
Chapter 10
IBNR techniques

IBNR reserves represent an important cog in the insurance
accounting machinery — Bornhuetter & Ferguson, 1978

10.1 Introduction

In the past, non-life insurance portfolios were financed through a pay-as-you-go
system. All claims in a particular year were paid from the premium income of that
same year, no matter in which year the claim originated. The financial balance in
the portfolio was realized by ensuring that there was an equivalence between the
premiums collected and the claims paid in a particular financial year. Technical
gains and losses arose because of the difference between the premium income in a
year and the claims paid during the year.

The claims originating in a particular year often cannot be finalized in that year.
For example, long legal procedures are the rule with liability insurance claims. But
there may also be other causes for delay, such as the fact that the exact size of the
claim is hard to assess. Also, the claim may be filed only later, or more payments
than one have to be made, such as in disability insurance. All these factors will lead
to delay of the actual payment of the claims. The claims that have already occurred,
but are not sufficiently known, are foreseeable in the sense that one knows that
payments will have to be made, but not how much the total payment is going to be.
Consider also the case that a premium is paid for the claims in a particular year, and
a claim arises of which the insurer is not notified as yet. Here also, we have losses
that have to be reimbursed in future years.

Such claims are now connected to the years for which the premiums were actu-
ally paid. This means that reserves have to be kept regarding claims that are known
to exist, but for which the eventual size is unknown at the time the reserves have
to be set. For claims like these, several acronyms are in use. One has IBNR claims
(Incurred But Not Reported) for claims that have occurred but have not been filed.
Hence the name IBNR methods, IBNR claims and IBNR reserves for all quantities
of this type. There are also RBNS claims (Reported But Not Settled), for claims that
are known but not (completely) paid. Other acronyms are IBNFR, IBNER and RB-
NFS, where the F is for Fully, the E for Enough. Large claims known to the insurer
are often handled on a case-by-case basis.
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Table 10.1 A run-off triangle with payments by development year (horizontally) and year of origin
(vertically)

Year of Development year
origin 1 2 3 4 5 6 7 8

2011 101 153 52 17 14 3 4 1
2012 99 121 76 32 10 3 1
2013 110 182 80 20 21 2
2014 160 197 82 38 19
2015 161 254 85 46
2016 185 201 86
2017 178 261
2018 168

When modeling these situations, one generally starts from a so-called run-off
triangle, containing loss figures, for example cumulated payments, for each combi-
nation of policy year and development year. It is compiled in the following way:

1. We start in 2011 with a portfolio of insurance contracts. Let us assume that the
total claims to be paid are fully known on January 1, 2019, eight years after the
end of this year of origin;

2. The claims occurring in the year 2011 have to be paid from the premiums col-
lected in 2011;

3. These payments have been made in the year 2011 itself, but also in the years
2012–2018;

4. In the same way, for the claims pertaining to the year of origin 2012, one has the
claims which are known in the years 2012–2018, and it is unknown what has to
be paid in 2019;

5. For the year 2016, the known claims are the ones paid in the period 2016–2018,
but there are also unknown ones that will come up in the years 2019 and after;

6. For the claims concerning the premiums paid in 2018, on December 31, 2018
only the payments made in 2018 are known, but we can expect that more pay-
ments will have to be made in and after 2009. We may expect that the claims
develop in a pattern similar to the one of the claims in 2011–2018.

The development pattern can schematically be depicted as in Table 10.1. The num-
bers in the triangle are the known total payments, grouped by year of origin i (by
row) and development year j (by column). The row corresponding to year 2013
contains the six numbers known on December 31, 2018. The third element in this
row, for example, denotes the claims incurred in 2013, but paid for in the third year
of development 2015. In the triangle of Table 10.1, we look at new contracts only.
This situation may occur when a new type of policy was issued for the first time
in 2011. The business written in this year on average has had only half a year to
produce claims in 2011, which is why the numbers in the first column are somewhat
lower than those in the second. The numbers on the diagonal with i+ j−1 = k de-
note the payments that were made in calendar year k. There are many ways to group



10.1 Introduction 267

these same numbers into a triangle, but the one given in Table 10.1 is the customary
one. On the basis of the claim figures in Table 10.1, which could be claim numbers
but also more general losses, we want to make predictions about claims that will
be paid, or filed, in future calendar years. These future years are to be found in the
bottom-right part of Table 10.1. The goal of the actuarial IBNR techniques is to
predict these figures, so as to complete the triangle into a square. The total of the
figures found in the lower right triangle is the total of the claims that will have to be
paid in the future from the premiums that were collected in the period 2011–2018.
This total is precisely the reserve to be kept.

We assume that the development pattern lasts eight years. In many branches,
notably in liability, claims may still be filed after a time longer than eight years. In
that case, we have to make predictions about development years after the eighth,
of which our run-off triangle provides no data. We not only have to extend the
triangle to a square, but to a rectangle containing more development years. The usual
practice is to assume that the development procedure is stopped after a number of
years, and to apply a correction factor for the payments made after the development
period considered.

The future payments are estimated following well-established actuarial practice.
Sometimes one central estimator is given, but also sometimes a whole range of pos-
sibilities is considered, containing both the estimated values and, conceivably, the
actual results. Not just estimating the mean, but also getting an idea of the variance
of the results is important. Methods to determine the reserves have been developed
that each meet specific requirements, have different model assumptions, and pro-
duce different estimates. In practice, sometimes the method that is the most likely
to produce the ‘best’ estimator is used to determine the estimate of the expected
claims, while the results of other methods are used as a means to judge the variation
of the stochastic result, which is of course a rather unscientific approach.

To complete the triangle in Table 10.1, we can give various methods, each re-
flecting the influence of a number of exogenous factors. In the direction of the year
of origin, variation in the size of the portfolio will have an influence on the claim
figures. On the other hand, for the factor development year (horizontally), changes
in the claim handling procedure as well as in the speed of finalization of the claims
will produce a change. The figures on the diagonals correspond to payments in a par-
ticular calendar year. Such figures will change due to monetary inflation, but also by
changing jurisprudence or increasing claim proneness. As an example, in liability
insurance for the medical profession the risk increases each year, and if the amounts
awarded by judges get larger and larger, this is visible along the diagonals. In other
words, the separation models, which have as factors the year of development and
the calendar year, would be the best choice to describe the evolution of portfolios
like these.

Obviously, one should try to get as accurate a picture as possible about the sto-
chastic mechanism that produced the claims, test this model if possible, and estimate
the parameters of this model optimally to construct good predictors for the unknown
observations. Very important is how the variance of claim figures is related to the
mean value. This variance can be more or less constant, it can be proportional to the
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mean, proportional to the square of the mean (meaning that the coefficient of varia-
tion is a constant), or have some other relation with it. See the following section, as
well as the chapters on Generalized Linear Models.

Just as with many rating techniques, see the previous chapter, in the actuarial lit-
erature quite often a heuristic method to complete an IBNR triangle was described
first, and a sound statistical foundation was provided only later. In Section 10.2, we
describe briefly the two most often used techniques to make IBNR forecasts: the
chain ladder method and the Bornhuetter-Ferguson technique. There is a very ba-
sic generalized linear model (GLM) for which the ML-estimators can be computed
by the well-known chain ladder method. On the other hand it is possible to give a
model that involves a less rigid statistical structure and in which the calculations of
the chain ladder method produce an optimal estimate in the sense of mean squared
error. In Section 10.3 we give a general GLM, special cases of which can be shown
to boil down to familiar methods of IBNR estimation such as the arithmetic and
the geometric separation methods, as well as the chain ladder method. A numerical
illustration is provided in Section 10.4, where various sets of covariates are used in

described in Section 10.5. In Section 10.6, an analytical estimate of the prediction
error of the chain ladder method is studied, as well as a bootstrap method. They
were proposed by England and Verrall (1999) and England (2002). In this way, a
standard error of prediction and an approximate predictive distribution for the ran-
dom future losses are produced. In Section 10.7, we give another example, in which
the parameters relating to the accident year are replaced by the known portfolio
size, expressed in its number of policies or its premium income. A method related
to Bornhuetter-Ferguson arises.

10.2 Two time-honored IBNR methods

The two methods most frequently used in practice are the chain ladder (CL) method
and the Bornhuetter-Ferguson method. We give a short description here; for the R
implementation, we refer to later sections.

10.2.1 Chain ladder

The idea behind the chain ladder method is that in any development year, about
the same total percentage of the claims from each year of origin will be settled. In
other words, in the run-off triangle, the columns are proportional. To see how in the
chain ladder method predictions are computed for the unobserved part of a run-off
rectangle, look at Table 10.2. Note that in most texts, the run-off figures given are
cumulated by rows. This is a relic of the time when calculations had to be done by
hand. In this text, we avoid this custom.

