
Chapter 8
Credibility theory

Credibility, as developed by American actuaries, has provided
us with a very powerful and intuitive formula. The European
Continental School has contributed to its interpretation. The
concepts are fundamental to insurance and will continue to be
most important in the future. I find it deplorable that the world
of finance has not yet realized the importance of collateral
knowledge far beyond insurance and the power of
credibility-type formulae — Hans Bühlmann, 1999

8.1 Introduction

In insurance practice it often occurs that one has to set a premium for a group of
insurance contracts for which there is some claim experience regarding the group
itself, but a lot more on a larger group of contracts that are more or less related.
The problem is then to set up an experience rating system to determine next year’s
premium, taking into account not only the individual experience with the group, but
also the collective experience. Two extreme positions can be taken. One is to charge
the same premium to everyone, estimated by the overall mean X of the data. This
makes sense if the portfolio is homogeneous, which means that all risk cells have
identical mean claims. But if this is not the case, the ‘good’ risks will take their
business elsewhere, leaving the insurer with only ‘bad’ risks. The other extreme
is to charge to group j its own average claims X j as a premium. Such premiums
are justified if the portfolio is heterogeneous, but they can only be applied if the
claims experience with each group is large enough. As a compromise, one may ask
a premium that is a weighted average of these two extremes:

z jX j +(1− z j)X . (8.1)

The factor z j that expresses how ‘credible’ the individual experience of cell j is, is
called the credibility factor; a premium such as (8.1) is called a credibility premium.
Charging a premium based on collective as well as individual experience is justified
because the portfolio is in general neither completely homogeneous, nor completely
heterogeneous. The risks in group j have characteristics in common with the risks
in other groups, but they also possess unique group properties.

One would choose z j close to one under the following circumstances: the risk ex-
perience with cell j is vast, it exhibits only little variation, or the variation between
groups is substantial. There are two methods to find a meaningful value for z j. In
limited fluctuation credibility theory, a cell is given full credibility z j = 1 if the ex-
perience with it is large enough. This means that the probability of having at least a
certain relative error in the individual mean does not exceed a given threshold. If the
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experience falls short of full credibility, the credibility factor is taken as the ratio of
the experience actually present and the experience needed for full credibility. More
interesting is the greatest accuracy credibility theory, where the credibility factors
are derived as optimal coefficients in a Bayesian model with variance components.
This model was developed in the 1960’s by Bühlmann.

Note that apart from claim amounts, the data can also concern loss ratios, that is
claims divided by premiums, or claims as a percentage of the sum insured, and so
on. Quite often, the claims experience in a cell relates to just one contract, observed
in a number of periods, but it is also possible that a cell contains various ‘identical’
contracts.

In practice, one should use credibility premiums only if one only has very few
data. If one has additional information in the form of collateral variables, for ex-
ample, probably using a generalized linear model (GLM) such as described in the
following chapter is indicated, or a mixed model. The main problem is to determine
how much virtual experience, see Remark 8.2.7 and Exercise 8.4.7, one should in-
corporate.

In Section 8.2 we present a basic model to illustrate the ideas behind credibility
theory. In this model the claims total Xjt for contract j in period t is decomposed into
three separate components. The first component is the overall mean m. The second
a deviation from this mean that is specific for this contract. The third is a deviation
for the specific time period. By taking these deviations to be independent random
variables, we see that there is a covariance structure between the claim amounts,
and under this structure we can derive estimators of the components that minimize a
certain sum of squares. In Section 8.3 we show that exactly these covariance struc-
tures, and hence the same optimal estimators, also arise in more general models.
Furthermore, we give a short review of possible generalizations of the basic model.
In Section 8.4, we investigate the Bühlmann-Straub model, in which the observa-
tions are measured in different precision. In Section 8.5 we give an application from
motor insurance, where the numbers of claims are Poisson random variables with as
a parameter the outcome of a structure parameter that is assumed to follow a gamma
distribution.

8.2 The balanced Bühlmann model

To clarify the ideas behind credibility theory, we study in this section a stylized
credibility model. Consider the random variable Xjt , representing the claim figure
of cell j, j = 1,2, . . . ,J, in year t. For simplicity, we assume that the cell contains
a single contract only, and that every cell has been observed during T observation
periods. So for each j, the index t has the values t = 1,2, . . . ,T . Assume that this
claim statistic is the sum of a cell mean m j plus ‘white noise’, that is, that all Xjt

are independent and N(m j,s2) distributed, with possibly unequal mean m j for each
cell, but with the same variance s2 > 0. We can test for equality of all group means
using the familiar statistical technique of analysis of variance (ANOVA). If the null-
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hypothesis that all m j are equal fails to hold, this means that there will be more
variation between the cell averages X j around the overall average X than can be
expected in view of the observed variation within the cells. For this reason we look
at the following random variable, called the sum-of-squares-between:

SSB =
J

∑
j=1

T (X j −X)2. (8.2)

One may show that, under the null-hypothesis that all group means m j are equal, the
random variable SSB has mean (J − 1)s2. Since s2 is unknown, we must estimate
this parameter separately. This estimate is derived from the sum-of-squares-within,
defined as

SSW =
J

∑
j=1

T

∑
t=1

(Xjt −X j)
2. (8.3)

It is easy to show that the random variable SSW has mean J(T − 1)s2. Dividing
SSB by J − 1 and SSW by J(T − 1) we get two random variables, each with mean
s2, called the mean-square-between (MSB) and the mean-square-within (MSW ) re-
spectively. We can perform an F-test now, where large values of the MSB compared
to the MSW indicate that the null-hypothesis that all group means are equal should
be rejected. The test statistic to be used is the so-called variance ratio or F-ratio:

F =
MSB
MSW

=
1

J−1 ∑ j T (X j −X)2

1
J(T−1) ∑ j ∑t(Xjt −X j)2

. (8.4)

Under the null-hypothesis, SSB divided by s2 has a χ2(J − 1) distribution, while
SSW divided by s2 has a χ2(J(T − 1)) distribution. Furthermore, it is possible to
show that these random variables are independent. Therefore, the ratio F has an
F(J − 1,J(T − 1)) distribution. Proofs of these statements can be found in many
texts on mathematical statistics, under the heading ‘one-way analysis of variance’.
The critical values of F can be found in an F-table (Fisher distribution).

Example 8.2.1 (A heterogeneous portfolio)
Suppose that we have the following observations for 3 groups and 5 years:

t = 1 t = 2 t = 3 t = 4 t = 5 X j

j = 1 99.3 93.7 103.9 92.5 110.6 100.0
j = 2 112.5 108.3 118.0 99.4 111.8 110.0
j = 3 129.2 140.9 108.3 105.0 116.6 120.0

As the reader may verify, the MSB equals 500 with 2 degrees of freedom, while the
MSW is 109 with 12 degrees of freedom. This gives a value F = 4.588, which is
significant at the 95% level, the critical value being 3.885. The conclusion is that
the data show that the mean claims per group are not all equal.

To get R to do the necessary calculations, do the following:
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J <- 3; K <- 5; X <- scan(n=J*K)
99.3 93.7 103.9 92.5 110.6
112.5 108.3 118.0 99.4 111.8
129.2 140.9 108.3 105.0 116.6
j <- rep(1:J, each=K); j <- as.factor(j)
X.bar <- mean(X); Xj.bar <- tapply(X, j, mean)
MSB <- sum((Xj.bar-X.bar)ˆ2) * K / (J-1)
MSW <- sum((X-rep(Xj.bar,each=K))ˆ2)/J/(K-1)
MSB/MSW; qf(0.95, J-1, J*(K-1)) ## 4.588 and 3.885

The use of K instead of T to denote time avoids problems with the special identifiers
T and t in R. The vector Xj.bar is constructed by applying the mean function to
all groups of elements of X with the same value of j.

