
Chapter 3
Collective risk models

Any sufficiently advanced technology is indistinguishable from
magic — A.C. Clarke’s third law of prediction, 1973

3.1 Introduction

In this chapter, we introduce collective risk models. Just as in Chapter 2, we calcu-
late the distribution of the total claim amount, but now we regard the portfolio as a
collective that produces a random number N of claims in a certain time period. We
write

S = X1 +X2 + · · ·+XN , (3.1)

where Xi is the ith claim. Obviously, the total claims S = 0 if N = 0. The terms
of S in (3.1) correspond to actual claims; in (2.26), there are many terms equal to
zero, corresponding to the policies that do not produce a claim. We assume that
the individual claims Xi are independent and identically distributed, and also that N
and all Xi are independent. In the special case that N is Poisson distributed, S has a
compound Poisson distribution. If N has a (negative) binomial distribution, then S
has a compound (negative) binomial distribution.

In collective models, some policy information is ignored. If a portfolio contains
only one policy that could generate a high claim amount, this amount will appear
at most once in the individual model (2.26). In the collective model (3.1), however,
it could occur several times. Moreover, in collective models we require the claim
number N and the claim amounts Xi to be independent. This makes it somewhat less
appropriate to model a car insurance portfolio, since for example bad weather con-
ditions will cause a lot of small claim amounts. In practice, however, the influence
of these phenomena appears to be small.

A collective risk model turns out to be both computationally efficient and rather
close to reality. We give some algorithms to calculate the distribution of (3.1). An
obvious but laborious method is convolution, conditioning on N = n for all n. We
also discuss the sparse vector algorithm. This can be used if N ∼ Poisson, and is
based on the fact that the frequencies of the claim amounts can be proved to be
independent Poisson random variables. For a larger class of distributions, we can
use Panjer’s recursion, which expresses the probability of S = s recursively in terms
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42 3 Collective risk models

of the probabilities of S = k, k = 0,1, . . . ,s−1. Another approach is to use the Fast
Fourier Transform to invert the characteristic function.

We can express the moments of S in terms of those of N and Xi. With this in-
formation we can again approximate the distribution of S using the CLT if E[N]
is large, as well as by the translated gamma approximation and the normal power
approximation (NP) from the previous chapter.

Next, we look for appropriate distributions for N and Xi such that the collective
model fits closely to a given individual model. It will turn out that the Poisson distri-
bution and the negative binomial distribution are often appropriate choices for N. We
will show some relevant relations between these distributions. We will also discuss
some special properties of the compound Poisson distributions. Many parametric
distributions are suitable to model insurance losses. We study their properties, in-
cluding how to estimate the parameters by maximum likelihood and how to simulate
random drawings from them.

Stop-loss insurance policies are not only in use for reinsurance treaties, but also
for insuring absence due to illness, or if there is a deductible. We give a number
of techniques to calculate stop-loss premiums for discrete distributions, but also for
several continuous distributions. With the help of the approximations for distribution
functions introduced in Chapter 2, we can also approximate stop-loss premiums.

3.2 Compound distributions

Assume that S is a compound random variable such as in (3.1), with terms Xi dis-
tributed as X . Further use the following notation:

µk = E[Xk], P(x) = Pr[X ≤ x], F(s) = Pr[S ≤ s]. (3.2)

We can then calculate the expected value of S by using the conditional distribution of
S, given N. First, we use the condition N = n to substitute outcome n for the random
variable N on the left of the conditioning bar below. Next, we use the independence
of Xi and N to dispose of the condition N = n. This gives the following computation:

E[S] = E
[
E[S |N]

]
=

∞

∑
n=0

E[X1 + · · ·+XN |N = n]Pr[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn |N = n]Pr[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn]Pr[N = n]

=
∞

∑
n=0

nµ1 Pr[N = n] = µ1E[N].

(3.3)
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Note that the expected claim total equals expected claim number times expected
claim size.

Var[S] = E
[
Var[S |N]

] [ ][ ]
+Var[Nµ1]

= E[N]Var[X ]+ µ2
1 Var[N].

(3.4)

mS(t) = E
[
E[etS |N]

]
=

∞

∑
n=0

E
[
et(X1+···+XN |N = n

]
Pr[N = n]

=
∞

∑
n=0

E
[
et(X1+···+Xn)

]
Pr[N = n]

=
∞

∑
n=0

{
mX

}n
Pr[N = n] = E

[
(elogmX (t))N]

= mN X (t)).

(3.5)

Let N ∼ geometric(p), 0 < p < 1, and X ∼ exponential(1). What is the cdf of S?

For qet < 1, which means t < − logq, we have

mN(t) =
∞

∑
n=0

ent n =
p

1−qe
. (3.6)

Since X ∼ exponential(1), so mX (t) = (1− t)−1, (3.5) yields

mS(t) = mN(logmX (t)) =
p

1−qmX (t)
= p+q

p
p− t

, (3.7)

conclude that the cdf of S is the same mixture:

F(x) = p+q(1− e−px) = 1−qe−px for x ≥ 0. (3.8)

This is a distribution with a jump of size p in 0, exponential otherwise. ∇

This example is unique in the sense that it presents the only non-trivial compound
distribution with a closed form for the cdf.

The variance can be determined with the variance decomposition rule (2.22):

+Var E[S |N]

)

Example 3.2.1 (A compound distribution with closed form cdf)

pq

(t)

The same technique as used in (3.3) yields for the mgf:

= E NVar[X ]

(logm

t

so the mgf of S is a mixture of the mgfs of the constant 0 and of the exponential(p)

Write q = 1− p. First, we compute the mgf of S, and then we try to identify it.

distribution. Because of the one-to-one correspondence of cdfs and mgfs, we may
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3.2.1 Convolution formula for a compound cdf

The conditional distribution of S, given N = n, allows us to calculate F :

F(x) = Pr[S ≤ x] =
∞

∑
n=0

Pr[X1 + · · ·+XN ≤ x |N = n]Pr[N = n], (3.9)

so

F(x) =
∞

∑
n=0

P∗n(x)Pr[N = n], f (x) =
∞

∑
n=0

p∗n(x)Pr[N = n]. (3.10)

These expressions are the convolution formulas for a compound cdf.

Example 3.2.2 (Application of the convolution formula)
Let Pr[N = j−1] = j/10 for j = 1,2,3,4, and let p(1) = 0.4, p(2) = 0.6. By using
(3.10), F(x) can be calculated as follows:

x p∗0(x) p∗1(x) p∗2(x) p∗3(x) f (x) F(x)

0 1 0.1000 0.1000
1 0.4 0.0800 0.1800
2 0.6 0.16 0.1680 0.3480
3 0.48 0.064 0.1696 0.5176
4 0.36 0.288 : :
5 0.432 : :
: : : :

� × + � × + � × + � × = ↑ ⇒ ↑
Pr[N = n] 0.1 0.2 0.3 0.4

The probabilities Pr[N = n] in the bottom row are multiplied by the numbers in a
higher row. Then, the sum of these results is put in the corresponding row in the
column f (x). For example: 0.2×0.6+0.3×0.16 = 0.168. ∇

Note that if we attempt convolution in case of arbitrary discrete claim sizes rather
than integer-valued ones such as here, the number of possible values and the re-
quired number of computations increase exponentially.

Example 3.2.3 (Compound distributions, exponential claim amounts)
From expression (3.10) for F(x), we see that it is convenient to choose the distrib-
ution of X in such a way that the n-fold convolution is easy to calculate. This is the
case for the normal and the gamma distribution: the sum of n independent N(µ ,σ2)
random variables is N(nµ ,nσ2), while the sum of n gamma(α,β ) random variables
is a gamma(nα,β ) random variable.

Suppose the claim amounts have an exponential(1) distribution, which is the
same as gamma(α,β ) with α = β = 1. In Poisson waiting time processes, see also
Exercise 2.5.7 and Chapter 4, the probability of waiting at least a time x for the
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n-th event, which is at the same time the probability that at most n−1 events have
occurred at time x, is a Poisson(x) probability. Hence we have

1−P∗n(x) =
∫ ∞

x
yn−1 e−y

(n−1)!
dy = e−x

n−1

∑
i=0

xi

i!
. (3.11)

This can also be proved with partial integration or by comparing the derivatives, see
Exercise 3.2.7. So, for x > 0,

1−F(x) =
∞

∑
n=1

Pr[N = n] e−x
n−1

∑
i=0

xi

i!
. (3.12)

We can stop the outer summation as soon as Pr[N ≥ n] is smaller than the required
precision; also, two successive inner sums differ by the final term only, which im-
plies that a single summation suffices. ∇

Computing the distribution of the total claims is much easier if the terms are integer-
valued, so we will often approximate X by rounding it to the nearest multiples of
some discretization width.

3.3 Distributions for the number of claims

In practice, we will not have a lot of relevant data at our disposal to choose a dis-
tribution for N. To describe ‘rare events’, the Poisson distribution, having only one
parameter to be estimated, is always the first choice. Also, its use can be justified
if the underlying process can be described as a Poisson process, see Chapter 4. It
is well-known that the expected value and the variance of a Poisson(λ ) distribution
are both equal to λ . If Var[N]/E[N] > 1, that is, there is overdispersion, one may
use the negative binomial distribution instead. We consider two models in which the
latter distribution is derived as a generalization of a Poisson distribution.

Example 3.3.1 (Poisson distribution, uncertainty about the parameter)
Assume that some car driver causes a Poisson(λ ) distributed number of accidents
in one year. The parameter λ is unknown and different for every driver. We assume
that λ is the outcome of a random variable Λ . Then the conditional distribution of
the number of accidents N in one year, given Λ = λ , is Poisson(λ ). What is the
marginal distribution of N?

Let U(λ ) = Pr[Λ ≤ λ ] denote the distribution function of Λ . Then we can write
the marginal probabilities of event N = n as

Pr[N = n] =
∫ ∞

0
Pr[N = n |Λ = λ ]dU(λ ) =

∫ ∞

0
e−λ λ n

n!
dU(λ ), (3.13)

while for the unconditional mean and variance of N we have
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E[N] = E
[
E[N |Λ ]

]
= E[Λ ];

Var[N] = E
[
Var[N |Λ ]

]
+Var

[
E[N |Λ ]

]
= E[Λ ]+Var[Λ ] ≥ E[N].

(3.14)

Now assume additionally that Λ ∼ gamma(α,β ), then, writing p = β/(β +1),

mN(t) = E
[
E[etN |Λ ]

]
= E

[
exp{Λ(et −1)}] = mΛ (et −1)

=

(
β

β − (et −1)

)α
=

(
p

1− (1− p)et

)α
,

(3.15)

Obviously, the value of Λ for a particular driver is a non-observable random vari-
able. It is the ‘long run claim frequency’, the value to which the observed average

very long time, during which his claims pattern does not change. The distribution of
∇

Example 3.3.2 (Compound negative binomial is also compound Poisson)
At some intersection there are N traffic accidents with casualties in a year. There
are Li casualties in the ith accident, so S = L1 +L2 + · · ·+LN

i

Pr[Li = k] =
ck

k h(c)
, k = 1,2, . . . (3.16)

1, so from the usual series expansion of log(1+x), this function is h(c) =− log(1−
c), hence the name logarithmic distribution. What is the distribution of S?

i

mL(t) =
∞

∑
k=1

etkck

k h(c)
=

h(cet)

h(c)
. (3.17)

mS(t) = mN(logmL(t)) = expλ (mL(t)−1)

=
(
exp{h(cet)−h(c)})λ/h(c)

=

(
1− c

1− cet

)λ/h(c)

,
(3.18)

tion with parameters λ/h(c) = −λ/ log(1− c) and 1− c.
On the one hand, the total payment Z for the casualties has a compound Poisson

distribution since it is the sum of a Poisson(λ ) number of payments per fatal accident
(cumulation). On the other hand, summing over the casualties leads to a compound
negative binomial distribution. It can be shown that if S2 is compound negative
binomial with parameters r and p = 1− q and claims distribution P2(·), then S2

number of accidents in a year would converge if the driver could be observed for a

distribution. It can be shown that the overdispersion Var[N]/E[N] is 1/p = 1+1/β .

is the total number of

Λ is called the structure distribution, see also Chapter 8.

which from Table A we recognize as the mgf of a negative binomial(α,β/(β +1))

casualties. Now assume N ∼ Poisson(λ ) and L ∼ logarithmic(c) with 0 < c < 1, so

Then, for the mgf of S, we get

The mgf of the terms L is given by

which, see again Table A, we recognize as the mgf of a negative binomial distribu-

The division by the function h(·) serves to make the sum of the probabilities equal to



3.4 Properties of compound Poisson distributions 47

has the same distribution as S1, where S1 is compound Poisson distributed with
parameter λ and claims distribution P1(·) given by:

λ = rh(q) and P1(x) =
∞

∑
k=1

qk

kh(q)
P∗k

2 (x). (3.19)

In this way, any compound negative binomial distribution can be written as a com-
pound Poisson distribution. ∇

Remark 3.3.3 (Compound Poisson distributions in probability theory)
The compound Poisson distributions are also object of study in probability theory. If
we extend this class with its limits, to which the gamma and the normal distribution
belong, then we have just the class of infinitely divisible distributions. This class
consists of the random variables X with the property that for each n, a sequence of
iid random variables X1,X2, . . . ,Xn exists with X ∼ X1 +X2 + · · ·+Xn. ∇

3.4 Properties of compound Poisson distributions

In this section we prove some important theorems on compound Poisson distribu-
tions and use them to construct a better algorithm to calculate F(·) than given by
(3.10). First, we show that the class of compound Poisson distributions is closed
under convolution.

If S1,S2, . . . ,Sm

parameter λi i 1 + S2 + · · ·+ Sm

is compound Poisson distributed with specifications

λ =
m

∑
i=1

λi and P(x) =
m

∑
i=1

λi

λ
Pi(x). (3.20)

Proof. Let mi i

mS(t) =
m

∏
i=1

exp
{

λi
[
mi(t)−1

]}
= expλ

{
m

∑
i=1

λi

λ
mi(t)−1

}
. (3.21)

So S is a compound Poisson random variable with specifications (3.20). ∇

Consequently, the total result of m independent compound Poisson portfolios is
again compound Poisson distributed. The same holds if we observe the same port-
folio in m years, assuming that the annual results are independent.