GLMs to complete the triangle in Table 10.1. How to use R to do the calculations is
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Table 10.2 Completing a run-off rectangle with CL predictions

1 2 3 4 5

01 A A A B •
02 A A A B

03 C C C �

04 D D D̂ ��
05 •

Consider the (3,4) element in Table 10.2, denoted by � and representing pay-
ments regarding policy year 03 in their 4th development year. This is a claim figure
for calendar year 06, which is the first future calendar year, and just beyond the edge
of the observed figures. Because of the assumed proportionality, the ratio of the el-
ements � : C will be about equal to the ratio B : A . Therefore, a prediction X̂34 of
this element � is

X̂34 = CΣ × BΣ
AΣ

. (10.1)

Here BΣ , for example, denotes the total of the B-elements in Table 10.2, which are
observed values. Prediction D̂ is computed in exactly the same way, multiplying the
total of the incremental payments to the left of it by the total above it, and dividing
by the total of losses of earlier policy years and development years. The prediction
�� for X̂44 (policy year 04, calendar year 07, so one year further in the future) can
be computed by using the same ‘development factor’ BΣ /AΣ :

X̂44 = DΣ × BΣ
AΣ

, (10.2)

where the sum DΣ includes D̂ , which is not an actual observation but a prediction
constructed as above. By using the fact that � = CΣ ×BΣ /AΣ , it is easy to see that
exactly the same prediction is obtained by taking

X̂44 =
DΣ × (BΣ +�)

AΣ +CΣ
, (10.3)

hence by following the same procedure as for an observation in the next calendar
year. In this way, starting with row 2 and proceeding from left to right, the entire
lower triangle can be filled with predictions.

Remark 10.2.1 (Mirror property of the chain ladder method)
Note that this procedure produces the same estimates to complete the square if we
exchange the roles of development year and year of origin, hence take the mirror
image of the triangle around the NW–SE diagonal. ∇

Remark 10.2.2 (Marginal totals property of the chain ladder method)
One way to describe the chain ladder method is as follows: find numbers α̂i, β̂ j,

i, j = 1, . . . ,t such that the products α̂iβ̂ j (fitted values) for ‘observed’ combinations
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(i, j) with i + j − 1 ≤ t have the same column sums and row sums as the actual
observations:

∑
j(i)

α̂iβ̂ j = ∑
j(i)

Xi j for all i( j). (10.4)

Then predict future values for (i, j) with i + j − 1 > t by α̂iβ̂ j. How to find these

numbers α̂i, β̂ j will be described later on.
We will illustrate why this procedure leads to the same forecasts as the chain

ladder method by looking at Table 10.2. First observe that BΣ and CΣ are already
column and row sums, but also the sums of claim figures AΣ needed can be com-
puted from these quantities. For instance in our example, AΣ = R1 +R2− (C5 +C4)
when Ri and Cj denote the ith row sum and the jth column sum.

Next, observe that if we replace the past losses Xi j by their fitted values α̂iβ̂ j, the
row and column sums remain unchanged, and therefore also the quantities like AΣ .
When the chain ladder algorithm described above is applied to the new triangle, the
numbers α̂iβ̂ j result as future predictions. ∇

The basic principle of the chain ladder method admits many variants. One may
wonder if there is indeed proportionality between the columns. Undoubtedly, this
is determined by effects that operate along the axis describing the year of origin of
the claims. By the chain ladder method, only the run-off pattern can be captured,
given that all other factors that have an influence on the proportion of claims settled
remain unchanged over time.

The chain ladder method is merely an algorithm, a deterministic method. But
there are also stochastic models for the generating process underlying the run-off
triangle in which these same calculations lead to an optimal prediction in some
sense. See, for example, Section 10.3.1.

10.2.2 Bornhuetter-Ferguson

One of the difficulties with using the chain ladder method is that reserve forecasts
can be quite unstable. In Table 10.2, a change of p% in CΣ due to sampling vari-
ability will generate the same change in all forecasts for this row. So applying this
method to a volatile claims experience will produce volatile forecasts. This volatility
will show itself by changes in the reserve estimate each year, when a new diagonal
of observations is added to the triangle. The Bornhuetter-Ferguson (1972) method
provides a procedure for stabilizing such estimates.

Suppose that one has some prior expectation as to the ultimate losses to emerge
from each accident period i, specifically, that E[Xi1 + · · ·+Xit ] = Mi for some known
quantity Mi. This quantity is often referred to as the schedule or budget ultimate
losses. Notably one may have a prior view of the loss ratio Mi/Pi, where Pi is the
premium income with accident year i. Combining these prior estimates with the



10.3 A GLM that encompasses various IBNR methods 271

Table 10.3 Random variables in a run-off triangle

Year of Development year
origin 1 · · · t −n+1 · · · t

1 X11 · · · X1,t−n+1 · · · X1t
...

...
...

...
n Xn1 · · · Xn,t−n+1 · · · Xnt
...

...
...

...
t Xt1 · · · Xt,t−n+1 · · · Xtt

development factors of the chain ladder method, one may form an estimate of the
entire schedule of loss development. See Section 10.7 for more details.

It can be shown that the Bornhuetter-Ferguson method can be interpreted as a
Bayesian method. The forecasts have the form of a credibility estimator.

10.3 A GLM that encompasses various IBNR methods

Several often used and traditional actuarial methods to complete an IBNR triangle
can be described by one Generalized Linear Model. In Table 10.3, the random vari-
ables Xi j for i, j = 1,2, . . . ,t denote the claim figure for year of origin i and year of
development j, meaning that the claims were paid in calendar year i + j − 1. For
(i, j) combinations with i + j − 1 ≤ t, Xi j has already been observed, otherwise it
is a future observation. As well as claims actually paid, these figures may also be
used to denote quantities such as loss ratios. We take a multiplicative model, with a
parameter for each row i, each column j and each diagonal k = i+ j−1, as follows:

Xi j ≈ αi ·β j · γk. (10.5)

The deviation of the observation on the left hand side from its mean value on the
right hand side is attributed to chance. As one sees, if we assume further that the
random variables Xi j are independent and restrict their distribution to be in the ex-
ponential dispersion family, (10.5) is a Generalized Linear Model in the sense of
Chapter 9. Year of origin i, year of development j and calendar year k = 1 + j− 1
act as explanatory variables for the observation Xi j. The expected value of Xi j is the
exponent of the linear form logαi + logβ j + logγk, so there is a logarithmic link.
Note that the covariates are all dummies representing group membership for rows,
columns and diagonals in Table 10.3. We will determine maximum likelihood esti-
mates of the parameters αi, β j and γk, under various assumptions for the probability
distribution of the Xi j. It will turn out that in this simple way, we can generate quite
a few widely used IBNR techniques.
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Having found estimates of the parameters, it is easy to extend the triangle to a
square, simply by taking

X̂i j := α̂i · β̂ j · γ̂k. (10.6)

A problem is that we have no data on the values of the γk for future calendar years k
with k > t. The problem can be solved, for example, by assuming that the γk have a
geometric pattern, with γk ∝ γk for some real number γ .

10.3.1 Chain ladder method as a GLM

The first method that can be derived from model (10.5) is the chain ladder method
of Section 10.2.1. Suppose that we restrict model (10.5) to:

Xi j ∼ Poisson(αiβ j) independent; γk ≡ 1. (10.7)

If the parameters αi > 0 and β j > 0 are to be estimated by maximum likelihood, we
have in fact a multiplicative GLM with Poisson errors and a log-link, because the
observations Xi j, i, j = 1, . . . ,t; i + j ≤ t are independent Poisson random variables
with a logarithmic model for the means; explanatory variables are the factors row
number and column number.

By Property 9.3.9 it follows that the marginal totals of the triangle, hence the row
sums Ri and the column sums Cj of the observed figures Xi j, must be equal to the

predictions ∑ j α̂iβ̂ j and ∑i α̂iβ̂ j for these quantities; see (10.4). So it follows from
Remark 10.2.2 that the optimal estimates of the parameters αi and β j produced by
this GLM are equal to the parameter estimates found by the chain ladder method.

One of the parameters is superfluous, since if we replace all αi and β j by δαi

and β j/δ we get the same expected values. To resolve this ambiguity, we impose an
additional restriction on the parameters. We could use a ‘corner restriction’, requir-
ing for example α1 = 1, but a more natural restriction to ensure identifiability of the
parameters is to require β1 + · · ·+βt = 1. This allows the β j to be interpreted as the
fraction of claims settled in development year j, and αi as the ‘volume’ of year of
origin i: it is the total of the payments made.

Maximizing the likelihood with model (10.7) can be done by an appropriate call
of R’s function glm; see Section 10.5. But by the triangular shape of the data,
the system of marginal totals equations admits the following recursive solution
method, originally devised by Verbeek (1972) for the case of the arithmetic sep-
aration method below.

Algorithm 10.3.1 (Verbeek’s algorithm for chain ladder)
Look at Table 10.4. The row and column totals are those of the past Xi j in Table
10.3. To solve the marginal totals equations (10.4), we can proceed as follows.

1. From the first row sum equality α̂1(β̂1 + · · ·+ β̂t) = R1 it follows that α̂1 = R1.
Then from α̂1β̂t = Ct we find β̂t = Ct/R1.
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Table 10.4 The marginal totals equations in a run-off triangle

Year of Development year Row
origin 1 · · · t −n+1 · · · t total

1 α1β1 α1βt−n+1 α1βt R1
...

...
n αnβ1 αnβt−n+1 Rn
...

