st Piola-Kirchhoff stresses which are back-rotated using ma-
trix TB = TT P with the strains in (9.33). These stresses can be interpreted
as Biot stresses, see also (3.293). However, the stress TB does not follow
from the polar decomposition of the deformation gradient. With the engi-
neering strains E(1), which are equivalent to ε, see Remark 9.21, the stresses{

T11

T12

}
=
[
E 0
0 G

] {
ε+X2 κ

γ

}
or TB = CEB (9.46)

are obtained as in the linear theory based on (3.273). The engineering strains
are described by EB .

The integration of the stresses over the cross sectional area (width b and
height h) yields the stress resultants

N =
∫

(h)

T11 b dX2 , Q =
∫

(h)

T12 b dX2 and M =
∫

(h)

T11X2 b dX2 (9.47)

leading to the compact form

S = D ε with D =

⎡
⎣EA 0 0

0 GÂ 0
0 0 EI

⎤
⎦ , (9.48)

with Young modulus E, the shear modulus G, the cross sectional area A
and the moment of inertia I. The introduction of the shear area Â is related
to a shear correction term which is needed within to correct the violation of
the boundary condition for the shear stresses (T12 = 0) at X2 = ±h / 2 due
to the beam model assumption of “plane sections remain plane”.
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For inelastic constitutive relations, an evolution equation for the inelas-
tic part of the strains has to be formulated. This depends on the mate-
rial at hand, see Sects. 3.3.2 and 3.3.3. Two possibilities exist within the
beam theory to consider inelastic deformations. One is based on a two- or
three-dimensional formulations of the inelastic constitutive equations using
the stresses. The other possibility makes use of so-called integrated consti-
tutive equations which are directly formulated in terms of stress resultants.
Both variants will be described in the following for elasto-plastic material
behaviour.

Stress Formulation. When the inelastic response of a beam is modelled
using directly the stress then the constitutive equations of the two- or three-
dimensional continuum can be adopted easily. Since the stress field over the
cross sectional area of the beam is then no longer bi-linear, these stresses
cannot be integrated analytically in order to get the stress resultants. Thus a
numerical integration over the thickness has to be applied to obtain the stress
resultants which have to be inserted in the weak form (9.39), see Fig. 9.7.
The numerical integration is performed by Gauss integration in the left part
of the figure while in the right part the cross section is subdivided into layers
which can be integrated separately.

Fig. 9.7 Integration over the cross sectional area

The strains in (9.46) are additively split into an elastic and a plastic part

EB = E el
B + E pl

B . (9.49)

The constitutive behaviour of the elastic part is described by (9.46). For the
plastic part, a flow condition has to be formulated, the plastic evolution equa-
tion and a hardening law, see Sect. 3.3.2. Here these constitutive equations
are selected analogous to Eqs. (3.160), (3.159) and (3.156). The evaluation
of the flow condition (3.159) yields with linear hardening Y (α̂) = Y0 + Ĥ α̂
for the presented beam formulation

fB(TB , α̂) =
√

TT
B PTB − Y (α) ≤ 0 with P =

[
1 0
0 3

]
. (9.50)

The evolution of the plastic deformation is determined by the flow rule. With
(3.160), the rate of the plastic strain is given by
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Ė
pl

B = λ
∂fB

∂TB
= λ

PTB√
TT

B PTB

:= λNB
˙̂α = λ . (9.51)

Finally, the loading/unloading conditions (3.166) have to be considered.
These relations have be integrated in time. The general algorithms for

this purpose are provided in Sect. 6.2. Within a time step Δt = tn+1 − tn, an
implicit Euler method is applied. This leads for the evolution equations to

E pl
B n+1 = E pl

B n + ζn+1 NB n+1 and α̂n+1 = α̂n + ζn+1 (9.52)

with ζn+1 = λΔt. Making use of the predictor–corrector method, see equa-
tion (6.102) in Sect. 6.2.2, the relations

E tr
B n+1 = EB n+1 − E pl

B n ,

TB n+1 = C̄(ζn+1)E tr
B n+1 (9.53)

are obtained. Matrix C̄ follows after some algebraic manipulation and by
using fB = 0 for plastic flow can be stated explicitly

C̄(ζ) = [C−1 + βP ]−1 =
[ E

1+E β 0
0 G

1+3 G β

]
with β =

ζn+1

Yn+1
. (9.54)

The consistency parameter ζn+1 is still unknown in this relation. It follows
from the fulfilment of the flow condition (9.50): fB(TB n+1 , α̂n+1) = 0 at
time tn+1. Since the relation is nonlinear in ζn+1, Newton method has to
be applied for the solution.

Based on these considerations, the stresses can be computed at each in-
tegration point within the cross section of the beam

1. Predictor step: T tr
B n+1 = CE tr

B n+1.
2. Insertion into the flow condition:

a) For fB(T tr
B n+1 , ân) ≤ 0 the stress point is in the elastic range, which

yields

TB n+1 = T tr
B n+1 and ΔTB n+1 = CΔEB n+1 . (9.55)

b) For fB(T tr
B n+1 , ân) > 0, a plastic corrector step has to be performed

leading to

TB n+1 = C̄E tr
B n+1 and

ΔTB n+1 =

[
C̄ − C̄NB NT

BC̄

NT
B C̄NB + Ĥ/(1 − β Ĥ)

]
ΔEB n+1 . (9.56)

The incremental form of the constitutive equation is denoted here byΔTB n+1

which is needed in the linearization of the weak form.
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The stress resultants are now obtained by integration over the cross sec-
tion of the beam using (9.47). The stresses which have to be inserted in this
equation follow either from (9.55) or from (9.56).

This procedure models the distribution of the stresses over the cross sec-
tion within the assumptions of the beam theory in a realistic way. The compu-
tation, however, is time-consuming since the stresses have to be determined
at each integration point within the cross section in order to capture the
nonlinear distribution of the stresses. Furthermore, the plastic variables E pl

B

and α̂ have to be stored at each integration point as history variables. The
integration is depicted in the left part of Fig. 9.7 for the Gauss quadra-
ture. Examples and finite element formulations based on this approach can
be found, e.g. in Vogel (1965), Becker (1985) and for three-dimensional beam
structures, see Gruttmann et al. (2000).

Stress Resultant Formulation. A more efficient scheme which can be
used to analyze the elasto-plastic response of beams is provided by the so-
called method of plastic hinges. It is based directly on the stress resultants
for which now the nonlinear constitutive equations have to be formulated.
Different approaches for steel are discussed in Windels (1970). They lead to
nonlinear interaction relations between the different stress resultants. Hence
the flow condition will now be formulated in terms of the stress resultants.
Simplification can be found in civil engineering codes, like DIN 18800, which
have the uniform structure

Φ(N,Q,M) = α1
Q

Qpl
+ α2

N

Npl
+

M

Mpl
− α3 ≤ 0 . (9.57)

Such formulations are limited in their range of application, but good results
can be obtained for many practical problems, see e.g. Henning (1975), Vogel
(1985) and Becker (1985). Explicit formulations can be found in the engi-
neering literature which is quite extensive.

Formulations of the inelastic constitutive behaviour of beams undergoing
large deflections and rotations can be found together with the associated finite
element formulation in, e.g. Kahn (1987), Simo et al. (1984) and Ehrlich and
Armero (2005).

By inserting the constitutive relations in the principle of virtual work or
weak form (9.39), the nonlinear beam model is complete. This model and its
approximations are now basis for the finite element discretization procedures
discussed in the next section.

9.2.4 Finite Element Formulation

For the finite element discretization of the shear elastic geometrically exact
beam model linear shape functions can be selected since the weak form needs
only ansatz functions which are C0-continuous. This is equivalent to the linear
case, see e.g. Hughes (1987).
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Hence polynomials (4.17) or (4.18) can be applied as finite element in-
terpolations for the axial displacements u, the deflection w and the rotation
ψ. Computations show that elements with quadratic shape functions yield

�� � �
ξ1 23

�� 2

�� � �

X1

�
X2

�� Le

�
Je

Fig. 9.8 Finite beam element

better approximations of the solutions than linear ones. Mathematically this
leads to a higher convergence order. This is supported by convergence analy-
sis of the linear case, see e.g. Chap. 8. Quadratic interpolations are based on
elements with three nodes, see Fig. 9.8. The associated interpolation func-
tions can be found in (4.18). In general, the finite element approximation for
a finite element is given by

ue =
n∑

I=1

NI(X1)uI , we =
n∑

I=1

NI(X1)wI and ψe =
n∑

I=1

NI(X1)ψI ,

(9.58)
for u, w and ψ. n is the number of nodes defining an element (linear ansatz:
n = 2, quadratic ansatz: n = 3). The nodal values uI , wI and ψI will be
determined by inserting these interpolations into the weak form. Inserting
(9.58) into (9.34) yields the element strains. By combining the nodal values
in the vector uI = {uI , wI , ψI}T , the explicit form of the strains is obtained

εe =
n∑

I=1

T(ψe)B0I uI − N with B0I =

⎡
⎣N ′

I 0 0
0 N ′

I 0
0 0 N ′

I

⎤
⎦ . (9.59)

The term ()’ denotes the derivative with respect to the coordinate X1. The
angle ψe in the rotation matrix T is computed using (9.58)3.

The variation of the strains (9.41) can now be expressed by the shape
functions. This leads to

δεe =
n∑

I=1

BI ηI with BI =

⎡
⎣ N ′

I cosψe N ′
I sinψe αeNI

−N ′
I sinψe N ′

I cosψe βeNI

0 0 N ′
I

⎤
⎦ ,
(9.60)
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where the abbreviations αe and βe are defined as

αe = −(1 + u′e) sinψe + w′
e cosψe ,

βe = −(1 + u′e) cosψe − w′
e sinψe . (9.61)

By inserting this result in the stress divergence term, the weak form (9.42) can
be completely expressed by the displacements and rotations after inserting
the constitutive equation (9.48).

In an analogous way, the discrete form of the other two approximate
nonlinear beam theories can be derived. For this, the ansatz (9.58) is inserted
into (9.35) to determine the strains

εe =
n∑

I=1

⎡
⎣N ′

I N ′
I ψe − 1

2ψeNI

0 N ′
I −(1 + u′e)NI

0 0 N ′
I

⎤
⎦ uI . (9.62)

The variation of these strains is given by

δεe =
n∑

I=1

BS
I ηI with BS

I =

⎡
⎣ N ′

I N ′
I ψe (w′

e − ψe)NI

−N ′
I ψe N ′

I −(1 + u′e)NI

0 0 N ′
I

⎤
⎦ ,
(9.63)

which then can be inserted in (9.42). Again the constitutive equation (9.48)
is applied.

This completes the formulation of the different finite element models for
nonlinear beams since the stress resultants in (9.39) can be obtained via the
material equation (9.48) in terms of the nodal quantities uI . Generally, this
leads to the nonlinear equation system

G(u,η) =
ne⋃

j=1

n∑
i=I

ηT
I [RI(uI) − PI ] = 0 (9.64)

with the vectors

RI(uI) =

Le∫
0

BT
I (uI)Se(uI) dx ,

PI =

Le∫
0

NI qe dx . (9.65)

The symbol ∪ in (9.64) describes the assembly of all elements including the
enforcement of continuity for the displacements and rotations along the el-
ement boundaries. Le is the length of one finite element, see Fig. 9.4. Note
that the integrals in (9.65) cannot be computed analytically in general. Thus
Gauss quadrature is applied, see Table 4.1. By transforming the integral to
the local finite element coordinate ξ, see Fig. 9.8, relation
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RI(uI) =

+1∫
−1

BT
I (ξ)Se(ξ)

Le

2
dξ ≈

np∑
p=1

BT
I (ξp)Se(ξp)

Le

2
Wp (9.66)

is obtained using (4.25). For a linear two-node element, one-point integration
is sufficient to exactly integrate the bending part. In that case, the shear
term is underintegrated. The latter, however, is advantageous since it avoids
shear locking. This effect is well known from the linear theory and will not be
studied in detail. A complete discussion of this phenomenon can be found in,
e.g. in Hinton and Owen (1979) or Hughes (1987). For a quadratic element
with three nodal points, two Gauss points for the integration of (9.66) have
to be selected.

When an elasto-plastic material, see (9.55) and (9.56), is considered only
the stresses and not the stress resultants are given. With the strains (9.46),
the weak form can be reformulated. For that the projection tensor PB is
introduced which can be applied to compute from the strains EB the strains
ε using (9.34). Furthermore, PB transforms the stresses TB to the stress
resultants S. With

PB =
[

1 0 X2

0 1 0

]
, (9.67)

the strains and stress resultants are provided

EB = PB ε and S =
∫

(A)

PT
B TB dA , (9.68)

where the integral has to be evaluated with respect to the cross sectional
area. Such integration takes into account the nonlinear material behaviour
within the cross section. Here numerical integration is applied using either
Gauss quadrature, or even more simple, trapezoidal or mid-point rule. From∫

(x)

δεT S dx =
∫
(x)

∫
(A)

δET
B TB dAdx, (9.69)

the stress divergence term of the weak form follows with (9.68)

RI(uI) =

Le∫
0

BT
I (uI)

⎡
⎢⎣ ∫

(A)

PT
B TB dA

⎤
⎥⎦ dx . (9.70)

The numerical integration will be provided for a beam having a cross section
with changing width b(X2). Based on this assumption, also I-beams can be
considered. The height h of the cross section is parameterized by the coordi-
nate χ. The application of Gauss integration with nq points over the cross
sectional height leads analogous to (9.66) to
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RI(uI) =

+1∫
−1

BT
I (ξ)

⎡
⎣ +1∫
−1

PT
B (χ)TB(ξ , χ) b(χ)

h

2
dχ

⎤
⎦ Le

2
dξ (9.71)

≈
np∑

p=1

nq∑
q=1

BT
I (ξp)PT

B (χq)TB(ξp , χq) b(χq)
h

2
Le

2
WpWq .

The nonlinear weak form is now completed for a beam element based on
the geometrically exact theory. For the approximate theories, the associated
B matrices and the stresses have to be inserted; the latter follow from the
approximate strains via the constitutive equation. The solution of (9.64) will
be discussed next after the exercise.

Exercise 9.3: Derive the discretized weak form of (9.45) using the strains mea-
sures (9.36) of the Bernoulli kinematics.

Solution: The weak form is provided by (9.45). The strains (9.36) based on
Bernoulli kinematics need shape for the deflection which are C1-continuous since
second order derivatives of the deflection w with respect to the coordinate X1 occurs
in the strain measure. For the axial displacement u, a linear interpolation function
NI is selected due to (4.17). For the deflection w cubical Hermite functions HI are
applied, which are also used to discretize beam elements for the linear theory, see
e.g. Hughes (1987) and Gross et al. (1999). Based on these functions, the following
ansatz can be introduced for the deflection

we = H1 w1 + H̄1 w′
1 + H2 w2 + H̄2 w′

2 .

Hα and H̄α are cubical polynomials. By using the reference coordinate defined in
Fig. 9.8, −1 ≤ ξ ≤ 1, the polynomial have the explicit form

H1 =
1

4
( 2 − 3ξ + ξ3 ) , H̄1 =

1

4
( 1 − ξ − ξ2 + ξ3 ) ,

H2 =
1

4
( 2 + 3ξ − ξ3 ) , H̄2 =

1

4
(−1 − ξ + ξ2 + ξ3 ) . (9.72)

As for the isoparametric C0 continuous ansatz the following transformation of co-
ordinate system holds X1 = Le

2
(ξ + 1) with the length of a beam element Le, see

Fig. 9.4. The polynomials (9.72) have the property

H1(−1) = 1, H̄1(−1) = H2(−1) = H̄2(−1) = 0
H̄ ′

1(−1) = 1, H ′
1(−1) = H ′

2(−1) = H̄ ′
2(−1) = 0, etc.

This leads to the interpolation within an element e in terms of ξ

we(ξ) = H1(ξ) w1 + H̄1(ξ)
dw1

dξ
+ H2(ξ) w2 + H̄2(ξ)

dw2

dξ
.

In this expression, the derivative of the deflection has to be transformed to the
coordinate X1. With dX1 = (Le/2) dξ, the relation dw/dξ = dw/dX1 (dX1/dξ) =
w′ (Le/2) is derived and hence

we(ξ) =

2∑
I=1

[
HI(ξ) wI + H̄I(ξ)

Le

2
w′

I

]
. (9.73)
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The strains εB
e = {ε , κ}T can be written as

εB
e =

2∑
I=1

[
N ′

I
1
2
w′

e H ′
I

1
2
w′

e H̄ ′
I

Le
2

0 H ′′
I H̄ ′′

I
Le
2

]
uB

I , (9.74)

where uB
I = {uI , wI , w′

I }T . The variation of εB
e yields

δεB
e =

2∑
I=1

BB
I ηI with BB

I =

[
N ′

I w′
e H ′

I w′
e H̄ ′

I
Le
2

0 H ′′
I H̄ ′′

I
Le
2

]
. (9.75)

This relation can be inserted in (9.45) which results in the matrix formulation of
the weak form

GB(u, η) =

ne⋃
j=1

2∑
I=1

δuB
I

⎡
⎣ 1∫
−1

BB T
I (ue)Se(ue)

Le

2
dξ

−
1∫

−1

[ NI e1 ne + ( HI e2 + H̄I(ξ)e3 ) qe ] dξ

⎤
⎦ = 0 (9.76)

with the vectors e1 = {1 , 0 , 0}T , e2 = {0 , 1 , 0}T and e3 = {0 , 0 , Le
2
}T .

Discretization of the Linearization of the Weak Form. Based on the
linearization of (9.64) or (9.76), the methods described in Chap. 5 can be
applied to solve (9.64) or (9.76), like the Newton or the arc-length method.
Within this linearization process, it is essential that no terms are neglected
in order to obtain the quadratic convergence properties of Newton method.

The complete linearization of the weak form (9.39) can be derived once a
constitutive equation is selected. Here (9.48) is used and the weak form

G(u,η) =

l∫
0

( δεEA ε+ δγGÂ γ + δκEI κ ) dx−
l∫

0

(n δu+ q δw ) dx = 0

(9.77)
is obtained. The linearization of G is a formal procedure, see Sect. 3.5.3. It
yields

DG(u,η) ·Δu =

l∫
0

( δεEAΔε+ δγGÂΔγ + δκEI Δκ ) dx+

+

l∫
0

(ΔδεN +ΔδγQ+ΔδκM ) dx . (9.78)

When elasto-plastic constitutive equations like (9.55) and (9.56) are used,
then again the integration over the cross sectional area has to be performed.
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Since the mathematical rules which are applied to compute variations and
linearization do not differ, see Sect. 3.5, the variation δε and linearization Δε
of the strains have the same structure. Only η has to be exchanged by Δu.
With this observation, the discretization of the first integral can be stated
directly without further derivations. The discretization of the second integral
has still to be computed since it contains linearizations of the virtual strains
δε. With (9.33), relation

Δδε = [−δu′ sinψ + δw′ cosψ]Δψ + [−Δu′ sinψ +Δw′ cosψ]δψ+
+ δψ[−(1 + u′) cosψ − w′ sinψ]Δψ ,

Δδγ = [−δu′ cosψ − δw′ sinψ]Δψ + [−Δu′ cosψ −Δw′ sinψ]δψ+
+ δψ[(1 + u′) sinψ − w′ cosψ]Δψ ,

Δδκ = 0 (9.79)

is obtained for the geometrically exact model. By introducing the finite el-
ement interpolations (9.58), the tangent stiffness matrix KT is formulated
based on the linearization (9.78). Its explicit form for the geometrically exact
model is given by

KT =
ne⋃

j=1

n∑
I=1

n∑
K=1

KT IK (9.80)

with

KT IK =

Le∫
0

BT
I DBK dx+

Le∫
0

(N GN
IK +QGQ

IK) dx . (9.81)

The integration is performed numerically as for the residual in (9.66). This
leads finally to the explicit form of the tangent matrix

KT IK =

+1∫
−1

[BT
I DBK +N GN

IK +QGQ
IK ]

Le

2
dξ

≈
np∑

p=1

[
BT

I (ξp)DBK(ξp) +N(ξp)GN
IK(ξp) +Q(ξp)G

Q
IK(ξp)

] Le

2
Wp .

In the case of an elasto-plastic material, integration over the cross section
has to be performed. For the materials described in (9.55) and (9.56), the
tangent matrix can be determined using the projection operator (9.51), the
variable width b(X2) and the parametrization of the coordinate X2 in thick-
ness direction by χ. The application of a Gauss quadrature with nq points in
thickness direction yields the sub-tangent matrix for the nodal combination
I ,K

KT IK =

+1∫
−1

+1∫
−1

[BT
I PT

B ĈPB BK + TB 11 GN
IK + TB 12 GQ

IK ] b
h

2
Le

2
dχ dξ
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≈
np∑

p=1

nq∑
q=1

[
BT

I (ξp)PT
B (χp) Ĉ(ξp , χq)PB(χq)BK(ξp)

+ TB 11(ξp , χq)GN
IK(ξp) + TB 12(ξp , χq)G

Q
IK(ξp)

]
b(χq)

Le

2
WpWq .

In this equation, either the elastic modulus (9.55) or the elasto-plastic mod-
ulus (9.56) has to be inserted for the material tangent Ĉ.

The matrices which are used in (9.81) are given by

GN
IK =

⎡
⎣ 0 0 −N ′

I NK sinψe

0 0 N ′
I NK cosψe

−NI N
′
K sinψe NI N

′
K cosψe α3NINK

⎤
⎦

GQ
IK =

⎡
⎣ 0 0 −N ′

I NK cosψe

0 0 −N ′
I NK sinψe

−NI N
′
K cosψe −NI N

′
K sinψe α4NINK

⎤
⎦ .

They stem from the linearization of the virtual strains. The abbreviations
are defined as

α3 = −(1 + u′e) cosψe − w′
e sinψe ,

α4 = (1 + u′e) sinψe − w′
e cosψe . (9.82)

In the same way, the tangential stiffness matrix is derived for the approx-
imate theories. This leads for the formulation based on (9.35) with matrix
BS

I from (9.63) to

KS
T =

ne⋃
j=1

n∑
I=1

n∑
K=1

⎡
⎣ Le∫

0

BS
I

T
DBS

K dx+

Le∫
0

(N GSN
IK +QGSQ

IK ) dx

⎤
⎦ (9.83)

with

GSN
IK =

⎡
⎣ 0 0 0

0 0 N ′
I NK

0 NI N
′
K −NINK

⎤
⎦ , GSQ

IK =

⎡
⎣ 0 0 −N ′

I NK

0 0 0
−NI N

′
K 0 0

⎤
⎦ .

This result can also be derived directly from the above relations of the ge-
ometrically exact theory. In that case, the limits sinψ → ψ and cosψ → 1
have to be computed for ψ → 0.

The previous set of equations is sufficient to establish the tangential stiff-
ness matrices and residuals needed with a solution method like the Newton

scheme. These equations are related to the local coordinate system of the
straight beam axis. Since beam members are used in most cases within the
construction of complex structures, like multi-storey frames in which the
beams are located in different positions, the matrices and vectors have to
be transformed to a global coordinate system. This can be performed in the
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same way as in the linear theory since all equations are referred to the ini-
tial configuration. The transformation and associated matrices can be found,
e.g. in Crisfield (1991), Zienkiewicz and Taylor (2000a), Hughes (1987) and
Bathe (1996), see also Remark 9.1. By such transformation, the local nodal
displacements and rotations ul

I at node I, see (9.58), can be expressed in
terms of the global deformations ug

I via

ul
I = T̄I ug

I . (9.84)

The explicit form is given in the two-dimensional case by⎧⎨
⎩
uI

wI

ψI

⎫⎬
⎭

l

=

⎡
⎣ cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦
⎧⎨
⎩
uI

wI

ψI

⎫⎬
⎭

g

. (9.85)

The angle α refers to the angle between the local and global coordinate
axis X1. This transformation can be written in the same way for the virtual
nodal displacements ηI . Using this transformation, the local form (9.64) of
the residual vector R l

I and the local form of (9.81) of the tangent matrix
K l

T IK can be expressed in terms of the global coordinates

R g
I = T̄

T
I R l

I and K g
T IK = T̄

T
I K l

T IK T̄I . (9.86)

Exercise 9.4: Derive the linearization for the strain measures and weak form
of Exercise 9.3. The result has to be compared with the equations stemming from
the second order theory, often used in practical engineering applications.

Solution: Using equation (9.36), the variation and linearization of the strain
measures can be computed

δε = δu′ + w′ δw′ , δκ = δψ′ ,

Δε = Δu′ + w′ Δw′ , Δκ = Δψ′ .

They have the same structure and thus can both be discretized using (9.75). The
linearization of the virtual strains yields furthermore

Δδε = Δw′ δw′ , Δδκ = 0 ,

which leads, as for the geometrically exact model, to the tangent matrix

KB
T =

ne⋃
j=1

n∑
I=1

n∑
K=1

⎡
⎣ Le∫

0

BB
I

T
DBBB

K dx +

Le∫
0

N GB
IK dx

⎤
⎦ . (9.87)

The matrix GB
IK has the form

GB
IK =

⎡
⎣ 0 0 0

0 H ′
I H ′

K H ′
I H̄ ′

K
Le
2

0 H̄ ′
I H ′

K
Le
2

H̄ ′
I H̄ ′

K
L2

e
4

⎤
⎦ . (9.88)

In the case of the second order theory only the influence of the normal force is
considered at the deformed system, see e.g. Petersen (1980). Hence the nonlinear
part can be neglected in the strain measure (9.36) which yields the linear strain
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εII =
2∑

I=1

[
N ′

I 0 0
0 H ′′

I H̄ ′′
I

Le
2

]
uI . (9.89)

and its variation

δεII =
2∑

I=1

BII
I ηI with BII

I =

[
N ′

I 0 0
0 H ′′

I H̄ ′′
I

Le
2

]
. (9.90)

Instead the normal force is split into a linear part EA u′ and a nonlinear one
N w′δw′ within the principle of virtual work (9.45), leading to

G(u, η) =

l∫
0

( δu′ EA u′ + N w′ δw′ + δw′′ EI w′′ ) dx −
l∫

0

ηT q dx = 0 . (9.91)

Here it is assumed that the normal force is constant within each load step; hence
it can be viewed as constant within the linearization. This yields the tangential
stiffness matrix

KII
T =

ne⋃
j=1

n∑
I=1

n∑
K=1

⎡
⎣ Le∫

0

BII
I

T
DBBII

K dx +

Le∫
0

N GB
IK dx

⎤
⎦ , (9.92)

where GB
IK is equivalent to the term stated in (9.87). Thus the tangent matrix has

the same form as the tangent matrix of the theory of moderate rotations. Only the
influence of the nonlinear term w′2 is neglected in the constitutive equation for the
computation of the normal force.

9.2.5 Example

A geometrically exact theory and different consistent approximate theories
with the strain measures (9.35) were derived for a two-dimensional beam in
the previous sections. Besides this, the second order theory as most simple
theory to include nonlinear behaviour within beam structures was presented
which relies on further simplifications. It is now of certain value to discuss
the applicability of the different theories. While the geometrically exact the-
ory can be applied in all cases, the approximate theory based on (9.35) is
restricted to relative small displacements and rotations. It can, however, be
applied to solve beam structures with vanishing bending stiffness like ropes or
chains. The classical second order theory is not applicable when the normal
forces to be considered stem from the nonlinear tern w′2 in the constitutive
equations. In such cases, the theory of moderate rotations based on (9.36)
has to be used. This is, e.g. the case when the stiffening effect of boundary
conditions has to be considered, like e.g. a beam between to spatially fixed
supports.

A comparison of the different theories is now presented by means of an
example. The selected frame structure is depicted in Fig. 9.9 which also shows
geometrical and material data. The frame is loaded by a point force F = λ ·1
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Fig. 9.9 Frame structure Fig. 9.10 Deformed structure

acting in vertical direction. Twenty one finite beam elements are applied to
discretize the structure. The computation of the load deflection curve is per-
formed by using an arc-length method discussed in Sect. 5.1.5. Figure 9.10
shows the deformed configuration for a load factor λ = 45, which was com-
puted with the geometrically exact beam model.

Figure 9.11 depicts the load deflection curves for the geometrically exact
model, the other two approximate theories and the theory of second order.
In this figure, the load is plotted versus the vertical displacement under the
point load. Differences are clearly visible. The classical second order theory
follows the results of the geometrically exact theory only for small displace-
ments and hence can only be applied for problems with small displacements
and rotations. Hence the second order theory cannot be applied to model
post-critical states of structures. However, since many beam structures only
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Fig. 9.11 Load deflection curve of the frame
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undergo small displacements and rotations in practical applications, the sec-
ond order theory has its eligibility.

The theory of moderate rotations based on equation (9.35) is closer to the
exact model, but deviates from the result of the geometrically exact theory
when the load factor is larger than λ = 28. It is interesting to note that this
simple model recovers the correct tendency of the solution and hence can be
used to estimate the behaviour in post-critical states.

9.2.6 Summary

This section presented a short overview with respect to different beam
theories spanning the arc from geometrically exact models to second order
theories. For all theoretical models, weak forms were developed and the dis-
cretization leading to residuals and tangent matrices for the nonlinear beam
theories were derived. In summary, the following statements can be made:

– The effort for the computation of residuals vectors and tangent matrices
is almost identical for the geometrically exact model and the approximate
theories.

– One can always use the best (geometrically exact) model to discretize beam
structures. Such approach ensures that, from the model point of view, the
finite element analysis will converge to the correct theoretical solution.

– Exact analytical solution of approximate theories (these can be developed
for the second order theory) are not exact when it comes to modelling a
nonlinear beam problem.

– From the results of the example in Fig. 9.9, it can be deduced that approx-
imate theories are useful for a wide range of problems in which the effects
of the nonlinear behaviour yield only small displacements and rotations.

9.3 Axisymmetric Shell Element

Many engineering shell problems can be described by axisymmetric defor-
mation states since different structures like cylindrical or spherical shells are
axisymmetric. Problems which belong to this class are air-filled springs made
of rubber or forming processes including inelastic deformations. Also defor-
mations related to biomechanical systems, like e.g. arteries, can be modeled
by axisymmetric shell elements when geometry and loading are adequate. Ax-
isymmetric formulations can be used for the general problem class of shells of
revolution. These are very efficient since they basically reduce the dimension
by one and hence lead to equations systems which are very sparse and can be
solved in a fraction of the computing time of the associated three-dimensional
shell computations.
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Shell theories base usually on the kinematic assumption either of shear
elastic or of shear rigid models. A special case is related to pure membrane
behaviour which can be applied to describe certain phenomena and struc-
tures in engineering but also in biomechanics. Technical applications are deep
drawing processes of metal sheets, rubber balloons under internal pressure or
the deformation of blood cells which depict no or negligible bending energy.
Hence besides the shell equations the equations for pure membrane states
will also be presented in the following.

All mentions problem areas include, besides finite deformations, nonlinear
material behaviour. Finite deformations can be formulated, as in the previous
section, with respect to the initial configuration. For the constitutive model,
an hyperelastic Ogden material will be applied, see Sect. 3.3.1, which can
be used to model a large range of rubberlike materials. Furthermore, finite
inelastic strains will be considered for metals and in biomechanical applica-
tions, see e.g. Wriggers et al. (1995), Holzapfel et al. (1996a) and Holzapfel
et al. (1996b).

The finite element formulation for the axisymmetrical shell follows to
a large extend the derivations in Wriggers et al. (1995). It bases on the
assumption of a straight element describing the geometry of a cone which,
however, can be used to model arbitrary geometries approximatively. The
special case of such finite element shell formulation is a membrane which was
explicitly derived in Wriggers and Taylor (1990).

9.3.1 Kinematics and Strains of the Axisymmetrical Shell

Again, as for beams, a geometrically exact model is introduced for the shell
which has, besides the kinematical assumption of the shell theory, no further
restrictions with respect to displacements, rotations and strains.

The relevant nonlinear strains measures will not be derived in detail; they
can be found in e.g. Wagner (1990) for shear elastic rotational shells. Due
to the formulation, which takes shear deformation into account, simple C0-
elements can be applied to discretize the nonlinear shell equations. In case
of thin shells, the shear elastic theory is not necessary since the classical
Kirchhoff–Love theory is sufficient to model these problems in engineer-
ing applications. Such model however would need a discretization on the
basis of C1-elements since the ansatz functions have to be continuous for the
displacements and for the derivatives. Thus the resulting finite element for-
mulation is more complex, for the linear case see e.g. Zienkiewicz and Taylor
(1989).

It is well known that locking occurs in the thin shell limit within a shear
elastic finite element model. In that case, the shear deformations tend to zero
and this constraint is responsible for locking. In case of the axisymmetrical
shell formulation, locking can be circumvented by reduced integration. In
case of a two-node linear element, reduced integration does not lead to a
rank deficient tangent matrix; the associated linear case was discussed in



9.3 Axisymmetric Shell Element 347

E1

E3

θ

N

A1 u

w

n β

a1

G1

X

d g1

XM

Fig. 9.12 Kinematics for shells of revolution

Zienkiewicz et al. (1977). Due to this fact, it is possible to apply the shear
elastic shell theory without any complications.

Here a finite element formulation for thin shells will be developed. In that
case, the shear deformation is almost zero and hence this part of the strain
energy can be modeled by a penalty method in order to enforce zero shear
in the finite element model. Such model is called quasi-Kirchhoff model
and is only applied in order to be able to use simple C0-elements for the
discretization of the shells. More complex models including real shear elastic
behaviour and thickness change can be found in e.g. Eberlein (1997).

The deformation of the shell continuum - based on these preliminary
remarks - is described in Fig. 9.12. A point in shell space is given by the
position vector X which can be expressed by the position vector XM to the
shell midsurface, the normal vector, N, and the local coordinate in thickness
direction, ξ,

X = XM + ξN . (9.93)

All quantities describe the initial configuration of the shell. The coordinate ξ
is restricted to − t0

2 ≤ ξ ≤ + t0
2 with t0 being the shell thickness in the initial

configuration.
In the same way, a point in the deformed shell continuum is given by

x = xM + ξ d . (9.94)

Again xM is related to the deformed shell midsurface. The director vector
d describes the rotation of the cross section relative to the midsurface. Such
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geometrical assumption includes shear deformation. With respect to the no-
tation presented in Fig. 9.12, the position vector is stated explicitly by

X =
{
s sin θ
s cos θ

}
+ ξ

{
− cos θ

sin θ

}
(9.95)

with respect to the initial configuration. The coordinate s represents the arc-
length which describes the length of the position vector XM . The position
vector in the current configuration is now formulated as

x =
{

(s+ u) sin θ − w cos θ
(s+ u) cos θ + w sin θ

}
+ ξ

{
− cos(θ − β)

sin(θ − β)

}
. (9.96)

Based on these kinematical assumptions, the physical components of the
Green–Lagrange strain tensor can be derived for the axisymmetrical shell.
In general, the strain tensor can be split in a membrane (m), bending (b) and
shear part (s) as follows

E = Em + Es + ξEb . (9.97)

Again ξ is the local coordinate in thickness direction. Terms which are mul-
tiplied by ξ2 have been neglected in this derivation since only thin shells are
considered and thus this term can be neglected due to its smallness.

The strains in meridian direction, E1, and the hoop strains, E2, follow as
well as the shear strains E13 from the kinematical relation (9.96)

Em
1 = u,s + 1

2 (u2
,s + w2

,s),

Em
2 = eθ + 1

2e
2
θ with eθ = 1

r (u sin θ − w cos θ), r = s sin θ,

Eb
1 = −[(1 + u,s) cosβ + w,s sinβ]β,s,

Eb
2 =

cos θ
r

− r c2(1 + eθ) with c2 =
1
r2

(sin θ sinβ + cos θ cosβ),

Es
13 = −(1 + u,s) sinβ + w,s cosβ .

(9.98)

In these, equation u and w are displacements with respect to the local coordi-
nate system. β is the angle of rotation which describes a plane rotation of the
director vector d, see Fig. 9.12. These strain measures include no further ap-
proximations than the ones due to the kinematical model (9.96); hence they
are valid for finite strains and rotations of shells of revolution. The strains
Eγ can also be expressed by the principal strains λγ , see (3.23). For shells of
revolution with axisymmetrical loading, this is quite simple, since only the
strains
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E1 = Em
1 + ξEb

1 and E2 = Em
2 + ξEb

2 (9.99)

occur which are perpendicular to each other. Hence these are principal strains
by definition. From relation Eγ = 1/2 (λ2

γ − 1), the principal strains follow
with (9.98) in explicit form

λ1 =
√

(1 + u,s)2 + w2
,s − 2 ξ [(1 + u,s) cosβ + w,s sinβ]β,s ,

λ2 =
√

(1 + eθ)2 + 2 ξ [ cos θ
r − r c2 ( 1 + eθ )] .

(9.100)

The principal strain λ3 can be obtained from the constitutive equation by
assuming plane stress which is a valid assumption for thin shells.

For further reference, the determinant J of the deformation gradient F is
stated which is simply the product of the principal strains

J = λ1 λ2 λ3 . (9.101)

Note that incompressible material response (J = 1) can be included exactly
within this model. Since the direction of principal strain λ3 is normal to the
shell midsurface for thin shells, it is simply given by the thickness change
λ3 = t/t0. Thus the current shell thickness is given for incompressibility by

t =
t0
λ1 λ2

(9.102)

with the thickness t0 of the shell in the initial configuration.

9.3.2 Variational Formulation

The principel of virtual work or weak, for the general form see (3.292), can be
stated under the assumption of axisymmetrical geometry and loading with
respect to the initial configuration as

G(u, ηηη) = 2π

[∫
(C)

∫
ξ

Sγ δEγ r dξ dS + ε
∫

(C)

∫
ξ

Es
13 δ E

s
13 r dξ dS

]

−2π
∫

(C)

∫
ξ

t̂γ ηγ r dξ dS = 0 . (9.103)

In this equation, the sum convention is used where the Greek indices assume
values 1 and 2 (γ = 1, 2). The curve describing the shell of revolution is
denoted by C in (9.103). The radius of the shell is described by r; it is
measured in the initial configuration. The virtual strains δEγ result from
(9.99) and (9.98). ηγ denotes the variation of uγ , which have to fulfil the
essential boundary conditions: {ηγ | ηγ = 0 auf ∂Cu}, as already discussed
in Sect. 3.4.1.
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The stress vector t̂γ in (9.103) describes surface loads acting on the shell.
For a deformation dependent pressure load p, the relation t̂γ = p nγ is ob-
tained, where nγ are the components of the normal vector in the current
configuration. The explicit finite element formulation for this loading case
can be found in Sect. 4.2.5, see Exercise 4.5.

The work conjugated 2nd Piola–Kirchhoff stresses Sγ are computed
from the Cauchy stresses by S = J F−1 σσσF−T , see (3.83). For the principal
stresses, this simplifies to

S1 = J λ−2
1 σ1, S2 = J λ−2

2 σ2 . (9.104)

With J = 1, relations

S1 = λ−2
1 σ1, S2 = λ−2

2 σ2 (9.105)

follow for the special case of incompressibility.

9.3.3 Constitutive Equations

Three different constitutive equations are discussed in the following and ap-
plied to finite deformation states of shells of revolution. The materials belong
to different engineering problem classes and include constitutive relations for
rubberlike materials, metals and biomechanical materials.

Rubberlike Materials. Rubberlike materials can best be described by the
constitutive equation (3.113) of Ogden (1972) which was developed for incom-
pressible materials. The constitutive relation is based upon a strain energy
function formulated in terms of the principal stretches λ

W (λi) =
∑

r

μr

αr
[λαr

1 + λαr
2 + λαr

3 − 3 ] . (9.106)

μr and αr are constitutive constants which have to be deducted by exper-
iments. The Cauchy stresses for an incompressible material follow with
(3.134) analogous to (9.10)

σi = λi
∂W

∂λi
+ p , (9.107)

where p is the pressure which is related to the constraint J = 1. In case of a
plane stress state, the pressure can be determined from the equation σ3 ≡ 0.
With the incompressibility condition λ3 = (λ1 λ2)−1, the result

σγ =
∑

r

μr [λαr
γ − (λ1 λ2)−αr ] (9.108)

is derived. By inserting this relation in (9.105), the 2nd Piola–Kirchhoff

stresses are obtained which are used in the weak form (9.103).
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The incremental constitutive tangent with reference to the initial config-
uration is derived from

Lγ δ =
∂Sγ

∂Eδ
=
∂Sγ

∂λβ

∂λβ

∂Eδ
, (9.109)

see also Sect. 3.3.4. The components of the material tangent can be stated
explicitly as

Lγ γ =
1
λ4

γ

∑
r

μr

[
(αr − 2)λαr

γ + (αr + 2)(λ1 λ2)−αr
]

(γ = δ) ,

Lγ δ =
1

λ2
γ λ

2
δ

∑
r

μr αr (λ1 λ2)−αr (γ 	= δ) . (9.110)

Note that the constitutive parameters μr and αr have to be selected such that
the conditions presented in (3.114) are met. Since the incremental material
tensor has to coincide with the material tensor of a linear elastic material
(Hooke’s law) for small strains, condition 2μ =

∑
r μrαr has to be fulfilled

additionally. This can be shown by an evaluation of the material tangent
given in (9.110) at the undeformed initial configuration (λγ = 1):

L
∣∣
λγ=1

=
∑

r

μrαr

[
2 1
1 2

]
. (9.111)

The linear law of Hooke can be written for a membrane as

C =
E

1 − ν2

[
1 ν
ν 1

]
. (9.112)

With 2μ(1 + ν) = E, matrix C is equivalent to L in (9.110) for the case of
incompressibility ( ν = 0.5 ).

Metal Plasticity. The general constitutive equations for the description
of metals undergoing finite elasto-plastic deformations were formulated in
Sect. 3.3.2. The kinematics of such deformations is based on the multiplicative
decomposition of the deformation gradient, see (3.191),

F = Fe Fp . (9.113)

The incompatible intermediate configuration is described by the tensor Fe.
This configuration is assumed to be stress-free. The multiplicative decom-
position can be formulated in principal stretches in case of axisymmetrical
deformations

λi = λe
i λ

p
i . (9.114)

By introducing the logarithmic strains (6.147) which denote the eigenvalues
of the Hencky tensor E(0) = lnU, see (3.19),
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εi = ln λi , εei = ln λe
i , εpi = ln λp

i ,

e = lnJ = ε1 + ε2 + ε3,
(9.115)

the multiplicative decomposition (9.114) can be reformulated as an additive
decomposition

εi = εei + εpi . (9.116)

The plastic flow is modeled as isochoric process which leads to the con-
straint

detFp = Jp = λp
1 λ

p
2 λ

p
3 = 1 or ep = εp1 + εp2 + εp3 = 0 . (9.117)

Furthermore, the elastic strains are split into a volumetric and deviatoric
part

λ̄e
i = J− 1

3 λe
i with λ̄e

1 λ̄
e
2 λ̄

e
3 = 1 . (9.118)

The associated additive split of the elastic strains follows with (9.115)

ε̄ei = εei − 1
3e with ε̄e1 + ε̄e2 + ε̄e3 = 0 . (9.119)

Equations (9.116) and (9.119) show that the strains can be split additively,
as in the small strain theory, when logarithmic strains are introduced. Hence
the finite elasto-plastic strains can be modeled as in the geometrically linear
theory, see also Sect. 6.2.

For isotropic material behaviour, it is consistent to introduce a strain en-
ergy function for small elastic strains, see Remark 6.2 (6.158), which depends
only on the elastic strains

WLin(εei ) =
Λ

2
e2 + μ [ (εe1)

2 + (εe2)
2 + (εe3)

2 ] . (9.120)

Λ and μ are the Lamé constants, see (3.119). The strain energy function
(9.120) is equivalent to the strain energy function for linear elastic material,
see e.g. Malvern (1969). The restriction to small elastic strains does not pose
a problem for metal plasticity since only small elastic strains occur on the
onset of plastic deformations.

The principal stresses τi of the Kirchhoff stress tensor are work conju-
gate to the logarithmic strains εei as shown in Hill (1970) and Hoger (1987).
With this result and by using the chain rule, the principal stresses follow
from the strain energy function

τi =
∂WLin(εei )

∂εei
= Λe+ 2μ εei . (9.121)

This relation can be reformulated with (9.119), leading to a decoupled rep-
resentation for the volumetric and deviatoric part

τi = K e+ 2μ ε̄ei . (9.122)
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The strains in thickness direction are eliminated by the assumption of a plane
stress state

τ3 = K e+ 2με̄e3 = 0 . (9.123)

The strain ε̄e3 can be substituted using (9.119)2 which yields an equation for
the volumetric strain

e =
2μ

K + 4
3μ

(εe1 + εe2) .

The stresses τα follow with K = 2μ (1+ν)
3(1−2ν) and μ = E

2(1+ν) and some algebraic
manipulations

τα =
E

1 − ν2
[ (1 − ν) εeα + ν (εe1 + εe2) ] . (9.124)

Note that the relation (9.124) fulfils the plane stress state in an exact manner.

The flow rule can be derived from the principle of maximum plastic dis-
sipation, which was already described in Remark 3.6. For axisymmetrical
shells, the dissipation is given by

Dp = τi ε̇
p
i −→ max . (9.125)

To fulfil the convex flow condition f(τi) = 0, a Lagrange function

Lp(τi, γ̇) = −τi ε̇pi + γ̇ f(τi) (9.126)

is introduced in which γ̇ represents the Lagrange multiplier. The solution
of the saddle point problem (9.126) has to fulfil the constraint conditions

∂Lp

∂τi
= −ε̇pi + γ̇

∂f

∂τi
= 0 (9.127)

and yields the associated flow rule

ε̇pi = γ̇
∂f

∂τi
. (9.128)

For metal plasticity, the classical von Mises flow condition or yield function
can be formulated in terms of the deviatoric Kirchhoff stresses s

f(τ , α) =
3
2
tr(s2) − Y 2(α) ≤ 0 s = devτ , (9.129)

where linear isotropic hardening is assumed

Y (α) = Y0 + Ĥ α . (9.130)

The magnitude of hardening depends on the equivalent plastic strains α. Y0

is the initial yield stress and Ĥ defines the isotropic hardening coefficient.
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The principal values of the deviatoric stress tensor s can be presented for the
plane stress case in matrix form

s = Aτ with s =
{
s1
s2

}
, τ =

{
τ1
τ2

}
and A =

[
2 −1

−1 2

]
.

(9.131)

With this matrix formulation, the flow condition (9.129) can be reformu-
lated as

f(τ , α) = g2(τ ) − Y 2(α) ≤ 0 with g2(τ ) =
1
2
τT Aτ . (9.132)

The plastic strains εp = {εp1, ε
p
2} are obtained by an implicit Euler integra-

tion of the flow rule, as already described for the three-dimensional case in
Sect. 6.2.2. This leads for the flow rule (9.128) with (9.132) to

εp
n+1 = εp

n +
tn+1∫
tn

γ̇
∂f

∂τ
dt̄ = εp

n + γAτn+1 . (9.133)

γ =
∫ tn+1

tn
γ̇ dt̄ is the increment of the consistency parameter within the time

step tn+1. The plastic incompressibility, expressed by (9.117)2, is fulfilled
automatically since s is purely deviatoric.

In the next step, the evolution equation for the hardening parameter α is
derived from the flow condition (9.129). With (3.161), relation

α̇ = 2 γ̇ Y (α) (9.134)

follows. Using now an implicit Euler integration for the rate of the hardening
variable within time step tn+1 yields

αn+1 = αn + 2γ Y (αn+1) . (9.135)

This leads to an update formula for the hardening variable

Y (αn+1) = Y0 + Ĥ [αn + 2γY (αn+1) ]
Yn

1 − 2γĤ
(9.136)

with Yn = Y0 + Ĥαn. Due to the implicit Euler method, the plastic strains
are implicit functions of the consistency parameter such that an iterative
algorithm has to be applied for its solution, see also Sect. 6.2.2. This itera-
tion is performed within the framework of the predictor–corrector schemes
described in Sect. 6.2.2.

In matrix notation, the principal values of the elastic Kirchhoff stresses,
given by (9.124), can be written at the beginning of a new time step as trial
stresses

τ tr = C εe = C (εn+1 − εp
n), (9.137)

where in addition to (9.131) the following definitions have been introduced
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C =
E

1 − ν2

[
1 ν
ν 1

]
, ε =

{
ε1
ε2

}
, εe =

{
εe1
εe2

}
, εp =

{
εp1
εp2

}
. (9.138)

Now the predictor–corrector method, described in Sect. 6.2.2, is applied. In
case that the trial stresses fulfil the flow condition ( f(τ tr , αtr) ≤ 0 ), then
the material point undergoes purely elastic deformation within the time step.
When the trial stresses do not fulfil the flow condition

f(τ tr) =
1
2
τ tr T Aτ tr − Y (αn)2 > 0 , (9.139)

then the time step includes elasto-plastic deformations. In that case, the
elasto-plastic stresses follow from (9.116) and (9.133) in the time step tn+1

εεεn+1 = εεεen+1 + εεεpn+1 = C−1τττn+1 + εεεpn + γAτττn+1 . (9.140)

A reformulation of (9.140) yields

τ (γ)n+1 = (C−1 + γA)−1 (εn+1 − εp
n) = C̄(γ) (εn+1 − εp

n) (9.141)

with

C̄(γ) = [(
1
E

+ 2γ)2 + (
ν

E
+ γ)2]−1

⎡
⎢⎣

1
E

+ 2γ
−ν
E

− γ
−ν
E

− γ 1
E

+ 2γ

⎤
⎥⎦ . (9.142)

The stresses τ are functions of the consistency parameter γ, which follows
from the flow condition f(γ) = 0. The associated nonlinear algebraic equation
for γ is solved using Newton’s method, see also Sect. 6.2.2. Analogous to
(6.108), the iteration scheme

γi+1 = γi − f(γi)/f ′(γi) (9.143)

is obtained with

f(γi) = g2(γi) − Y 2(γi),

f ′(γi) = −sT C̄s − 4Y 2(γi)H̄,

H̄ = Ĥ(1 − 2 γi Ĥ)−1 .

(9.144)

In case of incompressible behaviour (ν = 0.5), a closed form solution can be
derived for the consistency parameter

γinc =
1 − κ
6μκ

with κ =
Yn + δ gtr

gtr (1 + δ)
and δ =

Ĥ

3μ
. (9.145)

The solution (9.145) can be applied as starting value γ0 = γinc for the more
general case in (9.143).

Finally the update of the intermediate configuration can be obtained using
(9.133). With these relations, all stresses which enter the weak form (9.103)
are known from (9.141) with the solution of (9.143). The material matrix
needed in the linearization of the shell element is given by (9.142) where the
solution of (9.143) has to be inserted.
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Biomechanical Material Behaviour. Arteries consist of biological mate-
rial which can be described in general by viscoelastic constitutive response.
Furthermore, these biological structures undergo eventually finite deforma-
tions. Hence they are considered here as an example for a biomechanical
constitutive materials. For reasons of simplicity, the following formulation is
restricted to the description of the elastic part of the more general constitu-
tive behaviour which is e.g. valid to model the response of an aorta under
certain loading conditions.