A special case is when the Si have fixed claims xi, hence Si = xiNi with Ni ∼
Poisson(λi). Assume the xi to be all different. We get the random variable

S = x1N1 + x2N2 + · · ·+ xmNm, (3.22)

Theorem 3.4.1 (Sum of compound Poisson r.v.’s is compound Poisson)

and claims distribution P , i = 1,2, . . . ,m, then S = S

be the mgf of P . Then S has the following mgf:

are independent compound Poisson random variables with Poisson
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which by Theorem 3.4.1 is compound Poisson with specifications:

λ = λ1 + · · ·+λm and p(xi) =
λi

λ
, i = 1, . . . ,m. (3.23)

We can also prove the reverse statement, as follows:

Theorem 3.4.2 (Frequencies of claim sizes are independent Poisson)
Assume that S is compound Poisson distributed with parameter λ and with discrete
claims distribution

πi = p(xi) = Pr[X = xi], i = 1,2, . . . ,m. (3.24)

Suppose S is written as (3.22), where Ni denotes the frequency of the claim amount
xi, that is, the number of terms in S with value xi. Then N1, . . . ,Nm are independent
Poisson(λπi) random variables, i = 1, . . . ,m.

Proof. Let N = N1 + · · ·+ Nm and n = n1 + · · ·+ nm. Conditionally on N = n, we
have N1, . . . ,Nm ∼ Multinomial(n,π1, . . . ,πm). Hence,

Pr[N1 = n1, . . . ,Nm = nm]

= Pr[N1 = n1, . . . ,Nm = nm |N = n]Pr[N = n]

=
n!

n1!n2! . . .nm!
πn1

1 πn2
2 . . .πnm

m e−λ λ n

n!

=
m

∏
i=1

e−λπi
(λπi)

ni

ni!
.

(3.25)

By summing over all ni, i 	= k, we see that Nk is marginally Poisson(λπk) distributed.
The Ni are independent since Pr[N1 = n1, . . . ,Nm = nm] is the product of the marginal
probabilities of Ni = ni. ∇

Example 3.4.3 (Application: sparse vector algorithm)
If the claims X are integer-valued and non-negative, we can calculate the compound
Poisson cdf F in an efficient way. We explain this by an example. Let λ = 4 and
Pr[X = 1,2,3] = 1

4 , 1
2 , 1

4 . Then, gathering together terms as we did in (3.22), we can
write S as S = 1N1 + 2N2 + 3N3 and calculate the distribution of S by convolution.
We can compute f (x) = Pr[S = x] as follows:

x Pr[N1 = x] ∗ Pr[2N2 = x] = Pr[N1 +2N2 = x] ∗ Pr[3N3 = x] = Pr[S = x]
(e−1×) (e−2×) (e−3×) (e−1×) (e−4×)

0 1 1 1 1 1
1 1 − 1 − 1
2 1/2 2 5/2 − 5/2
3 1/6 − 13/6 1 19/6
4 1/24 2 : − :
: : : : : :

↑ ↑ ↑
1/x! 2x/2/(x/2)! 1/(x/3)!
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The density of the total amount of the claims of size 1,2, . . . , j−1 is convoluted with
the one of jNj. In the column with probabilities of jNj, only the rows 0, j,2 j, . . .
are filled, which is why this algorithm is called a ‘sparse vector’ algorithm. These
probabilities are Poisson(λπ j) probabilities.

Implementing the Sparse vector algorithm in R is easy, since convolution of two
vectors can be handled by the convolve function. It employs a technique called
the Fast Fourier Transform (FFT), the workings of which are explained in Section
3.6. An R-implementation of the sparse vector algorithm is as follows:

SparseVec <- function (freq)
{if (any(freq<0)) stop("negative frequency")
M <- length(freq)
mu <- sum((1:M)*freq); sigma2 <- sum((1:M)ˆ2*freq)
##mean and variance of the compound r.v.; see (3.4)
MM <- ceiling(mu + 10 * sqrt(sigma2)) + 6
fs <- dpois(0:(MM-1), freq[1]) ##density of S_1 = 1*N_1
for (j in 2:M)
{MMM <- trunc((MM-1)/j)
fj <- rep(0, MM) ##construct the density of j*N_j
fj[(0:MMM)*j+1] <- dpois(0:MMM, freq[j])
fs <- convolve(fs, rev(fj), type="o") }
##fs is the density of S_j = 1*N_1 + ... + j*N_j, j=2..M
return(fs) }
f <- SparseVec(c(1,2,1)); f[1:7] * exp(4)

The last line reproduces the first seven numbers in the last column of the table
in Example 3.4.3. The argument freq contains the expected frequencies λ p j of
each claim amount j = 1,2, . . . , which should of course be non-negative. The vector
length MM is taken to be the mean plus 10 standard deviations plus 7, ensuring that
sum(fs[1:MM]) will always be virtually equal to 1. The vector fs is initialized
to the density of 1N1, and convoluted with the one of jNj in step j, j = 2, . . . ,m.
Note that it is required that the second vector given as an argument to convolve
is reversed and that the type given is "o", short for "open". The function result
returned is the probability distribution of the compound random variable.

The algorithm given is fast since it uses the efficient FFT technique to do the
convolutions. It is, however, not a proper sparse vector algorithm, since the fact
that the vector fj has zeros at places that are non-multiples of j is never used.
It can be shown that for large m and n, to compute probabilities of 0, . . . ,n with a
maximal claim amount m by convolve takes O(mn logn) operations, while the
sparse vector algorithm needs O(n2 logm) (see Exercise 3.5.7). ∇

3.5 Panjer’s recursion

In 1981, Panjer described a method to calculate the probabilities f (x) recursively.
In fact, the method can be traced back to as early as Euler. As a result of Panjer’s
publication, a lot of other articles have appeared in the actuarial literature covering
similar recursion relations. The recursion relation described by Panjer is as follows:
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Theorem 3.5.1 (Panjer’s recursion)
Consider a compound distribution with integer-valued non-negative claims with pdf
p(x), x = 0,1,2, . . ., for which, for some real a and b, the probability qn of having n
claims satisfies the following recursion relation

qn =
(

a+
b
n

)
qn−1, n = 1,2, . . . (3.26)

Then the following relations for the probability of a total claim equal to s hold:

f (0) =

{
Pr[N = 0] if p(0) = 0;

mN
(

log p(0)
)

if p(0) > 0;

f (s) =
1

1−ap(0)

s

∑
h=1

(
a+

bh
s

)
p(h) f (s−h), s = 1,2, . . .

(3.27)

Proof. From Pr[S = 0] = ∑∞
n=0 Pr[N = n]pn(0) we get the starting value f (0). Write

Tk = X1 + · · ·+Xk. First, note that because of symmetry:

E
[
a+

bX1

s

∣∣∣Tk = s
]

= a+
b
k
. (3.28)

This expectation can also be determined in the following way:

E
[
a+

bX1

s

∣∣∣Tk = s
]

=
s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h |Tk = s]

=
s

∑
h=0

(
a+

bh
s

)Pr[X1 = h]Pr[Tk −X1 = s−h]

Pr[Tk = s]
.

(3.29)

Because of (3.26) and the previous two equalities, we have, for s = 1,2, . . .,

f (s) =
∞

∑
k=1

qk Pr[Tk = s] =
∞

∑
k=1

qk−1

(
a+

b
k

)
Pr[Tk = s]

=
∞

∑
k=1

qk−1

s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h]Pr[Tk −X1 = s−h]

=
s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h]

∞

∑
k=1

qk−1 Pr[Tk −X1 = s−h]

=
s

∑
h=0

(
a+

bh
s

)
p(h) f (s−h)

= ap(0) f (s)+
s

∑
h=1

(
a+

bh
s

)
p(h) f (s−h),

(3.30)

from which the second relation of (3.27) follows immediately. ∇
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Example 3.5.2 (Distributions suitable for Panjer’s recursion)
Only the following distributions satisfy relation (3.26):

1. Poisson(λ ) with a = 0 and b = λ ≥ 0; in this case, (3.27) simplifies to:

f (0) = e−λ (1−p(0));

f (s) =
1
s

s

∑
h=1

λhp(h) f (s−h);
(3.31)

2. Negative binomial(r, p) with p = 1−a and r = 1+ b
a ; so 0 < a < 1 and a+b > 0;

3. Binomial(k, p) with p = a
a−1 and k = − b+a

a ; so a < 0, b = −a(k +1).

If a + b = 0, then q0 = 1 and q j = 0 for j = 1,2, . . ., so we get a Poisson(0) distri-
bution. For other values of a and b than the ones used above, qn =

(
a+ b

n

)
qn−1 for

all n = 1,2, . . . cannot hold for a probability distribution:

• q0 ≤ 0 is not feasible, so assume q0 > 0;
• a+b < 0 results in q1 < 0;
• a < 0 and b 	= a(n+1) for all n also results in negative probabilities;
• if a ≥ 1 and a + b > 0, then nqn =

(
(n− 1)a + a + b

)
qn−1 > (n− 1)qn−1 from

(3.26), so qn > q1/n, n = 1,2, . . . and consequently ∑n qn = ∞.

By allowing (3.26) to hold only for n≥ 2, hence admitting an arbitrary probability of
no claims, we can find similar recursions for a larger group of counting distributions,
which includes the logarithmic distributions. See Exercise 3.5.14 and 3.5.15. ∇

Example 3.5.3 (Example 3.4.3 solved by Panjer’s recursion)
As in Example 3.4.3, consider a compound Poisson distribution with λ = 4 and
Pr[X = 1,2,3] = 1

4 , 1
2 , 1

4 . Then (3.31) simplifies to

f (s) =
1
s

[
f (s−1)+4 f (s−2)+3 f (s−3)

]
, s = 1,2, . . . , (3.32)

and the starting value is f (0) = e−4 ≈ 0.0183. We have

f (1) = f (0) = e−4,

f (2) = 1
2

[
f (1)+4 f (0)

]
= 5

2 e−4,

f (3) = 1
3

[
f (2)+4 f (1)+3 f (0)

]
= 19

6 e−4,

(3.33)

and so on. ∇

Example 3.5.4 (Panjer’s recursion and stop-loss premiums)
For an integer-valued S, we can write the stop-loss premium in an integer retention
d as follows, see Section 1.4:

E[(S−d)+] =
∞

∑
x=d

(x−d) f (x) =
∞

∑
x=d

[1−F(x)]. (3.34)
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The stop-loss premium is piecewise linear in the retention on the intervals where the
cdf remains constant, since for the right hand derivative we have by (1.38):

d
dt

E[(S− t)+] = F(t)−1. (3.35)

So the stop-loss premiums for non-integer d follow by linear interpolation.
With Panjer’s recursion the stop-loss premiums can be calculated recursively,

too, since from the last relation in (3.34), we have for integer d

π(d) := E[(S−d)+] = π(d −1)− [1−F(d −1)]. (3.36)

As an example, take S∼ compound Poisson(1) with p(1) = p(2) = 1
2 . Then, Panjer’s

recursion relation (3.31) simplifies to

f (x) =
1
x

[
1
2 f (x−1)+ f (x−2)

]
, x = 1,2, . . . (3.37)

with starting values

f (0) = e−1 ≈ 0.368, F(0) = f (0), π(0) = E[S] = λ µ1 =
3
2
. (3.38)

This leads to the following calculations:

x f (x) = (3.37) F(x) = F(x−1)+ f (x) π(x) = π(x−1)−1+F(x−1)

0 0.368 0.368 1.500
1 0.184 0.552 0.868
2 0.230 0.782 0.420
3 0.100 0.881 0.201
4 0.070 0.951 0.083
5 0.027 0.978 0.034

The advantage of computing the cdf and the stop-loss premiums simultaneously
with the recursion is that there is no need to store the whole array of n values of

n. When in R the
of the cdf. For how to compute the successive stop-loss premiums, see Exercise
3.5.15. ∇

Panjer’s recursion can also be derived from the probability generating functions. For
the compound Poisson distribution, this goes as follows. First write

dgS(t)
dt

=
d
dt

∞

∑
s=0

ts Pr[S = s] =
∞

∑
s=1

sts−1 Pr[S = s]. (3.39)

Just as in (3.5), we have

f (x) values are stored in f, cumsum(f) produces the values
f (x), which might make a difference if the maximum claim m is much smaller than

Remark 3.5.5 (Proof of Panjer’s recursion through pgfs)
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gS(t) = gN(gX (t)) = expλ (gX (t)−1), (3.40)

so the derivative also equals g′S(t) = λgS(t)g′X (t). For other distributions, similar
expressions can be derived from (3.26). Now for gS(·) and g′X (·), substitute their
series expansions:

λgS(t)g
′
X (t) = λ

(
∞

∑
s=0

ts Pr[S = s]

)(
∞

∑
x=1

xtx−1 Pr[X = x]

)

=
∞

∑
x=1

∞

∑
s=0

λxts+x−1 Pr[S = s]Pr[X = x]

=
∞

∑
x=1

∞

∑
v=x

λxtv−1 Pr[S = v− x]Pr[X = x]

=
∞

∑
v=1

v

∑
x=1

λxtv−1 Pr[S = v− x]Pr[X = x].

(3.41)

Comparing the coefficients of ts−1 in (3.39) and (3.41) yields

sPr[S = s] =
s

∑
x=1

λxPr[S = s− x]Pr[X = x]. (3.42)

Dividing by s, one sees that this relation is equivalent with Panjer’s recursion rela-
tion for the Poisson case (3.31). ∇

Remark 3.5.6 (Convolution using Panjer’s recursion)
How can we calculate the n-fold convolution of a distribution on 0,1,2, . . . with
Panjer’s recursion?