...
t αtβ1 Rt

Column total C1 · · · Ct−n+1 · · · Ct

2. Assume that, for a certain n < t, we have found estimates β̂t−n+2, . . . , β̂t and
α̂1, . . . , α̂n−1. Then look at the following two marginal totals equations:

α̂n(β̂1 + · · ·+ β̂t−n+1) = Rn;

(α̂1 + · · ·+ α̂n)β̂t−n+1 = Ct−n+1.
(10.8)

By the fact that we take β̂1 + · · ·+ β̂t = 1, the first of these equations directly
produces a value for α̂n, and then we can compute β̂t−n+1 from the second one.

3. Repeat step 2 for n = 2, . . . ,t. ∇

10.3.2 Arithmetic and geometric separation methods

In the separation models, one assumes that in each year of development a fixed per-
centage is settled, and that there are additional effects that operate in the diagonal
direction (from top-left to bottom-right) in the run-off triangle. So this model de-
scribes best the situation that there is inflation in the claim figures, or when the risk
increases by other causes. This increase is characterized by an index factor for each
calendar year, which is a constant for the observations parallel to the diagonal. One
supposes that in Table 10.4, the random variables Xi j are average loss figures, where
the total loss is divided by the number of claims, for year of origin i and development
year j.

Arithmetic separation method The arithmetic separation method was described
in Verbeek (1972), who applied the model to forecast the number of stop-loss claims
reported. As time goes by, due to inflation more claims will exceed the retention, and
this effect must be included in the model. In both the arithmetic and the geometric
separation method the claim figures Xi j are explained by two aspects of time, just as
for chain ladder and Bornhuetter-Ferguson. But in this case there is a calendar year
effect γk, where k = i + j − 1, and a development year effect β j. So inflation and
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run-off pattern are the determinants for the claim figures now. For the arithmetic
separation method we assume

Xi j ∼ Poisson(β jγk) independent; αi ≡ 1. (10.9)

Again, β j and γk are estimated by maximum likelihood. Since this is again a GLM
(Poisson with the canonical log-link), because of Property 9.3.9 the marginal totals
property must hold here as well. In model (10.9) these marginal totals are the column
sums and the sums over the diagonals, with i+ j−1 = k.

The parameter estimates in the arithmetic separation method can be obtained by
a variant of Method 10.3.1 (Verbeek) for the chain ladder method computations. We
have E[Xi j] = β jγi+ j−1. Again, the parameters β j, j = 1, . . . ,t describe the propor-
tions settled in development year j. Assuming that the claims are all settled after t
development years, we have β1 + · · ·+βt = 1. Using the marginal totals equations,
see Table 10.4, we can determine directly the optimal factor γ̂t , reflecting base level
times inflation, as the sum of the observations on the long diagonal ∑i Xi,t+1−i. Since

βt occurs in the final column only, we have β̂t = X̂1t/γ̂t . With this, we can compute
γ̂t−1, and then β̂t−1, and so on. Just as with the chain ladder method, the estimates
thus constructed satisfy the marginal totals equations, and hence are maximum like-
lihood estimates because of Property 9.3.9.

To fill out the remaining part of the square, we also need values for the parameters
γt+1, . . . ,γ2t , to be multiplied by the corresponding β̂ j estimate. We find values for
these parameters by extending the sequence γ̂1, . . . , γ̂t in some way. This can be done
with many techniques, for example loglinear extrapolation.

Geometric separation method The geometric separation method involves maxi-
mum likelihood estimation of the parameters in the following statistical model:

log(Xi j) ∼ N
(
log(β jγk),σ2) independent; αi ≡ 1. (10.10)

Here σ2 is an unknown variance. We get an ordinary regression model with
E[logXi j] = logβ j + logγi+ j−1. Its parameters can be estimated in the usual way,
but they can also be estimated recursively in the way described above, starting from
∏ j β j = 1.

Note that the values β jγi+ j−1 in this lognormal model are not the expected values
of Xi j. In fact, they are only the medians; we have

Pr[Xi j ≤ β jγi+ j−1] =
1
2

but E[Xi j] = eσ2/2β jγi+ j−1. (10.11)

10.3.3 De Vijlder’s least squares method

In the least squares method of De Vylder (1978), he assumes that γk ≡ 1 holds,
while αi and β j are determined by minimizing the sum of squares ∑i, j(Xi j −αiβ j)

2,
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Table 10.5 Run-off data used in De Vylder (1978)

Year of Development year
origin 1 2 3 4 5 6

1 4627
2 15140 13343
3 43465 19018 12476
4 116531 42390 23505 14371
5 346807 118035 43784 12750 12284
6 308580 407117 132247 37086 27744
7 358211 426329 157415 68219
8 327996 436774 147154
9 377369 561699

10 333827

taken over the set (i, j) for which observations are available. But this is tantamount
to determining αi and β j by maximum likelihood in the following model:

Xi j ∼ N(αiβ j,σ2) independent; γk ≡ 1. (10.12)

Just as with chain ladder, we assume that the mean payments for a particular year of
origin/year of development combination result from two effects. First, a parameter
characterizing the year of origin, proportional to the size of the portfolio in that year.
Second, a parameter determining which proportion of the claims is settled through
the period that claims develop. The parameters are estimated by least squares.

In practice it quite often happens that not all data in an IBNR-triangle are actually
available. In De Vylder (1978) a 10× 10 IBNR-triangle is studied missing all the
observations from calendar years 1, . . . ,5, as well as those for development years
7, . . . ,10. What these numbers represent is not relevant. See Table 10.5.

This paper is the first to mention that in IBNR problems, time operates in three
different ways: by policy year i reflecting growth of the portfolio, by development
year j reflecting the run-off pattern of the claims, and by calendar year k = i + j−
1 reflecting inflation and changes in jurisprudence. De Vijlder proposed to use a
multiplicative model αiβ jγk for the data Xi j, and to choose those parameter values
αi, β j and γk that minimize the least squares distance, therefore solving:

min
αi,β j ,γk

∑
i, j

wi j(Xi j −αiβ jγi+ j−1)
2. (10.13)

We multiply by weights wi j = 1 if yi j is an actual observation, wi j = 0 otherwise,
so the sum can be taken over all (i, j) combinations. De Vijlder proceeds by taking
the inflation component fixed, hence γk = γk for some real γ , and proves that doing
this, one might actually have left out inflation of the model altogether, thus taking
γk ≡ 1. See Exercise 10.3.4. Next he describes the method of successive substitution
to solve the reduced problem, and gives the results for this method. Note that his
paper was written in pre-PC times; he used a programmable hand-held calculator.



276 10 IBNR techniques

10.4 Illustration of some IBNR methods

Obviously, introducing parameters for the three time aspects year of origin, year
of development and calendar year sometimes leads to overparameterization. Many
of these parameters could be dropped, that is, taken equal to 1 in a multiplicative
model. Others might be required to be equal, for example by grouping classes hav-
ing different values for some factor together. Admitting classes to be grouped leads
to many models being considered simultaneously, and it is sometimes hard to con-
struct proper significance tests in these situations. Also, a classification of which
the classes are ordered, such as age class or bonus-malus step, might lead to pa-
rameters giving a fixed increase per class, except perhaps at the boundaries or for
some other special class. In a loglinear model, replacing arbitrary parameter values,
associated with factor levels (classes), by a geometric progression in these parame-
ters is easily achieved by replacing the dummified factor by the actual levels again,
or in GLIM parlance, treating this variable as a variate instead of as a factor. Re-
placing arbitrary values αi, with α1 = 1, by α i−1 for some real α means that we
assume the portfolio to grow, or shrink, by a fixed percentage each year. Doing the
same to the parameters β j means that the proportion settled decreases by a fixed
fraction with each development year. Quite often, the first development year will
be different from the others, for example because only three quarters are counted
as the first year. In that case, one does best to allow a separate parameter for the
first year, taking parameters β1,β 2,β 3, . . . for some real numbers β1 and β . Instead
of with the original t parameters β1, . . . ,βt , one works with only two parameters.
By introducing a new dummy explanatory variable to indicate whether the calendar
year k = i+ j−1 with observation Xi j is before or after k0, and letting it contribute
a factor 1 or δ to the mean, respectively, one gets a model for which in one year, the
inflation differs from the standard fixed inflation of the other years. Other functional
forms for the β j parameters include the Hoerl-curve, where β j = exp(γ j + δ log j)
for some real numbers γ and δ . These can be used for all rows in common, or for
each row separately (interaction).

In the previous chapter, we introduced the (scaled) deviance as a ‘distance’ be-
tween the data and the estimates. It is determined from the difference of the maxi-
mally attainable likelihood and the one of a particular model. Using this, one may
test if it is worthwhile to complicate a model by introducing more parameters. For
a nested model, of which the parameter set can be constructed by imposing lin-
ear restrictions on the parameters of the original model, it is possible to judge if
the distance between data and estimates is ‘significantly’ larger. It proves that this
difference in distance, under the null-hypothesis that the eliminated parameters are
superfluous, is approximately χ2 distributed, when suitably scaled. In similar fash-
ion, the ‘goodness of fit’ of non-nested models can be compared by using the Akaike
information criterion, see Remark 9.4.4.

Some regression software leaves it to the user to resolve the problems arising
from introducing parameters with covariates that are linearly dependent of the oth-
ers, the so-called ‘dummy trap’ (multicollinearity). The glm function in R is more
user-friendly in this respect. For example if one takes all three effects in (10.5) geo-
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Table 10.6 Parameter set, degrees of freedom (= number of observations less number of estimated
parameters), and deviance for several models applied to the data of Table 10.1.

