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Study the past if you would define the future —
Confucius, 551 BC - 479 BC

Risk Theory has been identified and recognized as an important part of actuarial ed-
ucation; this is for example documented by the Syllabus of the Society of Actuaries
and by the recommendations of the Groupe Consultatif. Hence it is desirable to have
a diversity of textbooks in this area.

This text in risk theory is original in several respects. In the language of figure
skating or gymnastics, the text has two parts, the compulsory part and the free-
style part. The compulsory part includes Chapters 1–4, which are compatible with
official material of the Society of Actuaries. This feature makes the text also useful
to students who prepare themselves for the actuarial exams. Other chapters are more
of a free-style nature, for example Chapter 7 (Ordering of Risks, a speciality of
the authors). And I would like to mention Chapters 9 and 11 in particular. To my
knowledge, this is the first text in risk theory with an introduction to Generalized
Linear Models.

Special pedagogical efforts have been made throughout the book. The clear lan-
guage and the numerous exercises are an example for this. Thus the book can be
highly recommended as a textbook.

I congratulate the authors to their text, and I would like to thank them also in the
name of students and teachers that they undertook the effort to translate their text
into English. I am sure that the text will be successfully used in many classrooms.

Lausanne, 2001 Hans Gerber
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When I took office, only high energy physicists had ever heard of
what is called the Worldwide Web . . . Now even my cat has its
own page — Bill Clinton, 1996

This book gives a comprehensive survey of non-life insurance mathematics. Origi-
nally written for use with the actuarial science programs at the Universities of Am-
sterdam and Leuven, it is now in use at many other universities, as well as for the
non-academic actuarial education program organized by the Dutch Actuarial So-
ciety. It provides a link to the further theoretical study of actuarial science. The
methods presented can not only be used in non-life insurance, but are also effective
in other branches of actuarial science, as well as, of course, in actuarial practice.

Apart from the standard theory, this text contains methods directly relevant for
actuarial practice, for example the rating of automobile insurance policies, premium
principles and risk measures, and IBNR models. Also, the important actuarial statis-
tical tool of the Generalized Linear Models is studied. These models provide extra
possibilities beyond ordinary linear models and regression that are the statistical
tools of choice for econometricians. Furthermore, a short introduction is given to
credibility theory. Another topic which always has enjoyed the attention of risk the-
oreticians is the study of ordering of risks. The book reflects the state of the art in
actuarial risk theory; many results presented were published in the actuarial litera-
ture only recently.

In this second edition of the book, we have aimed to make the theory even more
directly applicable by using the software R. It provides an implementation of the
language S, not unlike S-Plus. It is not just a set of statistical routines but a full-
fledged object oriented programming language. Other software may provide similar
capabilities, but the great advantage of R is that it is open source, hence available
to everyone free of charge. This is why we feel justified in imposing it on the users
of this book as a de facto standard. On the internet, a lot of documentation about R
can be found. In an Appendix, we give some examples of use of R. After a general
introduction, explaining how it works, we study a problem from risk management,
trying to forecast the future behavior of stock prices with a simple model, based on
stock prices of three recent years. Next, we show how to use R to generate pseudo-
random datasets that resemble what might be encountered in actuarial practice.
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viii Preface

Models and paradigms studied
The time aspect is essential in many models of life insurance. Between paying pre-
miums and collecting the resulting pension, decades may elapse. This time element
is less prominent in non-life insurance. Here, however, the statistical models are
generally more involved. The topics in the first five chapters of this textbook are
basic for non-life actuarial science. The remaining chapters contain short introduc-
tions to other topics traditionally regarded as non-life actuarial science.

1. The expected utility model
The very existence of insurers can be explained by the expected utility model. In
this model, an insured is a risk averse and rational decision maker, who by virtue of
Jensen’s inequality is ready to pay more than the expected value of his claims just to
be in a secure financial position. The mechanism through which decisions are taken
under uncertainty is not by direct comparison of the expected payoffs of decisions,
but rather of the expected utilities associated with these payoffs.

2. The individual risk model
In the individual risk model, as well as in the collective risk model below, the to-
tal claims on a portfolio of insurance contracts is the random variable of interest.
We want to compute, for example, the probability that a certain capital will be suf-
ficient to pay these claims, or the value-at-risk at level 99.5% associated with the
portfolio, being the 99.5% quantile of its cumulative distribution function (cdf). The
total claims is modeled as the sum of all claims on the policies, which are assumed
independent. Such claims cannot always be modeled as purely discrete random vari-
ables, nor as purely continuous ones, and we use a notation, involving Stieltjes inte-
grals and differentials, encompassing both these as special cases.

The individual model, though the most realistic possible, is not always very con-
venient, because the available dataset is not in any way condensed. The obvious
technique to use in this model is convolution, but it is generally quite awkward.
Using transforms like the moment generating function sometimes helps. The Fast
Fourier Transform (FFT) technique gives a fast way to compute a distribution from
its characteristic function. It can easily be implemented in R.

We also present approximations based on fitting moments of the distribution. The
Central Limit Theorem, fitting two moments, is not sufficiently accurate in the im-
portant right-hand tail of the distribution. So we also look at some methods using
three moments: the translated gamma and the normal power approximation.

3. Collective risk models
A model that is often used to approximate the individual model is the collective risk
model. In this model, an insurance portfolio is regarded as a process that produces
claims over time. The sizes of these claims are taken to be independent, identically
distributed random variables, independent also of the number of claims generated.
This makes the total claims the sum of a random number of iid individual claim
amounts. Usually one assumes additionally that the number of claims is a Poisson
variate with the right mean, or allows for some overdispersion by taking a negative
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binomial claim number. For the cdf of the individual claims, one takes an average

ally tractable model. Several techniques, including Panjer’s recursion formula, to
compute the cdf of the total claims modeled this way are presented.

For some purposes it is convenient to replace the observed claim severity dis-
tribution by a parametric loss distribution. Families that may be considered are for
example the gamma and the lognormal distributions. We present a number of such
distributions, and also demonstrate how to estimate the parameters from data. Fur-
ther, we show how to generate pseudo-random samples from these distributions,

4. The ruin model
The ruin model describes the stability of an insurer. Starting from capital u at time
t = 0, his capital is assumed to increase linearly in time by fixed annual premiums,
but it decreases with a jump whenever a claim occurs. Ruin occurs when the capital
is negative at some point in time. The probability that this ever happens, under the
assumption that the annual premium as well as the claim generating process remain
unchanged, is a good indication of whether the insurer’s assets match his liabili-
ties sufficiently. If not, one may take out more reinsurance, raise the premiums or
increase the initial capital.

Analytical methods to compute ruin probabilities exist only for claims distribu-
tions that are mixtures and combinations of exponential distributions. Algorithms
exist for discrete distributions with not too many mass points. Also, tight upper
and lower bounds can be derived. Instead of looking at the ruin probability ψ(u)
with initial capital u, often one just considers an upper bound e−Ru for it (Lund-
berg), where the number R is the so-called adjustment coefficient and depends on
the claim size distribution and the safety loading contained in the premium.

Computing a ruin probability assumes the portfolio to be unchanged eternally.
Moreover, it considers just the insurance risk, not the financial risk. Therefore not
much weight should be attached to its precise value beyond, say, the first relevant
decimal. Though some claim that survival probabilities are ‘the goal of risk theory’,
many actuarial practitioners are of the opinion that ruin theory, however topical still
in academic circles, is of no significance to them. Nonetheless, we recommend to
study at least the first three sections of Chapter 4, which contain the description
of the Poisson process as well as some key results. A simple proof is provided for
Lundberg’s exponential upper bound, as well as a derivation of the ruin probability
in case of exponential claim sizes.

5. Premium principles and risk measures
Assuming that the cdf of a risk is known, or at least some characteristics of it like
mean and variance, a premium principle assigns to the risk a real number used as a
financial compensation for the one who takes over this risk. Note that we study only
risk premiums, disregarding surcharges for costs incurred by the insurance company.
By the law of large numbers, to avoid eventual ruin the total premium should be at
least equal to the expected total claims, but additionally, there has to be a loading in

of the cdfs of the individual policies. This leads to a close fitting and computation-

beyond the standard facilities offered by R.
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the premium to compensate the insurer for making available his risk carrying capac-
ity. From this loading, the insurer has to build a reservoir to draw upon in adverse
times, so as to avoid getting in ruin. We present a number of premium principles,
together with the most important properties that characterize premium principles.
The choice of a premium principle depends heavily on the importance attached to
such properties. There is no premium principle that is uniformly best.

Risk measures also attach a real number to some risky situation. Examples are
premiums, infinite ruin probabilities, one-year probabilities of insolvency, the re-
quired capital to be able to pay all claims with a prescribed probability, the expected
value of the shortfall of claims over available capital, and more.

6. Bonus-malus systems
With some types of insurance, notably car insurance, charging a premium based ex-
clusively on factors known a priori is insufficient. To incorporate the effect of risk
factors of which the use as rating factors is inappropriate, such as race or quite often
sex of the policy holder, and also of non-observable factors, such as state of health,
reflexes and accident proneness, many countries apply an experience rating system.
Such systems on the one hand use premiums based on a priori factors such as type
of coverage and list-price or weight of a car, on the other hand they adjust these
premiums by using a bonus-malus system, where one gets more discount after a
claim-free year, but pays more after filing one or more claims. In this way, premi-
ums are charged that reflect the exact driving capabilities of the driver better. The
situation can be modeled as a Markov chain.

The quality of a bonus-malus system is determined by the degree in which the
premium paid is in proportion to the risk. The Loimaranta efficiency equals the
elasticity of the mean premium against the expected number of claims. Finding it
involves computing eigenvectors of the Markov matrix of transition probabilities. R
provides tools to do this.

7. Ordering of risks
It is the very essence of the actuary’s profession to be able to express preferences
between random future gains or losses. Therefore, stochastic ordering is a vital part
of his education and of his toolbox. Sometimes it happens that for two losses X and
Y , it is known that every sensible decision maker prefers losing X , because Y is in
a sense ‘larger’ than X . It may also happen that only the smaller group of all risk
averse decision makers agree about which risk to prefer. In this case, risk Y may
be larger than X , or merely more ‘spread’, which also makes a risk less attractive.
When we interpret ‘more spread’ as having thicker tails of the cumulative distribu-
tion function, we get a method of ordering risks that has many appealing properties.
For example, the preferred loss also outperforms the other one as regards zero utility
premiums, ruin probabilities, and stop-loss premiums for compound distributions
with these risks as individual terms. It can be shown that the collective model of
Chapter 3 is more spread than the individual model it approximates, hence using
the collective model, in most cases, leads to more conservative decisions regarding
premiums to be asked, reserves to be held, and values-at-risk. Also, we can prove
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that the stop-loss insurance, demonstrated to be optimal as regards the variance of
the retained risk in Chapter 1, is also preferable, other things being equal, in the eyes
of all risk averse decision makers.

Sometimes, stop-loss premiums have to be set under incomplete information. We
give a method to compute the maximal possible stop-loss premium assuming that
the mean, the variance and an upper bound for a risk are known.

In the individual and the collective model, as well as in ruin models, we assume
that the claim sizes are stochastically independent non-negative random variables.
Sometimes this assumption is not fulfilled, for example there is an obvious depen-
dence between the mortality risks of a married couple, between the earthquake risks
of neighboring houses, and between consecutive payments resulting from a life in-
surance policy, not only if the payments stop or start in case of death, but also in case
of a random force of interest. We give a short introduction to the risk ordering that
applies for this case. It turns out that stop-loss premiums for a sum of random vari-
ables with an unknown joint distribution but fixed marginals are maximal if these
variables are as dependent as the marginal distributions allow, making it impossible
that the outcome of one is ‘hedged’ by another.

In finance, frequently one has to determine the distribution of the sum of de-
pendent lognormal random variables. We apply the theory of ordering of risks and
comonotonicity to give bounds for that distribution.

We also give a short introduction in the theory of ordering of multivariate risks.

the same marginals if their correlation is higher. But a more robust criterion is to
restrict this to the case that their joint cdf is uniformly larger. In that case it can
be proved that the sum of these random variables is larger in stop-loss order. There

´ ¨
1940’s. For a random pair (X ,Y ), the copula is the joint cdf of the ranks FX (X) and
FY (Y ). Using the smallest and the largest copula, it is possible to construct random
pairs with arbitrary prescribed marginals and (rank) correlations.

8. Credibility theory
The claims experience on a policy may vary by two different causes. The first is
the quality of the risk, expressed through a risk parameter. This represents the aver-
age annual claims in the hypothetical situation that the policy is monitored without
change over a very long period of time. The other is the purely random good and
bad luck of the policyholder that results in yearly deviations from the risk para-
meter. Credibility theory assumes that the risk quality is a drawing from a certain
structure distribution, and that conditionally given the risk quality, the actual claims
experience is a sample from a distribution having the risk quality as its mean value.
The predictor for next year’s experience that is linear in the claims experience and
optimal in the sense of least squares turns out to be a weighted average of the claims
experience of the individual contract and the experience for the whole portfolio.
The weight factor is the credibility attached to the individual experience, hence it is
called the credibility factor, and the resulting premiums are called credibility pre-

are bounds for joints cdfs dating back to Frechet in the 1950’s and Hoffding in the

One might say that two randoms variables are more related than another pair with
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miums. As a special case, we study a bonus-malus system for car insurance based
on a Poisson-gamma mixture model.

Credibility theory is actually a Bayesian inference method. Both credibility and
generalized linear models (see below) are in fact special cases of so-called General-
ized Linear Mixed Models (GLMM), and the R function glmm is able to deal with
both the random and the fixed parameters in these models.

9. Generalized linear models
Many problems in actuarial statistics are Generalized Linear Models (GLM). In-
stead of assuming a normally distributed error term, other types of randomness are
allowed as well, such as Poisson, gamma and binomial. Also, the expected values of
the dependent variables need not be linear in the regressors. They may also be some
function of a linear form of the covariates, for example the logarithm leading to the
multiplicative models that are appropriate in many insurance situations.

This way, one can for example tackle the problem of estimating the reserve to be
kept for IBNR claims, see below. But one can also easily estimate the premiums to
be charged for drivers from region i in bonus class j with car weight w.

are fixed, though unknown. The glmm function in R can handle a multitude of mod-
els, including those with both random and fixed effects.

10. IBNR techniques
An important statistical problem for the practicing actuary is the forecasting of the
total of the claims that are Incurred, But Not Reported, hence the acronym IBNR,
or not fully settled. Most techniques to determine estimates for this total are based

and development year. Many traditional actuarial reserving methods turn out to be

We describe the workings of the ubiquitous chain ladder method to predict future
losses, as well as, briefly, the Bornhuetter-Ferguson method, which aims to incorpo-
rate actuarial knowledge about the portfolio. We also show how these methods can
be implemented in R, using the glm function. In this same framework, many exten-
sions and variants of the chain ladder method can easily be introduced. England and
Verrall have proposed methods to describe the prediction error with the chain ladder
method, both an analytical estimate of the variance and a bootstrapping method to
obtain an estimate for the predictive distribution. We describe an R implementation
of these methods.

For the second edition, we extended the material in virtually all chapters, mostly

recapitulate the Gauss-Markov theory of ordinary linear models found in many other
texts on statistics and econometrics, and explain how the algorithm by Nelder and
Wedderburn works, showing how it can be implemented in R. We also study the
stochastic component of a GLM, stating that the observations are independent ran-

In credibility models, there are random group effects, but in GLMs the effects

maximum likelihood estimations in special cases of GLMs.

11. More on GLMs

involving the use of R, but we also add some more material on GLMs. We briefly

on so-called run-off triangles, in which claim totals are grouped by year of origin
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dom variables with a distribution in a subclass of the exponential family. The well-
known normal, Poisson and gamma families have a variance proportional to µ p for
p = 0,1,2, respectively, where µ is the mean (heteroskedasticity). The so-called
Tweedie class contains random variables, in fact compound Poisson–gamma risks,
having variance proportional to µ p for some p ∈ (1,2). These mean-variance rela-

and Smyth provide routines computing cdf, inverse cdf, pdf and random drawings

risks.

Educational aspects
As this text has been in use for a long time now at the University of Amsterdam
and elsewhere, we could draw upon a long series of exams, resulting in long lists of
exercises. Also, many examples are given, making this book well-suited as a text-
book. Some less elementary exercises have been marked by [♠], and these might be
skipped.

The required mathematical background is on a level such as acquired in the first
stage of a bachelors program in quantitative economics (econometrics or actuarial
science), or mathematical statistics. To indicate the level of what is needed, the book
by Bain and Engelhardt (1992) is a good example. So the book can be used either
in the final year of such a bachelors program, or in a subsequent masters program in
either actuarial science proper or in quantitative financial economics with a strong
insurance component. To make the book accessible to non-actuaries, notation and
jargon from life insurance mathematics is avoided. Therefore also students in ap-
plied mathematics or statistics with an interest in the stochastic aspects of insurance
will be able to study from this book. To give an idea of the mathematical rigor and
statistical sophistication at which we aimed, let us remark that moment generating
functions are used routinely, while characteristic functions and measure theory are
avoided in general. Prior experience with regression models, though helpful, is not
required.

As a service to the student help is offered, in Appendix B, with many of the
exercises. It takes the form of either a final answer to check one’s work, or a useful
hint. There is an extensive index, and the tables that might be needed on an exam
are printed in the back. The list of references is not a thorough justification with
bibliographical data on every result used, but more a collection of useful books and
papers containing more details on the topics studied, and suggesting further reading.

Ample attention is given to exact computing techniques, and the possibilities that
R provides, but also to old fashioned approximation methods like the Central Limit
Theorem (CLT). The CLT itself is generally too crude for insurance applications,
but slight refinements of it are not only fast, but also often prove to be surprisingly
accurate. Moreover they provide solutions of a parametric nature such that one does
not have to recalculate everything after a minor change in the data. Also, we want
to stress that ‘exact’ methods are as exact as their input. The order of magnitude of
errors resulting from inaccurate input is often much greater than the one caused by
using an approximation method.

of such random variables, as well as to estimate GLMs with Tweedie distributed

tions are interesting for actuarial purposes. Extensions to R, contributed by Dunn
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The notation used in this book conforms to what is usual in mathematical statis-
tics as well as non-life insurance mathematics. See for example the book by Bowers
et al. (1986, 1997), the non-life part of which is similar in design to the first part
of this book. In particular, random variables are capitalized, though not all capitals
actually denote random variables.
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There are 1011 stars in the galaxy. That used to be a huge
number. But it’s only a hundred billion. It’s less than the
national deficit! We used to call them astronomical numbers.
Now we should call them economical numbers —
Richard Feynman (1918–1988)
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8.4 The Bühlmann-Straub model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.4.1 Parameter estimation in the Bühlmann-Straub model . . . . . . 217
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Chapter 1
Utility theory and insurance

The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work —
John von Neumann (1903 - 1957)

1.1 Introduction

The insurance industry exists because people are willing to pay a price for being
insured. There is an economic theory that explains why insureds are willing to pay
a premium larger than the net premium, that is, the mathematical expectation of the
insured loss. This theory postulates that a decision maker, generally without being
aware of it, attaches a value u(w) to his wealth w instead of just w, where u(·) is
called his utility function. To decide between random losses X and Y , he compares
E[u(w−X)] with E[u(w−Y )] and chooses the loss with the highest expected util-
ity. With this model, the insured with wealth w is able to determine the maximum
premium P+ he is prepared to pay for a random loss X . This is done by solving the
equilibrium equation E[u(w−X)] = u(w−P). At the equilibrium, he does not care,
in terms of utility, if he is insured or not. The model applies to the other party in-
volved as well. The insurer, with his own utility function and perhaps supplementary
expenses, will determine a minimum premium P−. If the insured’s maximum pre-
mium P+ is larger than the insurer’s minimum premium P−, both parties involved
increase their utility if the premium is between P− and P+.

Although it is impossible to determine a person’s utility function exactly, we
can give some plausible properties of it. For example, more wealth would imply a
larger utility level, so u(·) should be a non-decreasing function. It is also logical
that ‘reasonable’ decision makers are risk averse, which means that they prefer a
fixed loss over a random loss with the same expected value. We will define some
classes of utility functions that possess these properties and study their advantages
and disadvantages.

Suppose that an insured can choose between an insurance policy with a fixed
deductible and another policy with the same expected payment by the insurer and
with the same premium. It can be shown that it is better for the insured to choose
the former policy. If a reinsurer is insuring the total claim amount of an insurer’s
portfolio of risks, insurance with a fixed maximal retained risk is called a stop-
loss reinsurance. From the theory of ordering of risks, we will see that this type

1



2 1 Utility theory and insurance

of reinsurance is optimal for risk averse decision makers. In this chapter we prove
that a stop-loss reinsurance results in the smallest variance of the retained risk. We
also discuss a situation where the insurer prefers a proportional reinsurance, with a
reinsurance payment proportional to the claim amount.

1.2 The expected utility model

Imagine that an individual runs the risk of losing an amount B with probability
0.01. He can insure himself against this loss, and is willing to pay a premium P for
this insurance policy. If B is very small, then P will be hardly larger than 0.01B.
However, if B is somewhat larger, say 500, then P will be a little larger than 5.
If B is very large, P will be a lot larger than 0.01B, since this loss could result in
bankruptcy. So the premium for a risk is not homogeneous, that is, not proportional
to the risk.

Example 1.2.1 (St. Petersburg paradox)
For a price P, one may enter the following game. A fair coin is tossed until a head
appears. If this takes n trials, the gain is an amount 2n. Therefore, the expected gain
from the game equals ∑∞

n=1 2n( 1
2 )n = ∞. Still, unless P is small, it turns out that very

few are willing to enter the game, which means no one merely looks at expected
profits. ∇

In economics, the model developed by Von Neumann & Morgenstern (1947) de-
scribes how decision makers choose between uncertain prospects. If a decision
maker is able to choose consistently between potential random losses X , then there
exists a utility function u(·) to appraise the wealth w such that the decisions he
makes are exactly the same as those resulting from comparing the losses X based
on the expectation E[u(w−X)]. In this way, a complex decision is reduced to the
comparison of real numbers.

For the comparison of X with Y , the utility function u(·) and its linear transform
au(·)+b for some a > 0 are equivalent, since they result in the same decision:

E[u(w−X)] ≤ E[u(w−Y )] if and only if

E[au(w−X)+b] ≤ E[au(w−Y )+b].
(1.1)

So from each class of equivalent utility functions, we can select one, for example
by requiring that u(0) = 0 and u(1) = 1. Assuming u′(0) > 0, we could also use the
utility function v(·) with v(0) = 0 and v′(0) = 1:

v(x) =
u(x)−u(0)

u′(0)
. (1.2)

It is impossible to determine which utility functions are used ‘in practice’. Utility
theory merely states the existence of a utility function. We could try to reconstruct
a decision maker’s utility function from the decisions he takes, by confronting him
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with a large number of questions like: “Which premium P are you willing to pay to
avoid a loss 1 that could occur with probability q”? Without loss of generality, we
take u(0) = 0, u(−1) = −1 and initial wealth w = 0, by shifting the utility function
over a distance w. Then we learn for which value of P we have

u(−P) = (1−q)u(0)+qu(−1) = −q. (1.3)

In practice, we would soon experience the limitations of this procedure: the decision
maker will grow increasingly irritated as the interrogation continues, and his deci-
sions will become inconsistent, for example because he asks a larger premium for a
smaller risk or a totally different premium for nearly the same risk. Such mistakes
are inevitable unless the decision maker is using a utility function explicitly.

Example 1.2.2 (Risk loving versus risk averse)
Suppose that a person owns a capital w and that he values his wealth by the utility
function u(·). He is given the choice of losing the amount b with probability 1

2 or
just paying a fixed amount 1

2 b. He chooses the former if b = 1, the latter if b = 4,
and if b = 2 he does not care. Apparently the person likes a little gamble, but is
afraid of a larger one, like someone with a fire insurance policy who takes part in a
lottery. What can be said about the utility function u(·)?

Choose again w = 0 and u(0) = 0, u(−1) =−1. The decision maker is indifferent
between a loss 2 with probability 1

2 and a fixed loss 1 (b = 2). This implies that

u(−1) =
u(0)+u(−2)

2
. (1.4)

The function u(·) is neither convex nor concave, since for b = 1 and b = 4 we get

u(− 1
2 ) <

u(0)+u(−1)

2
and u(−2) >

u(0)+u(−4)

2
. (1.5)

Note that a function that is convex is often synonymously called ‘concave upward’,
a concave function is ‘concave downward’. The connection between convexity of a
real function f and convexity of sets is that the so-called epigraph of f , that is, the
set of points lying on or above its graph, is a convex set.

Since u(0) = 0 and u(−1) = −1, (1.4) and (1.5) yield

u(−2) = −2, u(− 1
2 ) < − 1

2 and u(−4) < −4. (1.6)

Connecting these five points gives a graph that lies below the diagonal for −1 < x <
0 and x < −2, and above the diagonal for x ∈ (−2,−1). ∇

We assume that utility functions are non-decreasing, although the reverse is con-
ceivable, for example in the event of capital levy. Hence, the marginal utility is
non-negative: u′(x) ≥ 0. The risk averse decision makers are an important group.
They have a decreasing marginal utility, so u′′(x) ≤ 0. Note that we will not be
very rigorous in distinguishing between the notions increasing and non-decreasing.
If needed, we will use the phrase ‘strictly increasing’. To explain why such deci-
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sion makers are called risk averse, we use the following fundamental theorem (for a
proof, see Exercises 1.2.1 and 1.2.2):

Theorem 1.2.3 (Jensen’s inequality)
If v(x) is a convex function and Y is a random variable, then

E[v(Y )] ≥ v(E[Y ]), (1.7)

with equality if and only if v(·) is linear on the support of Y (the set of its possible
values), or Var[Y ] = 0. ∇

From this inequality, it follows that for a concave utility function

E[u(w−X)] ≤ u(E[w−X ]) = u(w−E[X ]). (1.8)

Apparently, decision makers with such utility functions prefer to pay a fixed amount
E[X ] instead of a risky amount X , so they are indeed risk averse.

Now, suppose that a risk averse insured with capital w has the utility function
u(·). Assuming he is insured against a loss X for a premium P, his expected utility
will increase if

E[u(w−X)] ≤ u(w−P). (1.9)

Since u(·) is a non-decreasing continuous function, this is equivalent to P ≤ P+,
where P+ denotes the maximum premium to be paid. This so-called zero utility
premium is the solution to the following utility equilibrium equation

E[u(w−X)] = u(w−P+). (1.10)

The insurer, say with utility function U(·) and capital W , will insure the loss X
for a premium P if E[U(W + P−X)] ≥ U(W ), hence P ≥ P− where P− denotes
the minimum premium to be asked. This premium follows from solving the utility
equilibrium equation reflecting the insurer’s position:

U(W ) = E[U(W +P−−X)]. (1.11)

A deal improving the expected utility for both sides will be possible if P+ ≥ P−.
From a theoretical point of view, insurers are often considered to be virtually

risk neutral. So for any risk X , disregarding additional costs, a premium E[X ] is
sufficient. Therefore,

E[U(W +E[X ]−X)] = U(W ) for any risk X . (1.12)

In Exercise 1.2.3 it is proved that this entails that the utility function U(·) must be
linear.

Example 1.2.4 (Risk aversion coefficient)
Given the utility function u(·), how can we approximate the maximum premium P+

for a risk X?
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Let µ and σ2 denote the mean and variance of X . Using the first terms in the
series expansion of u(·) in w−µ , we obtain

u(w−P+) ≈ u(w−µ)+(µ −P+)u′(w−µ);

u(w−X) ≈ u(w−µ)+(µ −X)u′(w−µ)+ 1
2 (µ −X)2u′′(w−µ).

(1.13)

Taking expectations on both sides of the latter approximation yields

E[u(w−X)] ≈ u(w−µ)+ 1
2 σ2u′′(w−µ). (1.14)

Substituting (1.10) into (1.14), it follows from (1.13) that

1
2 σ2u′′(w−µ) ≈ (µ −P+)u′(w−µ). (1.15)

Therefore, the maximum premium P+ for a risk X is approximately

P+ ≈ µ − 1
2 σ2 u′′(w−µ)

u′(w−µ)
. (1.16)

This suggests the following definition: the (absolute) risk aversion coefficient r(w)
of the utility function u(·) at wealth w is given by

r(w) = −u′′(w)

u′(w)
. (1.17)

Then the maximum premium P+ to be paid for a risk X is approximately

P+ ≈ µ + 1
2 r(w−µ)σ2. (1.18)

Note that r(w) does not change when u(·) is replaced by au(·)+b. From (1.18), we
see that the risk aversion coefficient indeed reflects the degree of risk aversion: the
more risk averse one is, the larger the premium one is willing to pay. ∇

1.3 Classes of utility functions

Besides the linear functions, other families of suitable utility functions exist that
have interesting properties:

linear utility: u(w) = w

quadratic utility: u(w) = −(α −w)2 (w ≤ α)

logarithmic utility: u(w) = log(α +w) (w > −α)

exponential utility: u(w) = −αe−αw (α > 0)

power utility: u(w) = wc (w > 0, 0 < c ≤ 1)

(1.19)
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These utility functions, and of course their linear transforms as well, have a non-
negative and non-increasing marginal utility; for the quadratic utility function, we
set u(w) = 0 if w > α . The risk aversion coefficient for the linear utility function is 0,
while for the exponential utility function, it equals α . For the other utility functions,
it can be written as (γ +βw)−1 for some γ and β , see Exercise 1.3.1.

Note that linear utility leads to the principle of equivalence and risk neutrality
(net premiums), since if E[w+P−−X ] = w, then P− = E[X ].

Example 1.3.1 (Exponential premium)
Suppose that an insurer has an exponential utility function with parameter α . What
is the minimum premium P− to be asked for a risk X?

Solving the equilibrium equation (1.11) with U(x) = −αe−αx yields

P− =
1
α

log(mX (α)), (1.20)

where mX (α) = E[eαX ] is the moment generating function of X at argument α . We
observe that this exponential premium is independent of the insurer’s current wealth
W , in line with the risk aversion coefficient being a constant.

The expression for the maximum premium P+ is the same as (1.20), see Exercise
1.3.3, but now of course α represents the risk aversion of the insured. Assume that
the loss X is exponentially distributed with parameter β . Taking β = 0.01 yields
E[X ] = 1

β = 100. If the insured’s utility function is exponential with parameter α =

0.005, then

P+ =
1
α

log(mX (α)) = 200log

(
β

β −α

)
= 200log(2) ≈ 138.6, (1.21)

so the insured is willing to accept a sizable loading on the net premium E[X ]. ∇

The approximation (1.18) from Example 1.2.4 yields

P+ ≈ E[X ]+ 1
2 αVar[X ] = 125. (1.22)

Obviously, the approximation (1.22) is increasing with α , but also the premium
(1.20) is increasing if X is a non-negative random variable with finite variance, as
we will prove next.

Theorem 1.3.2 (Exponential premium increases with risk aversion)
The exponential premium (1.20) for a risk X is an increasing function of the risk
aversion α .

Proof. For 0 < α < γ , consider the strictly concave function v(·) with

v(x) = xα/γ . (1.23)

From Jensen’s inequality, it follows that

v(E[Y ]) > E[v(Y )], (1.24)
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for any random variable Y with Var[Y ] > 0. Take Y = eγX , then v(Y ) = eαX and{
E[eγX ]

}α
=
{
(E[Y ])α/γ}γ

=
{

v(E[Y ])
}γ

>
{

E[v(Y )]
}γ

=
{

E[eαX ]
}γ

. (1.25)

Therefore,
{mX (α)}γ < {mX (γ)}α , (1.26)

which implies that, for any γ > α , for the exponential premiums we have

1
α

log(mX (α)) <
1
γ

log(mX (γ)). (1.27)

So the proof is completed. ∇

Just as for the approximation (1.18), the limit of (1.20) as α ↓ 0 is the net pre-
mium. This follows immediately from the series expansion of log(mX (t)), see also
Exercise 1.3.4. But as α ↑ ∞, the exponential premium tends to max[X ], while the
approximation goes to infinity.

Example 1.3.3 (Quadratic utility)
Suppose that for w < 5, the insured’s utility function is u(w) = 10w−w2. What is
the maximum premium P+ as a function of w, w ∈ [0,5], for an insurance policy
against a loss 1 with probability 1

2 ? What happens to this premium if w increases?
Again, we solve the equilibrium equation (1.10). The expected utility after a loss

X equals
E[u(w−X)] = 11w− 11

2 −w2, (1.28)

and the utility after paying a premium P equals

u(w−P) = 10(w−P)− (w−P)2. (1.29)

By the equilibrium equation (1.10), the right hand sides of (1.28) and (1.29) should
be equal, and after some calculations we find the maximum premium as

P = P(w) =

√(
11
2 −w

)2
+ 1

4 − (5−w), w ∈ [0,5]. (1.30)

One may verify that P′(w) > 0, see also Exercise 1.3.2. We observe that a deci-
sion maker with quadratic utility is willing to pay larger premiums as his wealth
increases toward the saturation point 5. Because of this property, quadratic utility is
less appropriate to model the behavior of risk averse decision makers. The quadratic
utility function still has its uses, of course, since knowing only the expected value
and the variance of the risk suffices to do the calculations. ∇

Example 1.3.4 (Uninsurable risk)
A decision maker with an exponential utility function with risk aversion α > 0 wants
to insure a gamma distributed risk with shape parameter n and scale parameter 1.
See Table A. Determine P+ and prove that P+ > n. When is P+ = ∞ and what does
that mean?

From formula (1.20), it follows that
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P+ =
1
α

log(mX (α)) =

{− n
α log(1−α) for 0 < α < 1

∞ for α ≥ 1.
(1.31)

Since log(1+ x) < x for all x > −1, x 	= 0, we have also log(1−α) < −α and con-
sequently P+ > E[X ] = n. So the resulting premium is larger than the net premium.
If α ≥ 1, then P+ = ∞, which means that the decision maker is willing to pay any
finite premium. An insurer with risk aversion α ≥ 1 insuring the risk will suffer
a loss, in terms of utility, for any finite premium P, since also P− = ∞. For such
insurers, the risk is uninsurable. ∇

Remark 1.3.5 (Allais paradox (1953), Yaari’s dual theory (1987))
Consider the following possible capital gains:

X = 1000000 with probability 1

Y =

⎧⎨⎩5000000 with probability 0.10
1000000 with probability 0.89
0 with probability 0.01

V =

{
1000000 with probability 0.11
0 with probability 0.89

W =

{
5000000 with probability 0.10
0 with probability 0.90

Experimental economy has revealed that, having a choice between X and Y , many
people choose X , but at the same time they prefer W over V . This result violates the
expected utility hypothesis, since, assuming an initial wealth of 0, the latter pref-
erence E[u(W )] > E[u(V )] is equivalent to 0.11u(1000000) < 0.1u(5000000) +
0.01u(0), but the former leads to exactly the opposite inequality. Apparently, ex-
pected utility does not always describe the behavior of decision makers adequately.
Judging from this example, it would seem that the attraction of being in a completely
safe situation is stronger than expected utility indicates, and induces people to make
irrational decisions.

Yaari (1987) has proposed an alternative theory of decision making under risk
that has a very similar axiomatic foundation. Instead of using a utility function,
Yaari’s dual theory computes ‘certainty equivalents’ not as expected values of trans-
formed wealth levels (utilities), but with distorted probabilities of large gains and
losses. It turns out that this theory leads to paradoxes that are very similar to the
ones vexing utility theory. ∇

1.4 Stop-loss reinsurance

Reinsurance treaties usually do not cover the risk fully. Stop-loss (re)insurance cov-
ers the top part. It is defined as follows: for a loss X , assumed non-negative, the
payment is



1.4 Stop-loss reinsurance 9

1

0 d x

FX
f  (x)X {

Area = (x-d) f  (x)X

Fig. 1.1 Graphical derivation of (1.33) for a discrete cdf.

(X −d)+ := max{X −d,0} =

{
X −d if X > d
0 if X ≤ d.

(1.32)

The insurer retains a risk d (his retention) and lets the reinsurer pay for the remain-
der, so the insurer’s loss stops at d. In the reinsurance practice, the retention equals
the maximum amount to be paid out for every single claim and d is called the pri-
ority. We will prove that, regarding the variance of the insurer’s retained loss, a
stop-loss reinsurance is optimal. The other side of the coin is that reinsurers do not
offer stop-loss insurance under the same conditions as other types of reinsurance.

Theorem 1.4.1 (Net stop-loss premium)
Consider the stop-loss premium, by which we mean the net premium πX (d) :=
E[(X − d)+] for a stop-loss contract. Both in the discrete case, where FX (x) is a
step function with a step fX (x) in x, and in the continuous case, where FX (x) has
fX (x) as its derivative, the stop-loss premium is given by

πX (d) =

⎧⎨⎩
∑x>d(x−d) fX (x)

∫ ∞
d (x−d) fX (x)dx

⎫⎬⎭ =

∫ ∞

d
[1−FX (x)]dx. (1.33)

Proof. This proof can be given in several ways. A graphical ‘proof’ for the discrete
case is given in Figure 1.1. The right hand side of the equation (1.33), that is, the total
shaded area enclosed by the graph of FX (x), the horizontal line at 1 and the vertical
line at d, is divided into small bars with a height fX (x) and a width x−d. Their total
area equals the left hand side of (1.33). The continuous case can be proved in the
same way by taking limits, considering bars with an infinitesimal height.

To prove it in the continuous case by partial integration
∫

Fg = FG−∫
gF , write
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E[(X −d)+] =

∫ ∞

d
(x−d) fX (x)dx

= −(x−d)[1−FX (x)]

∣∣∣∣∞
d

+
∫ ∞

d
[1−FX (x)]dx.

(1.34)

Note that we do not just take FX (x) as an antiderivative of fX (x). The only choice
FX (x)+C that is a candidate to produce finite terms on the right hand side is FX (x)−
1. With partial integration, the integrated term often vanishes, but this is not always
easy to prove. In this case, for x → ∞ this can be seen as follows: since E[X ] < ∞,
the integral

∫ ∞
0 t fX (t)dt is convergent, and hence the ‘tails’ tend to zero, so

x[1−FX (x)] = x
∫ ∞

x
fX (t)dt ≤

∫ ∞

x
t fX (t)dt ↓ 0 for x → ∞. (1.35)

In many cases, easier proofs result from using Fubini’s theorem, that is, swapping
the order of integration in double integrals, taking care that the integration is over
the same set of values in R2. In this case, we have only one integral, but this can
be fixed by writing x− d =

∫ x
d dy. The pairs (x,y) over which we integrate satisfy

d < y < x < ∞, so this leads to∫ ∞

d
(x−d) fX (x)dx =

∫ ∞

d

∫ x

d
dy fX (x)dx =

∫ ∞

d

∫ ∞

y
fX (x)dxdy

=
∫ ∞

d
[1−FX (y)]dy.

(1.36)

By the same device, the proof in the discrete case can be given as

∑
x>d

(x−d) fX (x) = ∑
x>d

∫ x

d
dy fX (x) =

∫ ∞

d
∑
x>y

fX (x)dy =
∫ ∞

d
[1−FX (y)]dy. (1.37)

Note that in a Riemann integral, we may change the value of the integrand in a
countable set of arguments without affecting the outcome of the integral, so it does
not matter if we take ∑x≥y fX (x) or ∑x>y fX (x). ∇

Theorem 1.4.2 (Stop-loss transform)
The function πX (d) = E[(X − d)+], called the stop-loss transform of X , is a con-
tinuous convex function that is strictly decreasing in the retention d, as long as
FX (d) < 1. When FX (d) = 1, πX (d) = 0, and always πX (∞) = 0. If X is non-negative,
then πX (0) = E[X ], and for d < 0, πX (d) decreases linearly with slope −1.

Proof. From (1.33), it follows that:

π ′
X (d) = FX (d)−1. (1.38)

Since FX (x) = Pr[X ≤ x], each cdf FX is continuous from the right. Accordingly,
the derivative in (1.38) is a right hand derivative. Since FX (x) is non-decreasing,
πX (d) is a continuous and convex function that is strictly decreasing in d, as long as
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µ

Fig. 1.2 A stop-loss transform πX (d) for a risk X ≥ 0 with E[X ] = µ .

FX (d) < 1. If X is non-negative, then πX (d) = E[(X −d)+] = E[X −d] = E[X ]−d
for d ≤ 0. That limd→∞ πX (d) = 0 is evident. These properties are illustrated in
Figure 1.2. ∇

In the next theorem, we prove the important result that a stop-loss insurance mini-
mizes the variance of the retained risk.

Theorem 1.4.3 (Optimality of stop-loss reinsurance)
Let I(X) be the payment on some reinsurance contract if the loss is X , with X ≥ 0.
Assume that 0 ≤ I(x) ≤ x holds for all x ≥ 0. Then

E[I(X)] = E[(X −d)+] ⇒ Var[X − I(X)] ≥ Var[X − (X −d)+]. (1.39)

Proof. Because of the previous theorem, for every I(·) we can find a retention d
such that the expectations E[I(X)] and E[(X −d)+] are equal. We write the retained
risks as follows:

V (X) = X − I(X) and W (X) = X − (X −d)+. (1.40)

Since E[V (X)] = E[W (X)], it suffices to prove that

E[{V (X)−d}2] ≥ E[{W (X)−d}2]. (1.41)

A sufficient condition for this to hold is that |V (X)−d | ≥ |W (X)−d | with proba-
bility one. This is trivial in the event X ≥ d, since then W (X) ≡ d holds. For X < d,
we have W (X) ≡ X , and hence

V (X)−d = X −d − I(X) ≤ X −d = W (X)−d < 0. (1.42)

This completes the proof. ∇
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The essence of the proof is that stop-loss reinsurance makes the risk ‘as close to d’ as
possible, under the retained risks with a fixed mean. So it is more attractive because
it is less risky, more predictable. As stated before, this theorem can be extended:
using the theory of ordering of risks, one can prove that stop-loss insurance not
only minimizes the variance of the retained risk, but also maximizes the insured’s
expected utility, see Chapter 7.

In the above theorem, it is crucial that the premium for a stop-loss coverage is the
same as the premium for another type of coverage with the same expected payment.
Since the variance of the reinsurer’s capital will be larger for a stop-loss coverage
than for another coverage, the reinsurer, who is without exception at least slightly
risk averse, in practice will charge a higher premium for a stop-loss insurance.

Example 1.4.4 (A situation in which proportional reinsurance is optimal)
To illustrate the importance of the requirement that the premium does not depend
on the type of reinsurance, we consider a related problem: suppose that the insurer
collects a premium (1 + θ)E[X ] and that he is looking for the most profitable rein-
surance I(X) with 0 ≤ I(X) ≤ X and prescribed variance

Var[X − I(X)] = V. (1.43)

So the insurer wants to maximize his expected profit, under the assumption that
the instability of his own financial situation is fixed in advance. We consider two
methods for the reinsurer to calculate his premium for I(X). In the first scenario (A),
the reinsurer collects a premium (1+λ )E[I(X)], structured like the direct insurer’s.
In the second scenario (B), the reinsurer determines the premium according to the
variance principle, which means that he asks as a premium the expected value plus
a loading equal to a constant, say α , times the variance of I(X). Then the insurer can
determine his expected profit, which equals the collected premium less the expected
value of the retained risk and the reinsurance premium, as follows:

A : (1+θ)E[X ]−E[X − I(X)]− (1+λ )E[I(X)]

= θE[X ]−λE[I(X)];

B : (1+θ)E[X ]−E[X − I(X)]− (E[I(X)]+αVar[I(X)])

= θE[X ]−αVar[I(X)].

(1.44)

As one sees, in both scenarios the expected profit equals the original expected profit
θE[X ] reduced by the expected profit of the reinsurer. Clearly, we have to minimize
the expected profit of the reinsurer, hence the following minimization problems A
and B arise:

A : Min E[I(X)] B : Min Var[I(X)]

s.t. Var[X − I(X)] = V s.t. Var[X − I(X)] = V
(1.45)

To solve Problem B, we write

Var[I(X)] = Var[X ]+Var[I(X)−X ]−2Cov[X ,X − I(X)]. (1.46)
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d = 0

8d =

Fig. 1.3 Expected value and variance of the retained risk for different reinsurance contracts. The
boundary line constitutes the stop-loss contracts with d ∈ [0,∞). The shaded area contains other
feasible reinsurance contracts.

Since the first two terms on the right hand side are given, the left hand side is mini-
mal if the covariance term is maximized. This can be accomplished by taking X and
X − I(X) linearly dependent, choosing I(x) = γ + βx. From 0 ≤ I(x) ≤ x, we find
γ = 0 and 0 ≤ β ≤ 1; from (1.43), it follows that (1−β )2 = V/Var[X ]. So, if the
variance V of the retained risk is given and the reinsurer uses the variance principle,
then proportional reinsurance I(X) = βX with β = 1−√

V/Var[X ] is optimal.
For the solution of problem A, we use Theorem 1.4.3. By calculating the deriv-

atives with respect to d, we can prove that not just µ(d) = E[X − (X − d)+], but
also σ2(d) = Var[X − (X −d)+] is continuously increasing in d. See Exercise 1.4.3.
Notice that µ(0) = σ2(0) = 0 and µ(∞) = E[X ], σ2(∞) = Var[X ].

In Figure 1.3, we plot the points (µ(d),σ2(d)) for d ∈ [0,∞) for some loss ran-
dom variable X . Because of Theorem 1.4.3, other reinsurance contracts I(·) can
only have an expected value and a variance of the retained risk above the curve in
the µ ,σ2-plane, since the variance is at least as large as for the stop-loss reinsur-
ance with the same expected value. This also implies that such a point can only be
located to the left of the curve. From this we conclude that, just as in Theorem 1.4.3,
the non-proportional stop-loss solution is optimal for problem A. The stop-loss con-
tracts in this case are Pareto-optimal: there are no other solutions with both a smaller
variance and a higher expected profit. ∇

1.5 Exercises

For hints with the exercises, consult Appendix B. Also, the index at the end of the
book might be a convenient place to look for explanations.
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Section 1.2

1. Prove Jensen’s inequality: if v(x) is convex, then E[v(X)] ≥ v(E[X ]). Consider especially the
case v(x) = x2.

2. Also prove the reverse of Jensen’s inequality: if E[v(X)] ≥ v(E[X ]) for every random variable
X , then v is convex.

3. Prove: if E[v(X)] = v(E[X ]) for every random variable X , then v is linear.

4. A decision maker has utility function u(x) =
√

x, x ≥ 0. He is given the choice between two
random amounts X and Y , in exchange for his entire present capital w. The probability distrib-
utions of X and Y are given by Pr[X = 400] = Pr[X = 900] = 0.5 and Pr[Y = 100] = 1−Pr[Y =
1600] = 0.6. Show that he prefers X to Y . Determine for which values of w he should decline
the offer. Can you think of utility functions with which he would prefer Y to X?

5. Prove that P− ≥ E[X ] for risk averse insurers.

6. An insurer undertakes a risk X and after collecting the premium, he owns a capital w = 100.
What is the maximum premium the insurer is willing to pay to a reinsurer to take over the
complete risk, if his utility function is u(w) = log(w) and Pr[X = 0] = Pr[X = 36] = 0.5? Find
not only the exact value, but also the approximation (1.18) of Example 1.2.4.

7. Assume that the reinsurer’s minimum premium to take over the risk of the previous exercise
equals 19 and that the reinsurer has the same utility function. Determine his capital W .

8. Describe the utility function of a person with the following risk behavior: after winning an
amount 1, he answers ‘yes’ to the question ‘double or quits?’; after winning again, he agrees
only after a long huddle; the third time he says ‘no’.

9. Verify that P−[2X ] < 2P−[X ] when w = 0, X ∼ Bernoulli(1/2) and

u(x) =

⎧⎪⎨⎪⎩
2x/3 for x > −3/4,

2x+1 for −1 < x < −3/4,

3x+2 for x < −1.

Section 1.3

1. Prove that the utility functions in (1.19) have a non-negative and non-increasing marginal
utility. Show how the risk aversion coefficient of all these utility functions can be written as
r(w) = (γ +βw)−1.

2. Show that, for quadratic utility, the risk aversion increases with the capital. Check (1.28)–
(1.30) and verify that P′(w) > 0 in (1.30).

3. Prove the formula (1.20) for P− for the case of exponential utility. Also show that (1.10) yields
the same solution for P+.

4. Prove that the exponential premium P− in (1.20) decreases to the net premium if the risk
aversion α tends to zero.

5. Show that the approximation in Example 1.2.4 is exact if X ∼N(µ,σ2) and u(·) is exponential.

6. Using the exponential utility function with α = 0.001, determine which premium is higher:
the one for X ∼ N(400,25000) or the one for Y ∼ N(420,20000). Determine for which values
of α the former premium is higher.

7. Assume that the marginal utility of u(w) is proportional to 1/w, that is, u′(w) = k/w for some
k > 0 and all w > 0. What is u(w)? With this utility function and wealth w = 4, show that
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only prices P < 4 in the St. Petersburg paradox of Example 1.2.1 make entering the game
worthwhile.

8. It is known that the premium P that an insurer with exponential utility function asks for a
N(1000,1002) distributed risk satisfies P ≥ 1250. What can be said about his risk aversion α?
If the risk X has dimension ‘money’, then what is the dimension of α?

9. For a random variable X with mean E[X ] = µ and variance Var[X ] = σ2 it is known that for
every possible α > 0, the zero utility premium with exponential utility with risk aversion α
contains a relative safety loading 1

2 σ2α/µ on top of the net premium. What distribution can
X have?

10. Which utility function results if in the class of power utility functions wc with 0 < c < 1 we let
c ↓ 0? [Look at the linear transformation (wc −1)/c.]

11. Which class of utility functions has constant relative risk aversion (CRRA) −wu′′(w)
u′(w) ≡ ρ?

12. For an exponential premium (1.20), prove that P−[2X ] > 2P−[X ].

13. Assume that the insurer, from vast experience, knows a particular insurance risk is distributed
as X ∼ gamma(2,β ) with mean 50, while the insured himself, with inside knowledge, knows it
is distributed as X• ∼ exponential(β •) with mean 45. They have exponential utility functions
with risk aversions α = 0.001 and α• = 0.005 respectively. Find the interval of premiums for
which both parties involved can increase their perceived expected utility.

Section 1.4

1. Sketch the stop-loss transform corresponding to the following cdf:

F(x) =

⎧⎨⎩ 0 for x < 2
x/4 for 2 ≤ x < 4
1 for 4 ≤ x

2. Determine the distribution of S if E[(S−d)+] = 1
3 (1−d)3 for 0 ≤ d ≤ 1.

3. [♠] Prove that, for the optimization of problem A,

µ ′(d) = 1−FX (d) and (σ2)′(d) = 2[1−FX (d)][d −µ(d)].

Verify that both are non-negative.

4. [♠] What happens if we replace ‘=’ by ‘≤’ in (1.43), taking V to be an upper bound for the
variance of the retained risk in the scenarios A and B?

5. Define the coefficient of variation V [·] for a risk X with an expected value µ and a variance σ2

as σ/µ . By comparing the variance of the retained risk W (X) = X − (X −d)+ resulting from
a stop-loss reinsurance with the one obtained from a suitable proportional reinsurance, show
that V [W ] ≤V [X ]. Also show that V [min{X ,d}] is non-increasing in d, by using the following
equality: if d < t, then min{X ,d} = min{min{X , t},d}.

6. Suppose for the random loss X ∼ N(0,1) an insurance of franchise type is in operation: the
amount I(x) paid in case the damage is x equals x when x ≥ d for some d > 0, and zero
otherwise. Show that the net premium for this type of insurance is ϕ(x), where ϕ(·) is the
standard normal density, see Table A. Compare this with the net stop-loss premium with a
retention d.

7. Consider the following R-statements and their output:

set.seed(2525); n <- 1e6; X <- rnorm(n)
rbind(c(mean(X[X>1]), mean(X*(X>1)), mean(pmax(X-1,0))),
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c(dnorm(1)/pnorm(-1), dnorm(1), dnorm(1)-pnorm(-1)))
## Result:
## [,1] [,2] [,3]
## [1,] 1.524587 0.2416943 0.08316332
## [2,] 1.525135 0.2419707 0.08331547

Coincidence?



Chapter 2
The individual risk model

If the automobile had followed the same development cycle as
the computer, a Rolls-Royce would today cost $100, get a
million miles per gallon, and explode once a year, killing
everyone inside — Robert X. Cringely

2.1 Introduction

In this chapter we focus on the distribution function of the total claim amount S for
the portfolio of an insurer. We are not merely interested in the expected value and the
variance of the insurer’s random capital, but we also want to know the probability
that the amounts paid exceed a fixed threshold. The distribution of the total claim
amount S is also necessary to be able to apply the utility theory of the previous
chapter. To determine the value-at-risk at, say, the 99.5% level, we need also good
approximations for the inverse of the cdf, especially in the far tail. In this chapter
we deal with models that still recognize the individual, usually different, policies.
As is done often in non-life insurance mathematics, the time aspect will be ignored.
This aspect is nevertheless important in disability and long term care insurance. For
this reason, these types of insurance are sometimes considered life insurances.

In the insurance practice, risks usually cannot be modeled by purely discrete ran-
dom variables, nor by purely continuous random variables. For example, in liability
insurance a whole range of positive amounts can be paid out, each of them with a
very small probability. There are two exceptions: the probability of having no claim,
that is, claim size 0, is quite large, and the probability of a claim size that equals the
maximum sum insured, implying a loss exceeding that threshold, is also not negligi-
ble. For expectations of such mixed random variables, we use the Riemann-Stieltjes
integral as a notation, without going too deeply into its mathematical aspects. A
simple and flexible model that produces random variables of this type is a mixture
model, also called an ‘urn-of-urns’ model. Depending on the outcome of one draw-
ing, resulting in one of the events ‘no claim or maximum claim’ or ‘other claim’,
a second drawing is done from either a discrete distribution, producing zero or the
maximal claim amount, or a continuous distribution. In the sequel, we present some
examples of mixed models for the claim amount per policy.

Assuming that the risks in a portfolio are independent random variables, the
distribution of their sum can be calculated by making use of convolution. Even
with the computers of today, it turns out that this technique is quite laborious, so

17
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there is a need for other methods. One of the alternative methods is to make use

variables and consequently identify the distribution function. And in some cases we
can fruitfully employ a technique called the Fast Fourier Transform to reconstruct
the density from a transform.

A totally different approach is to compute approximations of the distribution of

dom variables, we could, by virtue of the Central Limit Theorem, approximate its

Especially in the tails, there is a need for more refined approximations that explicitly

tral moment of S is usually greater than 0, while for the normal distribution it equals

well as the normal power (NP) approximation. The quality of these approximations
is similar. The latter can be calculated directly by means of a N(0,1) table, the for-
mer requires using a computer.

Another way to approximate the individual risk model is to use the collective risk
models described in the next chapter.

2.2 Mixed distributions and risks

In this section, we discuss some examples of insurance risks, that is, the claims on an
insurance policy. First, we have to slightly extend the set of distribution functions we
consider, because purely discrete random variables and purely continuous random
variables both turn out to be inadequate for modeling the risks.

From the theory of probability, we know that every function F(·) that satisfies

F(−∞) = 0; F(+∞) = 1

F(·) is non-decreasing and right-continuous
(2.1)

is a cumulative distribution function (cdf) of some random variable, for example
of F−1(U) with U ∼ uniform(0,1), see Section 3.9.1 and Definition 5.6.1. If F(·)
is a step function, that is, a function that is constant outside a denumerable set of
discontinuities (steps), then F(·) and any random variable X with F(x) = Pr[X ≤ x]
are called discrete. The associated probability density function (pdf) represents the
height of the step at x, so

f (x) = F(x)−F(x−0) = Pr[X = x] for all x ∈ (−∞,∞). (2.2)

functions, probability generating functions (pgf) and cumulant generating functions

0. We present an approximation based on a translated gamma random variable, as

of moment generating functions (mgf) or of related transforms like characteristic

distribution by a normal distribution with the same mean and variance as S. We will

(cgf). Sometimes it is possible to recognize the mgf of a sum of independent random

recognize the substantial probability of large claims. More technically, the third cen-

show that this approximation usually is not satisfactory for the insurance practice.

the total claim amount S. If we consider S as the sum of a ‘large’ number of ran-
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Here, F(x− 0) is shorthand for limε↓0 F(x− ε); F(x + 0) = F(x) holds because of
right-continuity. For all x, we have f (x)≥ 0, and ∑x f (x) = 1 where the sum is taken
over the denumerable set of all x with f (x) > 0.

Another special case is when F(·) is absolutely continuous. This means that if
f (x) = F ′(x), then

F(x) =
∫ x

−∞
f (t)dt. (2.3)

In this case f (·) is called the probability density function, too. Again, f (x) ≥ 0
for all x, while now

∫
f (x)dx = 1. Note that, just as is customary in mathematical

statistics, this notation without integration limits represents the definite integral of
f (x) over the interval (−∞,∞), and not just an arbitrary antiderivative, that is, any
function having f (x) as its derivative.

In statistics, almost without exception random variables are either discrete or
continuous, but this is definitely not the case in insurance. Many distribution func-
tions to model insurance payments have continuously increasing parts, but also some
positive steps. Let Z represent the payment on some contract. There are three possi-
bilities:

1. The contract is claim-free, hence Z = 0.
2. The contract generates a claim that is larger than the maximum sum insured, say

M. Then, Z = M.
3. The contract generates a ‘normal’ claim, hence 0 < Z < M.

Apparently, the cdf of Z has steps in 0 and in M. For the part in-between we could
use a discrete distribution, since the payment will be some integer multiple of the
monetary unit. This would produce a very large set of possible values, each of them
with a very small probability, so using a continuous cdf seems more convenient. In
this way, a cdf arises that is neither purely discrete, nor purely continuous. In Figure
2.2 a diagram of a mixed continuous/discrete cdf is given, see also Exercise 1.4.1.

The following urn-of-urns model allows us to construct a random variable with
a distribution that is a mixture of a discrete and a continuous distribution. Let I be
an indicator random variable, with values I = 1 or I = 0, where I = 1 indicates that
some event has occurred. Suppose that the probability of the event is q = Pr[I = 1],
0 ≤ q ≤ 1. If I = 1, in the second stage the claim Z is drawn from the distribution of
X , if I = 0, then from Y . This means that

Z = IX +(1− I)Y. (2.4)

If I = 1 then Z can be replaced by X , if I = 0 it can be replaced by Y . Note that we
may act as if not just I and X ,Y are independent, but in fact the triple (X ,Y, I); only
the conditional distributions of X | I = 1 and of Y | I = 0 are relevant, so we can take
for example Pr[X ≤ x | I = 0] = Pr[X ≤ x | I = 1] just as well. Hence, the cdf of Z can
be written as
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F(z) = Pr[Z ≤ z]

= Pr[Z ≤ z, I = 1]+Pr[Z ≤ z, I = 0]

= Pr[X ≤ z, I = 1]+Pr[Y ≤ z, I = 0]

= qPr[X ≤ z]+ (1−q)Pr[Y ≤ z].

(2.5)

Now, let X be a discrete random variable and Y a continuous random variable. From
(2.5) we get

F(z)−F(z−0) = qPr[X = z] and F ′(z) = (1−q)
d
dz

Pr[Y ≤ z]. (2.6)

This construction yields a cdf F(z) with steps where Pr[X = z] > 0, but it is not a
step function, since F ′(z) > 0 on the support of Y .

To calculate the moments of Z, the moment generating function E[etZ ] and the
stop-loss premiums E[(Z −d)+], we have to calculate the expectations of functions
of Z. For that purpose, we use the iterative formula of conditional expectations, also
known as the law of total expectation, the law of iterated expectations, the tower
rule, or the smoothing theorem:

E[W ] = E[E[W |V ]]. (2.7)

We apply this formula with W = g(Z) for an appropriate function g(·) and replace
V by I. Then, introducing h(i) = E[g(Z) | I = i], we get, using (2.6) at the end:

E[g(Z)] = E[E[g(Z) | I]] = qh(1)+(1−q)h(0) = E[h(I)]

= qE[g(Z) | I = 1]+ (1−q)E[g(Z) | I = 0]

= qE[g(X) | I = 1]+ (1−q)E[g(Y ) | I = 0]

= qE[g(X)]+(1−q)E[g(Y )]

= q∑
z

g(z)Pr[X = z]+ (1−q)
∫ ∞

−∞
g(z)

d
dz

Pr[Y ≤ z]dz

= ∑
z

g(z)[F(z)−F(z−0)]+
∫ ∞

−∞
g(z)F ′(z)dz.

(2.8)

Remark 2.2.1 (Riemann-Stieltjes integrals)
The result in (2.8), consisting of a sum and an ordinary Riemann integral, can be
written as a right hand Riemann-Stieltjes integral:

E[g(Z)] =

∫ ∞

−∞
g(z)dF(z). (2.9)

The integrator is the differential dF(z) = FZ(z)−FZ(z− dz). It replaces the proba-
bility of z, that is, the height of the step at z if there is one, or F ′(z)dz if there is no
step at z. Here, dz denotes a positive infinitesimally small number. Note that the cdf
F(z) = Pr[Z ≤ z] is continuous from the right. In life insurance mathematics theory,
Riemann-Stieltjes integrals were used as a tool to describe situations in which it is
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vital which value of the integrand should be taken: the limit from the right, the limit
from the left, or the actual function value. Actuarial practitioners have not adopted
this convention. We avoid this problem altogether by considering continuous inte-
grands only. ∇

We can summarize the above as follows: a mixed continuous/discrete cdf FZ(z) =
Pr[Z ≤ z] arises when a mixture of random variables

Z = IX +(1− I)Y

is used, where X is a discrete random variable, Y is a continuous random variable
and I is a Bernoulli(q) random variable, with X , Y and I independent. The cdf of Z

FZ X Y (2.11)

E[g(X)] and E[g(Y )], see (2.8):

E[g(Z)] = qE[g(X)]+(1−q)E[g(Y )]. (2.12)

It is important to make a distinction between the urn-of-urns model (2.10) leading

T = qX +(1−q)Y . Although (2.12) is valid for T = Z in case g(z) = z, the random
variable T does not have (2.11) as its cdf. See also Exercises 2.2.8 and 2.2.9. ∇

Example 2.2.3 (Insurance against bicycle theft)
We consider an insurance policy against bicycle theft that pays b in case the bicycle
is stolen, upon which event the policy ends. Obviously, the number of payments
is 0 or 1 and the amount is known in advance, just as with life insurance policies.
Assume that the probability of theft is q and let X = Ib denote the claim payment,
where I is a Bernoulli(q) distributed indicator random variable, with I = 1 if the
bicycle is stolen, I = 0 if not. In analogy to (2.4), we can rewrite X as X = Ib+(1−
I)0. The distribution and the moments of X can be obtained from those of I:

Pr[X = b] = Pr[I = 1] = q; Pr[X = 0] = Pr[I = 0] = 1−q;

E[X ] = bE[I] = bq; Var[X ] = b2Var[I] = b2q(1−q).
(2.13)

Now suppose that only half the amount is paid out in case the bicycle was not locked.
Some bicycle theft insurance policies have a restriction like this. Insurers check this
by requiring that all the original keys have to be handed over in the event of a
claim. Then, X = IB, where B represents the random payment. Assuming that the
probabilities of a claim X = 400 and X = 200 are 0.05 and 0.15, we get

Pr[I = 1,B = 400] = 0.05; Pr[I = 1,B = 200] = 0.15. (2.14)

Hence, Pr[I = 1] = 0.2 and consequently Pr[I = 0] = 0.8. Also,

Remark 2.2.2 (Mixed random variables and mixed distributions)

is again a mixture, that is, a convex combination, of the cdfs of X and Y , see (2.5):

(2.10)

(z) = qF (z)+(1−q)F (z)

to a convex combination of cdfs, and a convex combination of random variables

For expectations of functions g(·) of Z we get the same mixture of expectations of
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Pr[B = 400 | I = 1] =
Pr[B = 400, I = 1]

Pr[I = 1]
= 0.25. (2.15)

This represents the conditional probability that the bicycle was locked given the fact
that it was stolen. ∇

Example 2.2.4 (Exponential claim size, if there is a claim)
Suppose that risk X is distributed as follows:

1. Pr[X = 0] = 1
2 ;

2. Pr[X ∈ [x,x+dx)] = 1
2 βe−βxdx for β = 0.1, x > 0,

where dx denotes a positive infinitesimal number. What is the expected value of X ,
and what is the maximum premium for X that someone with an exponential utility
function with risk aversion α = 0.01 is willing to pay?

The random variable X is not continuous, because the cdf of X has a step in 0.
It is also not a discrete random variable, since the cdf is not a step function; its
derivative, which in terms of infinitesimal numbers equals Pr[x ≤ X < x + dx]/dx,
is positive for x > 0. We can calculate the expectations of functions of X by dealing
with the steps in the cdf separately, see (2.9). This leads to

E[X ] =

∫ ∞

−∞
xdFX (x) = 0dFX (0)+

∫ ∞

0
xF ′

X (x)dx = 1
2

∫ ∞

0
xβe−βxdx = 5. (2.16)

If the utility function of the insured is exponential with parameter α = 0.01, then
(1.21) yields for the maximum premium P+:

P+ =
1
α

log(mX (α)) =
1
α

log

(
e0dFX (0)+ 1

2

∫ ∞

0
eαxβe−βxdx

)
=

1
α

log

(
1
2

+
1
2

β
β −α

)
= 100log

(
19
18

)
≈ 5.4.

(2.17)

This same result can of course be obtained by writing X as in (2.10). ∇

Example 2.2.5 (Liability insurance with a maximum coverage)
Consider an insurance policy against a liability loss S. We want to determine the
expected value, the variance and the distribution function of the payment X on this
policy, when there is a deductible of 100 and a maximum payment of 1000. In other
words, if S≤ 100 then X = 0, if S≥ 1100 then X = 1000, otherwise X = S−100. The
probability of a positive claim (S > 100) is 10% and the probability of a large loss
(S ≥ 1100) is 2%. Given 100 < S < 1100, S has a uniform(100,1100) distribution.
Again, we write X = IB where I denotes the number of payments, 0 or 1, and B
represents the amount paid, if any. Therefore,

Pr[B = 1000 | I = 1] = 0.2;

Pr[B ∈ (x,x+dx) | I = 1] = c dx for 0 < x < 1000.
(2.18)

Integrating the latter probability over x ∈ (0,1000) yields 0.8, so c = 0.0008.
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Fig. 2.1 ‘Probability density function’ of B given I = 1 in Example 2.2.5.

The conditional distribution function of B, given I = 1, is neither discrete, nor
continuous. In Figure 2.1 we attempt to depict a pdf by representing the probability
mass at 1000 by a bar of infinitesimal width and infinite height such that the area
equals 0.2. In actual fact we have plotted f (·), where f (x) = 0.0008 on (0,1000)
and f (x) = 0.2/ε on (1000,1000+ ε) with ε > 0 very small.

For the cdf F of X we have

F(x) = Pr[X ≤ x] = Pr[IB ≤ x]

= Pr[IB ≤ x, I = 0]+Pr[IB ≤ x, I = 1]

= Pr[IB ≤ x | I = 0]Pr[I = 0]+Pr[IB ≤ x | I = 1]Pr[I = 1]

(2.19)

which yields

F(x) =

⎧⎨⎩0×0.9+0×0.1 = 0 for x < 0
1×0.9+1×0.1 = 1 for x ≥ 1000
1×0.9+ c x×0.1 for 0 ≤ x < 1000.

(2.20)

A graph of the cdf F is shown in Figure 2.2. For the differential (‘density’) of F , we
have

dF(x) =

⎧⎪⎪⎨⎪⎪⎩
0.9 for x = 0
0.02 for x = 1000
0 for x < 0 or x > 1000
0.00008 dx for 0 < x < 1000.

(2.21)

The moments of X can be calculated by using this differential. ∇

The variance of risks of the form IB can be calculated through the conditional dis-
tribution of B, given I, by use of the well-known variance decomposition rule, see
(2.7), which is also known as the law of total variance:
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Fig. 2.2 Cumulative distribution function F of X in Example 2.2.5.

Var[W ] = Var[E[W |V ]]+E[Var[W |V ]]. (2.22)

In statistics, the first term is the component of the variance of W , not explained
by knowledge of V ; the second is the explained component of the variance. The
conditional distribution of B | I = 0 is irrelevant, so for convenience, we let it be
equal to the one of B | I = 1, meaning that we take I and B to be independent. Then,
letting q = Pr[I = 1], µ = E[B] and σ2 = Var[B], we have E[X | I = 1] = µ and
E[X | I = 0] = 0. Therefore, E[X | I = i] = µ i for both values i = 0,1, and analogously,
Var[X | I = i] = σ2i. Hence,

E[X | I] ≡ µI and Var[X | I] ≡ σ2I, (2.23)

from which it follows that

E[X ] = E[E[X | I]] = E[µI] = µq;

Var[X ] = Var[E[X | I]]+E[Var[X | I]] = Var[µI]+E[σ2I]

= µ2q(1−q)+σ2q.

(2.24)

Notice that a continuous cdf F is not necessarily absolutely continuous in the sense
of (2.3), as is demonstrated by the following example.

Example 2.2.6 ([♠] The Cantor cdf; continuous but not absolutely continuous)
Let X1,X2, . . . be an infinite sequence of independent Bernoulli(1/2) random vari-
ables. Define the following random variable:

W =
∞

∑
i=1

2Xi

3i =
2
3

X1 +
1
3

∞

∑
i=1

2Xi+1

3i (2.25)

Then the possible values of W are, in the ternary system, 0.d1d2d3 . . . with di ∈
{0,2} for all i = 1,2, . . . , and with di = 2 occurring if Xi = 1. Obviously, all of these
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values have zero probability as they correspond to all Xi having specific outcomes,
so FW is continuous.

Also, all intervals of real numbers in (0,1) having a ternary digit di = 1 on some
place i = 1,2, . . . ,n are not possible values of W , hence FW is constant on the union
Bn of all those intervals. But it is easy to see that the total length of these intervals
tends to 1 as n → ∞.

So we have constructed a continuous cdf FW , known as the Cantor distribution
function, that is constant except on a set of length 0 (known as the Cantor set). The
cdf FW cannot be equal to the integral over its derivative, since this is zero almost
everywhere with respect to the Lebesgue measure (‘interval length’). So though FW

is continuous, it is not absolutely continuous as in (2.3). ∇

2.3 Convolution

In the individual risk model we are interested in the distribution of the total S of the
claims on a number of policies, with

S = X1 +X2 + · · ·+Xn, (2.26)

where Xi, i = 1,2, . . . ,n, denotes the payment on policy i. The risks Xi are assumed
to be independent random variables. If this assumption is violated for some risks, for
example in case of fire insurance policies on different floors of the same building,
then these risks could be combined into one term in (2.26).

The operation ‘convolution’ calculates the distribution function of X +Y from

FX+Y (s) = Pr[X +Y ≤ s]

=
∫ ∞

−∞
Pr[X +Y ≤ s |X = x]dFX (x)

=
∫ ∞

−∞
Pr[Y ≤ s− x |X = x]dFX (x)

=
∫ ∞

−∞
Pr[Y ≤ s− x]dFX (x)

=
∫ ∞

−∞
FY (s− x)dFX (x) =: FX ∗FY (s).

(2.27)

The cdf FX Y X Y

density function we use the same notation. If X and Y are discrete random variables,
we find for the cdf of X +Y and the corresponding density

FX ∗FY (s) = ∑
x

FY (s− x) fX (x) and fX ∗ fY (s) = ∑
x

fY (s− x) fX (x), (2.28)

∗F (·) is called the convolution of the cdfs F (·) and F (·). For the

the cdfs of two independent random variables X and Y as follows:
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where the sum is taken over all x with fX (x) > 0. If X and Y are continuous random
variables, then

FX ∗FY (s) =
∫ ∞

−∞
FY (s− x) fX (x)dx (2.29)

and, taking the derivative under the integral sign to find the density,

fX ∗ fY (s) =
∫ ∞

−∞
fY (s− x) fX (x)dx. (2.30)

Since X +Y ≡Y +X , the convolution operator ∗ is commutative: FX ∗FY is identical
to FY ∗FX . Also, it is associative, since for the cdf of X +Y + Z, it does not matter
in which order we do the convolutions, therefore

(FX ∗FY )∗FZ ≡ FX ∗ (FY ∗FZ) ≡ FX ∗FY ∗FZ . (2.31)

For the sum of n independent and identically distributed random variables with mar-
ginal cdf F , the cdf is the n-fold convolution power of F , which we write as

F ∗F ∗ · · · ∗F =: F∗n. (2.32)

Example 2.3.1 (Convolution of two uniform distributions)
Suppose that X ∼ uniform(0,1) and Y ∼ uniform(0,2) are independent. What is the
cdf of X +Y ?

The indicator function of a set A is defined as follows:

IA(x) =

{
1 if x ∈ A
0 if x /∈ A.

(2.33)

Indicator functions provide us with a concise notation for functions that are defined
differently on some intervals. For all x, the cdf of X can be written as

FX (x) = xI[0,1)(x)+ I[1,∞)(x), (2.34)

while F ′
Y (y) = 1

2 I[0,2)(y) for all y, which leads to the differential

dFY (y) = 1
2 I[0,2)(y)dy. (2.35)

The convolution formula (2.27), applied to Y +X rather than X +Y , then yields

FY+X (s) =
∫ ∞

−∞
FX (s− y)dFY (y) =

∫ 2

0
FX (s− y) 1

2 dy, s ≥ 0. (2.36)

The interval of interest is 0 ≤ s < 3. Subdividing it into [0,1), [1,2) and [2,3) yields
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FX+Y (s) =

{∫ s

0
(s− y) 1

2 dy

}
I[0,1)(s)

+

{∫ s−1

0

1
2 dy+

∫ s

s−1
(s− y) 1

2 dy

}
I[1,2)(s)

+

{∫ s−1

0

1
2 dy+

∫ 2

s−1
(s− y) 1

2 dy

}
I[2,3)(s)

= 1
4 s2I[0,1)(s)+ 1

4 (2s−1)I[1,2)(s)+ [1− 1
4 (3− s)2]I[2,3)(s).

(2.37)

Notice that X +Y is symmetric around s = 1.5. Although this problem could be
solved graphically by calculating the probabilities by means of areas, see Exercise
2.3.5, the above derivation provides an excellent illustration that, even in simple
cases, convolution can be a laborious process. ∇

Example 2.3.2 (Convolution of discrete distributions)
Let f1(x) = 1

4 , 1
2 , 1

4 for x = 0,1,2, f2(x) = 1
2 , 1

2 for x = 0,2 and f3(x) = 1
4 , 1

2 , 1
4 for

x = 0,2,4. Let f1+2 denote the convolution of f1 and f2 and let f1+2+3 denote the
convolution of f1, f2 and f3. To calculate F1+2+3, we need to compute the values
as shown in Table 2.1. In the discrete case, too, convolution is clearly a laborious
exercise. Note that the more often we have fi(x) 	= 0, the more calculations need to
be done. ∇

Table 2.1 Convolution computations for Example 2.3.2

x f1(x) ∗ f2(x) = f1+2(x) ∗ f3(x) = f1+2+3(x) ⇒ F1+2+3(x)

0 1/4 1/2 1/8 1/4 1/32 1/32
1 1/2 0 2/8 0 2/32 3/32
2 1/4 1/2 2/8 1/2 4/32 7/32
3 0 0 2/8 0 6/32 13/32
4 0 0 1/8 1/4 6/32 19/32
5 0 0 0 0 6/32 25/32
6 0 0 0 0 4/32 29/32
7 0 0 0 0 2/32 31/32
8 0 0 0 0 1/32 32/32

Example 2.3.3 (Convolution of iid uniform distributions)
Let Xi, i = 1,2, . . . ,n, be independent and identically uniform(0,1) distributed. By
using the convolution formula and induction, it can be shown that for all x > 0, the
pdf of S = X1 + · · ·+Xn equals

fS(x) =
1

(n−1)!

[x]

∑
h=0

(
n
h

)
(−1)h(x−h)n−1 (2.38)

where [x] denotes the integer part of x. See also Exercise 2.3.4. ∇
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Example 2.3.4 (Convolution of Poisson distributions)
Let X ∼ Poisson(λ ) and Y ∼ Poisson(µ) be independent random variables. From
(2.28) we have, for s = 0,1,2, . . .,

fX+Y (s) =
s

∑
x=0

fY (s− x) fX (x) =
e−µ−λ

s!

s

∑
x=0

(
s
x

)
µs−xλ x

= e−(λ+µ) (λ + µ)s

s!
,

(2.39)

where the last equality is the binomial theorem. Hence, X +Y is Poisson(λ + µ)
distributed. For a different proof, see Exercise 2.4.2. ∇

2.4 Transforms

mX (t) = E
[
etX , −∞ < t < h, (2.40)

exponential moments E[eεx] for some ε > 0 exist.

mX+Y (t) = E
[
et(X+Y )

]
= E

[
etX]E

[
etY = mX (t)mY (2.41)

φX (t) = E
[
eitX] = E

[
cos(tX)+ i sin(tX)

]
, −∞ < t < ∞. (2.42)

bers, although applying the same function formula derived for real t to imaginary t
as well produces the correct results most of the time, resulting for example in the

2 2 2

istic function.
As their name indicates, moment generating functions can be used to generate

moments of random variables. The usual series expansion of ex yields

be made easier by using transforms of the cdf. The moment generating function

]

]

does not exist. The characteristic function, however, always exists. It is defined as:

Determining the distribution of the sum of independent random variables can often

So, the convolution of cdfs corresponds to simply multiplying the mgfs. Note that

for some h. The mgf is going to be used especially in an interval around 0, which

(t).

the mgf-transform is one-to-one, so every cdf has exactly one mgf. Also, it is con-

If X and Y are independent, then

mgfs. See Exercises 2.4.12 and 2.4.13.
For random variables with a heavy tail, such as the Pareto distributions, the mgf

requires h > 0 to hold. Note that this is the case only for light-tailed risks, of which

N(0,2) distribution with mgf exp(t ) having exp((it) ) = exp(−t ) as its character-

A disadvantage of the characteristic function is the need to work with complex num-

tinuous, in the sense that the mgf of the limit of a series of cdfs is the limit of the

(mgf) suits our purposes best. For a non-negative random variable X , it is defined as
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mX (t) = E[etX ] =
∞

∑
k=0

E[Xk]tk

k!
, (2.43)

so the k-th moment of X equals

k dk

dtk X (t)

∣∣∣∣
t=0

. (2.44)

Moments can also be generated from the characteristic function in similar fashion.

natural numbers as values:

gX (t) = E[tX
∞

∑
k=0

tk Pr[X = k]. (2.45)

central moment; it is defined as:

κX (t) = logmX (t). (2.46)

tk/k! for k = 1,2,3 are E[X ], Var[X ] and E[(X −E[X ])3]. The quantities generated
this way are the cumulants of X , and they are denoted by κk, k = 1,2, . . . One may
also proceed as follows: let µk denote E[Xk] and let, as usual, the ‘big O notation’

k

mX (t) = 1+ µ1t + 1
2 µ2t2 + 1

6 µ3t3 +O(t4), (2.47)

which, using log(1+ z) = z− 1
2 z2 + 1

3 z3 +O(z4), yields

logmX (t) = log
(
1+ µ1t + 1

2 µ2t2 + 1
6 µ3t3 +O(t4)

)
= µ1t + 1

2 µ2t2 + 1
6 µ3t3 +O(t4)

− 1
2

{
µ2

1 t2 + µ1µ2t3 +O(t4)
}

+ 1
3

{
µ3

1 t3 +O(t4)
}

+O(t4)

= µ1t + 1
2 (µ2 −µ2

1 )t2 + 1
6 (µ3 −3µ1µ2 +2µ3

1 )t3 +O(t4)

= E[X ]t +Var[X ] 1
2 t2 +E[(X −E[X ])3] 1

6 t3 +O(t4).

(2.48)

The skewness of a random variable X is defined as the following dimension-free
quantity:

γX =
κ3

σ3 =
E[(X −µ)3]

σ3 , (2.49)

Differentiating (2.46) three times and setting t = 0, one sees that the coefficients of

mE[X ] =

The probability generating function (pgf) is reserved for random variables with

sion of the pgf. The series (2.45) converges absolutely if | t | ≤ 1.

] =

O(t ) denote ‘terms of order t to the power k or higher’. Then

The cumulant generating function (cgf) is convenient for calculating the third

So, the probabilities Pr[X = k] in (2.45) are just the coefficients in the series expan-
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with µ = E[X ] and σ2 = Var[X ]. If γX > 0, large values of X −µ are likely to occur,
hence the (right) tail of the cdf is heavy. A negative skewness γX < 0 indicates
a heavy left tail. If X is symmetric then γX = 0, but having zero skewness is not
sufficient for symmetry. For some counterexamples, see the exercises.

acteristic function and the moment generating function are related by

κX (t) = logm (t); g (t) = mX (log t); φX (t) = mX (2.50)

In Exercise 2.4.14 the reader is asked to examine the last of these equalities. Often

operates on the real axis, the characteristic function on the imaginary axis.

2.5 Approximations

A well-known method to approximate a cdf is based on the Central Limit Theorem
(CLT). We study this approximation as well as two more accurate ones that involve
three moments rather than just two.

2.5.1 Normal approximation

Next to the Law of Large Numbers, the Central Limit Theorem is the most impor-
tant theorem in statistics. It states that by adding up a large number of independent

Theorem 2.5.1 (Central Limit Theorem)
If X1,X2, . . . ,Xn are independent and identically distributed random variables with
mean µ and variance σ2 < ∞, then

lim
n→∞

Pr

[
n

∑
i=1

Xi ≤ nµ + xσ
√

n

]
= Φ(x). (2.51)

Let S∗ = (X1 + · · ·+Xn −nµ)/σ
√

n, then for n → ∞ and for all t:

logmS∗(t) = −
√

nµt
σ

+n

{
logmX (

t
σ
√

n
)

}
= −

√
nµt
σ

+n

{
µ
( t

σ
√

n

)
+ 1

2 σ2( t
σ
√

n

)2
+O

(( 1√
n

)3
)}

= 1
2 t2 +O

( 1√
n

)
,

(2.52)

X (it).

The cumulant generating function, the probability generating function, the char-

the mgf can be extended to the whole complex plane in a natural way. The mgf

X

simplest form, the Central Limit Theorem (CLT) is as follows:

Proof.

random variables, we get a normally distributed random variable in the limit. In its

We restrict ourselves to proving the convergence of the sequence of cgfs.
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1
2 t2). As a

consequence, the cdf of S∗ ∇

As a result, if the summands are independent and have finite variance, we can ap-
proximate the cdf of S = X1 + · · ·+Xn by

FS(s) ≈ Φ

(
s;

n

∑
i=1

E[Xi],
n

∑
i=1

Var[Xi]

)
. (2.53)

‘large’, as is shown in the following examples.

Example 2.5.2 (Generating approximately normal random deviates fast)
If pseudo-random numbers can be generated fast (using bit-manipulations), but

N(0,1) distributed pseudo-random drawings numbers can conveniently be produced
by adding up twelve uniform(0,1) numbers and subtracting 6 from their sum. This
technique is based on the CLT with n = 12. Comparing this cdf with the normal cdf,
using (2.38), yields a maximum difference of 0.002. Hence, the CLT performs quite
well in this case. See also Exercise 2.4.5. ∇

Example 2.5.3 (Illustrating the various approximations)
Suppose that n = 1000 young men take out a life insurance policy for a period of
one year. The probability of dying within this year is 0.001 for everyone and the
payment for every death is 1. We want to calculate the probability that the total
payment is at least 4. This total payment is binomial(1000,0.001) distributed and
since n = 1000 is large and p = 0.001 is small, we will approximate this probability
by a Poisson(np) distribution. Calculating the probability at 3 + 1

2 instead of at 4,
applying a continuity correction needed later on, we find

Pr[S ≥ 3.5] = 1− e−1 − e−1 − 1
2 e−1 − 1 e−1 = 0.01899. (2.54)

Note that the exact binomial probability is 0.01893. Although n is much larger than
in the previous example, the CLT gives a poor approximation: with µ = E[S] = 1
and σ2 = Var[S] = 1, we find

Pr[S ≥ 3.5] = Pr

[
S−µ

σ
≥ 3.5−µ

σ

]
≈ 1−Φ(2.5) = 0.0062. (2.55)

The CLT approximation is not very good because of the extreme skewness of the
terms Xi and the resulting skewness of S, which is γS = 1. In the previous example,
we started from symmetric terms, leading to a higher order of convergence, as can
be seen from derivation (2.52). ∇

As an alternative for the CLT, we give two more refined approximations: the trans-
lated gamma approximation and the normal power approximation (NP). In numeri-
cal examples, they turn out to be much more accurate than the CLT approximation.
As regards the quality of the approximations, there is not much to choose between

This approximation can safely be used if n is ‘large’. But it is difficult to define

converges to the standard normal cdf Φ .
which converges to the cgf of the N(0,1) distribution, with mgf exp(

computing logarithms and the inverse normal cdf takes a lot of time, approximately

6
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the two. Their inaccuracies are minor compared with the errors that result from the
lack of precision in the estimates of the first three moments that are involved.

2.5.2 Translated gamma approximation

Most total claim distributions are skewed to the right (skewness γ > 0), have a non-
negative support and are unimodal. So they have roughly the shape of a gamma
distribution. To gain more flexibility, apart from the usual parameters α and β we
allow a shift over a distance x0. Hence, we approximate the cdf of S by the cdf of

0 0 in such a
way that the approximating random variable has the same first three moments as S.

The translated gamma approximation can then be formulated as follows:

FS(s) ≈ G(s− x0;α,β ),

where G(x;α,β ) =
1

Γ (α)

∫ x

0
yα−1β α e−βydy, x ≥ 0.

(2.56)

Here G(x;α,β ) is the gamma cdf. We choose α , β and x0 such that the first three
moments are the same, hence µ = x0 + α

β , σ2 = α
β 2 and γ = 2√

α (see Table A), so

α =
4
γ2 , β =

2
γσ

and x0 = µ − 2σ
γ

. (2.57)

mal approximation appears. Note that if the first three moments of the cdf F(·) are
equal to those of G(·), by partial integration it can be shown that the same holds
for

∫ ∞
0

j

different from each other.

Example 2.5.4 (Illustrating the various approximations, continued)
If S ∼ Poisson(1), we have µ = σ = γ = 1, and (2.57) yields α = 4, β = 2 and
x0 =−1. Hence, Pr[S ≥ 3.5]≈ 1−G(3.5−(−1);4,2) = 0.0212. This value is much
closer to the exact value than the CLT approximation. ∇

The translated gamma approximation leads to quite simple formulas to approximate
the moments of a stop-loss claim (S− d)+ or of the retained loss S− (S− d)+. To
evaluate the gamma cdf is easy in R, and in spreadsheet programs the gamma distri-
bution is also included, although the accuracy sometimes leaves much to be desired.
Note that in many applications, for example MS Excel, the parameter β should be
replaced by 1/β . In R, specify β = 2 by using rate=2, or by scale=1/2.

Example 2.5.5 (Translated gamma approximation)
A total claim amount S has expected value 10000, standard deviation 1000 and
skewness 1. From (2.57) we have α = 4, β = 0.002 and x0 = 8000. Hence,

It is required that the skewness γ is strictly positive. In the limit γ ↓ 0, the nor-

x [1−F(x)]dx, j = 0,1,2. This leaves little room for these cdfs to be very

Z + x , where Z ∼ gamma(α,β ) (see Table A). We choose α , β and x
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Pr[S > 13000] ≈ 1−G(13000−8000;4,0.002) = 0.010. (2.58)

The regular CLT approximation is much smaller: 0.0013. Using the inverse of the
gamma distribution function, the value-at-risk on a 95% level is found by reversing
the computation (2.58), resulting in 11875. ∇

2.5.3 NP approximation

Another approximation that uses three moments of the approximated random vari-
able is the Normal Power approximation. It goes as follows.

If E[S] = µ , Var[S] = σ2 and γS = γ , then, for s ≥ 1,

Pr

[
S−µ

σ
≤ s+

γ
6
(s2 −1)

]
≈ Φ(s) (2.59)

or, equivalently, for x ≥ 1,

Pr

[
S−µ

σ
≤ x

]
≈ Φ

(√
9
γ2 +

6x
γ

+1− 3
γ

)
. (2.60)

The second formula can be used to approximate the cdf of S, the first produces
approximate quantiles. If s < 1 (or x < 1), the correction term is negative, which
implies that the CLT gives more conservative results.