Assume that p(0) > 0. If we replace Xi by IiYi where Pr[Ii = 1] = Pr[Xi > 0] =: p
and Yi ∼ Xi |Xi > 0, then ∑i Xi has the same distribution as ∑i IiYi, which gives us a
compound binomial distribution with p < 1 as required in Example 3.5.2. Another
method is to take limits for p ↑ 1 in (3.27) for those values of a and b that produce a
binomial(n, p) distribution. ∇

Remark 3.5.7 (Implementing Panjer’s recursion)
To compute the sum in the Panjer recursion (3.31), we might use R’s loop mech-
anisms, but because R is an interpreted language it is worthwhile to ‘vectorize’
the computations, replacing the innermost loop by a call of sum. For this, note
that to compute f (s), the terms to be added in (3.31) are λ/s times the prod-
ucts of successive elements of the three vectors (1, . . . ,m), (p(1), . . . , p(m)) and
( f (s− 1), . . . , f (s−m)). Here m = min{s,r} with r the maximal index for which
pr > 0. The second vector is the head of the p-vector, the third is the reverse of
the tail part of the f -vector. An R program to implement Panjer’s recursion and to
reproduce the results of Example 3.5.3 is as follows:

Panjer.Poisson <- function (p, lambda)
{ if (sum(p)>1||any(p<0)) stop("p parameter not a density")
if (lambda * sum(p) > 727) stop("Underflow")



54 3 Collective risk models

cumul <- f <- exp(-lambda * sum(p))
r <- length(p)
s <- 0
repeat
{ s <- s+1
m <- min(s, r)
last <- lambda / s * sum(1:m * head(p,m) * rev(tail(f,m)))
f <- c(f,last)
cumul <- cumul + last
if (cumul > 0.99999999) break }
return(f) }

Panjer.Poisson(c(0.25,0.5,0.25), 4) * exp(4)

The parameter p must contain the values of p(1), p(2), . . . , and it is checked if this,
combined with p(0) = 1−∑h p(h), is indeed a density.

The parameter lambda representing λ should not be too big; in a standard Win-
dows system problems arise if λ (1− p(0)) > 727 holds, because in that case f (0) is
too small. R uses double precision (64-bit reals), but in programming environments
employing extended precision (80-bit reals), one can easily cope with portfolios hav-
ing λ ≈ 11340, starting from Pr[S = 0]≈ 10−5000. In some older languages, a 48-bit
real data type was used, leading to underflow already for λ (1− p(0)) ≥ 88. So for
a portfolio of n life insurance policies with probabilities of claim equal to 0.5%, the
calculation of Pr[S = 0] already experienced underflow for n = 17600. This under-
flow problem cannot be easily resolved in R itself, but it is possible to call compiled
external code, using extended precision calculations, from R. This also reduces the
running time, and in case of compound binomial probabilities, it might help remedy
the numerical instability sometimes encountered.

The result of calling pp <- Panjer.Poisson(...) is a vector pp of prob-
abilities f (0), f (1), . . . , f (n) with the upper bound n such that f (0)+ f (1)+ · · ·+
f (n) > 1− 10−8. Recall that in R, all arrays start with index 1, so pp[1] stores
f (0), and so on. ∇

3.6 Compound distributions and the Fast Fourier Transform

Another method to compute the probabilities of a compound distribution is based on
inversion of the characteristic function. Let X1,X2, · · · ∼ X be random variables with
values in {0,1,2, . . .}, independent of each other as well as of the claim number N.
Let S = X1 + · · ·+XN , and denote the probabilities by

ph = Pr[X = h]; qn = Pr[N = n]; fs = Pr[S = s]. (3.43)

Now let m be a number sufficiently large to let Pr[S ≤ m] ≈ 1. For the Poisson
and (negative) binomial case, Panjer’s recursion requires O(m2) steps to compute
f0, . . . , fm, or O(m) if X is bounded. In this section we will introduce the Fast Fourier
Transform method and show that it requires O(m logm) steps, for all compound
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distributions with a easily computable expression for the generating function of the
number of claims.

The characteristic function of the compound random variable S is φS(t)
def
= E[eitS].

Along the lines of (3.5) it can be proved that φS(t) = gN(φX N

The probabilities fs can be found back from the characteristic function as follows:

fs =
1

2π

∫ 2π

0
e−itsφS(t)dt. (3.44)

To prove this inversion formula is easy:

1
2π

∫ 2π

0
e−itsφS(t)dt =

1
2π

∫ 2π

0

{
fs + ∑

k 	=s

fke−it(k−s)
}

dt = fs +0, (3.45)

since for all k 	= s, as is readily verified by substituting u = t(k− s),∫ 2π

0
e−it(k−s)dt =

∫ 2π

0

{
cos(−t(k− s))+ i sin(−t(k− s))

}
dt = 0. (3.46)

Applying the trapezoidal rule to (3.44) with intervals of length 2π/n, we see that an
approximation for fs is given by

fs ≈ rs :=
1
n

n−1

∑
h=0

e−i2πsh/nφS(2πh/n). (3.47)

Note that (3.47) applies only if s = 0,1, . . . ,n−1; for example for s = n,2n, . . . we
get the same approximation as for s = 0.

Now introduce the discrete Fourier Transform of a vector �f = ( f0, . . . , fn−1) as
the vector�y = T−�f , with the matrix T− defined as follows:

T−
jk = e−i2π jk/n, j,k = 0,1, . . . ,n−1. (3.48)

This means that every element t occurring in T− is a unit root, with tn = 1. Also
define T+ in the same way, but with a plus sign in the exponent. Then approximation
(3.47) can be written as

�f ≈ 1
n

T−gN
(
T+�p

)
. (3.49)

All this would not be very useful but for two things. First, it is possible to compute
approximation (3.49) very fast by an algorithm called the Fast Fourier Transform.
It takes time O(n logn) and memory O(n) only. If implemented naively, it would
require O(n3) operations and O(n2) memory. Second, using another interpretation
for the right hand side of (3.47), we will show how to make the error of the approx-
imation negligible by taking n large enough.

The matrices T+ and T− are in fact each other’s inverse in the sense that 1
n T− =

(T+)−1, because for fixed j,k, writing ω = ei2π( j−k)/n, we get

the pgf of N.(t)), with g
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(T+T−) jk =
n−1

∑
h=0

e+i2π jh/ne−i2πhk/n =
n−1

∑
h=0

ωh =

⎧⎨⎩n if j = k

1−ωn

1−ω = 0 if j 	= k.
(3.50)

If z = x+ iy = reiφ , then z = x− iy = re−iφ is its complex conjugate. So

(T+�g) j =
n−1

∑
h=0

e+i2π jh/ngh =
n−1

∑
h=0

e−i2π jh/n gh = (T−�g) j. (3.51)

Therefore the inverse operation of an FFT can be handled by the same algorithm,
apart from taking complex conjugates and a division by the length of the vector.

To show that a Fast Fourier Transform algorithm can be constructed taking only
time O(n logn), we use a ‘divide and conquer’ approach. Assume n even, then for
m = 0,1, . . . ,n−1, substituting k = 2h+ j:

ym =
n−1

∑
h=0

ei2πmk/ngk =
1

∑
j=0

n/2−1

∑
h=0

ei2πm2h/ng2h+ j︸ ︷︷ ︸ (3.52)

For j = 0, the underbraced sum involves an FFT of length n
2 on (g0,g2, . . . ,gn−2), for

j = 1, on (g1,g3, . . . ,gn−1). Therefore, using an induction assumption, to compute
the FFT of length n takes time 2×α 1

2 n log 1
2 n + βn for some α and β , since two

FFT’s of length n/2 must be computed, plus a summation over j for each n. This
adds up to αn logn+n(β −α log2), which is less than αn logn in total provided α >
β/ log2 is taken. Iterating this proves that FFT can be done using only O(n logn)
operations.

If Re(g j) = Pr[Z = j], Im(g j) = 0, and Pr[Z ∈ {0,1, . . . ,n−1}] = 1 for a random
variable Z, then for the characteristic function φZ(t) = E[eitZ ] we have

φZ(2π j/n) =
n−1

∑
k=0

ei2π jk/ngk = (T+�g) j, j = 0,1, . . . ,n−1. (3.53)

Since Z is integer-valued, φZ(t + 2π) = E[eitZei2πZ ] = φZ(t) for all real t, so φZ is
periodical with period 2π .

By the above, for a random variable Z with support {0,1, . . . ,n−1} we have

y j = φZ(2π j/n) =⇒ T+�g =�y =⇒ �g =
1
n

T−�y. (3.54)

To apply this to S = X1 + · · ·+ XN , write Z ≡ S mod n: the remainder when S is di-
vided by n. Then Z has support {0,1, . . . ,n−1}, and Pr[Z ∈ {S,S±n,S±2n, . . .}] =
1. Therefore their discrete Fourier transforms coincide:

φS(2π j/n) = φZ(2π j/n) for all integer j. (3.55)
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For large n, Pr[Z = k] ≈ Pr[S = k]. To compute the characteristic function of S from
transforms of N and X , use the relation φS(t) = gN(φX (t)), see also (3.5).

We summarize the discussion above in the following theorem.

If S has a compound distribution with specifications (3.43), we can approximate the
probabilities fs of S = s, s = 0, . . . ,n−1 by the exact probabilities rs of Z = s, where
Z ≡ S mod n. These probabilities can be computed, in time O(n logn), as:

�f ≈�r :=
1
n

T−gN(T+�q). (3.56)

The error rs − fs = Pr[S ∈ {s+n,s+2n, . . .}], s = 0, . . . ,n−1. ∇

Example 3.6.2 (Example 3.5.4 using FFT)
R has a built-in function fft to do the calculations. Using it, the probabilities of
a compound Poisson(λ = 1) random variable with claims distribution Pr[X = 1] =
Pr[X = 2] = 1

2 (see Example 3.5.4) can be reproduced as follows:

n <- 64; p <- rep(0, n); p[2:3] <- 0.5; lab <- 1
f <- Re(fft(exp(lab*(fft(p)-1)), inverse=TRUE))/n

Note that the R-function does not automatically do the division by n. Also note that
we need to pad the p vector with enough zeros to let the resulting total probability
of S ∈ {0,1, . . . ,n−1} be near enough to one. For the Fast Fourier Transform to live
up to its name, the number of elements in the vector should preferably be a power
of two, but in any case have a lot of factors. ∇

In case N ∼ binomial or negative binomial, all one has to do is plug in the appropri-
ate generating function. Also, for example a logarithmic number of claims can be
handled easily. Moreover, the FFT-technique can be adapted to deal with negative
claim amounts.

When the number n of conceivable total claim sizes is large, Panjer’s recursion
requires time O(n2) if the individual claim sizes are unbounded. In that case, FFT
provides an easy to use and fast alternative, not quite exact but with a controllable
error, and taking only O(n logn) time. For Panjer’s recursion, one would typically
have to compute the probabilities up to either the retention d, or to a certain quantile
like the 75% quantile, but with FFT, it is mandatory to take n large enough to let
Pr[S > n] be negligible. This does not make a lot of difference, asymptotically.

Note that for FFT, no for-loops were needed such as with Panjer’s recursion.
Therefore using FFT in many cases will be a lot faster than a recursive method.

3.7 Approximations for compound distributions

In the previous chapter, approximations were given that were refinements of the
CLT, in which the distribution of a sum of a large number of random variables is

Theorem 3.6.1 (Computing compound cdfs by FFT)
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approximated by a normal distribution. These approximations can also be used if the
number of terms in a sum is a random variable with large values. For example, for
the compound Poisson distribution with large λ we have the following counterpart
of the CLT; similar results can be derived for other compound distributions.

Theorem 3.7.1 (CLT for compound Poisson distributions)
Let S be compound Poisson distributed with parameter λ and general claims cdf
P(·) with finite variance. Then, with µ = E[S] and σ2 = Var[S],

lim
λ→∞

Pr

[
S−µ

σ
≤ x

]
= Φ(x). (3.57)

Proof. If N1,N2, . . . is a series of independent Poisson(1) random variables and if
Xi j, i = 1,2, . . ., j = 1,2, . . . are independent random variables with cdf P(·), then
for integer-valued λ , we have

S ∼
λ

∑
j=1

Nj

∑
i=1

Xi j, since
λ

∑
j=1

Nj ∼ N. (3.58)

As S in (3.58) is the sum of λ independent and identically distributed random vari-
ables, the CLT can be applied directly. Note that taking λ to be an integer presents
no loss of generality, since the influence of the fractional part vanishes for large λ .

In this proof, we have reduced the situation to the Central Limit theorem. A proof
along the lines of the one of Theorem 2.5.1 is asked in Exercise 3.7.3. ∇

To use the CLT, translated gamma approximation and normal power approximation
(NP) one needs the cumulants of S. Again, let µk denote the kth moment of the
claims distribution. Then, for the compound Poisson distribution, we have

κS(t) = λ (mX (t)−1) = λ
∞

∑
k=1

µk
tk

k!
. (3.59)

From (2.46) we know that the coefficients of tk

k! are the cumulants. Hence mean,
variance and third central moment of a compound Poisson(λ ,x) random variable
with raw moments µ j = E[X j] are given by

E[S] = λ µ1, Var[S] = λ µ2 and E[(S−E[S])3] = λ µ3. (3.60)

The skewness is proportional to λ−1/2:

γS =
µ3

µ3/2
2

√
λ

. (3.61)

Remark 3.7.2 (Asymptotics and underflow)
There are certain situations in which one would have to resort to approximations.
First of all, if the calculation time is uncomfortably long: for the calculation of f (s)
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in (3.31) for large s, we need a lot of multiplications, see Exercise 3.5.4. Second,
the recursion might not ‘get off the ground’; see Remark 3.5.7.

Fortunately, the approximations improve with increasing λ ; they are asymptot-
ically exact, since in the limit they coincide with the usual normal approximation
based on the CLT. ∇

3.8 Individual and collective risk model

In the preceding sections we have shown that replacing the individual model by the
collective risk model has distinct computational advantages. In this section we focus
on the question which collective model should be chosen. We consider a situation
from life insurance, but the same situation occurs in non-life insurance, for example
when fines are imposed (malus) if an employee gets disabled.

Consider n one-year life insurance policies. At death, which happens with prob-
ability qi, the claim amount on policy i is bi, assumed positive, otherwise it is 0. We
want to approximate the total amount of the claims on all policies using a collective
model. For that purpose, we replace the Ii payments of size bi for policy i, where
Ii ∼ Bernoulli(qi), by a Poisson(λi) distributed number of payments bi. Instead of
the cdf of the total payment in the individual model

S̃ =
n

∑
i=1

Iibi, with Pr[Ii = 1] = qi = 1−Pr[Ii = 0], (3.62)

we consider the cdf of the following approximating random variable:

S =
n

∑
i=1

Yi, with Yi = Nibi =
Ni

∑
j=1

bi and Ni ∼ Poisson(λi). (3.63)

If we choose λi = qi, the expected number of payments for policy i is equal in both
models. To stay on the safe side, we could also choose λi =− log(1−qi) > qi. With
this choice, the probability of 0 claims on policy i is equal in both the collective and
the individual model. This way, we incorporate implicit margins by using a larger
total claim size than the original one. See also Section 7.4.1 and Remark 3.8.2.