Arteries change their material response in the whole range from small
to finite strains. Based on experimental evidence, a strain energy function
can be introduced which describes isotropic response for small strains but
anisotropic constitutive behaviour at large strains. When the isotropic be-
haviour is represented by a simple Neo–Hooke model, see (3.116), and when
a formulation due to Chuong and Fung (1983) is selected for the anisotropic
part, then the strain energy

W (E) = c1 (IE − 3) + c2 eQ−1 (9.146)

follows. Here E is the Green–Lagrange strain tensor and IE its first in-
variant. c1 and c2 are constitutive constants and Q is a function of the strains
EAA in circumferential, axial and radial direction of the artery

Q = a1E
2
11 + a2E

2
22 + a3E

2
33 + +2 a4E11E22 + 2 a5E22E33 + 2 a6E11E33 .

(9.147)

The components EAB are assumed to be zero for (A 	= B). In Q occur six
more material constants which have to be determined by experiments as
well as c1 and c2. Furthermore, experimental tests have shown that arteries
depict incompressible material behaviour; hence J = λ1 λ2 λ3 = 1 can be
introduced.

Within the constitutive model for axisymmetrical shells, it is further as-
sumed that the stresses in thickness direction vanish. Thus the 2nd Piola–

Kirchhoff stresses are present only in axial and circumferential direction
(S1 , S2). Analogous to the derivation of (9.108), for incompressible rubberlike
material, the principal stresses

S1 = 2 c1
{

1 − [(2E2 + 1)(2E1 + 1)2]−1
}

+2 c2 (a2E1 + a4E2) eQ ,
S2 = 2 c1

{
1 − [(2E2 + 1)2(2E1 + 1)]−1

}
+2 c2 (a2E1 + a4E2) eQ (9.148)

are obtained from (9.146) and (9.147) with Eγ = 1
2 (λ2

γ − 1), see Holzapfel
et al. (1996b). The constants a3, a5 and a6 in (9.147) are zero.

The incremental material tangent L follows from the stresses in (9.148)
with respect to the initial configuration
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L11 = 8 c1 [(2E2 + 1)(2E1 + 1)3]−1 + 2 c2 [a2 + 2 (a2E1 + a4E2)] eQ ,
L12 = 4 c1 [(2E2 + 1)2(2E1 + 1)2]−1 (9.149)

+2 c2 [a4 + 2 (a2E1 + a4E2) (a4E1 + a1E2)] eQ ,
L22 = 8 c1 [(2E2 + 1)3(2E1 + 1)]−1 + 2 c2 [a1 + 2 (a4E1 + a1E2)] eQ ,

with L12 = L21. For this constitutive description of arteries, a parameter
identification was performed in Holzapfel et al. (1996b) to obtain the consti-
tutive parameters from experimental data and then applied to simulate the
dilatation of arteries by balloons.

9.3.4 Finite Element Formulation

The kinematical relations (9.98) and the weak form of equilibrium (9.103)
define together with the constitutive equation the boundary value problem
of the axisymmetrical shell. The solution of this set of nonlinear equations
by the finite element method requires a discretization for which interpolation
functions have to be selected. Here C0 interpolations are sufficient for the
presented 3-parametertheory. Hence the linear shape functions given in (4.17)
can be used. These are applied to discretize displacements and rotations as
well as the associated test functions which all are related to the local shell
midsurface, see Fig. 9.13. The general interpolation

ue =
2∑

I=1

NI(ζ)uI , (9.150)
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includes the displacements u and w as well as the rotation β. They are as-
sembled in the vector ue = {ue , we , βe }T . In the same way, the test function
(or virtual displacements and rotations) are given by

ηηηe =
2∑

I=1

NI(ζ)ηηηI , (9.151)

with ηηηe = { δu , δw , δβ }T .
By inserting these interpolation functions into (9.98), the discretized

strains of the axisymmetrical shell are obtained. The virtual strains for mem-
brane, bending and shear are part of the weak form (9.103). The shear strains
are necessary for the fulfillment of the constraint condition E13 = 0 when us-
ing a penalty method within the quasi-Kirchhoff formulation. With (9.151)
and (9.98), the variation of the strains is given by

{
δE1

δE2

}
=

2∑
I=1

Bmb
I ηηηI , δE13 =

2∑
I=1

B pen
I ηηηI . (9.152)

The B matrices are defined as follows

Bmb
I =

[
B11 B12 B13

B21 B22 B23

]
(9.153)

with

B11 = ( 1 + u,ζ −ξ β,ζ cosβ )NI ,ζ

B12 = (w,ζ −ξ β,ζ sinβ )NI ,ζ

B13 = ξ {[ (1 + u,ζ ) sinβ − w,ζ cosβ ]β,ζ NI

− [ (1 + u,ζ ) cosβ + w,ζ sinβ ]NI ,ζ }

B21 = [ (1 + eθ)
sin θ
r

− ξ c2 sin θ ]NI

B22 = [−(1 + eθ)
cos θ
r

+ ξ c2 cos θ ]NI

B23 =
ξ

r
(1 + eθ)( cos θ sinβ − sin θ cosβ ]NI

and

B pen
I = [− sinβ NI ,ξ , cosβ NI ,ξ ,−[(1 + u,ζ ) cosβ + w,ζ sinβ]NI ] .

(9.154)
The notation introduced in (9.98) was used in the above relations also.

Now the discrete weak form, based on (9.103), can be written as

G(u , ηηη) =
ne⋃

e=1

2π
2∑

I=1

ηηηT
I

⎡
⎣ +1∫
−1

+1∫
−1

(Bmb
I )T

{
S1

S2

}
r
Le

2
t0
2
dξ̂ dζ +
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ε t0

+1∫
−1

(B pen
I )T E13 r

Le

2
dζ −

+1∫
−1

NI

{
t̂1
t̂2

}
r
Le

2
dζ

⎤
⎦ . (9.155)

Le denotes the length of the finite element, see Fig. 9.13. Since a nonlinear
constitutive equation (e.g (9.107) or (9.142) ) is used, it is not possible to
analytically integrate over the shell thickness. Hence numerical integration
has to be applied. Here Gauss-Integration is selected, for the location of the
Gauss points see Table 4.1. Within this approach, a transformation of the
thickness variable to the length “2” has to be performed such that a new
variable ξ̂ = t0

2 ξ appears in (9.155).
The second term in (9.155) can be analytically integrated over the thick-

ness since a linear “constitutive equation” with the penalty parameter ε is
used within the quasi-Kirchhoff model.

The linearization of the continuous form can be derived from (9.103) which
then yields the tangent operator necessary for the Newton scheme

DG(u , ηηη) ·Δu = 2π

[∫
(C)

∫
ξ

(Lγ ν δEγ ΔEν + SγΔδEγ ) r dξ dS

+ ε t0

∫
(C)

(ΔE13 δ E13 + E13ΔδE13 ) r dS

]
. (9.156)

The matrix form of the variations of Eγ and E13 is known from the discretiza-
tion (9.152). The linearization of the strains has the same structure as the
variation since variation are based on the directional derivative. Hence{

ΔE1

ΔE2

}
=

2∑
I=1

Bmb
I ΔuI , ΔE13 =

2∑
I=1

B pen
I ΔuI (9.157)

can be written by directly using (9.152) to (9.154). The linearization of the
variation yields for a finite element

ΔδEγ =
2∑

I=1

2∑
K=1

ηηηT
I Gmb

γ IK ΔuK γ = 1 , 2 , (9.158)

ΔδE13 =
2∑

I=1

2∑
K=1

ηηηT
I G pen

IK ΔuK . (9.159)

Finally,

Gh(u , ηηη) ·Δu =
ne⋃

e=1

2∑
I=1

2∑
K=1

ηηηT
I 2πKIK ΔuK (9.160)

is obtained, where KIK is the tangential stiffness matrix related to node I
and K.
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KIK =

+1∫
−1

+1∫
−1

[ (Bmb
I )T LBmb

K + Sγ Gmb
γ IK ] r

Le

2
t0
2
dξ̂ dζ +

ε t0

+1∫
−1

[(B pen
I )T B pen

K + E13 G pen
IK ] r

Le

2
dζ . (9.161)

The analytical expression of the matrices Gmb
IK and G pen

IK is rather complex.
Hence the explicit forms will not be provided here. They can be found in
Eberlein (1997) and Eberlein et al. (1993).

All matrices are referred to the local coordinate system defined in Fig. 9.13.
A transformation of these matrices to the global coordinate system with the
base vectors Ei has to be performed in order to be able to assemble ele-
ments to model an arbitrarily shaped axisymmetrical shell. This transforma-
tion, however, is the same as for beam elements and hence is standard, see
Remark 9.1 for details. Again the transformation, valid for the linear theory,
can be applied since the shell element is formulated with respect to the initial
configuration.

Remark 9.3: Nonlinear shell problems depict often stability behaviour and snap-
through or bifurcation can occur as discussed in Chap. 7. Hence it is often necessary
to use, within the computation of the nonlinear response of shell structures, a
continuation method which is able to follow arbitrary solution paths. Commonly
arc-length methods are employed, see Sect. 5.1.5, which provide a stable solution
scheme for such problems. Additionally, the extended system could be applied to
locate stability or singular points, see Sect. 7.2.

Exercise 9.5: Specialize the equations of the axi-symmetrical shell for a pure
membrane state. Assume rubber elastic material and derive the residual and lin-
earization of the membrane element explicitly.

Solution: Shear strains as well as strains resulting from curvature can be ne-
glected in a pure membrane states. This leads to a simplification of equations (9.98)

ε1 = u,s +
1

2
u2

,s +
1

2
w2

,s (9.162)

ε2 = eθ +
1

2
e2

θ with eθ = (cos θ u + sin θ w) / R , (9.163)

where ε1 and ε2 are the membrane strains in meridional and circumferential direc-
tions. u and w are the displacements with respect to the local coordinate system,
see Fig. 9.12. The principal stretches follow from the strains in (9.103) identical to
the derivation for (9.100)

λ1 =
√

(1 + u,s)2 + w2
,s , (9.164)

λ2 = 1 + eθ . (9.165)

The principle of virtual displacements or the weak form of equilibrium for the
membrane can be deduced from (9.103)
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G(u, ηηη) = 2 π t0

[ ∫
(C)

Sγ δεγ r dS −
∫

(C)

t̂ · ηηη dS

]
= 0 (γ = 1, 2), (9.166)

where the variations of the membrane strains (9.163) have to be inserted. Since the
stresses in a membrane are constant over the thickness, an analytical integration
over the thickness can be performed. The variations of (9.163) are given by

δε1 = (1 + u,s)δu,s + w,s δw,s ,

δε2 = (1 + eθ) δeθ with δeθ = (cos θ δu + sin θ δw) / r . (9.167)

For the linearization of (9.166), all field quantities which depend upon the dis-
placements have to be considered. This yields ΔSγ , Δεγ and Δδεγ . Using the prod-
uct rule,

D G(u, ηηη) · Δu =

∫
[ δεγ

∂Sγ

∂εβ
Δεβ + Sγ Δδεγ ] dS (9.168)

is obtained. All derivatives of Sγ with respect to εβ follow from (9.110). Hence the
incremental stresses can be written in matrix form ΔS = LΔεεε or explicitly as{

ΔS1

ΔS2

}
=

[
L11 L12

L21 L22

] {
Δε1
Δε2

}
. (9.169)

The linearization of the strains Δεγ and of the virtual strains Δδεγ can then be
deduced, leading to

Δε1 = (1 + u,s) Δu,s + w,s Δw,s , (9.170)

Δε2 = (1 + eθ) (cos θ Δu + sin θ Δw )/r , (9.171)

Δδε1 = δu,s Δu,s + δw,s Δw,s , (9.172)

Δδε2 = (cos θ δu + sin θ δw ) (cos θ Δu + sin θ Δw )/r2 . (9.173)

A simple isoparametric finite element with two nodes can be formulated based
on the equations for the membrane derived above. The displacements are approxi-
mated by a linear interpolation

uγ =
2∑

I=1

NI(ζ) uI γ . (9.174)

Using the same interpolation for the virtual displacements or test function ηγ =∑2
I=1 NI(ξ) ηI γ leads to the discretized version of variations (9.167) and its lin-

earizations (9.173)

{
δε1
δε2

}
=

2∑
I=1

BI

{
η1

η2

}
I

,

{
Δε1
Δε2

}
=

2∑
I=1

BI

{
Δu1

Δu2

}
I

, (9.175)

where the B-matrix is given by

BI =
2∑

I=1

[
(1 + u,ζ) NI,ζ w,ζ NI,ζ

(1 + eθ)
cos θ

r
NI (1 + eθ)

sin θ
r

NI

]
. (9.176)

Furthermore, the linearization of the virtual strains (9.173) have to be approxi-
mated. This yields
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Δδεγ =
2∑

I=1

2∑
k=1

〈η1 , η2〉I Gγ I GT
γ K

{
Δu1

Δu2

}
J

. (9.177)

The operator matrices Gγ are given by

G1 I =

{
NI,ζ

NI,ζ

}
G2 I =

{
cos θ

R
NI

sin θ
R

NI

}
. (9.178)

Based on these results, the weak form of the equilibrium can be formulated for the
membrane element. It is obtained by inserting (9.175) into (9.166)

Ge(u, ηηη) = 2 π t0

2∑
I=1

ηηηI

⎡
⎣ 1∫
−1

BT
I

{
S1

S2

}
r

Le

2
dζ −

1∫
−1

NI

{
t̂1
t̂2

}
r

Le

2
dζ

⎤
⎦ .

(9.179)

Le denotes the length of the finite element. The 2nd Piola-Kirchhoff stress tensor
Sγ in (9.179) has to be computed from the nonlinear constitutive equation (9.108)
using (9.105).

The finite element approximation of the linearization (9.168) yields, for an ele-
ment e analogous to (9.160),

D Ge(u, ηηη) Δu =

2∑
I=1

2∑
K=1

ηηηI KT IK ΔuK . (9.180)

Here the tangential stiffness matrix related to node I and K is given by

KT IK = 2 π t0

1∫
−1

(BT
I LBK + S1 G1 IG

T
1 K + S2 G2 IG

T
2 K ) r

Le

2
dζ , (9.181)

where the incremental constitutive matrix L is defined by (9.109) and (9.169). Note
that a one point Gauss-quadrature is sufficient to integrate (9.179) and (9.181).

9.4 General Shell Elements

Axi-symmetric shell elements were discussed in the previous section for ap-
plications with finite elastic and inelastic deformations. The generalization of
these formulations to three-dimensional general shell elements will be derived
in this chapter.

Basically any shell could be discretized using three-dimensional solid ele-
ments as discussed in Chap. 4. This approach is depicted on the left side of
Fig. 9.14. A linear interpolation through the thickness is then in close accor-
dance with the assumption that plane cross sections remain plane during the
deformation.1 Additionally, change of thickness is also taken into account in
this model. It is well known, see e.g. Zienkiewicz et al. (1971) for the linear

1 Note that a plane isoparametric surface assumes, in general, a hypar surface after
deformation.
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Discretization of shell
by kinematics 3d-kinematics:
”degenerated concept”

shell equations
with respect to midsurface

Discretization of

Fig. 9.14 Discretization of shells

case, that a pure displacement formulation, as defined in Sects. 4.1.3 and 4.2,
leads to locking in the thin shell limit. Hence special interpolations have to
be employed when three-dimensional solid formulations are used to discretize
shells in order to eliminate locking, see e.g. Chap. 10.

Classically the approach described on the right side of Fig. 9.14 is followed
for the development of nonlinear shell elements. However, locking can also
occur for specific shell formulations which are derived in that way.

9.4.1 Introductory Remarks

The description of the shell continuum, the kinematics, the weak form of
linear momentum and the constitutive equations can be stated in various
ways. Some basic concepts will be discussed briefly in this introduction.

Shell continuum and shell kinematics. Several possible formulations
can be applied for the description of a shell continuum when finite element
analysis is concerned. These are depicted in Fig. 9.14 and discussed in the
following.

– Classically, the description of shells is based on the definition of a middle
surface, see the right path in Fig. 9.14. Using such parametrization, the
kinematics, weak form and constitutive equations can be developed from
the three-dimensional continuum equations. By using this approach, many
different approximations for the kinematical description of the shell model
in thickness direction can be developed. Different assumptions lead to equa-
tions for thin and thick shells which additionally can model deformations
in thickness direction. Depending on the number of kinematical variables,
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these approaches are denoted 5-, 6- or 7-parameter theories. Within this
line of modeling, different formulations were developed to construct fi-
nite elements for shells undergoing finite deflections and rotations, see e.g.
Simo et al. (1990), Simo et al. (1990B), Onate and Cervera (1993), Sansour
(1995), Eberlein and Wriggers (1999), Cirak et al. (2000), Campello et al.
(2003), Pimenta et al. (2004) and Gruttmann and Wagner (2005).

– The second approach – called degenerated concept – uses the equations of
a three-dimensional solid and introduces the shell kinematics at the dis-
cretization level, see left path of Fig. 9.14. As in shell theory a reference
midsurface is chosen, see e.g. Ramm (1976) and Bathe (1982). Within this
approach, no shell theory – besides the kinematical assumption – is needed
for the discretization of a shell continuum. Hence this approach is concep-
tional simple. However the introduction of stress resultants is not natu-
rally included in this formulation. A comparison of finite elements based
on classical shell theory and on the degenerated concept was investigated
in Büchter and Ramm (1992), who found that both approaches lead under
certain circumstances to the same finite element formulations.

– A third approach starts directly from the continuum elements discussed
in Sect. 4.2. No shell midsurface is introduced explicitly but the node of
the continuum elements are located at the upper and lower side of the
shell continuum for discretizations using low order element see e.g. Hughes
and Liu (1981), Schoop (1986) Kühborn and Schoop (1992), Seifert (1996),
Miehe (1998) and Hauptmann and Schweizerhof (1998). Higher order ele-
ment formulations were discussed in Düster et al. (2001).

In all mentioned formulations, special measures have to be taken to avoid
locking effects.

In most approaches, it is assumed that plane cross sections remain plane
during the deformation of the shell continuum. This yields theories which
include shear deformations which requires only C0-continuous discretizations
within the finite element method. The classical Kirchhoff–Love hypoth-
esis would, of course, be a natural assumption for kinematics. of thin shells
too. However, this additional assumption requires C1-continuous interpo-
lation functions which cannot be constructed by interpolations using only
primary variables for triangular and quadrilateral finite elements. In this con-
text, a new approach which combines interpolations of the deformations with
the CAD description of the shell surfaces are of interest. These discretization
employ Bezier or other C1-continuous polynomials, see e.g. Cirak et al.
(2000), Onate and Cervera (1993) and lately Hughes et al. (2005) who in-
troduced the notion of isogeometric analysis. Such formulations deviate from
the classical finite element concept since the C1-continuity is not fulfilled on
element but on patch level by using a patch of elements to define the inter-
polation functions. Such formulations have an advantage because shells are
highly sensitive to geometry changes and Bezier or NURBS surfaces ideally
map complex geometries into the shell model.
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When no further assumptions besides “plane cross sections remain plane”
are introduced within the derivation of the shell equations from the nonlinear
continuum equations, this shell theory is called “geometrically exact”. Geo-
metrically exact shell theories were developed during the last two decades
since growing computer power enabled the engineer to perform numerical
simulations of complex nonlinear shell problems without assuming any ap-
proximation with respect to the size of rotations and deflections.

First investigations using geometrically exact shell theories can be found
in Simo et al. (1989) and Wriggers and Gruttmann (1989). New in this work is
the formulation of a singularity free parametrization of the rotations and the
use of the isoparametric formulation for approximation of the shell geometry.
The latter eliminates the appearance of co- and contra-variant derivatives
which are replaced by standard partial derivatives. This direct approach was
basis for different theoretical formulations leading to new finite elements for
nonlinear shell problems, see e.g. Simo et al. (1990), Basar and Ding (1990),
Wriggers and Gruttmann (1993), Wagner and Gruttmann (1994), Basar and
Ding (1996) and Bischoff and Ramm (1997); a further in depth discussion
can be found in Bischoff et al. (2004).

As for beams, the deformations of shells can be classified and thus related
descriptions and reduced models for the kinematics can be defined. A fun-
damental investigation of Pietraszkiewicz (1978) differentiates – based on a
separate consideration of deflections and rotations – the following types of
rotations: small, moderate, large and finite. These distinctions can be made
as well for theoretical considerations as for the validation of approximate
shell theories, which are basis for analytical solutions. Today many nonlinear
shell theories are still based on the assumption of moderate rotations, since
this yields a simple description of the rotation field. With this mathematical
model relatively large rotations – up to 8 degrees – can be described which
are sufficient for many engineering applications. The related equations will
not be provided here; they can be found in e.g. Naghdi (1972). However,
with today’s computing power, engineers tend to apply geometrically exact
models to solve nonlinear shell problems.

Constitutive Equations. Not only the shell kinematics require special at-
tention but also the formulation of constitutive equations for shells. Here
different requirements due to the use of a nonlinear shell element have to
be fulfilled. For example in case of a stability problem like shell buckling an
elastic constitutive equation for small strains can be sufficient when it can
capture the rigid body rotations due to finite deformations. For this purpose,
the St. Venant constitutive equation, see (3.121), is sufficient. Biomedical
applications – such as the analysis of skin or muscles – need the formulation
of anisotropic elastic constitutive equations for large strains, see Sect. 9.3.3.
Pneumatic springs made from rubber require hyper elastic constitutive equa-
tions. Here the relations of Ogden type (3.113) can be mentioned. The sim-
ulation of metal forming processes, e.g. deep drawing of sheets, needs the



366 9. Special Structural Elements

formulation of constitutive equations for isotropic or anisotropic finite elasto-
plastic deformations. These were derived for isotropic materials in Sect. 3.3.2.

In general, the shell equations can be derived in stress resultant form or
obtained by directly using the stresses of the three-dimensional theory. This
has some implications regarding the formulation of constitutive equations for
shells.

– Within the classical development of shell theories, the constitutive equa-
tions are mapped to the midsurface of the shell continuum by introduction
of stress resultants. This is very efficient in case of elastic St. Venant

materials. However, this process implies simplifications even for hypere-
lastic deformations, see e.g. Libai and Simmonds (1992). But as shown in
Campello et al. (2003), these approximations can be circumvented when
an adequate nonlinear constitutive relation is introduced. Shell elements
for large deformations, which are based on the introduction of stress resul-
tants, were developed in e.g. Simo et al. (1990B), Wriggers and Gruttmann
(1993), Krätzig (1993), Sansour (1995) and Campello et al. (2003).

– An alternative derivation of shell theories starts directly with the stresses
of the continuum. There the three-dimensional constitutive equations can
be applied directly. The resulting shell equations (weak from) have then
to be integrated over the shell thickness, see e.g. Betsch et al. (1996) and
Eberlein and Wriggers (1999) and the schematic description in Fig. 9.7.

– Additionally different layers across the shell thickness can be introduced.
Then for each layer a different constitutive equation can be formulated,
as e.g. needed for laminated structures, see left part of Fig. 9.15. Such
approach is equivalent to a h refinement of the discretization with respect
to the shell thickness. It is advantageous in case that the solutions – like
in elasto-plasticity – do not have a high regularity. The second possibility,
to use higher order polynomials for the description of the deformation
across the shell thickness, is equivalent to a p refinement. This strategy
can be employed for problems in which the solutions can be differentiated
sufficiently often.
Integration of the stresses across the shell thickness yields stress resultants
which are referred to the shell midsurface. Both, h and p approaches need
generally numerical integration over the shell thickness, see e.g. Hughes

Fig. 9.15 Layer model for shells
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and Liu (1981), Parisch (1991) or Büchter et al. (1994). By using the stress
directly, an explicit formulation of a flow rule and a yield condition in terms
of stress resultants is avoided. Due to its complexity it is often better to
use the standard elasto-plastic constitutive equations for the stresses.

When the shell theory is based on stress resultants, constitutive equations
for the stress resultants have to be formulated. These constitutive equations
represent the stress field which is integrated over the shell thickness and need
special care when finite elastic or inelastic deformations have to be consid-
ered. In case of elasto-plasticity, there exist formulations which base on the
Ilyushin yield condition and associated flow rule for the resultants, see e.g.
Crisfield (1997). The application of such formulations for shells undergoing fi-
nite deformations can be found in Simo and Kennedy (1992). However, while
numerically very efficient, these models are questionable since they do not
work sufficiently accurate during elastic unloading.

When the stresses from the three-dimensional continuum theory are used
within the shell theory, then all constitutive equations, like the ones described
in Sect. 3.3, can be employed directly without any change. Application of such
formulations are presented in e.g. Büchter et al. (1994), Dvorkin et al. (1995),
Seifert (1996) or Miehe (1998). For the special case of thin shells, the assump-
tion of plane stress conditions have to be made. Associated formulations are
derived in e.g. Wriggers et al. (1996). Formulations for elasto-plastic material
behaviour are documented in e.g. Roehl and Ramm (1996), Wriggers et al.
(1996), Soric et al. (1997), Eberlein and Wriggers (1999) and Wagner et al.
(2002).
Finite-Element Discretizations. Several new finite element discretization
schemes for finite deformation analysis of shells were developed during the
last years. The literature regarding this topic is quite extensive, specific ap-
proaches can be found in the papers cited so far. Different interpolation
schemes were introduced which range from low order interpolations to ansatz
spaces with high order.

Low order approximations are selected for problems with low regularity
like elasto-plastic deformations since they tend to be more robust when large
mesh distortions occur in finite deformation applications. As a further ad-
vantage, they lead to a sparse tangent matrix which reduces the solution
time for the linear equation system which has to be solved within the incre-
mental solution algorithm of the nonlinear shell problem. One of the main
emphases of the finite element method is avoidance of locking effects for low
order interpolations.

From linear shell theory, it is well known that the use of C0 interpolation
functions can lead to different stiffening effects which are known as locking. In
shell problems, different phenomena such as volume-, membrane- and shear-
locking can be distinguished.

– Transverse shear locking occurs when elements of lower interpola-
tion order cannot reproduce pure bending states without an activation
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of transverse shear. These transverse shear deformations, which should not
be present in bending states, yield contributions to the stiffness matrix
and hence lead to additional stiffness. This stiffness can be larger than the
stiffness due to bending which results in locking. This is also true for the
quasi Kirchhoff formulations in (9.199).

– Membrane locking occurs due to the same mechanism as transverse
shear locking. In that case, bending states cannot be reproduced without
activating membrane strains.

– Volume locking only occurs when shell theories are used which include
thickness changes, for a discussion of this effect see Chap. 10.

An analysis of locking effects from the mathematical standpoint can be found
in e.g. Braess (2007) and Brezzi and Fortin (1991). Considerations from the
engineering point of view are provided in Andelfinger (1991) and Hauptmann
(1997) or in the books of Bathe (1996), Belytschko et al. (2000), Zienkiewicz
and Taylor (2000b) and Crisfield (1991).

Locking can be avoided by different measures which are discussed next

– Use of higher interpolation order: In general, the order of the ansatz
polynomial can be enlarged such that locking disappears totally. The so-
called p-version of finite elements with high order interpolation functions
was developed in Babuska et al. (1981) but can also be found in Düster
et al. (2001). So-called isogeometric ansatz functions which use the same
high ansatz order for geometry and interpolation are introduced in Hughes
et al. (2005). The polynomial order is very high leading to tangent matrices
which are not sparse. Furthermore, this approach assumes a high regularity
(smoothness) of the solution of the underlying partial differential equation.
Hence application to inelastic problems needs special considerations, see
e.g. Düster et al. (2002).

– Reduced integration: Within this method, all or selected integrals con-
tributing to the weak form of the shell formulation are integrated not with
the necessary integration order but using a reduced order. Such procedure
avoids locking but can lead to rank deficiency of the tangent stiffness ma-
trices since zero energy modes occur. This results in so-called hour-glass
modes appearing within the displacement fields of the finite element so-
lution. Hence stabilization techniques have to be developed to avoid rank
deficiency. Reduced integration is applied within shell formulations to the
integral containing the transverse shear contributions, for an overview of re-
lated methods see e.g. Hughes (1987), Belytschko et al. (2000) and Bischoff
et al. (2004).

– Mixed methods: A variety of finite element approaches were constructed
during the last years based on mixed variational formulations. For contin-
uum problems, these are summarized in Chap. 10. However, mixed varia-
tional principles can also be applied to shells. They are usually employed
to avoid membrane and volume locking where the last problem only occurs
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when thickness change is present.2 One of the widely used methods is the
approach based on incompatible modes, see Wilson et al. (1973) and the re-
lated variational technique which is known under enhanced assumed strain
(EAS) method which was developed by Simo and Armero (1992) for non-
linear continuum elements. Application to shell problems can be found in
e.g. Andelfinger and Ramm (1993), Büchter et al. (1994), Betsch and Stein
(1995), Eberlein and Wriggers (1999) and Gruttmann and Wagner (2005)
and will be discussed in the following.

– Special interpolations: Special interpolation can be developed for the
discretization of shells, e.g. for shear strains, in order to avoid locking.
Here the ansatz made by Bathe and Dvorkin (1985) is often used which
was also developed in Hughes and Tezduyar (1981) for plates. This ansatz is
often employed within nonlinear problems, see e.g. Dvorkin et al. (1995),
Miehe (1998) and Eberlein and Wriggers (1999) for finite elasto-plastic
deformations of shells.

In the following sections, two shell formulations for finite deformations
will be discussed. The first one can be considered as one of the simplest pos-
sibilities to model finite deformation problems for elastic and elasto-plastic
materials. It is the three-dimensional version of the quasi Kirchhoff formu-
lation introduced in Sect. 9.3 where the shear deformations are included but
suppressed by a penalty formulation. Such formulation is based on constitu-
tive equations for plane stress states. The associated finite element is very
well suited for the analysis of thin shells.

The second shell element is based on a shell theory which also includes
thickness changes. Here the rotations are defined by a director vector. Thus
the formulation is simpler since it does not need updated formulae for fi-
nite rotations. The shell continuum is still a three-dimensional continuum
and hance all three-dimensional constitutive equations can be used within
this formulation without changes. A comparison of both formulations will be
presented at the end of this section.

9.4.2 Kinematics

Shells are three-dimensional curved structural members which have a small
extension in thickness direction. Thus a shell is described by introducing a
shell midsurface as reference surface. Within such model, it is possible to
reduce the description of the shell continuum to two surface parameters ξα,
which are defined on the shell midsurface M, and to a coordinate ξ in thick-
ness direction. A common choice for the parametrization of the shell midsur-
face are convective coordinates, which are described in detail in Appendix
A.1.2. With the additional assumption that a plane cross section remains
2 For linear problems, the equivalence of mixed methods and reduced integration

techniques was shown in Malkus and Hughes (1978) for special problem classes.
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plane during the deformation, the position vector of a point in the current
configurations can be formulated by

ϕ(ξ1 , ξ2 , ξ , t) = ϕM (ξα , t) + ξ d(ξα , t) with ξ ∈ [−h
2
,+
h

2
] . (9.182)

Here the Greek index α assumes values of 1 and 2. The director d describes
the rotation of the cross section during the deformation and ϕM defines the
deformation of the shell midsurface M, see Fig. 9.16. Since the deformation
of the shell midsurface ϕM and as the director d are represented by three
unknown components such formulation is called 6-Parameter theory. A point
in the shell continuum is given by the position vector

X(ξ1 , ξ2 , ξ , t) = XM (ξα , t) + ξN(ξα , t) (9.183)

with respect to the initial configuration. Here N is a vector normal to the
shell midsurface M in the initial configuration.

The co-variant base vectors related to the shell continuum are computed
in the initial configuration using (3.36)

Gα =
∂X
∂ξα

= Aα + ξN,α ,

G3 =
∂X
∂ξ

= N . (9.184)

Here the explicit dependencies of the base vectors with respect to the coordi-
nates ξα and time t have been neglected to shorten notation. Aα are tangent
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vectors at XM (ξα , t), defined at the shell midsurface M, which follow from
the derivative Aα = ∂XM

∂ξα . Since the normal vector is perpendicular to Aα,
the tangent vector can be used to compute the normal vector

N =
A1 × A2

‖A1 × A2 ‖
. (9.185)

The tangent vectors can be obtained in the same manner with respect to the
current configuration. From (9.182), the relations

gα =
∂ϕ

∂ξα
= aα + ξ d,α ,

g3 =
∂ϕ

∂ξ
= d (9.186)

follow and hence the normal vector is presented by the cross product of the
tangent vectors aα

n =
a1 × a2

‖a1 × a2 ‖
. (9.187)

The kinematical relations are now employed to construct the deformation
gradient with respect to the shell midsurface M. From the equation (3.39),
the deformation gradient

F = F[C] + ξF[L] = gi ⊗ Gi (9.188)

is obtained with

F[C] = aα ⊗ Gα + d ⊗ G3 and F[L] = d,α ⊗ Gα .

Hence the deformation gradient is split with respect to the thickness coordi-
nate ξ into a constant F[C] and a linear F[L] part.

Once the deformation gradient is defined, the shell deformations are com-
pletely described. All further strain measures follow directly from (9.188) by
introduction of the related three-dimensional measures such as, e.g. the right
Cauchy-Green tensor from C = FT F. Contrary to classical shell theories
in which the strains are specified in detail, see also Remark 9.4, the present
formulations allow a direct discretization and introduction of the necessary
strain measures within the weak form, see Sect. 3.4.1 together with (9.188).
Thus all methods used to discretize standard for three-dimensional contin-
uum elements can be employed for shells too.

Remark 9.4: Relation (9.188) can be inserted in (3.15) which yields the Green–

Lagrange strain tensor E with respect to the shell kinematics (9.182)

E =
1

2
[ Eα β Gα ⊗ Gβ + Eα 3 (Gα ⊗ G3 + G3 ⊗ Gα ) + E3 3 G3 ⊗ G3 ] (9.189)

with the components
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Eα β = (aα + ξ d,α ) · (aβ + ξ d,β ) − (Aα + ξ N,α ) · (Aβ + ξ N,β ) ,

Eα 3 = (aα + ξ d,α ) · d , (9.190)

E3 3 = d · d − 1 .

Some simplifications are present in these relations since the normal vector N has
length one. This yields N · N = 1 and N · N,α = 0. Furthermore, it follows from
(9.185) that Aα · N = 0.

The strain measures are only restricted by the kinematical assumption (9.182)
and are valid for arbitrary finite strains. However, relation (9.182) is an approxi-
mation for a real three-dimensional continuum. As an example, Eq. (9.191)3 yields
a constant strain in thickness direction which is only correct for very special stress
states.

An additional constraint in (9.182) leads to a strain in thickness direction which
is zero. This constraint is based on the assumption that the director d follows by a
pure rotation R from the normal vector N

d = RN . (9.191)

In that case, the length of the director will not change during the deformation; hence
‖d ‖ = 1, which leads to E33 being zero. This restriction reduces the 6-parameter
theory to a 5-parameter model.

9.4.3 Parametrization of the Rotations

As mentioned above, the parametrization of the director d defines an essential
step when the deformation of a shell structure has to be described. Different
variants of this parametrization can be found in the literature, see e.g. Argyris
(1982) or Betsch et al. (1998). Three different possibilities are selected within
the following derivations, leading to distinct shell models.

5-Parameter Model. This parametrization is based of the introduction of
an inextensible director field with ‖d‖ = 1 in (9.182). Such assumption ex-
cludes thickness changes of the shell during the deformation. The deformation
of the director d is given by a pure rotation of the normal vector N in (9.183).
The method is very useful for the description of thin shells and produces exact
strain measures in the limiting case of vanishing shell thickness.

From many possibilities to define finite rotations of the normal vector,
two options are selected:

1. Utilization of two angles as degrees of freedom. This leads to a description
of the finite rotation by elementary rotations about fixed axes or by an
introduction of spherical coordinates. The formulation has the following
properties:
– additive update of the angles,
– no storage of variables and
– not singularity free.

2. Use of linearized rotational degrees of freedom where the finite rotations
are rotations about one axis. The properties of this description are:
– multiplicative update by multiplication of orthogonal matrices,
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– storage of rotations of the last solution step and
– singularity free for arbitrary rotations.

Both possibilities will be shortly described in the following. A complete
overview regarding the parametrization of rotations can be found in Argyris
(1982) and in the comparative study in Betsch et al. (1998).

A simple parametrization, which belongs to 1 and which can also easily
be implemented, was firstly applied to finite rotations of shells in Ramm
(1976). Within this concept, the director vector d is defined as a function
of two different independent angles (β1, β2) which correspond to spherical
coordinates

d =

⎧⎨
⎩

cosβ1 sinβ2

sinβ1 sinβ2

cosβ2

⎫⎬
⎭ . (9.192)

The definition of the angles (β1, β2) can be found in Fig. 9.17. The angle β1

is for sinβ2 = 0 −→ β2 = (k − 1)π, k ∈ ZZ not uniquely defined. In this case,
it is necessary to define an angle which is related to β1 by a constant value to
avoid the singularity, for details see Ramm (1976). Otherwise this description
of rotations can be applied without further restrictions. The advantage of
the description presented in (9.192) lies in the simple additive update of the
rotations within incremental solution procedures.

The shell kinematics of the 5-parameter model are now given in terms of
three independent variables related to the deformation of the shell midsurface
ϕM and the rotation angles (β1, β2). Instead of the deformation of the shell
midsurface ϕM , the displacement vector of the shell midsurface uM = ϕM −
XM can be introduced. Both formulations are equivalent since the variation
or linearization of the coordinates of the midsurface XM in its initial position
are zero.

A parametrization of the director field using the approach described in 2
can be obtained for example by application of the Rodrigues formula. Since
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the deformation in thickness direction is neglected within the 5-parameter
theory (‖d‖ = 1), the deformation of the director d is given by a pure rotation
d = RN. The change of the director vector follows from a time derivative of
the scalar product d · d = 1 and yields

ḋ · d = 0 ⇐⇒ ḋ = ωωω × d . (9.193)

Here the axial vector ωωω describes the angular velocity of the director. The
rotation tensor R can be represented by the Rodrigues formula using the
axial vector ωωω

R = cos θ 1 +
sin θ
θ
ω̂̂ω̂ω +

1 − cos θ
θ2

ωωω ⊗ ωωω ; θ = ‖ωωω‖ (9.194)

with the matrices

ωωω =

⎧⎨
⎩
ω1

ω2

ω3

⎫⎬
⎭ and ω̂̂ω̂ω =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (9.195)

This relation is often applied to describe the dynamics of rigid bodies. A de-
tailed derivation of the Rodrigues formula can be found in Crisfield (1997).
The update formula for the director vector d is singularity free within this
approach. In Eq. (9.194), the three vector components of ωωω are used to pa-
rameterize R and thus d. This formulations was applied e.g. in Simo et al.
(1989) for the analysis of finite deformations of shells.

6-Parameter Model. Within the shell kinematics of the 6-parameter model,
it is assumed that the director vector d can change its length (‖d‖ 	= 1).
Hence strains in thickness direction of the shell continuum can be expressed
by using this assumption. The main difference to the 5-parameter model lies
in the fact that the director is now, like the deformation of the shell mid-
surface, defined by a vector field. Thus the director can be considered within
the 6-parameter model as a vector and no special description of d by finite
rotations is necessary.

As in the 5-parameter model, a displacement vector can be introduced:
uM = ϕM − XM . Furthermore, instead of the director vector, a difference
vector w is defined leading to

d = N + w; (9.196)

see Fig. 9.18. Hence within the 6-parameter model, three degrees of freedom
are associated with the displacements uM of the shell midsurface and three
degrees of freedom are associated with the components of the difference vector
w. These degrees of freedoms denote the primary variables which have to be
discretized within the finite element method.

A further possibility for the description of strains in thickness direction
can be found in e.g. Simo et al. (1990B). There a multiplicative decomposition
of the director is proposed which yields
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ϕ = ϕM + ξ λd . (9.197)

Here the director vector is parameterized as in the 5-parameter model with
‖d ‖ = 1. The deformation in thickness direction is then explicitly represented
by the additional coordinate λ. Such description can avoid locking which may
occur in a finite element discretization based on the 6-parameter model.

9.4.4 Weak Form

The weak form of equilibrium for the 6-parameter model can be formulated
in the same way as for the three-dimensional continuum, see (3.289). Using
the kinematical relation (9.188) with the variation of the deformation

η = ηM + ξ ηd,

the weak form for the static case is obtained as

G (ϕ,η) =
∫
B

P · Grad (ηM + ξηd ) dV −
∫
B

ρ0 b̄ · η dV −
∫

∂Bσ

t̄ · η dA = 0 .

(9.198)
ηM is the variation of the deformation of the midsurface and ηd is the vari-
ation of the director vector in (9.182). Note that an integration over the
complete shell volume has to be performed in (9.198).

This is contrary to classical shell theories where stress resultants are in-
troduced with respect to the shell midsurface. Stress resultants rσ of the
6-parameter model follow from a direct integration of the stresses over the
shell thickness. Due to the nonlinearity of (6.184) with respect to ξ, an explicit
integration and hence an explicit representation of the stress resultants is not
possible. Thus numerical integration over the thickness has to be performed
which is utilized within finite element formulations by Gauss quadrature, see
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Sect. 4.1.1. Strains related to Gauss points can be associated with different
layers, see also Sect. 9.2.3.

Instead of using (3.289), the weak form can also be written in terms
of the 2nd Piola–Kirchhoff stresses (3.292). A detailed description of 6-
parameter models including all matrices can be found in Eberlein (1997), see
also Bischoff et al. (2004).

When a 5-parameter model of the shell is applied, some peculiarities
have to be considered with respect to the three-dimensional formulation.
Here –related to the kinematical assumptions – a plain strain condition has
to be introduced. However since no stresses are present at the outer surfaces
of the shell continuum, a plane stress state can be assumed equally well for the
computations. For linear shell theories, it can be shown that this contradic-
tion is consistent and within the kinematical assumptions, see Koiter (1960).
For elasto-plastic materials, the plane stress state can be deduced from the
three-dimensional form presented in Sect. 6.3.2 where the transverse shear
stresses is eliminated. This approach leads to the so-called quasi Kirchhoff

model which is discussed in Eberlein et al. (1993) for axisymmetric shells.
By suppressing the transverse shear strains using a penalty formulation, the
internal virtual work of the 5-parameter model is obtained

Gi(u,η) =
∫
M

∫
h

Sαβ δEαβ dξdΩ + cp h
∫
M

Eα3 δEα3 dΩ

with Eα3 = E3α = 1
2 aα · d = 0 .

(9.199)

The penalty term which suppresses the transverse shear strains Eα3, defined
in (9.191), can be found in the second term in (9.199) with the penalty pa-
rameter cp. The first integrand contains the 2nd Piola-Kirchhoff stresses
related to the shell surface. Thickness changes do not occur in this formula-
tion. The integration over the shell continuum can be split into an integration
over the thickness h and the shell midsurface M, since the stresses cannot
be integrated analytically over the thickness in case of nonlinear material
response. Due to the constant penalty parameter, the second term in (9.199),
however, can be integrated analytically over the thickness.

9.4.5 Constitutive Equations for Shells

Shells can be used in many different applications which depict distinct non-
linear constitutive behaviour, see Sect. 9.3.3. Out of many possibilities, here
isotropic elasto-plastic constitutive equations for finite deformations are con-
sidered in more detail. Since the main results have already been stated in
Sects. 3.3.2 and 6.3, only the additional formulations related to shells will be
discussed.

When using the 6-parameter shell, the constitutive equations discussed
in Sect. 6.3.2 can be applied directly since general three-dimensional stress
states can be modelled within such shell formulation.
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In case of the plane stress state which is assumed within the 5-parameter
shell model, additional considerations are necessary to derive the relevant
constitutive equations and to use the formulations and algorithms developed
in Sect. 6.3.2. As long as only small elastic strains are present (see strain
energy function (6.158)), the stresses in thickness direction can be eliminated
explicitly, which was shown in Wriggers et al. (1995). This elimination leads
to efficient algorithms and since small elastic strains are often sufficient to
model the elasto-plastic behaviour of shell structures, like in metal forming,
a constitutive equation for small elastic strains but finite plastic strains will
be formulated for the 5-parameter shell model. However, it should be noted
that for special Neo-Hooke type finite strain elasticity it is also possible to
analytically eliminate the stresses in thickness direction, related formulations
can be found in Campello et al. (2003).

The weak form used for the 5-parameter shell model is related to the
initial configuration, see (9.199). Hence Eq. (6.163) has to be pulled back to
the initial configuration. This leads to a general eigenvalue problem for the
determination of the principal strains, see e.g. Ibrahimbegovic (1994),

(Cp−1
n − λtr 2

α e C−1
n+1)N

tr
α = 0 . (9.200)

Due to the plane stress state, only membrane strains appear in this relation.
The shear strains Cα 3 are assumed to be zero which is in accordance with
the kinematical assumption, see also the penalty formulation in (9.199). The
strain in thickness direction C33 is not zero in the plane stress case. This
strain, however, can be computed within a postprocessing step, using e.g.
the assumption of plastic incompressibility, since it does not occur explicitly
in the weak form. A general three-dimensional formulation with respect to
the initial configuration can be found in Miehe (1998). This formulation uses
the plastic metric analogous to Eq. (6.141).

The algorithm which can be applied to compute the stresses within
the plane stress state is mainly equivalent to the algorithms developed in
Sect. 6.3.2. It contains the following steps:

1. Assume that the history variables Cp−1
n and αn are known from the

last time step tn. Furthermore, the right Cauchy–Green tensor Cn+1

is known from the solution of the weak form at time tn+1. With these
quantities, the eigenvalues or principal strains can be computed from

Nα tr(Cn+1 Cp−1
n ) = λtr 2

α e Nα tr � εtrα e = lnλtr
α e . (9.201)

2. The return mapping algorithms, described in Sect. 6.3.2 yields now the
strains εα e, the Kirchhoff stresses τα and the algorithmic tangent mod-
ulus CALG

αβ with respect to the principal axes.
3. With these quantities, the plastic metric can be determined at time tn+1

Cp−1
n+1 =

2∑
α=1

Nα ⊗ Nα with Nα = (
λα e

λtr
α e

)Nα tr . (9.202)
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In the same way, the 2nd Piola-Kirchhoff stress tensor is obtained as

S =
2∑

α=1

τα
λtr 2

α e

Nα tr ⊗ Nα tr, (9.203)

as well as the algorithmic tangent modulus

L =
2∑

α=1

2∑
β=1

CALG
αβ − τα 2 δαβ

λtr 2
α e λ

tr 2
β e

(Nα tr ⊗ Nα tr ⊗ Nβ tr ⊗ Nβ tr) +

∑
α�=β

Sβ − Sα

λtr 2
β e − λtr 2

α e

(Nα tr ⊗ Nβ tr ⊗ Nα tr ⊗ Nβ tr + (9.204)

Nα tr ⊗ Nβ tr ⊗ Nβ tr ⊗ Nα tr).

The computation of stresses and algorithmic tangent modulus is equivalent
to the approach used in Sect. 6.3.2. Note that the associated covariant and
contravariant eigenvectors occur in the general eigenvalue problem (9.200).
These are related to each other by Nα tr ·Ntr

β = δα
β . The proposed algorithm

does not need the deformation gradient of the defined shell space explic-
itly since push forward and pull back operations to the related metrics are
not necessary when working with the right Cauchy-Green strain tensor.
However, the deformation gradient is necessary as kinematical basis for an
efficient implementation within the framework of the finite element method.

9.4.6 Finite Element Formulation for the 5-Parameter Model

Shell elements were developed based on different orders of interpolation. The
relevant literature review can be found in Sect. 9.4.1. Due to their advantages,
only low order finite elements are discussed and a general quadrilateral shell
elements with bi-linear shape functions is developed in detail. To avoid the
well known locking behaviour of such low order elements, special techniques
have to be applied. However, before a detailed discussion, the general isopara-
metric concept for shells will be considered which is basis for the discretization
of general shell geometries.

Isoparametric Concept. In Sect. 9.4.2, curvilinear convective coordinates
ξα were introduced to parameterize the shell midsurface M. Covariant base
vectors follow then from (9.184) or (9.186). Together with (9.189), the com-
ponents of the strain tensor are obtained for general curvilinear coordinates.
At this point, displacement components are introduced in classical shell the-
ories in order to express the base vectors in the current configuration by base
vectors related to the initial configuration. In that case, covariant deriva-
tives of the displacements occur in the strain measures, see e.g. Eringen
(1962) and Naghdi (1972). The covariant derivatives can be described by
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using Christoffel symbols. Since the Christoffel symbols depend on
the underlying shell geometry, a general form for a strain–displacement rela-
tion for the shell cannot be obtained. However, with finite elements, general
geometries are to be described which is not easily possible within the classical
approach. Thus the isoparametric concept is directly applied to discretize the
shell geometry as well as the displacement and rotation field.

In general, a unique mapping from the reference space of a finite ele-
ment to the initial and current configuration is defined, see also Sect. 4.1.
Within this mapping, the position vector X to the shell midsurface and the
displacement field u is discretized by the shape function NI

u =
n∑

I=1

NI(ζζζ)uI ; X =
n∑

I=1

NI(ζζζ)XI . (9.205)

n denotes the number of nodes of the finite element and ζζζ = {ζ1, ζ2} are the
convective coordinates. For the interpolation, NI bilinear shape functions are
selected, see (4.28),

NI(ζ1, ζ2) =
1
4

(1 + ζ1ζ1I ) (1 + ζ2ζ2I ) . (9.206)

The shape functions NI are referred to the reference configuration Ω�, see
also (4.28) and Fig. 4.7. Based on (9.205), relation X = X(ζζζ) is obtained.
Hence the position vector X, which describes the initial configuration B of
the shell continuum, is given by the coordinates ζζζ of the reference element Ω�.
This isoparametric transformation relates initial or current configuration – as
in the three-dimensional case – to the reference element Ω�, see also (4.54).

The isoparametric concept described in Sect. 4.1 cannot be applied in a
direct way to shells since the isoparametric map of a plane reference element
into three dimensional space is not singularity free. In order to avoid this sin-
gularity, a modified isoparametric description will be used which is related to
a local cartesian basis {Eloc

i }. In general, this basis does not coincide with the
global cartesian coordinate system {Ei} of the reference configuration. The
local cartesian basis is determined by the basis vectors Gα of the undeformed
initial configuration. For an element, based on isoparametric formulation in
(9.184), relation

Gζ1 =
4∑

I=1

NI,ζ1 XI ; Gζ2 =
4∑

I=1

NI,ζ2 XI (9.207)

is deduced. The associated normal vector N is determined by the cross prod-
uct of Gζα analogous to (9.185). Now the local cartesian basis {Eloc

i } – as
depicted in Fig. 9.19 – can be defined by

Eloc
1 =

Gζ1

‖Gζ1‖ ; Eloc
3 = N; Eloc

2 = Eloc
3 × Eloc

1 . (9.208)
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2
1

4

3

Eloc
3 = N

Eloc
1 Gζ1

Eloc
2

Gζ2

Fig. 9.19 Local cartesian basis system {Eloc
i }

The gradient J, which belongs to the modified isoparametric map of the shell
is given by

J = GradζX =
∂X
∂ζζζ

=
4∑

I=1

NI,ζα(ζζζ)XI ⊗ Eloc
ζα with ζα = ζ1, ζ2 .