Model Parameters used Df Deviance

I µ,αi,β j,γk 15 25.7
II µ,αi,β j 21 38.0
III µ,β j,γk 21 36.8
IV µ,β j,γk−1 27 59.9
V µ,α i−1,β j 27 59.9
VI µ,αi,γk−1 27 504.
VII µ,αi,β j−1 27 504.
VIII µ,αi,β1,β j−1 26 46.0 ♥
IX µ,α i−1,β1,β j−1 32 67.9
X µ,α i−1,β j−1 33 582.
XI µ 35 2656

metric, with as fitted values

X̂i j = µ̂α̂ i−1β̂ j−1γ̂ i+ j−2, (10.14)

R does not stop but simply proceeds by taking the last of these three parameters to
be equal to 1; see Exercise 10.4.2. Notice that by introducing µ̂ in (10.14), all three
parameter estimates can have the form α̂ i−1, β̂ j−1 and γ̂ i+ j−2. In the same way, we
can take α1 = β1 = γ1 = 1 in (10.5). The parameter µ = E[X11] is the level in the
first year of origin and development year 1.

10.4.1 Modeling the claim numbers in Table 10.1

We fitted a number of models to explain the claim figures in Table 10.1. They were
actually claim numbers; the averages of the payments are shown in Table 10.8. To
judge which model best fits the data, we estimated a few models for (10.5), all
assuming the observations to be Poisson(αiβ jγi+ j−1). See Table 10.6. By imposing
(loglinear) restrictions like β j = β j−1 or γk ≡ 1, we reproduce the various models
discussed earlier. The reader may verify that in model I, one may choose γ8 = 1
without loss of generality. This means that model I has only 6 more parameters to
be estimated than model II. Notice that for model I with E[Xi j] = µαiβ jγi+ j−1, there
are 3(t −1) parameters to be estimated from t(t +1)/2 observations, hence model I
only makes sense if t ≥ 4.

It can be shown that we get the same estimates using either of the models E[Xi j] =
µαiβ j−1 and E[Xi j] = µαiγ i+ j−1 = (µγ)(αiγ i−1)(β jγ j−1). Completing the triangle
of Table 10.1 into a square by using model VIII produces Table 10.7. The column
‘Total’ contains the row sums of the estimated future payments, hence exactly the
amount to be reserved regarding each year of origin. The figures in the top-left part
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Table 10.7 The claim figures of Table 10.1 estimated by model VIII. The last column gives the
totals for all the future predicted payments.

Year of Development year
origin 1 2 3 4 5 6 7 8 Total

2000 102.3 140.1 510.4 25.2 10.7 4.5 1.9 0.8| 0.0
2001 101.6 1310.2 510.1 25.0 10.6 4.5 1.9| 0.8 0.8
2002 124.0 1610.9 72.1 30.6 13.0 5.5| 2.3 1.0 3.3
2003 150.2 205.8 87.3 37.0 15.7| 6.7 2.8 1.2 10.7
2004 170.7 233.9 910.2 42.1| 17.8 7.6 3.2 1.4 30.0
2005 1510.9 2110.1 92.9| 310.4 16.7 7.1 3.0 1.3 67.5
2006 185.2 253.8| 107.6 45.7 110.4 8.2 3.5 1.5 185.8
2007 168.0| 230.2 97.6 41.4 17.6 7.4 3.2 1.3 398.7

are estimates of the already observed values, the ones in the bottom-right part are
predictions for future payments.

All other models are nested in model I, since its set of parameters contains all
other ones as a subset. The estimates for model I best fit the data. About the de-
viances and the corresponding numbers of degrees of freedom, the following can be
said. The chain ladder model II is not rejected statistically against the fullest model
I on a 95% level, since it contains six parameters fewer, and the χ2 critical value is
12.6 while the difference in scaled deviance is only 12.3. The arithmetic separation
model III fits the data somewhat better than model II. Model IV with an arbitrary
run-off pattern β j and a constant inflation γ is equivalent to model V, which has a
constant rate of growth for the portfolio. In Exercise 10.3.3, the reader is asked to
explain why these two models are identical. Model IV, which is nested in III and
has six parameters fewer, predicts significantly worse. In the same way, V is worse
than II. Models VI and VII again are identical. Their fit is bad. Model VIII, with
a geometric development pattern except for the first year, seems to be the winner:
with five parameters fewer, its fit is not significantly worse than model II in which
it is nested. It fits better than model VII in which the first column is not treated
separately. Comparing VIII with IX, we see that a constant rate of growth in the
portfolio must be rejected in favor of an arbitrary growth pattern. In model X, there
is a constant rate of growth as well as a geometric development pattern. The fit is
bad, mainly because the first column is so different.

From model XI, having only a constant term, we see that the ‘percentage of
explained deviance’ of model VIII is more than 98%. But even model IX, which
contains only a constant term and three other parameters, already explains 97.4% of
the deviation.

The estimated model VIII gives the following predictions:

VIII: X̂i j = 102.3×αi ×3.20 j 	=1 ×0.42 j−1,

with �α ′ = (1,0.99,1.21,1.47,1.67,1.56,1.81,1.64).
(10.15)
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Table 10.8 Average payments corresponding to the numbers of payments in Table 10.1.

Year of Development year
origin 1 2 3 4 5 6 7 8

2000 62 146 117 175 203 212 406 318
2001 133 122 96 379 455 441 429
2002 148 232 120 481 312 390
2003 119 185 223 171 162
2004 93 109 87 190
2005 33 129 176
2006 237 179
2007 191

Here j 	= 1 should be read as a Boolean expression, with value 1 if true, 0 if false
(in this case, for the special column with j = 1). Model IX leads to:

IX: X̂i j = 101.1×1.10i−1 ×3.34 j 	=1 ×0.42 j−1. (10.16)

10.4.2 Modeling claim sizes

The Poisson distribution with year of origin as well as year of development as ex-
planatory variables, that is, the chain ladder method, is appropriate to model the
number of claims. Apart from the numbers of claims given in Table 10.1, we also
know the average claim size; it can be found in Table 10.8. For these claim sizes,
the portfolio size, characterized by the factors αi, is irrelevant. The inflation, hence
the calendar year, is an important factor, and so is the development year, since only
large claims tend to lead to delay in settlement. So for this situation, the separation
models are more suitable. We have estimated the average claim sizes under the as-
sumption that they arose from a gamma distribution with a constant coefficient of
variation, with a multiplicative model.

The results for the various models are displayed in Table 10.9. As one sees, the
nesting structure in the models is 7 ⊂ 6 ⊂ 4/5 ⊂ 3 ⊂ 2 ⊂ 1; models 4 and 5 are
both between 6 and 3, but they are not nested in one another. We have scaled the
deviances in such a way that the fullest model 1 has a scaled deviance equal to the
number of degrees of freedom, hence 15. This way, we can test the significance of
the model refinements by comparing the gain in scaled deviance to the critical value
of the χ2 distribution with as a parameter the number of extra parameters estimated.
A statistically significant step in both chains is the step from model 7 to 6. Taking
the development parameters β j arbitrary as in model 5, instead of geometric β j−1

as in model 6, does not significantly improve the fit. Refining model 6 to model
4 by introducing a parameter for inflation γk−1 also does not lead to a significant
improvement. Refining model 4 to model 3, nor model 3 to model 2, improves the
fit significantly, but model 1 is significantly better than model 2. Still, we prefer
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Table 10.9 Parameters, degrees of freedom and deviance for various models applied to the average
claim sizes of Table 10.8.

Model Parameters used Df Deviance

1 µ,αi,β j,γk 15 15 (♥)
2 µ,β j,γk 21 30.2
3 µ,β j,γk−1 27 36.8
4 µ,β j−1,γk−1 33 39.5
5 µ,β j 28 38.7
6 µ,β j−1 34 41.2 ♥
7 µ 35 47.2

the simple model 6, if only because model 6 is not dominated by model 1. This
is because at the cost of 19 extra parameters, the gain in scaled deviance is only
26.2. So the best estimates are obtained from model 6. It gives an initial level of
129 in the first year of development, increasing to 129× 1.177 = 397 in the eighth
year. Notice that if the fit is not greatly improved by taking the coefficients γi+ j−1

arbitrary instead of geometric or constant, it is better either to ignore inflation or to
use a fixed level, possibly with a break in the trend somewhere, just to avoid the
problem of having to find extrapolated values of γt+1, . . . ,γ2t .

By combining estimated average claim sizes by year of origin and year of devel-
opment with the estimated claim numbers, see Table 10.7, we get the total amounts
to be reserved. These are given in the rightmost column of Table 10.10. The cor-
responding model is found by combining both multiplicative models 6 and IX, see
(10.16); it leads to the following estimated total payments:

6× IX: X̂i j = 13041×1.10i−1 ×3.34 j 	=1 ×0.46 j−1. (10.17)

This model can also be used if, as is usual in practice, one is not content with a
square of observed and predicted values, but also wants estimates concerning these
years of origin for development years after the one that has last been observed,
hence a rectangle of predicted values. The total estimated payments for year of
origin i are equal to ∑∞

j=1 X̂i j. Obviously, these are finite only if the coefficient for
each development year in models 6 and IX combined is less than 1 in (10.17).