It is also possible to let R do the analysis of variance. Use a linear model, ex-
plaining the responses X from the group number j (as a factor). This results in:

> anova(lm(X˜j))
Analysis of Variance Table

Response: X
Df Sum Sq Mean Sq F value Pr(>F)

j 2 1000.00 500.00 4.5884 0.03311 *
Residuals 12 1307.64 108.97

The probability of obtaining a larger F-value than the one we observed here is
0.03311, so the null-hypothesis that the group means are all equal is rejected at
the 5% level. ∇

If the null-hypothesis fails to be rejected, there is apparently no convincing statis-
tical evidence that the portfolio is heterogeneous. So there is no reason not to ask
the same premium for each contract. In case of rejection, apparently there is varia-
tion between the cell means m j. In this case one may treat these numbers as fixed
unknown numbers, and try to find a system behind these numbers, for example by
doing a regression on collateral data. Another approach is to assume that the num-
bers m j have been produced by a chance mechanism, hence by ‘white noise’ similar
to the one responsible for the deviations from the mean within each cell. This means
that we can decompose the claim statistics as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T, (8.5)

with Ξ j and Ξ jt independent random variables for which

E[Ξ j] = E[Ξ jt ] = 0, Var[Ξ j] = a, Var[Ξ jt ] = s2. (8.6)

Because the variance of Xjt in (8.5) equals the sum of the variances of its compo-
nents, models such as (8.5) are called variance components models. Model (8.5) is
a simplified form of the so-called classical Bühlmann model, because we assumed
independence of the components where Bühlmann only assumes the correlation to
be zero. We call our model that has equal variance for all observations, as well as
equal numbers of policies in all cells, the balanced Bühlmann model.
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The interpretation of the separate components in (8.5) is the following.

1. m is the overall mean; it is the expected value of the claim amount for an arbitrary
policyholder in the portfolio.

2. Ξ j denotes a random deviation from this mean, specific for contract j. The condi-
tional mean, given Ξ j = ξ , of the random variables Xjt equals m+ξ . It represents
the long-term average of the claims each year if the length of the observation pe-
riod T goes to infinity. The component Ξ j describes the risk quality of this par-
ticular contract; the mean E[Ξ j] equals zero, its variation describes differences
between contracts. The distribution of Ξ j depicts the risk structure of the portfo-
lio, hence it is known as the structure distribution. The parameters m, a and s2

characterizing the risk structure are called the structural parameters.
3. The components Ξ jt denote the deviation for year t from the long-term average.

They describe the within-variation of a contract. It is the variation of the claim
experience in time through good and bad luck of the policyholder.

Note that in the model described above, the random variables Xjt are dependent for
fixed j, since they share a common risk quality component Ξ j. One might say that
stochastically independent random variables with the same probability distribution
involving unknown parameters in a sense are dependent anyway, since their values
all depend on these same unknown parameters.

In the next theorem, we are looking for a predictor of the as yet unobserved ran-
dom variable Xj,T+1. We require this predictor to be a linear combination of the
observable data X11, . . . ,XJT with the same mean as Xj,T+1. Furthermore, its mean
squared error must be minimal. We prove that under model (8.5), this predictor has
the credibility form (8.1), so it is a weighted average of the individual claims expe-
rience and the overall mean claim. The theorem also provides us with the optimal
value of the credibility factor z j. We want to know the optimal predictor of the
amount to be paid out in the next period T +1, since that is the premium we should
ask for this contract. The distributional assumptions are assumed to hold for all pe-
riods t = 1, . . . ,T +1. Note that in the theorem below, normality is not required.

Theorem 8.2.2 (Balanced Bühlmann model; homogeneous estimator)
Assume that the claim figures Xjt for contract j in period t can be written as the sum
of stochastically independent components, as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T +1, (8.7)

where the random variables Ξ j are iid with mean E[Ξ j] = 0 and Var[Ξ j] = a, and
also the random variables Ξ jt are iid with mean E[Ξ jt ] = 0 and Var[Ξ jt ] = s2 for all
j and t. Furthermore, assume the random variables Ξ j to be independent of the Ξ jt .
Under these conditions, the homogeneous linear combination g11X11 + · · ·+gJT XJT

that is the best unbiased predictor of Xj,T+1 in the sense of minimal mean squared
error (MSE)

E[{Xj,T+1 −g11X11 −·· ·−gJT XJT}2] (8.8)

equals the credibility premium
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zX j +(1− z)X , (8.9)

where

z =
aT

aT + s2 (8.10)

is the resulting best credibility factor (which in this case is equal for all j),

X =
1

JT

J

∑
j=1

T

∑
t=1

Xjt (8.11)

is the collective estimator of m, and

X j =
1
T

T

∑
t=1

Xjt (8.12)

is the individual estimator of m.

Proof. Because of the independence assumptions and the equal distributions, the
random variables Xit with i 	= j are interchangeable. By convexity, (8.8) has a unique
minimum. In the optimum, all values of git , i 	= j must be identical, for reasons of
symmetry. If not, by interchanging coefficients we can show that more than one
extremum exists. The same goes for all values g jt , t = 1, . . . ,T . Combining this with
the unbiasedness restriction, we see that the homogeneous linear estimator with
minimal MSE must be of the form (8.9) for some z. We only have to find its optimal
value.

Since Xjt , X j and X all have mean m, we can rewrite the MSE (8.8) as:

E[{Xj,T+1 − (1− z)X − zX j}2] = E[{Xj,T+1 −X − z(X j −X)}2]

= E[{Xj,T+1 −X}2]−2z E[{Xj,T+1 −X}{X j −X}]+ z2 E[{X j −X}2]

= Var[Xj,T+1 −X ]−2z Cov[Xj,T+1 −X ,X j −X ]+ z2 Var[X j −X ].

(8.13)

This quadratic form in z is minimal for the following choice of z:

z =
Cov[Xj,T+1 −X ,X j −X ]

Var[X j −X ]
=

aT
aT + s2 , (8.14)

where it is left to the reader (Exercise 8.2.1) to verify the final equality in (8.13) by
proving and filling in the necessary covariances:

Cov[Xjt ,Xju] = a for t 	= u;

Var[Xjt ] = a+ s2;

Cov[Xjt ,X j] = Var[X j] = a+
s2

T
;

Cov[X j,X ] = Var[X ] =
1
J
(a+

s2

T
).

(8.15)
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So indeed predictor (8.9) leads to the minimal MSE (8.8) for the value of z given in
(8.10). ∇

Remark 8.2.3 (Asymptotic properties of the optimal credibility factor)
The credibility factor z in (8.10) has plausible asymptotic properties:

1. If T → ∞, then z → 1. The more claims experience there is, the more faith we can
have in the individual risk premium. This asymptotic case is not very relevant in
practice, as it assumes that the risk does not change over time.

2. If a ↓ 0, then z ↓ 0. If the expected individual claim amounts are identically dis-
tributed, there is no heterogeneity in the portfolio. But then the collective mean
m, when known, or its best homogeneous estimator X are optimal linear estima-
tors of the risk premium. See (8.16) and (8.9).

3. If a → ∞, then z → 1. This is also intuitively clear. In this case, the result on the
other contracts does not provide information about risk j.

4. If s2 → ∞, then z → 0. If for a fixed risk parameter, the claims experience is ex-
tremely variable, the individual experience is not especially useful for estimating
the real risk premium. ∇

Note that (8.9) is only a statistic if the ratio s2/a is known; otherwise its distribution
will contain unknown parameters. In Example 8.2.5 below we show how this ratio
can be estimated as a by-product of the ANOVA. The fact that the credibility factor
(8.14) does not depend on j is due to the simplifying assumption we have made
that the number of observation periods is the same for each j, as well as that all
observations have the same variance.

If we allow our linear estimator to contain a constant term, looking in fact at
the best inhomogeneous linear predictor g0 +g11X11 + · · ·+gJT XJT , we get the next
theorem. Two things should be noted. One is that it will prove that the unbiasedness
restriction is now superfluous. The other is that (8.16) below looks just like (8.9),
except that the quantity X is replaced by m. But this means that the inhomogeneous
credibility premium for group j does not depend on the data from other groups
i 	= j. The homogeneous credibility premium assumes the ratio s2/a to be known;
the inhomogeneous credibility premium additionally assumes that m is known.

Theorem 8.2.4 (Balanced Bühlmann model; inhomogeneous estimator)
Under the same distributional assumptions about Xjt as in the previous theorem, the
inhomogeneous linear combination g0 +g11X11 + · · ·+gJT XJT to predict next year’s
claim total Xj,T+1 that is optimal in the sense of mean squared error is the credibility
premium

zX j +(1− z)m, (8.16)

where z and X j are as in (8.10) and (8.12).