(9.209)
With the base vectors defined in equation (9.207)

J = Gζβ ⊗ Eloc
ζβ = (Gζβ · Eloc

α ) Eloc
α ⊗ Eloc

ζβ with α = 1, 2 (9.210)

follows. The coordinates ζα can be viewed in the reference configuration as
cartesian coordinates with respect to the local basis Eloc

α which was defined
in (9.208). By application of the chain rule, the gradient of the interpolation
functions follows as

∂NI

∂ζζζ
=
∂NI

∂X
∂X
∂ζζζ

=
∂NI

∂X
J (9.211)

with
∂NI

∂ζζζ
= ∇ζNI = NI,ζα Eloc

ζα and
∂NI

∂X
= ∇XlocNI = NI,Xloc

α
Eloc

α . Since

furthermore the transformation

∇XlocNI = J−T ∇ζNI ⇐⇒
{
NI,1

NI,2

}
= J−T

{
NI,ζ1

NI,ζ2

}
(9.212)

is valid, the derivatives with respect to the local cartesian coordinates X loc
α

in the initial configuration can be replaced by the derivatives with respect to
ζα in the reference configuration.

The idea to use a local cartesian basis is essential for the general for-
mulations of finite shell elements. Due to this choice, all covariant and con-
travariant derivatives disappear.3 The transformation to the global cartesian
coordinates {Ei} which is necessary for the assembly of residual vectors and
tangent matrices will be discussed later.
3 The covariant and contravariant derivatives are related to the change of the base

vectors when covarient and contravariant coordinates are selected as basis as
done in classical shell theories, see e.g. Simo et al. (1990).
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Formulation of the Shell Element. The 5-parameter theory is based on a
director field which is inextensible and hence does exclude strains in thickness
direction of the shell space. Furthermore, shear deformations are suppressed.
With these assumptions, the resulting finite shell element can only be applied
for thin shells. The associated parametrization was discussed in Sect. 9.4.3.
The constitutive equations can be found in Sect. 9.4.5. Hence the theoretical
background is known and this section can concentrate on the development of
the finite element discretization of the thin shell.

For the computation of the local deformation gradient Floc, see (9.188), it
is advantageous to express F̄ref completely in terms of the local basis {Eloc

i }

F̄ref
[C] = aζα ⊗ Eloc

ζα + d ⊗ N F̄ref
[L] = d,ζα ⊗ Eloc

ζα . (9.213)

The interpolation of the base vectors gζα in (9.213) is provided by

gζα =
4∑

I=1

NI,ζα xI with xI = xI i Ei = xI i Ei · Eloc
0 j︸ ︷︷ ︸

xloc
I i δij

Eloc
0 j . (9.214)

Here the local basis {Eloc
0 i } is related to the centre of the finite element. From

Eq. (9.213) follows a representation of F̄ref with (9.214) and xloc
I i which is

invariant with respect to rigid body rotations. Hence F̄ref will reduce to
a unit matrix in the initial configuration with respect to {Eloc

0 i }. The local
deformation gradient is computed using the Jacobian which stems from the
isoparametric map

Floc = F̄ref J−1 . (9.215)

When using the constitutive equations from Sect. 9.4.5, the stresses have
to be transformed to principal directions. Since a plane stress state is con-
sidered within the 5-parameter shell model, the transformation between the
three remaining stress components {S̄i}T = {S11, S22, S12} and the two prin-
cipal stresses {S̄j}prin T = {S1, S2, 0} is given by, see also (3.139),

S̄i = Tij S̄
prin
j i, j = 1, 2, 3

with Tij =

⎡
⎢⎢⎣

cos2 ϕ sin2 ϕ −2 sinϕ cosϕ

sin2 ϕ cos2 ϕ 2 sinϕ cosϕ

sinϕ cosϕ − sinϕ cosϕ cos2 ϕ− sin2 ϕ

⎤
⎥⎥⎦ .

(9.216)

The angle of rotation ϕ is determined by the components of the right
Cauchy–Green tensor since stresses and strains are co-axial for isotropic
material behaviour

ϕ =
1
2

arctan
(

2Cloc
12

Cloc
11 − Cloc

22

)
. (9.217)
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The components of the right Cauchy–Green tensor in (9.217) follow from
(3.15) by using (9.188), (9.240) and (9.215). Possible singularities in (9.217),
which can occur for Cloc

11 = Cloc
22 , are avoided by a perturbation of one com-

ponent by a small number. With these relations, the principal stretches λloc
α

can be stated explicitly

(λloc
α )2 = TT Cloc T with Tαβ =

[
cosϕ − sinϕ

sinϕ cosϕ

]
. (9.218)

To complete the formulation of the finite shell element, a matrix formula-
tion is introduced for F̄loc with reference to the local basis {Eloc

i } analogous
to (9.215)

Floc = Floc
[C] + ξFloc

[L] =
[

a1 a2 d
]
+ ξ

[
d,1 d,2 0

]
. (9.219)

The approximation of the position vector XM and the displacement vector
u with reference to the shell midsurface M is discussed next. These quantities
are described by the local coordinates defined in (9.214)

XM = {X loc
M 1 ,X

loc
M 2 ,X

loc
M 3}T =

4∑
I=1

NI Xloc
M I

u = {uloc
1 , uloc

2 , uloc
3 }T =

4∑
I=1

NI uloc
I .

(9.220)

The rotations (β1, β2), illustrated in Fig. 9.17, are approximated in the same
way within the 5-parameter concept, see e.g. Wagner and Gruttmann (1994).
First, the initial angles (β̄1, β̄2) are determined and interpolated in the ini-
tial configuration. Then an isoparametric ansatz is chosen to describe the
incremental angles (ω1, ω2),

β̄ββ = {β̄1, β̄2}T =
4∑

I=1

NI β̄ββI , ωωω = {ω1, ω2}T =
4∑

I=1

NI ωωωI . (9.221)

The basis vectors aα in (9.219) and their variations follow from

aα =
4∑

I=1

NI,α (Xloc
M I + uloc

I ) ; δaα =
4∑

I=1

NI,α δuloc
I . (9.222)

Here the derivatives of the interpolation functions NI,α are computed using
(9.212). With (9.221), the rotations (β1, β2) and their variations are obtained.
These are needed to describe the director vector d in (9.192)

βββ =
4∑

I=1

NI (β̄ββI + ωωωI) ; δβββ =
4∑

I=1

NI δωωωI . (9.223)
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The weak form leading to the shell element is based on a specialization
of (9.199). Thus

G(u , ααα , ηηη) =
ne⋃

e=1

4∑
I=1

ηηηT
I

⎧⎨
⎩
∫

Me

∫
h

BT
I S̄ dξ dΩ +

cp h

∫
Me

BpenT

I

{
FlocT

3 Floc
1

FlocT

3 Floc
2

}
dΩ

⎫⎬
⎭+′′ Load terms′′ = 0

(9.224)
is obtained. The vector containing the components of the 2nd Piola-Kirch-

hoff stresses S̄ was already defined in (9.216). The penalty parameter cp,
suppressing shear deformations, has to be selected by the user of the shell
element. It depends upon the magnitude of constitutive parameters describ-
ing the shell. The vector ηηηI contains the variations (δuloc

I , δωωωI). By q, the
variation of the enhanced parameters δαααγ is denoted which were introduced
in (9.238). The B-matrices BI ,B

pen
I have the form

BI =

⎡
⎣BT

1 B11 B12

BT
2 B21 B22

BT
3 B31 B32

⎤
⎦ , (9.225)

with (α , β = 1, 2)

BT
α = Floc T

α NI,α

BT
3 = Floc T

1 NI,2 + Floc T
2 NI,1

BT
αβ = ξFloc T

α (dloc
β NI,α + dloc

β,αNI )

BT
3α = ξ [Floc T

1 (dloc
α NI,2 + dloc

α,2NI ) + Floc T
2 (dloc

α NI,1 + dloc
α,1NI )

and

Bpen
I =

[
Floc T

3 NI,1 Floc T
1 dloc

1 NI Floc T
1 dloc

2 NI

Floc T
3 NI,2 Floc T

2 dloc
1 NI Floc T

2 dloc
2 NI

]
. (9.226)

The vectors dloc
α stem from the variation of the local director vector which is

determined within the 5-parameter theory by (9.192). The variation of these
quantities yields

δdloc = dloc
α δβα (9.227)

with

dloc
1 =

⎧⎨
⎩

− sinβ1 sinβ2

cosβ1 sinβ2

0

⎫⎬
⎭ and dloc

2 =

⎧⎨
⎩

cosβ1 cosβ2

sinβ1 cosβ2

− sinβ2

⎫⎬
⎭ . (9.228)

The linearization of the discretized weak form (9.224) is needed within the
incremental solution procedure using Newton’s method. This linearization
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leads to a system of equations for the incremental displacements Δuloc and
the incremental angles of rotation Δωωω

Kuu

{
Δu
Δωωω

}
= −Gu (9.229)

with u = {uloc
1 , uloc

2 , uloc
3 }T . The tangent matrix in (9.229) is defined by

Kuu =
ne⋃

e=1

4∑
I=1

4∑
J=1

⎧⎨
⎩
∫

Me

∫
h

(
BT

I L̄BJ + G1
IJ

)
dξ dΩ +

cp h

∫
Me

(
BpenT

I Bpen
J + Gpen

IJ

)
dΩ

⎫⎬
⎭ .

(9.230)

The components of the incremental constitutive tensor L̄ can be computed
from (6.185) based on the deformation ϕ̄ obtained within the Newton

scheme. The operator matrices G1
IJ and Gpen

IJ follow by applying the lin-
earization tools described in Sect. 3.5. Explicitly, the matrix G1

IJ can be
written as:

G 1
IJ =

⎡
⎣ A1 ξ b1 ξ b2

ξ cT
1 ξ (G11 + ξ H11 ) ξ (G12 + ξ H12 )

ξ cT
2 ξ (G21 + ξ H21 ) ξ (G22 + ξ H22 )

⎤
⎦ (9.231)

with

bη = Ad lok
η +Bβ d lok

η ,β cη = Ad lok
η + Cα d lok

η ,α,

Gη θ = Flok T
α (Dα β dlok

η θ γ βγ ,β + (Bα + Cα )dlok
η θ ),

Hη θ = dlok T
η (Adlok

θ +Bβ dθ ,β ) + dlok T
η ,α (Cα dlok

θ +Dα β dθ ,β )

and

A = Sα β NI ,αNJ ,β Bβ = Sα β NI ,αNJ

Cα = Sα β NI NJ ,β Dα β = Sα β NI NJ .

Furthermore, Gpen
IJ

G pen
IJ =

⎡
⎣ 0 Apen dlok

1 Apen dlok
2

Bpen dlok T
1 C pen

α F lok T
α dlok

1 1 C pen
α F lok T

α dlok
2 1

Bpen dlok T
2 C pen

α F lok T
α dlok

1 2 C pen
α F lok T

α dlok
2 2

⎤
⎦ (9.232)

follows with

Apen = F lok T
3 F lok

α NI ,αNJ ,

Bpen = F lok T
3 F lok

α NI NJ ,α ,

Cpen
α = F lok T

3 F lok
α NI NJ .
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In these relations summation over the indices α , β = 1 , 2 has to be performed.
The derivatives and linearizations of the director vector are obtained from
(9.222) and (9.227) or from

δd lok
, α = d lok

β δββ ,α + d lok
γ,α δβγ with d lok

γ,α = d lok
γβ ββ ,α , (9.233)

where the vectors d lok
α β are given by

d lok T
11 = {− cosβ1 sinβ2 − sinβ1 sinβ2 0 } ,

d lok T
12 = {− sinβ1 cosβ2 + cosβ1 cosβ2 0 } , (9.234)

d lok T
22 = {− cosβ1 sinβ2 − sinβ1 sinβ2 − cosβ2 } .

The linearization of the variation of the director vector and its derivative
yields

Δδd lok = d lok
αβ Δβα δββ and Δδd lok

,α = d lok
βγδββ ,αΔβγ δβδ , (9.235)

where the newly defined vectors dlok
βγδ are computed from

d lok
111 = d lok

111 = d lok
122 = d lok

212 = d lok
221 = −d lok

1

d lok
222 = −d lok

2

d lok
121 = d lok

211 = −d lok
112 with

d lok T
112 = {− cosβ1 cosβ2 − sinβ1 cosβ2 0 } .

The integration of the shell element with bilinear interpolation is per-
formed with a 2×2 Gauss quadrature in order to avoid rank deficiency of the
tangent matrices. However, this results in shear locking, see e.g. the overview
in Andelfinger (1991). Selective reduced integration is a simple method to
avoid shear locking, see Sect. 9.4.1; it was developed in Zienkiewicz et al.
(1971) for continua and in Hughes et al. (1977a) for plate elements. Using
this approach, the penalty term in (9.199) has to be integrated by a one point
quadrature. This, however, still results in a rank deficiency of the tangent
stiffness matrix which occurs for special boundary conditions. An alternative
is provided by the special interpolation for the second term in (9.199) as
advocated in Bathe and Dvorkin (1985) .

Finally, it has to be realized that the components of the local displace-
ments Δuloc

I i , which are related to one node of the finite element, have to
be transformed to the global basis {Ei}. This is necessary for the assembly
of residual vectors and tangent matrices. Such transformation is given by,
compare also (9.214) and Remark 9.1,

Δuloc
I i Eloc

0 i = Δuloc
I i Eloc

0 i · Ej︸ ︷︷ ︸
ΔuI i δij

Ej . (9.236)
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Since all quantities are related to the reference configuration Ω� within the
isoparametric concept, it is necessary to transform the area and volume el-
ements in the integrals (9.230) and (9.224) from the initial to the reference
configuration. This leads to

dΩ◦ =
∥∥∥∥ ∂X∂ζ1 × ∂X

∂ζ2

∥∥∥∥ dζ1 dζ2 = J dΩ� with J = detJ ,

dΩ = dξ dMe =
h

2
J dξ̂ dΩ�.

(9.237)

Enhancement of the Membrane Strains. From the methods, mentioned
in Sect. 9.4.1, the enhanced assumed strain (EAS) method can be selected
to avoid membrane locking effects. To suppress shear locking, additionally a
selective reduced integration of the penalty term in (9.199) will be applied.
Hence the simple element formulation becomes more complex, but based on
these additional ingredients bending problems can be described sufficiently
accurate.

The EAS method, used for the membrane part of the shell formulation, is
described for continua in a detailed way in Sect. 10.5. The basis for the EAS
formulation is the variational principle of Hu–Washizu which was stated for
three-dimensional continua in (3.300). Here it will be specified for shells as
three-field functional where the displacements u, the displacements gradient
H and the 1st Piola-Kirchhoff stress tensor P are selected as independent
fields.

The EAS formulation bases on the pioneering work of Simo and Rifai
(1990) for linear theory and Simo and Armero (1992) for nonlinear continua.
EAS interpolations for the development of finite shell elements were consid-
ered in Andelfinger and Ramm (1993) and Betsch (1996). The EAS approach
leads to non-physical instabilities at finite deformations in the pressure range
as was firstly detected in Wriggers and Reese (1996). This problem is not so
serious for shells since the a shell structure will buckle or snap-through be-
fore large compressive deformation states are reached. Thus the EAS method
can still be applied for shells. Experience with solid elements lead to differ-
ent EAS formulations. It was shown that the so- called CG4 or Q1/E4T
interpolations, developed in Korelc and Wriggers (1996a) and Glaser and
Armero (1997), are more stable than the original ansatz Q1/E4 from Simo
and Armero (1992). Thus the CG4 interpolation is applied here.

The CG4 ansatz leads with (10.173) to the incompatible displacement
gradient H̄ref

CG4 in the reference configuration {Eloc
ζα } with the incompatible

shape functions MK
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H̄
ref
CG4 =

2∑
K=1

⎡
⎢⎢⎢⎣
MK,ζ1 α1

1 MK,ζ1 α1
2 0

MK,ζ2 α2
1 MK,ζ2 α2

2 0

0 0 0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ζ1 α1

1 ζ1 α1
2 0

ζ2 α2
1 ζ2 α2

2 0

0 0 0

⎤
⎥⎥⎥⎦

with MK =
1
2

[(ζK)2 − 1]; K = 1, 2.

(9.238)
By comparison with the matrix related to theQ1E4 interpolation, see (10.79),
it can be observed that the ansatz H̄

ref
CG4 is just the transposed of H̄

ref
Q1E4;

hence H̄
ref
CG4 = H̄

ref T
Q1E4 . This means that H̄

ref
CG4 defines no gradient field with

respect to ζα contrary to H̄
ref
Q1E4. Yet H̄

ref
CG4 is called incompatible displace-

ment gradient.
Since H̄

ref
CG4 in (9.238) is defined with respect to the initial configuration,

this gradient has to be transformed to the local cartesian coordinate system
{Eloc

i }. Here a transformation as provided in (9.212) cannot be applied since
H̄

ref
CG4 is not a gradient field. Instead, the complete tensor transformation

H̄
loc = J−T H̄

ref
CG4 J−1 mit J =

⎡
⎢⎢⎢⎣

Gζ1 · Eloc
1 Gζ2 · Eloc

1 0

Gζ1 · Eloc
2 Gζ2 · Eloc

2 0

0 0 0

⎤
⎥⎥⎥⎦

(9.239)
has to be used. This relation is valid for constant Jacobi matrices J, see
(9.210). To guarantee locking-free behaviour for distorted meshes (9.239) has
to be modified

H̄
loc =

J0

J
J−T

0 H̄
ref
CG4 J−1

0 with J0 = detJ0; J = detJ . (9.240)

The index 0 denotes an evaluation of the Jacobi matrix at the element centre
(ζ1 = ζ2 = ξ = 0). Hence constant stress states can be represented within
distorted meshes, see Taylor et al. (1976).

In that case, F̄ref and H̄
ref
CG4 have the same structure and can be added

as described in (10.65). The computation of Floc follows directly from (9.212)
and (9.240)

Floc = F̄ ref J−1 + H̄
loc
. (9.241)

An alternative transformation, which can be used instead of (9.240), is pro-
vided in Simo et al. (1993b) and Betsch (1996). It has the form

H̄ =
J0

J
F̄0 J0 H̄

ref
Q1E4 J−1

0 . (9.242)

It is not necessary to evaluate the compatible deformation gradient F̄0 at
the element centre as required in (9.242) since the local form (9.241) of the
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deformation gradient is used for the description of the shell kinematics. Such
notation will now be used to describe Floc in terms of H̄

loc from (9.240) with
respect to (9.219)

Floc =
[

F̄loc
[C] 1 + ξF̄loc

[L] 1 + H̄loc
1 F̄loc

[C] 2 + ξF̄loc
[L] 2 + H̄loc

2 F̄loc
[C] 3

]
.

(9.243)

The weak form of equilibrium follows from the Hu–Washizu principle,
see (10.64), by introducing the relations of the 5-parameter theory (9.199).
Since the last equation in (10.67) is an orthogonality condition, which is auto-
matically fulfilled by the selected interpolations, only the first two equations
have to be discretized

G(u , ααα , ηηη) =
ne⋃

e=1

4∑
I=1

ηηηT
I

⎧⎨
⎩
∫

Me

∫
h

BT
I S̄ dξ dΩ+

cp h

∫
Me

BpenT

I

{
FlocT

3 Floc
1

FlocT

3 Floc
2

}
dΩ

⎫⎬
⎭ = 0

G(u , ααα ,q) =
ne⋃

e=1

qT

∫
Me

∫
h

DT S̄ dξ dΩ = 0 .

(9.244)
Matrix D4×3 which contains the enhanced strains can be stated explicitly as

D =

⎡
⎢⎣
Fα1Mα1 Fα1Mα2 Fα1M(α+2)1 Fα1M(α+2)2

Fα1Mα3 Fα2Mα4 Fα2M(α+2)3 Fα2M(α+2)4

Fα2Mα1 Fα2Mα2 Fα2M(α+2)1 Fα2M(α+2)2

+Fα1Mα3 +Fα1Mα4 +Fα1M(α+2)3 +Fα1M(α+2)4

⎤
⎥⎦ , (9.245)

after some algebraic manipulations. Here the components Mlm with l ,m =
1, . . . , 4 stem from the matrix

M =
J0

J

⎡
⎢⎣
ζ1(J−1

011)
2 ζ1 J−1

011 J
−1
021 ζ1 J−1

011 J
−1
012 ζ1 J−1

011 J
−1
022

ζ1 J−1
011 J

−1
012 ζ1 J−1

012 J
−1
021 ζ1(J−1

012)
2 ζ1 J−1

012 J
−1
022

ζ2 J−1
011 J

−1
021 ζ2(J−1

021)
2 ζ2 J−1

012 J
−1
021 ζ2 J−1

021 J
−1
022

ζ2 J−1
011 J

−1
022 ζ2 J−1

021 J
−1
022 ζ2 J−1

012 J
−1
022 ζ2(J−1

022)
2

⎤
⎥⎦ . (9.246)

Fαβ with α , β = 1, 2 are the components of Floc
α , see (9.219). In (9.245),

summation has to be performed over α. The linearization of (9.244) yields[
Kuu Kuα

Kαu Kαα

] {
Δu
Δααα

}
= −

{
Gu

Gα

}
(9.247)

with the unknowns Δu = {Δuloc
1 ,Δuloc

2 ,Δuloc
3 ,Δω1,Δω2}T at each element

node and the incompatible modes Δααα = {Δα1
1,Δα

1
2,Δα

2
1,Δα

2
2}T per ele-

ment. The incompatible modes Δααα can be eliminated at element level. For
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this a block elimination has to be applied, see equations (10.125) and (10.126)
in Sect. 10.5. Hence only the unknowns Δu occur in the global equation sys-
tem.

The different tangent matrices in (9.247) are provided in (9.230) and

Kuα =
ne⋃

e=1

4∑
I=1

∫
Me

∫
h

(
BT

I L̄D + G2
I

)
dξ dΩ ,

Kαα =
ne⋃

e=1

∫
Me

∫
h

(
DT L̄D + G3

)
dξ dΩ .

(9.248)

The components of the constitutive tensor L̄ can be found in (6.185). The
explicit form of the operator matrices G2

I and G3 is complex. For the 5-
parameter theory, they are provided in Gruttmann (1996) and Eberlein
(1997).

Enhancement of the Shear Strains. For the improvement of the shear
strains, the ansatz developed in Dvorkin and Bathe (1984) and Bathe and
Dvorkin (1985) will be discussed. It avoids locking due to the shear term in
(9.199) without introducing additional degrees of freedom. This interpola-
tion, known as ANS (Assumed Natural Strain) interpolation, allows a 2 × 2
quadrature of the shear term in (9.199) without leading to rank deficiency as
in the selected reduced integration, see (9.229). The ANS ansatz additionally
leads to a higher accuracy of solutions for distorted element geometries, see
e.g. Betsch (1996).

The Bathe–Dvorkin interpolation approximates the shear strains by a
constant in one direction and a linear polynomial in the orthogonal direction.
With respect to the reference configuration,{

C̃ref
13

C̃ref
23

}
=

1
2

{
(1 − ζ2) C̄ref

13 B + (1 + ζ2) C̄ref
13 D

(1 − ζ1) C̄ref
23 A + (1 + ζ1) C̄ref

23 C

}
(9.249)

follows where the components of the right Cauchy–Green tensor are com-
puted from F̄ref in (9.213). The collocation points A–D are defined in
Fig. 9.20. The components C̄ref

α3 are given by

C̄ref
23 A,C = F̄refT

2 A,C F̄ref
3 A,C , C̄ref

13 B,D = F̄refT

1 B,D F̄ref
3 B,D

with F̄ref =
[
F̄ref

1 F̄ref
2 F̄ref

3

]
.

(9.250)
The vectors F̄ref

i , which are evaluated at the collocation points A to D, are
defined by standard bilinear shape functions NI , see (9.206). The transfor-
mation of the shear strains C̃ref

α3 to the cartesian coordinates X loc
i , defined

in (9.208), is computed by the isoparametric map, see (9.212). This yields
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Fig. 9.20 Collocation points for the Bathe–Dvorkin interpolation

{
C̃loc

13

C̃loc
23

}
= J−T

{
C̃ref

13

C̃ref
23

}
. (9.251)

When the ANS interpolation is used within a finite element model for fi-
nite plastic strains, the modified shear strains C̃ref

α3 influence the deformation
gradient Floc in (9.215). This change is only implicitly contained in the formu-
lation. However, for the elasto-plastic formulation, the deformation gradient
related to the discretization is needed in order to evaluate relations (9.200)
and (9.218). Hence Floc has to be determined consistent with the ANS inter-
polation. The associated strategy was pointed out in Dvorkin et al. (1995)
and implemented in Eberlein and Wriggers (1999).

Based on the fact that the right Cauchy–Green tensor Cloc is invariant
against rigid body rotations, the polar decomposition of the deformation
gradient (3.21) can be applied for Floc and hence this tensor can be split
into a rotation part R and a stretch part U. Since furthermore the right
Cauchy–Green tensor is independent on the rotation tensor, see (3.23), the
deformation gradient F̃loc = Floc

ANS can be introduced which is compatible
with the ANS ansatz.

The calculation of F̃loc starts from the local Cauchy–Green tensor
Cloc = FlocT

Floc which is used to obtain the stretch tensor Uloc from the
eigenvalue problem

(Cloc − λ2
(i) 1)N(i) = 0 =⇒ Uloc . (9.252)

Based on this result, the rotation tensor follows from the polar decomposition

R = Floc Uloc−1
. (9.253)

In the same way, the stretch tensor Ũloc is computed via (9.252) from the
strain measure C̃loc belonging to the ANS interpolation. Now F̃loc follows
under the assumption that the rotation tensor R is the same for Cloc and
C̃loc using (9.253)
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F̃loc = RŨloc = Floc Uloc−1
Ũloc . (9.254)

The modified deformation gradient F̃loc has then to be applied in (9.200). 4

F̃loc can additionally contain the incompatible displacement gradient H̄loc,
see (9.239). This is the case when the enhanced strain strategy is applied for
the membrane strains.

9.4.7 Shell Intersections

Modelling of real engineering structures needs often the introduction of shell
intersections. These arise when shells, consisting of different geometries, meet
at a certain zone or when shell parts of the same geometry are differently
located in space but act together as one structure. In such cases, the shell
midsurface is no longer smooth but has sharp corners. Examples are girders
with high webs or shells with a U-shape or L-shape cross section.

The 5-parameter theory only relies on two rotational degrees of freedom
which describe the rotation of the shell midsurface M (the rotation about the
shell normal is not relevant). Hence a third component of the rotation tensor
is missing when a transformation of the rotational degrees of freedom has to
be carried out in order to link the rotations of one midsurface to the other
at a shell intersection. This problem can be solved by using a 5/6-parameter
concept in which the needed third rotational degree of freedom is introduced
at the shell intersection. Within this concept, the shell can still be modelled
by the 5-parameter theory.

The 5/6-parameter concept leads to equations in which, instead of the
director vectors (9.227), the associated relations of the Rodrigues formulae
(9.193) and (9.194) have to be inserted.

This approach was first presented in Hughes and Liu (1981) and then
formulated by Simo (1993) for the 5/6-parameter concept. Generally, a 6-
parameter model for the shell intersection is obtained with the three dis-
placement components of u which can be used to describe the rotations with
respect to the axis of the directors.

Rotations around the director axis vanish for smooth shell geometries
which can be deducted from the moments of momentum balance when for-
mulated with respect to the normal. Rotations around the normal have to
be eliminated for smooth shells to avoid singularity of the resulting equation
system. This elimination can be performed by transforming the components
of the axial vector ωωω to a local cartesian frame Eloc

I i (defined in (9.208)) at
element level. Here index I is related to the nodal number and i denotes the
coordinate direction. The coordinate in thickness direction (3-direction) is
chosen as fixed coordinate axis within this process. It is now possible to pre-
scribe a boundary condition along this axis in order to eliminate the rotation
around the director axis. The following equations summarize this strategy:
4 A linearization of F̃loc is not necessary since it does not appear in the weak form,

see Eberlein (1997).
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– shell intersection:
ωωω = ωI i EI i = ψI i ,Eloc

I i (9.255)

– smooth shell:
ωωω = ψI α Eloc

I α and ψI 3 = 0 . (9.256)

This special 5/6-parameter approach for shell intersections reduces to the
normal 5-parameter model at all element nodes which belong to smooth shell
surfaces.

Note that relation (9.220) does not change within the 5/6-parameter the-
ory. However, the description of shell rotations is not given by (9.223) but
through the axial vector ωωω which was defined in (9.193). ωωω parameterizes the
rotation tensor R based on Rodrigues formulae (9.194). Hence the rotation
angle βββ given in (9.223) approximates the axial vector ωωω, see (9.256), by

ωωω =
4∑

I=1

NI ψψψI ; δωωω =
4∑

I=1

NI δψψψI . (9.257)

within the 5/6-parameter theory. With (9.223) or (9.257), the director field
is uniquely defined for the 5- und 5/6-parameter concept.

A special treatment of the shell interactions is not necessary within the
6-parameter model since all three displacements and components of the di-
rector vector are used within the formulations. In practical applications how-
ever locking is observed. This can be avoided by an introduction of a 6/7-
parameter model at a shell intersection. A detailed description of the related
concept can be found in e.g. Betsch (1996), where this concept is applied to
hyperelastic shells.

9.5 Examples

All numerical simulations in this section are performed by using finite shell
elements based on the discussed 5-parameter theory or by using a 6-parameter
theory derived in Eberlein (1997), see also Eberlein and Wriggers (1999).
Comparison to results gained with different formulations are provided for
application in which finite plastic deformations occur. Different shells with
smooth surfaces are analyzed when subjected to point or surface loads.

The nonlinear material behaviour necessiates a numerical integration over
the shell thickness. It turned out that an integration with five Gauss-points
was sufficient. A Comparison with a larger number of Gauss-points did not
lead to improved results even in the case of finite elasto-plastic deformations.
Hence five integration points seem to be adequate for inelastic response of thin
shells. The finite element formulation of the 5-parameter quasi-Kirchhoff

theory is insensitive against the choice of the penalty parameter cp which
occurs in the shear term. In all computations, this parameter is selected such
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Fig. 9.21 Bending of a clamped beam

that it has the same magnitude as the average of the maximum values in the
tangent matrix. This avoids ill-conditioning of the tangent matrix. The EAS
method is employed within all numerical simulations.

9.5.1 Bending of a Clamped Beam

The first example is basically a beam problem. It is selected here to discuss
the behaviour of the shell elements in bending situations. The clamped beam
is depicted in Fig. 9.21. The numerical simulations are performed for different
ratios of length to height of the beam (l/h). Geometry and material data are
provided in Fig. 9.21. For l/h = 100, simulation results can be found in
Dvorkin et al. (1995) which is chosen here for comparison.
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Fig. 9.22 Load–deflection curves
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Fig. 9.22 depicts the load-deflection curves for four different ratios of l/h.
The solutions (for the case l/h = 100) match as well for the 5- as for the
6-parameter theory the results in Dvorkin et al. (1995). The two theories (5-
and 6- parameters) yield almost identical results. This is also true for the
extremely thin beam with l/h = 1000. The element formulation using the 5-
parameter theory converges already with 20 elements while formulation based
on the 6-parameter theory needs 30 elements. Thus the discussed 5-parameter
theory is superior in case of thin shells.

The response of the 5-parameter theory is stiffer for a very thick beam
with a length to height ratio of l/h = 10/3 since shear deformations are ne-
glected in this model. However, once plastic deformations occur the difference
in the solutions between the 5- and 6-parameter model disappears. This is
due to the fact that a plastic hinge develops.

9.5.2 Quadratic Plate under Internal Pressure

A quadratic plate is subjected to a constant pressure load of (p◦ = 10−2)
which is increased by a load parameter λ = f , see Fig. 9.23. The boundary
conditions of the plate correspond to a Navier plate such that the vertical
displacement u3 is zero at the plate boundary.

Due to symmetry of the problem, only one quarter of the plate is dis-
cretized by an unstructured mesh which is refined near the plate boundaries.
The load deflection curves of the elasto-plastic response of the thin plate were
computed using the 5- and 6-parameter models, see Fig. 9.24. In the diagram,
the load parameter λ is plotted versus the displacement u3 M at the centre
of the plate.

As in the first example, the 6-parameter shell element depicts slower con-
vergence while the quasi-Kirchhoff element yields already a converged so-
lution with 225 elements. The numerical simulations are compared with the
results in Büchter et al. (1994). A good correspondence of these results with
the results from the 5- and 6-parameter model is observed in Fig. 9.24 for a
displacement of up to u3 M ≈ 30. For larger deflections, there exists a differ-
ence which is related to the application of the pressure load p = λ p◦ which

op = f p

M

254254

254

254

H
3

2

1

3u  = 0

Material data:
μ = 2.6538 · 104 Λ = 3.9808 · 105

τY = 248 K = 0

Geometry:
l = 508 h = 2.54

Fig. 9.23 Quadratic plate under internal pressure
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Büchter et al. 1994

6-Parameter

Fig. 9.24 Load-deflection curves and deformed configuration at λ = 70

is not considered in Büchter et al. (1994) to be deformation dependent. The
deformed configuration depicts at λ = 70 a considerable change of the flat
plate surface, see Fig. 9.24.

9.5.3 Pinched cylinder

The last example illustrates the behaviour of a cylindrical shell under point
loads. This example has been intensively investigated by many research
groups. The first simulation which considered finite deformations can be
found in Simo and Kennedy (1992). Simulations with large deformations
can also be found e.g. in Wriggers et al. (1996), Miehe (1997) and Soric
et al. (1997). Here all numerical simulations are performed with shell ele-
ments based on the 5- and 6-parameter theory.

Geometry and initial configuration of the shell can be found in Fig. 9.25.
Due to symmetry, only one eighth of the cylinder has to be discretized. The
shell is supported at z = 300 where all degrees of freedom are fixed be-
sides the displacements in z-direction. The problem is solved by applying

F B

A
L = 300

FR = 300

Material data:
μ = 1153.85 Λ = 1730.77
τY = 24.3 K = 300.0

Geometry:
R = 300 L = 600
H = 3

Fig. 9.25 Pinched cylinder
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Fig. 9.26 Load-deflection curve

a displacement controlled analysis where a displacement increment of ΔuF ≈
2.5 under the load is chosen.5 This guarantees a stable convergence behaviour
within Newton’s method. Within this procedure, the total displacement is
applied within 100 loading steps.

The load–deflection curves are shown in Fig. 9.26 for a structured mesh
with 32×32 elements. They represent the vertical displacement uF versus the
load F . The convergence behaviour of this problem was studied in Wriggers
et al. (1996). By comparison with the results in this paper, the solution using
the 5-parameter model can be viewed as reference solution. However, the re-
sults of the 5- and 6-parameter solution are very close as can be observed from
Fig. 9.26. These solutions are furthermore in good agreement with a solution
obtained by three-dimensional enhanced strain elements, see Sect. 10.5. Note
that the effort to compute the element matrices is considerablly higher when
using the 6-parameter model in comparison with the quasi-Kirchhoff ele-
ment (24 against 20 degrees of freedom and five instead of four incompatible
modes) and the gain in accuracy is not considerable.

Figure 9.27 depicts the development of the plastic zone for the element
with the 5-parameter model. The equivalent plastic strain of the outer layer
was plotted. It is interesting that the circular cross section of the cylinder
deforms into a rectangular cross section at the loacation of the load which
vertices moving outward for increasing load.

9.5.4 Final Remarks

The examples in the previous section lead to the conclusion that the quasi-
Kirchhoff shell element yields very good results, even somehow unexpected
for thick shells. Thus this efficient element can be applied for finite elastic
and inelastic deformation problems, like metal sheet forming.
5 Since singularities occur under point loads in shell analysis, these loads have to be

distributed on a small fixed area when mesh convergence studies are performed.
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Fig. 9.27 Development of the plastic zone

However, some problems where elastic material behaviour is considered
incorporate boundary layer effects which cannot be modelled correctly by the
quasi-Kirchhoff theory. This is e.g. the case when resultant shear forces
have to be determined for plates with Navier boundary conditions. In such
cases, the 6-parameter model or higher order interpolations, see Düster et al.
(2001) or Hughes et al. (2005) have to be employed. Another possibility would
be to use three-dimensional continuum elements. These could also be coupled
to finite shell elements since the layer effects are often related only to very
small areas. In that case, elements based on the quasi-Kirchhoff theory
could be used in the undisturbed parts, away from the boundary layer. Such
approach would lead to investigations of model adaptivity, see Chap. 8. First
investigations for shells can be found in e.g. Han and Wriggers (1998).

The convergence behaviour of the 6-parameter model can be enhanced
by additional ANS interpolations in thickness direction, see e.g. Betsch and
Stein (1995) and Bischoff and Ramm (1997). This approach is also known as
7-parameter model.
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Another discretization technique for shells undergoing finite deformations
is based on triangular elements. These have the advantage that more robust
techniques are available for automatic meshing and mesh refinement. Ele-
ments which have a simple interpolations (quadratic ansatz functions for the
displacements and incompatible linear ansatz functions for the rotations) can
be formulated for thin and thick shells for hyperelastic and elasto-plastic re-
sponse. More details can be found in Campello et al. (2003), Pimenta et al.
(2004) and Campello et al. (2007).



10. Special Finite Elements for Continua

10.1 Requirements for Continuum Finite Elements

The search for finite elements which can be applied to arbitrary problem
classes within solid mechanics has a long history. This can be seen from the
numerous scientific papers devoted to this topic. Main target of a development
of finite elements is summarized in the following enumeration.

1. Locking free behaviour for incompressible materials,
2. good bending performance,
3. no locking in thin elements,
4. no sensitivity against mesh distortions,
5. good coarse mesh accuracy,
6. simple implementation of nonlinear constitutive equations and
7. efficiency (e.g. few necessary integration points).

These points result from different demands and can also lead to different
element formulations.

The first point is associated with the numerical simulation of a special
problem classes which include in solid mechanics rubber like materials and
elasto-plastic material equations in the framework of J2-plasticity. During
the last years, different special finite elements were developed for this ap-
plications. This results from the fact that classical low order displacement
elements, which were described in Chap. 4, are not sufficient. The constraint
related to the incompressible behaviour leads even for geometrical linear el-
ements to locking, see e.g. Braess (2007), Zienkiewicz and Taylor (1989) and
Hughes (1987). Finite elements which are suitable for incompressible materi-
als will be described in detail in Sects. 10.2, 10.4 and 10.5.

The second and third points are of significance when three-dimensional
solid elements shall be employed to solve beam- or shell problems since beam
and shell structures are often dominated by bending behaviour and are, by
construction, thin in one or two spatial coordinated. Using three-dimensional
elements allow a simple implementation of three-dimensional constitutive
equations which is not so easily possible when classical beam or shell models
are used. Furthermore, the treatment of finite rotations are avoided by such
formulations, see Sect. 9.4.
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The fourth point is essential when modern methods for mesh genera-
tion are employed. These methods lead for arbitrary geometries to so-called
unstructured meshes which consist of finite elements shapes with arbitrary
geometry, see e.g. Figs. 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14, 8.15. Another
source for the distortion of finite elements is the change of the nodal coor-
dinates during a nonlinear simulations which can lead to severely deformed
finite elements.

The fifth point is related to the fact that in real engineering applications
often three-dimensional components have to be analysed which size and com-
plexity cannot be modeled using a converged mesh, especially when the simu-
lation is nonlinear. Hence there is still need for elements which depict a good
accuracy, even when used within a coarse mesh. Of course, the importance
of this point will diminish with the increasing computing power, but at the
moment it is still of concern.

The sixth point follows from the fact that more accurate mathematical
and physical models have to be used within the simulation of nonlinear engi-
neering structures. Within this process, new complex nonlinear constitutive
equations have to be implemented. Here a simple interface to the finite el-
ement should support the user in order to efficiently change existing finite
elements and to be able to implement new complex constitutive equations.

Finally, it can be mentioned that efficiency is not only related to speed
of the element formulation but also to the memory requirement. The latter
demand is essential when e.g. inelastic problems with several hundred thou-
sand or millions of finite element have to be solved within a given time frame.
This speed of the element formulation is essential when iterative solvers are
applied since in that case the time for the computation of residuals and tan-
gent matrices is of the same order as the time used by the solver within one
iteration.

New developments show that finite elements with a high order of inter-
polations (so-called p-version of finite elements) can be applied successfully
to finite deformation problems for rubber-like materials, see Heisserer et al.
(2007).

Low order finite elements have been proven to be robust for many non-
linear simulations. This has to do with a low regularity of the analytical
solution which can exclude higher order interpolations, see also Sect. 8.1. A
further fact which supports lower order elements is the sparsity of the global
tangent matrices since low order elements yield a smaller bandwidth. Due
to that the global equation system can be solved more efficiently, which is
crucial for the simulation of large systems. In case of numerical simulations
which include inelastic material behaviour, one or more history variables
have to be stored per integration point. As an example, a problem with J2

plasticity is considered to obtain the variation of Fe for the ansatz (10.88),
see Sect. 6.2.2, in which six plastic strain components have to be stored
per integration point. This leads to the memory requirement for storing the
history variables when a finite element mesh of a cube with 106 finite el-
ements is used which is shown in Table 10.1. The memory requirement is
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Table 10.1: Memory requirement for history variables for 106 finite elements

Order of interpolation Number of Gauss-points Memory requirement
1 1 56 MByte

1 8 448 MByte

2 27 1512 MByte

larger when iterative solvers or special direct sparse solvers are used, see
Sect. 5.2, but is basically of the same order of magnitude. Hence it is ad-
vantageous to use elements with a minimum number of integration points in
order to optimize memory requirement. Of course, one has to be careful to
compare linear and quadratic or other higher order elements since the ele-
ments with higher order have a higher order of convergence when the solution
has the necessary regularity, see Sect. 8.1. In that case, less finite elements of
higher order can be used which yields results with the same accuracy. (As-
sume that half of the elements per side are sufficient for the discretization
of the above cube, then the memory requirement for the history variables
reduces for quadratic elements to 189 MByte.) However, in order to compare
the finite element discretizazions of different interpolation orders, the total
solution time needed to obtain a result with the same accuracy has to be
considered.

The memory requirement for history variables play an essential role when
explicit integrations schemes are employed to simulate impact or shock prob-
lems. Here only the residual has to be stored, see Sect. 6.1.1, which leads to
the storage of three values per node. In that case, the storage requirement for
the example above is roughly 3 × 1013 = 3.091 × 106 values for the residual
vector. The number of history variables for the correct two-point Gauss-
integration in each coordinate direction amounts to 2×2×2×103 = 8×106.
This is more than double of the storage needed for the residual vector. In or-
der to reduce the overall computing time, all quantities have to be retained in
the main memory. In such case, the storage of the history variables is a major
concern for explicit computations. Hence most of the explicit finite element
codes use specially stabilized finite elements with only one-Gauss-point. This
formulation will be discussed in Sect. 10.4.

It is well known that the pure displacement element with bilinear or tri-
linear ansatz function has bad convergence behaviour in bending problems,
especially if the length in one direction is a lot smaller than in the other ones,
e.g. for beam or shell structures. Hence special elements were developed for
such problems. With such elements, which is still based on linear ansatz
functions, the convergence order cannot be increased with regard to (8.6)
or (8.10), but the constant C is reduced considerably. Thus the required
accuracy of the finite element solution can be achieved with considerably less
elements. In this connection, the ideal element would be an element which is
well performing for bending as well as for incompressible problems.
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Different formulations have been developed in order to construct finite
elements which fulfil all seven requirements stated above. These are:

– techniques which base on a reduced integration of the integrals leading to
the element matrices,

– stabilization methods,
– hybrid or mixed variational principles which base on complimentary energy

written in terms of the stress field,
– mixed variational principle of Hu–Washizu type,
– mixed variational principle for rotational fields,
– mixed variational principle for special quantities,
– nodally based elements,
– composite or macro formulations for the element,
– higher order displacement elements and
– formulations based on the Cosserat point theory.

In the following, different possibilities are summarized and their differ-
ences are discussed. After that some of the techniques are presented in
detail.

1. Reduced integration and stabilization. The most simple method
is the “reduced integration” of the integrals leading to the finite element
vectors and matrices. It is also very efficient and safes memory for history
data storage since less integration points are used. Underintegration or
reduced integration means that less Gauss points are used for the inte-
gration of tangent matrices and residual vectors than necessary for the
chosen polynomial degree of the shape functions, for first applications see
e.g. Zienkiewicz et al. (1971). This reduced integration was developed to
avoid locking in case of incompressibility. In that case, it is often only
applied to the pressure part of the constitutive equation, see e.g. Malkus
and Hughes (1978), Hughes (1980) and Sect. 10.2. For reduced integration
techniques exist many variants. This stems from the fact that reduced
integration is always associated with a rank deficiency of the tangent
matrices which is cured by different methods. The related methods are
generally known as stabilization techniques. A literature review regarding
this topic is presented in Sect. 10.4, in which stabilization techniques from
Belytschko et al. (1984) are presented. Using the reduced integration to-
gether with stabilization leads to finite elements which fulfil conditions
1, 4, 5, 6 and 7. These elements are locking free in case of incompress-
ibility, they have a good coarse mesh accuracy; they are not sensitive
against mesh distortions and can be used for arbitrary constitutive equa-
tions. The reduced integration provides the most efficient possibility to
compute the element residual and the element tangent stiffness (e.g. for
an eight-node brick element, only one Gauss point is needed). However,
these elements need the choice of artificial stabilization parameters. In
the worst case, e.g. for some bending problems, the finite element solution
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can directly depend on the stabilization parameter, see also Sect. 10.4.
However, new developments show improvements, see e.g. Reese (2005).

2. Hybrid or mixed variational principles. When mixed variational
principles are used as basis for finite element discretization, different pos-
sibilities exist for the construction of the finite element matrices. This
is related to the many different existing mixed forms. Some of them
need conforming displacement fields together with non-conforming stress
or strain fields, others rely on conforming stress fields but allow non-
conforming displacement fields. Theoretical background for linear mixed
methods can be found in Washizu (1975) and in various monographs
and papers, for the mathematical literature, see e.g. Braess (2007) and
Brenner and Scott (2002). For the case of linear elasticity, hybrid elements
where first described in Pian (1964) which has lead to many different fi-
nite element formulations up to now. Within this approach, Pian and
Sumihara (1984) developed a finite element which is efficient and accu-
rate. However due to the need to invert the constitutive equations within
the formulation in order to obtain the constitutive equations in terms
of the stress field, there are only few elements for St. Venant materi-
als known which work for large deformations. A special formulation for
Neo–Hooke materials will be presented in Sect. 10.3.

3. Enhanced strain elements based on the Hu–Washizu principle.
Within the enhanced strain formulations, non-conforming strain mea-
sures are introduced within the Hu–Washizu principle. In a first paper,
Simo and Rifai (1990) developed enhanced strain elements for the geo-
metrical linear theory.

In follow up work, Simo and Armero (1992) and Simo et al. (1993b)
have derived a family of enhanced elements for large deformations and
inelastic constitutive equations based in the Hu–Washizu. This class
of elements is related to the incompatible mode elements which were
developed by Wilson et al. (1973) and Taylor et al. (1976) for linear
problems. The enhanced strain elements fulfil point 1 to 6 of the above
mentioned requirements. Hence they are well suited for all applications.
However, these elements have some disadvantageous. They need a stat-
ical condensation on element level. For the two-dimensional case, this
leads to the inversion of a 4 × 4 matrix and, depending on the formu-
lation, in the three-dimensional case a 9 × 9 or 12 × 12 matrix has to
be inverted. This reduces the efficiency of the enhanced strain elements.
Furthermore, storage of the degrees of freedom belonging to the enhanced
strains needs additional storage on element level, see also the comments
regarding Table 10.1. However, a special efficient formulation has been
developed in Puso (2000). A further point which is still under investiga-
tion is related to the hour-glassing of the enhanced strain elements under
pressure. This fact was discovered by Wriggers and Reese (1994), see also
Wriggers and Reese (1996). A detailed discussion of this phenomenon can
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be found in Sect. 10.5. Solutions which partly solve this problem are pro-
vided in Korelc and Wriggers (1996a), Glaser and Armero (1997), Reese
and Wriggers (2000), Reese (2005) and Mueller-Hoeppe et al. (2008),
where different methods have been used to overcome the hour glassing,
see also Sect. 10.5.4.

It is not possible to enhanced triangular and tetrahedral elements di-
rectly. The method is degenerate for triangular and tetrahedral elments,
see Reddy and Simo (1995). However, a mixed enhanced approach where
ansatz functions for displacements pressures and volume effects are intro-
duced can be employed to generate low order tetrahedral elements which
do not lock in incompressibility and perform reasonably well in bending,
see e.g. Taylor (1985) and Mahnken et al. (2008).

4. Mixed variational principles for problems with rotational de-
grees of freedom. When not only the momentum is weakly enforced,
but also the moment of momentum, which usually leads, see (3.68), to the
symmetry of the stress tensor, then rotational degrees of freedom can be
introduced as independent field variables. Finite elements which is based
on such formulation were constructed in e.g. Hughes and Brezzi (1989).
Further applications of such variational formulations can be found for
two-dimensional elements which are a basis for shell formulations, see
e.g. Ibrahimbegovic et al. (1990), Iura and Atluri (1992) and Gruttmann
et al. (1992). A three-dimensional technique using co-rotational formula-
tions for three-dimensional continua was developed in Moita and Crisfield
(1996).

5. Mixed variational principles for special quantities. Often prob-
lems have to be considered which include special constraint conditions.
In such cases, it is advantageous to formulate mixed principles which are
tailored to fulfil such constraint conditions. Examples are solid elements
for plates or shells where, for thin structures, the transverse shear be-
comes zero in the limit, see also Chap. 9.4. Another example is related to
contact problems where the zero gap condition introduces a constraint
which has to be considered when deriving associated finite element dis-
cretizations, see Chap. 11. The example standing out in solid mechanics
is the constraint related to incompressibility. This constraint occurs in
rubber elasticity and in case of plastic flow, when the J2 is applied for
mechanical modelling. The related special variational principle relies on
a split of the kinematical variables into volumetric and deviatoric parts,
details are provided in Sect. 10.2.

The related finite elements fulfil point 1, 4, 5 and 7 of the above
mentioned requirements. Due to the kinematical split, the formulation
of the constitutive equations is more elaborate than in the standard
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formulation. This is especially true for large deformations making the
linearizations, needed within the Newton method, more complex.