Example 2.5.6 (Illustrating the various approximations, continued)
If S ∼ Poisson(1), then the NP approximation yields Pr[S ≥ 3.5] ≈ 1 −Φ(2) =
0.0228. Again, this is a better result than the CLT approximation.

The R-calls needed to produce all the numerical values are the following:

x <- 3.5; mu <- 1; sig <- 1; gam <- 1; z <- (x-mu)/sig
1-pbinom(x, 1000, 0.001) ## 0.01892683
1-ppois(x,1) ## 0.01898816
1-pnorm(z) ## 0.00620967
1-pnorm(sqrt(9/gamˆ2 + 6*z/gam + 1) - 3/gam) ## 0.02275013
1-pgamma(x-(mu-2*sig/gam), 4/gamˆ2, 2/gam/sig)## 0.02122649

Equations (2.53), (2.60) and (2.56)–(2.57) were used. ∇

Example 2.5.7 (Recalculating Example 2.5.5 by the NP approximation)
We apply (2.59) to determine the capital that covers loss S with probability 95%:

Pr

[
S−µ

σ
≤ s+

γ
6
(s2 −1)

]
≈ Φ(s) = 0.95 if s = 1.645, (2.61)

hence for the desired 95% quantile of S we find

E[S]+σS

(
1.645+

γ
6
(1.6452 −1)

)
= E[S]+1.929σS = 11929. (2.62)



34 2 The individual risk model

To determine the probability that capital 13000 will be insufficient to cover the
losses S, we apply (2.60) with µ = 10000, σ = 1000 and γ = 1:

Pr[S > 13000] = Pr

[
S−µ

σ
> 3

]
≈ 1−Φ(

√
9+6×3+1−3)

= 1−Φ(2.29) = 0.011.

(2.63)

Note that the translated gamma approximation gave 0.010, against only 0.0013 for
the CLT. ∇

Remark 2.5.8 (Justifying the NP approximation)
For U ∼N(0,1) consider the random variable Y =U + γ

6 (U2−1). It is easy to verify

that (see Exercise 2.5.21), writing w(x) =

√(
9
γ2 + 6x

γ +1
)

+
, we have

FY (x) = Φ
(

+w(x)− 3
γ

)
−Φ

(
−w(x)− 3

γ

)
≈ Φ

(
w(x)− 3

γ

)
. (2.64)

The term Φ(−w(x)− 3/γ) accounts for small U leading to large Y . It is generally
negligible, and vanishes as γ ↓ 0.

Also, using E[U6] = 15, E[U4] = 3 and E[U2] = 1, for small γ one can prove

E[Y ] = 0; E[Y 2] = 1+O(γ2); E[Y 3] = γ
(
1+O(γ2)

)
. (2.65)

S−µ
σ

with (2.64), justifies the use of formula (2.60) to approximate the cdf of S−µ
σ . ∇

Remark 2.5.9 ([♠] Deriving NP using the Edgeworth expansion)
Formula (2.59) can be derived by the use of a certain expansion for the cdf, though√

Var[S], and let γ =
3

logmZ(t) = 1
2 t2 + 1

6 γt3 + . . . , (2.66)

hence
mZ(t) = et2/2 · exp

{
1
6 γt3 + . . .

}
= et2/2 ·

(
1+ 1

6 γt3 + . . .
)
. (2.67)

(3)(x), with ϕ(x) the
N(0,1) density, can be found by partial integration:∫ ∞

−∞
etxϕ(3)(x)dx = etxϕ(2)(x)

∣∣∣∞−∞
−
∫ ∞

−∞
tetxϕ(2)(x)dx

= 0−0+
∫ ∞

−∞
t2etxϕ(1)(x)dx

= 0−0+0−
∫ ∞

−∞
t3etxϕ(x)dx = −t3et2/2.

(2.68)

Therefore, the first three moments of and Y as defined above are alike. This,

The ‘mgf’ (generalized to functions that are not a density) of ϕ

not in a mathematically rigorous way. Define Z = (S−E[S])/
E[Z ] be the skewness of S (and Z). For the cgf of Z we have
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FZ(x) = Φ(x)− 1
6 γΦ (3)(x)+ . . . (2.69)

Z

find a correction δ = δ (s) to the argument s such that

FZ(s+δ ) ≈ Φ(s). (2.70)

That means that we have to find a zero for the auxiliary function g(δ ) defined by

g(δ ) = Φ(s)−{
Φ(s+δ )− 1

6 γΦ (3)(s+δ )
}
. (2.71)

′
δ ≈−g(0)/g′(0), so

δ ≈ − 1
6 γΦ (3)(s)

−Φ ′(s)+ 1
6 γΦ (4)(s)

=
− 1

6 γ(s2 −1)ϕ(s)(−1+ 1
6 γ(−s3 +3s)

)
ϕ(s)

. (2.72)

Since the skewness γ is of order λ−1/2, see for example (2.48), therefore small for
large portfolios, we drop the term with γ in the denominator of (2.72), leading to

FZ(s+δ ) ≈ Φ(s) when δ = 1
6 γ(s2 −1). (2.73)

This is precisely the NP approximation (2.59) given earlier.

It is not possible to show that the terms replaced by dots in this formula are small,
let alone their absolute sum. So it is an exaggeration to say that the approximations

approximate inversion, are justified by theoretical arguments. ∇

2.6 Application: optimal reinsurance

An insurer is looking for an optimal reinsurance for a portfolio consisting of 20000
one-year life insurance policies that are grouped as follows:

Insured amount bk Number of policies nk

1 10 000
2 5 000
3 5 000

Using a Taylor expansion g(δ ) ≈ g(0)+δg (0) we may conclude that g(δ ) = 0 for

Formula (2.69) is called the Edgeworth expansion for F ; leaving out the dots gives

creasing function. To derive the NP approximation formula (2.59) from it, we try to

Therefore we recognize the cdf corresponding to mgf (2.67) as:

an Edgeworth approximation for it. There is no guarantee that the latter is an in-

obtained this way, dropping terms of a possibly divergent series and then using an

The dots in formula (2.69) denote the inverse mgf-transform of the dots in (2.67).
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The probability of dying within one year is qk = 0.01 for each insured, and the
policies are independent. The insurer wants to optimize the probability of being
able to meet his financial obligations by choosing the best retention, which is the
maximum payment per policy. The remaining part of a claim is paid by the reinsurer.
For example, if the retention is 1.6 and someone with insured amount 2 dies, then the
insurer pays 1.6, the reinsurer pays 0.4. After collecting the premiums, the insurer
holds a capital B from which he has to pay the claims and the reinsurance premium.
This premium is assumed to be 120% of the net premium.

First, we set the retention equal to 2. From the point of view of the insurer, the
policies are then distributed as follows:

Insured amount bk Number of policies nk

1 10 000
2 10 000

The expected value and the variance of the insurer’s total claim amount S are equal
to

E[S] = n1b1q1 +n2b2q2

= 10000×1×0.01+10000×2×0.01 = 300,

Var[S] = n1b2
1q1(1−q1)+n2b2

2q2(1−q2)

= 10000×1×0.01×0.99+10000×4×0.01×0.99 = 495.

(2.74)

By applying the CLT, we get for the probability that the costs S plus the reinsurance
premium 1.2×0.01×5000×1 = 60 exceed the available capital B:

Pr[S +60 > B] = Pr

[
S−E[S]

σS
>

B−360√
495

]
≈ 1−Φ

(
B−360√

495

)
. (2.75)

We leave it to the reader to determine this same probability for retentions between
2 and 3, as well as to determine which retention for a given B leads to the largest
probability of survival. See the exercises with this section.

2.7 Exercises

Section 2.2

1. Determine the expected value and the variance of X = IB if the claim probability equals 0.1.
First, assume that B equals 5 with probability 1. Then, let B ∼ uniform(0,10).

2. Throw a true die and let X denote the outcome. Then, toss a coin X times. Let Y denote the
number of heads obtained. What are the expected value and the variance of Y ?
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3. In Example 2.2.4, plot the cdf of X . Also determine, with the help of the obtained differential,
the premium the insured is willing to pay for being insured against an inflated loss 1.1X . Do
the same by writing X = IB. Has the zero utility premium followed inflation exactly?

4. Calculate E[X ], Var[X ] and the moment generating function mX (t) in Example 2.2.5 with the
help of the differential. Also plot the ‘density’.

5. If X = IB, what is mX (t)?

6. Consider the following cdf F : F(x) =

⎧⎨⎩ 0 for x < 2,
x
4 for 2 ≤ x < 4,
1 for 4 ≤ x.

Determine independent random variables I, X and Y such that Z = IX +(1− I)Y has cdf F ,
I ∼ Bernoulli, X is a discrete and Y a continuous random variable.

7. The differential of cdf F is dF(x) =

⎧⎨⎩
dx/3 for 0 < x < 1 and 2 < x < 3,
1
6 for x ∈ {1,2},
0 elsewhere.

Find a discrete cdf G, a continuous cdf H and a real constant c with the property that F(x) =
cG(x)+(1− c)H(x) for all x.

8.
independent. Compare E[T k] with E[Zk], k = 1,2.

9. In the previous exercise, assume additionally that X and Y are independent N(0,1). What
distributions do T and Z have?

10. [♠] In Example 2.2.6, show that E[W ] = 1
2 and Var[W ] = 1

8 .
Also show that mW (t) = et/2 ∏∞

i=1 cosh(t/3i). Recall that cosh(t) = (et + e−t)/2.

Section 2.3

1. Calculate Pr[S = s] for s = 0,1, . . . ,6 when S = X1 +2X2 +3X3 and Xj ∼ Poisson( j).

2. Determine the number of multiplications of non-zero numbers that are needed for the calcula-
tion of all probabilities f1+2+3(x) in Example 2.3.2. How many multiplications are needed to
calculate F1+···+n(x), x = 0, . . . ,4n−4 if fk = f3 for k = 4, . . . ,n?

3.

4. [♠] Verify the expression (2.38) in Example 2.3.3 for n = 1,2,3 by using convolution. Deter-
S

5. Assume that X ∼ uniform(0,3) and Y ∼ uniform(−1,1). Calculate FX+Y (z) graphically by

Section 2.4

1. 1 +X2 where the Xk are independent and exponential(k) distributed.

density using the method of partial fractions.

2.

3. What is the fourth cumulant κ4 in terms of the central moments?

Determine the cdf of S = X
Do this both by convolution and by calculating the mgf and identifying the corresponding

mine F (x) for these values of n. Using induction, verify (2.38) for arbitrary n.

Same as Example 2.3.4, but now by making use of the mgfs.

using the area of the sets {(x,y) |x+ y ≤ z,x ∈ (0,3) and y ∈ (−1,1)}.

has a normal distribution.

Suppose that T = qX +(1−q)Y and Z = IX +(1− I)Y with I ∼ Bernoulli(q) and I, X and Y

Prove by convolution that the sum of two independent normal random variables, see Table A,
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4. Prove that cumulants actually cumulate in the following sense: if X and Y are independent,

5. Prove that the sum of twelve independent uniform(0,1) random variables has variance 1 and
expected value 6. Determine κ3 and κ4.
Plot the difference between the cdf of this random variable and the N(6,1) cdf, using the
expression for FS(x) found in Exercise 2.3.4.

6.

7. Determine the skewness of a gamma(α,β ) distribution.

8. If S is symmetric, then γS = 0. this, but also, for S = X1 + X2 + X3 with X1 ∼
Bernoulli(0.4), X2 ∼ Bernoulli(0.7) and X3 ∼ Bernoulli(p), all independent, calculate the value

S

9. Determine the skewness of a risk of the form Ib where I ∼ Bernoulli(q) and b is a fixed amount.

actually symmetric?

Table A.

and gamma.

1 2 i

i

for all x.

14. Examine the equality φX (t) = mX

For which values of p is Z symmetric?

16. For which values of δ is the skewness of X − δY equal to 0, if X ∼ gamma(2,1) and Y ∼
exponential(1)?

valued random variable be used to generate probabilities?

Section 2.5

1. What happens if we replace the argument 3.5 in Example 2.5.3 by 3−0, 3+0, 4−0 and 4+0?
Is a correction for continuity needed here?

2. Prove that both versions of the NP approximation are equivalent.

3. If Y ∼ gamma(α,β ) and γY = 2√
α ≤ 4, then

√
4βY −√

4α −1
≈∼ N(0,1). See ex. 2.5.14 for

a comparison of the first four moments. So approximating a translated gamma approximation
with parameters α , β and x0, we also have Pr[S ≤ s] ≈ Φ

(√
4β (s− x0)−

√
4α −1

)
.

Show Pr[S ≤ s] ≈ Φ
(√

8
γ

s−µ
σ + 16

γ2 −
√

16
γ2 −1

)
if α = 4

γ2 ,β = 2
γσ ,x0 = µ − 2σ

γ .

Inversely, show Pr
[
S ≤ x0 + 1

4β (y+
√

4α −1)2
]≈ 1− ε if Φ(y) = 1− ε ,

as well as Pr
[ S−µ

σ ≤ y+ γ
8 (y2 −1)+ y(

√
1− γ2/16−1)

]≈ Φ(y).

Show that the characteristic function is real-valued if X is symmetric around 0.

13. Show that X and Y are equal in distribution if they have the same support {0,δ ,2δ , . . . ,nδ}

Prove

Determine the skewness of a Poisson(µ) distribution.

10. Determine the pgf of the binomial, the Poisson and the negative binomial distribution, see

11. Determine the cgf and the cumulants of the following distributions: Poisson, binomial, normal

= 0, and verify that S is not symmetric.

then the kth cumulant of X +Y equals the sum of the kth cumulants of X and Y .

converge to the pgf of Y for each argument t when i→∞, verify that also Pr[X = x]→ Pr[Y = x]

For which values of q and b is the skewness equal to zero, and for which of these values is I

for some δ > 0 and moreover, they have the same mgf.

the same pgf. If X ,X , . . . are risks, again with range {0,1, . . . ,n}, such that the pgfs of X

15. Show that the skewness of Z = X + 2Y is 0 if X ∼ binomial(8, p) and Y ∼ Bernoulli(1− p).

(it) from (2.50), for the special case that X ∼ exponential(1).

17. Can the pgf of a random variable be used to generate moments? Can the mgf of an integer-

12. Show that X and Y are equal in distribution if they have the same support {0,1, . . . ,n} and

of p such that S has skewness γ
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4. Show that the translated gamma approximation as well as the NP approximation result in the
normal approximation (CLT) if µ and σ2 are fixed and γ ↓ 0.

5. Approximate the critical values of a χ2
18 distribution for ε = 0.05,0.1,0.5,0.9,0.95 with the

NP approximation and compare the results with the exact values.

6. In the previous exercise, what is the result if the translated gamma approximation is used?

7. Use the identity ‘having to wait longer than x for the nth event’ ≡ ‘at most n−1 events occur
in (0,x)’ in a Poisson process to prove that Pr[Z > x] = Pr[N < n] if Z ∼ gamma(n,1) and N ∼
Poisson(x). How can this fact be used to calculate the translated gamma approximation?

8. Compare the exact critical values of a χ2
18 distribution for ε = 0.05,0.1,0.5,0.9,0.95 with the

approximations obtained in exercise 2.5.3.

9. An insurer’s portfolio contains 2 000 one-year life insurance policies. Half of them are charac-
terized by a payment b1 = 1 and a probability of dying within 1 year of q1 = 1%. For the other
half, we have b2 = 2 and q2 = 5%. Use the CLT to determine the minimum safety loading, as a
percentage, to be added to the net premium to ensure that the probability that the total payment
exceeds the total premium income is at most 5%.

10. As the previous exercise, but now using the NP approximation. Employ the fact that the third

11. Show that the right hand side of (2.60) is well-defined for all x ≥−1. What are the minimum
and the maximum values? Is the function increasing? What happens if x = 1?

12. Suppose that X has expected value µ = 1000 and standard deviation σ = 2000. Determine
the skewness γ if (i) X is normal, (ii) X/φ ∼ Poisson(µ/φ ), (iii) X ∼ gamma(α,β ), (iv) X ∼
inverse Gaussian(α,β ) or (v) X ∼ lognormal(ν ,τ2). Show that the skewness is infinite if (vi)
X ∼ Pareto. See also Table A.

13. A portfolio consists of two types of contracts. For type k, k = 1,2, the claim probability is qk
and the number of policies is nk. If there is a claim, then its size is x with probability pk(x):

nk q pk(1) pk(2) pk(3)

Type 1 1000 0.01 0.5 0 0.5
Type 2 2000 0.02 0.5 0.5 0

Assume that the contracts are independent. Let Sk denote the total claim amount of the con-
tracts of type k and let S = S1 +S2. Calculate the expected value and the variance of a contract
of type k, k = 1,2. Then, calculate the expected value and the variance of S. Use the CLT to
determine the minimum capital that covers all claims with probability 95%.

14. [♠] Let U ∼ gamma(α,1), Y ∼ N(
√

4α −1,1) and T =
√

4U . Show that E[Ut ] = Γ (α +
t)/Γ (α), t > 0. Then show that E[Y j] ≈ E[T j], j = 1,3, by applying Γ (α + 1/2)/Γ (α) ≈√

α −1/4 and αΓ (α) = Γ (α +1). Also, show that E[Y 2] = E[T 2] and E[Y 4] = E[T 4]−2.

15. [♠] A justification for the ‘correction for continuity’, see Example 2.5.3, used to approximate

continuous cdf of some non-negative random variable, and construct cdf H by H(k + ε) =
G(k + 0.5),k = 0,1,2, . . . ,0 ≤ ε < 1. Using the midpoint rule with intervals of length 1 to
approximate the right hand side of (1.33) at d = 0, show that the means of G and H are about
equal. Conclude that if G is a continuous cdf that is a plausible candidate for approximating
the discrete cdf F and has the same mean as F , by taking F(x) := G(x + 0.5) one gets an
approximation with the proper mean value. [Taking F(x) = G(x) instead, one gets a mean that
is about µ + 0.5 instead of µ . Thus very roughly speaking, each tail probability of the sum
approximating (1.33) will be too big by a factor 1

2µ .]

16. To get a feel for the approximation error as opposed to the error caused by errors in the esti-
mates of µ , σ and γ needed for the NP approximation and the gamma approximation, recal-

k

cdfs of integer valued random variables by continuous ones, goes as follows. Let G be the

cumulant of the total payment equals the sum of the third cumulants of the risks.
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culate Example 2.5.5 if the following parameters are changed: (i) µ = 10100 (ii) σ = 1020
(iii) µ = 10100 and σ = 1020 (iv) γ = 1.03. Assume that the remaining parameters are as they
were in Example 2.5.5.

17. The function pNormalPower, when implemented carelessly, sometimes produces the value
NaN (not a number). Why and when could that happen? Build in a test to cope with this

ution using the calls pTransGam(0:10,1,1,1) and ppois(0:10,1).
To see the effect of applying a correction for continuity, compare also with the result of
pTransGam(0:10+0.5,1,1,1).

19. Repeat the previous exercise, but now for the Normal Power approximation.

quantile functions qTransGam and qNormalPower, and do some testing.

21. Prove (2.64) and (2.65).

Section 2.6

1. In the situation of Section 2.6, calculate the probability that B will be insufficient for retentions
d ∈ [2,3]. Give numerical results for d = 2 and d = 3 if B = 405.

2. Determine the retention d ∈ [2,3] that minimizes this probability for B = 405. Which retention
is optimal if B = 404?

3. Calculate the probability that B will be insufficient if d = 2 by using the NP approximation.

18. Compare the results of the translated gamma approximation with an exact Poisson(1) distrib-

situation more elegantly.

20. Note that we have prefixed the (approximate) cdfs with p, as is customary in R. Now write



Chapter 3
Collective risk models

Any sufficiently advanced technology is indistinguishable from
magic — A.C. Clarke’s third law of prediction, 1973

3.1 Introduction

In this chapter, we introduce collective risk models. Just as in Chapter 2, we calcu-
late the distribution of the total claim amount, but now we regard the portfolio as a
collective that produces a random number N of claims in a certain time period. We
write

S = X1 +X2 + · · ·+XN , (3.1)

where Xi is the ith claim. Obviously, the total claims S = 0 if N = 0. The terms
of S in (3.1) correspond to actual claims; in (2.26), there are many terms equal to
zero, corresponding to the policies that do not produce a claim. We assume that
the individual claims Xi are independent and identically distributed, and also that N
and all Xi are independent. In the special case that N is Poisson distributed, S has a
compound Poisson distribution. If N has a (negative) binomial distribution, then S
has a compound (negative) binomial distribution.

In collective models, some policy information is ignored. If a portfolio contains
only one policy that could generate a high claim amount, this amount will appear
at most once in the individual model (2.26). In the collective model (3.1), however,
it could occur several times. Moreover, in collective models we require the claim
number N and the claim amounts Xi to be independent. This makes it somewhat less
appropriate to model a car insurance portfolio, since for example bad weather con-
ditions will cause a lot of small claim amounts. In practice, however, the influence
of these phenomena appears to be small.

A collective risk model turns out to be both computationally efficient and rather
close to reality. We give some algorithms to calculate the distribution of (3.1). An
obvious but laborious method is convolution, conditioning on N = n for all n. We
also discuss the sparse vector algorithm. This can be used if N ∼ Poisson, and is
based on the fact that the frequencies of the claim amounts can be proved to be
independent Poisson random variables. For a larger class of distributions, we can
use Panjer’s recursion, which expresses the probability of S = s recursively in terms

41
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of the probabilities of S = k, k = 0,1, . . . ,s−1. Another approach is to use the Fast
Fourier Transform to invert the characteristic function.

We can express the moments of S in terms of those of N and Xi. With this in-
formation we can again approximate the distribution of S using the CLT if E[N]
is large, as well as by the translated gamma approximation and the normal power
approximation (NP) from the previous chapter.

Next, we look for appropriate distributions for N and Xi such that the collective
model fits closely to a given individual model. It will turn out that the Poisson distri-
bution and the negative binomial distribution are often appropriate choices for N. We
will show some relevant relations between these distributions. We will also discuss
some special properties of the compound Poisson distributions. Many parametric
distributions are suitable to model insurance losses. We study their properties, in-
cluding how to estimate the parameters by maximum likelihood and how to simulate
random drawings from them.

Stop-loss insurance policies are not only in use for reinsurance treaties, but also
for insuring absence due to illness, or if there is a deductible. We give a number
of techniques to calculate stop-loss premiums for discrete distributions, but also for
several continuous distributions. With the help of the approximations for distribution
functions introduced in Chapter 2, we can also approximate stop-loss premiums.

3.2 Compound distributions

Assume that S is a compound random variable such as in (3.1), with terms Xi dis-
tributed as X . Further use the following notation:

µk = E[Xk], P(x) = Pr[X ≤ x], F(s) = Pr[S ≤ s]. (3.2)

We can then calculate the expected value of S by using the conditional distribution of
S, given N. First, we use the condition N = n to substitute outcome n for the random
variable N on the left of the conditioning bar below. Next, we use the independence
of Xi and N to dispose of the condition N = n. This gives the following computation:

E[S] = E
[
E[S |N]

]
=

∞

∑
n=0

E[X1 + · · ·+XN |N = n]Pr[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn |N = n]Pr[N = n]

=
∞

∑
n=0

E[X1 + · · ·+Xn]Pr[N = n]

=
∞

∑
n=0

nµ1 Pr[N = n] = µ1E[N].

(3.3)
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Note that the expected claim total equals expected claim number times expected
claim size.

Var[S] = E
[
Var[S |N]

] [ ][ ]
+Var[Nµ1]

= E[N]Var[X ]+ µ2
1 Var[N].

(3.4)

mS(t) = E
[
E[etS |N]

]
=

∞

∑
n=0

E
[
et(X1+···+XN |N = n

]
Pr[N = n]

=
∞

∑
n=0

E
[
et(X1+···+Xn)

]
Pr[N = n]

=
∞

∑
n=0

{
mX

}n
Pr[N = n] = E

[
(elogmX (t))N]

= mN X (t)).

(3.5)

Let N ∼ geometric(p), 0 < p < 1, and X ∼ exponential(1). What is the cdf of S?

For qet < 1, which means t < − logq, we have

mN(t) =
∞

∑
n=0

ent n =
p

1−qe
. (3.6)

Since X ∼ exponential(1), so mX (t) = (1− t)−1, (3.5) yields

mS(t) = mN(logmX (t)) =
p

1−qmX (t)
= p+q

p
p− t

, (3.7)

conclude that the cdf of S is the same mixture:

F(x) = p+q(1− e−px) = 1−qe−px for x ≥ 0. (3.8)

This is a distribution with a jump of size p in 0, exponential otherwise. ∇

This example is unique in the sense that it presents the only non-trivial compound
distribution with a closed form for the cdf.

The variance can be determined with the variance decomposition rule (2.22):

+Var E[S |N]

)

Example 3.2.1 (A compound distribution with closed form cdf)

pq

(t)

The same technique as used in (3.3) yields for the mgf:

= E NVar[X ]

(logm

t

so the mgf of S is a mixture of the mgfs of the constant 0 and of the exponential(p)

Write q = 1− p. First, we compute the mgf of S, and then we try to identify it.

distribution. Because of the one-to-one correspondence of cdfs and mgfs, we may
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3.2.1 Convolution formula for a compound cdf

The conditional distribution of S, given N = n, allows us to calculate F :

F(x) = Pr[S ≤ x] =
∞

∑
n=0

Pr[X1 + · · ·+XN ≤ x |N = n]Pr[N = n], (3.9)

so

F(x) =
∞

∑
n=0

P∗n(x)Pr[N = n], f (x) =
∞

∑
n=0

p∗n(x)Pr[N = n]. (3.10)

These expressions are the convolution formulas for a compound cdf.

Example 3.2.2 (Application of the convolution formula)
Let Pr[N = j−1] = j/10 for j = 1,2,3,4, and let p(1) = 0.4, p(2) = 0.6. By using
(3.10), F(x) can be calculated as follows:

x p∗0(x) p∗1(x) p∗2(x) p∗3(x) f (x) F(x)

0 1 0.1000 0.1000
1 0.4 0.0800 0.1800
2 0.6 0.16 0.1680 0.3480
3 0.48 0.064 0.1696 0.5176
4 0.36 0.288 : :
5 0.432 : :
: : : :

� × + � × + � × + � × = ↑ ⇒ ↑
Pr[N = n] 0.1 0.2 0.3 0.4

The probabilities Pr[N = n] in the bottom row are multiplied by the numbers in a
higher row. Then, the sum of these results is put in the corresponding row in the
column f (x). For example: 0.2×0.6+0.3×0.16 = 0.168. ∇

Note that if we attempt convolution in case of arbitrary discrete claim sizes rather
than integer-valued ones such as here, the number of possible values and the re-
quired number of computations increase exponentially.

Example 3.2.3 (Compound distributions, exponential claim amounts)
From expression (3.10) for F(x), we see that it is convenient to choose the distrib-
ution of X in such a way that the n-fold convolution is easy to calculate. This is the
case for the normal and the gamma distribution: the sum of n independent N(µ ,σ2)
random variables is N(nµ ,nσ2), while the sum of n gamma(α,β ) random variables
is a gamma(nα,β ) random variable.

Suppose the claim amounts have an exponential(1) distribution, which is the
same as gamma(α,β ) with α = β = 1. In Poisson waiting time processes, see also
Exercise 2.5.7 and Chapter 4, the probability of waiting at least a time x for the
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n-th event, which is at the same time the probability that at most n−1 events have
occurred at time x, is a Poisson(x) probability. Hence we have

1−P∗n(x) =
∫ ∞

x
yn−1 e−y

(n−1)!
dy = e−x

n−1

∑
i=0

xi

i!
. (3.11)

This can also be proved with partial integration or by comparing the derivatives, see
Exercise 3.2.7. So, for x > 0,

1−F(x) =
∞

∑
n=1

Pr[N = n] e−x
n−1

∑
i=0

xi

i!
. (3.12)

We can stop the outer summation as soon as Pr[N ≥ n] is smaller than the required
precision; also, two successive inner sums differ by the final term only, which im-
plies that a single summation suffices. ∇

Computing the distribution of the total claims is much easier if the terms are integer-
valued, so we will often approximate X by rounding it to the nearest multiples of
some discretization width.

3.3 Distributions for the number of claims

In practice, we will not have a lot of relevant data at our disposal to choose a dis-
tribution for N. To describe ‘rare events’, the Poisson distribution, having only one
parameter to be estimated, is always the first choice. Also, its use can be justified
if the underlying process can be described as a Poisson process, see Chapter 4. It
is well-known that the expected value and the variance of a Poisson(λ ) distribution
are both equal to λ . If Var[N]/E[N] > 1, that is, there is overdispersion, one may
use the negative binomial distribution instead. We consider two models in which the
latter distribution is derived as a generalization of a Poisson distribution.

Example 3.3.1 (Poisson distribution, uncertainty about the parameter)
Assume that some car driver causes a Poisson(λ ) distributed number of accidents
in one year. The parameter λ is unknown and different for every driver. We assume
that λ is the outcome of a random variable Λ . Then the conditional distribution of
the number of accidents N in one year, given Λ = λ , is Poisson(λ ). What is the
marginal distribution of N?

Let U(λ ) = Pr[Λ ≤ λ ] denote the distribution function of Λ . Then we can write
the marginal probabilities of event N = n as

Pr[N = n] =
∫ ∞

0
Pr[N = n |Λ = λ ]dU(λ ) =

∫ ∞

0
e−λ λ n

n!
dU(λ ), (3.13)

while for the unconditional mean and variance of N we have
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E[N] = E
[
E[N |Λ ]

]
= E[Λ ];

Var[N] = E
[
Var[N |Λ ]

]
+Var

[
E[N |Λ ]

]
= E[Λ ]+Var[Λ ] ≥ E[N].

(3.14)

Now assume additionally that Λ ∼ gamma(α,β ), then, writing p = β/(β +1),

mN(t) = E
[
E[etN |Λ ]

]
= E

[
exp{Λ(et −1)}] = mΛ (et −1)

=

(
β

β − (et −1)

)α
=

(
p

1− (1− p)et

)α
,

(3.15)

Obviously, the value of Λ for a particular driver is a non-observable random vari-
able. It is the ‘long run claim frequency’, the value to which the observed average

very long time, during which his claims pattern does not change. The distribution of
∇

Example 3.3.2 (Compound negative binomial is also compound Poisson)
At some intersection there are N traffic accidents with casualties in a year. There
are Li casualties in the ith accident, so S = L1 +L2 + · · ·+LN

i

Pr[Li = k] =
ck

k h(c)
, k = 1,2, . . . (3.16)

1, so from the usual series expansion of log(1+x), this function is h(c) =− log(1−
c), hence the name logarithmic distribution. What is the distribution of S?

i

mL(t) =
∞

∑
k=1

etkck

k h(c)
=

h(cet)

h(c)
. (3.17)

mS(t) = mN(logmL(t)) = expλ (mL(t)−1)

=
(
exp{h(cet)−h(c)})λ/h(c)

=

(
1− c

1− cet

)λ/h(c)

,
(3.18)

tion with parameters λ/h(c) = −λ/ log(1− c) and 1− c.
On the one hand, the total payment Z for the casualties has a compound Poisson

distribution since it is the sum of a Poisson(λ ) number of payments per fatal accident
(cumulation). On the other hand, summing over the casualties leads to a compound
negative binomial distribution. It can be shown that if S2 is compound negative
binomial with parameters r and p = 1− q and claims distribution P2(·), then S2

number of accidents in a year would converge if the driver could be observed for a

distribution. It can be shown that the overdispersion Var[N]/E[N] is 1/p = 1+1/β .

is the total number of

Λ is called the structure distribution, see also Chapter 8.

which from Table A we recognize as the mgf of a negative binomial(α,β/(β +1))

casualties. Now assume N ∼ Poisson(λ ) and L ∼ logarithmic(c) with 0 < c < 1, so

Then, for the mgf of S, we get

The mgf of the terms L is given by

which, see again Table A, we recognize as the mgf of a negative binomial distribu-

The division by the function h(·) serves to make the sum of the probabilities equal to
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has the same distribution as S1, where S1 is compound Poisson distributed with
parameter λ and claims distribution P1(·) given by:

λ = rh(q) and P1(x) =
∞

∑
k=1

qk

kh(q)
P∗k

2 (x). (3.19)

In this way, any compound negative binomial distribution can be written as a com-
pound Poisson distribution. ∇

Remark 3.3.3 (Compound Poisson distributions in probability theory)
The compound Poisson distributions are also object of study in probability theory. If
we extend this class with its limits, to which the gamma and the normal distribution
belong, then we have just the class of infinitely divisible distributions. This class
consists of the random variables X with the property that for each n, a sequence of
iid random variables X1,X2, . . . ,Xn exists with X ∼ X1 +X2 + · · ·+Xn. ∇

3.4 Properties of compound Poisson distributions

In this section we prove some important theorems on compound Poisson distribu-
tions and use them to construct a better algorithm to calculate F(·) than given by
(3.10). First, we show that the class of compound Poisson distributions is closed
under convolution.

If S1,S2, . . . ,Sm

parameter λi i 1 + S2 + · · ·+ Sm

is compound Poisson distributed with specifications

λ =
m

∑
i=1

λi and P(x) =
m

∑
i=1

λi

λ
Pi(x). (3.20)

Proof. Let mi i

mS(t) =
m

∏
i=1

exp
{

λi
[
mi(t)−1

]}
= expλ

{
m

∑
i=1

λi

λ
mi(t)−1

}
. (3.21)

So S is a compound Poisson random variable with specifications (3.20). ∇

Consequently, the total result of m independent compound Poisson portfolios is
again compound Poisson distributed. The same holds if we observe the same port-
folio in m years, assuming that the annual results are independent.

A special case is when the Si have fixed claims xi, hence Si = xiNi with Ni ∼
Poisson(λi). Assume the xi to be all different. We get the random variable

S = x1N1 + x2N2 + · · ·+ xmNm, (3.22)

Theorem 3.4.1 (Sum of compound Poisson r.v.’s is compound Poisson)

and claims distribution P , i = 1,2, . . . ,m, then S = S

be the mgf of P . Then S has the following mgf:

are independent compound Poisson random variables with Poisson



48 3 Collective risk models

which by Theorem 3.4.1 is compound Poisson with specifications:

λ = λ1 + · · ·+λm and p(xi) =
λi

λ
, i = 1, . . . ,m. (3.23)

We can also prove the reverse statement, as follows:

Theorem 3.4.2 (Frequencies of claim sizes are independent Poisson)
Assume that S is compound Poisson distributed with parameter λ and with discrete
claims distribution

πi = p(xi) = Pr[X = xi], i = 1,2, . . . ,m. (3.24)

Suppose S is written as (3.22), where Ni denotes the frequency of the claim amount
xi, that is, the number of terms in S with value xi. Then N1, . . . ,Nm are independent
Poisson(λπi) random variables, i = 1, . . . ,m.

Proof. Let N = N1 + · · ·+ Nm and n = n1 + · · ·+ nm. Conditionally on N = n, we
have N1, . . . ,Nm ∼ Multinomial(n,π1, . . . ,πm). Hence,

Pr[N1 = n1, . . . ,Nm = nm]

= Pr[N1 = n1, . . . ,Nm = nm |N = n]Pr[N = n]

=
n!

n1!n2! . . .nm!
πn1

1 πn2
2 . . .πnm

m e−λ λ n

n!

=
m

∏
i=1

e−λπi
(λπi)

ni

ni!
.

(3.25)

By summing over all ni, i 	= k, we see that Nk is marginally Poisson(λπk) distributed.
The Ni are independent since Pr[N1 = n1, . . . ,Nm = nm] is the product of the marginal
probabilities of Ni = ni. ∇

Example 3.4.3 (Application: sparse vector algorithm)
If the claims X are integer-valued and non-negative, we can calculate the compound
Poisson cdf F in an efficient way. We explain this by an example. Let λ = 4 and
Pr[X = 1,2,3] = 1

4 , 1
2 , 1

4 . Then, gathering together terms as we did in (3.22), we can
write S as S = 1N1 + 2N2 + 3N3 and calculate the distribution of S by convolution.
We can compute f (x) = Pr[S = x] as follows:

x Pr[N1 = x] ∗ Pr[2N2 = x] = Pr[N1 +2N2 = x] ∗ Pr[3N3 = x] = Pr[S = x]
(e−1×) (e−2×) (e−3×) (e−1×) (e−4×)

0 1 1 1 1 1
1 1 − 1 − 1
2 1/2 2 5/2 − 5/2
3 1/6 − 13/6 1 19/6
4 1/24 2 : − :
: : : : : :

↑ ↑ ↑
1/x! 2x/2/(x/2)! 1/(x/3)!
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The density of the total amount of the claims of size 1,2, . . . , j−1 is convoluted with
the one of jNj. In the column with probabilities of jNj, only the rows 0, j,2 j, . . .
are filled, which is why this algorithm is called a ‘sparse vector’ algorithm. These
probabilities are Poisson(λπ j) probabilities.

Implementing the Sparse vector algorithm in R is easy, since convolution of two
vectors can be handled by the convolve function. It employs a technique called
the Fast Fourier Transform (FFT), the workings of which are explained in Section
3.6. An R-implementation of the sparse vector algorithm is as follows:

SparseVec <- function (freq)
{if (any(freq<0)) stop("negative frequency")
M <- length(freq)
mu <- sum((1:M)*freq); sigma2 <- sum((1:M)ˆ2*freq)
##mean and variance of the compound r.v.; see (3.4)
MM <- ceiling(mu + 10 * sqrt(sigma2)) + 6
fs <- dpois(0:(MM-1), freq[1]) ##density of S_1 = 1*N_1
for (j in 2:M)
{MMM <- trunc((MM-1)/j)
fj <- rep(0, MM) ##construct the density of j*N_j
fj[(0:MMM)*j+1] <- dpois(0:MMM, freq[j])
fs <- convolve(fs, rev(fj), type="o") }
##fs is the density of S_j = 1*N_1 + ... + j*N_j, j=2..M
return(fs) }
f <- SparseVec(c(1,2,1)); f[1:7] * exp(4)

The last line reproduces the first seven numbers in the last column of the table
in Example 3.4.3. The argument freq contains the expected frequencies λ p j of
each claim amount j = 1,2, . . . , which should of course be non-negative. The vector
length MM is taken to be the mean plus 10 standard deviations plus 7, ensuring that
sum(fs[1:MM]) will always be virtually equal to 1. The vector fs is initialized
to the density of 1N1, and convoluted with the one of jNj in step j, j = 2, . . . ,m.
Note that it is required that the second vector given as an argument to convolve
is reversed and that the type given is "o", short for "open". The function result
returned is the probability distribution of the compound random variable.

The algorithm given is fast since it uses the efficient FFT technique to do the
convolutions. It is, however, not a proper sparse vector algorithm, since the fact
that the vector fj has zeros at places that are non-multiples of j is never used.
It can be shown that for large m and n, to compute probabilities of 0, . . . ,n with a
maximal claim amount m by convolve takes O(mn logn) operations, while the
sparse vector algorithm needs O(n2 logm) (see Exercise 3.5.7). ∇

3.5 Panjer’s recursion

In 1981, Panjer described a method to calculate the probabilities f (x) recursively.
In fact, the method can be traced back to as early as Euler. As a result of Panjer’s
publication, a lot of other articles have appeared in the actuarial literature covering
similar recursion relations. The recursion relation described by Panjer is as follows:
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Theorem 3.5.1 (Panjer’s recursion)
Consider a compound distribution with integer-valued non-negative claims with pdf
p(x), x = 0,1,2, . . ., for which, for some real a and b, the probability qn of having n
claims satisfies the following recursion relation

qn =
(

a+
b
n

)
qn−1, n = 1,2, . . . (3.26)

Then the following relations for the probability of a total claim equal to s hold:

f (0) =

{
Pr[N = 0] if p(0) = 0;

mN
(

log p(0)
)

if p(0) > 0;

f (s) =
1

1−ap(0)

s

∑
h=1

(
a+

bh
s

)
p(h) f (s−h), s = 1,2, . . .

(3.27)

Proof. From Pr[S = 0] = ∑∞
n=0 Pr[N = n]pn(0) we get the starting value f (0). Write

Tk = X1 + · · ·+Xk. First, note that because of symmetry:

E
[
a+

bX1

s

∣∣∣Tk = s
]

= a+
b
k
. (3.28)

This expectation can also be determined in the following way:

E
[
a+

bX1

s

∣∣∣Tk = s
]

=
s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h |Tk = s]

=
s

∑
h=0

(
a+

bh
s

)Pr[X1 = h]Pr[Tk −X1 = s−h]

Pr[Tk = s]
.

(3.29)

Because of (3.26) and the previous two equalities, we have, for s = 1,2, . . .,

f (s) =
∞

∑
k=1

qk Pr[Tk = s] =
∞

∑
k=1

qk−1

(
a+

b
k

)
Pr[Tk = s]

=
∞

∑
k=1

qk−1

s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h]Pr[Tk −X1 = s−h]

=
s

∑
h=0

(
a+

bh
s

)
Pr[X1 = h]

∞

∑
k=1

qk−1 Pr[Tk −X1 = s−h]

=
s

∑
h=0

(
a+

bh
s

)
p(h) f (s−h)

= ap(0) f (s)+
s

∑
h=1

(
a+

bh
s

)
p(h) f (s−h),

(3.30)

from which the second relation of (3.27) follows immediately. ∇
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Example 3.5.2 (Distributions suitable for Panjer’s recursion)
Only the following distributions satisfy relation (3.26):

1. Poisson(λ ) with a = 0 and b = λ ≥ 0; in this case, (3.27) simplifies to:

f (0) = e−λ (1−p(0));

f (s) =
1
s

s

∑
h=1

λhp(h) f (s−h);
(3.31)

2. Negative binomial(r, p) with p = 1−a and r = 1+ b
a ; so 0 < a < 1 and a+b > 0;

3. Binomial(k, p) with p = a
a−1 and k = − b+a

a ; so a < 0, b = −a(k +1).

If a + b = 0, then q0 = 1 and q j = 0 for j = 1,2, . . ., so we get a Poisson(0) distri-
bution. For other values of a and b than the ones used above, qn =

(
a+ b

n

)
qn−1 for

all n = 1,2, . . . cannot hold for a probability distribution:

• q0 ≤ 0 is not feasible, so assume q0 > 0;
• a+b < 0 results in q1 < 0;
• a < 0 and b 	= a(n+1) for all n also results in negative probabilities;
• if a ≥ 1 and a + b > 0, then nqn =

(
(n− 1)a + a + b

)
qn−1 > (n− 1)qn−1 from

(3.26), so qn > q1/n, n = 1,2, . . . and consequently ∑n qn = ∞.

By allowing (3.26) to hold only for n≥ 2, hence admitting an arbitrary probability of
no claims, we can find similar recursions for a larger group of counting distributions,
which includes the logarithmic distributions. See Exercise 3.5.14 and 3.5.15. ∇

Example 3.5.3 (Example 3.4.3 solved by Panjer’s recursion)
As in Example 3.4.3, consider a compound Poisson distribution with λ = 4 and
Pr[X = 1,2,3] = 1

4 , 1
2 , 1

4 . Then (3.31) simplifies to

f (s) =
1
s

[
f (s−1)+4 f (s−2)+3 f (s−3)

]
, s = 1,2, . . . , (3.32)

and the starting value is f (0) = e−4 ≈ 0.0183. We have

f (1) = f (0) = e−4,

f (2) = 1
2

[
f (1)+4 f (0)

]
= 5

2 e−4,

f (3) = 1
3

[
f (2)+4 f (1)+3 f (0)

]
= 19

6 e−4,

(3.33)

and so on. ∇

Example 3.5.4 (Panjer’s recursion and stop-loss premiums)
For an integer-valued S, we can write the stop-loss premium in an integer retention
d as follows, see Section 1.4:

E[(S−d)+] =
∞

∑
x=d

(x−d) f (x) =
∞

∑
x=d

[1−F(x)]. (3.34)
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The stop-loss premium is piecewise linear in the retention on the intervals where the
cdf remains constant, since for the right hand derivative we have by (1.38):

d
dt

E[(S− t)+] = F(t)−1. (3.35)

So the stop-loss premiums for non-integer d follow by linear interpolation.
With Panjer’s recursion the stop-loss premiums can be calculated recursively,

too, since from the last relation in (3.34), we have for integer d

π(d) := E[(S−d)+] = π(d −1)− [1−F(d −1)]. (3.36)

As an example, take S∼ compound Poisson(1) with p(1) = p(2) = 1
2 . Then, Panjer’s

recursion relation (3.31) simplifies to

f (x) =
1
x

[
1
2 f (x−1)+ f (x−2)

]
, x = 1,2, . . . (3.37)

with starting values

f (0) = e−1 ≈ 0.368, F(0) = f (0), π(0) = E[S] = λ µ1 =
3
2
. (3.38)

This leads to the following calculations:

x f (x) = (3.37) F(x) = F(x−1)+ f (x) π(x) = π(x−1)−1+F(x−1)

0 0.368 0.368 1.500
1 0.184 0.552 0.868
2 0.230 0.782 0.420
3 0.100 0.881 0.201
4 0.070 0.951 0.083
5 0.027 0.978 0.034

The advantage of computing the cdf and the stop-loss premiums simultaneously
with the recursion is that there is no need to store the whole array of n values of

n. When in R the
of the cdf. For how to compute the successive stop-loss premiums, see Exercise
3.5.15. ∇

Panjer’s recursion can also be derived from the probability generating functions. For
the compound Poisson distribution, this goes as follows. First write

dgS(t)
dt

=
d
dt

∞

∑
s=0

ts Pr[S = s] =
∞

∑
s=1

sts−1 Pr[S = s]. (3.39)

Just as in (3.5), we have

f (x) values are stored in f, cumsum(f) produces the values
f (x), which might make a difference if the maximum claim m is much smaller than

Remark 3.5.5 (Proof of Panjer’s recursion through pgfs)
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gS(t) = gN(gX (t)) = expλ (gX (t)−1), (3.40)

so the derivative also equals g′S(t) = λgS(t)g′X (t). For other distributions, similar
expressions can be derived from (3.26). Now for gS(·) and g′X (·), substitute their
series expansions:

λgS(t)g
′
X (t) = λ

(
∞

∑
s=0

ts Pr[S = s]

)(
∞

∑
x=1

xtx−1 Pr[X = x]

)

=
∞

∑
x=1

∞

∑
s=0

λxts+x−1 Pr[S = s]Pr[X = x]

=
∞

∑
x=1

∞

∑
v=x

λxtv−1 Pr[S = v− x]Pr[X = x]

=
∞

∑
v=1

v

∑
x=1

λxtv−1 Pr[S = v− x]Pr[X = x].

(3.41)

Comparing the coefficients of ts−1 in (3.39) and (3.41) yields

sPr[S = s] =
s

∑
x=1

λxPr[S = s− x]Pr[X = x]. (3.42)

Dividing by s, one sees that this relation is equivalent with Panjer’s recursion rela-
tion for the Poisson case (3.31). ∇

Remark 3.5.6 (Convolution using Panjer’s recursion)
How can we calculate the n-fold convolution of a distribution on 0,1,2, . . . with
Panjer’s recursion?

Assume that p(0) > 0. If we replace Xi by IiYi where Pr[Ii = 1] = Pr[Xi > 0] =: p
and Yi ∼ Xi |Xi > 0, then ∑i Xi has the same distribution as ∑i IiYi, which gives us a
compound binomial distribution with p < 1 as required in Example 3.5.2. Another
method is to take limits for p ↑ 1 in (3.27) for those values of a and b that produce a
binomial(n, p) distribution. ∇

Remark 3.5.7 (Implementing Panjer’s recursion)
To compute the sum in the Panjer recursion (3.31), we might use R’s loop mech-
anisms, but because R is an interpreted language it is worthwhile to ‘vectorize’
the computations, replacing the innermost loop by a call of sum. For this, note
that to compute f (s), the terms to be added in (3.31) are λ/s times the prod-
ucts of successive elements of the three vectors (1, . . . ,m), (p(1), . . . , p(m)) and
( f (s− 1), . . . , f (s−m)). Here m = min{s,r} with r the maximal index for which
pr > 0. The second vector is the head of the p-vector, the third is the reverse of
the tail part of the f -vector. An R program to implement Panjer’s recursion and to
reproduce the results of Example 3.5.3 is as follows:

Panjer.Poisson <- function (p, lambda)
{ if (sum(p)>1||any(p<0)) stop("p parameter not a density")
if (lambda * sum(p) > 727) stop("Underflow")
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cumul <- f <- exp(-lambda * sum(p))
r <- length(p)
s <- 0
repeat
{ s <- s+1
m <- min(s, r)
last <- lambda / s * sum(1:m * head(p,m) * rev(tail(f,m)))
f <- c(f,last)
cumul <- cumul + last
if (cumul > 0.99999999) break }
return(f) }

Panjer.Poisson(c(0.25,0.5,0.25), 4) * exp(4)

The parameter p must contain the values of p(1), p(2), . . . , and it is checked if this,
combined with p(0) = 1−∑h p(h), is indeed a density.

The parameter lambda representing λ should not be too big; in a standard Win-
dows system problems arise if λ (1− p(0)) > 727 holds, because in that case f (0) is
too small. R uses double precision (64-bit reals), but in programming environments
employing extended precision (80-bit reals), one can easily cope with portfolios hav-
ing λ ≈ 11340, starting from Pr[S = 0]≈ 10−5000. In some older languages, a 48-bit
real data type was used, leading to underflow already for λ (1− p(0)) ≥ 88. So for
a portfolio of n life insurance policies with probabilities of claim equal to 0.5%, the
calculation of Pr[S = 0] already experienced underflow for n = 17600. This under-
flow problem cannot be easily resolved in R itself, but it is possible to call compiled
external code, using extended precision calculations, from R. This also reduces the
running time, and in case of compound binomial probabilities, it might help remedy
the numerical instability sometimes encountered.

The result of calling pp <- Panjer.Poisson(...) is a vector pp of prob-
abilities f (0), f (1), . . . , f (n) with the upper bound n such that f (0)+ f (1)+ · · ·+
f (n) > 1− 10−8. Recall that in R, all arrays start with index 1, so pp[1] stores
f (0), and so on. ∇

3.6 Compound distributions and the Fast Fourier Transform

Another method to compute the probabilities of a compound distribution is based on
inversion of the characteristic function. Let X1,X2, · · · ∼ X be random variables with
values in {0,1,2, . . .}, independent of each other as well as of the claim number N.
Let S = X1 + · · ·+XN , and denote the probabilities by

ph = Pr[X = h]; qn = Pr[N = n]; fs = Pr[S = s]. (3.43)

Now let m be a number sufficiently large to let Pr[S ≤ m] ≈ 1. For the Poisson
and (negative) binomial case, Panjer’s recursion requires O(m2) steps to compute
f0, . . . , fm, or O(m) if X is bounded. In this section we will introduce the Fast Fourier
Transform method and show that it requires O(m logm) steps, for all compound
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distributions with a easily computable expression for the generating function of the
number of claims.

The characteristic function of the compound random variable S is φS(t)
def
= E[eitS].

Along the lines of (3.5) it can be proved that φS(t) = gN(φX N

The probabilities fs can be found back from the characteristic function as follows:

fs =
1

2π

∫ 2π

0
e−itsφS(t)dt. (3.44)

To prove this inversion formula is easy:

1
2π

∫ 2π

0
e−itsφS(t)dt =

1
2π

∫ 2π

0

{
fs + ∑

k 	=s

fke−it(k−s)
}

dt = fs +0, (3.45)

since for all k 	= s, as is readily verified by substituting u = t(k− s),∫ 2π

0
e−it(k−s)dt =

∫ 2π

0

{
cos(−t(k− s))+ i sin(−t(k− s))

}
dt = 0. (3.46)

Applying the trapezoidal rule to (3.44) with intervals of length 2π/n, we see that an
approximation for fs is given by

fs ≈ rs :=
1
n

n−1

∑
h=0

e−i2πsh/nφS(2πh/n). (3.47)

Note that (3.47) applies only if s = 0,1, . . . ,n−1; for example for s = n,2n, . . . we
get the same approximation as for s = 0.

Now introduce the discrete Fourier Transform of a vector �f = ( f0, . . . , fn−1) as
the vector�y = T−�f , with the matrix T− defined as follows:

T−
jk = e−i2π jk/n, j,k = 0,1, . . . ,n−1. (3.48)

This means that every element t occurring in T− is a unit root, with tn = 1. Also
define T+ in the same way, but with a plus sign in the exponent. Then approximation
(3.47) can be written as

�f ≈ 1
n

T−gN
(
T+�p

)
. (3.49)

All this would not be very useful but for two things. First, it is possible to compute
approximation (3.49) very fast by an algorithm called the Fast Fourier Transform.
It takes time O(n logn) and memory O(n) only. If implemented naively, it would
require O(n3) operations and O(n2) memory. Second, using another interpretation
for the right hand side of (3.47), we will show how to make the error of the approx-
imation negligible by taking n large enough.

The matrices T+ and T− are in fact each other’s inverse in the sense that 1
n T− =

(T+)−1, because for fixed j,k, writing ω = ei2π( j−k)/n, we get

the pgf of N.(t)), with g
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(T+T−) jk =
n−1

∑
h=0

e+i2π jh/ne−i2πhk/n =
n−1

∑
h=0

ωh =

⎧⎨⎩n if j = k

1−ωn

1−ω = 0 if j 	= k.
(3.50)

If z = x+ iy = reiφ , then z = x− iy = re−iφ is its complex conjugate. So

(T+�g) j =
n−1

∑
h=0

e+i2π jh/ngh =
n−1

∑
h=0

e−i2π jh/n gh = (T−�g) j. (3.51)

Therefore the inverse operation of an FFT can be handled by the same algorithm,
apart from taking complex conjugates and a division by the length of the vector.

To show that a Fast Fourier Transform algorithm can be constructed taking only
time O(n logn), we use a ‘divide and conquer’ approach. Assume n even, then for
m = 0,1, . . . ,n−1, substituting k = 2h+ j:

ym =
n−1

∑
h=0

ei2πmk/ngk =
1

∑
j=0

n/2−1

∑
h=0

ei2πm2h/ng2h+ j︸ ︷︷ ︸ (3.52)

For j = 0, the underbraced sum involves an FFT of length n
2 on (g0,g2, . . . ,gn−2), for

j = 1, on (g1,g3, . . . ,gn−1). Therefore, using an induction assumption, to compute
the FFT of length n takes time 2×α 1

2 n log 1
2 n + βn for some α and β , since two

FFT’s of length n/2 must be computed, plus a summation over j for each n. This
adds up to αn logn+n(β −α log2), which is less than αn logn in total provided α >
β/ log2 is taken. Iterating this proves that FFT can be done using only O(n logn)
operations.

If Re(g j) = Pr[Z = j], Im(g j) = 0, and Pr[Z ∈ {0,1, . . . ,n−1}] = 1 for a random
variable Z, then for the characteristic function φZ(t) = E[eitZ ] we have

φZ(2π j/n) =
n−1

∑
k=0

ei2π jk/ngk = (T+�g) j, j = 0,1, . . . ,n−1. (3.53)

Since Z is integer-valued, φZ(t + 2π) = E[eitZei2πZ ] = φZ(t) for all real t, so φZ is
periodical with period 2π .

By the above, for a random variable Z with support {0,1, . . . ,n−1} we have

y j = φZ(2π j/n) =⇒ T+�g =�y =⇒ �g =
1
n

T−�y. (3.54)

To apply this to S = X1 + · · ·+ XN , write Z ≡ S mod n: the remainder when S is di-
vided by n. Then Z has support {0,1, . . . ,n−1}, and Pr[Z ∈ {S,S±n,S±2n, . . .}] =
1. Therefore their discrete Fourier transforms coincide:

φS(2π j/n) = φZ(2π j/n) for all integer j. (3.55)
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For large n, Pr[Z = k] ≈ Pr[S = k]. To compute the characteristic function of S from
transforms of N and X , use the relation φS(t) = gN(φX (t)), see also (3.5).

We summarize the discussion above in the following theorem.

If S has a compound distribution with specifications (3.43), we can approximate the
probabilities fs of S = s, s = 0, . . . ,n−1 by the exact probabilities rs of Z = s, where
Z ≡ S mod n. These probabilities can be computed, in time O(n logn), as:

�f ≈�r :=
1
n

T−gN(T+�q). (3.56)

The error rs − fs = Pr[S ∈ {s+n,s+2n, . . .}], s = 0, . . . ,n−1. ∇

Example 3.6.2 (Example 3.5.4 using FFT)
R has a built-in function fft to do the calculations. Using it, the probabilities of
a compound Poisson(λ = 1) random variable with claims distribution Pr[X = 1] =
Pr[X = 2] = 1

2 (see Example 3.5.4) can be reproduced as follows:

n <- 64; p <- rep(0, n); p[2:3] <- 0.5; lab <- 1
f <- Re(fft(exp(lab*(fft(p)-1)), inverse=TRUE))/n

Note that the R-function does not automatically do the division by n. Also note that
we need to pad the p vector with enough zeros to let the resulting total probability
of S ∈ {0,1, . . . ,n−1} be near enough to one. For the Fast Fourier Transform to live
up to its name, the number of elements in the vector should preferably be a power
of two, but in any case have a lot of factors. ∇

In case N ∼ binomial or negative binomial, all one has to do is plug in the appropri-
ate generating function. Also, for example a logarithmic number of claims can be
handled easily. Moreover, the FFT-technique can be adapted to deal with negative
claim amounts.

When the number n of conceivable total claim sizes is large, Panjer’s recursion
requires time O(n2) if the individual claim sizes are unbounded. In that case, FFT
provides an easy to use and fast alternative, not quite exact but with a controllable
error, and taking only O(n logn) time. For Panjer’s recursion, one would typically
have to compute the probabilities up to either the retention d, or to a certain quantile
like the 75% quantile, but with FFT, it is mandatory to take n large enough to let
Pr[S > n] be negligible. This does not make a lot of difference, asymptotically.

Note that for FFT, no for-loops were needed such as with Panjer’s recursion.
Therefore using FFT in many cases will be a lot faster than a recursive method.

3.7 Approximations for compound distributions

In the previous chapter, approximations were given that were refinements of the
CLT, in which the distribution of a sum of a large number of random variables is

Theorem 3.6.1 (Computing compound cdfs by FFT)
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approximated by a normal distribution. These approximations can also be used if the
number of terms in a sum is a random variable with large values. For example, for
the compound Poisson distribution with large λ we have the following counterpart
of the CLT; similar results can be derived for other compound distributions.

Theorem 3.7.1 (CLT for compound Poisson distributions)
Let S be compound Poisson distributed with parameter λ and general claims cdf
P(·) with finite variance. Then, with µ = E[S] and σ2 = Var[S],

lim
λ→∞

Pr

[
S−µ

σ
≤ x

]
= Φ(x). (3.57)

Proof. If N1,N2, . . . is a series of independent Poisson(1) random variables and if
Xi j, i = 1,2, . . ., j = 1,2, . . . are independent random variables with cdf P(·), then
for integer-valued λ , we have

S ∼
λ

∑
j=1

Nj

∑
i=1

Xi j, since
λ

∑
j=1

Nj ∼ N. (3.58)

As S in (3.58) is the sum of λ independent and identically distributed random vari-
ables, the CLT can be applied directly. Note that taking λ to be an integer presents
no loss of generality, since the influence of the fractional part vanishes for large λ .

In this proof, we have reduced the situation to the Central Limit theorem. A proof
along the lines of the one of Theorem 2.5.1 is asked in Exercise 3.7.3. ∇

To use the CLT, translated gamma approximation and normal power approximation
(NP) one needs the cumulants of S. Again, let µk denote the kth moment of the
claims distribution. Then, for the compound Poisson distribution, we have

κS(t) = λ (mX (t)−1) = λ
∞

∑
k=1

µk
tk

k!
. (3.59)

From (2.46) we know that the coefficients of tk

k! are the cumulants. Hence mean,
variance and third central moment of a compound Poisson(λ ,x) random variable
with raw moments µ j = E[X j] are given by

E[S] = λ µ1, Var[S] = λ µ2 and E[(S−E[S])3] = λ µ3. (3.60)

The skewness is proportional to λ−1/2:

γS =
µ3

µ3/2
2

√
λ

. (3.61)

Remark 3.7.2 (Asymptotics and underflow)
There are certain situations in which one would have to resort to approximations.
First of all, if the calculation time is uncomfortably long: for the calculation of f (s)
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in (3.31) for large s, we need a lot of multiplications, see Exercise 3.5.4. Second,
the recursion might not ‘get off the ground’; see Remark 3.5.7.

Fortunately, the approximations improve with increasing λ ; they are asymptot-
ically exact, since in the limit they coincide with the usual normal approximation
based on the CLT. ∇

3.8 Individual and collective risk model

In the preceding sections we have shown that replacing the individual model by the
collective risk model has distinct computational advantages. In this section we focus
on the question which collective model should be chosen. We consider a situation
from life insurance, but the same situation occurs in non-life insurance, for example
when fines are imposed (malus) if an employee gets disabled.

Consider n one-year life insurance policies. At death, which happens with prob-
ability qi, the claim amount on policy i is bi, assumed positive, otherwise it is 0. We
want to approximate the total amount of the claims on all policies using a collective
model. For that purpose, we replace the Ii payments of size bi for policy i, where
Ii ∼ Bernoulli(qi), by a Poisson(λi) distributed number of payments bi. Instead of
the cdf of the total payment in the individual model

S̃ =
n

∑
i=1

Iibi, with Pr[Ii = 1] = qi = 1−Pr[Ii = 0], (3.62)

we consider the cdf of the following approximating random variable:

S =
n

∑
i=1

Yi, with Yi = Nibi =
Ni

∑
j=1

bi and Ni ∼ Poisson(λi). (3.63)

If we choose λi = qi, the expected number of payments for policy i is equal in both
models. To stay on the safe side, we could also choose λi =− log(1−qi) > qi. With
this choice, the probability of 0 claims on policy i is equal in both the collective and
the individual model. This way, we incorporate implicit margins by using a larger
total claim size than the original one. See also Section 7.4.1 and Remark 3.8.2.

Although (3.63) still has the form of an individual model, S is a compound Pois-
son distributed random variable because of Theorem 3.4.1, so it is indeed a collec-
tive model as in (3.1). The specifications are:

λ =
n

∑
i=1

λi and P(x) =
n

∑
i=1

λi

λ
I[bi,∞)(x), (3.64)

with the indicator function IA(x) = 1 if x ∈ A and 0 otherwise. From this it is clear
that the expected numbers of payments are equal if λi = qi is taken:
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λ =
n

∑
i=1

λi =
n

∑
i=1

qi. (3.65)

Also, by (3.62) and (3.63), the expectations of S̃ and S are then equal:

E[S̃] =
n

∑
i=1

qibi = E[S]. (3.66)

For the variances of S and S̃ we have

Var[S] =
n

∑
i=1

qib
2
i ; Var[S̃] =

n

∑
i=1

qi(1−qi)b
2
i = Var[S]−

n

∑
i=1

(qibi)
2. (3.67)

We see that S has a larger variance. If λi = qi then using a collective model results in
risk averse decision makers tending to take more conservative decisions, see further
Chapter 7. Also notice that the smaller ∑n

i=1(qibi)
2 is, the less the collective model

will differ from the individual model.

Remark 3.8.1 (The collective model)
By the collective model for a portfolio, we mean a compound Poisson distribution
as in (3.64) with λi = qi. We also call it the canonical collective approximation.

In Exercise 3.8.3 we show that in the situation (3.62), the collective model can be
obtained as well by replacing each claim Xi by a Poisson(1) number of independent
claims with the same distribution as Xi. We can also do this if the random variables Xi

are more general than those in (3.62). For example, assume that contract i produces
claims b0 = 0,b1,b2, . . . ,bn with probabilities p0, p1, . . . , pn. Since Xi equals exactly
one of these values, we can write

Xi ≡ I0b0 + I1b1 + · · ·+ Inbn, (3.68)

with I j = 1 if Xi = b j, zero otherwise. So Pr[I j = 1] = p j for the marginal distrib-
utions of I j, and their joint distribution is such that I0 + I1 + · · ·+ In ≡ 1. One can
show that if we choose the canonical collective model, we actually replace Xi by the
compound Poisson distributed random variable Yi, with

Yi = N0b0 +N1b1 + · · ·+Nnbn, (3.69)

where the Nj are independent Poisson(p j) random variables. In this way, the ex-
pected frequencies of all claim sizes remain unchanged. ∇

Remark 3.8.2 (Model for an open portfolio)
The second proposed model with λi = − log(1−qi) can be used to model an open
portfolio, with entries and exits not on renewal times. Assume that in a certain policy
the waiting time W until death has an exponential(β ) distribution. For the probabil-
ity of no claims to be 1−q, we must have Pr[W > 1] = 1−q, so β = − log(1−q).
Now assume that, at the moment of death, each time we replace this policy by an
identical one. Thus, we have indeed an open model for our portfolio. The waiting
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times until death are always exponentially(β ) distributed. But from the theory of
Poisson processes, see also Exercise 2.5.7, we know that the number of deaths be-
fore time 1 is Poisson(β ) distributed. In this model, we in fact replace, for each
i, the ith policy by a Poisson(− log(1− qi)) distributed number of copies. Since
Ii ∼ min{Ni,1}, the open collective model we get this way is a safe approximation
to the individual model, as it allows for more claims per policy than one. See also
Section 7.4.1. ∇

Remark 3.8.3 (Negative risk amounts)
If we assume that the bi are positive integers, then we can quickly calculate the
probabilities for S, and consequently quickly approximate those for S̃, with Panjer’s
recursion. But if the bi can be negative as well as positive, we cannot use this recur-
sion. In that case, we can split up S in two parts S = S+ − S− where S+ is the sum
of the terms Yi in (3.63) with bi ≥ 0. By Theorem 3.4.2, S+ and S− are independent
compound Poisson random variables with non-negative terms. The cdf of S can then
be found by convolution of those of S+ and S−.

To find the stop-loss premium E[(S−d)+] for only one value of d, the convolu-
tion of S+ and S− is not needed. Conditioning on the total S− of the negative claims,
we can rewrite the stop-loss premium as follows:

E[(S−d)+] = ∑
x≥0

E[(S+ − (x+d))+]Pr[S− = x]. (3.70)

To calculate this we only need the stop-loss premiums of S+, which follow as a
by-product of Panjer’s recursion, see Example 3.5.4. Then the desired stop-loss pre-
mium can be calculated with a simple summation. For the convolution, a double
summation is necessary, or it could be handled through the use of convolve.

Note that the FFT-technique, see Example 3.6.2, is not restricted to non-negative
claim amounts. ∇

3.9 Loss distributions: properties, estimation, sampling

In a compound model for losses, we have to specify both the claim number distrib-
ution and the claim severity distribution. For the former we often take the Poisson
distribution, such as in the canonical or the open collective model, or when the as-
sumptions of a Poisson process apply, see Chapter 4. In case of overdispersion, due
to parameter uncertainty or cumulation of events, see Examples 3.3.1 and 3.3.2, we
might use the negative binomial distribution. For some purposes, for example to
compute premium reductions in case of a deductible, it is convenient to use a para-
metric distribution that fits the observed severity distribution well. Depending on the
type of insurance at hand, candidates may vary from light tailed (for example the
Gaussian distribution) to very heavy-tailed (Pareto). In this section we will present
some severity distributions, explain their properties and suggest when to use them.
We use maximum likelihood to estimate parameters. Often it is useful to generate
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pseudo-random samples from the loss distribution, for example if we want to com-
pute the financial consequences of applying some risk management instrument like
a complicated reinsurance scheme.

3.9.1 Techniques to generate pseudo-random samples

For many distributions, pseudo-random samples may be drawn by using standard
R functions. They often use the inversion method, also known as the probability
integral transform. It is based on the fact that if U ∼ uniform(0,1), then F−1(U)∼F
because Pr[F−1(U) ≤ x] = Pr[U ≤ F(x)] = F(x). For example the function rnorm
in its standard mode applies the inverse normal cdf qnorm to results of runif, see
also Appendix A.

The function runif to generate uniform pseudo-random numbers in R is state-
of-the-art. Its default method is Mersenne-Twister, described in R’s help-files as a
“twisted generalized feedback shift register algorithm with period 219937 − 1 and
equidistribution in 623 consecutive dimensions (over the whole period)”.

Another sampling method is the rejection method. Suppose that it is hard to sam-
ple from density f (·), but that an easier to handle distribution g(·) exists satisfying
f (x) ≤ kg(x) ∀x for some appropriate bound k ≥ 1. We get a random outcome from
f (·) by sampling a point uniformly from the area below the graph of f (x), and tak-
ing its x-coordinate; the probability of an outcome x or less is then just F(x). John
von Neumann’s (1951) idea was not to do this directly, but to sample a random point
below the graph of kg(x), drawing its x-coordinate using, in most cases, the inver-
sion method, and then its y-coordinate uniformly from (0,kg(x)). The x-coordinate
is accepted as an outcome from f (·) if this random point happens to be under f (x)
as well. If rg() produces a random drawing from g(x) and f (x)/g(x) ≤ k, an R-
program to draw x randomly from f (·) could be as follows:

repeat {x <- rg(); if (runif(1) < f(x)/k/g(x)) break}

The number of points rejected is a geometric(1/k) random variable, so the smaller
k, the faster the random number generation.

In many cases, we can construct drawings from given distributions by using the
fact that they are a simple transformation of other random variables for which a
standard R-function r... exists to produce pseudo-random values. See Exercise
3.9.24 for some applications of this, including sampling from (log)normal, Pareto,
Erlang, Weibull or Gompertz distributions.

In mixed models, one may first draw from the distribution of the conditioning
random variable (structure variable), and next from the conditional distribution of
the random variable of interest.

When the cdf F(x) = G(x)H(x) for simple G and H, or the survival function is
1−F(x) = (1−G(x))(1−H(x)), a random value from F is produced by taking
the maximum (minimum) of independent random variables distributed as G and
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H. See Exercise 3.9.17 where this device is employed to sample from a Makeham
distributed lifetime random variable.

3.9.2 Techniques to compute ML-estimates

We aim to obtain estimates for α,β , . . . by maximizing the (log-)likelihood

�(α,β , . . . ;�y) = log∏ fYi(yi; α,β , . . .). (3.71)

A a first step, we inspect the normal equations ∂�/∂α = 0, ∂�/∂β = 0, . . . to see if
they admit an explicit solution. This is the case for normal, lognormal, Poisson and
inverse Gaussian samples. For Pareto, the optimal solution is explicit but it is not
the solution to the normal equations. It may also happen that the normal equations
provide a partial solution, often in the sense that the optimal parameters must be
related in such a way that the fitted mean coincides with the sample mean. The
advantage of this is that it reduces the dimension of the maximization problem to be
solved; one of the parameters may be substituted away. This occurs with the negative
binomial and the gamma distributions. If only one normal equation remains to be
solved, this can be done using the R function uniroot, which is both reliable
and fast. Alternatively, the optimization can be done using optimize to search
an interval for a minimum or maximum of a real function. If needed, one can use
optim for optimization in more dimensions.

3.9.3 Poisson claim number distribution

Not just by the Poisson process often underlying rare events, see Chapter 4, but also
by the mere fact that it has only one parameter to estimate, the Poisson distribution
is an attractive candidate for the claim number of the compound total loss. For a
Poisson(λ ) sample Y1 = y1, . . . ,Yn = yn, the loglikelihood is

�(λ ; �y) = log∏ fYi(yi;λ ) = −nλ +∑yi logλ −∑ logni!, (3.72)

which gives λ̂ = Y as the maximum likelihood estimator of λ .
In insurance situations, often the numbers of claims pertain to policies that were

not in force during a full calendar year, but only a known fraction of it. We denote
this exposure for policy i by wi. In that case, it follows from the properties of a
Poisson process, see also Chapter 4, that the number of claims for policy i has a
Poisson(λwi) distribution. Therefore the loglikelihood is

�(λ ; �y,�w) = log∏ fYi(yi;λwi)

= −∑λwi +∑yi logλ +∑yi logwi −∑ logni!,
(3.73)
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so in this case λ̂ = ∑Yi/∑wi is the maximum likelihood estimator of λ , that is, the
number of claims divided by the total exposure.

If we consider Yi/wi, the number of claims per unit of exposure, one claim in a
contract that was insured for only nine months counts as 4

3 . Then λ̂ is the weighted
average of these quantities, with weights wi/∑wi. In practice, however, often simply
a straight average of the number of claims per unit of exposure is taken.

Random sampling from the Poisson distribution is achieved by calling rpois.
See Exercise 3.9.17 for a way to do this random sampling by the use of (3.11), which
relates numbers of events to exponential waiting times.

3.9.4 Negative binomial claim number distribution

We have seen in Section 3.3 that sometimes it is proper to use a claim number
distribution more spread than the Poisson, the variance of which equals the mean.
In fact, both parameter uncertainty and cumulation in a Poisson process may lead
to a negative binomial(r, p) claim number, see Examples 3.3.1 and 3.3.2, with
overdispersion factor Var[N]/E[N] = 1/p. On the basis of a sample of outcomes
Y1 = y1, . . . ,Yn = yn, we want to estimate the parameters r, p by maximum likeli-
hood. In Table A one sees that the corresponding density equals

fY (y; r, p) =

(
r + y−1

y

)
pr(1− p)y, y = 0,1, . . . (3.74)

For non-integer r, the binomial coefficient is defined using gamma-functions, with
x! = Γ (x+1) for all real x > 0.

Now, just as in Theorem 3.4.2, let Nj, j = 0,1, . . . , count the number of times a
sample element Yi in the sample equals the value j. Observe that ∑Nj ≡ n holds,
while ∑Yi ≡ ∑ jNj. In the loglikelihood of the total sample we find logarithms of
the factorials in the density (3.74), as well as of the factorials arising because the
places i in the sample where Yi = j occurs may be chosen arbitrarily, see (3.25). The
latter are constant with respect to r and p, so we ignore them, and get

�(r, p; �y) = log
∞

∏
j=0

{ fY ( j; r, p)}n j + . . .

= ∑
j

n j{log(r + j−1)+ · · ·+ logr− log j!}

+ rn log p+∑
j

jn j log(1− p)+ . . .

(3.75)

Note that the outcomes y1, . . . ,yn do not carry more information about the parame-
ters r, p than do their frequencies n0,n1, . . . Apart from the order in which the iid
observations occurred, the sample can be reconstructed from the frequencies. The
conditional joint density of the sample, given the frequencies, no longer depends on
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the parameters r and p, or in other words, these frequencies are sufficient statistics.
The iterative computation of the ML-estimates using the frequencies is of course
faster for large integer-valued samples.

We first look at the partial derivative ∂�/∂ p. It must be zero for those r, p for
which the likelihood is maximal:

0 =
∂�

∂ p
=

rn
p
− ∑ jn j

1− p
⇐⇒ r(1− p)

p
= y ⇐⇒ p =

r
r + y

, (3.76)

This equation expresses that the mean of the ML-estimated density equals the ob-
served sample mean.

The second ML-equation ∂�/∂ r = 0 results in

0 =
∞

∑
j=1

n j

(
1
r

+ · · ·+ 1
r + j−1

)
+n log p. (3.77)

From this, no explicit expression for the ML-estimators can be derived. But substi-
tuting p = r/(r+y) from (3.76) into (3.77) results in a one-dimensional equation for
r that can be solved numerically using R. One can also use R’s function optimize
to do the maximization over r, or simply use optim; see below.

About generating negative binomial(r, p) random samples, see Table A, we first
remark that in elementary probability texts, such random variables are introduced
as the number of failures before the rth success in a sequence of Bernoulli tri-
als, or sometimes as the number of trials needed, successes and failures combined.
This requires r to be integer. For the general case, instead of the standard func-
tion rnbinom we can use the mixed model of Example 3.3.1 to generate negative
binomial(r, p) outcomes, by first drawing the parameter from a suitable gamma dis-
tribution and next drawing from a Poisson distribution with that parameter. The
following R commands draw a negative binomial sample, count the frequencies of
each outcome and compare these with the theoretical frequencies:

set.seed(1); n <- 2000; r <- 2; p <- 0.5
hh <- rpois(n, rgamma(n,r,p/(1-p)))
n.j <- tabulate(1+hh); j <- 0:max(hh)
rbind(n.j, round(dnbinom(j,r,p)*n))

In the first line, we initialize the random number generator so as to be able to repro-
duce the results. The second line draws a sample using the method suggested. The
function tabulate counts the frequencies of the numbers 1,2, . . . in its argument.
We added 1 to each element of the sample to include the frequency of 0 as well.
Running this script one sees that the observed frequencies match the theoretical
ones, computed using dnbinom, quite closely.

To get initial estimates for the parameters, we use the method of moments:

r(1− p)

p
= y;

r(1− p)

p2 = y2 − y2. (3.78)

Solving these equations for r and p is done by dividing the first by the second:
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y.bar <- sum(j*n.j/n); y2.bar <- sum(jˆ2*n.j/n)
p0 <- y.bar/(y2.bar-y.barˆ2); r0 <- p0 * y.bar/(1-p0)

For how to solve the second ML-equation (3.77) using uniroot and inserting
(3.76), see Exercise 3.9.26. To maximize the loglikelihood using the optimize
function of R, the loglikelihood is computed by specifying log=T in the density
and taking a weighted sum with as weights the frequencies n j for all j = 0,1, . . . :

g <- function (r) {sum(dnbinom(j,r,r/(r+y.bar),log=T)*n.j)}
r <- optimize(g, c(r0/2, 2*r0), max=T, tol=1e-12)$maximum
p <- r/(r+y.bar)

We get r̂ = 1.919248 and p̂ = 0.4883274.
By using the general R function optim, we no not have to rely on the fact that

in the optimum, p = r/(r + y) must hold because of (3.76):

h <- function (x) {-sum(dnbinom(j,x[1],x[2],log=T)*n.j)}
optim(c(r0,p0), h, control=list(reltol=1e-14))

The first argument of optim is a vector of starting values, the second the function
h(x)with x the vector of parameters. The first element of x represents r, the second
is p. The control argument contains a list of refinements of the optimization
process; to get the exact same results as before, we have set the relative tolerance
to 10−14. Note the minus-sign in the definition of h, needed because the standard
mode of optim is to minimize a function.

3.9.5 Gamma claim severity distributions

The gamma(α,β ) distribution can be used to model non-negative losses if the tail of
the cdf is not too ‘heavy’, such as in motor insurance for damage to the own vehicle.
Density, cdf, quantiles and random deviates for this distribution are given by the
standard R functions dgamma, pgamma, qgamma and rgamma, respectively. Note
that the parameter α corresponds to the shape parameter of these functions, while
β corresponds to rate, 1/β to scale. See Table A.

To find maximum likelihood estimators for the parameters α,β on the basis of
a random sample Y1 = y1, . . . ,Yn = yn from a gamma(α,β ) distribution, proceed as
follows. The loglikelihood �(α,β ) of the parameters is given by

�(α,β ; �y) = log
n

∏
i=1

fY (yi; α,β ). (3.79)

Filling in the gamma density fY (y) = 1
Γ (α)β α yα−1e−βy, we get

�(α,β ) = nα logβ −n logΓ (α)+(α −1) log∏yi −β ∑yi. (3.80)

One of the ML-equations ensures again that the fitted mean is the observed mean:
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∂�

∂β
=

nα
β

−∑yi = 0 ⇐⇒ β̂ =
α̂
y

. (3.81)

Writing logy for the mean of the logarithms of the observations, we see from the
other one that there is no explicit solution:

∂�

∂α
= n logβ −n

Γ ′(α)

Γ (α)
+∑ logyi = 0 ⇐⇒

log α̂ − Γ ′(α̂)

Γ (α̂)
− logy+ logy = 0.

(3.82)

Using the R-function digamma() to compute the digamma (psi) function defined
as Γ ′(α)/Γ (α), the solution can be found like this:

set.seed(2525); y <- rgamma(2000, shape=5, rate=1)
aux <- log(mean(y)) - mean(log(y))
f <- function(x) log(x) - digamma(x) - aux
alpha <- uniroot(f, c(1e-8,1e8))$root ## 5.049
beta <- alpha/mean(y) ## 1.024

The interval (10−8,108) in which a zero for f above is sought covers skewnesses
from +2× 10−4 to +2× 104. The function f(x) decreases from f(0) = +∞ to
f(∞) < 0. This is because log(x)−Γ ′(x)/Γ (x) decreases to 0, and, as is proved in
Exercise 9.3.12, aux is strictly positive unless all yi are equal.

Just as for the negative binomial distribution, optimal α̂ and β̂ can also be found
by using optimize and β̂ = α̂/y, or optim.

3.9.6 Inverse Gaussian claim severity distributions

A distribution that sometimes appears in the actuarial literature, for several pur-
poses, is the inverse Gaussian (IG). Its properties resemble those of the gamma and
lognormal distributions. Its name derives from the inverse relationship that exists be-
tween the cumulant generating functions of these distributions and those of Gaussian
distributions, see (3.85) below. Various parameterizations are in use. Just like with
the gamma distribution, we will use a shape parameter α and a scale parameter β .
See also Table A.

The probability density function of the IG distribution is:

f (x;α,β ) =
α√
2πβ

x−
3
2 e−

(α−βx)2

2βx , x > 0. (3.83)

The main reason the IG distribution has never gained much popularity is because it
is not easy to manage mathematically. Indeed to prove that the density integrates to
one is not at all trivial without knowing the corresponding cdf, which is:
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2
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Fig. 3.1 Inverse Gaussian densities for α = β = 1
4 , 1

2 ,1,2,4,8,16,32 (tops from left to right).

F(x;α,β ) = Φ
( −α√ +

√
βx

)
+ e2α Φ

( −α√
βx

−
√

βx
)
, x > 0. (3.84)

This function has limx↓0 F(x;α,β ) = 1 and its derivative is

m(t;α,β ) = exp
{

α
[
1−

√
1−2t/β

]}
, t ≤ β

2
. (3.85)

one easily sees that β is indeed a scale parameter, since βX is inverse Gaussian(α,1)
if X ∼ inverse Gaussian(α,β ). We also see that adding two independent inverse
Gaussian distributed random variables, with parameters α1,β and α2,β , yields an

1 + α2,β . The expected value
and the variance are α/β and α/β 2

is 3/
√

α , as opposed to 2/
√

α for a gamma distribution with the same mean and
variance. The flexibility of the inverse Gaussian distributions, from very skew to
almost normal, is illustrated in Figure 3.1. All depicted distributions have the same
mean α/β = 1, and a strictly positive mode.

For the inverse Gaussian(α,β ) distribution, the loglikelihood is

�(α,β ; �y) = ∑
(

log
α√
2πβ

− 3
2

logyi − α2

2βyi
+α − βyi

2

)
. (3.86)

and (3.83) is its density. Detailed proofs are asked in Exercise 3.9.3.

βx

Using the fact that (3.83) is a density to compute the resulting integral, we can

inverse Gaussian random variable with parameters α

x→∞F(x;α,β ) = 0, lim

prove that the mgf equals

Notice that the mgf is finite for t = β/2, but not for t > β/2.

(3.83), which is non-negative on (0,∞). So (3.84) is an absolutely continuous cdf,

The easiest way to show this is by taking a series expansion of the cgf. The skewness

The special case with α = β is also known as the Wald distribution. From the mgf

respectively, just as for the gamma distribution.
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Setting the partial derivatives equal to zero gives

∂�

∂α
= ∑

(
1
α
− α

βyi
+1

)
= 0;

∂�

∂β
= ∑

(−1
2β

+
α2

2β 2yi
− yi

2

)
= 0.

(3.87)

Writing 1/y for the average of the numbers 1/yi, we can rewrite this as

1
α

+1 =
α
β

1/y and
1
α

+
β
α

y =
α
β

1/y, (3.88)

so we get very simple explicit expressions for the ML parameter estimates:

α̂ =
1

y1/y−1
and β̂ =

α̂
y

. (3.89)

The second equation ensures that, again, the mean of the fitted distribution equals
the sample mean. It is an easy exercise to show that in case of a sample Y1, . . . ,Yn,
the quantities ∑Yi and ∑1/Yi are sufficient statistics.

In the package statmod extending R one finds functions d/p/q/rinvgauss
for density, cdf, quantiles and random number generation with this distribution. Sim-
ilar functions can be found in SuppDist (then with capital G). The parameters used
there are not the same we use; see also Exercise 3.9.12. They are the mean µ = α/β
and a precision parameter λ . The latter is taken in such a way that the variance α/β 2

equals µ3/λ , therefore λ = α2/β . Conversely, α = λ/µ and β = λ/µ2. Generat-
ing a random sample and estimating the parameters from it by maximum likelihood,
using (3.89), then goes as follows:

library(statmod); set.seed(2525)
y <- rinvgauss(2000, mu=5, lambda=3)
alpha <- 1/(mean(y)*mean(1/y)-1); beta <- alpha/mean(y)

We get α̂ = 0.626; β̂ = 0.128. So, µ̂ = α̂/β̂ = 4.89 and λ̂ = α̂2/β̂ = 3.06. The true
values µ = α/β = 5, λ = α2/β = 3 give α = 0.6, β = 0.12. In Exercise 3.9.12, the
reader is asked to verify that we always get feasible estimates α̂ > 0 and β̂ > 0 this
way, in other words, that y1/y > 1 must hold in (3.89).

3.9.7 Mixtures/combinations of exponential distributions

Another useful class of parametric claim severity distributions, especially in the
context of ruin theory (Chapter 4), consists of mixtures/combinations of exponen-
tial distributions. A mixture arises if the parameter of an exponential distribution is
a random variable that is α with probability q and β with probability 1− q. The
density is then given by
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p(x) = qαe−αx +(1−q)βe−βx, x > 0. (3.90)

For each q with 0 ≤ q ≤ 1, the function p(·) is a probability density function. But
also for q < 0 or q > 1, p(·) in (3.90) is sometimes a pdf. Since

∫
p(x)dx = 1 always

holds, we only have to check if p(x) ≥ 0 for all x. From Exercise 3.9.4, we learn

1 < q ≤ β/(β −α), and in this case (3.90) is called a combination of exponential
distributions.

An example of a proper combination of exponential distributions is given by

p(x) = 2(e−x − e−2x) = 2×1e−1x −1×2e−2x, (3.91)

which has q = 2, α = 1 and β = 2. A second example is the function

p(x) =
4
3
(e−x − 1

2
e−2x) =

4
3
×1e−1x − 1

3
×2e−2x. (3.92)

	

mX+Y (t) =
αβ

(α − t)(β − t)
=

β
β −α

α
α − t

− α
β −α

β
β − t

. (3.93)

β
β−α . So a sum of independent exponential

random variables has a combination of exponential distributions as its density. The
reverse is not always true: (3.91) is the pdf of the convolution of an exponential(1)

cannot be written as such a convolution.
If α ↑ β , then β/(β −α) → ∞, and X +Y tends to a gamma(2,β ) random vari-

able. Hence, the gamma distributions with r = 2 are limits of densities that are
combinations of exponential distributions, and the same holds for all gamma distri-
butions with an integer shape parameter (so-called Erlang distributions).

α < β and 0 ≤ q ≤ 1

two-stage model that produces all random variables with pdf (3.90). For this, let I ∼
Bernoulli(γ) with 0 ≤ γ ≤ 1, and let 0 < α < β . Then

Z = I
X
α

+
Y
β

(3.94)

mZ(t) =

(
1− γ + γ

α
α − t

)
β

β − t
=

αβ − tβ (1− γ)

(α − t)(β − t)
. (3.95)

can be generated using the urn-of-urns model Z = IX/α +(1− I)Y/β , with X , Y

and an exponential(2) distribution, since q =

that it suffices to check p(0) ≥ 0 and p(∞) ≥ 0. Assuming α < β , this holds if

This is the mgf of density (3.90) with q =

If X ∼ exponential(α) and Y ∼ exponential(β ), with α = β , then

A mixture of exponential distributions with parameters 0 <

has as its mgf

To show that this is the mgf of a combination or a mixture of exponential distribu-

β/(β − α) = 2, but the pdf (3.92)

tions, it suffices to find q, using partial fractions, such that (3.95) equals the mgf of

and I independent, X and Y ∼ exponential(1) and I ∼ Bernoulli(q). There is also a
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(3.90), which is

q
α

α − t
+(1−q)

β
β − t

. (3.96)

Comparing (3.95) and (3.96) we see that qα +(1−q)β = β (1− γ), hence

q =
βγ

β −α
. (3.97)

Since 0 < α < β , we have that 0 ≤ q ≤ 1 if 0 ≤ γ ≤ 1−α/β , and then Z is mixture
of exponential distributions. If 1−α/β < γ ≤ 1, then q > 1, and Z is a combination
of exponential distributions.