Although (3.63) still has the form of an individual model, S is a compound Pois-
son distributed random variable because of Theorem 3.4.1, so it is indeed a collec-
tive model as in (3.1). The specifications are:

λ =
n

∑
i=1

λi and P(x) =
n

∑
i=1

λi

λ
I[bi,∞)(x), (3.64)

with the indicator function IA(x) = 1 if x ∈ A and 0 otherwise. From this it is clear
that the expected numbers of payments are equal if λi = qi is taken:



60 3 Collective risk models

λ =
n

∑
i=1

λi =
n

∑
i=1

qi. (3.65)

Also, by (3.62) and (3.63), the expectations of S̃ and S are then equal:

E[S̃] =
n

∑
i=1

qibi = E[S]. (3.66)

For the variances of S and S̃ we have

Var[S] =
n

∑
i=1

qib
2
i ; Var[S̃] =

n

∑
i=1

qi(1−qi)b
2
i = Var[S]−

n

∑
i=1

(qibi)
2. (3.67)

We see that S has a larger variance. If λi = qi then using a collective model results in
risk averse decision makers tending to take more conservative decisions, see further
Chapter 7. Also notice that the smaller ∑n

i=1(qibi)
2 is, the less the collective model

will differ from the individual model.

Remark 3.8.1 (The collective model)
By the collective model for a portfolio, we mean a compound Poisson distribution
as in (3.64) with λi = qi. We also call it the canonical collective approximation.

In Exercise 3.8.3 we show that in the situation (3.62), the collective model can be
obtained as well by replacing each claim Xi by a Poisson(1) number of independent
claims with the same distribution as Xi. We can also do this if the random variables Xi

are more general than those in (3.62). For example, assume that contract i produces
claims b0 = 0,b1,b2, . . . ,bn with probabilities p0, p1, . . . , pn. Since Xi equals exactly
one of these values, we can write

Xi ≡ I0b0 + I1b1 + · · ·+ Inbn, (3.68)

with I j = 1 if Xi = b j, zero otherwise. So Pr[I j = 1] = p j for the marginal distrib-
utions of I j, and their joint distribution is such that I0 + I1 + · · ·+ In ≡ 1. One can
show that if we choose the canonical collective model, we actually replace Xi by the
compound Poisson distributed random variable Yi, with

Yi = N0b0 +N1b1 + · · ·+Nnbn, (3.69)

where the Nj are independent Poisson(p j) random variables. In this way, the ex-
pected frequencies of all claim sizes remain unchanged. ∇

Remark 3.8.2 (Model for an open portfolio)
The second proposed model with λi = − log(1−qi) can be used to model an open
portfolio, with entries and exits not on renewal times. Assume that in a certain policy
the waiting time W until death has an exponential(β ) distribution. For the probabil-
ity of no claims to be 1−q, we must have Pr[W > 1] = 1−q, so β = − log(1−q).
Now assume that, at the moment of death, each time we replace this policy by an
identical one. Thus, we have indeed an open model for our portfolio. The waiting
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times until death are always exponentially(β ) distributed. But from the theory of
Poisson processes, see also Exercise 2.5.7, we know that the number of deaths be-
fore time 1 is Poisson(β ) distributed. In this model, we in fact replace, for each
i, the ith policy by a Poisson(− log(1− qi)) distributed number of copies. Since
Ii ∼ min{Ni,1}, the open collective model we get this way is a safe approximation
to the individual model, as it allows for more claims per policy than one. See also
Section 7.4.1. ∇

Remark 3.8.3 (Negative risk amounts)
If we assume that the bi are positive integers, then we can quickly calculate the
probabilities for S, and consequently quickly approximate those for S̃, with Panjer’s
recursion. But if the bi can be negative as well as positive, we cannot use this recur-
sion. In that case, we can split up S in two parts S = S+ − S− where S+ is the sum
of the terms Yi in (3.63) with bi ≥ 0. By Theorem 3.4.2, S+ and S− are independent
compound Poisson random variables with non-negative terms. The cdf of S can then
be found by convolution of those of S+ and S−.

To find the stop-loss premium E[(S−d)+] for only one value of d, the convolu-
tion of S+ and S− is not needed. Conditioning on the total S− of the negative claims,
we can rewrite the stop-loss premium as follows:

E[(S−d)+] = ∑
x≥0

E[(S+ − (x+d))+]Pr[S− = x]. (3.70)

To calculate this we only need the stop-loss premiums of S+, which follow as a
by-product of Panjer’s recursion, see Example 3.5.4. Then the desired stop-loss pre-
mium can be calculated with a simple summation. For the convolution, a double
summation is necessary, or it could be handled through the use of convolve.

Note that the FFT-technique, see Example 3.6.2, is not restricted to non-negative
claim amounts. ∇

3.9 Loss distributions: properties, estimation, sampling

In a compound model for losses, we have to specify both the claim number distrib-
ution and the claim severity distribution. For the former we often take the Poisson
distribution, such as in the canonical or the open collective model, or when the as-
sumptions of a Poisson process apply, see Chapter 4. In case of overdispersion, due
to parameter uncertainty or cumulation of events, see Examples 3.3.1 and 3.3.2, we
might use the negative binomial distribution. For some purposes, for example to
compute premium reductions in case of a deductible, it is convenient to use a para-
metric distribution that fits the observed severity distribution well. Depending on the
type of insurance at hand, candidates may vary from light tailed (for example the
Gaussian distribution) to very heavy-tailed (Pareto). In this section we will present
some severity distributions, explain their properties and suggest when to use them.
We use maximum likelihood to estimate parameters. Often it is useful to generate
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pseudo-random samples from the loss distribution, for example if we want to com-
pute the financial consequences of applying some risk management instrument like
a complicated reinsurance scheme.

3.9.1 Techniques to generate pseudo-random samples

For many distributions, pseudo-random samples may be drawn by using standard
R functions. They often use the inversion method, also known as the probability
integral transform. It is based on the fact that if U ∼ uniform(0,1), then F−1(U)∼F
because Pr[F−1(U) ≤ x] = Pr[U ≤ F(x)] = F(x). For example the function rnorm
in its standard mode applies the inverse normal cdf qnorm to results of runif, see
also Appendix A.

The function runif to generate uniform pseudo-random numbers in R is state-
of-the-art. Its default method is Mersenne-Twister, described in R’s help-files as a
“twisted generalized feedback shift register algorithm with period 219937 − 1 and
equidistribution in 623 consecutive dimensions (over the whole period)”.

Another sampling method is the rejection method. Suppose that it is hard to sam-
ple from density f (·), but that an easier to handle distribution g(·) exists satisfying
f (x) ≤ kg(x) ∀x for some appropriate bound k ≥ 1. We get a random outcome from
f (·) by sampling a point uniformly from the area below the graph of f (x), and tak-
ing its x-coordinate; the probability of an outcome x or less is then just F(x). John
von Neumann’s (1951) idea was not to do this directly, but to sample a random point
below the graph of kg(x), drawing its x-coordinate using, in most cases, the inver-
sion method, and then its y-coordinate uniformly from (0,kg(x)). The x-coordinate
is accepted as an outcome from f (·) if this random point happens to be under f (x)
as well. If rg() produces a random drawing from g(x) and f (x)/g(x) ≤ k, an R-
program to draw x randomly from f (·) could be as follows:

repeat {x <- rg(); if (runif(1) < f(x)/k/g(x)) break}

The number of points rejected is a geometric(1/k) random variable, so the smaller
k, the faster the random number generation.

In many cases, we can construct drawings from given distributions by using the
fact that they are a simple transformation of other random variables for which a
standard R-function r... exists to produce pseudo-random values. See Exercise
3.9.24 for some applications of this, including sampling from (log)normal, Pareto,
Erlang, Weibull or Gompertz distributions.

In mixed models, one may first draw from the distribution of the conditioning
random variable (structure variable), and next from the conditional distribution of
the random variable of interest.

When the cdf F(x) = G(x)H(x) for simple G and H, or the survival function is
1−F(x) = (1−G(x))(1−H(x)), a random value from F is produced by taking
the maximum (minimum) of independent random variables distributed as G and
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H. See Exercise 3.9.17 where this device is employed to sample from a Makeham
distributed lifetime random variable.

3.9.2 Techniques to compute ML-estimates

We aim to obtain estimates for α,β , . . . by maximizing the (log-)likelihood

�(α,β , . . . ;�y) = log∏ fYi(yi; α,β , . . .). (3.71)

A a first step, we inspect the normal equations ∂�/∂α = 0, ∂�/∂β = 0, . . . to see if
they admit an explicit solution. This is the case for normal, lognormal, Poisson and
inverse Gaussian samples. For Pareto, the optimal solution is explicit but it is not
the solution to the normal equations. It may also happen that the normal equations
provide a partial solution, often in the sense that the optimal parameters must be
related in such a way that the fitted mean coincides with the sample mean. The
advantage of this is that it reduces the dimension of the maximization problem to be
solved; one of the parameters may be substituted away. This occurs with the negative
binomial and the gamma distributions. If only one normal equation remains to be
solved, this can be done using the R function uniroot, which is both reliable
and fast. Alternatively, the optimization can be done using optimize to search
an interval for a minimum or maximum of a real function. If needed, one can use
optim for optimization in more dimensions.

3.9.3 Poisson claim number distribution

Not just by the Poisson process often underlying rare events, see Chapter 4, but also
by the mere fact that it has only one parameter to estimate, the Poisson distribution
is an attractive candidate for the claim number of the compound total loss. For a
Poisson(λ ) sample Y1 = y1, . . . ,Yn = yn, the loglikelihood is

�(λ ; �y) = log∏ fYi(yi;λ ) = −nλ +∑yi logλ −∑ logni!, (3.72)

which gives λ̂ = Y as the maximum likelihood estimator of λ .
In insurance situations, often the numbers of claims pertain to policies that were

not in force during a full calendar year, but only a known fraction of it. We denote
this exposure for policy i by wi. In that case, it follows from the properties of a
Poisson process, see also Chapter 4, that the number of claims for policy i has a
Poisson(λwi) distribution. Therefore the loglikelihood is

�(λ ; �y,�w) = log∏ fYi(yi;λwi)

= −∑λwi +∑yi logλ +∑yi logwi −∑ logni!,
(3.73)
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so in this case λ̂ = ∑Yi/∑wi is the maximum likelihood estimator of λ , that is, the
number of claims divided by the total exposure.

If we consider Yi/wi, the number of claims per unit of exposure, one claim in a
contract that was insured for only nine months counts as 4

3 . Then λ̂ is the weighted
average of these quantities, with weights wi/∑wi. In practice, however, often simply
a straight average of the number of claims per unit of exposure is taken.

Random sampling from the Poisson distribution is achieved by calling rpois.
See Exercise 3.9.17 for a way to do this random sampling by the use of (3.11), which
relates numbers of events to exponential waiting times.

3.9.4 Negative binomial claim number distribution

We have seen in Section 3.3 that sometimes it is proper to use a claim number
distribution more spread than the Poisson, the variance of which equals the mean.
In fact, both parameter uncertainty and cumulation in a Poisson process may lead
to a negative binomial(r, p) claim number, see Examples 3.3.1 and 3.3.2, with
overdispersion factor Var[N]/E[N] = 1/p. On the basis of a sample of outcomes
Y1 = y1, . . . ,Yn = yn, we want to estimate the parameters r, p by maximum likeli-
hood. In Table A one sees that the corresponding density equals

fY (y; r, p) =

(
r + y−1

y

)
pr(1− p)y, y = 0,1, . . . (3.74)

For non-integer r, the binomial coefficient is defined using gamma-functions, with
x! = Γ (x+1) for all real x > 0.

Now, just as in Theorem 3.4.2, let Nj, j = 0,1, . . . , count the number of times a
sample element Yi in the sample equals the value j. Observe that ∑Nj ≡ n holds,
while ∑Yi ≡ ∑ jNj. In the loglikelihood of the total sample we find logarithms of
the factorials in the density (3.74), as well as of the factorials arising because the
places i in the sample where Yi = j occurs may be chosen arbitrarily, see (3.25). The
latter are constant with respect to r and p, so we ignore them, and get

�(r, p; �y) = log
∞

∏
j=0

{ fY ( j; r, p)}n j + . . .

= ∑
j

n j{log(r + j−1)+ · · ·+ logr− log j!}

+ rn log p+∑
j

jn j log(1− p)+ . . .

(3.75)

Note that the outcomes y1, . . . ,yn do not carry more information about the parame-
ters r, p than do their frequencies n0,n1, . . . Apart from the order in which the iid
observations occurred, the sample can be reconstructed from the frequencies. The
conditional joint density of the sample, given the frequencies, no longer depends on
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the parameters r and p, or in other words, these frequencies are sufficient statistics.
The iterative computation of the ML-estimates using the frequencies is of course
faster for large integer-valued samples.

We first look at the partial derivative ∂�/∂ p. It must be zero for those r, p for
which the likelihood is maximal:

0 =
∂�

∂ p
=

rn
p
− ∑ jn j

1− p
⇐⇒ r(1− p)

p
= y ⇐⇒ p =

r
r + y

, (3.76)

This equation expresses that the mean of the ML-estimated density equals the ob-
served sample mean.

The second ML-equation ∂�/∂ r = 0 results in

0 =
∞

∑
j=1

n j

(
1
r

+ · · ·+ 1
r + j−1

)
+n log p. (3.77)

From this, no explicit expression for the ML-estimators can be derived. But substi-
tuting p = r/(r+y) from (3.76) into (3.77) results in a one-dimensional equation for
r that can be solved numerically using R. One can also use R’s function optimize
to do the maximization over r, or simply use optim; see below.