Proof. The same symmetry considerations as in the previous proof tell us that the
values of git , i 	= j are identical in the optimal solution, just as those of g jt , t =
1, . . . ,T . So for certain g0, g1 and g2, the inhomogeneous linear predictor of Xj,T+1

with minimal MSE is of the following form:
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g0 +g1X +g2X j. (8.17)

The MSE can be written as variance plus squared bias, as follows:

E[{Xj,T+1 −g0 −g1X −g2X j}2]

= Var[Xj,T+1 −g1X −g2X j]+{E[Xj,T+1 −g0 −g1X −g2X j]}2.
(8.18)

The second term on the right hand side is zero, and hence minimal, if we choose
g0 = m(1−g1−g2). This entails that the estimator we are looking for is necessarily
unbiased. The first term on the right hand side of (8.18) can be rewritten as

Var[Xj,T+1 − (g2 +g1/J)X j −g1(X −X j/J)]

= Var[Xj,T+1 − (g2 +g1/J)X j]+Var[g1(X −X j/J)]+0,
(8.19)

because the covariance term vanishes since g1(X −X j/J) depends only of Xit with
i 	= j. Hence any solution (g1,g2) with g1 	= 0 can be improved, since a lower value
of (8.19) is obtained by taking (0,g2 +g1/J). Therefore choosing g1 = 0 is optimal.
So all that remains to be done is to minimize the following expression for g2:

Var[Xj,T+1 −g2X j] = Var[Xj,T+1]−2g2Cov[Xj,T+1,X j]+g2
2Var[X j], (8.20)

which has as an optimum

g2 =
Cov[Xj,T+1,X j]

Var[X j]
=

aT
aT + s2 , (8.21)

so the optimal g2 is just z as in (8.10). The final equality can be verified by filling in
the relevant covariances (8.15). This means that the predictor (8.16) for Xj,T+1 has
minimal MSE. ∇

Example 8.2.5 (Credibility estimation in Example 8.2.1)
Consider again the portfolio of Example 8.2.1. It can be shown (see Exercise 8.2.8),
that in model (8.5) the numerator of F in (8.4) (the MSB) has mean aT + s2, while
the denominator MSW has mean s2. Hence 1/F will be close to s2/{aT +s2}, which
means that we can use 1 − 1/F to estimate z. Note that this is not an unbiased
estimator, since E[1/MSB] 	= 1/E[MSB]. The resulting credibility factor is z = 0.782
for each group. So the optimal forecasts for the claims next year in the three groups
are 0.782X j +(1−0.782)X , j = 1,2,3, resulting in 102.18, 110 and 118.82. Notice
the ‘shrinkage effect’: the credibility estimated premiums are closer together than
the original group means 100, 110 and 120. ∇

Remark 8.2.6 (Estimating the risk premium)
One may argue that instead of aiming to predict next year’s claim figure Xj,T+1,
including the fluctuation Ξ j,T+1, we actually should estimate the risk premium m+
Ξ j of group j. But whether we allow a constant term in our estimator or not, in each
case we get the same optimum. Indeed for every random variable Y :
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E[{m+Ξ j +Ξ j,T+1 −Y}2]

= E[{m+Ξ j −Y}2]+Var[Ξ j,T+1]+2Cov[m+Ξ j −Y,Ξ j,T+1].
(8.22)

If Y depends only on the Xjt that are already observed, hence with t ≤ T , the co-

for Y as an estimator of m + Ξ j and of Xj,T+1 = m + Ξ j + Ξ j,T+1 differ only by a
constant Var[Ξ j,T+1

2

estimator Y . ∇

The credibility premium (8.16) is a weighted average of the estimated individual
mean claim, with as a weight the credibility factor z, and the estimated mean claim

T for each contract is the same, by asking premium (8.16) on the lowest level we
receive the same premium income as when we would ask X as a premium from
everyone. For z = 0 the individual premium equals the collective premium. This
is acceptable in a homogeneous portfolio, but in general not in a heterogeneous
one. For z = 1, a premium is charged that is fully based on individual experience.
In general, this individual information is scarce, making this estimator unusable in
practice. Sometimes it even fails completely, like when a prediction is needed for a

The quantity a > 0 represents the heterogeneity of the portfolio as depicted in the
risk quality component Ξ j, and s2 is a global measure for the variability within the
homogeneous groups.

Remark 8.2.7 (Virtual experience)
Write XjΣ = Xj1 + · · ·+ XjT , then an equivalent expression for the credibility pre-
mium (8.16) is the following:

s2m+aT X j

s2 +aT
=

ms2/a+XjΣ

s2/a+T
. (8.23)

So if we extend the number of observation periods T by an extra s2/a periods and
also add ms2/a as virtual claims to the actually observed claims XjΣ , the credibility
premium is nothing but the average claims, adjusted for virtual experience. ∇

8.3 More general credibility models

In model (8.5) of the previous section, we assumed the components Ξ j and Ξ jt to
be independent random variables. But from (8.14) and (8.15) one sees that actu-
ally only the covariances of the random variables Xjt are essential. We get the same
results if we impose a model with weaker requirements, as long as the covariance
structure remains the same. An example is to only require independence and iden-
tical distributions of the Ξ jt , conditionally given Ξ j, with E[Ξ jt |Ξ j = ξ ] = 0 for

variance term must be equal to zero. Since it follows from (8.22) that the MSEs

contract that up to now has not produced any claim.

] = s , we conclude that both MSEs are minimized by the same

for the whole portfolio. Because we assumed that the number of observation years
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all ξ . If the joint distribution of Ξ j and Ξ jt is like that, the Ξ jt are not necessarily
independent, but they are uncorrelated, as can be seen from the following lemma:

Lemma 8.3.1 (Conditionally iid random variables are uncorrelated)
Suppose that given Ξ j, the random variables Ξ j1,Ξ j2, . . . are iid with mean zero.
Then we have

Cov[Ξ jt ,Ξ ju] = 0, t 	= u; Cov[Ξ j,Ξ jt ] = 0. (8.24)

Proof. Because of the decomposition rule for conditional covariances, see Exercise
8.3.1, we can write for t 	= u:

Cov[Ξ ju,Ξ jt ] = E
[
Cov[Ξ ju,Ξ jt |Ξ j]

]
+Cov

[
E[Ξ ju|Ξ j],E[Ξ jt |Ξ j]

]
. (8.25)

This equals zero since, by our assumptions, Cov[Ξ ju,Ξ jt |Ξ j]≡ 0 and E[Ξ ju|Ξ j]≡ 0.
Clearly, Cov[Ξ j,Ξ jt |Ξ j] ≡ 0 as well. Because

Cov[Ξ j,Ξ jt ] = E
[
Cov[Ξ j,Ξ jt |Ξ j]

]
+Cov

[
E[Ξ j|Ξ j],E[Ξ jt |Ξ j]

]
, (8.26)

the random variables Ξ j and Ξ jt are uncorrelated as well. ∇

Note that in the model of this lemma, the random variables Xjt are not marginally
uncorrelated, let alone independent.

Example 8.3.2 (Mixed Poisson distribution)
Assume that the Xjt random variables represent the numbers of claims in a year
on a particular motor insurance policy. The driver in question has a number of
claims in that year that has a Poisson(Λ j) distribution, where the parameter Λ j is
a drawing from a certain non-degenerate structure distribution. Then the first com-
ponent of (8.5) represents the expected number of claims m = E[Xjt ] = E[Λ j] of
an arbitrary driver. The second is Ξ j = Λ j −m; it represents the difference in av-
erage numbers of claims between this particular driver and an arbitrary driver. The
third term Ξ jt = Xjt −Λ j equals the annual fluctuation around the mean number of
claims of this particular driver. In this case, the second and third component, though
uncorrelated in view of Lemma 8.3.1, are not independent, for example because
Var[Xjt −Λ j|Λ j −m] ≡ Var[Xjt |Λ j] ≡ Λ j. See also Section 8.5. ∇

Remark 8.3.3 (Parameterization through risk parameters)
The variance components model (8.5), even with relaxed independence assump-
tions, sometimes is too restricted for practical applications. Suppose that Xjt as
in (8.5) now represents the annual claims total of the driver from Example 8.3.2,
and also suppose that this has a compound Poisson distribution. Then apart from
the Poisson parameter, there are also the parameters of the claim size distribution.
The conditional variance of the noise term, given the second term (mean annual to-
tal claim costs), is now no longer a function of the second term. To remedy this,
Bühlmann studied slightly more general models, having a latent random variable
Θ j, that might be vector-valued, as a structure parameter. The risk premium is the
conditional mean µ(Θ j) := E[Xjt |Θ j] instead of simply m + Ξ j. If E[Xjt |Θ j] is not
a one-to-one function of Θ j, it might occur that contracts having the same Ξ j in the
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basic model above, have a different pattern of variation Var[Ξ jt |Θ j] in Bühlmann’s
model. Therefore the basic model is insufficient here. But it can be shown that in
this case the same covariances, and hence the same optimal estimators, are found.