The loss Z in (3.94) can be viewed as the result of an experiment where one
suffers a loss Y/β in any case and where it is decided by a trial with probability γ of
success whether one loses an additional amount X/α . Another interpretation is that
the loss is drawn from either Y/β or X/α +Y/β , since Z = I(X/α +Y/β )+ (1−
I)Y/β . If γ = 1, again a sum of two exponential distributions arises.

Writing R-functions to compute the cdf P(x) and the density p(x) is trivial; quan-
tiles x = P−1(u) with 0 < u < 1 follow by (numerical) inversion of the cdf, hence
solving P(x) = u for x. For this, one may call the R-function uniroot. But to
generate random values, simply use model (3.94):

set.seed(1); n <- 2000; q <- 1.5; alpha <- 1; beta <- 2
gam <- (beta-alpha)/beta * q
y <- rbinom(n,1,gam) * rexp(n)/alpha + rexp(n)/beta

One way to estimate the parameters of the joint likelihood ∏ p(yi; q,α,β ), with p(x)
as in (3.90), is by using the method of moments. Not for every combination of first
three sample moments feasible parameters of (3.90) can be found leading to the right
mean, variance and skewness; for details, consult Babier and Chan (1992), and see
also Example 4.9.1. ML-optimization requires a three-dimensional maximization
that cannot be easily reduced in dimension such as the ones we encountered before.
But it is easy to simply let optim do the work, for example by:

f <- function (y, q, alpha, beta){
q * alpha * exp(-alpha*y) + (1-q) * beta * exp(-beta*y)}

h <- function (x) {-sum(log(f(y, x[1], x[2], x[3])))}
optim(c(0.8, 0.9, 1.8), h)

The resulting parameter estimates are q̂ = 1.285, α̂ = 0.941, β̂ = 2.362.

3.9.8 Lognormal claim severities

Using that X ∼ lognormal(µ,σ2) if and only if logX ∼ N(µ ,σ2), for the cdf and
the density of this claim severity distribution, by the chain rule we get

FX (x) = Φ(logx; µ ,σ2) and fX (x) =
1
x

ϕ(logx; µ ,σ2), (3.98)
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with ϕ and Φ the normal density and cdf. See also Table A.
It is easy to write R functions d/p/q/rlnorm based on these relations with the

normal distribution, but such functions are also included in the package stats.
To compare the fatness of the tail with the one of the inverse Gaussian(α,β )

distribution with the same mean α/β and variance α/β 2, note that the lognormal
skewness is γ = (3+1/α)/

√
α , see Table A, while the inverse Gaussian skewness

is γ = 3/
√

α . The lognormal distribution is suitable as a severity distribution for
branches with moderately heavy-tailed claims, like fire insurance.

Maximum likelihood estimation in case of a lognormal(µ ,σ2) random sample is
simple by reducing it to the normal case. If the sample is Y1 = y1, . . . ,Yn = yn, let
Xi = logYi, then Xi ∼ N(µ ,σ2), so as is well-known, µ̂ = X and σ̂2 = (X − µ̂)2.

3.9.9 Pareto claim severities

The Pareto(α,x0) distribution, see Table A, can be used for branches with high prob-
ability of large claims, notably liability insurance. In Exercise 3.9.1 it is proved that
Y ∼ Pareto(α,x0) is equivalent to log(Y/x0) ∼ exponential(α). With this property,
it is easy to write the function rpareto; the other ones are trivial.

To compute ML-estimates for a Pareto(α,x0) sample is slightly different from
what we saw before, because in this case the optimal estimates cannot be produced
by simply solving the ML equations. The loglikelihood with a Pareto(α,x0) sample
Y1 = y1, . . . ,Yn = yn is, if y(1) := min(yi) denotes the sample minimum:

�(α,x0;�y) =

{
n logα +αn logx0 − (α +1)∑ logyi if x0 ≤ y(1);

−∞ if x0 > y(1).
(3.99)

For each choice of α , we have �(α,x0) ≤ �(α,y(1)), so the ML estimate for x0 must
be x̂0 = y(1). Further,

∂�(α, x̂0)

∂α
= 0 ⇐⇒ n

α
+n log x̂0 −∑ logyi = 0

⇐⇒ α̂ =
(1

n ∑ log(yi/x̂0)
)−1

.

(3.100)

The shape of the ML estimate α̂ is not surprising, since the transformed sample
Xi = log(Yi/x0) is distributed as exponential(α), for which case the ML estimate of
α is known to be 1/X . For the same reason, a random Pareto(α,x0) sample can be
generated by multiplying the exponents of an exponential(α) random sample by x0.
So to draw a sample and find ML estimates of α,x0, do

set.seed(2525); x0 <- 100; alpha <- 2; n <- 2000
y <- x0*exp(rexp(n)/alpha)
x0.hat <- min(y); alpha.hat <- 1/mean(log(y/x0.hat))
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The resulting ML-estimates are x̂0 = 100.024 and α̂ = 2.0014. Determining esti-
mates for Pareto samples by the method of moments might present problems since
the population moments E[Y j] only exist for powers j < α .

3.10 Stop-loss insurance and approximations

The payment by a reinsurer in case of a stop-loss reinsurance with retention d for
a loss S is equal to (S− d)+. In this section we look for analytical expressions for
the net stop-loss premium for some distributions. Note that expressions for stop-loss
premiums can also be used to calculate net excess of loss premiums.

If π(d) denotes the stop-loss premium for a loss with cdf F(·) as a function of
d, then π ′(d + 0) = F(d)− 1. This fact can be used to verify the expressions for
stop-loss premiums. For the necessary integrations, we often use partial integration.

Example 3.10.1 (Stop-loss premiums for the normal distribution)
If X ∼ N(µ ,σ2), what is the stop-loss premium for X if the retention is d?

As always for non-standard normal distributions, it is convenient to consider the
case µ = 0 and σ2 = 1 first, and then use the fact that if U ∼ N(0,1), then X =
σU + µ ∼ N(µ ,σ2). The required stop-loss premium follows from

E[(X −d)+] = E[(σU + µ −d)+] = σE

[(
U − d −µ

σ

)
+

]
. (3.101)

Since ϕ ′(u) = −uϕ(u), we have the following relation∫ ∞

t
uϕ(u)du =

∫ ∞

t
[−ϕ ′(u)]du = ϕ(t). (3.102)

It immediately follows that

π(t) = E[(U − t)+] = ϕ(t)− t[1−Φ(t)], (3.103)

and hence

E[(X −d)+] = σϕ
(

d −µ
σ

)
− (d −µ)

[
1−Φ

(
d −µ

σ

)]
. (3.104)

For a table with a number of stop-loss premiums for the standard normal distribu-
tion, we refer to Example 3.10.5 below. See also Table C at the end of this book. ∇

Example 3.10.2 (Gamma distribution)
Another distribution that has a rather simple expression for the stop-loss premium
is the gamma distribution. If S ∼ gamma(α,β ) and G(·;α,β ) denotes the cdf of S,
then it can be shown that

E[(S−d)+] =
α
β

[1−G(d;α +1,β )]−d[1−G(d;α,β )]. (3.105)
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We can also derive expressions for the higher moments of the stop-loss payment
E[(S− d)k

+

quently also exponential premiums for the stop-loss payment. ∇

Remark 3.10.3 (Moments of the retained loss)
Since either S ≤ d, so (S− d)+ = 0, or S > d, so (S− d)+ = S− d, the following

[(S−d)− (S−d)+][(S−d)+] ≡ 0. (3.106)

With this, we can derive the moments of the retained loss S− (S− d)+ from those

{S−d}k ≡ {[S−d − (S−d)+]+(S−d)+}k

≡ {S−d − (S−d)+}k +{(S−d)+}k.
(3.107)

This holds since, due to (3.106), the remaining terms in the binomial expansion
vanish. ∇

In this way, if the loss approximately follows a translated gamma distribution, one
can approximate the expected value, the variance and the skewness of the retained
loss. See Exercise 3.10.4.

Example 3.10.4 (Stop-loss premiums approximated by NP)
The probabilities of X > y for some random variable can be approximated quite
well with the NP approximation. Is it possible to derive an approximation for the
stop-loss premium for X too?

Define the following auxiliary functions for u ≥ 1 and y ≥ 1:

q(u) = u+
γ
6
(u2 −1) and w(y) =

√
9
γ2 +

6y
γ

+1− 3
γ
. (3.108)

From Section 2.5 we recall that w(q(u)) = u and q(w(y)) = y. Furthermore, q(·)
and w(·) are monotonically increasing, and q(u) ≥ y if and only if w(y) ≤ u. Let
Z be a random variable with expected value 0, standard deviation 1 and skewness
γ > 0. We will derive the stop-loss premiums of random variables X with E[X ] = µ ,
Var[X ] = σ2 and skewness γ from those of Z with the help of (3.101).

The NP approximation (2.59) states that

Pr[Z > q(u)] = Pr[w(Z) > u] ≈ 1−Φ(u) if u ≥ 1. (3.109)

Assume that U ∼ N(0,1) and define V = q(U) if U ≥ 1, V = 1 otherwise, so V =
q(max{U,1}). Then

Pr[V > q(u)] = Pr[U > u] = 1−Φ(u), u ≥ 1. (3.110)

Hence
Pr[Z > y] ≈ Pr[V > y] = 1−Φ(w(y)), y ≥ 1. (3.111)

of the stop-loss payment, using the equivalence

], k = 2,3, . . .. Even the mgf can be calculated analogously, and conse-

equivalence holds in general:



3.10 Stop-loss insurance and approximations 75

The stop-loss premium of Z in d > 1 can be approximated through the stop-loss
premium of V , since∫ ∞

d
Pr[Z > y]dy ≈

∫ ∞

d
Pr[V > y]dy = E[(V −d)+]

=
∫ ∞

−∞
(q(max{u,1})−d)+ϕ(u)du

=
∫ ∞

w(d)
(q(u)−d)ϕ(u)du.

(3.112)

To calculate this integral, we use that d
du [uϕ(u)] = (1−u2)ϕ(u), so∫ ∞

t
[u2 −1]ϕ(u)du = tϕ(t). (3.113)

Substituting (3.102) and (3.113) and the function q(·) into (3.112) yields

E[(Z −d)+] ≈
∫ ∞

w(d)

(
u+

γ
6
(u2 −1)−d

)
ϕ(u)du

= ϕ(w(d))+
γ
6

w(d)ϕ(w(d))−d[1−Φ(w(d))]

(3.114)

as an approximation for the net stop-loss premium for any risk Z with mean 0,
variance 1 and skewness γ . ∇

Example 3.10.5 (Comparing various approximations of stop-loss premiums)
What are approximately the stop-loss premiums for X with E[X ] = µ = 0, Var[X ] =
σ2 = 1 and skewness γ = 0,1,2, for retentions d = 0, 1

2 , . . . ,4?
To get NP-approximations we apply formula (3.104) if γ = 0, (3.114) otherwise.

The parameters of a translated gamma distributed random variable with expected
value 0, variance 1 and skewness γ are α = 4/γ2, β = 2/γ and x0 = −2/γ . For
γ ↓ 0, (3.105) yields the stop-loss premiums for a N(0,1) distribution. All gamma
stop-loss premiums are somewhat smaller than the NP approximated ones.

The NP-approximation (3.114) yields plausible results for d = 0, but the results
in Table 3.1 for gamma are surprising, in that the stop-loss premiums decrease with
increasing skewness. From (3.116) below, it immediately follows that if all stop-loss
premiums for one distribution are larger than those of another distribution with the
same expected value, then the former has a larger variance. Since in this case the
variances are equal, as well as larger stop-loss premiums of the translated gamma,
there have to be smaller ones. With NP, lower stop-loss premiums for higher skew-
ness might occur, for example, in case d < 0. Note that the translated gamma ap-
proximation gives the stop-loss premium for a risk with the right expected value
and variance. On the other hand, NP gives approximate stop-loss premiums for a
random variable with almost the same moments. Obviously, random variables exist
having the NP tail probabilities in the area d ∈ (0,∞), as well as the correct first
three moments.
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Table 3.1 Approximate stop-loss premiums at various retentions for a standardized random vari-
able with skewness 0, 1 and 2, using the CLT, the NP and the gamma approximations.

CLT Normal Power gamma
d γ = 0 γ = 1 γ = 2 γ = 1 γ = 2

0.0 .3989 .4044 .4195 .3907 .3679
0.5 .1978 .2294 .2642 .2184 .2231
1.0 .0833 .1236 .1640 .1165 .1353
1.5 .0293 .0637 .1005 .0598 .0821
2.0 .0085 .0316 .0609 .0297 .0498
2.5 .0020 .0151 .0365 .0144 .0302
3.0 .0004 .0070 .0217 .0068 .0183
3.5 .0001 .0032 .0128 .0032 .0111
4.0 .0000 .0014 .0075 .0015 .0067

For arbitrary µ and σ , simply use a translation like the one given in (3.101). In
that case, first determine d = (t − µ)/σ , then multiply the corresponding stop-loss
premium in the above table by σ , and if necessary, use interpolation. ∇

3.10.1 Comparing stop-loss premiums in case of unequal variances

In this subsection we compare the stop-loss premiums of two risks with equal ex-
pected value, but with unequal variance. It is impossible to formulate an exact gen-
eral rule, but we can state some useful approximating results.

Just as one gets the expected value by integrating the distribution function over
(0,∞), one can in turn integrate the stop-loss premiums. In Exercise 3.10.1, the
reader is invited to prove that, if U ≥ 0 with probability 1,

1
2

Var[U ] =
∫ ∞

0

{
E[(U − t)+]− (µ − t)+

}
dt. (3.115)

The integrand in this equation is always non-negative. From (3.115), it follows that
if U and W are risks with equal expectation µ , then∫ ∞

0

{
E[(U − t)+]−E[(W − t)+]

}
dt =

1
2

{
Var[U ]−Var[W ]

}
. (3.116)

By approximating the integral in (3.116) with the trapezoidal rule with interval
width 1, see also (3.47), we can say the following about the total of all differences
in the stop-loss premiums of U and W (notice that we do not use absolute values):

∞

∑
i=1

{
E[(U − i)+]−E[(W − i)+]

}≈ 1
2

{
Var[U ]−Var[W ]

}
. (3.117)
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So, if we replace the actual stop-loss premiums of U by those of W , then (3.117)
provides an approximation for the total error in all integer-valued arguments. In
Chapter 7 we examine conditions for E[(U − d)+] ≥ E[(W − d)+] to hold for all
d. If that is the case, then all terms in (3.117) are positive and consequently, the
maximum error in all of these terms will be less than the right-hand side.

If two integrands are approximately proportional, their ratio is about equal to the
ratio of the corresponding integrals. So from (3.115) we get:

E[(U − t)+]− (µ − t)+
E[(W − t)+]− (µ − t)+

≈ Var[U ]

Var[W ]
. (3.118)

The approximation is exact if µ = E[U ] and W = (1−I)µ +IU with I ∼ Bernoulli(α)
independent of U and α = Var[W ]/Var[U ], see Exercise 3.10.2.

If t ≥ µ , then (µ − t)+ = 0, so the approximation (3.118) simplifies to the fol-
lowing rule of thumb:

Rule of thumb 3.10.6 (Ratio of stop-loss premiums)
For retentions t larger than the expectation µ = E[U ] = E[W ], we have for the stop-
loss premiums of risks U and W :

E[(U − t)+]

E[(W − t)+]
≈ Var[U ]

Var[W ]
. (3.119)

This rule works best for intermediate values of t, see below. ∇

Example 3.10.7 (‘Undefined wife’)
Exercise 3.7.4 deals with the situation where it is unknown for which of the insureds
a widow’s benefit might have to be paid. If the frequency of being married is 80%,
we can either multiply all risk amounts by 0.8 and leave the probability of dying
within one year as it is, or we can multiply the mortality probability by 0.8 and
leave the payment as it is. We derived that the resulting variance of the total claim
amount in the former case is approximately 80% of the variance in the latter case.
So, if we use the former method to calculate the stop-loss premiums instead of the
correct method, then the resulting stop-loss premiums for retentions that are larger
than the expected claim cost are approximately 20% too small. ∇

Example 3.10.8 (Numerical evaluation of the Rule of thumb)
We calculated the stop-loss premiums for a N(0,1.01) and a N(0,1.25) distribution
at retentions d = 0, 1

2 ,1, . . . ,3, to compare them with those of a N(0,1) distribution.
According to Rule of thumb 3.10.6, these should be 1.01 and 1.25 times as big
respectively. Table 3.2 gives the factor by which that factor should be multiplied to
get the real error. For example, for d = 0 the quotient π(d;0,1.01)/π(d;0,1) equals
1.005 instead of 1.01, so the error is only 50% of the one predicted by the Rule of
thumb. As can be seen, the Rule of thumb correction factor is too large for retentions
close to the expected value, too small for large retentions and approximately correct
for retentions equal to the expected value plus 0.6 standard deviation. The Rule of
thumb correction factor has a large error for retentions in the far tail where the stop-



78 3 Collective risk models

Table 3.2 Factors by which the N(0,1.01) and N(0,1.25) stop-loss premiums deviate from those
of N(0,1), expressed in terms of the Rule of thumb correction factor

d π(d;0,1) Correction factors
1+0.01× 1+0.25×

0.0 0.39894 0.50 0.47
0.5 0.19780 0.89 0.85
1.0 0.08332 1.45 1.45
1.5 0.02931 2.22 2.35
2.0 0.00849 3.20 3.73
2.5 0.00200 4.43 5.84
3.0 0.00038 5.92 9.10

loss premiums of the distribution with the smaller variance are negligible but those
of the distribution with the larger variance are not. ∇

3.11 Exercises

Section 3.2

1. Calculate (3.3), (3.4) and (3.5) in case N has the following distribution: a) Poisson(λ ), b)
binomial(n,p) and c) negative binomial(r,p).

2. Give the counterpart of (3.5) for the cumulant generating function.

3. Assume that the number of eggs in a bird’s nest is a Poisson(λ ) distributed random variable,
and that the probability that a female hatches out equals p. Determine the distribution of the
number of female hatchlings in a bird’s nest.

4. Let S be compound Poisson distributed with λ = 2 and p(x) = x/10, x = 1,2,3,4. Apply (3.10)
to calculate the probabilities of S = s for s ≤ 4.

5. Complete the table in Example 3.2.2 for x = 0, . . . ,6. Determine the expected value and the
variance of N, X and S.

6. Determine the expected value and the variance of S, where S is defined as in Example 3.2.2,
except that N is Poisson distributed with λ = 2.

7. Prove relation (3.11) by partial integration. Do the same by differentiating both sides of the
equation and examining one value, either x = 0 or x → ∞.

Section 3.3

1. Show that the Poisson distribution also arises as the limit of the negative binomial(r,p) distri-
bution if r → ∞ and p → 1 such that r(1− p) = λ remains constant.

2. Under which circumstances does the usual Poisson distribution arise instead of the negative
binomial in Examples 3.3.1 and 3.3.2?

3. [♠] Prove (3.19).
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Section 3.4

1. The same as Exercise 3.2.4, but now with the sparse vector algorithm.

2. What happens with (3.23) if some xi are equal in (3.22)?

3. Assume that S1 is compound Poisson with λ1 = 4 and claims p1( j) = 1
4 , j = 0,1,2,3, and S2

is also compound Poisson with λ2 = 2 and p2( j) = 1
2 , j = 2,4. If S1 and S2 are independent,

then what is the distribution of S1 +S2?

4. In Exercise 3.2.3, prove that the number of males is independent of the number of females.

5. Let Nj , 1 and N2
independent?

6. Assume that S is compound Poisson distributed with parameter λ and with discrete claims
distribution p(x), x > 0. Consider S0, a compound Poisson distribution with parameter λ0 =

0 0
p0(x) = α p(x) for x > 0. Prove that S and S0 have the same distribution by comparing their

0 holds because the frequencies of the claim amounts x 	= 0 in
(3.22) have the same distribution.

7. How many multiplications with non-zero numbers does the sparse vector algorithm of Example
3.4.3 take to compute all probabilities Pr[S = x], x = 0,1, . . . ,n−1? Assume the claim sizes to
be bounded by T , and remember that 1+ 1/2 + 1/3 + · · ·+ 1/T ≈ logT + 0.5772 (the Euler-
Mascheroni constant).

8. Redo Exercise 3.4.1 using R.

Section 3.5

1. The same as Exercise 3.2.4, but now with Panjer’s recursion relation.

2.

3. Verify Example 3.5.2.

4. In case of a compound Poisson distribution for which the claims have mass points 1,2, . . . ,m,
determine how many multiplications have to be done to calculate the probability F(t) using
Panjer’s recursion. Distinguish the cases m < t and m ≥ t.

5. Prove that E[N] = (a+b)/(1−a) if qn = Pr[N = n] satisfies (3.26).

6. In Example 3.5.4, determine the retention d for which π(d) = 0.3.

7. Let N1, N2 and N3 be independent and Poisson(1) distributed. For the retention d = 2.5, deter-
mine E[(N1 +2N2 +3N3 −d)+].

8. Assume that S1 is compound Poisson distributed with parameter λ = 2 and claim sizes p(1) =
p(3) = 1

2 . Let S2 = S1 +N, where N is Poisson(1) distributed and independent of S1. Determine
2 2 ≤ 2.4].

9. Determine the parameters of an integer-valued compound Poisson distributed Z if for some
α > 0, Panjer’s recursion relation equals Pr[Z = s] = f (s) = α

s [ f (s− 1) + 2 f (s− 2)], s =
1,2,3, . . . [Don’t forget the case p(0) 	= 0!]

10. Assume that S is compound Poisson distributed with parameter λ = 3, p(1) = 5
6 and p(2) = 1

6 .
Calculate f (x), F(x) and π(x) for x = 0,1,2, . . .. Also calculate π(2.5).

11. Derive formulas from (3.34) for the stop-loss premium that only use f (0), f (1), . . . , f (d − 1)
and F(0),F(1), . . . ,F(d −1) respectively.

λ/α for some α with 0 < α < 1, and with claims distribution p (x) where p (0) = 1−α and

The same as Exercise 3.4.6, first part, but now by proving with induction that Panjer’s recursion

j = 1,2, denote the number of claims of size

mgfs. Also show that S ∼ S

j in Example 3.2.2. Are N

the mgf of S . What is the corresponding distribution? Determine Pr[S

yields the same probabilities f (s).
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12. Give a formula, analogous to (3.36), to calculate E[(S−d)2
+].

13. [♠] Write functions Panjer.NegBin and Panjer.Bin to handle (negative) binomial
claim numbers.

r→0

15. [♠] By a slight extension of the proof of Theorem 3.5.1, it can be shown that if (3.26) holds

f (s) =
[q1 − (a+b)q0] f (s)+∑s

h=1(a+ bh
s )p(h) f (s−h)

1−ap(0)
, s = 1,2, . . .

Here q0
q1 = (a+b)q0, the first term in the numerator vanishes, resulting in (3.27). The class of count-

Write a Panjering function for the (a,b,1) class.

16. Using the R- functions cumsum and rev, show how the vector of stop-loss premiums at

p[2]= Pr[S = 1], and so on. Use relation (3.34).

Section 3.6

1. Describe what is produced by the R-calls:

y <- rep(0,64); y[2:7] <- 1/6; Re(fft(fft(y)ˆ10,T))/64

2.
pound distribution with claim sizes 1 and 3 each with probability 1

2 and as claim num-
ber a logarithmic random variable L with E[L] = 3, see Example 3.3.2. The same when
Pr[L = 0,1,3,7,8,9,10] = .3, .2, .1, .1, .1, .1, .1.

Section 3.7

1. Assume that S is compound Poisson distributed with parameter λ = 12 and uniform(0,1)

approximation and the NP approximation.

2. Assume that S is compound Poisson distributed with parameter λ = 10 and χ2(4) distributed

With the NP approximation, estimate the quantile s such that FS(s) ≈ 0.95, as well as the
probability FS(E[S]+3

√
Var[S]).

3.
of a standardized compound Poisson(λ ,X) random variable (S−µS)/σS converges to et2/2 for
all t.

Use the fft function to compute the stop-loss premium at retention d = 10 for a com-

distributed claims. Approximate Pr[S < 10] with the CLT approximation, the translated gamma

Prove Theorem 3.7.1 by proving, just as in the proof of Theorem 3.5.1, that as λ → ∞, the mgf

claims. Approximate the distribution function of S with the translated gamma approximation.

Pr[M=
14. Let M ∼ negative binomial(r, p) for some r, p with 0 < p < 1.

Pr[L = m]= lim
Which distribution does L have, if

(a,b,1) class includes zero-modified or zero-truncated distributions. By the previous exercise,

for all n = 2,3, . . . , the probability of a claim total s satisfies the following relation:

ing distributions satisfying (3.26) for n > k is known as the (a,b,k) class, k = 0,1, . . . . The

is the arbitrary amount of probability at zero given to the frequency distribution. If

tion (3.26) holds for all n = 2,3, . . .

retention d = 0,1, . . . can be obtained from a vector of probabilities p with p[1]= Pr[S = 0],

Show that, for this random variable, rela-

the logarithmic distribution is in the (a,b,1) class, but not in the (a,b,0) class.

m |M > 0], m = 1,2, . . .?
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Section 3.8

1. Show that λ j = − log(1− q j) yields both a larger expectation and a larger variance of S in
(3.63) than λ j = q j does. For both cases, compare Pr[Ii = j] and Pr[Ni = j], j = 0,1,2, . . . in

i i

2.
insured amounts 1 and 2 and probabilities of dying within this year 0.01 and 0.02. Determine
the expectation and the variance of the total claims S̃. Choose an appropriate compound Pois-˜˜

3.
model are equivalent:

1. The compound Poisson distribution specified in (3.64) with λi = qi.
2. The random variable ∑i Nibi from (3.63) with λi = qi.
3. The random variable Z1 + · · ·+ Zn where the Zi are compound Poisson distributed with

claim number parameter 1 and claims distribution equal to those of Iibi.
4. The compound Poisson distribution with parameter λ = n and claims distribution Q(x) =

1
n ∑ j Pr[Xj

interpreted as the cdf of a claim from a randomly chosen policy, where each policy has
probability 1

n .]

4. In a portfolio of n one-year life insurance policies for men, the probability of dying in this
year equals qi for the ith policyholder. In case of death, an amount bi has to be paid out, but
only if it turns out that the policy holder leaves a widow behind. This information is not known
to the insurer in advance (‘undefined wife’), but it is known that this probability equals 80%
for each policy. In this situation, we can approximate the individual model by a collective one
in two ways: by replacing the insured amount for policy i by 0.8bi, or by replacing the claim
probability for policy i by 0.8qi. Which method is correct? Determine the variance of the total
claims for both methods. Show how we can proceed in both cases, if we have a program at our
disposal that calculates stop-loss premiums from a mortality table and an input file containing
the sex, the age and the risk amount.

5. [♠] At what value of x in (3.70) may we stop the summation if an absolute precision ε is
required?

6. Consider a portfolio with 2 classes of policies. Class i contains 1000 policies with claim size
bi = i and claim probability 0.01, for i = 1,2. Let Bi denote the number of claims in class i.
Write the total claims S as S = B1 + 2B2 and let N = B1 + B2 denote the number of claims.
Consider the compound binomial distributed random variable T = X1 + X2 + · · ·+ XN with
Pr[Xi = 1] = Pr[Xi = 2] = 1/2. Compare S and T as regards the maximum value, the expected
value, the variance, the claim number distribution and the distribution. Do the same for B1 and
B2 ∼Poisson(10).

7. Consider an excess of loss reinsurance on some portfolio. In case of a claim x, the reinsurer
pays out an amount h(x) = (x− β )+. The claims process is compound Poisson with claim
number parameter 10 and uniform(1000,2000) distributed claim sizes. For β ∈ [1000,2000],
determine the distribution of the total amount to be paid out by the reinsurer in a year.

8. Consider two portfolios P1 and P2 with the following characteristics:

Consider a portfolio of 100 one-year life insurance policies that are evenly divided between the

for both S and S the parameters of a suitable approximating translated gamma distribution.

(3.62) and (3.63), as well as the cdfs of I and N .

son distribution S to approximate S and compare the expectations and the variances. Determine

≤ x]. [Hence Q(·) is the arithmetic mean of the cdfs of the claims. It can be

Show, by comparing the respective mgfs, that the following representations of the collective
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Risk amount Number of policies Claim probability

P1 z1 n1 q1
z2 n2 q2

P2 z1 2n1
1
2 q1

z2 2n2
1
2 q2

For the individual risk models for P1 and P2, determine the difference of the variance of the
total claims amount. Check if the collective approximation of P1 equals the one of P2, both
constructed with the recommended methods.

9. A certain portfolio contains two types of contracts. For type k, k = 1,2, the claim probability
equals qk and the number of policies equals nk. If there is a claim, then with probability pk(x)
it equals x, as follows:

nk qk pk(1) pk(2) pk(3)

Type 1 1000 0.01 0.5 0 0.5
Type 2 2000 0.02 0.5 0.5 0

Assume that all policies are independent. Construct a collective model T to approximate the
total claims. Make sure that both the expected number of positive claims and the expected
total claims agree. Give the simplest form of Panjer’s recursion relation in this case; also give
a starting value. With the help of T , approximate the capital that is required to cover all claims

compare the results with those of Exercise 2.5.13.

10. Consider a portfolio containing n contracts that all produce a claim 1 with probability q.
What is the distribution of the total claims according to the individual model, the collective
model and the open collective model? If n → ∞, with q fixed, does the individual model
S converge to the collective model T , in the sense that the difference of the probabilities
Pr[(S−E[S])/

√
Var[S] ≤ x]−Pr[(T −E[S])/

√
Var[S] ≤ x] converges to 0?

Section 3.9

1. Determine the mean and the variance of the lognormal and the Pareto distribution, see also Ta-
ble A. Proceed as follows: Y ∼ lognormal(µ,σ2) means logY ∼N(µ,σ2); if Y ∼ Pareto(α,x0),
then Y/x0 0

2.
sense that λX , or more general f (λ )X for some function f , has a distribution that does not
depend on λ . Show that neither the skewness γX nor the coefficient of variation σX/µX depend

3. [♠] Prove that the expression in (3.84) is indeed a cdf that is 0 in x = 0, tends to 1 for x → ∞

statements about the inverse Gaussian distributions.

4. Show that the given conditions on q in (3.90) are sufficient for p(·) to be a pdf.

5. Determine the cdf Pr[Z ≤ d] and the stop-loss premium E[(Z−d)+] for a mixture or combina-
tion Z of exponential distributions as in (3.90). Also determine the conditional distribution of
Z − z, given Z > z.

6. Determine the mode of mixtures and combinations of exponential distributions. Also deter-
mine the mode and the median of the lognormal distribution.

Determine which parameters of the distributions in this section are scale parameters, in the

in this portfolio with probability 95%. Use an approximation based on three moments, and

∼ Pareto(α,1) and log(Y/x ) ∼ exponential(α).

and has a positive derivative (3.83). Also verify that (3.85) is the mgf, and confirm the other

on such parameters. Determine these two quantities for the given distributions.
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7. Determine the mode of the inverse Gaussian(α,α) distribution. For the parameter values of
Figure 3.1, use your computer to determine the median of this distribution.

8. Write R-functions d/p/q/rCombExp for mixtures/combinations of exponential distribu-
tions.

9. If E[X ] = 1 and
√

Var[X ]/E[X ] = 2 is the coefficient of variation, find the 97.5% quantile if
X ∼ gamma, inverse Gaussian, lognormal, and normal.

10. [♠] A small insurer has three branches: Fire, Liability and Auto. The total claims on the
branches are all independent compound Poisson random variables. The specifications are:

• Fire: λ1 = 10 is the mean claim number; claim sizes are inverse Gaussian with mean µ1 =
10000 and coefficient of variation σ1/µ1

• Liability: λ2
• Auto: λ3

Using the Normal Power approximation, compute the Value-at-Risk (quantiles s such that
Pr[S > s] = q) for the combined portfolio at the levels q = 0.5,0.75,0.9,0.95,0.99.
The premium income P = P1 +P2 +P3 contains a safety loading 30% for Fire, 50% for Liability
and 10% for Auto. It is invested in such a way that its value after a year is lognormal with mean
1.1P and standard deviation 0.3P. Find the probability that the invested capital is enough to

p(7) = p(10) = p(19) = 1/3) distribution for S+ and compound Poisson(3, p(1) = p(4) =
1/2) for S−
d = �E[S] + kσS� for k = 1,2,3 using (3.70). Also, compute the whole probability vector of
S = S+ − S− using convolve. Finally, use the fact that S itself is also a compound Poisson
random variable (with possible claim sizes −1,−4,+7,+10,+19) to compute the vector of
probabilities Pr[S = s] using the FFT-technique.

12. Prove that (3.89) produces positive estimates α̂ and β̂ . Hint: apply Jensen’s inequality to the
r.v. Z with Pr[Z = yi] = 1

n , i = 1, . . . ,n.

13. Prove that aux > 0, so logy < logy, holds when computing ML-estimates for a gamma
sample using the R program involving uniroot given.

14. [♠] For range y > 0, shape parameter α > 0 and scale parameter β > 0, a Weibull(α,β )
random variable Y has density f (y;α,β ) = αβ (βy)α−1 exp

(− (βy)α). Find the cdf of Y .
Show that X = (βY )α has an exponential(1) distribution. Also show that the ML equa-
tions for estimating α and β using a sample Y1 = y1, . . . ,Yn = yn can be written as g(α) :=
1/α + logy−yα logy/yα = 0 and β = (1/yα )1/α . Using rweibull, generate a Weibull sam-
ple of size 2000 with parameters α = 5 and β = 1, and compute the ML estimates for the
parameters from this sample.

15. Write a function rTransGam to generate random deviates from translated gamma distrib-
utions. Draw a large sample and verify if the first three sample moments are ‘close’ to the
theoretical values.
Identify the problem with programming rNormalPower.

16. In life actuarial science, it is sometimes useful to be able to generate samples from Gompertz
and Makeham lifetime distributions. The mortality rate of Makeham’s law equals

µX (x)
def
=

fX (x)
1−FX (x)

= − d
dx

log(1−FX (x)) = a+bcx,

while Gompertz’ law is the special case with a = 0. Assuming c > 1, the second component of
the mortality rate increases exponentially with age; the first is a constant. Since the minimum
X = min(Y,Z) of two independent random variables is easily seen to have µX (x) = µY (x)+

= 0.5;

insurer does not get broke by the claims incurred and/or the investment losses.

= 3; Pareto claim sizes with mean 30000 and coefficient of variation 0.5;

cover the claims. Find the initial capital that is needed to ensure that with probability 99%, the

11. [♠] In the situation of Remark 3.8.3, find the probability vectors of a compound Poisson(50,

= 500; gamma claim sizes with mean 1000 and coefficient of variation 0.3.

. Use either FFT or Panjer’s recursion. Then, compute the stop-loss premiums at
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µZ(x) as its mortality rate, under Makeham’s law people either die from ‘senescence’ after
time Y ∼ Gompertz(b,c), or from some ‘accident’ occurring independently after time Z ∼
exponential(a), whichever happens first. In the parameterization given, X has the following
survival function:

1−FX (x) = Pr[Z > x]Pr[Y > x] = exp
(
−ax− b

logc
(cx −1)

)
, x > 0.

If Y ∼ Gompertz(b,c), show that cY −1 is exponential( b
logc ). Use this fact to write a function

rGompertz to generate random deviates from the Gompertz distribution. Use it to write a
function rMakeham. Verify if your results make sense using, e.g., a = 0.0005, b = 0.00007,
c = 1.1.

17. Use relation (3.11) to construct an R function to do one drawing from a Poisson(λ ) distribution.

18. [♠] If U1,U2 are independent uniform(0,1) random variables, show that tan(π(U1 − 1
2 )) ∼

Cauchy(0,1). Also show that Φ−1(U1)/Φ−1(U2) has this same distribution. [Because it has
fat tails and an easy form, this distribution is often used to find a majorizing function in the
rejection method.]

19. Apply the rejection method of Section 3.9.1 to construct an R-function to draw from the tri-
angular distribution f (x) = x on (0,1), 2− x on (1,2). Use the uniform(0,2) density to get an
upper bound for f (x).
Also, draw from f (x) by using the fact that U1 +U2 ∼ f (x) if the Ui are iid uniform(0,1).

20. The rejection method can also applied to draw from integer-valued random variables. In fact, to
generate values from N, generate a value from N +U and round down. Here U ∼ uniform(0,1),
independent of N. Sketch the density of N +U . Apply to a binomial(3, p) distribution.

21. What is produced by sum(runif(10)<1/3)? What by sum(runif(12))-6?

22. [♠] For the inverse Gaussian distributions, show that ∑Yi and ∑ 1
Yi

are jointly sufficient. Recall
that this may be proved by using the factorization criterion, that is, by showing that g and h
exist such that the joint density of Y1, . . . ,Yn can be factorized as fY1,...,Yn (y1, . . . ,yn;α,β ) =

g
(

∑yi,∑ 1
yi

;α,β
)

h(y1, . . . ,yn).

23. [♠] Let X ∼ gamma(α + 1,1), α > 0, and U ∼ uniform(0,1) be independent. Prove that

mlogX (t) = Γ (α+t+1)
Γ (α+1) and m 1

α logU (t) = 1
1+t/α . What is the distribution of X U1/α ?

24. Let U ∼ uniform(0,1). Name the distribution of the following transformed random variables:

a) B = I(0,p)(U) and N = ∑n
1 Bi with Bi ∼ B iid (see Exercise 3.9.21);

b) X = Φ−1(U) and µ +σX ;
c) eµ+σX ;
d) Y = − logU and Y/β ;
e) ∑n

1 Yi/β with Yi ∼ Y iid;
f) eY (= 1/U) and x0eY/β ;
g) Y 1/α/β (see Exercise 3.9.14);
h) log

(
1+Y log(c)/b

)
/ log(c) (see Exercise 3.9.16).

25. [♠] Assume we have observations of the number of claims Ni = ni, i = 1, . . . ,n in a portfolio
of risks. It is known that, conditionally given that the value of a structure variable Λi = λi,
this number has a Poisson(λiwi) distribution, where the wi ∈ [0,1] are known exposures. Also
assume Λi ∼ gamma(α,β ). Find the marginal distribution of the Ni. Draw a random sample
of size n = 10000 from the Ni, assuming the wi are 0.6 for the first 2000 policies, 1.0 for the
remainder. Take α,β such that the mean number of claims per unit of exposure is 0.1, and
the coefficient of variation of the risk parameters σΛ /µΛ = 1.3. From this sample, find the
ML-estimates for α,β .
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26. [♠] Solve the second ML-equation (3.77) using uniroot and inserting (3.76). For this, write
a function of x delivering the sum of n1,n2, . . . times the cumulative sums of 1

x , 1
x+1 , . . . , less

n log x
x+y .

27. [♠] How does one generate pseudo-random samples from the following distributions: Student,
chi-square, beta, Fisher-Snedecor? Use their well-known relations to normal random samples.

28. Write a function to generate pseudo-random samples from the logistic distribution, see Exam-
ple 11.5.6.

Section 3.10

1. Assume that X is normally distributed with expectation 10000 and standard deviation 1000.
Determine the stop-loss premium for a retention 13000. Do the same for a random variable Y
that has the same first two moments as X , but skewness 1.

2. Show that E[(S−d)+] = E[S]−d +
∫ d

0 (d − x)dF(x) = E[S]− ∫ d
0 [1−F(x)]dx.

3. If X ∼ N(µ,σ2), show that
∫ ∞

µ E[(X − t)+]dt = 1
4 σ2 and determine E[(X −µ)+].

4. Verify (3.105). Also verify (3.106) and (3.107), and show how these can be used to approxi-
mate the variance of the retained loss.

5. Give an expression for the net premium if the number of claims is Poisson(λ ) distributed and
the claim size is Pareto distributed. Assume that there is a deductible d.

6. [♠] Let X ∼ lognormal(µ,σ2). Show that for d > 0, the stop-loss premium is

E[(X −d)+] = eµ+σ2/2Φ
(− logd + µ +σ2

σ

)
−dΦ

(− logd + µ
σ

)
.

Compare your result with the Black-Scholes option pricing formula, and explain.

7. In Table 3.1, does using linear interpolation to calculate the stop-loss premium in for example
d = 0.4 for one of the given values for γ yield a result that is too high or too low?

8. Assume that N is an integer-valued risk with E[(N − d)+] = E[(U − d)+] for d = 0,1,2, . . .,
where U ∼ N(0,1). Determine Pr[N = 1].

9. Let π(t) = E[(U − t)+] denote the stop-loss premium for U ∼ N(0,1) and retention t, −∞ <
t < ∞. Show that π(−t), t ≥ 0 satisfies π(−t) = t +π(+t). Sketch π(t).

10. In Sections 3.9 and 3.10, the retention is written as µ + kσ , so it is expressed in terms of a
number of standard deviations above the expected loss. However, in the insurance practice, the
retention is always expressed as a percentage of the expected loss. Consider two companies
for which the risk of absence due to illness is to be covered by stop-loss insurance. This risk
is compound Poisson distributed with parameter λi and exponentially distributed individual
losses X with E[X ] = 1000. Company 1 is small: λ1 = 3; company 2 is large: λ2 = 300. What
are the net stop-loss premiums for both companies in case the retention d equals 80%, 100%
and 120% of the expected loss respectively? Express these amounts as a percentage of the
expected loss and use the normal approximation.

11. For the normal, lognormal and gamma distributions, as well as mixtures/combinations of ex-
ponentials, write functions like slnorm giving the stop-loss premiums of the corresponding
random variables.
Also, give a function yielding an approximate stop-loss premium for an r.v. having mean µ ,
variance σ2 and skewness γ , based on the Normal Power approximation, see (3.114). Do the
same for the translated gamma approximation, see (2.57) and (3.105).

12. Using R, verify Tables 3.1 and 3.2.
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13. Prove (3.115) and (3.116) and verify that the integrand in (3.115) is non-negative.

14. Show that (3.118) is exact if W = (1− I)µ + IU with µ = E[U ] and I ∼ Bernoulli(α), for
α = Var[W ]/Var[U ].

15. Verify Rule of thumb 3.10.6 for the case U ∼ Poisson(1) and V ∼ binomial(10, 1
10 ).

16. Assume that X1,X2, . . . are independent and identically distributed risks that represent the loss
on a portfolio in consecutive years. We could insure these risks with separate stop-loss con-
tracts for one year with a retention d, but we could also consider only one contract for the
whole period of n years with a retention nd. Show that E[(X1 − d)+]+ · · ·+ E[(Xn − d)+] ≥
E[(X1 + · · ·+ Xn − nd)+]. If d ≥ E[Xi], examine how the total net stop-loss premium for
the one-year contracts E[(X1 − d)+] relates to the stop-loss premium for the n-year period
E[(X1 + · · ·+Xn −nd)+].

17. Let B1 ∼ binomial(4,0.05), B2 ∼ binomial(2,0.1), S = B1 + B2 and T ∼ Poisson(0.4). For the
retentions d = 1

2 ,1, 3
2 , use the Rule of thumb 3.10.6 and discuss the results.

18. Derive (3.117) from the trapezoidal rule
∫ ∞

0 f (x)dx ≈ 1
2δ ∑∞

1 [ f (iδ )+ f ((i−1)δ )] with interval
width δ = 1.



Chapter 4
Ruin theory

Survival Probabilities, The Goal of Risk Theory —
Hilary Seal 1978

4.1 Introduction

In this chapter we focus again on collective risk models, but now in the long term.
We consider the development in time of the capital U(t) of an insurer. This is a
stochastic process that increases continuously because of earned premiums, and de-
creases stepwise at times that claims occur. When the capital becomes negative, we
say that ruin occurs. Let ψ(u) denote the probability that this ever happens, under
the assumption that the annual premium and the claims process remain unchanged.
This probability is a useful management tool since it serves as an indication of the
soundness of the insurer’s combination of premiums and claims process, in relation
to the available initial capital u =U(0). A high probability of ultimate ruin indicates
instability: measures such as reinsurance or raising premiums should be considered,
or the insurer should attract extra working capital.

The probability of ruin enables one to compare portfolios, but we cannot attach
any absolute meaning to the probability of ruin, as it does not actually represent
the probability that the insurer will go bankrupt in the near future. First of all, it
might take centuries for ruin to actually happen. Second, obvious interventions in
the process such as paying out dividends or raising the premium for risks with an
unfavorable claims performance are ruled out in the definition of the probability of
ruin. Furthermore, the effects of inflation and return on capital are supposed to can-
cel each other out exactly. The ruin probability only accounts for the insurance risk,
not for possible mismanagement. Finally, the state of ruin is merely a mathematical
abstraction: with a capital of −1, the insurer is not broke in practice, and with a
capital of +1, the insurer can hardly be called solvent. As a result, the exact value of
a ruin probability is not of vital importance; a good approximation is just as useful.

Nevertheless, the calculation of the probability of ruin is one of the central prob-
lems in actuarial science. The classical ruin model assumes that iid claims arrive
according to a Poisson process. In this setting it is possible to determine the moment
generating function with the probability 1−ψ(u) of not getting ruined (the non-ruin
or survival probability), but only two types of claim severities are known for which

87
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other distributions, an elegant and usually sufficiently tight bound ψ(u) ≤ e−Ru can
be found, the so-called Lundberg upper bound. The real number R in this expres-
sion is called the adjustment coefficient; it can be calculated by solving an equation

expected claims. This bound can often be used instead of the actual ruin probabil-
ity: the higher R, the lower the upper bound for the ruin probability and, hence, the
safer the situation. Also, in most cases it actually represents an asymptotic expres-
sion for ψ(u), so ψ(u) ∝ e−Ru for large u. This means that e−R can be interpreted
as the factor by which the ruin probability decreases if the initial capital in the ruin
process is increased from u to u+1, for large u. Another interpretation for R is that
it is precisely that risk aversion coefficient that would have led to the current annual
premium keeping exponential utility at the same level. The relation ψ(u) ∝ e−Ru for
large u means that R is the asymptotic hazard rate −ψ ′(u)/ψ(u) with ψ(u). For the
special case of exponential claim sizes, in fact ψ(u) = ψ(0)e−Ru holds for all u.

Multiplying both the premium rate and the expected claim frequency by the same
factor does not change the probability of eventual ruin: it does not matter if we make
the clock run faster. There have been attempts to replace the ruin probability by a
more ‘realistic’ quantity, for example the finite time ruin probability, which is the
probability of ruin before time t0. But this quantity behaves somewhat less orderly
and introduces the choice of the length of the time interval as an extra problem.
Another alternative risk measure arises if we consider the capital in discrete time
points 0,1,2, . . . only, for example at the time of the closing of the books. For this
discrete time model, we will derive some results.

First, we will discuss the Poisson process as a model to describe the development
in time of the number of claims. A characteristic feature of the Poisson process is
that it is memoryless, in the sense that the probability of the event of a claim occur-

a process being memoryless is the mathematical simplicity; the disadvantage is that

bound for the ruin probability, as well as the formula −Ru for the ruin
probability with initial capital u if the claim sizes are exponential. Here ψ(0) turns

non-exponential claim sizes, this same formula is a useful approximation, having
the correct value at zero, as well as the correct asymptotic hazard rate.

ity by studying the maximal aggregate loss, which represents the maximum differ-
ence between the earned premiums and the total payments up to any moment. Using

sider some approximations for the ruin probability.

variables, as well as random variables with only a finite number of values. But for
variables and sums, minima, maxima, mixtures and combinations of such random

it is often not realistic. The total of the claims paid in a Poisson process constitutes

ψ(u) = ψ(0)e

ring in the next second is independent of the history of the process. The advantage of

distributed according to variants of the exponential distribution. Next, we will con-

out to be simply the ratio of annual expected claims over annual premiums. For

the probability of ruin can easily be calculated. These are the exponential random

that contains the mgf of the claims, their expectation, and the ratio of premium and

In the second part of this chapter, we will derive the mgf of the non-ruin probabil-

a compound Poisson process. Based on the convenient mathematical properties of

this mgf, we will determine the value of the ruin probability in case the claims are

this process, we will be able to derive in a simple way Lundberg’s exponential upper
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Fig. 4.1 A realization of the risk process U(t).

4.2 The classical ruin process

A stochastic process consists of related random variables, indexed by the time t. We
define the surplus process or risk process as follows:

U(t) = u+ ct −S(t), t ≥ 0, (4.1)

where
U(t) = the insurer’s capital at time t;

u = U(0) = the initial capital;

c = the (constant) premium income per unit of time;

S(t) = X1 +X2 + · · ·+XN(t),

with
N(t) = the number of claims up to time t, and

Xi = the size of the ith claim, assumed non-negative.

A typical realization of the risk process is depicted in Figure 4.1. The random vari-
ables T1,T2, . . . denote the time points at which a claim occurs. The slope of the
process is c if there are no claims; at times t = Tj for some j, the capital drops by
Xj, which is the size of the jth claim. Since in Figure 4.1, at time T4 the total of the
incurred claims X1 +X2 +X3 +X4 is larger than the initial capital u plus the earned
premium cT4, the remaining surplus U(T4) is less than 0. This state of the process
is called ruin, and the point in time at which this occurs for the first time is denoted
by T . So

T =

{
min{t | t ≥ 0 & U(t) < 0};

∞ if U(t) ≥ 0 for all t.
(4.2)
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In case the probability of T = ∞ is positive, the random variable T is called defective.
The probability that ruin ever occurs, that is, the probability that T is finite, is called
the ruin probability. It is written as follows:

ψ(u) = Pr[T < ∞]. (4.3)

Before we turn to the claim process S(t), representing the total claims up to time t,
we first look at the process N(t) of the number of claims up to t. We will assume
that N(t) is a so-called Poisson process:

Definition 4.2.1 (Poisson process)
The process N(t) is a Poisson process if for some λ > 0 called the intensity of the
process, the increments of the process have the following property:

N(t +h)−N(t) ∼ Poisson(λh) (4.4)

for all t > 0, h > 0 and each history N(s), s ≤ t. ∇

As a result, the increments in a Poisson process have the following properties:

Independence: the increments N(ti + hi)−N(ti) are independent for disjoint in-
tervals (ti, ti +hi), i = 1,2, . . .;

Stationarity: N(t +h)−N(t) is Poisson(λh) distributed for every value of t.

Next to this global definition of the claim number process, we can also consider in-
crements N(t +dt)−N(t) in infinitesimally small intervals (t, t +dt). For the Poisson
process we have by (4.4):

Pr[N(t +dt)−N(t) = 1 |N(s),0 ≤ s ≤ t] = e−λdtλdt = λdt,

Pr[N(t +dt)−N(t) = 0 |N(s),0 ≤ s ≤ t] = e−λdt = 1−λdt,

Pr[N(t +dt)−N(t) ≥ 2 |N(s),0 ≤ s ≤ t] = 0.

(4.5)

Actually, as is common when differentials are involved, the final equalities in (4.5)
are not really quite equalities, but they are only valid up to terms of order (dt)2.

A third way to define such a process is by considering the waiting times

W1 = T1, Wj = Tj −Tj−1, j = 2,3, . . . (4.6)

Because Poisson processes are memoryless, these waiting times are independent
exponential(λ ) random variables, and they are also independent of the history of
the process. This can be shown as follows: if the history H represents an arbitrary
realization of the process up to time t with the property that Ti−1 = t, then

Pr[Wi > h |H ] = Pr[N(t +h)−N(t) = 0 |H ] = e−λh. (4.7)

If N(t) is a Poisson process, then S(t) is a compound Poisson process; for a fixed t =
t0, the aggregate claims S(t0) have a compound Poisson distribution with parameter
λ t0.
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We need some more notation: the cdf and the moments of the individual claims
Xi are denoted by

P(x) = Pr[Xi ≤ x]; µ j = E[X j
i ], i, j = 1,2, . . . (4.8)

The loading factor or safety loading θ is defined by c = (1+θ)λ µ1, hence

θ =
c

λ µ1
−1. (4.9)

4.3 Some simple results on ruin probabilities

In this section we give a short and elegant proof of F. Lundberg’s exponential upper
bound for the ruin probability. Also, we derive the ruin probability for a Poisson
ruin process with exponential claims. First we introduce the adjustment coefficient.

Definition 4.3.1 (Adjustment coefficient)
In a ruin process with claims distributed as X ≥ 0 having E[X ] = µ1 > 0, the adjust-
ment coefficient R is the positive solution of the following equation in r:

1+(1+θ)µ1r = mX (r). (4.10)

See also Figure 4.2. ∇

In general, the adjustment coefficient equation (4.10) has one positive solution:
mX (t) is strictly convex since m′′

X (t) = E[X2etX ] > 0, m′
X (0) < (1+θ)µ1, and, with

few exceptions, mX (t) → ∞ continuously. Note that for θ ↓ 0, the limit of R is 0,
while for θ ↑ ∞, we see that R tends to the asymptote of mX (r), or to ∞.

The adjustment coefficient equation (4.10) is equivalent to λ + cR = λmX (R).
Now write S for the total claims in an interval of length 1; consequently c−S is the
profit in that interval. Then S is compound Poisson with parameter λ , so mS(r) =
exp{λ (mX (r)−1)}. Then R can also be found as the positive solution to any of the
following equivalent equations, see Exercise 4.3.1:

eRc = E[eRS] ⇐⇒ mc−S(−R) = 1 ⇐⇒ c =
1
R

logmS(R). (4.11)

Remark 4.3.2 (Adjustment coefficient and risk aversion)
From the last equation and (1.20) we see that, in case of an exponential utility func-
tion, R is just that risk aversion α that leads to an annual premium c. ∇

Example 4.3.3 (Adjustment coefficient for an exponential distribution)
Assume that X is exponentially distributed with parameter β = 1/µ1. The corre-
sponding adjustment coefficient is the positive solution of

1+(1+θ)µ1r = mX (r) =
β

β − r
. (4.12)
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m  (r)X

1+(1+θ)µ r1

0 R r

Fig. 4.2 Determining the adjustment coefficient R.

The solutions of this equation are the trivial excluded solution r = 0 and

r = R =
θβ

1+θ
. (4.13)

So this situation admits an explicit expression for the adjustment coefficient. ∇

1 2

see Exercise 4.3.2, but R < β must also hold in (4.12).
In the next theorem, we prove F. Lundberg’s famous exponential inequality for

the ruin probability. Surprisingly, the proof involves mathematical induction.

Theorem 4.3.4 (Lundberg’s exponential bound for the ruin probability)
For a compound Poisson risk process with an initial capital u, a premium per unit

X (t), and an adjustment coefficient R that
satisfies (4.10), we have the following inequality for the ruin probability:

ψ(u) ≤ e−Ru. (4.14)

Proof. Define ψk(u), −∞ < u < ∞ and k = 0,1,2, . . ., as the probability that ruin
occurs at or before the kth claim. Since for k → ∞, ψk(u) increases to its limit ψ(u)
for all u, it suffices to prove that ψk(u) ≤ e−Ru for each k. For k = 0 the inequality
holds, since ψ0(u) = 1 if u < 0, and ψ0(u) = 0 if u ≥ 0. We are going to split
up the event ‘ruin at or before the kth claim’ as regards time and size of the first
claim. Assume that it occurs between time t and t +dt. This event has a ‘probability’
λe−λ tdt. Also assume it has a size between x and x + dx, which has a probability
dP(x). Then the capital right after time t equals u + ct − x. Integrating over x and t
yields

ψk(u) =
∫ ∞

0

∫ ∞

0
ψk−1(u+ ct − x)dP(x)λe−λ t dt. (4.15)

To facilitate solving (4.10) numerically, one can use the fact that R ∈ [0,2θ µ /µ ],

of time c, claims with cdf P(·) and mgf m

For most distributions, there is no explicit expression for the adjustment coefficient.
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Now assume that the induction hypothesis holds for k− 1, that is, ψk−1(u) ≤ e−Ru

for all real u. Then, (4.15) leads to

ψk(u) ≤
∫ ∞

0

∫ ∞

0
exp{−R(u+ ct − x)}dP(x)λe−λ t dt

= e−Ru
∫ ∞

0
λ exp{−t(λ +Rc)}dt

∫ ∞

0
eRx dP(x)

= e−Ru λ
λ + cR

mX (R) = e−Ru,

(4.16)

where the last equality follows from (4.10). ∇

Corollary 4.3.5 (Positive adjustment coefficient means ruin is not certain)
Since there is a positive probability e−λ

e−R by the above theorem, for any non-negative initial capital u ≥ 0 we have 1−
ψ(u)≥ 1−ψ(0)≥ e−λ (1−e−R). So the probability of non-ruin, also known as the

the claim severity distribution is finite on an interval containing zero. ∇

Next, we derive an explicit expression for the ruin probability in a compound Pois-
son risk process with claims that are exponential. It turns out that, except for a factor
ψ(0), Lundberg’s exponential upper bound (4.14) is an equality here.

Theorem 4.3.6 (Ruin probability with exponential claims)
For a Poisson ruin process with claims ∼ exponential(1/µ1), intensity λ and pre-
mium rate c = (1 + θ)λ µ1 with θ > 0, the ruin probability with initial capital u
is

ψ(u) = ψ(0)e−Ru, (4.17)

where R = θ
(1+θ)µ1

is the adjustment coefficient solving (4.12), and ψ(0) = 1
1+θ .

Proof. To simplify notation, we assume that both the claims and the interarrival
times are exponential(1), so µ1 = λ = 1; the general case with arbitrary time and
money units follows easily. For this situation, we want to find the ruin probability
ψ(u) with initial capital u ≥ 0. Our proof has two steps. In the first, we derive a
simple equation involving differentials that the ruin probability must satisfy. From
this, we get an expression for the ruin probability in which the ruin probability ψ(0)
without initial capital still is unknown. In the second step, to find ψ(0) we use a
formula similar to (4.15).

Assume we have a realization of a risk process with initial capital u in which ruin
occurs. In that case, there is a ruining claim, of size X ∼ exponential(1). It is known
that X > v, where v represents the capital present just before ruin in this realization of
the process. Now assume that the initial capital was not u, but infinitesimally larger,
so u + du. There are two cases in which our particular realization of the process
also results in ruin starting from u + du. First, the ruining claim may be so big that
an extra du of initial capital would not have made a difference, in other words,
X > v+ du. Since X is exponential, we have Pr[X > v+du |X > v] = e−v−du/e−v =
1− du. Note that this probability is not dependent on v. Second, the extra amount

of having no claims until time 1, and ψ(1)≤

survival probability, is strictly positive when R > 0 holds, that is, when the mgf of
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du might for the moment save us from ruin. This event has conditional probability
du. But then, we might get ruined at a later time, and because the Poisson process is
memoryless, the probability of that happening is just ψ(0). Therefore we have the
following differential equation:

ψ(u+du) = ψ(u)
(
1−du+ψ(0)du

)
. (4.18)

Rearranging this gives
ψ ′(u)

ψ(u)
= ψ(0)−1. (4.19)

The left hand side is d logψ(u)/du, so necessarily

logψ(u) = u(ψ(0)−1)+ logψ(0). (4.20)

Therefore, for a classical risk process with unit exponential claims, the ruin proba-
bility, as a function of the initial capital u, must be of the following form:

ψ(u) =

{
ψ(0)e−u(1−ψ(0)) for u ≥ 0;

1 for u < 0.
(4.21)

The second step in the proof is to find the value of ψ(0) as a function of c. For this,
assume the first claim equals x and occurs at time t; this same device was used to
derive (4.15). The ‘probability’ of this event equals e−t dt e−x dx. After that claim,
the capital is u+ ct − x, so the ruin probability at u can be expressed as

ψ(u) =
∫ ∞

0

∫ ∞

0
ψ(u+ ct − x) e−t dt e−x dx, (4.22)

which, using (4.21), for the special case u = 0 can be rewritten as

ψ(0) =
∫ ∞

0

∫ ∞

x/c
ψ(0)e−(1−ψ(0))(ct−x) e−t dt e−x dx

+
∫ ∞

0

∫ x/c

0
e−t dt e−x dx.

(4.23)

Using
∫ ∞

0 e−αx dx = 1/α and substituting y = ct − x, this results in:

ψ(0) =
ψ(0)

c

∫ ∞

0
e−x/c

∫ ∞

0
e−y(1−ψ(0)+1/c) dy e−x dx

+
∫ ∞

0
(1− e−x/c)e−x dx

=
ψ(0)

c

∫ ∞

0
e−x/c 1

1−ψ(0)+1/c
e−x dx+1− 1

1+1/c

=
ψ(0)

c
1

1−ψ(0)+1/c
1

1+1/c
+

1
c+1

,

(4.24)
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which can be simplified to the following quadratic equation expressing ψ(0) in c:

ψ(0) =
1
c

1
1−ψ(0)+1/c

. (4.25)

There are two solutions. One is ψ(0) = 1, which is excluded by Corollary 4.3.5. The
other solution is ψ(0) = 1

c , so (4.17) is proved. ∇

The equality ψ(0) = 1
1+θ , proved in (4.25) for exponential claims, actually holds

for all distributions of the claim sizes, see (4.59) in Corollary 4.7.2. Since ψ(0) ↑ 1
if θ ↓ 0, by Corollary 4.3.5 we have ψ(u) ≡ 1 for exponential claims when there is
no safety loading, that is, when θ = 0.

Example 4.3.7 (Simulating a Poisson ruin process)
The following R program counts how often ruin occurs in the first n = 400 claims of
a simulated ruin process. This way we get an estimate of ψn(u), the probability of
ruin at or before the nth claim, as defined in the proof of Theorem 4.3.4. The claims
are gamma(α,α) distributed with α = 2. Because the claims are not very heavy-
tailed, it is to be expected that if ruin occurs, it will occur early. This is because
the surplus process will drift away from zero, since E[U(t)] = u + θλ tE[X ] and
Var[U(t)] = λ tE[X2]. So this program gives a good approximation for ψ(u):

lab <- 1; EX <- 1; theta <- 0.3; u <- 7.5; alpha <- 2
n <- 400; nSim <- 10000; set.seed(2)
c. <- (1+theta)*lab*EX
N <- rep(Inf, nSim)
for (k in 1:nSim){
Wi <- rexp(n)/lab; Ti <- cumsum(Wi)
Xi <- rgamma(n, shape=alpha)/alpha ## severity has mean EX=1
Si <- cumsum(Xi); Ui <- u + Ti*c. - Si
ruin <- !all(Ui>=0)
if (ruin) N[k] <- min(which(Ui<0))}

N <- N[N<Inf]; length(N); mean(N); sd(N); max(N)
## 745 30.78792 24.71228 255

nite ruin claim numbers N[N<Inf] have a maximum of 255, mean 30.8 and s.d.
24.7. So it is highly improbable that ruin will occur after the 400th claim, there-
fore ψ(u) ≈ ψ400(u). Hence a good estimate of the ultimate ruin probability is
ψ(u) ≈ 7.45%.

As the reader may verify, the approximation ψ(u) ≈ ψ(0)e−Ru gives 7.15%.

Lundberg’s exponential upper bound e−Ru ∇

4.4 Ruin probability and capital at ruin

To be able to give more results about the ruin process, we have to derive some more

The vector Ui contains the surplus after the ith claim has been paid. The 745 fi-

The exact ruin probability, computed using the technique of Section 4.8, is 7.386%.

theory. First we give an expression for the ruin probability that involves the mgf of

= 9.29% for this case.
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U(T ), which is the capital at the moment of first ruin, conditionally given the event
that ruin occurs in a finite time period.

Theorem 4.4.1 (Ruin probability and capital at ruin)
The ruin probability for u ≥ 0 satisfies

ψ(u) =
e−Ru

E[e−RU(T ) |T < ∞]
. (4.26)

Proof. Let R > 0 and t > 0. Then,

E[e−RU(t)] = E[e−RU(t) |T ≤ t]Pr[T ≤ t]+E[e−RU(t) |T > t]Pr[T > t]. (4.27)

The left-hand side equals e−Ru. This can be shown as follows: since U(t) = u +
ct −S(t) and S(t) ∼ compound Poisson with parameter λ t, we have, using equation
(4.10) to prove that the expression in square brackets equals 1:

E[e−RU(t)] = E[e−R{u+ct−S(t)}]

= e−Ru[e−Rc exp{λ (mX (R)−1)}]t
= e−Ru.

(4.28)

For the first conditional expectation in (4.27) we take v ∈ [0, t] and write, using
U(t) = U(v)+ c(t − v)− [S(t)−S(v)], see also (4.28):

E[e−RU(t) |T = v] = E[e−R{U(v)+c(t−v)−[S(t)−S(v)]} |T = v]

= E[e−RU(v) |T = v]e−Rc(t−v)E[eR{S(t)−S(v)} |T = v]

= E[e−RU(v) |T = v]
{

e−Rc exp[λ (mX (R)−1)]
}t−v

= E[e−RU(T ) |T = v].

(4.29)

The total claims S(t)− S(v) between v and t has again a compound Poisson distri-
bution. What happens after v is independent of what happened before v, so U(v)
and S(t)−S(v) are independent. The term in curly brackets equals 1, again by equa-
tion (4.10). Equality (4.29) holds for all v ≤ t, and therefore E[e−RU(t) |T ≤ t] =
E[e−RU(T ) |T ≤ t] also holds.

Since Pr[T ≤ t] ↑ Pr[T < ∞] for t → ∞, it suffices to show that the last term in
(4.27) vanishes for t → ∞. For that purpose, we split the event T > t according to the
size of U(t). More precisely, we consider the cases U(t) ≤ u0(t) and U(t) > u0(t)
for some suitable function u0(t). Notice that T > t implies that we are not in ruin at
time t, which means that U(t) ≥ 0, so e−RU(t) ≤ 1. We have

E[e−RU(t) |T > t]Pr[T > t]

= E[e−RU(t) |T > t,0 ≤U(t) ≤ u0(t)]Pr[T > t,0 ≤U(t) ≤ u0(t)]

+E[e−RU(t) |T > t,U(t) > u0(t)]Pr[T > t,0 ≤U(t) > u0(t)]

≤ Pr[U(t) ≤ u0(t)]+E[exp(−Ru0(t))].

(4.30)
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The second term vanishes if u0(t) → ∞. For the first term, note that U(t) has an
expected value µ(t) = u + ct − λ tµ1 and a variance σ2(t) = λ tµ2. Because of
Chebyshev’s inequality, it suffices to choose the function u0(t) such that (µ(t)−
u0(t))/σ(t) → ∞. We can for example take u0(t) = t2/3. ∇

Corollary 4.4.2 (Consequences of Theorem 4.4.1)
The following observations are immediate from the previous theorem:

1. If θ ↓ 0, then the chord in Figure 4.2 tends to a tangent line and, because of
Theorem 4.4.1, ψ(u) → 1; if θ ≤ 0 then ψ(u) ≡ 1, see Exercise 4.4.1.

2. If T < ∞, then U(T ) < 0. Hence, the denominator in (4.26) is greater than 1, so
ψ(u) < e−Ru; this is yet another proof of Theorem 4.3.4.

3. If b is an upper bound for the claims, then Pr[U(T ) > −b] = 1, so we have an
exponential lower bound for the ruin probability: ψ(u) > e−R(u+b).

4. As the size of the initial capital does not greatly affect the probability distribution
of the capital at ruin, it is quite plausible that the denominator of (4.26) has a
finite limit, say c0, as u → ∞. Then c0 > 1. This yields the following asymptotic
approximation for ψ(·): for large u, we have ψ(u) ≈ 1

c0
e−Ru.

5. If R > 0, then 1−ψ(u) > 0 for all u ≥ 0. As a consequence, if 1−ψ(u0) = 0 for
some u0 ≥ 0, then R = 0 must hold, so 1−ψ(u) = 0 for all u ≥ 0. ∇

Remark 4.4.3 (Interpretation of the adjustment coefficient; martingale)
In (4.28), we saw that the adjustment coefficient R has the property that E[e−RU(t)]
is constant in t. In other words, e−RU(t) is a martingale: it can be interpreted as the
fortune of a gambler who is involved in a sequence of fair games. Note that if R
is replaced by any other non-zero real number, the expression in square brackets in
(4.28) is not equal to 1, so in fact the adjustment coefficient is the unique positive
number R with the property that e−RU(t) is a martingale. ∇

Example 4.4.4 (Ruin probability, exponential claims)
From (4.26), we can verify expression (4.17) for the ruin probability if the claims
have an exponential(β ) distribution. For this purpose, assume that the history of the
process up to time t is given by H , that ruin occurs at time T = t and that the capital
U(T − 0) just before ruin equals v. So the ruining claim, of size X , say, is given to
be larger than v. Then, for each H , v, t and y, we have:

Pr[−U(T ) > y |H ] = Pr[X > v+ y |X > v] =
e−β (v+y)

e−βv
= e−βy. (4.31)

Apparently, the deficit −U(T ) at ruin also has an exponential(β ) distribution, so the
denominator of (4.26) equals β/(β −R). With β = 1/µ1 and R = θβ/(1+θ), see
(4.13), and thus β/(β −R) = 1+θ , we find again the ruin probability (4.17) in case
of exponential(β = 1/µ1) claims:

ψ(u) =
1

1+θ
exp

(
− θβu

1+θ

)
=

1
1+θ

exp

(
− θ

1+θ
u
µ1

)
= ψ(0)e−Ru. (4.32)

In this specific case, the denominator of (4.26) does not depend on u. ∇
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4.5 Discrete time model

In the discrete time model, we consider more general risk processes U(t) than the
compound Poisson process from the previous sections, but now only on the time
points n = 0,1,2, . . . Write Gn for the profit in the interval (n−1,n], therefore

U(n) = u+G1 +G2 + · · ·+Gn, n = 0,1, . . . (4.33)

Later on, we will discuss what happens if we assume that U(t) is a compound Pois-
son process, but for the moment we only assume that the profits G1,G2, . . . are in-
dependent and identically distributed, with Pr[Gn < 0] > 0, but E[Gn] = µ > 0. We
define a discrete time version of the ruin time T̃ , the ruin probability ψ̃(u) and the
adjustment coefficient R̃ > 0, as follows:

T̃ = min{n : U(n) < 0}; ψ̃(u) = Pr[T̃ < ∞]; mG(−R̃) = 1. (4.34)

The last equation has a unique solution. This can be seen as follows: since E[G] > 0
and Pr[G < 0] > 0, we have m′

G(0) > 0 and mG(−r) → ∞ for r → ∞, while
m′′

G(−r) = E[G2e−Gr] > 0, so mG(·) is a convex function.

Example 4.5.1 (Compound Poisson distributed annual claims)
In the special case that U(t) is a compound Poisson process, we have Gn = c−Zn

where Zn denotes the compound Poisson distributed total claims in year n. From
(4.11), we know that R satisfies the equation mc−Z(−R) = 1. Hence, R = R̃. ∇

Example 4.5.2 (Normally distributed annual claims)
If Gn ∼ N(µ ,σ2), with µ > 0, then R̃ = 2µ/σ2 follows from:

log(mG(−r)) = 0 = −µr +
1
2

σ2r2. (4.35)

Combining this with the previous example, we observe the following. If we con-
sider a compound Poisson process with a large Poisson parameter, therefore with
many claims between the time points 0,1,2, . . ., then Sn will approximately follow
a normal distribution. Hence the adjustment coefficients will be close to each other,
so R ≈ 2µ/σ2. But if we take µ = c−λ µ1 = θλ µ1 and σ2 = λ µ2 in Exercise 4.3.2,
we see that 2µ/σ2 is an upper bound for R. ∇

Analogously to Theorem 4.4.1, the following equality relates the ruin probability
and the capital at ruin:

ψ̃(u) =
e−R̃u

E[e−R̃U(T̃ ) | T̃ < ∞]
. (4.36)

So in the discrete time model one can give an exponential upper bound for the ruin
probability, too, which is

ψ̃(u) ≤ e−R̃u. (4.37)
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4.6 Reinsurance and ruin probabilities

In the economic environment we postulated in Chapter 1, reinsurance contracts
should be compared by their expected utility. In practice, however, this method is
not applicable. Alternatively, we can compare the ruin probabilities under various
reinsurance policies. This too is quite difficult. Therefore we will concentrate on the
adjustment coefficient and try to obtain a more favorable one by reinsurance. It is
exactly from this possibility that the adjustment coefficient takes its name.

In reinsurance we transfer some of our expected profit to the reinsurer, in ex-
change for more stability in our position. These two conflicting criteria cannot be
optimized at the same time. A similar problem arises in statistics where one finds
a trade-off between the power and the size of a test. In our situation, we can fol-
low the same procedure used in statistics, that is, maximizing one criterion while
restricting the other. We could, for example, maximize the expected profit subject to
the condition that the adjustment coefficient R is larger than some R0.

We consider two situations. In the discrete time ruin model, we reinsure the total
claims in one year and then examine the discrete adjustment coefficient R̃. In the
continuous time model, we compare R for proportional reinsurance and excess of
loss reinsurance, with a retention for each claim.

Example 4.6.1 (Discrete time compound Poisson claim process)
Consider the compound Poisson distribution with λ = 1 and p(1) = p(2) = 1

2 from
Example 3.5.4. What is the discrete adjustment coefficient R̃ for the total claims S
in one year, if the loading factor θ equals 0.2, meaning that the annual premium c
equals 1.8?

The adjustment coefficient R̃ is calculated by solving the equation:

λ + cr = λmX (r) ⇐⇒ 1+1.8r =
1
2

er +
1
2

e2r. (4.38)

Using R’s numerical routine uniroot for one-dimensional root (zero) finding, we
find the adjustment coefficient in (4.38) by

f <- function (r) exp(r)/2 + exp(2*r)/2 - 1 - 1.8*r
R <- uniroot(f, low=0.00001, up=1)$root ## 0.2105433

The first parameter of uniroot is the function f of which the zero R is sought.
The lower and upper parameter give an interval in which the root of the equation
f (R) = 0 is known to lie; the signs of the function f must be opposite at both ends of
that interval. Note that the function is computed at both endpoints first, so the upper
bound must be chosen with some care in this case. Of course one can use the upper
bound R ≤ 2θ µ1/µ2, see Exercise 4.3.2, if this is smaller than the asymptote of mX .
Apart from the root, the function uniroot provides more information about the
zero, including an indication of its precision.

Now assume that we take out a stop-loss reinsurance with d = 3. The reinsur-
ance premium loading is ξ = 0.8, so if d = 3, from Example 3.5.4 we see that the
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reinsurance premium is (1+ξ )E[(S−d)+] = 1.8π(3) = 0.362. To determine the ad-
justment coefficient, we calculate the distribution of the profit in one year Gi, which
consists of the premium income less the reinsurance premium and the retained loss.
Hence,

Gi =

{
1.8−0.362−Si if Si = 0,1,2,3;
1.8−0.362−3 if Si > 3.

(4.39)

The corresponding discrete adjustment coefficient R̃, which is the solution of (4.34),
is approximately 0.199.

Because of the reinsurance, our expected annual profit is reduced. It is equal to
our original expected profit less the one of the reinsurer. For example, for d = 3 it
equals 1.8− 1.5− ξ π(3) = 0.139. In the following table, we show the results for
different values of the retention d:

Retention d R̃ Expected profit

3 0.199 0.139
4 0.236 0.234
5 0.230 0.273
∞ 0.211 0.300

We see that the decision d = 3 is not rational: it is dominated by d = 4, d = 5 as well
as d = ∞, that is, no reinsurance, since they all yield both a higher expected profit
and more stability in the sense of a larger adjustment coefficient R̃. ∇

Example 4.6.2 (Reinsurance, individual claims)
Reinsurance may also affect each individual claim, instead of only the total claims
in a period. Assume that the reinsurer pays h(x) if the claim amount is x. In other
words, the retained loss equals x−h(x). We consider two special cases:

h(x) =

{
αx 0 ≤ α ≤ 1 proportional reinsurance

(x−β )+ 0 ≤ β excess of loss reinsurance
(4.40)

Obviously, proportional reinsurance can be considered as a reinsurance on the total
claims just as well. We will examine the usual adjustment coefficient Rh, which is
the root of

λ +(c− ch)r = λ
∫ ∞

0
er[x−h(x)] dP(x), (4.41)

where ch denotes the reinsurance premium. The reinsurer uses a loading factor ξ on
the net premium. Assume that λ = 1, and p(x) = 1

2 for x = 1 and x = 2. Furthermore,
let c = 2, so θ = 1

3 , and consider two values ξ = 1
3 and ξ = 2

5 .
In case of proportional reinsurance h(x) = αx, the premium equals

ch = (1+ξ )λE[h(X)] = (1+ξ )
3
2

α, (4.42)

so, because of x−h(x) = (1−α)x, (4.41) leads to the equation
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1+[2− (1+ξ )
3
2

α]r =
1
2

er(1−α) +
1
2

e2r(1−α). (4.43)

For ξ = 1
3 , we have ch = 2α and Rh = 0.325

1−α ; for ξ = 2
5 , we have ch = 2.1α .

Next, we consider the excess of loss reinsurance h(x) = (x−β )+, with 0≤ β ≤ 2.
The reinsurance premium equals

ch = (1+ξ )λ [
1
2

h(1)+
1
2

h(2)] =
1
2
(1+ξ )[(1−β )+ +(2−β )+], (4.44)

while x−h(x) = min{x,β}, and therefore Rh is the root of

1+(2− 1
2
(1+ξ )[(1−β )+ +(2−β )+])r =

1
2
[emin{β ,1}r + emin{β ,2}r]. (4.45)

In the table below, we give the results Rh for different values of β , compared with
the same results in case of proportional reinsurance with the same expected payment
by the reinsurer: 3

2 α = 1
2 (1−β )+ + 1

2 (2−β )+.
For ξ = 1

3 , the loading factors of the reinsurer and the insurer are equal, and the
more reinsurance we take, the larger the adjustment coefficient is. If the reinsurer’s
loading factor equals 2

5 , then for α ≥ 5
6 the expected retained loss λE[X −h(X)] =

3
2 (1−α) is not less than the retained premium c−ch = 2−2.1α . Consequently, the
resulting retained loading factor is not positive, and eventual ruin is a certainty. The
same phenomenon occurs in case of excess of loss reinsurance with β ≤ 1

4 . In the
table below, this situation is denoted by the symbol ∗.

β 2.0 1.4 0.9 0.6 0.3 0.15 0.0
α 0.0 0.2 0.4 0.6 0.8 0.9 1.0

ξ = 1
3 XL .325 .444 .611 .917 1.83 3.67 ∞

Prop. .325 .407 .542 .813 1.63 3.25 ∞
ξ = 2

5 XL .325 .425 .542 .676 .426 ∗ ∗
Prop. .325 .390 .482 .602 .382 ∗ ∗

From the table we see that all adjustment coefficients for excess of loss coverage
(XL) are at least as large as those for proportional reinsurance (Prop.) with the same
expected payment. This is not a coincidence: by using the theory on ordering of
risks, it can be shown that XL coverage always yields the best R-value as well as the
smallest ruin probability among all reinsurance contracts with the same expected
value of the retained risk; see Section 7.4.4. ∇

4.7 Beekman’s convolution formula

In this section we show that the non-ruin probability can be written as a compound
geometric distribution function with known specifications. For this purpose, we con-
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Fig. 4.3 The quantities L, L1, L2, . . .

sider the maximal aggregate loss, in other words the maximal difference over t be-
tween the payments and the earned premium up to time t:

L = max{S(t)− ct | t ≥ 0}. (4.46)

Since S(0) = 0, we have L ≥ 0. The event L > u occurs if, and only if, a finite point
in time t exists for which U(t) < 0. In other words, the events L > u and T < ∞ are
equivalent and consequently

ψ(u) = 1−FL(u). (4.47)

Next, we consider the points where the surplus process reaches a new record low.
This happens necessarily at points in time when a claim is paid. Let the random
variables L j, j = 1,2, . . . denote the amounts by which the jth record low is less than
the j−1st one. See Figure 4.3 where there are three new record lows, assuming that
the process drifts away to ∞ in the time period not shown. Let M be the random
number of new records. We have

L = L1 +L2 + · · ·+LM. (4.48)

From the fact that a Poisson process is memoryless, it follows that the probability
that a particular record low is the last one is the same every time. Hence, M follows
a geometric distribution. For the same reason, the amounts of the improvements
L1,L2, . . . are independent and identically distributed. The parameter of M, that is,
the probability that the previous record is the last one, equals the probability to avoid
ruin starting with initial capital 0, hence it equals 1−ψ(0).

So L has a compound geometric distribution. Its specifications, that is, the value
of the geometric parameter 1−ψ(0) and the distribution of L1, conditionally given
M ≥ 1, both follow from the following theorem:
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Theorem 4.7.1 (Distribution of the capital at time of ruin)
If the initial capital u equals 0, then for all y > 0 we have:

Pr[U(T ) ∈ (−y−dy,−y),T < ∞] =
λ
c

[1−P(y)]dy. (4.49)

Proof. In a compound Poisson process, the probability of having a claim in the
interval (t, t + dt) equals λ dt, which is independent of t and of the history of the
process up to that time. So, between 0 and dt there is either no claim (with probabil-
ity 1−λ dt), and the capital increases from u to u + cdt, or one claim with random
size X . In the latter case, there are two possibilities. If the claim size is less than u,
then the process continues with capital u + cdt −X . Otherwise ruin occurs, but the
capital at ruin is only larger than y if X > u+ y. Defining

G(u,y) = Pr[U(T ) ∈ (−∞,−y),T < ∞ |U(0) = u], (4.50)

we can write

G(u,y) = (1−λdt)G(u+ cdt,y)

+λdt

{∫ u

0
G(u− x,y)dP(x)+

∫ ∞

u+y
dP(x)

}
.

(4.51)

If G′ denotes the partial derivative of G with respect to u, then

G(u+ cdt,y) = G(u,y)+ cdt G′(u,y). (4.52)

Substitute (4.52) into (4.51) and divide by cdt. Then we get

G′(u,y) =
λ
c

{
G(u,y)−

∫ u

0
G(u− x,y)dP(x)−

∫ ∞

u+y
dP(x)

}
. (4.53)

Integrating this over u ∈ [0,z] yields

G(z,y)−G(0,y) =
λ
c

{∫ z

0
G(u,y)du−

∫ z

0

∫ u

0
G(u− x,y)dP(x)du

−
∫ z

0

∫ ∞

u+y
dP(x)du

}
.

(4.54)

The double integrals in (4.54) can be reduced to single integrals as follows. For
the first double integral, exchange the order of integration using Fubini, substitute
v = u− x and swap back the integration order. This leads to∫ z

0

∫ u

0
G(u− x,y)dP(x)du =

∫ z

0

∫ z−v

0
G(v,y)dP(x)dv

=
∫ z

0
G(v,y)P(z− v)dv.

(4.55)
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In the second double integral in (4.54), we substitute v = u+ y, leading to∫ z

0

∫ ∞

u+y
dP(x)du =

∫ z+y

y
[1−P(v)]dv. (4.56)

Hence,

G(z,y)−G(0,y) =
λ
c

{∫ z

0
G(u,y)[1−P(z−u)]du

−
∫ z+y

y
[1−P(u)]du

}
.

(4.57)

For z → ∞, the first term on both sides of (4.57) vanishes, leaving

G(0,y) =
λ
c

∫ ∞

y
[1−P(u)]du, (4.58)

which completes the proof. ∇

Corollary 4.7.2 (Consequences of Theorem 4.7.1)

1. The ruin probability at 0 depends on the safety loading only. Integrating (4.49)
for y ∈ (0,∞) yields Pr[T < ∞], so for every P(·) with mean µ1 we have

ψ(0) =
λ
c

∫ ∞

0
[1−P(y)]dy =

λ
c

µ1 =
1

1+θ
. (4.59)

2. Assuming that there is at least one new record low, L1 has the same distribution
as the amount with which ruin occurs starting from u = 0 (if ruin occurs). So
we have the following expression for the density function of the record improve-
ments:

fL1(y) =
1−P(y)

1

1
ψ(0)

=
1−P(y)

µ1
, y > 0. (4.60)

3. 1 and p the parameter of M. Then, since L has a

1−ψ(u) =
∞

∑
m=0

mHm∗(u), (4.61)

where

p =
θ

1+θ
and H(x) = 1− 1

µ1

∫ ∞

x
[1−P(y)]dy. (4.62)

4.

mL(r) =
θ

1+θ
+

1
1+θ

θ(mX (r)−1)

1+(1+θ)µ1r−mX (r)
. (4.63)

(1+θ)µ

Let H(x) denote the cdf of L
compound geometric distribution, the non-ruin probability of a risk process is

The mgf of the maximal aggregate loss L, which because of (4.47) is also the

given by Beekman’s convolution formula:

mgf of the non-ruin probability 1−ψ(u), is given by

p(1− p)
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Proof. 1 + · · ·+ LM with M ∼
geometric(p) for p = θ

1+θ , we have

mL(r) = mM(logmL1(r)) =
p

1− (1− p)mL1(r)
. (4.64)

1

mL1(r) =
1
µ1

∫ ∞

0
ery(1−P(y))dy

=
1
µ1

{
1
r
[ery −1][1−P(y)]

∣∣∣∣∞
0

+
∫ ∞

0

1
r
[ery −1]dP(y)

}
=

1
µ1r

[
mX

]
(4.65)

since the integrated term disappears at ∞ because for t → ∞:∫ ∞

0
ery dP(y) < ∞ =⇒

∫ ∞

t
ery dP(y) ↓ 0

=⇒ ert
∫ ∞

t
dP(y) = ert(1−P(t)) ↓ 0.

(4.66)

Substituting (4.65) into (4.64) then yields (4.63). Note that, as often, a proof using
Fubini instead of partial integration is somewhat easier; see Theorem 1.4.3. ∇

Remark 4.7.3 (Recursive formula for ruin probabilities)
The ruin probability in u can be expressed in the ruin probabilities at smaller initial
capitals, as follows:

ψ(u) =
λ
c

∫ u

0
[1−P(y)]ψ(u− y)dy+

λ
c

∫ ∞

u
[1−P(y)]dy. (4.67)

To prove this, note that T < ∞ implies that the surplus eventually will drop below
the initial level, so, using (4.60):

ψ(u) = Pr[T < ∞] = Pr[T < ∞,M > 0]

= Pr[T < ∞ |M > 0]Pr[M > 0]

=
1

1+θ

∫ ∞

0
Pr[T < ∞ |L1 = y] fL1(y)dy

=
λ
c

(∫ u

0
ψ(u− y)(1−P(y))dy+

∫ ∞

u
(1−P(y))dy

)
,

(4.68)

where we have substituted c = (1+θ)λ µ1. ∇

Only the last assertion requires a proof. Since L = L

(r)−1 ,

The mgf of L follows from its density (4.60):
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4.8 Explicit expressions for ruin probabilities

Two situations exist for which we can easily compute the ruin probabilities. We

ψ(u). To find an expression for the ruin probability, we only need to identify this

exponential distributions, see Section 3.8. Since 1−ψ(0) = θ/(1+θ) and

mL(r) =
∫ ∞

0
erud[1−ψ(u)] = 1−ψ(0)+

∫ ∞

0
eru(−ψ ′(u))du, (4.69)

′

∫ ∞

0
eru(−ψ ′(u))du =

1
1+θ

θ(mX (r)−1)

1+(1+θ)µ1r−mX (r)
. (4.70)

Note that, except for a constant, −ψ ′(u) is a density function, see Exercise 4.8.1.

(3.90), so for some α < β and 0 ≤ q ≤ β
β−α it has density function

p(x) = qαe−αx +(1−q)βe−βx, x > 0. (4.71)

Then the right-hand side of (4.70), after multiplying both the numerator and the

We give two examples to clarify this method.