About generating negative binomial(r, p) random samples, see Table A, we first
remark that in elementary probability texts, such random variables are introduced
as the number of failures before the rth success in a sequence of Bernoulli tri-
als, or sometimes as the number of trials needed, successes and failures combined.
This requires r to be integer. For the general case, instead of the standard func-
tion rnbinom we can use the mixed model of Example 3.3.1 to generate negative
binomial(r, p) outcomes, by first drawing the parameter from a suitable gamma dis-
tribution and next drawing from a Poisson distribution with that parameter. The
following R commands draw a negative binomial sample, count the frequencies of
each outcome and compare these with the theoretical frequencies:

set.seed(1); n <- 2000; r <- 2; p <- 0.5
hh <- rpois(n, rgamma(n,r,p/(1-p)))
n.j <- tabulate(1+hh); j <- 0:max(hh)
rbind(n.j, round(dnbinom(j,r,p)*n))

In the first line, we initialize the random number generator so as to be able to repro-
duce the results. The second line draws a sample using the method suggested. The
function tabulate counts the frequencies of the numbers 1,2, . . . in its argument.
We added 1 to each element of the sample to include the frequency of 0 as well.
Running this script one sees that the observed frequencies match the theoretical
ones, computed using dnbinom, quite closely.

To get initial estimates for the parameters, we use the method of moments:

r(1− p)

p
= y;

r(1− p)

p2 = y2 − y2. (3.78)

Solving these equations for r and p is done by dividing the first by the second:
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y.bar <- sum(j*n.j/n); y2.bar <- sum(jˆ2*n.j/n)
p0 <- y.bar/(y2.bar-y.barˆ2); r0 <- p0 * y.bar/(1-p0)

For how to solve the second ML-equation (3.77) using uniroot and inserting
(3.76), see Exercise 3.9.26. To maximize the loglikelihood using the optimize
function of R, the loglikelihood is computed by specifying log=T in the density
and taking a weighted sum with as weights the frequencies n j for all j = 0,1, . . . :

g <- function (r) {sum(dnbinom(j,r,r/(r+y.bar),log=T)*n.j)}
r <- optimize(g, c(r0/2, 2*r0), max=T, tol=1e-12)$maximum
p <- r/(r+y.bar)

We get r̂ = 1.919248 and p̂ = 0.4883274.
By using the general R function optim, we no not have to rely on the fact that

in the optimum, p = r/(r + y) must hold because of (3.76):

h <- function (x) {-sum(dnbinom(j,x[1],x[2],log=T)*n.j)}
optim(c(r0,p0), h, control=list(reltol=1e-14))

The first argument of optim is a vector of starting values, the second the function
h(x)with x the vector of parameters. The first element of x represents r, the second
is p. The control argument contains a list of refinements of the optimization
process; to get the exact same results as before, we have set the relative tolerance
to 10−14. Note the minus-sign in the definition of h, needed because the standard
mode of optim is to minimize a function.

3.9.5 Gamma claim severity distributions

The gamma(α,β ) distribution can be used to model non-negative losses if the tail of
the cdf is not too ‘heavy’, such as in motor insurance for damage to the own vehicle.
Density, cdf, quantiles and random deviates for this distribution are given by the
standard R functions dgamma, pgamma, qgamma and rgamma, respectively. Note
that the parameter α corresponds to the shape parameter of these functions, while
β corresponds to rate, 1/β to scale. See Table A.

To find maximum likelihood estimators for the parameters α,β on the basis of
a random sample Y1 = y1, . . . ,Yn = yn from a gamma(α,β ) distribution, proceed as
follows. The loglikelihood �(α,β ) of the parameters is given by

�(α,β ; �y) = log
n

∏
i=1

fY (yi; α,β ). (3.79)

Filling in the gamma density fY (y) = 1
Γ (α)β α yα−1e−βy, we get

�(α,β ) = nα logβ −n logΓ (α)+(α −1) log∏yi −β ∑yi. (3.80)

One of the ML-equations ensures again that the fitted mean is the observed mean:
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∂�

∂β
=

nα
β

−∑yi = 0 ⇐⇒ β̂ =
α̂
y

. (3.81)

Writing logy for the mean of the logarithms of the observations, we see from the
other one that there is no explicit solution:

∂�

∂α
= n logβ −n

Γ ′(α)

Γ (α)
+∑ logyi = 0 ⇐⇒

log α̂ − Γ ′(α̂)

Γ (α̂)
− logy+ logy = 0.

(3.82)

Using the R-function digamma() to compute the digamma (psi) function defined
as Γ ′(α)/Γ (α), the solution can be found like this:

set.seed(2525); y <- rgamma(2000, shape=5, rate=1)
aux <- log(mean(y)) - mean(log(y))
f <- function(x) log(x) - digamma(x) - aux
alpha <- uniroot(f, c(1e-8,1e8))$root ## 5.049
beta <- alpha/mean(y) ## 1.024

The interval (10−8,108) in which a zero for f above is sought covers skewnesses
from +2× 10−4 to +2× 104. The function f(x) decreases from f(0) = +∞ to
f(∞) < 0. This is because log(x)−Γ ′(x)/Γ (x) decreases to 0, and, as is proved in
Exercise 9.3.12, aux is strictly positive unless all yi are equal.

Just as for the negative binomial distribution, optimal α̂ and β̂ can also be found
by using optimize and β̂ = α̂/y, or optim.

3.9.6 Inverse Gaussian claim severity distributions

A distribution that sometimes appears in the actuarial literature, for several pur-
poses, is the inverse Gaussian (IG). Its properties resemble those of the gamma and
lognormal distributions. Its name derives from the inverse relationship that exists be-
tween the cumulant generating functions of these distributions and those of Gaussian
distributions, see (3.85) below. Various parameterizations are in use. Just like with
the gamma distribution, we will use a shape parameter α and a scale parameter β .
See also Table A.

The probability density function of the IG distribution is:

f (x;α,β ) =
α√
2πβ

x−
3
2 e−

(α−βx)2

2βx , x > 0. (3.83)

The main reason the IG distribution has never gained much popularity is because it
is not easy to manage mathematically. Indeed to prove that the density integrates to
one is not at all trivial without knowing the corresponding cdf, which is:
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Fig. 3.1 Inverse Gaussian densities for α = β = 1
4 , 1

2 ,1,2,4,8,16,32 (tops from left to right).

F(x;α,β ) = Φ
( −α√ +

√
βx

)
+ e2α Φ

( −α√
βx

−
√

βx
)
, x > 0. (3.84)

This function has limx↓0 F(x;α,β ) = 1 and its derivative is

m(t;α,β ) = exp
{

α
[
1−

√
1−2t/β

]}
, t ≤ β

2
. (3.85)

one easily sees that β is indeed a scale parameter, since βX is inverse Gaussian(α,1)
if X ∼ inverse Gaussian(α,β ). We also see that adding two independent inverse
Gaussian distributed random variables, with parameters α1,β and α2,β , yields an

1 + α2,β . The expected value
and the variance are α/β and α/β 2

is 3/
√

α , as opposed to 2/
√

α for a gamma distribution with the same mean and
variance. The flexibility of the inverse Gaussian distributions, from very skew to
almost normal, is illustrated in Figure 3.1. All depicted distributions have the same
mean α/β = 1, and a strictly positive mode.

For the inverse Gaussian(α,β ) distribution, the loglikelihood is

�(α,β ; �y) = ∑
(

log
α√
2πβ

− 3
2

logyi − α2

2βyi
+α − βyi

2

)
. (3.86)

and (3.83) is its density. Detailed proofs are asked in Exercise 3.9.3.

βx

Using the fact that (3.83) is a density to compute the resulting integral, we can

inverse Gaussian random variable with parameters α

x→∞F(x;α,β ) = 0, lim

prove that the mgf equals

Notice that the mgf is finite for t = β/2, but not for t > β/2.

(3.83), which is non-negative on (0,∞). So (3.84) is an absolutely continuous cdf,

The easiest way to show this is by taking a series expansion of the cgf. The skewness

The special case with α = β is also known as the Wald distribution. From the mgf

respectively, just as for the gamma distribution.
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Setting the partial derivatives equal to zero gives

∂�

∂α
= ∑

(
1
α
− α

βyi
+1

)
= 0;

∂�

∂β
= ∑

(−1
2β

+
α2

2β 2yi
− yi

2

)
= 0.

(3.87)

Writing 1/y for the average of the numbers 1/yi, we can rewrite this as

1
α

+1 =
α
β

1/y and
1
α

+
β
α

y =
α
β

1/y, (3.88)

so we get very simple explicit expressions for the ML parameter estimates:

α̂ =
1

y1/y−1
and β̂ =

α̂
y

. (3.89)

The second equation ensures that, again, the mean of the fitted distribution equals
the sample mean. It is an easy exercise to show that in case of a sample Y1, . . . ,Yn,
the quantities ∑Yi and ∑1/Yi are sufficient statistics.

In the package statmod extending R one finds functions d/p/q/rinvgauss
for density, cdf, quantiles and random number generation with this distribution. Sim-
ilar functions can be found in SuppDist (then with capital G). The parameters used
there are not the same we use; see also Exercise 3.9.12. They are the mean µ = α/β
and a precision parameter λ . The latter is taken in such a way that the variance α/β 2

equals µ3/λ , therefore λ = α2/β . Conversely, α = λ/µ and β = λ/µ2. Generat-
ing a random sample and estimating the parameters from it by maximum likelihood,
using (3.89), then goes as follows:

library(statmod); set.seed(2525)
y <- rinvgauss(2000, mu=5, lambda=3)
alpha <- 1/(mean(y)*mean(1/y)-1); beta <- alpha/mean(y)

We get α̂ = 0.626; β̂ = 0.128. So, µ̂ = α̂/β̂ = 4.89 and λ̂ = α̂2/β̂ = 3.06. The true
values µ = α/β = 5, λ = α2/β = 3 give α = 0.6, β = 0.12. In Exercise 3.9.12, the
reader is asked to verify that we always get feasible estimates α̂ > 0 and β̂ > 0 this
way, in other words, that y1/y > 1 must hold in (3.89).

3.9.7 Mixtures/combinations of exponential distributions

Another useful class of parametric claim severity distributions, especially in the
context of ruin theory (Chapter 4), consists of mixtures/combinations of exponen-
tial distributions. A mixture arises if the parameter of an exponential distribution is
a random variable that is α with probability q and β with probability 1− q. The
density is then given by
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p(x) = qαe−αx +(1−q)βe−βx, x > 0. (3.90)

For each q with 0 ≤ q ≤ 1, the function p(·) is a probability density function. But
also for q < 0 or q > 1, p(·) in (3.90) is sometimes a pdf. Since

∫
p(x)dx = 1 always

holds, we only have to check if p(x) ≥ 0 for all x. From Exercise 3.9.4, we learn

1 < q ≤ β/(β −α), and in this case (3.90) is called a combination of exponential
distributions.

An example of a proper combination of exponential distributions is given by

p(x) = 2(e−x − e−2x) = 2×1e−1x −1×2e−2x, (3.91)

which has q = 2, α = 1 and β = 2. A second example is the function

p(x) =
4
3
(e−x − 1

2
e−2x) =

4
3
×1e−1x − 1

3
×2e−2x. (3.92)

	

mX+Y (t) =
αβ

(α − t)(β − t)
=

β
β −α

α
α − t

− α
β −α

β
β − t

. (3.93)

β
β−α . So a sum of independent exponential

random variables has a combination of exponential distributions as its density. The
reverse is not always true: (3.91) is the pdf of the convolution of an exponential(1)

cannot be written as such a convolution.
If α ↑ β , then β/(β −α) → ∞, and X +Y tends to a gamma(2,β ) random vari-

able. Hence, the gamma distributions with r = 2 are limits of densities that are
combinations of exponential distributions, and the same holds for all gamma distri-
butions with an integer shape parameter (so-called Erlang distributions).

α < β and 0 ≤ q ≤ 1

two-stage model that produces all random variables with pdf (3.90). For this, let I ∼
Bernoulli(γ) with 0 ≤ γ ≤ 1, and let 0 < α < β . Then

Z = I
X
α

+
Y
β

(3.94)

mZ(t) =

(
1− γ + γ

α
α − t

)
β

β − t
=

αβ − tβ (1− γ)

(α − t)(β − t)
. (3.95)

can be generated using the urn-of-urns model Z = IX/α +(1− I)Y/β , with X , Y

and an exponential(2) distribution, since q =

that it suffices to check p(0) ≥ 0 and p(∞) ≥ 0. Assuming α < β , this holds if

This is the mgf of density (3.90) with q =

If X ∼ exponential(α) and Y ∼ exponential(β ), with α = β , then

A mixture of exponential distributions with parameters 0 <

has as its mgf

To show that this is the mgf of a combination or a mixture of exponential distribu-

β/(β − α) = 2, but the pdf (3.92)

tions, it suffices to find q, using partial fractions, such that (3.95) equals the mgf of

and I independent, X and Y ∼ exponential(1) and I ∼ Bernoulli(q). There is also a
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(3.90), which is

q
α

α − t
+(1−q)

β
β − t

. (3.96)

Comparing (3.95) and (3.96) we see that qα +(1−q)β = β (1− γ), hence

q =
βγ

β −α
. (3.97)

Since 0 < α < β , we have that 0 ≤ q ≤ 1 if 0 ≤ γ ≤ 1−α/β , and then Z is mixture
of exponential distributions. If 1−α/β < γ ≤ 1, then q > 1, and Z is a combination
of exponential distributions.

The loss Z in (3.94) can be viewed as the result of an experiment where one
suffers a loss Y/β in any case and where it is decided by a trial with probability γ of
success whether one loses an additional amount X/α . Another interpretation is that
the loss is drawn from either Y/β or X/α +Y/β , since Z = I(X/α +Y/β )+ (1−
I)Y/β . If γ = 1, again a sum of two exponential distributions arises.