Remark 10.4.1 (Variance of the estimated IBNR totals)
To obtain a prediction interval for the estimates in practice, finding an estimate
the variance of the IBNR totals is vital. If the model chosen is the correct one
and the parameter estimates are unbiased, this variance reflects parameter uncer-
tainty as well as volatility of the process. If we assume that in Table 10.7 the
model is correct and the parameter estimates coincide with the actual values, the
estimated row totals are estimates of Poisson random variables. As these random
variables have a variance equal to this mean, and the yearly totals are indepen-
dent, the total estimated process variance is equal to the total estimated mean, hence
0.8+ · · ·+398.7 = 696.8 = 26.42. If there is overdispersion present in the model, the
variance must be multiplied by the estimated overdispersion factor. The actual vari-
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Table 10.10 Observed and predicted total claims corresponding to the Tables 10.1 and 10.7. Under
Total paid are the total payments made so far, under Total est., the estimated remaining payments.

Year of Development year Total Total
origin 1 2 3 4 5 6 7 8 paid est.

2000 6262 22338 6084 2975 2842 636 1624 318| 43079 0
2001 13167 14762 7296 12128 4550 1323 429| 361 53655 361
2002 16280 42224 9600 9620 6552 780| 800 398 85056 1198
2003 19040 36445 18286 6498 3078| 1772 881 438 83347 3092
2004 14973 27686 7395 8740| 3926 1952 971 483 58794 7331
2005 6105 25929 15136| 8696 4324 2150 1069 532 47170 16771
2006 42186 46719| 19262 9578 4762 2368 1178 586 88905 37733
2007 32088| 42665 21215 10549 5245 2608 1297 645 32088 84224

ance of course also includes the variation of the estimated mean, but this is harder
to come by. Again assuming that all parameters have been correctly estimated and
that the model is also correct, including the independence of claim sizes and claim
numbers, the figures in Table 10.10 are predictions for compound Poisson random
variables with mean λ µ2. The parameters λ of the numbers of claims can be ob-
tained from Table 10.7, the second moments µ2 of the gamma distributed payments
can be derived from the estimated means in (10.15) together with the estimated dis-
persion parameter. In Section 10.6, we describe a bootstrap method to estimate the
predictive distribution. Also we derive a delta method based approximation for the
prediction error. ∇

Remark 10.4.2 (‘The’ stochastic model behind chain ladder)
We have shown that the chain ladder method is just one algorithm to estimate the
parameters of a simple GLM with two factors (year of origin and development year),
a log-link and a mean-variance relationship of Poisson type (σ2 ∝ µ). Mack (1993)
describes as ‘the’ stochastic model behind chain ladder a different set of distribu-
tional assumptions under which doing these calculations makes sense. Aiming for a
distribution-free model, he cannot specify a likelihood to be maximized, so he sets
out to find minimum MSE unbiased linear estimators instead. His model does not
require independence, but only makes some assumptions about conditional means
and variances, given the past development for each year of origin. They are such
that the unconditional means and variances of the incremental observations are the
same as in the GLM. ∇

10.5 Solving IBNR problems by R

Since we have shown that the chain ladder and many other methods are actually

variable consists of a vector containing the elements of the triangle of the observed
past losses, for example the aggregate payments in the past. These losses are broken

GLMs, R’s built-in function glm can do the necessary calculations. The dependent
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down by year of origin of the policy and year of development of the claim filing
process, which act as explanatory variables. In other applications, we need the cal-
endar year. In this section we show by a simple example how to get the triangular
data into a usable vector form, as well as how to construct the proper row and col-
umn numbers conveniently. Then we show which glm-call can be used to produce
the chain ladder estimates, and also how to implement Verbeek’s method 10.3.1 to
produce these same estimates.

First, we fill a one-dimensional array Xij with, stored row-wise, the 15 incre-
mental observations from the triangle of Exercise 10.3.3. We also store the corre-
sponding row and column numbers in vectors i and j.

Xij <- c(232,106,35,16,2, 258,115,56,27, 221,82,4, 359,71, 349)
i <- c( 1, 1, 1, 1,1, 2, 2, 2, 2, 3, 3,3, 4, 4, 5)
j <- c( 1, 2, 3, 4,5, 1, 2, 3, 4, 1, 2,3, 1, 2, 1)

In general, if we denote the width of the triangle by TT, the length of the vector
Xij is TT*(TT+1)/2. The row numbers constitute a vector of ones repeated TT
times, then twos repeated TT-1 times, and so on until just the single number TT.
The column numbers are the sequence 1:TT, concatenated with 1:(TT-1), then
1:(TT-2) and so on until finally just 1. So from any vector Xij containing a
runoff triangle, we can find TT, i and j as follows.

TT <- trunc(sqrt(2*length(Xij)))
i <- rep(1:TT,TT:1); j <- sequence(TT:1)

Now to apply the chain ladder method to this triangle, and to extract the parameter
estimates for the αi and β j in (10.7), we simply call:

CL <- glm(Xij˜as.factor(i)+as.factor(j), family=poisson)
coefs <- exp(coef(CL)) ##exponents of parameter estimates
alpha.glm <- coefs[1] * c(1, coefs[2:TT])
beta.glm <- c(1, coefs[(TT+1):(2*TT-1)])

The resulting values of the coefficients αi and β j in the vector coefs are:

> coefs
(Intercept) as.factor(i)2 as.factor(i)3 as.factor(i)4 as.factor(i)5

250.1441 1.1722 0.8315 1.2738 1.3952
as.factor(j)2 as.factor(j)3 as.factor(j)4 as.factor(j)5

0.3495 0.1264 0.0791 0.0080

To apply Verbeek’s algorithm 10.3.1 to find these same parameter estimates α̂i and
β̂ j, we need the row and column sums of the triangle. These sums over all obser-
vations sharing a common value of i and j, respectively, can be found by using
the function tapply as below. First, alpha and beta are initialized to vectors of
length TT. In the loop, we compute alpha[n] using (10.8) and add it to the auxil-
iary variable aa storing the sum of the α’s computed so far. The last line produces
the matrix of predicted values α̂iβ̂ j for all i, j, as the outer matrix product α̂β̂ ′. So
Verbeek’s method 10.3.1 can be implemented as:
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Ri <- tapply(Xij, i, sum); Cj <- tapply(Xij, j, sum)
alpha <- beta <- numeric(TT)
aa <- alpha[1] <- Ri[1]
bb <- beta[TT] <- Cj[TT] / Ri[1]
for (n in 2:TT) {

aa <- aa + (alpha[n] <- Ri[n]/(1-bb))
bb <- bb + (beta[TT-n+1] <- Cj[TT-n+1] / aa)}

pred <- alpha %*% t(beta)

Using Verbeek’s algorithm 10.3.1 instead of a call of glm to compute parameter
estimates is quicker because no iterative process is needed. This is definitely an
issue when many bootstrap simulations are done such as in Section 10.6. Also, it is
slightly more general since it can also be applied when some of the observations are
negative. To get non-negative parameter estimates, all row and column sums must
be non-negative, as well as all sums over rectangles such as AΣ in (10.1). Note that
AΣ ≥ 0 is not implied by non-negative marginals alone; to see this, consider a 2×2
triangle with C1 = R1 = 1, C2 = R2 = 2. Negative numbers in an IBNR-triangle
occur in case recuperations, or corrections to case estimates that proved to be too
pessimistic, are processed as if they were negative payments in a future development
year.

To find the cumulated loss figures, it is convenient to store the IBNR data as a
matrix, not as a long array. One straightforward way to construct a TT by TT square
matrix containing the IBNR losses at the proper places, and next to construct the
row-wise cumulated loss figures from it, is by doing

Xij.mat.cum <- Xij.mat <- matrix(0, nrow=TT, ncol=TT)
for (k in 1:length(Xij)) Xij.mat[i[k],j[k]] <- Xij[k]
for (k in 1:TT) Xij.mat.cum[k,] <- cumsum(Xij.mat[k,])

For a matrix Xij.mat, the row and column numbers can be found as the matrices
row(Xij.mat) and col(Xij.mat) respectively. From these, it is easy to find
the calendar years in which a loss occurred. It occurs in the future if its calendar year
is past TT. To reconstruct the original long vector containing the past observations
from the matrix representation, we have to take the transpose of Xij.mat before
extracting the past elements from it, because R stores the elements of arrays in the
so-called column major order, that is, not by rows but by columns.

i.mat <- row(Xij.mat); j.mat <- col(Xij.mat);
future <- i.mat + j.mat - 1 > TT
t(Xij.mat)[!t(future)] ## equals the vector Xij

10.6 Variability of the IBNR estimate

The aim of IBNR analysis is to make a prediction for how much remains to be paid
on claims from the past. Earlier, we showed how to compute a point estimate of the
outstanding claims, using the GLM that underlies well-known chain ladder method.
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Point estimates are useful, especially if they have nice asymptotic properties such as
the ones resulting from generalized linear models. But often we want to know pre-
diction intervals for the outstanding claims, or for example the 95% quantile. Not
only is there a process variance, since future claims constitute a multiple of a Pois-
son random variable in the chain ladder model, but additionally, there is parameter
uncertainty. We can give standard deviations for all estimated coefficients, but from
these, we cannot easily compute the variance around the estimated mean of the total
outstanding claims. In two papers England and Verrall (1999) and England (2002)
describe a method to obtain estimates of the prediction error. Based on the delta
method, see Example 9.1.1, they give an approximation that can be derived using
quantities produced by a glm call. It involves variances and covariances of the lin-
ear predictors and fitted values. They also give a bootstrapping method to estimate
the reserve standard errors (the estimation error component of the prediction error).
In a subsequent paper, England (2002) proposes not just using the bootstrap esti-
mates to compute a standard deviation, but to actually generate a pseudo-sample of
outcomes of the whole future process, in this way obtaining a complete approximate
predictive distribution. From this, characteristics such as mean, variance, skewness
and medians, as well as other quantiles, are easily derived.