Example 4.8.1 (Ruin probability for exponential distributions)
In (4.71), let q = 0 and β = 1, hence the claims distribution is exponential(1). Then,
for δ = 1/(1+θ) and γ = θ/(1+θ), the right-hand side of (4.70) leads to

1
1+θ

θ
(

1
1−r −1

)
1+(1+θ)r− 1

1−r

=
θ

(1+θ)[θ − (1+θ)r]
=

δγ
γ − r

. (4.72)

clude from (4.70) that −ψ ′(u)/δ is equal to the density function of this distribution.
By using the boundary condition ψ(∞) = 0, we see that for the exponential(1) dis-
tribution

ψ(u) =
1

1+θ
exp

( −θu
1+θ

)
, (4.73)

which corresponds to (4.32) in Section 4.4 for β = µ1 = 1, and to (4.17). ∇

already derived the analytical expression for the ruin probability in case of expo-

or combinations of exponentials. For discrete distributions, there is an algorithm.

denominator by (r −α)(r − β ), can be written as the ratio of two polynomials in

nential claim size distributions, but such expressions can also be found for mixtures

In the previous section, we derived the mgf with the non-ruin probability 1−

it follows from (4.63) that the ‘mgf’ of the function −ψ (u) equals

mgf. We will describe how this can be done for mixtures and combinations of two

δγ/(γ − r), corresponding to δ times the mgf with an exponential(γ) distribution.

Now let X be a combination or a mixture of two exponential distributions such as in

Except for the constant δ , this is the mgf of an exponential(γ) distribution. We con-

r. By using partial fractions, this can be written as a sum of two terms of the form
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Example 4.8.2 (Ruin probability, mixtures of exponential distributions)
Choose θ = 0.4 and p(x) = 1

2 ×3e−3x + 1
2 ×7e−7x, x > 0. Then

mX (r) =
1
2

3
3− r

+
1
2

7
7− r

; µ1 =
1
2

1
3

+
1
2

1
7

=
5
21

. (4.74)

So, after some calculations, the right-hand side of (4.70) leads to

6(5− r)
7(6−7r + r2)

=
δ

1− r
+

6ε
6− r

when δ =
24
35

and ε =
1
35

. (4.75)

The ruin probability for this situation is given by

ψ(u) =
24
35

e−u +
1
35

e−6u. (4.76)

Notice that ψ(0) = 1
1+θ indeed holds. ∇

This method works fine for combinations of exponential distributions, too, and also

the method to mixtures/combinations of more than two exponential distributions,

To find the coefficients in the exponents of expressions like (4.76) for the ruin
probability, that is, the asymptotes of (4.75), we need the roots of the denominator
of the right-hand side of (4.70). Assume that, in the density (4.71), α < β and q ∈
(0,1). We have to solve the following equation:

1+(1+θ)µ1r = q
α

α − r
+(1−q)

β
β − r

. (4.77)

is +∞; hence we write ”mX (r)” instead of mX (r) for these branches in Figure 4.4.
From this figure, one sees immediately that the positive roots r1 and r2 of (4.77) are
real numbers that satisfy

r1 = R < α < r2 < β . (4.78)

Remark 4.8.3 (Ruin probability for discrete distributions)
If the claims X can have only a finite number of positive values x1,x2, . . . ,xm, with
probabilities p1, p2, . . . , pm, the ruin probability equals

ψ(u) = 1− θ
1+θ ∑

k1,...,km

(−z)k1+···+kmez
m

∏
j=1

p
k j
j

k j!
(4.79)

where z = λ
c (u− k1x1 − ·· · − kmxm)+. The summation extends over all values of

k1, . . . ,km = 0,1,2, . . . leading to z > 0, and hence is finite. For a proof of (4.79), see
Gerber (1989). ∇

for the limiting case gamma(2,β ), see Exercises 4.8.5–7. It is possible to generalize

this, R’s function polyroot could be used.

Notice that the right-hand side of this equation corresponds to the mgf of the claims
only if r is to the left of the asymptotes, so if r < α . If r is larger, then this mgf

but then roots of polynomials of order three and higher have to be determined. For
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0 r  = R rα β r
1 2

m  (r)X "m  (r)"X

"m  (r)"X

1+(1+θ)µ r1

4.9 Approximation of ruin probabilities

For other distributions than the ones in the previous section, it is difficult to find

there is a need for good and simple approximations for the ruin probability.

satisfied by the approximations. First, equation (4.59) yields ψ(0) = 1
1+θ . Next, we

know that ψ(u) = 1−FL(u), and thus, with partial integration,

E[L] =
∫ ∞

0
ud[1−ψ(u)] =

∫ ∞

0
ψ(u)du,

E[L2] =
∫ ∞

0
u2 d[1−ψ(u)] =

∫ ∞

0
2uψ(u)du.

(4.80)

These moments of the maximal aggregate loss L can easily be computed since L =
L1 + · · ·+LM has a compound geometric distribution, with the distribution of M and
L j given in Section 4.7. The required moments of L j are

E[Lk
j] =

µk+1

µ1(k +1)
, k = 1,2, . . . (4.81)

Since E[M] = 1
θ , we have ∫ ∞

0
ψ(u)du =

µ2

2θ µ1
. (4.82)

It can also be shown that

Var[L] =
µ3

3θ µ1
+

µ2
2

4θ 2µ2
1

, (4.83)

value is not very important, since in case of doubt, other factors will be decisive. So

We give some global properties of the ruin probability that should preferably be

the exact value of the ruin probability ψ(u). Anyway, one may argue that this exact

Fig. 4.4 Solutions of (4.77). Only the left branch of the graph is actually the mgf of X .
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hence ∫ ∞

0
uψ(u)du =

1
2

E[L2] =
µ3

6θ µ1
+

µ2
2

4θ 2µ2
1

. (4.84)

After this groundwork, we introduce a number of possible approximations.

1. We already saw in Section 4.3 that one possible choice for the approximating
function is to take

ψ(u) ≈ 1
1+θ

e−Ru, (4.85)

with R the adjustment coefficient of the claim size distribution. This function has
the correct value ψ(0), and also the correct asymptotic hazard rate R.

2. In the previous approximation, we might also take the exact ruin probability of
an exponential claim size distribution with adjustment coefficient R, that is

ψ(u) ≈ (1−Rµ1)e
−Ru, (4.86)

This way, the hazard rate is correct, but the ruin probability at zero might differ.
3. Replacing the claims distribution by an exponential distribution with the same

expected value, we get, see (4.32):

ψ(u) ≈ 1
1+θ

exp

(
− θ

1+θ
u
µ1

)
. (4.87)

For u = 0, the approximation is correct, but in general, the integrals over the
left-hand side and the right-hand side are different.

4. Approximating ψ(u) by ψ(0)e−ku with k chosen such that (4.82) holds yields as
an approximation

ψ(u) ≈ 1
1+θ

exp

( −2θ µ1u
(1+θ)µ2

)
. (4.88)

1 µ2 = 2µ 2
1

5. We can approximate the ruin probability by a gamma distribution:

ψ(u) ≈ 1
1+θ

(1−G(u,α,β )), u ≥ 0. (4.89)

To fit the first two moments, the parameters α and β of the gamma cdf G(·;α,β )
must meet the following conditions:

E[L] =
1

1+θ
α
β

; E[L2] =
1

1+θ

(
α2

β 2 +
α
β 2

)
. (4.90)

6. Just as in the first approximation, one can replace the claims distribution by an-
other with a few moments in common, for which the corresponding ruin proba-
bility can be easily calculated. A suitable candidate for such a replacement is a
mixture or combination of exponential distributions.

Note that if the claims are exponential(1/µ ) random variables, then
so (4.87) and (4.88) both give the correct ruin probability.

,
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7. Another possible replacement is a discrete distribution. The ruin probabilities can
easily be computed from (4.79). For each claims distribution, one can find a two-
point distribution with the same first three moments. This is not always possible
in case of a mixture/combination of two exponential distributions. Both methods
yield good approximations. See Example 4.9.1 below.

8. From the theory of ordering of risks, it follows that one gets a lower bound for
the ruin probability if one replaces the claims distribution with expectation µ
by a one-point distribution on µ . A simple upper bound can be obtained if one
knows the maximum value b of the claims. If one takes a claims distribution
with probability µ/b of b and 1 − µ/b of 0, a Poisson process arises that is
equivalent to a Poisson process with claims always equal to b and claim number
parameter λ µ/b instead of λ . So, both the lower bound and the upper bound can
be calculated by using (4.79) with m = 1.

9. The geometric distribution allows the use of Panjer’s recursion, provided the in-
dividual terms are integer-valued. This is not the case for the terms L j of L, see
(4.60). But we can easily derive lower and upper bounds this way, by simply
rounding the L j down to an integer multiple of δ to get a random variable L′
that is suitable for Panjer’s recursion, and gives an upper bound for FL(u) since
Pr[L ≤ u] ≤ Pr[L′ ≤ u]. Rounding up leads to a lower bound for FL(u). By tak-
ing δ small, we get quite good upper and lower bounds with little computational
effort.

Example 4.9.1 (Approximating a ruin probability by using diatomic claims)
For the purpose of approximating a ruin probability by using an m-point claim size
distribution with the same first few moments, we will confine ourselves to the first
three moments of the distribution. So we will only use (4.79) in the special case
m = 2, since a two-point distribution has three free parameters, the location of both
mass points and one mass, and thus allows us to fit the first three moments of the
distribution. An R-implementation of algorithm (4.79) for an m = 2 point claim size
distribution is given below; it is not trivial to generalize it to the case of general m.
Here the claims are x with probability px, and y with probability 1-px.

psi <- function (u, theta, x, y, px)
{ if (px<0||px>1||theta<=0||x<=0||y<=0||u<0) stop("bad params")
mu <- x*px + y*(1-px)
ss <- 0
for (k in 0:(u/x))
{ n <- 0:((u-k*x)/y)
h <- 1/mu/(1+theta) * (u - k*x - n*y)
tt <- sum((-h)ˆ(k+n)*exp(h)*(1-px)ˆn/factorial(n))
ss <- ss + pxˆk / factorial(k) * tt }

return(1 - theta/(1+theta)*ss) }
psi(2.5,0.5,1,2,0.5) ## 0.2475216

To determine a random variable X with a two-point distribution with x,y as mass
points and px = Pr[X = x], three non-linear equations with as many unknowns must
be solved. Analytical expressions exist, but here we will proceed differently. From
relations (7.28) and (7.30) we deduce that y = µ +σ2/(µ − x) and px = σ2/(σ2 +
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(µ − x)2) characterize a two-point distribution with mass points equal to x and y,
mean µ and variance σ2. Then by varying x, we ensure that also the skewness is
right. The last part is achieved by a call of the function uniroot. To fit the third
moment E[X3] = x3 px + y3(1− px), we use the identity

E[X3] = E[((X −µ)+ µ)3] = γσ3 +3µσ2 + µ3. (4.91)

The mass points with given µ ,σ2,γ , and the approximate ψ(u) are found by the
following R code:

mu <- 1.5; sig2 <- 0.25; gam <- 0;
mu3 <- gam * sig2ˆ1.5 + 3 * mu * sig2 + muˆ3
mu3.diff <- function(x)
{ y <- mu + sig2/(mu-x); px <- sig2 / (sig2+(x-mu)ˆ2)

px*xˆ3 + (1-px)*yˆ3 - mu3 }
x <- uniroot(mu3.diff, low=0, up=mu*0.9999999)$root
psi(2.5, 0.5, x, mu + sig2/(mu-x), sig2 / (sig2+(x-mu)ˆ2))

The smaller of x and y obviously must be less than µ . That is why we look for a
zero of mu3.diff in the interval (0,µ). The last line produces the approximate
ruin probability for the given first three moments. ∇

4.10 Exercises

Section 4.2

1. Assume that the waiting times W1,W2, . . . are independent and identically distributed random
variables with cdf F(x) and density function f (x), x ≥ 0. Given N(t) = i and Ti = s for some
s ≤ t, what is the conditional probability of a claim occurring between points in time t and
t +dt? (This generalization of a Poisson process is called a renewal process.)

2. Let {N(t), t ≥ 0} be a Poisson process with parameter λ , and let pn(t) = Pr[N(t) = n] and
p−1(t) ≡ 0. Show that p′n(t) = −λ pn(t)+λ pn−1(t), n = 0,1,2, . . ., and interpret these formu-
las by comparing pn(t) with pn(t +dt).

Section 4.3

1. Prove that the expressions in (4.11) are indeed equivalent to (4.10).
Also prove (by partial integration or using Fubini), that

1+(1+θ)µr = 0 and r > 0 ⇐⇒
∫ ∞

0
[erx − (1+θ)][1−P(x)]dx = 0.

2. Use erx > 1+ rx+ 1
2 (rx)2 for r > 0 and x > 0 to prove that R < 2θ µ1/µ2.

3. For θ = 0.4 and p(x) = 1
2 (3e−3x +7e−7x), determine the values of t for which mX (t) is finite,

and also determine R.

4. If the claims distribution is discrete with p(1) = p(2) = 1
2 , then find θ if R = log3.
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5. Which premium yields e−Ru = ε?

6. If Pr[X = 0,1,2,4] = 1
4 , then determine R with R, for λ = 1 and c = 3.

7. Assume that the claims X in a ruin process with θ = 2
5 arise as follows: first, a value Y is drawn

1
2

If R = 2 for the same distribution, is θ larger or smaller than 2
5 ?

8. In some ruin process, the individual claims have a gamma(2,1) distribution. Determine the
loading factor θ as a function of the adjustment coefficient R. Also, determine R(θ). If the
adjustment coefficient equals 4

3
the claims, discuss the behavior of R as a function of θ .

9. [♠] Discuss the determination of the adjustment coefficient R if in a ruin process the claims
are lognormally distributed. Also, if the claims are inverse Gaussian.

10. Argue that dc/dR ≥ 0. Use the relation c = 1
R log(mS(R)), where S denotes the total claim in

some period of length 1, to derive that an exponential premium increases with the parameter
(risk aversion) α .

11. In Example 4.3.7, replace the claim severity distribution with a Pareto distribution with the
same mean and variance, and replace n = 400 by n = 1000. What happens to the ruin proba-
bility? What happens to the adjustment coefficient? Does ruin still happen in the early stages
of the process only?

12. In the same example, replace the severity distribution by a gamma(α,α) distribution with α =
1 and α = 3. Observe that the ruin probability decreases with α . Use uniroot to compute
the adjustment coefficient when α = 3.

Section 4.4

1. From Corollary 4.4.2, we know that ψ(u) → 1 if θ ↓ 0. Why does this imply that ψ(u) = 1 if
θ < 0?

2. Which compound Poisson processes have a ruin probability ψ(u) = 1
2 e−u?

3. For a compound Poisson process, it is known that the continuous ruin probability depends on
the initial capital u in the following way: ψ(u) = αe−u + βe−2u. Determine the adjustment
coefficient for this process. Can anything be said about the Poisson parameter in this risk
process? What is E[exp(−RU(T )) |T < ∞]?

4. Assume that ψ(ε) < 1. By looking at the event “non-ruin and no claim before ε/c”, with c
denoting the premium income per unit of time, show that ψ(0) < 1 must hold.

5. For a certain risk process, it is given that θ = 0.4 and p(x) = 1
2 (3e−3x +7e−7x). Which of the

numbers 0, 1 and 6 are roots of the adjustment coefficient equation 1+(1+θ)µ1R = mX (R)?
Which one is the real adjustment coefficient?
One of the four expressions below is the ruin probability for this process; determine which ex-
pression is the correct one, and argue why the other expressions cannot be the ruin probability.

1. ψ(u) = 24
35 e−u + 1

35 e−6u;
2. ψ(u) = 24

35 e−u + 11
35 e−6u;

3. ψ(u) = 24
35 e−0.5u + 1

35 e−6.5u;
4. ψ(u) = 24

35 e−0.5u + 11
35 e−6.5u.

6. The ruin probability for some ruin process equals ψ(u) = 1
5 e−u + 2

5 e−0.5u, u ≥ 0. By using the
fact that for ruin processes, in general, limu→∞ ψ(u)/e−Ru = c for some c ∈ (0,1), determine
the adjustment coefficient R and the appropriate constant c in this case.

. Next, conditionally on Y = y, thefrom two possible values 3 and 7, each with probability

, does θ = 2 hold? Using a sketch of the graph of the mgf of

claim X is drawn from an exponential(y) distribution. Determine the adjustment coefficient R.
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Section 4.5

1. Assume that the distribution of Gi satisfies Pr[Gi = +1] = p and Pr[Gi = −1] = q = 1− p.
Further, p > 1

2 and u is an integer. Determine U(T̃ ) if T̃ < ∞. Express ψ̃(u) in terms of R̃, and

both R̃ and ψ̃(u) in terms of p and q.

2. [♠] Assume that an insurer uses an exponential utility function w(·) with risk aversion α . Prove
that E[w(Un+1) |Un = x] ≥ w(x) if and only if α ≤ R̃, and interpret this result.

3. Show that T̃ ≥ T with probability 1, as well as ψ̃(u) ≤ ψ(u) for all u, if both are determined
for a compound Poisson risk process.

4. Assume that the continuous infinite ruin probability for a compound Poisson process equals
αe−u in case of an initial capital u, for some constant α . Furthermore, the claims follow an
exponential distribution with parameter 2 and the expected number of claims a year is 50.
Determine the safety loading for this process. Also determine an upper bound for the discrete
infinite ruin probability.

Section 4.6

1. The claim process on some insurance portfolio is compound Poisson with λ = 1 and p(x) =
e−x, x > 0. The loading factor is θ . Calculate the adjustment coefficient in case one takes out a
proportional reinsurance h(x) = αx with a loading factor ξ > 0. Calculate the relative loading
factor after this reinsurance. Which restrictions apply to α?

2. For the same situation as in the previous exercise, but now with excess of loss coverage h(x) =
(x− β )+, write down the adjustment coefficient equation, and determine the loading factor
after reinsurance.

3. Assume that the claims per year Wi, i = 1,2, . . ., are N(5,1) distributed and that θ = 0.25. A
reinsurer covers a fraction α of each risk, applying a premium loading factor ξ = 0.4. Give the˜
the security of the insurer?

4. A total claims process is compound Poisson with λ = 1 and p(x) = e−x, x ≥ 0. The relative
loading factor is θ = 1

2 . One takes out a proportional reinsurance h(x) = αx. The relative
loading factor of the reinsurer equals 1. Determine the adjustment coefficient Rh. For which
values of α is ruin not a certainty?

5. Reproduce the adjustment coefficients in both tables in this section.

Section 4.7

1. 1 if the claims (a) are equal to b with probability 1, and (b) have an
exponential distribution?

2. Prove that Pr[L = 0] = 1−ψ(0).

3. In Exercises 4.4.3 and 4.4.6, what is θ?

4. Verify equality (4.67) for the situation of Example 4.8.1 with θ = 1.

5. [♠] Using equality (4.67), find the ruin probability for Example 4.8.2 recursively, for u =
0,0.1,0.2, . . . . Check with the analytical outcomes.

6. Find mL1 (R).

What is the mgf of L

adjustment coefficient R for the reinsured portfolio, as a function of α . Which value optimizes
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Section 4.8

1. For which constant γ is γ(−ψ ′(u)), u > 0 a density?

2. Make sketches like in Figure 4.4 to determine the asymptotes of (4.70), for a proper combina-
tion of exponential distributions and for a gamma(2,β ) distribution.

3. Calculate θ and R if ψ(u) = 0.3e−2u +0.2e−4u +αe−6u, u ≥ 0. Which values of α are possible
taking into account that ψ(u) decreases in u and that the safety loading θ is positive?

4. If λ = 3, c = 1 and p(x) = 1
3 e−3x + 16

3 e−6x, then determine µ1, θ , mX , (4.70), and an explicit
expression for ψ(u).

5. Determine E[e−RU(t)] in the previous exercise, with the help of (4.28). Determine independent
random variables X , Y and I such that IX +(1− I)Y has density p(·).

6. Just as Exercise 4.8.4, but now p(x) is a gamma(2, 3
5 ) density, λ = 1 and c = 10.

7. Determine ψ(u) if θ = 5
7 and the claims Xi are equal to Xi = Yi/4 + Zi/3, with Yi and Zi ∼

exponential(1) and independent.

8. Sketch the density of L j in case of a discrete claims distribution.

9. [♠] Prove (4.79) in case of m = 1 and m = 2.

10. Assume that the individual claims in a ruin process are equal to the maximum of two indepen-
dent exponential(1) random variables, that is, Xi = max{Yi1,Yi2} with Yik ∼ exponential(1).
Determine the cdf of Xi, and use this to prove that the corresponding density p(x) is a com-
bination of exponential distributions. Determine the loading factor θ in the cases that for the
adjustment coefficient, we have R = 0.5 and R = 2.5.

11. Two companies have independent compound Poisson ruin processes with intensities λ1 = 1
and λ2 = 8, claims distributions exponential(3) and exponential(6), initial capitals u1 and u2
and loading factors θ1 = 1 and θ2 = 1

2 . These companies decide to merge, without changing
their premiums. Determine the intensity, claims distribution, initial capital and loading factor
of the ruin process for the merged company. Assuming u1 = u2 = 0, compare the probabili-
ties of the following events (continuous infinite ruin probabilities): “both companies never go
bankrupt” with “the merged company never goes bankrupt”. Argue that for any choice of u1
and u2, the former event has a smaller probability than the latter.

12. [♠] Implement the method of Example 4.8.2 in R. As input, take u,θ and q,α,β as in (4.76),
as output, ψ(u) as well as δ ,ε,r1,r2 of (4.75).

13. [♠] Generalize the previous exercise for a mixture/combination of m exponentials.

Section 4.9

1. Verify (4.80), (4.81), (4.83)/(4.84), and (4.90). Solve α and β from (4.90).

2. Work out the details of the final approximation. [♠] Implement it using Panjer’s recursion. Test
and compare with the approximations above for some non-negative claim size distributions.

3. [♠] To be able to approximate the ruin probability, find the parameters of a mixture/combination
of exponential distributions with matching µ , σ2 and γ . Also give bounds for the skewness γ
for this to be possible.



Chapter 5
Premium principles and Risk measures

Actuaries have long been tasked with tackling difficult
quantitative problems. Loss estimates, reserves requirements,
and other quantities have been their traditional domain, but the
actuary of the future has an opportunity to broaden his/her
scope of knowledge to include other risks facing corporations
around the globe. While this may seem like a daunting task at
first, the reality is that the skills required to analyze business
risks are not a significant stretch of the traditional actuary’s
background — Timothy Essaye, imageoftheactuary.org

5.1 Introduction

The activities of an insurer can be described as a system in which the acquired
capital increases because of (earned) premiums and interest, and decreases because
of claims and costs. See also the previous chapter. In this chapter we discuss some
mathematical methods to determine the premium from the distribution of the claims.
The actuarial aspect of a premium calculation is to calculate a minimum premium,
sufficient to cover the claims and, moreover, to increase the expected surplus suffi-
ciently for the portfolio to be considered stable.

Bühlmann (1985) described a top-down approach for the premium calculation.
First we look at the premium required by the total portfolio. Then we consider the
problem of spreading the total premium over the policies in a fair way. To deter-
mine the minimum annual premium, we use the ruin model as introduced in the
previous chapter. The result is an exponential premium (see Chapter 1), where the
risk aversion parameter α follows from the maximal ruin probability allowed and
the available initial capital. Assuming that the suppliers of the initial capital are to
be rewarded with a certain annual dividend, and that the resulting premium should
be as low as possible, therefore as competitive as possible, we can derive the optimal
initial capital. Furthermore we show how the total premium can be spread over the
policies in a fair way, while the total premium keeps meeting our objectives.

For the policy premium, a lot of premium principles can be justified. Some of
them can be derived from models like the zero utility model, where the expected
utility before and after insurance is equal. Other premium principles can be derived
as an approximation of the exponential premium principle. We will verify to which
extent these premium principles satisfy some reasonable requirements. We will also
consider some characterizations of premium principles. For example, it turns out
that the only utility preserving premium principles for which the total premium for
independent policies equals the sum of the individual premiums are the net premium
and the exponential premium.

115
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As an application, we analyze how insurance companies can optimally form a
‘pool’. Assuming exponential utility, it turns out that the most competitive total
premium is obtained when the companies each take a fixed part of the pooled risk
(coinsurance), where the proportion is inversely proportional to their risk aversion,
hence proportional to their risk tolerance. See also Gerber (1979).

Mathematically speaking, a risk measure for a random variable S is just a func-
tional connecting a real number to S. A prime example is of course a premium prin-
ciple, another is the ruin probability for some given initial capital. The risk measure
most often used in practice is the Value-at-Risk (VaR) at a certain (confidence) level
p with 0 < p < 1, which is the amount that will maximally be lost with probability
p, therefore the inverse of the cdf. It is also called the quantile risk measure. Note
the difference between the variance, written as Var[X ], and the value-at-risk, written
in CamelCase as VaR[X ; p]. Fortunately, Vector Autoregressive (VAR) models are
outside the scope of this book.

The VaR is not ideal as a risk measure. One disadvantage is that it only looks

measures accounting for the size of the shortfall (X − d)+ when capital d is avail-
able include the Tail-Value-at-Risk, the Expected Shortfall and the Conditional Tail
Expectation.

Another possible disadvantage of VaR is that it is not subadditive: the sum of

VaR is not a coherent risk measure. But insisting on coherence is only justified
when looking at complete markets, which the insurance market is not, since it is not
always possible to diversify a risk.

5.2 Premium calculation from top-down

As argued in Chapter 4, insuring a certain portfolio of risks leads to a surplus that
increases because of collected premiums and decreases in the event of claims. The
following recurrent relations hold in the ruin model between the surpluses at integer
times:

Ut = Ut−1 + c−St , t = 1,2, . . . (5.1)

Ruin occurs if Uτ < 0 for some real τ . We assume that the annual total claims St ,
t = 1,2, . . ., are independent and identically compound Poisson random variables,
say St ∼ S. The following question then arises: how large should the initial capital
U0 = u and the premium c = π[S] be to remain solvent at all times with a prescribed
probability? The probability of ruin at integer times only is less than ψ(u), which
in turn is bounded from above by e−Ru. Here R denotes the adjustment coefficient,
which is the root of the equation eRc = E[eRS], see (4.11). If we set the upper bound
equal to ε , then R = | logε|/u. Hence, we get a ruin probability bounded by ε by
choosing the premium c as

of the shortfall certainly matters; someone will have to pay for the remainder. Risk

the VaRs for X and Y may be larger than the one for X +Y . Because of this, the

at the probability of the shortfall of claims over capital being positive. But the size
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c =
1
R

log
(
E[eRS]

)
, where R =

1
u
| logε|. (5.2)

1.3.1, we know that the adjustment coefficient can be interpreted as a measure for
the risk aversion: for the utility function −αe−αx with risk aversion α , the utility
preserving premium is c = 1

α log(E[eαX ]).
A characteristic of the exponential premium is that choosing this premium for

each policy also yields the right total premium for S. The reader may verify that if
the payments Xj

S = X1 + · · ·+Xn =⇒ 1
R

log(E[eRS]) =
n

∑
j=1

1
R

log(E[eRXj ]). (5.3)

π[S] = E[S]+αVar[S]. (5.4)

In fact, every premium that is a linear combination of cumulants is additive. Pre-

risk aversion R is small, since

π[S] =
1
R

κS(R) =
1
R

(
E[S]R+Var[S]

R2

2
+ · · ·

)
≈ E[S]+

1
2

RVar[S]. (5.5)

So to approximate (5.2) by (5.4), α should be taken equal to 1
2 R. In view of (5.2)

and ψ̃(u) ≤ e−Ru, we can roughly state that:

• doubling the loading factor α in (5.4) decreases the upper bound for the ruin
probability from ε to ε2;

• halving the initial capital requires the loading factor to be doubled if one wants
to keep the same maximal ruin probability.

We will introduce a new aspect in the discrete time ruin model (5.1): how large
should u be, if the premium c is to contain a yearly dividend iu for the shareholders
who have supplied the initial capital? A premium at the portfolio level that ensures
ultimate survival with probability 1− ε and also incorporates this dividend is

π[S] = E[S]+
| logε|

2u
Var[S]+ iu, (5.6)

that is, the premium according to (5.2) and (5.5), plus the dividend iu. We choose
u such that the premium is as competitive as possible, therefore as low as possible.
By setting the derivative equal to zero, we see that a minimum is reached for u =
σ [S]

√| logε|/2i. Substituting this value into (5.6), we see that (see Exercise 5.2.1)
the optimal premium is a standard deviation premium:

where for a certain parameter α ≥ 0 the premium is determined by

This premium is the exponential premium (1.20) with parameter R. From Example

mium (5.4) can also be obtained as an approximation of the exponential premium

on policy j, j = 1, . . . ,n, are independent, then

by considering only two terms of the Taylor expansion of the cgf, assuming that the

Another premium principle that is additive in this sense is the variance principle,
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π[S] = E[S]+σ [S]
√

2i| logε|. (5.7)

In the optimum, the loading π[S]−E[S]− iu equals the dividend iu; notice that if i
increases, then u decreases, but iu increases.

Finally, we have to determine which premium should be asked at the down level.
We cannot just use a loading proportional to the standard deviation. The sum of
these premiums for independent risks does not equal the premium for the sum, and
consequently the top level would not be in balance: if we add a contract, the total
premium no longer satisfies the specifications. On the other hand, as stated before,
the variance principle is additive, just like the exponential and the net premium.
Hence, (5.6) and (5.7) lead to Bühlmann’s recommendation for the premium calcu-
lation:

1. Compute the optimal initial capital u = σ [S]
√| logε|/2i for S, i and ε;

2. Spread the total premium over the individual risks Xj by charging the following
premium:

π[Xj] = E[Xj]+RVar[Xj], where R = | logε|/u. (5.8)

Note that in this case the loading factor R = α of the variance premium, incorporat-
ing both a loading to avoid ruin and an equal loading from which to pay dividends,
is twice as large as it would be without dividend, see (5.4) and (5.5). The total div-
idend and the necessary contribution to the expected growth of the surplus that is
required to avoid ruin are spread over the policies in a similar way.

Bühlmann gives an example of a portfolio consisting of two kinds (A and B) of
exponential risks with mean values 5 and 1:

Type Number Expected Variance Exponential Variance Stand. dev.
of risks value premium premium premium

A 5 5 25 − 1
R log(1−5R) 5+ R

2 25
B 20 1 1 − 1

R log(1−R) 1+ R
2 1

Total 25 45 145 45+(2i| logε|145)
1
2

Choose ε = 1%, hence | logε|= 4.6052. Then, for the model with dividend, we have
the following table of variance premiums for different values of i.

Portfolio Optimal Optimal Premium Premium
premium u R for A for B

i = 2% 50.17 129.20 0.0356 5.89 1.0356
i = 5% 53.17 81.72 0.0564 6.41 1.0564
i = 10% 56.56 57.78 0.0797 6.99 1.0797

The portfolio premium and the optimal u follow from (5.7), R from (5.2), and the
premiums for A and B are calculated according to (5.8). We observe that:

• the higher the required return i on the supplied initial capital u, the lower the
optimal value for u;
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• the loading is far from proportional to the risk premium: the loading as a percent-
age for risks of type A is 5 times the one for risks of type B;

• the resulting exponential premiums are close to the variance premiums given: if
i = 2%, the premium with parameter 2R is 6.18 for risks of type A and 1.037 for
risks of type B.

5.3 Various premium principles and their properties

In this section, we give a list of premium principles that can be applied at the pol-
icy level as well as at the portfolio level. We also list some mathematical properties
that one might argue a premium principle should have. Premium principles depend
exclusively on the marginal distribution function of the random variable. Conse-
quently, we will use both notations π[F] and π[X ] for the premium of X , if F is the
cdf of X . We will assume that X is a bounded non-negative random variable. Most
premium principles can also be applied to unbounded and possibly negative claims.
When the result is an infinite premium, the risk at hand is uninsurable.

We have encountered the following five premium principles in Section 5.2:

a) Net premium: π[X ] = E[X ]
Also known as the equivalence principle; this premium is sufficient for a risk
neutral insurer only.

b) Expected value principle: π[X ] = (1+α)E[X ]
The loading equals αE[X ], where α > 0 is a parameter.

c) Variance principle: π[X ] = E[X ]+αVar[X ]
The loading is proportional to Var[X ], and again α > 0.

d) Standard deviation principle: π[X ] = E[X ]+ασ [X ]
Here also α > 0 should hold, to avoid getting ruined with probability 1.

e) Exponential principle: π[X ] = 1
α log(mX (α))

The parameter α > 0 is called the risk aversion. We already showed in Chapter 1
that the exponential premium increases if α increases. For α ↓ 0, the net premium
arises; for α → ∞, the resulting premium equals the maximal value of X , see
Exercise 5.3.11.

In the following two premium principles, the ‘parameter’ is a function.

f) Zero utility premium: π[X ] ← u(0) = E[u(π[X ]−X)]
This concept was introduced in Chapter 1. The function u(x) represents the utility
a decision maker attaches to his present capital plus x. So, u(0) is the utility of
the present capital and u(π[X ]−X) is the utility after insuring a risk X against
premium π[X ]. The premium solving the utility equilibrium equation is called the
zero utility premium. Each linear transform of u(·) yields the same premium. The
function u(·) is usually assumed to be non-decreasing and concave. Accordingly
it has positive but decreasing marginal utility u′(x). The special choice u(x) =
1
α (1− e−αx) leads to exponential utility; the net premium results for linear u(·).
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g) Mean value principle: π[X ] = v−1(E[v(X)])
The function v(·) is a convex and increasing valuation function. Again, the net
premium and the exponential premium are special cases with v(x) = x and v(x) =
eαx, α > 0.

The following premium principles are chiefly of theoretical importance:

h) Percentile principle: π[X ] = min{p |FX (p) ≥ 1− ε}
The probability of a loss on contract X is at most ε , 0 ≤ ε ≤ 1.

i) Maximal loss principle: π[X ] = min{p |FX (p) = 1}
This premium arises as a limiting case of other premiums: (e) for α → ∞ and (h)
for ε ↓ 0. A ‘practical’ example: a pregnant woman pays some premium for an
insurance contract that guarantees that the baby will be a girl; if it is a boy, the
entire premium is refunded.

j) Esscher principle: π[X ] = E[XehX ]/E[ehX ]
Here, h is a parameter with h > 0. This premium is actually the net premium for
a risk Y = XehX/mX (h). As one sees, Y results from X by enlarging the large
values of X , while reducing the small values. The Esscher premium can also be
viewed as the expectation with the so-called Esscher transform of dFX (x), which
has as a ‘density’:

dG(x) =
ehx dFX (x)∫
ehy dFX (y)

. (5.9)

This is the differential of a cdf with the same support as X , but for which the
probabilities of small values are reduced in favor of the probabilities of large
values. The net premium for Y gives a loaded premium for X .

5.3.1 Properties of premium principles

Below, we give five desirable properties for premium principles π[X ]. Some other
useful properties such as order preserving, which means that premiums for smaller
risks should also be less, will be covered in Chapter 7.

1) Non-negative loading: π[X ] ≥ E[X ]
A premium without a positive loading will lead to ruin with certainty.

2) No rip-off: π[X ] ≤ min{p |FX (p) = 1}
The maximal loss premium (i) is a boundary case. If X is unbounded, this pre-
mium is infinite.

3) Consistency: π[X + c] = π[X ]+ c for each c
If we raise the claim by some fixed amount c, then the premium should also
be higher by the same amount. Synonyms for consistency are cash invariance,
translation invariance, and more precisely, translation equivariance. Note that
in general, a ‘risk’ need not be a non-negative random variable, though to avoid
certain technical problems sometimes it is convenient to assume it is bounded
from below.
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4) Additivity: π[X +Y ] = π[X ]+π[Y ] for independent X ,Y
Pooling independent risks does not affect the total premium needed.

5) Iterativity: π[X ] = π
[
π[X |Y ]

]
for all X ,Y

The premium for X can be calculated in two steps. First, apply π[·] to the con-
ditional distribution of X , given Y = y. The resulting premium is a function
h(y), say, of y. Then, apply the same premium principle to the random variable
π[X |Y ] := h(Y ).

For the net premium, iterativity is the corresponding property for expected values
(2.7). Otherwise, the iterativity criterion is rather artificial. As an example, assume
that a certain driver causes a Poisson number X of accidents in one year, where the
parameter λ is drawn from the distribution of the structure variable Λ . The number
of accidents varies because of the Poisson deviation from the expectation λ , and
because of the variation of the structure distribution. In case of iterativity, if we set
premiums for both sources of variation one after another, we get the same premium
as if we determined the premium for X directly.

Example 5.3.1 (Iterativity of the exponential principle)
The exponential premium principle is iterative. This can be shown as follows:

π[π[X |Y ]] =
1
α

logE
[
eαπ[X |Y ]

]
=

1
α

logE
[

exp(α
1
α

logE[eαX |Y ])
]

=
1
α

logE
[
E[eαX |Y ]

]
=

1
α

logE
[
eαX] = π[X ].

(5.10)

After taking the expectation in an exponential premium, the transformations that
were done before are successively undone. ∇

Example 5.3.2 (Compound distributions)
Assume that π[·] is additive as well as iterative, and that S is a compound random
variable with N terms distributed as X . The premium for S then equals

π[S] = π[π[S |N]] = π[Nπ[X ]]. (5.11)

Furthermore, if π[·] is also proportional, (or homogeneous), which means that
π[αN] = απ[N] for all α ≥ 0, then π[S] = π[X ]π[N]. In general, proportionality
does not hold, see for example Section 1.2. However, this property is used as a local
working hypothesis for the calculation of the premium for similar contracts; without
proportionality, the use of a tariff is meaningless. ∇

In Table 5.1, we summarize the properties of our various premium principles. A “+”
means that the property holds in general, a “−” that it does not, while especially an
“e” means that the property only holds in case of an exponential premium (includ-
ing the net premium). We assume that S is bounded from below. The proofs of these
properties are asked in the exercises, but for the proof of most of the characteriza-
tions that zero utility and mean value principles with a certain additional property
must be exponential, we refer to the literature. See also the following section.

Summarizing, one may state that only the exponential premium, the maximal
loss principle and the net premium principle satisfy all these properties. The last
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Table 5.1 Various premium principles and their properties

Principle −→ a) b) c) d) e) f) g) h) i) j)
Property ↓ µ 1+λ σ2 σ exp u(·) v(·) % max Ess

1) π[X ] ≥ E[X ] + + + + + + + − + +
2) π[X ] ≤ max[X ] + − − − + + + + + +
3) π[X + c] = π[X ]+ c + − + + + + e + + +
4) π[X+Y ] = π[X ]+π[Y ] + + + − + e e − + +
5) π

[
π[X |Y ]

]
= π[X ] + − − − + e + − + −

two are irrelevant in practice, so only the exponential premium principle survives
this selection. See also Section 5.2. A drawback of the exponential premium has
already been mentioned: it has the property that a decision maker’s decisions do not
depend on the capital he has acquired to date. On the other hand, this is also a strong
point of this premium principle, since it is very convenient not to have to know one’s
current capital, which is generally either random or simply not precisely known at
each point in time.

5.4 Characterizations of premium principles

In this section we investigate the properties marked with “e” in Table 5.1, and also
some more characterizations of premium principles. Note that linear transforms of
the functions u(·) and v(·) in (f) and (g) yield the same premiums. A technique to
prove that only exponential utility functions u(·) have a certain property consists of
applying this property to risks with a simple structure, and derive a differential equa-
tion for u(·) that holds only for exponential and linear functions. Since the linear
utility functions are a limit of the exponential utility functions, we will not mention
them explicitly in this section. For full proofs of the theorems in this section, we
refer to Gerber (1979, 1985) as well as Goovaerts et al. (1984).

The entries “e” in Table 5.1 are studied in the following theorem.

Theorem 5.4.1 (Characterizing exponential principles)

1. A consistent mean value principle is exponential.
2. An additive mean value principle is exponential.
3. An additive zero utility principle is exponential.
4. An iterative zero utility principle is exponential.

Proof. Since for a mean value principle we have π[X ] = c if Pr[X = c] = 1, con-
sistency is just additivity with the second risk degenerate, so the second assertion
follows from the first. The proof of the first, which will be given below, involves
applying consistency to risks that are equal to x plus some Bernoulli(q) random
variable, and computing the second derivative at q = 0 to show that a valuation
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function v(·) with the required property necessarily satisfies the differential equa-

tion v′′(x)
v′(x) = c for some constant c. The solutions are the linear and exponential

valuation functions. The final assertion is proved in much the same way. The proof
that an additive zero utility principle is exponential proceeds by deriving a similar
equation, for which it turns out to be considerably more difficult to prove that the
exponential utility functions are the unique solutions.

To prove that a consistent mean value principle is exponential, assume that v(·),
which is a convex increasing function, yields a consistent mean value principle. Let
P(q) denote the premium, considered as a function of q, for a Bernoulli(q) risk Sq.
Then, by definition,

v(P(q)) = qv(1)+(1−q)v(0). (5.12)

The right-hand derivative of this equation in q = 0 yields

P′(0)v′(0) = v(1)− v(0), (5.13)

so P′(0) > 0. The second derivative in q = 0 gives

P′′(0)v′(0)+P′(0)2v′′(0) = 0. (5.14)

Because of the consistency, the premium for Sq +x equals P(q)+x for each constant
x, and therefore

v(P(q)+ x) = qv(1+ x)+(1−q)v(x). (5.15)

The second derivative at q = 0 of this equation yields

′′ ′ ′ 2 ′′ (5.16)

and, since P′(0) > 0, we have for all x that

v′′(x)
v′(x)

=
v′′(0)

v′(0)
. (5.17)

Consequently, v(·) is linear if v′′(0) = 0, and exponential if v′′(0) > 0. ∇

Remark 5.4.2 (Continuous and mixable premiums)
Another interesting characterization is the following one. A premium principle π[·]
is continuous if Fn → F in distribution implies π[Fn] → π[F ]. If furthermore π[·]

F and G, as well as π[c] = (1 + λ )c for all real c and some fixed λ , then it can be
shown that π[·] must be the expected value principle π[X ] = (1+λ )E[X ]. Note that
the last condition can be replaced by additivity. To see this, observe that additivity
implies that π[n/m] = n/mπ[1] for all natural n and m, and then use continuity. ∇

Finally, the Esscher premium principle can be justified as follows.

Theorem 5.4.3
Assume an insurer has an exponential utility function with risk aversion α . If he
charges a premium of the form E[ϕ(X)X ] where ϕ(·) is a continuous increasing

P (0)v (x)+P (0) v (x) = 0,

admits mixing, which means that π[tF +(1− t)G] = tπ[F ]+ (1− t)π[G] for cdfs
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function with E[ϕ(X)] = 1, his utility is maximized if ϕ(x) ∝ eαx, hence if he uses
the Esscher premium principle with parameter α .

Proof. The proof of this statement is based on the technique of variational calculus
and adapted from Goovaerts et al. (1984). Let u(·) be a convex increasing utility
function, and introduce Y = ϕ(X). Then, because ϕ(·) increases continuously, we
have X = ϕ−1(Y ). Write f (y) = ϕ−1(y). To derive a condition for E[u(− f (Y ) +
E[ f (Y )Y ])] to be maximal for all choices of continuous increasing functions when
E[Y ] = 1, consider a function f (y)+ εg(y) for some arbitrary continuous function
g(·). A little reflection will lead to the conclusion that the fact that f (y) is optimal,
and this new function is not, must mean that

d
dε

E
[
u
(− f (Y )+E[ f (Y )Y ]+ ε{−g(Y )+E[g(Y )Y ]})]∣∣∣

ε=0
= 0. (5.18)

But this derivative is equal to

E
[
u′
(− f (Y )+E[ f (Y )Y ]+ ε{−g(Y )+E[g(Y )Y ]}){−g(Y )+E[g(Y )Y ]

}]
.

(5.19)

For ε = 0, this derivative equals zero if

E
[
u′
(− f (Y )+E[ f (Y )Y ]

)
g(Y )

]
=

E
[
u′
(− f (Y )+E[ f (Y )Y ]

)]
E[g(Y )Y ].

(5.20)

Writing c = E [u′(− f (Y )+E[ f (Y )Y ])], this can be rewritten as

E
[{u′

(− f (Y )+E[ f (Y )Y ]
)− cY}{g(Y )}] = 0. (5.21)

Since the function g(·) is arbitrary, by a well-known theorem from variational cal-
culus we find that necessarily

u′
(− f (y)+E[ f (Y )Y ]

)− cy = 0. (5.22)

Using x = f (y) and y = ϕ(x), we see that

ϕ(x) ∝ u′
(− x+E[Xϕ(X)]

)
. (5.23)

Now, if u(x) is exponential(α), so u(x) = −αe−αx, then

ϕ(x) ∝ e−α(−x+E[Xϕ(X)]) ∝ eαx. (5.24)

Since E[ϕ(X)] = 1, we obtain ϕ(x) = eαx/E[eαX ] for the optimal standardized
weight function. The resulting premium is an Esscher premium with parameter
h = α . ∇
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Notice that the insurer uses a different weighting function for risks having different
values of E[ϕ(X)]; these functions differ only by a constant factor.

5.5 Premium reduction by coinsurance

Consider n cooperating insurers that individually have exponential utility functions
with parameter αi, i = 1,2, . . . ,n. Together, they want to insure a risk S by defining
random variables S1, . . . ,Sn with

S ≡ S1 + · · ·+Sn, (5.25)

with Si denoting the risk insurer i faces. S might for example be a new risk they want
to take on together, or it may be their combined insurance portfolios that they want
to redistribute. The total premium they need is

P =
n

∑
i=1

1
αi

logE
[
eαiSi

]
. (5.26)

This total premium depends on the choice of the Si. How should the insurers split up
the risk S in order to make the pool as competitive as possible, hence to minimize
the total premium P?

It turns out that the optimal choice S̃i for the insurers is when each of them insures
a fixed part of S, to be precise

S̃i =
α
αi

S with
1
α

=
n

∑
i=1

1
αi

. (5.27)

So, the optimal allocation is to let each insurer cover a fraction of the pooled risk
that is proportional to the reciprocal of his risk aversion, hence to his risk tolerance.
By (5.26) and (5.27), the corresponding total minimum premium is

P̃ =
n

∑
i=1

1
αi

logE
[
eαiS̃i

]
=

1
α

logE
[
eαS] . (5.28)

This shows that the pool of cooperating insurers acts as one insurer with an ex-
ponential premium principle with as risk tolerance the total risk tolerance of the
companies involved.

The proof that P̃ ≤ P for all other appropriate choices of S1 + · · ·+ Sn ≡ S goes
as follows. We have to prove that (5.28) is smaller than (5.26), so

1
α

logE

[
exp

(
α

n

∑
i=1

Si

)]
≤

n

∑
i=1

1
αi

logE
[
eαiSi

]
, (5.29)

which can be rewritten as
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E

[
n

∏
i=1

eαSi

]
≤

n

∏
i=1

(
E
[
eαiSi

])α/αi . (5.30)

This in turn is equivalent to

E

[
n

∏
i=1

eαSi

E [eαiSi ]
α/αi

]
≤ 1, (5.31)

or

E

[
exp∑

i

α
αi

Ti

]
≤ 1, with Ti = log

eαiSi

E [eαiSi ]
. (5.32)

We can prove inequality (5.32) as follows. Note that E[exp(Ti)] = 1 and that by
definition ∑i α/αi = 1. Since ex is a convex function, we have for all real t1, . . . ,tn

exp

(
∑

i

α
αi

ti

)
≤ ∑

i

α
αi

exp(ti), (5.33)

and this implies that

E

[
exp

(
∑

i

α
αi

Ti

)]
≤ ∑

i

α
αi

E
[
eTi

]
= ∑

i

α
αi

= 1. (5.34)

Hölder’s inequality, which is well-known, arises by choosing Xi = exp(αSi) and
ri = α/αi in (5.30). See the exercises for the case n = 2, r1 = p, r2 = q.

5.6 Value-at-Risk and related risk measures

A risk measure for a random variable S is mathematically nothing but a functional
connecting a real number to S. There are many possibilities. One is a premium, the
price for taking over a risk. A ruin probability for some given initial capital measures
the probability of becoming insolvent in the near or far future, therefore associates a
real number with the random variable S representing the annual claims. It might be
compound Poisson(λ ,X), or N(µ,σ2). The risk measure most often used in practice
is simply the Value-at-Risk at a certain (confidence) level q with 0 < q < 1, which
is the amount that will maximally be lost with probability q, therefore the argument
x where FS(x) crosses level q. It is also called the quantile risk measure. Some
examples of the practical use of the VaR are the following.

• To prevent insolvency, the available economic capital must cover unexpected
losses to a high degree of confidence. Banks often choose their confidence level
according to a standard of solvency implied by a credit rating of A or AA. These
target ratings require that the institution have sufficient equity to buffer losses
over a one-year period with probability 99.90% and 99.97%, respectively, based
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on historical one-year default rates. Typically, the reference point for the alloca-
tion of economic capital is a target rating of AA.

• For a portfolio of risks assumed to follow a compound Poisson risk process, the
initial capital corresponding to some fixed probability ε of ultimate ruin is to
be computed. This involves computing VaR[L;1− ε], which is the VaR of the
maximal aggregate loss L, see Section 4.7.

• Set the IBNR-reserve to be sufficient with a certain probability: the regulatory au-
thorities prescribe, for example, the 75% quantile for the projected future claims
as a capital to be held.

• Find out how much premium should be paid on a contract to have 60% certainty
that there is no loss on that contract (percentile premium principle).

The definition of VaR is as follows:

Definition 5.6.1 (Value-at-Risk)
For a risk S, the Value-at-Risk (VaR) at (confidence) level p is defined as

VaR[S; p]
def
= F−1

S (p)
not
= inf{s : FS(s) ≥ p}. (5.35)

So the VaR is just the inverse cdf of S computed at p. ∇

Remark 5.6.2 (VaR is cost-optimal)
Assume that an insurer has available an economic capital d to pay claims from. He
must pay an annual compensation i ·d to the shareholders. Also, there is the shortfall
over d, which is valued as its expected value E[(S−d)+] (this happens to be the net
premium a reinsurer might ask to take over the top part of the risk, but there need
not be reinsurance in force at all). So the total costs amount to

i ·d +E[(S−d)+]. (5.36)

From the insurer’s point of view, the optimal d turns out to be VaR[S;1− i]. This
is easily seen by looking at the derivative of the cost (5.36), using the fact that
d
dt E[(S− t)+] = FS(t)− 1. So the VaR is the cost minimizing capital to be held in
this scenario. ∇

Since the typical values of i are around 10%, from this point of view the VaR-
levels required for a company to get a triple A rating (99.975% and over, say) are
suboptimal. On the other hand, maintaining such a rating might lead to a lower cost
of capital i and increase production of the company. Also, it is a matter of prestige.

Note that the cdf FS, by its definition as FS(s) = Pr[S ≤ s], is continuous from
the right, but F−1

S as in (5.35) is left-continuous, with VaR[S; p] = VaR[S; p− 0].
It has jumps at levels p where FS has a constant segment. In fact, any number s
with VaR[S; p] ≤ s ≤ VaR[S; p + 0] may serve as the VaR. See Figure 5.1 for an
illustration. We see that FS(s) has a horizontal segment at level 0.2; at this level, the
VaR jumps from the lower endpoint of the segment to the upper endpoint. Where FS

has a jump, the VaR has a constant segment (between p = 0.5 and p = 0.7).

Remark 5.6.3 (Premiums are sometimes incoherent risk measures)
Relying on the VaR is often snubbed upon in financial circles these days, not as
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Fig. 5.1 Illustrating VaR and related risk measures for a cdf FS

much because there is a danger in doing so, see Exercise 5.6.3, but because it is not
a coherent risk measure in the sense of Artzner et al. (1997). To be called coherent,
a risk measure must have respect for stochastic order, be positive homogeneous and
translative, see Exercise 5.6.2, but it must also be subadditive. This last property
means that the sum of the risk measures for a split-up portfolio is automatically an
upper bound for the risk in the total portfolio. From Exercise 1.2.9 it is known that a
risk-averse individual aiming to keep his utility at the same level or better is some-
times prepared to pay a premium for 2S that is strictly larger than twice the one for S.
This is for example the case for exponential premiums, see Exercise 1.3.12, and the
same superadditivity holds for Esscher premiums, see Exercise 5.6.11. Therefore,
determining zero utility premiums may measure risks in a non-subadditive way, but
to label this procedure incoherent is improper. Requiring subadditivity makes sense
in complete markets where it is always possible to diversify a risk, but the insurance
market simply is incomplete. ∇

Example 5.6.4 (VaR is not subadditive)
The following is a counterexample for the subadditivity of VaR: if S and T ∼
Pareto(1,1) independent, then for all p ∈ (0,1) we have

VaR[S +T ; p] > VaR[S; p]+VaR[T ; p]. (5.37)

To see that this is true, first verify that, since FS(x) = 1 − 1/x, x > 1, we have
VaR[S; p] = 1

1−p . Next, using convolution (see Exercise 5.6.10), check that

Pr[S +T ≤ t] = 1− 2
t
−2

log(t −1)

t2 , t > 2. (5.38)

Now

Pr
[
S +T ≤ 2VaR[S; p]

]
= p− (1− p)2

2
log

(1+ p
1− p

)
< p, (5.39)



5.6 Value-at-Risk and related risk measures 129

so for every p, we have VaR[S; p]+ VaR[T ; p] < VaR[S + T ; p]. This gives a coun-
terexample for VaR being subadditive; in fact we have proved that for this pair
(S,T ), VaR is superadditive.

Note that from (1.33) with d = 0 one might infer that S + T and 2S should have

have VaR[2S; p] = VaR[S; p] + VaR[T ; p] for all p, this contradicts the above. But
this reasoning is invalid because E[S] = ∞. To find counterexamples of subadditivity
for VaR, it suffices to take S ∼ T with finite means. Then S +T and 2S cannot have

superadditive at others. ∇

exceed the available funds d, someone still has to pay the remainder (S−d)+. The
Expected Shortfall measures ‘how bad is bad’:

Definition 5.6.5 (Expected shortfall)
For a risk S, the Expected Shortfall (ES) at level p ∈ (0,1) is defined as

ES[S; p] = E[(S−VaR[S; p])+]. (5.40)

Thus, ES can be interpreted as the net stop-loss premium in the hypothetical situa-
tion that the excess over d = VaR[S; p] is reinsured. ∇

In Figure 5.1, for levels p ∈ [0.5,0.7], ES[S; p] is the stop-loss premium at retention
VaR[S;0.7], therefore just the area C; see also (1.33).

produce a subadditive risk measure (see Property 5.6.10).

Definition 5.6.6 (Tail-Value-at-Risk (TVaR))
For a risk S, the Tail-Value-at-Risk (TVaR) at level p ∈ (0,1) is defined as:

TVaR[S; p] =
1

1− p

∫ 1

p
VaR[S; t]dt. (5.41)

∇

Remark 5.6.7 (Other expressions for TVaR)
The Tail-Value-at-Risk can also be expressed as

TVaR[S; p] = VaR[S; p]+
1

1− p

∫ 1

p

{
VaR[S; t]−VaR[S; p]

}
dt

= VaR[S; p]+
1

1− p
ES[S; p].

(5.42)

It is easy to see that the integral in (5.42) equals ES[S; p], in similar fashion as in
Figure 1.1.

Just as VaR, the TVaR arises naturally from the cost optimization problem con-
sidered in Remark 5.6.2. In fact, TVaR is the optimal value of the cost function,
divided by i. To see why this holds, simply fill in d = VaR[S; p = 1− i] in the cost

The VaR itself does not tell the whole story about the risk, since if the claims S

cdfs that cross, so the same holds for the VaRs, being the inverse cdfs. Since we

As we noted, VaR is not subadditive. Averaging high level VaRs, however, does

uniformly ordered quantile functions, so VaR must be subadditive at some levels,

So the TVaR is just the arithmetic average of the VaRs of S from p on.
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function i · d + E[(S− d)+], see (5.36). As a consequence, we have the following
characterization of TVaR:

TVaR[S; p] = inf
d

{
d +

1
1− p

πS(d)
}
. (5.43)

Filling in other values than d = VaR[S; p] gives an upper bound for TVaR[S; p]. ∇

In Figure 5.1, in view of (5.42) above, for level p = 1
2 , (1− p)TVaR[S; p] equals the

total of the areas marked A, B and C. Therefore, the TVaR is just the average length
of the dashed and the dotted horizontal lines in Figure 5.1.

TVaR resembles but is not always identical to the following risk measure.

Definition 5.6.8 (Conditional Tail Expectation)
For a risk S, the Conditional Tail Expectation (CTE) at level p ∈ (0,1) is defined as

CTE[S; p] = E [S |S > VaR[S; p]] . (5.44)

So the CTE is the ‘average loss in the worst 100(1− p)% cases’. ∇

Writing d = VaR[S; p] we have

CTE[S; p] = E[S |S > d] = d +E[(S−d)+ |S > d] = d +
E[(S−d)+]

Pr[S > d]
. (5.45)

Therefore we have for all p ∈ (0,1)

CTE[S; p] = VaR[S; p]+
1

1−FS(VaR[S; p])
ES[S; p]. (5.46)

So by (5.42), the CTE differs from the TVaR only when p < FS(VaR[S; p]), which
means that FS jumps over level p. In fact we have

CTE[S; p] = TVaR[S;FS(F
−1
S (p))] ≥ TVaR[S; p] ≥ VaR[S; p]. (5.47)

In Figure 5.1, levels p outside (0.5,0.7) lead to TVaR and CTE being identical.
In case p ∈ [0.5,0.7], the CTE is just the total of the areas A and C, divided by
1−FS(VaR[S;0.7]). So the CTE at these levels p is the average length of the dashed
horizontal lines in Figure 5.1 only. Diagrams of the VaR, ES, TVaR and CTE for
risk S in Figure 5.1 are given in Figure 5.2. Observe that

• the VaR jumps where FS is constant, and it is horizontal where FS jumps;
• the ES, being a stop-loss premium at levels increasing with p, is decreasing in p,

but not convex or even continuous;
• TVaR and CTE coincide except for p-values in the vertical part of FS;
• TVaR is increasing and continuous.

Remark 5.6.9 (Terminology about ES, TVaR and CTE)
Some authors use the term Expected Shortfall to refer to CTE (or TVaR). As we
define it, the ES is an unconditional mean of the shortfall, while TVaR and CTE
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Fig. 5.2 TVaR (thick), CTE (thin), ES (dotted) and VaR (dashed) for the cdf FS in Fig. 5.1, plotted
against the level p ∈ (0,1)

involve the expected shortfall, given that it is positive. CTE and TVaR are also often
used interchangeably. Defined as above, these quantities are the same only in case
of continuous distributions. Another synonym for CTE that one may encounter in
the literature is Conditional Value-at-Risk (CVaR). ∇

Unlike the VaR, see Exercise 5.6.9 and Example 5.6.4, the Tail-Value-at-Risk is
subadditive.

Property 5.6.10 (TVaR is subadditive)
TVaR[S+T ; p] ≤ TVaR[S; p]+TVaR[T ; p] holds for all pairs of risks (S,T ) and for
all p ∈ (0,1).

Proof. We mentioned that in the characterization of TVaR (5.43) above, an upper
bound for TVaR[S; p] is obtained by filling in any other value for d. Now let espe-
cially d = d1 +d2, with d1 = VaR[S; p] and d2 = VaR[T ; p]. Then we have
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TVaR[S +T ; p] ≤ d +
1

1− p
πS+T (d)

= d1 +d2 +
1

1− p
E[(S +T −d1 −d2)+]

≤ d1 +d2 +
1

1− p
E[(S−d1)+ +(T −d2)+]

= TVaR[S; p]+TVaR[T ; p].

(5.48)

Here we used that s+ + t+ = (s+ + t+)+ ≥ (s+ t)+ for all real s, t. ∇

In Exercise 5.6.5, we will see an example where CTE is not subadditive. For contin-
uous risks, CTE and TVaR coincide, but there is also a neat more direct proof that
CTE is subadditive in this case.

Property 5.6.11 (CTE is subadditive for continuous risks)

is subadditive.

Proof. If s = VaR[S; p], t = VaR[T ; p] and z = VaR[S+T ; p], by the assumed conti-
nuity we have 1− p = Pr[S+T > z] = Pr[S > s] = Pr[Y > t]. It is not hard to see that
if for some s, the events A and S > s are equally likely, for the conditional means we
have E[S |A] ≤ E[S |S > s]. Apply this with A ≡ S +T > z, then we get

E[S +T |A] = E[S |A]+E[T |A] ≤ E[S |S > s]+E[T |T > t]. (5.49)

This is tantamount to

CTE[S +T ; p] ≤ CTE[S; p]+CTE[T ; p], (5.50)

so subadditivity for the CTE’s of continuous risks is proved. ∇

R provides nine ways to estimate a VaR at level p from a sample S of size n, differing
subtly in the way the interpolation between the order statistics close to np of the
sample is performed. See ?quantile for more information on this. Leaving out
the type parameter is equivalent to choosing the default method type=7 in R. An
example for a lognormal(0,1) random sample:

set.seed(1); S <- exp(rnorm(1000,0,1))
levels <- c(0.5,0.95,0.975,0.99,0.995)
quantile(S, levels, type=7)
## 50% 95% 97.5% 99% 99.5%
##0.9652926 5.7200919 7.4343584 10.0554305 11.5512498

The reader is asked to computes estimates of the other risk measures in this section
in Exercise 5.6.4.

If S and T are random variables with continuous marginal cdfs and joint cdf, CTE
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5.7 Exercises

Section 5.2

1. Show that (5.7) is valid.

2. What are the results in the table in case of a dividend i = 2% and ε = 5%? Calculate the
variance premium as well as the exponential premium.

Section 5.3

1. Let X ∼ exponential(1). Determine the premiums (a)–(e) and (h)–(j).

2. [♠] Prove that π[X ;α] = log(E[eαX

3.
gamma distributed claims per accident. Determine the expected value premium if the loading
factor equals 10%.

4. Determine the exponential premium for a compound Poisson risk with gamma distributed
individual claims.

5. Calculate the variance premium for the claims distribution as in Exercise 5.3.3.

6. Show that the Esscher premium equals κ ′
X (h), where κX

7. What is the Esscher transformed density with parameter h for the following densities: expo-
nential(α), binomial(n,p) and Poisson(λ )?

8. Show that the Esscher premium for X increases with the parameter h.

9. Calculate the Esscher premium for a compound Poisson distribution.

10. Show that the Esscher premium for small values of α boils down to a variance premium prin-
ciple.

11. Assume that X is a finite risk with maximal value b, hence Pr[X ≤ b] = 1 but Pr[X ≥ b−ε] > 0
for all ε > 0. Let πα denote the exponential premium for X . Show that limα→∞ πα = b.

12. Show that the exponential premium π[X ;α] with risk aversion α is the difference quotient(
κX (α)− κX (0)

)
/α . Prove that it also can be written as a uniform mixture of Esscher pre-

miums
∫ α

0 π[X ;h]dh/α . From the fact that Esscher premiums increase with h, what can be
concluded about the Esscher(h = α) premium compared with the exponential(α) premium?

13. In Table 5.1, prove the properties that are marked “+”.

14. Construct counterexamples for the first 4 rows and the second column for the properties that
are marked “−”.

15. Investigate the additivity of a mixture of Esscher principles of the following type: π[X ] =
pπ[X ;h1]+ (1− p)π[X ;h2] for some p ∈ [0,1], where π[X ;h] is the Esscher premium for risk
X with parameter h.

16. Formulate a condition for dependent risks X and Y that implies that π[X +Y ] ≤ π[X ]+ π[Y ]
for the variance premium (subadditivity). Also show that this property holds for the standard
deviation principle, no matter what the joint distribution of X and Y is.

derivative with respect to α is positive (see also Example 1.3.1).
])/α is an increasing function of α , by showing that the

is the cgf of X .

Assume that the total claims for a car portfolio has a compound Poisson distribution with
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Section 5.5

1. For a proof of Hölder’s inequality in case of n = 2, let p > 1 and q > 1 satisfy 1
p + 1

q = 1.
Successively prove that

• if u > 0 and v > 0, then uv ≤ up

p + vq

q ; (write u = es/p and v = et/q);
• if E[U p] = E[V q] = 1 and Pr[U > 0] = Pr[V > 0] = 1, then E[UV ] ≤ 1;
• |E[XY ]| ≤ E[|X |p]1/pE[|Y |q]1/q.

2.

Section 5.6

1.
the R-example at the end of this section and at level 0.95.

2. Prove that the following properties hold for TVaR and VaR:

• no rip-off (T)VaR[S; p] ≤ max[S]

• no unjustified loading (T)VaR[S; p] = c if S ≡ c

• non-decreasing in p if p < q, then (T)VaR[S; p] ≤ (T)VaR[S;q]

• non-negative safety loading TVaR[S; p] ≥ E[S]

• translative (T)VaR[S + c; p] = (T)VaR[S; p]+ c

• positively homogeneous (T)VaR[αS] = α × (T)VaR[S; p] for all α > 0

• TVaR is continuous in p but VaR and CTE are not

3. Let Xi, i = 1, . . . ,100 be iid risks with Pr[Xi = −100] = 0.01, Pr[Xi = +2] = 0.99. Compare
1 = ∑100

i=1 Xi (diversified) and S2 = 100X1 (non-diversified). The diversified risk

smaller VaR at various levels p.

4.

5. Prove that CTE is not subadditive by looking at level p = 0.9 for the pair of risks (X ,Y ) with:

X ∼ uniform(0,1); Y =

{
0.95−X if X ≤ 0.95

1.95−X if X > 0.95

Note that X ∼ Y ∼ uniform(0,1) are continuous, but X +Y is discrete.

6. Give expressions for ES, TVaR and CTE in case S ∼ uniform(a,b).

7. As the previous exercise, but now for S ∼ N(µ,σ2).

8. As the previous exercise, but now for S ∼ lognormal(µ,σ2).

9. Show that VaR is not subadditive using the example X ,Y ∼ Bernoulli(0.02) iid and p = 0.975.
Consider also the case that (X ,Y ) is bivariate normal.

10. Derive (5.38).

11. If h > 0, prove that π[2S;h] > 2π[S;h] for Esscher premiums.

the same finite mean. Plot the cdfs of both these risks. Investigate which of these risks has a

the VaRs of S
is obviously safer, but the VaRs cannot be uniformly smaller for two random variables with

Whose inequality arises for p = q = 2 in the previous exercise?

Write R-functions computing TVaRs for (translated) gamma and lognormal distributions.

Compute estimates for the TVaR and ES based on the same lognormal sample S as given in

Make plots of the TVaRs at levels 1%,3%, . . . ,99%.



Chapter 6
Bonus-malus systems

It’s a dangerous business going out your front door —
J.R.R. Tolkien (1892 - 1973)

6.1 Introduction

This chapter presents the theory behind bonus-malus methods for automobile insur-
ance. This is an important branch of non-life insurance, in many countries even the
largest in total premium income. A special feature of automobile insurance is that
quite often and to everyone’s satisfaction, a premium is charged that for a large part
depends on the claims filed on the policy in the past. In experience rating systems
such as these, bonuses can be earned by not filing claims, and a malus is incurred
when many claims have been filed. Experience rating systems are common practice
in reinsurance, but in this case, it affects the consumer directly. Actually, in case of
a randomly fluctuating premium, the ultimate goal of insurance, that is, being in a
completely secure financial position as regards this particular risk, is not reached.
But in this type of insurance, the uncertainty still is greatly reduced. This same phe-
nomenon occurs in other types of insurance, for example when part of the claims is
not reimbursed by the insurer because there is a deductible.

That lucky policyholders pay for the damages caused by less fortunate insureds is
the essence of insurance (probabilistic solidarity). But in private insurance, solidar-
ity should not lead to inherently good risks paying for bad ones. An insurer trying
to impose such subsidizing solidarity on his customers will see his good risks take
their business elsewhere, leaving him with the bad risks. This may occur in the au-
tomobile insurance market when there are regionally operating insurers. Charging
the same premiums nationwide will cause the regional risks, which for automobile
insurance tend to be good risks because traffic is not so heavy there, to go to the
regional insurer, who with mainly good risks in his portfolio can afford to charge
lower premiums.

There is a psychological reason why experience rating is broadly accepted with
car insurance, and not, for example, with health insurance. Bonuses are seen as
rewards for careful driving, premium increases as an additional and well-deserved
fine for the accident-prone. But someone who is ill is generally not to blame, and
does not deserve to suffer in his pocket as well.

135
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Traditionally, car insurance covers third party liability, as well as the damage to
one’s own vehicle. The latter is more relevant for rather new cars, since for reasons
of moral hazard, insurers do not reimburse more than the current value of the car.

In Section 6.2, we describe the Dutch bonus-malus system, which is typical for
such systems. Also, we briefly describe the reasons for adopting this new system.
Bonus-malus systems are suitable for analysis by Markov chains, see Section 6.3.
In this way, we will be able to determine the Loimaranta efficiency of such systems,
that is, the elasticity of the mean asymptotic premium with respect to the claim
frequency. In Chapter 8, we present a bonus-malus system that is a special case of
a so-called credibility method. In Chapter 9, we study among other things some
venerable non-life actuarial methods for automobile premium rating in the light of
generalized linear models. Also, we present a case study on a portfolio not unlike
the one used to construct the Dutch bonus-malus system. See also Appendix A.

6.2 A generic bonus-malus system

Every country has his own bonus-malus system, the wheel having been reinvented
quite a few times. The system employed by many insurance companies in The
Netherlands is the result of a large-scale investigation performed in 1982. It was
prompted by the fact that the market was chaotic and in danger of collapsing. The
data consisted of about 700 000 policies of which 50 particulars were known, and
that produced 80 000 claims. Both claim frequency and average claim size were
studied. Many Dutch insurers still use variants of the proposed system.

First, a basic premium is determined using rating factors like weight, list-price
or capacity of the car, type of use of the car (private or for business), and the type of
coverage (comprehensive, third party only, or a mixture). This is the premium that
drivers without a known claims history have to pay. The bonus and malus for good
and bad claims experience are implemented through the use of a so-called bonus-
malus scale. One ascends one step, getting a greater bonus, after a claim-free year,
and descends several steps after having filed one or more claims. The bonus-malus
scale, including the percentages of the basic premium to be paid and the transitions
made after 0, 1, 2, and 3 or more claims, is depicted in Table 6.1. In principle,
new insureds enter at the step with premium level 100%. Other countries might use
different rating factors and a different bonus-malus scale.

Not all relevant risk factors were usable as rating factors. Driving capacity, swift-
ness of reflexes, aggressiveness behind the wheel and knowledge of the highway
code are hard to measure, while mileage is prone to deliberate misspecification. For
some of these relevant factors, proxy measures can be found. One can get a good
idea about mileage by looking at factors like weight and age of the car, as well as
the type of fuel used, or type of usage (private or professional). In the Netherlands,
diesel engines, for example, are mainly used by drivers with high mileage. Traffic
density can be deduced from region of residence, driving speed from horse power
and weight of the car. But it will remain impossible to assess the average future
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Table 6.1 Transition rules and premium percentages for the Dutch bonus-malus system

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Percentage 120 100 90 80 70 60 55 50 45 40 37.5 35 32.5 30

0 claims → 2 3 4 5 6 7 8 9 10 11 12 13 14 14
1 claim → 1 1 1 1 2 3 4 5 6 7 7 8 8 9
2 claims → 1 1 1 1 1 1 1 1 2 3 3 4 4 5
3+ claims → 1 1 1 1 1 1 1 1 1 1 1 1 1 1

claim behavior completely using data known in advance, therefore there is a need to
use the actual claims history as a rating factor. Claims history is an ex post factor,
which becomes fully known only just before the next policy year. Hence one speaks
of ex post premium rating, where generally premiums are fixed ex ante.

In the investigation, the following was found. Next to car weight, cylinder capac-
ity and horse power of the car provided little extra predicting power. It proved that
car weight correlated quite well with the total claim size, which is the product of
claim frequency and average claim size. Heavier cars tend to be used more often,
and also tend to produce more damage when involved in accidents. Car weight is
a convenient rating factor, since it can be found on official papers. In many coun-
tries, original list-price is used as the main rating factor for third party damage.
This method has its drawbacks, however, because it is not reasonable to assume
that someone would cause a higher third-party claim total if he has a metallic finish
on his car or a more expensive audio system. It proved that when used next to car
weight, catalogue price also did not improve predictions about third party claims.
Of course for damage to the own vehicle, it remains the dominant rating factor. Note
that the premiums proposed were not just any function of car weight and catalogue
price, but they were directly proportional to these figures.

The factor ‘past claims experience’, implemented as ‘number of claim-free
years’, proved to be a good predictor for future claims, even when used in con-
nection with other rating factors. After six claim-free years, the risk still diminishes,
although slower. This is reflected in the percentages in the bonus-malus scale given
in Table 6.1. Furthermore, it proved that drivers with a bad claims history are worse
than beginning drivers, justifying the existence of a malus class with a premium
percentage of more than the 100% charged in the standard entry class.

An analysis of the influence of the region of residence on the claims experi-
ence proved that in less densely populated regions, fewer claims occurred, although
somewhat larger. It appeared that the effect of region did not vanish with an in-
creasing number of claim-free years. Hence the region effect was incorporated by a
fixed discount percentage, in fact enabling the large companies to compete with the
regionally operating insurers on an equal footing.

The age of the policyholder is very important for his claim behavior. The claim
frequency at age 18 is about four times the one drivers of age 30–70 have. Part of
this bad claim behavior can be ascribed to lack of experience, because after some
years, the effect slowly vanishes. That is why it was decided not to let the basic
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premium vary by age, but merely to let young drivers enter at a less favorable step
in the bonus-malus scale.

For commercial reasons, the profession of the policy holder as well as the make
of the car were not incorporated in the rating system, even though these factors did
have a noticeable influence.

Note that in the bonus-malus system, only the number of claims filed counts,
not their size. Although it is clear that a bonus-malus system based on claim sizes
is possible, such systems are hardly ever used with car insurance. This is because
in general the unobserved driving qualities affect the claim number more than the
claim severity distribution.

6.3 Markov analysis

Bonus-malus systems can be considered as special cases of Markov processes. In
such processes, one jumps from one state to another in time. The Markov property
says that the process is memoryless, as the probability of such transitions does not
depend on how one arrived in a particular state. Using Markov analysis, one may
determine which proportion of the drivers will eventually be on each step of the
bonus-malus scale. Also, it gives a means to find out how effective the bonus-malus
system is in determining adjusted premiums representing the driver’s actual risk.

To fix ideas, let us look at a simple example. In a particular bonus-malus system,
a driver pays premium c if he files one or more claims in the preceding two-year
period, otherwise he pays a, with a < c. To describe this system by a bonus-malus
scale, notice first that there are two groups of drivers paying the high premium, the
ones who claimed last year, and the ones that filed a claim only in the year before
that. So we have three states (steps):

1. Claim in the previous policy year; paid c at the previous policy renewal;
2. No claim in the previous policy year, claim in the year before; paid c;
3.

First we determine the transition probabilities for a driver with probability p of
having one or more claims in a policy year. In the event of a claim, he falls to state
1, otherwise he goes one step up, if possible. We get the following matrix P of
transition probabilities pi j to go from state i to state j:

P =

⎛⎝ p q 0
p 0 q
p 0 q

⎞⎠ . (6.1)

The matrix P is a stochastic matrix: every row represents a probability distribution
over states to be entered, so all elements of it are non-negative. All row sums ∑ j pi j

are equal to 1, since from any state i, one has to go to some state j. Therefore

Claim-free in the two most recent policy years; paid a.
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P

⎛⎝ 1
1
1

⎞⎠ =

⎛⎝ 1
1
1

⎞⎠ . (6.2)

So matrix P has (1,1,1)T as a right-hand eigenvector for eigenvalue 1. Assume that
initially at time t = 0, the probability f j for each driver to be in state j = 1,2,3 is
given by the row-vector l(0) = ( f1, f2, f3) with f j ≥ 0 and f1 + f2 + f3 = 1. Often,
the initial state is known to be i, and then fi will be equal to one. The probability
to start in state i and to enter state j after one year is equal to fi pi j, so the total
probability of being in state j after one year, starting from an initial class i with
probability fi, equals ∑i fi pi j. In matrix notation, the following vector l(1) gives the
probability distribution of drivers over the states after one year:

l(1) = l(0)P = ( f1, f2, f3)

⎛⎝ p q 0
p 0 q
p 0 q

⎞⎠ = (p,q f1,q( f2 + f3)). (6.3)

After a claim, drivers fall back to state 1. The probability of entering that state equals
p = p( f1 + f2 + f3). Non-claimers go to a higher state, if possible. The distribution
l(2) over the states after two years is independent of l(0), since

l(2) = l(1)P = (p,q f1,q( f2 + f3))

⎛⎝ p q 0
p 0 q
p 0 q

⎞⎠ = (p, pq,q2). (6.4)

The state two years from now does not depend on the current state, but only on
the claims filed in the coming two years. Proceeding like this, one sees that l(3) =
l(4) = l(5) = · · · = l(2). So we also have l(∞) := limt→∞ l(t) = l(2). The vector
l(∞) is called the steady state distribution. Convergence will not always happen this
quickly and thoroughly. Taking the square of a matrix, however, can be done very
fast, and doing it ten times starting from P already gives P1024. Each element ri j of
this matrix can be interpreted as the probability of going from initial state i to state
j in 1024 years. For regular bonus-malus systems, this probability will not depend
heavily on the initial state i, nor will it differ much from the probability of reaching
j from i in an infinite number of years. Hence all rows of P1024 will be virtually
equal to the steady state distribution.

There is also a more formal way to determine the steady state distribution. This
goes as follows. First, notice that

lim
t→∞

l(t +1) = lim
t→∞

l(t)P, hence l(∞) = l(∞)P. (6.5)

But this means that the steady state distribution l(∞) is a left-hand eigenvector of P
with eigenvalue 1. To determine l(∞) we only have to find a non-trivial solution for
the linear system of equations (6.5), which is equivalent to the homogeneous system
(PT −I)lT (∞) = (0,0, . . . ,0)T , and to divide it by the sum of its components to make
l(∞) a probability distribution. Note that all components of l(∞) are necessarily non-
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negative, because of the fact that l j(∞) = limt→∞ l j(t). Later on in this section we
show how to find the steady state distribution using R.

Remark 6.3.1 (Interpretation of initial distribution over states and transition
probability matrix)
It is not necessary to take l(0) to be a probability distribution. It also makes sense to
take for example l(0) = (1000,0,0). In this way, one considers a thousand drivers
with initial state 1. Contrary to l(0), the vectors l(1), l(2), . . . as well as l(∞) do
not represent the exact number of drivers in a particular state, but just the expected
values of these numbers. The actual numbers are binomial random variables with as
probability of success in a trial, the probability of being in that particular state at the
given time.

American mathematical texts prefer to have the operand to the right of the opera-
tor, and in those texts the initial state as well as the steady state are column vectors.
Therefore, the matrix P of transition probabilities must be transposed, so its generic
element Pi j is the probability of a transition from state j to state i instead of the other
way around such as in this text and many others. ∇

Remark 6.3.2 (Hunger for bonus)
Suppose a driver with claim probability p, in state 3 in the above system, causes
a damage of size t in an accident. If he is not obliged to file this claim with his
insurance company, for which t is it profitable for him to do so?

Assume that, as some policies allow, he only has to decide on December 31st
whether to file this claim, so it is certain that he has no claims after this one con-
cerning the same policy year. Since after two years the effect of this particular claim
on his position on the bonus-malus scale will have vanished, we use a planning
horizon of two years. His costs in the coming two years (premiums plus claim), de-
pending on whether or not he files the claim and whether he is claim-free next year,
are as follows:

No claim next year Claims next year

Claim not filed a+a+ t a+ c+ t
Claim filed c+ c c+ c

Of course he should only file the claim if it makes his expected loss lower, which is
the case if

(1− p)(2a+ t)+ p(a+ c+ t) ≥ 2c ⇐⇒ t ≥ (2− p)(c−a). (6.6)

From (6.6) we see that it is unwise to file claims smaller than the expected loss of
bonus in the near future. This phenomenon, which is not unimportant in practice,
is called hunger for bonus. The insurer is deprived of premiums that are his due
because the insured in fact conceals that he is a bad driver. But this is compensated
by the fact that small claims also involve handling costs.

Many articles have appeared in the literature, both on actuarial science and on
stochastic operational research, about this phenomenon. The model used can be
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much refined, involving for example a longer or infinite time-horizon, with dis-
counting. Also the time in the year that a claim occurs is important. ∇

6.3.1 Loimaranta efficiency

The ultimate goal of a bonus-malus system is to make everyone pay a premium that
reflects as closely as possible the expected value of his annual claims. If we want to
investigate how efficient a bonus-malus system is in performing this task, we have
to look at how the premium depends on the claim frequency λ . To this end, assume
that the random variation around this theoretical claim frequency can be described
as a Poisson process, see Chapter 4. Hence, the number of claims in each year is
a Poisson(λ ) variate, and the probability of a year with one or more claims equals
p = 1−e−λ . The expected value of the asymptotic premium to be paid is called the
steady state premium. It depends on λ , and in our example where l(∞) = (p, pq,q2)
and the premiums are (c,c,a), it equals

b(λ ) = cp+ cpq+aq2 = c(1− e−2λ )+ae−2λ . (6.7)

This is the premium one pays on the average after the effects of in which state one
initially started have vanished. In principle, this premium should be proportional to
λ , since the average of the total annual claims for a driver with claim frequency
intensity parameter λ is equal to λ times the average size of a single claim, which
in all our considerations we have taken to be independent of the claim frequency.
Define the following function for a bonus-malus system:

e(λ ) :=
λ

b(λ )

db(λ )

dλ
=

dlogb(λ )

dlogλ
. (6.8)

This is the so-called Loimaranta efficiency; the final equality follows from the chain
rule. It represents the ‘(point) elasticity’ of the steady state premium b(λ ) with re-
spect to λ . As such, it is also the slope of the curve b(λ ) in a log-log graph. The
number e(λ ) = db(λ )/b(λ )

/
dλ/λ represents the ratio of the incremental percent-

age change of the function b(λ ) with respect to an incremental percentage change
of λ . For ‘small’ h, if λ increases by a factor 1+ h, b(λ ) increases by a factor that
is approximately 1+ e(λ )h, so we have

b(λ (1+h)) ≈ b(λ )(1+ e(λ )h). (6.9)

Ideally, the efficiency should satisfy e(λ ) ≈ 1, but no bonus-malus system achieves
that for all λ . In view of the explicit expression (6.7) for b(λ ), for our particular
three-state example the efficiency amounts to

e(λ ) =
2λe−2λ (c−a)

c(1− e−2λ )+ae−2λ . (6.10)
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Fig. 6.1 Efficiency of the Dutch bonus-malus system

As the steady state premium does not depend on the initial state, the same holds for
the efficiency, though both of course depend on the claim frequency λ .

Remark 6.3.3 (Efficiency less than one means subsidizing bad drivers)
The premium percentages in all classes are positive and finite, hence b(0) > 0 and
b(∞) < ∞ hold. In many bonus-malus systems, for example with (6.10) when a < c,
we have 0 < e(λ ) < 1 over the whole range of λ . See Exercise 6.3.4. Then we get

d
dλ

log
b(λ )

λ
=

b′(λ )

b(λ )
− 1

λ
=

1
λ

(e(λ )−1) < 0. (6.11)

As log b(λ )
λ decreases with λ , so does b(λ )

λ , from ∞ as λ ↓ 0 to 0 as λ → ∞. So there
is a claim frequency λ0 such that the steady state premium for λ = λ0 exactly equals
the net premium. Drivers with λ > λ0 pay less than they should, drivers with λ < λ0

pay more. This means that there is a capital transfer from the good risks to the bad
risks. The rules of the bonus-malus system penalize the claimers insufficiently. See
again Exercise 6.3.4.

For the Dutch bonus-malus system, the efficiency never is larger than 0.8, and it
is maximal near λ = 0.23. See Figure 6.1. ∇

6.4 Finding steady state premiums and Loimaranta efficiency

In this section we describe how to determine the steady state premium as well
as the Loimaranta efficiency for a general bonus-malus system. Let n denote the
number of states. For notational convenience, introduce the functions ti j(k) with
i, j = 1,2, . . . ,n to describe the transition rules, as follows:

ti j(k) = 1 if by k claims in a year, one goes from state i to j;

ti j(k) = 0 otherwise.
(6.12)
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When the parameter equals λ , the probability to go from state i to state j is

Pi j(λ ) =
∞

∑
k=0

pk(λ )ti j(k). (6.13)

Now consider the initial distribution l(0) = (l1(0), . . . , ln(0)), where l j(0) is the
probability of finding a contract initially, at time t = 0, in state j, for j = 1,2, . . . ,n.
Then the vector of probabilities to find a driver in class j at time t + 1 can be ex-
pressed in the state vector l(t) at time t as follows:

l j(t +1) =
n

∑
i=1

li(t)Pi j(λ ), t = 0,1,2, . . . (6.14)

The sum of the l j(t) is unity for each t. In the steady state we find, taking limits for
t → ∞:

l j(∞) =
n

∑
i=1

li(∞)Pi j(λ ) with
n

∑
j=1

l j(∞) = 1. (6.15)

As noted before, the steady state vector l(∞) = (l1(∞), . . . , ln(∞)) is a left-hand
eigenvector of the matrix P corresponding to the eigenvalue 1. In the steady state,
we get for the asymptotic average premium (steady state premium) with claim fre-
quency λ :

b(λ ) =
n

∑
j=1

l j(∞)b j, (6.16)

with b j the premium for state j. Note that l j(∞) depends on λ , but not on the initial
distribution over the states.

Having an algorithm to compute b(λ ) as in (6.16), we can easily approximate the
Loimaranta efficiency e(λ ). All it takes is to apply (6.9). But it is also possible to

compute the efficiency e(λ ) exactly. Write l j(λ ) = l j(∞) and g j(λ ) =
dl j(λ )

dλ , then

db(λ )

dλ
=

n

∑
j=1

b j
dl j(λ )

dλ
=

n

∑
j=1

b jg j(λ ), (6.17)

The g j(λ ) can be found by taking derivatives in the system (6.15). One finds the
following equations:

g j(λ ) =
n

∑
i=1

gi(λ )Pi j(λ )+
n

∑
i=1

li(λ )P′
i j(λ ), (6.18)

where the derivatives of Pi j(λ ) can be found as

P′
i j(λ ) =

d
dλ

∞

∑
k=0

e−λ λ k

k!
ti j(k) =

∞

∑
k=0

e−λ λ k

k!

[
ti j(k +1)− ti j(k)

]
. (6.19)
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Using the fact that ∑ j g j(λ ) = 0, the efficiency e(λ ) can be computed for every λ
by solving the resulting system of linear equations. In this way, one can compare
various bonus-malus systems as regards efficiency, for example by comparing the
graphs of e(λ ) for the plausible values of λ ranging from 0.05 to 0.2, or by looking
at some weighted average of e(λ ) values.

To compute Loimaranta’s efficiency e(λ ) for the system of Table 6.1 with R,
there are three possible approaches:

Approximation: Compute the steady state distribution using any row of P(210)

for λ (1− ε) and λ (1+ ε), and use e(λ ) ≈ ∆ logb(λ )
∆ log(λ ) .

Exact: Implement the method described in (6.17)–(6.19).
The steady state distribution arises as a left-hand eigenvector of P, and b′(λ ) is
computed by solving a system of linear equations as well; see (6.19).

Simulation: Use the simulated BM positions after T years for M drivers to esti-
mate the steady state distribution, and from the average premiums paid in year
T , approximate e(λ ) like in the first method.

The following R-statements fill a vector of the BM percentages paid and an array
with, in row k+1, the next BM-step Next[k+1,b] after b in case of k claims
in the BM-system of Table 6.1. Using this matrix we can fill the transition matrix
P by Pi j = ∑Pr[k claims]; the sum is over those k for which ti j(k) = 1 in (6.12),
so k claims lead to a transition from i to j, see (6.13). Here, p[1:4] denote the
probabilities of 0,1,2,3+ claims. Later on, the same function is used to fill P′, with
the derivatives P ′

i j(λ ) in (6.19) replacing the Pi j(λ ).