Writing R-functions to compute the cdf P(x) and the density p(x) is trivial; quan-
tiles x = P−1(u) with 0 < u < 1 follow by (numerical) inversion of the cdf, hence
solving P(x) = u for x. For this, one may call the R-function uniroot. But to
generate random values, simply use model (3.94):

set.seed(1); n <- 2000; q <- 1.5; alpha <- 1; beta <- 2
gam <- (beta-alpha)/beta * q
y <- rbinom(n,1,gam) * rexp(n)/alpha + rexp(n)/beta

One way to estimate the parameters of the joint likelihood ∏ p(yi; q,α,β ), with p(x)
as in (3.90), is by using the method of moments. Not for every combination of first
three sample moments feasible parameters of (3.90) can be found leading to the right
mean, variance and skewness; for details, consult Babier and Chan (1992), and see
also Example 4.9.1. ML-optimization requires a three-dimensional maximization
that cannot be easily reduced in dimension such as the ones we encountered before.
But it is easy to simply let optim do the work, for example by:

f <- function (y, q, alpha, beta){
q * alpha * exp(-alpha*y) + (1-q) * beta * exp(-beta*y)}

h <- function (x) {-sum(log(f(y, x[1], x[2], x[3])))}
optim(c(0.8, 0.9, 1.8), h)

The resulting parameter estimates are q̂ = 1.285, α̂ = 0.941, β̂ = 2.362.

3.9.8 Lognormal claim severities

Using that X ∼ lognormal(µ,σ2) if and only if logX ∼ N(µ ,σ2), for the cdf and
the density of this claim severity distribution, by the chain rule we get

FX (x) = Φ(logx; µ ,σ2) and fX (x) =
1
x

ϕ(logx; µ ,σ2), (3.98)
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with ϕ and Φ the normal density and cdf. See also Table A.
It is easy to write R functions d/p/q/rlnorm based on these relations with the

normal distribution, but such functions are also included in the package stats.
To compare the fatness of the tail with the one of the inverse Gaussian(α,β )

distribution with the same mean α/β and variance α/β 2, note that the lognormal
skewness is γ = (3+1/α)/

√
α , see Table A, while the inverse Gaussian skewness

is γ = 3/
√

α . The lognormal distribution is suitable as a severity distribution for
branches with moderately heavy-tailed claims, like fire insurance.

Maximum likelihood estimation in case of a lognormal(µ ,σ2) random sample is
simple by reducing it to the normal case. If the sample is Y1 = y1, . . . ,Yn = yn, let
Xi = logYi, then Xi ∼ N(µ ,σ2), so as is well-known, µ̂ = X and σ̂2 = (X − µ̂)2.

3.9.9 Pareto claim severities

The Pareto(α,x0) distribution, see Table A, can be used for branches with high prob-
ability of large claims, notably liability insurance. In Exercise 3.9.1 it is proved that
Y ∼ Pareto(α,x0) is equivalent to log(Y/x0) ∼ exponential(α). With this property,
it is easy to write the function rpareto; the other ones are trivial.

To compute ML-estimates for a Pareto(α,x0) sample is slightly different from
what we saw before, because in this case the optimal estimates cannot be produced
by simply solving the ML equations. The loglikelihood with a Pareto(α,x0) sample
Y1 = y1, . . . ,Yn = yn is, if y(1) := min(yi) denotes the sample minimum:

�(α,x0;�y) =

{
n logα +αn logx0 − (α +1)∑ logyi if x0 ≤ y(1);

−∞ if x0 > y(1).
(3.99)

For each choice of α , we have �(α,x0) ≤ �(α,y(1)), so the ML estimate for x0 must
be x̂0 = y(1). Further,

∂�(α, x̂0)

∂α
= 0 ⇐⇒ n

α
+n log x̂0 −∑ logyi = 0

⇐⇒ α̂ =
(1

n ∑ log(yi/x̂0)
)−1

.

(3.100)

The shape of the ML estimate α̂ is not surprising, since the transformed sample
Xi = log(Yi/x0) is distributed as exponential(α), for which case the ML estimate of
α is known to be 1/X . For the same reason, a random Pareto(α,x0) sample can be
generated by multiplying the exponents of an exponential(α) random sample by x0.
So to draw a sample and find ML estimates of α,x0, do

set.seed(2525); x0 <- 100; alpha <- 2; n <- 2000
y <- x0*exp(rexp(n)/alpha)
x0.hat <- min(y); alpha.hat <- 1/mean(log(y/x0.hat))
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The resulting ML-estimates are x̂0 = 100.024 and α̂ = 2.0014. Determining esti-
mates for Pareto samples by the method of moments might present problems since
the population moments E[Y j] only exist for powers j < α .

3.10 Stop-loss insurance and approximations

The payment by a reinsurer in case of a stop-loss reinsurance with retention d for
a loss S is equal to (S− d)+. In this section we look for analytical expressions for
the net stop-loss premium for some distributions. Note that expressions for stop-loss
premiums can also be used to calculate net excess of loss premiums.

If π(d) denotes the stop-loss premium for a loss with cdf F(·) as a function of
d, then π ′(d + 0) = F(d)− 1. This fact can be used to verify the expressions for
stop-loss premiums. For the necessary integrations, we often use partial integration.

Example 3.10.1 (Stop-loss premiums for the normal distribution)
If X ∼ N(µ ,σ2), what is the stop-loss premium for X if the retention is d?

As always for non-standard normal distributions, it is convenient to consider the
case µ = 0 and σ2 = 1 first, and then use the fact that if U ∼ N(0,1), then X =
σU + µ ∼ N(µ ,σ2). The required stop-loss premium follows from

E[(X −d)+] = E[(σU + µ −d)+] = σE

[(
U − d −µ

σ

)
+

]
. (3.101)

Since ϕ ′(u) = −uϕ(u), we have the following relation∫ ∞

t
uϕ(u)du =

∫ ∞

t
[−ϕ ′(u)]du = ϕ(t). (3.102)

It immediately follows that

π(t) = E[(U − t)+] = ϕ(t)− t[1−Φ(t)], (3.103)

and hence

E[(X −d)+] = σϕ
(

d −µ
σ

)
− (d −µ)

[
1−Φ

(
d −µ

σ

)]
. (3.104)

For a table with a number of stop-loss premiums for the standard normal distribu-
tion, we refer to Example 3.10.5 below. See also Table C at the end of this book. ∇

Example 3.10.2 (Gamma distribution)
Another distribution that has a rather simple expression for the stop-loss premium
is the gamma distribution. If S ∼ gamma(α,β ) and G(·;α,β ) denotes the cdf of S,
then it can be shown that

E[(S−d)+] =
α
β

[1−G(d;α +1,β )]−d[1−G(d;α,β )]. (3.105)
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We can also derive expressions for the higher moments of the stop-loss payment
E[(S− d)k

+

quently also exponential premiums for the stop-loss payment. ∇

Remark 3.10.3 (Moments of the retained loss)
Since either S ≤ d, so (S− d)+ = 0, or S > d, so (S− d)+ = S− d, the following

[(S−d)− (S−d)+][(S−d)+] ≡ 0. (3.106)

With this, we can derive the moments of the retained loss S− (S− d)+ from those

{S−d}k ≡ {[S−d − (S−d)+]+(S−d)+}k

≡ {S−d − (S−d)+}k +{(S−d)+}k.
(3.107)

This holds since, due to (3.106), the remaining terms in the binomial expansion
vanish. ∇

In this way, if the loss approximately follows a translated gamma distribution, one
can approximate the expected value, the variance and the skewness of the retained
loss. See Exercise 3.10.4.

Example 3.10.4 (Stop-loss premiums approximated by NP)
The probabilities of X > y for some random variable can be approximated quite
well with the NP approximation. Is it possible to derive an approximation for the
stop-loss premium for X too?

Define the following auxiliary functions for u ≥ 1 and y ≥ 1:

q(u) = u+
γ
6
(u2 −1) and w(y) =

√
9
γ2 +

6y
γ

+1− 3
γ
. (3.108)

From Section 2.5 we recall that w(q(u)) = u and q(w(y)) = y. Furthermore, q(·)
and w(·) are monotonically increasing, and q(u) ≥ y if and only if w(y) ≤ u. Let
Z be a random variable with expected value 0, standard deviation 1 and skewness
γ > 0. We will derive the stop-loss premiums of random variables X with E[X ] = µ ,
Var[X ] = σ2 and skewness γ from those of Z with the help of (3.101).

The NP approximation (2.59) states that

Pr[Z > q(u)] = Pr[w(Z) > u] ≈ 1−Φ(u) if u ≥ 1. (3.109)

Assume that U ∼ N(0,1) and define V = q(U) if U ≥ 1, V = 1 otherwise, so V =
q(max{U,1}). Then

Pr[V > q(u)] = Pr[U > u] = 1−Φ(u), u ≥ 1. (3.110)

Hence
Pr[Z > y] ≈ Pr[V > y] = 1−Φ(w(y)), y ≥ 1. (3.111)

of the stop-loss payment, using the equivalence

], k = 2,3, . . .. Even the mgf can be calculated analogously, and conse-

equivalence holds in general:
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The stop-loss premium of Z in d > 1 can be approximated through the stop-loss
premium of V , since∫ ∞

d
Pr[Z > y]dy ≈

∫ ∞

d
Pr[V > y]dy = E[(V −d)+]

=
∫ ∞

−∞
(q(max{u,1})−d)+ϕ(u)du

=
∫ ∞

w(d)
(q(u)−d)ϕ(u)du.

(3.112)

To calculate this integral, we use that d
du [uϕ(u)] = (1−u2)ϕ(u), so∫ ∞

t
[u2 −1]ϕ(u)du = tϕ(t). (3.113)

Substituting (3.102) and (3.113) and the function q(·) into (3.112) yields

E[(Z −d)+] ≈
∫ ∞

w(d)

(
u+

γ
6
(u2 −1)−d

)
ϕ(u)du

= ϕ(w(d))+
γ
6

w(d)ϕ(w(d))−d[1−Φ(w(d))]

(3.114)

as an approximation for the net stop-loss premium for any risk Z with mean 0,
variance 1 and skewness γ . ∇

Example 3.10.5 (Comparing various approximations of stop-loss premiums)
What are approximately the stop-loss premiums for X with E[X ] = µ = 0, Var[X ] =
σ2 = 1 and skewness γ = 0,1,2, for retentions d = 0, 1

2 , . . . ,4?
To get NP-approximations we apply formula (3.104) if γ = 0, (3.114) otherwise.

The parameters of a translated gamma distributed random variable with expected
value 0, variance 1 and skewness γ are α = 4/γ2, β = 2/γ and x0 = −2/γ . For
γ ↓ 0, (3.105) yields the stop-loss premiums for a N(0,1) distribution. All gamma
stop-loss premiums are somewhat smaller than the NP approximated ones.

The NP-approximation (3.114) yields plausible results for d = 0, but the results
in Table 3.1 for gamma are surprising, in that the stop-loss premiums decrease with
increasing skewness. From (3.116) below, it immediately follows that if all stop-loss
premiums for one distribution are larger than those of another distribution with the
same expected value, then the former has a larger variance. Since in this case the
variances are equal, as well as larger stop-loss premiums of the translated gamma,
there have to be smaller ones. With NP, lower stop-loss premiums for higher skew-
ness might occur, for example, in case d < 0. Note that the translated gamma ap-
proximation gives the stop-loss premium for a risk with the right expected value
and variance. On the other hand, NP gives approximate stop-loss premiums for a
random variable with almost the same moments. Obviously, random variables exist
having the NP tail probabilities in the area d ∈ (0,∞), as well as the correct first
three moments.
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Table 3.1 Approximate stop-loss premiums at various retentions for a standardized random vari-
able with skewness 0, 1 and 2, using the CLT, the NP and the gamma approximations.

CLT Normal Power gamma
d γ = 0 γ = 1 γ = 2 γ = 1 γ = 2

0.0 .3989 .4044 .4195 .3907 .3679
0.5 .1978 .2294 .2642 .2184 .2231
1.0 .0833 .1236 .1640 .1165 .1353
1.5 .0293 .0637 .1005 .0598 .0821
2.0 .0085 .0316 .0609 .0297 .0498
2.5 .0020 .0151 .0365 .0144 .0302
3.0 .0004 .0070 .0217 .0068 .0183
3.5 .0001 .0032 .0128 .0032 .0111
4.0 .0000 .0014 .0075 .0015 .0067

For arbitrary µ and σ , simply use a translation like the one given in (3.101). In
that case, first determine d = (t − µ)/σ , then multiply the corresponding stop-loss
premium in the above table by σ , and if necessary, use interpolation. ∇

3.10.1 Comparing stop-loss premiums in case of unequal variances

In this subsection we compare the stop-loss premiums of two risks with equal ex-
pected value, but with unequal variance. It is impossible to formulate an exact gen-
eral rule, but we can state some useful approximating results.

Just as one gets the expected value by integrating the distribution function over
(0,∞), one can in turn integrate the stop-loss premiums. In Exercise 3.10.1, the
reader is invited to prove that, if U ≥ 0 with probability 1,

1
2

Var[U ] =
∫ ∞

0

{
E[(U − t)+]− (µ − t)+

}
dt. (3.115)

The integrand in this equation is always non-negative. From (3.115), it follows that
if U and W are risks with equal expectation µ , then∫ ∞

0

{
E[(U − t)+]−E[(W − t)+]

}
dt =

1
2

{
Var[U ]−Var[W ]

}
. (3.116)

By approximating the integral in (3.116) with the trapezoidal rule with interval
width 1, see also (3.47), we can say the following about the total of all differences
in the stop-loss premiums of U and W (notice that we do not use absolute values):

∞

∑
i=1

{
E[(U − i)+]−E[(W − i)+]

}≈ 1
2

{
Var[U ]−Var[W ]

}
. (3.117)
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So, if we replace the actual stop-loss premiums of U by those of W , then (3.117)
provides an approximation for the total error in all integer-valued arguments. In
Chapter 7 we examine conditions for E[(U − d)+] ≥ E[(W − d)+] to hold for all
d. If that is the case, then all terms in (3.117) are positive and consequently, the
maximum error in all of these terms will be less than the right-hand side.

If two integrands are approximately proportional, their ratio is about equal to the
ratio of the corresponding integrals. So from (3.115) we get:

E[(U − t)+]− (µ − t)+
E[(W − t)+]− (µ − t)+

≈ Var[U ]

Var[W ]
. (3.118)

The approximation is exact if µ = E[U ] and W = (1−I)µ +IU with I ∼ Bernoulli(α)
independent of U and α = Var[W ]/Var[U ], see Exercise 3.10.2.