6. Nodally based elements. Nodally based elements are applied to en-
hance the bending behaviour of tetrahedral elements and to avoid lock-
ing in such cases. Besides a number of other formulations, average nodal
pressures or strains can be used to compute average volumetric strains
or strains at nodes based on surrounding triangles or tetrahedrals, see
Dohrmann et al. (2000) and Bonet and Burton (1998). These types of
element have been stabilized by Puso and Solberg (2006) in order to
alleviate spurious modes.

7. Composite or macro elements. Composite or macro element for-
mulations make use of the possibility to construct finite elements from
subelements which use simplified or special shape functions. These type
of elements can be developed for triangular and quadrilateral shaped el-
ements. For triangles, this type of formulation is, as well as the nodally
based formulation, one of the few possibilities to enhance the element
behaviour, see Guo et al. (2000) and Thoutireddy et al. (2002), since tri-
angles cannot be enhanced in the standard way using the Hu-Washizu

principle. This technique is not often employed for quadrilaterals and
hexahedral elements since the only gain is a more robust behaviour when
the elements are distorted severely at large strain states. Here formula-
tions were developed by Rubin and Jabareen (submitted), based on the
Cosserat point theory, and by Boerner and Wriggers (2008) based on
the standard continuum approach.

8. Higher order displacement elements. During the last years, finite
element discretization schemes were developed which is based on higher
order interpolation. These methods depict very good convergence charac-
teristics for finite hyperelastic deformations, see e.g. Düster et al. (2003)
but also for elasto-plastic problems undergoing small deformations, see
Düster et al. (2002). They can be formulated in an efficient way by hi-
erarchical shape functions using polynomials or NURBS and hence are
competitive with respect to low order approximations. However, still spe-
cial techniques have to be employed for incompressible materials in order
to recover optimal convergence rates also for lower order approximations,
see e.g. Elguedj et al. (2008) and Heisserer et al. (2007).

9. Cosserat point elements. Lately, elements have been formulated
which are based on the Cosserat point theory. This theory formu-
lates the continuum as a point then director vectors are introduced to
account for the deformation modes. For a theoretical background, see
Rubin (2000). This formulation transforms directly into a finite element
discretization, as was shown in Nadler and Rubin (2003). Furthermore,
due to an internal split of the deformation modes it is possible to use lin-
ear analytical solution to stabilize the element such that locking but also
hour glassing does not occur. The element has so far superior behaviour
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problems with hyperelastic materials for undistorted element geometries,
fulfilling points 1-5 and 7, but behaves like pure displacement Q1-element
for distorted meshes, see Loehnert et al. (2005). For initially distorted
element, geometries approaches to improve the element behaviour are
discussed in Boerner et al. (2007) and Rubin and Jabareen (2008).

10.2 Mixed Elements for Incompressibility

Pure is displacement elements are not suitable for problems in which the
constitutive behaviour exhibit incompressibility since they tend to locking.
Locking means, in this connection, that the constraint conditions due to in-
compressibility which are related to the pure volumetric mode (in the elas-
tic case the condition is J = detF = 1 and for plastic flow the condition
Jp = detFp = 1 holds) can only be fulfilled with a considerable stiffening
of the bending modes, see e.g. Hueck et al. (1994). Thus this behaviour is
also called volume locking. Mixed finite element methods can help to avoid
locking, see e.g. Zienkiewicz and Taylor (1989) and Brezzi and Fortin (1991).
There exist different possibilities to construct mixed elements. These are

shortly discussed in the following.

– Method of Lagrangian multipliers. Here the constraint condition
of incompressibility will be directly introduced via the methods of La-

grangian multipliers. Hence the strain energy

W = Winkomp + pG(J) with G(J) = 0 (10.1)

is formulated. The constraint condition is then given for finite deformations
as G(J) = J − 1 with J = is e.g. given by the Mooney–Rivlin mate-
rial (3.112). Finite elements which are based on this methodology have
the disadvantage that contrary to the pure displacement elements addi-
tional unknowns occur. These are the Lagrangian multipliers which are
equivalent to the pressure p. Furthermore, special techniques are needed
to solve the associated incremental equation system for displacements and
Lagrangian multipliers[

KT uu BT up

BT
T pu 0

] {
Δu
Δp

}
= −

{
Ru

Rp

}
(10.2)

which has zero entries in the diagonal. The sub-matrix KT uu follows from
Winkomp while BT up is related to the discretization of the term pG(J). As-
sociated finite element formulations can be found in Oden and Key (1970)
and Duffet and Reddy (1983).

– Perturbed Lagrangian method. To have a greater variability for the
formulation of ansatz functions, the following strain energy function

W = Winkomp + pG(J) − 1
2 ε
p2 (10.3)
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can be introduced. The constraint condition is again given by G(J) =
J − 1. ε > 0 is a perturbation parameter. Choosing now continuous ansatz
function for displacements and pressure, the following incremental equation
system can be derived[

KT uu BT up

BT
T pu − 1

ε Kpp

] {
Δu
Δp

}
= −

{
Ru

Rp ε

}
. (10.4)

Here contrary to (10.2), the incremental displacements and pressures can be
computed using standard equation solvers. The pressures can be removed
from the system by using the Schur complement. This leads to[

KT uu + εBT up K−1
pp BT

T pu

]
Δu = −Ru − εBT up K−1

pp Rp,ε . (10.5)

When discontinuous ansatz functions are used for the pressure variables
then the pressures can be eliminated on element level. This yields an equa-
tion in which the inverse of Kpp is trivial[

KT uu + εBT up BT
T pu

]
Δu = −Ru − εBT up Rp,ε . (10.6)

This system of incremental equations is equivalent to a penalty formulation
for the incompressibility constraint. Note that the solution now depends on
the perturbation or penalty parameter. For small values of ε, the influence
of the constraint condition disappears. For large values of ε, the constraint
is fulfilled more and more exactly but the condition number of the linear
equation system (10.6) will be very large. Then special equation solvers
have to be applied. Papers regarding formulation (10.5) have been pub-
lished for the linear case by Malkus and Hughes (1978) and for the large
strain case of rubber elasticity by e.g. Häggblad and Sundberg (1983) and
Sussman and Bathe (1987).

– Hu–Washizu functional. In this functional, the incompressibility con-
straint is introduced as in the penalty method but is formulated via a
constitutive equations for the pressure. In that case the functional

H(ϕ , p , θ ) = W (Ĉ) +K [G(θ)]2 + p (J − θ) (10.7)

is formulated, see also Sect. 3.4.3. Within the finite element discretization,
ansatz functions are selected for the deformation ϕ, the pressure p and the
volumetric strain θ. G(θ) defines the constitutive equation for the pressure
term, here K is the modulus of compression. The formulation of W (Ĉ) is
provided by (3.122). The associated discretization within the finite element
method was firstly presented in Simo et al. (1985a).

Finite elements which are derived form mixed methods have to fulfil addi-
tional mathematical conditions which guarantee the stability of the element
formulation. This condition is known as BB-condition, named after its in-
ventors Babuska and Brezzi. Its fulfillment is related to the condition that
matrix BT pu in (10.4) is not rank deficient.
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Remark 10.1: With respect to the mathematical formalism, the BB-condition

will be stated here for incompressible linear elasticity. With the short hand notation,

see also Chap. 8 and Eq. (8.3), the incompressible problem cab be stated for mixed

interpolations as

a(u ,η) + b(p ,η) = f(η) ∀η ∈ V (10.8)
b(q ,u) = 0 ∀q ∈ Q

where the different terms are given by

a(u,η) = 2μ
∫
Ω

eD(η) · ed(u) dΩ ,

b(p ,η) =
∫
Ω

pdiv η dΩ , (10.9)

f(η) =
∫
Ω

b̂ · η dΩ +
∫
Γσ

t̂ · η dΓ .

The strain deviator ed(u), see (3.30), has to be applied in (10.9)1 on order to
obtain a clear split between the volumetric strains divu and the deviatoric
part. The incompressibility condition is described by divu = 0 in the lin-
ear case. It is introduced to the mixed form by the Lagrangian multiplier
method.

In the continuous case of solids with sufficiently smooth boundaries, the
displacements are in the Sobolev spaceH1 (v ∈ V = H1(Ω), for a definition
of the spaces see e.g. (8.7)). For the pressure interpolation, the space L2

(p ∈ Q = L2(Ω)) is sufficient since no derivatives of the pressure variable
occur in (10.9). With the finite element ansatz functions for the displacements
uh ∈ Vh ⊂ V and for the pressure ph ∈ Qh ⊂ Q, the discretized form of (10.8)
follows

a(uh ,ηh) + b(ph ,ηh) = f(ηh) ∀ηh ∈ Vh (10.10)
b(qh ,uh) = 0 ∀qh ∈ Qh.

The conditions for existence, uniqueness and stability of the solution are the
ellipticity condition and the BB-condition. The first one requires that the
ansatz functions ηh fulfil for a positive constant α > 0, the condition

a(ηh ,ηh) ≥ α ‖ηh ‖2
V . (10.11)

The fulfillment of the BB-condition means that a constant β > 0 exists so
that

inf
qh∈Qh

sup
ηh∈Vh

b(ηh , qh )
‖ηh ‖H1 ‖ qh ‖L2

≥ β . (10.12)

In case that the ansatz functions fulfil both conditions for incompressible
material then the derived finite element method is stable.
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For general nonlinear applications, there exists no formulation of the BB-
condition. One can apply the condition analogously for the tangent spaces
which belong to a given state of deformation and pressure, as e.g. provided in
(10.2). The BB-condition has the disadvantage that it cannot be formulated
for e single element. One always has to consider a patch of elements, see e.g.
B Brezzi and Fortin (1991) or Braess (2007). A numerical method to show
fulfillment of the BB-condition was derived in Chapelle and Bathe (1993).

10.2.1 Mixed Q1-P0 Element

In this section, a large deformation finite element is derived which is based
on the Hu–Washizu variational formulation. This element is implemented
in many existing finite element codes and uses linear shape functions for
the deformation field related to the deviatoric kinematical variables. Addi-
tionally, constant ansatz functions are applied to discretize the pressure and
volumetric strain.

The continuum mechanical basis for the mixed Q1-P0 element was already
discussed in Sect. 3.4.3. Equation (3.308) describes the weak form with re-
spect to the spatial configuration. Inserting the finite element approximation
into the weak form yields with (4.94)

∇Sηe =
n∑

I=1

B0 I ηηηI . (10.13)

The virtual strain divη, related to the change of volume, occurs additionally
in (3.308). Discretization of the divergence operator leads to

divηe =
n∑

I=1

BV I ηηηI , (10.14)

where the matrix
BV I =< NI ,1 , NI ,2 , NI ,3 > (10.15)

was introduced. The derivatives have to be computed with respect to the
current coordinates, as shown in Sect. 4.2.3.

Furthermore, constant ansatz functions are introduced for the pressure
J p = τvol, see (3.129), and the volume strain θe in Ωe

τvol e = J pe = J p̄ θe = θ̄ . (10.16)

With these interpolations, the weak form (3.308) can be written as

DΠ(ϕ, p, θ) · ηηη =

ne⋃
e=1

n∑
I=1

ηηηT
I

∫
Ωe

{ (BT
0 I τττ iso e + J BT

V I p̄ } dΩ − δPEXT = 0,
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DΠ(ϕ, p, θ) δp =
∫
Ωe

δp̄ (Je − θ̄ ) dΩ = 0, (10.17)

DΠ(ϕ, p, θ) δθ =
∫
Ωe

δθ̄

(
∂W

∂θ
− p̄

)
dΩ = 0 .

The integrals are evaluated with respect to the initial configuration. The
first equation denotes the weak form of equilibrium where τττ are the Kirch-

hoff stresses. The second equation is associated with the constraint equation
Je = θ̄ and the third equation yields the constitutive equation for the pressure
p̄, see also (3.130)1. The last two equations in (10.17) can be fulfilled locally
on element level since a discontinuous ansatz was selected for pressure and
volume strain. Hence both equations can be solved directly. This leads with
(3.12) to

θ̄ =
1
Ωe

∫
Ωe

Je dΩ =
ϕ(Ωe)
Ωe

p̄ =
1
Ωe

∫
Ωe

∂W

∂θ
dΩ =

∂W

∂θ
(θ̄) (10.18)

The discretization of the weak form (3.308) is now completed and summarized
in Eq. (10.17)1 and (10.18). Note that the volumetric variable θ follows simply
from the ratio of the element volume in the current configuration ϕ(Ωe) to
the element volume in the initial configuration Ωe.

10.2.2 Linearization of the Q1-P0 Element

The linearization of (10.17) yields a matrix form of the Q1-P0 element in
which all variables (ϕ , p , θ ) are present. From the first equation of (10.17),
the linearization follows with (3.277), (4.112) and (4.113) as

D2Π ·Δu =
ne⋃

e=1

n∑
I=1

ηT
I [

n∑
K=1

K̄
u
TIK

ΔuK + K̄
p
TI
Δp̄ ] (10.19)

where the matrices

K̄
u
TIK

=
∫
Ωe

[
(∇x̄NI)T ( p̄ J 1 + τ̄ττ iso e )∇x̄NK

+.B̄T
0 I

[
(1 ⊗ 1 − 2E ) p̄ J + cciso ] B̄0 K

]
dΩ , (10.20)

K̄
p
TI

=
∫
Ωe

BT
V I J dΩ .

occur. The linearization of the second equation (10.17) is derived with the
Jacobi determinant, see (3.330), and its associated discretization, see (10.14),
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Δθ =
1
Ωe

n∑
K=1

∫
Ωe

BV K J dΩΔuK . (10.21)

The third equation of (10.17) yields the linearization

Δp̄ =
∂2W

∂θ2
Δθ . (10.22)

Inserting now (10.21) in (10.22) and using this result in (10.19) and (10.20)
leads to the elimination of the variables for pressure Δp̄ and volumetric strain
Δθ on element level. Thus a pure displacement formulation is obtained. Its
tangent stiffness matrix has, for the element nodes I and K, the following
expression

K̄
Q1P0
TIK

=
∫
Ωe

[
(∇x̄NI)T ( p̄ J 1 + τ̄ττ iso e )∇x̄NK

+.B̄T
0 I

[
(1 ⊗ 1 − 2E ) p̄ J + cciso ] B̄0 K

]
dΩ (10.23)

+
1
Ωe

∫
Ωe

BT
V I J dΩ

(
∂2W

∂θ2
Ωe

)
1
Ωe

∫
Ωe

BV K J dΩ .

This element does not fulfil the BB-condition in the geometrical linear theory.
Thus it can lead to unstable solutions for the pressure when special loading
and boundary conditions are given. Often post-processing of the pressures
using L2 smoothing can help. In practical application, it has been observed
that this element is quite robust for many problems in solid mechanics which
depict quasi-incompressible material behaviour. Hence it is contained in many
commercial finite element codes. In case that this element is not sufficient,
its high order variant can be used which is the Q2-P1 element with quadratic
interpolations for the deformations and linear interpolation for the pressure.
It fulfils the BB-condition in case of the linear theory, see e.g. Brezzi and
Fortin (1991).

10.3 Mixed Finite Elements for Finite Elasticity

A mixed finite element, based on the Neo–Hooke material equation (3.119)
in Sect. 3.3.1, is developed by using a formulation equivalent to the
Hellinger–Reissner principle, see e.g. Washizu (1975). The main idea is
to use a similar approach as the one advocated by Pian and Sumihara (1984)
for the linear case. Within this hybrid approach, the constitutive equation
needed to be inverted. Here the Neo–Hooke material equation is given for
the 2nd Piola–Kirchhoff stress S in terms of the right Cauchy–Green

tensor C as



412 10. Special Finite Elements for Continua

S =
Λ

2
(J2 − 1)C−1 + μ (1 − C−1 ) . (10.24)

Under the assumption that it is possible to invert this equation form,

C = f (S) (10.25)

is obtained.
For the derivation of the mixed hybrid principle in Pian and Sumihara

(1984), the classical Legendre transformation 1
2εεε ·C[εεε] = σσσ · εεε− 1

2σσσ ·C−1[σσσ]
was applied. This transformation, a however, a is not valid in the nonlinear
case, see e.g. Ogden (1984) and hence cannot be applied the Neo–Hooke

material. Instead, a weak form of the equilibrium Gu and the constitutive
relation Gc is formulated which has as primary variables the displacement
field and the stress field as follows

Gu(u ,S ,η) =
∫
B

1
2

S · C(η) dV −
∫
B

b̂ · η dV −
∫

∂Bσ

t̂ · η dA = 0 ,

Gc(u ,S ,Q) =
∫
B

1
2

Q · [C(u) − f (S) ] dA = 0 . (10.26)

Here η and Q are the test functions, η is equivalent to the virtual displace-
ment and Q to the virtual stress. C(η) = FT Gradη + GradT η F is the
virtual strain and C(u) = FT F is the right Cauchy–Green tensor; the
latter depending only on the displacement field u. This weak form can be
viewed as the nonlinear version of the Hellinger–Reissner functional.

Note that the inverse (10.25) is not uniquely defined, either locally or
globally, see Ogden (1984). However, (10.24) can be inverted by looking at
different solution branches. For this (10.24) is rewritten as

Â(S) = β̂(C)C−1 (10.27)

with

β̂ = α− J2,

α = 1 +
2μ
Λ
, (10.28)

Â(S) =
2
Λ

(μ1 − S ).

Multiplication of (10.27) with Â
−1

from the left side leads to

C = β̂(C) Â
−1

(S) . (10.29)

Now it remains to compute β̂(C) in dependence of Â. The computation of
the determinant of (10.29) yields
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det Â =
β̂3

J2
(10.30)

since J2 = detC. With the abbreviation â = det Â and (10.28)1 this leads
to a cubic equation for β̂:

β̂3 + α̂ β̂ − âα = 0 . (10.31)

To obtain a simpler solution β = c1 β̂, A = c2 Â and a = detA can be
defined. Together with c1 and c2

c1 =
2

3α
, c2 =

1
3

[
4
α2

] 1
3

, (10.32)

which only depend on the Lame constants, this provides the cubic equation
for β

β3 + 3 a β − 2 a = 0 . (10.33)
Depending on the discriminant D = a3 +a2, three different solutions have to
be distinguished:

– D > 0: Equation (10.33) has only one real solution

β = r − a

r
with r =

[
a+

√
a3 + a2

] 1
3
. (10.34)

– D < 0: This case is equivalent to a < −1 and yields three solutions for
(10.33)

β = −2
√
−a cos

[
1
3

( arccos
1√
−a + 2π k )

]
, k = 0 , 1 , 2. (10.35)

In the physical problem, J > 0 has to be fulfilled. From (10.28)1 and
(10.32)1 it then follows that β < 2

3 . Hence only the solution with k = 0
remains under these circumstances

β = −2
√
−a cos

(
1
3

arccos
1√
−a

)
. (10.36)

– D = 0: Here the determinant a is either a = 0 or a = −1. For a = 0,
the only solution is β = 0 which yields with (10.28)1 and (10.32)1 for the
Jacobian J =

√
α. For a = −1, β can be obtained from (10.36), leading

in the limit to β = −2.

Based on this solution, the expression for the inverse of the Neo–Hooke

material (10.24) can be derived, by employing (10.28)1 and (10.28)3. With

A =
2

3Λ

[
4
α2

] 1
3

(μ1 − S ), (10.37)

the final result is obtained
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C = β
[α

2

] 1
3

A−1 =
3
4
β αΛ (μ1 − S )−1 . (10.38)

Hence it is possible to invert the constitutive equation; the weak formulation
(10.26) related to a Hellinger–Reissner functional can be used as starting
point for the finite element development.

Interpolation has to be selected for the displacement field and the stresses.
Here a four-node quadrilateral is derived based on the isoparametric concept.
For the displacement field and its variation, the standard shape functions are
used

u =
4∑

I=1

NI(ξ , η)uI , η =
4∑

I=1

NI(ξ , η)ηI . (10.39)

As usual, the coordinates are expressed by the same approximation

X =
4∑

I=1

NI(ξ , η)XI , (10.40)

where the nodal coordinates XI are related to the initial configuration and
ξ, η are convective coordinates with regard to the reference element. The
interpolation function is given by, see Sect. 4.1.2,

NI =
1
4

( 1 + ξ ξI ) ( 1 + η ηI ) . (10.41)

The interpolation introduced by Pian and Sumihara (1984) is chosen for
the stress field. It leads to the matrix form

⎧⎨
⎩
Sξ ξ

Sηη

Sξη

⎫⎬
⎭ =

⎡
⎣ 1 0 0 η 0

0 1 0 0 ξ
0 0 1 0 0

⎤
⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s̄1
s̄2
s̄3
s̄4
s̄5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10.42)

with respect to the reference element. Note that the stress components are
usually contravariant which is in accordance with the stress power Sik Ċik

and the definition of the strain measures via the deformation gradient.
The stresses in the reference element (S = Sαβ Gα ⊗Gβ) have now to be

transformed to the global coordinate system which is obtained by

Sik = Ei · SEk = Ei · (Sαβ Gα ⊗ Gβ )Ek

= Sαβ(Ei · Gα)(Ek · Gβ).

For the orthogonal basis, the relation Ei = Ei holds. Furthermore, a ma-
trix form of this transformation can be defined which is given by S(X) =
TS(ξξξ)TT . In detail[

Sxx Sxy

Syx Syy

]
=
[
T11 T12

T21 T22

] [
Sξξ Sξη

Sηξ Sηη

] [
T11 T21

T12 T22

]
(10.43)
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is derived, where Tiα = Ei · Gα.
The base vectors can be computed from the isoparametric interpolation

since Gα = X,α

Gα =
4∑

I=1

NI(ξ , η),α XI . (10.44)

Hence

Tiα =
4∑

I=1

NI(ξ , η),αXi I , (10.45)

where Xi I = Ei · XI . Using the interpolation (10.41), the derivatives are

NI ,ξ =
ξI
4

( 1 + η ηI ), NI ,η =
ηI

4
( 1 + ξ ξI ) . (10.46)

The transformation matrix will be evaluated at the element centre ξ = η = 0
leading to

N0
I ,ξ =

ξI
4
, N0

I ,η =
ηI

4
. (10.47)

and

T 0
iξ =

4∑
I=1

ξI
4
Xi I and T 0

iη =
4∑

I=1

ηI

4
Xi I . (10.48)

Due to this, the transformation matrix is given by

T0 =
1
4

4∑
I=1

[
ξI X1 I ηI X1 I

ξI X2 I ηI X2 I

]
. (10.49)

By performing the multiplication in (10.43) and rearranging the components
of the stress tensor in Voigt notation, the stress transformation can be
written as⎧⎨

⎩
Sxx

Syy

Sxy

⎫⎬
⎭ =

⎡
⎣ T 2

11 T 2
12 2T11 T12

T 2
21 T 2

22 2T21 T22

T11 T21 T22 T12 T12 T21 + T11 T22

⎤
⎦
⎧⎨
⎩
Sξξ

Sηη

Sξη

⎫⎬
⎭ . (10.50)

Since the stress interpolation (10.42) is constant for the shear stresses
and the transformation matrix is constant element wise, a different rep-
resentation can be found using the element wise constant matrix sT =
{ s1 , s2 , s3 , s4 , s5 }. This ansatz can be written in global coordinates using
the transformation (10.50) at the mid point of the element and leads to the
simpler form⎧⎨

⎩
Sxx

Syy

Sxy

⎫⎬
⎭ =

⎧⎨
⎩
s1
s2
s3

⎫⎬
⎭+

⎡
⎣ η (T 0

11)
2 ξ (T 0

12)
2

η (T 0
21)

2 ξ (T 0
22)

2

η T 0
11 T

0
21 ξ T 0

22 T
0
12

⎤
⎦ { s4

s5

}
. (10.51)

These interpolations can now be used within the mixed weak form (10.26)
and its linearization to derive the matrix form of the associated finite element
formulation.
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10.4 Stabilized Finite Elements

Stabilized finite elements are formulated in order to obtain efficient elements
for which the residual vector and tangent matrix can be computed in a fast
way and which need, as few as possible, memory to store history variables
related to the chosen constitutive equations. The simplest method to achieve
these two goals is to apply reduced integration which is based on a mini-
mum number of Gauss points and hence has less computational effort and
storage requirement for history data. The drawback is that these elements
are generally unstable since reduced integration is associated with rank de-
ficiency. Thus underintegrated elements have to be stabilized. Stabilization
is performed based on the eigenmodes of the elements. These follow from an
eigenvalue analysis of a single finite element matrix. Here zero eigenvalues
occur for rigid body modes which naturally do not contribute to the element
stiffness. Additional zero eigenvalues have to be stabilized and hence an ar-
tificial stiffness has to be introduced to prevent non-physical occurrence of
these modes within a finite element analysis.

For the two-dimensional linear elastic case, the eigenvectors computed
from the spectral decomposition of the stiffness matrix are depicted in
Fig. 10.1, excluding the rigid body modes. The eigenvectors related to the
volume change, the elongation and shear can be found in the first row. The
second row shows the bending modes of the element. It is well known from
the linear theory that the eigenvalues related to the bending modes are zero
when reduced integration is applied. In that case, no strain energy is asso-
ciated with these modes. Hence deformations related to the bending modes
can occur in an analysis depending on the loading and boundary conditions.
Since two of the bending modes can form an hour-glass, these modes are also
called hour-glass modes, see Fig. 10.2b.

Thus stabilization has to be used to avoid hour-glassing when underin-
tegrated elements are applied within a finite element analysis. In this case,

Fig. 10.1 Eigenvectors of the quadrilateral 4-node element
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the eigenvectors related to hour-glassing are determined in the initial config-
uration and then stabilized. This procedure is however not trivial: the mode
of a distorted element has to be determined and the magnitude of the stiff-
ness to be added cannot be derived directly from the underlying variational
equation.

Two basic approaches are possible.

1. Hour-glass modes can be filtered from the global solution as discussed
in Jaquotte and Oden (1986). This however is only possible for elastic
problems.

2. The displacement interpolation can be decomposed within a finite ele-
ment into an linear part and the related orthogonal part. The latter is
then used to derive a stabilization matrix. This idea was developed in
Kosloff and Frazier (1978) for linear problems. A follow up paper from
Belytschko et al. (1984), see also Hughes (1987, p. 251), introduces the
so-called γγγ vectors. Their explicit form can be used to construct the sta-
bilization matrix.

While it is possible to compute the stiffness parameters for the stabilization
matrix from the equivalence of mixed methods and stabilized reduced inte-
gration procedures, see e.g. the element formulation developed in Pian and
Sumihara (1984), this has so far not been achieved for nonlinear problems
in a satisfactory way. Approaches can be found in Belytschko and Bindeman
(1991), Belytschko and Bindeman (1993), Bonet and Bhargava (1995), Reese
et al. (1998) and Reese (2005), see also Sect. 10.5.

The classical stabilization procedure for underintegrated element will be
developed in the following for three-dimensional hexahedral elements with lin-
ear displacement interpolation. Basically, the tangent stiffness matrix (4.76)
which was already derived in Sect. 4.2.2 is evaluated by using a one point
Gauss integration instead of the rank preserving 2 × 2 × 2 integration

K̄
1×1
TIK

=
∫
Ωe

[
(∇XNI)T S̄∇XNK + B̄

T
L I D̄ B̄L K

]
dΩ .

The matrix form is provided for the nodal combination I ,K of a finite ele-
ment Ωe. Within this notation, the sub matrix K̄TIK

has the size ndof ×ndof

where ndof is the number of degrees of freedom needed to describe the dis-
placement field (for three-dimensional problems ndof = 3 holds). The indices
I and K are nodes of the element and directly related to the discretization.
Summation over all 8 nodes of the hexahedral element yields the tangent ma-
trix for the finite element e: K̄

1×1
Te

. Note that a 1-point-integration requires
only one evaluation within the element mid point, see Table 4.1

K̄
1×1
Te

= K̄Te

∣∣
ξ=η=ζ=0

. (10.52)
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Hence all terms can be neglected which depend on the coordinates ξ , η or ζ.
This procedure simplifies the coding of such element and thus leads to a high
efficiency.

The stabilization matrix K̄
stab
Te

is added to (10.52) which leads to

K̄Te
= K̄

1×1
Te

+ K̄
stab
Te

(10.53)

with the diagonalized form, see Belytschko et al. (1984),

K̄
stab
Te

=
12∑

k=1

αk γ̄γγk γ̄γγ
T
k . (10.54)

The scalar parameters αk > 0 can be chosen arbitrarily. However, their mag-
nitude has to be selected such that the parameters avoid hour-glassing on
one side and do not influence the solution of the problem on the other side.
This however is not always possible, see examples in Reese (1994). Hence the
user of stabilized elements has to have sufficient experience when applying
this method.

The determination of the γ̄γγk vectors for stabilization will be presented in
the next section. Kosloff and Frazier (1978) have already shown that the diag-
onal form of K̄

stab
Te

using 12 scalar parameters, see (10.54), is not sufficient to
obtain optimal bending behaviour for generally distorted three-dimensional
meshes. Thus the stabilization matrix in (10.54) yields good results for ap-
plication which do not exhibit bending.

10.4.1 Stabilization Vectors

The isoparametric ansatz functions presented in Sect. 4.1.3 can also be writ-
ten in an equivalent vector form. This is advantageous when stabilization
vectors have to be derived. Instead of (4.40), the interpolation functions are
given by

N (ξξξ) =
1
8

[a1 + ξ a2 + η a3 + ζ a4 + η ζ a5 + ξ ζ a6 + ξ η a7 + ξ η ζ a8 ] (10.55)

with the constant vectors

aT
1 = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }

aT
2 = {−1 , 1 , 1 ,−1 ,−1 , 1 , 1 ,−1 }

aT
3 = {−1 ,−1 , 1 , 1 ,−1 ,−1 , 1 , 1 }

aT
4 = {−1 ,−1 ,−1 ,−1 , 1 , 1 , 1 , 1 }

aT
5 = { 1 , 1 ,−1 ,−1 ,−1 ,−1 , 1 , 1 }

aT
6 = { 1 ,−1 ,−1 , 1 ,−1 , 1 , 1 ,−1 }

aT
7 = { 1 ,−1 , 1 ,−1 , 1 ,−1 , 1 ,−1 }

aT
8 = {−1 , 1 ,−1 , 1 , 1 ,−1 , 1 ,−1 } .
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By using this notation, the interpolation of the components of the displace-
ment vector ue = ui Ei can be written as

u1 = NT v1 , u2 = NT v2 , u3 = NT v3 , (10.56)

where the vectors vi contain the components of the nodal displacements
in coordinate direction i. The stabilization vectors follow from a Taylor

expansion of the shape functions with respect to the midpoint of the element
ξξξ = 000 up to first order terms. This yields for the ansatz functions

N = N0 +
∂N

∂X

∣∣∣∣
ξξξ=000

(X − X| 0 ) + Nγ (10.57)

with a constant term N0, a linear term and a residual term Nγ . X0 is the
position vector of the element midpoint. Since it is not possible to differentiate
in (10.57) with respect to X, the chain rule and thus the Jacobi matrix Je

has to be used, see Sect. 4.1, to obtain

N = N0 +
(
∂N

∂ξξξ
J−1

e

) ∣∣∣∣
ξξξ=000

(X − X| 0 ) + Nγ

= [ I − (N,ξ J−1
e )| 0 Xkn ]

1
8

a1 + (N,ξ J−1
e )| 0 X + Nγ . (10.58)

The matrix Xkn of dimension 3 × 8 was introduced for a more compact no-
tation. It contains the coordinates {XI , YI , ZI } of the position vectors to
the element nodes I = 1, 8. The index 0 at J| 0 means that Je has to be eval-
uated at ξξξ = 000. The first two terms in (10.58) represent a vector of the shape
functions which is linear in X. Note that this relation is valid for arbitrarily
deformed element geometries in the initial configuration. The residual term
can now be determined from Nγ = N − Nlin. Within this procedure, the
convergence criteria for finite elements have to be fulfilled, see the prelimi-
nary remarks in Sect. 8. For this rigid body modes and constant strains have
to be recovered for arbitrary element geometries. This requires that vector
Nγ has to be orthogonal to the linear part of the shape functions; other-
wise it is impossible to obtain constant strain states. This is associated with
the classical requirement of the fulfillment of the patch tests, see e.g. Bathe
(1982) and Hughes (1987). By considering the aforementioned orthogonality,
the stabilization vector also called hour-glass part

Nγ =
1
8

[ I − (N,ξ J−1
e )| 0 Xkn ]( η ζ a5 + ξ ζ a6 + ξ η a7 + ξ η ζ a8 )

= η ζ γγγ1 + ξ ζ γγγ2 + ξ η γγγ3 + ξ η ζ γγγ4 (10.59)

is derived after some algebraic manipulations, see Belytschko et al. (1984).
The 12 stabilization vectors γ̄γγ can now be computed from the components of
vectors γγγk (k = 1, 4) by using four γγγ vectors for each component. Hence the 8
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components of the γγγ vectors yield 12 γ̄γγ vectors with 3 × 8 = 24 components.
Explicitly, the vectors are given by

γ̄γγ1 = {γ1
1 , 0 , 0 , γ

2
1 , 0 , 0 , . . . , γ

8
1 , 0 , 0 }T

γ̄γγ2 = {γ1
2 , 0 , 0 , γ

2
2 , 0 , 0 , . . . , γ

8
2 , 0 , 0 }T

γ̄γγ3 = {γ1
3 , 0 , 0 , γ

2
3 , 0 , 0 , . . . , γ

8
3 , 0 , 0 }T

γ̄γγ4 = {γ1
4 , 0 , 0 , γ

2
4 , 0 , 0 , . . . , γ

8
4 , 0 , 0 }T

γ̄γγ5 = {0 , γ1
1 , 0 , 0 , γ

2
1 , 0 , . . . , 0 , γ

8
1 , 0 }T

γ̄γγ6 = {0 , γ1
2 , 0 , 0 , γ

2
2 , 0 , . . . , 0 , γ

8
2 , 0 }T

γ̄γγ7 = {0 , γ1
3 , 0 , 0 , γ

2
3 , 0 , . . . , 0 , γ

8
3 , 0 }T

γ̄γγ8 = {0 , γ1
4 , 0 , 0 , γ

2
4 , 0 , . . . , 0 , γ

8
4 , 0 }T

γ̄γγ9 = {0 , 0 , γ1
1 , 0 , 0 , γ

2
1 , . . . , 0 , 0 , γ

8
1 }T

γ̄γγ10 = {0 , 0 , γ1
2 , 0 , 0 , γ

2
2 , . . . , 0 , 0 , γ

8
2 }T

γ̄γγ11 = {0 , 0 , γ1
3 , 0 , 0 , γ

2
3 , . . . , 0 , 0 , γ

8
3 }T

γ̄γγ12 = {0 , 0 , γ1
4 , 0 , 0 , γ

2
4 , . . . , 0 , 0 , γ

8
4 }T .

Here the terms γm
k (k = 1, 4 and m = 1, 8) are the components of the γγγ

vectors defined in (10.59).

10.4.2 Weak Form and Linearization

The weak form for the hour-glass stabilized 8-node elements follows from the
results derived in Sect. 4.2.1. The matrices and vectors are now evaluated us-
ing 1 point Gauss integration. In detail, the internal virtual work is obtained
from (4.54)∫

B

δE · S dV =
ne⋃

e=1

8∑
I=1

ηT
I

∫
Ω�

(BT
L I Se )| 0 det J| 0 d� , (10.60)

where index 0 denotes the evaluation of the integrals at the element midpoint
ξξξ = 000. The residual term due to the stabilization vectors is given by

Gstab =
ne⋃

e=1

12∑
i=1

ηT
e αi ( γ̄γγT

i ue ) γ̄γγi . (10.61)

The vectors ηe and ue contain all 24 components of the test functions and
displacements within element Ωe,; hence the sum over all element nodes used
in (10.60) disappears. By combining both terms and by evaluating (10.60),
using the one-point integration, the residual vector of one finite element is
given, see also (4.55),

Re (ue) = Re0 (ue) + Kstab ue

= 8
8∑

I=1

[
BT

L I S
]
| 0

det J| 0 +
12∑

i=1

αi ( γ̄γγT
i ue ) γ̄γγi . (10.62)
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The linearization of the residual vector yields the tangential stiffness matrix
which is needed within the Newton method. From (4.76),

K̄Te
= K̄Te0 + Kstab

=
8∑

I=1

8∑
K=1

8
[
(∇XNI)T S̄ (∇XNK) + B̄

T
L I D̄ B̄L K

]
| 0

det J| 0

+
12∑

i=1

αi γ̄γγi γ̄γγ
T
i (10.63)

is obtained for a one-point integration.
The solution of a problem using the discretized weak form (10.62) de-

pends on the choice of the parameters αi. The values of αi do not play a
significant role for standard three-dimensional engineering problems in solid
mechanics. The parameters can be selected within a certain range and then
do not influence the result of the computation. However, when bending dom-
inates the solution behaviour, the solution can depend on the stabilization
parameters ai.

Within the linear theory, it was possible for Kosloff and Frazier (1978)
to show that a special choice of the parameter αi leads to a finite element
which is equivalent to the incompatible mode element of Taylor et al. (1976).
In that way, a very efficient element with excellent bending behaviour was
obtained. For nonlinear problems, there exists no simple way to compute
the stabilization parameters. Here the bending solution depends on the pa-
rameter αi, as already shown in Reese (1994) using the example of a simple
cantilever under point load. Thus it is desirable to develop a procedure for
bending dominated problems in which the parameters αi can be derived such
that a solution dependence disappears. A related method is formulated in
Sect. 10.5.3.1

10.5 Enhanced Strain Element

It is important to construct finite elements for problems of solid mechanics
which can be applied to a wide range of problems. Such elements should be
able to model finite strain states for arbitrary elastic and inelastic materi-
als. Furthermore, they should work in the presence of constraints such as
incompressibility which lead for standard displacement elements to locking,
see Sect. 10.2. Good element performance for bending dominated structural
problems is also necessary when arbitrary structural parts have to be dis-
cretized and simulated using three-dimensional solids. Last but not least
1 The stabilized finite element formulation derived above for the initial configu-

ration can also be developed with respect to the current configuration. In that
case, all quantities have to be mapped to the current configuration using the
standard transformations, see Sect. 4.2.3.
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elements should be robust when large mesh distortion occur due to large
deformations.

In the last twenty years, many different finite elements were developed
for finite deformation problems and successfully applied to special problem
classes. One example is the Q1-P0 element which is well suited for incom-
pressible materials.

In case of linear elastic applications, there exist many possibilities for
the design of finite elements which are locking free, have good bending per-
formance and are robust against mesh distortions, see e.g. the hybrid for-
mulations Pian and Sumihara (1984), or the incompatible mode elements of
Taylor et al. (1976). Also the stabilized elements from Kosloff and Frazier
(1978) have the same good properties.2 A variational formulation of the
discretization using the incompatible modes was derived in Simo and Ri-
fai (1990). This concept has the advantage that it can also be applied to
nonlinear problems like finite elastic or inelastic deformations.

The concept followed in the work by Simo and Armero (1992) and Simo
et al. (1993b) is based on the principle of Hu–Washizu. The finite elements
derived by this formulation are called enhanced strain or enhanced assumed
strain (EAS) elements.

While very well suited for linear elastic problem, the enhanced strain el-
ements do not provide a solution for all problem classes mentioned above
in nonlinear applications. The elements become instable under compression
which was shown for the first time in Wriggers and Reese (1994), see also
Wriggers and Reese (1996). Stabilized versions of the enhanced strain ele-
ments have been formulated to overcome this disadvantage. However, until
lately, these stabilizations could not solve all defects found in Wriggers and
Reese (1996) in a satisfactory way. Refined ansatz functions for the enhanced
modes solved the instabilities for two-dimensional problems in the compres-
sion range, see Korelc and Wriggers (1996a) and Glaser and Armero (1997).
But they lead to instabilities in tension states. An in-depth discussion of these
phenomena and possible solutions can be found in Sect. 10.5.4.

In the following section, elements based on the enhanced strain concept
will be derived, using on one hand the shape functions provided in Simo
and Armero (1992) and on the other hand shape functions stemming from a
Taylor series expansion which was developed in Wriggers and Hueck (1996).

10.5.1 General Concept and Formulation

The development of the nonlinear version of the enhanced strain elements
is generally based on a mixed variational principle. Following Simo and
Armero (1992), Hu–Washizu’s principle is applied, see Sect. 3.4.3. Here

2 An interesting observation is that the aforementioned formulations can be trans-
ferred to each other, see Bischoff et al. (1999a). Thus different mechanical for-
mulations lead to the same element stiffness matrices.
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Hu–Washizu principle is formulated in terms of the deformation ϕ, the de-
formation gradient F and the first Piola–Kirchhoff stress tensor P which
act as independent variables

Π(ϕ,F,P) =
∫
B

[W (F) + P · (Gradϕ − F ) ] dV

−
∫
B

ϕ · ρ0 b̂ dV −
∫

∂Bσ

ϕ · t̂ dA . (10.64)

W (F) denotes the strain energy function of the elastic material under consid-
eration. This formulation is equivalent to the principle provided in (3.300).
To simplify notation, the last two terms in (10.64) which describe external
forces will be combined and denoted by PEXT .3

The variational principle of Hu–Washizu was formulated in this way in
order to be able to additively decompose the deformation gradient, see Simo
and Armero (1992). In this decomposition, the local deformation gradient
Grad ϕ is complemented by the independent gradient F̄

F = Gradϕ + F̄ . (10.65)

Thus the deformation gradient F is enriched by the enhanced gradient F̄
which can be incompatible with the deformation. With Eq. (10.65), relation

Π(ϕ , F̄ ,P) =
∫
B

[W (F) − P · F̄ ] dV − PEXT (10.66)

is obtained from (10.64). Its variation yields∫
B

Gradηηη · ∂W
∂F

dV − δPEXT = 0,

∫
B

δF̄ ·
(
−P +

∂W

∂F

)
dV = 0, (10.67)

∫
B

δP · F̄ dV = 0 .

Grad η denotes the variation of the deformation gradient, see (3.289). The
first equation denotes the weak form of equilibrium. The second equations
3 It is also possible to formulate the Hu–Washizu principle in other work conju-

gate variables. Examples are the 2nd Piola–Kirchhoff stress tensor and the
Green–Lagrangian strain tensor E or the application of the Biot stress tensor
TB together with the right stretch tensor U. From the viewpoint of continuum
mechanics, these formulations are equivalent. However, due to the fact that the
strain measures F, E and U are different, their enhancement will lead to different
finite element approximations and discretizations.
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leads to the constitutive relation. Equation (10.67)3 represents an orthogo-
nality condition between the stress tensor and the variation of the enhanced
gradient F̄.

Equations (10.65) and (10.67) provide a variational basis which can be
employed to incorporate the incompatible (enhanced) modes in a consistent
way to the finite element formulation.

An efficient implementation of the enhanced element can be obtained by
transforming all quantities in (10.67) to the current configuration, see also
Sect. 4.2.3. By computing the deformation gradient from (10.65), relation∫

B

∇S ηηη ·
(

2F
∂W

∂C
FT

)
dV − δPEXT = 0,

∫
B

δ h̄S ·
(
−τττ + 2F

∂W

∂C
FT

)
dV = 0, (10.68)

∫
B

δ τττ · h̄ dV = 0

is deduced based on (10.67). Here the gradient ∇S η = sym [GradηηηF−1] is the
symmetric part of the variation of the deformation gradient with respect to
the current configuration. The tensor C = FT F is the right Cauchy–Green

strain tensor, see (3.15). The enhanced gradient in the current configuration is
computed from h̄ = F̄F−1. The symmetric Kirchhoff stress tensor follows
with the 1st Piola–Kirchhoff stresses from τττ = PFT or with (3.84) from
the 2nd Piola–Kirchhoff stress tensor: τττ = FSFT . Since τττ is a symmetric
tensor, only the symmetric parts of the deformation gradient ∇S ηηη and the
enhanced gradient h̄S contribute to the scalar product with the Kirchhoff

stresses in Eq. (10.68).
To complete the model, a strain energy function W is needed. Differ-

ent variants can be found for hyperelastic materials in Sect. 3.3.1. The
Kirchhoff stresses follow then from the 2nd Piola–Kirchhoff stresses
via (3.104).

10.5.2 Discretization of the Enhanced Strain Element

An isoparametric ansatz, see (4.4), is introduced to discretize the displace-
ment field and the geometry of the current configuration in (10.65)

xe = Xe + ue =
n∑

I=1

NI(ξξξ)xI with xI = XI + uI . (10.69)

In the two-dimensional case, the bilinear shape functions (4.28) are applied.
In case of three-dimensional discretizations, the shape functions (4.40) are
used.
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The conforming part of the deformation gradient can now be determined
from (10.69). With (4.8) and (4.11), the deformation gradient follows

Gradϕe =
n∑

I=1

xI ⊗∇XNI(ξξξ) =
n∑

I=1

xI ⊗ J−T
e ∇ξNI(ξξξ) . (10.70)

For the enhanced part of the deformation gradient, an interpolation has to
be selected which even can be incompatible. Following Glaser and Armero
(1997), a product form is defined for the enriched part F̄

F̄ = F0 M̄ααα . (10.71)

ααα denote the enhanced parameters, M̄ contains the interpolation functions.
F0 is the constant part of the conform deformation gradient (10.70), which
is evaluated at the element midpoint

F0 =
n∑

I=1

xI ⊗∇XNI(000) . (10.72)

The ansatz (10.71) fulfils the requirements for objectivity of the enhanced
element formulation for arbitrary interpolations M̄, see Glaser and Armero
(1997).4

The interpolations of the enriched part M̄ are related to the initial con-
figuration of a finite element Ωe. Since the incompatible interpolations have
to be formulated with respect to the reference configuration Ω�, like the
isoparametric interpolations, M̄ has to be transformed to Ω� (for the relevant
notation, see Fig. 4.3). This is performed by using the tensor transformation

M̄ =
j0
j

J0 M(ξξξ)J−1
0 . (10.73)

Here J0 defines the mapping between Ωe and Ω�, see (4.7), which is evaluated
at the element midpoint (ξξξ = 000). The determinant of the transformation is
denoted by j = detJe. Its evaluation at the element midpoint is denoted by
j0 = detJ0.

Now the interpolation for the enhanced modes have to be selected. These
can be incompatible since no derivatives of the enriched deformation gradient
appear in (10.67). In general, the ansatz

M(ξξξ)ααα =
nenh∑
L=1

ML(ξξξ)αL (10.74)

4 This representation deviates from the form advocated in Simo and Armero (1992)
in such a way that M̄ was introduced as a gradient and hence could be interpo-
lated without using F0, see also Exercise 10.1.
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can be introduced with nenh interpolations for the additional incompatible
modes. The ansatz can be written for two-dimensional elements in the com-
pact form

M(ξξξ)ααα =
[
M1 (ξ, η) α1 M2 (ξ, η) α2

M3 (ξ, η) α3 M4 (ξ, η) α4 .

]
. (10.75)

The interpolations ML have to obey the orthogonality condition (10.67)3
within the element ∫

Ωe

δPe · F̄e dΩ = 0 . (10.76)

By assuming constant stresses in Ωe, condition∫
Ωe

M̄ dΩ = 0 (10.77)

is obtained based on (10.71). It yields with (10.73)∫
Ω�

M(ξξξ) d� = 0 . (10.78)

The interpolationsML in (10.75) have to fulfil this condition which is the case
for polynomials with uneven exponents. Hence the simplest interpolation with
four enhanced or incompatible modes is given by

M(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 η α2

ξ α3 η α4

]
. (10.79)

The finite element based on this ansatz is called Q1/E4 element, see Simo
and Armero (1992). This element is equivalent in the linear case with the
incompatible mode element by Taylor et al. (1976).

The corresponding interpolation for the three-dimensional case leads to
an ansatz for the enhanced deformation gradient with nine modes

M3D ααα =
9∑

L=1

M(ξξξ)3D
L αL =

⎡
⎣ ξ α1 η α2 ζ α3

ξ α4 η α5 ζ α6

ξ α7 η α8 ζ α9

⎤
⎦ . (10.80)

It is simply the extension of the two-dimensional interpolation and yields the
so-called Q1/E9 element. As already shown in Simo et al. (1993b), this ansatz
is not sufficient to prevent locking. Thus additional enhanced modes have to
be introduced in order to prevent volume locking. The related element has
12 incompatible modes and hence is called Q1/E12 element.

The matrix formulation of the enhanced finite element is based on a de-
scription of the deformation gradient in vector form. It will be developed here
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for the two-dimensional case. A different formulation is provided in Exercise
10.1 in detail.

Basis of the implementation is the mixed form (10.67) with respect to the
initial configuration, but form (10.68) could also be employed which is referred
to the current configuration. Essential for an efficient implementation is the
use of formulations which lead to sparse matrices. As already discussed in the
standard formulation of isoparametric elements, see Sects. 4.2.2 and 4.2.4,
the formulation (10.68) with respect to the current configurations provides
the most efficient variant.

The quantities ∇S η and δ hS have to be discretized in (10.68). Further-
more, the Kirchhoff stresses are computed from τττ = 2F ∂W

∂C FT using
(10.65). The variation of the deformation dependent part of the deformation
gradient follows with (3.32) within the element Ωe in the current configura-
tion as

∇ηe = Gradηe F−1
e =

[
n∑

I=1

ηI ⊗∇XNI(ξξξ)

]
F−1

e . (10.81)

Here the enriched deformation gradient has to be introduced for F, see
(10.65). The symmetrical part follows as in (4.94). Its matrix form is given
by

∇S ηe =
n∑

I=1

⎡
⎣NI,1 0

0 NI,2

NI,2 NI,1

⎤
⎦ { η1

η2

}
I

=
n∑

I=1

BI ηηηI , (10.82)

where the derivatives have to be determined using (10.81). For the enhanced
modes, the vector form is given by

δh̄S
e =

nenh∑
L=1

⎡
⎣ ML

11

ML
22

ML
12 +ML

21

⎤
⎦ δαL =

nenh∑
I=L

GL δαL . (10.83)

In this relation, the components ML
11 ,M

L
12 ,M

L
21 and ML

22 have to be com-
puted based on (10.73) and (10.74) from

M̄L =
[
ML

11 ML
12

ML
21 ML

22

]
= F0

j0
j

J0 M(ξξξ)L J−1
0 F−1

e . (10.84)

M(ξξξ)L denotes the Lth mode, see (10.79). The weak form (10.68) can now
be rewritten as

ne⋃
e=1

⎡
⎣∑

I

δηI
T

∫
Ωe

BI
T τττe dΩ

⎤
⎦− δPEXT = 0

∑
L

δαL

∫
Ωe

GL
T τττ e dΩ = 0 . (10.85)
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Note that (10.68)3 is directly fulfilled by construction of the enhanced inter-
polations, see (10.73).