BM.frac <- c(1.2,1,.9,.8,.7,.6,.55,.5,.45,.4,.375,.35,.325,.3)
Next <- rbind( ## see Table 6.1

c( 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,14),
c( 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9),
c( 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5),
c( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))

FillP <- function (p)
{ PP <- matrix(0,nrow=14,ncol=14)
for (k1 in 1:4) for (b in 1:14)
{j <- Next[k1,b]; PP[b,j] <- PP[b,j] + p[k1]}
return(PP)}

Approximate method For λ ×(1−ε) and λ ×(1+ε), compute Pk with k = 210 =
1024. This matrix consists of the probabilities Pi j of going from initial state i to state
j in k steps. It is evident that after k steps, it is irrelevant in which state we started.
So we find the steady state distribution by using the last of the virtually equal rows
of Pk. Next, compute the corresponding steady state premiums. Finally, use

e(λ ) =
dlogb(λ )

dlog(λ )
≈ ∆ logb(λ )

∆ log(λ )
. (6.20)

To implement this method, do:
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b <- c(0,0); lbs <- c(0.05*(1-0.0001), 0.05*(1+0.0001))
for (i in 1:2)
{ pp <- dpois(0:2, lbs[i])
P <- FillP(c(pp[1],pp[2],pp[3],1-sum(pp)))
for (k in 1:10) P <- P %*% P ## i.e., P <- Pˆ(2ˆ10)
stst <- P[14,] ## bottom row is near steady state db
b[i] <- sum(stst*BM.frac)} ## b(lambda)

(log(b[2])-log(b[1])) / (log(lbs[2])-log(lbs[1]))
## = 0.1030403315

Exact method For λ = 0.05, fill P as above. First solve l = lP to find the steady
state distribution l as the (real) left-hand eigenvector with eigenvalue 1 having total
1, as follows:

pp <- dpois(0:2, 0.05)
P <- FillP(c(pp[1],pp[2],pp[3],1-sum(pp)))
stst <- eigen(t(P))$vectors[,1]
stst <- stst/sum(stst); stst <- Re(stst)

Note that we need the largest eigenvalue with the left-hand eigenvector of P, hence
the first (right-hand) eigenvector produced by eigen(t(P)). See ?eigen.

Being an irreducible stochastic matrix, P has one eigenvalue 1; all 13 others are <
1 in absolute value. This follows from Perron-Frobenius’ theorem, or by reasoning
as follows:

- In t ≥ 13 steps, any state can be reached from any other. So P t
i j > 0 ∀i, j.

- P∞
i j is the limiting probability to reach j from i in a very large number of steps t.

- Since the initial state i clearly becomes irrelevant as t →∞, P∞ has constant rows.
- So P∞, having rank 1, has one eigenvalue 1 and 13 eigenvalues 0.
- If a satisfies aP = αa, then aPt = α ta. Then α 	= 1 =⇒ α t → 0 =⇒ |α| < 1.

Clearly, l depends on λ . Let g j(λ ) be as in (6.17). Differentiating l(λ ) = l(λ )P(λ )
leads to

g(λ )(I−P(λ ))
(6.18)
= l(λ )P′(λ ). (6.21)

The system g(I−P) = lP′ is underdetermined. This is because all row sums in I−P
and P′ are zero, so adding up all equations gives 0 = 0. This means that the last
equation is the negative of the sum of the other ones. To resolve this, replace one of
the equations with ∑g j(λ ) = 0, which must hold since

∑g j(λ ) =
d

dλ ∑
j

b j(λ ) =
d

dλ
1 = 0. (6.22)

The sum of the coefficients of this last equation is positive, so it cannot be a linear
combination of the other equations of which the coefficients all sum to zero.

To compute P′, just replace every entry Pi j(λ ) in P by P ′
i j(λ ) [see (6.19)]. So we

get our exact efficiency by the following R-function calls:

P.prime <- FillP(c(-pp[1],pp[1]-pp[2],pp[2]-pp[3],pp[3]))
IP <- diag(14)-P
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lP <- stst %*% P.prime ## system (6.21) is g%IP = lP
IP[,14] <- 1; lP[14] <- 0 ## replace last eqn by sum(g)=0
g <- lP %*% solve(IP) ## g = lP (IP)ˆ{-1}
0.05*sum(g*BM.frac)/sum(stst*BM.frac) ## = 0.1030403317

Simulation method Generate 10000 BM-histories spanning 50 year as follows:

TMax <- 50; NSim <- 10000; FinalBM <- numeric(NSim)
lbs <- c(0.05*(1-0.1), 0.05*(1+0.1)); b <- c(0,0);
for (ii in 1:2) ## just as in Method 1
{ for (n in 1:NSim)
{ cn1 <- rpois(TMax,lbs[ii]); cn1 <- pmin(cn1, 3) + 1
BM <- 14; for (i in 1:TMax) BM <- Next[cn1[i],BM]
FinalBM[n] <- BM

}
print(table(FinalBM)/NSim); b[ii] <- mean(BM.frac[FinalBM])

}
(log(b[2])-log(b[1])) / (log(lbs[2])-log(lbs[1]))

This last method is certainly the slowest by far. Some test results reveal that to
reach two decimals precision, about a million simulations are needed, which takes
±15 min. This is definitely an issue, since generally, e(λ ) is needed for many λ -
values. For example we might need to produce a graph of e(λ ), see Figure 6.1,
or to compute maxe(λ ) or

∫
e(λ )dU(λ ). Also, we may wonder if after 50 years,

the effect of the choice of the initial state has indeed vanished. On the other hand,
simulation is undeniably more flexible in case of changes in the model.

6.5 Exercises

Section 6.2

1. Determine the percentage of the basic premium to be paid by a Dutch driver, who originally
entered the bonus-malus scale at level 100%, drove without claim for 7 years, then filed one
claim during the eighth policy year, and has been driving claim-free for the three years since
then. Would the total of the premiums he paid have been different if his one claim occurred in
the second policy year?

Section 6.3

1. Prove (6.9).

2. Determine P2 with P as in (6.1). What is the meaning of its elements? Can you see directly
from this that l(2) = l(∞) must hold?

3. Determine e(λ ) in the example with three steps in this section if in state 2, instead of c the
premium is a. Argue that the system can now be described by only two states, and determine
P and l(∞).

4. Show that e(λ ) < 1 in (6.10) for every a and c with a < c. When is e(λ ) close to 1?
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5. Recalculate (6.6) for a claim at the end of the policy year when the interest is i.

6. Determine the value of α such that the transition probability matrix P has vector ( 5
12 , 7

12 ) as

its steady state vector, if P =
( α 1−α

1/2 1/2

)
.

7. If for the steady state premium we have b(λ ) = 100 if λ = 0.050 and b(λ ) = 101 for λ = 0.051,

estimate the Loimaranta efficiency e(λ ) = dlogb(λ )
dlogλ at λ = 0.05.

8. For the transition probability matrix P =
(t 1−t

s 1−s

)
, find the relation between s and t that holds if

the steady state vector equals (p,1− p).

Section 6.4

1. In the Dutch BM-system, assume that there is a so-called ‘no-claim protection’ in operation:
the first claim does not influence next year’s position on the BM-scale. Plot the resulting ef-
ficiency of the system. Explain why it is so much lower. Also give the resulting matrix of
transition probabilities. Use the same FillP function and the same array Next; change only
the argument p of FillP.

2. In the Dutch BM-system, determine when it is not best to file a claim of size t caused on
December, 31. Consider a time-horizon of 15 years without inflation and discounting, and take
the claim frequency to be λ = 0.05 in that entire period. Compute the boundary value for each
current class k ∈ {1, . . . ,14}. Do the same using an annual discount factor of 2%.



Chapter 7
Ordering of risks

Through their knowledge of statistics, finance, and business,
actuaries assess the risk of events occurring and help create
policies that minimize risk and its financial impact on
companies and clients. One of the main functions of actuaries is
to help businesses assess the risk of certain events occurring
and formulate policies that minimize the cost of that risk. For
this reason, actuaries are essential to the insurance industry —
U.S. Department of Labor, www.bls.gov/oco

7.1 Introduction

Comparing risks is the very essence of the actuarial profession. This chapter offers
mathematical concepts and tools to do this, and derives some important results of
non-life actuarial science that can be derived. There are two reasons why a risk,
representing a non-negative random financial loss, would be universally preferred
to another. One is that the other risk is larger, see Section 7.2, the second is that it is
thicker-tailed (riskier), see Section 7.3. Thicker-tailed means that the probability of
extreme values is larger, making a risk with equal mean less attractive because it is
more spread and therefore less predictable. We show that having thicker tails means
having larger stop-loss premiums. We also show that preferring the risk with uni-
formly lower stop-loss premiums describes the common preferences between risks
of all risk averse decision makers. From the fact that a risk is smaller or less risky
than another, one may deduce that it is also preferable in the mean-variance order
that is used quite generally. In this ordering, one prefers the risk with the smaller
mean, and the variance serves as a tie-breaker. This ordering concept, however, is
inadequate for actuarial purposes, since it leads to decisions about the attractive-
ness of risks about which there is no consensus in a group of decision makers all
considered sensible.

We give several invariance properties of the stop-loss order. The most important
one for actuarial applications is that it is preserved under compounding, when either
the number of claims or the claim size distribution is replaced by a riskier one.

In Section 7.4 we give a number of actuarial applications of the theory of order-
ing risks. One is that the individual model is less risky than the collective model.
In Chapter 3, we saw that the canonical collective model has the same mean but a
larger variance than the corresponding individual model, while the open collective
model has a larger mean (and variance). We will prove some stronger assertions, for
example that any risk averse decision maker would prefer a loss with the distribu-
tional properties of the individual model to a loss distributed according to the usual
collective model, and also that all stop-loss premiums for it are smaller.

149
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From Chapter 4 we know that the non-ruin probability can be written as the cdf
of a compound geometric random variable L, which represents the maximal aggre-
gate loss. We will show that if we replace the individual claims distribution in a
ruin model by a distribution that is preferred by all risk averse decision makers,
this is reflected in the ruin probability getting lower, for all initial capitals u. Un-
der somewhat more general conditions, the same holds for Lundberg’s exponential
upper bound for the ruin probability.

Many parametric families are monotonic in their parameters, in the sense that the
risk increases (or decreases) with each of the parameters. We will show that if we
look at the subfamily of the gamma(α,β ) distributions with a fixed mean α/β = µ ,
the stop-loss premiums at each d grow with the variance α/β 2 = µ2/α , hence with
decreasing α . In this way, it is possible to compare all gamma distributions with
the gamma(α0,β0) distribution. Some will be preferred by all decision makers with
increasing utility, some only by those who are also risk averse, while for others, the
opinions of risk averse decision makers will differ.

In Chapter 1, we showed that stop-loss reinsurance is optimal in the sense that
it gives the lowest variance for the retained risk when the mean is fixed. In this
chapter we are able to prove the stronger assertion that stop-loss reinsurance leads
to a retained loss that is preferable for any risk averse decision maker.

We also will show that quite often, but not always, the common good opinion of
all risk averse decision makers about some risk is reflected in a premium to be asked
for it. If every risk averse decision maker prefers X to Y as a loss, X has lower zero
utility premiums, including for example exponential premiums.

Another field of application is given in Section 7.5. Sometimes one has to com-
pute a stop-loss premium for a single risk of which only incomplete information is
known, to be precise, the mean value µ , a maximal loss b and possibly the variance
σ2. We will determine risks with these characteristics that produce upper and lower
bounds for such premiums.

It is quite conceivable that the constraints of non-negativity and independence of
the terms of a sum imposed above are too restrictive. Many invariance properties de-
pend crucially on non-negativity. But in financial actuarial applications, we must be
able to incorporate both gains and losses in our models. The independence assump-
tion is often not even approximately fulfilled, for example if the terms of a sum
are consecutive payments under a random interest force, or in case of earthquake
and flooding risks. Also, the mortality patterns of husband and wife are obviously
related, both because of the ‘broken heart syndrome’ and the fact that their envi-
ronments and personalities will be alike (‘birds of a feather flock together’). Nev-
ertheless, most traditional insurance models assume independence. One can force
a portfolio of risks to satisfy this requirement as much as possible by diversifying,
therefore not including too many related risks like the fire risks of different floors of
a building, or the risks concerning several layers of the same large reinsured risk.

The assumption of independence plays a very crucial role in insurance. In fact,
the basis of insurance is that by undertaking many small independent risks, an in-
surer’s random position gets more and more predictable because of the two funda-
mental laws of statistics, the Law of Large Numbers and the Central Limit Theorem.
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One risk is hedged by other risks, since a loss on one policy might be compensated
by more favorable results on others. Moreover, assuming independence is very con-
venient, because mostly, the statistics gathered only give information about the mar-
ginal distributions of the risks, not about their joint distribution, that is, the way
these risks are interrelated. Also, independence is mathematically much easier to
handle than most other structures for the joint cdf. Note by the way that the Law of
Large Numbers does not entail that the variance of an insurer’s random capital goes
to zero when his business expands, but only that the coefficient of variation, that is,
the standard deviation expressed as a multiple of the mean, does so.

In Section 7.6 we will try to determine how to make safe decisions in case we
have a portfolio of insurance policies that produce gains and losses of which the
stochastic dependency structure is unknown. It is obvious that the sum of random
variables is risky if these random variables exhibit a positive dependence, which
means that large values of one term tend to go hand in hand with large values of
the other terms. If the dependence is absent such as is the case for stochastic inde-

predictable and hence more attractive in the eyes of risk averse decision makers. In
case of positive dependence, the independence assumption would probably under-
estimate the risk associated with the portfolio. A negative dependence means that

is that sums of random variables are the riskiest if these random variables are maxi-
mally dependent (comonotonic).

In Section 7.7, we study the actuarial theory of dependent risks. When comparing
a pair of risks with another having the same marginals, to determine which pair is
more related we can of course look at the usual dependence measures, such as Pear-
son’s correlation coefficient r, Spearman’s ρ , Kendall’s τ and Blomqvist’s β . We
noticed that stop-loss order is a more reliable ordering concept than mean-variance
order, since the latter often leads to a conclusion that is contrary to the opinion of

than (X ′ ′
Pr[X ≤ x,Y ≤ y], so it represents the probability of X and Y being ‘small’ simulta-
neously. Note that at the same time, the probability of being ‘large’ simultaneously
is bigger, because Pr[X > x,Y > y] = 1−Pr[X ≤ x]−Pr[Y ≤ y]+Pr[X ≤ x,Y ≤ y].
If (X ,Y ) is more related than an independent pair, it is positively related. If the cdf
of (X ,Y ) is maximal, they are comonotonic. If (X ,Y ) is more related than (X ′,Y ′),
it can be shown that all dependence measures mentioned are larger, but not the other
way around. We also introduce the concept of the copula of a pair (X ,Y ), which is
just the cdf of the so-called ranks of X and Y . These ranks are the random variables

marginals determine a joint cdf. It will be shown that using a specific copula, a joint
cdf can be found with prescribed marginals and any value of Spearman’s ρ , which
is nothing but the correlation of these ranks F(X) and G(Y ).

pendence, or if it is negative, the losses will be hedged. Their total becomes more

,Y ) if it has the same marginal cdfs but a larger joint cdf. This cdf equals

the larger the claim for one risk, the smaller the other ones. The central result here

some decision makers we consider sensible. The same holds for the conclusions

F(X) and G(Y ), respectively, if F and G are the marginal cdfs. The copula and the

based on these dependence measures. We will only call a pair (X ,Y ) more related
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7.2 Larger risks

In Sections 7.2–7.5, we compare risks, that is, non-negative random variables. It is
easy to establish a condition under which we might call one risk Y larger than (more

with increasing utility will consider loss X to be preferable to Y if it is smaller with
certainty, hence if Pr[X ≤ Y ] = 1. This leads to the following definition:

Definition 7.2.1 (‘Larger’ risk)
′,Y ) exists with X ′ ∼ X and Pr[X ′ ≤

Y ] = 1. ∇

X and FY , but
at the joint distribution of X ′ and Y . See the following example.

Example 7.2.2 (Binomial random variables)
Let X denote the number of times heads occur in seven tosses with a fair coin, and
Y the same in ten tosses with a biased coin having probability p > 1

2 of heads. If X
and Y are independent, the event X > Y has a positive probability. Can we set up the
experiment in such a way that we can define random variables X ′ and Y on it, such
that X ′ has the same cdf as X , and such that Y is always at least equal to X ′?

To construct an X ′ ∼ X such that Pr[X ′ ≤ Y ] = 1, we proceed as follows. Toss a
biased coin with probability p of falling heads ten times, and denote the number of
heads by Y . Every time heads occurs in the first seven tosses, toss another coin that
falls heads with probability 1

2p . Let X ′

coin. Then X ′ ∼ binomial(7, 1
2 ), just as X , because the probability of a success with

each potential toss of the second coin is p× 1
2p . As required, Pr[X ′ ≤ Y ] = 1. The

random variables X ′ and Y are not independent. ∇

The condition in Definition 7.2.1 for Y to be ‘larger’ than X proves to be equivalent

Theorem 7.2.3 (A larger random variable has a smaller cdf)
A pair (X ′,Y ) with X ′ ∼ X and Pr[X ′ ≤ Y ] = 1 exists if, and only if, FX (x) ≥ FY (x)
for all x ≥ 0.

Proof. The ‘only if’-part of the theorem is evident, since Pr[X ′ ≤ x] ≥ Pr[Y ≤ x]
must hold for all x. For the ‘if’-part, we only give a proof for two important spe-
cial cases. If both FX (·) and FY (·) are continuous and monotone increasing, we can
simply take X ′ = F−1

X (FY (Y )). Then FY (Y ) can be shown to be uniform(0,1), and
therefore F−1

X (FY (Y )) ∼ X . Also, X ′ ≤ Y holds.
For X and Y discrete, look at the following functions, which are actually the

X Y

f (u) = x if FX (x−0) < u ≤ FX (x);

g(u) = y if FY (y−0) < u ≤ FY (y).
(7.1)

correctly, larger than or equal to) another risk X : without any doubt a decision maker

Note that in this definition, we do not just look at the marginal cdfs F

For two risks, Y is ‘larger’ than X if a pair (X

be the number of heads shown by the second

to a simple requirement on the marginal cdfs:

inverse cdfs with F (·) and F (·), and are defined for all u with 0 < u < 1:
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Next, take U ∼ uniform(0,1). Then g(U) ∼ Y and f (U) ∼ X , while FX (x) ≥ FY (x)
for all x implies that f (u) ≤ g(u) for all u, so Pr[ f (U) ≤ g(U)] = 1. ∇

Remark 7.2.4 (‘Larger’ vs. larger risks)
X and FY . Since

the joint distribution does not matter, we can, without loss of generality, look at any
copy of X . But this means we can assume that, if Y is ‘larger’ than X in the sense of
Definition 7.2.1, actually the stronger assertion Pr[X ≤ Y ] = 1 holds. So instead of
just stochastically larger, we may assume the risk to be larger with probability one.
All we do then is replace X by an equivalent risk. This approach can be very helpful
to prove statements about ‘larger’ risks. ∇

In many situations, we consider a model involving several random variables as in-
put. Quite often, the output of the model increases if we replace any of the input
random variables by a larger one. This is for example the case when comparing
X + Z with Y + Z, for a risk Z that is independent of X and Y (convolution). A less
trivial example is compounding, where both the number of claims and the claim size
distributions may be replaced. We have:

Theorem 7.2.5 (Compounding)
If the individual claims Xi are ‘smaller’ than Yi for all i, the counting variable M is
‘smaller’ than N, and all these random variables are independent, then X1 + X2 +
· · ·+XM is ‘smaller’ than Y1 +Y2 + · · ·+YN .

Proof. In view of Remark 7.2.4 we can assume without loss of generality that Xi ≤
Yi as well as M ≤ N hold with probability one. Then the second expression has at
least as many non-negative terms, all of them being at least as large. ∇

The order concept ‘larger than’ used above is called stochastic order, and the nota-
tion is as follows:

Definition 7.2.6 (Stochastic order)
Risk X precedes risk Y in stochastic order, written X ≤st Y , if Y is ‘larger’ than
X . ∇

In the literature, often the term ‘stochastic order’ is used for any ordering concept
between random variables or their distributions. In this book, it is reserved for the
specific order of Definition 7.2.6.

Remark 7.2.7 (Stochastically larger risks have a larger mean)
A consequence of stochastic order X ≤st Y , that is, a necessary condition for it, is
obviously that E[X ] ≤ E[Y ], and even E[X ] < E[Y ] unless X ∼ Y . See for example
formula (1.33) at d = 0. The opposite does not hold: E[X ] ≤ E[Y ] is not sufficient
to conclude that X ≤st Y . A counterexample is X ∼ Bernoulli(p) with p = 1

2 and
Pr[Y = c] = 1 for a c with 1

2 < c < 1. ∇

Remark 7.2.8 (Once-crossing densities are stochastically ordered)
An important sufficient condition for stochastic order is that the densities have the
property that fX (x) ≥ fY (x) for small x, and the opposite for large x. A proof of this
statement is asked in Exercise 7.2.1. ∇

To compare risks X and Y , we look only at their marginal cdfs F



154 7 Ordering of risks

It can be shown that the order ≤st has a natural interpretation in terms of utility
theory. We have

Theorem 7.2.9 (Stochastic order and increasing utility functions)
X ≤st Y holds if and only if E[u(−X)] ≥ E[u(−Y )] for every non-decreasing utility
function u(·).
Proof. If E[u(−X)] ≥ E[u(−Y )] holds for every non-decreasing u(·), then it holds
especially for the utility functions ud(y) = 1− I(−∞,−d](y). But E[ud(−X)] is just
Pr[X ≤ d]. For the ‘only if’ part, if X ≤st Y , then Pr[X ′ ≤ Y ] = 1 for some X ′ ∼ X ,
and therefore E[u(−X)] ≥ E[u(−Y )]. ∇

So the pairs of risks X and Y with X ≤st Y are exactly those pairs of losses about
which all profit seeking decision makers agree on their order.

7.3 More dangerous risks

In economics, when choosing between two potential losses, one usually prefers the

the variance. This mean-variance order concept is the basis of the CAPM-models in
economic theory. It is inadequate for the actuary, because it might declare a risk to
be preferable to another if not all risk-averse individuals feel the same way.

7.3.1 Thicker-tailed risks

It is evident that all risk averse actuaries would agree that one risk is riskier than
another if its extreme values have larger probability. This is formalized as follows:

Definition 7.3.1 (Thicker-tailed)
tt X , if they have the following properties:

Equal means E[X ] = E[Y ]
A real number x0 exists with Pr[X ≤ x]≤ Pr[Y ≤ x] for small

x with x < x0, but Pr[X ≤ x] ≥ Pr[Y ≤ x] when x > x0. ∇

Example 7.3.2 (Dispersion and concentration)
The class of risks Y with a known upper bound b and mean µ contains an element
Z with the thickest possible tails. It is the random variable with

Pr[Z = b] = 1−Pr[Z = 0] =
µ
b

. (7.2)

It is clear that if Y also has mean µ and upper bound b, then Y ≤tt Z must hold

Once-crossing cdfs

loss with the smaller mean. If two risks have the same mean, the tie is broken by

Risk Y is thicker-tailed than X , written Y ≥

because their cdfs cross exactly once. See Figure 7.1. The distribution of Z arises
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xµ0 b

1−µ/b

1

F (x)
Z

F (x)
XF (x)

Y

generated by dispersion and concentration

The random variable Z is the most dispersed one with this given mean and upper
bound. The variance Var[Z] is maximal, since E[Y 2] ≤ E[bY ] = bµ = E[Z2].

This same class of risks also contains a least dispersed element. It arises by con-
centration of the probability mass on µ . If X ≡ µ , then X ≤tt Y , see again Figure 7.1,

is less interesting for practical purposes.
Dispersal and concentration can also be restricted to only the probability mass in

∇

This leads to:

Let X and Y be two risks with equal finite means but different densities. If intervals
I1, I2 and I3 exist with I1 ∪ I2 ∪ I3 2 between I1 3

densities of X and Y satisfy fX Y (x) both on I1 and I3, while fX (x) ≥ fY (x)
2 1 = [0,0] or I2 = [b,b] may

occur if the densities are discrete.

Proof. X and FY must cross at least once,
since we assumed that fX 	≡ fY . This is because if they would not cross, one of the
two would be larger in stochastic order by Theorem 7.2.3, and the means would
then be different by Remark 7.2.7. Both to the left of 0 and in the limit at ∞, the

to a maximum, then decreases to a minimum, and next increases to zero again. So
there is just one point, somewhere in I2

Fig. 7.1 Cdfs with thickest and thinnest tails for random variables with mean µ and support [0,b],

A sufficient condition for two crossing cdfs to cross exactly once is that the dif-

from the one of Y by dispersion of the probability mass to the boundaries 0 and b.

ference of these cdfs increases first, then decreases, and increases again after that.

and its variance is minimal. The problem of finding a minimal variance (‘best-case’)

= [0,∞) and I

some interval, still resulting in risks with thicker and thinner tails respectively.

difference of the cdfs equals zero. Both if the densities represent the derivatives

Because of E[X ] = E[Y ] < ∞, the cdfs F

(x) ≤ f

of the cdfs or their jumps, it is seen that the difference of the cdfs increases first

and I , such that the

on I , then the cdfs of X and Y cross only once. Here I

, where the difference in the cdfs crosses the

Theorem 7.3.3 (Densities crossing twice means cdfs crossing once)



156 7 Ordering of risks
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Gx x
F
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x

Fig. 7.2 Counterexample of the transitivity of being thicker-tailed: H is thicker-tailed than G,
G is thicker-tailed than F , but H is not thicker-tailed than F .

are differentials. Note that a > bdx > 0 holds for all a > 0 and b > 0. ∇

Example 7.3.4 (Binomial has thinner tails than Poisson)
If we compare a binomial(n, p) distribution with a Poisson(np) distribution, we
know that they have the same mean, while the latter has a greater variance. Is it also
thicker-tailed than the binomial distribution?

We will show that the discrete densities, say f (x) and g(x) respectively, have the
crossing properties of the previous theorem. Since f (x) > g(x) > 0 is the same as
r(x) := f (x)/g(x) > 1, we can do this by showing that r(x) increases up to a certain
value of x, and decreases after that. Writing q = 1− p as usual, we get for this ratio

r(x) =
f (x)
g(x)

=

(n
x

)
pxqn−x

(np)xe−np/x!
=

n(n−1) · · ·(n− x+1)

nxqx qnenp. (7.3)

Now consider the ratio of successive values of r(x). For x = 1,2, . . . we have

r(x)
r(x−1)

=
n− x+1

nq
≤ 1 if and only if x ≥ np+1. (7.4)

As f (·) and g(·) have the same mean, they must cross at least twice. But then r(x)
must cross the horizontal level 1 twice, so r(x) < 1 must hold for small as well as for
large values of x, while r(x) > 1 must hold for intermediate values x in an interval
around np+1. Now apply the previous theorem to see that the Poisson distribution
indeed has thicker tails than a binomial distribution with the same mean. ∇

Remark 7.3.5 (Thicker-tailed is not a transitive ordering)
It is easy to construct examples of random variables X , Y and Z where Y is thicker-
tailed than X , Z is thicker-tailed than Y , but Z is not thicker-tailed than X . In Figure

x-axis, hence the cdfs cross exactly once. The property also holds if the densities
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X and G = FY cross once, as do G and H = FZ , but F and H
cross three times. So being thicker-tailed is not a well-behaved ordering concept:
order relations should be transitive. Transitivity can be enforced by extending the
relation ≤tt to pairs X and Z such that a sequence of random variables Y1,Y2, . . . ,Yn

exists with X ≤tt Y1, Yj ≤tt Yj+1, j = 1,2, . . . ,n− 1, as well as Yn ≤tt Z. Extending
the relation in this way, we get the finite transitive closure of the relation ≤tt. This
order will be called indirectly thicker-tailed from now on. ∇

is (indirectly)
X (d) =

E[(X −d)+] and πY (d) do not cross. By proceeding inductively, it suffices to prove
this for the case where Y is directly thicker-tailed than X . But in that case, the dif-
ference π (d)− πX (d) can be seen to be zero at d = 0 because the means of X
and Y are equal, zero at d → ∞, increasing as long as the derivative of the differ-
ence π ′

Y (d)−π ′
X (d) = FY (d)−FX (d) is positive, and decreasing thereafter. Hence,

Y thicker-tailed than X means that Y has higher stop-loss premiums.

Remark 7.3.6 (Odd number of sign changes not sufficient for indirectly thick-
er-tailed)

changes cannot be stop-loss ordered. One sign change is sufficient for stop-loss or-

random variables U ∼ uniform(0,b) and M ∼ binomial(b, 1
2 ), for b = 2,3. As one

can see from Figure 7.3, for b = 2 the stop-loss premiums of M are all larger. To see
that the cdf is indirectly thicker-tailed, compare FU and FM with a cdf G(x) = FU (x)
on (−∞,1), G(x) = FM(x) on [1,∞). But for b = 3, the slp’s are not uniformly or-
dered, see the slp at d = 3− ε and the one at d = 2. There are five sign changes in

Note that when comparing a discrete and a continuous distribution, one should

dFU (x) = fU (x)dx, and dFM(x) > 0 only when x ∈ {0, . . . ,b}, dFM(x) = 0 other-
wise. The former is positive on [0,b], though infinitesimally small, the other one is
mostly zero, but positive on some points. ∇

We can prove that higher stop-loss premiums must imply (indirectly) thicker tails.

Theorem 7.3.7 (Thicker-tailed vs. higher stop-loss premiums)
If E[X ] = E[Y ] and πX (d) ≤ πY (d) for all d > 0, then there exists a sequence

1 2 1 and Y ∼ limn→∞ Fn.

Proof. First suppose that Y is a random variable with finitely many possible values.
Then the cdf of Y is a step-function, so the stop-loss transform is a piecewise linear
continuous convex function. Hence, for certain linear functions A1, . . . ,An it can be
written in the form

πY (d) = max{πX (d),A1(d),A2(d), . . . ,An(d)} , −∞ < d < ∞. (7.5)

Now define the following functions πi(·), i = 1,2, . . . ,n:

If X precedes Y

7.2, the cdfs F = F

in stochastic order, their cdfs do not cross. If Y
thicker-tailed than X , it can be shown that their stop-loss transforms π

It is easy to see that in case of equal means, two cdfs with an even number of sign

Y

the difference of the cdfs.

der, but to show that other odd numbers are not, compare the stop-loss premiums of

F ,F , . . . of increasingly thicker-tailed cdfs with X ∼ F

not just look at the densities, but at the corresponding differentials. They are
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Fig. 7.3 Uniform (0, b) and binomial (b, 1
2

ordered for b = 2, but not for b = 3.

πi(d) = max{πX (d),A1(d),A2(d), . . . ,Ai−1(d)} , −∞ < d < ∞. (7.6)

i

reader may check, X ∼ F1, Y ∼ Fn, and Fi has thicker tails than Fi−1, i = 2,3, . . . ,n.
See also Exercise 7.3.25.

n in the sense
of convergence in distribution. ∇

If the support of Y is infinite, we must take the limit of the cdfs F

) cdfs and slps, for b = 2,3. Note that the slps are

These functions are stop-loss transforms, say with the cdfs F , i = 1,2, . . . ,n. As the
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7.3.2 Stop-loss order

For pairs of random variables with ordered stop-loss premiums we have the follow-
ing definition.

Definition 7.3.8 (Stop-loss order)
If X has smaller stop-loss premiums than Z, we say that X is smaller than Z in
stop-loss order, and write X ≤SL Z. ∇

A random variable that is stop-loss larger than another risk with the same mean
will be referred to as ‘more dangerous’ in the sequel. Note that for stop-loss order,
equality of the means E[X ] = E[Z] is not required. We may show that any risk Z that
is stop-loss larger than X is more dangerous than an intermediate risk Y that in turn
is larger than X :

Theorem 7.3.9 (Separation theorem for stop-loss order)
If X ≤SL Z and E[X ] < E[Z], there exists a random variable Y for which

1. X ≤st Y ;
2. Y ≤SL Z and E[Y ] = E[Z].

Proof. The random variable Y = max{X ,b}, with b > 0 chosen such that E[Y ] =
E[Z], satisfies both these requirements, as the reader is asked to verify in Exercise
7.3.12. ∇

So Y separates X and Z, in a sense stronger than merely ≤SL. For another separator
with the stochastic inequality signs swapped, see Exercise 7.3.13.

Just like stochastic order, stop-loss order can be expressed in a utility context as
the common risk preferences of a group of sensible decision makers:

Theorem 7.3.10 (Stop-loss order and concave increasing utility functions)
X ≤SL Y holds if and only if E[u(−X)] ≥ E[u(−Y )] for every concave increasing
utility function u(·).
Proof. In view of Theorem 7.3.9, it suffices to give the proof for the case that E[X ] =
E[Y ]. Then, it follows as a special case of Theorem 7.6.2 later on. See also Exercise
7.3.17. ∇

So stop-loss order represents the common preferences of all risk averse decision
makers. Stop-loss order applies to losses, that is, non-negative risks. Two general
random variables with the same mean and ordered stop-loss premiums for all d,
including d < 0, are called convex ordered, see Section 7.6. As a consequence of
Theorem 7.3.10, expected values of convex functions are ordered. Since all func-
tions xα with α ≥ 1 are convex, for the moments of X and Y we have E[Xk]≤ E[Y k],
k = 1,2, . . . In particular, a more dangerous risk (with the same mean) has a higher
variance. But if the means of X and Y are not equal, this is not always the case. A
trivial counterexample is X ∼ Bernoulli( 1

2 ) and Y ≡ 1.
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7.3.3 Exponential order

Next to stochastic order and stop-loss order, there is another useful ordering concept
to be derived from the expected utility model.

Definition 7.3.11 (Exponential order)

X ≤e Y . ∇

The inequality X ≤e

(0,∞). A sufficient condition for exponential order between risks is stop-loss order,
since the function etx is a convex function on [0,∞) for t > 0, hence E[etX ] ≤ E[etY ]
holds for all t > 0. But this can be seen from utility considerations as well, because
the exponential order represents the preferences common to the subset of the risk-
averse decision makers for which the risk attitude is independent of current wealth.

Since exponential order represents the common preferences of a smaller group
of decision makers, it is to be expected that there exist pairs of random variables
that are exponentially ordered, but not stop-loss ordered. See Exercise 7.4.10.

Remark 7.3.12 (Exponential order and current wealth)
The capital of an insurer with exponential utility equals w−Z for some risk Z (pos-
sibly Z ≡ c) and for some w. If X ≤e Y and X , Y , Z independent, will the insurer
still prefer loss X to Y ?

Comparing E[u(w− Z −X)] with E[u(w−Z −Y )] one sees that the factors in-
volving w and Z cancel out. So for exponential utility, the current wealth, random
or fixed, known or not, has no influence on the decisions made. This is very conve-
nient, but on the other hand, such risk behavior is not very plausible, so this is both
a strong point and a weak point of exponential utility. ∇

If X ≤e Y holds, then the following can be said:

• For the corresponding adjustment coefficients in a ruin process, RX ≥ RY holds
for each premium income c, and vice versa (Exercise 7.4.4).

• If additionally E[X ] = E[Y ], then Var[X ] ≤ Var[Y ] (Exercise 7.3.14).
• If both E[X ] = E[Y ] and Var[X ] = Var[Y ], then γX ≤ γY (Exercise 7.3.14).
• If M ≤e N, then X1 + · · ·+ XM ≤e Y1 + · · ·+YN for compound random variables

(Exercise 7.4.3). So exponential order is invariant for the operation of compound-
ing risks.

7.3.4 Properties of stop-loss order

For stop-loss order, many invariance properties we derived for stochastic order still
hold. So if we replace a particular component of a model by a more dangerous
input, we often obtain a stop-loss larger result. For actuarial purposes, it is important

If for all α > 0, decision makers with an exponential utility function with risk aver-

Y is equivalent to X having a smaller mgf than Y on the interval

sion α prefer loss X to Y , we say that X precedes Y in exponential order, written
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whether the order is retained in case of compounding. First we prove that adding
independent random variables, as well as taking mixtures, does not disturb the stop-
loss order.

Theorem 7.3.13 (Convolution preserves stop-loss order)
If for risks X and Y we have X ≤SL Y , and risk Z is independent of X and Y , then
X +Z ≤SL Y +Z. If further Sn is the sum of n independent copies of X and Tn is the
same for Y , then Sn ≤SL Tn.

E[(X +Z−d)+] =
∫ ∞

0
E[(X + z−d)+]dFZ(z). (7.7)

The second follows by iterating the first inequality. ∇

Example 7.3.14 (Order in Poisson multiples)
Let X ≡ 1 and 1 − Pr[Y = 0] = Pr[Y = α] = 1/α; then X ≤SL Y . Further, let
N ∼ Poisson(λ ), then X1 + · · ·+ XN ∼ Poisson(λ ) and Y1 + · · ·+YN ∼ αM with
M ∼ Poisson(λ/α). By the previous theorem, N ≤SL αM. So letting Nµ denote a
Poisson(µ) random variable, we have Nλ ≤SL αNλ/α for α > 1. It is easy to see that
also Nλ ≥SL αNλ/α for α < 1.

As a consequence, there is stop-loss order in the family of multiples of Poisson
random variables; see also Chapter 9. ∇

Theorem 7.3.15 (Mixing preserves stop-loss order)
y and Gy satisfy Fy ≤SL Gy for all real y, let U(y) be any cdf, and let

F(x) =
∫
R Fy(x)dU(y), G(x) =

∫
R Gy(x)dU(y). Then F ≤SL G.

Proof. Using Fubini, the stop-loss premiums with F are equal to∫ ∞

d
[1−F(x)]dx =

∫ ∞

d

[
1−

∫
R

Fy(x)dU(y)

]
dx

=
∫ ∞

d

∫
R
[1−Fy(x)]dU(y)dx =

∫
R

∫ ∞

d
[1−Fy(x)]dxdU(y).

(7.8)

Hence F ≤SL G follows immediately by (1.33). ∇

Corollary 7.3.16 (Mixing ordered random variables)

1. n n n ≤SL Gn for all n,
then we obtain X ≤SL Y by taking the cdf of N to be U(·). The event N = n might
for example indicate the nature of a particular claim (small or large, liability or
comprehensive, bonus-malus class n, and so on).

2. Taking especially Fn(x) = F∗n and Gn(x) = G∗n

individual claims Xi and Yi, respectively, produces X1 + · · ·+ XN ≤SL Y1 + · · ·+
YN if F ≤SL G. Hence stop-loss order is preserved under compounding, if the
individual claim size distribution is replaced by a stop-loss larger one.

Proof. The first stochastic inequality can be proved by using the relation:

Let cdfs F

The following conclusions are immediate from Theorem 7.3.15:

, where F and G are the cdfs of

If F (x) = Pr[X ≤ x |N = n], G (x) = Pr[Y ≤ x |N = n], and F
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3. If Λ is a structure variable with cdf U , and conditionally on the event Λ = λ ,
X ∼ Fλ and Y ∼ Gλ , then Fλ ≤SL Gλ for all λ implies X ≤SL Y .

4. Let Gλ denote the conditional cdf of X , given the event Λ = λ , and Fλ the cdf of

the degenerate random variable on µ(λ )
def
= E[X |Λ = λ ]. Then by concentration,

Fλ ≤tt Gλ . The function
∫
R Fλ (x)dU(λ ) is the cdf of the random variable µ(Λ) =

E[X |Λ ], while
∫
R Gλ (x)dU(λ ) is the cdf of X . So E[X |Λ ] ≤SL X for all X and

Λ . We have proved that conditional means are always less dangerous than the
original random variable. ∇

Remark 7.3.17 (Rao-Blackwell theorem)
The fact that the conditional mean E[Y |X ] is less dangerous than Y itself is the basis
of the Rao-Blackwell theorem, to be found in many texts on mathematical statistics.
It states that if Y is an unbiased estimator for a certain parameter, then E[Y |X ] is a
better unbiased estimator, provided it is a statistic, that is, it contains no unknown
parameters. For every event X = x, the conditional distribution of Y is concentrated
on its mean E[Y |X = x], leading to a less dispersed and, for that reason, better
estimator. ∇

We saw that if the terms of a compound sum are replaced by stop-loss larger ones,
the result is also stop-loss larger. It is tougher to prove that the same happens when
we replace the claim number M by the stop-loss larger random variable N. The
general proof, though short, is not easy, so we start by giving the important special
case with M ∼ Bernoulli(q) and E[N] ≥ q. Recall that ∑n

i=1 xi = 0 if n = 0.

Theorem 7.3.18 (Compounding with a riskier claim number, 1)
If M ∼ Bernoulli(q), N is a counting random variable with E[N] ≥ q, X1,X2, . . . are
copies of a risk X , and all these risks are independent, then we have

MX ≤SL X1 +X2 + · · ·+XN . (7.9)

Proof. First we prove that if d ≥ 0 and xi ≥ 0 ∀i, the following always holds:

(x1 + · · ·+ xn −d)+ ≥ (x1 −d)+ + · · ·+(xn −d)+. (7.10)

There only is something to prove if the right hand side is non-zero. If, say, the first
term is positive, the first two (·)+-operators can be dropped, leaving

x2 + · · ·+ xn ≥ (x2 −d)+ + · · ·+(xn −d)+. (7.11)

If qn = Pr[N = n], replacing realizations in (7.10) by random variables and taking
the expectation we have:
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E[(X1 +X2 + · · ·+XN −d)+]

=
∞

∑
n=1

qnE[(X1 +X2 + · · ·+Xn −d)+]

≥
∞

∑
n=1

qnE[(X1 −d)+ +(X2 −d)+ + · · ·+(Xn −d)+]

=
∞

∑
n=1

nqnE[(X −d)+] ≥ qE[(X −d)+] = E[(MX −d)+].

(7.12)

The last inequality is valid since we assumed ∑n nqn ≥ q. ∇

Theorem 7.3.19 (Compounding with a riskier claim number, 2)
If for two counting random variables M and N we have M ≤SL N, and X1,X2, . . . are
independent copies of a risk X , then X1 +X2 + · · ·+XM ≤SL X1 +X2 + · · ·+XN .

Proof. It is sufficient to prove that fd(n) = E[(X1 + · · ·+Xn −d)+] is a convex and
increasing function of n, since by Theorem 7.3.10 this implies E[ fd(M)]≤ E[ fd(N)]
for all d, which is the same as X1 + · · ·+ XM ≤SL X1 + · · ·+ XN . Because Xn+1 ≥
0, it is obvious that fd(n + 1) ≥ fd(n). To prove convexity, we need to prove that
fd(n+2)− fd(n+1) ≥ fd(n+1)− fd(n) holds for all n. By taking the expectation
over the random variables Xn+1,Xn+2 and S = X1 + X2 + · · ·+ Xn, one sees that for
this it is sufficient to prove that for all d ≥ 0 and all xi ≥ 0, i = 1,2, . . . ,n + 2, we
have

(s+ xn+1 + xn+2 −d)+ − (s+ xn+1 −d)+ ≥ (s+ xn+2 −d)+ − (s−d)+, (7.13)

where s = x1 + x2 + · · ·+ xn. If both middle terms of this inequality are zero, so is
the last one, and the inequality is valid. If at least one of them is positive, say the
one with xn+1, on the left hand side of (7.13), xn+2 remains, and the right hand side
is equal to this if s ≥ d, and smaller otherwise, as can be verified easily. ∇

Combining Theorems 7.3.15 and 7.3.19, we see that a compound sum is riskier if
the number of claims, the claim size distribution, or both are replaced by stop-loss
larger ones.

Remark 7.3.20 (Functional invariance)
Just like stochastic order (see Exercise 7.2.8), stop-loss order has the property of
functional invariance. Indeed, if f (·) and v(·) are non-decreasing convex functions,
the composition v◦ f is convex and non-decreasing as well, and hence we see imme-
diately that f (X) ≤SL f (Y ) holds if X ≤SL Y . This holds in particular for the claims
paid in case of excess of loss reinsurance, where f (x) = (x−d)+, and proportional
reinsurance, where f (x) = αx for α > 0. ∇
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7.4 Applications

In this section, we give some important actuarial applications of the theory of order-
ing of risks.

7.4.1 Individual versus collective model

In Section 3.7 we described how the collective model resulted from replacing every
policy by a Poisson(1) distributed number of independent copies of it. But from
Theorem 7.3.18 with q = 1 we see directly that doing this, we in fact replace the
claims of every policy by a more dangerous random variable. If subsequently we
add up all these policies, which we have assumed to be stochastically independent,
then for the portfolio as a whole, a more dangerous total claims distribution results.
This is because stop-loss order is preserved under convolution, see Theorem 7.3.13.

As an alternative for the canonical collective model, in Remark 3.8.2 we intro-
duced an open collective model. If the claims of policy i are Iibi for some fixed
amount at risk bi and a Bernoulli(qi) distributed random variable Ii, the term in the
collective model corresponding to this policy is Mibi, with Mi ∼ Poisson(qi). In the
open collective model, it is Nibi, with Ni ∼ Poisson(ti) for ti = − log(1− qi), and
hence Ii ≤st Ni. So in the open model each policy is replaced by a compound Pois-
son distribution with a stochastically larger claim number distribution than with the
individual model. Hence the open model will not only be less attractive than the
individual model for all risk averse decision makers, but even for the larger group of
all decision makers with increasing utility functions. Also, the canonical collective
model is preferable to the open model for this same large group of decision mak-
ers. Having a choice between the individual and the collective model, some decision
makers might prefer the latter. Decision makers preferring the individual model over
the collective model are not consistently risk averse.

7.4.2 Ruin probabilities and adjustment coefficients

In Section 4.7, we showed that the non-ruin probability 1−ψ(u) is the cdf of a com-
pound geometric random variable L = L1 +L2 + · · ·+LM , where M ∼ geometric(p)
is the number of record lows in the surplus process, Li is the amount by which a pre-
vious record low in the surplus was broken, and L represents the maximal aggregate
loss. Recall (4.59) and (4.60):

p = 1−ψ(0) =
θ

1+θ
and fL1(y) =

1−P(y)
µ1

, y > 0. (7.14)
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Here θ is the safety loading, and P(y) is the cdf of the claim sizes in the ruin process.
Now suppose that we replace cdf P by Q, where P ≤SL Q and Q has the same mean
as P. From (7.14) it is obvious that since the stop-loss premiums with Q are larger
than those with P, the probability Pr[L1 > y] is increased when P is replaced by
Q. This means that we get a new compound geometric distribution with the same
geometric parameter p because µ1 and hence θ are unchanged, but a stochastically
larger distribution of the individual terms Li. This leads to a smaller cdf for L, and
hence a larger ruin probability. Note that the equality of the means µ1 of P and Q is
essential here, to ensure that p remains the same and that the L1 random variables
increase stochastically.

If P is a degenerate cdf, R has support {0,b} with b = max[Q], and µP = µQ = µR,
then P ≤SL Q ≤SL R holds, see Example 7.3.2. So the ruin probability ψR(u) with

P(u) is minimal in the
class of risks with mean µQ and maximum max[Q]. Notice that claims ∼ R lead to a
ruin process with claims zero or b, hence in fact to a process with only one possible
claim size, just as with claims ∼ P. This means that algorithm (4.79) with m = 1 can

Now suppose that we replace the claim size cdf Q by R with Q ≤st R, but leave
the premium level c unchanged. This means that we replace the ruin process by a
process with the same premium per unit time and the same claim number process,
but ‘larger’ claims. By Remark 7.2.4, without loss of generality we can take each
claim to be larger with probability one, instead of just stochastically larger. This

R(t) will be lower than or
equal to UQ(t), at each instant t > 0. This in turn implies that for the ruin probabil-
ities, we have ψR Q(u). It may happen that one gets ruined in the R-process,
but not in the Q-process; the other way around is impossible. Because in view of the
Separation Theorem 7.3.9, when P is replaced by R with P ≤SL R we can always
find a separating Q with the same expectation as P and with P ≤SL Q ≤st R, we see
that whenever we replace the claims distribution by any stop-loss larger distribution,

that the annual premium remains the same.

by one that is larger on (0,∞), the resulting adjustment coefficient is smaller. This
is the case when we replace the claims distribution by an exponentially larger one,

stop-loss larger ones, but for the Lundberg exponential upper bound to increase,
exponential order suffices.

We saw that stop-loss larger claims lead to uniformly larger ruin probabilities.
The weaker exponential order is not powerful enough to enforce this. To give a
counterexample, first observe that pairs of exponentially ordered random variables
exist that have the same mean and variance. Take for example Pr[X = 0,1,2,3] =
1
3 ,0, 1

2 , 1
6 and Y ∼ 3−X ; see also Exercise 7.4.10. Now if ψX (u) ≤ ψY (u) for all u

X and LY would not cross,
so LX ≤st LY . Therefore either E[LX ] < E[LY ], or ψX ≡ ψY . But the former is not
possible since

means that also with probability one, the new surplus U

claims ∼ R is maximal for every initial capital u, while ψ

From Figure 4.2 we see directly that when the mgf with the claims is replaced

be used to find bounds for the ruin probabilities; see also Section 4.9.

the ruin probabilities are increased for every value of the initial capital u, assuming

see Remark 7.3.12. So we get larger ruin probabilities by replacing the claims by

would hold, the cdfs of the maximal aggregate losses L

(u) ≥ ψ
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E[LX ] = E[M]E[L(X)
i ] = E[M]

∫ ∞

0
E[(X − x)+]dx/E[X ]

= E[M]
1
2

E[X2]/E[X ] = E[M]
1
2

E[Y 2]/E[Y ] = · · · = E[LY ].

(7.15)

The latter is also not possible. If the two ruin probability functions are equal, the

X and LY
(X)
i and L(Y )

i , see
(4.64), hence in view of (4.60), the claim size distribution must be the same.

7.4.3 Order in two-parameter families of distributions

In many two-parameter families of densities, given any parameter pair, the para-
meter space can be divided into areas containing stocastically smaller/larger dis-

ied in detail below, we mention the binomial, beta, inverse Gaussian, lognormal,

uniform(0,1).
The gamma distribution is important as a model for the individual claim size,

when one thinks of a gamma distribution, one pictures a density that is unimodal
α = 1,

we get the exponential distribution, which is unimodal with mode 0. In general,
the gamma(α,β ) density has mode (α − 1)+/β . The skewness of a gamma distri-
bution is 2/

√
α , so distributions with α < 1 are more skewed than an exponential

Suppose we want to compare two gamma distributions, say with parameters
α0,β0 (our reference point) and α1,β1. It is easy to compare means and variances,
and hence to find which α1,β1 combinations lead to a larger distribution in mean-
variance ordering. Is there perhaps more to be said about order between such distri-
butions, for example about certain tail probabilities or stop-loss premiums?

α,β ) = (1− t/β )−α , one sees that gamma ran-
dom variables are additive in α . Indeed we have m(t;α1,β )m(t;α2,β ) = m(t;α1 +
α2,β ), so if X and Y are independent gamma random variables with the same
β , their sum is also gamma. From E[et(βX)] = (1 − t)−α one sees that βX ∼
gamma(α,1) if X ∼ gamma(α,β ), and in this sense, the gamma distributions are
multiplicative in the scale parameter β . But from these two properties we have im-
mediately that a gamma(α,β ) random variable gets ‘larger’ if α is replaced by
α + ε , and ‘smaller’ if β is replaced by β + ε for ε > 0. There is monotonicity in
stochastic order in both parameters, see also Exercise 7.2.2.

Now let us compare the gamma(α1,β1) with the gamma(α0,β0) distribution
when it is known that they have the same mean, so α1/β1 = α0/β0. Suppose that

for example for damage to the own vehicle, see also Chapters 3 and 9. In general

with a positive mode, like a tilted normal density. But if the shape parameter

of type bIX with I ∼ Bernoulli(q) and X , for example, constant, exponential(1) or

with our reference pair in stop-loss order. Apart from the gamma distributions stud-

overdispersed Poisson and Pareto families, as well as families of random variables

mgfs of L

tributions, stop-loss larger/smaller distributions and distributions not comparable

are equal, and therefore also the mgfs of L

From the form of the mgf m(t;

distribution with the same mean, and ultimately have larger tail probabilities.
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Fig. 7.4 Ordering of gamma(α,β ) distributions. The arrows indicate directions of increase in ≤SL.

α1 < α0, therefore also β1 < β0. We will show by investigating the densities that
the gamma(α1,β1) distribution not just has a larger variance α1/β 2

1 > α0/β 2
0 , but

is in fact more dangerous. A sufficient condition for this is that the densities cross
exactly twice. Consider the ratio of these two densities (where the symbol ∝ denotes
equality up to a constant not depending on x):

1
Γ (α1)β α1

1 xα1−1e−β1x

1
Γ (α0)β α0

0 xα0−1e−β0x
∝ xα1−α0 e−(β1−β0)x = (xµ e−x)β1−β0 . (7.16)

The derivative of xµ e−x is positive if 0 < x < µ , negative if x > µ , so the ratio (7.16)
crosses each horizontal level at most twice. But because both densities have the
same mean, there is no stochastic order, which means that they must intersect more
than once. So apparently, they cross exactly twice, therefore one of the two random
variables is more dangerous than the other. One can find out which by looking more
closely at where each density is larger than the other. But we already know which
one is the more dangerous, since it must necessarily be the one having the larger
variance, that is, the one with parameters α1,β1.

We may conclude that going along any diagonal in the (α,β ) plane from (α0,β0)
toward the origin, one finds increasingly more dangerous parameter combinations.
Also we see in Figure 7.4 that if a point (α,β ) can be reached from (α0,β0) by
first going along the diagonal in the direction of the origin, and next either to the
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right or straight down, this points corresponds to a stop-loss larger gamma distribu-
tion, because it is stochastically larger than a separating more dangerous distribution
(found on the diagonal). In Figure 7.4, one sees the distributions stochastically larger
than (α0,β0) in the quarter-plane to the right and below this point. In the opposite
quarter-plane are the stochastically smaller ones. The quarter-plane to the left and
below (α0,β0) has stop-loss larger distributions below the diagonal, while for the
distributions above the diagonal one may show that the means are lower, but the
stop-loss premiums for d → ∞ are higher than for (α0,β0). The latter can be proved
by applying l’Hôpital’s rule twice. Hence, there is a difference of opinion about such
risks between the risk averse decision makers. See also Exercise 7.4.8.

This can be summarized as follows. Suppose we compare a gamma(α0,β0) and
a gamma(α,β ) random variable with for the means, α0/β0 ≤ α/β . Then for all
stop-loss premiums with the parameter pair (α,β ) to be larger, it is necessary but
also sufficient that the stop-loss premiums are larger for very large retentions d.

A similar statement holds for the two-parameter families of densities mentioned
at the beginning of this example. In each case, the proof of stop-loss order is given by
showing stochastic increase with the mean if one of the parameters is kept constant,
and stop-loss increase with the variance if the mean is kept constant. In the gamma
case, the set of parameter pairs with equal mean µ is a diagonal α/β = µ , but it

negative binomial distributions with mean r(1− p)/p. The stop-loss premiums for
high retentions being lower in these cases is equivalent to one of the parameters
being lower (or higher, in case of monotonic decrease). Stop-loss order can only
hold if the conditions on the mean and the asymptotic stop-loss premiums hold. If
so, stop-loss order is proved by a separation argument.

7.4.4 Optimal reinsurance

Theorem 1.4.3 states that among the reinsurance contracts with the same expected
value of the retained risk, stop-loss reinsurance gives the lowest possible variance.
Suppose the random loss equals X , and compare the cdf of the retained loss Z =
X − (X −d)+ under stop-loss reinsurance with another retained loss Y = X − I(X),
where E[Y ] = E[Z]. Assume that the function I(·) is non-negative, then it follows
that Y ≤ X holds, and hence FY (x) ≥ FX (x) for all x > 0. Further, Z = min{X ,d},

Z X Z

Y cross exactly once, at d, and Y is the more dangerous risk. So Z ≤SL Y .
This has many consequences. First, we have E[u(−Z)] ≥ E[u(−Y )] for every

concave increasing utility function u(·). Also, we see confirmed that Theorem 1.4.3
holds, because obviously Var[Y ] ≥ Var[Z]. We can also conclude that excess of loss
coverage is more effective than any other reinsurance with the same mean that op-
erates on individual claims. Note that these conclusions depend crucially on the
fact that the premiums asked for different form of reinsurance depend only on the
expected values of the reimbursements.

often is hyperbolic, for example for the binomial distributions with mean np or the

so F (x) = F (x) for all x < d, and F (x) = 1 for x ≥ d. Clearly, the cdfs of Z and
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7.4.5 Premiums principles respecting order

If a loss X is stop-loss smaller than Y , all risk averse decision makers prefer losing
X . Perhaps surprisingly, this does not always show in the premiums that are needed
to compensate for this loss. Consider for example the standard deviation premium
π[X ] = E[X ]+ α

√
Var[X ], see (5.7). If X ∼ Bernoulli( 1

2 ) and Y ≡ 1, while α > 1,
the premium for X is larger than the one for Y even though Pr[X ≤ Y ] = 1.

The zero utility premiums, including the exponential premiums, do respect stop-
loss order. For these, the premium π[X ] for a risk X is calculated by solving the
utility equilibrium equation (1.11), in this case:

E[u(w+π[X ]−X)] = u(w). (7.17)

The utility function u(·) is assumed to be risk averse, that is, concave increasing,
and w is the current wealth. If X ≤SL Y holds, we also have E[u(w + π[Y ]−X)] ≥
E[u(w + π[Y ]−Y )]. The right hand side equals u(w). Since E[u(w + P− X)] in-
creases in P and because E[u(w + π[X ]− X)] = u(w) must hold, it follows that
π[X ] ≤ π[Y ].

7.4.6 Mixtures of Poisson distributions

In Chapter 8, we study, among other things, mixtures of Poisson distributions as a
model for the number of claims on an automobile policy, assuming heterogeneity of
the risk parameters. Quite often, the estimated structure distribution has the sample
mean as its mean. If we assume that there is a gamma structure distribution and a
risk model such as in Example 3.3.1, the resulting number of claims is negative bi-
nomial. If we estimate the negative binomial parameters by maximum likelihood or
by the method of moments, in view of (3.76) and (3.78) we get parameters leading to
the same mean, but different variances. Therefore also the corresponding estimated
gamma structure distributions have the same mean. If we replace the structure dis-
tribution by a more dangerous one, we increase the uncertainty present in the model.
Does it follow from this that the resulting marginal claim number distribution is also
stop-loss larger?

A partial answer to this question can be given by combining a few facts that
we have seen before. In Exercise 7.3.9, we saw that a negative binomial distribu-
tion is stop-loss larger than a Poisson distribution with the same mean. Hence, a
gamma(α,β ) mixture of Poisson distributions such as in Example 3.3.1 is stop-loss
larger than a pure Poisson distribution with the same mean µ = α/β .

To give a more general answer, we first introduce some more notation. Suppose
that the structure variables are Λ j, j = 1,2, and assume that given Λ j = λ , the ran-
dom variables Nj have a Poisson(λ ) distribution. Let Wj be the cdf of Λ j. We want
to prove that W1 ≤SL W2 implies N1 ≤SL N2. To this end, we introduce the functions
πd(λ ) = E[(Mλ −d)+], with Mλ ∼ Poisson(λ ). Then N1 ≤SL N2 holds if and only
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if E[πd(Λ1)] ≤ E[πd(Λ2)] for all d. So all we have to do is to prove that the function
πd(λ ) is convex increasing, hence to prove that π ′

d(λ ) is positive and increasing in
λ . This proof is straightforward:

π ′
d(λ ) = ∑

n>d

(n−d)
d

dλ
λ ne−λ

n!
= ∑

n>d

(n−d)

(
λ n−1e−λ

(n−1)!
− λ ne−λ

n!

)

= πd−1(λ )−πd(λ ) =
∫ d

d−1
[1−FMλ (t)]dt.

(7.18)

The last expression is positive, and increasing in λ because Mλ ≤st Mµ for all λ < µ .

7.4.7 Spreading of risks

Suppose one can invest a total amount 1 in n possible funds. These funds produce
iid yields Gi per share. How should one choose the fraction pi of a share to buy from
fund i if the objective is to maximize the expected utility?

Assume that the utility of wealth is measured by the risk averse function u(·). We
must solve the following constrained optimization problem:

max
p1,...,pn

E

[
u
(
∑

i
piGi

)]
subject to ∑

i
pi = 1. (7.19)

We will prove that the solution with pi = 1
n , i = 1,2, . . . ,n is optimal. Write A =

1
n ∑i Gi for the average yield. Note that as ∑i E[Gi |A] ≡ E[∑i Gi |A] ≡ nA, we have
E[Gi |A] ≡ A, because for symmetry reasons the outcome should be the same for
every i. This implies

E

[
∑

i
piGi

∣∣∣A]≡ ∑
i

piE[Gi |A] ≡ ∑
i

piA ≡ A. (7.20)

By part 4 of Corollary 7.3.16, we have E[∑i piGi |A] ≤SL ∑i piGi, hence because
u(·) is concave, the maximum in (7.19) is found when pi = 1

n , i = 1,2, . . . ,n.

7.4.8 Transforming several identical risks

Consider a sequence of iid risks X1, . . . ,Xn and non-negative functions ρi, i =
1, . . . ,n. Then we can prove that

n

∑
i=1

ρ(Xi) ≤SL

n

∑
i=1

ρi(Xi), where ρ(x) =
1
n

n

∑
i=1

ρi(x). (7.21)
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This inequality expresses the fact that given identical risks, to get the least variable
result the same treatment should be applied to all of them. To prove this, we prove
that if V is the random variable on the right and W the one on the left in (7.21), we
have W ≡ E[V |W ]. Next, we use that E[V |W ]≤SL V , see part 4 of Corollary 7.3.16.
We have

E

[
n

∑
i=1

ρi(Xi)

∣∣∣∣ n

∑
i=1

ρ(Xi)

]
≡

n

∑
i=1

E

[
ρi(Xi)

∣∣∣∣ n

∑
k=1

1
n

n

∑
l=1

ρk(Xl)

]
. (7.22)

For symmetry reasons, the result is the same if we replace the Xi by Xj, for each
j = 1, . . . ,n. But this means that we also have

n

∑
i=1

E

[
ρi(Xi)

∣∣∣∣ n

∑
k=1

1
n

n

∑
l=1

ρk(Xl)

]
≡

n

∑
i=1

E

[
1
n

n

∑
j=1

ρi(Xj)

∣∣∣∣ n

∑
k=1

1
n

n

∑
l=1

ρk(Xl)

]
. (7.23)

This last expression can be rewritten as

E

[
n

∑
i=1

1
n

n

∑
j=1

ρi(Xj)

∣∣∣∣ n

∑
k=1

1
n

n

∑
l=1

ρk(Xl)

]
≡

n

∑
k=1

1
n

n

∑
l=1

ρk(Xl) ≡
n

∑
l=1

ρ(Xl). (7.24)

So we have proved that indeed W ≡ E[V |W ], and the required stop-loss inequality
in (7.21) follows immediately from Corollary 7.3.16.

Remark 7.4.1 (Law of large numbers and stop-loss order)
The weak law of large numbers states that for sequences of iid observations
X1,X2, . . . ∼ X with finite mean µ and variance σ2, the average Xn = 1

n ∑n
i=1 Xi con-

verges to µ , in the sense that when ε > 0 and δ > 0, we have

Pr[|Xn −µ | < ε] ≥ 1−δ for all n > σ2/ε2δ . (7.25)

In terms of stop-loss order, we may prove the following assertion:

X1 ≥SL X2 ≥SL · · · ≥SL µ . (7.26)

Hence the sample averages Xn, all having the same mean µ , decrease in danger-
ousness. As n → ∞, the stop-loss premiums E[(Xn − d)+] at each d converge to
(µ −d)+, which is the stop-loss premium of the degenerate random variable on µ .
The proof of (7.26) can be given by taking, in the previous remark, ρi(x) = x

n−1 , i =
1, . . . ,n−1 and ρn(x) ≡ 0, resulting in ρ(x) = x

n . ∇

7.5 Incomplete information

In this section we study the situation that we only have limited information about
the distribution FY (·) of a certain risk Y , and try to determine a safe stop-loss pre-
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mium at retention d for it. From past experience, from the policy conditions, or
from the particular reinsurance that is operative, it is often possible to fix a practical
upper bound for the risk. Hence in this section we will assume that we know an
upper bound b for the payment Y . We will also assume that we have a good esti-
mate for the mean risk µ as well as for its variance σ2. In reinsurance proposals,
sometimes these values are prescribed. Also it is conceivable that we have deduced
mean and variance from scenario analyses, where for example the mean payments
and the variance about this mean are calculated from models involving return times
of catastrophic spring tides or hurricanes. With these data the actuary, much more
than the statistician, will tend to base himself on the worst case situation where un-
der the given conditions on µ , σ2 and the upper bound b, the distribution is chosen
that leads to the maximal possible stop-loss premium. Best case scenarios, that is,
risks with prescribed characteristics leading to minimal stop-loss premiums, are also
mathematically interesting, but less relevant in practice.

First notice that the following conditions are necessary for feasible distributions
with mean µ , variance σ2 and support [0,b] to exist at all:

0 ≤ µ ≤ b, 0 ≤ σ2 ≤ µ(b−µ). (7.27)

The need for the first three inequalities is obvious. The last one can be rewritten
as E[Y 2] = σ2 + µ2 ≤ µb, which must obviously hold as well. We will assume the
inequalities in (7.27) to be strict, so as to have more than one feasible distribution.

Note that if the risks X and Y have the same mean and variance, stop-loss or-
der is impossible, because their stop-loss transforms must cross at least once. This
is because in view of (3.116), if πY (d) ≥ πX (d) for all d, either Var[X ] < Var[Y ]
or X ∼ Y must hold. Later on we will prove that the random variable Zd with the
largest stop-loss premium at d necessarily has a support consisting of two points
only. Which support this is depends on the value of d. In case the variance is not
specified, for every d we find the same smallest and largest distributions, by con-
centration and dispersion, see Example 7.3.2. So then we also get attainable upper
bounds for compound stop-loss premiums and ruin probabilities. If the variance is
prescribed, that is not possible.

First we study the class of two-point distributions with mean µ and variance σ2.

Lemma 7.5.1 (Two-point distributions with given mean and variance)
Suppose a random variable T with E[T ] = µ , Var[T ] = σ2, but not necessarily Pr[0≤
T ≤ b] = 1, has a two-point support {r, r̄}. Then r and r̄ are related by

r̄ = µ +
σ2

µ − r
. (7.28)

Proof. We know that E[(T − r̄)(T − r)] = 0 must hold. This implies

0 = E[T 2 − (r + r̄)T + rr̄] = µ2 +σ2 − (r + r̄)µ + rr̄. (7.29)

For a given r, we can solve for r̄, obtaining (7.28). ∇
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So for any given r, the number r̄ denotes the unique point that, together with r, can
form a two-point support with known µ and σ2. Note the special points 0̄ and b̄.
The probability pr = Pr[T = r] is uniquely determined by

pr =
µ − r̄
r− r̄

=
σ2

σ2 +(µ − r)2 . (7.30)

This means that there is exactly one two-point distribution containing r 	= µ . The
bar operator assigning r̄ to r has the following properties:

(r̄) = r;

for r 	= µ , r̄ is increasing in r;

if r < µ , then r̄ > µ .

(7.31)

then r < u < µ < s < v must hold, in line with the fact that because the distributions
have equal mean and variance, their stop-loss transforms must cross at least once,

In our search for the maximal stop-loss premiums, we prove next that the max-
imal stop-loss premium in any retention d cannot be attained by a distribution
with a support contained in [0,b] that consists of more than two points. For this
purpose, assume that we have a support {a,c,e} of a feasible distribution with
0 ≤ a < c < e ≤ b. It can be verified that c ≤ ā ≤ e, as well as a ≤ ē ≤ c. From
a sketch of the stop-loss transforms, see Figure 7.5, it is easy to see that on (−∞,c],
the two-point distribution on {a, ā} has a stop-loss premium at least equal to the
one corresponding to {a,c,e}, while on [c,∞), the same holds for {e, ē}. In the
same fashion, a distribution with n mass points is dominated by one with n−1 mass
points. To see why, just let a, c and e above be the last three points in the n-point
support. The conclusion is that the distribution with a maximal stop-loss premium
at retention d is to be found among the distributions with a two-point support.

So to find the random variable X that maximizes E[(X − d)+] for a particular
value of d and for risks with the properties Pr[0≤X ≤ b] = 1, E[X ] = µ and Var[X ] =
σ2, we only have to look at random variables X with two-point support {c, c̄}. Note
that in case either d < c̄ < c or c̄ < c < d, we have E[(X −d)+] = (µ −d)+, which
is in fact the minimal possible stop-loss premium, so we look only at the case c ≥
d ≥ c̄. First we ignore the support constraint 0 ≤ c̄ < c ≤ b, and solve the following
maximization problem:

max
c>µ

E[(X −d)+] for Pr[X = c] = Pr[X 	= c̄] =
σ2

σ2 +(c−µ)2 . (7.32)

This is equivalent to

max
c>µ

σ2(c−d)

σ2 +(c−µ)2 . (7.33)

Dividing by σ2 and taking the derivative with respect to c leads to

So if {r,s} and {u,v} are two possible two-point supports with r < s, u < v and r < u,

their cdfs at least twice, and their densities three or more times.
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e aa c e

Fig. 7.5 Proof that the stop-loss premium of a 3-point distribution cannot be maximal. For each
retention, one of the two-point distributions {a, ā} or {ē,e} has a larger stop-loss premium than
the three-point distribution.

d
dc

c−d
σ2 +(c−µ)2 =

(c−µ)2 +σ2 −2(c−d)(c−µ)

[σ2 +(c−µ)2]2
. (7.34)

Setting the numerator equal to zero gives a quadratic equation in c:

−c2 +2dc+ µ2 +σ2 −2dµ = 0. (7.35)

The solution with c > µ > c̄ is given by

c∗ = d +
√

(d −µ)2 +σ2, c̄∗ = d −
√

(d −µ)2 +σ2. (7.36)

Notice that we have d = 1
2 (c∗ + c̄∗). The numbers c∗ and c̄∗ of (7.36) constitute the

optimal two-point support if one ignores the requirement that Pr[0 ≤ X ≤ b] = 1.
Imposing this restriction additionally, we may get boundary extrema. Since 0 ≤ c̄
implies 0̄≤ c, we no longer maximize over c > µ , but only over the values 0̄≤ c≤ b.
If c∗ > b, which is equivalent to d > 1

2 (b+ b̄), the optimum is {b, b̄}. If c̄∗ < 0, hence
d < 1

2 0̄, the optimum is {0, 0̄}.
From this discussion we can establish the following theorem about the supports

leading to the maximal stop-loss premiums; we leave it to the reader to actually
compute the optimal values.

Theorem 7.5.2 (Maximal stop-loss premiums)
For values 1

2 0̄ ≤ d ≤ 1
2 (b+ b̄), the maximal stop-loss premium for a risk with given

mean µ , variance σ2 and upper bound b is the one with the two-point support
{c∗, c̄∗} with c∗ and c̄∗ as in (7.36). For d > 1

2 (b + b̄), the distribution with sup-
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0 µ 0 bb 0* b*

0* = (0+0)/2
b* = (b+b)/2

µ

d

Fig. 7.6 Extremal stop-loss premiums at retention d for µ = 1, σ2 = 2 and b = 5.

port {b, b̄} has the maximal stop-loss premium, and for d < 1
2 0̄, the optimal support

is {0, 0̄}. ∇

Example 7.5.3 (Minimal and maximal stop-loss premiums)
In Figure 7.6, the thick lines are the minimal and maximal stop-loss premiums for
all d ∈ [0,b] for the case µ = 1, σ2

imal possible stop-loss premiums and the maximal stop-loss premiums constitute
a convex decreasing function, hence both are the stop-loss transform with certain
risks. It is evident from the diagram that both these risks have the correct mean µ
and upper bound b, but not the right variance σ2

large stop-loss premiums uniformly. For example the risk with support {0, 0̄} has a
stop-loss transform that coincides with the upper bounds on d ∈ (0,0∗), is the thin
line on d ∈ (0∗, 0̄), and is minimal when d > 0̄.

For reinsurance as occurring in practice, it is the large retentions with d > µ +σ ,
say, that are of interest. One may show that if b is small, for all these d-values the
stop-loss premium is maximal for the support {b, b̄}; this support is optimal as long
as d > 1

2 (b + b̄), and µ + σ > 1
2 (b + b̄) holds if 0 < b−µ

σ < 1 +
√

2, as the reader
may check. See Exercise 7.5.8.

The distributions that produce the maximum stop-loss premium have a two-point
support, and their stop-loss transforms are tangent lines at d to the graph with the
upper bounds. Minima are attained at (µ −d)+ when d ≤ b̄ or d ≥ 0̄. In those cases,
the support is {d, d̄}. For intermediate values of d we will argue that the minimal
stop-loss premium l(d) is attained by a distribution with support {0,d,b}. In a sense,
these distributions have a two-point support as well, if one counts the boundary
points 0 and b, of which the location is fixed but the associated probability can be
chosen freely, for one half. In Figure 7.6 one sees that connecting the points (0,µ),

= 2, and b = 5. It can be seen that both the min-

. There are no cdfs that lead to
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(d, l(d)) and (b,0) gives a stop-loss transformation π(·) with not only the right mean
π(0) = µ , but also with an upper bound b since π(b) = 0. Moreover, the variance
is equal to σ2. This is because the area below the stop-loss transform, which equals
one half the second moment of the risk, is equal to the corresponding area for the
risks with support {0, 0̄} as well as with {b, b̄}. To see this, use the areas of triangles
with base line (b,0) to (0,µ). In fact, on the interval b̄ < d < 0̄ the function l(d)
runs parallel to the line connecting (b,0) to (0,µ). Note that l(d) is the minimal
value of a stop-loss premium at d, because any stop-loss transform through a point
(d,h) with h < π(d) leads to a second moment strictly less than µ2 +σ2. ∇

Remark 7.5.4 (Related problems)
Other problems of this type have been solved as well. There are analytical results
available for the extremal stop-loss premiums given up to four moments, and algo-
rithms for when the number of known moments is larger than four. The practical
relevance of these methods is questionable, since the only way to have reliable esti-
mates of the moments of a distribution is to have many observations, and from these
one may estimate a stop-loss premium directly. There are also results for the case
that Y is unimodal with a known mode M. As well as extremal stop-loss premiums,
also extremal tail probabilities can be computed. ∇

Example 7.5.5 (Verbeek’s inequality; mode zero)
Let Y be a unimodal risk with mean µ , upper bound b and mode 0. As FY is concave
on [0,b], 2µ ≤ b must hold. Further, let X and Z be risks with Pr[Z = 0] = 1−2 µ

b ,
and

F ′
Z(y) =

2µ
b2 , 0 < y < b;

F ′
X (y) =

1
2µ

, 0 < y < 2µ ,
(7.37)

and zero otherwise. Then X and Z are also unimodal with mode zero, and E[X ] =
E[Y ] = E[Z], as well as X ≤SL Y ≤SL Z. See Exercise 7.5.2. So this class of risks
also has elements that have uniformly minimal and maximal stop-loss premiums,
respectively, allowing results extending to compound distributions and ruin proba-
bilities. ∇

7.6 Comonotonic random variables

Up to now, we only considered random variables representing non-negative losses.
In order to be able to handle both gains and losses, we start by extending the concept
of stop-loss order somewhat to account for more general random variables, with
possibly negative values as well as positive ones, instead of the non-negative risks
that we studied so far. We state and prove the central result in this theory, which
is that the least attractive portfolios are those for which the claims are maximally
dependent. Next, we give some examples of how to apply the theory.
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With stop-loss order, we are concerned with large values of a random loss, and
call random variable Y less attractive than X if the expected values of all top parts
(Y −d)+ are larger than those of X . Negative values for these random variables are
actually gains. But with stability in mind, excessive gains are also unattractive for
the decision maker. Hence X will be more attractive than Y only if both the top
parts (X − d)+ and the bottom parts (d −X)+ have a lower mean value than the
corresponding quantities for Y . This leads to the following definition:

Definition 7.6.1 (Convex order)
If both the following conditions hold for every d ∈ (−∞,∞):

E[(X −d)+] ≤ E[(Y −d)+], and

E[(d −X)+] ≤ E[(d −Y )+],
(7.38)

then the random variable X is less than Y in convex order, written X ≤cx Y . ∇

Note that adding d to the first set of inequalities and letting d →−∞ leads to E[X ]≤
E[Y ]. Subtracting d in the second set of inequalities and letting d →+∞, on the other
hand, produces E[X ]≥E[Y ]. Hence E[X ] = E[Y ] must hold for two random variables
to be convex ordered. Also note that the first set of inequalities combined with equal
means implies the second set of (7.38), since E[(X −d)+]−E[(d−X)+] = E[X ]−d.
So two random variables with equal means and ordered stop-loss premiums are con-
vex ordered, while random variables with unequal means are never convex ordered.

Stop-loss order is the same as having ordered expected values E[ f (X)] for all
non-decreasing convex functions f (·), see Theorem 7.3.10. Hence it represents the
common preferences of all risk averse decision makers. Convex order is the same as
ordered expectations for all convex functions. This is where the name convex order
derives from. In a utility theory context, it represents the common preferences of
all risk averse decision makers between random variables with equal means. One
way to prove that convex order implies ordered expectations of convex functions
is to use the fact that any convex function can be obtained as the uniform limit
of a sequence of piecewise linear functions, each of them expressible as a linear
combination of functions (x− t)+ and (t − x)+. This is the proof that one usually
finds in the literature. A simpler proof, involving partial integrations, is given below.

Theorem 7.6.2 (Convex order means ordered convex expectations)
If X ≤cx Y and f (·) is convex, then E[ f (X)] ≤ E[ f (Y )].
If E[ f (X)] ≤ E[ f (Y )] for every convex function f (·), then X ≤cx Y .

Proof. To prove the second assertion, consider the convex functions f (x) = x,
f (x) = −x and f (x) = (x − d)+ for arbitrary d. The first two functions lead to
E[X ] = E[Y ], the last one gives E[(X −d)+] ≤ E[(Y −d)+].

To prove the first assertion, consider g(x) = f (x)− f (a)−(x−a) f ′(a), where a is
some point where the function f is differentiable. Since E[X ] = E[Y ], the inequality
E[ f (X)] ≤ E[ f (Y )], assuming these expectations exist, is equivalent to E[g(X)] ≤
E[g(Y )]. Write F(x) = Pr[X ≤ x] and F(x) = 1−F(x). Since g(a) = g′(a) = 0, the
integrated terms below vanish, so by four partial integrations we get
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π (d)X

µ d

π (d)Y

µ−d

Var[X]½

Fig. 7.7 Two stop-loss transforms πX (d) = E[(X − d)+] and πY (d) when X ≤cx Y . Note that the
asymptotes are equal.

E[g(X)] =
∫ a

−∞
g(x)dF(x)−

∫ ∞

a
g(x)dF(x)

= −
∫ a

−∞
g′(x)F(x)dx+

∫ ∞

a
g′(x)F(x)dx

=
∫ a

−∞
E[(x−X)+]dg′(x)+

∫ ∞

a
E[(X − x)+]dg′(x),

(7.39)

from which the result immediately follows because since f (·) is convex, so is g(·),
and therefore dg′(x) ≥ 0 for all x. ∇

The stop-loss transforms E[(X − d)+] of two random variables with equal mean µ
have common asymptotes. One is the x-axis, the other the line y = µ − x. Gener-
alizing (3.115), it can be shown that

∫ ∞
−∞{E[(X − t)+]− (µ − t)+}dt = 1

2 Var[X ].
Hence, just as for risks, the integrated difference between the stop-loss transforms
of two arbitrary random variables with the same mean is half the difference in their
variances. See Figure 7.7.

Consider some univariate cumulative distribution function F . It is well-known
that if U ∼ uniform(0,1), the random variable F−1(U) is distributed according to F
(probability integral transform). Note that it is irrelevant how we define y = F−1(u)
for arguments u where there is an ambiguity, that is, where F(y) = u holds for an
interval of y-values; see Section 5.6. Just as the cdf of a random variable can have
only countably many jumps, it can be shown that there can only be countably many
such horizontal segments. To see this, observe that in the interval [−2n,2n] there are
only finitely many intervals with a length over 2−n where F(y) is constant, and let
n → ∞. Hence, if g(·) and h(·) are two different choices for the inverse cdf, g(U)
and h(U) will be equal with probability one. The customary choice, as in Definition
5.6.1 of the VaR, is to take F−1(u) to be the left-hand endpoint of the interval of
y-values (generally containing one point only) with F(y) = u. Then, F−1(·) is non-
decreasing and continuous from the left.
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Now consider any random n-vector (X1, . . . ,Xn). Define a set in Rn to be comono-
tonic if each two vectors in it are ordered componentwise, that is, all components
of the one are at least the corresponding components of the other. We will call a
distribution comonotonic if its support is comonotonic. Also, any random vector
having such a distribution is comonotonic. We have:

Theorem 7.6.3 (Comonotonic joint distribution)
For a random vector �X := (X1, . . . ,Xn), define a comonotone equivalent as follows:

�Y := (Y1, . . . ,Yn) = (F−1
X1

(U), . . . ,F−1
Xn

(U)), (7.40)

where U ∼ uniform(0,1). It has the following properties:

� � i i

2. It has a comonotonic support.
3. Its joint cdf equals the so-called Fréchet/Höffding upper bound:

Pr[Y1 ≤ y1, . . . ,Yn ≤ yn] = min
j=1,...,n

Pr[Xj ≤ y j]. (7.41)

Proof. First, we have for all j = 1, . . . ,n:

Pr[Yj ≤ y j] = Pr[F−1
Xj

(U) ≤ y j] = Pr[U ≤ FXj(y j)] = FXj(y j). (7.42)

Next, the support of (Y1, . . . ,Yn) is a curve {(F−1
X1

(u), . . . ,F−1
Xn

(u)) |0 < u < 1} that
increases in all its components. If (y1, . . . ,yn) and (z1, . . . ,zn) are two elements of it
with F−1

Xi
(u) = yi < zi = F−1

Xi
(v) for some i, then u < v must hold, and hence y j ≤ z j

for all j = 1,2, . . . ,n.
Finally, we have

Pr[Y1 ≤ y1, . . . ,Yn ≤ yn] = Pr[F−1
X1

(U) ≤ y1, . . . ,F
−1
Xn

(U) ≤ yn]

= Pr[U ≤ FX1(y1), . . . ,U ≤ FXn(yn)]

= min
j=1,...,n

Pr[Xj ≤ y j],

(7.43)

which proves the final assertion of the theorem. ∇

The support S of (Y1, . . . ,Yn) consists of a series of closed curves, see Figures 7.8
and 7.9, possibly containing just one point. Together they form a comonotonic set.
By connecting the endpoints of consecutive curves by straight lines, we get the
connected closure S of S; it is a continuous curve that is also comonotonic. Note

components. The set S is a continuously increasing curve in Rn.
Note that by (7.41), the joint cdf of Y1, . . . ,Yn, that is, the probability that all com-

ponents have small values simultaneously, is as large as it can be without violating
the marginal distributions; trivially, the right hand side of this equality is an upper
bound for any joint cdf with the prescribed marginals. Also note that comonotonic-
ity entails that no Yj is in any way a hedge for another component Yk, since in that

that this has to be done only at discontinuities of one of the inverse cdfs in the

1. Y has the same marginals as X , so Y ∼ X for all i.
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case, large values of one can never be compensated by small values of the other. In
view of the remarks made in the introduction of this chapter, it is not surprising that
the following theorem holds.

Theorem 7.6.4 (Comonotonic equivalent has the convex largest sum)
The random vector (Y1, . . . ,Yn) in Theorem 7.6.3 has the following property:

Y1 + · · ·+Yn ≥cx X1 + · · ·+Xn. (7.44)

Proof. Since the means of these two random variables are equal, it suffices to prove
that the stop-loss premiums are ordered. The following holds for all x1, . . . ,xn when
d1 + · · ·+dn = d:

(x1 + · · ·+ xn −d)+ = {(x1 −d1)+ · · ·+(xn −dn)}+

≤ {(x1 −d1)+ + · · ·+(xn −dn)+}+

= (x1 −d1)+ + · · ·+(xn −dn)+.

(7.45)

Assume that d is such that 0 < Pr[Y1 + · · ·+Yn ≤ d] < 1 holds; if not, the stop-loss
premiums of Y1 + · · ·+Yn and X1 + · · ·+Xn can be seen to be equal. The connected
curve S containing the support S of the comonotonic random vector (Y1, . . . ,Yn)
points upwards in all coordinates, so it is obvious that S has exactly one point of
intersection with the hyperplane {(x1, . . . ,xn) |x1 + · · ·+ xn = d}. From now on, let
(d1, . . . ,dn) denote this point of intersection. In specific examples, it is easy to de-
termine this point, but for now, we only need the fact that such a point exists. For all
points (y1, . . . ,yn) in the support S of (Y1, . . . ,Yn), we have the following equality:

(y1 + · · ·+ yn −d)+ ≡ (y1 −d1)+ + · · ·+(yn −dn)+. (7.46)

This is because for this particular choice of (d1, . . . ,dn), by the comonotonicity,
when y j > d j for any j, we also have yk ≥ dk for all k; when all y j ≤ d j, both sides
of (7.46) are zero. Now replacing constants by the corresponding random variables
in the two relations above and taking expectations, we get

E[(Y1 + · · ·+Yn −d)+] = E[(Y1 −d1)+]+ · · ·+E[(Yn −dn)+]

= E[(X1 −d1)+]+ · · ·+E[(Xn −dn)+]

≥ E[(X1 + · · ·+Xn −d)+],

(7.47)

since Xj and Yj have the same marginal distribution for all j. ∇

Example 7.6.5 (A three-dimensional continuous random vector)
Let X ∼ uniform on the set (0, 1

2 )∪ (1, 3
2 ), Y ∼ Beta(2,2), Z ∼ N(0,1). The support

of the comonotonic distribution is the set

{(F−1
X (u),F−1

Y (u),F−1
Z (u)) |0 < u < 1}. (7.48)

See Figure 7.8. Actually, not all of the support is depicted. The part left out corre-
sponds to u /∈ (Φ(−2),Φ(2)) and extends along the asymptotes, that is, the vertical
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Fig. 7.8 Comonotonic support with (X ,Y,Z) as in Example 7.6.5, and the marginal comonotonic
support of (X ,Y ). The dotted lines serve to make the comonotonic support connected.

lines (0,0,z) and ( 3
2 ,1,z). The thick continuous line is the support S, while the dot-

ted line is the straight line needed to transform S into the connected curve S. Note
that FX (x) has a horizontal segment between x = 1

2 and x = 1. The projection of S
along the z-axis can also be seen to constitute an increasing curve, as do projections
along the other axes. ∇

Example 7.6.6 (A two-dimensional discrete example)
For a discrete example, take X uniform on {0,1,2,3} and Y ∼ binomial(3, 1

2 ), so

(
F−1

X (u),F−1
Y (u)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) for 0 < u < 1
8 ,

(0,1) for 1
8 < u < 2

8 ,

(1,1) for 2
8 < u < 4

8 ,

(2,2) for 4
8 < u < 6

8 ,

(3,2) for 6
8 < u < 7

8 ,

(3,3) for 7
8 < u < 1.

(7.49)

At the boundaries of the intervals for u, by convention we take the limit from the
left. The points (1,1) and (2,2) have probability 1

4 , the other points of the support
S of the comonotonic distribution have probability 1

8 . The curve S arises by simply
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X

0

1

2

3

Y

Fig. 7.9 Comonotonic support of (X ,Y ) as in Example 7.6.6; the dots represent the points with
positive probability, the dotted lines connect the support.

connecting these points consecutively with straight lines, the dotted lines in Figure
7.9. The straight line connecting (1,1) and (2,2) is not along one of the axes. This
is because at level u = 1

2 , both FX (y) and FY (y) have horizontal segments. Any non-
decreasing curve connecting (1,1) and (2,2) leads to a feasible S. ∇

Example 7.6.7 (Mortality risks of husband and wife)
Let n = 2, X ∼ Bernoulli(qx), and 1

2Y ∼ Bernoulli(qy). Assume the risks to be de-
pendent, and write z = Pr[X = 1,Y = 2]. We can represent the joint distribution of
(X ,Y ) as follows:

X = 0 X = 1 Total

Y = 0 1−qx −qy + z qx − z 1−qy

Y = 2 qy − z z qy

Total 1−qx qx 1

For each convex function f (·), we have f (3)− f (2)≥ f (1)− f (0), so the following
is non-decreasing in z:

E[ f (X +Y )] = f (0)(1−qx −qy)+ f (1)qx + f (2)qy

+[ f (0)− f (1)− f (2)+ f (3)]z.
(7.50)

Hence, one gets the maximal X +Y in convex order by taking the z as large as
possible, so z = min{qx,qy}. Assume that qx < qy holds, then we get:
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X = 0 X = 1 Total

Y = 0 1−qy 0 1−qy

Y = 2 qy −qx qx qy

Total 1−qx qx 1

The joint distribution can only be comonotonic if one or both of the events X = 1,
Y = 0 and X = 0, Y = 2 have probability zero. In the comonotonic distribution for
qx < qy, if X = 1 occurs, necessarily event Y = 2 occurs as well. If qx > qy, the
situation is reversed.