If t ≥ µ , then (µ − t)+ = 0, so the approximation (3.118) simplifies to the fol-
lowing rule of thumb:

Rule of thumb 3.10.6 (Ratio of stop-loss premiums)
For retentions t larger than the expectation µ = E[U ] = E[W ], we have for the stop-
loss premiums of risks U and W :

E[(U − t)+]

E[(W − t)+]
≈ Var[U ]

Var[W ]
. (3.119)

This rule works best for intermediate values of t, see below. ∇

Example 3.10.7 (‘Undefined wife’)
Exercise 3.7.4 deals with the situation where it is unknown for which of the insureds
a widow’s benefit might have to be paid. If the frequency of being married is 80%,
we can either multiply all risk amounts by 0.8 and leave the probability of dying
within one year as it is, or we can multiply the mortality probability by 0.8 and
leave the payment as it is. We derived that the resulting variance of the total claim
amount in the former case is approximately 80% of the variance in the latter case.
So, if we use the former method to calculate the stop-loss premiums instead of the
correct method, then the resulting stop-loss premiums for retentions that are larger
than the expected claim cost are approximately 20% too small. ∇

Example 3.10.8 (Numerical evaluation of the Rule of thumb)
We calculated the stop-loss premiums for a N(0,1.01) and a N(0,1.25) distribution
at retentions d = 0, 1

2 ,1, . . . ,3, to compare them with those of a N(0,1) distribution.
According to Rule of thumb 3.10.6, these should be 1.01 and 1.25 times as big
respectively. Table 3.2 gives the factor by which that factor should be multiplied to
get the real error. For example, for d = 0 the quotient π(d;0,1.01)/π(d;0,1) equals
1.005 instead of 1.01, so the error is only 50% of the one predicted by the Rule of
thumb. As can be seen, the Rule of thumb correction factor is too large for retentions
close to the expected value, too small for large retentions and approximately correct
for retentions equal to the expected value plus 0.6 standard deviation. The Rule of
thumb correction factor has a large error for retentions in the far tail where the stop-



78 3 Collective risk models

Table 3.2 Factors by which the N(0,1.01) and N(0,1.25) stop-loss premiums deviate from those
of N(0,1), expressed in terms of the Rule of thumb correction factor

d π(d;0,1) Correction factors
1+0.01× 1+0.25×

0.0 0.39894 0.50 0.47
0.5 0.19780 0.89 0.85
1.0 0.08332 1.45 1.45
1.5 0.02931 2.22 2.35
2.0 0.00849 3.20 3.73
2.5 0.00200 4.43 5.84
3.0 0.00038 5.92 9.10

loss premiums of the distribution with the smaller variance are negligible but those
of the distribution with the larger variance are not. ∇

3.11 Exercises

Section 3.2

1. Calculate (3.3), (3.4) and (3.5) in case N has the following distribution: a) Poisson(λ ), b)
binomial(n,p) and c) negative binomial(r,p).

2. Give the counterpart of (3.5) for the cumulant generating function.

3. Assume that the number of eggs in a bird’s nest is a Poisson(λ ) distributed random variable,
and that the probability that a female hatches out equals p. Determine the distribution of the
number of female hatchlings in a bird’s nest.

4. Let S be compound Poisson distributed with λ = 2 and p(x) = x/10, x = 1,2,3,4. Apply (3.10)
to calculate the probabilities of S = s for s ≤ 4.

5. Complete the table in Example 3.2.2 for x = 0, . . . ,6. Determine the expected value and the
variance of N, X and S.

6. Determine the expected value and the variance of S, where S is defined as in Example 3.2.2,
except that N is Poisson distributed with λ = 2.

7. Prove relation (3.11) by partial integration. Do the same by differentiating both sides of the
equation and examining one value, either x = 0 or x → ∞.

Section 3.3

1. Show that the Poisson distribution also arises as the limit of the negative binomial(r,p) distri-
bution if r → ∞ and p → 1 such that r(1− p) = λ remains constant.

2. Under which circumstances does the usual Poisson distribution arise instead of the negative
binomial in Examples 3.3.1 and 3.3.2?

3. [♠] Prove (3.19).
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Section 3.4

1. The same as Exercise 3.2.4, but now with the sparse vector algorithm.

2. What happens with (3.23) if some xi are equal in (3.22)?

3. Assume that S1 is compound Poisson with λ1 = 4 and claims p1( j) = 1
4 , j = 0,1,2,3, and S2

is also compound Poisson with λ2 = 2 and p2( j) = 1
2 , j = 2,4. If S1 and S2 are independent,

then what is the distribution of S1 +S2?

4. In Exercise 3.2.3, prove that the number of males is independent of the number of females.

5. Let Nj , 1 and N2
independent?

6. Assume that S is compound Poisson distributed with parameter λ and with discrete claims
distribution p(x), x > 0. Consider S0, a compound Poisson distribution with parameter λ0 =

0 0
p0(x) = α p(x) for x > 0. Prove that S and S0 have the same distribution by comparing their

0 holds because the frequencies of the claim amounts x 	= 0 in
(3.22) have the same distribution.

7. How many multiplications with non-zero numbers does the sparse vector algorithm of Example
3.4.3 take to compute all probabilities Pr[S = x], x = 0,1, . . . ,n−1? Assume the claim sizes to
be bounded by T , and remember that 1+ 1/2 + 1/3 + · · ·+ 1/T ≈ logT + 0.5772 (the Euler-
Mascheroni constant).

8. Redo Exercise 3.4.1 using R.

Section 3.5

1. The same as Exercise 3.2.4, but now with Panjer’s recursion relation.

2.

3. Verify Example 3.5.2.

4. In case of a compound Poisson distribution for which the claims have mass points 1,2, . . . ,m,
determine how many multiplications have to be done to calculate the probability F(t) using
Panjer’s recursion. Distinguish the cases m < t and m ≥ t.

5. Prove that E[N] = (a+b)/(1−a) if qn = Pr[N = n] satisfies (3.26).

6. In Example 3.5.4, determine the retention d for which π(d) = 0.3.

7. Let N1, N2 and N3 be independent and Poisson(1) distributed. For the retention d = 2.5, deter-
mine E[(N1 +2N2 +3N3 −d)+].

8. Assume that S1 is compound Poisson distributed with parameter λ = 2 and claim sizes p(1) =
p(3) = 1

2 . Let S2 = S1 +N, where N is Poisson(1) distributed and independent of S1. Determine
2 2 ≤ 2.4].

9. Determine the parameters of an integer-valued compound Poisson distributed Z if for some
α > 0, Panjer’s recursion relation equals Pr[Z = s] = f (s) = α

s [ f (s− 1) + 2 f (s− 2)], s =
1,2,3, . . . [Don’t forget the case p(0) 	= 0!]

10. Assume that S is compound Poisson distributed with parameter λ = 3, p(1) = 5
6 and p(2) = 1

6 .
Calculate f (x), F(x) and π(x) for x = 0,1,2, . . .. Also calculate π(2.5).

11. Derive formulas from (3.34) for the stop-loss premium that only use f (0), f (1), . . . , f (d − 1)
and F(0),F(1), . . . ,F(d −1) respectively.

λ/α for some α with 0 < α < 1, and with claims distribution p (x) where p (0) = 1−α and

The same as Exercise 3.4.6, first part, but now by proving with induction that Panjer’s recursion

j = 1,2, denote the number of claims of size

mgfs. Also show that S ∼ S

j in Example 3.2.2. Are N

the mgf of S . What is the corresponding distribution? Determine Pr[S

yields the same probabilities f (s).
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12. Give a formula, analogous to (3.36), to calculate E[(S−d)2
+].

13. [♠] Write functions Panjer.NegBin and Panjer.Bin to handle (negative) binomial
claim numbers.

r→0

15. [♠] By a slight extension of the proof of Theorem 3.5.1, it can be shown that if (3.26) holds

f (s) =
[q1 − (a+b)q0] f (s)+∑s

h=1(a+ bh
s )p(h) f (s−h)

1−ap(0)
, s = 1,2, . . .

Here q0
q1 = (a+b)q0, the first term in the numerator vanishes, resulting in (3.27). The class of count-

Write a Panjering function for the (a,b,1) class.

16. Using the R- functions cumsum and rev, show how the vector of stop-loss premiums at

p[2]= Pr[S = 1], and so on. Use relation (3.34).

Section 3.6

1. Describe what is produced by the R-calls:

y <- rep(0,64); y[2:7] <- 1/6; Re(fft(fft(y)ˆ10,T))/64

2.
pound distribution with claim sizes 1 and 3 each with probability 1

2 and as claim num-
ber a logarithmic random variable L with E[L] = 3, see Example 3.3.2. The same when
Pr[L = 0,1,3,7,8,9,10] = .3, .2, .1, .1, .1, .1, .1.

Section 3.7

1. Assume that S is compound Poisson distributed with parameter λ = 12 and uniform(0,1)

approximation and the NP approximation.

2. Assume that S is compound Poisson distributed with parameter λ = 10 and χ2(4) distributed

With the NP approximation, estimate the quantile s such that FS(s) ≈ 0.95, as well as the
probability FS(E[S]+3

√
Var[S]).

3.
of a standardized compound Poisson(λ ,X) random variable (S−µS)/σS converges to et2/2 for
all t.

Use the fft function to compute the stop-loss premium at retention d = 10 for a com-

distributed claims. Approximate Pr[S < 10] with the CLT approximation, the translated gamma

Prove Theorem 3.7.1 by proving, just as in the proof of Theorem 3.5.1, that as λ → ∞, the mgf

claims. Approximate the distribution function of S with the translated gamma approximation.

Pr[M=
14. Let M ∼ negative binomial(r, p) for some r, p with 0 < p < 1.

Pr[L = m]= lim
Which distribution does L have, if

(a,b,1) class includes zero-modified or zero-truncated distributions. By the previous exercise,

for all n = 2,3, . . . , the probability of a claim total s satisfies the following relation:

ing distributions satisfying (3.26) for n > k is known as the (a,b,k) class, k = 0,1, . . . . The

is the arbitrary amount of probability at zero given to the frequency distribution. If

tion (3.26) holds for all n = 2,3, . . .

retention d = 0,1, . . . can be obtained from a vector of probabilities p with p[1]= Pr[S = 0],

Show that, for this random variable, rela-

the logarithmic distribution is in the (a,b,1) class, but not in the (a,b,0) class.

m |M > 0], m = 1,2, . . .?
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Section 3.8

1. Show that λ j = − log(1− q j) yields both a larger expectation and a larger variance of S in
(3.63) than λ j = q j does. For both cases, compare Pr[Ii = j] and Pr[Ni = j], j = 0,1,2, . . . in

i i

2.
insured amounts 1 and 2 and probabilities of dying within this year 0.01 and 0.02. Determine
the expectation and the variance of the total claims S̃. Choose an appropriate compound Pois-˜˜

3.
model are equivalent:

1. The compound Poisson distribution specified in (3.64) with λi = qi.
2. The random variable ∑i Nibi from (3.63) with λi = qi.
3. The random variable Z1 + · · ·+ Zn where the Zi are compound Poisson distributed with

claim number parameter 1 and claims distribution equal to those of Iibi.
4. The compound Poisson distribution with parameter λ = n and claims distribution Q(x) =

1
n ∑ j Pr[Xj

interpreted as the cdf of a claim from a randomly chosen policy, where each policy has
probability 1

n .]

4. In a portfolio of n one-year life insurance policies for men, the probability of dying in this
year equals qi for the ith policyholder. In case of death, an amount bi has to be paid out, but
only if it turns out that the policy holder leaves a widow behind. This information is not known
to the insurer in advance (‘undefined wife’), but it is known that this probability equals 80%
for each policy. In this situation, we can approximate the individual model by a collective one
in two ways: by replacing the insured amount for policy i by 0.8bi, or by replacing the claim
probability for policy i by 0.8qi. Which method is correct? Determine the variance of the total
claims for both methods. Show how we can proceed in both cases, if we have a program at our
disposal that calculates stop-loss premiums from a mortality table and an input file containing
the sex, the age and the risk amount.

5. [♠] At what value of x in (3.70) may we stop the summation if an absolute precision ε is
required?

6. Consider a portfolio with 2 classes of policies. Class i contains 1000 policies with claim size
bi = i and claim probability 0.01, for i = 1,2. Let Bi denote the number of claims in class i.
Write the total claims S as S = B1 + 2B2 and let N = B1 + B2 denote the number of claims.
Consider the compound binomial distributed random variable T = X1 + X2 + · · ·+ XN with
Pr[Xi = 1] = Pr[Xi = 2] = 1/2. Compare S and T as regards the maximum value, the expected
value, the variance, the claim number distribution and the distribution. Do the same for B1 and
B2 ∼Poisson(10).

7. Consider an excess of loss reinsurance on some portfolio. In case of a claim x, the reinsurer
pays out an amount h(x) = (x− β )+. The claims process is compound Poisson with claim
number parameter 10 and uniform(1000,2000) distributed claim sizes. For β ∈ [1000,2000],
determine the distribution of the total amount to be paid out by the reinsurer in a year.

8. Consider two portfolios P1 and P2 with the following characteristics:

Consider a portfolio of 100 one-year life insurance policies that are evenly divided between the

for both S and S the parameters of a suitable approximating translated gamma distribution.

(3.62) and (3.63), as well as the cdfs of I and N .

son distribution S to approximate S and compare the expectations and the variances. Determine

≤ x]. [Hence Q(·) is the arithmetic mean of the cdfs of the claims. It can be

Show, by comparing the respective mgfs, that the following representations of the collective
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Risk amount Number of policies Claim probability

P1 z1 n1 q1
z2 n2 q2

P2 z1 2n1
1
2 q1

z2 2n2
1
2 q2

For the individual risk models for P1 and P2, determine the difference of the variance of the
total claims amount. Check if the collective approximation of P1 equals the one of P2, both
constructed with the recommended methods.

9. A certain portfolio contains two types of contracts. For type k, k = 1,2, the claim probability
equals qk and the number of policies equals nk. If there is a claim, then with probability pk(x)
it equals x, as follows:

nk qk pk(1) pk(2) pk(3)

Type 1 1000 0.01 0.5 0 0.5
Type 2 2000 0.02 0.5 0.5 0

Assume that all policies are independent. Construct a collective model T to approximate the
total claims. Make sure that both the expected number of positive claims and the expected
total claims agree. Give the simplest form of Panjer’s recursion relation in this case; also give
a starting value. With the help of T , approximate the capital that is required to cover all claims

compare the results with those of Exercise 2.5.13.