An advantage of using a variance components model over Bühlmann’s Bayesian
way of describing the risk structure is that the resulting models are technically as
well as conceptually easier, at only a slight cost of generality and flexibility. ∇

It is possible to extend credibility theory to models that are more complicated than
(8.5). Results resembling the ones from Theorems 8.2.2 and 8.2.4 can be derived for
such models. In essence, to find an optimal predictor in the sense of least squares
one minimizes the quadratic MSE over its coefficients, if needed with an additional
unbiasedness restriction. Because of the symmetry assumptions in the balanced
Bühlmann model, only a one-dimensional optimization was needed there. But in
general we must solve a system of linear equations that arises by differentiating ei-
ther the MSE or a Lagrange function. The latter situation occurs when there is an
unbiasedness restriction. One should not expect to obtain analytical solutions such
as above.

Some possible generalizations of the basic model are the following.

Example 8.3.4 (Bühlmann-Straub model; varying precision)
Credibility models such as (8.5) can be generalized by looking at Xjt that are aver-
ages over a number of policies. It is also conceivable that there are other reasons
to assume that not all Xjt have been measured equally precisely, therefore have
the same variance. For this reason, it may be expedient to introduce weights in
the model. By doing this, we get the Bühlmann-Straub model. In principle, these
weights should represent the total number of observation periods of which the fig-
ure Xjt is the mean (natural weights). Sometimes this number is unknown. In that
case, one has to make do with approximate relative weights, like for example the
total premium paid. If the actuary deems it appropriate, he can adjust these numbers
to express the degree of confidence he has in the individual claims experience of
particular contracts. In Section 8.4 we prove a result, analogous to Theorem 8.2.2,
for the homogeneous premium in the Bühlmann-Straub model. ∇

Example 8.3.5 (Jewell’s hierarchical model)
A further generalization is to subdivide the portfolio into sectors, and to assume that
each sector p has its own deviation from the overall mean. The claims experience
for contract j in sector p in year t can then be decomposed as follows:

Xp jt = m+Ξp +Ξp j +Ξp jt . (8.27)

This model is called Jewell’s hierarchical model. Splitting up each sector p into
subsectors q, each with its own deviation Ξp +Ξpq, and so on, leads to a hierarchical
chain of models with a tree structure. ∇

Example 8.3.6 (Cross classification models)
It is conceivable that Xp jt is the risk in sector p, and that index j corresponds to
some other general factor to split up the policies, for example if p is the region and
j the gender of the driver. For such two-way cross classifications it does not make
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sense to use a hierarchical structure for the risk determinants. Instead, one could add
to (8.27) a term Ξ ′

j, to describe the risk characteristics of group j. In this way, one
gets

Xp jt = m+Ξp +Ξ ′
j +Ξp j +Ξp jt . (8.28)

This is a cross-classification model. In Chapter 9, we study similar models, where
the row and column effects are fixed but unknown, instead of being modeled as
random variables such as here. ∇

Example 8.3.7 (De Vijlder’s credibility model for IBNR)
Credibility models are also useful to tackle the problem of estimating IBNR reserves
to be held, see also Chapter 10. These are provisions for claims that are not, or not
fully, known to the insurer. In a certain calendar year T , realizations are known
for random variables Xjt representing the claim figure for policies written in year
j, in their tth year of development, t = 0,1, . . . ,T − j. A credibility model for this
situation is

Xjt = (m+Ξ j)dt +Ξ jt , (8.29)

where the numbers dt are development factors, for example with a sum equal to
1, that represent the fraction of the claims paid on average in the tth development
period, and where m + Ξ j represents the claims, aggregated over all development
periods, on policies written in year j. ∇

Example 8.3.8 (Regression models; Hachemeister)
We can also generalize (8.5) by introducing collateral data. If for example y jt repre-
sents a certain risk characteristic of contract j, like for example the age of the policy
holder in year t, Ξ j might be written as a linear, stochastic, function of y jt . Then the
claims in year t are equal to

{m(1) +Ξ (1)
j }+{m(2) +Ξ (2)

j }y jt +Ξ jt , (8.30)

which is a credibility-regression model. Classical one-dimensional regression arises

when Ξ (k)
j ≡ 0,k = 1,2. This means that there are no latent risk characteristics.

Credibility models such as (8.30) were first studied by Hachemeister. ∇

8.4 The Bühlmann-Straub model

Just as in (8.7), in the Bühlmann-Straub model the observations can be decomposed
as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T +1, (8.31)

where the unobservable risk components Ξ j, j = 1,2, . . . ,J are iid with mean zero
and variance a; the Ξ jt are also independent with mean zero. The components Ξ j and
Ξ jt are assumed to be independent, too. The difference between the Bühlmann and
the Bühlmann-Straub models is that in the latter the variance of the Ξ jt components
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is s2/w jt , where w jt is the weight attached to observation Xjt . This weight repre-
sents the relative precision of the various observations. Observations with variances
like this arise when Xjt is an average of w jt replications, hence Xjt = ∑k Xjtk/w jt

where Xjtk = m + Ξ j + Ξ jtk with Ξ jtk iid with zero mean and variance s2. The ran-
dom variables Ξ jtk then denote deviations from the risk premium m+Ξ j for the kth
individual contract in time period t and group j. In this case, the weights are called
natural weights. Sometimes these weights are unknown, or there is another mecha-
nism that leads to differing variances. In that case we can, for example, approximate
the volume by the total premium for a cell.

To find the best homogeneous unbiased linear predictor ∑hitXit of the risk pre-
mium m + Ξ j (see Remark 8.2.6), we minimize its MSE. In Theorem 8.4.1 below,
we derive the optimal values in (8.33) for the coefficients hit , under the unbiasedness
restriction. The following notation will be used, see (8.10)–(8.12):

w jΣ =
T

∑
t=1

w jt ; wΣΣ =
J

∑
j=1

w jΣ ;

z j =
aw jΣ

s2 +aw jΣ
; zΣ =

J

∑
j=1

z j;

Xjw =
T

∑
t=1

w jt

w jΣ
Xjt ; Xww =

J

∑
j=1

w jΣ

wΣΣ
Xjw; Xzw =

J

∑
j=1

z j

zΣ
Xjw.

(8.32)

Notice the difference between for example Xjw and Xju. If a w appears as an in-
dex, this indicates that there has been a weighted summation over this index, using
the (natural or other) weights of the observations. An index z denotes a weighted
summation with credibility weights, while a Σ is used for an unweighted summa-
tion. The simplest way to allow for different numbers of observation periods Tj is to
include some observations with weight zero when necessary.

Theorem 8.4.1 (Bühlmann-Straub model; homogeneous estimator)
The MSE-best homogeneous unbiased predictor ∑i,t hitXit of the risk premium m+
Ξ j in model (8.31), that is, the solution to the following restricted minimization
problem

min
hit

E[{m+Ξ j −∑
i,t

hitXit}2]

subject to E[m+Ξ j] = ∑
i,t

hitE[Xit ],
(8.33)

is the following credibility estimator (see also (8.9)):

z jXjw +(1− z j)Xzw. (8.34)

Here Xjw as in (8.32) is the individual estimator of the risk premium, Xzw is the
credibility weighted collective estimator and z j the credibility factor for contract j.
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Proof. To prove that of all the linear combinations of the observations to estimate
m + Ξ j with the same mean, (8.34) has the smallest MSE, we could do a Lagrange
optimization, solving the first order conditions to find an extremum. But it is sim-
pler to prove the result by making use of the result that linear combinations of un-
correlated random variables with a given mean have minimal variance if the coeffi-
cients are inversely proportional to the variances; see Exercise 8.4.1. First we derive
the optimal ‘mix’ hit/hiΣ of the contracts in group i. The best choice proves to be
hit/hiΣ = wit/wiΣ ; from this we see that the observations Xit have to appear in (8.33)
in the form Xiw. Then we derive that the totals hiΣ of the coefficients with group i 	= j
are best taken proportional to z j. Finally, the optimal value of h jΣ is derived.

From (8.33) we see that the following problem must be solved to find the best
predictor of m+Ξ j:

min
hit :hΣΣ =1

E
[
{m+Ξ j −∑

i,t
hitXit}2

]
. (8.35)

The restriction hΣΣ = 1 is the unbiasedness constraint in (8.33). By this constraint,
the expectation in (8.35) is also the variance. Substituting decomposition (8.31) for
Xit , we get from (8.35):

min
hit :hΣΣ =1

Var
[
(1−h jΣ )Ξ j −∑

i	= j

hiΣ Ξi −∑
i,t

hitΞit

]
, (8.36)

or, what is the same because of the variances of the components Ξ j and Ξ jt and the
independence of these components:

min
hit :hΣΣ =1

(1−h jΣ )2a+ ∑
i	= j

h2
iΣ a+∑

i
h2

iΣ ∑
t

h2
it

h2
iΣ

s2

wit
. (8.37)

First we optimize the inner sum, extending over t. Because of Exercise 8.4.1 the
optimal values of hit/hiΣ are wit/wiΣ . So we can replace the observations Xit , t =
1,2, . . . ,T by their weighted averages Xiw. We see that the credibility estimator has
the form ∑i hiΣ Xiw, where the values of hiΣ are still to be found.