This example describes the situation of life insurances on two lives, one male of
age x and with amount at risk 1, and one female of age y with amount at risk 2.
The comonotonic joint mortality pattern is such that if the person with the smaller
mortality probability dies, so does the other. For qx = qy, we have Y = 2X with
probability one in case of comonotonic mortality. ∇

7.7 Stochastic bounds on sums of dependent risks

Assume that we have to make payments equal to 1 at the end of each year for the
coming n years. The interest is not fixed, but it varies randomly. We assume that the
discount factor for a payment to be made at time k is equal to

Xk = e−(Y1+···+Yk), (7.51)

where the annual logreturns Yj are assumed to have, for example, a multinormal
distribution such as in case the returns follow a Brownian motion. Then Xk is log-
normal, and the total present value S = ∑Xk of all payments is the sum of dependent
lognormal random variables. It is not easy to handle such random variables ana-
lytically. Though the dependency structure is fully known, it is too cumbersome to
use fruitfully. In view of Theorem 7.6.4, however, it is easy to find an upper bound
in convex order for S that is easy to handle. It suffices to replace the random vec-
tor (X1,X2, . . .) by its comonotonic equivalent with components XU

k = F−1
Xk

(U). For
such an approximation by a comonotonic sum to be good, the dependence between
the terms should be strong to begin with. To see why this might well be the case
here, note that for k < l we have Xl = Xk exp

(− (Yk+1 + · · ·+Yl)
)
. So for k < l

large, Xk and Xl have a large correlation in many random interest term structures.

7.7.1 Sharper upper and lower bounds derived from a surrogate

Sometimes, apart from the marginals, the information known about the depen-
dencies allows us derive sharper upper and lower bounds (in convex order) for a
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sum of random variables. In view of Corollary 7.3.16, a convex lower bound for
S = X1 + · · ·+Xn is E[S |V ], for any random variable V . If E[S |V ] is easy to compute
and V is a good surrogate for S in the sense that it explains much of the variation
in S, we have found a useful improved lower bound E[S] ≤cx E[S |V ] ≤cx S. By a
similar technique, we can also improve on the comonotonic upper bound.

Theorem 7.7.1 (Sharper lower and upper bounds)
Let (X1, . . . ,Xn) be a random n-vector and S the sum of its components. For some
U ∼ uniform(0,1), write the sum of the components of the comonotone equivalent
of (X1, . . . ,Xn) as SU = F−1

X1
(U)+ · · ·+ F−1

Xn
(U). For any V , write SU |V = h(U,V )

with
h(u,v)

def
= F−1

X1 |V=v(u)+ · · ·+F−1
Xn |V=v(u), 0 < u < 1. (7.52)

Then the following stochastic inequalities hold:

E[S] ≤cx E[S |V ] ≤cx S ≤cx SU |V ≤cx SU . (7.53)

E[S |V = v] ≤cx S |V = v ≤cx (7.54)

where S |V = v denotes a random variable that has as its distribution the conditional
distribution of S given V = v. This random variable has mean E[S |V = v]. The
random variable h(U,v) is the sum of the comonotonic versions of Xk |V = v.

V

and integrating gives the following lower and upper bounds (see Theorem 7.3.15):

FE[S] ≤cx FE[S |V ] ≤cx FS ≤cx FSU |V ≤cx FSU . (7.55)

The first cdf is the degenerate cdf of the constant E[S], the second is the one
of E[S |V ]. The improved upper bound is the cdf of SU |V = h(U,V ). This is a
sum of random variables with the prescribed marginals, hence it is lower than the
comonotonic upper bound, which is the convex largest sum with these marginal
distributions. See Exercise 7.7.4. ∇

For these bounds to be useful, the distribution of the surrogate V must be known, as
well as all the conditional distributions of Xk, given V = v. A structure variable such
as one encounters in credibility contexts is a good example for V . How to choose V
best will be discussed below.

Example 7.7.2 (Stochastic bounds for a sum of two lognormal risks)
We illustrate the technique of conditioning on the value of a structure random vari-
able by looking at the sum of two lognormal random variables. The multinormal
distribution is very useful in this context, because conditional and marginal distrib-
utions are easily derived. Let n = 2, and take Y1,Y2 to be independent N(0,1) ran-
dom variables. Look at the sum S = X1 +X2 where X1 = eY1 ∼ lognormal(0,1), and
X2 = eY1+Y2 ∼ lognormal(0,2). For the surrogate V , we take a linear combination of
Y1,Y2, in this case V =Y1 +Y2. For the lower bound E[S |V ], note that E[X2 |V ] = eV ,

h(U,v),

Multiplying the cdfs of the random variables in (7.54) by the differential dF (v)

Proof. For all v we have
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while Y1 |Y1 +Y2 = v ∼ N( 1
2 v, 1

2 ), and hence

E[eY1 |Y1 +Y2 = v] = m(1;
1
2

v,
1
2
), (7.56)

where m(t; µ ,σ2) = eµt+ 1
2 σ2t2

is the N(µ ,σ2) moment generating function. This
leads to

E[eY1 |V ] = e
1
2V+ 1

4 . (7.57)

So the sharper lower bound in (7.53) is

E[X1 +X2 |V ] = e
1
2V+ 1

4 + eV . (7.58)

When U ∼ uniform(0,1), the random variable SU = eW +e
√

2W with W = Φ−1(U),
so W ∼ N(0,1), is a comonotonic upper bound for S. The improved upper bound
SU |V as in (7.53) has as its second term again eV . The first term equals e

1
2V+ 1

2

√
2W ,

with V and W mutually independent, V ∼ N(0,2) and W ∼ N(0,1). All terms occur-
ring in these bounds are lognormal random variables, so the variances of the bounds
are easy to compute.

Note that to compare variances is meaningful when comparing stop-loss premi-
ums of convex ordered random variables. This is because half the variance differ-
ence between two convex ordered random variables equals the integrated difference
of their stop-loss premiums, see for example Figure 7.7. This implies that if X ≤cx Y
and in addition Var[X ] = Var[Y ], then X and Y must necessary be equal in distribu-
tion. Moreover, the ratio of the variances for random variables with the same mean
is roughly equal to the ratio of the stop-loss premiums, less their minimal possible
value, see Rule of thumb 3.10.6. We have, as the reader may verify,

(E[S])2 = e1 +2e
3
2 + e2,

E
[
(E[S |V ])2] = e

3
2 +2e

5
2 + e4,

E[S2] = E
[
(SU |V )2] = e2 +2e

5
2 + e4,

E
[
(SU )2] = e2 +2e

3
2 +

√
2 + e4.

(7.59)

Hence,
Var

[
E[S]

]
= 0,

Var
[
E[S |V ]

]
= 64.374,

Var[S] = Var[SU |V ] = 67.281,

Var[SU ] = 79.785.

(7.60)

So a stochastic lower bound E[S |V ] for S, much better than just E[S], is obtained
by conditioning on V = Y1 +Y2, and the improved upper bound SU |V has in fact
the same distribution as S. It can be proved that for all pairs of random variables,
the distributions of SU |V and S coincide when one uses one of these variables as a
surrogate. See Exercise 7.6.22.
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Since Var[S] = E
[
Var[S |V ]

]
+ Var

[
E[S |V ]

]
, the variance of the lower bound is

just the component of the variance of S left ‘unexplained’ by V . To maximize the
second term is to minimize the first, so we look for a V that represents S as faithfully
as possible. Approximating eY1 and eY1+Y2 by 1+Y1 and 1+Y1 +Y2 respectively, we
see that S ≈ 2+2Y1 +Y2, hence taking 2Y1 +Y2 instead of Y1 +Y2 as our conditioning
random variable might lead to a better lower bound. It is left as Exercise 7.7.11 to
check whether this is indeed the case. In Exercise 7.7.12, an even better choice is
discussed. ∇

7.7.2 Simulating stochastic bounds for sums of lognormal risks

The random variable Xk in (7.51) has a lognormal(ν ,τ2) distribution with ν =
−E[Y1 + · · ·+Yk], τ2 = Var[Y1 + · · ·+Yk]. Assuming payments α1, . . . ,αn must be
made at the end of the year, the total payments discounted to time 0 amounts to

S = α1X1 + · · ·+αnXn. (7.61)

Many interest models lead to �Y = (Y1, . . . ,Yn)
′ having a multivariate normal distri-

bution, say with mean vector �µY and variance matrix ΣY . A simple model is for
k are iid N(µ ,σ2) random variables.

In case all αk ≥ 0, the random variable S can be seen to be a sum of dependent
lognormal random variables, since αkXk is then again lognormal. In case of mixed
signs, we have the difference of two such sums of lognormals. Random variables
of this type occur quite frequently in financial contexts. Even for the simplest co-
variance structures, it is in general impossible to compute their distribution function
analytically. To handle this situation, we can do Monte Carlo simulations, simulat-

percentile. As only one in 400 simulations will exceed the 99.75% percentile, to get
a reasonably precise estimate of it requires many thousands of simulations. Another

simply the distribution of 1/X when X ∼ gamma. By adding a shift parameter such
as is done in Section 2.5 for the gamma distribution, we get a much better fitting
cdf, because three moments can be fitted. See the exercises in this section. A third
approach is to look at upper or lower bounds, in convex order, for S. Since these

and other risk measures for these bounds can be given, thus avoiding the need for

and compare them to a sample cdf of S. Since the terms in S are dependent log-
normal random variables, we start by showing how to generate multivariate normal
random vectors, generalizing the technique used in Appendix A.2.

ing outcomes of S to draw a histogram, or to estimate, for example, the 99.75%

approach is to approximate the distribution of S by some suitable parametric distri-

time-consuming simulations. But here we will look at sample cdfs of these bounds,

bution, like the normal, the lognormal, the gamma or the inverse gamma, which is

bounds turn out to be comonotonic, exact expressions for the inverse cdfs (VaRs)

example to assume that the annual log-returns Y
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Generating random drawings from normal distributions It is easy to generate
a stream of pseudo-random numbers from a univariate normal distribution, simply
invoking the R-function rnorm. There also exists a function to sample from the
multivariate normal distribution with mean vector �µ and arbitrary variance matrix
Σ . It is the function mvrnorm, to be found in the library MASS of R that consists of
functions and datasets from the main package of Venables & Ripley (2002). To gen-
erate a multinormal random vector�Y , mvrnorm uses the fact that if V1, . . . ,Vn are iid
N(0,1) random variables and A is an n×n matrix, then �W =�µ +A�V is multivariate
normal with mean E[�W ] =�µ and covariances Cov[Wi,Wj] = E[(Wi −µi)(Wj −µ j)]
being the (i, j) element of the variance matrix. By the linearity property of expecta-
tions, this covariance matrix is equal to

E[(�W −�µ)(�W −�µ)′] = E[A�V (A�V )′] = E[A�V�V ′A′]

= AE[�V�V ′]A′ = AIA′ = AA′.
(7.62)

So to generate N(�µ,Σ ) random vectors �W all we have to do is find any ‘square
root’ A of matrix Σ , with Σ = AA′. Such square roots can easily be found. One is
the Cholesky decomposition. It has the particular property that it produces a lower
triangular matrix, making computations by hand easier. The function mvrnorm in
fact uses the eigenvalue decomposition, by decomposing Σ = RΛR′ with R an or-
thogonal matrix of eigenvectors and Λ the diagonal matrix of eigenvalues of Σ . All
eigenvalues are positive when Σ is positive definite. Then RΛ 1/2 is also a ‘square
root’ of Σ .

Drawing from S To simulate 4000 outcomes of the sum of lognormals S above,
with n = 20 payments αk ≡+1 and iid N(20%,(13.5%)2) annual log-returns Yk, do:

nsim <- 4000; n <- 20; alpha <- rep(1, n)
mu.Y <- rep(20/100,n); Sigma.Y <- diag((13.5/100)ˆ2, n)
L <- lower.tri(Sigma.Y, diag=TRUE)

## TRUE (=1) below, and on, diagonal
mu.Z <- as.vector(L %*% mu.Y) ## means of (Z1,..Zn)
Sigma.Z <- L %*% Sigma.Y %*% t(L) ## and variance matrix
library(MASS)
S <- exp(-mvrnorm(nsim, mu.Z, Sigma.Z)) %*% alpha

Note that the function rnorm uses the standard deviation as a parameter, while
mvrnorm uses the variance matrix, which has marginal variances on its diagonal.
Matrix L is lower triangular with ones (actually, TRUE) on and below the diago-
nal, so �Z = L�Y = (Y1,Y1 +Y2, . . . ,Y1 + · · ·+Yn)

′ has variance matrix Sigma.Z and
mean vector mu.Z. To compute the total discounted value of the payments, we draw
�Z from a multinormal distribution, take exponents to obtain lognormal random vari-
ables Xk, multiply these with αk and take the total for all k = 1, . . . ,n.

Drawing from SU A comonotonic upper bound (in the sense of convex order) SU

for S arises by replacing the terms αkXk of S by their comonotone equivalents, hence
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by assuming ZU
k = ak + bkW sign(αk) for ak and bk such that E[ZU

k ] = E[Zk] and
Var[ZU

k ] = Var[Zk], and with W = Φ−1(U) a standard normal variate (the same one
for all k). So for the iid annual log-returns case, ak = k and bk =

√
k must be chosen.

We will further assume that all αk ≥ 0 (it is left to the reader to make the necessary
adjustments in case of mixed signs, using R’s sign function). The following lines
produce a sample of the comonotonic upper bound:

w <- rnorm(nsim) %o% sqrt(diag(Sigma.Z)) + rep(1,nsim) %o% mu.Z
S.upp <- exp(-w) %*% alpha

The operation %o% for two vectors denotes the outer product A =�a⊗�b =�a�b′, so
Ai j = aib j for all i and j. See Appendix A.

Replacing random variables by variables with correlation 1 makes sense for the
discounted payments αkXk since they are positively dependent, and increasingly so
as k grows. In case of iid annual log-returns for example, we have for i ≤ j, see
Exercise 7.7.8:

r(log(αiXi), log(α jXj)) = r(Zi,Z j) =

√
i√
j
. (7.63)

Drawing from E[S |V ] For a comonotonic lower bound (again in the sense of con-
vex order) for the cdf of S, we use the conditional mean E[S |V ]. As argued at the
end of Example 7.7.2, our conditioning variable V must have a simple dependence
structure with the components of S. Also, it must behave like S in the sense that
E
[
Var[S |V ]

]
is small, or equivalently, Var

[
E[S |V ]

]
is large. We take αk ≡ 1, with n

arbitrary, and V =�b′�Y = b1Y1 + · · ·+bnYn for some vector�b. Initially we let bk ≡ 1
like in Example 7.7.2, so V = Zn, but we study better choices in the exercises.

component of a bivariate normal random pair, given the value of the other. It is

(U,V ) has a bivariate normal distribution with parameters µU ,µV ,σ2
U ,σ2

V ,ρ , then

U |V = v ∼ N
(

µU +ρ
σU

σV
(v−µV ),σ2

U (1−ρ2)
)
. (7.64)

For some fixed k ∈ {1, . . . ,n}, let �a = (1, . . . ,1,0, . . . ,0)′, with k ones and n − k
zeros. Since �Y has a multivariate normal distribution, the pair (�a′�Y ,�b′�Y ) = (Y1 +
· · ·+Yk,b1Y1 + · · ·+ bnYn) is bivariate normal. The means are �a′�µ = µ1 + · · ·+ µk

and b′�µ . To determine the covariance matrix we write

B =

(
a1 a2 . . . an

b1 b2 . . . bn

)
so B�Y =

(
�a′�Y
�b′�Y

)
. (7.65)

Then, see (7.62), we have Ω = BΣB′ for the variance matrix of B�Y . For the
kth discount factor Xk, conditionally given V = v, we have, writing m(t; µ ,σ2) =
exp(µt +σ2t2/2) for the N(µ ,σ2

well-known, see for example Theorem 5.4.8 of Bain & Engelhardt (1992), that if

for any v, the following holds for the conditional distribution of U , given V = v:

) mgf:

To compute the terms of E[S |V ], we need the conditional distribution of one
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E[Xk |V = v] = E[e−Zk |V = v]

= m(−1;E[Zk |V = v],Var[Zk |V = v]).
(7.66)

It is often possible to compute the quantiles and the cdf of f (V ) = E[S |V ] explicitly,
using Pr[ f (V )≤ v] = Pr[V ≤ f−1(v)]. This is the case if, such as in this example with
all αk > 0 and V = Zn, the function f (v) = E[S |V = v] is monotone increasing in
v; see Exercise 7.7.15. We confine ourselves here to approximating the cdf through
simulation. First, we compute the means and the covariance matrix Ω of C�Y =
(Z1, . . . ,Zn,V ). From this, the marginal variances and the correlations follow.

b <- rep(1,n) ## for the choice V = b’Y = Y1+..Yn
C <- rbind(L,b)
mu.Zk <- (C %*% mu.Y)[1:n]; mu.V <- (C %*% mu.Y)[n+1]
Omega <- C %*% Sigma.Y %*% t(C)
sd.Zk <- sqrt(diag(Omega))[1:n]; sd.V <- sqrt(diag(Omega)[n+1])
rho.ZkV <- pmin(cov2cor(Omega)[n+1,1:n],1)

The call of pmin in the last line proved necessary because sometimes correlations
numerically larger than 1 resulted.

Next, we fill EZkV with nsim conditional means E[Zk |V ], k = 1,2, . . . ,n, using
(7.64). The vector VarZkV holds the conditional variances. Finally each element of
S.low is computed as ∑k αkE[Xk |V = v], using (7.66). Note that alpha as well as
mu.Zk, sd.Zk and rho.ZkV are vectors of length n.

V <- rnorm(nsim, sd.V)
EZkV <- rep(1,nsim) %o% mu.Zk + ## nsim x n matrix

(V-mu.V) %o% (rho.ZkV * sd.Zk / sd.V)
VarZkV <- sd.Zkˆ2*(1-rho.ZkVˆ2) ## n vector
S.low <- exp(-EZkV + 0.5 * rep(1,nsim) %o% VarZkV) %*% alpha

Drawing from SU |V In SU |V=v

V = v, of αkXk with Xk ∼ lognormal(µk,σ2
k ). The parameters are µk = E[Zk |V = v]

and σ2
k = Var[Zk |V = v]. So drawings from this random variable SU |V=v can be

generated by adding σk times a standard normal random variable to E[Zk |V = v],
taking the exponent and then the sum, weighted by αk.

ZkV <- EZkV + rnorm(nsim) %o% sqrt(VarZkV)
S.imp <- exp(-ZkV) %*% alpha

Plotting the results
SU , the improved upper bound SU |V and the lower bound E[S |V ] for the choice
V = Zn = Y1 + · · ·+Yn, we do:

y <- (-0.5+1:nsim)/nsim
plot(sort(S), y, type="l", yaxp=c(0,1,1), xaxp=c(2,10,4),

ylab="", xlab="", lwd=1.5)
lines(sort(S.upp), y, lty="solid")
lines(sort(S.imp), y, lty="dashed")
lines(sort(S.low), y, lty="dotted")
mu.S <- sum(alpha*exp(-(mu.Z-diag(Sigma.Z)/2)))
lines(c(min(S.upp),mu.S,mu.S,max(S.upp)), c(0,0,1,1))

mu.V,

To plot the empirical cdfs of S, the comonotonic upper bound

, the terms are comonotone equivalents, given
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2 4 6 8 10

0
1

Fig. 7.10
and S.upp (solid)

For the result, see Figure 7.10. The final call of lines adds the plot of the cdf of
the random variable that is degenerate on E[S], which is a trivial lower bound for S
in the convex order sense. It has jump of 1 at the mean E[S] of S. Actually, it is a

if V is independent of S.
As one sees, the improved upper bound SU |V is not much better in this case than

the upper bound SU . We chose here V = Zn, the accumulated log-returns at the end.
Some better choices for surrogates can be found in the exercises.

7.8 More related joint distributions; copulas

Throughout this section, we assume that all random variables X , X ′, X•, X⊥ and XU

have the same continuous marginal cdf F , and all corresponding random variables Y

correspondingly with an upper index.

7.8.1 More related distributions; association measures

We have seen that two random variables are maximally related if their joint dis-
tribution is comonotonic, hence, by Theorem 7.6.3, if their joint cdf is as large as
possible. Following this idea, we define a partial order between pairs of random
variables having the same marginals; a pair with a uniformly larger joint cdf will be

Empirical cdfs of S (thick) and stochastic bounds S.low (dotted), S.imp (dashed)

special case of the class of lower bounds E[S |V ] for different V , since E[S |V ]≡E[S]

have marginal cdf G, also continuous. The joint cdfs will be denoted by H, adorned

called ‘more related’.



7.8 More related joint distributions; copulas 191

Definition 7.8.1 (More related joint distributions)
The pair of random variables (X ,Y ) is more related than (X ′,Y ′) if X ∼ X ′ and
Y ∼ Y ′, as well as

H(x,y) := FX ,Y (x,y) ≥ FX ′,Y ′(x,y) =: H ′(x,y) for all x and y. (7.67)

So the probability that X and Y are both small is larger than this probability for X ′
and Y ′. ∇

As said before, from (7.67) we see that Pr[X > x,Y > y] = 1−F(x)−G(y)+H(x,y)
is also larger than the corresponding probability for (X ′,Y ′).

With independence acting as ‘zero dependence’, we can introduce positive de-
pendence as follows.

Definition 7.8.2 (Positive quadrant dependence)
X and Y are PQD, for positive quadrant dependent, if for an independent pair
(X⊥,Y⊥) with the same marginal distributions we have

Pr[X ≤ x,Y ≤ y] ≥ Pr[X ≤ x]Pr[Y ≤ y] for all x and y. (7.68)

So any pair that is more related than an independent pair with the same marginal
distributions is PQD. ∇

Since by Theorem 7.6.3, H(x,y) ≤ min{F(x),G(y)} holds, a comonotonic pair
(XU ,YU ) is ‘most related’. There is also a joint distribution with the right mar-
ginals that is ‘least related’, or ‘most antithetic’. It is derived from the following
lower bound for the joint cdf, also studied by Fréchet/Höffding:

Pr[X ≤ x,Y ≤ y] ≥ max{0,F(x)+G(y)−1}. (7.69)

This inequality follows directly from Bonferroni’s inequality, see Exercise 7.6.8.
The pair (X ,Y ) = (F−1(U),G−1(1−U)) has this cdf; Y is small when X is large
and vice versa. In fact, in this case X and −Y are most related; X and Y are not
comonotonic, but countermonotonic.

A different approach to comparing pairs of random variables as regards degree of
relatedness is to simply compare their values of well-known association measures.

Example 7.8.3 (Association measures)
The most widely used association measures for pairs of random variables are:

• Pearson’s r: the correlation coefficient r(X ,Y ) = E[XY ]−E[X ]E[Y ]
σX σY

;
• Spearman’s ρ: the rank correlation coefficient ρ(X ,Y ) = r(F(X),G(Y ));
• Kendall’s τ: the (normed) probability of concordance with another sample pair,

so τ(X ,Y ) = 2×Pr[(X −X•)(Y −Y •) > 0]−1 if (X ,Y )∼ (X•,Y •) independent;
• Blomqvist’s β : looks at concordance with the medians x̃ and ỹ having F(x̃) =

G(ỹ) = 0.5, so β (X ,Y ) = 2×Pr[(X − x̃)(Y − ỹ) > 0]−1.

The rank of an element in a random sample is simply its index in the sorted sample.
The population equivalent is the rank of a random variable X ∼ F , which is simply
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the random variable F(X). This r.v. is uniform(0,1) if X is continuous. If for some x
we have F(x) = 0.2, it means that in large samples, the rank of an observation equal
to x will be about 20% of the sample size. Two pairs of real numbers are concordant
if one lies to the right and above the other.

By using 2Pr[“concordance”]−1 in both last measures, we ensure that all these
association measures have the value zero in case of independence, and are in the
interval [−1,+1]. Note that (X ,Y ) being comonotonic implies ρ(X ,Y ) = τ(X ,Y ) =
β (X ,Y ) = 1 (and v.v. for ρ and τ), but r(X ,Y ) < 1 is possible, see Exercises 7.8.4–5.
The last three association measures depend only on the joint cdf of the ranks F(X)
and G(Y ), and they are the same for the original random variables and their ranks.
But the Pearson correlation r does not have this property; see Exercises 7.8.5–6.
Just like mean-variance order compared with stop-loss order, comparing the values
of association measures has the advantage of leading to a total order between pairs
of risks with the same marginals. ∇

An important property of the concept of being ‘more related’ is that the sum of the
components of the more related pair is larger in convex order.

Property 7.8.4 (More related means having a convex larger sum)
If (X ,Y ) ∼ H is more related than (X ′,Y ′) ∼ H ′, then X +Y ≥cx X ′ +Y ′.

Proof. This can be inferred from combining the equality E[(X +Y −d)+] = E[(d−
X −Y )+]+ E[X ]+ E[Y ]−d with the following one, derived by swapping the order
of integration (Fubini):

E[(d −X −Y )+] =
∫∫

x+y≤d

∫ d−x

t=y
dt dH(x,y)

=
∫ ∞

t=−∞

∫∫
y≤t, x≤d−t

dH(x,y)dt

=
∫ ∞

t=−∞
H(t,d − t)dt.

(7.70)

Now use H ≥ H ′ to finish the proof. ∇

The property of being more related is reflected in the association measures, in the
sense that the more related pair has a larger value for all association measures men-
tioned in Example 7.8.3.

Property 7.8.5 (More related means higher association)
If (X ,Y ) ∼ H is more related than (X ′,Y ′) ∼ H ′, then r(X ,Y ) ≥ r(X ′,Y ′).
The same holds for ρ(·, ·), τ(·, ·) and β (·, ·).
Proof. For convenience, assume that X and Y are both bounded from below, say,
≥−M. By proceeding with X +M and Y +M we can assume M = 0 without further
loss of generality. Then applying Fubini (for example 0 < t < x < ∞):
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E[XY ] =
∫∫

xydH(x,y) =
∫∫ (∫ x

0
dt
∫ y

0
du

)
dH(x,y)

=
∫ ∞

0

∫ ∞

0

(∫ ∞

t

∫ ∞

u
dH(x,y)

)
dt du

=
∫ ∞

0

∫ ∞

0

{
1−F(t)−G(u)+H(t,u)

}
dt du,

(7.71)

so E[XY ] ≥ E[X ′Y ′] follows. Since the marginal distributions of (X ,Y ) and (X ′,Y ′)
are the same, so are their marginal moments, hence r(X ,Y ) ≥ r(X ′,Y ′).

Write U = F(X), V = G(Y ), U ′ = F(X ′) and V ′ = G(Y ′) for the ranks. Then
(U,V ) is more related than (U ′,V ′) as Pr[U ≤ u,V ≤ v] = H(F−1(u),G−1(v)). So
ρ(X ,Y ) ≥ ρ(X ′,Y ′) by the above.

For Kendall’s τ , let C(·, ·) be the joint cdf of (U,V ). Let (X•,Y •) ∼ (X ,Y ) inde-
pendent, with ranks (U•,V •). Then

Pr[(X −X•)(Y −Y •) > 0] = Pr[(U −U•)(V −V •) > 0]

= 2
∫∫

Pr[U < u,V < v |U• = u,V • = v]dC(u,v)

= 2
∫∫

Pr[U < u,V < v]dC(u,v) = 2
∫∫

C(u,v)dC(u,v),

(7.72)

so τ(X ,Y ) = 4E[C(U,V )]−1.
Now let (S,T ) denote the ranks with (X ′,Y ′), and denote their joint cdf by D.

Then also C ≥ D holds, so E[C(S,T )] ≥ E[D(S,T )]. So it suffices to prove that
E[C(S,T )] ≤ E[C(U,V )]. We have

E[C(S,T )]−E[C(U,V )] =
∫ 1

0

∫ 1

0
C(u,v)dD(u,v)−

∫ 1

0

∫ 1

0
C(u,v)dC(u,v). (7.73)

Using C(u,v) =
∫ u

0

∫ v
0 dC(x,y) and Fubini, for example with 0 < x < u < 1, trans-

forms (7.73) into:∫ 1

0

∫ 1

0

∫ u

0

∫ v

0
dC(x,y)dD(u,v)−

∫ 1

0

∫ 1

0

∫ u

0

∫ v

0
dC(x,y)dC(u,v)

=

∫ 1

0

∫ 1

0

∫ 1

x

∫ 1

y
dD(u,v)dC(x,y)−

∫ 1

0

∫ 1

0

∫ 1

x

∫ 1

y
dC(u,v)dC(x,y)

=
∫∫ {

Pr[S > x,T > y]−Pr[U > x,V > y]
}

dC(x,y)

=
∫∫ {

D(x,y)−C(x,y)
}

dC(x,y) ≤ 0.

(7.74)

For the final equality, use that, for example, Pr[S > x,T > y] = 1− x− y + D(x,y).
From (7.74) we conclude that τ(X ,Y ) ≥ τ(X ′,Y ′).

Finally, Blomqvist’s β is just 4C( 1
2 , 1

2 )−1, so β (X ,Y ) ≥ β (X ′,Y ′) is trivial. ∇
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See also the exercises for some characteristics of the PQD property. In particular, as
one would expect, the pair (X ,X) is PQD, as well as, when X , Y and Z are indepen-
dent, the pairs (X ,X + Z) and (X +Y,X + Z). The concept can also be generalized
to dimension n > 2.

7.8.2 Copulas

Consider a two-dimensional random vector (X ,Y ) with joint distribution H(x,y).
The marginals are assumed given and continuous, and again written as H(x,∞) =
F(x) and H(∞,y) = G(y).

Definition 7.8.6 (Copula)
The copula of a pair (X ,Y ) is the joint cdf of the ranks F(X) and G(Y ). ∇

theorem states that the copula function satisfying this relation is unique also in case
the marginals are not continuous. To compute the last three association measures in
Example 7.8.3, it suffices to know the copula rather than the whole joint cdf.

The cdf C(u,v) is a two-dimensional cdf with uniform(0,1) marginals, hence it
has support 0 < u < 1, 0 < v < 1, and C(u,1) = u as well as C(1,v) = v. If a pair is
more related than another, the same holds for the corresponding ranks. Among the
families of copulas in common use are the Student, Gaussian, Archimedean, Clay-
ton, Frank, Gumbel, Farlie-Gumbel-Morgenstern (see Exercise 7.8.3) and many oth-
ers. One of the uses of copulas is that they provide a means to draw a random pair
with prescribed marginals and such that the distribution from which we sample re-
sembles the one that generated our observations. An important criterion, especially
when the objective is to model extremal events, for that is that the joint tail behav-
ior fits the observations. So the conditional probability that one risk is large, given
that the other is, should be fitted. We will not pursue this further, and only present a
method to construct a copula in such a way that a random pair with this copula, apart
from the right marginals, also has a prescribed rank correlation. For this purpose, it
suffices to look at the following important special cases of copula functions:

1. Comonotonic or Maximum copula: C1(u,v) = min{u,v};
2. Independence or Product copula: C2(u,v) = uv, 0 < u < 1, 0 < v < 1;
3. Countermonotonic or Minimum copula: C3(u,v) = max{0,u+ v−1}.

As one sees, C1(u,v) is the Fréchet/Höffding upper bound for any copula function; it
is the copula of the most related (comonotonic) pair. The lower bound C3(u,v) cor-
responds to the most antithetic pair. The product copula C2(u,v) simply represents
the case that X and Y are independent. So if (U,V ) is a random vector of which the
marginals are both uniform(0,1), then if its joint cdf (copula function) C = C1, we
have U ≡V , if C =C3, we have U ≡ 1−V , and if C =C2, U and V are independent.

We will show how by taking a convex combination (mixture) of the three copulas
used above, we can get a random vector with uniform marginals that has any (rank)

joint cdfs in the following way: H(x,y) = C(F(x),G(y)). The well-known Sklar’s
The copula was already used in the proof of Property 7.8.5. It couples marginal and
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correlation between −1 and +1. Indeed if for p1, p2, p3 ≥ 0 with p1 + p2 + p3 = 1,
we write

C(u,v) = p1C1(u,v)+ p2C2(u,v)+ p3C3(u,v), (7.75)

then the random vector (U,V ) has this distribution if V is given by:

V = I1U + I2U⊥ + I3(1−U), (7.76)

where Ii, i = 1,2,3 are dependent Bernoulli(pi) random variables with I1 + I2 +
I3 ≡ 1, and U⊥ ∼ uniform(0,1), independent of U . To determine the correlation
r(U,V ), or the rank correlation ρ(U,V ), which is the same for this case since V ∼
uniform(0,1) as well, note that by conditioning on which Ii = 1, we have from (7.76)

E[UV ] = p1E[U2]+ p2E[UU⊥]+ p3E[U(1−U)] =
1
3

p1 +
1
4

p2 +
1
6

p3, (7.77)

so with E[U ] = E[V ] = 1
2 , Var[U ] = Var[V ] = 1

12 and p1 + p2 + p3 = 1, we get

r(U,V ) =
E[UV ]−E[U ]E[V ]√

Var[V ]
= p1 − p3. (7.78)

Hence r(U,V ) = 1 if p1 = 1 (the comonotonic upper bound), r(U,V ) =−1 if p3 = 1
(the countermonotonic lower bound), and r(U,V ) = 0 holds if p1 = p3. Indepen-
dence holds only if p1 = p3 = 0. This mechanism makes it possible to construct
(X ,Y ) = (F−1(U),G−1

(rank) correlation ρ(X ,Y ) = r(U,V ) = p1 − p3 ∈ [−1,1].
The first and third copula used here have the diagonals u = v and u = 1− v,

respectively, as their support. To get a more realistic distribution, it is best to take
p2 as large as possible. But other copulas exist that are flexible enough to produce
lookalikes of many realistic joint distributions, allowing us to simulate drawings
from more and less dangerous sums of random variables.

Remark 7.8.7 (Generating random drawings from a copula)
To simulate a random drawing from a joint cdf if this cdf is generated by a copula,
first generate outcome u of U ∼ uniform(0,1), simply taking a computer generated
random number, for example using runif. Then, draw an outcome v for V from the
conditional distribution of V , given U = u. This is easy in the three cases considered
above: for C1, take v = u; for C2, draw another independent uniform number; for
C3, take v = 1− u. In general, draw from ∂C(u,v)

∂u . Next, to produce an outcome of
(X ,Y ), simply take x = F−1(u) and y = G−1(v). Note that in case of non-uniform
marginals, the above calculation (7.78) does not produce the ordinary Pearson’s
correlation coefficien r(X ,Y ), but rather the Spearman rank correlation ρ(X ,Y ) =
r(F(X),G(Y )). ∇

Var[U ]

(V )) with given marginal cdfs F and G and any arbitrary

√
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7.9 Exercises

Section 7.2

1. Let fX (·) and fY (·) be two continuous densities (or two discrete densities) that cross exactly
once, in the sense that for a certain c, we have fX (x) ≥ fY (x) if x < c, and fX (x) ≤ fY (x) if
x > c. Show that X ≤st Y . Why do the densities fX (·) and fY (·) cross at least once?

2. Show that if X ∼ gamma(α,β ) and Y ∼ gamma(α,β ′) with β > β ′, then X ≤st Y . The same
if Y ∼ gamma(α ′,β ) with α < α ′.

3. Prove that the binomial(n, p) distributions increase in p with respect to stochastic order,
by constructing a pair (X ,Y ) just as in Example 7.2.2 with X ∼ binomial(n, p1) and Y ∼
binomial(n, p2) for p1 < p2, with additionally Pr[X ≤ Y ] = 1.

4. Prove the assertion in the previous exercise with the help of Exercise 7.2.1.

5. As Exercise 7.2.3, but now for the case that X ∼ binomial(n1, p) and Y ∼ binomial(n2, p) for
n1 < n2. Then, give the proof with the help of Exercise 7.2.1.

6. If N ∼ binomial(2,0.5) and M ∼ binomial(3, p), show that (1− p)3 ≤ 1
4 is necessary and

sufficient for N ≤st M.

7. For two risks X and Y having marginal distributions Pr[X = j] = 1
4 , j = 0,1,2,3 and Pr[Y =

j] = 1
4 , j = 0,4, Pr[Y = 2] = 1

2 , construct a simultaneous distribution with the property that
Pr[X ≤ Y ] = 1.

8. Prove that ≤st is functionally invariant, in the sense that for every non-decreasing function f ,
we have X ≤st Y implies f (X) ≤st f (Y ). Apply this property especially to the excess of loss
part f (x) = (x−d)+ of a claim x, and to proportional (re-)insurance f (x) = αx for some α > 0.

Section 7.3

1. Prove that M ≤SL N if M ∼ binomial(n, p) and N ∼ binomial(n + 1, np
n+1 ). Show that in the

limit for n → ∞, the Poisson stop-loss premium is found for any retention d.

2. If N ∼ binomial(2,0.5) and M ∼ binomial(3, p), show that p ≥ 1
3 is necessary and sufficient

for N ≤SL M.

3. Show that if X ∼ Y , then 1
2 (X +Y ) ≤SL X . Is it necessary that X and Y are independent?

4. Let X and Y be two risks with the same mean and with the same support {a,b,c} with 0 ≤ a <
b < c. Show that either X ≤SL Y , or Y ≤SL X must hold. Also give an example of two random
variables, with the same mean and both with support {0,1,2,3}, that are not stop-loss ordered.

5. Compare the cdf F of a risk with another cdf G with the same mean and with F(x) = G(x)
on (−∞,a) and [b,∞), but G(x) is constant on [a,b). Note that G results from F by dispersion
of the probability mass on (a,b) to the endpoints of this interval. Show that F ≤SL G holds.
Sketch the stop-loss transforms with F and G.

6. As the previous exercise, but now for the case that the probability mass of F on (a,b) has been
concentrated on an appropriate m, that is, such that G(x) is constant both on [a,m) and [m,b).
Also consider that case that all mass on the closed interval [a,b] is concentrated.

7. Consider the following differential of mixed cdf F :

dF(x) =

⎧⎪⎨⎪⎩
dx
3 for x ∈ (0,1)∪ (2,3)
1
12 for x ∈ {1,2}
1
6 for x = 3

2
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Show that this cdf is indirectly more dangerous than the uniform(0,3) cdf.

8. Let A1, A2, B1 and B2 be independent Bernoulli random variables with parameters p1, p2,q1
and q2. If p1 + p2 = q1 +q2, when is A1 +A2 ≤SL B1 +B2, when is A1 +A2 ≥SL B1 +B2, and
when does neither of these stochastic inequalities hold?

9.
variable M having E[M] ≤ E[N]. The same for M ∼ binomial.

10. Suppose it is known that for every value of the risk aversion α , the exponential premium for
the risk X is less than for Y . Which order relation holds between X and Y ?

i i

gerousness.

12. Complete the proof of Theorem 7.3.9 by proving that the random variable Y satisfies the re-
quirements, using sketches of the stop-loss transform and the cdf.

13. Let X ≤SL +] for t ≤ 0,
π(t) = E[(Z − t)+] for t ≥ c, and π(t) = A(t) for 0 ≤ t ≤ c. Here c and A(·) are chosen in
such a way that A(0) = µ and A(t) is the tangent line to E[(Z − t)+] at t = c. Show that π(·)

Z. Show that X ≤SL Y ≤SL Z, as well as E[X ] = E[Y ] and Y ≤st Z. [In this way, Y is another
separator between X and Z in a sense analogous to Theorem 7.3.9.]

14. Show that if X ≤e Y and E[Xk] = E[Y k] for k = 1,2, . . . ,n−1, then E[Xn]≤ E[Y n

especially that if X ≤e Y and E[X ] = E[Y ], then Var[X ] ≤ Var[Y ]. The moments of X and Y are
called lexicographically ordered.]

15. For risks X and Y and for a certain d > 0 we have Pr[Y > d] > 0 while Pr[X > d] = 0. Can
X ≤SL Y , X ≤st Y or X ≤e Y hold?

16. Let X ∼ uniform(0,1), V = 1
2

V , W and X . Investigate for which d we have V ≤SL W and for which we have W ≤SL V .

17. Prove Theorem 7.3.10 for the case E[X ] = E[Y ] by using partial integrations. Use the fact that
the stop-loss transform is an antiderivative of FX (x)− 1, and consider again v(x) = −u(−x).
To make things easier, look at E[v(X)−v(0)−Xv′(0)] and assume that v(·) is differentiable at
0.

18. The following risks X1, . . . ,X5 are given.

1. X1 ∼ binomial(10, 1
2 );

2. X2 ∼ binomial(15, 1
3 );

3. X3 ∼ Poisson(5);
4. X4 ∼ negative binomial(2, 2

7 );
5. X5 ∼ 15I, where I ∼ Bernoulli( 1

3 ).

Do any two decision makers with increasing utility function agree about preferring X1 to X2?
For each pair (i, j) with i, j = 1,2,3,4, determine if Xi ≤SL Xj holds. Determine if Xj ≤SL X5

3 ≤e X5?

19. Consider the following class of risks Xp = pY + (1− p)Z, with Y and Z independent expo-
nential(1) random variables, and p a number in (0, 1

2 ). Note that X0 ∼ exponential(1), while
X0.5 ∼ gamma(2,2). Are the risks in this class stochastically ordered? Show that decision mak-
ers with an exponential utility function prefer losing Xp to Xq if and only if p ≥ q. Prove that
X1/2 ≤SL Xp ≤SL X0.

G(x) =
1
4

{
F∗0(x)+F∗1(x)+F∗2(x)+F∗3(x)

}
V (x) = q0F∗0(x)+q1F∗1(x)+q2F∗2(x)

Show that a negative binomial random variable N is stop-loss larger than any Poisson random

is convex, and hence the stop-loss transform of a certain risk Y . Sketch the cdfs of X , Y and

Z and E[X ] < E[Z]. Consider the function π(·) that has π(t) = E[(X − t)

11. Show that the stop-loss transforms π (d) in (7.6) correspond to cdfs F that increase in dan-

X , and W = min{X ,d} for a certain d > 0. Sketch the cdfs of

]. [This means

or its reverse holds, j = 2,3. Does X

20. The cdfs G(·) and V (·) are given by
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Here F is the cdf of an arbitrary risk, and F∗n denotes the nth convolution power of cdf F . For
n = 0, F∗0 is the cdf of the constant 0. Determine q0,q1,q2 ≥ 0 with q0 +q1 +q2 = 1 such that
V ≤SL G and moreover V and G have equal mean.

21. Compare two compound Poisson random variables S1 and S2 in the three stochastic orders ≤e,
≤st, and ≤SL, if the parameters of S1 and S2 are given by

1. λ1 = 5, p1(x) = 1
5 for x = 1,2,3,4,5;

2. λ2 = 4, p1(x) = 1
4 for x = 2,3,4,5.

22. Investigate the order relations ≤e, ≤st, and ≤SL for risks X and Y with Y ≡CX , where C and
X are independent and Pr[C = 0.5] = Pr[C = 1.5] = 0.5.

23. Let N ∼ binomial(2, 1
2 ) and M ∼ Poisson(λ ). For which λ do N ≥st M, N ≤st M and N ≤SL M

hold?

24. In the proof of Theorem 7.3.7, sketch the functions πi(d) for the case that Y ∼ uniform(0,3)
and Z integer-valued with πZ(0) = 2 and πZ(k) = πY (k) for k = 1,2,3. Describe the transitions
πY (d) → π2(d) → ·· · → πZ(d) in terms of dispersion.

25. Let A j ∼ Bernoulli(p j), j = 1,2, . . . ,n be independent random variables, and let p = 1
n ∑ j p j .

Show that ∑ j A j ≤SL binomial(n, p).
[This exercise proves the following statement: Among all sums of n independent Bernoulli
random variables with equal mean total µ , the binomial(n, µ

n ) is the stop-loss largest. Note that
in this case by replacing all probabilities of success by their average, thus eliminating variation
from the underlying model, we get a more spread result.]

26. Let Pr[X = i] = 1
6 , i = 0,1, . . . ,5, and Y ∼ binomial(5, p). For which p do X ≤st Y , Y ≤st X ,

X ≤SL Y and Y ≤SL X hold?

Section 7.4

1. Consider the family of distributions F(·; p,µ), defined as F(x; p,µ) = 1− pe−x/µ for some
p ∈ (0,1) and µ > 0. Investigate for which parameter values p and µ the cdf F(·; p,µ) is
stochastically or stop-loss larger or smaller than F(·; p0,µ0), and when it is neither stop-loss
larger, nor stop-loss smaller.

2. Investigate the order relations ≤SL and ≤st in the class of binomial(n, p) distributions, n =
0,1, . . ., 0 ≤ p ≤ 1.

3. Show that exponential order is preserved under compounding: if X ≤e Y and M ≤e N, then
X1 +X2 + · · ·+XM ≤e Y1 +Y2 + · · ·+YN .

4. What can be said about two individual claim amount random variables X and Y if for two
risk processes with the same claim number process and the same premium c per unit of time,
and individual claims such as X and Y respectively, it proves that for each c, the adjustment
coefficient with the second ruin process is at most the one with the first?

5. Let S have a compound Poisson distribution with individual claim sizes ∼ X , and let t1, t2
and α be such that E[(S− t1)+] = λE[(X − t2)+] = αE[S]. For an arbitrary d > 0, compare
E[(min{S, t1}−d)+], E[(S−∑N

1 (Xi − t2)+ −d)+] and E[((1−α)S−d)+].

6. If two risks have the same mean µ and variance σ2, but the skewness of the first risk is larger,
what can be said about the stop-loss premiums?

7. Compare the risks S and T in Exercise 3.7.6 as regards exponential, stochastic and stop-loss
order.
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8. In Section 7.4.3, show that, in areas where the separation argument does not lead to the con-
clusion that one is stop-loss larger than the other, the stop-loss premiums are sometimes larger,
sometimes smaller.

9. Prove that indeed Xn+1 ≤SL Xn in Remark 7.4.1.

10. Show that the random variables X and Y at the end of Section 7.4.2 are exponentially ordered,
but not stop-loss ordered.

Section 7.5

1. Let 0 < d < b hold. Risk X has Pr[X ∈ {0,d,b}] = 1, risk Y has Pr[0 ≤Y ≤ b] = 1. If the means
and variances of X and Y are equal, show that E[(X −d)+] ≤ E[(Y −d)+].

2. Show that X ≤SL Y ≤SL Z holds in Example 7.5.5. Use the fact that a unimodal continuous
density with mode 0 is the same as a concave cdf on [0,∞). Consider the case that Y is not
continuous separately.

3. Compute the minimal and the maximal stop-loss premium at retention d = 0.5 and d = 3 for
risks with µ = σ2 = 1 and a support contained in [0,4].

4. Give expressions for the minimal and the maximal possible values of the stop-loss premium
in case of mean µ , variance σ2 and a support contained in [0,b], see Figure 7.6. In this figure,
sketch the stop-loss transform of the feasible risk that has the minimal stop-loss premium at
retention d = 2.

5. Which two-point risk with mean µ , variance σ2 and support contained in [0,b] has the largest
skewness? Which one has the smallest?

6. Show that the solutions of the previous exercise also have the extremal skewnesses in the class
of arbitrary risks with mean µ , variance σ2 and support contained in [0,b].

7. Let T = Y1 + · · ·+YN with N ∼ Poisson(λ ), Pr[0 ≤ Y ≤ b] = 1 and E[Y ] = µ . Show that
µN ≤SL T ≤SL bM, if M ∼ Poisson(λ µ/b). What are the means and variances of these three
random variables?

8. Verify the assertions in the middle paragraph of Example 7.5.3.

Section 7.6

1. Prove that the first set of inequalities of (7.38), together with equal means, implies the second
set. Use that E[(X −d)+]−E[(d −X)+] = E[X ]−d.

2. Show that equality (3.115) can be generalized from risks to arbitrary random variables X with
mean µ , leading to

∫ ∞
−∞{E[(X − t)+]− (µ − t)+}dt = 1

2 Var[X ].

3. The function f (x) = (d − x)+ is convex decreasing. Give an example with X ≤SL Y but not
E[(d −X)+] ≤ E[(d −Y )+].

4. Consider n married couples with one-year life insurances, all having probability of death 1%
for her and 2% for him. The amounts insured are unity for both sexes. Assume that the mor-
tality between different couples is independent. Determine the distribution of the individual
model for the total claims, as well as for the collective model approximating this, assuming
a) that the mortality risks are also independent within each couple, and b) that they follow a
comonotonic distribution. Compare the stop-loss premiums for the collective model in case of
a retention of at least 0.03n.
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5. In Example 7.6.7, sketch the stop-loss transform of X1 +X2 for various values of x. In this way,
show that X1 +X2 increases with x in stop-loss order.

6. Show that X ≤st Y holds if and only if their comonotonic joint density has the property h(x,y) =
0 for x > y.

7. If X has support {x1, . . . ,xn} and Y has support {y1, . . . ,ym}, describe their comonotonic joint
density if x1 < · · · < xn and y1 < · · · < ym.

8. Prove Bonferroni’s inequality: Pr[A∩B] ≥ Pr[A]+ Pr[B]−1. Use it to derive the lower bound

tions. Prove that (F−1(U),G−1(1−U)) has this lower bound as its cdf.

9. Prove that the following properties hold for TVaR, see Section 5.7:

- TVaR is comonotonic additive: TVaR[S + T ; p] = TVaR[S; p] + TVaR[T ; p] for all p if S

- TVaR respects stochastic order: FS ≥ FT implies that TVaR[S; ·] ≤ TVaR[T ; ·];
- TVaR respects stop-loss order: πS ≤ πT implies that TVaR[S; ·] ≤ TVaR[T ; ·].

10. Prove that if random variables X and Y are comonotonic, then Cov[X ,Y ] ≥ 0. Can X and Y be
at the same time comonotonic and independent?

11. Let (X ,Y ) ∼ bivariate normal, and let (XU ,YU ) be comonotonic with the same marginals.
U +YU cross only once, and determine where.

Section 7.7

1. Let X1 and X2 be the length of two random persons. Suppose that these lengths are iid random
variables with Pr[Xi = 160,170,180] = 1

4 , 1
2 , 1

4 . What is the distribution of the comonotonic
upper bound SU ? Determine the distribution of the lower bound if we take as a surrogate V for
S the gender of person 1, of which we know it is independent of the length of person 2, while
Pr[V = 0] = Pr[V = 1] = 1

2 as well as Pr[X1 = 160,170 |V = 0] = Pr[X1 = 170,180 |V = 1] = 1
2 .

What is the distribution of the improved upper bond SU |V ? Compare the variances of the
various convex upper and lower bounds derived.

2. Let X and Y be independent N(0,1) random variables, and let S = X +Y . Assume V = X +aY
for some real a. What is the conditional distribution of X , given V = v? Determine the distrib-
ution of the convex lower bound E[S |V ]. Also determine the distribution of the comonotonic
upper bound and the improved convex upper bound. Compare the variances of these bounds
for various values of a. Consider especially the cases V ≡ S, V ⊥ S, V ≡ X and V ∝ Y , that is,
|a| → ∞.

3. In Example 7.7.2, compute the variance of the lower bound in case we take V = aY1 +Y2
instead of V = Y1 +Y2 as the surrogate random variable. For which a is this variance maximal?

4. In case the event V = v occurs, the improved upper bound of Example 7.7.2 can be written
as F−1

X1 |V=v(U)+ · · ·+F−1
Xn |V=v(U). Write the terms of this sum as gi(U,v), then gi(U,v) is the

unconditional contribution of component i to the improved upper bound SU |V = ∑i gi(U,V ).
In general, these random variables will not be comonotonic. Show that gi(U,V ) has the same
marginal distribution as Xi. Conclude that the improved upper bound is indeed an improvement
over the comonotonic upper bound.

5. Prove that for a pair of random variables (X ,Y ), if one conditions on V ≡ X , the distributions
of SU |V = F−1

X |V (U)+F−1
Y |V (U) and S = X +Y coincide.

(7.69) for joint cdfs. Check that the right hand side of (7.69) has the right marginal distribu-

Hint: use Theorem 7.3.7 and 7.3.9, or use (5.43).

Show that the cdfs of X +Y and X

and T are comonotonic;
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6. For the payments (7.51), assume that the logreturns Yj ∼ N(µ,σ2) are iid. If XU
1 ,XU

2 , . . . de-
note comonotonic versions of X1,X2, . . . , determine the distribution of the random variables
logXU

k+1 − logXU
k . Find r

(
log(αkXk), log(αlXl)

)
for k < l and positive αk,αl .

7. Even if n is large, there is no reason to expect the Central Limit Theorem to hold for the cdf of
S in (7.61). This is because the terms in S are very much dependent. Still, we want to compare
our results to the normal cdf with the same mean and variance as S. Verify that the theoretical
mean and variance of S can be computed by:

mu.S <- sum(alpha*exp(-(mu.V-diag(Sigma.V)/2)))
s <- 0 ## see (2.11) in Vanduffel et al. (2008)
for (i in 1:n) for (j in 1:n)
{s <- s + alpha[i] * alpha[j] *

exp(- mu.V[i] - mu.V[j] + Sigma.V[i,i]/2
+ Sigma.V[j,j]/2 + Sigma.V[i,j])}

sd.S <- sqrt(s-mu.Sˆ2)

To the plot in Figure 7.10, add the approximating normal cdf, as follows:

lines(qnorm(y, mu.S, sd.S), y, lty="longdash")

Also compute the mean and variance of E[S |Y1 + · · ·+Yn].
Discuss the use of the normal approximation to the cdf of S for determining, for example, the
99.75% quantile.

Also, plot the cdf of a lognormal random variable with the same two first moments as S. The

8. Verify the variances found in Example 7.7.2. To do this, run the examples in R as above, and
compute the sample variances.

9. At the end of Example 7.7.2, it is suggested that instead of using V = Zn = Y1 + · · ·+Yn as
a conditioning variable, it might be better to use V = Y1 +(Y1 +Y2)+ · · ·+(Y1 + · · ·+Yn) (in
case αk ≡ +1). This is based on the observation that the terms in S are lognormal random
variables αke−Zk with ‘small’ Zk, therefore ‘close to’ αk(1 + Zk), so this choice of V will
closely resemble S, apart from a constant. Verify that this is indeed a better choice by inspecting

n

resulting sample variances.
Try also alpha <- c(rep(1,5),rep(-1,5)) as a payment pattern for n = 10.

10. In the paper Vanduffel et al. (2008, formula (2.16)) it is argued that

V =
n

∑
k=1

αk exp(−E[Zk]+Var[Zk]/2)Zk

might lead to an even better bound. It does not actually maximize Var
[
E[S |V ]

]
itself, but a first

order Taylor approximation for it. Verify if this is indeed a better choice in the example of this
section.
Again, also try alpha <- c(rep(1,5),rep(-1,5)) as a payment pattern for n = 10.

11. An estimator for the skewness based on the sample S is cum3(S)/sd(S)ˆ1.5. Fit a trans-
lated gamma cdf to mean, variance and skewness of S.
To get an unbiased estimate of the variance, var and sd divide sum((S-mean(S))ˆ2) by
n-1. Verify that by using a multiplier n/((n-1)*(n-2)), see source text and help-file, we
get an unbiased estimate of the third cumulant. Verify if cum3(S) uses this multiplier. But
are the resulting estimates of σS and γS unbiased?
In Vanduffel et al. (2008), also the inverse gamma distribution (the one of 1/X when X ∼
gamma) is suggested as an approximation, and its performance is compared with the comono-
tonic lower bound. Compare it with the translated gamma approximation as well.

Compare theoretical mean and variance with mean(S) and sd(S).

Plot the kernel density estimate for the empirical cdf of S, see ?density.

the fits of the empirical cdfs of E[S |V ] and E[S |Z ] with the one of S, and by comparing the

same for a gamma cdf. Which of these three cdfs is the best approximation?
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12. If in the method to generate random drawings for the upper bound and the lower bound for
S, instead of comonotonic random normal drawings we substitute Φ−1(u), we get an expres-

altogether, leading to very fast and accurate approximate algorithms. Using these, give exact
expressions for the quantiles, and compare with the sample quantiles. See also Vanduffel et al.
(2008).

13. Show that in case αk > 0 for all k, the function f (v) = E[S |V = v] with S as in (7.61) and
V = Zn is monotone increasing in v.

Section 7.8

1. If (X ,Y ) are PQD, what can be said of Pr[X ≤ x |Y ≤ y]?

2. Show that the random pairs (X ,X), (X ,X + Z) and (X +Y,X + Z) are all PQD if X , Y and Z
are independent random variables.

3. The Farlie-Gumbel-Morgenstern copula has C(u,v) = uv[1 + α(1− u)(1− v)] on its support
0 < u < 1, 0 < v < 1, for |α| ≤ 1. Show that the corresponding joint density ∂ 2C(u,v)/∂u∂v
is non-negative. Show that C has uniform(0,1) marginals. Find Spearman’s rank correlation ρ ,
Kendall’s τ and Blomqvist’s β for random variables with copula C.

4. For continuous random variables, compute ρ , τ and β for the comonotonic random variables.
Prove that ρ = 1 or τ = 1 imply comonotonicity, but β = 1 does not.

5. Determine the correlation r(X ,Y ), as a function of σ , if X ∼ lognormal(0,1) and Y ∼
lognormal(0,σ2), and r(logX , logY ) = 1. Verify that it equals 1 for σ = 1, and tends to zero
for σ → ∞. Also compute ρ and τ .

6. For X ∼ N(0,1), determine r(X2,(X +b)2).

sion for the inverse cdfs of these random variables. In this way, simulations can be avoided



Chapter 8
Credibility theory

Credibility, as developed by American actuaries, has provided
us with a very powerful and intuitive formula. The European
Continental School has contributed to its interpretation. The
concepts are fundamental to insurance and will continue to be
most important in the future. I find it deplorable that the world
of finance has not yet realized the importance of collateral
knowledge far beyond insurance and the power of
credibility-type formulae — Hans Bühlmann, 1999

8.1 Introduction

In insurance practice it often occurs that one has to set a premium for a group of
insurance contracts for which there is some claim experience regarding the group
itself, but a lot more on a larger group of contracts that are more or less related.
The problem is then to set up an experience rating system to determine next year’s
premium, taking into account not only the individual experience with the group, but
also the collective experience. Two extreme positions can be taken. One is to charge
the same premium to everyone, estimated by the overall mean X of the data. This
makes sense if the portfolio is homogeneous, which means that all risk cells have
identical mean claims. But if this is not the case, the ‘good’ risks will take their
business elsewhere, leaving the insurer with only ‘bad’ risks. The other extreme
is to charge to group j its own average claims X j as a premium. Such premiums
are justified if the portfolio is heterogeneous, but they can only be applied if the
claims experience with each group is large enough. As a compromise, one may ask
a premium that is a weighted average of these two extremes:

z jX j +(1− z j)X . (8.1)

The factor z j that expresses how ‘credible’ the individual experience of cell j is, is
called the credibility factor; a premium such as (8.1) is called a credibility premium.
Charging a premium based on collective as well as individual experience is justified
because the portfolio is in general neither completely homogeneous, nor completely
heterogeneous. The risks in group j have characteristics in common with the risks
in other groups, but they also possess unique group properties.

One would choose z j close to one under the following circumstances: the risk ex-
perience with cell j is vast, it exhibits only little variation, or the variation between
groups is substantial. There are two methods to find a meaningful value for z j. In
limited fluctuation credibility theory, a cell is given full credibility z j = 1 if the ex-
perience with it is large enough. This means that the probability of having at least a
certain relative error in the individual mean does not exceed a given threshold. If the

203
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experience falls short of full credibility, the credibility factor is taken as the ratio of
the experience actually present and the experience needed for full credibility. More
interesting is the greatest accuracy credibility theory, where the credibility factors
are derived as optimal coefficients in a Bayesian model with variance components.
This model was developed in the 1960’s by Bühlmann.

Note that apart from claim amounts, the data can also concern loss ratios, that is
claims divided by premiums, or claims as a percentage of the sum insured, and so
on. Quite often, the claims experience in a cell relates to just one contract, observed
in a number of periods, but it is also possible that a cell contains various ‘identical’
contracts.

In practice, one should use credibility premiums only if one only has very few
data. If one has additional information in the form of collateral variables, for ex-
ample, probably using a generalized linear model (GLM) such as described in the
following chapter is indicated, or a mixed model. The main problem is to determine
how much virtual experience, see Remark 8.2.7 and Exercise 8.4.7, one should in-
corporate.

In Section 8.2 we present a basic model to illustrate the ideas behind credibility
theory. In this model the claims total Xjt for contract j in period t is decomposed into
three separate components. The first component is the overall mean m. The second
a deviation from this mean that is specific for this contract. The third is a deviation
for the specific time period. By taking these deviations to be independent random
variables, we see that there is a covariance structure between the claim amounts,
and under this structure we can derive estimators of the components that minimize a
certain sum of squares. In Section 8.3 we show that exactly these covariance struc-
tures, and hence the same optimal estimators, also arise in more general models.
Furthermore, we give a short review of possible generalizations of the basic model.
In Section 8.4, we investigate the Bühlmann-Straub model, in which the observa-
tions are measured in different precision. In Section 8.5 we give an application from
motor insurance, where the numbers of claims are Poisson random variables with as
a parameter the outcome of a structure parameter that is assumed to follow a gamma
distribution.

8.2 The balanced Bühlmann model

To clarify the ideas behind credibility theory, we study in this section a stylized
credibility model. Consider the random variable Xjt , representing the claim figure
of cell j, j = 1,2, . . . ,J, in year t. For simplicity, we assume that the cell contains
a single contract only, and that every cell has been observed during T observation
periods. So for each j, the index t has the values t = 1,2, . . . ,T . Assume that this
claim statistic is the sum of a cell mean m j plus ‘white noise’, that is, that all Xjt

are independent and N(m j,s2) distributed, with possibly unequal mean m j for each
cell, but with the same variance s2 > 0. We can test for equality of all group means
using the familiar statistical technique of analysis of variance (ANOVA). If the null-
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hypothesis that all m j are equal fails to hold, this means that there will be more
variation between the cell averages X j around the overall average X than can be
expected in view of the observed variation within the cells. For this reason we look
at the following random variable, called the sum-of-squares-between:

SSB =
J

∑
j=1

T (X j −X)2. (8.2)

One may show that, under the null-hypothesis that all group means m j are equal, the
random variable SSB has mean (J − 1)s2. Since s2 is unknown, we must estimate
this parameter separately. This estimate is derived from the sum-of-squares-within,
defined as

SSW =
J

∑
j=1

T

∑
t=1

(Xjt −X j)
2. (8.3)

It is easy to show that the random variable SSW has mean J(T − 1)s2. Dividing
SSB by J − 1 and SSW by J(T − 1) we get two random variables, each with mean
s2, called the mean-square-between (MSB) and the mean-square-within (MSW ) re-
spectively. We can perform an F-test now, where large values of the MSB compared
to the MSW indicate that the null-hypothesis that all group means are equal should
be rejected. The test statistic to be used is the so-called variance ratio or F-ratio:

F =
MSB
MSW

=
1

J−1 ∑ j T (X j −X)2

1
J(T−1) ∑ j ∑t(Xjt −X j)2

. (8.4)

Under the null-hypothesis, SSB divided by s2 has a χ2(J − 1) distribution, while
SSW divided by s2 has a χ2(J(T − 1)) distribution. Furthermore, it is possible to
show that these random variables are independent. Therefore, the ratio F has an
F(J − 1,J(T − 1)) distribution. Proofs of these statements can be found in many
texts on mathematical statistics, under the heading ‘one-way analysis of variance’.
The critical values of F can be found in an F-table (Fisher distribution).

Example 8.2.1 (A heterogeneous portfolio)
Suppose that we have the following observations for 3 groups and 5 years:

t = 1 t = 2 t = 3 t = 4 t = 5 X j

j = 1 99.3 93.7 103.9 92.5 110.6 100.0
j = 2 112.5 108.3 118.0 99.4 111.8 110.0
j = 3 129.2 140.9 108.3 105.0 116.6 120.0

As the reader may verify, the MSB equals 500 with 2 degrees of freedom, while the
MSW is 109 with 12 degrees of freedom. This gives a value F = 4.588, which is
significant at the 95% level, the critical value being 3.885. The conclusion is that
the data show that the mean claims per group are not all equal.

To get R to do the necessary calculations, do the following:
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J <- 3; K <- 5; X <- scan(n=J*K)
99.3 93.7 103.9 92.5 110.6
112.5 108.3 118.0 99.4 111.8
129.2 140.9 108.3 105.0 116.6
j <- rep(1:J, each=K); j <- as.factor(j)
X.bar <- mean(X); Xj.bar <- tapply(X, j, mean)
MSB <- sum((Xj.bar-X.bar)ˆ2) * K / (J-1)
MSW <- sum((X-rep(Xj.bar,each=K))ˆ2)/J/(K-1)
MSB/MSW; qf(0.95, J-1, J*(K-1)) ## 4.588 and 3.885

The use of K instead of T to denote time avoids problems with the special identifiers
T and t in R. The vector Xj.bar is constructed by applying the mean function to
all groups of elements of X with the same value of j.

It is also possible to let R do the analysis of variance. Use a linear model, ex-
plaining the responses X from the group number j (as a factor). This results in:

> anova(lm(X˜j))
Analysis of Variance Table

Response: X
Df Sum Sq Mean Sq F value Pr(>F)

j 2 1000.00 500.00 4.5884 0.03311 *
Residuals 12 1307.64 108.97

The probability of obtaining a larger F-value than the one we observed here is
0.03311, so the null-hypothesis that the group means are all equal is rejected at
the 5% level. ∇

If the null-hypothesis fails to be rejected, there is apparently no convincing statis-
tical evidence that the portfolio is heterogeneous. So there is no reason not to ask
the same premium for each contract. In case of rejection, apparently there is varia-
tion between the cell means m j. In this case one may treat these numbers as fixed
unknown numbers, and try to find a system behind these numbers, for example by
doing a regression on collateral data. Another approach is to assume that the num-
bers m j have been produced by a chance mechanism, hence by ‘white noise’ similar
to the one responsible for the deviations from the mean within each cell. This means
that we can decompose the claim statistics as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T, (8.5)

with Ξ j and Ξ jt independent random variables for which

E[Ξ j] = E[Ξ jt ] = 0, Var[Ξ j] = a, Var[Ξ jt ] = s2. (8.6)

Because the variance of Xjt in (8.5) equals the sum of the variances of its compo-
nents, models such as (8.5) are called variance components models. Model (8.5) is
a simplified form of the so-called classical Bühlmann model, because we assumed
independence of the components where Bühlmann only assumes the correlation to
be zero. We call our model that has equal variance for all observations, as well as
equal numbers of policies in all cells, the balanced Bühlmann model.
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The interpretation of the separate components in (8.5) is the following.

1. m is the overall mean; it is the expected value of the claim amount for an arbitrary
policyholder in the portfolio.

2. Ξ j denotes a random deviation from this mean, specific for contract j. The condi-
tional mean, given Ξ j = ξ , of the random variables Xjt equals m+ξ . It represents
the long-term average of the claims each year if the length of the observation pe-
riod T goes to infinity. The component Ξ j describes the risk quality of this par-
ticular contract; the mean E[Ξ j] equals zero, its variation describes differences
between contracts. The distribution of Ξ j depicts the risk structure of the portfo-
lio, hence it is known as the structure distribution. The parameters m, a and s2

characterizing the risk structure are called the structural parameters.
3. The components Ξ jt denote the deviation for year t from the long-term average.

They describe the within-variation of a contract. It is the variation of the claim
experience in time through good and bad luck of the policyholder.

Note that in the model described above, the random variables Xjt are dependent for
fixed j, since they share a common risk quality component Ξ j. One might say that
stochastically independent random variables with the same probability distribution
involving unknown parameters in a sense are dependent anyway, since their values
all depend on these same unknown parameters.

In the next theorem, we are looking for a predictor of the as yet unobserved ran-
dom variable Xj,T+1. We require this predictor to be a linear combination of the
observable data X11, . . . ,XJT with the same mean as Xj,T+1. Furthermore, its mean
squared error must be minimal. We prove that under model (8.5), this predictor has
the credibility form (8.1), so it is a weighted average of the individual claims expe-
rience and the overall mean claim. The theorem also provides us with the optimal
value of the credibility factor z j. We want to know the optimal predictor of the
amount to be paid out in the next period T +1, since that is the premium we should
ask for this contract. The distributional assumptions are assumed to hold for all pe-
riods t = 1, . . . ,T +1. Note that in the theorem below, normality is not required.

Theorem 8.2.2 (Balanced Bühlmann model; homogeneous estimator)
Assume that the claim figures Xjt for contract j in period t can be written as the sum
of stochastically independent components, as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T +1, (8.7)

where the random variables Ξ j are iid with mean E[Ξ j] = 0 and Var[Ξ j] = a, and
also the random variables Ξ jt are iid with mean E[Ξ jt ] = 0 and Var[Ξ jt ] = s2 for all
j and t. Furthermore, assume the random variables Ξ j to be independent of the Ξ jt .
Under these conditions, the homogeneous linear combination g11X11 + · · ·+gJT XJT

that is the best unbiased predictor of Xj,T+1 in the sense of minimal mean squared
error (MSE)

E[{Xj,T+1 −g11X11 −·· ·−gJT XJT}2] (8.8)

equals the credibility premium
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zX j +(1− z)X , (8.9)

where

z =
aT

aT + s2 (8.10)

is the resulting best credibility factor (which in this case is equal for all j),

X =
1

JT

J

∑
j=1

T

∑
t=1

Xjt (8.11)

is the collective estimator of m, and

X j =
1
T

T

∑
t=1

Xjt (8.12)

is the individual estimator of m.

Proof. Because of the independence assumptions and the equal distributions, the
random variables Xit with i 	= j are interchangeable. By convexity, (8.8) has a unique
minimum. In the optimum, all values of git , i 	= j must be identical, for reasons of
symmetry. If not, by interchanging coefficients we can show that more than one
extremum exists. The same goes for all values g jt , t = 1, . . . ,T . Combining this with
the unbiasedness restriction, we see that the homogeneous linear estimator with
minimal MSE must be of the form (8.9) for some z. We only have to find its optimal
value.

Since Xjt , X j and X all have mean m, we can rewrite the MSE (8.8) as:

E[{Xj,T+1 − (1− z)X − zX j}2] = E[{Xj,T+1 −X − z(X j −X)}2]

= E[{Xj,T+1 −X}2]−2z E[{Xj,T+1 −X}{X j −X}]+ z2 E[{X j −X}2]

= Var[Xj,T+1 −X ]−2z Cov[Xj,T+1 −X ,X j −X ]+ z2 Var[X j −X ].

(8.13)

This quadratic form in z is minimal for the following choice of z:

z =
Cov[Xj,T+1 −X ,X j −X ]

Var[X j −X ]
=

aT
aT + s2 , (8.14)

where it is left to the reader (Exercise 8.2.1) to verify the final equality in (8.13) by
proving and filling in the necessary covariances:

Cov[Xjt ,Xju] = a for t 	= u;

Var[Xjt ] = a+ s2;

Cov[Xjt ,X j] = Var[X j] = a+
s2

T
;

Cov[X j,X ] = Var[X ] =
1
J
(a+

s2

T
).

(8.15)
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So indeed predictor (8.9) leads to the minimal MSE (8.8) for the value of z given in
(8.10). ∇

Remark 8.2.3 (Asymptotic properties of the optimal credibility factor)
The credibility factor z in (8.10) has plausible asymptotic properties:

1. If T → ∞, then z → 1. The more claims experience there is, the more faith we can
have in the individual risk premium. This asymptotic case is not very relevant in
practice, as it assumes that the risk does not change over time.

2. If a ↓ 0, then z ↓ 0. If the expected individual claim amounts are identically dis-
tributed, there is no heterogeneity in the portfolio. But then the collective mean
m, when known, or its best homogeneous estimator X are optimal linear estima-
tors of the risk premium. See (8.16) and (8.9).

3. If a → ∞, then z → 1. This is also intuitively clear. In this case, the result on the
other contracts does not provide information about risk j.

4. If s2 → ∞, then z → 0. If for a fixed risk parameter, the claims experience is ex-
tremely variable, the individual experience is not especially useful for estimating
the real risk premium. ∇

Note that (8.9) is only a statistic if the ratio s2/a is known; otherwise its distribution
will contain unknown parameters. In Example 8.2.5 below we show how this ratio
can be estimated as a by-product of the ANOVA. The fact that the credibility factor
(8.14) does not depend on j is due to the simplifying assumption we have made
that the number of observation periods is the same for each j, as well as that all
observations have the same variance.

If we allow our linear estimator to contain a constant term, looking in fact at
the best inhomogeneous linear predictor g0 +g11X11 + · · ·+gJT XJT , we get the next
theorem. Two things should be noted. One is that it will prove that the unbiasedness
restriction is now superfluous. The other is that (8.16) below looks just like (8.9),
except that the quantity X is replaced by m. But this means that the inhomogeneous
credibility premium for group j does not depend on the data from other groups
i 	= j. The homogeneous credibility premium assumes the ratio s2/a to be known;
the inhomogeneous credibility premium additionally assumes that m is known.

Theorem 8.2.4 (Balanced Bühlmann model; inhomogeneous estimator)
Under the same distributional assumptions about Xjt as in the previous theorem, the
inhomogeneous linear combination g0 +g11X11 + · · ·+gJT XJT to predict next year’s
claim total Xj,T+1 that is optimal in the sense of mean squared error is the credibility
premium

zX j +(1− z)m, (8.16)

where z and X j are as in (8.10) and (8.12).

Proof. The same symmetry considerations as in the previous proof tell us that the
values of git , i 	= j are identical in the optimal solution, just as those of g jt , t =
1, . . . ,T . So for certain g0, g1 and g2, the inhomogeneous linear predictor of Xj,T+1

with minimal MSE is of the following form:
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g0 +g1X +g2X j. (8.17)

The MSE can be written as variance plus squared bias, as follows:

E[{Xj,T+1 −g0 −g1X −g2X j}2]

= Var[Xj,T+1 −g1X −g2X j]+{E[Xj,T+1 −g0 −g1X −g2X j]}2.
(8.18)

The second term on the right hand side is zero, and hence minimal, if we choose
g0 = m(1−g1−g2). This entails that the estimator we are looking for is necessarily
unbiased. The first term on the right hand side of (8.18) can be rewritten as

Var[Xj,T+1 − (g2 +g1/J)X j −g1(X −X j/J)]

= Var[Xj,T+1 − (g2 +g1/J)X j]+Var[g1(X −X j/J)]+0,
(8.19)

because the covariance term vanishes since g1(X −X j/J) depends only of Xit with
i 	= j. Hence any solution (g1,g2) with g1 	= 0 can be improved, since a lower value
of (8.19) is obtained by taking (0,g2 +g1/J). Therefore choosing g1 = 0 is optimal.
So all that remains to be done is to minimize the following expression for g2:

Var[Xj,T+1 −g2X j] = Var[Xj,T+1]−2g2Cov[Xj,T+1,X j]+g2
2Var[X j], (8.20)

which has as an optimum

g2 =
Cov[Xj,T+1,X j]

Var[X j]
=

aT
aT + s2 , (8.21)

so the optimal g2 is just z as in (8.10). The final equality can be verified by filling in
the relevant covariances (8.15). This means that the predictor (8.16) for Xj,T+1 has
minimal MSE. ∇

Example 8.2.5 (Credibility estimation in Example 8.2.1)
Consider again the portfolio of Example 8.2.1. It can be shown (see Exercise 8.2.8),
that in model (8.5) the numerator of F in (8.4) (the MSB) has mean aT + s2, while
the denominator MSW has mean s2. Hence 1/F will be close to s2/{aT +s2}, which
means that we can use 1 − 1/F to estimate z. Note that this is not an unbiased
estimator, since E[1/MSB] 	= 1/E[MSB]. The resulting credibility factor is z = 0.782
for each group. So the optimal forecasts for the claims next year in the three groups
are 0.782X j +(1−0.782)X , j = 1,2,3, resulting in 102.18, 110 and 118.82. Notice
the ‘shrinkage effect’: the credibility estimated premiums are closer together than
the original group means 100, 110 and 120. ∇

Remark 8.2.6 (Estimating the risk premium)
One may argue that instead of aiming to predict next year’s claim figure Xj,T+1,
including the fluctuation Ξ j,T+1, we actually should estimate the risk premium m+
Ξ j of group j. But whether we allow a constant term in our estimator or not, in each
case we get the same optimum. Indeed for every random variable Y :
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E[{m+Ξ j +Ξ j,T+1 −Y}2]

= E[{m+Ξ j −Y}2]+Var[Ξ j,T+1]+2Cov[m+Ξ j −Y,Ξ j,T+1].
(8.22)

If Y depends only on the Xjt that are already observed, hence with t ≤ T , the co-

for Y as an estimator of m + Ξ j and of Xj,T+1 = m + Ξ j + Ξ j,T+1 differ only by a
constant Var[Ξ j,T+1

2

estimator Y . ∇

The credibility premium (8.16) is a weighted average of the estimated individual
mean claim, with as a weight the credibility factor z, and the estimated mean claim

T for each contract is the same, by asking premium (8.16) on the lowest level we
receive the same premium income as when we would ask X as a premium from
everyone. For z = 0 the individual premium equals the collective premium. This
is acceptable in a homogeneous portfolio, but in general not in a heterogeneous
one. For z = 1, a premium is charged that is fully based on individual experience.
In general, this individual information is scarce, making this estimator unusable in
practice. Sometimes it even fails completely, like when a prediction is needed for a

The quantity a > 0 represents the heterogeneity of the portfolio as depicted in the
risk quality component Ξ j, and s2 is a global measure for the variability within the
homogeneous groups.

Remark 8.2.7 (Virtual experience)
Write XjΣ = Xj1 + · · ·+ XjT , then an equivalent expression for the credibility pre-
mium (8.16) is the following:

s2m+aT X j

s2 +aT
=

ms2/a+XjΣ

s2/a+T
. (8.23)

So if we extend the number of observation periods T by an extra s2/a periods and
also add ms2/a as virtual claims to the actually observed claims XjΣ , the credibility
premium is nothing but the average claims, adjusted for virtual experience. ∇

8.3 More general credibility models

In model (8.5) of the previous section, we assumed the components Ξ j and Ξ jt to
be independent random variables. But from (8.14) and (8.15) one sees that actu-
ally only the covariances of the random variables Xjt are essential. We get the same
results if we impose a model with weaker requirements, as long as the covariance
structure remains the same. An example is to only require independence and iden-
tical distributions of the Ξ jt , conditionally given Ξ j, with E[Ξ jt |Ξ j = ξ ] = 0 for

variance term must be equal to zero. Since it follows from (8.22) that the MSEs

contract that up to now has not produced any claim.

] = s , we conclude that both MSEs are minimized by the same

for the whole portfolio. Because we assumed that the number of observation years
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all ξ . If the joint distribution of Ξ j and Ξ jt is like that, the Ξ jt are not necessarily
independent, but they are uncorrelated, as can be seen from the following lemma:

Lemma 8.3.1 (Conditionally iid random variables are uncorrelated)
Suppose that given Ξ j, the random variables Ξ j1,Ξ j2, . . . are iid with mean zero.
Then we have

Cov[Ξ jt ,Ξ ju] = 0, t 	= u; Cov[Ξ j,Ξ jt ] = 0. (8.24)

Proof. Because of the decomposition rule for conditional covariances, see Exercise
8.3.1, we can write for t 	= u:

Cov[Ξ ju,Ξ jt ] = E
[
Cov[Ξ ju,Ξ jt |Ξ j]

]
+Cov

[
E[Ξ ju|Ξ j],E[Ξ jt |Ξ j]

]
. (8.25)

This equals zero since, by our assumptions, Cov[Ξ ju,Ξ jt |Ξ j]≡ 0 and E[Ξ ju|Ξ j]≡ 0.
Clearly, Cov[Ξ j,Ξ jt |Ξ j] ≡ 0 as well. Because

Cov[Ξ j,Ξ jt ] = E
[
Cov[Ξ j,Ξ jt |Ξ j]

]
+Cov

[
E[Ξ j|Ξ j],E[Ξ jt |Ξ j]

]
, (8.26)

the random variables Ξ j and Ξ jt are uncorrelated as well. ∇

Note that in the model of this lemma, the random variables Xjt are not marginally
uncorrelated, let alone independent.

Example 8.3.2 (Mixed Poisson distribution)
Assume that the Xjt random variables represent the numbers of claims in a year
on a particular motor insurance policy. The driver in question has a number of
claims in that year that has a Poisson(Λ j) distribution, where the parameter Λ j is
a drawing from a certain non-degenerate structure distribution. Then the first com-
ponent of (8.5) represents the expected number of claims m = E[Xjt ] = E[Λ j] of
an arbitrary driver. The second is Ξ j = Λ j −m; it represents the difference in av-
erage numbers of claims between this particular driver and an arbitrary driver. The
third term Ξ jt = Xjt −Λ j equals the annual fluctuation around the mean number of
claims of this particular driver. In this case, the second and third component, though
uncorrelated in view of Lemma 8.3.1, are not independent, for example because
Var[Xjt −Λ j|Λ j −m] ≡ Var[Xjt |Λ j] ≡ Λ j. See also Section 8.5. ∇

Remark 8.3.3 (Parameterization through risk parameters)
The variance components model (8.5), even with relaxed independence assump-
tions, sometimes is too restricted for practical applications. Suppose that Xjt as
in (8.5) now represents the annual claims total of the driver from Example 8.3.2,
and also suppose that this has a compound Poisson distribution. Then apart from
the Poisson parameter, there are also the parameters of the claim size distribution.
The conditional variance of the noise term, given the second term (mean annual to-
tal claim costs), is now no longer a function of the second term. To remedy this,
Bühlmann studied slightly more general models, having a latent random variable
Θ j, that might be vector-valued, as a structure parameter. The risk premium is the
conditional mean µ(Θ j) := E[Xjt |Θ j] instead of simply m + Ξ j. If E[Xjt |Θ j] is not
a one-to-one function of Θ j, it might occur that contracts having the same Ξ j in the
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basic model above, have a different pattern of variation Var[Ξ jt |Θ j] in Bühlmann’s
model. Therefore the basic model is insufficient here. But it can be shown that in
this case the same covariances, and hence the same optimal estimators, are found.

An advantage of using a variance components model over Bühlmann’s Bayesian
way of describing the risk structure is that the resulting models are technically as
well as conceptually easier, at only a slight cost of generality and flexibility. ∇

It is possible to extend credibility theory to models that are more complicated than
(8.5). Results resembling the ones from Theorems 8.2.2 and 8.2.4 can be derived for
such models. In essence, to find an optimal predictor in the sense of least squares
one minimizes the quadratic MSE over its coefficients, if needed with an additional
unbiasedness restriction. Because of the symmetry assumptions in the balanced
Bühlmann model, only a one-dimensional optimization was needed there. But in
general we must solve a system of linear equations that arises by differentiating ei-
ther the MSE or a Lagrange function. The latter situation occurs when there is an
unbiasedness restriction. One should not expect to obtain analytical solutions such
as above.

Some possible generalizations of the basic model are the following.

Example 8.3.4 (Bühlmann-Straub model; varying precision)
Credibility models such as (8.5) can be generalized by looking at Xjt that are aver-
ages over a number of policies. It is also conceivable that there are other reasons
to assume that not all Xjt have been measured equally precisely, therefore have
the same variance. For this reason, it may be expedient to introduce weights in
the model. By doing this, we get the Bühlmann-Straub model. In principle, these
weights should represent the total number of observation periods of which the fig-
ure Xjt is the mean (natural weights). Sometimes this number is unknown. In that
case, one has to make do with approximate relative weights, like for example the
total premium paid. If the actuary deems it appropriate, he can adjust these numbers
to express the degree of confidence he has in the individual claims experience of
particular contracts. In Section 8.4 we prove a result, analogous to Theorem 8.2.2,
for the homogeneous premium in the Bühlmann-Straub model. ∇

Example 8.3.5 (Jewell’s hierarchical model)
A further generalization is to subdivide the portfolio into sectors, and to assume that
each sector p has its own deviation from the overall mean. The claims experience
for contract j in sector p in year t can then be decomposed as follows:

Xp jt = m+Ξp +Ξp j +Ξp jt . (8.27)

This model is called Jewell’s hierarchical model. Splitting up each sector p into
subsectors q, each with its own deviation Ξp +Ξpq, and so on, leads to a hierarchical
chain of models with a tree structure. ∇

Example 8.3.6 (Cross classification models)
It is conceivable that Xp jt is the risk in sector p, and that index j corresponds to
some other general factor to split up the policies, for example if p is the region and
j the gender of the driver. For such two-way cross classifications it does not make
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sense to use a hierarchical structure for the risk determinants. Instead, one could add
to (8.27) a term Ξ ′

j, to describe the risk characteristics of group j. In this way, one
gets

Xp jt = m+Ξp +Ξ ′
j +Ξp j +Ξp jt . (8.28)

This is a cross-classification model. In Chapter 9, we study similar models, where
the row and column effects are fixed but unknown, instead of being modeled as
random variables such as here. ∇

Example 8.3.7 (De Vijlder’s credibility model for IBNR)
Credibility models are also useful to tackle the problem of estimating IBNR reserves
to be held, see also Chapter 10. These are provisions for claims that are not, or not
fully, known to the insurer. In a certain calendar year T , realizations are known
for random variables Xjt representing the claim figure for policies written in year
j, in their tth year of development, t = 0,1, . . . ,T − j. A credibility model for this
situation is

Xjt = (m+Ξ j)dt +Ξ jt , (8.29)

where the numbers dt are development factors, for example with a sum equal to
1, that represent the fraction of the claims paid on average in the tth development
period, and where m + Ξ j represents the claims, aggregated over all development
periods, on policies written in year j. ∇

Example 8.3.8 (Regression models; Hachemeister)
We can also generalize (8.5) by introducing collateral data. If for example y jt repre-
sents a certain risk characteristic of contract j, like for example the age of the policy
holder in year t, Ξ j might be written as a linear, stochastic, function of y jt . Then the
claims in year t are equal to

{m(1) +Ξ (1)
j }+{m(2) +Ξ (2)

j }y jt +Ξ jt , (8.30)

which is a credibility-regression model. Classical one-dimensional regression arises

when Ξ (k)
j ≡ 0,k = 1,2. This means that there are no latent risk characteristics.

Credibility models such as (8.30) were first studied by Hachemeister. ∇

8.4 The Bühlmann-Straub model

Just as in (8.7), in the Bühlmann-Straub model the observations can be decomposed
as follows:

Xjt = m+Ξ j +Ξ jt , j = 1, . . . ,J, t = 1, . . . ,T +1, (8.31)

where the unobservable risk components Ξ j, j = 1,2, . . . ,J are iid with mean zero
and variance a; the Ξ jt are also independent with mean zero. The components Ξ j and
Ξ jt are assumed to be independent, too. The difference between the Bühlmann and
the Bühlmann-Straub models is that in the latter the variance of the Ξ jt components
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is s2/w jt , where w jt is the weight attached to observation Xjt . This weight repre-
sents the relative precision of the various observations. Observations with variances
like this arise when Xjt is an average of w jt replications, hence Xjt = ∑k Xjtk/w jt

where Xjtk = m + Ξ j + Ξ jtk with Ξ jtk iid with zero mean and variance s2. The ran-
dom variables Ξ jtk then denote deviations from the risk premium m+Ξ j for the kth
individual contract in time period t and group j. In this case, the weights are called
natural weights. Sometimes these weights are unknown, or there is another mecha-
nism that leads to differing variances. In that case we can, for example, approximate
the volume by the total premium for a cell.

To find the best homogeneous unbiased linear predictor ∑hitXit of the risk pre-
mium m + Ξ j (see Remark 8.2.6), we minimize its MSE. In Theorem 8.4.1 below,
we derive the optimal values in (8.33) for the coefficients hit , under the unbiasedness
restriction. The following notation will be used, see (8.10)–(8.12):

w jΣ =
T

∑
t=1

w jt ; wΣΣ =
J

∑
j=1

w jΣ ;

z j =
aw jΣ

s2 +aw jΣ
; zΣ =

J

∑
j=1

z j;

Xjw =
T

∑
t=1

w jt

w jΣ
Xjt ; Xww =

J

∑
j=1

w jΣ

wΣΣ
Xjw; Xzw =

J

∑
j=1

z j

zΣ
Xjw.