10. Consider a portfolio containing n contracts that all produce a claim 1 with probability q.
What is the distribution of the total claims according to the individual model, the collective
model and the open collective model? If n → ∞, with q fixed, does the individual model
S converge to the collective model T , in the sense that the difference of the probabilities
Pr[(S−E[S])/

√
Var[S] ≤ x]−Pr[(T −E[S])/

√
Var[S] ≤ x] converges to 0?

Section 3.9

1. Determine the mean and the variance of the lognormal and the Pareto distribution, see also Ta-
ble A. Proceed as follows: Y ∼ lognormal(µ,σ2) means logY ∼N(µ,σ2); if Y ∼ Pareto(α,x0),
then Y/x0 0

2.
sense that λX , or more general f (λ )X for some function f , has a distribution that does not
depend on λ . Show that neither the skewness γX nor the coefficient of variation σX/µX depend

3. [♠] Prove that the expression in (3.84) is indeed a cdf that is 0 in x = 0, tends to 1 for x → ∞

statements about the inverse Gaussian distributions.

4. Show that the given conditions on q in (3.90) are sufficient for p(·) to be a pdf.

5. Determine the cdf Pr[Z ≤ d] and the stop-loss premium E[(Z−d)+] for a mixture or combina-
tion Z of exponential distributions as in (3.90). Also determine the conditional distribution of
Z − z, given Z > z.

6. Determine the mode of mixtures and combinations of exponential distributions. Also deter-
mine the mode and the median of the lognormal distribution.

Determine which parameters of the distributions in this section are scale parameters, in the

in this portfolio with probability 95%. Use an approximation based on three moments, and

∼ Pareto(α,1) and log(Y/x ) ∼ exponential(α).

and has a positive derivative (3.83). Also verify that (3.85) is the mgf, and confirm the other

on such parameters. Determine these two quantities for the given distributions.
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7. Determine the mode of the inverse Gaussian(α,α) distribution. For the parameter values of
Figure 3.1, use your computer to determine the median of this distribution.

8. Write R-functions d/p/q/rCombExp for mixtures/combinations of exponential distribu-
tions.

9. If E[X ] = 1 and
√

Var[X ]/E[X ] = 2 is the coefficient of variation, find the 97.5% quantile if
X ∼ gamma, inverse Gaussian, lognormal, and normal.

10. [♠] A small insurer has three branches: Fire, Liability and Auto. The total claims on the
branches are all independent compound Poisson random variables. The specifications are:

• Fire: λ1 = 10 is the mean claim number; claim sizes are inverse Gaussian with mean µ1 =
10000 and coefficient of variation σ1/µ1

• Liability: λ2
• Auto: λ3

Using the Normal Power approximation, compute the Value-at-Risk (quantiles s such that
Pr[S > s] = q) for the combined portfolio at the levels q = 0.5,0.75,0.9,0.95,0.99.
The premium income P = P1 +P2 +P3 contains a safety loading 30% for Fire, 50% for Liability
and 10% for Auto. It is invested in such a way that its value after a year is lognormal with mean
1.1P and standard deviation 0.3P. Find the probability that the invested capital is enough to

p(7) = p(10) = p(19) = 1/3) distribution for S+ and compound Poisson(3, p(1) = p(4) =
1/2) for S−
d = �E[S] + kσS� for k = 1,2,3 using (3.70). Also, compute the whole probability vector of
S = S+ − S− using convolve. Finally, use the fact that S itself is also a compound Poisson
random variable (with possible claim sizes −1,−4,+7,+10,+19) to compute the vector of
probabilities Pr[S = s] using the FFT-technique.

12. Prove that (3.89) produces positive estimates α̂ and β̂ . Hint: apply Jensen’s inequality to the
r.v. Z with Pr[Z = yi] = 1

n , i = 1, . . . ,n.

13. Prove that aux > 0, so logy < logy, holds when computing ML-estimates for a gamma
sample using the R program involving uniroot given.

14. [♠] For range y > 0, shape parameter α > 0 and scale parameter β > 0, a Weibull(α,β )
random variable Y has density f (y;α,β ) = αβ (βy)α−1 exp

(− (βy)α). Find the cdf of Y .
Show that X = (βY )α has an exponential(1) distribution. Also show that the ML equa-
tions for estimating α and β using a sample Y1 = y1, . . . ,Yn = yn can be written as g(α) :=
1/α + logy−yα logy/yα = 0 and β = (1/yα )1/α . Using rweibull, generate a Weibull sam-
ple of size 2000 with parameters α = 5 and β = 1, and compute the ML estimates for the
parameters from this sample.

15. Write a function rTransGam to generate random deviates from translated gamma distrib-
utions. Draw a large sample and verify if the first three sample moments are ‘close’ to the
theoretical values.
Identify the problem with programming rNormalPower.

16. In life actuarial science, it is sometimes useful to be able to generate samples from Gompertz
and Makeham lifetime distributions. The mortality rate of Makeham’s law equals

µX (x)
def
=

fX (x)
1−FX (x)

= − d
dx

log(1−FX (x)) = a+bcx,

while Gompertz’ law is the special case with a = 0. Assuming c > 1, the second component of
the mortality rate increases exponentially with age; the first is a constant. Since the minimum
X = min(Y,Z) of two independent random variables is easily seen to have µX (x) = µY (x)+

= 0.5;

insurer does not get broke by the claims incurred and/or the investment losses.

= 3; Pareto claim sizes with mean 30000 and coefficient of variation 0.5;

cover the claims. Find the initial capital that is needed to ensure that with probability 99%, the

11. [♠] In the situation of Remark 3.8.3, find the probability vectors of a compound Poisson(50,

= 500; gamma claim sizes with mean 1000 and coefficient of variation 0.3.

. Use either FFT or Panjer’s recursion. Then, compute the stop-loss premiums at
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µZ(x) as its mortality rate, under Makeham’s law people either die from ‘senescence’ after
time Y ∼ Gompertz(b,c), or from some ‘accident’ occurring independently after time Z ∼
exponential(a), whichever happens first. In the parameterization given, X has the following
survival function:

1−FX (x) = Pr[Z > x]Pr[Y > x] = exp
(
−ax− b

logc
(cx −1)

)
, x > 0.

If Y ∼ Gompertz(b,c), show that cY −1 is exponential( b
logc ). Use this fact to write a function

rGompertz to generate random deviates from the Gompertz distribution. Use it to write a
function rMakeham. Verify if your results make sense using, e.g., a = 0.0005, b = 0.00007,
c = 1.1.

17. Use relation (3.11) to construct an R function to do one drawing from a Poisson(λ ) distribution.

18. [♠] If U1,U2 are independent uniform(0,1) random variables, show that tan(π(U1 − 1
2 )) ∼

Cauchy(0,1). Also show that Φ−1(U1)/Φ−1(U2) has this same distribution. [Because it has
fat tails and an easy form, this distribution is often used to find a majorizing function in the
rejection method.]

19. Apply the rejection method of Section 3.9.1 to construct an R-function to draw from the tri-
angular distribution f (x) = x on (0,1), 2− x on (1,2). Use the uniform(0,2) density to get an
upper bound for f (x).
Also, draw from f (x) by using the fact that U1 +U2 ∼ f (x) if the Ui are iid uniform(0,1).

20. The rejection method can also applied to draw from integer-valued random variables. In fact, to
generate values from N, generate a value from N +U and round down. Here U ∼ uniform(0,1),
independent of N. Sketch the density of N +U . Apply to a binomial(3, p) distribution.

21. What is produced by sum(runif(10)<1/3)? What by sum(runif(12))-6?

22. [♠] For the inverse Gaussian distributions, show that ∑Yi and ∑ 1
Yi

are jointly sufficient. Recall
that this may be proved by using the factorization criterion, that is, by showing that g and h
exist such that the joint density of Y1, . . . ,Yn can be factorized as fY1,...,Yn (y1, . . . ,yn;α,β ) =

g
(

∑yi,∑ 1
yi

;α,β
)

h(y1, . . . ,yn).

23. [♠] Let X ∼ gamma(α + 1,1), α > 0, and U ∼ uniform(0,1) be independent. Prove that

mlogX (t) = Γ (α+t+1)
Γ (α+1) and m 1

α logU (t) = 1
1+t/α . What is the distribution of X U1/α ?

24. Let U ∼ uniform(0,1). Name the distribution of the following transformed random variables:

a) B = I(0,p)(U) and N = ∑n
1 Bi with Bi ∼ B iid (see Exercise 3.9.21);

b) X = Φ−1(U) and µ +σX ;
c) eµ+σX ;
d) Y = − logU and Y/β ;
e) ∑n

1 Yi/β with Yi ∼ Y iid;
f) eY (= 1/U) and x0eY/β ;
g) Y 1/α/β (see Exercise 3.9.14);
h) log

(
1+Y log(c)/b

)
/ log(c) (see Exercise 3.9.16).

25. [♠] Assume we have observations of the number of claims Ni = ni, i = 1, . . . ,n in a portfolio
of risks. It is known that, conditionally given that the value of a structure variable Λi = λi,
this number has a Poisson(λiwi) distribution, where the wi ∈ [0,1] are known exposures. Also
assume Λi ∼ gamma(α,β ). Find the marginal distribution of the Ni. Draw a random sample
of size n = 10000 from the Ni, assuming the wi are 0.6 for the first 2000 policies, 1.0 for the
remainder. Take α,β such that the mean number of claims per unit of exposure is 0.1, and
the coefficient of variation of the risk parameters σΛ /µΛ = 1.3. From this sample, find the
ML-estimates for α,β .
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26. [♠] Solve the second ML-equation (3.77) using uniroot and inserting (3.76). For this, write
a function of x delivering the sum of n1,n2, . . . times the cumulative sums of 1

x , 1
x+1 , . . . , less

n log x
x+y .

27. [♠] How does one generate pseudo-random samples from the following distributions: Student,
chi-square, beta, Fisher-Snedecor? Use their well-known relations to normal random samples.

28. Write a function to generate pseudo-random samples from the logistic distribution, see Exam-
ple 11.5.6.

Section 3.10

1. Assume that X is normally distributed with expectation 10000 and standard deviation 1000.
Determine the stop-loss premium for a retention 13000. Do the same for a random variable Y
that has the same first two moments as X , but skewness 1.

2. Show that E[(S−d)+] = E[S]−d +
∫ d

0 (d − x)dF(x) = E[S]− ∫ d
0 [1−F(x)]dx.

3. If X ∼ N(µ,σ2), show that
∫ ∞

µ E[(X − t)+]dt = 1
4 σ2 and determine E[(X −µ)+].

4. Verify (3.105). Also verify (3.106) and (3.107), and show how these can be used to approxi-
mate the variance of the retained loss.

5. Give an expression for the net premium if the number of claims is Poisson(λ ) distributed and
the claim size is Pareto distributed. Assume that there is a deductible d.

6. [♠] Let X ∼ lognormal(µ,σ2). Show that for d > 0, the stop-loss premium is

E[(X −d)+] = eµ+σ2/2Φ
(− logd + µ +σ2

σ

)
−dΦ

(− logd + µ
σ

)
.

Compare your result with the Black-Scholes option pricing formula, and explain.

7. In Table 3.1, does using linear interpolation to calculate the stop-loss premium in for example
d = 0.4 for one of the given values for γ yield a result that is too high or too low?

8. Assume that N is an integer-valued risk with E[(N − d)+] = E[(U − d)+] for d = 0,1,2, . . .,
where U ∼ N(0,1). Determine Pr[N = 1].

9. Let π(t) = E[(U − t)+] denote the stop-loss premium for U ∼ N(0,1) and retention t, −∞ <
t < ∞. Show that π(−t), t ≥ 0 satisfies π(−t) = t +π(+t). Sketch π(t).

10. In Sections 3.9 and 3.10, the retention is written as µ + kσ , so it is expressed in terms of a
number of standard deviations above the expected loss. However, in the insurance practice, the
retention is always expressed as a percentage of the expected loss. Consider two companies
for which the risk of absence due to illness is to be covered by stop-loss insurance. This risk
is compound Poisson distributed with parameter λi and exponentially distributed individual
losses X with E[X ] = 1000. Company 1 is small: λ1 = 3; company 2 is large: λ2 = 300. What
are the net stop-loss premiums for both companies in case the retention d equals 80%, 100%
and 120% of the expected loss respectively? Express these amounts as a percentage of the
expected loss and use the normal approximation.

11. For the normal, lognormal and gamma distributions, as well as mixtures/combinations of ex-
ponentials, write functions like slnorm giving the stop-loss premiums of the corresponding
random variables.
Also, give a function yielding an approximate stop-loss premium for an r.v. having mean µ ,
variance σ2 and skewness γ , based on the Normal Power approximation, see (3.114). Do the
same for the translated gamma approximation, see (2.57) and (3.105).

12. Using R, verify Tables 3.1 and 3.2.
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13. Prove (3.115) and (3.116) and verify that the integrand in (3.115) is non-negative.

14. Show that (3.118) is exact if W = (1− I)µ + IU with µ = E[U ] and I ∼ Bernoulli(α), for
α = Var[W ]/Var[U ].

15. Verify Rule of thumb 3.10.6 for the case U ∼ Poisson(1) and V ∼ binomial(10, 1
10 ).

16. Assume that X1,X2, . . . are independent and identically distributed risks that represent the loss
on a portfolio in consecutive years. We could insure these risks with separate stop-loss con-
tracts for one year with a retention d, but we could also consider only one contract for the
whole period of n years with a retention nd. Show that E[(X1 − d)+]+ · · ·+ E[(Xn − d)+] ≥
E[(X1 + · · ·+ Xn − nd)+]. If d ≥ E[Xi], examine how the total net stop-loss premium for
the one-year contracts E[(X1 − d)+] relates to the stop-loss premium for the n-year period
E[(X1 + · · ·+Xn −nd)+].

17. Let B1 ∼ binomial(4,0.05), B2 ∼ binomial(2,0.1), S = B1 + B2 and T ∼ Poisson(0.4). For the
retentions d = 1

2 ,1, 3
2 , use the Rule of thumb 3.10.6 and discuss the results.

18. Derive (3.117) from the trapezoidal rule
∫ ∞

0 f (x)dx ≈ 1
2δ ∑∞

1 [ f (iδ )+ f ((i−1)δ )] with interval
width δ = 1.