The minimal value for the inner sum equals s2/wiΣ . From (8.32) we see that
a+ s2/wiΣ = a/zi. So we can rewrite (8.37) in the form

min
hiΣ :hΣΣ =1

(1−h jΣ )2a+h2
jΣ

s2

w jΣ
+(1−h jΣ )2 ∑

i	= j

h2
iΣ

(1−h jΣ )2

a
zi

. (8.38)

As hΣΣ = 1, we have ∑i	= j hiΣ /(1− h jΣ ) = 1. So again because of Exercise 8.4.1,
the optimal choice in (8.38) for the factors hiΣ , i 	= j is

hiΣ
1−h jΣ

=
zi

zΣ − z j
. (8.39)

The minimal value for the sum in (8.38) is a/(zΣ − z j), so (8.38) leads to
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min
h jΣ

(1−h jΣ )2(a+
a

zΣ − z j
)+h2

jΣ
s2

w jΣ
. (8.40)

The optimal value for h jΣ , finally, can be found by once again applying Exercise
8.4.1. This optimal value is, as the reader may verify,

h jΣ =
w jΣ

s2

a+a/(zΣ−z j)
+w jΣ

=
1

1/z j−1
1+1/(zΣ−z j)

+1

=
z j(zΣ − z j +1)

(1− z j)(zΣ − z j)+ z j(zΣ − z j +1)
= z j +(1− z j)

z j

zΣ
.

(8.41)

Because of (8.39) we see that hiΣ = (1−z j)zi/zΣ , which implies that (8.34) is indeed
the MSE-optimal homogeneous unbiased linear predictor of the risk premium m +
Ξ j. ∇

Notice that if we replace Ξ j in (8.31) by the constant ξ j, that is, we take a = 0, we
get the classical weighted mean Xww. This is because in that case the relative weight
w jΣ for Xjw is equal to the credibility weight z j.

The inhomogeneous estimator of m+Ξ j contains a constant h, next to the homo-
geneous linear combination of the Xjt in (8.33). One may show, just as in Theorem
8.2.4, that the unbiasedness restriction is superfluous in this situation. The inhomo-
geneous estimator is equal to the homogeneous one, except that Xzw in (8.34) is
replaced by m. The observations outside group j do not occur in the estimator. For
the inhomogeneous estimator, both the ratio s2/a and the value of m must be known.
By replacing m by its best estimator Xzw under model (8.31), we get the homoge-
neous estimator again. Just as in Remark 8.2.6, the optimal predictor of m + Ξ j is
also the optimal predictor of Xj,T+1. The asymptotic properties of (8.34) are anal-
ogous to those given in Remark 8.2.3. Also, the credibility premium can be found
by combining the actual experience with virtual experience, just as in Remark 8.2.7.
See the exercises.

8.4.1 Parameter estimation in the Bühlmann-Straub model

The credibility estimators of this chapter depend on the generally unknown struc-
ture parameters m, a and s2. To be able to apply them in practice, one has to es-
timate these portfolio characteristics. Some unbiased estimators (not depending on
the structure parameters that are generally unknown) are derived in the theorem be-
low. We can replace the unknown structure parameters in the credibility estimators
by these estimates, hoping that the quality of the resulting estimates is still good.
The estimators of s2 and a are based on the weighted sum-of-squares-within:

SSW = ∑
j,t

w jt(Xjt −Xjw)2, (8.42)



218 8 Credibility theory

and the weighted sum-of-squares-between

SSB = ∑
j

w jΣ (Xjw −Xww)2. (8.43)

Note that if all weights w jt are taken equal to one, these expressions reduce to (8.2)
and (8.3), defined in the balanced Bühlmann model.

Theorem 8.4.2 (Unbiased parameter estimates)
In the Bühlmann-Straub model, the following statistics are unbiased estimators of
the corresponding structure parameters:

m̃ = Xww,

s̃2 =
1

J(T −1) ∑
j,t

w jt(Xjt −Xjw)2,

ã =
∑ j w jΣ (Xjw −Xww)2 − (J−1)s̃2

wΣΣ −∑ j w2
jΣ /wΣΣ

.

(8.44)

Proof. The proof of E[Xww] = m is easy. Using the covariance relations (8.15), we

get for s̃2:

J(T −1)E[s̃2] = ∑
j,t

w jt
{

Var[Xjt ]+Var[Xjw]−2Cov[Xjt ,Xjw]
}

= ∑
j,t

w jt

{
a+

s2

w jt
+a+

s2

w jΣ
−2(a+

s2

w jΣ
)

}
= J(T −1)s2.

(8.45)

For ã we have

E
[
∑

j
w jΣ (Xjw −Xww)2

]
= ∑

j
w jΣ

{
Var[Xjw]+Var[Xww]−2Cov[Xjw,Xww]

}
= ∑

j
w jΣ

{
a+

s2

w jΣ
+a∑

k

w2
kΣ

w2
ΣΣ

+
s2

wΣΣ
−2

( s2

wΣΣ
+

aw jΣ

wΣΣ

)}
= a∑

j
w jΣ

(
1+∑

k

w2
kΣ

w2
ΣΣ

−2
w jΣ

wΣΣ

)
+ s2 ∑

j
w jΣ

( 1
w jΣ

− 1
wΣΣ

)
= a

(
wΣΣ −∑

j

w2
jΣ

wΣΣ

)
+(J−1)s2.

(8.46)

Taking E[ã] in (8.44), using (8.45) and (8.46) we see that ã is unbiased as well. ∇
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Remark 8.4.3 (Negativity of estimators)
The estimator s̃2 is non-negative, but ã might well be negative. Although this may
be an indication that a = 0 holds, it can also happen if a > 0. Let us elaborate on
Example 8.2.1, returning to the balanced Bühlmann model where all weights w jt

are equal to one. In that case, defining MSW and MSB as in (8.4), the estimators of
s2 and a in Theorem 8.4.2 reduce to

s̃2 = MSW ; ã =
MSB−MSW

T
. (8.47)

To estimate z, we substitute these estimators into z = aT
aT+s2 , and we get the following

statistic:

z̃ = 1− MSW
MSB

. (8.48)

Using Xjt = m + Ξ j + Ξ jt and defining Ξ j = 1
T ∑t Ξ jt , we see that the SSW can be

written as

SSW =
J

∑
j=1

T

∑
t=1

(Xjt −X j)
2 =

J

∑
j=1

T

∑
t=1

(Ξ jt −Ξ j)
2. (8.49)

Under the assumption that the Ξ jt are iid N(0,s2), the right hand side divided by s2

has a χ2(J(T −1)) distribution. It is independent of the averages Ξ j, and hence also
of the averages X j = m+Ξ j +Ξ j. So MSW is independent of the X j, hence also of
MSB.

Assuming that the components Ξ j are iid N(0,a), we find in similar fashion that

SSB
a+ s2/T

=
J−1

aT + s2 MSB (8.50)

is χ2(J−1) distributed. So under the normality assumptions made, if it is multiplied
by the constant s2/(aT + s2) = 1− z, the variance ratio MSB/MSW of Section 8.2
is still F(J−1,J(T −1)) distributed. Thus,

(1− z)
MSB
MSW

=
1− z
1− z̃

∼ F(J−1,J(T −1)). (8.51)

In this way, Pr[ã < 0] can be computed for different values of J, T and s2/a, see for
example Exercise 8.4.9.

Note that by (8.47), the event ã < 0 is the same as MSB/MSW < 1. In Section
8.2 we established that the data indicate rejection of equal means, which boils down
to a = 0 here, only if MSB/MSW exceeds the right-hand F(J−1,J(T −1)) critical
value, which is larger than one for all J,T . Thus we conclude that, although Pr[ã <
0] > 0 for every a > 0, obtaining such a value means that a Fisher test for a = 0
based on these data would not have led to rejection. This in turn means that there is
in fact no statistical reason not to charge every contract the same premium.