As an example, we use the triangle of Taylor & Ashe (1983). This dataset with
55 incremental losses is used in many texts on IBNR problems.

Xij <- scan(n=55)
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
352118 884021 933894 1183289 445745 320996 527804 266172 425046
290507 1001799 926219 1016654 750816 146923 495992 280405
310608 1108250 776189 1562400 272482 352053 206286
443160 693190 991983 769488 504851 470639
396132 937085 847498 805037 705960
440832 847631 1131398 1063269
359480 1061648 1443370
376686 986608
344014

Based on these original data, we compute estimates α̂i, β̂ j in a chain ladder model.
For that, we invoke the glm-function with Poisson errors and log-link, and as co-
variates row and column numbers i and j (treated as factors). See also the preceding
section. Actually, we take a quasi-Poisson error structure, as if the observations
Xi j were φ times independent Poisson(µi j/φ ) random variables, i, j = 1, . . . ,t. Here
µi j = αiβ j for some positive parameters α1, . . . ,αt and β1, . . . ,βt with β1 = 1. Con-

struct fitted values α̂iβ̂ j, i, j = 1, . . . ,t and compute the sum of the future fitted val-
ues, as follows:

n <- length(Xij); TT <- trunc(sqrt(2*n))
i <- rep(1:TT, TT:1); i <- as.factor(i) ## row nrs
j <- sequence(TT:1); j <- as.factor(j) ## col nrs
Orig.CL <- glm(Xij˜i+j, quasipoisson)
coefs <- exp(as.numeric(coef(Orig.CL)))
alpha <- c(1, coefs[2:TT]) * coefs[1]
beta <- c(1, coefs[(TT+1):(2*TT-1)])
Orig.fits <- alpha %*% t(beta)
future <- row(Orig.fits) + col(Orig.fits) - 1 > TT
Orig.reserve <- sum(Orig.fits[future]) ## 18680856
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10.6.1 Bootstrapping

England & Verrall (1999) describes a method to create bootstrap estimates. They
are obtained by sampling (with replacement) from the observed residuals in the
past observations to obtain a large set of pseudo-data, and computing an IBNR-
forecast from it. The standard deviation of the set of reserve estimates obtained this
way provides a bootstrap estimate of the estimation error. We will give each step
of the method of England and Verrall, both the theoretical considerations and the
R-implementation.

The Pearson X2 statistic is the sum of the squared Pearson residuals. In the same
way, the deviance can be viewed as the sum of squared deviance residuals, so the
deviance residual is the square root of the contribution of an observation to the
deviance, with the appropriate sign. See Section 11.4. Though the deviance residual
is the natural choice in GLM contexts, in this case we will use the Pearson residual,
since it is easy to invert:

rP =
x−µ√µ

, therefore x = rP
√

µ + µ . (10.18)

To calculate the outcomes of the Pearson residuals (Xi j − µ̂i j)/
√

µ̂i j, do

Prs.resid <- (Xij-fitted(Orig.CL))/sqrt(fitted(Orig.CL))

The Pearson residual in (10.18) is unscaled in the sense that it does not include the
scale parameter φ . This is not needed for the bootstrap calculations but only when
computing the process error. To estimate φ , England and Verrall use the Pearson
scale parameter. It uses a denominator n− p instead of n to reduce bias:

φP =
∑r2

P

n− p
, (10.19)

where the summation is over all n = t(t +1)/2 past observations, and p = 2t −1 is
the number of parameters estimated. In R, do

p <- 2*TT-1; phi.P <- sum(Prs.residˆ2)/(n-p)

We adjust the residuals for bias in the same way as the scale parameter:

r′P =

√
n

n− p
rP. (10.20)

This is achieved as follows:

Adj.Prs.resid <- Prs.resid * sqrt(n/(n-p))

To be able to reproduce our results, we initialize the random number generator so as
to get a fixed stream of random numbers:

set.seed(6345789)
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Now run the bootstrap loop many times, for example, 1000 times.

nBoot <- 1000; payments <- reserves <- numeric(nBoot)
for (boots in 1:nBoot){ ## Start of bootstrap-loop

1. Resample from the adjusted residuals, with replacement:

Ps.Xij <- sample(Adj.Prs.resid, n, replace=TRUE)

2. Using this set of residuals and the estimated values of µ̂i j, create a new suitable
pseudo-history:

Ps.Xij <- Ps.Xij * sqrt(fitted(Orig.CL)) + fitted(Orig.CL)
Ps.Xij <- pmax(Ps.Xij, 0) ## Set ‘observations’ < 0 to 0

For convenience, we set negative observations to zero. For the Taylor & Ashe
example, about 0.16 negative pseudo-observations were generated in each boot-
strap simulation, and setting them to zero obviously induces a slight bias in the
results; in other triangles, this effect might be more serious. Note that to obtain
feasible estimates α̂i, β̂ j, it is not necessary that all entries in the run-off triangle
are non-negative, see Verbeek’s algorithm 10.3.1 as well as Section 10.5. But this
is required in the glm-routine for the poisson and quasipoisson families.

3. From this history, obtain estimates α̂i, β̂ j using a chain ladder model:

Ps.CL <- glm(Ps.Xij˜i+j, quasipoisson)
coefs <- exp(as.numeric(coef(Ps.CL)))
Ps.alpha <- c(1, coefs[2:TT]) * coefs[1]
Ps.beta <- c(1, coefs[(TT+1):(2*TT-1)])

4. Compute the fitted values, and use the sum of the future part as an estimate of
the reserve to be held.

Ps.fits <- Ps.alpha %*% t(Ps.beta)
Ps.reserve <- sum(Ps.fits[future])

5. Then, sample from the estimated process distribution. In this case, this can be
done by generating a single Poisson

(
∑α̂iβ̂ j/φ̂

)
random variable, with the sum

taken over the future, and multiplying it by φ̂ :

Ps.totpayments <- phi.P * rpois(1, Ps.reserve/phi.P)

6. At the end of the loop, store the simulated total payments and the estimated
reserve to be held.

reserves[boots] <- Ps.reserve
payments[boots] <- Ps.totpayments
} ## Curly bracket indicates end of bootstrap-loop
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The bootstrap reserve prediction error is computed as

PEbs(R) =
√

φPR+(SEbs(R))2, (10.21)

where R is a total reserve estimate (may also be for one origin year only), and
SEbs(R) the bootstrap standard error of the reserve estimate, based on residuals that
are adjusted for degrees of freedom as in (10.20). The process variance φPR is added
to the estimation variance.

PEbs <- sqrt(phi.P*Orig.reserve + sd(reserves)ˆ2) ## 2882413
sd(reserves)ˆ2 / (phi.P * Orig.reserve) ## 7.455098

It proves that the estimation variance in this case is about 7.5 times the process
variance. From the simulated values, one may compute various useful statistics.
Differences with those given in England (2002) arose because we set negative ob-
servations to zero, but are largely due to randomness.

payments <- payments/1e6 ## expressed in millions
quantile(payments, c(0.5,0.75,0.9,0.95,0.99))
## 50% 75% 90% 95% 99%
## 18.56828 20.67234 22.35558 23.61801 26.19600
mean(payments) ## 18.75786
sd(payments) ## 2.873488
100 * sd(payments) / mean(payments) ## 15.31885 = c.v. in %
pp <- (payments-mean(payments))/sd(payments)
sum(ppˆ3)/(nBoot-1) ## 0.2468513 estimates the skewness
sum(ppˆ4)/(nBoot-1) - 3 ## 0.2701999 estimates the kurtosis

Our results are illustrated in the histogram in Figure 10.1. To the bars, representing
fractions rather than frequencies, we added density estimates (the dashed one is a
kernel density estimate, the dotted one just a fitted normal density), like this:

hist(payments,breaks=21,prob=TRUE)
lines(density(payments), lty="dashed")
curve(dnorm(x, mean = mean(payments), sd = sd(payments)),

lty="dotted", add=TRUE)

Remark 10.6.1 (Caveats using IBNR methods)
If one thing can be learned from this whole exercise and the histogram in Figure
10.1, it is that for the future payments, one should not just give a point estimate
prediction like 18.680856 million (the outcome of the chain ladder reserve estimate
based on the original data). In a thousand pseudo-replications of the process, pay-
ments (in millions) ranged from 7.4 to 29.4, with quartiles 16.7 and 20.7, and one in
ten fell outside the bounds (14.3, 23.6). The ‘best estimate’ is so inaccurate that to
write it in any other way than 19±3 million grossly overstates the precision of the
prediction; all digits after the first two are insignificant.