(8.32)

Notice the difference between for example Xjw and Xju. If a w appears as an in-
dex, this indicates that there has been a weighted summation over this index, using
the (natural or other) weights of the observations. An index z denotes a weighted
summation with credibility weights, while a Σ is used for an unweighted summa-
tion. The simplest way to allow for different numbers of observation periods Tj is to
include some observations with weight zero when necessary.

Theorem 8.4.1 (Bühlmann-Straub model; homogeneous estimator)
The MSE-best homogeneous unbiased predictor ∑i,t hitXit of the risk premium m+
Ξ j in model (8.31), that is, the solution to the following restricted minimization
problem

min
hit

E[{m+Ξ j −∑
i,t

hitXit}2]

subject to E[m+Ξ j] = ∑
i,t

hitE[Xit ],
(8.33)

is the following credibility estimator (see also (8.9)):

z jXjw +(1− z j)Xzw. (8.34)

Here Xjw as in (8.32) is the individual estimator of the risk premium, Xzw is the
credibility weighted collective estimator and z j the credibility factor for contract j.



216 8 Credibility theory

Proof. To prove that of all the linear combinations of the observations to estimate
m + Ξ j with the same mean, (8.34) has the smallest MSE, we could do a Lagrange
optimization, solving the first order conditions to find an extremum. But it is sim-
pler to prove the result by making use of the result that linear combinations of un-
correlated random variables with a given mean have minimal variance if the coeffi-
cients are inversely proportional to the variances; see Exercise 8.4.1. First we derive
the optimal ‘mix’ hit/hiΣ of the contracts in group i. The best choice proves to be
hit/hiΣ = wit/wiΣ ; from this we see that the observations Xit have to appear in (8.33)
in the form Xiw. Then we derive that the totals hiΣ of the coefficients with group i 	= j
are best taken proportional to z j. Finally, the optimal value of h jΣ is derived.

From (8.33) we see that the following problem must be solved to find the best
predictor of m+Ξ j:

min
hit :hΣΣ =1

E
[
{m+Ξ j −∑

i,t
hitXit}2

]
. (8.35)

The restriction hΣΣ = 1 is the unbiasedness constraint in (8.33). By this constraint,
the expectation in (8.35) is also the variance. Substituting decomposition (8.31) for
Xit , we get from (8.35):

min
hit :hΣΣ =1

Var
[
(1−h jΣ )Ξ j −∑

i	= j

hiΣ Ξi −∑
i,t

hitΞit

]
, (8.36)

or, what is the same because of the variances of the components Ξ j and Ξ jt and the
independence of these components:

min
hit :hΣΣ =1

(1−h jΣ )2a+ ∑
i	= j

h2
iΣ a+∑

i
h2

iΣ ∑
t

h2
it

h2
iΣ

s2

wit
. (8.37)

First we optimize the inner sum, extending over t. Because of Exercise 8.4.1 the
optimal values of hit/hiΣ are wit/wiΣ . So we can replace the observations Xit , t =
1,2, . . . ,T by their weighted averages Xiw. We see that the credibility estimator has
the form ∑i hiΣ Xiw, where the values of hiΣ are still to be found.

The minimal value for the inner sum equals s2/wiΣ . From (8.32) we see that
a+ s2/wiΣ = a/zi. So we can rewrite (8.37) in the form

min
hiΣ :hΣΣ =1

(1−h jΣ )2a+h2
jΣ

s2

w jΣ
+(1−h jΣ )2 ∑

i	= j

h2
iΣ

(1−h jΣ )2

a
zi

. (8.38)

As hΣΣ = 1, we have ∑i	= j hiΣ /(1− h jΣ ) = 1. So again because of Exercise 8.4.1,
the optimal choice in (8.38) for the factors hiΣ , i 	= j is

hiΣ
1−h jΣ

=
zi

zΣ − z j
. (8.39)

The minimal value for the sum in (8.38) is a/(zΣ − z j), so (8.38) leads to
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min
h jΣ

(1−h jΣ )2(a+
a

zΣ − z j
)+h2

jΣ
s2

w jΣ
. (8.40)

The optimal value for h jΣ , finally, can be found by once again applying Exercise
8.4.1. This optimal value is, as the reader may verify,

h jΣ =
w jΣ

s2

a+a/(zΣ−z j)
+w jΣ

=
1

1/z j−1
1+1/(zΣ−z j)

+1

=
z j(zΣ − z j +1)

(1− z j)(zΣ − z j)+ z j(zΣ − z j +1)
= z j +(1− z j)

z j

zΣ
.

(8.41)

Because of (8.39) we see that hiΣ = (1−z j)zi/zΣ , which implies that (8.34) is indeed
the MSE-optimal homogeneous unbiased linear predictor of the risk premium m +
Ξ j. ∇

Notice that if we replace Ξ j in (8.31) by the constant ξ j, that is, we take a = 0, we
get the classical weighted mean Xww. This is because in that case the relative weight
w jΣ for Xjw is equal to the credibility weight z j.

The inhomogeneous estimator of m+Ξ j contains a constant h, next to the homo-
geneous linear combination of the Xjt in (8.33). One may show, just as in Theorem
8.2.4, that the unbiasedness restriction is superfluous in this situation. The inhomo-
geneous estimator is equal to the homogeneous one, except that Xzw in (8.34) is
replaced by m. The observations outside group j do not occur in the estimator. For
the inhomogeneous estimator, both the ratio s2/a and the value of m must be known.
By replacing m by its best estimator Xzw under model (8.31), we get the homoge-
neous estimator again. Just as in Remark 8.2.6, the optimal predictor of m + Ξ j is
also the optimal predictor of Xj,T+1. The asymptotic properties of (8.34) are anal-
ogous to those given in Remark 8.2.3. Also, the credibility premium can be found
by combining the actual experience with virtual experience, just as in Remark 8.2.7.
See the exercises.

8.4.1 Parameter estimation in the Bühlmann-Straub model

The credibility estimators of this chapter depend on the generally unknown struc-
ture parameters m, a and s2. To be able to apply them in practice, one has to es-
timate these portfolio characteristics. Some unbiased estimators (not depending on
the structure parameters that are generally unknown) are derived in the theorem be-
low. We can replace the unknown structure parameters in the credibility estimators
by these estimates, hoping that the quality of the resulting estimates is still good.
The estimators of s2 and a are based on the weighted sum-of-squares-within:

SSW = ∑
j,t

w jt(Xjt −Xjw)2, (8.42)
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and the weighted sum-of-squares-between

SSB = ∑
j

w jΣ (Xjw −Xww)2. (8.43)

Note that if all weights w jt are taken equal to one, these expressions reduce to (8.2)
and (8.3), defined in the balanced Bühlmann model.

Theorem 8.4.2 (Unbiased parameter estimates)
In the Bühlmann-Straub model, the following statistics are unbiased estimators of
the corresponding structure parameters:

m̃ = Xww,

s̃2 =
1

J(T −1) ∑
j,t

w jt(Xjt −Xjw)2,

ã =
∑ j w jΣ (Xjw −Xww)2 − (J−1)s̃2

wΣΣ −∑ j w2
jΣ /wΣΣ

.

(8.44)

Proof. The proof of E[Xww] = m is easy. Using the covariance relations (8.15), we

get for s̃2:

J(T −1)E[s̃2] = ∑
j,t

w jt
{

Var[Xjt ]+Var[Xjw]−2Cov[Xjt ,Xjw]
}

= ∑
j,t

w jt

{
a+

s2

w jt
+a+

s2

w jΣ
−2(a+

s2

w jΣ
)

}
= J(T −1)s2.

(8.45)

For ã we have

E
[
∑

j
w jΣ (Xjw −Xww)2

]
= ∑

j
w jΣ

{
Var[Xjw]+Var[Xww]−2Cov[Xjw,Xww]

}
= ∑

j
w jΣ

{
a+

s2

w jΣ
+a∑

k

w2
kΣ

w2
ΣΣ

+
s2

wΣΣ
−2

( s2

wΣΣ
+

aw jΣ

wΣΣ

)}
= a∑

j
w jΣ

(
1+∑

k

w2
kΣ

w2
ΣΣ

−2
w jΣ

wΣΣ

)
+ s2 ∑

j
w jΣ

( 1
w jΣ

− 1
wΣΣ

)
= a

(
wΣΣ −∑

j

w2
jΣ

wΣΣ

)
+(J−1)s2.

(8.46)

Taking E[ã] in (8.44), using (8.45) and (8.46) we see that ã is unbiased as well. ∇
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Remark 8.4.3 (Negativity of estimators)
The estimator s̃2 is non-negative, but ã might well be negative. Although this may
be an indication that a = 0 holds, it can also happen if a > 0. Let us elaborate on
Example 8.2.1, returning to the balanced Bühlmann model where all weights w jt

are equal to one. In that case, defining MSW and MSB as in (8.4), the estimators of
s2 and a in Theorem 8.4.2 reduce to

s̃2 = MSW ; ã =
MSB−MSW

T
. (8.47)

To estimate z, we substitute these estimators into z = aT
aT+s2 , and we get the following

statistic:

z̃ = 1− MSW
MSB

. (8.48)

Using Xjt = m + Ξ j + Ξ jt and defining Ξ j = 1
T ∑t Ξ jt , we see that the SSW can be

written as

SSW =
J

∑
j=1

T

∑
t=1

(Xjt −X j)
2 =

J

∑
j=1

T

∑
t=1

(Ξ jt −Ξ j)
2. (8.49)

Under the assumption that the Ξ jt are iid N(0,s2), the right hand side divided by s2

has a χ2(J(T −1)) distribution. It is independent of the averages Ξ j, and hence also
of the averages X j = m+Ξ j +Ξ j. So MSW is independent of the X j, hence also of
MSB.

Assuming that the components Ξ j are iid N(0,a), we find in similar fashion that

SSB
a+ s2/T

=
J−1

aT + s2 MSB (8.50)

is χ2(J−1) distributed. So under the normality assumptions made, if it is multiplied
by the constant s2/(aT + s2) = 1− z, the variance ratio MSB/MSW of Section 8.2
is still F(J−1,J(T −1)) distributed. Thus,

(1− z)
MSB
MSW

=
1− z
1− z̃

∼ F(J−1,J(T −1)). (8.51)

In this way, Pr[ã < 0] can be computed for different values of J, T and s2/a, see for
example Exercise 8.4.9.

Note that by (8.47), the event ã < 0 is the same as MSB/MSW < 1. In Section
8.2 we established that the data indicate rejection of equal means, which boils down
to a = 0 here, only if MSB/MSW exceeds the right-hand F(J−1,J(T −1)) critical
value, which is larger than one for all J,T . Thus we conclude that, although Pr[ã <
0] > 0 for every a > 0, obtaining such a value means that a Fisher test for a = 0
based on these data would not have led to rejection. This in turn means that there is
in fact no statistical reason not to charge every contract the same premium.

In order to estimate a = Var[Ξ j], one would use max{0, ã} in practice, but, though
still consistent, this is not an unbiased estimator. ∇
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Remark 8.4.4 (Credibility weighted mean and ordinary weighted mean)
The best unbiased estimator of m in model (8.31) is not Xww, but Xzw. This does
not contradict Exercise 8.4.1, since both Xww and Xzw are linear combinations of the
random variables Xjw, the variances of which are not proportional to the original
weights w jΣ , but rather to the credibility adjusted weights z j. So a lower variance is
obtained if we estimate m by the credibility weighted mean Xzw instead of by the or-
dinary weighted mean Xww. A problem is that we do not know the credibility factors
z j to be used, as they depend on the unknown parameters that we are actually esti-
mating. One way to achieve better estimators is to use iterative pseudo-estimators,
which find estimates of the structure parameters by determining a fixed point of
certain equations. See Example 8.4.6, as well as the more advanced literature on
credibility theory. ∇

Example 8.4.5 (Computing the estimates in the Bühlmann-Straub model)
First, we generate a dataset consisting of J=10 contracts, with K=5 years of expo-
sure each, satisfying the distributional assumptions (8.31) of the Bühlmann-Straub
model. For that, we execute the following R-statements.

J <- 10; K <- 5; j <- rep(1:J, each=K); j <- as.factor(j)
m <- 100; a <- 100; s2 <- 64;
set.seed(6345789)
w <- 0.50 + runif(J*K)
X <- m + rep(rnorm(J, 0, sqrt(a)), each=K) +

rnorm(J*K, 0, sqrt(s2/w))

Note that we attach a random weight in the interval (0.5,1.5) to each observation. In
the last line, the second term is a vector of J independent N(0,a) random drawings
Ξ j, replicated K times each, the last a vector of independent N(0,s2/w jk) random
drawings Ξ jk, j = 1, . . . ,J,k = 1, . . . ,K.

Just as in Example 8.2.1, we apply ANOVA to determine if there is any signifi-
cant variation in the group means; if not, there is no heterogeneity between contracts
in the portfolio, therefore no reason to apply credibility theory.

> anova(lm(X˜j,weight=w))
Analysis of Variance Table

Response: X
Df Sum Sq Mean Sq F value Pr(>F)

j 9 5935.0 659.4 14.836 3.360e-10 ***
Residuals 40 1778.0 44.5

In this example the data clearly exhibit an effect of the factor group number. The
Sum Sq values 5935 and 1778 are the SSB and the SSW , respectively; see (8.42)
and (8.43), and see also below. The MSB and MSW , see (8.4), arise by dividing by
Df.

In these laboratory conditions, the parameter values a, m and s2 are known.
Therefore we can directly compute the credibility premiums (8.34) for this case.
First we compute the quantities in (8.32).
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w.js <- tapply(w, j, sum); w.ss <- sum(w.js)
z.j <- 1 / (1 + s2/(a*w.js)); z.s <- sum(z.j)
X.jw <- tapply(X*w, j, sum)/w.js
X.ww <- sum(X.jw * w.js) / w.ss
X.zw <- sum(X.jw * z.j) / z.s
pr.j <- z.j * X.jw + (1-z.j) * X.zw #(8.34)

In the real world, these parameters m, s2 and a are of course unknown and have to be
estimated from the data. In (8.42)–(8.44), we find formulas for unbiased estimators
m̃, s̃2 and ã. Using R, they can be found as follows:

m.tilde <- X.ww
SSW <- sum(w*(X-X.jw[j])ˆ2)
s2.tilde <- SSW/J/(K-1)
SSB <- sum(w.js*(X.jw-X.ww)ˆ2)
a.tilde <- (SSB - (J-1)*s2.tilde) / (w.ss - sum(w.jsˆ2)/w.ss)

Using the statements:

z.j.tilde <- 1 / (1 + s2.tilde / (a.tilde * w.js))
z.s.tilde <- sum(z.j.tilde)
X.zw.tilde <- sum(X.jw * z.j.tilde)/ z.s.tilde
pr.j.tilde <- z.j.tilde * X.jw + (1-z.j.tilde) * X.zw.tilde

we can recompute the credibility premiums (8.34) using the unbiased parameter
estimates and (8.32). ∇

Example 8.4.6 (A pseudo-estimator for the heterogeneity parameter)
The estimator ã of the heterogeneity parameter a given in (8.44) is unbiased, but it
is also awkward looking and unintuitive. Consider the unbiased estimate of s2, the
heterogeneity in time of the results of the contract, in (8.44):

s̃2 =
1

J(T −1) ∑
j,t

w jt(Xjt −Xjw)2. (8.52)

It adds up the squared differences of the observations with the contract mean,
weighted by the natural weight w jt that was used to construct Xjw. To get an un-
biased estimate of s2, we divide by the total experience JT , corrected for the fact
that J means have been estimated so only J(T −1) independent terms remain.

To get an analogous estimate of the between-groups heterogeneity a, consider

A =
1

J−1 ∑
j

z j(Xjw −Xzw)2. (8.53)

In this case, there are J groups, and one mean is estimated. The squared differences
between group mean and the best estimate Xzw for the overall mean m have weight
proportional to the credibility weight z j, the same set of weights that produces the
minimal variance estimator Xzw. The reader is invited to show that E[A] = a, see the
exercises.

There is, however, a problem with the random variable A. If we fill in Xzw in the
previous equation we get:
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A =
1

J−1 ∑
j

z j

(
Xjw −∑

i

zi

zΣ
Xiw

)2
with z j =

(
1+

s2

aw jΣ

)−1
. (8.54)

So the right hand side depends on the unknown structure parameters a and s2 (actu-
ally only on the ratio s2/a), let us say as A = f (a,s2) with f the appropriate function.
As a result, the random variable A is not a statistic, hence not an estimator. In such
cases, we speak of pseudo-estimators. So we look at the following estimate of A:

A1 = f (ã, s̃2). (8.55)

But A1 does not use the ‘best’ credibility weights available, therefore we look
at A2 = f (A1, s̃2). Optimizing, we then look iteratively at An+1 = f (An, s̃2), n =
2,3, . . .. Taking the limit for n → ∞, and calling the limiting random variable
limn→∞ An =: â, we see that the random variable â is the solution to the following
implicit equation:

â =
1

J−1 ∑
j

ẑ j

(
Xjw −∑

i

ẑi

ẑΣ
Xiw

)2
with ẑ j =

(
1+

s̃2

âw jΣ

)−1
. (8.56)

The exact statistical properties of this estimator â are hard to determine; even prov-
ing existence and uniqueness of the solution is a problem. But it is very easy to solve
this equation by successive substitution, using the following R statements:

a.hat <- a.tilde
repeat {
a.hat.old <- a.hat
z.j.hat <- 1/(1+s2.tilde/(w.js*a.hat))
X.zw.hat <- sum(z.j.hat * X.jw) / sum(z.j.hat)
a.hat <- sum(z.j.hat*(X.jw-X.zw.hat)ˆ2)/(J-1)
if (abs((a.hat-a.hat.old)/a.hat.old) < 1e-6) break}

Here a.tilde, assumed positive, and s2.tilde are the unbiased estimates, a..
is the current best guess An of â, and a. is the next one An+1. ∇

8.5 Negative binomial model for the number of car insurance
claims

In this section we expand on Example 8.3.2 by considering a driver with a random
accident proneness drawn from a non-degenerate distribution, and, given that his
accident proneness equals λ , a Poisson(λ ) distributed number of claims in a year.
Charging a credibility premium in this situation leads to an experience rating system
that resembles the bonus-malus systems we described in Chapter 6.

If for a motor insurance policy, all relevant variables for the claim behavior of the
policyholder can be observed as well as used, the number of claims still is generated
by a stochastic process. Assuming that this process is a Poisson process, the rating
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factors cannot do more than provide us with the exact Poisson intensity, that is, the
Poisson parameter of the number of claims each year. Of the claim size, we know
the probability distribution. The cell with policies sharing common values for all
the risk factors would be homogeneous, in the sense that all policy holders have
the same Poisson parameter and the same claims distribution. In reality, however,
some uncertainty about the parameters remains, because it is impossible to obtain
all relevant information on these parameters. So the cells are heterogeneous. This
heterogeneity is the actual justification of using a bonus-malus system. In case of
homogeneity, each policy represents the same risk, and there is no ground for asking
different premiums within a cell.

The heterogeneity of the claim frequency can be modeled by assuming that
the Poisson parameter λ has arisen from a structure variable Λ , with distribution
U(λ ) = Pr[Λ ≤ λ ]. Just as in (8.5), we decompose the number of claims Xjt for
driver j = 1, . . . ,J in time period t = 1, . . . ,Tj as follows:

Xjt = E[Λ ]+{Λ j −E[Λ ]}+{Xjt −Λ j}. (8.57)

Here Λ j ∼ Λ iid. The last two components are uncorrelated, but not independent;
see Exercise 8.5.6. Component Λ j −E[Λ ] has variance a = Var[Λ ]; for Xjt −Λ j, just
as in Example 3.3.1, Var[Xjt ]−Var[Λ j] = E[Λ ] remains. The structural parameters
m and s2 coincide because of the Poisson distributions involved.

Up to now, except for its first few moments, we basically ignored the structure
distribution. Several models for it are possible. Because of its mathematical proper-
ties and good fit (see later on for a convincing example), we will prefer the gamma
distribution. Another possibility is the structure distribution that produces a ‘good’
driver, having claim frequency λ1, with probability p, or a ‘bad’ driver with claim
frequency λ2 > λ1. The number of claims of an arbitrary driver then has a mixed
Poisson distribution with a two-point mixing distribution. Though one would expect
more than two types of drivers to be present, this ‘good driver/bad driver’ model
quite often fits rather closely to data found in practice.

For convenience, we drop the index j, except when we refer back to earlier sec-
tions. It is known, see again Example 3.3.1, that if the structure distribution of the
Poisson parameter is gamma(α,τ), the marginal distribution of the number of claims
Xt of driver j in time period t is negative binomial(α, p = τ/(τ + 1)). In Lemaire
(1985), we find data from a Belgian portfolio with J = 106974 policies, see Table
8.1. The numbers nk, k = 0,1, . . ., denote the number of policies with k accidents.
If Xt ∼ Poisson(λ ) for all j, the maximum likelihood estimate λ̂ for λ equals the
average number of claims over all j. In Section 3.9 we showed how to find the neg-
ative binomial parameter estimates α̂ and p̂ by maximum likelihood, solving (3.76)
and (3.77). Then τ̂ = p̂/(1− p̂) in the Poisson-gamma mixture model follows from
the invariance property of ML-estimators in case of reparameterization. Equation
(3.76) ensures that the first moment of the estimated structure distribution, hence
also of the marginal distribution of the number of claims, coincides with the first
sample moment. The parameters p, λ1 and λ2 of the good driver/bad driver model
have been estimated by the method of moments. Note that this method might fail to
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Table 8.1 Observed numbers of accidents in some portfolio, and fitted values for a pure Poisson
model and a negative binomial model fitted with ML, and a mixed Poisson model fitted by the
method of moments.

k nk n̂k (Poisson) n̂k (Neg.Bin.) n̂k (good/bad)

0 96 978 96 689.5 96 980.8 96 975.1
1 9 240 9 773.4 9 230.9 9 252.0
2 704 494.0 708.6 685.0
3 43 16.6 50.0 56.9
4 9 0.4 3.4 4.6

5+ 0 0.0 0.2 0.3
χ2 191. 0.1 2.1

produce admissible estimates λ̂i ≥ 0 and 0 ≤ p̂ ≤ 1. The resulting estimates for the
three models considered were

λ̂ = 0.1010806;

α̂ = 1.631292, τ̂ = 16.13852;

λ̂1 = 0.07616114, λ̂2 = 0.3565502, p̂ = 0.8887472.

(8.58)

Observed and estimated frequencies are in Table 8.1. The bottom row contains χ2 =

∑k(nk − n̂k)
2/n̂k. When computing such χ2-statistics, one usually combines cells

with estimated numbers less than 5 with neighboring cells. So the last three rows
are joined together into one row representing 3 or more claims. The two mixed
models provide an excellent fit; in fact, the fit of the negative binomial model is
almost too good to be true. Note that we fit 4 numbers using 2 or 3 parameters. But
homogeneity for this portfolio is rejected without any doubt whatsoever.

Though the null-hypothesis that the numbers of claims for each policy holder are
independent Poisson random variables with the same parameter is rejected, while
the mixed Poisson models are not, we cannot just infer that policy holders have
a fixed unobservable risk parameter, drawn from a structure distribution. It might
well be that the numbers of claims are just independent negative binomial random
variables, for example because the number of claims follows a Poisson process in
which each year a new intensity parameter is drawn independently from a gamma
structure distribution.

With the model of this section, we want to predict as accurately as possible the
number of claims that a policy holder produces in the next time period T + 1. This
number is a Poisson(λ ) random variable, with λ an observation of Λ , of which
the prior distribution is known to be, say, gamma(α,τ). Furthermore, observations
X1, . . . ,XT from the past are known. The posterior distribution of Λ , given X1 =
x1, . . . ,XT = xT , is also a gamma distribution, with adjusted parameters τ ′ = τ + T
and α ′ = α + xΣ with xΣ = x1 + · · ·+ xT ; see Exercise 8.5.2. Assuming a quadratic
loss function, in view of Exercise 8.2.9 the best predictor of the number of claims
next year is the posterior expectation of Λ :
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λT+1(x1, . . . ,xT ) =
α + xΣ
τ +T

. (8.59)

This is just the observed average number of claims per time unit, provided we in-
clude a virtual prior experience of α claims in a time period of length τ . See also
Remark 8.2.7. The forecasted premium (8.59) is also a credibility forecast, being a
linear combination of a priori premium and policy average, because, see (8.10):

α + xΣ
τ +T

= z
xΣ
T

+(1− z)
α
τ

for z =
T

τ +T
. (8.60)

Remark 8.5.1 (Non-linear estimators; exact credibility)
In Theorems 8.2.2 and 8.2.4 it was required that the predictors of Xj,T+1 were lin-
ear in the observations. Though such linear observations are in general the easiest to
deal with, one may also look at more general functions of the data. Without linearity
restriction, the best predictor in the sense of MSE for Xj,T+1 is the so-called pos-
terior Bayes estimator, which is just the conditional mean E[Xj,T+1|X11, . . . ,XJT ].
See also (8.59). If the Ξ j and the Ξ jt are independent normal random variables, the
optimal linear estimator coincides with the Bayes estimator. In the literature, this
is expressed as ‘the credible mean is exact Bayesian’. Also combining a gamma
prior and a Poisson posterior distribution gives such ‘exact credibility’, because the
posterior Bayes estimator happens to be linear in the observations. See Exercise
8.5.2. The posterior mean of the claim figure is equal to the credibility premium
(8.60). ∇

If we split up the premium necessary for the whole portfolio according to the mean
value principle, we get an experience rating system based on credibility, which is a
solid system for the following reasons:

1. The system is fair. Upon renewal of the policy, every insured pays a premium
that is proportional to his estimated claim frequency (8.59), taking into account
all information from the past.

2. The system is balanced financially. Write XΣ = X1 + · · ·+XT for the total number
of claims generated, then E[XΣ ] = E

[
E[XΣ |Λ ]

]
= T E[Λ ], so

E

[
α +XΣ
τ +T

]
=

α +T α
τ

τ +T
=

α
τ

. (8.61)

This means that for every policy, the mean of the proportionality factor (8.59) is
equal to its overall mean α/τ . So the expected value of the premium to be paid
by an arbitrary driver remains constant over the years.

3. The premium only depends on the number of claims filed in the previous T years,
and not on how these are distributed over this period. So for the premium next
year, it makes no difference if the claim in the last five years was in the first or
in the last year of this period. The bonus-malus system in Section 6.2 does not
have this property. But it is questionable if this property is even desirable. If one
assumes, like here, the intensity parameter λ to remain constant, K is a sufficient
statistic. In practice, however, the value of λ is not constant. People get past their
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Table 8.2 Optimal estimates (8.62) of the claim frequency next year compared with a new driver

Number of years T

Nr. of claims xΣ 0 1 2 3 4 5 6 7 8 9 10

0 100 94 89 84 80 76 73 70 67 64 62
1 153 144 137 130 124 118 113 108 104 100
2 212 200 189 180 171 164 157 150 144 138
3 271 256 242 230 219 209 200 192 184 177
4 329 311 295 280 267 255 243 233 224 215

youth or past their prime, or the offspring gets old enough to drive the family car.
Following this reasoning, later observations should count more heavily than old
ones.

4. Initially, at time t = 0, everyone pays the same premium, proportional to α/τ .
If T tends to ∞, the difference between the premium (α + xΣ )/(τ + T ) asked
and the actual average payments on the policy xΣ /T vanishes. The variance (α +
xΣ )/(τ + T )2 of the posterior distribution converges to zero. So in the long run,
everyone pays the premium corresponding to his own risk; the influence of the
virtual experience vanishes.

Using the values α = 1.6 and τ = 16, see (8.58), we have constructed Table 8.2
giving the optimal estimates of the claim frequencies in case of various lengths T of
the observation period and numbers k = xΣ of claims observed. The initial premium
is set to 100%, the a posteriori premiums are computed as:

100
λT+1(x1, . . . ,xT )

λ1
=

100 α+xΣ
τ+T

α/τ
= 100

τ(α + xΣ )

α(τ +T )
(8.62)

One sees that in Table 8.2, a driver who caused exactly one claim in the past ten
years represents the same risk as a new driver, who is assumed to carry with him
a virtual experience of 1.6 claims in 16 years. A person who drives claim-free for
ten years gets a discount of 1− τ/(τ +10) = 38%. After a claims experience of 16
years, actual and virtual experience count just as heavily in the premium.

Example 8.5.2 (Comparison with the bonus-malus system of Chapter 6)
As an example, look at the premiums to be paid in the 6th year of insurance by
a driver who has had one claim in the first year of observation. In Table 8.2, his
premium next year equals 124%. In the system of Table 6.1, his path on the ladder
was 2 → 1 → 2 → 3 → 4, so now he pays the premium of step 5, that is, 70%. The
total of the premiums paid (see Table 8.2) is 100+153+144+137+130+124 =
788% of the premium for a new entrant. In the system of Table 6.1, he has paid only
100 + 120 + 100 + 90 + 80 + 70 = 560%. Note that for the premium next year in
Table 8.2, it makes no difference if the claim occurred in the first or the last year of
observation, though this affects the total claims paid. ∇
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Remark 8.5.3 (Overlapping claim frequencies)
Consider a policyholder with T years of claims experience. The posterior distribu-
tion of the expected number of claims Λ is gamma(α +xΣ ,τ +T ) if xΣ claims were
filed. If T = 3, in case xΣ = 0 and xΣ = 2, the premium to be paid next year differs
by a factor 189/84 = 2.25. But the posterior distributions of both claim frequen-
cies overlap to a large extent. Indeed, in the first case, the probability is 60.5% to
have a claim frequency lower than the average α/(τ +T ) = 0.0842 for drivers with
a similar claims experience, since G(0.0842;α,τ + T ) = 0.605. But in the second
case, there also is a substantial probability to have a better Poisson parameter than
the average of drivers as above, since G(0.0842;α + xΣ ,τ +T ) = 0.121 for xΣ = 2
and T = 3. Experience rating by any bonus-malus system may be quite unfair for
‘good’ drivers who are unlucky enough to produce claims. ∇

8.6 Exercises

Section 8.2

1. Finish the proofs of Theorems 8.2.2 and 8.2.4 by filling in and deriving the relevant covariance
relations (8.15). Use and verify the linearity properties of covariances: for all random variables
X ,Y and Z, we have Cov[X ,Y +Z] = Cov[X ,Y ]+Cov[X ,Z], while for all real α , Cov[X ,αY ] =
αCov[X ,Y ].

2. Let X1, . . . ,XT be uncorrelated random variables with mean m and variance s2. Consider the
weighted average Xw = ∑t wtXt , where the weights wt ≥ 0, t = 1, . . . ,T satisfy ∑t wt = 1. Show
that E[Xw] = m, Cov[Xt ,Xw] = wts2 and Var[Xw] = ∑t w2

t s2.

[If especially wt ≡ 1
T , we get Xw = X and E[X ] = m;Cov[Xt ,X ] = Var[X ] = s2

T .]

3. Show that the sample variance S2 = 1
T−1 ∑T

1 {Xt −X}2 is an unbiased estimator of s2.

4. Show that the best predictor of Xj,T+1 is also the best estimator of the risk premium m+Ξ j in
the situation of Theorem 8.2.2. What is the best linear unbiased estimator (BLUE) of Ξ j?

5. Determine the variance of the credibility premium (8.9). What is the MSE? Also determine the
MSE of (8.9) as an estimator of m+Ξ j .

6. Determine the credibility estimator if the unbiasedness restriction is not imposed in Theorem
8.2.2. Also investigate the resulting bias.

7. Show that if each contract pays the homogeneous premium, the sum of the credibility premi-
ums equals the average annual outgo in the observation period.

8. Show that in model (8.5), the MSB has mean aT + s2, while the MSW has mean s2.

9. Prove that for each random variable Y , the real number p that is the best predictor of it in the
sense of MSE is p = E[Y ].

10. Let �X = (X11, . . . ,X1T ,X21, . . . ,X2T , . . . ,XJ1, . . . ,XJT )T be the vector containing the observable
random variables in (8.7). Describe the covariance matrix Cov[�X ,�X ].
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Section 8.3

1. Derive the formula Cov[X ,Y ] = E[Cov[X ,Y |Z]] + Cov[E[X |Z],E[Y |Z]] for the decomposition
of covariances into conditional covariances.

Section 8.4

1. Let X1, . . . ,XT be independent random variables with variances Var[Xt ] = s2/wt for certain
positive numbers (weights) wt , t = 1, . . . ,T . Show that the variance ∑t α2

t s2/wt of the linear
combination ∑t αt Xt with αΣ = 1 is minimal when we take αt ∝ wt , where the symbol ∝ means
‘proportional to’. Hence the optimal solution has αt = wt/wΣ . Prove also that the minimal
value of the variance in this case is s2/wΣ .

2. Prove that in model (8.31), we have Var[Xzw] ≤ Var[Xww]. See Remark 8.4.4.

3. Determine the best homogeneous linear estimator of m.

4. Show that in determining the best inhomogeneous linear estimator of m+Ξ j , the unbiasedness
restriction is superfluous.

5. Show that, just as in Remark 8.2.6, the optimal predictors of Xj,T+1 and m+Ξ j coincide in the
Bühlmann-Straub model.

6. Describe the asymptotic properties of z j in (8.32); see Remark 8.2.3.

7. In the same way as in Remark 8.2.7, describe the credibility premium (8.34) as a mix of actual
and virtual experience.

8. Show that (8.9) follows from (8.34) in the special case (8.5)–(8.6) of the Bühlmann-Straub
model given in (8.31).

9. In the situation of Remark 8.4.3, for s2/a = 0.823, J = 5 and T = 4, show that the probability
of the event ã < 0 equals 0.05.

10. Estimate the credibility premiums in the Bühlmann-Straub setting when the claims experience
for three years is given for three contracts, each with weight w jt ≡ 1. Find the estimates both
by hand and by using R, if the claims on the contracts are as follows:

t = 1 t = 2 t = 3

j = 1 10 12 14
j = 2 13 17 15
j = 3 14 10 6

11. Show that the pseudo-estimator A in (8.53) has indeed mean a.

12. Compare the quality of the iterative estimator â in (8.56) and the unbiased one ã, by generating
a large sample (say, 100 or 1000 replications of the laboratory portfolio as above). Look at
sample means and variances, and plot a histogram. Count how often the iterative estimate is
closer to the real value a.

Section 8.5

1. Verify that the parameters estimates given in (8.58) are as they should be.
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2. [♠] Suppose that Λ has a gamma(α,τ) prior distribution, and that given Λ = λ , the annual
numbers of claims X1, . . . ,XT are independent Poisson(λ ) random variables. Prove that the
posterior distribution of Λ , given X1 = x1, . . . ,XT = xT , is gamma(α + xΣ ,τ +T ), where xΣ =
x1 + · · ·+ xT .

3. By comparing Pr[X2 = 0] with Pr[X2 = 0|X1 = 0] in the previous exercise, show that the num-
bers of claims Xt are not marginally independent. Also show that they are not uncorrelated.

4. Show that the mode of a gamma(α,τ) distribution, that is, the argument where the density is
maximal, is (α −1)+/τ .

5. [♠] Determine the estimated values for nk and the χ2-test statistic if α and τ are estimated by
the method of moments.

6. Show that in the model (8.57) of this section, Λ j and Xjt −Λ j are uncorrelated. Taking α = 1.6
and τ = 16, determine the ratio Var[Λ j]/Var[Xjt ]. [Since no model for Xjt can do more than
determine the value of Λ j as precisely as possible, this ratio provides an upper bound for the
attainable ‘percentage of explained variation’ on an individual level.]

7. [♠] What is the Loimaranta efficiency of the system in Table 8.2? What is the steady state
distribution?

8. Verify the estimated values for nk and the χ2-test statistic if the estimates λ̂1, λ̂2, p̂ in (8.58)
are determined by maximum likelihood.



Chapter 9
Generalized linear models

R, an open-source programming environment for data analysis
and graphics, has in only a decade grown to become a de-facto
standard for statistical analysis against which many popular
commercial programs may be measured. The use of R for the
teaching of econometric methods is appealing. It provides
cutting-edge statistical methods which are, by R’s open-source
nature, available immediately. The software is stable, available
at no cost, and exists for a number of platforms —
Jeff Racine & Rob Hyndman, 2002

9.1 Introduction

Multiple linear regression is the most widely used statistical technique in practical
econometrics. In actuarial statistics, situations occur that do not fit comfortably in
that setting. Regression assumes normally distributed disturbances with a constant
variance around a mean that is linear in the collateral data. In many actuarial appli-
cations, a symmetric normally distributed random variable with a variance that is
the same whatever the mean does not adequately describe the situation. For counts,
a Poisson distribution is generally a good model, if the assumptions of a Poisson
process described in Chapter 4 are valid. For these random variables, the mean and
variance are the same, but the datasets encountered in practice generally exhibit a
variance greater than the mean. A distribution to describe the claim size should have
a thick right-hand tail. The distribution of claims expressed as a multiple of their
mean would always be much the same, so rather than a variance not depending of
the mean, one would expect the coefficient of variation to be constant. Furthermore,
the phenomena to be modeled are rarely additive in the collateral data. A multiplica-
tive model is much more plausible. If other policy characteristics remain the same,
moving from downtown to the country would result in a reduction in the average
total claims by some fixed percentage of it, not by a fixed amount independent of
the original risk. The same holds if the car is replaced by a lighter one.

Linear Models (GLM) instead of ordinary linear models. The generalization is in
two directions. First, it is allowed that the random deviations from the mean have
a distribution different from the normal. In fact, one can take any distribution from

also the Poisson, the (negative) binomial, the gamma and the inverse Gaussian dis-
tributions. Second, in ordinary Linear Models the mean of the random variable is a

other scale. If this scale for example is logarithmic, we have in fact a multiplicative
model instead of an additive model.

231

linear function of the explanatory variables, but in GLMs it may be linear on some

the exponential dispersion family, which includes apart from the normal distribution

These problems can be solved in an elegant way by working with Generalized
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Often, one does not look at the observations themselves, but at transformed val-
ues that are better suited for the ordinary multiple regression model, with normality,
hence symmetry, with a constant variance and with additive systematic effects. But
this is not always possible. Look at the following example.

Example 9.1.1 (Transformations of a Poisson random variable)
Let X ∼ Poisson(µ). Then the transformation X2/3 makes X more or less symmetric,
taking the square root stabilizes the variance and taking a log-transform reduces
multiplicative systematic effects to additive effects.

We will in fact demonstrate that

a) if Y = X2/3, then its skewness γY ≈ 0;
b) if Y = X1/2, then its variance σ2

Y ≈ 1
4 is stable;

c) if Y = log(X + 1
2 ), then E[Y ] ≈ log µ (log-linearity).

See Exercise 9.1.1 for how well these approximations work.

Proof. These approximations are based on the so-called delta method. It says that
for a function g(·) and a random variable X with mean E[X ] = µ and variance
Var[X ] = σ2, the following µ-asymptotic approximations hold:

E[g(X)] ≈ g(µ)+
1
2

g′′(µ)σ2; Var[g(X)] ≈ (
g′(µ)

)2σ2. (9.1)

They can be justified by looking at Taylor expansions around µ:

g(X) ≈ g(µ)+(X −µ)g′(µ)+
1
2
(X −µ)2g′′(µ). (9.2)

The first approximation in (9.1) follows from this by simply taking expectations.
Leaving out the last term and taking variances, we get the second one.

We successively have

a) If Y = X2/3, by (9.1) with g(x) = x2/3 we have

E[Y 3] = E[(X2/3)3] = E[X2] = µ2 + µ ;

E[Y ] ≈ g(µ)+
1
2

σ2g′′(µ) = µ2/3 − 1
9

µ−1/3;

Var[Y ] ≈ σ2g′(µ)2 =
4
9

µ1/3.

(9.3)

So for the third central moment we get

E[(Y −E[Y ])3] = E[Y 3]−3E[Y ]Var[Y ]− (E[Y ])3

≈ µ2 + µ − 4
3

µ +
4
27

−
(

µ2 − 1
3

µ +
1
27

− 1
729µ

)
=

1
9

+
1

729µ
.

(9.4)
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Since σ3
Y ≈ 8

27
√µ , for the skewness we have γY ≈ 0 for large µ .

b) If Y = X1/2, then by (9.1) with g(x) =
√

x,

Var[Y ] ≈ Var[X ]
( 1

2
√

E[X ]

)2
=

1
4
. (9.5)

c) If Y = log(X + 1
2 ), then using (9.1) and log(1+u) = u+O(u2),

E[Y ] ≈ log
(

µ +
1
2

)
+

1
2

µ
−1

(µ + 1
2 )2

= log µ + log
µ + 1

2

µ
− µ

2(µ + 1
2 )2

= log µ +
1
2

µ
+O(µ−2)− µ

2(µ + 1
2 )2

= log µ +O(µ−2).

(9.6)

Note that looking at Y = logX gives problems since Pr[X = 0] > 0. ∇

So using transformations does not always achieve ‘normality’; none of the above
transformations at the same time leads to skewness zero, homoskedasticity and ad-
ditive systematic effects. Note also that an unbiased estimator in the new scale is no
longer unbiased when returning to the original scale, by Jensen’s inequality (1.7).

In this chapter, we will not deal with Generalized Linear Models in their full
generality. Mostly, we restrict to cross-classified observations, which can be put into
a two-dimensional table in a natural way. The relevant collateral data with random
variable Xi j

we will also include the ‘diagonal number’ i + j − 1 as an explanatory variable.
For more general models, we refer to Chapter 11. In general, the observations are
arranged in a vector of n outcomes of independent but not identically distributed

in a suitable form.

also be applied to IBNR problems, see the next chapter, to survival data, and to
compound Poisson distributions. Furthermore, it proves that some venerable actu-

bonus-malus system of Chapter 6, estimation techniques were chosen with a simple
heuristic foundation that also turn out to produce maximum likelihood estimates in

The first was the specialized program GLIM (Generalized Linear Interactive Mod-
eling), originally developed by the Numerical Algorithms Group (NAG) under the
auspices of Nelder. Apart from the open-source program R that we use, we mention
as commercial alternatives S-Plus also implementing the programming language S,
the module GenMod included in SAS, and the program Stata.

els such as ANOVA, Poisson regression and logit and probit models. GLMs can

are the row number i and the column number j. In the next chapter,

arial techniques are in fact instances of GLMs. In the investigation that led to the

random variables, and there is a design matrix containing the explanatory variables

specific GLMs. The same holds for some widely used IBNR techniques. As op-
posed to credibility models, there is a lot of software that is able to handle GLMs.

Many actuarial problems can be tackled using specific Generalized Linear Mod-
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The study of Generalized Linear Models was initiated by Nelder and Wedder-
burn in the early 1970s. They gave a unified description, in the form of a GLM,
of a multitude of statistical methods, including ANOVA, probit-analysis and many
others. Also, they gave an algorithm to estimate all these models optimally and effi-

were implemented to improve stability in some situations.
In Section 9.2, we briefly present generalized linear models. In Section 9.3, we

show how some rating systems used in actuarial practice in fact are instances of

sure for the goodness of fit. For normal distributions, these quantities are sums of
squared residuals, hence χ2-like statistics, but in general they derive from the log-
likelihood. In Section 9.5, we do an analysis of deviance on a portfolio such as the
one generated in Appendix A.3. In Section 9.6, as an example we analyze a port-
folio of motor insurance data, reminiscent of the study that led to the bonus-malus

9.2 Generalized Linear Models

In a standard linear model, the observations are assumed to be normally distributed
around a mean that is a linear function of parameters and covariates. See also Sec-
tion 11.2. Generalized Linear Models generalize this in two directions. The random
variables involved need not be normal with a variance independent of the mean, and
also the scale in which the means are linear in the covariates may vary. For example,
it may be loglinear.

Generalized Linear Models have three characteristics:

1. The stochastic component of the model states that the observations are indepen-
dent random variables Yi, i = 1, . . . ,n with a density in the exponential dispersion
family. The most important examples for our goal are:

• N(µi,ψi) random variables;
• Poisson(µi) random variables;
• multiples ψi times Poisson(µi/ψi) distributed random variables; also known

as quasi-Poisson or overdispersed Poisson random variables (ODP); usually
ψi > 1 holds, for example in case a Poisson count is to be modeled with para-
meter uncertainty (Example 3.3.1);

• ψi×binomial(n = 1
ψi

, p = µi) random variables (hence, the proportions of suc-
cesses in 1/ψi trials);

• gamma(α = 1
ψi

,β = 1
ψiµi

) random variables;

• inverse Gaussian(α = 1
ψiµi

,β = 1
ψi µ2

i
) random variables.

GLMs. In Section 9.4, we study the deviance (and the scaled deviance) as a mea-

system of Chapter 6. For the application of GLMs to IBNR problems, see Chapter

ciently; this is described in Chapter 11. In later versions of GLIM, other algorithms

10. More on GLMs can be found also in Chapter 11.
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It can be shown that in all these examples, the mean is µi for each ψi. The vari-
ance depends on µi and ψi as Var[Yi] = ψiV (µi) for some function V called the
variance function.

2. The systematic component of the model attributes to every observation a linear
predictor ηi = ∑ j xi jβ j, linear in the parameters β1, . . . ,βp. The xi j are called
covariates or regressors.

3. The link function links the expected value µi of Yi to the linear predictor as ηi =
g(µi).

Remark 9.2.1 (Parameterization of the exponential dispersion family)
Note that the parameterizations used in the stochastic component above are not
always the usual ones. The customary parameterization for gamma and inverse
Gaussian random variables, for example, involves a scale parameter β and a shape
parameter α . The µi parameter is the mean; the variance is V (µi)ψi with V (·) the
variance function. We take ψi to be equal to φ/wi, where φ is a common dispersion
parameter, known or unknown, and wi the known (natural) weight of observation i.
Just as in the Bühlmann-Straub setting of Chapter 8, in principle a natural weight
represents the number of iid observations of which our observation Yi is the arith-
metic average. Note that, for example, halving φ has the same effect on the variance
as doubling the weight (sample size) has.

Weights wi are needed for example to model the average claim frequency of a
driver in a cell with wi policies in it. By not taking the weights into account, one
disregards the fact that the observations in cells with many policies in them have
been measured with much more precision than the ones in practically empty cells.
See also Appendix A.3 as well as Example 3.3.1.

In statistics, some other interpretations of weights can be found. The weight
might represent the number of duplicated observations (frequency weight). Storing
the data this way may lead to a substantial reduction in file size. Or, the researcher
might want to attach a sampling weight to observations that is inversely proportional
to the probability that this observation is included in the sample due to the sampling
design. A weight of 1000 means that this observation is representative of 1000 sub-
jects in the population. Our natural weights, as stated before, are denominators in
averages taken, and are also known as exposure weights.

In GLM theory one generally considers the so-called natural parameterization,
in which θ = θ(µ) replaces µ as a parameter. See Chapter 11. ∇

Remark 9.2.2 (Variance functions)
Using mean µ and dispersion φ as parameters, the distributions listed above have
a variety of variance functions V (·), making it possible to model many actuarial
statistical problems with different heteroskedasticity patterns adequately. Assume
that, for every observation i, we have weight wi = 1, hence ψi = φ . In increasing
order of the exponent of µ in the variance function, we have in the list above:

1. The normal distribution with a constant variance σ2 = µ0 φ (homoskedasticity).
2. The Poisson distribution with a variance equal to the mean, hence σ2 = µ1, and

the class of Poisson multiples having a variance proportional to the mean, hence
σ2 = µ1 φ .
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3. The gamma(α = 1
φ ,β = 1

φ µ ) distributions, with a fixed shape parameter, and

hence a constant coefficient of variation σ/µ , so σ2 = µ2 φ .
4. The inverse Gaussian(α = 1

φ µ ,β = 1
φ µ2 ) distributions, with a variance equal to

σ2 = α
β 2 = µ3 φ .

The variance of Yi describes the precision of the ith observation. Apart from weight,
this precision is constant for the normally distributed random variables. Poisson
measurements are less precise for large parameter values than for small ones, so the
residuals in a fit should be smaller for small observations than for large ones. This
is even more strongly the case for gamma distributions, as well as for the inverse
Gaussian distributions in the parameterization as listed.

When estimating the mean, the mean-variance relationship is very important,
because this determines how ‘credible’ we should consider observations to be. If
we have reason to believe that the variance grows proportionally to the mean, we
may choose to use a GLM in which the random variables are a fixed multiple times
Poisson variates, even though this is obviously not the case. ∇

Remark 9.2.3 (Canonical link)
Each of the distributions has a natural link function associated with it, called the
canonical link function. Using these link functions has some technical advantages,
see Chapter 11. For the normal distribution, the canonical link is the identity, lead-
ing to additive models. For the Poisson it is the logarithmic function, leading to
loglinear, multiplicative models. For the gamma, it is the reciprocal. ∇

Remark 9.2.4 (‘Null’ and ‘full’ models)
The least refined linear model that we study uses as a systematic component only
the constant term, hence it ascribes all variation to chance and does not attach any
influence to the collateral data. In the GLM-literature, this model is called the null
model. Every observation is assumed to have the same distribution, and the weighted
average Yw is the best estimator of every µi. At the other extreme, one finds the
so-called full model or saturated model, where every unit of observation i has its
own parameter. Maximizing the total likelihood then produces the observation Yi

as an estimator of E[Yi]. The model merely repeats the data, without condensing it
at all, and without imposing any structure. In this model, all variation between the
observations is due to the systematic effects.

The null model in general is too crude, the full model has too many parameters for
practical use. Somewhere between these two extremes, one has to find an ‘optimal’
model. This model has to fit well, in the sense that the predicted outcomes should
be close to the actually observed values. On the other hand, the more parsimonious
it is in the sense that it has fewer parameters, the easier the model is to ‘sell’, not
as much to potential policy holders, but especially to the manager, who favors thin
tariff books and a workable and understandable model. There is a trade-off between
the predictive power of a model and its manageability. ∇

In GLM analyses, the criterion to determine the quality of a model is the loglikeli-
hood of the model. It is known that under the null-hypothesis that a certain refine-
ment of the model (adding extra parameters or relaxing constraints on parameters)
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is not an actual improvement, the gain in loglikelihood (×2, and divided by the dis-
persion parameter φ ), approximately has a χ2(k) distribution with k the number of
parameters that have to be estimated additionally. Based on this, one can look at a
chain of ever refined models and judge which of the refinements lead to a signifi-
cantly improved fit, expressed in the maximal likelihood. A bound for the loglikeli-
hood is the one of the full model, which can serve as a yardstick. Not only should
the models to be compared be nested, with subsets of parameter sets, possibly after
reparameterization by linear combinations, but also should the link function and the
error distribution be the same.

Remark 9.2.5 (Residuals)
To judge if the fit a model is good enough and where it can be improved, we look at
the residuals. These are the differences between actual observations and the values
predicted for them by the model, standardized by taking into account the variance
function as well as parameter estimates. We might look at the ordinary Pearson
residuals, but in this context it is preferable to look at residuals based on the con-
tribution of this observation to the maximized loglikelihood, the so-called deviance
residuals. See also Section 11.4. For the normal distribution with as a link the iden-
tity function, the sum of the squares of the standardized (Pearson) residuals has a χ2

distribution and is proportional to the difference in maximized likelihoods; for other
distributions, this quantity provides an alternative for the difference in maximized
likelihoods to compare the goodness of fit. ∇

bles. We have a table of observed insurance losses Yi j, i = 1, . . . , I, j = 1, . . . ,J,
classified by two rating factors into I and J risk classes. Hence, we have I · J inde-
pendent observations (but some cells may be empty) indexed by i and j instead of n
observations indexed by i as before. Generalization to more than two dimensions is
straightforward. The collateral data with each observation consist of the row number
i and the column number j in the table. The numbers in each cell represent averages
over all wi j observations in that cell (natural weights). With these factors, we try to
construct a model for the expected values of the observations. Many situations are
covered by this example. For example, the column number may indicate a certain
region/usage combination such as in Table 9.6, the row number may be a weight
class for a car or a step in the bonus-malus scale. The observations might then be
the observed average number of accidents for all drivers with the characteristics i
and j. Other examples, see also the next chapter, arise if i is the year that a certain
policy was written, j is the development year, and the observations denote the total
amount paid in year i + j− 1 regarding claims pertaining to policies of the year i.
The calendar year i+ j−1 can be used as a third collateral variable. We will assume
that the probability distribution of the observations Yi j obeys a GLM, more specifi-
cally, a loglinear GLM with i and j as explanatory classifying variables. This means

Some traditional estimation procedures and GLMs

9.3 Some traditional estimation procedures and GLMs

In this section, we illustrate the ideas behind GLMs using I × J contingency ta-
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that for the expected values of the Yi j we have

E[Yi j] = µ αi β j, i = 1, . . . , I, j = 1, . . . ,J. (9.7)

The parameters of the model are µ , αi and β j. Two parameters are superfluous;
without loss of generality we will first assume that µ = β1 = 1 holds. Later on, we
will find it more convenient to fix α1 = 1 instead of µ = 1, so µ can be interpreted as
the expected value of the reference cell (i, j) = (1,1). One gets an additive model in
(9.7) by adding the parameters instead of multiplying them. As stated earlier, such
models are often not relevant for actuarial practice.

Remark 9.3.1 (Connection with loglinear models)
One may wonder how our model (9.7) can be reconciled with the second and third
characteristic of a GLM as listed above. A loglinear model in i and j arises, obvi-
ously, when E[Yi j] = exp(i logα + j logβ + log µ) for some α , β and µ . In that case
we call the regressors i and j variates. They must be measured on an interval scale;
the contribution of i to the linear predictor has the form i logα and the parameter αi

associated with observations from row i has the special form αi = α i (the first i is
an index, the second an exponent). If, as in (9.7), variable i classifies the data, and
the numerical values of i act only as labels, we call i a factor. The parameters with a
factor are arbitrary numbers αi, i = 1, . . . , I. To achieve this within the GLM model
as stated, that is, to express E[Yi j] as a loglinear form of the collateral data, for each
observation we recode the row number by a series of I dummy variables d1, . . . ,dI ,
of which di = 1 if the row number for this observation is i, the d j with j 	= i are zero.
The contribution to (9.7) of a cell in row i can then be written in the loglinear form
αi = exp(∑I

t=1 dt logαt). ∇

Remark 9.3.2 (Aliasing)
To avoid the identification problems arising from redundant parameters in the model
such as occur when a constant term as well as a factor are present in the model or
when more than one factor is replaced by a set of dummies, we leave out the redun-
dant dummies. In GLIM parlance, these parameters are aliased. This phenomenon
is also known as ‘multicollinearity’ and as the ‘dummy trap’. ∇

Remark 9.3.3 (Interaction between variables)
Sometimes two factors, or a factor and a variate, ‘interact’, for example when gender
and age (class) are regressors, but the age effect for males and females is different.
Then these two variables can be combined into one that describes the combined
effect of these variables and is called their interaction. If two factors have I and
J levels, their interaction has I · J levels. See further Section 9.5–6 and Appendix
A.3. ∇

Remark 9.3.4 (Weights of observations)
For every cell (i, j), next to an observed claim figure Yi j there is a weight wi j, see
also Remark 9.2.1. In actuarial applications, several interpretations are possible for
these quantities:
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1. Yi j is the average claim frequency if Si j = Yi j wi j is the number of claims and wi j

is the exposure of cell (i, j), which is the total number of years that policies in it
have been insured;

2. Yi j is the average claim size if Si j is the total claim amount for the cell and wi j is
the number of claims;

3. Yi j is the observed pure premium if Si j is the total claim amount for the cell and
wi j is the exposure.

Any of these interpretations may apply in the examples below. The weights wi j are
assumed to be constants, measured with full precision, while the Si j and hence the
Yi j are random variables with outcomes denoted as si j and yi j. ∇

In the sequel, we give some methods to produce estimates α̂i and β̂ j of the parame-

ters αi and β j in such a way that the values α̂i β̂ j are close to yi j; we fix the parameter
µ to be equal to 1 for identifiability. These methods have been used in actuarial prac-
tice without some users being aware that they were actually statistically quite well
founded methods. For each method we give a short description, and indicate also
for which GLM this method computes the maximum likelihood estimates, or which
other estimates are computed.

Method 9.3.5 (Bailey-Simon = Minimal chi-square with Poisson)
In the Bailey-Simon method, the parameter estimates α̂i and β̂ j in the multiplicative
model are determined as the solution of

min
αi,β j

BS with BS = ∑
i, j

wi j(yi j −αiβ j)
2

αiβ j
. (9.8)

A justification of this method is that if the Si j denote Poisson distributed numbers of
claims, BS in (9.8) is just the χ2-statistic, since (9.8) can be rewritten as

BS = ∑
i, j

(si j −wi jαiβ j)
2

wi jαiβ j
= ∑

i, j

(si j −E[Si j])
2

Var[Si j]
. (9.9)

So minimizing BS is nothing but determining the minimal-χ2 estimator. The model
hypotheses can be easily tested.

Solving the normal equations arising from differentiating BS in (9.8) with respect
to each parameter, we get a system of equations that can be written as follows:

αi =

(
∑

j

wi j y2
i j

β j

/
∑

j
wi j β j

)1/2

, i = 1, . . . , I;

β j =

(
∑

i

wi j y2
i j

αi

/
∑

i
wi j αi

)1/2

, j = 1, . . . ,J.

(9.10)

The procedure to determine the optimal values is the method of successive substitu-
tion. In this method, equations are derived that describe the optimal choice, because

Some traditional estimation procedures and GLMs
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these equations being satisfied is considered desirable in itself, like for the marginal
totals equations, and/or because they are the normal equations for some optimiza-
tion problem, like the maximization of a loglikelihood or the minimization of some
distance between fitted and observed values such as above. These equations are then
written in a form�α = f (�β ), �β = g(�α) for some vector-valued functions f and g. For
an arbitrary initial choice of �β , for example �β = (1, . . . ,1)′, one computes the cor-
responding �α = f (�β ), and then executes �β := g(�α); �α := f (�β ) successively until
convergence is reached. Actually, an old �β is transformed into a new one �β ∗ through
�β ∗ = g( f (�β )) (using �α only as an auxiliary variable), so successive substitution is
a fixed point algorithm.

Successive substitution can be implemented in R quite easily. We can use the
functions rowSums and colSums for two-dimensional data stored in a matrix.
In general, having stored the data in linear arrays, we use the function tapply to
compute the sums in (9.10) extending over only subsets of all four values. Its first
argument is a vector of values to be processed. Its second argument gives a factor or
a list of factors, splitting up the elements of the vector into different groups with dif-
ferent levels of the factor(s). Its third argument is the function to be applied, in this
case sum. Simply doing 20 iterations whatever the circumstances (to see a descrip-
tion of the control-flow constructs of the R language, use for example ?break), the
following R code solves our optimization problem for the Bailey-Simon case:

y <- c(10,15,20,35); w <- c(300,500,700,100)
i <- c(1,1,2,2); j <- c(1,2,1,2); beta <- c(1,1)
for (iter in 1:20){
alpha <- sqrt(tapply(w*yˆ2/beta[j],i,sum)/

tapply(w*beta[j],i,sum))
beta <- sqrt(tapply(w*yˆ2/alpha[i],j,sum)/

tapply(w*alpha[i],j,sum))}

The vector w*yˆ2/beta[j] expands into the values

w[1]*y[1]ˆ2/beta[j[1]], ..., w[4]*y[4]ˆ2/beta[j[4]]

which is just what we need.
The method of successive substitution is simple to implement, once the system

of equations has been written in a suitable form. Of course other algorithms may be
used to handle the likelihood maximization. ∇

Remark 9.3.6 (Compound Poisson distributions)
In the case of compound Poisson distributed total claims we can apply χ2-tests un-
der some circumstances. Let Si j denote the total claim amount and wi j the total
exposure of cell (i, j). Assume that the number of claims caused by each insured is
Poisson(λi j) distributed. The individual claim amounts are iid random variables, dis-
tributed as X . Hence the mean claim frequency varies, but the claim size distribution
is the same for each cell. Then we have

E[Si j] = wi j λi j E[X ]; Var[Si j] = wi j λi j E[X2], (9.11)

hence with E[Yi j] = αiβ j we get
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Var[Yi j] =
αiβ j

wi j

E[X2]

E[X ]
. (9.12)

So the random variable BS in (9.8) is the sum of the squares of random variables with
zero mean and constant variance. This is already the case when the ratio E[X2]/E[X ]
is the same for all cells. If we correct BS for this factor and if moreover our es-
timation procedure produces best asymptotic normal estimators (BAN), such as
maximum likelihood estimation does, asymptotically we get a χ2-distribution, with
(I −1)(J−1) degrees of freedom. ∇

Property 9.3.7 (Bailey-Simon leads to a ‘safe’ premium)
The Bailey-Simon method in the multiplicative model has a property that will cer-
tainly appeal to actuaries. It proves that with this method, the resulting fitted loss,
that is, the total premium to be asked next year, is larger than the observed loss. In
fact, this already holds for each group (a row or a column). In other words, we can
prove that, assuming that α̂i and β̂ j solve (9.10), we have

∑
i( j)

wi j α̂i β̂ j ≥ ∑
i( j)

wi j yi j for all j(i). (9.13)

A summation over i( j) for all j(i) means that the sum has to be taken either over i
for all j, or over j for all i, so (9.13) is just shorthand for a system like (9.10). To
prove (9.13), we rewrite the first set of equations in (9.10) as

α̂2
i = ∑

j

wi j β̂ j

∑h wih β̂h

y2
i j

β̂ 2
j

, i = 1,2, . . . , I. (9.14)

But this is just E[U2] if U is a random variable with Pr[U = d j] = p j, where

p j =
wi jβ̂ j

∑h wihβ̂h

and d j =
yi j

β̂ j

. (9.15)

Since E[U2] ≥ (E[U ])2 for any random variable U , we have immediately

α̂i ≥ ∑
j

wi j

∑h wih β̂h

yi j, hence ∑
j

wi j α̂i β̂ j ≥ ∑
j

wi j yi j. (9.16)

In the same way one proves that the fitted column totals are at least the observed
totals. ∇

Method 9.3.8 (Marginal Totals)
The basic idea behind the method of marginal totals is the same as the one behind
the actuarial equivalence principle: in a ‘good’ tariff system, for large groups of
insureds, the total premium equals the observed loss (apart from loadings). We de-
termine the values α̂i and β̂ j in such a way that this condition is met for all groups
of risks for which one of the risk factors, either the row number i or the column

Some traditional estimation procedures and GLMs
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number j, is constant. The equivalence does not hold for each cell, but it does on
the next-higher aggregation level of rows and columns.

In the multiplicative model, to estimate the parameters we have to solve the fol-
lowing system of equations consisting of I + J equations in as many unknowns:

∑
i( j)

wi j αi β j = ∑
i( j)

wi j yi j for all j(i). (9.17)

If all estimated and observed row totals are the same, the same holds for the sum of
all these row totals. So the total of all observations equals the sum of all estimates.
Since adding up the columns leads to the same equation as adding up the rows, the
last equation in (9.17) can be written as a linear combination of all the others. The
fact that one of the equations in this system is superfluous is in line with the fact that
the αi and the β j in (9.17) are only identified up to a multiplicative constant.

One way to solve (9.17) is again by successive substitution, starting from any
positive initial value for the β j. For this, rewrite the system in the form:

αi = ∑
j

wi j yi j

/
∑

j
wi j β j, i = 1, . . . , I;

β j = ∑
i

wi j yi j

/
∑

i
wi j αi, j = 1, . . . ,J.

(9.18)

A few iterations generally suffice to produce the optimal estimates. ∇

The heuristic justification of the method of marginal totals applies for every inter-
pretation of the Yi j. But if the Yi j denote claim numbers, there is another explanation,
as follows.

Property 9.3.9 (Loglinear Poisson GLM = Marginal totals method)
Suppose the number of claims caused by each of the wi j insureds in cell (i, j) has a
Poisson(λi j) distribution with λi j = αiβ j. Then estimating αi and β j by maximum
likelihood gives the same results as the marginal totals method.

Proof. The total number of claims in cell (i, j) has a Poisson(wi jλi j) distribution.
The likelihood of the parameters λi j with the observed numbers of claims si j then
equals

L = ∏
i, j

e−wi j λi j
(wi j λi j)

si j

si j!
. (9.19)

By substituting into (9.19) the relation

E[Yi j] = E[Si j]/wi j = λi j = αiβ j (9.20)

and maximizing (9.19) or its logarithm for αi and β j we get exactly the equations
(9.17). See Exercise 9.3.1. ∇
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Method 9.3.10 (Least squares = ML with normality)
In the method of least squares, estimators are determined that minimize the total of
the squared differences of observed loss and estimated premium, weighted by the
exposure in a cell. If the variance of Yi j is proportional to 1/wi j, which is for example
the case when Yi j is the mean of wi j iid random variables with the same variance,
all terms in (9.21) below (with yi j replaced by Yi j) have the same mean. So using
these weights ensures that the numbers added have the same order of magnitude.
The parameters αi and β j are estimated by solving:

min
αi,β j

SS with SS = ∑
i, j

wi j(yi j −αiβ j)
2. (9.21)

The normal equations produce the following system, which is written in a form that
is directly suitable to be tackled by successive substitution:

αi = ∑
j

wi j yi j β j

/
∑

j
wi j β 2

j , i = 1, . . . , I;

β j = ∑
i

wi j yi j αi

/
∑

i
wi j α2

i , j = 1, . . . ,J.

(9.22)

Because of the form of the likelihood of the normal distribution, one may show
that minimizing SS is tantamount to maximizing the normal loglikelihood. See also
Exercise 9.3.7. In an additive model where αiβ j is replaced by αi + β j, the normal
equations with (9.21) are a linear system, which can be solved directly. ∇

Method 9.3.11 (Direct method = ML with gamma distribution)
The direct method determines estimates for the parameters αi and β j by solving, for
example by successive substitution, the following system:

αi = ∑
j

wi j
yi j

β j

/
∑

j
wi j, i = 1, . . . , I;

β j = ∑
i

wi j
yi j

αi

/
∑

i
wi j, j = 1, . . . ,J.

(9.23)

The justification for this method is as follows. Assume that we know the correct
values of the parameters β j, j = 1, . . . ,J. Then all random variables Yi j/β j have
mean αi. Estimating αi by a weighted average, we get the equations (9.23) of the
direct method. The same reasoning applied to Yi j/αi gives estimates for β j. See also
Exercise 9.3.4.

The direct method also amounts to determining the maximum likelihood in a
certain GLM. In fact, it produces ML-estimators when Si j ∼ gamma(γwi j,

γ
αi β j

).

This means that Si j is the sum of wi j gamma(γ, γ
αi β j

) random variables, with a fixed

coefficient of variation γ−1/2, and a mean αi β j. The likelihood of the observation in
cell (i, j) can be written as

Some traditional estimation procedures and GLMs
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fSi j(si j;αi,β j) =
1

Γ (γ wi j)

(
γ

αi β j

)γ wi j

s
γ wi j−1
i j e

−γ si j
αi β j . (9.24)

With L = ∏i, j fSi j(si j;αi,β j), we find by differentiating with respect to αk:

∂ logL
∂αk

=
∂

∂αk
∑
i, j
{γ wi j log

γ
αi β j

− γ si j

αi β j
}+0 = ∑

j
{−γ wk j

αk
+

γ sk j

α2
k β j

}. (9.25)

The derivatives with respect to βh produce analogous equations. Setting the normal
equations (9.25) arising from ML-estimation equal to zero produces, after a little
algebra, exactly the system (9.23) of the direct method. ∇

Example 9.3.12 (Numerical illustration of the above methods)
We applied the four methods given above to the data given in the following table,
which gives wi j × yi j for i, j = 1,2:

j = 1 j = 2

i = 1 300×10 500×15
i = 2 700×20 100×35

The following fitted values α̂i β̂ j were found for the given methods:

Bailey-Simon marginal totals least squares direct method

9.40 15.38 9.39 15.37 9.04 15.34 9.69 15.29
20.27 33.18 20.26 33.17 20.18 34.24 20.27 31.97

∆ = 29.85 ∆ = 29.86 ∆ = 37.06 ∆ = 36.84

Here ∆ = ∑i, j wi j(yi j − α̂i β̂ j)
2/(α̂i β̂ j) describes the goodness of the fit; it is the

quantity minimized by the Bailey-Simon method. The systems of equations from
which the α̂i and the β̂ j have to be determined are alike, but not identical. See also
Exercise 9.3.2.

Observe that for small yi j, least squares fits worst, the direct method best, and vice
versa for large yi j. This is because for the least squares criterion, all observations are
equally credible, while the direct method intrinsically assumes that larger values are
much more imprecise (σ ∝ µ). Bailey-Simon and the marginal totals method give
very similar results, which was to be expected since they are both good estimation
methods in the same Poisson model. ∇
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9.4 Deviance and scaled deviance

As a measure for the difference between vectors of fitted values and of observa-
tions, one generally looks at the Euclidean distance, that is, the sum of the squared
differences such as in (9.21). If the observations are from a normal distribution,
minimizing this distance is the same as maximizing the likelihood of the parameter
values with the given observations. In GLM-analyses, one looks at the difference
of the ‘optimal’ likelihood of a certain model, compared with the maximally attain-
able likelihood if one does not impose a model on the parameters, hence for the full
model with a parameter for every observation.

The scaled deviance of a model is −2 times the logarithm of the likelihood ra-
tio. This is the likelihood maximized under our particular model, divided by the
likelihood of the full model. The deviance equals the scaled deviance multiplied by
the dispersion parameter φ . From the theory of mathematical statistics it is known
that the scaled deviance is approximately χ2 distributed, with as degrees of freedom
the number of observations less the number of estimated parameters. Also, if one
model is a submodel of another, it is known that the difference between the scaled
deviances has a χ2-distribution.

For three suitable choices of the distribution of the random variation around the
mean in a GLM, we give expressions for their deviances. We saw in the preced-
ing section that minimizing these deviances gives the same parameter estimates as
those obtained by some heuristic methods. If the observations are Poisson, we get
the method of marginal totals, see Example 9.3.8. With normality, we get the least
squares method (9.21). If the individual claim sizes are gamma distributed, the nor-
mal equations are the equations (9.23) of the direct method of Example 9.3.11. We
will always assume that the expected values µi of our observations Yi, i = 1, . . . ,n
follow a certain model, for example a multiplicative model with rows and columns
such as above. We denote by µ̂i the optimally estimated means under this model,
and by µ̃i the mean, optimally estimated under the full model, where every obser-
vation has its own parameter and the maximization of the total likelihood can be
done term by term. We will always take the ith observation to be the mean of wi sin-
gle iid observations. All these have a common dispersion parameter φ . We already
remarked that this dispersion parameter is proportional to the variances, which, as
a function of the mean µ , are equal to φV (µ)/w, where the function V (·) is the
variance function.

Example 9.4.1 (Normal distribution)
Let Y1, . . . ,Yn be independent normal random variables, where Yi is the average of
wi random variables with an N(µi,φ) distribution, hence Yi ∼ N(µi,φ/wi). Let L
denote the likelihood of the parameters with the given observations. Further let L̂
and L̃ denote the values of L when µ̂i and µ̃i are substituted for µi. We have

L =
n

∏
i=1

1√
2πφ/wi

exp
−(yi −µi)

2

2φ/wi
. (9.26)
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It is clear that in the full model, maximizing (9.26) term by term, we can simply
take µi = µ̃i = yi for each i. It turns out that this holds for every member of the
exponential dispersion family; see also Examples 9.4.2 and 9.4.3, as well as Property
11.3.6.

If D denotes the deviance, we have

D
φ

= −2log
L̂

L̃
=

1
φ ∑

i
wi(µ̂i − yi)

2. (9.27)

This means that for the normal distribution, minimizing the deviance, or what is the
same, maximizing the likelihood, is the same as determining the parameter estimates
by least squares. ∇

Example 9.4.2 (Poisson sample means and multiples)
Let Yi = φMi/wi with Mi ∼ Poisson(wiµi/φ ). We write Yi ∼ Poisson(µi,φ/wi). No-
tice that E[Yi] = µi and Var[Yi] = φ

wi
µi, so V (µ) = µ .

In the special case that wi ≡ 1 as well as φ = 1, we have ordinary Poisson ran-
dom variables. If wi/φ is an integer, Yi can be regarded as the sample mean of
wi/φ Poisson(µi) random variables, but without this restriction we also have a valid
model. For the likelihood we have

L(µ1, . . . ,µn; φ ,w1, . . . ,wn,y1, . . . ,yn)

=
n

∏
i=1

Pr[wiYi/φ = wiyi/φ ] =
n

∏
i=1

e−µiwi/φ (µiwi/φ)wiyi/φ

(wiyi/φ)!
.

(9.28)

For every φ , the ith term in this expression is maximal for the value of µi that
maximizes e−µi µyi

i , which is for µi = yi, so we see that just as with the normal
distribution, we get µ̃i by simply taking the ith residual equal to zero.

It is easy to see that the scaled deviance is equal to the following expression:

D
φ

= −2log
L̂

L̃
=

2
φ ∑

i
wi

(
yi log

yi

µ̂i
− (yi − µ̂i)

)
. (9.29)

By taking φ 	= 1, we get distributions of which the variance is not equal to the mean,
but remains proportional to it. One speaks of overdispersed Poisson distributions
in this case, the case φ > 1 being much more common. The random variable Yi

in this example has as a support the integer multiples of φ/wi, but obviously the
deviance (9.29) allows minimization for other non-negative values of yi as well.
This way, one gets quasi-likelihood models, where only the mean-variance relation
is specified. See also the second part of Section 11.4. ∇

Example 9.4.3 (Gamma distributions)
Now let Yi ∼ gamma(wi/φ ,wi/{φ µi}). If wi is integer, Yi has the distribution of
an average of wi gamma(1/φ ,1/{φ µi}) random variables, or equivalently, of wi/φ
random variables with an exponential(1/µi) distribution. We have



9.4 Deviance and scaled deviance 247

E[Yi] = µi, Var[Yi] =
φ
wi

V (µi) =
φ
wi

µ2
i . (9.30)

For this case, we have µ̃i = yi for the full model as well, since for the density fY of
Yi we can write

fY
(

y;
w
φ

,
w

φ µ

)
=

1
Γ (w/φ)

( w
φ µ

)w/φ
yw/φ−1e−wy/(φ µ)

=
1

Γ (w/φ)

(w
φ

)w/φ 1
y

[ y
µ

e−y/µ
]w/φ

,

(9.31)

which is maximal when the expression in square brackets is largest, so for y
µ = 1.

The scaled deviance in this situation is as follows:

D
φ

= −2log
L̂

L̃
=

2
φ ∑

i
wi

(
− log

yi

µ̂i
+

yi − µ̂i

µ̂i

)
. (9.32)

The yi of course must be strictly positive here. ∇

The value of the deviance D can be computed from the data alone; it does not involve
unknown parameters. This means D is a statistic. Notice that in each of the three
classes of distributions given above, the maximization over µi gave results that did
not depend on φ . The estimation of φ can hence be done independently from the
determining of optimal values for the µi. Only the relative values of the parameters
φ/wi with each observation are relevant.

To estimate the value of φ , one often proceeds as follows. Under the null-
hypothesis that Yi ∼ N(µi,φ/wi), the minimized sum of squares (9.27) has a χ2(k)
distribution with as its parameter k the number of observations less the number of
parameter estimates needed in evaluating µ̂i. Then one can estimate φ by the method
of moments, setting (9.27) equal to its mean value k and solving for φ . Another
possibility is to estimate φ by maximum likelihood. To ensure that the differences
between Yi and the fitted values are caused by chance and not by systematic devi-
ations because one has used too crude a model, the estimation of φ is done in the
most refined model that still can be estimated, even though there will generally be
too many parameters in this model. Hence, for this model the scaled deviance equals
the value of k.

The interpretation for the dispersion parameter φ is different for each class of
distributions. For the normal distributions, it is simply the variance of the errors.
For a pure Poisson distribution, we have φ = 1; in case of overdispersion it is the
ratio of variance and mean, as well as the factor by which all Poisson variables
have been multiplied. For the gamma distributions,

√
φ denotes the coefficient of

variation σ/µ for individual observations.

Remark 9.4.4 (Comparing different models)
Analysis of deviance can be used to compare two nested models, one of which arises
from the other by relaxing constraints on the parameters. For example, if a factor or
variate is added as a covariate, parameters that used to be restricted to be zero in the
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linear predictor are now arbitrary. If a variate is replaced by a factor (see Remark
9.3.1), parameters with factor level i that were of prescribed form i ·α for some
real α now can have an arbitrary value αi. Another example is when interaction
between factors is allowed, for example when the parameter corresponding to cell
(i, j) is no longer of the specific form αi + β j but more generally equal to some
arbitrary γi j. If the gain in deviance (scaled by dividing by an estimate for the scale
parameter φ ) exceeds the, say, 95% critical value of the χ2(k) distribution, with k
the number of extra parameters estimated, the relaxed model fits significantly better,
and the restricted model is rejected. If this is not the case, it is not proper to say that
the restricted model is better, or accepted. We can only say that the null-hypothesis
that the extra parameters are actually equal to zero (in the linear predictor) is not
rejected.

The idea behind the Akaike information criterion (AIC) is to examine the com-
plexity of the model together with the goodness of its fit to the sample data, and to
produce a measure which balances between the two. A model with many parame-
ters will provide a very good fit to the data, but will have few degrees of freedom
and be of limited utility. This balanced approach discourages overfitting, and en-
courages ‘parsimony’. The preferred model is that with the lowest AIC value. AIC
is the negative of twice the log-likelihood plus twice the number of linear and scale
parameters. Therefore,

AIC = −2�+2k, (9.33)

where k is the number of parameters and � is the loglikelihood.
A similar tool is the Schwarz criterion (also Schwarz information criterion (SIC)

or Bayesian information criterion (BIC) or Schwarz-Bayesian information crite-
rion). Just as AIC, it stimulates parsimony by imposing a penalty for including too
many terms in a regression model. The generic formula is

BIC = −2�+ k logn, (9.34)

with n the number of observations. ∇

9.5 Case study I: Analyzing a simple automobile portfolio

Assume we have observed drivers in some fictitious motor insurance portfolio. The
structure of the portfolio is in fact the same as the aggregated pseudo-random port-
folio in Appendix A.3, except that in that case, fractional exposures were taken into
account. The drivers can be divided into cells on the basis of the following risk
factors:

• sex: 1 = female, 2 = male
• region: 1 = countryside, 2 = elsewhere, 3 = big city
• type of car: 1 = small, 2 = middle, 3 = big
• job class: 1 = civil servant/actuary/. . . , 2 = in-between, 3 = dynamic drivers
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For each of the 2×3×3×3 = 54 cells, the following totals are known:

• expo: total number of policies with these risk factors. All these policies were
observed during 7 years.

• n: their observed total number of claims in a particular year.

We have a list of the claim numbers that occurred, as well as a list of the correspond-
ing numbers of policies. These data are read as follows.

n <- scan(n=54) ## read 54 numbers into vector n
1 8 10 8 5 11 14 12 11 10 5 12 13 12 15 13 12 24
12 11 6 8 16 19 28 11 14 4 12 8 18 3 17 6 11 18
12 3 10 18 10 13 12 31 16 16 13 14 8 19 20 9 23 27
expo <- scan(n=54) * 7 ## number of policies times 7
10 22 30 11 15 20 25 25 23 28 19 22 19 21 19 16 18 29
25 18 20 13 26 21 27 14 16 11 23 26 29 13 26 13 17 27
20 18 20 29 27 24 23 26 18 25 17 29 11 24 16 11 22 29

The variable sex equals 1 for the first 27 observations, 2 for the last 27 observa-
tions; the variable region has 3 levels that occur in blocks of 9, like this:

(1, . . . ,1︸ ︷︷ ︸
9×

, 2, . . . ,2︸ ︷︷ ︸
9×

, 3, . . . ,3︸ ︷︷ ︸
9×

, 1, . . . ,1︸ ︷︷ ︸
9×

, 2, . . . ,2︸ ︷︷ ︸
9×

, 3, . . . ,3︸ ︷︷ ︸
9×

)

There is a special function gl in R to generate factor levels, see ?gl, but the cell
characteristics can also be reconstructed as follows:

sex <- as.factor(rep(1:2, each=27, len=54))
region <- as.factor(rep(1:3, each=9, len=54))
type <- as.factor(rep(1:3, each=3, len=54))
job <- as.factor(rep(1:3, each=1, len=54))
AnnClFr <- round(1000 * n/expo)
data.frame(expo, n, sex, region, type, job, AnnClFr)[1:10,]

The last line prints the contents of the first 10 cells, with appropriate headings.
The average number of claims per contract n/expo in each cell is the quantity

of interest in this case. We want to relate this annual claim frequency to the risk
factors given, to establish or analyze a tariff for the portfolio. We will try to find a
well-fitting loglinear model for the claim frequency in terms of the risk factors. First
we produce a cross-tabulation of the values of AnnClFr, and print it in the form of
a flat table (see Table 9.1), with sex:region combinations in the different rows,
type:job combinations in the columns. This is how:

xt <- xtabs(AnnClFr ˜ sex+region+type+job)
ftable(xt, row.vars=1:2, col.vars=3:4)

For the number of claims on a contract, it is reasonable to assume a Poisson distrib-
ution. By aggregation, we have rather high values of the Poisson means in each cell,
so using a normal approximation would not be not far-fetched. But there are two
reasons why it is not appropriate to fit an ordinary linear model. First, the variance
depends on the mean, so there is heteroskedasticity. Second, we have a multiplica-
tive model, not an additive one. So the linearity is not on the standard scale, but only
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Table 9.1 Annual claim frequency (n/expo×1000) for each combination of factors

type 1 2 3
sex region job 1 2 3 1 2 3 1 2 3

1 1 14 52 48 104 48 79 80 69 68
2 51 38 78 98 82 113 116 95 118
3 69 87 43 88 88 129 148 112 125

2 1 52 75 44 89 33 93 66 92 95
2 86 24 71 89 53 77 75 170 127
3 91 109 69 104 113 179 117 149 133

on the log-scale. Therefore we are going to fit a generalized linear model, with a
mean-variance relation of the poisson type, and a log-link.

Using the aggregate data in each cell, we make a model for the average number
of claims per contract, that is, for n/expo. But this means that, apart from the
proportionality of the variance of the response variable to the mean, it is also to be
divided by expo. This is communicated to R by telling it that there is a prior weight
expo attached to each observation/cell, as follows:

> glm(n/expo ˜ sex+region+type+job,
+ fam=poisson(link=log), wei=expo)
There were 50 or more warnings

(use warnings() to see the first 50)
Call: glm(formula = n/expo ˜ sex + region + type + job,

family = poisson(link = log), weights = expo)
Coefficients:
(Intercept) sex2 region2 region3

-3.0996 0.1030 0.2347 0.4643
type2 type3 job2 job3
0.3946 0.5844 -0.0362 0.0607

Degrees of Freedom: 53 Total (i.e. Null); 46 Residual
Null Deviance: 105
Residual Deviance: 41.9 AIC: Inf

The warnings are given because averages are used, which are not integer in most
cases, therefore not Poisson distributed. This does not present any problems when
estimating the coefficients, but it prohibits the glm function from computing the
Akaike information criterion (AIC), see Remark 9.4.4.

An equivalent way to estimate this GLM is by using an offset:

glm(n ˜ sex+region+type+job+offset(log(expo)),
fam=poisson(link=log))

By this mechanism, the logarithm of expo is added to each linear predictor, with a
coefficient not to be estimated from the data but fixed at 1. The effect is that because
of the log-link used, each fitted value is multiplied by expo. Now the AIC can
be computed; it is 288.2. Fitted values are for n, not for the average annual claim
frequency.
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Table 9.2 Analysis-of-deviance table

Model specification df dev ∆dev ∆df

1 53 104.7
1 + sex 52 102.8 1.9 1
1 + sex + region 50 81.2 21.6 2
1 + sex + region + sex:region 48 80.2 1.0 2
1 + type 51 68.4 36.4 2
1 + region 51 83.1 21.6 2
1 + region + type 49 44.9 38.2 2 ♥
1 + region + type + region:type 45 42.4 2.5 4
1 + region + type + job 47 43.8 1.1 2
1 + region + type + sex 48 43.1 1.8 1

From the output given above, it is easy to determine how many claims on average
a driver with the worst factor levels produces, compared with someone having the
best combination. The coefficients given are relative to the standard class, which are
sex1, region1, type1 and job1. For these classes, the coefficients are taken to
be zero. In view of the sign of the coefficients, the best class is the one with job2,
and all other factor levels at 1. The corresponding average number of claims equals
exp(−3.0996−0.0362) = 0.0435, that is, one claim each 23 years on average. The
worst drivers in this example happen to have the high class labels, and their num-
ber of claims equals exp(−3.0996+ 0.1030+ 0.464 + 0.58443+ 0.0607) = 0.151,
which is about one claim in every 6.6 years.

In Table 9.2, we ‘explain’ the dependent variable N ∼ Poisson by the main ef-
fects sex, region, type, job, and some interaction terms, with a log-link. To
test a null-hypothesis that adding factors sex, region, type or job actually has
no effect, we look at the deviance, generalizing the sum-of-squares in the ordinary
linear model. The difference in deviance between the null-model and the model with
these factors in it has a χ2 distribution with as degrees of freedom the number of
parameters estimated additionally; see Section 9.4. Note that the deviance resulting
from fitted models including region and type is close to its expected value (df)
for a pure Poisson model, so there is no indication that risk factors have been ig-
nored, nor that interactions between risk factors, like for example a different effect
of region for males and females, should have been incorporated in the model.

Differences ∆df and ∆dev in Table 9.2 are with respect to the model without the
last term (printed in italics); the number of degrees of freedom df is the number of
cells less the number of parameters estimated; for the difference in deviance, we
have ∆dev

≈∼ χ2(∆df). R-commands that might help produce this table are:

g <- glm(n/expo ˜ 1+region+type+region:type, poisson, wei=expo)
anova(g, test="Chisq")

Adding an interaction term region:type to the main effects region and type
(in fact looking at the model region*type; see also ?formula) one may judge
if, for example, the effect of region is significantly different for the various types
of car. The analysis of deviance shows this is not the case (the critical value for a
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χ2(4) distribution is about 9.5 at 95% level; for χ2(2), it is 6, for χ2(1), it is 3.84).
Also, sex is not a meaningful rating factor in this case.

The models coarser than 1+region+type come out significantly worse, but
all refinements of it give an improvement of the deviance that is less than the critical
value. So this model (♥) comes out best.

9.6 Case study II: Analyzing a bonus-malus system using GLM

In this section, we study data from a rather large artificial motor insurance portfolio
with about one million policies. The setting resembles the one described in Chapter
6. Drivers have been split up according to the following risk factors:

• R is region of residence: 1 = rural, 2 = town, 3 = big city
There is not a lot of traffic in rural areas, so there are few claims; in big cities
traffic is slow but dense: many small claims are to be expected.

• A is age class: 1 = 18–23, 2 = 24–64, 3 = 65–ω
Young drivers cause more accidents, as do elderly drivers, but not as many.

• M is mileage: 1 = 0–7500 miles per year, 2 = 7500–12500, 3 = 12500–∞
Drivers with low mileage tend to drive carefully, but they are not very experi-
enced; a high mileage indicates that the driver often uses the highway, where
claims are infrequent but more severe.

• U is usage: 1 = private use, 2 = business use
Business use tends to lead to less careful driving and more claims; sometimes
these drivers do not have to pay Value Added Tax (VAT), leading to lower claims.

• B is bonus-malus class: 1–14 as in Table 6.1.
B=1 is the only malus class: more premium is due in this class than for a driver
without any known history, who starts in B=2. Since claims are infrequent, it
will come as no surprise that, in practice, we find about half of all drivers in
the highest bonus-malus class B=14; they pay one fourth of the amount due in
the malus class. In practice there is often a bonus guarantee: the longer one has
remained in the class with the highest bonus, the more favorable the new class if
a claim does occur. Therefore there is less hunger for bonus (see Remark 6.3.2)
in this class: if a claim does not lead to more premium having to be paid, small
claims will be filed as well, leading to more and somewhat smaller claims than
in other classes.

• WW is the car weight class: 1 = ± 650, . . . , 11 = ± 1600 kilograms
The heavier the car causing an accident, the more damage it will cause, therefore
the costlier a third-party claim. Persons who are on the road a lot, including
business users, tend to drive heavier cars, so claim frequency will also increase
with car weight.