The solution of this nonlinear algebraic equation system will be obtained
by Newton’s method. Hence the linearization of (10.85) has to be derived.
Analogous to the procedure given in Sect. 4.2.4, the incremental equation
system [

Ku u Ku α

Kα u Kα α

] {
Δu
Δααα

}
= −

{
Gu

Gα

}
(10.86)

can be deduced. In this form, the sub matrices are given by

Ku u =
ne⋃

e=1

n∑
I=1

n∑
K=1

∫
Ωe

[BT
I DMR BK + (∇xNI)T τττe ∇xNK ] dΩ,

Ku α =
ne⋃

e=1

n∑
I=1

nenh∑
M=1

∫
Ωe

[BI
T DMR GM (10.87)

+(∇xNI)T τττe GM + (∇xNI

∣∣
0
)T τττe GM ] dΩ,

Kα α =
ne⋃

e=1

nenh∑
L=1

nenh∑
M=1

∫
Ωe

[GT
L DMR GM + M̄Lτττ · M̄M ] dΩ.

The residuals Gu and Gα follow directly from (10.85). As in the previous
equations, the derivatives have to be determined with respect to x via (10.81).
The definition of DMR can be found in (4.113). (∇xNI

∣∣
0
) denotes the evalua-

tion of the gradient at the element midpoint, see also (10.72). For the solution
of equation system (10.86), block elimination can be employed. It provides an
efficient implementation since Kαα can be inverted directly on element level
due to the incompatible interpolation functions. This procedure is explicitly
shown in Exercise 10.1.

Exercise 10.1: Derive the discretization and resulting matrix formulation
for a two-dimensional 4-node element based on the Hu–Washizu principle.
Use for the derivatives of the shape functions and for the interpolation of the
enhanced modes a Taylor series expansion up to order 2 with respect to
the element mid point. The element has to be constructed for finite elastic
deformations.

Solution: Within the element Ωe, the displacements will be approximated
by isoparametric shape functions. The use of a Taylor series expansion of
order 2 for the standard shape functions and enhanced mode interpolations
leads to explicit expressions for the gradients. Within the range of small
strains, it was shown in Hueck and Wriggers (1995) that this method can be
applied to all terms which are associated with the enhanced element.

In case of finite deformations explicit expressions are developed for the
standard and the enhanced displacement gradients in (10.65). These gradients
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are related to the initial configuration X. After that the equations will be
transformed to the current configuration x.

The bilinear isoparametric form functions (4.28) are used for the interpo-
lation

NI(ξ, η) =
1
4

(1 + ξ ξI)(1 + η ηI) =
1
4

( 1 + ξI ξ + ηI η + ξIηI ξη ) . (10.88)

ξI and ηI are the coordinates of node I in the ξ–η reference configuration of
the element. The coordinates within the element are given by

X = a0 + a1 ξ + a2 ξη + a3 η

Y = b0 + b1 ξ + b2 ξη + b3 η, (10.89)

where the constants ai are defined as follows

a0 =
1
4

4∑
I=1

XI , a1 =
1
4

4∑
I=1

ξI XI ,

a2 =
1
4

4∑
I=1

ξI ηI XI , a3 =
1
4

4∑
I=1

ηI XI .

The constants bi are computed in an analogous way where XI is exchanged
by YI . The deformation gradient within the element follows with (10.88)

Gradϕe =
4∑

I=1

[
NI,X xI NI,Y xI

NI,X yI NI,Y yI

]
. (10.90)

In this relation, xI and yI are the coordinates of node I in the current con-
figuration. In Eq. (10.90), the derivatives of the form functions have to be
computed with respect to X and Y . A Taylor series expansion up to order
1 yields with respect to the element midpoint ξ = η = 0

NI = NI |0 +
∂NI

∂X

∣∣∣∣
0

(X −X0 ) +
∂NI

∂Y

∣∣∣∣
0

(Y − Y0 ) +NγI . (10.91)

The remaining higher order terms are denoted by NγI . From (10.88) NI |0 =
1/4 is obtained. The evaluation of the chain rule at the element midpoint
leads to ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂NI

∂X

∣∣∣∣
0

∂NI

∂Y

∣∣∣∣
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= J−1
0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂NI

∂ξ

∣∣∣∣
0

∂NI

∂η

∣∣∣∣
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (10.92)

J0 is the Jacobi matrix J evaluated at the element midpoint. The derivatives
of the shape functions can be computed at the element mid point by, as shown
in Hueck and Wriggers (1995),
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∂NI

∂X

∣∣∣∣
0

=
1

4 j0
( b3 ξI − b1 ηI ) , (10.93)

∂NI

∂Y

∣∣∣∣
0

=
1

4 j0
(−a3 ξI + a1 ηI ) . (10.94)

The determinant J is given by j = j0 + j1 ξ + j2 η with

j0 = a1 b3 − a3 b1 , j1 = a1 b2 − a2 b1 and j2 = a2 b3 − a3 b2 .

This leads to detJ0 = j0. The solution of (10.91) yields with (10.93) and
(10.94) after some algebraic manipulations the higher order term

NγI = γI ξη with γI =
1
4

(
ξIηI −

j2
j0
ξI −

j1
j0
ηI

)
, (10.95)

where the so-called stabilization- or γ-vector has been introduced, see also
Sect. 10.4 and Belytschko et al. (1984).

The interpolation functions for the enhanced gradient F̄ in (10.65) are
determined analogous to (10.90). Wilson et al. (1973) have introduced the
classical incompatible modes by

M1 = ( 1 − ξ2 ), M2 = ( 1 − η2 ) . (10.96)

These represent a discontinuous interpolation between different elements Ωe.
An expansion using the Taylor series around the element midpoint yields,
for the incompatible modes,

ML = ML|0 +
∂ML

∂X

∣∣∣∣
0

(X −X0 ) +
∂ML

∂Y

∣∣∣∣
0

(Y − Y0 ) +MγL . (10.97)

The constant term is MI |0 = 1. By the chain rule, it can be shown that all
terms of first order are zero in (10.97). The remaining terms of higher order
in (10.97) are

Mγ1 = −ξ2 and Mγ2 = −η2 . (10.98)

Now the higher order terms in Eqs. (10.95) and (10.96) will be expanded in X
and Y by a Taylor series of second order with respect to the element mid-
point. To simplify notation, the terms are combined in qT = { q1, q2, q3} =
{ ξ2, ξη, η2 } . Taylor series expansion yields

q =
1
2

(
∂2q
∂X2

∣∣∣∣
0

ΔX2 + 2
∂2q
∂X∂Y

∣∣∣∣
0

ΔXΔY +
∂2q
∂Y 2

∣∣∣∣
0

ΔY 2

)
+ r3 (10.99)

with ΔX = X − X0 and ΔY = Y − Y0. Constant terms and terms of first
order do not appear in this equation since q only consists of terms of higher
order, which appear as remainders in the expansion of NI (10.91) and ML

(10.97). The term r3 contains terms of third order and will be neglected in the
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following derivations. The computation of the second derivatives in (10.99)
are described in detail in Hueck and Wriggers (1995). They lead to the form

NγI = − 1
j20

[ b1 b3ΔX2 − ( a1 b3 + a3 b1 )ΔXΔY + a1 a3ΔY
2 ] γI ,

Mγ1 = − 1
j20

[ b23ΔX
2 − 2 a3 b3ΔXΔY + a2

3ΔY
2 ] , (10.100)

Mγ2 = − 1
j20

[ b21ΔX
2 − 2 a1 b1ΔXΔY + a2

1ΔY
2 ] .

The shape functions and the incompatible interpolations can be approxi-
mated by these equations and by (10.93) and (10.94). Finally, with
Eqs. (10.91) and (10.100), the derivatives of the shape functions with respect
to X and Y yield

NI,X = NI,X |0 +NIγ,X

=
1

4 j0
( b3 ξI − b1 ηI ) − 1

j20
[ 2 b1 b3ΔX − (a1 b3 + a3 b1)ΔY ] γI .

(10.101)
Since Eq. (10.89) leads to ΔX = a1ξ+a2ξη+a3η and ΔY = b1ξ+b2ξη+b3η,
explicit expressions can be derived for the derivatives of NI with respect to
X

NI,X =
1

4 j0
( b3 ξI − b1 ηI ) +

1
j0

[
−b1ξ +

1
j0

(j1 b3 − j2 b1) ξη + b3 η
]
γI .

(10.102)
Analogously the derivatives of NI with respect to Y follow as

NI,Y =
1

4 j0
( a1 ηI − a3 ξI ) +

1
j0

[
a1ξ +

1
j0

(j2 a1 − j1 a3) ξη − a3 η

]
γI .

(10.103)
The derivatives of the incompatible modes are obtained using (10.97) and
(10.100)

M1,X = − 2
j0
b3

(
ξ +

j2
j0
ξ η

)
, M1,Y =

2
j0
a3

(
ξ +

j2
j0
ξ η

)
,

M2,X =
2
j0
b1

(
η +

j1
j0
ξ η

)
, M2,Y = − 2

j0
a1

(
η +

j1
j0
ξ η

)
.

(10.104)
It is possible to compute the gradients (10.90) and (10.105) with respect to
the reference configuration X by using expressions (10.102) to (10.104). For
the enhanced deformation, gradient F̄ follows

F̄e =
2∑

L=1

αααL Ḡ
T
L with αααL =

{
αL

φL

}
and ḠL =

{
ML,X

ML,Y

}
,

(10.105)
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where αL and φL are the variables with respect to the coordinate directions
related to the enhanced modes.

Remark 10.2: In Eqs. (10.102), (10.103) and (10.104) only the constant term
J0 of the Jacobi determinant appears in the denominator. This expression is pro-
portional to the element area and cannot become zero or negative, even when an
element is highly distorted. Hence this formulation is more robust against geometric
mesh distortion.

By using (10.68) as a basis for the nonlinear finite element formulation, the
gradients have to be transformed to the current configuration. The standard
displacement gradient is transformed by ∇u = (Gradu)F−1 to the spatial
displacement gradient

∇ue =
4∑

I=1

[
NI,x uI NI,y uI

NI,x vI NI,y vI

]
(10.106)

with the nodal displacements uI and vI . The derivatives of the shape func-
tions with respect to x follow for the two-dimensional case in explicit form{

NI,x

NI,y

}
=

1
detFe

{
F22NI,X − F21NI,Y

−F12NI,X + F11NI,Y

}
. (10.107)

Here Fik are the components of the deformation gradient F, see (10.65).
At the same time the enhanced gradient is transformed to the current

configuration. This yields – as for the displacement gradient – h̄ = F̄ F−1.
Together with (10.105), it follows

h̄e =
2∑

L=1

αααL ḡT
L with ḡL = F−T

e ḠL , (10.108)

where

ḡL =
{
ML,x

ML,y

}
=

1
detF

{
F22ML,X − F21ML,Y

−F12ML,X + F11ML,Y

}
(10.109)

is valid. Thus the enhanced gradient is transformed to the current configura-
tion in a similar way as the displacement gradient.

The discretization of the weak form (10.68) requires, for plane strain, the
matrices

τττ =

⎧⎨
⎩

τ11

τ22
τ12

⎫⎬
⎭ , b =

⎧⎨
⎩

b11
b22
b12

⎫⎬
⎭ , ∇S η =

⎧⎨
⎩

η,x

η,y

η,y + η,x

⎫⎬
⎭ , δh̄

S
=

⎧⎨
⎩

δh11

δh22

δh12 + δh21

⎫⎬
⎭ .

(10.110)

From the constitutive relation (3.120), the Kirchhoff stresses

τττe =

⎧⎪⎨
⎪⎩
τ11

τ22

τ12

⎫⎪⎬
⎪⎭

e

=
Λ

2
[J2−1 ]

⎧⎪⎨
⎪⎩

1
1
0

⎫⎪⎬
⎪⎭+μ

⎡
⎢⎣
⎧⎪⎨
⎪⎩
b11

b22

b12

⎫⎪⎬
⎪⎭−

⎧⎪⎨
⎪⎩

1
1
0

⎫⎪⎬
⎪⎭
⎤
⎥⎦ (10.111)
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can be deduced. In this expression, the discrete approximation for the left
Cauchy–Green tensor b is given by

be =

⎧⎪⎨
⎪⎩

(F11)2 + (F12)2

(F22)2 + (F21)2

F11 F21 + F12 F22

⎫⎪⎬
⎪⎭ . (10.112)

The components of the deformation gradient F are computed from (10.65)
together with (10.90) and (10.105)[
F11 F12

F21 F22

]
e

=
4∑

I=1

[
NI,X xI NI,Y xI

NI,X yI NI,Y yI

]
+

2∑
L=1

[
ML,X αL ML,Y αL

ML,X φL ML,Y φL

]

(10.113)
within an element Ωe. The variation of the symmetric displacement gradient
is provided in Ωe by

∇S ηe =
4∑

I=1

BI ηηηI =
4∑

I=1

⎡
⎣ NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ { ηx I

ηy I

}
. (10.114)

This defines the B-matrix, see also (4.94). The derivatives of the shape func-
tions are computed from (10.107) with (10.102) and (10.103) with respect
to the current configuration. Analogously, the variation of the enhanced dis-
placement gradient h̄ is given with (10.108) and (10.105) by

δh̄S
e =

2∑
L=1

GL δαααL =
2∑

L=1

⎡
⎣ ML,x 0

0 ML,y

ML,y ML,x

⎤
⎦ { δαL

δφL

}
. (10.115)

The relations (10.104) and (10.109) have to be applied in (10.115) to compute
ML,x and ML,y.

The discretization of (10.68) yields with (10.110) to (10.115) the residuals
of the enhanced element

ne⋃
e=1

⎧⎨
⎩

4∑
I=1

ηηηT
I

∫
Ωe

BT
I τττe dΩ

⎫⎬
⎭− δPEXT = 0

2∑
L=1

δαααT
L

∫
Ωe

GT
L τττ e dΩ = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇒
gu(u, ααα ) = 0

ge
α(u, ααα ) = 0 ,

(10.116)
where the abbreviations gu = 0 and ge

α = 000 were introduced for the first and
second equation. The last equation in (10.68) has only to be fulfilled on ele-
ment level. This follows from the fact that the interpolation functions for the
enhanced modes are discontinuous over the element domains. Furthermore,
the interpolation of the stress field can be selected in (10.67) and (10.68) such
that (10.68)3 is automatically fulfilled, see Simo and Armero (1992).
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Remark 10.3: Equation (10.116)2 leads for constant stresses to the condition∫
Ωe

ḠL dV = 0. This has to be considered in order to fulfil the patch test for piece-

wise constant stress fields. With the enhanced functions in (10.104), this condition

is fulfilled exactly when the following approximation is used for the integration∫
B

f(x, y) dV =
∫ 1

−1

∫ 1

−1

f(ξ, η) j dξ dη ≈
∫ 1

−1

∫ 1

−1

f(ξ, η) j0 dξ dη.

Due to this the use of j0 instead of j is important for the mapping onto the
reference configuration within this element formulation, see also (10.78).

Newton’s method is usually applied to solve the nonlinear algebraic
equation system (10.116) for the unknown displacements u and the enhanced
variables ααα, see Sect. 5.1.1. This iterative scheme requires the linearization
of (10.116). As was shown in Sect. 3.5.3, Eq. (10.68) is transformed for this
operation to the initial configuration

Gu =
∫
B

Gradηηη ·
(

2F
∂W

∂C

)
dV − δPEXT = 0 ,

Gα =
∫
B

δ F̄ ·
(

2F
∂W

∂C

)
dV = 0 .

(10.117)

The linearization will be denoted by Δ(•), as introduced in Sect. 3.5.3.
The linearization of F yields with (10.65) ΔF = GradΔu + ΔF̄. This

relation is used to linearize C = FT F

ΔC = Δ(FT F) = [ (GradΔu )T +ΔF̄T ]F+FT [ GradΔu+ΔF̄ ] . (10.118)

Use of the linearized kinematical quantities in (10.117) leads to

ΔGu =
∫
B

Gradη · 2
[

(GradΔu +ΔF̄ )
∂W

∂C
+ F

∂2W

∂C ∂C
ΔC

]
dV = 0,

ΔGα =
∫
B

δ F̄ · 2
[

(GradΔu +ΔF̄ )
∂W

∂C
+ F

∂2W

∂C ∂C
ΔC

]
dV = 0 .

(10.119)
This result is pushed forward to the current configuration. Employing the
relation between the 2nd Piola–Kirchhoff stress tensor S and the Kirch-

hoff stress tensor τττ = FSFT , see (3.84), and using the incremental material
tensor in the current configuration cc, see (3.245), relations
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Δgu =
∫
B

{
∇S η · cc [∇S (Δu) ] + ∇S η∇S (Δu) · τττ

}
dV

+
∫
B

{
∇S η · cc [Δh̄ ] + ∇S ηΔh̄ · τττ

}
dV = 0,

Δgα =
∫
B

{
δh̄S · cc [∇S (Δu) ] + h̄S ∇S (Δu) · τττ

}
dV

+
∫
B

{
δh̄S · cc [Δh̄ ] + δh̄Δh̄ · τττ

}
dV = 0

(10.120)

are deduced after some algebraic manipulations.
In case of a plane strain state, the explicit expression for the constitutive

tensor (3.120), see also (3.271), is given by

D =

⎡
⎢⎣
e1 e2 0
e2 e1 0
0 0 g

⎤
⎥⎦ with

e1 = μ+ Λ
e2 = ΛJ2

g = μ− Λ
2 [J2 − 1 ] .

(10.121)

The operators for determining ∇S η and δh̄S are stated in discrete form
in (10.114) and (10.115). The same operators can also be applied for the
determination of ∇S(Δu) andΔh̄S . With this notation, the following tangent
matrices are defined as

Ku u =
ne⋃

e=1

4∑
I=1

4∑
J=1

∫
Ωe

[
BT

I DBJ +G1
IJ I2×2

]
dΩ

Ku α =
ne⋃

e=1

4∑
I=1

2∑
L=1

∫
Ωe

[
BT

I DGL +G2
IL I2×2

]
dΩ (10.122)

Kα α =
ne⋃

e=1

2∑
L=1

2∑
M=1

∫
Ωe

[
GT

L DGM +G3
LM I2×2

]
dΩ (10.123)

with

G1
IJ =< NI,x , NI,y >

[
τ11 τ12
τ21 τ22

] {
NJ,x

NJ,y

}

G2
IL =< NI,x , NI,y >

[
τ11 τ12
τ21 τ22

] {
ML,x

ML,y

}

G3
LM =< ML,x , ML,y >

[
τ11 τ12
τ21 τ22

] {
MM,x

MM,y

}
.

Since the interpolation functions for the enhanced strains are discontinu-
ous, it is possible to invert the matrix Kα α on element level. By writing the
equation system for one element as
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Ke
u uΔue + Ke

u αΔααα
e = −ge

u

Ke
α uΔue + Ke

α αΔααα
e = −ge

α

(10.124)

a block elimination technique, as employed in Simo and Rifai (1990), is effi-
cient in combination with Newton’s method to solve (10.124). Within this
procedure, the variables αααe are eliminated on element level

Δαααe = −Ke−1
α α (Ke

α uΔue + ge
α ) . (10.125)

This leads to the displacement formulation

(Ke
u u − Ke

u α Ke−1
α α Ke

α u )Δue = −ge
u + Ke

u α Ke−1
α α ge

α (10.126)

and hence to the definition of the element residual and tangent matrix for
the enhanced element

ĝu = ge
u − Ke

u α Ke−1
α α ge

α and K̂u u = Ke
u u − Ke

u α Ke−1
α α Ke

α u . (10.127)

An efficient implementation which avoids the storage of Ke−1
α α Ke

α u and
Ke−1

α α gα on element level can be found in Simo et al. (1993b).

10.5.3 Combination of Enhanced Formulation and Hour-Glass
Stabilization

A possibility in which the advantage of the stabilized hour-glass elements of
Belytschko et al. (1984) (high efficiency) is combined with the advantage of
the enhanced strain elements (locking free behaviour) was developed in Reese
et al. (1998) and has been refined since then in Reese (2003) and Reese (2005).
Staring point of this development are the relations (10.62) and (10.63). These
lead after assembly to the nonlinear equation

R0 + Kstab v = P (10.128)

and its linearization

(KT0 + Kstab )Δv = P − R0 − Kstab v . (10.129)

In order to derive the explicit form of Kstab for this formulation, the defor-
mation gradient F and its enhanced part F̄ in (10.65) is written as

Fe = Bxe Gradηe = Bηηηe and
F̄e = Gαααe δF̄e = G δαααe , (10.130)

where vector notation is introduced.
In the two-dimensional case, the explicit form
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Gradηe =

⎧⎪⎨
⎪⎩
η1,1

η1,2

η2,1

η2,2

⎫⎪⎬
⎪⎭ =

4∑
I=1

BI ηI =
4∑

I=1

⎡
⎢⎣
NI,X 0
NI,Y 0

0 NI,X

0 NI,Y

⎤
⎥⎦
{
ηX I

ηY I

}
(10.131)

is obtained for the variation of Fe using the ansatz (10.88). This relation can
be written in a compact way as

Gradηe = [B1 ,B2 ,B3 ,B4 ]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηX 1

ηY 1

. . .
ηX 4

ηY 4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Bηe . (10.132)

Starting from the Taylor series expansion of the shape functions, see (10.91),
the B-matrix can be split into linear and hour-glass parts. This leads after
Reese and Wriggers (2000) to

B = j (Blin Mlin + Bhg Mhg ) . (10.133)

For two-dimensions, the matrices in (10.133) have the form

j =

⎡
⎢⎢⎣

∂ξ
∂X

∂η
∂X 0 0

0 0 ∂ξ
∂Y

∂η
∂Y

∂ξ
∂Y

∂η
∂Y 0 0

0 0 ∂ξ
∂X

∂η
∂X

⎤
⎥⎥⎦ , (10.134)

Blin =

⎡
⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎦ , Bhg =

⎡
⎢⎣
η 0
ξ 0
0 η
0 ξ

⎤
⎥⎦ , (10.135)

and

MT
lin =

[
N0 N,X 0 N,Y 0 O O O
O O O N0 N,X 0 N,Y 0

]
,

MT
hg =

[
γγγ O
O γγγ

]
. (10.136)

The components NI |0, ∂NI

∂X

∣∣
0

and ∂NI

∂Y

∣∣
0
, computed in (10.91), (10.93) and

(10.94), are contained in vectors N0, N,X 0 and N,Y 0. In vector γγγ, the com-
ponents of the γ vector, see (10.95), are assembled.

The enhanced strain parts will now be specified based on the application
of the ansatz (10.96). The variation of the enhanced strain gradient in (10.65)
follows analogously to (10.131)
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δF̄e =

⎧⎪⎨
⎪⎩
δF̄11

δF̄12

δF̄21

δF̄22

⎫⎪⎬
⎪⎭ =

2∑
L=1

GL δϕL =
4∑

I=1

⎡
⎢⎣
ML,X 0
ML,Y 0

0 ML,X

0 ML,Y

⎤
⎥⎦
{
δϕL

δφL

}
.

(10.137)
This can be written in compact form

δF̄e = [G1 ,G2 ]

⎧⎪⎨
⎪⎩
δϕ1

δφ1

δϕ2

dφ2

⎫⎪⎬
⎪⎭ = G δαααe . (10.138)

Since the approximation for the enhanced strain term does not contain con-
stant and linear parts, the G matrix can be expressed by a Taylor series
expansion

G = j Ĝ with Ĝ =

⎡
⎢⎣
ξ 0 0 0
0 η 0 0
0 0 ξ 0
0 0 0 η

⎤
⎥⎦ . (10.139)

The variational equation (10.67) follows from the Hu–Washizu principle. Its
discretization uses the above defined matrices

ne⋃
e=1

ηT
e

∫
Ωe

[ j (Blin Mlin + Bhg Mhg)]T Pe dΩ − δPEXT = 0

δαααT
e

∫
Ωe

( j Ĝ )T Pe dΩ = 0. (10.140)

For the fulfillment of the last equation in (10.67), the ansatz G = j0
j j0 Ĝ has

to be selected for distorted element geometry. This leads with the incremental
constitutive matrix A = ∂2 W

∂F ∂F , for the linearization of the second equation
of (10.140), to

δαααT
e

⎡
⎣∫

Ωe

Ĝ
T
ÂBlin dΩMlinΔue +

∫
Ωe

Ĝ
T
ÂBhg dΩMhgΔue

+
∫
Ωe

Ĝ
T
ÂĜ dΩΔαααe

⎤
⎦ = −δαααT

e

∫
Ωe

Ĝ
T

P̂e dΩ . (10.141)

Here the abbreviation Â = jT Aj was introduced together with the abbre-
viation for the 1st Piola–Kirchhoff stress tensor P̂e = jT Pe. The form
(10.141) can now be simplified by assuming that Â, P̂ and j dV are constant
within an element Ωe. These assumptions are approximations for arbitrary el-
ement geometries. The assumption of constant stress states and rhomboidal
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element forms enables an exact evaluation of (10.141). Hence the solution
converges for arbitrary meshes when a sufficient number of finite elements is
used. In that case, the stress fields in the elements are nearly constant. Due
to this simplification, the first integral in (10.141) disappears, since Blin is
constant and Ĝ is linear in ξ and η. With the definitions

Kα u =
∫
Ωe

Ĝ
T
Â0Bhg dΩ0 and Kα α =

∫
Ωe

Ĝ
T
ÂĜ dΩ0, (10.142)

the matrix relation
Δααα = −K−1

α αKα u MhgΔv (10.143)

follows for the incremental enhanced variables Δααα on element level. In
(10.142), the index ()0 denotes evaluation of a quantity at element midpoint
(this is equivalent to a 1-point-integration). The increments of the gradients
follow from (10.133) and (10.139) with (10.143)

ΔF +Δ F̄ = j (Blin Mlin + Bstab Mhg )Δv , (10.144)

where the new B-matrix, Bstab, is defined by

Bstab = Bhg − ĜK−1
α αKα u . (10.145)

This relation can be inserted in the linearized form of (10.140)1. It leads to the

tangent matrix, by noting that
∫

Ωe
BT

linÂ0Bstab dΩ0 and
∫

Ωe
Ĝ

T
Â0Bstab dΩ0

are zero,
KT = MT

lin K0 Mlin + MT
hg Kstab Mhg (10.146)

with

K0 =
∫
Ωe

BT
linÂ0Blin dΩ0 and Kstab =

∫
Ωe

BT
stabÂ0Bstab dΩ0 . (10.147)

Since Blin is constant, K0 is integrated exactly by a 1-point-Gauss integra-
tion. Kstab can be integrated analytically. Thus an efficient computation of
the tangent matrix KT is possible. A further advantage is that the consti-
tutive tensor has to be evaluated only at the element midpoint. Since the
element volume is also computed using the element midpoint, the element is
insensitive against mesh distortions.

Since the first matrix in (10.146) is equivalent to matrix KT0 (10.129), the
second matrix in (10.146) can be interpreted as stabilization matrix which is
here computed by using the enhanced formulation. With this all matrices in
(10.129) are known.

Since a constant stabilization matrix is used within the concept of sta-
bilization, see Sect. 10.4, the stabilization matrix in (10.146) also has to be
kept constant during the Newton iterations within a load step. For large
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Fig. 10.2a Homogeneous deformation Fig. 10.2b Hourglass eigenvector

load steps, however, the stabilization matrix in (10.146) is not optimal in the
sense of the enhanced strain method, since e.g. the incremental constitutive
tensor may change. Then a post-iteration is required to update the matrix
according to the computed deformation and stress state. Such procedure can
be viewed as an Uzawa algorithm known from optimization, see e.g. Luen-
berger (1984). In a recent paper, Reese (2005) presented a new formulation
which basically overcomes this problem.

10.5.4 Instabilities Related to Enhanced Elements

Enhanced strain elements were developed over the last 15 years for finite
strain problems which include bending dominated response or incompressible
behaviour. The advantage of this element formulation is its relatively simple
implementation in which complex constitutive equations for finite elastic and
inelastic strains can be included. An additional advantage is a good coarse
mesh accuracy for different applications. However, there is one disadvantage
which is, in the classical formulation of enhanced strain elements, related to
instability, see Wriggers and Reese (1994) and Wriggers and Reese (1996). In
these papers, it was shown that a block under homogeneous pressure state
will lead to a non-physical instability which is related to the enhanced element
formulation, see Fig. 10.2a for the problem definition. This instability occurs
at a finite deformation state, independently on the constitutive equation.5

By applying loading and boundary conditions as depicted in Fig. 10.2a,
the loss of uniqueness of the solution occurs and the tangent matrix becomes
singular. The eigenmode related to the zero eigenvalue of the tangent stiffness
has the form shown in Fig. 10.2b which is well known as hour-glass mode.
5 Enhanced elements derived for geometrical linear elastic problems are known

to be stable for all strain and stress states. However, a even a geometrically
linear formulation of the enhanced strain element with an inelastic constitutive
equation can depict such instable behaviour.
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Thus the instability has nothing to do with the stability problems as discussed
in Chap. 7. It can be shown, see below, that the enhanced strain element is
rank deficient for this deformation state. This loss of rank can of course also
be observed under more complex loading states where pressure occurs locally
or for different types of material behaviour.

Interesting enough this phenomena will even occur for a single element.
Hence an analytical investigation of this element behaviour is feasable in
which all matrices can be presented in closed form.

Here one element will be investigated, assuming hyperelastic constitutive
behaviour. A compressible Neo–Hooke material is selected where the strain
energy, after (3.116) and (3.118), is given in terms of the principal strains λ2

i

of the right Cauchy–Green tensor, see (3.15), as

W =
1
2
μ [ (λ2

1 + λ2
2 + λ2

3) − 3 ] − μ ln J +
Λ

4
(J2 − 1 − 2 ln J ) . (10.148)

J = λ1 λ2 λ3 denotes the Jacobi determinant of the deformation gradient.
A homogeneous plain strain state is considered in a rectangular plate, see

Fig. 10.2a. Thus it is possible to perform the analysis with respect to the
principal strains since the principal directions coincide in this case with the
cartesian coordinates. From the strain energy, the 1st Piola–Kirchhoff

stresses P =
∑3

i=1 Pi ni ⊗ Ni, can be computed, see e.g. Ogden (1984), as

Pi =
∂W

∂λi
=

1
λi

[
μ (λ2

i − 1) +
Λ

2
(J2 − 1)

]
. (10.149)

Furthermore, the coefficients of the incremental constitutive tensor related
to a formulation using P are needed. After some algebra and analogous to
the derivation in (3.265), the incremental constitutive tensor follows with
(10.149) from A iJkL = ∂PiJ / ∂FkL. Hence the non-zero elements of this
tensor are given with respect to the principal strains with (i , j = 1 , 2 and
i 	= j) as

A iiii = μ

(
1 +

1
λ2

i

)
+

Λ

2λ2
i

(J2 + 1)

A iijj = ΛJ (10.150)
A ijij = μ

A ijji =
1

λi λj

[
μ+

Λ

2
(1 − λ2

i λ
2
j )
]
,

where it is not necessary to distinguish between derivations with respect to
the initial- and current configuration.

As already mentioned, it is sufficient to show the rank deficiency for a sin-
gle finite element. Here an isoparametric bilinear element will be considered
which is chosen such that the local ξ , η-axis coincide with the global X ,Y -
axis in Fig. 4.2. Hence initial- and reference configuration are the same, see



442 10. Special Finite Elements for Continua

Fig. 10.3a. For such a discretization all vectors and matrices can be presented
explicitly in closed form. The bilinear shape functions are given in this special
case in terms of the cartesian coordinates

NI(X ,Y ) =
1
4

(1 +XXI)(1 + Y YI) . (10.151)

This leads directly to the derivatives needed for the computation of the de-
formation gradient after (10.131)

NI,X =
XI

4
( 1 + YI Y ) and NI,Y =

YI

4
( 1 +XI X ) . (10.152)

Hence the BI matrix in (10.131) is linear in X and Y .
The deformation gradient is enhanced in Eq. (10.65) by F̄. Using the

interpolation of the incompatible modes ML(X ,Y ), see Taylor et al. (1976)
and (10.96), it follows for the derivatives in the enhanced gradient (10.137)

M1,X = −X , M1,Y = 0 , M2,X = 0 and M2,Y = −Y . (10.153)

Now the first two equations of the mixed formulation (10.67) can be formu-
lated with this interpolation. Since a plain stress state is assumed (P33 = 0),
the four stress components

PT = {P11 , P12 , P21 , P22 } (10.154)

have to be determined. These components of P can be obtained from (10.149)
using the deformation gradient from (10.65). This leads to the weak form of
the single element Ωe in Fig. 10.3a

4∑
I=1

ηT
I

∫
Ωe

BT
I P dΩ − δPEXT = 0

λ1

λ2

1 2

344 3

1 2

y

2

2

X x

Y

Fig. 10.3 Finite element and homogeneous deformation
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2∑
L=1

δϕT
L

∫
Ωe

GT
L P dΩ = 0 (10.155)

which is referred to the initial configuration. In case of a homogeneous stress
field, the stress P22 is constant and P11 = P12 = P21 = 0. This yields

P22

1∫
−1

1∫
−1

4∑
I=1

NI,Y ηY I t dX dY − δPEXT = P22

4∑
I=1

(−YI) ηY I t− δPEXT

= ηT Gu = ηT (Ru − PEXT ) = 0 (10.156)

with RT
u = { 0 ,−P22 , 0 ,−P22 , 0 , P22 , 0 , P22 } t.

In the same way, the explicit form of Eq. (10.155)2 is given for P22 = const.

P22

1∫
−1

1∫
−1

2∑
L=1

ML,Y δφL t dX dY = δαααT Gα = 0 . (10.157)

In this special situation GT
α = { 0 , 0 , 0 , 0 } follows from (10.153).

The solution of the nonlinear equations (10.156) and (10.157) follows usu-
ally by employing Newton’s method which needs the tangent matrix of the
weak form. It is obtained from the general form, see e.g. (10.124), and can
be stated explicitly for the square element Ωe

Ku u =

⎡
⎣K1

uu K2
uu

K2 T
uu K1

uu

⎤
⎦ with

K1
u u =

⎡
⎢⎢⎣

2a+ 2e c+ d −2a+ e c− d
c+ d 2b+ 2e −c+ d b− 2e

−2a+ e −c+ d 2a+ 2e −c− d
c− d b− 2e −c− d 2b+ 2e

⎤
⎥⎥⎦ t

K2
u u =

⎡
⎢⎢⎣

−a− e −c− d a− 2e −c+ d
−c− d −b− e c− d −2b+ e
a− 2e c− d −a− e c+ d
−c+ d −2b+ e c+ d −b− e

⎤
⎥⎥⎦ t

Kα u =

⎡
⎢⎢⎣

0 4
3c 0 − 4

3c 0 4
3c 0 − 4

3c
4
3d 0 − 4

3d 0 4
3d 0 − 4

3d 0
0 4

3d 0 − 4
3d 0 4

3d 0 − 4
3d

4
3c 0 − 4

3c 0 4
3c 0 − 4

3c 0

⎤
⎥⎥⎦ t = KT

u α

Kα α =

⎡
⎢⎢⎣

8a 0 0 0
0 8e 0 0
0 0 8e 0
0 0 0 8b

⎤
⎥⎥⎦ t. (10.158)
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The coefficients in these matrices are given by

a =
A1111

6
; b =

A2222

6
; c =

A1122

4
=

A2211

4

d =
A1221

4
=

A2112

4
; e =

A1212

6
=

A2121

6
.

Using block elimination within the solution of the linear equation system
(10.124), the enhanced variables ααα can be eliminated. With K = Kuu −
Kuα K−1

αα KT
uα, an equation system for the unknown displacements can be

written as

K = Kuu −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 0 −f 0 f 0 −f 0
0 g 0 −g 0 g 0 −g
−f 0 f 0 −f 0 f 0
0 −g 0 g 0 −g 0 g
f 0 −f 0 f 0 −f 0
0 g 0 −g 0 g 0 −g
−f 0 f 0 −f 0 f 0
0 −g 0 g 0 −g 0 g

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t (10.159)

where

f =
2
9

(
d2

e
+
c2

b

)
g =

2
9

(
d2

e
+
c2

a

)
.

This relation constitutes the explicit structure of the element matrix for the
homogeneous stress field with P22 = const. at finite deformations. Specifica-
tion of boundary conditions which are related to the homogeneous deforma-
tion, see Fig. 10. 3b, yields a further reduced matrix system.

For the computation of the eigenvector which is associated with the rank
deficiency of the enhanced strain element, it is sufficient to consider only the
nodal displacements (u2 , u3). The vertical displacements (v3 = v4) follow
from condition P11 = 0. Hence they are known values within the analysis.
These considerations yield the nodal displacement vector for the element
depicted in Fig. 10.3b: v = { 0 , 0 ,u2 , 0 ,u3 , v3 , 0 , v4 }. Additionally, in case
of a homogeneous stress state, it can be concluded: u2 = u3. However, both
unknowns u2 and u3 have to be kept within the analysis; otherwise the hour
glass form of the eigenvector cannot be detected.

The unknown increments of the enhanced variables Δααα follow from
(10.125). Since Gα = 0 can be deduced from (10.157), it follows from (10.125)
and the special structure of Ku α, see (10.158), that ααα is generally zero for a
homogeneous stress state.

The reduced form of (10.159) results from the specification of the bound-
ary conditions

K =
[

2a+ 2e− f a− 2e+ f
a− 2e+ f 2a+ 2e− f

]
t =

[
A− f B + f
B + f A− f

]
t. (10.160)
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A rank deficiency of K is present once the eigenvalue of the matrix are less or
equal zero. The eigenvalues can be computed from K−ω I and are determined
from
1
t2

det (K− ω I) = ω2 + 2ω(f −A) +K , with K = A2 −B2 − 2f(A+B) .

(10.161)
This yields

ω1,2 = A− f ±
√

(A− f)2 −K =⇒
{

ω1 = A+B
ω2 = A−B − 2 f .

(10.162)
The coefficients A, B and f depend upon the coefficients of the constitutive
tensor (10.150) and also on the principal stretches λ1 and λ2. Since the normal
stress P11 is equal to zero, which is also true for the principal stress P1, it is
possible to determine the stretch λ2 as a function of λ1

P1 = 0 =
1
λ1

[
μ (λ2

1 − 1 ) +
Λ

2
(J2 − 1)

]
−→ λ2 =

1
λ1

√
1 − 2μ

Λ
(λ2

1 − 1) .

(10.163)
Now the eigenvalues ω1 and ω2 of the tangent matrix KT can be written as
a function depending on λ1. Since

A+B =
A1111

2
= μ+

Λ

2λ2
1

, (10.164)

the eigenvalue ω1 is for μ > 0 and Λ ≥ 0 always positive. Thus the hour glass
instability can only be observed by looking at the second eigenvalue

ω̂2(λ1) = A−B − 2f =
1
6

A1111 +
2
3

A1212 −
1
6

(
A

2
1221

A1212
+

A
2
1122

A2222

)
< 0 .

(10.165)
The function ω2 = ω̂2(λ1) is shown in Fig. 10.4 for a value of the Láme

constant Λ = 100.000 and the shear modulus μ = 20. As can be seen in
Fig. 10.4, a negative eigenvalue ω2 occurs for a stretch λ1 > 1.6344. From
(10.163), it follows that λ2 < 0.6116.

The eigenvector associated with ω2 = 0 can be computed from (KT −
ω2 1)φφφ2 = 0. With (10.158), (10.161) and (10.162), the eigenvector

φφφT
2 = {φφφu T , φφφα T } = {1 ,−1 , 0 , αα , 0 , βα } (10.166)

is obtained. In this result, the first two components are the displacements φφφu

in X-direction. The last four components belong to the enhanced modes φφφα

with

αα =
d

3 e
=

1
2

A1221

A1212
=

1
2J

[
1 +

Λ

2μ
( 1 − J2)

]

βα =
c

3 b
=

1
2

A1122

A2222
=

1
2

λ2
2 J

μ
Λ (λ2

2 + 1) + 1
2 (J2 + 1)

. (10.167)
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Fig. 10.4 Eigenvalue as function of the stretch λ1

For the above selected values of Λ and μ, the eigenvectors follow which are,
depicted in Fig. 10.5.

Remark 10.4:

1. In the linear elastic case, the stretches are λ1 ≈ 1, λ2 ≈ 1. Then it follows
from (10.165)

ω̂2(1) =
1

6

(
Λ − Λ2

Λ + 2μ

)
+

5

6
μ .

The eigenvalue is for μ > 0 always positive. Thus the hour-glassing described
above does not occur.

2. The eigenvectors of the pure Q1-displacement element can be determined in
the same way. In that case, f in (10.165) is equal to zero which yields

ω1,2 = A ± B −→
{

ω1 = μ
2
(1 + 1

λ2
1
) + Λ

4λ2
1
(J2 + 1) > 0

ω2 = μ
6
(5 + 1

λ2
1
) + Λ

12λ2
1
(J2 + 1) > 0 .

Also in this case the hour-glass instability does not occur for parameters of the
Láme constants (μ > 0 , Λ ≥ 0) which make physically sense.

3. It can be shown that the hour-glass instability does not depend on the material
model. In Reese (1994) and Glaser and Armero (1997), the same effects were
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observed for Ogden materials. Furthermore, rank deficiency of the enhanced
strain element was observed in de Souza Neto et al. (1995) for elasto-plastic
deformations.

4. For the class of enhanced strain interpolations discussed in this section, hour-
glass instabilities are only observed for pressure states since for 0 < λ1 ≤ 1 no
zero eigenvalue occurs, see Fig. 10.4.

The hour-glass modes discussed above can also be found when using stan-
dard enhanced strain elements for inhomogeneous stress states. The rank defi-
ciency occurs only for elements which are situated in areas where compressive
stresses occur.

10.5.5 Stabilization of the Enhanced Strain Formulation

Once the phenomenon was detected, different research groups started to work
on methods to overcome instable behaviour of the enhanced strain elements.
Within this research work different methods were developed. One method is
related to classical hour-glass stabilization, as discussed in Sect. 10.4. Another
technique is related to the choice of a different interpolation of the enhanced
strains. A third method uses different strain energies within the enhanced
formulation. These methods are discussed below.

Hour-Glass Stabilization. The hour-glass stabilization is performed as
well for the displacements as for the enhanced modes. For the displacements,
the stabilization can be obtained using γ-vectors as defined in (10.59). The
two-dimensional form is presented in (10.95) explicitly. When additionally
the eigenvectors, related to the enhanced modes, are stabilized then in the
two-dimensional case the stabilization vectors

γ̄γγ1
T = {γ1 , 0 , . . . , γ4 , 0 , 0 , αα , 0 , βα} ,

γ̄γγ2
T = {0 , γ1 , . . . , 0 , γ4 , αα , 0 , βα , 0} (10.168)

are obtained. Here αα and βα are defined by (10.167). The last four terms
define the stabilization of the enhanced modes.

With these stabilization vectors, the incremental equation system for the
unknowns vT = {uT , αααT } can be written as(

KT +
2∑

s=1

cs γ̄γγs γ̄γγ
T
s

)
Δv = −G −

2∑
s=1

cs γ̄γγs(γ̄γγ
T
s v) , (10.169)

see also (10.124) and (10.63). This equation system is solved as (10.126) by
block-elimination.

This stabilization is only used when negative eigenvalues are found within
an element. This requires for general quadrilaterals a generalized computation
of the eigenvalues, see e.g. Glaser and Armero (1997). Here the problem is
that the components of the eigenvector belonging to the enhanced modes
depend upon the deformations, see (10.167). A simplified version for the
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determination of the constants αα and βα follows from the computation of
the constants for λi −→ 1 and J −→ 1

αα =
1
2

βα =
1
2

Λ

2μ+ Λ
. (10.170)

This procedure was implemented in a two-dimensional Q1E4 element. For
the basic formulation, see Simo and Armero (1992) or Wriggers and Hueck
(1996) and Exercise 10.1. The resulting enhanced elements are rank deficient
in compression states.

In order to investigate the influence of the described stabilization, a block
under compression is considered under plane strain conditions. Its initial
configuration is depicted in Fig. 10.6a for a finite element mesh with 16 ×
16 elements. At the upper side, a constant vertical displacement is applied
such that a constant stress state occurs. The constitutive parameters were
selected as Λ = 100.000 and μ = 20. The first physical eigenvector is shown
in Fig. 10.6b. Convergence of the solution is obtained for a discretization
with 64 × 64 elements. For this mesh the critical stretch, belonging to the
physical eigenvector, is λ2 = 0.575. Several computations were performed in
order to investigate the dependency of the stabilization parameter on the so-
lution. This also included a convergence study regarding the necessary mesh
refinement. The computation of the system depicted in Fig. 10.6a yields a
stretch λ2 which belongs to the first physical eigenvector. This value is pro-
vided for the parameter cs depending on the mesh refinement in Table 10.2.
For comparison, the stretch which belongs to the first singularity of the non-
stabilized enhanced element is documented in the first row of Table 10.2. The
stretch belonging to the nonphysical hour-glass mode, see also Fig. 10.2b, is
λ2 = 0.695. This result is independent on mesh refinement, since the rank
deficiency is a local phenomenon, see above. For the discretization with one
element, the solution from Fig. 10.5a was used. It is different since in this
special case different boundary conditions were employed.

It is clear from the values reported in Table 10.2 that the stabilization
procedure avoids the hour-glass instability of the enhanced element. Fur-
thermore, the solution only depends slightly upon the stabilization param-
eter cs. The formulation converges to the stretch λ2 = 0.575. For compar-
ison reasons, the solution of the Q1-displacement element is reported too.

Table 10.2 Stretch λ2 belonging to singularity

FEM 1x1 8x8 16x16 32x32 64x64

cs = 0 0.612 0.695 0.695 0.695 0.695
cs = 10 μ 0.260 0.475 0.555 0.575 0.580
cs = 100 μ 0.245 0.470 0.550 0.570 0.575
cs = 1000 μ 0.245 0.470 0.550 0.570 0.575
cs = 10000 μ 0.245 0.470 0.550 0.570 0.575
Q1-Element — 0.040 0.085 0.165 0.370
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Fig. 10.6a FEM discretization Fig. 10.6b 1st physical eigenvector

However it shows the locking of the displacement element which results from
the quasi-incompressible material behaviour.

10.5.6 Special Interpolation of the Enhanced Modes

The rank deficiency occurs as well for distorted as for undistorted element
geometries within the enhanced strain formulation. Hence a finite element for-
mulation has to be developed which does not degenerate to a Q1E4 element.6

In some cases, an interpolation of the enhanced modes can be constructed
such that negative eigenvalues are avoided in (10.165). The associated formu-
lation was presented in Korelc and Wriggers (1996b) and Glaser and Armero
(1997). Starting from the two-dimensional formulation (10.79), the interpo-
lation of the incompatible modes can be written in more general form as

M̂(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 M2(ξ , η)α2

M3(ξ , η)α3 η α4

]
. (10.171)

The interpolation on the main diagonal of M2D cannot be changed in order
to avoid volume locking. Korelc and Wriggers (1996a) developed orthogo-
nality conditions for the ansatz polynomials M12 and M21 which resulted
from the eigenvalue analysis (10.161). These were designed to avoid negative
eigenvalues and hence rank deficiency. The conditions are∫

Ωe

M2(ξ , η)M3(ξ , η) dΩ = 0 ,

∫
Ωe

M2(ξ , η) dΩ = 0 , (10.172)

6 Note that higher order integration does not solve the problem.
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∫
Ωe

M3(ξ , η) dΩ = 0 .

The application of these conditions yield in the simplest case

M̂(ξξξ)2D ααα =
4∑

L=1

M(ξξξ)2D
L αL =

[
ξ α1 ξ α2

η α3 η α4

]
= [M(ξξξ)2D]T , (10.173)

which is the transpose of the interpolation in (10.79). With such interpolation,
called CG4 or Q1/E4T, no instabilities occur in compression states, see Korelc
and Wriggers (1996a) and Glaser and Armero (1997).7

However, this formulation (CG4 or Q1/E4T) is not totally free of sin-
gularities which can occur in the case of large elasto-plastic deformations
in tension states and hence lead to rank deficiency of these enhanced strain
formulations. This is also true for the three-dimensional formulation (CG9),
which is based on the transposed of the interpolation matrix (10.80), see
Korelc and Wriggers (1996b).

Additionally, several other approaches were proposed to stabilize the en-
hanced element formulation when applied to the numerical simulation of the
finite deformation problems. Some of these methods are discussed below.

1. A possibility to avoid rank deficiency of the Q1/E4 element is provided by
a change in the continuum formulation. Crisfield et al. (1995) have used
the right stretch tensor U in the Hu–Washizu functional instead of the
deformation gradient F = RU. This however is not sufficient to prevent
instabilities. Hence the authors have additionally evaluated the rotation
tensor R only at the element mid point as in a co-rotational formulation.
This element does not hour-glass in compression states. However, the
formulation is quite complex since the rotation and the stretch tensor
have to be determined and all constitutive equations must be provided
for Biot stresses, see also Exercise 3.10. Furthermore, it seems that this
formulation tends to lock in some applications.

2. de Souza Neto et al. (1996) developed an element which is based on an
interpolation of the strains using a constant deformation gradient. This
element depicts no rank deficiency but has several drawbacks. First, the
formulation results in a non-symmetric tangent matrix - even for elastic
materials - and second it locks in bending situations.

3. Another stabilization technique was developed by Glaser and Armero
(1997) based on the Q1/E4T element. In this formulation, the authors
add to the functional (10.64), after elimination of the stresses a stabiliza-
tion term which acts on the volumetric part of the deformation

Πα(ϕ,F) = Π(ϕ,F) +
∫
B

α

2
[ detF − 1 ]2 dV . (10.174)

7 The CG4 and Q1/E4 interpolations cannot be distinguished in the linear theory,
see Korelc and Wriggers (1996b).
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This approach avoids hour glassing of the Q1/E4T or CG4 formulation
under tension states if a small value for α/μ is selected, see Glaser and
Armero (1997). A scheme, how to determine α depending on a problem
at hand, is however not provided by the authors.

4. Bischoff et al. (1999b) employ least square methods using stabilization
concepts known from work in the area of numerical flow simulations. With
such techniques, the authors circumvent hour - glassing of the enhanced
elements at finite deformation states. The stabilization is obtained via a
deformation dependent function; however in the cited paper all results
are valid only for rectangular elements.

5. Reese and Wriggers (2000) use the stability analysis discussed in the last
section to develop a technique which automatically changes the element
formulation such that hour glassing does not occur. In this approach,
it is necessary to do the stability analysis for elements with arbitrary
distorted geometries. Once an eigenvalue in (10.165) is equal zero or neg-
ative, the element formulation is changed such that instability is circum-
vented. Different cases have to be distinguished, for details see Reese and
Wriggers (2000). These techniques have been successfully employed for
three-dimensional simulations of finite elasto-plastic problems, see Reese
(2003) and Reese (2005).