Although some IBNR-methods have ardent supporters, it is very hard to sub-
stantiate a claim that any method is superior to the one described here; a lifetime
is probably not long enough to prove this in practice. Other things should be con-
sidered, such as easy access to software, the possibility to generate convincing and
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Fig. 10.1 Histogram of payments in millions, with estimated densities

revealing plots easily, control over what one is doing, and adaptability to new rules
and situations. All this is not present when one uses a poorly documented black box
method. As we have demonstrated here, R is a very suitable tool for the actuary,
because it is powerful and closely follows the formulas of the theory. This makes
checking, adapting and extending the code very easy. ∇

10.6.2 Analytical estimate of the prediction error

England and Verrall (1999) also provide a method to approximate the prediction
error of an IBNR forecast. It does not need a bootstrap simulation run and uses only
by-products stored in a glm object.

The mean squared error of the (unbiased) prediction X̂i j for each future obser-
vation Xi j can approximately be decomposed into one part estimation variance and
another part process variance:

E[(Xi j − X̂i j)
2] =

(
E[Xi j]−E[X̂i j]

)2
+Var[Xi j − X̂i j]

≈ 0+Var[Xi j]+Var[X̂i j], i+ j−1 > t.
(10.22)

The squared bias is small and can be neglected as long as the estimators X̂i j, even
if not unbiased, are consistent predictors of Xi j. The future loss Xi j and its forecast
X̂i j computed from past losses are independent random variables, so the variance of
their difference is just the sum of their variances.



10.6 Variability of the IBNR estimate 289

The process variance in the Poisson case is given by Var[Xi j] = φ µi j. For the
estimation variance, note that E[Xi j] = µi j = exp(ηi j). Using the delta method, see
Example 9.1.1, we see

Var[X̂i j] ≈
∣∣∣∣∂ µi j

∂ηi j

∣∣∣∣2 Var[η̂i j]. (10.23)

Since ∂ µ/∂η = µ in case of log-link, the last two relations lead to the following
approximation for the mean squared error of the prediction of future payment Xi j:

E[(Xi j − X̂i j)
2] ≈ φ̂ µ̂i j + µ̂2

i j V̂ar[η̂i j], i+ j−1 > t. (10.24)

In similar fashion we can show that if X̂i j and X̂kl are different estimated future
payments, then

Cov[X̂i j, X̂kl ] ≈ µ̂i j µ̂kl Ĉov[η̂i j, η̂kl ]. (10.25)

Computing the MSE of the prediction R̂ = ∑ X̂i j for future totals R = ∑Xi j leads
to an expression involving estimated (co-)variances of the various linear predictors.
Taking sums over ‘future’ (i, j) and (i, j) 	= (k, l), we get:

E[(R− R̂)2]

= ∑E[(Xi j − X̂i j)
2]+∑E[(Xi j − X̂i j)(Xkl − X̂kl)]

≈ ∑E[(Xi j − X̂i j)
2]+∑Cov[Xi j − X̂i j,Xkl − X̂kl ]

= ∑E[(Xi j − X̂i j)
2]+∑Cov[X̂i j, X̂kl ]

≈ ∑φ̂ µ̂i j +∑µ̂ 2
i j V̂ar[η̂i j]+∑µ̂i j µ̂kl Ĉov[η̂i j, η̂kl ]

= ∑φ̂ µ̂i j + µ̂ ′ V̂ar
[
η̂
]

µ̂.

(10.26)

Here µ̂ and η̂ are vectors of length t2 containing all µ̂i j and η̂i j. This is one way to
implement this using R:

Xij.1 <- xtabs(Xij˜i+j) ## full square matrix
ii <- row(Xij.1); jj <- col(Xij.1); Xij.1 <- as.vector(Xij.1)
future <- as.numeric(ii+jj-1 > TT)
ii <- as.factor(ii); jj <- as.factor(jj) ## are now vectors
Full.CL <- glm(Xij.1˜ii+jj, fam=quasipoisson, wei=1-future)
Sig <- vcov(Full.CL); X <- model.matrix(Full.CL)
Cov.eta <- X%*%Sig%*%t(X)
mu.hat <- fitted(Full.CL)*future
pe2 <- phi.P * sum(mu.hat) + t(mu.hat) %*% Cov.eta %*% mu.hat
cat("Total reserve =", sum(mu.hat), "p.e. =", sqrt(pe2), "\n")
## Total reserve = 18680856 p.e. = 2945659

The use of a cross-tabulation of Xij by rows i and columns j is a quicker way to
get from a triangle to a square than the one presented in Section 10.5. This square
is stored as a vector of length TT*TT. An estimate of the covariance matrix of the
�η = X�β is XΣ̂X′, where Σ̂ is the estimated variance matrix of the parameters, and
X is the regression matrix (design matrix, model matrix). In fitted(Full.CL),
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predictions for future values are automatically included. The approximate prediction
error is 2945659, the bootstrap prediction error is 2882413. To get predictions for
just row r, simply set the entries of mu.hat for elements outside row r equal to
zero. See Exercise 10.6.4.

10.7 An IBNR-problem with known exposures

In this section, we use R to tackle an IBNR problem with given exposures, that is,
the number of policies ni for each year of origin is assumed known. The dataset
consists of a run-off triangle for a period of eight years; the total number of claims
is Xij. To give an estimate of the claims that have yet to be reported, we read the
data and compute the row and column numbers just as in Section 10.5.

Xij <- scan(n=36)
156 37 6 5 3 2 1 0
154 42 8 5 6 3 0
178 63 14 5 3 1
198 56 13 11 2
206 49 9 5
250 85 28
252 44
221
TT <- trunc(sqrt(2*length(Xij)))
i <- rep(1:TT, TT:1); j <- sequence(TT:1)
ni <- c(28950,29754,31141,32443,34700,36268,37032,36637)

Looking at the data, one sees that in the last year of origin, only 221 claims emerged
in the first development year, which is appreciably fewer than the losses of the pre-
vious years, while the exposure is about the same. This number has no influence on
the estimates for the development factors in a chain ladder method (the β̂ -values),
but it is proportional to the estimates of future losses in the final year of origin, so it
has considerable influence on the resulting total reserve. See Exercise 10.7.2. This is
why it might be better to forecast the future losses using the Bornhuetter-Ferguson
method, where it is assumed that the forecasts are not, as with chain ladder, propor-
tional to the row sums, but with other quantities deemed appropriate by the actuary.
In this case, this boils down to not multiplying the predicted losses by the α̂i factors
estimated by the chain ladder method, but by the exposures ni. A good first guess
by the actuary would be that the loss ratios remain about the same, meaning in this
case that the number of claims in total for each year of origin is proportional to the
exposure. This leads to Mi = niα̂1/n1 as a prior mean for the row total of losses cor-
responding to year i. In the Bornhuetter-Ferguson method, the row parameters used
are those of the chain ladder method. So implementing this method, using Verbeek’s
algorithm 10.3.1 to find estimated parameters α̂i and β̂ j, goes as follows.

Ri <- tapply(Xij, i, sum); Cj <- tapply(Xij, j, sum)
alpha <- beta <- numeric(TT)
aa <- alpha[1] <- Ri[1]
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bb <- beta[TT] <- Cj[TT] / Ri[1]
for (n in 2:TT) {
aa <- aa + (alpha[n] <- Ri[n]/(1-bb))
bb <- bb + (beta[TT-n+1] <- Cj[TT-n+1] / aa)}
Mi <- ni * alpha[1] / ni[1]
BF <- Mi %*% t(beta); CL <- alpha %*% t(beta)
future <- row(BF) + col(BF) - 1 > TT
rowSums(BF * future) ## 0.0 0.0 0.5 2.6 6.4 13.2 26.3 76.9
rowSums(CL * future) ## 0.0 0.0 0.6 3.1 7.0 19.2 32.1 90.0

The row sums of the future part of the square matrix �Mβ̂ ′ represent the estimated
total numbers of losses by year of origin. So the reserve estimates for the chain
ladder method turn out to be somewhat bigger than those for Bornhuetter-Ferguson.
Contrary to what was expected earlier, this also holds for the final year.

One way to describe the chain ladder method is to construct vectors α̂ and β̂
(with βΣ = 1) in such a way that the deviance (9.29) between the data and the ‘past’
part (upper left triangle) of matrix α̂β̂ ′ is minimized, and to use the ‘future’ part of
this matrix to determine reserves. For Bornhuetter-Ferguson, use the future part of
�Mβ̂ ′ instead. It can be shown, see Verrall (2004), that both these methods arise as
extreme cases in a Bayesian framework with generalized linear models, with a loose
prior for chain ladder and a tight one for Bornhuetter-Ferguson.