In order to estimate a = Var[Ξ j], one would use max{0, ã} in practice, but, though
still consistent, this is not an unbiased estimator. ∇
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Remark 8.4.4 (Credibility weighted mean and ordinary weighted mean)
The best unbiased estimator of m in model (8.31) is not Xww, but Xzw. This does
not contradict Exercise 8.4.1, since both Xww and Xzw are linear combinations of the
random variables Xjw, the variances of which are not proportional to the original
weights w jΣ , but rather to the credibility adjusted weights z j. So a lower variance is
obtained if we estimate m by the credibility weighted mean Xzw instead of by the or-
dinary weighted mean Xww. A problem is that we do not know the credibility factors
z j to be used, as they depend on the unknown parameters that we are actually esti-
mating. One way to achieve better estimators is to use iterative pseudo-estimators,
which find estimates of the structure parameters by determining a fixed point of
certain equations. See Example 8.4.6, as well as the more advanced literature on
credibility theory. ∇

Example 8.4.5 (Computing the estimates in the Bühlmann-Straub model)
First, we generate a dataset consisting of J=10 contracts, with K=5 years of expo-
sure each, satisfying the distributional assumptions (8.31) of the Bühlmann-Straub
model. For that, we execute the following R-statements.

J <- 10; K <- 5; j <- rep(1:J, each=K); j <- as.factor(j)
m <- 100; a <- 100; s2 <- 64;
set.seed(6345789)
w <- 0.50 + runif(J*K)
X <- m + rep(rnorm(J, 0, sqrt(a)), each=K) +

rnorm(J*K, 0, sqrt(s2/w))

Note that we attach a random weight in the interval (0.5,1.5) to each observation. In
the last line, the second term is a vector of J independent N(0,a) random drawings
Ξ j, replicated K times each, the last a vector of independent N(0,s2/w jk) random
drawings Ξ jk, j = 1, . . . ,J,k = 1, . . . ,K.

Just as in Example 8.2.1, we apply ANOVA to determine if there is any signifi-
cant variation in the group means; if not, there is no heterogeneity between contracts
in the portfolio, therefore no reason to apply credibility theory.

> anova(lm(X˜j,weight=w))
Analysis of Variance Table

Response: X
Df Sum Sq Mean Sq F value Pr(>F)

j 9 5935.0 659.4 14.836 3.360e-10 ***
Residuals 40 1778.0 44.5

In this example the data clearly exhibit an effect of the factor group number. The
Sum Sq values 5935 and 1778 are the SSB and the SSW , respectively; see (8.42)
and (8.43), and see also below. The MSB and MSW , see (8.4), arise by dividing by
Df.

In these laboratory conditions, the parameter values a, m and s2 are known.
Therefore we can directly compute the credibility premiums (8.34) for this case.
First we compute the quantities in (8.32).
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w.js <- tapply(w, j, sum); w.ss <- sum(w.js)
z.j <- 1 / (1 + s2/(a*w.js)); z.s <- sum(z.j)
X.jw <- tapply(X*w, j, sum)/w.js
X.ww <- sum(X.jw * w.js) / w.ss
X.zw <- sum(X.jw * z.j) / z.s
pr.j <- z.j * X.jw + (1-z.j) * X.zw #(8.34)

In the real world, these parameters m, s2 and a are of course unknown and have to be
estimated from the data. In (8.42)–(8.44), we find formulas for unbiased estimators
m̃, s̃2 and ã. Using R, they can be found as follows:

m.tilde <- X.ww
SSW <- sum(w*(X-X.jw[j])ˆ2)
s2.tilde <- SSW/J/(K-1)
SSB <- sum(w.js*(X.jw-X.ww)ˆ2)
a.tilde <- (SSB - (J-1)*s2.tilde) / (w.ss - sum(w.jsˆ2)/w.ss)

Using the statements:

z.j.tilde <- 1 / (1 + s2.tilde / (a.tilde * w.js))
z.s.tilde <- sum(z.j.tilde)
X.zw.tilde <- sum(X.jw * z.j.tilde)/ z.s.tilde
pr.j.tilde <- z.j.tilde * X.jw + (1-z.j.tilde) * X.zw.tilde

we can recompute the credibility premiums (8.34) using the unbiased parameter
estimates and (8.32). ∇

Example 8.4.6 (A pseudo-estimator for the heterogeneity parameter)
The estimator ã of the heterogeneity parameter a given in (8.44) is unbiased, but it
is also awkward looking and unintuitive. Consider the unbiased estimate of s2, the
heterogeneity in time of the results of the contract, in (8.44):

s̃2 =
1

J(T −1) ∑
j,t

w jt(Xjt −Xjw)2. (8.52)

It adds up the squared differences of the observations with the contract mean,
weighted by the natural weight w jt that was used to construct Xjw. To get an un-
biased estimate of s2, we divide by the total experience JT , corrected for the fact
that J means have been estimated so only J(T −1) independent terms remain.

To get an analogous estimate of the between-groups heterogeneity a, consider

A =
1

J−1 ∑
j

z j(Xjw −Xzw)2. (8.53)

In this case, there are J groups, and one mean is estimated. The squared differences
between group mean and the best estimate Xzw for the overall mean m have weight
proportional to the credibility weight z j, the same set of weights that produces the
minimal variance estimator Xzw. The reader is invited to show that E[A] = a, see the
exercises.

There is, however, a problem with the random variable A. If we fill in Xzw in the
previous equation we get:
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A =
1

J−1 ∑
j

z j

(
Xjw −∑

i

zi

zΣ
Xiw

)2
with z j =

(
1+

s2

aw jΣ

)−1
. (8.54)

So the right hand side depends on the unknown structure parameters a and s2 (actu-
ally only on the ratio s2/a), let us say as A = f (a,s2) with f the appropriate function.
As a result, the random variable A is not a statistic, hence not an estimator. In such
cases, we speak of pseudo-estimators. So we look at the following estimate of A:

A1 = f (ã, s̃2). (8.55)

But A1 does not use the ‘best’ credibility weights available, therefore we look
at A2 = f (A1, s̃2). Optimizing, we then look iteratively at An+1 = f (An, s̃2), n =
2,3, . . .. Taking the limit for n → ∞, and calling the limiting random variable
limn→∞ An =: â, we see that the random variable â is the solution to the following
implicit equation:

â =
1

J−1 ∑
j

ẑ j

(
Xjw −∑

i

ẑi

ẑΣ
Xiw

)2
with ẑ j =

(
1+

s̃2

âw jΣ

)−1
. (8.56)

The exact statistical properties of this estimator â are hard to determine; even prov-
ing existence and uniqueness of the solution is a problem. But it is very easy to solve
this equation by successive substitution, using the following R statements:

a.hat <- a.tilde
repeat {
a.hat.old <- a.hat
z.j.hat <- 1/(1+s2.tilde/(w.js*a.hat))
X.zw.hat <- sum(z.j.hat * X.jw) / sum(z.j.hat)
a.hat <- sum(z.j.hat*(X.jw-X.zw.hat)ˆ2)/(J-1)
if (abs((a.hat-a.hat.old)/a.hat.old) < 1e-6) break}

Here a.tilde, assumed positive, and s2.tilde are the unbiased estimates, a..
is the current best guess An of â, and a. is the next one An+1. ∇

8.5 Negative binomial model for the number of car insurance
claims

In this section we expand on Example 8.3.2 by considering a driver with a random
accident proneness drawn from a non-degenerate distribution, and, given that his
accident proneness equals λ , a Poisson(λ ) distributed number of claims in a year.
Charging a credibility premium in this situation leads to an experience rating system
that resembles the bonus-malus systems we described in Chapter 6.

If for a motor insurance policy, all relevant variables for the claim behavior of the
policyholder can be observed as well as used, the number of claims still is generated
by a stochastic process. Assuming that this process is a Poisson process, the rating
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factors cannot do more than provide us with the exact Poisson intensity, that is, the
Poisson parameter of the number of claims each year. Of the claim size, we know
the probability distribution. The cell with policies sharing common values for all
the risk factors would be homogeneous, in the sense that all policy holders have
the same Poisson parameter and the same claims distribution. In reality, however,
some uncertainty about the parameters remains, because it is impossible to obtain
all relevant information on these parameters. So the cells are heterogeneous. This
heterogeneity is the actual justification of using a bonus-malus system. In case of
homogeneity, each policy represents the same risk, and there is no ground for asking
different premiums within a cell.