10.5.7 Special One Point Integration and Enhanced Stabilization

The enhanced variational methods provide a high flexibility for the generation
of different finite elements. This will be shown by the following formulation
in which an element will be derived which can be applied successfully to solid
problems of finite elasticity and is based on a split of the element deformation
into a homogeneous and inhomogeneous part, as introduced in Nadler and
Rubin (2003) for the Cosserat point element. It does not depict, as well
as the Cosserat point element, any nonphysical instabilities and does not
rely on any analytical solutions. The difference is that simply the inhomoge-
neous part of the deformation is enhanced, as it is responsible for the locking
behavior. Within this formulation, the deformation gradient F, see (3.14), is
additively split into its homogeneous and inhomogeneous part

F = F̄ + F̂ , (10.175)

with
F̄ =

1
V

∫
Ω

F dV (10.176)

being the volume average of the displacement gradient and V the element
volume in the initial configuration. The strain energy density function is split
accordingly, leading to

W (F) = WH

(
F̄
)

+WI(F̂) . (10.177)
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For the homogeneous part of the deformation, a compressible Neo–Hooke
material introduced for the strain energy function WH , see (3.116) with
g(J) = Λ

2

(
J̄ − 1

)2. Substituting the overall deformation measures by their
homogeneous parts yields for the 1st Piola–Kirchhoff stresses

P̄ =
∂WH

∂F̄
= ΛJ̄

(
J̄ − 1

)
F̄−T + μ

(
F̄ − F̄−T

)
, (10.178)

where
J̄ = det

(
F̄
)

and C̄ = F̄T F̄

are the volume averaged values of the deformation gradient, the Jacobian

and the right Cauchy–Green tensor, respectively.
For the inhomogeneous part of the element deformation, the strain energy

density function is defined by a linear elastic model model, see (3.121), since
the inhomogeneous deformation part consists mainly of bending and torsion
deformations, see Nadler and Rubin (2003), which can be described well by
this model.

WI(Ĥ) =
1
2
Ĥ ·CCC0 [ Ĥ ] (10.179)

with a constant elasticity tensor CCC0, see (3.272). The 1st Piola–Kirchhoff

stress tensor is then given by

P̂ = Λtr(Ĥ)1 + μ ( Ĥ + Ĥ
T

) . (10.180)

Now the inhomogeneous part of the displacement gradient is enhanced such
that

Ĥ = H̃ + Ĥ (10.181)
where

H̃ = H (ϕ) − H̄ (10.182)

is the displacement gradient following from the deformation and Ĥ is the
enhanced displacement gradient.

By using the above definitions, the Hu–Washizu functional (10.64) can
be rewritten as

Π
(
ϕ, Ĥ,P

)
=
∫
Ω

[
WH(H̄) +WS(Ĥ) − P̂ · Ĥ

]
dV − Pext = 0 . (10.183)

The variation of Eq. (10.183) w.r.t. its independent variables ϕ, Ĥ and P
leads to ∫

Ω

δH̄ · ∂WH

∂F̄
dV +

∫
Ω

δH̃ · ∂WS

∂Ĥ
dV − δPext = 0,

∫
Ω

δĤ ·
(
∂WS

∂Ĥ
− P̂

)
dV = 0,

∫
Ω

δP̂ · Ĥ dV = 0. (10.184)
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Equation (10.184)1 yields the standard weak form of the equilibrium and
Eq. (10.184)2 the constitutive equation. In a weak sense, Eq. (10.184)3 pro-
vides an orthogonality condition between the stress tensor and the displace-
ment gradient. Hence the finite element interpolations for the enhanced dis-
placement gradient have to be chosen such that the orthogonality conditions∫

Ω

δĤ · P̂ dV = 0,
∫
Ω

δP̂ · Ĥ dV = 0 (10.185)

are fulfilled. Then, Eqs. (10.184) become∫
Ω

δH̄ · ∂W
∂F̄

dV +
∫
Ω

δH̃ · ∂W
∂Ĥ

dV − δPext = 0,

∫
Ω

δĤ · ∂W
∂Ĥ

dV = 0 . (10.186)

These equations are the basis for the subsequent development of the enhanced
finite element formulation.

Finite Element Discretization. A standard finite element discretization
is employed within a single element Ωe where the position of a material point
in the current configuration ϕ is approximated by trilinear isoparametric
shape functions

ϕh =
n∑

I=1

NIϕI =
n∑

I=1

NI (XI + uI) , (10.187)

where XI are the positions of the nodes of Ωe with respect to the initial con-
figuration and uI are the nodal displacements. The formulation is presented
here for an eight-node brick element as shown in Fig. 4.8. For the interpo-
lation functions NI standard trilinear shape functions, defined in (4.40), are
used.

With the transformation, see also (4.44),

∂NI

∂X
= J−T ∂NI

∂ξ
, (10.188)

where J = ∂X
∂ξ is the standard Jacobian of the isoparametric map and

(ξ, η, ζ) are the coordinates of the point ξ in the reference configuration, the
displacement gradient can be written as
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Hh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hh
11

Hh
22

Hh
33

Hh
12

Hh
21

Hh
23

Hh
32

Hh
13

Hh
31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
8∑

I=1

BI uI with BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI,X 0 0
0 NI,Y 0
0 0 NI,Z

NI,Y 0 0
0 NI,X 0
0 NI,Z 0
0 0 NI,Y

NI,Z 0 0
0 0 NI,X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10.189)
The discrete form of the homogeneous part of the displacement gradient is
obtained by inserting Eq. (10.189) into Eq. (10.176), leading to

H̄h =
1
Ωe

∫
Ωe

Hh dΩ =
8∑

I=1

1
Ωe

∫
Ωe

BI dΩ uI =
8∑

I=1

B̄I uI . (10.190)

Note that a numerical integration over the element volume can be avoided in
this equation by using the ansatz functions introduced by Belytschko et al.
(1984) which allow an analytical integration.

With Eqs. (10.189) and (10.190), the discrete form of the inhomogeneous
part of the displacement gradient H̃ is written as

H̃
h

=
8∑

I=1

(
BI − B̄I

)
uI =

8∑
I=1

B̃I uI . (10.191)

For the enhanced displacement gradient H̃, the ansatz functions have to
be chosen such that they fulfil the orthogonality condition given in Equa-
tions (10.185). Here, three quadratic functions are used to interpolate the
enhanced modes, as introduced in Wilson et al. (1973)

M1 =
(
1 − ξ2

)
M2 =

(
1 − η2

)
M3 =

(
1 − ζ2

)
. (10.192)

Then, the enhanced displacement gradient can be discretized on the element
level as

Ĥ
h

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥh
11

Ĥh
22

Ĥh
33

Ĥh
12

Ĥh
21

Ĥh
23

Ĥh
32

Ĥh
13

Ĥh
31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
3∑

L=1

GLαL withGL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ML,X 0 0
0 ML,Y 0
0 0 ML,Z

ML,Y 0 0
0 ML,X 0
0 ML,Z 0
0 0 ML,Y

ML,Z 0 0
0 0 ML,X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.193)
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and αL are the enhanced variables,

αT
L = [α1L , α2L , α3L] . (10.194)

Linearization and Solution Procedure. With the help of Eqs. (10.190),
(10.191) and (10.193), the discrete form of the variational equations (10.186)
is given by

ne⋃
e=1

⎛
⎝ 8∑

I=1

δuT
I B̄

T
I P̄Ωe +

8∑
I=1

δuT
I

∫
Ωe

B̃
T

I P̂ dΩ

⎞
⎠− δPEXT = 0

3∑
K=1

δαT
K

∫
Ωe

GT
K CCC0

[
H̃

h
]
dΩ = 0(10.195)

where Eq. (10.195)2 is defined on the element level. This leads to the nodal
residual vectors within an element Ωe

Ru
I = B̄

T
I P̄

h
Ωe +

∫
Ωe

B̃
T

I P̂
h

dΩ − PEXT
I ,

Rα
L =

∫
Ωe

B̃
T

I C0H̃
h

dΩ, (10.196)

where PEXT
I is the nodal vector related to the external loads. The lineariza-

tion of equations (10.195) yields on element level

Kuu
IJ = B̄

T
I DB̄J Ωe +

∫
Ωe

B̃
T

I C0B̃J dΩ

Kuα
IL =

∫
Ωe

B̃
T

I C0GL dΩ

Kαu
KJ =

∫
Ωe

GT
KC0B̃J dΩ

Kαα
KL =

∫
Ωe

GKC0GL dΩ . (10.197)

With Eqs. (10.195) and (10.197), the system of linear equations which has
to be solved in every Newton iteration can be constructed by standard
assembly, see Sect. 4.2. Here, as discussed already in Sect. 10.5.2, a block
elimination of the variables α can be obtained based on the linear system on
element level, for details see Exercise 10.1.

This element is called Q1/EI9 due to the fact that standard tri-linear
ansatz functions are used to interpolate the volume averaged and the en-
hanced part and that additionally nine enhanced modes are applied to de-
scribe the small strain elastic enhanced stabilization part.
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10.6 Examples

The performance of the different elements is shown by means of examples
suitable to point out important properties of the different elements such as
high coarse mesh accuracy, low mesh distortion sensitivity and locking free re-
sponse for bending and incompressibility dominated problems. Furthermore,
it can be shown that some of the elements do not hour-glass for arbitrary
problem classes and loading.

The element formulation which are compared in this section are standard
isoparametric as well as special elements for good bending performance and
for incompressible problems. The following elements were selected:

– two standard elements Q1 and Q2 which use tri-linear and tri-quadratic
interpolations, respectively, see Sect. 4.2,

– the mixed Q1/P0 element as proposed by Simo et al. (1985a) for finite
deformations, see also Sect. 10.2.1,

– the classical enhanced element QM1/E12, developed in Simo et al. (1993b),
and

– the Q1/EI9 element described in the last section.

All elements use a hyperelastic material model, see (3.116) with g(J) =
Λ
2

(
J̄ − 1

)2.

10.6.1 Patch Test

The patch test proposed by MacNeal and Harder (1985) is used for a dis-
placement patch test. The the finite element mesh is shown in Fig. 10.7(a).
Boundary conditions are set such that a rotation around the x3-axis is pos-
sible, but no other rigid body motion. A displacement in the x2-direction is
applied at point P , resulting in a rotation around the x3-axis. All elements
fulfil this patch test; hence the computed stresses are zero. For the traction
controlled patch test, the same mesh is used. The nodes at x1 = 0, x2 = 0
and x3 = 0 are fixed in the x1-direction, x2-direction and x3-direction, re-
spectively. A surface load is applied in the x1-direction, see Fig. 10.7(b). This
configuration should lead to a uniform stress σ11, while all other stresses
should be zero. The force patch test is fulfilled by all elements except for the
QM1/E12.

10.6.2 Beam with Distorted Mesh

A cantilever beam of length l, width 2w and height h is loaded with an
equally distributed shear force F = 12N at its free end, as shown in Fig. 10.8.
The boundary conditions are such that the clamped end is fixed in the
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Fig. 10.7 (a) displacement and (b) force patch test

x1-direction. Additionally, the node at x1 = x2 = x3 = 0 is fixed in the
x2-direction to avoid rigid body motion. All nodes at x3 = 0 are fixed in the
x3-direction. Due to the loading, the rectangular cross section and the bound-
ary conditions, symmetry conditions can be enforced. In order to circumvent
a stress singularity at the clamped end, the shear load is applied there in
the opposite direction instead of fixing these points in the x2-direction. The
geometry and the material data of the beam as well as the load applied and
the boundary conditions are provided in Fig. 10.8.

The convergence of the deflection vP in x2-direction of point P depicted
in Fig. 10.8 is investigated for the Q1/EI9 element as well as the Q1, Q2 and
QM1/E12 element. Four different meshes are used, with 16× 4× 2,32× 8× 4,
64× 16× 8 and 128× 32× 16 elements, respectively.

In Table 10.3, the displacement vP in x2-direction of point P is depicted
for all elements, as a function of the number of degrees of freedom. As ex-
pected, the Q1 element locks. Both enhanced strain elements are softer than
the Q2 element, where the QM1/E12 is closer to the Q2 element than the
Q1/EI9 element. This shows the good coarse mesh accuracy of the enhanced
elements. As expected, all elements converge to the same solution. For better
visualization, only the results for the elements which do not lock are shown
in Fig. 10.9 where the displacement vP is plotted for the Q1/EI9, the Q2 and

x1

x3

x2

a

h

w

l

l = 10mm

Load
F = 6N

h = 2mm
w = 1mm
a = 3mm

MaterialF

F

P

Geometry
Λ = 600MPa
μ = 600MPa

Fig. 10.8 Beam: system, load and material data
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Table 10.3 Beam with distorted mesh: Displacement vP [mm] for the Q1/EI9,
Q1, Q2 and QM1/E12 element

Degrees of freedom Q1/EI9 Q1 Q2 QM1/E12

664 1.0379 0.5778 1.0128 1.0299
4112 1.0314 0.7840 1.0257 1.0279
28576 1.0283 0.9358 1.0270 1.0273
28576 1.0275 1.0007 1.0271 1.0272

the QM1/E12 with respect to the number of elements. The pure displacement
element Q2 converges from below, as the mathematical theory predicts. Both
mixed elements, QM1/E12 and Q1/EI9, converge from above.

dof

v P
[m

m
]

1.01

1.015

1.02
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1.035

1.04

1000 10000 100000

QM1/E12
Q2
Q1/EI9

Fig. 10.9 Beam with distorted mesh: Displacement vP for the Q1/EI9, Q2 and
QM1/E12 element

10.6.3 Nearly Incompressible Block

A nearly incompressible block of length l, width w and height h is loaded by
an equally distributed surface load q at its top centre, as shown in Fig. 10.10.
Furthermore, all nodes on the top of the block are fixed in the x1- and x2-
directions. For symmetry reasons, only a quarter of the block is discretized.
The bottom face of the block is fixed in the x3-direction. The symmetry
boundary conditions are set such that nodes at x1 = 0.5w are fixed in x1-
direction and nodes at x2 = 0.5 l are fixed in x2-direction. These boundary
conditions are chosen according to a similar test presented in Reese et al.
(2000).
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Geometry

Load

h = 50mm
w = 100mm
l = 100mm
a = 25mm

q = 3MPa

b = 25mm

Material
Λ = 499.92568MPa
μ = 1.61148MPa

h

w
l
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x2 x1

x3

a
q

b

Fig. 10.10 Nearly incompressible block: system, load and material data

The geometry and the material as well as the applied load and the bound-
ary conditions are provided in Fig. 10.10. The convergence of the vertical
displacement wP in x3-direction at the point P , in Fig. 10.10, is investigated
for the Q1/EI9 and the Q1, Q2, Q1P0 and the QM1/E12 element for regu-
lar meshes with 4 × 4 × 4, 8 × 8 × 8, 16 × 16 × 16, 32 × 32 × 32 and
64 × 64 × 64 elements.
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QM1/E12
Q1P0
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19

19.5

1000 10000 100000

20

Fig. 10.11 Nearly incompressible block: Displacement wP for the Q1/EI9, Q2,
Q1P0 and QM1/E12 element

In Table 10.4, the vertical displacement wP in x3-direction of point P is
shown as a function of the number of degrees of freedom for all elements. It
can be observed that the Q1 element locks, as can be expected for this nearly
incompressible problem. Both enhanced strain elements and the Q1P0 ele-
ment are softer than the Q2 element. Thus still mild locking occurs for the
higher order quadratic displacement element. Again, all elements except the
QM1/E12 element converge to the same solution. For the QM1/E12 element,
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Table 10.4 Nearly incompressible block: Displacement wP [mm] for the Q1/EI9,
Q1, Q2, Q1P0 and QM1/E12 element

Degrees of freedom Q1/EI9 Q1 Q2 Q1P0 QM1/E12

260 19.342 7.656 18.354 19.898 20.2097
1800 20.023 13.083 19.569 20.049 20.1549
13328 20.038 17.492 20.008 20.040
102432 20.028 19.493 20.040 20.028
802880 20.025 19.951 20.026 20.025

solutions can only be obtained for the two coarsest meshes. For finer mesh res-
olutions, the QM1/E12 element depicts nonphysical hour-glass instabilities.
The displacement wP are plotted for the Q1/EI9, Q2, Q1P0 and QM1/E12
element in Fig. 10.11 to visualize the results for the elements that are known
to perform well for this test. It can be seen that the Q1P0 and the Q1/EI9
element perform extremely well, even for very coarse meshes. The Q2 element
converges slower which is related to a mild locking of this element.



11. Contact Problems

The numerical treatment of contact problems requires the formulation of
kinematical relations and constraints, constitutive equations at the contact
interface, variational equations and its discretization using special finite el-
ements within the contact area. The mathematical formulation of contact
problems leads to variational inequalities. Hence special algorithms have to
be constructed for the solution of such problems.

Based on today’s possibilities to model engineering applications using
very refined discretizations, it is often necessary to resolve contact boundary
conditions also. Hence the application of contact within industrial and engi-
neering problems ranges from forming processes, via tyre computations and
car-crash simulations to general bearing problems, gears or bio-mechanical
problems like teeth implants.

This chapter will address all aspects summarized above. However, not all
topics can be discussed in detail. The reader can find an in-depth treatment
in the monographs by Laursen (2002) and Wriggers (2006).

11.1 Contact Kinematics

This section summarizes the relations needed to formulate the geometrical
contact conditions. In more detail, the distance or penetration function is
needed for the formulation of normal contact. Furthermore relative tangential
velocities and the associated displacements have to be derived for frictional
contact. More detailed derivations of these kinematical relations can be found
in Wriggers (2006).

The formulation of the contact constraints is based on the assumption
that the contact solids undergo finite deformations. Both solids are described
in the initial configuration by Bγ , where γ = 1, 2 denotes one of the bodies.
The deformation ϕγ maps point in the initial configuration Xγ ∈ Bγ onto
points of the deformed configuration xγ = ϕγ(Xγ).

In order to define the distance function between two contacting solids,
the approach of two surfaces Γ γ

c is described in the deformed configuration
ϕγ(Γ γ

c ). In this formulation, the possible contact surface is given by Γ γ
c ⊂

∂Bγ , see Fig. 11.1. It is assumed that these surfaces are convex, for the
non-convex case, see e.g. Wriggers (2006).
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Fig. 11.1 Contact geometry and geometric approach

For the mathematical formulation of the distance or penetration function,
the surfaces which come into contact have to be distinguished. In this context,
one surface is denoted as slave and the other as master surface. For every point
on the slave surface, the distance to the master surface will be computed.
The slave surface will now be associated with body B1 which, in a sense,
is arbitrary. One can, without problems, exchange the rolls of master and
slave without changing the final result, as will be discussed later. With these
preliminary results, the deformed slave surface is denoted by ϕ1(Γ 1

c ) and the
master surface by ϕ2(Γ 2

c ), the latter is reference surface, see Fig. 11.1, which
however can deform itself.

We parameterize now the master surface Γ 2
c in its initial and current

configuration by convective coordinates ξ1, ξ2. Hence the material surfaces
are described in the initial configuration by X2 = X̂

2
(ξ1, ξ2) and in the

current configuration by x2 = x̂2(ξ1, ξ2). The associated tangent vectors are
given by A2

α = X̂
2

,α(ξ1, ξ2) and a2
α = x̂2

,α(ξ1, ξ2) where ( ),α is the derivative
with respect to the convective coordinates ξα.

Point x̄2 = x2(ξ̄̄ξ̄ξ) on the master surface which has minimal distance to a
fixed point x1 on the slave surface is determined from

‖x1 − x̄2‖ = min
x2⊆Γ 2

‖x1 − x2(ξξξ)‖ , (11.1)

see Fig. 11.1 which illustrated the two-dimensional case. Relation (11.1) leads
to the condition

d

d ξα
‖x1 − x2(ξ1, ξ2) ‖ =

x1 − x2(ξ1, ξ2)
‖x1 − x1(ξ1, ξ2) ‖ · x2

,α(ξ1, ξ2) = 0 . (11.2)

In this relation, the tangent vector x2
,α = a2

α occurs which is related to
the master surface. The tangent vector is in the solution point x̄2 of (11.1)
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perpendicular to vector x1 − x2(ξ1, ξ2). Hence the latter vector is normal to
the master surface, see Fig. 11.1.

Once point x̄2 is known an inequality condition can be written which
describes the non-penetration of the solids. For this the distance, function
gN = [x1 − x2(ξ̄ξξ) ] · n2(ξ̄ξξ) will be defined. It defines the following states in
the contact area. Hence the constraint condition to exclude penetration is
given as

gN > 0 no contact,
gN = 0 perfect contact,
gN < 0 penetration

by
gN = (x1 − x̄2) · n̄2 ≥ 0 . (11.3)

For some numerical algorithms, the definition of a penetration function is
needed

g−N =
{

(x1 − x̄2) · n̄2 falls (x1 − x̄2) · n̄2 < 0
0 otherwise (11.4)

on the slave surface ϕ1(Γ 1
c ). The penetration function (11.4) provides the

following information:

1. g−N can be used to check the contact state. This yields condition:

contact ⇔ gN < 0. (11.5)

2. g−N is used for g−N < 0 as local kinematical variable in a constitutive relation
for the contact pressure.

In case of contact, the variation δgN of the penetration function can be
computed. With (11.4),

δgN = [ηηη1 − η̂ηη2(ξ̄ξξ) ] · n̄2 (11.6)

is obtained where ηηη denotes the test function or virtual displacement.

In case that one body slides on the surface of another body then this
relative tangential movement can be expressed by the change of the minimal
distance at the solution point (ξ̄1, ξ̄2). This yields the sliding distance of a
point x1 on the deformed master Fl”ache

gT =

t∫
t0

‖ ˙̄ξα ā2
α‖ dt . (11.7)

t is the time used to parameterize the path of point x1. t0 is the time of the
first contact of point x1 with the master surface. In order to evaluate the



464 11. Contact Problems

integral in (11.7), the time derivative of ξα at the projection point x̄2 have
to be computed. It can be determined from (11.2)

d

dt
[x1− x̄2(ξ̄1, ξ̄2) ] · ā2

α = [v1− v̄2− āβ
˙̄ξβ ] · ā2

α +[x1− x̄2 ] · ˙̄a2
α = 0 . (11.8)

With ˙̄a2
α = v̄2

,α + x̂2
,αβ

˙̄ξβ , the relation

H̄αβ
˙̄ξβ = R̄α (11.9)

can be derived, where

H̄αβ = [ āαβ + gN b̄αβ ] , R̄α = [v1 − v̂2(ξ̄ξξ) ] · ā2
α + gN n̄2 · v̂2

,α(ξ̄ξξ) . (11.10)

The tensors āαβ and b̄αβ are well known from differential geometry as metric-
and curvature tensors of the deformed surface, respectively. Another formu-
lation using a complete convective description can be found in Konyukhov
and Schweizerhof (2006).

With these preliminary results, the relative tangential velocity is defined
on the current slave surface ϕ1(Γ 1

c )

ġT = ˙̄ξα ā2
α . (11.11)

From this equation, the slip in tangential direction is determined by integra-
tion. Hence (11.11) is an evolution equation for the slip gT . As can be seen
in the next section, the tangential velocity ġT enters as kinematical variable
in the constitutive relations for the tangential contact stress.

Remark 11.1 :

1. The second term on the right hand side of (11.9) depends on the gap function
gN . In case that the non-penetration condition (gN = 0) is strongly enforced,
this term disappears and (11.9) reduces to

˙̄ξβ = [v1 − v̄2 ] · ā2 β . (11.12)

Additionally Lv gT in (11.11) is determined by the projection of the spatial
velocities onto the tangent plane at the current contact point

ġT = ( ā2
α ⊗ ā2 α ) [v1 − v̄2 ] . (11.13)

2. For a plane contact surface, the curvature tensor b̄αβ is zero. Thus relation (11.9)
simplifies.

3. For two-dimensional contact, equation (11.9) can be specified as

˙̄ξ =
1

ā11 + gN b̄11

{
[v1 − v2(ξ̄) ] · x2, ξ (ξ̄) + gN n̄2 · v2, ξ (ξ̄)

}
(11.14)

with the metric ā11 = x2, ξ (ξ̄) · x2, ξ (ξ̄) and the curvature b̄11 = x2, ξξ (ξ̄) · n̄2.
Now the relation (11.7) for the computation of the total slip simplifies to
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gT =

t∫
t0

‖ ˙̄ξ x̄2
,ξ‖ dt =

ξ̄∫
ξ0

√
ā11 dξ . (11.15)

Note that the integral is re-parameterized by the surface coordinate such that
there is no time dependency.

By exchanging the velocity field by the variation or test function in
(11.11), the virtual change of the relative tangential slip is given by

δgT = δξ̄α ā2
α . (11.16)

11.2 Constitutive Equations at the Contact Interface

Depending on the accuracy which is needed to describe the mechanical be-
haviour at the contact interface there exist, in the literature, different ap-
proaches to model constitutive equations for the contact zone. While the
tangential relative velocity enters the frictional constitutive equations, the
behaviour in normal direction is either described by micro-mechanical rela-
tions or by the kinematical constraint of non-penetration.

11.2.1 Normal Contact

The first, classical mathematical modeling relates to the constraint equation
(11.3) for the normal components of the displacements which prevents the
penetration of one solid into the other. Within this formulation, the normal
contact force follows is a reaction force. The mathematical formulation leads
to the so-called Kuhn-Tucker-Karush condition

gN ≥ 0 , pN ≤ 0 , pN gN = 0 , (11.17)

where pN is the contact pressure which follows as a reaction due to the
constraint g = 0 in case of contact.

A second approach introduces constitutive relations within the contact
interface which describe the contact pressure in terms of the approach of both
surfaces in normal direction. This modeling is based on micro-mechanical
considerations in which the surface roughness plays a significant role. Based
on statistical considerations, the constitutive equations can be derived, see
e.g. Kragelsky et al. (1982), which include the micro-mechanical behaviour
in the contact area. This micro-mechanical behaviour depends upon physical
parameters like hardness but also on geometrical parameters like the surface
roughness. However, in reality, these interactions are far more complex, see
e.g. Kragelsky and Alisin (2001), and only constitutive equations can be
derived which model the essential phenomena. In general, such constitutive
relation has the form
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Fig. 11.2 Physical approach in the contact area Γc: initial and deformed
configuration

pN = f (d) or d = h (pN ) . (11.18)

f and h are nonlinear functions of the approach of the deformed middle planes
of the rough contact surfaces d or of the contact pressure pN .

The approach of the deformed middle planes of the rough contact surfaces
can be expressed by the geometrical approach or distance function gN (11.4)

gN = ζ − d , (11.19)

where ζ is the distance between the middle planes of the rough contact surface
in the initial configuration. This is defined as the distance of the middle planes
which occurs when both rough surface touch each other in Γc, see Fig. 11.2.1.

A possible constitutive equation to describe the approach of the solids in the
contact area has, after Kragelsky et al. (1982), the form

pN = cN (ζ − gN )αN . (11.20)

The constitutive parameters cN and αN have to be determined from experi-
ments.

Note that relation (11.20) can be interpreted as a law for a nonlinear
elastic spring. Due to the fact that the approach within the contact area
is extremely small when compared to the other deformations of the solid,
it means that the spring stiffness is very large. This is, from the numerical
point of view, a big disadvantage since it will lead to badly conditioned equa-
tion systems. Here special solution techniques are needed to overcome this
problem, see e.g. Wriggers and Zavarise (1993).

11.2.2 Tangential Contact

The constitutive behaviour in tangential direction is very complex. It de-
pends on many factors such as surface roughness, magnitude of the normal
pressure, tangential relative velocities, contaminants or humidity, etc. This
complexity can be reflected by the constitutive equations which then depend
on many material parameters. Since it is not easy to determine such param-
eters, the most simplest constitutive relation, the so-called Coulomb law
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is employed in many engineering applications which only depends upon one
material parameter, the coefficient of friction. However, depending on the
material pairing, there exist many variants of this constitutive relation for
the tangential stresses. The general expression is provided by

tT = −f̂( pN , ġT , gT , θ , . . .)
ġT

‖ġT ‖
, (11.21)

where the function f̂ depends upon the contact pressure pN , the total rel-
ative tangential velocity ġT = ‖ġT ‖, the total slip gT , see (11.7) and other
parameters such as temperature θ. The stress due to friction acts always op-
posite to the relative tangential velocity ġT . The following table summarizes
some constitutive equations, for details see Wriggers (2006), for frictional re-
sponse. There exist several other constitutive relations which consider micro-
mechanical aspects, see e.g. Woo and Thomas (1980) or the overview in Oden
and Martins (1986). The physical background for the fictional behaviour can
be found in e.g. Tabor (1981) and Kragelsky and Alisin (2001).

Since, in tangential contact, besides sliding also stick phenomena are ob-
served, the stick phase has to be defined. It can be described using (11.11)
as a constraint condition for the relative tangential movement

ġT = 000 ⇔ ξ̇α = 0 . (11.22)

The stick/slip behaviour in the contact interface yields, for the simplest con-
stitutive equation in Table 11.1, a response which is non-smooth, as can be
seen in Fig. 11.2.2. This leads to mathematical difficulties which also effect the
algorithms used to solve frictional contact using the finite element method.
Due to that there exist mainly two possibilities to overcome the algorithmic
problems due to non-smoothness. One is to regularize the constitutive equa-
tions for friction in (11.21) and the other is to formulate the friction problem
like an elasto-plastic problem, see Sect. 6.2.

Table 11.1 Frictional constitutive equations

Material pairing Constitutive equation Material parameters

General f̂ = μ pN μ

Rubber f̂ = μ0 + c1 θ [ ln ġT − ln( c2 θ ) ] μ0, c1, c2

Rubber f̂ = μ0( pN ) + c1 ln
ġT

v1
− c2 ln

ġT

v2
μ0, c1, c2, v1, v2

Metal f̂ = μD + ( μS − μD ) e−c ġT μD, μS , c
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tT

gT

Fig. 11.3 Coulomb’s friction law

The regularisation can be performed by introducing a smooth function
such that f in (11.21) has the form

f̂ = μ tanh
(
ġT
ε

)
| pN |, (11.23)

in which ε is the regularization parameter. For ε→ 0, the constitutive relation
of the first line in Table 11.1 is recovered. Note that such constitutive equation
describes the stick–slip motion only approximately and might reproduce, for
large values of ε, non-physical result.

The other method which has been applied during the last years extensively
to solve frictional contact problems is based on a split of the tangential motion
into an elastic (stick) and plastic (slip) part.

ge
T = gT − gs

T . (11.24)

Here the elastic part is given by ge
T , which approximates or regularizes the

stick part, and the plastic part gs
T denotes the irreversible part of the tangen-

tial relative motion, see Fig. 11.2.2. When using this split and interpretation
of the frictional behaviour at the contact interface, all known algorithms from
plasticity can be applied to describe the stick–slip motion.

In this context, many different constitutive relations can be formulated
to characterize the frictional contact behaviour, see e.g. Michalowski and
Mroz (1978), Curnier (1984) and Wriggers (2006). The elasto-plastic analogy
was first used in Fredriksson (1976) in the context of finite element analysis
for contact in order to describe softening frictional behaviour. The biggest
advantage of this analogy lies, however, in the possibility to apply the projec-
tion methods developed in Simo and Taylor (1985) for plasticity which was
firstly used in the context of frictional problems in Wriggers (1987) for the
Coulomb law. Further formulations can be found for small deformations in
Giannokopoulos (1989) and for large deformations in Wriggers et al. (1990).

Note that with the split in (11.24) the stick part can now be computed
using a constitutive equation which can be interpreted in a way that elas-
tic micro-displacements occur in the relative tangential motion. The physical
interpretation would be that the asperities of the surface roughness behave
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Fig. 11.4 Constitutive equation for stick and slip

elastically. Hence the simplest constitutive model is based on the assumption
of isotropic linear elastic behaviour which yields

tT = cT ge
T (11.25)

with the elastic constant cT . Since the relative elastic displacement ge
T is

usually very small (it has to approximate the stick behaviour), quite large
values for cT have to be selected which can lead to bad conditioning of the
tangent matrix.

The “plastic” slip gs
T is described by a set of constitutive evolution equa-

tions

ġs
T = λ

∂f̂s(tT )
∂tT

= λnT with nT =
tT

‖tT ‖
,

ġT = λ, (11.26)

in which f̂s is the so-called slip function which characterizes the “elastic”
stick region which depends, in general, on the total slip gT . A general form
of the slip function is

f̂s(tT ) = ‖ tT ‖ − h( pN , gT , . . .) ≤ 0 . (11.27)

It depends on the contact pressure in the simplest case, but can also depend
on the total slip gT , the relative tangential velocity ġT or the temperature θ,
see also the definition of the direction constitutive equation for the tangential
stresses in (11.21). which depends. As depicted in Fig. 11.2.2, hardening or
softening behaviour can be modelled within this approach. The internal vari-
able is defined in (11.15). It accumulates the sliding path which is seen by the
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material point x1. Note that this definition is equivalent to the introduction
of an equivalent strain in elasto-plasticity, see Sect. 6.2.

The special choice

f̂s(tT ) = ‖ tT ‖ − μ pN ≤ 0 (11.28)

yields the classical Coulomb law of friction.
As in plasticity, loading– unloading conditions can be formulated in

Kuhn-Tucker form

λ ≥ 0 , f̂s(tT ) ≤ 0 , λ f̂s(tT ) = 0 , (11.29)

which yield the slip parameter λ.

11.3 Weak Formulation

The introduction of the inequality (11.1) which represents the contact con-
dition yields with (3.296) to a variational inequality of the form

2∑
γ=1

∫
Ωγ

τττγ ·∇S (ηηηγ−ϕγ) dV ≥
2∑

γ=1

∫
Ωγ

f̄γ ·(ηηηγ−ϕγ) dV −
∫

Γσ
γ

t̄γ ·(ηηηγ−ϕγ) dA .

(11.30)
In this variational inequality, the integration has, contrary to (3.296), to be
performed with respect to the region Ωγ which is assumed by Bγ in the initial
configuration. Due to that the Kirchhoff stress τττ appears in (11.30) instead
of the Cauchy stress. However τττ is, as also the gradient operator “∇S()”,
related to the current configuration.

Based on (11.30), the deformation (ϕ1 ,ϕ2) ∈ K of both in bodies being in
frictionless contact has to be determined for both bodies being in frictionless
contact. The set K is then defined by

K = { (ηηη1 , ηηη2) ∈ V | [ηηη1 − η̂ηη2(ξ̄1, ξ̄2) ] · n̄2 ≥ 0 } . (11.31)

In case of finite elastic deformations, the existence of solutions of (11.30)
can be shown, see e.g. Ciarlet (1988) and Curnier et al. (1992). For that the
strain energy function which describes the constitutive behaviour has to be
polyconvex, see also the remarks in Sect. 3.3.1.

Remark 11.2 : In the geometrically linear theory, (11.30) can be written as vari-
ational inequality of the form

a(u,v − u) ≥ f(v − u) . (11.32)

The operators a(u ,v) and (u) are defined by

a(u,w) =

∫
Ω

εεε(u) ·CCC0[εεε(w)] dΩ ,

f(w) =

∫
Ω

b̂ · w dΩ +

∫
Γσ

t̂ · w . dΓ.
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Furthermore, the total region occupied by both bodies is Ω = ∪γ Bγ . CCC0 is the
elasticity tenor of the linear theory, see (3.273). The linear strain tensor is given
by εεε(u) = 1

2
(∇u + ∇T u). Due to the contact constraints, the variational equation

is nonlinear. One has to determine the displacement u ∈ K such that (11.32) is
fulfilled for all test functions v ∈ K

K = {v ∈ V | (v1 − v̄2) · n̄2 + g0 ≥ 0 on Γc}. (11.33)

The mathematical structure of the variational equation (11.32) is discussed in depth

in Duvaut and Lions (1976) and Kikuchi and Oden (1988).

Algorithms for the solution of variational inequalities exist in a large va-
riety. Most of them stems form optimisation theory, see e.g. the overview in
Luenberger (1984), Bertsekas (1984) and Bazaraa et al. (1993). For the sim-
ulation of contact problems using the finite element method, algorithms have
to be selected which can handle a large number of inequality constraints in
an efficient way. The most popular algorithms are not only the penalty and
augmented Lagrangian algorithms, but also newer techniques like projected
gradient algorithms, see e.g. Dostal (2003), and interior point methods, see
e.g. Wright (1997), are available.

When using the finite element method together with the penalty or La-
grange multiplier method, the inequality constraints are formulated are split
into active and inactive constraints which change their number within the
solution. Hence, instead of the variational inequality (11.30), a variational
equation can be written including the active constraints in the contact area
γakt

c

2∑
γ=1

{
∫

Ωγ

τττγ · gradηηηγ dV −
∫

Ωγ

f̄γ · ηηηγ dV −
∫

Γσ
γ

t̄γ · ηηηγ dA }

+ ′′contact contributions′′ = 0. (11.34)

For the contact between two bodies, the contact contributions can now be
formulated in the framework of the Lagrange multiplier or the penalty
method. This leads for the active part of the contact area Γ akt

c to:

1. Method of Lagrange multipliers:∫
Γ akt

c

(λN δgN + λλλT · δgT ) dA (11.35)

λN is the Lagrange multiplier related to the constraint gN = 0 which
can be identified as contact pressure pN . δgN is the variation of the
distance function in normal direction (11.6). The term λλλT · δgT describes
the constraint in tangential direction. If this is given by (11.22), then λλλT is
the reaction due to stick. If sliding occurs, it is not possible to interpret λλλT

as reaction. In that case, it is the stress vector tT in tangential direction
which follows from the constitutive equations (11.25), (11.26), (11.27)
and (11.29).
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2. Penalty method: The contact constrain gN = 0 is introduced in this
case via a penalty term in the weak form. This yields∫

Γc

εN gN δgN dA , εN > 0 . (11.36)

One can show, see Luenberger (1984), that for εN → ∞ the result of
the Lagrange multiplier method is recovered. However, the choice of a
large penalty parameter leads to a badly conditioned tangential stiffness
matrix. As in the Lagrange multiplier approach, stick and slip in tan-
gential direction has to be distinguished. For stick, the penalty constraint
is introduced in tangential direction also∫

Γc

(εN gN δgN + εT gT · δgT ) dA , εN > 0 , εT > 0 . (11.37)

In case of sliding, the variational form change to∫
Γc

(εN gN δgN + tT · δgT ) dA , ε > 0, (11.38)

where again the constitutive relations (11.25), (11.26), (11.27) and (11.29)
have to be applied to compute tT .

In equations (11.35), (11.36), (11.37) and (11.38), the variation of the distance
function gN occurs which follows from (11.6). The variation of the relative
tangential displacement is provided in (11.16).

Remark 11.3 :

1. When the constitutive parameter cT in (11.25) is exchanged by the penalty
parameter εT , then a regularisation of the frictional constitutive equation for
stick is obtained, see e.g. Ju and Taylor (1988) and Curnier and Alart (1988).

2. A further method to include contact constraints into (11.34) is provided by
direct elimination. Then the constraint condition on Γ akt

c leads to gN = 0 −→
x1 · n̄2 = x̂2

t · n̄2 and can be used to eliminate the associate displacements of
either body B1 or B2. This method is implemented in some commercial codes;
a more detailed description can be found in Wohlmuth (2000) and Wriggers
(2006).

3. A further technique to include contact constraints is provided by the barrier
method. This adds the term ∫

Γc

εN
1

g2
N

δgN dΓ

to the weak form instead of (11.36). This function introduces a repellent effect
between the bodies which fades with distance quadratically. Due to that always
all constrains are active, however the solution has always to stay in the feasible
region. For this safeguard algorithms are needed, see e.g. Bazaraa et al. (1993).
More general schemes based on barrier functions are provided by interior point
methods, see e.g. Wright (1997).
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4. A technique which combines penalty and barrier method can be found in
Zavarise et al. (1998). By a special formulation, all distance functions are ac-
tive – as in the pure barrier method – and the penalty methods acts as safeguard
function which prevents penetration.

5. A so-called (perturbed) Lagrange formulation can be applied to combine
penalty and Lagrange multiplier method within a mixed method, see e.g.
Oden (1981) and Simo et al. (1985b). Using this formulation, special mixed
finite element discretization for contact problems can be developed.

6. The main problem when using the penalty method is the bad condition of
the tangent stiffness matrix. A method which can be applied to circumvent
this problem is the augmented Lagrange formulation, see e.g. Glowinski and
Le Tallec (1984). This method was also applied to contact problem to see
e.g. Wriggers et al. (1985), Kikuchi and Oden (1988) and Laursen and Simo
(1993a). The Uzawa-algorithm, which is related to the augmented Lagrange

formulation, is based on the idea to fix the Lagrange multiplier within an
iterative solution step and then compute the next value of the Lagrange

multiplier by an update formula. This leads to the following weak form

2∑
γ=1

{ ∫
Bγ

τττγ · gradηηηγ dV −
∫
Bγ

f̄
γ · ηηηγ dV −

∫
Γσ

γ

t̄γ · ηηηγ dA

}

+

∫
Γc

[ λ̄N + εN gL
N ) δgN + tT · δgT ] dA = 0 (11.39)

with the update λ̄Nnew = λ̄Nold + εN gNnew . Note that this update is only first
order, which leads to more iterations within the overall algorithm. Methods to
improve the order of this update can be found, in general, in Bertsekas (1984)
or in the context of finite element methods for contact problems in Alart and
Curnier (1991).

11.4 Discretization

A general formulation of a contact undergoing finite deformations using the
finite element method has to allow finite sliding of a contact (slave) point
of the entire (master) surface of the other body. This possibility is repre-
sented within the discretization by a so-called node-to-segment contact ele-
ment, see Fig. 11.4.1 for a more detailed description. Die resulting matrix
formulation including the tangential stiffness matrices was developed for the
two-dimensional firstly in Wriggers and Simo (1985) for frictionless contact.
The extension for frictional contact can be found in Wriggers et al. (1990).
Three-dimensional discretization is provided in Parisch (1989) for the fric-
tionless and in Peric and Owen (1992) and Laursen and Simo (1993b) for the
frictional case.

In the most general case of finite deformations, the element nodes do not
match at the contact interface as in classical finite element discretizations,
see Fig. 11.4. First implementations for such case were provided by Hal-
lquist (1979) and Hughes et al. (1977b). Other formulations can be found
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Ω1

Ω2∈ JA

∈ JC

∂B1

∂B2

Γc

B1

B2

Fig. 11.5 Discretization of contact for finite deformations

in Bathe and Chaudhary (1985) or Hallquist et al. (1985). Today many
commercial codes can handle such problems, even with self-contact, see e.g.
Hallquist et al. (1992). However, there is still a vivid development of contact
discretization for finite deformation contact such as smooth, see e.g. Pietrzak
and Curnier (1999) and Wriggers et al. (2001) and Krstulovic-Opara et al.
(2002), and mortar discretization schemes, see e.g. Puso (2004), Puso and
Laursen (2004) and Fischer and Wriggers (2006).

Within the actual implementation of contact schemes, one has to dis-
tinguish between points on the contact surface which are in contact and
others which are not in contact. For this purpose, the set of all possible
nodes JC ∈ Γ is defined. The active nodes are given by JA. In the follow-
ing matrix formulations, only the active nodes are considered in the weak
form (11.34). The main difference between the Lagrange multiplier (11.35)
and the penalty method (11.36) are that different interpolations can be used
for the Lagrange multipliers λN and the displacement field which appears
in gN ∫

Γc

λN δgN dΓ −→
∫

Γ h
c

λN c δgN c dΓ . (11.40)

The ansatz function for λN c and δgN c are given by

λN c =
∑
K

MK(ξ)λNK and δgN c =
∑

I

NI(ξ) δgNI . (11.41)

Note that the interpolations in (11.41) have to be chosen such that the
Babuska–Brezzi condition is fulfilled which guarantees the stability of the
mixed method, see Remark 10.1 and also Kikuchi and Oden (1988).

When using the penalty method, only the displacement field has to be
discretized ∫

Γc

εN gN δgN dΓ −→
∫

Γ h
c

εN gN c δgN c dΓ . (11.42)
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Here the same ansatz is chosen for the displacements entering the distance
function and the test functions entering the variation of the distance function

gN c =
∑

I

NI(ξ) gNI and δgN c =
∑

I

NI(ξ) δgNI . (11.43)

Also the ansatz function for the penalty method have implicitly fulfil the
Babuska–Brezzi condition. This is related to the equivalence of both for-
mulations which can be established by the perturbed Lagrange formulation,
see Remark 11.3 Nr. 5. It is equivalent to the incompressibility constraint in
solid mechanics which was discussed in Malkus and Hughes (1978). Due to
this reason, a reduced integration for the integrals in (11.42) has to be used
eventually. Proper choices for the numerical integration schemes can be found
in e.g. Oden (1981).

11.4.1 NTS-Discretization

Since this book is aimed at finite deformations, only discretization schemes
are considered which can handle large sliding in the contact interface. These
exist for two- and three-dimensional applications. Here a two-dimensional
discretization will be considered using the node-to-segment (NTS) formula-
tion. Related three-dimensional formulation can be found in Laursen (2002)
and Wriggers (2006). The NTS-discretization is the most simple possibility
to treat large sliding at contact interfaces. Hence it can be found in many
commercial finite element codes. For contact discretization using the NTS
element, it is assumed that a slave node (s), given by the position vector
x1

s in ϕ(B1), comes into contact with the master segment (1)–(2), which
is described by the position vectors x2

1 and x2
2 with respect to ϕ(B2), see

Fig. 11.4.1. The kinematical relations for this discretization follow directly
from the continuum formulation, see Sect. 11.1.

ϕ(B1)

x2
2

x2
1

x2
s

a2
1

ϕ(B1)

gNs

n2

Fig. 11.6 Node-to-Segment contact element
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With a linear interpolation of the master surface described by the surface
coordinate ξ,

x̂2(ξ) = x2
1 + (x2

2 − x2
1) ξ , 0 ≤ ξ ≤ 1 , (11.44)

the tangent vectors
ā2

1 = x̂2(ξ),1 = (x2
2 − x2

1) (11.45)

can be computed. The tangent vector can be normalized which yields a2
1 =

ā2
1 / l with the length of the master element l =‖ x2

2 − x2
1 ‖. With the unit

tangent vector a2
1, the unit normal vector of the segment (1)–(2) is obtained

by n2 = e3 × a2
1 .

ξ̄ and gNs follow from solutions of (11.1) and (11.10) which denotes a
projection of the slave node xs in (s) onto the master segment (1)–(2)

ξ̄ =
1
l
(x1

s − x2
1) · a2

1 and gNs = ‖ x1
s − (1− ξ̄)x2

1 − ξ̄ x2
2 ‖ . (11.46)

From these equations and the continuous formulation (11.6), the variation of
the distance function gNs can be derived

δgNs = [ ηηη1
s − (1 − ξ̄)ηηη2

1 − ξ̄ ηηη2
2 ] · n2 . (11.47)

With the interpolation for the coordinate x̂2(ξ) = x2
1 + ξ (x2

2 − x2
1) on the

master segment (1)–(2), relation

gTs =

ξ̄∫
ξ0

l dξ = ( ξ̄ − ξ0 ) (11.48)

is obtained from (11.15) which leads to the discrete form of the variation of
the tangential slip distance

δgTs = l δξ̄ + (ξ̄ − ξ0) δl . (11.49)

Inserting the interpolation into (11.9) yields

H̄11 = (ā11 + gN b̄11) = a11 = l2

R̄1 = [ηηη1 − η̂ηη2(ξ̄) ] · ā2
1 + gN n2 · η̂ηη2

,ξ(ξ̄)

and hence the variation of ξ̄

δξ̄ =
1
l2

{
[ηηη1 − η̂ηη2(ξ̄) ] · ā2

1 + gN n2 · η̂ηη2
,ξ(ξ̄)

}
. (11.50)

Using these preliminary results, the variation of the tangential slip for the
NTS element is computed with δ l = [ηηη2

2 − ηηη2
1 ] · a2

1

δgTs = [ ηηη1
s − (1− ξ̄)ηηη2

1 − ξ ηηη2
2 ] · a2

1 +
gNs

l
[ηηη2

2 − ηηη2
1 ] · n2 +

gTs

l
[ηηη2

2 − ηηη2
1 ] · a2

1 .

(11.51)
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aSi

si−1 si si+1

ξ

Fig. 11.7 Multiple slave nodes on one segment

Equations (11.47) and (11.51) represent the essential kinematical relations
for the contact element depicted in Fig. 11.4.1. These can now be used in
the weak form (11.37) where the integral has to be evaluated with respect to
the deformed contact surface. This yields, with the assumption of a constant
contact pressure,∫

ϕ(Γc)

( pN δgN + tT δgT ) dγ −→
nc∑

s=1

(PN s δgNs + TT s δgTs ), (11.52)

where all contributions of the active contact segments have to be summed
up. The nodal normal force PNs is given by PNs = pNs as at the slave node
(s). For the penalty method, PNs = εN gNs as is obtained. The tangential
force is given by TTs = tTs as. In case of stick, it follows from the penalty
method TTs = εT gTs as. In case of sliding, it will be determined from the
integration of the friction law, see next section. as is the area of the contact
element which is equal to l in the two-dimensional case.

Remark 11.4 : If more than one slave node is in contact with the same segment,
see Fig. 11.4.1, then the area as related to one slave node is no longer given by
total surface of the master segment. In such case, as can be computed from the
midpoints between the projections ξ̄ of the neighbouring slave nodes. The counter
i describes the slave node si and the neighbouring nodes si−1 and si+1. With these
definitions, the area belonging to si is given by

asi =
l

2
( ξ̄i+1 − ξ̄i−1 ) . (11.53)

There are special cases which also include the boundary of the segment; they will

not be discussed here in detail.

11.4.2 Matrix Form of Contact Residual

With equations (11.37) and (11.52), the discrete weak form which is associ-
ated with a node (s) is given by

δgNs PN s + δgTs TT s . (11.54)

This equation will now be presented in matrix form. For the first part in
(11.54), the variation (11.47) of the distance function is obtained as
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δgNs = ηT
s Ns . (11.55)

Using similar notation, the variation (11.51) of tangential sliding by matrices
can be described by

δgTs = ηT
s

(
Ts +

gNs

l
N0 s +

gT s

l
T0 s

)
= ηT

s T̂s . (11.56)

The following matrices were used in these equation

ηs = ( η1
s η2

1 η2
2 )T

, (11.57)

Ns =

⎧⎨
⎩

n2

−(1 − ξ̄) n2

−ξ̄ n2

⎫⎬
⎭

s

, N0 s =

⎧⎨
⎩

000
−n2

n2

⎫⎬
⎭

s

, (11.58)

and

Ts =

⎧⎨
⎩

a2
1

−(1 − ξ̄) a2
1

−ξ̄ a2
1

⎫⎬
⎭

s

, T0 s =

⎧⎨
⎩

000
−a2

1

a2
1

⎫⎬
⎭

s

. (11.59)

With this the weak form of the contact contribution of one slave node yields
ηT G s with the element residual

Gs = PN s N s + TT s T̂ s . (11.60)

11.4.3 Integration of the Friction Law

The integration of the constitutive equation for friction is based on (11.24),
(11.25), (11.26), (11.27), (11.28) and (11.29). It yields an algorithmic update
of the tangential stresses tT n+1. Since the differential equations governing the
evolution of the sliding are stiff, an implicit Euler method will be selected,
see also Sect. 6.2. Such procedure was first suggested in Wriggers (1987) and
Giannokopoulos (1989) for frictional contact. The results due to the inte-
gration procedure are summarized for a time increment Δtn+1 = tn+1 − tn.