In the Bornhuetter-Ferguson method, it is assumed that the effect of the year
of origin on the losses in the chain ladder method is captured by some external
quantity resembling the portfolio growth, represented in our case by the externally
given exposure vector�n. So, instead of α̂iβ̂ j, with βΣ = 1, the mean for cell (i, j) is

estimated as niβ̂ j with β̂ found by the chain ladder method. Evidently, we may get a

closer fit to the past data by choosing a different β̂ . Still assuming the losses to have
a (quasi-)Poisson distribution, we get a generalized linear model with about half the
number of parameters of the chain ladder method. The fit to the observed data will
be worse than with the chain ladder method (which uses optimal α̂ as well as β̂ ),
but we can easily judge by a deviance analysis if the fit is significantly worse.

To estimate the β -values using glm, note that the linear predictor ηi j = logni +
logβ j has a ‘fixed’ component logni, which has to be included with a coefficient 1
for each observation in row i. This can be achieved by using the offset mechanism,
see Section 9.5. The following R program achieves the fitting:

Expo <- ni[i] ## Exposures with each element of Xij
CLi <- glm(Xij˜as.factor(i)+as.factor(j), poisson)
CLoff <- glm(Xij˜offset(log(Expo))+as.factor(j), poisson)

The residual deviance with chain ladder is 34.2 on 21 degrees of freedom, as op-
posed to 62.0 on 28 with the offset model. Note that the data having an ordinary
Poisson structure instead of an overdispersed one (with φ > 1) is not far-fetched; the
unscaled deviance equals the χ2(21) critical value at level 96.5%. The χ2(7) critical
value at level 95% being 14.1, we conclude that the data exhibit more change with
year of origin than just growth in proportion to the number of contracts. The expo-
sure model is of course a restriction of the chain ladder model, with αi = ni/n1 fixed.
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The reader might try other models, by including a calendar year effect, geometric or
general, or a geometric effect of year of origin on top of the exposure.

10.8 Exercises

Section 10.1

1. In how many ways can the data in Table 10.1 be organized in a table, by year of origin, year of
development and calendar year, vertically or horizontally, in increasing or decreasing order?

Section 10.2

1. Apply the chain ladder method to the given IBNR triangle with cumulated figures. What could
be the reason why run-off triangles to be processed through the chain ladder method are usually
given in a cumulated form?

Year of Development year
origin 1 2 3 4 5

1 232 338 373 389 391
2 258 373 429 456
3 221 303 307
4 359 430
5 349

Section 10.3

1. Prove (10.11). What is the mode of the random variables Xi j in model (10.10)?

2. Apply the arithmetic separation method to the data of Exercise 10.2.1. Determine the missing
γ values by linear or by loglinear interpolation, whichever seems more appropriate.

3. Which distance between data and predicted values is minimized by the chain ladder method?
Which by the separation methods?

4. Why is it not an improvement of the model to use a model αiβ jγk rather than only αiβ j?
Making use of R and (10.12), and also by the method of successive substitution, see Section
9.3, verify if the results in De Vylder (1978) have been computed and printed correctly (note
that he did only a few iterations). Using the former method, is it a problem to estimate the
model including the calendar year parameters? Hint: there is a complication because R asks
for starting values if you use glm(...,family=gaussian(link=log),...). Such
starting values are supplied, for example, by specifying mustart=mu.st as a parameter,
where mu.st contains the fitted values of a Poisson fit with log-link, or of a Gaussian fit with
standard (identity) link.
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Section 10.4

1. Verify that the same predictions (10.14) are obtained from the models E[Xi j] = µαiβ j−1 and
E[Xi j] = µαiγ i+ j−2.

2. Argue why in model I, where for i, j = 1, . . . , t, we have E[Xi j] = µαiβ jγi+ j−1, the parameter
γt can be taken equal to 1 without loss of generality, meaning that for t = 8, model I has only
six more parameters to be estimated than model II. Verify that with model I there are 3(t −1)
parameters to be estimated from t(t +1)/2 observations, so model I makes sense only if t > 3.

3. Explain why models IV and V are equivalent.

4. For i = j = 1,3,5,7, compute the values predicted by models (10.15) and (10.16), and compare
these to the actual observations.

5. Verify (10.17). Use it to determine ∑∞
j=1 X̂i j .

6. Reproduce Table 10.10. Compare with a direct (quasi-)Poisson model instead of a two-stage
model.

Section 10.5

1. Using for example help("%*%") to get inspiration, compare the results of the following
calls that are candidates to produce the square of fitted values of a glm-call for the chain
ladder method, and comment:

fitted(CL)
alpha[i]*beta[j]
alpha*beta
alpha%o%beta
alpha%*%beta
outer(alpha,beta)
alpha%*%t(beta)

Find parameters mu, alpha[1:TT] and beta[1:TT], with alpha[1] = beta[1] =
1, but such that they still lead to the same predictions mu*alpha[i]*beta[j].
Also, find equivalent parameter vectors such that the sum of the beta elements equals 1.

2. The calendar year corresponding to an observation can be computed simply as k <- i+j-1.
Using an appropriate call of glm, apply the Arithmetic Separation method (10.9) to the data
of Exercise 10.2.4. To generate fitted values for the lower triangle of the IBNR-data, plot the
coefficients corresponding to the calendar years stored in an array gamma.sep by using the
call plot(log(gamma.sep)), and extrapolate the γk-values geometrically. Then generate
fitted values for the full IBNR-square.

3. Compute the parameter estimates for the Arithmetic Separation method through a method anal-
ogous to Verbeek’s algorithm 10.3.1, involving sums over diagonals. Compare the resulting fits
with those of the previous exercise.

4. The Hoerl-curve gives a functional form for the β j parameters, having β j = exp(γ j + δ log j)
for some real numbers γ and δ . These can be used for all rows in common, or for each row
separately (interaction). Apply this to the example in Table 10.1, and test for significance.
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Section 10.6

1. Using the method described in this section, construct a predictive distribution of the IBNR-
reserve to be held using a gamma error distribution instead of Poisson. Compare the resulting
histograms, as well as the first three estimated cumulants of the resulting distributions. [Apply
glm to the Gamma family with a log-link. Also, check England and Verrall (1999) for when
V (µ) = µ2 instead of V (µ) = µ should be taken into account. Special care should be taken
with the random drawing from the future claims. A gamma random variable has to be generated
for each cell, rather than for all cells combined such as was possible in the quasi-Poisson case.
The final results of the procedure should not deviate too much from the Poisson results, see
England and Verrall (1999), Tables 1 and 2.]

2. Repeat the Poisson bootstrapping but now using Verbeek’s algorithm 10.3.1 instead of call-
ing glm. By calling Sys.time, verify that about 20 bootstrap runs can be processed per
second using glm, and indicate how much faster Verbeek’s algorithm 10.3.1 makes the proce-
dure. Also investigate to how much bias the setting zero of negative observations leads, when
compared with rejecting the full triangle in case any row or column sum proves to be negative.

3. England and Verrall (1999, formula (3.4)) also compute the contribution to the total prediction
error of each separate year of origin i. Essentially, (3.4) equals (3.5) with the summations
restricted to the corresponding row of the IBNR predicted triangle. This can be easily achieved
by using the same code used for implementing formula (3.5), but now with the µ̂k j replaced
by zero for predictions of origin years with k 	= i.
Reproduce the third column of Tables 1 and 2 in England and Verrall (1999), p. 288.

Section 10.7

1. What happens if both offset(log(Expo)) and as.factor(i) are included as a model
term in the example of this section?

2. Find out what happens with the reserves according to chain ladder and Bornhuetter-Ferguson
if the number 221 in the last row is replaced by 180 or by 250.

3. Compute the past and future fitted totals in the chain ladder model for the data of this section;
you should get the values 2121 and 152.0312. Why does the total of the fitted values for past
observations equal sum(Xij)? Is this also the case when the factor year of origin in the glm
call is replaced by the offset term?

4. The cause of the fit of the chain ladder model being rejected at the 5% level (the deviance is
34.2 on 21 df, the critical value qchisq(0.95,df=21) is 32.67057) might be that there is
an effect in the data that is due to the calendar year. Fit a model that incorporates all three time
effects (origin year, development year, calendar year), see also Section 10.3. Do an analysis-
of-deviance on the two models: compare the difference in the deviances with an appropriate
χ2-critical value to judge if adding the extra set of covariates (calendar year as a factor) is
worthwhile, in the sense that the fit is improved significantly.
A problem with incorporating a calendar year effect is that for the lower right triangle, the cal-
endar year effect cannot be estimated, since no data about that calendar year are available. One
way to deal with this problem is to extrapolate the sequence of past calendar year parameters
to the future, for example using linear extrapolation, by fitting a straight line through the points
(i,γi), or geometrically.

5. In policy year 6, the terms of the policies were a little more consumer friendly, while in calen-
dar year 7, the judges were somewhat more lenient. Inspecting the αi and γk (for the calendar
year) estimates confirms this; note that the notion that these years are different from the rest
should not have been inspired by a peek at the estimation results. For that reason, treat these
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two years separately from the rest. So try a model that is a restricted version of the chain lad-
der model in the sense that the effect of year of origin is captured by the known portfolio sizes
except for year 6. Also try a model in which the calendar year parameters are restricted to γ7
arbitrary, γk ≡ 1 otherwise. To estimate the former model, all that has to be done is to replace
as.factor(i) in the chain ladder model by (i==6) as a model term. Note the double
equality sign in a logical expression; the brackets are also necessary.