The heterogeneity of the claim frequency can be modeled by assuming that
the Poisson parameter λ has arisen from a structure variable Λ , with distribution
U(λ ) = Pr[Λ ≤ λ ]. Just as in (8.5), we decompose the number of claims Xjt for
driver j = 1, . . . ,J in time period t = 1, . . . ,Tj as follows:

Xjt = E[Λ ]+{Λ j −E[Λ ]}+{Xjt −Λ j}. (8.57)

Here Λ j ∼ Λ iid. The last two components are uncorrelated, but not independent;
see Exercise 8.5.6. Component Λ j −E[Λ ] has variance a = Var[Λ ]; for Xjt −Λ j, just
as in Example 3.3.1, Var[Xjt ]−Var[Λ j] = E[Λ ] remains. The structural parameters
m and s2 coincide because of the Poisson distributions involved.

Up to now, except for its first few moments, we basically ignored the structure
distribution. Several models for it are possible. Because of its mathematical proper-
ties and good fit (see later on for a convincing example), we will prefer the gamma
distribution. Another possibility is the structure distribution that produces a ‘good’
driver, having claim frequency λ1, with probability p, or a ‘bad’ driver with claim
frequency λ2 > λ1. The number of claims of an arbitrary driver then has a mixed
Poisson distribution with a two-point mixing distribution. Though one would expect
more than two types of drivers to be present, this ‘good driver/bad driver’ model
quite often fits rather closely to data found in practice.

For convenience, we drop the index j, except when we refer back to earlier sec-
tions. It is known, see again Example 3.3.1, that if the structure distribution of the
Poisson parameter is gamma(α,τ), the marginal distribution of the number of claims
Xt of driver j in time period t is negative binomial(α, p = τ/(τ + 1)). In Lemaire
(1985), we find data from a Belgian portfolio with J = 106974 policies, see Table
8.1. The numbers nk, k = 0,1, . . ., denote the number of policies with k accidents.
If Xt ∼ Poisson(λ ) for all j, the maximum likelihood estimate λ̂ for λ equals the
average number of claims over all j. In Section 3.9 we showed how to find the neg-
ative binomial parameter estimates α̂ and p̂ by maximum likelihood, solving (3.76)
and (3.77). Then τ̂ = p̂/(1− p̂) in the Poisson-gamma mixture model follows from
the invariance property of ML-estimators in case of reparameterization. Equation
(3.76) ensures that the first moment of the estimated structure distribution, hence
also of the marginal distribution of the number of claims, coincides with the first
sample moment. The parameters p, λ1 and λ2 of the good driver/bad driver model
have been estimated by the method of moments. Note that this method might fail to
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Table 8.1 Observed numbers of accidents in some portfolio, and fitted values for a pure Poisson
model and a negative binomial model fitted with ML, and a mixed Poisson model fitted by the
method of moments.

k nk n̂k (Poisson) n̂k (Neg.Bin.) n̂k (good/bad)

0 96 978 96 689.5 96 980.8 96 975.1
1 9 240 9 773.4 9 230.9 9 252.0
2 704 494.0 708.6 685.0
3 43 16.6 50.0 56.9
4 9 0.4 3.4 4.6

5+ 0 0.0 0.2 0.3
χ2 191. 0.1 2.1

produce admissible estimates λ̂i ≥ 0 and 0 ≤ p̂ ≤ 1. The resulting estimates for the
three models considered were

λ̂ = 0.1010806;

α̂ = 1.631292, τ̂ = 16.13852;

λ̂1 = 0.07616114, λ̂2 = 0.3565502, p̂ = 0.8887472.

(8.58)

Observed and estimated frequencies are in Table 8.1. The bottom row contains χ2 =

∑k(nk − n̂k)
2/n̂k. When computing such χ2-statistics, one usually combines cells

with estimated numbers less than 5 with neighboring cells. So the last three rows
are joined together into one row representing 3 or more claims. The two mixed
models provide an excellent fit; in fact, the fit of the negative binomial model is
almost too good to be true. Note that we fit 4 numbers using 2 or 3 parameters. But
homogeneity for this portfolio is rejected without any doubt whatsoever.

Though the null-hypothesis that the numbers of claims for each policy holder are
independent Poisson random variables with the same parameter is rejected, while
the mixed Poisson models are not, we cannot just infer that policy holders have
a fixed unobservable risk parameter, drawn from a structure distribution. It might
well be that the numbers of claims are just independent negative binomial random
variables, for example because the number of claims follows a Poisson process in
which each year a new intensity parameter is drawn independently from a gamma
structure distribution.

With the model of this section, we want to predict as accurately as possible the
number of claims that a policy holder produces in the next time period T + 1. This
number is a Poisson(λ ) random variable, with λ an observation of Λ , of which
the prior distribution is known to be, say, gamma(α,τ). Furthermore, observations
X1, . . . ,XT from the past are known. The posterior distribution of Λ , given X1 =
x1, . . . ,XT = xT , is also a gamma distribution, with adjusted parameters τ ′ = τ + T
and α ′ = α + xΣ with xΣ = x1 + · · ·+ xT ; see Exercise 8.5.2. Assuming a quadratic
loss function, in view of Exercise 8.2.9 the best predictor of the number of claims
next year is the posterior expectation of Λ :
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λT+1(x1, . . . ,xT ) =
α + xΣ
τ +T

. (8.59)

This is just the observed average number of claims per time unit, provided we in-
clude a virtual prior experience of α claims in a time period of length τ . See also
Remark 8.2.7. The forecasted premium (8.59) is also a credibility forecast, being a
linear combination of a priori premium and policy average, because, see (8.10):

α + xΣ
τ +T

= z
xΣ
T

+(1− z)
α
τ

for z =
T

τ +T
. (8.60)

Remark 8.5.1 (Non-linear estimators; exact credibility)
In Theorems 8.2.2 and 8.2.4 it was required that the predictors of Xj,T+1 were lin-
ear in the observations. Though such linear observations are in general the easiest to
deal with, one may also look at more general functions of the data. Without linearity
restriction, the best predictor in the sense of MSE for Xj,T+1 is the so-called pos-
terior Bayes estimator, which is just the conditional mean E[Xj,T+1|X11, . . . ,XJT ].
See also (8.59). If the Ξ j and the Ξ jt are independent normal random variables, the
optimal linear estimator coincides with the Bayes estimator. In the literature, this
is expressed as ‘the credible mean is exact Bayesian’. Also combining a gamma
prior and a Poisson posterior distribution gives such ‘exact credibility’, because the
posterior Bayes estimator happens to be linear in the observations. See Exercise
8.5.2. The posterior mean of the claim figure is equal to the credibility premium
(8.60). ∇

If we split up the premium necessary for the whole portfolio according to the mean
value principle, we get an experience rating system based on credibility, which is a
solid system for the following reasons:

1. The system is fair. Upon renewal of the policy, every insured pays a premium
that is proportional to his estimated claim frequency (8.59), taking into account
all information from the past.

2. The system is balanced financially. Write XΣ = X1 + · · ·+XT for the total number
of claims generated, then E[XΣ ] = E

[
E[XΣ |Λ ]

]
= T E[Λ ], so

E

[
α +XΣ
τ +T

]
=

α +T α
τ

τ +T
=

α
τ

. (8.61)

This means that for every policy, the mean of the proportionality factor (8.59) is
equal to its overall mean α/τ . So the expected value of the premium to be paid
by an arbitrary driver remains constant over the years.

3. The premium only depends on the number of claims filed in the previous T years,
and not on how these are distributed over this period. So for the premium next
year, it makes no difference if the claim in the last five years was in the first or
in the last year of this period. The bonus-malus system in Section 6.2 does not
have this property. But it is questionable if this property is even desirable. If one
assumes, like here, the intensity parameter λ to remain constant, K is a sufficient
statistic. In practice, however, the value of λ is not constant. People get past their
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Table 8.2 Optimal estimates (8.62) of the claim frequency next year compared with a new driver

Number of years T

Nr. of claims xΣ 0 1 2 3 4 5 6 7 8 9 10

0 100 94 89 84 80 76 73 70 67 64 62
1 153 144 137 130 124 118 113 108 104 100
2 212 200 189 180 171 164 157 150 144 138
3 271 256 242 230 219 209 200 192 184 177
4 329 311 295 280 267 255 243 233 224 215

youth or past their prime, or the offspring gets old enough to drive the family car.
Following this reasoning, later observations should count more heavily than old
ones.

4. Initially, at time t = 0, everyone pays the same premium, proportional to α/τ .
If T tends to ∞, the difference between the premium (α + xΣ )/(τ + T ) asked
and the actual average payments on the policy xΣ /T vanishes. The variance (α +
xΣ )/(τ + T )2 of the posterior distribution converges to zero. So in the long run,
everyone pays the premium corresponding to his own risk; the influence of the
virtual experience vanishes.