The increment of the sliding within a time step Δtn+1 is given by

ΔgT n+1 = ( ξ̄α
n+1 − ξ̄α

n )āα n+1 . (11.61)

This total increment has to be subdivided into an elastic (stick) and plastic
(slip) part, see (11.24). By

ttr
t n+1 = cT (gT n+1 − gs

T n ) = tT n + cT ΔgT n+1, (11.62)

a trial stress is defined which is the stress computed by assuming only stick.
This stress is now inserted in the slip condition

f tr
s n+1 = ‖ttr

T n+1‖ − μ pN n+1 . (11.63)
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In case that the state computed with (11.62) is elastic (f tr
s n+1 ≤ 0), no sliding

takes place and the tangential stress at tn+1 is given by tt n+1 = ttr
t n+1. In case

that the slip condition is not fulfilled in the time incrementΔtn+1, f tr
s n+1 > 0,

then the tangential stresses have to be projected onto the admissible region.
By using the implicit Euler scheme, it follows

gs
T n+1 = gs

T n + λnT n+1 , (11.64)
gv n+1 = gv n + λ .

On basis of the formulations and algorithms described in Chap. 6.2, the
projected stresses

tT n+1 = ttr
t n+1 − λ cT nT n+1 with (11.65)

nT n+1 = ntr
T n+1

are obtained. Multiplication of (11.65) by nT n+1 leads to an equation for the
still unknown parameter λ

κ(λ) = ‖ ttr
T n+1‖ − ĝs(pN n+1 , θ , gv n+1) − cT λ = 0, (11.66)

where ĝs is a nonlinear function of λ. This means that, in general, an iterative
method like Newton’s method has to be applied to solve κ(λ) = 0. For the
special case of Coulomb’s models, (11.66) can be solved explicitly for λ

λ =
1
cT

( ‖ ttr
t n+1 ‖ − μ pN n+1 ) . (11.67)

This result can now be inserted in (11.65). With this the tangential stresses
are known. The slip within one increment is given by Eq. (11.64). For
Coulomb’s law this yields the model

tT n+1 = μ pN n+1 ntr
T n+1 , (11.68)

gs
T n+1 = gs

T n +
1
cT

( ‖ ttr
t n+1 ‖ − μ pN n+1 )ntr

T n+1 .

11.4.4 Algorithms

General algorithms for contact have to include search procedures which de-
termine bodies which possibly can come into contact. Once possible contact
is detected, the local contact conditions based on the penetration function
(11.4) have to be established. The total number of nodes which are in contact
state is denoted by nc. For this number of nodes, the problem will be solved
within one increment.

Before the related algorithm is stated, the matrix formulation of the global
problem is provided
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Gp
c(v) = G(v) +

nc∑
s=1

Gc
s(v) = 000 , (11.69)

where G(v) describes the contribution of the body due the weak form (11.34).
nc are the active contact segments, Gc

s was defined in (11.60).
Out of many possible algorithms for the solution of contact problems, a

penalty scheme is discussed which is used in most finite element codes. It is
based on the definition of active sets

– Initialize algorithms
– Set: v1 = 000

– LOOP over iterations: i = 1, .., until convergence
• Test for contact: gN si ≤ 0 → active node
• Solve:Gc(vi) = G(vi) + ∪nc

s=1 Gc
s(vi) = 000

• Convergence test: ‖Gc(vi)‖ ≤ TOL⇒ END LOOP
– END LOOP

This algorithm can be shortened by evaluating the distance function directly
within the iterative solution of the nonlinear equations (11.69). This leads to:

– Initialize algorithms
– Set: v1 = 000

– LOOP over iterations: i = 1, .., until convergence
• Test for contact: gN si ≤ 0 → active node
• Compute new displacement increment:

[DG(vi) + ∪nc
s=1DGc

s(vi)]Δvi = −Gc(vi−1)
• Convergence test: ‖Gc(vi)‖ ≤ TOL⇒ END LOOP

– END LOOP

Here [DG(vi) + ∪nc
s=1DGc

s(vi)] defines the tangent matrix including the
contact contributions needed in the Newton method. In case that an ill-
conditioned system occurs due to the chosen penalty parameter, the Uzawa

algorithm can be applied, see Remark 11.3 Nr. 6.

11.4.5 Linearization of the Contact Residual

Newton’s method is applied within the above described algorithm for the
solution of contact problems. This requires the computation of tangent ma-
trices. For the discretization derived in Sect. 11.4.1, these matrices can be
computed analytically. They are summarized below, for a more detailed
derivation, see e.g. Wriggers and Simo (1985) for the frictionless contact
and Wriggers (1995) for frictional contact problems. Further details which
include three-dimensional discretizations can also be found in the textbooks
of Laursen (2002) and Wriggers (2006).

The tangent matrix for the normal component of contact follows from the
term δgNs PN s in (11.54). In the linearization of the first term (11.47), the
dependency of ξ̄ from the current displacements has to be considered as well
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as the change of the normal vector n1. For the penalty method, the tangent
matrix

Kc
N s = εN

[
Ns NT

s − gNs

l

(
N0 s TT

s + Ts NT
0 s +

gNs

l
N0 s NT

0 s

) ]
(11.70)

is derived with PN s = εN gNs. All matrices which enter (11.70) are al-
ready defined in (11.58) and (11.59). Note that all terms disappear in
(11.70) which are multiplied by gNs. This yields the simple matrix struc-
ture KL c

N s = εN Ns NT
s .

In order to determine the tangential part of the tangent matrix for one
contact segment, the term δgTs TT s has to be linearized. For stick, this
leads to

Kc
T s = cT

{
[ T̂s T̂

T

s +
gT s

l

[
Ns NT

0 s + N0 s NT
s

−gN s

l
(T0 s NT

0 s + N0 s TT
0 s ) +

gT s

l
N0 s NT

0 s

]}
. (11.71)

In case of a geometrically linear theory, all terms multiplied by gNs and gTS

disappear. Hence (11.71) reduces to KL c
T s = cT Ts TT

s .
The case of sliding yields an additional part for (11.71). It follows from

the linearization of the algorithmic update formula (11.68) for Coulomb’s

law. This leads, for a node-to-segment element with (11.68), to the matrix
form

KS c
T s = Kc

T s + μ εN
(
Ts +

gN s

l
N0 s

)
NT

s . (11.72)

Note that matrix KS c
T s is non-symmetric. This is a result of the non-

associative character of the frictional constitutive equations.



12. Automation of the Finite Element Method
by J. Korelc

Nowadays, the use of advanced software technologies – especially symbolic
and algebraic systems – problem solving environments and automatic dif-
ferentiation tools influence directly how the mechanical problem and corre-
sponding numerical model are formulated mathematically and solved, leading
to the automation of the finite element method. Automation of the finite el-
ement method has attracted attention of researches from the field of mathe-
matics, computer science and computational mechanics, resulting in a variety
of approaches and available software tools. Alternative approaches are dis-
cussed in the first section of this chapter, while an emphasis is given to the
automatic generation of the finite element codes using the computer algebra
systems. In order to formulate nonlinear finite elements symbolically in a
general but simple way, a clear mathematical formulation is needed at the
highest abstract level possible. Appropriate problem descriptions for the fully
implicit analysis of non-linear, path-dependent problems and a symbolic in-
put for the generation of a finite strain elasto-plastic element are presented
at the end of this chapter.

12.1 Advanced Software Tools and Techniques

Most of the existing numerical methods for solving partial differential equa-
tions can be subdivided into two classes: finite difference (FD) and related
methods and finite element (FE) and related methods. In the last years,
various approaches to the automation of the two methods were studied ex-
tensively. In many ways, the present stage of the automation of the finite
difference method is more elaborated and more general than the automation
of the FE method. Various transformations, differentiation, matrix opera-
tions, and a large number of degrees of freedom involved in the derivation of
characteristic FE quantities often lead to exponential growth of the expres-
sions in space and time, see e.g. Fritzson and Fritzson (1984). This makes
automation of the FE method more complex than automation of the finite
difference method.

A complete finite element simulation can be, from the aspect of the level
of automation, decomposed into the following steps:
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1. formulation of the strong form of an initial boundary-value problem;
2. transformation of the strong form into a weak form or variational func-

tional;
3. definition of the discretization of the domain and approximation of the

field variables and their virtual counterparts (test functions);
4. derivation and solution of additional algebraic equations or differential

equations defined at the element level (e.g. plastic evolution equations);
5. derivation of algebraic equations that describe the contribution of one

element to the global internal force vector and to the global tangential
stiffness matrix;

6. coding of the derived equations in the required computer language;
7. generation of a finite element mesh and its boundary conditions;
8. solution of the global problem;
9. presentation and analysis of results.

Alternatively, one can also start from the free Helmholtz energy of a
problem, see Sect. 3.2.3, and derive element equations directly as a gradient
of the free energy. This approach is especially appealing for the automation
due to the numerical efficiency of the solution when the gradient is obtained
by the reverse mode of automatic differentiation.

As demonstrated throughout this book, there are almost countless ways
of how a particular problem can be solved by the FE method. If the automa-
tion of all nine steps is chosen, then only very specific subsets of possible
formulations can be covered. Usually, only the standard spatial discretiza-
tion (see also Chap. 4) is considered as presented in Logg (2007). On the
other hand, the standard discretization is of little use for problems involv-
ing coarse meshes, locking phenomena and distorted element shapes where
highly problem-specific formulations described in Chaps. 10 and 11 have to
be used. As usual in science, the high uniqueness of a specific formulation
renders the whole concept of automation questionable. Making templates or
deriving objects for something that is used only once simply does not pay
off. This may be the main reason why the complete automation of the FE
method is still not used within the commercial FE environments. More often,
the level of automation used involves only steps that are from the numerical
aspect deterministic (e.g. various correctness preserving symbolic manipula-
tions, differentiation and automatic code generation) while the true decisions
are left to the researcher.

The following techniques, which are result of the rapid development in
computer science in the last decades, are particularly relevant for the de-
scription of nonlinear finite element models on a high abstract level, while
preserving the numerical efficiency.

12.1.1 Symbolic and Algebraic Computational Systems

Computer algebra (CA) systems are tools for the manipulation of math-
ematical expressions in symbolic form. Widely used CA systems such as
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Mathematica (www.wolfram.com) or Maple (www.maplesoft.com) have
become an integrated computing environment that covers all aspects of com-
putational processes, including numerical analysis and graphical presentation
of the results. The general CA systems are also one of the most complex
software systems ever developed and the CA system Mathematica is often
described as the “world’s single largest consumer of algorithms”. In case of
complex mechanical models, the direct use of CA systems is not possible
due to several reasons. For the numerical implementation, CA systems can-
not keep up with the run-time efficiency of programming languages such as
FORTRAN and C and by no means with highly problem-oriented and effi-
cient numerical environments used for finite element analysis. However, CA
systems can be used for the automatic derivation of appropriate formulas
and generation of numerical codes. The FE method is usually implemented
as an additional package or toolbox within the general CA systems such as
AceFEM (www.fgg.uni-lj.si/symech/) for Mathematica.

The major limitation of the symbolic systems, when applied to complex
engineering problems, as pointed out before by many authors (see e.g. Wang
(1986), Fritzson and Fritzson (1984), Korelc (1997) and Korelc (2002)) is an
uncontrollable growth of expressions and consequently redundant operations
and inefficient codes. This is especially problematic when a CA system is
used to derive formulas needed in numerical procedures such as the finite
element method where the numerical efficiency of the derived formulas and
the generated code are of utmost priority. The problem of expression growth
is discussed in more detail in Sect. 12.3.

12.1.2 Automatic Differentiation Tools

Differentiation is an arithmetic operation that plays a crucial role in the de-
velopment of new numerical procedures. Often it is difficult to obtain the
exact analytical derivatives, which is the reason for using instead numeri-
cal differentiation. Automatic differentiation (AD) represents an alternative
solution to the numerical differentiation as well as to the symbolic differen-
tiation performed either manually or by a computer algebra system. With
the AD technique, one can avoid the problem of expression growth that is
associated with the symbolic differentiation performed by the CA system.
The AD technique is explained in more detail in Sect. 12.2 due to the central
role of AD in the automation of the finite element method.

12.1.3 Problem Solving Environments

Problem solving environments (PSE) are automatic code generators with li-
braries containing routines for various numerical solution methods. These
routines form templates for the generated program codes. The system li-
braries include a variety of numerical solution methods available in such
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systems. They are meant to solve problems, in particular ordinary differ-
ential equations or partial differential equations, in an already established
way. Several problem-solving environments for a high level abstract descrip-
tion of partial differential equations have been derived based on finite differ-
ence method, such as SciNapse (Akers et al. 1998) and Ctadel (van Engelen
et al. 1995). A comprehensive overview can be found in Gallopoulos et al.
(1994). Additionally, to the general problem solving environment, there are
also tools that support only numerical operations such as compiled numer-
ical libraries (e.g. NAG, www.nag.co.uk), numerical matrix languages (e.g.
MATLAB, www.mathworks.com) and high-level object oriented languages
with object libraries.

General finite element environments, such as commercial codes like ABA-
QUS (www.hks.com) and ANSYS (www.ansys.com) or research codes like
FEAP (www.ce.berkeley.edu/rlt/feap/), can also be viewed as a specialized
PSE. The general finite element environments can handle, regardless of the
type of finite elements, all phases of a typical finite element simulation: pre-
processing of the input data, manipulation and organization of the data
related to nodes and elements, material characteristics, displacements and
stresses, construction of the global matrices by invoking different elements
subroutines, solution of the system of equations, post-processing and analy-
sis of the results.

12.1.4 Hybrid Approaches

The level of automation of finite element method can be greatly increased
by combining several approaches and tools. Some possible combinations are
discussed below.
Hybrid Object-Oriented Approach. The object-oriented approach has
brought a new perspective for the development of complex software; hence in
the past decade, numerous object-oriented FE environments were developed.
While the object-oriented approach deals primarily with the high level of
data abstraction and organization, its principles can be extended also to the
complete automation of the finite element method. An overview of object-
oriented hybrid symbolic-numerical approach can be found in Eyheramendy
and Zimmermann (2000) and in Beall and Shephard (1999). Modern hybrid
object-oriented (HOO) systems, such as FEniCS, see Logg (2007), provide
tools for automation of all FE simulation steps, spanning the arc from the
strong form of a given PDE to the solution and the presentation of the results.
A typical HOO system introduces its own domain-specific languages and uses
built-in C++ libraries for symbolic manipulation. The HOO systems are, in
general, restricted to a particular type of formulations where the general
knowledge of the appropriate procedure that leads from a strong form to
the element equations has already been established. This also reduces the
expression growth problem since the symbolic code derivation is used only
for sub-problems.
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Hybrid Symbolic-Numerical Approach HSN. The disadvantage of the
hybrid object oriented approach is the loss of generality and flexibility
compared to a general computed algebra systems. Only a small fraction of
symbolic manipulation capabilities of a general CA systems is presented in
specialized finite element C++ libraries for symbolic manipulation. While
the hybrid object-oriented systems tends to offer complete FE solution, the
idea behind the hybrid symbolic-numeric (HSN) approach is to use a general
CA system for the derivation of the characteristic element quantities and the
automatic code generation of user subroutines at the level of one finite ele-
ment. The automatically generated code is then incorporated into an existing
finite element environment (one or possibly more) and used within the global
numerical solution procedures. The hybrid symbolic-numerical approach is
explained in more detail in Sect. 12.3.

12.2 Automatic Differentiation

Automatic differentiation techniques are based on the fact that every com-
puter program executes a sequence of elementary operations with known
derivatives, thus allowing evaluation of exact derivatives via the chain rule
for an arbitrary complex formulation.

12.2.1 Principles of Automatic Differentiation

If a computer code is given which allows to evaluate a function f and needs
to compute the gradient ∇f of f with respect to arbitrary variables, then
the automatic differentiation tools, see e.g. Griewank (2000), Griewank and
Walther (2008), Bartholomew-Biggs et al. (2000) and Bischof et al. (2002),
can be applied to generate the appropriate program code. There are two
approaches for the automatic differentiation of a computer program, often
recalled as the forward and the reverse mode of automatic differentiation.
The procedures are illustrated by means of a simple example of the function
f defined by

f = b c with b =
n∑

l=1

a2
l

and c = sin(b), (12.1)

where a1, a2, ..., an are n independent variables. The forward mode accumu-
lates the derivatives of intermediate variables with respect to the independent
variables as follows

∇b =
{

db
dal

}
=
{
2 a

l

}
l = 1, 2, ..., n

∇c =
{

dc
dal

}
= {cos(b)∇bl} l = 1, 2, ..., n

∇f =
{

df
dal

}
= {∇bl c+ b∇cl } l = 1, 2, ..., n

(12.2)
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In contrast to the forward mode, the reverse mode propagates adjoints x̄ =
∂f
∂x , which are the derivatives of the final values, with respect to intermediate
variables:

f̄ =
df

df
= 1 1

c̄ =
df

dc
=
∂f

∂c
f̄ = b f̄ 1

b̄ =
df

db
=
∂f

∂b
f̄ +

∂c

∂b
c̄ = cf̄ + cos(b) c̄ 1

∇f = {āl} =
{
∂b

∂al
b̄

}
=
{
2 al b̄

}
l = 1, 2, ..., n.

(12.3)

The numerical efficieny of the differentiation can be measured by a numerical
work ratio

wratio(f) =
numerical cost(f(a1, a2, a3, ..., an),∇f = ∂f

∂ai
)

numerical cost(f(a1, a2, a3, ..., an))
. (12.4)

The numerical work ratio is defined as the ratio between the numerical cost of
the evaluation of function f together with its gradient ∇f and the numerical
cost of evaluation of function f alone. The ratio is proportional to the number
of independent variables O(n) in the case of forward mode and constant in
the case of reverse mode. The upper bound for the ratio in the case of reverse
mode is wratio(f) ≤ 5 and is usually around 1.5 if care is taken in handling
quantities that are common to the function and gradient, see e.g. Griewank
(2000) and Griewank and Walther (2008). Although numerically superior,
the reverse mode requires potential storage of a large amount of intermediate
data during evaluation of the function f that can be as high as the number
of numerical operations performed. Additionally, a complete reversal of the
program flow is required. This is because the intermediate variables are used
in reverse order when related to their computation.

There exist many strategies how the automatic differentiation procedure
can be implemented, see e.g. Bischof et al. (2002). The simplest approach
is to use operator overloading and, during the evaluation of function f , cre-
ate a trace of all numerical operations and their arguments, later used to
evaluate the gradient in forward or reverse mode. The operator overloading
strategy is computationally too inefficient to be used within finite element
procedures. More efficient is a source-to-source transformation strategy that
transforms the source code for computing a function into the source code for
computing the derivatives of the function. The AD tools based on source-
to-source transformation have been developed for most of the program-
ming languages, e.g. ADIFOR (www-unix.mcs.anl.gov/autodiff/ADIFOR/)
for Fortran, ADOL-C (www.math.tu-dresden.de/adol-c/)1 for C, MAD for
1 ADOL-C includes operator overloding also which can be used efficiently for

higher order derivatives, see Griewank and Walther (2008).
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Matlab (www.amorg.co.uk/AD/MAD/) and AceGen (www.fgg.uni-lj.si/ symech)
for Mathematica.

12.2.2 Automatic Differentiation and FEM

The tools for automatic differentiation (AD) were primarily developed for the
evaluation of the gradient of an objective function used within the Newton-
type optimization procedures where the Hessian of objective function is
needed. The objective function are often defined by a large, complex pro-
gram composed of many subroutines. Thus AD tools can be applied directly
within the complete FE environment, including all subroutines, to obtain the
required derivatives when the evaluation of the objective function involves
finite element simulations. The AD tools have been successfully applied to
get gradients of residuals defined by FE environments with several hundred
thousend lines of code, see e.g. Bischof et al. (2003).

The AD technology can also be used for the evaluation of specific quan-
tities that appear as part of a finite element simulation. It would be difficult
and computationally inefficient to apply the AD tools within large FE sys-
tems to get e.g. the global stiffness matrix of large-scale problem directly.
This is especially problematic when a fully implicit Newton type procedure
is used to solve nonlinear, transient and coupled problems involving vari-
ous types of elements, complicated continuation or arc-length methods and
adaptive procedures.

However, one can still use automatic differentiation at the single element
level to evaluate element specific quantities in an efficient way such as:

– strain and stress tensors,
– nonlinear coordinate transformations,
– consistent tangent stiffness matrix,
– residual vector and
– sensitivity pseudo-load vector.

A direct use of automatic differentiation tools for the development of
nonlinear finite elements turns out to be complex and not straightforward;
furthermore the numerical efficiency of the resulting codes is poor. One solu-
tion, followed mostly in hybrid object-oriented systems, is to apply problem
specific solutions to evaluate the local tangent matrix in an optimal way,
see. e.g. Kirby et al. (2005). Another solution, followed in hybrid symbolic-
numeric systems, see e.g. Korelc (2002), is to combine a general computer
algebra system and the AD technology.

The implementation of the automatic differentiation procedure has to
fulfil specific requirements in order to develop element source codes automat-
ically that are as efficient as manually written codes. Some basic requirements
are:
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– The AD procedure can be initiated at any time and at any point of the
derivation of the formulae and as many times as required (e.g. in the ex-
ample at the end the AD is used 13 times during the generation of an
element subroutine). The recursive use of standard AD tools on the same
code, if allowed at all, leads to numerically inefficient source code. This
requirement limits the use of standard AD tools. An alternative approach
is implemented in Korelc (2002) where the source-to-source transformation
strategy is replaced by a method that consistently enhances the existing
code rather than producing a new one.

– The storage of the intermediate variables is not a limitation when the
differentiation in reverse mode is used at the single element level. Finite
element formulations at the single element level involve a relatively small
set of independent and intermediate variables.

– For the reasons of efficiency, the results of all previous applications of au-
tomatic differentiation have to be accounted for, when automatic differen-
tiation is used several times inside the same subroutine.

– The user has to be able to employ all the capabilities of the symbolic system
within the final and the intermediate results of the AD procedure.

– The AD procedure must offer a mechanism for the descriptions of various
mathematical formalisms applied within a finite element formulation.

The mathematical formalisms that are part of the traditional FE for-
mulation are e.g. partial derivatives ∂(•)

∂(•) , total derivatives D(•)
D(•) or directional

derivatives. They can all be represented by an AD procedure if possible excep-
tions are treated in a proper way. However, the result of AD procedure may
not automatically correspond to any of the above mathematical formalisms.
Hence let us define a “conditional derivative” by the following formalism

∇f =
∂f(a,b(a))
∂(a)

∣∣∣∣
∂(b)
∂(a) =M

, (12.5)

where function f depends upon a set of mutually independent variables a and
a set of mutually independent intermediate variables b. The above formalism
has to be viewed in an algorithmic way. It represents the automatic differen-
tiation of function f with respect to variables a. During the AD procedure,
the total derivatives of intermediate variables b with respect to independent
variables are set to be equal to matrix M . Some situations that typically
appear in the formulation of finite elements are presented in Table 12.1.

In case A, there exists an explicit algorithmic dependency on b with
respect to a, hence the derivatives can be obtained in principle automatically,
without intervention by the user, simply by the chain rule. However, there
also exists a profound mathematical relationship that enables evaluation of
derivatives in a more efficient way. This is often the case when the evaluation
of b involves iterative loops, inverse matrices, etc.

Case B represents the situation when variables b are independent vari-
ables and variables a implicitly depend on b. This implicit dependency has
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Table 12.1 Automatic differentiation exceptions

Type Formalism Schematic AceGen input

A Δf = ∂f(a,b(a))
∂(a)

∣∣∣
∂(b)
∂(a) =M

a � SMSReal�a$$�

b � SMSFreeze�fb�a��

Δf � SMSD�f�a, b�, a, "Implicit" � �b, a, M��

B Δf = ∂f(b)
∂(a(b))

∣∣∣
∂(b)
∂(a) =M

b � SMSReal�b$$�

a � SMSFreeze�fa�b��

Δf � SMSD�f�b�, a, "Implicit" � �b, a, M��

C Δf = ∂f(a,b(a))
∂(a)

∣∣∣
∂(b)
∂(•) =0

a � SMSReal�a$$�

b � fb�a�

Δf � SMSD�f�a, b�, a, "Constant" � b�

D ∂(•)
∂(•)

∣∣∣
∂(b)
∂(a) =M

a � SMSReal�a$$�

b � SMSFreeze�fb�a�, "Dependency" � �a, M��

...

Δfi � SMSD�fi�a, b�, a�

to be considered for the differentiation. In this case, automatic differentia-
tion would not provide the correct result without the user intervention. A
typical example for this situation is a differentiation that involves a trans-
formation of coordinates. Usually the numerical integration procedures as
well as interpolation functions require additional reference coordinate system
(for details, see Chap. 4). An exception for automatic differentiation of type
B is then introduced to properly handle differentiation involving coordinate
transformations from initial X to reference coordinates ξ as follows:

∂(•)
∂X

⇒ ∂(•)
∂X

∣∣∣∣
∂ξ
∂X=[ ∂X

∂ξ ]−1
(12.6)

In case C, there exists an explicit dependency between variables b and
a that has to be neglected for differentiation. The status of the dependent
variable b is thus temporary. For the duration of the AD procedure, it is
changed into an independent variable. The situation frequently appears in
the formulation of mechanical problems where instead of the total variation
some arbitrary variation of a given quantity has to be evaluated.

The exceptions of cases A, B and C are imposed within automatic differ-
entiation only during the execution of the particular call of the AD procedure.
Case D is equal to case A with an AD exception defined globally; thus valid
for every call of the AD procedure during the derivation of the problem. When
in collision, then exeptions of type A, B and C overrule the D type exception.

12.3 Hybrid Symbolic-Numerical Approach

The real power of the symbolic approach for the development, testing and
application of new, unconventional ideas is provided by general purpose CA
systems. However, there use is limited for problems which lead to large
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systems like finite element simulations. Furthermore, the use of largescale
commercial finite element environments for analyzing a variety of problems
is an everyday practice of engineers. The hybrid symbolic-numerical (HSN)
approach is a way to combine both.

Although large FE environments often offer a possibility to incorporate
user defined elements and material modes, it is time consuming to develop
and test these user defined new pieces of software. Practice shows that, at
the research stage of the derivation of a new numerical model, different
languages and different platforms are the best means for the assessment
of specific performances and, of course, failures of the numerical model.
The basic tests, which are performed on a single finite element or on a
small patch of elements, can be done most efficiently by using general CA
systems.

Many design flaws of nonlinear finite elements, such as element instabil-
ities or poor convergence properties, can be easily identified, if the element
quantities are investigated on a symbolic level. Unfortunately, a standalone
CA system becomes very inefficient once there is a larger number of nonlin-
ear finite elements to process or if iterative numerical procedures have to be
executed. In order to assess element performances under real conditions, the
easiest way is to run the necessary test simulations on sequential machines
with good debugging capabilities and with an open source FE environment
designed for research purposes, e.g. FEAP (www.ce.berkeley.edu/ rlt/feap/),
AceFEM (www.fgg.uni-lj.si/symech/) or Diffpack (www.diffpack.com). At
the end, for real industrial simulations involving complex geometries, a large
commercial FE environment has to be used.

In order to meet all these demands in an optimal way, an approach is
needed that would offer multi-language and multi-environment generation of
numerical codes. The automatically generated code is then incorporated into
the FE environment that is most suitable for the specific step of the research
process. The structure of the hybrid symbolic-numerical system AceGen for
multi-language and multi-environment code generation introduced by Korelc
(2002) is presented in Fig. 12.1. Using the classical approach, re-coding of the
element in different languages would be time consuming and is rarely done.
With the general computer algebra systems, re-coding comes practically for
free, since the code can be automatically generated for several languages and
for several platforms from the same basic symbolic description. An advan-
tage of using a general computer algebra system is also that it provides well
known and defined description language for the derivation of FE equations,
generation of FE code and the possibly also for a complete FE analysis, as
opposed to the hybrid object oriented systems which introduce their own
domain-specific language.

When the symbolic approach is used in a standard way to describe
complex-engineering problems, the common experience of computer alge-
bra users is an uncontrollable swell of expression, as pointed out before,
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Computer algebra environmentComputer algebra environment

C FORTRANMathematica

NumericalNumerical user subroutinesuser subroutines

AceFEM
CDriver

FEAPELFEN

MDriver

Numerical environmentNumerical environment

- symbolic input
- problem formulation
- derivation of formulas
- code generation

- interface code
- initialization
- numerical integration
- …

MATLAB

MATLAB
MathLink

ABAQUS
…

Fig. 12.1 Multi-language and multi-environement FE code generation

leading to inefficient or even unusable codes. Not many attempts have been
undertaken to design a general FE code generator where this key issue, con-
trolling the expression growth within the FE code generation, is treated
within the automatic procedure. Techniques such as the use of the sym-
metric properties of the formulae, the automatic introduction of intermedi-
ate variables and pattern search were only used within specialized systems,
see Wang (1986).

The general computer algebra systems come with the built in code op-
timization capabilities, see e.g. Maple, or additional packages for code op-
timization, such as AceGen (www.fgg.uni-lj.si/symech/) for Mathematica.
The classical way of optimizing expressions in a computer algebra system
is searching for common sub-expressions after all formulae have been derived
and before the numerical code is generated. This seems to be insufficient for
the general nonlinear mechanical problems and only relatively simple finite
elements can be derived within this approach.

An alternative approach for automatic code generation is employed in
AceGen and called Simultaneous Stochastic Simplification of numerical code,
see Korelc (1997). This approach avoids the problem of expression swell by
combining the following techniques:

– symbolic and algebraic capabilities of the general computer algebra system
Mathematica,

– automatic differentiation techniques and
– simultaneous optimization of expressions with automatic selection and in-

troduction of appropriate intermediate variables.
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Formulae are optimized, simplified and replaced by the auxiliary variables
simultaneously with the derivation of the problem. A stochastic evaluation
of the formulae is applied for determining the equivalence of algebraic ex-
pressions, see e.g. Gonnet (1986), instead of the conventional pattern match-
ing techniques. The simultaneous approach is appropriate also for problems
where intermediate expressions can be subjected to an uncontrolled swell.

12.3.1 Typical Example of the Automatic Code Generation
Procedure

To illustrate the standard AceGen procedure, a simple example is considered.
A typical numerical sub-program that returns a determinant of the Jacobi

matrix of nonlinear transformation from the reference to the initial config-
uration for quadrilateral finite element topology is derived (for details see
Eq. (4.35) in Chap. 4). The syntax of the AceGen script language is the same
as the syntax of the Mathematica script language, however, with some addi-
tional functions. The input for AceGen is presented in Fig. 12.2. It can be
divided into six characteristic steps:

– At the beginning of the session the SMSInitialize function initializes the
system.

– The SMSModule function defines the input and output parameters of the
subroutine “DetJ”.

– The SMSReal function assigns the input parameters X$$ and k$$ and e$$ of
the subroutine to the standard Mathematica symbols. Double $ characters
indicate that the symbol is an input or output parameter of the generated
subroutine.

– During the description of the problem, the special operators (�,�, |=) are
used to perform the simultaneous optimization of expressions and the cre-
ation of new intermediate variables. The SMSD function performs an au-
tomatic differentiation of one or several expressions with respect to the
arbitrary variable or the vector of variables by simultaneously enhancing
the already derived code.

�� AceGen‘;
SMSInitialize�"DetJ", "Language" �� "C"�;
SMSModule�"DetJ",
Real�X$$�2, 4�, k$$, e$$, J$$��;

�Ξ, Η� � SMSReal��k$$, e$$��;
�Xi, Yi� � SMSReal�Array�X$$, �2, 4���;
Ni � ��1 � Ξ	 �1 � Η	, �1 	 Ξ	 �1 � Η	,

�1 	 Ξ	 �1 	 Η	, �1 � Ξ	 �1 	 Η	�
4;
J � SMSD��Ni.Xi, Ni.Yi�, �Ξ, Η��;
SMSExport�Det�J�, J$$�;
SMSWrite��;

Fig. 12.2 Typical AceGen input
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      SUBROUTINE DetJ(v,X,k,e,J)
      IMPLICIT NONE
      include ’sms.h’
      DOUBLE PRECISION v(5001),X(2,4),k,e,J
      v(20)=((-1d0)+k)/4d0
      v(21)=((-1d0)-k)/4d0
      v(22)=(1d0+e)/4d0
      v(19)=((-1d0)+e)/4d0
      J=(v(19)*(X(1,1)-X(1,2))+v(22)*(X(1,3)-X(1,4)))*(v(21)*(X(2,2)
     &-X(2,3))+v(20)*(X(2,1)-X(2,4)))-(v(21)*(X(1,2)-X(1,3))+v(20)*(X
     &(1,1)-X(1,4)))*(v(19)*(X(2,1)-X(2,2))+v(22)*(X(2,3)-X(2,4)))
      END

#include "sms.h"
void DetJ(double v[5001],double X[2][4],double 
(*k),double (*e),double (*J)){
v[20]=(-1e0+(*k))/4e0;
v[21]=(-1e0-(*k))/4e0;
v[22]=(1e0+(*e))/4e0;
v[19]=(-1e0+(*e))/4e0;
(*J)=(v[19]*(X[0][0]-X[0][1])+v[22]*(X[0][2]-X[0][3]))*
(v[21]*(X[1][1]-X[1][2])+v[20]*(X[1][0]
 -X[1][3]))-(v[21]*(X[0][1]-X[0][2])+v[20]*
 (X[0][0]-X[0][3]))*(v[19]*(X[1][0]-X[1][1])+v[22]*
 (X[1][2]-X[1][3]));
};

Fig. 12.3 Typical automatically generated subroutine in FORTRAN and C
language.

– The results of the derivation are assigned to the output parameter J$$ of
the subroutine by the SMSExport function.

– At the end of the session, the SMSWrite function writes the contents of the
vector of the generated formulae to the file in a prescribed language format.
The generated subroutines, in C and FORTRAN language, are presented
in Fig. 12.3.

12.4 Abstract Symbolic Formulations in Computational
Mechanics

The true benefit using symbolic tools is not about the development of a the-
ory what is normally done manually on a sheet of paper using a pencil, or
if a computer shall be used a simple word processor is adequate for such
task. The advantage of the symbolic approach in computational mechanics
becomes apparent only when the description of the problem, which means
that the basic equations are written down, is appropriate for the symbolic
description. Unfortunately, some of the traditional descriptions, used in com-
putational mechanics, are not appropriate for the symbolic description. The
symbolic formulation of the computational mechanics problems differs often
from the classical formulations described in detail in other chapters of this
book, and thus brings up the need for rethinking and reformulating of known
and traditional ways. Despite that, there exist strong arguments why, at the
end, symbolic formulations are indeed beneficial, i.e.:
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– A symbolic formulation is more compressed and thus provides fewer pos-
sibilities for an error.

– Algebraic operations, such as differentiation, are done automatically.
– Automatically generated codes are highly efficient and portable.
– The multi-language and multi-environment capabilities of symbolic sys-

tems enable generation of numerical codes for various numerical environ-
ments from the same symbolic description.

– An available collection of prepared symbolic inputs for a broad range of
finite elements can be easily adjusted for the user specific problem leading
to the on-demand numerical code generation.

– The multi-field and multi-physic problems can be easily implemented. For
example, the symbolic inputs for mechanical and thermal analysis can be
combined into a new symbolic input that would create a finite element for
fully coupled and quadratically convergent thermo-mechanical analysis.

For example, the standard formulation of the first term of the tangential
stiffness matrix BT DB (for details see Chap. 4, e.g. Eq. (4.83)) can be easily
repeated using the symbolic tools. Having in mind that the tangential stiffness
matrix of a finite element is either the Jacobian of the resulting system of
discrete algebraic equations or the Hessian of the variational functional, then
automatic differentiation should be sufficient tool for obtaining the tangent
matrix. The work of implementing the BT DB formulation and the efficiency
of the resulting code is inferior to the approach when the tangent matrix is
derived by the reverse automatic differentiation. The latter approach requires,
regardless of the complexity of the topology and the material model, a single
line of symbolic input. The standard BT DB formulation would require much
more input for the same result.

It should be pointed out that the symbolic differentiation is one of the
algebraic operations prone to severe expression growth and it can result even
for relatively simple nonlinear elements in hundreds of pages of code. Thus,
the use of a hybrid system that combines the symbolic tool with the au-
tomatic differentiation technique is essential for the high abstract symbolic
formulation of nonlinear finite element models. To increase the numerical ef-
ficiency of the generated code and to limit the physical size of the generated
code, it is essential to minimize the number of calls to the automatic dif-
ferentiation procedure. In the reverse mode of automatic differentiation, the
expression SMSD [a, c] + SMSD [b, c] can result in a code that is twice as
large and twice slower than the code produced by the equivalent expression
SMSD [a+ b, c].

In this section, an abstract symbolic formulation is described which is
needed to obatain the contribution of a single element Ωe to the internal force
vector R and to the tangential stiffness matrix KT . The formulation follows
the basic equations of continuum mechanics provided in Chap. 3 and spatial
discretization techniques given in Chap. 4. As pointed out in Sect. 3.4, the
variational functional approach and the weak form approach are the two basic
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possibilities open for the derivation of variational formulation of equilibrium
equations and their linearizations.

12.4.1 Variational Principle

In case of hyperelastic material responses, a principle of stationary elastic
potential can be formulated, see Sect. 3.4.3. Within this formulation, the
functional of the strain energy density function W can be formulated, by
using the discretization techniques in Chap. 4, as a function of N generalized
displacement parameters ue of the element. The contribution of one element
to the residual R and the tangent matrix KT is then obtained by automatic
differentiation as first and second derivative of W integrated over the domain
Ω of the element

Re =
∫
Ωe

∂W

∂ue
dΩ ,

KTe =
∂Re

∂ue
.

(12.7)

The use of automatic differentiation is straightforward in this case and there
is no need to derive any additional intermediate quantities such as the tra-
ditional B-matrices and the incremental constitutive matrix D. When the
reverse mode of automatic differentiation is applied, then the evaluation also
becomes optimal from the point of numerical efficiency of the evaluation of
Re and KTe. The evaluation of the residual Re starts from the scalar strain
energy function W ; thus only one reversal of the program flow and only one
construction of the adjoining variables is required. The numerical cost ratio
for the evaluation of Re is then wratio, (Re) < 5. The evaluation of KTe

starts from the residual, a vector of N functions; thus one reversal of the
program flow and a construction of N adjoining variables is required. The
numerical cost ratio for the evaluation of KTe is then proportional to N , mak-
ing the total cost of the evaluation of the element contribution proportional
to the number of degrees of freedom of the element (O(N)).

12.4.2 Weak Form

Another approach which can be persued to derive the finite element dis-
cretizations starts from the weak form of equilibrium, as introduced in
Sect. 3.4.1. The part of the weak form of equilibrium describing the stress
divergent term (without the load contribution) is provided in Eq. (3.292)∫

Ωe

S · δE dΩ (12.8)

where S is the 2nd Piola–Kirchhoff stress tensor and E the Green–

Lagrangian strain tensor. Other work conjugated stress–strain pairs can
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be considered as well as described in Sects. 3.4.1 and 3.4.2. The symbolic
formulation of the weak form is not straightforward, since the variation δE is
not a real but rather factitious quantity and automatic differentiation cannot
be applied directly. Of course, a general computer algebra system can be
used for building the necessary apparatus to deal with the variations in a
traditional way and then automatic code generation can be applied on the
results. But then the elegance of using automatic differentiation would then
be lost. However, the automatic differentiation can be applied directly after
the variation is discretized.

The discretization of the variation δE leads to

δE =
N∑

i=1

∂E

∂uei
δuei, (12.9)

where the uei are the N generalized displacements parameters of the element.
The finite element approximation of the weak form, appropriate for symbolic
description, and its linearization can then easily be obtained. This leads to a
form for the element contribution Re and KTe to the residual and tangent
matrix which is relevant for the symbolic formulation

Re =
∫
Ωe

S · ∂E
∂ue

dΩ ,

KTe =
∂Re

∂ue
.

(12.10)

While the variational functional formulation starts from one scalar quan-
tity, the weak form formulation starts from the six or nine scalar quantities
(the six components of the symmetric strain tensor E or nine components,
if the chosen strain measure is nonsymmetric). The evaluation of the weak
form Re by reverse automatic differentiation is thus theoretically six times
more expensive when (12.10)1 is used. Additionally, the stress tensor S has
to be evaluated. The actual difference is usually much smaller due to the
code optimization procedures. The evaluation of KTe starts again from a
vector containing N functions which leads to a numerical cost ratio for the
evaluation of KTe proportional to N . The total cost of the evaluation of the
element contribution is proportional to N . This is roughly the same as for
the formulation based on the variational functional, see (12.7).

12.4.3 Symbolic Formulation of Elasto-Plastic Problems

In this section, a general method is presented for the automatic derivation of
Re and KTe in the case of arbitrary elasto-plastic problems as introduced in
Sects. 3.3.2, 6.2 and 6.3. Let ue n+1 be a vector of generalized displacement
parameters of the element, pn+1 a vector of unknowns at Gauss point level
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and pn is a vector of history values at Gauss point level from the previous
time step.

The elasto-plastic problem is defined by a hyperelastic strain energy den-
sity function W , a yield condition f and a set of algebraic constraints to be
fulfilled at Gauss point level Qn+1(un+1,pn+1,pn) that have to be solved
for unknowns pn+1 when the material point is in a plastic state. In general,
the vector pn+1 is composed of an appropriate measure of plastic strains
(or stresses in the small deformation case), the hardening variables and the
consistency parameter λ where the Qn+1 are composed of the corresponding
set of discretized evolution equations that describe the evolution of plastic
strains and hardening variables and the consistency condition f = 0. No re-
striction is imposed on the form of the algebraic equations at Gauss point
level at this point. For more details about possible formulations at Gauss

point level, see Sects. 6.2 and 6.3.
Due to the fact that the evolution equations are stiff, an implicit Euler

integration is chosen. As discussed in Sects. 6.2 and 6.3, the yield condition
is evaluated for a the trial state by freezing the state variables as follows

f tr = f(un+1,pn) . (12.11)

Due to the dissipative nature of elasto-plastic problems, the variational
functional does not exist and the weak form (12.10) has to be used. A ma-
terial point is in the elastic domain forf tr ≤ 0. The stress tensor S and the
unknowns at the Gauss point pn+1 are given for an elastic state by

S = 2
∂W (un+1,pn)

∂C
, (12.12)

pn+1 = pn. (12.13)

The set of algebraic equations Qn+1 has to be fulfilled at each Gauss

point of the finite element discretization for which the yield condition is vio-
lated: f tr > 0. The associated nonlinear equations are solved by the iterative
Newton method using an additional iterative loop at each Gauss point, as
already discussed in Sects. 6.2 and 6.3. The related algorithm is presented
in Box 12.1, where p̃n+1 denotes a vector of the local unknowns at Gauss

point level within the iterative loop. An+1 is a matrix that follows from the
linearization of the nonlinear equation set Qn+1. Due to the iterative loop
needed to solve Qn+1, the variables pn+1 depend now implicitly upon the
generalized displacement parameters ue n+1. The direct application of the au-
tomatic differentiation procedure to obtain S would consider this algorithmic
dependency and the evaluated stress tensor would not be correct. With the
use of the type C exception of the auomatic differentiation procedure (see
Table 12.1), the correct stress tensor S can be expressed as follows

S = 2
∂W

∂C

∣∣∣∣ ∂p
∂(•) = 0

(12.14)
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summation over integration points
x := X(ξ) + u(ue n+1, ξ)
useAD exception of type B for coordinate transformation
F := ∂x

∂X

∣∣
∂ξ
∂X

=
[

∂X
∂ξ

]−1

τ trial := τ(ue n+1,pn)
f(τ trial) ≤ 0 {pn+1 := pn

f(τ trial) > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local Newton loop
p̃n+1 := pn

repeat

An+1 :=
∂Qn+1(un+1,p̃n+1,pn)

∂p̃n+1

Δp̃n+1 := −A−1
n+1Qn+1(un+1, p̃n+1,pn)

p̃n+1 := p̃n+1 + Δp̃n+1

until ‖Δp̃n+1‖ < TOL
pn+1 := p̃n+1

define AD exception of type D forpn+1

∂(·)
∂(·)

∣∣∣ ∂pn+1

∂ue n+1
= −A−1

n+1

∂Qn+1(un+1,pn+1,pn)

∂ue n+1

use AD exception of type C

Re :=
∂W (ue n+1,pn+1)

∂ue n+1
| ∂pn+1

∂(•) =0

KTe :=
∂Re

∂ue n+1

end loop

Box 12.1 Algorithm for the abstract symbolic description of elasto-plastic
problems

From the definition of the Green–Lagrangian strain tensor E, noting
that Eq. (12.14) implies Eq. (12.12) and by assuming the same discretization
for displacements and the variation of the displacements (test functions) a
final “basic equation of the symbolic plasticity”, is derived

Re =
∫
Ωe

2
∂W

∂C

∣∣∣∣ ∂p
∂(•) = 0

· 1
2

∂C

∂ue n+1
dΩ

=
∫
Ωe

∂W

∂ue n+1

∣∣∣∣ ∂p
∂(•) = 0

dΩ .
(12.15)

An efficient and accurate numerical solution of the corresponding coupled
nonlinear system of algebraic equations requires quadratically convergent nu-
merical procedure. For this the linearization of (12.15) is needed which leads
to the tangent stiffness matrix. This matrix can be derived for a finite ele-
ment by directly applying the automatic differentiation procedure leading to

KTe =
∂Re

∂ue n+1
. (12.16)
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Tangent stiffness matrix derived in this way is already “consistent” with the
algorithm used for plasticity. Hence no additional procedures to derive a
consistent tangent modulus are required. However, this involves the differen-
tiation of the complete iterative Newton procedure at Gauss point level.
This can be avoided if additionally the type D exception of automatic differ-
entiation is used. The derivatives of the variables at Gauss point level with
respect to the generalized displacements can be obtained in a more efficient
way by solving the following sensitivity problem

An+1
∂pn+1

∂ue n+1
= −∂Qn+1(un+1,pn+1,pn)

∂ue n+1
. (12.17)

The derivatives are then defined by the following type D exception of auto-
matic differentiation

∂(·)
∂(·)

∣∣∣∣ ∂pn+1

∂ue n+1
= −A−1

n+1

∂Qn+1(un+1,pn+1,pn)
∂ue n+1

. (12.18)

The exception (12.18) of automatic differentiation effectively bypasses the
true algorithm used to calculate pn+1. In some cases, a closed form solution
for all or a part of the variables at Gauss point level can be derived, improving
the overall numerical efficiency of the procedure. Several advantages of the
formulation (12.15) can be observed with respect to the standard formulation
of elasto-plastic problems, see Sects. 6.2 and 6.3:

– Equations (12.15) and (12.16) unify the elastic and plastic state; thus only
two calls to automatic differentiation procedure are needed (one to evaluate
Re and one to evaluate KTe).

– The formulation starts from the scalar quantity W which is optimal for
the automatic differentiation and automatic code generation.

– The stress and the strain tensors do not appear explicitly in (12.15), thus
the question of choosing the optimal stress–strain pair does not arise at all.
The only free parameters of the formulation are the strain energy function,
the yield condition, the evolution equations and the discretization of the
domain and displacements.

– The presented formulation is expressed with respect ot the initial con-
figuration. The spatial formulation can also be derived. Due to the use of
automatic differentiation, the B matrix does not appear explicitly as a part
of the formulation. Consequently, the advantage of the spatial formulation
(sparse B matrix, see Remark 4.5) does not materialize.

– Equation (12.15) can be obtained also directly as a gradient of the free
energy function.

– The described formulation can be employed to derive small strain as well
as finite strain plasticity models, like multi-surface plasticity, non-associate
plasticity models, compressible plasticity models, etc. Also various finite
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element discretization techniques (standard displacement elements, en-
hanced strain elements, underintegrated formulations, etc. can be incor-
porated).

12.5 Finite Strain Plasticity Example

In this section, an abstract symbolic formulation for the contribution of one
finite element Ωe to the internal force vector Re and to the tangential stiffness
matrix KTe is presented for a problem undergoing finite plastic strains.

12.5.1 Formulation

The formulation employs the general implicit Euler scheme for the integra-
tion of the finite strain inelastic constitutive equations as stated in Sect. 6.3.
The used Neo–Hooke strain energy W is defined in Sect. 3.3.1, see e.g.
Eq. (3.116). The parts of the finite strain plasticity model necessary for the
abstract symbolic description are briefly summarized in Box 12.2. The deriva-
tion is here described for a two-dimensional quadrilateral finite element with
four nodes. The spatial discretization of domain and displacement is based
on the standard isoparametric concept as presented in Chap. 4. The plane
strain condition is enforced. The vector of the variables at Gauss point level
contains the components of the plastic strains Fp−1

n+1 −1 at time tn+1 and the
consistency parameter λn+1 which is related to the same time

pT
n+1 =

{
(F p−1

n+1 )11−1, (F p−1
n+1 )12, (F

p−1
n+1 )21, (F

p−1
n+1 )22−1, (F p−1

n+1 )33−1, λn+1

}
.

(12.19)

It is worth noticing that inaccurate integration of the plastic evolution
equations leads to a loss of volume in case of incompressible plasticity to

Fe
n+1 = Fn+1F

p−1
n+1

Ce
n+1 = FeT

n+1F
e
n+1

J2 = det(Ce
n+1)

W = μ
2
(tr(Ce

n+1) − 3 − ln(J2)) + λ
4
(J2 − 1 − ln(J2))

τττ = 2Fe
n+1

∂W

∂Ce
n+1

FeT
n+1

s = τττ − tr(τττ)

3
1

α =
√

2
3

λ

f =
√

s · s −
√

2
3

( Y0 + Hα )

Qn+1 =

{
Fe

n+1 − exp(−(λn+1 − λn) ∂f
∂τ

)Fn+1F
p−1
n = 0

f = 0

}

Box 12.2 Summary of the finite strain plasticity model
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a non-symmetric global tangent matrix in case of isotropic plasticity, and
hence to a loss of objectivity of the resulting finite element. The problems
can be avoided by an exact exponential approximation of the evolution of
the plastic deformation gradient, see e.g. Simo (1998). An exponential ap-
proximation requires a reliable evaluation of the matrix exponential and its
derivatives which has proved to be a difficult task. Thus a numerical ap-
proximation is used instead, see e.g. Itskov (2003) and Lu (2004). With the
AceGen function SMSMatrixExp the exact, closed form solution of a matrix
exponent is obtained by automatic differentiation of an appropriate scalar
function presented in Lu (2004). The automatically generated closed form
solution of a matrix exponential yields accurate results up to machine pre-
cision. This is also the case for multiple eigenvalues, and hence significantly
improves the reliability of the finite strain plasticity formulation.

12.5.2 AceGen Input

Now the structure of the input for AceGen is presented using, as an example,
the two-dimensional version of the finite strain plasticity element as described
above.

– Step 1: Initialization
Here the AceGen is initialized and the element characteristics necessary
for the automatic creation of the interface between the automatically gen-
erated code and the chosen finite element environment are defined. The
SMSStandardModule command starts the definition of the user subroutine
for the calculation of the tangent matrix and the residual vector. After that
the loop over the Gauss points is initiated.

�� AceGen‘;
SMSInitialize�"FpW", "Environment" � "AceFEM"�;
nhistory 
 7; nstate 
 6;
SMSTemplate�"SMSTopology" � "Q1",
"SMSNoTimeStorage" � nhistory es$$�"id", "NoIntPoints"�,
"SMSGroupDataNames" �� �
"E �elastic modulus", "Ν �poisson ratio",
"Y0 �initial yield stress", "H �hardening coefficient"�,

"SMSSymmetricTangent" �� True�

SMSStandardModule�"Tangent and residual"�

SMSDo�IpIndex, 1, SMSInteger�es$$�"id", "NoIntPoints"���;

– Step 2: Interface to the input data of the user element subroutine
Here the coordinates of the current integration points ξ, η, ζ, the integra-
tion point weights wg, the coordinates of the element nodes Xi , Y i, the
current values of the displacements ui , vi and the material properties of
the element are taken from the supplied arguments of the subroutine. All
global degrees of freedom are then collected in one vector un1 ≡ un+1, such
that the proper degree of freedom ordering is established. The variable hi
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defines the location of the variables pn ≡ pn at Gauss point level within
the field of the element history variables (ed$$[hp, ...] ) for the IpIndex -th
integration point.

�Ξ, Η, Ζ, wg� � Array�SMSReal�es$$�"IntPoints", 1, IpIndex�� &, 4�;

Xi � Array�SMSReal�nd$$�1, "X", 1�� &, 4�;

Yi � Array�SMSReal�nd$$�1, "X", 2�� &, 4�;

ui � Array�SMSReal�nd$$�1, "at", 1�� &, 4�;

vi � Array�SMSReal�nd$$�1, "at", 2�� &, 4�;

un1 � Flatten�Transpose��ui, vi���;

�Em, Ν, Y0, H � � Array�SMSReal�es$$�"Data", 1�� &, 4�;

hi � SMSInteger��IpIndex � 1	�nhistory�;

pn � SMSReal�Array�ed$$�"hp", hi 	 1� &, nstate��;

– Step 3: Definition of the trial functions and kinematic equations
This defines the shape functions Ni, the interpolation of the physical co-
ordinates X ,Y and the displacements u , v within the element, the Ja-

cobi matrix of the isoparametric mapping, the displacement gradient
Dn1 ≡ Hn+1, the deformation gradient Fn1 ≡ Fn+1 and the inverse
plastic deformation gradient Fpin ≡ Fp−1

n .

Ni �
1

4
��1 � Ξ	 �1 � Η	, �1 	 Ξ	 �1 � Η	, �1 	 Ξ	 �1 	 Η	, �1 � Ξ	 �1 	 Η	�;

X � SMSFreeze�Ni.Xi�; Y � SMSFreeze�Ni.Yi�;

Z � SMSFreeze�Ζ�;

Jm � SMSD��X, Y, Z�, �Ξ, Η, Ζ��;

u � Ni.ui; v � Ni.vi;

�n1� SMSD��u, v, 0�, �X, Y, Z�,

"Implicit" � ���Ξ, Η, Ζ�, �X, Y, Z�, Inverse�Jm����;

�n1 � IdentityMatrix�3� 	 �n1;

Fpin 
 IdentityMatrix�3� 	

pn�1� pn�2� 0

pn�3� pn�4� 0

0 0 pn�5�

;

– Step 4: Definition of the constitutive model dependent quantities
Here the fWA function is defined. It returns, the value of the input pa-
rameter task, the yield condition f , the strain energy function W or the
evolution equations Q at a Gauss point. They are evaluated for the given
values of the variables pt, at Gauss point level. Thus, the function returns,
with respect to the supplied parameters, either trial values or the iterative
values. Note that the function SMSMatrixExp returns an exact, closed form
solution of the matrix exponent.



12.5 Finite Strain Plasticity Example 505

fWA�pt�, task�� :
 Block��,

Fpin1 
 IdentityMatrix�3� 	

pt�1� pt�2� 0

pt�3� pt�4� 0

0 0 pt�5�

;

�e � �n1.Fpin1;

Ce � SMSFreeze�Transpose��e�.�e, "KeepStructure" � True�;

�Λ, Μ� � SMSHookeToLame�Em, Ν�;

Je2 � Det�Ce�;

W 
 Simplify� Μ
2��Tr�Ce� � 3 � Log�Je2�	 	 Λ
4�� Je2 � 1 � Log�Je2�	�;

If�task 

 "W", Return�W��;

Τ � Simplify�2 �e.SMSD�W, Ce, "IgnoreNumbers" � True,

"Symmetric" � True�.Transpose��e��;

Τ�� SMSFreeze�Τ, "KeepStructure" � True�;

�Λ, Λn� 
 �pt�6�, pn�6��;

s 
 Τ��
1

3
IdentityMatrix�3� Tr�Τ��;

Α 
 2
3 Λ;

f 
 SMSSqrt�Total�s s, 2�� � 2
3 ��Y0 	 H Α	;

If�task 

 "f", Return�f��;

� 
 Simplify�SMSD�f, Τ�, "IgnoreNumbers" � True,

"Symmetric" � True��;

� � Simplify��e � SMSMatrixExp�� �Λ � Λn	 ��.�n1.Fpin�;

Q � ���1, 1�, ��1, 2�, ��2, 1�, ��2, 2�, ��3, 3�, f�;

Return�Q�;

�

– Step 5: Elastic part
The state at a Gauss point is stored as an additional history variable.
The stored information is used within the first global Newton iteration in
order to improve the convergence radius of the global Newton iteration
used to solve the nonlinear weak form of the problem at hand. For pt = pn,
the fWA function returns the trial yield condition ftr ≡ f tr. The history
variables pn1 ≡ pn+1 at the Gauss point are not changed with respect to
the values at the previous time step tn in the case of elastic state ftr ≤ 0:
pn+1 = pn.

ftr � fWA�pn, "f"�;

SMSIf �iter 

 1 && SMSInteger�ed$$�"hp", hi 	 nstate 	 1�� � 0	 ��

iter � 1 && ftr �
1

108
�;

pn1 � pn;

SMSExport�0, ed$$�"ht", hi 	 nstate 	 1��;

SMSElse��;
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– Step 6: Plastic part
For plastic deformations (ftr > 0), the local Newton iterative loop is im-
plemented, according to Box 12.1, for the vector of variables pln1 ≡ p̃n+1

at the Gauss point. The derivatives of the variables at Gauss point level
with respect to the generalized displacements δpδu ≡ ∂pn+1

∂ue n+1
are evaluated

and the automatic differentiation exception of type D is defined for variable
pn1. The error flag is set, if the Newton iterative loop could not converge
within 30 iterations. Note that the function SMSLUFactor performs full
symbolic factorization of the system of linear equations and the function
SMSLUSolve full symbolic back substitution.

pt � pn;

SMSDo�i, 1, 30, 1, pt�;

Q � fWA�pt, "Q"�;

A � SMSD�Q, pt�;

LU � SMSLUFactor�A�;

�p � SMSLUSolve�LU, �Q�;

pt � pt 	 �p;

SMSIf�Sqrt��p.�p� � 1
10^9 �;

ΔpΔu � SMSLUSolve�LU, �SMSD�Q, un1, "Constant" � pt��;

SMSBreak��;

SMSEndIf��;

SMSIf�i 

 29�;

SMSExport�2, idata$$�"ErrorStatus"��;

SMSBreak��;

SMSEndIf��;

SMSEndDo�pt, ΔpΔu�;

pn1 � SMSFreeze�pt, "Dependency" � �un1, ΔpΔu��;

SMSExport�1, ed$$�"ht", hi 	 nstate 	 1��;

SMSEndIf�pn1�;

– Step 7: Element tangent stiffness matrix and internal force vector
Here the strain energy W , the part of the tangent stiffness matrix KeTij
associated with a nodal value ij and the internal force vector Rei associ-
ated with a nodal value i, are evaluated for the final values of the variables
pn1 at a GAUSS point. The vectors, containing the quantities KeTij, the
Rei and the pn1, are exported by SMSExport to the output parameters of
the user element subroutine.

W � fWA�pn1, "W"�;

SMSDo�i, 1, 8�;

Rei � Det�Jm� wg SMSD�W, un1, i, "Constant" � pn1�;

SMSExport�Rei, p$$�i�, "AddIn" � True�;

SMSDo�j, 1, 8�;

KeTij 
 SMSD�Ri, un1, j�;

SMSExport�KeTij, s$$�i, j�, "AddIn" � True�;

SMSEndDo��;

SMSEndDo��;

SMSExport�pn1, ed$$�"ht", hi 	 � &�;
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– Step 8: Code generation
This is the end of the integration loop. The element source code is gener-
ated and written in ”J2C.c” file in C language.

SMSEndDo��;

SMSWrite��;

12.5.3 Efficiency of Automatically Generated Codes

Following the procedures described in previous sections, various elements
can be derived. It is essential for the use of the symbolic approach that the
automatically generated elements are efficient with respect to evaluation time
when compared to finite elements which were coded manually. The following
different finite elements are investigated:

– Q1: the standard two-dimensional displacement, quadrilateral, isoparamet-
ric element for plane strain problems, see e.g. Exercise 4.3 in Sect. 4.2.1,

– Q1E4: the two-dimensional, quadrilateral, enhanced assumed strain ele-
ment (EAS) with four enhanced modes, introduced by Simo and Rifai
(1990), for plane strain problems, see Sect. 10.5,

– H1: the standard three-dimensional displacement, hexahedral, isoparamet-
ric element, see Sect. 4.2.1,

– H1E9: the three-dimensional hexahedral enhanced assumed strain element
(EAS) with nine enhanced modes, introduced by Simo and Armero (1992),
for plane strain problems, see Sect. 10.5.

Each element is derived and analysed for four different cases: linear elasticity,
hyperelasticity, small strain elasto-plasticity and finite strain elasto-plasticity.
A 2 × 2 Gauss integration is used for all two-dimensional and a 3 × 3 × 3
Gauss integration is employed for all three-dimensional elements.

In Table 12.2, characteristic data related to the generated output of Ace-
Gen are compared for the different element summarized above:

– The size of the code of the automatically generated user-subroutine that
evaluates Re and KTe.

– The time needed for the numerical evaluation of the Re and KTe. The time
is normalized for the two-dimensional case with respect to linear elastic
Q1 element since it varies for different hardware platforms. In the same
way, the evaluation time is scaled with respect to the linear elastic H1
element in the three-dimensional case. It is interesting that the evaluation
time for the H1 element is 6.1 times larger than for the Q1 element while
a simple comparison related to the number of Gauss points would give
with 27 / 4 = 6.75 a larger value, not to mention the handling of larger
B-matrix in manually coded elements. This underlines the advantage of
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Table 12.2 Comparison of the code size and the numerical efficiency

Element Constitutive model Code size Evaluation AceGen
time time

(Kbytes) (normalized) (normalized)
Q1 linear elastic 9 1 1
Q1 hyperelastic 9 1.6 1.3
Q1 small strain elasto-plastic 24 3.0 7.4
Q1 finite strain elasto-plastic 48 9.5 25

Q1E4 linear elastic 10 1.6 2.11
Q1E4 hyperelastic 15 3.4 3.5
Q1E4 small strain elasto-plastic 27 3.7 12
Q1E4 finite strain elasto-plastic 66 11.8 49
H1 linear elastic 18 1 4.2
H1 hyperelastic 21 1.5 4.5
H1 small strain elasto-plastic 46 2.2 23.2
H1 finite strain elasto-plastic 105 6.9 69.0

H1E9 linear elastic 25 1.9 10.6
H1E9 hyperelastic 46 4.3 16.5
H1E9 small strain elasto-plastic 53 3.4 40.5
H1E9 finite strain elasto-plastic 134 10.0 117.8

using AceGen. For elasto-plastic models, the comparison is controlled by
the extent of plastification and the number of Gauss point iterations; thus
it depends upon the actual example solved. The presented comparison is
based on an example where a rectangular bar is stretched, thus all the
Gauss points are either in elastic or in plastic state.

– The time needed for the generation of the element code. The time is nor-
malized with respect to the linear elastic Q1 element.

The code size is in the range from 9 to 66 Kbytes. The normalized eval-
uation times scale basically for two- and three-dimensional elements in the
same way. This is remarkable since matrix operations, especially when using
the EAS elements, have to be performed which result in the 2D case in the
inversion of a 4 × 4 matrix while the three-dimensional element needs the
inversion of a 9 × 9 matrix at element level when manually coded.

The generation of the finite strain elasto-plastic element on a 2GHz PC
takes with AceGen code generator approximately 160 seconds. Thus, all other
elements in Table 12.2 can be generated faster, e.g. the hyperelastic Q1 ele-
ment is obtained within only one second.

Both, the code size and the derivation time are small enough to allow
“real time” automatic derivation of complex nonlinear finite elements.



A. Vectors and Tensors

This section summarizes sum rules of tensor algebra and tensor analysis which
can be found in e.g. Eringen (1967) and Marsden and Hughes (1983). This
summary is not meant to be complete, but it should help in understanding
some mathematical derivations and results provided in the previous chapters.
A more complete treatment can be found in textbooks on tensor algebra and
analysis.

A.1 Tensor Algebra

A.1.1 Definition of a Tensor

A tensor is defined as linear map between two vector spaces V and W. This
yields

T : V �→ W
v �→ w = Tv v ∈ V ,w ∈ W ,

T(u + v) = Tu + Tv ,

T(αu) = αTu .

A special tensor is the dyad which consists of vectors defined in the spaces V
and W

T = a ⊗ b , a ∈ W ,b ∈ V .
A linear map of a vector c ∈ V to the space W is obtained with the dyad
following the rule

(a ⊗ b) c = (b · c)a c ,b ∈ V a ∈ W .

Note that the vector spaces have to be chosen such that the scalar product
b ·c is defined which means that b and c are in the same vector space, here V.
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A.1.2 Vectors and Tensors in a Base System

The vectors and tensors defined in Appendix A.1.1 have to be written with
respect to a basis. This can be a cartesian coordinate system, defined by
orthogonal base vectors E1 ,E2 ,E3 or e1 , e2 , e3. A more general basis is
provided by a convective coordinate systems which yields co-variant, gi, and
contra-variant, gi, base vectors. The associated convective coordinates are
denoted by {Θj}. One can assume that these coordinates are inscribed in the
bodies, see Fig. A.1.2. Hence the convective coordinates are deformed as well
when the body is deformed under the action of loads. Let us assume that
the cartesian coordinates of the initial and current configuration {XA} and
{xi}, see Chap. 3, can be written as a function of the convective coordinates
{Θj} as

XA = X̂A (Θ1, Θ2, Θ3) , xi = x̂i (Θ1, Θ2, Θ3) .

In short, the transformation reads: X = X̂ (Θj) and x = x̂ (Θj). When
convective coordinates are used, the base vectors are different at each point
of a body in the initial and current configuration. The so-called covariant base
vectors are given for a point X in the initial configuration B of a body by

Gj =
∂X
∂Θj

= X, j .

In an analogous way, the co-variant base vector for a point ϕ (X, t) in the
current configuration ϕ(B) is obtained

gj =
∂ϕ (X, t)
∂Θj

= ϕ, j .

The co-variant base vectors are tangents to the convective coordinates, see
Fig. A.1.2.

X

ϕ

gj

Gj

x

Θi

Θj

Gi

Θj gi
Θi

B ϕ(B)

Fig. A.1 Convective coordinates of configurations B and ϕ(B)
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Now vectors and tensors can be described with respect to the convective
coordinate system. For the following details, the basis {gi} is selected. When
using convective coordinates additional base vectors, so-called contra-variant
base vectors, have to be defined. These are given by

gi · gk = δk
i

with the Kronecker symbol

δi
k =

{
1 for i = k
0 for i 	= k

.

From this definition, it is observed that the contra-variant base vectors are
orthogonal to the co-variant base vectors (e.g. g1⊥g2 , g3 ). Now vectors and
tensors can be defined with respect to this base system:

– The form of a vector u with respect to co-variant and contra-variant basis
is given by

u = ui gi, v = vi gi,

where contra-variant ui and the co-variant vi components are defined by

ui = u · gi , vi = v · gi .

Note further that the co-variant and contra-variant basis vectors can be
transformed by the metric tensor

g = gik gi ⊗ gk ,

g−1 = gik gi ⊗ gk ,

g−1 g = 111 .

This yields

gi = gik gk ,

gi = gik gk .

Note that in the special case of orthogonal cartesian coordinatesX1,X2,X3,
condition Ei · Ek = δik holds and hence gik = δik with the Kronecker

symbol of the cartesian basis

δik =
{

1 for i = k
0 for i 	= k

.

Thus the metric tensor is equal to the unit tensor.
– Different forms can be found for the representation of a second order tensor

with respect to a co-variant and contra-variant basis
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S = Sik gi ⊗ gk ,

T = T i
.k gi ⊗ gk ,

U = Uik gi ⊗ gk .

The related components follow from

Sik = gi · Sgk ,

T i
.k = gi · Tgk ,

Uik = gi · Ugk

with the co-variant gi and the contra-variant gi base vectors.

In the special case of a cartesian coordinate system co-variant and contra-
variant bases are identical. Hence the component form of a vector is given by

u = ui Ei,

while a tensor has the form

T = Tik Ei ⊗ Ek ,

where Ei denotes the cartesian basis. Basically all formulae presented in the
following, which are written in either co-variant or contra-variant form, can
be reduced to cartesian basis by using indices as subscripts.

The linear map of a vector by a tensor has for arbitrary tensors of second
order and for a dyadic the following representation in components

Tu = (T ik gi ⊗ gk)ul gl = T ik ul(gk · gl)gi

= T ik ul δ
l
k gi = T ik uk gi ,

(a ⊗ b) c = (b · c)a = (bi ci) am gm.

A.1.3 Operations with Vectors and Tensors

Vectors and tensors can be combined using different operations. Some impor-
tant possibilities are summarized below:

1. Scalar product of vectors and tensors:

a · b = ai bi ,

(a ⊗ b) · (c ⊗ d) = (a · c) (b · d) ,
S · T = (Sikgi ⊗ gk) · (T lmgl ⊗ gm)

= Sik T lm (gi · gl) (gk · gm) = Sik T lm gil gkm

= Sik Tik .

The scalar product can be defined between two vectors or tensors of same
order. It always yields a single number, the scalar.
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2. Cross product of vectors in a cartesian basis:

a × b = eikl ai bkEl ,

with the permutation symbol

eikl =

⎧⎨
⎩

0 for i = k , i = l , k = l , i = k = l
+1 for ikl = 123 ,= 312 ,= 231
−1 for ikl = 321 ,= 213 ,= 132

.

The cross product of two vectors yields a vector perpendicular to both
vectors.

3. Product of two second order tensors:

(a ⊗ b) (c ⊗ d) = (b · c)a ⊗ d ,

TS = (T ik gi ⊗ gk)(Slm gl ⊗ gm)
= T ik Slm (gk · gl)gi ⊗ gm

= T ik Slm gkl gi ⊗ gm = T ik Sl
k gi ⊗ gl .

The result of this product is again a second order tensor.

A.1.4 Special Forms of Tensors

Transposed Tensor.

(a ⊗ b )T = b ⊗ a ,

TT = T ik gk ⊗ gi ,

u · Tv = v · TT u

a · (b ⊗ c)d = d · (c ⊗ b)a .

Inverse Tensor.
TT−1 = 111 .

A tensor multiplied by its inverse tensor yields the unit tensor.
Sherman–Morrison formula for the inverse of the sum of an arbitrary

second order tensor and a dyadic product

[T + a ⊗ b ]−1 = T−1 − T−1 a ⊗ bT−1

1 + b · T−1 a
.

Unit Tensor.
1 = δi

k gi ⊗ gk = gi ⊗ gi .

The unit tensor related to a cartesian basis is given by

1 = δik Ei ⊗ Ek = Ei ⊗ Ei .



514 A. Vectors and Tensors

Axial Vector tA.
TA v = tA × v.

The axial vector represents a vector obtained by the linear map of an arbitrary
skew symmetric tensor TA and an arbitrary vector v.

special case: TA = 1
2 (a ⊗ b − b ⊗ a) ⇒ tA = 1

2 (b × a).

Orthogonal tensor preserves the scalar product

(Qa) · (Qb) = a · b = b · (QT Qa) =⇒ QT Q = 1 .

Thus an orthogonal tensor has the properties

Q−1 = QT ,

QQT = 1 .

The orthogonal tensor Q has in an orthogonal basis {r , s , t}, the represen-
tation

Q = r ⊗ r + ( s ⊗ s + t ⊗ t ) cos θ − ( s ⊗ t − t ⊗ s ) sin θ .

Hence the orthogonal tensor represents a rotation about axis r.

A.1.5 Eigenvalues and Invariants of Tensors

Before the invariants and eigenvalues of second order tensors are discussed,
it is useful to define the trace and determinant of a second order tensor.

Trace of a Tensor.

trT = 111 · T = (gi ⊗ gi) · (T lm gl ⊗ gm)
= (gi · gl) (gi · gm)T lm = gil δ

i
m T

lm = T l
l ,

tr (a ⊗ b) = a · b
with the properties

trTT = trT
tr (S + T) = trS + trT

tr (ST) = tr (TS)
tr (ST) = S · T = Sik T

ik = tr (STT ) = TT · ST .

Determinant.

det (αT) = α3 detT ,
det (ST) = detSdetT ,

det (T−1) =
1

detT
.
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With respect to an orthogonal cartesian coordinate system, relation

detT = eikl Ti1 Tk2 Tl3

is obtained with the permutation symbol eikl.

Eigenvalues of a Tensor.

From the special eigenvalue problem,

(T − λ1 )ϕ = 0

follows a cubic equation for the eigenvalues, known as characteristic polyno-
mial,

det (T − λ1 ) = λ3 − IT λ2 + IIT λ− IIIT = 0

with the three invariants of the tensor T:

IT = trT = T i
i ,

IIT =
1
2

[(trT)2 − tr(T2)] =
1
2

[(T i
i )

2 − T i
mT

m
i ] ,

IIIT = detT =
1
6

[(trT)3 − 3 trT tr (T2) + 2 tr(T3)] .

It is possible to compute the eigenvalues λi and eigenvectors ϕi of a symmet-
rical second order tensor from the invariants. One scheme, which can also be
found in Simo and Hughes (1998), is given by

r =
1
54

(−2 IT + 9 IT IIT − 27 IIIT )

q =
1
9

( I2T − 3 IIT )

θ = arccos (r /
√
q3 )

λ1 = −2
√
q cos[ θ / 3 ] +

1
3
IT

λ2 = −2
√
q cos[( θ + 2π ) / 3 ] +

1
3
IT

λ3 = −2
√
q cos[( θ − 2π ) / 3 ] +

1
3
IT .

From these eigenvalues, the eigenvectors follow. Here three cases have to be
distinguished.

1. All eigenvalues are different λ1 	= λ2 	= λ3:

ϕi ⊗ ϕi =
λi

2λ3
i − IT λ2

i + IIIT

(
T2 − (IT − λi)T +

IIIT
λi

1
)
.
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2. Two eigenvalues are equal λi 	= λj = λk:

ϕj ⊗ ϕj = 1 − ϕi ⊗ ϕi.

3. All eigenvalues are equal λi = λj = λk:

ϕi ⊗ ϕi = 1 .

When knowing the eigenvalues, the invariants

IT = λ1 + λ2 + λ3 ,

IIT = λ1 λ2 + λ2 λ3 + λ3 λ1 ,

IIIT = λ1 λ2 λ3

can be computed in a simpler way. A generalization yields instead of the
characteristic polynomial a characteristic equation for the tensor itself. This
is known as Cayley–Hamilton theorem.

T3 − IT T2 + IIT T − IIIT 1 = 0 .

This equation can be used to e.g. compute the inverse of a tensor by multi-
plying with the inverse

T−1 =
1

IIIT

[
T2 − IT T + IIT 1

]
.

For skew symmetric tensors TA with their axial vector ta the invariants are

ITA
= trTA = 0 ,

IITA
= ‖ tA ‖2 ,

IIITA
= detTA = 0 .

Thus the eigenvalues can be computed for TA from λ2 + ‖ tA ‖2 = 0.

Spectral Decomposition of a Tensor.

Once the eigenvalues and eigenvectors of a symmetric tensor S are known, it
can be represented via a spectral decomposition

S =
3∑

α=1

λα ϕα ⊗ ϕα .

Based on this result, powers and logarithms of tensors can be defined as

lnS =
3∑

α=1

lnλα ϕα ⊗ ϕα

S
1
2 =

3∑
α=1

√
λα ϕα ⊗ ϕα .
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A.1.6 Tensors of Higher Order

Tensors of higher order will be defined in terms of dyadic products. The
derived rules can then be applied to the bases of arbitrary tensors. Here only
tensors of third and fourth order are considered.

1. Third order dyadic product:

(a ⊗ b) ⊗ c = a ⊗ b ⊗ c

(a ⊗ b ⊗ c) (d ⊗ e) = (b · d) (c · e)a.

2. Fourth order dyadic product:

(a ⊗ b) ⊗ (c ⊗ d) = a ⊗ b ⊗ c ⊗ d

(a ⊗ b ⊗ c ⊗ d) (f ⊗ g) = (c · f) (d · g) (a ⊗ b).

Rules:

(T ⊗ c)v = (c · v)T ,
(a ⊗ T)R = (T · R)a ,

(a ⊗ b ⊗ c) 111 = (b · c)a ,
(T ⊗ v) (a ⊗ b) = (b · v)Ta ,

(T ⊗ v)R = (TR)v ,
(T ⊗ v) 111 = Tv ,

(T ⊗ R)S = (R · S)T ,
(T ⊗ R)v = T ⊗ Rv ,

(T ⊗ R) 111 = (trR)T .

In general, the representation of a fourth order tensor is given by

CCC = Cijkl gi ⊗ gj ⊗ gk ⊗ gl .

A tensor of fourth order can be applied to define a linear mapping between
two tensors of second order,

U = CCC [V ]
U ij gi ⊗ gj = (Cijkl gi ⊗ gj ⊗ gk ⊗ gl)(Vmn gm ⊗ gn )

= Cijkl Vmn δ
m
k δ

n
l gi ⊗ gj = Cijkl Vkl gi ⊗ gj .

A.2 Tensor Analysis

In this section, scalars, vectors and tensors are discussed which are functions
of a position vector X and time t. For that the following fields are defined:
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– Scalar field: α(X, t)
– Vector field: v(X, t)
– Tensor field: T(X, t)

Examples for scalar fields are density, pressure or temperature. Displace-
ments, velocities or momentum can be described by vector fields. Stresses or
strains are represented by tensor fields.

A.2.1 Differentiation with Respect to a Real Variable

The differentiation with respect to a real variable, e.g. the time, is based on
the following definitions

Definition: v̇(X, t) =
∂v(X, t)
∂t

For scalar-, vector- and tensor valued fields the following rules apply.
Rules:

(λv). = λ̇v + λv̇ ,
(u ⊗ v). = u̇ ⊗ v + u ⊗ v̇ ,

(u · v). = u̇ · v + u · v̇ ,
(u × v). = u̇ × v + u × v̇ ,

(Tv). = Ṫ v + T v̇ ,

(TS). = Ṫ S + TṠ ,

(T · S). = Ṫ · S + T · Ṡ ,
(TT ). = (Ṫ)T ,

(T−1). = −T−1 (Ṫ)T−1 .

A.2.2 Gradient of a Field

The gradient of a field yields always a field which is one order higher. Hence
a gradient of a scalar field yields a vector field and so forth.

v = Gradα(X, t) =
∂α

∂X
=
∂α

∂Xi
Gi ,

T = Gradv(X, t) =
∂v
∂X

=
∂v
∂Xi

⊗ Gi .

Often the Nabla operator ∇ is used instead of the gradient operator Grad.
Then

gradα = ∇α ,
gradu = ∇u

is written.
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Rules:

Grad (αβ) = (Gradα)β + αGradβ ,
Grad (αv) = v ⊗ Gradα+ αGradv ,

Grad (αT) = T ⊗ Gradα+ αGradT ,

Grad (u · v) = (Gradu)T v + (Gradv)T u

or in index notation

(αβ ),i = α,i β + αβ,i ,

(α vi ),k = vi α,k + α vi,k ,

(αTik ),m = α,m Tik + αTik,m ,

(ui vi ),k = ui,k vi + ui vi,k .

In case that the scalar variable α is given as function of a vector valued
field u(X t) or the vector valued variable u given as function of a scalar field
α(X, t), the gradient

Gradα{u(X, t)} = (Gradu)T ∂α

∂u
,

Gradu{α(X, t)} =
∂u
∂α

⊗ Gradα

is obtained.
The differentiation of a symmetric tensor T with respect to itself yields a

fourth order tensor. In index notation, this reads(
∂T
∂T

)
iklm

=
1
2

( δil δkm + δim δkl ) .

In an analogous way, the differentiation of the inverse is given by(
∂T−1

∂T

)
iklm

=
1
2

(T−1
il T−1

mk + T−1
im T−1

lk ) .

Special cases are

∂T−1

∂T
[V ] = −T−1 VT−1 ,

∂T−1

∂T
[T ] ⊗ T−1 = −T−1 ⊗ T−1

or in index notation(
∂T−1

∂T

)
iklm

Vlm = −T−1
ij Vjn T

−1
nk ,(

∂T−1

∂T

)
iklm

Tlm T
−1
no = −T−1

ik T−1
no .
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With the product rule, it further follows

∂(αS)
∂T

= T ⊗ ∂α

∂T
+ α

∂S
∂T

.

A.2.3 Divergence of a Field

The computation of the divergence of a field reduces the order of the field by
one. Thus the divergence of e.g. a tensor field yields a vector field.

Divv(X, t) = Gradv(X, t) · 111 ,
DivT(X, t) = GradT(X, t) 111 .

Rules:

Div (αv) = v · Gradα+ αDivv ,

Div (αT) = TGradα+ αDivT ,

Div (Tv) = TT · Gradv + DivTT · v ,
Div (u ⊗ v) = (Gradu)v + (Divv)u ,
Div (u × v) = (Gradu × v) · 111 − (Gradv × u).

A.2.4 Rotation of a Vector Field

The rotation of a vector field is defined as follows:

Rotv(X, t) = eijk
∂v
∂Xk

Gj

with the permutation symbol eijk.
Rules:

Rot (u × v) = Div (u ⊗ v − v ⊗ u) ,
Rot (TA v) = [(Div tA) 111 − Grad tA]v ,

RotT · 111 = 0 for T = TT .

A.2.5 Derivation of an Invariant with Respect to a Tensor

The invariants of a symmetric tensor T: IT , IIT , IIIT have been defined
above. The derivation of these quantities with respect to the tensor yield

∂IT
∂T

= 111 ,

∂IIT
∂T

= IT 1 − T ,

∂IIIT
∂T

= IIIT T−1 .
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By application of the Cayley–Hamilton theorem T3 − IT T2 + IIT T −
IIIT 1 = 0, relation

∂IIIT
∂T

= T2 − IT T + IIT 1

is deduced. For an invertible tensor A of second order, it yields
∂trA
∂A

= 1 ,

∂tr (A2)
∂A

= 2AT ,

∂ detA
∂A

= detAA−T .

A.2.6 Pull Back and Push Forward Operations

In this section, the pull back (ϕ∗) and push forward (ϕ∗) operations will be
discussed. The co-variant basis vectors {gi}, see Fig. A.1, are related to the
tangent space while the contr-variant basis vectors {gi} can be denoted as
one forms. These bases have different behaviour when pulled back from the
current to the initial configuration and when pushed forward from the initial
configuration to the current one. The following table depicts the different
behaviour during transformation

gi = FGi , gi = F−T Gi ,

Gi = F−1 gi , Gi = FT gi .

As in Chap. 3, small letters are associated with quantities measured in the
current configuration and capital letters are related to quantities in the initial
configuration. Thus basis vectors Gi refer to the initial configuration B and
basis vectors gi refer to the current configuration ϕ(B).

The transformation behaviour of the divergence operator is given by

divv = 1
J Divv , Divv = J divv .

In analogous way, the gradients can be transferred:

gradα = F−T Gradα , Gradα = FT gradα ,
gradv = GradvF , Gradv = gradvF−1 .

Tensors can, as well as gradients, be referred to base systems of the ini-
tial or current configuration. Here this will be exemplarily performed for the
Cauchy stress tensor σ, which is defined with respect to the current config-
uration. With the representation of σ with respect to co-variant and contra
variant bases

σ� = σik gi ⊗ gk ,
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σ� = σik gi ⊗ gk ,

σ1 = σi
·k gi ⊗ gk ,

the pull back and push forward operations are

push forward pull back

σ� = F−T ΣΣΣ� F−1 ΣΣΣ� = FT σ� F

σ� = FΣΣΣ� FT ΣΣΣ� = F−1 σ� F−T

σ1 = FΣΣΣ1 F−1 ΣΣΣ1 = F−1 σ1 F.

Here ΣΣΣ denotes the stress tensor referred to the initial configuration B.

A.2.7 Lie-Derivative of Stress Tensors

The Lie derivative is a derivative of a spatial tensor with respect to time. It
is defined by

Lv (t) = Φt ∗

[
d

dt
Φ∗

t (t)
]
.

This means that one has first to pull the tensor back to initial configuration;
then perform the time derivative and after that push the result forward to
the spatial or current configuration.

It can be applied to tensors which are defined with respect to the current
configuration, see e.g. Sect. 3.1.4. The Lie derivative yields the flux related to
the used stress tensor. From the definition of the pull back and push forward
operations, it is clear that the selected tensor basis (co-variant or contra-
variant) has influence on the result of the Lie derivative. Since stress tensors
are mostly written with respect to a co-variant basis, this basis is used for
the following considerations.

Application of the Lie derivative to the Kirchhoff stress tensor τττ yields
the so-called Oldroyd stress flux or stress rate

Lv (τττ �) = F
d

dt

[
F−1 τττ F−t

]
FT .

With (3.47), the result F Ḟ
−1

= −l is obtained from d
dt (FF−1) = 0 and

hence the final expression for the Oldroyd stress rate is

Lv (τττ �) = τ̇ττ � − l τττ � − τττ � lT .

The Truesdell stress rate LJ
v (σ�) follows from the relation between the

2nd Piola–Kirchhoff stress tensor and the Cauchy stress tensor

LJ
v (σ�) = J−1 F

d

dt
[JF−1 σ� F−T ]FT

= σ̇� − lσ� − σ� lT + σ� tr(d ) .
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These stress rates are objective, see Sect. 3.2.6.
Further known stress rates can be derived in an analogous way. Let us

remark that the addition of two objective stress rates yield again an objective
stress rate.

A.2.8 Integral Theorems

The integral theorems are subdivided into two categories. The first one is
related to the transformation of area into volume integrals and the second
one is associated with the transformation of line or curve integrals into area
integrals.
Transformation of area integrals to volume integrals:∫

∂B

u · n da =
∫
B

Divu dv ,

∫
∂B

Tn da =
∫
B

DivT dv ,

∫
∂B

(u × Tn) da =
∫
B

(u × DivT + Gradu × T) dv ,

∫
∂B

n × u da =
∫
B

Rotu dv .

Since Divx = 3,

V =
∫
B

dv =
1
3

∫
∂B

x · n da

can be deducted from the first expression.
Transformation of line or curve integrals into area integrals:∮

C

Φdx =
∫

∂B

n × GradΦda ,

∮
C

u × dx =
∫

∂B

(Divu111 − GradT u)n da ,

∮
C

u · dx =
∫

∂B

Rotu · n da .
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based on element preconditioning. International Journal of Computer Mathe-
matics, 78(4):575–598 (2001).

Habraken A. and Cescotto S. An automatic remeshing technique for finite element
simulation of forming processes. International Journal for Numerical Methods in
Engineering , 30:1503–1525 (1990).

Hackbusch W. Iterative Solution of Large Sparse Systems. Springer, New York
(1994).

Hackbusch W. Multi-Grid Methods and Applications. Springer, New York (2003).
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basis transformation, 315
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– finite element formulation, 335
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– order of integration, 337
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– tangent matrix, 340
– weak form, 330, 336, 337
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bi-linear form, 275
bi-section method, 260
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conjugated gradient method, 176
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constitutive tangent, 237
contact, 17, 461
– algorithms, 480
– approach of the bodies, 466
– augmented Lagrange method, 473
– barrier method, 472
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– discrete weak form, 477
– discretization, 474
– distance function, 463
– friction, 468
– integration of friction law, 478
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– method of Lagrangian multipliers,

471
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– NTS-discretization, 476
– penalty method, 171, 472
– relative tangential velocity, 464
– tangential part tangent matrix, 481
– Uzawa algorithm, 473
– variational inequality, 470
continuation method, 151, 160
continuum element, 123, 399
– axi-symmetrical, 138
– composite elements, 405
– Cosserat point, 405
– enhanced strain, 403, 422
– inertia term, 125
– internal virtual work, 124
– load vector, 127
– macro element, 405
– mass matrix, 126
– mixed element, 412
– mixed formulation, 403, 404, 406
– nodally based, 405
– Q1-P0 element, 409
– reduced integration, 402
– stabilized elements, 416
– three-dimensional, 123, 134
– two-dimensional, 131
convective coordinates, 510
Cosserat point element, 405

Courant criterion, 211
current stiffness parameter, 163

damage, 58
damped Newton method, 158
damping
– damping matrix, 207
– modal damping, 207
deformation dependent loads
– discretization, 142
deformation gradient, 22, 30, 245, 425
deviatoric strain tensor, 29
direct solvers, 172
directional derivative, 91
director vector
– linearization, 385
dissipation inequality, 63
domain decomposition, 182
dynamical relaxation, 151, 211
dynamics
– displacement approximation, 210
– reduction methods, 224
– velocity approximation, 210

eigenvalue problem, 515
elasto-plastic deformations, 15
elasto-plastic material, 52, 499
– associative, 57
– beam element, 332
– consistent tangent, 129, 238
– equivalent plastic strain, 56
– finite deformations, 61
– flow rule, 55
– generalized equations, 57, 499
– Gurson model, 58
– isotropic hardening, 55
– kinematic hardening, 55
– Kuhn–Tucker conditions, 56
– non-associative, 57
– plane stress state, 353
– plastic dissipation, 60
– rate form, 82
– shells of revolution, 351
– small deformations, 53
– truss element, 321
– von Mises material, 238, 353
– yield criterion, 55
engineering strains, 331
enhanced strain elements, 403, 422
– eigenvectors, 445
– hour glass stabilization, 447
– incompatible modes, 426, 430
– instability, 440
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– shell element, 386
– tangent matrix, 428, 435, 443
– weak form, 427
entropy, 36
equation of motion, 207
equivalent plastic strain, 56
error control, 279
error estimators
– dual methods, 289
– residual based, 285
error indicators
– stress projection, 287, 293
error orthogonality, 275
explicit time integration, 208, 401

finite rotations, 372
first law of thermodynamics, 36
fix point method, 151
flow rule, 55
follower loads, 100
– discretization, 142
– linearization, 101
free Helmholtz energy, 36, 41
friction
– elasto-plastic analogy, 468

Gauss integration
– one-dimensional, 112, 336
– three-dimensional, 121
– two-dimensional, 117
geometrically nonlinearity, 9
GMRES method, 176
gradient plasticity, 59
Green–Lagrange strain tensor, 23, 24,

31
– directional derivative, 92
Green-Lagrange strain tensor, 348
Gurson model, 58

H1 element, 125, 507
heat supply, 36
Hellinger-Reissner functional, 412
Hencky strain tensor, 26
Hermite interpolation, 338
hexahedral elements, 119
higher order elements, 405
hour glass stabilization, 420
hour-glass mode, 416
Hu-Washizu principle, 87, 423
hybrid object-oriented approach, 486
hybrid symbolic-numerical approach,

487

hyper elastic material, 41, 441, 497
– Lamé constants, 45
– Lamé-constants, 193
– modulus of elasticity, 45
– Mooney-Rivlin material, 44
– Neo-Hooke material, 44
– Ogden material, 43, 316, 350, 365
– Poisson ratio, 45
– principal stretches, 47
– rate form, 74
– rate form for isochoric split, 75
– rate form in spectral decomposition,

76
– Split in isochoric and volumetric

parts, 46
– St. Venant material, 45, 218, 316, 365

ill-conditioning, 203
implicit time integration method
– Bossak method, 215
– Hilber method, 215
– momentum and energy preserving, 218
– Newmark method, 213
implicit time integration methods
– Newmark method, 215
incompatible modes, 425
incompressibility constraint, 49
incremental material equations, 73
incremental material tensor, 237
inequality, 17
inertia term, 125
initial configuration, 20
initial value problem
– inelastic material, 231
integrated flow condition, 334
integration algorithm
– algorithmic tangent, 333, 355, 500
– algorithmic tangent finite deforma-

tions, 254, 271
– algorithmic tangent small visco-

plastic deformations, 244
– algorithmic tangent, small plastic

deformations, 242
– elasto-plastic material, 239, 292, 333,

354, 500
– finite inelastic deformations, 244, 247
– implicit-explicit, 242
– material tangent, 237
– plane stress plasticity, 242
– rate equations, general, 232
– substepping, 242
– visco-plastic material, 243
– viscoelastic material, 233
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internal energy, 36
interpolation error, 275
invariants, 42, 515
isoparametric elements, 104
– computation of gradients, 108
– deformations, 106
– enhanced strain formulation, 424
– incompatible modes, 425
– one-dimensional shape functions, 109
– quadrilateral elements, 114
– quadrilaterals, 379
– three-dimensional interpolations, 119
– triangular elements, 113
– two-dimensional shape functions, 112
isoparametric shape functions, 418
isothermal process, 41
isotropic hardening, 54
iterative solvers, 176
– algebraic multigrid method, 190
– CGSTAB algorithm, 176, 178
– conjugated gradient method, 176
– examples, 190
– GMRES method, 176
– over-relaxation methods, 176
– PCG method, 177
– pre-conditioned conjugated gradient

method, 178, 192

Jacobi determinant, 22, 23
– directional derivative, 93
Jaumann stress rate, 39

kinematic hardening, 54, 55
kinetic energy, 36
Kirchhoff stress, 37, 247, 321
Kronecker symbol, 24, 511
Kuhn-Tucker conditions, 56, 246, 465,

470

Lagrangian multipliers, 406, 471
Lamé constants, 45, 96
Lie derivative, 32, 522
limit point, 14, 160, 261
line-search, 158, 159, 167
linear momentum, 34, 205
linear momentum balance, 205
linearization
– constitutive equations, 94
– follower loads, 101
– variational formulation, 96
load vector, 127
loading parameter, 151
locking, 367, 399, 460
logarithmic strains, 248

macro element, 405
mass matrix, 126, 207, 288
– consistent, 126
– diagonal, 126, 208
mechanical power, 36
membrane locking, 368
mesh dependent solutions, 59
mesh generation, 297
mesh refinement, 273
mixed finite elements, 404, 406
– Hu-Washizu functional, 407
– Lagrangian multipliers, 406
– penalty formulation, 407
– perturbed Lagrange formulation, 406
mixed methods, 369
mixed rotational elements, 404
modal analysis, 224
modulus of elasticity, 45
Mooney-Rivlin material, 44
motion, 20
multigrid method, 186

Neo-Hooke material, 44
Newton-Raphson method, 151, 152, 192
– damped, 158
– modified, 155
– numerical tangent, 153
nodally based element, 405
nonlinear solution paths, 160
nonlocal plasticity, 59

Oldroyd stress rate, 39
optimal mesh, 294

p-fem, 405
parallel equation solver, 182
– cg-method, 185
– communication, 183, 185
– domain decomposition, 182
– multigrid method, 186
– scale-up, 200
– speed-up, 199
– transfer operator, 188
patch test, 419, 456
path switching, 261
penalty method, 169, 407
Piola–Kirchhoff stresses, 37
placement, 20
plastic spin, 64
POD method, 224
Poisson ratio, 45
polar decomposition, 26, 390
pre-conditioned conjugated gradient

method, 178, 192
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pre-conditioner
– diagonal scaling, 180
– Incomplete factorization, 181
– JOR method, 180
– polynomial scaling, 181
– Schur-complement, 184, 185
pre-conditioning, 179
pressure load, 100
principal strains, 248
principal stretches, 26, 44
principle of stationary elastic potential,

86
principle of virtual work
– initial configuration, 84
problem solving environment, 486
profile optimization, 175
proper orthogonal decomposition, 227

Q1 element, 125, 459, 507
Q1-P0 element, 409
Q1/E12 element, 426
Q1/E4 element, 426, 449, 507
Q1/E4T element, 450
Q1/E9 element, 426, 507
Q1/EI9 element, 455, 459
Q1/P0 element, 459
QM1/E12 element, 459
Quasi-Newton method, 156, 192

radial return algorithm, 241
rank deficiency, 347, 385, 402, 416
rate form of constitutive equations, 73
Rayleigh quotient, 212
reduced base, 224
reduced integration, 368, 402
reduction methods
– modal analysis, 224
– POD method, 224
– Ritz vectors, 224
reference configuration, 20
residual vector
– axi-symmetrical element, 140
rheology, 65
rigid body motion, 25
Ritz vectors, 224, 226
rotations, 372
– Rodrigues formula, 374
– spherical coordinates, 373

scale-up, 200
second order theory, 8, 12, 342
shell element
– axisymmetric, 345
– B-matrices, 383

– Bathe-Dvorkin ansatz, 389
– director vector, 382
– enhanced strain, 386
– five-parameter theory, 381
– shear strains, 389
– tangent matrix, 384, 389
– three-dimensional, 362
– time integration, 219
– weak form, 383, 388
shells
– axial vector, 374, 391, 392
– base vectors, 370
– biomechanical material, 356
– deformation gradient, 371
– director vector, 374
– elasto-plastic material, 351
– extensible director, 374
– finite rotations, 373
– five-parameter model, 372
– Green-Lagrange strain tensor, 371
– hyperelastic material, 350
– inextensible director, 372
– Rodrigues formula, 374
– six-parameter model, 374
Sherman-Morrison formula, 513
singular point, 160, 204, 258
snap-through point, 263
snap-through problem, 12
softening, 242
solution of linear systems, 172
solvers
– direct, 172
– iterative, 176
– sparse, 174
spatial velocity gradient, 32
spectral decomposition, 26, 37, 516
speed-up, 199
spin, 63
stability point
– direct computation, 262
– direct computation, directional

derivative, 266
– direct computation, Newton method,

263
– direct computation, numerical

directional derivative, 267
stability problems, 255
– bi-section method, 260
– bifurcation point, 261
– diagonal elements, 258
– eigenvalue problem, 256
– limit point, 261
– linear buckling analysis, 257
– path switching, 261
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– singular point, 258
– type of singular point, 261
stabilization vector, 430
stabilized finite elements, 402
step size
– numerical tangent, 154
strain deviator, 54
strain energy function, 250
strain measures
– Almansi strain tensor, 28
– deviatoric strain tensor, 29
– generalized strain measures, 25
– generalized strains, 28, 328
– Green–Lagrange strain tensor, 23–25,

31
– Green-Lagrange strain tensor, 315
– Green-Lagrange strains, 328
– Hencky strain tensor, 26, 351
– left Cauchy–Green tensor, 28
– linear strain tensor, 24
– polar decomposition, 26, 390
– principal stretches, 26
– right Cauchy–Green tensor, 23
– stretch tensors, 26
stress deviator, 54
stress interpolation, 414
stress power, 36
stress tensor
– Biot stresses, 85
– Cauchy stresses, 35
– first Piola–Kirchhoff stresses, 37
– isochoric stress, 47
– Jaumann stress rate, 39
– Kirchhoff stresses, 37
– Lie derivative, 39
– Mandel stress, 64
– Oldroyd stress rate, 39, 522
– second Piola–Kirchhoff stresses, 37

218
– spectral decomposition, 37
– stress rates, 39
– time derivative, 38
– Truesdell stress rate, 522
– volumetric stress, 47
strong discontinuity approach, 59
subspace, 224
surface area element, 23

T1 element, 125
tangent matrix
– axi-symmetry, 142
– deforation dependent loads, 144

– elasto-plasticity, 238
– initial configuration, 130, 417
– initial stress matrix, 137, 141
– numerical differentiation, 153
– reference configuration, 359
– spatial configuration, 138
tensor, 511
– axial vector, 514
– Cayley–Hamilton theorem, 516
– components, 512
– determinant, 514
– divergenz, 520
– eigenvalues, 515
– gradient, 518
– integral theorems, 523
– invariants, 515
– inverse, 513
– Kronecker symbol, 511
– Lie derivative, 522
– pull back, 521
– push forward, 521
– rotation, 520
– scalar product, 512
– spectral decomposition, 516
– time differentiation, 518
– trace, 514
– transposed tensor, 513
– unit tensor, 513
tetrahedral elements, 119, 276, 404
theory of plasticity, 52
thermodynamics
– first law, 36
– second law, 40
time derivatives
– velocities, 206
time integration methods, 205
time step, 206, 209
transfer operator, 188
transformation
– surface are element, 23
– volume element, 23
transverse shear locking, 368
truss element
– elasto-plastic material, 321
– finite-element formulation, 318
– nonlinear kinematics, 314
– Ogden material, 316
– St. Venant material, 316
– variational formulation, 317
type of singular point, 261

updated Lagrangian formulation, 98
Uzawa algorithm, 440, 473

– second Piola-Kirchhoff stresses,
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variational formulation
– linearization, 96
variational functional, 86
variational principle, 497
variational principles, 82
vector, 511
velocities, 206, 208
velocity, 31
– approximation, 209
visco-elastic material, 65
– Kelvin-Voigt model, 66
– Maxwell model, 67
– time integration, 233

visco-plastic material, 65, 70
– Bingham-model, 70
– one-dimensional model, 71
– Perzyna Model, 72
Voigt notation, 49
volume element, 23
volume locking, 368, 406

weak form, 497
– Biot stresses, 85
– current configuration, 86
– initial configuration, 84

yield stress, 15



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