Using the values α = 1.6 and τ = 16, see (8.58), we have constructed Table 8.2
giving the optimal estimates of the claim frequencies in case of various lengths T of
the observation period and numbers k = xΣ of claims observed. The initial premium
is set to 100%, the a posteriori premiums are computed as:

100
λT+1(x1, . . . ,xT )

λ1
=

100 α+xΣ
τ+T

α/τ
= 100

τ(α + xΣ )

α(τ +T )
(8.62)

One sees that in Table 8.2, a driver who caused exactly one claim in the past ten
years represents the same risk as a new driver, who is assumed to carry with him
a virtual experience of 1.6 claims in 16 years. A person who drives claim-free for
ten years gets a discount of 1− τ/(τ +10) = 38%. After a claims experience of 16
years, actual and virtual experience count just as heavily in the premium.

Example 8.5.2 (Comparison with the bonus-malus system of Chapter 6)
As an example, look at the premiums to be paid in the 6th year of insurance by
a driver who has had one claim in the first year of observation. In Table 8.2, his
premium next year equals 124%. In the system of Table 6.1, his path on the ladder
was 2 → 1 → 2 → 3 → 4, so now he pays the premium of step 5, that is, 70%. The
total of the premiums paid (see Table 8.2) is 100+153+144+137+130+124 =
788% of the premium for a new entrant. In the system of Table 6.1, he has paid only
100 + 120 + 100 + 90 + 80 + 70 = 560%. Note that for the premium next year in
Table 8.2, it makes no difference if the claim occurred in the first or the last year of
observation, though this affects the total claims paid. ∇
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Remark 8.5.3 (Overlapping claim frequencies)
Consider a policyholder with T years of claims experience. The posterior distribu-
tion of the expected number of claims Λ is gamma(α +xΣ ,τ +T ) if xΣ claims were
filed. If T = 3, in case xΣ = 0 and xΣ = 2, the premium to be paid next year differs
by a factor 189/84 = 2.25. But the posterior distributions of both claim frequen-
cies overlap to a large extent. Indeed, in the first case, the probability is 60.5% to
have a claim frequency lower than the average α/(τ +T ) = 0.0842 for drivers with
a similar claims experience, since G(0.0842;α,τ + T ) = 0.605. But in the second
case, there also is a substantial probability to have a better Poisson parameter than
the average of drivers as above, since G(0.0842;α + xΣ ,τ +T ) = 0.121 for xΣ = 2
and T = 3. Experience rating by any bonus-malus system may be quite unfair for
‘good’ drivers who are unlucky enough to produce claims. ∇

8.6 Exercises

Section 8.2

1. Finish the proofs of Theorems 8.2.2 and 8.2.4 by filling in and deriving the relevant covariance
relations (8.15). Use and verify the linearity properties of covariances: for all random variables
X ,Y and Z, we have Cov[X ,Y +Z] = Cov[X ,Y ]+Cov[X ,Z], while for all real α , Cov[X ,αY ] =
αCov[X ,Y ].

2. Let X1, . . . ,XT be uncorrelated random variables with mean m and variance s2. Consider the
weighted average Xw = ∑t wtXt , where the weights wt ≥ 0, t = 1, . . . ,T satisfy ∑t wt = 1. Show
that E[Xw] = m, Cov[Xt ,Xw] = wts2 and Var[Xw] = ∑t w2

t s2.

[If especially wt ≡ 1
T , we get Xw = X and E[X ] = m;Cov[Xt ,X ] = Var[X ] = s2

T .]

3. Show that the sample variance S2 = 1
T−1 ∑T

1 {Xt −X}2 is an unbiased estimator of s2.

4. Show that the best predictor of Xj,T+1 is also the best estimator of the risk premium m+Ξ j in
the situation of Theorem 8.2.2. What is the best linear unbiased estimator (BLUE) of Ξ j?

5. Determine the variance of the credibility premium (8.9). What is the MSE? Also determine the
MSE of (8.9) as an estimator of m+Ξ j .

6. Determine the credibility estimator if the unbiasedness restriction is not imposed in Theorem
8.2.2. Also investigate the resulting bias.

7. Show that if each contract pays the homogeneous premium, the sum of the credibility premi-
ums equals the average annual outgo in the observation period.

8. Show that in model (8.5), the MSB has mean aT + s2, while the MSW has mean s2.

9. Prove that for each random variable Y , the real number p that is the best predictor of it in the
sense of MSE is p = E[Y ].

10. Let �X = (X11, . . . ,X1T ,X21, . . . ,X2T , . . . ,XJ1, . . . ,XJT )T be the vector containing the observable
random variables in (8.7). Describe the covariance matrix Cov[�X ,�X ].
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Section 8.3

1. Derive the formula Cov[X ,Y ] = E[Cov[X ,Y |Z]] + Cov[E[X |Z],E[Y |Z]] for the decomposition
of covariances into conditional covariances.

Section 8.4

1. Let X1, . . . ,XT be independent random variables with variances Var[Xt ] = s2/wt for certain
positive numbers (weights) wt , t = 1, . . . ,T . Show that the variance ∑t α2

t s2/wt of the linear
combination ∑t αt Xt with αΣ = 1 is minimal when we take αt ∝ wt , where the symbol ∝ means
‘proportional to’. Hence the optimal solution has αt = wt/wΣ . Prove also that the minimal
value of the variance in this case is s2/wΣ .

2. Prove that in model (8.31), we have Var[Xzw] ≤ Var[Xww]. See Remark 8.4.4.

3. Determine the best homogeneous linear estimator of m.

4. Show that in determining the best inhomogeneous linear estimator of m+Ξ j , the unbiasedness
restriction is superfluous.

5. Show that, just as in Remark 8.2.6, the optimal predictors of Xj,T+1 and m+Ξ j coincide in the
Bühlmann-Straub model.

6. Describe the asymptotic properties of z j in (8.32); see Remark 8.2.3.

7. In the same way as in Remark 8.2.7, describe the credibility premium (8.34) as a mix of actual
and virtual experience.

8. Show that (8.9) follows from (8.34) in the special case (8.5)–(8.6) of the Bühlmann-Straub
model given in (8.31).

9. In the situation of Remark 8.4.3, for s2/a = 0.823, J = 5 and T = 4, show that the probability
of the event ã < 0 equals 0.05.

10. Estimate the credibility premiums in the Bühlmann-Straub setting when the claims experience
for three years is given for three contracts, each with weight w jt ≡ 1. Find the estimates both
by hand and by using R, if the claims on the contracts are as follows:

t = 1 t = 2 t = 3

j = 1 10 12 14
j = 2 13 17 15
j = 3 14 10 6

11. Show that the pseudo-estimator A in (8.53) has indeed mean a.

12. Compare the quality of the iterative estimator â in (8.56) and the unbiased one ã, by generating
a large sample (say, 100 or 1000 replications of the laboratory portfolio as above). Look at
sample means and variances, and plot a histogram. Count how often the iterative estimate is
closer to the real value a.

Section 8.5

1. Verify that the parameters estimates given in (8.58) are as they should be.
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2. [♠] Suppose that Λ has a gamma(α,τ) prior distribution, and that given Λ = λ , the annual
numbers of claims X1, . . . ,XT are independent Poisson(λ ) random variables. Prove that the
posterior distribution of Λ , given X1 = x1, . . . ,XT = xT , is gamma(α + xΣ ,τ +T ), where xΣ =
x1 + · · ·+ xT .

3. By comparing Pr[X2 = 0] with Pr[X2 = 0|X1 = 0] in the previous exercise, show that the num-
bers of claims Xt are not marginally independent. Also show that they are not uncorrelated.

4. Show that the mode of a gamma(α,τ) distribution, that is, the argument where the density is
maximal, is (α −1)+/τ .

5. [♠] Determine the estimated values for nk and the χ2-test statistic if α and τ are estimated by
the method of moments.

6. Show that in the model (8.57) of this section, Λ j and Xjt −Λ j are uncorrelated. Taking α = 1.6
and τ = 16, determine the ratio Var[Λ j]/Var[Xjt ]. [Since no model for Xjt can do more than
determine the value of Λ j as precisely as possible, this ratio provides an upper bound for the
attainable ‘percentage of explained variation’ on an individual level.]

7. [♠] What is the Loimaranta efficiency of the system in Table 8.2? What is the steady state
distribution?

8. Verify the estimated values for nk and the χ2-test statistic if the estimates λ̂1, λ̂2, p̂ in (8.58)
are determined by maximum likelihood.