We choose not to work with the individual data on each policy, ignoring the ‘extra’
information, if any, that can be obtained from the separate policies in a cell. See
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also Appendix A.3. So for the 3×3×3×2×14×11 = 8316 cells of drivers with
identical values for these risk factors, the following totals have been recorded:

• Expo is the number of contracts in the cell (exposure).
If a policy has been in force for only a fraction of the year, not a full policy
year but only this fraction should be counted in Expo. See Remark 9.3.4 and
Appendix A.3.

• nCl is the number of claims in a cell (we consider third party claims only).
• TotCl is the total amount of the claims paid.
• TotPrem is the total amount of premiums collected.

The annual premium for a policy in cell (r,a,m,b,u,w) is determined as follows:

πrambuw = 500×Pb × (Ww/W1)×Rr ×Mm (9.35)

The factors used in the tariff for region, mileage class and bonus-malus class have
the following values (in %):

Rr = 85,90,100%;

Mm = 90,100,110%;

Pb = 120,100,90,80,70,60,55,50,45,40,37.5,35,32.5,30%.

(9.36)

Notice that age and usage are not tariff factors. The premium is proportional to the
car weight Ww. This actual weight is the coefficient in the vector (650, . . . ,1600)
corresponding to the weight class w = 1, . . . ,11.

This is how the portfolio is read and stored (see also Appendix A):

fn <- "http://www1.fee.uva.nl/ke/act/people/kaas/Cars.txt"
Cars <- read.table(fn, header=T)
Cars$A <- as.factor(Cars$A); Cars$R <- as.factor(Cars$R)
Cars$M <- as.factor(Cars$M); Cars$U <- as.factor(Cars$U)
Bminus1 <- Cars$B - 1; Bis14 <- as.numeric(Cars$B==14)
Cars$B <- as.factor(Cars$B); Cars$WW <- as.factor(Cars$WW)
ActualWt <- c(650,750,825,875,925,975,1025,1075,1175,1375,1600)
W <- log(ActualWt/650)[Cars$WW]
str(Cars); attach(Cars)
ftable(xtabs(cbind(Expo, nCl, TotCl, TotPrem) ˜ R+A+M+U))

The first line stores the filename; note the forward slashes used. The second reads
the data frame stored there, and assigns it to Cars; the first line of the file contains
the names of the variables and is used as a header. The classifying variables are to be
treated as factors. Bis14 is a vector with ones for observations with B==14, zeros
for others. The weight class WW is converted to the variate W containing the log of
the actual weight (relative to 650 kilograms) in the next two lines. In the next-to-last
line, the structure of the data frame is displayed. It is then attached to the R search
path, so the data frame is searched by R when evaluating a variable. Objects in it
can now be accessed by simply giving their names, for example just WW denotes
Cars$WW. The last line produces a condensed version of the data. In fact it prints
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Table 9.3 Average claim frequencies in %, by risk group

Region R 1 2 3 Age group A 1 2 3
claims 7.6 9.6 12.7 claims 28.2 8.6 14.7

Mileage M 1 2 3 Usage U 1 2
claims 9.0 10.2 11.8 claims 9.0 13.4

a flat table of a cross table of the cell totals for all combinations of the levels of
R,A,M,U, aggregated over all weight and bonus-malus classes WW,B.

We are going to analyze if the rating system works properly, since if the premi-
ums per policy paid deviate much from the average claims caused, drivers who are
overcharged might take their business elsewhere, leaving the insurer with mainly
‘bad’ risks and therefore future losses.

The total of the claims on a particular policy is a random variable. Policies are
assumed to be statistically independent. A reasonable model is to assume that every
driver in a particular cell has a Poisson distributed number of claims, the size of each
of which is an independent drawing from the same distribution. So the total claims
in a cell is a compound Poisson random variable. For automobile claims, especially
if restrained by for example an excess of loss reinsurance where a reinsurer takes
care of the large claims, statistical studies have shown that it is reasonable to take
the individual claim amounts in the compound Poisson sum to be gamma(α,β )
distributed random variables for certain parameters α,β .

A first step in the analysis is to tabulate the claim frequencies per policy against
each of the risk factors R,A,M,U. This leads to the percentages given in Table 9.3.
One sees that the denser populated the region where the policy holder lives, the
more he claims. Young drivers perform worse than mature or elderly drivers. The
more mileage, the more claims, but by no means in proportion to the miles driven.
Business usage leads to roughly 50% more claims than private use.

Remark 9.6.1 (Danger of one-dimensional analysis)
The actuary should not be tempted to stop the analysis at this stage and use the values
in Table 9.3 to construct tariff factors. One reason is that the classifications are most
likely correlated. Consider the stylized example of Table 9.4, in which policies have
been split up by car weight class and type of usage. There were 300 business users
with a light car. They had average claims 230. A one-dimensional analysis (using
the marginal totals in the table only) would lead to a surcharge for business usage of
22% (261.05/213.33 = 1.2237). For a heavy car rather than a light one, this would
be 24% (249.00/200.97 = 1.2397). For a heavy car for business use, this would
amount to 51.70%.

But within the table, in all weight classes there is an effect of 15% for business
usage, and for both usage classes, an effect of 20% more claims for a heavy vehicle
compared with a light one. This amounts to 38% more premium for a heavy business
car as opposed to a light car for private use.

A more practical example is that young drivers might be charged both for being
inexperienced and for the fact that they cannot be in high bonus classes yet.
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Table 9.4 Claim averages and cell size by usage and weight

Weight Private usage Business usage Total

Light 9000 × 200.00 300 × 230.00 9300 × 200.97
Middle 6000 × 220.00 700 × 253.00 6700 × 223.45
Heavy 3000 × 240.00 1000 × 276.00 4000 × 249.00

Total 18000 × 213.33 2000 × 261.05 20000 × 219.11

A one-dimensional analysis may also lead to undesirable results if there is inter-
action between risk factors. Suppose drivers have light and heavy cars for business
and private use in equal proportions, without correlations. Assume only business
drivers with heavy cars actually claim a lot, say twice as much as all other cate-
gories. As the reader may verify, a one-dimensional analysis, looking at the mar-
ginals only, leads to heavy car business drivers paying 36%, light car private users
only 16%, the other two categories each 24% of the total premium. Of course these
percentages should be 40% for the first category, 20% for the other three. ∇

To construct Tables 9.3 and 9.5, one may use aggregate, or one can apply the
sum function to nCl in the numerator and to Expo in the denominator, splitting up
the data by the values of one or more factors, as follows:

100 * tapply(nCl, R, sum) / tapply(Expo, R, sum)
## 7.649282 9.581532 12.680255
100 * tapply(nCl,list(R,A),sum) / tapply(Expo,list(R,A),sum)

On the two-dimensional tables in Table 9.5 the same observations can be made as
on the one-dimensional tables in Table 9.3. But from the total weights given, one
sees that the distribution of the contracts over the risk classes is far from orthogonal.
For example, mileage and region are correlated. In region 3, there are many business
users, in the other regions there are more ‘Sunday drivers’. Business users drive a
lot: in class M=1 they are a small minority, in class M=3, half the drivers are business
users.

Table 9.6 gives more insight. It gives weighted averages of claim numbers, with
their aggregated numbers of exposure (total exposure weights), for all combina-
tions of levels of R,A,M,U. Looking closely at this table, one sees that the effect of
mileage has somehow vanished. Apparently the business users with U=2 and the big
city drivers with R=3 are the ones having many claims. How many miles one drives
does not matter, given the other characteristics. The apparent effect of mileage seen
earlier can be ascribed to the fact that mileage and usage, as well as mileage and re-
gion of residence, are very much correlated. There is also the practical problem that
in registering mileage, there is ample opportunity for foul play by the policyholder
or by the salespeople, who might have their own reasons to give some policyholders
a discount for low mileage, even if unwarranted. In practice, the mileage entered for
a policy hardly ever changes over the years.

If one plots the logarithm of the average number of claims against the bonus-
malus class (see Exercise 9.6.1), one sees that this relation is close to linear, except
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Table 9.5 Average numbers of claims in %, by all pairs of factors R, A, M, U

A 1 2 3 U 1 2
R R
1 Claims 21 6 11 1 Claims 7 10

exposure 9033 239447 50803 exposure 222001 77282
2 Claims 27 8 14 2 Claims 9 12

exposure 9004 240208 51074 exposure 221815 78471
3 Claims 34 11 18 3 Claims 11 16

exposure 11952 323020 68206 exposure 266408 136770

M 1 2 3 U 1 2
R A
1 Claims 7 8 8 1 Claims 25 37

exposure 119205 120495 59583 exposure 21222 8767
2 Claims 9 10 10 2 Claims 8 11

exposure 119721 120236 60329 exposure 568616 234059
3 Claims 11 12 14 3 Claims 13 19

M 1 2 3 U 1 2
A M
1 Claims 24 29 32 1 Claims 9 12

exposure 9594 12004 8391 exposure 287573 31892
2 Claims 8 9 10 2 Claims 9 13

exposure 255381 322335 224959 exposure 281934 120276
3 Claims 13 15 17 3 Claims 10 14

exposure 54490 67871 47722 exposure 140717 140355

Table 9.6 Average numbers of claims in %, and total exposure

R 1 2 3
U 1 2 1 2 1 2

A M
1 1 Claims 19 27 24 32 29 40

exposure 3255 369 3219 370 2154 227
2 Claims 20 29 25 38 29 42

exposure 2512 1084 2526 1084 3356 1442
3 Claims 18 26 25 32 30 44

exposure 903 910 907 898 2390 2383
2 1 Claims 6 9 7 11 9 13

exposure 85803 9570 86001 9484 58053 6470
2 Claims 6 8 7 10 9 14

exposure 68040 28337 67485 29040 90550 38883
3 Claims 6 8 7 10 9 14

exposure 23864 23833 23844 24354 64976 64088
3 1 Claims 10 14 13 20 15 22

exposure 18205 2003 18609 2038 12274 1361
2 Claims 10 13 13 18 16 21

exposure 14374 6148 13998 6103 19093 8155
3 Claims 10 15 13 19 16 22

exposure 5045 5028 5226 5100 13562 13761
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for the special class 14. In this class, the bonus guarantee makes the bonus hunger
less compulsive, leading to more (and smaller) claims. This is why we will try if
the estimation of the percentages to be asked in the various bonus-malus classes can
perhaps be replaced by a system in which the premium for the next-higher step is
a fixed percentage of that of the current step, with the exception of the last step 14.
So later on we will try if this restricted system predicts the observed claims much
worse than a system in which the percentages may be arbitrary.

The premium is proportional to the weight. Plotting average number of claims
against weight, one sees an increase, somewhere between those exhibited by the
functions f (x) = x and f (x) =

√
x. Plotting the logarithm of the mean number of

claims against the logarithm of the car weight, one sees that their relation is almost
linear, with a slope of about 0.9. That means that the average number of claims
increases as W0.9

For the claim sizes, a similar exploratory data analysis can be done. Again, it
proves that the factors R,A,U have an influence, while the effect of mileage M can
be ascribed to the fact that it is correlated with U and R. Plotting claim sizes against
bonus-malus class reveals no connection, except in class 14 where small claims tend
to be filed more frequently.

9.6.1 GLM analysis for the total claims per policy

The total claims, S = X1 + · · ·+XN , say, on each policy is assumed to be compound
Poisson with E[N] = λ and Xi ∼ gamma(α,β ). Therefore, see (3.60):

Var[S] = λE[X2] = λ
(
(E[X ])2 +Var[X ]

)
=

λα
β

α +1
β

= E[S]
α +1

β
. (9.37)

Assuming that λ varies much more strongly over cells than shape α and scale β of
the claim sizes do, it is reasonable to say that Var[S] is approximately proportional to
E[S]. This would imply that we could fit models from the quasipoisson family
(random variables with a mean-variance relationship such as the Poisson multiples
in the sense of Example 9.4.2) to S. Taking the canonical log-link is indicated since
our aim is to construct a tariff, so we want to find specifically the loglinear model
that fits the annual claims best.

In Tables 9.7 and 9.8, we fit the main effects (for interactions between factors,
see Remark 9.6.5), first without M, in g1, then with M, in g2. It is clear that mileage
does not affect the claims total, since there is hardly any change in the deviance, nor
are the coefficients with levels M=2 and M=3 very different from 1 in Table 9.8. We
already saw this from the exploratory data analysis.

In both models g1 and g2 in Table 9.8, the fitted percentages in the various
bonus-malus steps shrink by a fixed fraction, in this case 0.8979, for the steps 1–13,
while the 14th is allowed to be chosen freely. Conceivably, a better fit is obtained
by estimating a separate parameter for every bonus-malus class. This is done in

(see Exercise 9.6.2).
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Table 9.7 Deviance analysis of various glm calls

> g1 <- glm(TotCl/Expo˜R+A+U+W+Bminus1+Bis14, quasipoisson, wei=Expo)
> g2 <- glm(TotCl/Expo˜R+A+U+W+Bminus1+Bis14+M, quasipoisson, wei=Expo)
> g3 <- glm(TotCl/Expo˜R+A+U+W+B, quasipoisson, wei=Expo)
> anova(g1,g2)
Analysis of Deviance Table
Model g1: TotCl/Expo ˜ R + A + U + W + Bminus1 + Bis14
Model g2: TotCl/Expo ˜ R + A + U + W + Bminus1 + Bis14 + M

Resid. Df Resid. Dev Df Deviance
g1 7515 38616941
g2 7513 38614965 2 1976
> anova(g1,g3)
Analysis of Deviance Table
Model g1: TotCl/Expo ˜ R + A + U + W + Bminus1 + Bis14
Model g3: TotCl/Expo ˜ R + A + U + W + B

Resid. Df Resid. Dev Df Deviance
g1 7515 38616941
g3 7504 38544506 11 72435

Model g3, which contains g1 as a submodel (with restricted parameter values). By
extending the model with 11 extra parameters, the deviance drops from 38616941
to 38544506, a difference of 72435. This might seem a substantial difference. But
if we assume that our last model is ‘correct’, actually the deviance, divided by the
scale parameter, is a χ2 random variable with df 7504, so it should be somewhere
near its mean. That would mean that the scale parameter is about 38544506/7504 =
5136.528, so the observed decrease in the deviance is only 14.1 times the scale
parameter. For a random variable with a χ2(11) distribution, the value 14.1 is not
one to arouse suspicion. One sees that the coefficients for the bonus-malus steps 1–
13 in Model g3 closely follow the powers of 0.8979 in Model g1. We conclude that
our model g1, with a separate contribution for class 14 but otherwise a geometric
decrease per bonus-malus step, fits the data virtually as well as g3 having a separate
parameter for all bonus-malus classes.

We have fitted a quasi-Poisson family in Table 9.7. The distribution in the ex-
ponential family that actually has the mean-variance relationship with a variance
proportional to the mean, with a proportionality factor φ , is the one of φ times a
Poisson random variable, see Example 9.4.2. Essentially, we approximate the total
claims likelihood by a compound Poisson likelihood with a severity distribution that
is degenerate on φ .

Remark 9.6.2 (The loss ratios)
The ultimate test for a rating system is how it reflects the observed losses. This is
because, as said before, in non-life insurance, policy holders may leave when they
think they are overcharged. Also, a ‘wrong’ rating system may attract bad risks.
Taking the ratio of total claims and total premiums for cells characterized by the
relevant risk factors leads to Table 9.9. As one sees, the tariff system leads to ‘sub-
sidizing solidarity’, a capital transfer to the group of young drivers. Also, business
users and elderly drivers are unfavorable risks in this system and for this portfolio.
But recall that the portfolio studied is completely artificial. ∇
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Table 9.8 Parameter estimates of the models in Table 9.7

Variable/level Model g1 Model g2 Model g3

(Intercept) 524.3017 522.6628 515.5321
R2 1.0843 1.0843 1.0843
R3 1.1916 1.1914 1.1917
A2 0.4147 0.4147 0.4143
A3 0.6184 0.6185 0.6179
U2 1.3841 1.3835 1.3842
W 2.3722 2.3722 2.3722
M2 1 1.0073 1
M3 1 1.0015 1
B2 0.8979 0.8979 0.9111
B3 0.89792 = 0.8062 0.8062 0.8275
B4 0.89793 = 0.7238 0.7238 0.7404
B5 : 0.6499 0.6499 0.6843
B6 : 0.5835 0.5835 0.6089
B7 : 0.5239 0.5239 0.5416
B8 : 0.4704 0.4704 0.4489
B9 : 0.4224 0.4224 0.4152
B10 : 0.3792 0.3792 0.3889
B11 : 0.3405 0.3405 0.3459
B12 : 0.3057 0.3057 0.3143
B13 0.897912 = 0.2745 0.2745 0.2833
B14 0.2724 0.2724 0.2773

Remark 9.6.3 (Heterogeneity in the cells)
To mimic the effect of unobserved risk factors when we generated the data, we as-
sumed that the cells were not homogeneous. Instead, each consists of about one
third ‘bad’ drivers, two thirds ‘good’ drivers. Good drivers are three times as good
as bad ones. So for a cell containing n policies with fixed theoretical frequency
λ , we did not draw from a Poisson(λn) distribution for the number of claims. In-
stead, we sampled from a mixed Poisson distribution, where a bad risk with mean
claim frequency 1.8λ has probability 1/3, while a good risk has parameter 0.6λ .
So if N ∼ binomial(n,1/3) is the number of bad risks in a cell, we drew from a
Poisson(λ (1.8N +0.6(n−N)) distribution to determine the total number of claims.
How this affects the ratio of variance and mean of the number of claims in a cell is

In practice, the expected claim frequencies for arbitrary drivers in a cell of course
does not have two possible values only. The assumption that the expected claim
frequencies have a gamma distribution is more natural. A cell with a bonus class
11, for example, would be a mix of very good drivers who by bad fortune had a
claim three years ago, very bad drivers with some luck, but also drivers simply too
young to have climbed higher. A driver does not assume the claim frequency of the
bonus-malus class he happens to be in, but would in normal circumstances keep his
original driving skills. ∇

studied in Exercise 9.6.10.
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Table 9.9 Loss ratios in % for different levels of the risk factors

Risk factor Levels and loss percentages

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14
loss % 54 59 59 59 63 65 63 57 59 62 54 53 50 54

WW 1 2 3 4 5 6 7 8 9 10 11
loss % 57 59 58 57 57 56 55 54 55 53 53

R 1 2 3
loss % 55 57 56

M 1 2 3
loss % 58 56 54

A 1 2 3
loss % 123 50 74

U 1 2
loss % 51 67

For each cell, we can estimate both the number of claims and their sizes using a
multiplicative model. The product of mean claim frequency and mean claim size
is the risk premium in a cell, and in this way, we also get a multiplicative model,
just as when we estimated a model for TotCl/Expo directly. The mathematical
analysis of this system is much more complicated, but the resulting tariff is not much
different; see the exercises. ∇

Remark 9.6.5 (Main effects and interactions)
In the models studied so far, we only included the main effects. That is, we assumed
that there is no interaction between the tariff factors: a young driver has a fixed
percentage more claims than an older one with otherwise the same characteristics.
If one wants to look at the effects of all two-way interactions between the pairs of
model terms in model g1 in Table 9.7, one simply replaces the model formula by
its square, as follows.

glm(TotCl/Expo ˜ (R+A+U+W+Bminus1+Bis14)ˆ2, quasipoisson,
wei=Expo)

Specific interactions can also be introduced by adding for example R*A as a model
term. The estimates of the coefficients resulting from adding all two-way interac-
tions are in Table 9.10. The effect of such an interaction is that for someone in
region R=2 of age A=2, not just the coefficients with the main effects (+0.136793
and −0.848149) appear in the linear predictor, but also the additional effect of being
of age A=2 in region R=2, which equals −0.126989.

Apart from not estimating coefficients for the first factor level because a constant
is present in the model, R warns us that two coefficients were not estimated because
of singularities. This means that should the columns for these coefficients be in-
cluded in the design matrix for the corresponding parameters, this matrix would not

Remark 9.6.4 (GLMs for claim frequency and claim size separately)
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Table 9.10 Coefficients for interactions between factors

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.281532 0.064606 97.23 < 2e-16 ***
R2 0.136793 0.061855 2.21 0.027 *
R3 0.222821 0.056979 3.91 9.3e-05 ***
A2 -0.848149 0.063505 -13.36 < 2e-16 ***
A3 -0.446048 0.072156 -6.18 6.7e-10 ***
U2 0.348047 0.050944 6.83 9.0e-12 ***
W 0.658625 0.098057 6.72 2.0e-11 ***
Bminus1 -0.109536 0.008443 -12.97 < 2e-16 ***
Bis14 0.066347 0.072282 0.92 0.359
R2:A2 -0.126989 0.053841 -2.36 0.018 *
R3:A2 -0.097544 0.049465 -1.97 0.049 *
R2:A3 -0.041894 0.060023 -0.70 0.485
R3:A3 -0.138804 0.055476 -2.50 0.012 *
R2:U2 -0.002288 0.032524 -0.07 0.944
R3:U2 -0.000214 0.029226 -0.01 0.994
R2:W -0.002231 0.067974 -0.03 0.974
R3:W 0.063855 0.062231 1.03 0.305
R2:Bminus1 0.007076 0.005495 1.29 0.198
R3:Bminus1 0.001414 0.005003 0.28 0.777
R2:Bis14 -0.034353 0.056984 -0.60 0.547
R3:Bis14 0.026924 0.052248 0.52 0.606
A2:U2 -0.027850 0.041099 -0.68 0.498
A3:U2 -0.058451 0.046086 -1.27 0.205
A2:W 0.172445 0.088386 1.95 0.051 .
A3:W 0.124628 0.098906 1.26 0.208
A2:Bminus1 -0.005273 0.006869 -0.77 0.443
A3:Bminus1 0.001427 0.007679 0.19 0.853
A2:Bis14 0.074591 0.049825 1.50 0.134
A3:Bis14 NA NA NA NA
U2:W 0.023474 0.052041 0.45 0.652
U2:Bminus1 -0.000096 0.004087 -0.02 0.981
U2:Bis14 -0.001739 0.043217 -0.04 0.968
W:Bminus1 0.005245 0.008740 0.60 0.548
W:Bis14 -0.045760 0.092255 -0.50 0.620
Bminus1:Bis14 NA NA NA NA

be of full rank because some covariate is a linear combination of the other ones. See

The proper test to judge if the interactions contribute significantly to the fit is by
* and . sym-

bols in Table 9.10, conveniently provided by R to reflect the degree of significance
of the corresponding parameter, we see that only coefficients with the interaction of
region and age level are clearly different from zero, in the sense of being more than,
say, two estimated standard deviations away from it. ∇

Exercise 9.6.5.

comparing the resulting deviances, see again Exercise 9.6.5. From the
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9.7 Exercises

Section 9.1

1. Illustrate the quality of the approximations in Example 9.1.1 by computing and plotting these
quantities for µ = 4,5, . . . ,40.

Section 9.2

1. Of the distributions mentioned in the random component of a GLM, show that the mean is
always µi, and express the variance in µi,ψi.

2. Show that if Xi ∼ gamma(α,βi) with parameters α = 1/φ and βi = 1/(φ µi), all Xi have the
same coefficient of variation, i = 1, . . . ,n. What is the skewness?

Section 9.3

1. Verify (9.10), (9.22) and (9.23). Also verify if (9.17) describes the maximum of (9.19) under
assumption (9.20).

2. Show that the methods of Bailey-Simon, marginal totals and least squares, as well as the direct
method, can all be written as methods of weighted marginal totals, where the following system
is to be solved:

∑
i( j)

wi j zi j(αiβ j − yi j) = 0 for all j(i),

where zi j = 1+
yi j

αi β j
Bailey-Simon,

= 1 marginal totals,

= αi β j least squares,

=
1

αi β j
direct method.

3. Show that the additive model E[Xi j] = αi + β j of the least squares method coincides with the
one of the marginal totals.

4. Which requirement should the means and variances of Yi j/(αiβ j) fulfill in order to make (9.23)
produce optimal estimates for αi? (See Exercise 8.4.1.)

5. Starting from α̂1 = 1, determine α̂2, β̂1 and β̂2 in Example 9.3.12. Verify if the solution found
for α̂1 satisfies the corresponding equation in each system of equations. Determine the re-
sults for the different models after the first iteration step, with initial values β̂ j ≡ 1, and after
rescaling such that α̂1 = 1.

6. In Example 9.3.12, compare the resulting total premium according to the different models.
What happens if we divide all weights wi j by 10?

7. Show that the least squares method leads to maximum likelihood estimators in case the Si j

have a normal distribution with variance wi jσ2.

8. What can be said about the sum of the residuals ∑i, j(si j −wi jα̂iβ̂ j) if the α̂i and the β̂ j are
fitted by the four methods of this section?



9.7 Exercises 263

Section 9.4

1. Verify if (9.29) is the scaled deviance for a Poisson distribution.

2. Verify if (9.32) is the scaled deviance for a gamma distribution.

3. Show that in the model of Method 9.3.9, the second term of (9.29) is always zero.

4. Also show that the second term of deviance (9.32) is zero in a multiplicative model for the
expected values, if the parameters are estimated by the direct method.

5.
root of the ith term of the sum in (9.29) and (9.32) with the sign of yi − µ̂i. Using the inequality
t −1 ≥ log t for t ≥ 0, prove that these ith terms are non-negative.

6. Run the following R-code:

set.seed(1); y <- rpois(10, 7+2*(1:10))
g <- glm(y˜I(1:10), poisson(link=identity))
2-AIC(g)/2 == logLik(g)

Find out why TRUE results from this. How can the value of the maximized loglikelihood be
reconstructed using the functions dpois and fitted? Compute the BIC for g.

7. For X ∼ N(µ,1), gamma(µ,1) and Poisson(µ), compare finding the mode with maximizing
the likelihood.

Section 9.5

1. Do an analysis similar to the one in this section, but now to the portfolio of Appendix A.3.

2. To the same portfolio as in the previous exercise, apply

g <- glm(y˜Re*Sx, poisson); anova(g, test="Chisq")}

Compare with what happens if we use the aggregated data instead of the full data. Look at the
five number summary of the residuals, too.

Section 9.6

1. Make a plot of the average number of claims against the bonus-malus class. Do the same, but
now with the average number of claims on a log-scale.

2. Make a plot of the average number of claims against the log of the car weight. The same with
both on a logarithmic scale.

3. Note that there were not 8316 cells in Table 9.7, but only 7524; this is because many cells had
weight Expo = 0. Can you think of the reason why so many cells were empty? Hint: how
old must one be to enjoy the maximal bonus?

4. In the model of Table 9.7, can (B==14), B or W be removed from the model without getting
a significantly worse fit? Does it help to allow for separate coefficients for each weight class?

5. The deviance of the same model as in Table 9.10, but without interactions, is 38 616 941 on
7515 df, the deviance with interactions is 38 408 588 on 7491 df. Do the interaction terms
improve the fit significantly?
In Table 9.10, for Bminus1:Bis14 it is easy to explain that no coefficient can be estimated:
how is it related to Bis14? Show that when Expo > 0, A3:Bis14 is always equal to
Bis14 - A2:Bis14; see Exercise 9.6.3.

The deviance residuals, see also Remark 9.2.5, for Poisson and gamma GLMs are the square
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6. Estimate a multiplicative model explaining nCl/Expo by R, A, M, U, W, B and B==14
using a quasi-Poisson error structure. Estimate a multiplicative model explaining TotCl/nCl
by the same covariates using a Gamma family. Use a log-link, and weights nCl. In a Gamma
family, non-positive observations are not allowed even if they have weight zero, so it is best to
restrict to the subset of your data having nCl>0, or to change zero observations into 0.1,
for example, by using nCl <- ifelse(nCl=0,0.1,nCl). Combine these two models
into one for the risk premium, and compare the coefficients with those obtained by estimating
TotCl/Expo directly.

7. Note that loss ratios over 56% represent bad risks for the insurer, those under 56% are good.
Discuss if and how the rating system should be changed. Explain why the loss ratios evolve
with weight WW as they do.

8. Determine the ratio of variance and mean of the total claims as a function of λ . Is it reasonable
to treat this as a constant, in view of which values of λ , say λ ∈ [0.05,0.2], are plausible?

9. For the claim sizes, instead of gamma(α,β ) random variables with α = 1
2 , we generated

lognormal(µ,σ2) claims with the same mean and variance. Which choice of µ,σ2 in terms
of α,β ensures that the mean and variance of a lognormal(µ,σ2) and a gamma(α,β ) random
variable coincide? How about the skewness?

10. For a cell containing n policies with average claim frequency λ = 0.1, determine how much
overdispersion Var[N]/E[N] is caused by the fact that we did not take a homogeneous Poisson
model for the number of claims N but rather the mixed model of Remark 9.6.3.

11. Find out what the most and least profitable groups of policyholders are by doing

l <- list(Use=U,Age=A,Area=R,Mile=M)
round(ftable(100*tapply(TotCl,l,sum)/tapply(TotPrem,l,sum)))



Chapter 10
IBNR techniques

IBNR reserves represent an important cog in the insurance
accounting machinery — Bornhuetter & Ferguson, 1978

10.1 Introduction

In the past, non-life insurance portfolios were financed through a pay-as-you-go
system. All claims in a particular year were paid from the premium income of that
same year, no matter in which year the claim originated. The financial balance in
the portfolio was realized by ensuring that there was an equivalence between the
premiums collected and the claims paid in a particular financial year. Technical
gains and losses arose because of the difference between the premium income in a
year and the claims paid during the year.

The claims originating in a particular year often cannot be finalized in that year.
For example, long legal procedures are the rule with liability insurance claims. But
there may also be other causes for delay, such as the fact that the exact size of the
claim is hard to assess. Also, the claim may be filed only later, or more payments
than one have to be made, such as in disability insurance. All these factors will lead
to delay of the actual payment of the claims. The claims that have already occurred,
but are not sufficiently known, are foreseeable in the sense that one knows that
payments will have to be made, but not how much the total payment is going to be.
Consider also the case that a premium is paid for the claims in a particular year, and
a claim arises of which the insurer is not notified as yet. Here also, we have losses
that have to be reimbursed in future years.

Such claims are now connected to the years for which the premiums were actu-
ally paid. This means that reserves have to be kept regarding claims that are known
to exist, but for which the eventual size is unknown at the time the reserves have
to be set. For claims like these, several acronyms are in use. One has IBNR claims
(Incurred But Not Reported) for claims that have occurred but have not been filed.
Hence the name IBNR methods, IBNR claims and IBNR reserves for all quantities
of this type. There are also RBNS claims (Reported But Not Settled), for claims that
are known but not (completely) paid. Other acronyms are IBNFR, IBNER and RB-
NFS, where the F is for Fully, the E for Enough. Large claims known to the insurer
are often handled on a case-by-case basis.

265
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Table 10.1 A run-off triangle with payments by development year (horizontally) and year of origin
(vertically)

Year of Development year
origin 1 2 3 4 5 6 7 8

2011 101 153 52 17 14 3 4 1
2012 99 121 76 32 10 3 1
2013 110 182 80 20 21 2
2014 160 197 82 38 19
2015 161 254 85 46
2016 185 201 86
2017 178 261
2018 168

When modeling these situations, one generally starts from a so-called run-off
triangle, containing loss figures, for example cumulated payments, for each combi-
nation of policy year and development year. It is compiled in the following way:

1. We start in 2011 with a portfolio of insurance contracts. Let us assume that the
total claims to be paid are fully known on January 1, 2019, eight years after the
end of this year of origin;

2. The claims occurring in the year 2011 have to be paid from the premiums col-
lected in 2011;

3. These payments have been made in the year 2011 itself, but also in the years
2012–2018;

4. In the same way, for the claims pertaining to the year of origin 2012, one has the
claims which are known in the years 2012–2018, and it is unknown what has to
be paid in 2019;

5. For the year 2016, the known claims are the ones paid in the period 2016–2018,
but there are also unknown ones that will come up in the years 2019 and after;

6. For the claims concerning the premiums paid in 2018, on December 31, 2018
only the payments made in 2018 are known, but we can expect that more pay-
ments will have to be made in and after 2009. We may expect that the claims
develop in a pattern similar to the one of the claims in 2011–2018.

The development pattern can schematically be depicted as in Table 10.1. The num-
bers in the triangle are the known total payments, grouped by year of origin i (by
row) and development year j (by column). The row corresponding to year 2013
contains the six numbers known on December 31, 2018. The third element in this
row, for example, denotes the claims incurred in 2013, but paid for in the third year
of development 2015. In the triangle of Table 10.1, we look at new contracts only.
This situation may occur when a new type of policy was issued for the first time
in 2011. The business written in this year on average has had only half a year to
produce claims in 2011, which is why the numbers in the first column are somewhat
lower than those in the second. The numbers on the diagonal with i+ j−1 = k de-
note the payments that were made in calendar year k. There are many ways to group
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these same numbers into a triangle, but the one given in Table 10.1 is the customary
one. On the basis of the claim figures in Table 10.1, which could be claim numbers
but also more general losses, we want to make predictions about claims that will
be paid, or filed, in future calendar years. These future years are to be found in the
bottom-right part of Table 10.1. The goal of the actuarial IBNR techniques is to
predict these figures, so as to complete the triangle into a square. The total of the
figures found in the lower right triangle is the total of the claims that will have to be
paid in the future from the premiums that were collected in the period 2011–2018.
This total is precisely the reserve to be kept.

We assume that the development pattern lasts eight years. In many branches,
notably in liability, claims may still be filed after a time longer than eight years. In
that case, we have to make predictions about development years after the eighth,
of which our run-off triangle provides no data. We not only have to extend the
triangle to a square, but to a rectangle containing more development years. The usual
practice is to assume that the development procedure is stopped after a number of
years, and to apply a correction factor for the payments made after the development
period considered.

The future payments are estimated following well-established actuarial practice.
Sometimes one central estimator is given, but also sometimes a whole range of pos-
sibilities is considered, containing both the estimated values and, conceivably, the
actual results. Not just estimating the mean, but also getting an idea of the variance
of the results is important. Methods to determine the reserves have been developed
that each meet specific requirements, have different model assumptions, and pro-
duce different estimates. In practice, sometimes the method that is the most likely
to produce the ‘best’ estimator is used to determine the estimate of the expected
claims, while the results of other methods are used as a means to judge the variation
of the stochastic result, which is of course a rather unscientific approach.

To complete the triangle in Table 10.1, we can give various methods, each re-
flecting the influence of a number of exogenous factors. In the direction of the year
of origin, variation in the size of the portfolio will have an influence on the claim
figures. On the other hand, for the factor development year (horizontally), changes
in the claim handling procedure as well as in the speed of finalization of the claims
will produce a change. The figures on the diagonals correspond to payments in a par-
ticular calendar year. Such figures will change due to monetary inflation, but also by
changing jurisprudence or increasing claim proneness. As an example, in liability
insurance for the medical profession the risk increases each year, and if the amounts
awarded by judges get larger and larger, this is visible along the diagonals. In other
words, the separation models, which have as factors the year of development and
the calendar year, would be the best choice to describe the evolution of portfolios
like these.

Obviously, one should try to get as accurate a picture as possible about the sto-
chastic mechanism that produced the claims, test this model if possible, and estimate
the parameters of this model optimally to construct good predictors for the unknown
observations. Very important is how the variance of claim figures is related to the
mean value. This variance can be more or less constant, it can be proportional to the
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mean, proportional to the square of the mean (meaning that the coefficient of varia-
tion is a constant), or have some other relation with it. See the following section, as
well as the chapters on Generalized Linear Models.

Just as with many rating techniques, see the previous chapter, in the actuarial lit-
erature quite often a heuristic method to complete an IBNR triangle was described
first, and a sound statistical foundation was provided only later. In Section 10.2, we
describe briefly the two most often used techniques to make IBNR forecasts: the
chain ladder method and the Bornhuetter-Ferguson technique. There is a very ba-
sic generalized linear model (GLM) for which the ML-estimators can be computed
by the well-known chain ladder method. On the other hand it is possible to give a
model that involves a less rigid statistical structure and in which the calculations of
the chain ladder method produce an optimal estimate in the sense of mean squared
error. In Section 10.3 we give a general GLM, special cases of which can be shown
to boil down to familiar methods of IBNR estimation such as the arithmetic and
the geometric separation methods, as well as the chain ladder method. A numerical
illustration is provided in Section 10.4, where various sets of covariates are used in

described in Section 10.5. In Section 10.6, an analytical estimate of the prediction
error of the chain ladder method is studied, as well as a bootstrap method. They
were proposed by England and Verrall (1999) and England (2002). In this way, a
standard error of prediction and an approximate predictive distribution for the ran-
dom future losses are produced. In Section 10.7, we give another example, in which
the parameters relating to the accident year are replaced by the known portfolio
size, expressed in its number of policies or its premium income. A method related
to Bornhuetter-Ferguson arises.

10.2 Two time-honored IBNR methods

The two methods most frequently used in practice are the chain ladder (CL) method
and the Bornhuetter-Ferguson method. We give a short description here; for the R
implementation, we refer to later sections.

10.2.1 Chain ladder

The idea behind the chain ladder method is that in any development year, about
the same total percentage of the claims from each year of origin will be settled. In
other words, in the run-off triangle, the columns are proportional. To see how in the
chain ladder method predictions are computed for the unobserved part of a run-off
rectangle, look at Table 10.2. Note that in most texts, the run-off figures given are
cumulated by rows. This is a relic of the time when calculations had to be done by
hand. In this text, we avoid this custom.

GLMs to complete the triangle in Table 10.1. How to use R to do the calculations is
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Table 10.2 Completing a run-off rectangle with CL predictions

1 2 3 4 5

01 A A A B •
02 A A A B

03 C C C �

04 D D D̂ ��
05 •

Consider the (3,4) element in Table 10.2, denoted by � and representing pay-
ments regarding policy year 03 in their 4th development year. This is a claim figure
for calendar year 06, which is the first future calendar year, and just beyond the edge
of the observed figures. Because of the assumed proportionality, the ratio of the el-
ements � : C will be about equal to the ratio B : A . Therefore, a prediction X̂34 of
this element � is

X̂34 = CΣ × BΣ
AΣ

. (10.1)

Here BΣ , for example, denotes the total of the B-elements in Table 10.2, which are
observed values. Prediction D̂ is computed in exactly the same way, multiplying the
total of the incremental payments to the left of it by the total above it, and dividing
by the total of losses of earlier policy years and development years. The prediction
�� for X̂44 (policy year 04, calendar year 07, so one year further in the future) can
be computed by using the same ‘development factor’ BΣ /AΣ :

X̂44 = DΣ × BΣ
AΣ

, (10.2)

where the sum DΣ includes D̂ , which is not an actual observation but a prediction
constructed as above. By using the fact that � = CΣ ×BΣ /AΣ , it is easy to see that
exactly the same prediction is obtained by taking

X̂44 =
DΣ × (BΣ +�)

AΣ +CΣ
, (10.3)

hence by following the same procedure as for an observation in the next calendar
year. In this way, starting with row 2 and proceeding from left to right, the entire
lower triangle can be filled with predictions.

Remark 10.2.1 (Mirror property of the chain ladder method)
Note that this procedure produces the same estimates to complete the square if we
exchange the roles of development year and year of origin, hence take the mirror
image of the triangle around the NW–SE diagonal. ∇

Remark 10.2.2 (Marginal totals property of the chain ladder method)
One way to describe the chain ladder method is as follows: find numbers α̂i, β̂ j,

i, j = 1, . . . ,t such that the products α̂iβ̂ j (fitted values) for ‘observed’ combinations
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(i, j) with i + j − 1 ≤ t have the same column sums and row sums as the actual
observations:

∑
j(i)

α̂iβ̂ j = ∑
j(i)

Xi j for all i( j). (10.4)

Then predict future values for (i, j) with i + j − 1 > t by α̂iβ̂ j. How to find these

numbers α̂i, β̂ j will be described later on.
We will illustrate why this procedure leads to the same forecasts as the chain

ladder method by looking at Table 10.2. First observe that BΣ and CΣ are already
column and row sums, but also the sums of claim figures AΣ needed can be com-
puted from these quantities. For instance in our example, AΣ = R1 +R2− (C5 +C4)
when Ri and Cj denote the ith row sum and the jth column sum.

Next, observe that if we replace the past losses Xi j by their fitted values α̂iβ̂ j, the
row and column sums remain unchanged, and therefore also the quantities like AΣ .
When the chain ladder algorithm described above is applied to the new triangle, the
numbers α̂iβ̂ j result as future predictions. ∇

The basic principle of the chain ladder method admits many variants. One may
wonder if there is indeed proportionality between the columns. Undoubtedly, this
is determined by effects that operate along the axis describing the year of origin of
the claims. By the chain ladder method, only the run-off pattern can be captured,
given that all other factors that have an influence on the proportion of claims settled
remain unchanged over time.

The chain ladder method is merely an algorithm, a deterministic method. But
there are also stochastic models for the generating process underlying the run-off
triangle in which these same calculations lead to an optimal prediction in some
sense. See, for example, Section 10.3.1.

10.2.2 Bornhuetter-Ferguson

One of the difficulties with using the chain ladder method is that reserve forecasts
can be quite unstable. In Table 10.2, a change of p% in CΣ due to sampling vari-
ability will generate the same change in all forecasts for this row. So applying this
method to a volatile claims experience will produce volatile forecasts. This volatility
will show itself by changes in the reserve estimate each year, when a new diagonal
of observations is added to the triangle. The Bornhuetter-Ferguson (1972) method
provides a procedure for stabilizing such estimates.

Suppose that one has some prior expectation as to the ultimate losses to emerge
from each accident period i, specifically, that E[Xi1 + · · ·+Xit ] = Mi for some known
quantity Mi. This quantity is often referred to as the schedule or budget ultimate
losses. Notably one may have a prior view of the loss ratio Mi/Pi, where Pi is the
premium income with accident year i. Combining these prior estimates with the
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Table 10.3 Random variables in a run-off triangle

Year of Development year
origin 1 · · · t −n+1 · · · t

1 X11 · · · X1,t−n+1 · · · X1t
...

...
...

...
n Xn1 · · · Xn,t−n+1 · · · Xnt
...

...
...

...
t Xt1 · · · Xt,t−n+1 · · · Xtt

development factors of the chain ladder method, one may form an estimate of the
entire schedule of loss development. See Section 10.7 for more details.

It can be shown that the Bornhuetter-Ferguson method can be interpreted as a
Bayesian method. The forecasts have the form of a credibility estimator.

10.3 A GLM that encompasses various IBNR methods

Several often used and traditional actuarial methods to complete an IBNR triangle
can be described by one Generalized Linear Model. In Table 10.3, the random vari-
ables Xi j for i, j = 1,2, . . . ,t denote the claim figure for year of origin i and year of
development j, meaning that the claims were paid in calendar year i + j − 1. For
(i, j) combinations with i + j − 1 ≤ t, Xi j has already been observed, otherwise it
is a future observation. As well as claims actually paid, these figures may also be
used to denote quantities such as loss ratios. We take a multiplicative model, with a
parameter for each row i, each column j and each diagonal k = i+ j−1, as follows:

Xi j ≈ αi ·β j · γk. (10.5)

The deviation of the observation on the left hand side from its mean value on the
right hand side is attributed to chance. As one sees, if we assume further that the
random variables Xi j are independent and restrict their distribution to be in the ex-
ponential dispersion family, (10.5) is a Generalized Linear Model in the sense of
Chapter 9. Year of origin i, year of development j and calendar year k = 1 + j− 1
act as explanatory variables for the observation Xi j. The expected value of Xi j is the
exponent of the linear form logαi + logβ j + logγk, so there is a logarithmic link.
Note that the covariates are all dummies representing group membership for rows,
columns and diagonals in Table 10.3. We will determine maximum likelihood esti-
mates of the parameters αi, β j and γk, under various assumptions for the probability
distribution of the Xi j. It will turn out that in this simple way, we can generate quite
a few widely used IBNR techniques.
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Having found estimates of the parameters, it is easy to extend the triangle to a
square, simply by taking

X̂i j := α̂i · β̂ j · γ̂k. (10.6)

A problem is that we have no data on the values of the γk for future calendar years k
with k > t. The problem can be solved, for example, by assuming that the γk have a
geometric pattern, with γk ∝ γk for some real number γ .

10.3.1 Chain ladder method as a GLM

The first method that can be derived from model (10.5) is the chain ladder method
of Section 10.2.1. Suppose that we restrict model (10.5) to:

Xi j ∼ Poisson(αiβ j) independent; γk ≡ 1. (10.7)

If the parameters αi > 0 and β j > 0 are to be estimated by maximum likelihood, we
have in fact a multiplicative GLM with Poisson errors and a log-link, because the
observations Xi j, i, j = 1, . . . ,t; i + j ≤ t are independent Poisson random variables
with a logarithmic model for the means; explanatory variables are the factors row
number and column number.

By Property 9.3.9 it follows that the marginal totals of the triangle, hence the row
sums Ri and the column sums Cj of the observed figures Xi j, must be equal to the

predictions ∑ j α̂iβ̂ j and ∑i α̂iβ̂ j for these quantities; see (10.4). So it follows from
Remark 10.2.2 that the optimal estimates of the parameters αi and β j produced by
this GLM are equal to the parameter estimates found by the chain ladder method.

One of the parameters is superfluous, since if we replace all αi and β j by δαi

and β j/δ we get the same expected values. To resolve this ambiguity, we impose an
additional restriction on the parameters. We could use a ‘corner restriction’, requir-
ing for example α1 = 1, but a more natural restriction to ensure identifiability of the
parameters is to require β1 + · · ·+βt = 1. This allows the β j to be interpreted as the
fraction of claims settled in development year j, and αi as the ‘volume’ of year of
origin i: it is the total of the payments made.

Maximizing the likelihood with model (10.7) can be done by an appropriate call
of R’s function glm; see Section 10.5. But by the triangular shape of the data,
the system of marginal totals equations admits the following recursive solution
method, originally devised by Verbeek (1972) for the case of the arithmetic sep-
aration method below.

Algorithm 10.3.1 (Verbeek’s algorithm for chain ladder)
Look at Table 10.4. The row and column totals are those of the past Xi j in Table
10.3. To solve the marginal totals equations (10.4), we can proceed as follows.

1. From the first row sum equality α̂1(β̂1 + · · ·+ β̂t) = R1 it follows that α̂1 = R1.
Then from α̂1β̂t = Ct we find β̂t = Ct/R1.
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Table 10.4 The marginal totals equations in a run-off triangle

Year of Development year Row
origin 1 · · · t −n+1 · · · t total

1 α1β1 α1βt−n+1 α1βt R1
...

...
n αnβ1 αnβt−n+1 Rn
...

...
t αtβ1 Rt

Column total C1 · · · Ct−n+1 · · · Ct

2. Assume that, for a certain n < t, we have found estimates β̂t−n+2, . . . , β̂t and
α̂1, . . . , α̂n−1. Then look at the following two marginal totals equations:

α̂n(β̂1 + · · ·+ β̂t−n+1) = Rn;

(α̂1 + · · ·+ α̂n)β̂t−n+1 = Ct−n+1.
(10.8)

By the fact that we take β̂1 + · · ·+ β̂t = 1, the first of these equations directly
produces a value for α̂n, and then we can compute β̂t−n+1 from the second one.

3. Repeat step 2 for n = 2, . . . ,t. ∇

10.3.2 Arithmetic and geometric separation methods

In the separation models, one assumes that in each year of development a fixed per-
centage is settled, and that there are additional effects that operate in the diagonal
direction (from top-left to bottom-right) in the run-off triangle. So this model de-
scribes best the situation that there is inflation in the claim figures, or when the risk
increases by other causes. This increase is characterized by an index factor for each
calendar year, which is a constant for the observations parallel to the diagonal. One
supposes that in Table 10.4, the random variables Xi j are average loss figures, where
the total loss is divided by the number of claims, for year of origin i and development
year j.

Arithmetic separation method The arithmetic separation method was described
in Verbeek (1972), who applied the model to forecast the number of stop-loss claims
reported. As time goes by, due to inflation more claims will exceed the retention, and
this effect must be included in the model. In both the arithmetic and the geometric
separation method the claim figures Xi j are explained by two aspects of time, just as
for chain ladder and Bornhuetter-Ferguson. But in this case there is a calendar year
effect γk, where k = i + j − 1, and a development year effect β j. So inflation and
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run-off pattern are the determinants for the claim figures now. For the arithmetic
separation method we assume

Xi j ∼ Poisson(β jγk) independent; αi ≡ 1. (10.9)

Again, β j and γk are estimated by maximum likelihood. Since this is again a GLM
(Poisson with the canonical log-link), because of Property 9.3.9 the marginal totals
property must hold here as well. In model (10.9) these marginal totals are the column
sums and the sums over the diagonals, with i+ j−1 = k.

The parameter estimates in the arithmetic separation method can be obtained by
a variant of Method 10.3.1 (Verbeek) for the chain ladder method computations. We
have E[Xi j] = β jγi+ j−1. Again, the parameters β j, j = 1, . . . ,t describe the propor-
tions settled in development year j. Assuming that the claims are all settled after t
development years, we have β1 + · · ·+βt = 1. Using the marginal totals equations,
see Table 10.4, we can determine directly the optimal factor γ̂t , reflecting base level
times inflation, as the sum of the observations on the long diagonal ∑i Xi,t+1−i. Since

βt occurs in the final column only, we have β̂t = X̂1t/γ̂t . With this, we can compute
γ̂t−1, and then β̂t−1, and so on. Just as with the chain ladder method, the estimates
thus constructed satisfy the marginal totals equations, and hence are maximum like-
lihood estimates because of Property 9.3.9.

To fill out the remaining part of the square, we also need values for the parameters
γt+1, . . . ,γ2t , to be multiplied by the corresponding β̂ j estimate. We find values for
these parameters by extending the sequence γ̂1, . . . , γ̂t in some way. This can be done
with many techniques, for example loglinear extrapolation.

Geometric separation method The geometric separation method involves maxi-
mum likelihood estimation of the parameters in the following statistical model:

log(Xi j) ∼ N
(
log(β jγk),σ2) independent; αi ≡ 1. (10.10)

Here σ2 is an unknown variance. We get an ordinary regression model with
E[logXi j] = logβ j + logγi+ j−1. Its parameters can be estimated in the usual way,
but they can also be estimated recursively in the way described above, starting from
∏ j β j = 1.

Note that the values β jγi+ j−1 in this lognormal model are not the expected values
of Xi j. In fact, they are only the medians; we have

Pr[Xi j ≤ β jγi+ j−1] =
1
2

but E[Xi j] = eσ2/2β jγi+ j−1. (10.11)

10.3.3 De Vijlder’s least squares method

In the least squares method of De Vylder (1978), he assumes that γk ≡ 1 holds,
while αi and β j are determined by minimizing the sum of squares ∑i, j(Xi j −αiβ j)

2,
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Table 10.5 Run-off data used in De Vylder (1978)

Year of Development year
origin 1 2 3 4 5 6

1 4627
2 15140 13343
3 43465 19018 12476
4 116531 42390 23505 14371
5 346807 118035 43784 12750 12284
6 308580 407117 132247 37086 27744
7 358211 426329 157415 68219
8 327996 436774 147154
9 377369 561699

10 333827

taken over the set (i, j) for which observations are available. But this is tantamount
to determining αi and β j by maximum likelihood in the following model:

Xi j ∼ N(αiβ j,σ2) independent; γk ≡ 1. (10.12)

Just as with chain ladder, we assume that the mean payments for a particular year of
origin/year of development combination result from two effects. First, a parameter
characterizing the year of origin, proportional to the size of the portfolio in that year.
Second, a parameter determining which proportion of the claims is settled through
the period that claims develop. The parameters are estimated by least squares.

In practice it quite often happens that not all data in an IBNR-triangle are actually
available. In De Vylder (1978) a 10× 10 IBNR-triangle is studied missing all the
observations from calendar years 1, . . . ,5, as well as those for development years
7, . . . ,10. What these numbers represent is not relevant. See Table 10.5.

This paper is the first to mention that in IBNR problems, time operates in three
different ways: by policy year i reflecting growth of the portfolio, by development
year j reflecting the run-off pattern of the claims, and by calendar year k = i + j−
1 reflecting inflation and changes in jurisprudence. De Vijlder proposed to use a
multiplicative model αiβ jγk for the data Xi j, and to choose those parameter values
αi, β j and γk that minimize the least squares distance, therefore solving:

min
αi,β j ,γk

∑
i, j

wi j(Xi j −αiβ jγi+ j−1)
2. (10.13)

We multiply by weights wi j = 1 if yi j is an actual observation, wi j = 0 otherwise,
so the sum can be taken over all (i, j) combinations. De Vijlder proceeds by taking
the inflation component fixed, hence γk = γk for some real γ , and proves that doing
this, one might actually have left out inflation of the model altogether, thus taking
γk ≡ 1. See Exercise 10.3.4. Next he describes the method of successive substitution
to solve the reduced problem, and gives the results for this method. Note that his
paper was written in pre-PC times; he used a programmable hand-held calculator.
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10.4 Illustration of some IBNR methods

Obviously, introducing parameters for the three time aspects year of origin, year
of development and calendar year sometimes leads to overparameterization. Many
of these parameters could be dropped, that is, taken equal to 1 in a multiplicative
model. Others might be required to be equal, for example by grouping classes hav-
ing different values for some factor together. Admitting classes to be grouped leads
to many models being considered simultaneously, and it is sometimes hard to con-
struct proper significance tests in these situations. Also, a classification of which
the classes are ordered, such as age class or bonus-malus step, might lead to pa-
rameters giving a fixed increase per class, except perhaps at the boundaries or for
some other special class. In a loglinear model, replacing arbitrary parameter values,
associated with factor levels (classes), by a geometric progression in these parame-
ters is easily achieved by replacing the dummified factor by the actual levels again,
or in GLIM parlance, treating this variable as a variate instead of as a factor. Re-
placing arbitrary values αi, with α1 = 1, by α i−1 for some real α means that we
assume the portfolio to grow, or shrink, by a fixed percentage each year. Doing the
same to the parameters β j means that the proportion settled decreases by a fixed
fraction with each development year. Quite often, the first development year will
be different from the others, for example because only three quarters are counted
as the first year. In that case, one does best to allow a separate parameter for the
first year, taking parameters β1,β 2,β 3, . . . for some real numbers β1 and β . Instead
of with the original t parameters β1, . . . ,βt , one works with only two parameters.
By introducing a new dummy explanatory variable to indicate whether the calendar
year k = i+ j−1 with observation Xi j is before or after k0, and letting it contribute
a factor 1 or δ to the mean, respectively, one gets a model for which in one year, the
inflation differs from the standard fixed inflation of the other years. Other functional
forms for the β j parameters include the Hoerl-curve, where β j = exp(γ j + δ log j)
for some real numbers γ and δ . These can be used for all rows in common, or for
each row separately (interaction).

In the previous chapter, we introduced the (scaled) deviance as a ‘distance’ be-
tween the data and the estimates. It is determined from the difference of the maxi-
mally attainable likelihood and the one of a particular model. Using this, one may
test if it is worthwhile to complicate a model by introducing more parameters. For
a nested model, of which the parameter set can be constructed by imposing lin-
ear restrictions on the parameters of the original model, it is possible to judge if
the distance between data and estimates is ‘significantly’ larger. It proves that this
difference in distance, under the null-hypothesis that the eliminated parameters are
superfluous, is approximately χ2 distributed, when suitably scaled. In similar fash-
ion, the ‘goodness of fit’ of non-nested models can be compared by using the Akaike
information criterion, see Remark 9.4.4.

Some regression software leaves it to the user to resolve the problems arising
from introducing parameters with covariates that are linearly dependent of the oth-
ers, the so-called ‘dummy trap’ (multicollinearity). The glm function in R is more
user-friendly in this respect. For example if one takes all three effects in (10.5) geo-
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Table 10.6 Parameter set, degrees of freedom (= number of observations less number of estimated
parameters), and deviance for several models applied to the data of Table 10.1.

Model Parameters used Df Deviance

I µ,αi,β j,γk 15 25.7
II µ,αi,β j 21 38.0
III µ,β j,γk 21 36.8
IV µ,β j,γk−1 27 59.9
V µ,α i−1,β j 27 59.9
VI µ,αi,γk−1 27 504.
VII µ,αi,β j−1 27 504.
VIII µ,αi,β1,β j−1 26 46.0 ♥
IX µ,α i−1,β1,β j−1 32 67.9
X µ,α i−1,β j−1 33 582.
XI µ 35 2656

metric, with as fitted values

X̂i j = µ̂α̂ i−1β̂ j−1γ̂ i+ j−2, (10.14)

R does not stop but simply proceeds by taking the last of these three parameters to
be equal to 1; see Exercise 10.4.2. Notice that by introducing µ̂ in (10.14), all three
parameter estimates can have the form α̂ i−1, β̂ j−1 and γ̂ i+ j−2. In the same way, we
can take α1 = β1 = γ1 = 1 in (10.5). The parameter µ = E[X11] is the level in the
first year of origin and development year 1.

10.4.1 Modeling the claim numbers in Table 10.1

We fitted a number of models to explain the claim figures in Table 10.1. They were
actually claim numbers; the averages of the payments are shown in Table 10.8. To
judge which model best fits the data, we estimated a few models for (10.5), all
assuming the observations to be Poisson(αiβ jγi+ j−1). See Table 10.6. By imposing
(loglinear) restrictions like β j = β j−1 or γk ≡ 1, we reproduce the various models
discussed earlier. The reader may verify that in model I, one may choose γ8 = 1
without loss of generality. This means that model I has only 6 more parameters to
be estimated than model II. Notice that for model I with E[Xi j] = µαiβ jγi+ j−1, there
are 3(t −1) parameters to be estimated from t(t +1)/2 observations, hence model I
only makes sense if t ≥ 4.

It can be shown that we get the same estimates using either of the models E[Xi j] =
µαiβ j−1 and E[Xi j] = µαiγ i+ j−1 = (µγ)(αiγ i−1)(β jγ j−1). Completing the triangle
of Table 10.1 into a square by using model VIII produces Table 10.7. The column
‘Total’ contains the row sums of the estimated future payments, hence exactly the
amount to be reserved regarding each year of origin. The figures in the top-left part



278 10 IBNR techniques

Table 10.7 The claim figures of Table 10.1 estimated by model VIII. The last column gives the
totals for all the future predicted payments.

Year of Development year
origin 1 2 3 4 5 6 7 8 Total

2000 102.3 140.1 510.4 25.2 10.7 4.5 1.9 0.8| 0.0
2001 101.6 1310.2 510.1 25.0 10.6 4.5 1.9| 0.8 0.8
2002 124.0 1610.9 72.1 30.6 13.0 5.5| 2.3 1.0 3.3
2003 150.2 205.8 87.3 37.0 15.7| 6.7 2.8 1.2 10.7
2004 170.7 233.9 910.2 42.1| 17.8 7.6 3.2 1.4 30.0
2005 1510.9 2110.1 92.9| 310.4 16.7 7.1 3.0 1.3 67.5
2006 185.2 253.8| 107.6 45.7 110.4 8.2 3.5 1.5 185.8
2007 168.0| 230.2 97.6 41.4 17.6 7.4 3.2 1.3 398.7

are estimates of the already observed values, the ones in the bottom-right part are
predictions for future payments.

All other models are nested in model I, since its set of parameters contains all
other ones as a subset. The estimates for model I best fit the data. About the de-
viances and the corresponding numbers of degrees of freedom, the following can be
said. The chain ladder model II is not rejected statistically against the fullest model
I on a 95% level, since it contains six parameters fewer, and the χ2 critical value is
12.6 while the difference in scaled deviance is only 12.3. The arithmetic separation
model III fits the data somewhat better than model II. Model IV with an arbitrary
run-off pattern β j and a constant inflation γ is equivalent to model V, which has a
constant rate of growth for the portfolio. In Exercise 10.3.3, the reader is asked to
explain why these two models are identical. Model IV, which is nested in III and
has six parameters fewer, predicts significantly worse. In the same way, V is worse
than II. Models VI and VII again are identical. Their fit is bad. Model VIII, with
a geometric development pattern except for the first year, seems to be the winner:
with five parameters fewer, its fit is not significantly worse than model II in which
it is nested. It fits better than model VII in which the first column is not treated
separately. Comparing VIII with IX, we see that a constant rate of growth in the
portfolio must be rejected in favor of an arbitrary growth pattern. In model X, there
is a constant rate of growth as well as a geometric development pattern. The fit is
bad, mainly because the first column is so different.

From model XI, having only a constant term, we see that the ‘percentage of
explained deviance’ of model VIII is more than 98%. But even model IX, which
contains only a constant term and three other parameters, already explains 97.4% of
the deviation.

The estimated model VIII gives the following predictions:

VIII: X̂i j = 102.3×αi ×3.20 j 	=1 ×0.42 j−1,

with �α ′ = (1,0.99,1.21,1.47,1.67,1.56,1.81,1.64).
(10.15)
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Table 10.8 Average payments corresponding to the numbers of payments in Table 10.1.

Year of Development year
origin 1 2 3 4 5 6 7 8

2000 62 146 117 175 203 212 406 318
2001 133 122 96 379 455 441 429
2002 148 232 120 481 312 390
2003 119 185 223 171 162
2004 93 109 87 190
2005 33 129 176
2006 237 179
2007 191

Here j 	= 1 should be read as a Boolean expression, with value 1 if true, 0 if false
(in this case, for the special column with j = 1). Model IX leads to:

IX: X̂i j = 101.1×1.10i−1 ×3.34 j 	=1 ×0.42 j−1. (10.16)

10.4.2 Modeling claim sizes

The Poisson distribution with year of origin as well as year of development as ex-
planatory variables, that is, the chain ladder method, is appropriate to model the
number of claims. Apart from the numbers of claims given in Table 10.1, we also
know the average claim size; it can be found in Table 10.8. For these claim sizes,
the portfolio size, characterized by the factors αi, is irrelevant. The inflation, hence
the calendar year, is an important factor, and so is the development year, since only
large claims tend to lead to delay in settlement. So for this situation, the separation
models are more suitable. We have estimated the average claim sizes under the as-
sumption that they arose from a gamma distribution with a constant coefficient of
variation, with a multiplicative model.

The results for the various models are displayed in Table 10.9. As one sees, the
nesting structure in the models is 7 ⊂ 6 ⊂ 4/5 ⊂ 3 ⊂ 2 ⊂ 1; models 4 and 5 are
both between 6 and 3, but they are not nested in one another. We have scaled the
deviances in such a way that the fullest model 1 has a scaled deviance equal to the
number of degrees of freedom, hence 15. This way, we can test the significance of
the model refinements by comparing the gain in scaled deviance to the critical value
of the χ2 distribution with as a parameter the number of extra parameters estimated.
A statistically significant step in both chains is the step from model 7 to 6. Taking
the development parameters β j arbitrary as in model 5, instead of geometric β j−1

as in model 6, does not significantly improve the fit. Refining model 6 to model
4 by introducing a parameter for inflation γk−1 also does not lead to a significant
improvement. Refining model 4 to model 3, nor model 3 to model 2, improves the
fit significantly, but model 1 is significantly better than model 2. Still, we prefer
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Table 10.9 Parameters, degrees of freedom and deviance for various models applied to the average
claim sizes of Table 10.8.

Model Parameters used Df Deviance

1 µ,αi,β j,γk 15 15 (♥)
2 µ,β j,γk 21 30.2
3 µ,β j,γk−1 27 36.8
4 µ,β j−1,γk−1 33 39.5
5 µ,β j 28 38.7
6 µ,β j−1 34 41.2 ♥
7 µ 35 47.2

the simple model 6, if only because model 6 is not dominated by model 1. This
is because at the cost of 19 extra parameters, the gain in scaled deviance is only
26.2. So the best estimates are obtained from model 6. It gives an initial level of
129 in the first year of development, increasing to 129× 1.177 = 397 in the eighth
year. Notice that if the fit is not greatly improved by taking the coefficients γi+ j−1

arbitrary instead of geometric or constant, it is better either to ignore inflation or to
use a fixed level, possibly with a break in the trend somewhere, just to avoid the
problem of having to find extrapolated values of γt+1, . . . ,γ2t .

By combining estimated average claim sizes by year of origin and year of devel-
opment with the estimated claim numbers, see Table 10.7, we get the total amounts
to be reserved. These are given in the rightmost column of Table 10.10. The cor-
responding model is found by combining both multiplicative models 6 and IX, see
(10.16); it leads to the following estimated total payments:

6× IX: X̂i j = 13041×1.10i−1 ×3.34 j 	=1 ×0.46 j−1. (10.17)

This model can also be used if, as is usual in practice, one is not content with a
square of observed and predicted values, but also wants estimates concerning these
years of origin for development years after the one that has last been observed,
hence a rectangle of predicted values. The total estimated payments for year of
origin i are equal to ∑∞

j=1 X̂i j. Obviously, these are finite only if the coefficient for
each development year in models 6 and IX combined is less than 1 in (10.17).

Remark 10.4.1 (Variance of the estimated IBNR totals)
To obtain a prediction interval for the estimates in practice, finding an estimate
the variance of the IBNR totals is vital. If the model chosen is the correct one
and the parameter estimates are unbiased, this variance reflects parameter uncer-
tainty as well as volatility of the process. If we assume that in Table 10.7 the
model is correct and the parameter estimates coincide with the actual values, the
estimated row totals are estimates of Poisson random variables. As these random
variables have a variance equal to this mean, and the yearly totals are indepen-
dent, the total estimated process variance is equal to the total estimated mean, hence
0.8+ · · ·+398.7 = 696.8 = 26.42. If there is overdispersion present in the model, the
variance must be multiplied by the estimated overdispersion factor. The actual vari-
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Table 10.10 Observed and predicted total claims corresponding to the Tables 10.1 and 10.7. Under
Total paid are the total payments made so far, under Total est., the estimated remaining payments.

Year of Development year Total Total
origin 1 2 3 4 5 6 7 8 paid est.

2000 6262 22338 6084 2975 2842 636 1624 318| 43079 0
2001 13167 14762 7296 12128 4550 1323 429| 361 53655 361
2002 16280 42224 9600 9620 6552 780| 800 398 85056 1198
2003 19040 36445 18286 6498 3078| 1772 881 438 83347 3092
2004 14973 27686 7395 8740| 3926 1952 971 483 58794 7331
2005 6105 25929 15136| 8696 4324 2150 1069 532 47170 16771
2006 42186 46719| 19262 9578 4762 2368 1178 586 88905 37733
2007 32088| 42665 21215 10549 5245 2608 1297 645 32088 84224

ance of course also includes the variation of the estimated mean, but this is harder
to come by. Again assuming that all parameters have been correctly estimated and
that the model is also correct, including the independence of claim sizes and claim
numbers, the figures in Table 10.10 are predictions for compound Poisson random
variables with mean λ µ2. The parameters λ of the numbers of claims can be ob-
tained from Table 10.7, the second moments µ2 of the gamma distributed payments
can be derived from the estimated means in (10.15) together with the estimated dis-
persion parameter. In Section 10.6, we describe a bootstrap method to estimate the
predictive distribution. Also we derive a delta method based approximation for the
prediction error. ∇

Remark 10.4.2 (‘The’ stochastic model behind chain ladder)
We have shown that the chain ladder method is just one algorithm to estimate the
parameters of a simple GLM with two factors (year of origin and development year),
a log-link and a mean-variance relationship of Poisson type (σ2 ∝ µ). Mack (1993)
describes as ‘the’ stochastic model behind chain ladder a different set of distribu-
tional assumptions under which doing these calculations makes sense. Aiming for a
distribution-free model, he cannot specify a likelihood to be maximized, so he sets
out to find minimum MSE unbiased linear estimators instead. His model does not
require independence, but only makes some assumptions about conditional means
and variances, given the past development for each year of origin. They are such
that the unconditional means and variances of the incremental observations are the
same as in the GLM. ∇

10.5 Solving IBNR problems by R

Since we have shown that the chain ladder and many other methods are actually

variable consists of a vector containing the elements of the triangle of the observed
past losses, for example the aggregate payments in the past. These losses are broken

GLMs, R’s built-in function glm can do the necessary calculations. The dependent
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down by year of origin of the policy and year of development of the claim filing
process, which act as explanatory variables. In other applications, we need the cal-
endar year. In this section we show by a simple example how to get the triangular
data into a usable vector form, as well as how to construct the proper row and col-
umn numbers conveniently. Then we show which glm-call can be used to produce
the chain ladder estimates, and also how to implement Verbeek’s method 10.3.1 to
produce these same estimates.

First, we fill a one-dimensional array Xij with, stored row-wise, the 15 incre-
mental observations from the triangle of Exercise 10.3.3. We also store the corre-
sponding row and column numbers in vectors i and j.

Xij <- c(232,106,35,16,2, 258,115,56,27, 221,82,4, 359,71, 349)
i <- c( 1, 1, 1, 1,1, 2, 2, 2, 2, 3, 3,3, 4, 4, 5)
j <- c( 1, 2, 3, 4,5, 1, 2, 3, 4, 1, 2,3, 1, 2, 1)

In general, if we denote the width of the triangle by TT, the length of the vector
Xij is TT*(TT+1)/2. The row numbers constitute a vector of ones repeated TT
times, then twos repeated TT-1 times, and so on until just the single number TT.
The column numbers are the sequence 1:TT, concatenated with 1:(TT-1), then
1:(TT-2) and so on until finally just 1. So from any vector Xij containing a
runoff triangle, we can find TT, i and j as follows.

TT <- trunc(sqrt(2*length(Xij)))
i <- rep(1:TT,TT:1); j <- sequence(TT:1)

Now to apply the chain ladder method to this triangle, and to extract the parameter
estimates for the αi and β j in (10.7), we simply call:

CL <- glm(Xij˜as.factor(i)+as.factor(j), family=poisson)
coefs <- exp(coef(CL)) ##exponents of parameter estimates
alpha.glm <- coefs[1] * c(1, coefs[2:TT])
beta.glm <- c(1, coefs[(TT+1):(2*TT-1)])

The resulting values of the coefficients αi and β j in the vector coefs are:

> coefs
(Intercept) as.factor(i)2 as.factor(i)3 as.factor(i)4 as.factor(i)5

250.1441 1.1722 0.8315 1.2738 1.3952
as.factor(j)2 as.factor(j)3 as.factor(j)4 as.factor(j)5

0.3495 0.1264 0.0791 0.0080

To apply Verbeek’s algorithm 10.3.1 to find these same parameter estimates α̂i and
β̂ j, we need the row and column sums of the triangle. These sums over all obser-
vations sharing a common value of i and j, respectively, can be found by using
the function tapply as below. First, alpha and beta are initialized to vectors of
length TT. In the loop, we compute alpha[n] using (10.8) and add it to the auxil-
iary variable aa storing the sum of the α’s computed so far. The last line produces
the matrix of predicted values α̂iβ̂ j for all i, j, as the outer matrix product α̂β̂ ′. So
Verbeek’s method 10.3.1 can be implemented as:
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Ri <- tapply(Xij, i, sum); Cj <- tapply(Xij, j, sum)
alpha <- beta <- numeric(TT)
aa <- alpha[1] <- Ri[1]
bb <- beta[TT] <- Cj[TT] / Ri[1]
for (n in 2:TT) {

aa <- aa + (alpha[n] <- Ri[n]/(1-bb))
bb <- bb + (beta[TT-n+1] <- Cj[TT-n+1] / aa)}

pred <- alpha %*% t(beta)

Using Verbeek’s algorithm 10.3.1 instead of a call of glm to compute parameter
estimates is quicker because no iterative process is needed. This is definitely an
issue when many bootstrap simulations are done such as in Section 10.6. Also, it is
slightly more general since it can also be applied when some of the observations are
negative. To get non-negative parameter estimates, all row and column sums must
be non-negative, as well as all sums over rectangles such as AΣ in (10.1). Note that
AΣ ≥ 0 is not implied by non-negative marginals alone; to see this, consider a 2×2
triangle with C1 = R1 = 1, C2 = R2 = 2. Negative numbers in an IBNR-triangle
occur in case recuperations, or corrections to case estimates that proved to be too
pessimistic, are processed as if they were negative payments in a future development
year.

To find the cumulated loss figures, it is convenient to store the IBNR data as a
matrix, not as a long array. One straightforward way to construct a TT by TT square
matrix containing the IBNR losses at the proper places, and next to construct the
row-wise cumulated loss figures from it, is by doing

Xij.mat.cum <- Xij.mat <- matrix(0, nrow=TT, ncol=TT)
for (k in 1:length(Xij)) Xij.mat[i[k],j[k]] <- Xij[k]
for (k in 1:TT) Xij.mat.cum[k,] <- cumsum(Xij.mat[k,])

For a matrix Xij.mat, the row and column numbers can be found as the matrices
row(Xij.mat) and col(Xij.mat) respectively. From these, it is easy to find
the calendar years in which a loss occurred. It occurs in the future if its calendar year
is past TT. To reconstruct the original long vector containing the past observations
from the matrix representation, we have to take the transpose of Xij.mat before
extracting the past elements from it, because R stores the elements of arrays in the
so-called column major order, that is, not by rows but by columns.

i.mat <- row(Xij.mat); j.mat <- col(Xij.mat);
future <- i.mat + j.mat - 1 > TT
t(Xij.mat)[!t(future)] ## equals the vector Xij

10.6 Variability of the IBNR estimate

The aim of IBNR analysis is to make a prediction for how much remains to be paid
on claims from the past. Earlier, we showed how to compute a point estimate of the
outstanding claims, using the GLM that underlies well-known chain ladder method.
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Point estimates are useful, especially if they have nice asymptotic properties such as
the ones resulting from generalized linear models. But often we want to know pre-
diction intervals for the outstanding claims, or for example the 95% quantile. Not
only is there a process variance, since future claims constitute a multiple of a Pois-
son random variable in the chain ladder model, but additionally, there is parameter
uncertainty. We can give standard deviations for all estimated coefficients, but from
these, we cannot easily compute the variance around the estimated mean of the total
outstanding claims. In two papers England and Verrall (1999) and England (2002)
describe a method to obtain estimates of the prediction error. Based on the delta
method, see Example 9.1.1, they give an approximation that can be derived using
quantities produced by a glm call. It involves variances and covariances of the lin-
ear predictors and fitted values. They also give a bootstrapping method to estimate
the reserve standard errors (the estimation error component of the prediction error).
In a subsequent paper, England (2002) proposes not just using the bootstrap esti-
mates to compute a standard deviation, but to actually generate a pseudo-sample of
outcomes of the whole future process, in this way obtaining a complete approximate
predictive distribution. From this, characteristics such as mean, variance, skewness
and medians, as well as other quantiles, are easily derived.

As an example, we use the triangle of Taylor & Ashe (1983). This dataset with
55 incremental losses is used in many texts on IBNR problems.

Xij <- scan(n=55)
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948
352118 884021 933894 1183289 445745 320996 527804 266172 425046
290507 1001799 926219 1016654 750816 146923 495992 280405
310608 1108250 776189 1562400 272482 352053 206286
443160 693190 991983 769488 504851 470639
396132 937085 847498 805037 705960
440832 847631 1131398 1063269
359480 1061648 1443370
376686 986608
344014

Based on these original data, we compute estimates α̂i, β̂ j in a chain ladder model.
For that, we invoke the glm-function with Poisson errors and log-link, and as co-
variates row and column numbers i and j (treated as factors). See also the preceding
section. Actually, we take a quasi-Poisson error structure, as if the observations
Xi j were φ times independent Poisson(µi j/φ ) random variables, i, j = 1, . . . ,t. Here
µi j = αiβ j for some positive parameters α1, . . . ,αt and β1, . . . ,βt with β1 = 1. Con-

struct fitted values α̂iβ̂ j, i, j = 1, . . . ,t and compute the sum of the future fitted val-
ues, as follows:

n <- length(Xij); TT <- trunc(sqrt(2*n))
i <- rep(1:TT, TT:1); i <- as.factor(i) ## row nrs
j <- sequence(TT:1); j <- as.factor(j) ## col nrs
Orig.CL <- glm(Xij˜i+j, quasipoisson)
coefs <- exp(as.numeric(coef(Orig.CL)))
alpha <- c(1, coefs[2:TT]) * coefs[1]
beta <- c(1, coefs[(TT+1):(2*TT-1)])
Orig.fits <- alpha %*% t(beta)
future <- row(Orig.fits) + col(Orig.fits) - 1 > TT
Orig.reserve <- sum(Orig.fits[future]) ## 18680856
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10.6.1 Bootstrapping

England & Verrall (1999) describes a method to create bootstrap estimates. They
are obtained by sampling (with replacement) from the observed residuals in the
past observations to obtain a large set of pseudo-data, and computing an IBNR-
forecast from it. The standard deviation of the set of reserve estimates obtained this
way provides a bootstrap estimate of the estimation error. We will give each step
of the method of England and Verrall, both the theoretical considerations and the
R-implementation.

The Pearson X2 statistic is the sum of the squared Pearson residuals. In the same
way, the deviance can be viewed as the sum of squared deviance residuals, so the
deviance residual is the square root of the contribution of an observation to the
deviance, with the appropriate sign. See Section 11.4. Though the deviance residual
is the natural choice in GLM contexts, in this case we will use the Pearson residual,
since it is easy to invert:

rP =
x−µ√µ

, therefore x = rP
√

µ + µ . (10.18)

To calculate the outcomes of the Pearson residuals (Xi j − µ̂i j)/
√

µ̂i j, do

Prs.resid <- (Xij-fitted(Orig.CL))/sqrt(fitted(Orig.CL))

The Pearson residual in (10.18) is unscaled in the sense that it does not include the
scale parameter φ . This is not needed for the bootstrap calculations but only when
computing the process error. To estimate φ , England and Verrall use the Pearson
scale parameter. It uses a denominator n− p instead of n to reduce bias:

φP =
∑r2

P

n− p
, (10.19)

where the summation is over all n = t(t +1)/2 past observations, and p = 2t −1 is
the number of parameters estimated. In R, do

p <- 2*TT-1; phi.P <- sum(Prs.residˆ2)/(n-p)

We adjust the residuals for bias in the same way as the scale parameter:

r′P =

√
n

n− p
rP. (10.20)

This is achieved as follows:

Adj.Prs.resid <- Prs.resid * sqrt(n/(n-p))

To be able to reproduce our results, we initialize the random number generator so as
to get a fixed stream of random numbers:

set.seed(6345789)
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Now run the bootstrap loop many times, for example, 1000 times.

nBoot <- 1000; payments <- reserves <- numeric(nBoot)
for (boots in 1:nBoot){ ## Start of bootstrap-loop

1. Resample from the adjusted residuals, with replacement:

Ps.Xij <- sample(Adj.Prs.resid, n, replace=TRUE)

2. Using this set of residuals and the estimated values of µ̂i j, create a new suitable
pseudo-history:

Ps.Xij <- Ps.Xij * sqrt(fitted(Orig.CL)) + fitted(Orig.CL)
Ps.Xij <- pmax(Ps.Xij, 0) ## Set ‘observations’ < 0 to 0

For convenience, we set negative observations to zero. For the Taylor & Ashe
example, about 0.16 negative pseudo-observations were generated in each boot-
strap simulation, and setting them to zero obviously induces a slight bias in the
results; in other triangles, this effect might be more serious. Note that to obtain
feasible estimates α̂i, β̂ j, it is not necessary that all entries in the run-off triangle
are non-negative, see Verbeek’s algorithm 10.3.1 as well as Section 10.5. But this
is required in the glm-routine for the poisson and quasipoisson families.

3. From this history, obtain estimates α̂i, β̂ j using a chain ladder model:

Ps.CL <- glm(Ps.Xij˜i+j, quasipoisson)
coefs <- exp(as.numeric(coef(Ps.CL)))
Ps.alpha <- c(1, coefs[2:TT]) * coefs[1]
Ps.beta <- c(1, coefs[(TT+1):(2*TT-1)])

4. Compute the fitted values, and use the sum of the future part as an estimate of
the reserve to be held.

Ps.fits <- Ps.alpha %*% t(Ps.beta)
Ps.reserve <- sum(Ps.fits[future])

5. Then, sample from the estimated process distribution. In this case, this can be
done by generating a single Poisson

(
∑α̂iβ̂ j/φ̂

)
random variable, with the sum

taken over the future, and multiplying it by φ̂ :

Ps.totpayments <- phi.P * rpois(1, Ps.reserve/phi.P)

6. At the end of the loop, store the simulated total payments and the estimated
reserve to be held.

reserves[boots] <- Ps.reserve
payments[boots] <- Ps.totpayments
} ## Curly bracket indicates end of bootstrap-loop



10.6 Variability of the IBNR estimate 287

The bootstrap reserve prediction error is computed as

PEbs(R) =
√

φPR+(SEbs(R))2, (10.21)

where R is a total reserve estimate (may also be for one origin year only), and
SEbs(R) the bootstrap standard error of the reserve estimate, based on residuals that
are adjusted for degrees of freedom as in (10.20). The process variance φPR is added
to the estimation variance.

PEbs <- sqrt(phi.P*Orig.reserve + sd(reserves)ˆ2) ## 2882413
sd(reserves)ˆ2 / (phi.P * Orig.reserve) ## 7.455098

It proves that the estimation variance in this case is about 7.5 times the process
variance. From the simulated values, one may compute various useful statistics.
Differences with those given in England (2002) arose because we set negative ob-
servations to zero, but are largely due to randomness.

payments <- payments/1e6 ## expressed in millions
quantile(payments, c(0.5,0.75,0.9,0.95,0.99))
## 50% 75% 90% 95% 99%
## 18.56828 20.67234 22.35558 23.61801 26.19600
mean(payments) ## 18.75786
sd(payments) ## 2.873488
100 * sd(payments) / mean(payments) ## 15.31885 = c.v. in %
pp <- (payments-mean(payments))/sd(payments)
sum(ppˆ3)/(nBoot-1) ## 0.2468513 estimates the skewness
sum(ppˆ4)/(nBoot-1) - 3 ## 0.2701999 estimates the kurtosis

Our results are illustrated in the histogram in Figure 10.1. To the bars, representing
fractions rather than frequencies, we added density estimates (the dashed one is a
kernel density estimate, the dotted one just a fitted normal density), like this:

hist(payments,breaks=21,prob=TRUE)
lines(density(payments), lty="dashed")
curve(dnorm(x, mean = mean(payments), sd = sd(payments)),

lty="dotted", add=TRUE)

Remark 10.6.1 (Caveats using IBNR methods)
If one thing can be learned from this whole exercise and the histogram in Figure
10.1, it is that for the future payments, one should not just give a point estimate
prediction like 18.680856 million (the outcome of the chain ladder reserve estimate
based on the original data). In a thousand pseudo-replications of the process, pay-
ments (in millions) ranged from 7.4 to 29.4, with quartiles 16.7 and 20.7, and one in
ten fell outside the bounds (14.3, 23.6). The ‘best estimate’ is so inaccurate that to
write it in any other way than 19±3 million grossly overstates the precision of the
prediction; all digits after the first two are insignificant.

Although some IBNR-methods have ardent supporters, it is very hard to sub-
stantiate a claim that any method is superior to the one described here; a lifetime
is probably not long enough to prove this in practice. Other things should be con-
sidered, such as easy access to software, the possibility to generate convincing and
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Fig. 10.1 Histogram of payments in millions, with estimated densities

revealing plots easily, control over what one is doing, and adaptability to new rules
and situations. All this is not present when one uses a poorly documented black box
method. As we have demonstrated here, R is a very suitable tool for the actuary,
because it is powerful and closely follows the formulas of the theory. This makes
checking, adapting and extending the code very easy. ∇

10.6.2 Analytical estimate of the prediction error

England and Verrall (1999) also provide a method to approximate the prediction
error of an IBNR forecast. It does not need a bootstrap simulation run and uses only
by-products stored in a glm object.

The mean squared error of the (unbiased) prediction X̂i j for each future obser-
vation Xi j can approximately be decomposed into one part estimation variance and
another part process variance:

E[(Xi j − X̂i j)
2] =

(
E[Xi j]−E[X̂i j]

)2
+Var[Xi j − X̂i j]

≈ 0+Var[Xi j]+Var[X̂i j], i+ j−1 > t.
(10.22)

The squared bias is small and can be neglected as long as the estimators X̂i j, even
if not unbiased, are consistent predictors of Xi j. The future loss Xi j and its forecast
X̂i j computed from past losses are independent random variables, so the variance of
their difference is just the sum of their variances.
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The process variance in the Poisson case is given by Var[Xi j] = φ µi j. For the
estimation variance, note that E[Xi j] = µi j = exp(ηi j). Using the delta method, see
Example 9.1.1, we see

Var[X̂i j] ≈
∣∣∣∣∂ µi j

∂ηi j

∣∣∣∣2 Var[η̂i j]. (10.23)

Since ∂ µ/∂η = µ in case of log-link, the last two relations lead to the following
approximation for the mean squared error of the prediction of future payment Xi j:

E[(Xi j − X̂i j)
2] ≈ φ̂ µ̂i j + µ̂2

i j V̂ar[η̂i j], i+ j−1 > t. (10.24)

In similar fashion we can show that if X̂i j and X̂kl are different estimated future
payments, then

Cov[X̂i j, X̂kl ] ≈ µ̂i j µ̂kl Ĉov[η̂i j, η̂kl ]. (10.25)

Computing the MSE of the prediction R̂ = ∑ X̂i j for future totals R = ∑Xi j leads
to an expression involving estimated (co-)variances of the various linear predictors.
Taking sums over ‘future’ (i, j) and (i, j) 	= (k, l), we get:

E[(R− R̂)2]

= ∑E[(Xi j − X̂i j)
2]+∑E[(Xi j − X̂i j)(Xkl − X̂kl)]

≈ ∑E[(Xi j − X̂i j)
2]+∑Cov[Xi j − X̂i j,Xkl − X̂kl ]

= ∑E[(Xi j − X̂i j)
2]+∑Cov[X̂i j, X̂kl ]

≈ ∑φ̂ µ̂i j +∑µ̂ 2
i j V̂ar[η̂i j]+∑µ̂i j µ̂kl Ĉov[η̂i j, η̂kl ]

= ∑φ̂ µ̂i j + µ̂ ′ V̂ar
[
η̂
]

µ̂.

(10.26)

Here µ̂ and η̂ are vectors of length t2 containing all µ̂i j and η̂i j. This is one way to
implement this using R:

Xij.1 <- xtabs(Xij˜i+j) ## full square matrix
ii <- row(Xij.1); jj <- col(Xij.1); Xij.1 <- as.vector(Xij.1)
future <- as.numeric(ii+jj-1 > TT)
ii <- as.factor(ii); jj <- as.factor(jj) ## are now vectors
Full.CL <- glm(Xij.1˜ii+jj, fam=quasipoisson, wei=1-future)
Sig <- vcov(Full.CL); X <- model.matrix(Full.CL)
Cov.eta <- X%*%Sig%*%t(X)
mu.hat <- fitted(Full.CL)*future
pe2 <- phi.P * sum(mu.hat) + t(mu.hat) %*% Cov.eta %*% mu.hat
cat("Total reserve =", sum(mu.hat), "p.e. =", sqrt(pe2), "\n")
## Total reserve = 18680856 p.e. = 2945659

The use of a cross-tabulation of Xij by rows i and columns j is a quicker way to
get from a triangle to a square than the one presented in Section 10.5. This square
is stored as a vector of length TT*TT. An estimate of the covariance matrix of the
�η = X�β is XΣ̂X′, where Σ̂ is the estimated variance matrix of the parameters, and
X is the regression matrix (design matrix, model matrix). In fitted(Full.CL),
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predictions for future values are automatically included. The approximate prediction
error is 2945659, the bootstrap prediction error is 2882413. To get predictions for
just row r, simply set the entries of mu.hat for elements outside row r equal to
zero. See Exercise 10.6.4.

10.7 An IBNR-problem with known exposures

In this section, we use R to tackle an IBNR problem with given exposures, that is,
the number of policies ni for each year of origin is assumed known. The dataset
consists of a run-off triangle for a period of eight years; the total number of claims
is Xij. To give an estimate of the claims that have yet to be reported, we read the
data and compute the row and column numbers just as in Section 10.5.

Xij <- scan(n=36)
156 37 6 5 3 2 1 0
154 42 8 5 6 3 0
178 63 14 5 3 1
198 56 13 11 2
206 49 9 5
250 85 28
252 44
221
TT <- trunc(sqrt(2*length(Xij)))
i <- rep(1:TT, TT:1); j <- sequence(TT:1)
ni <- c(28950,29754,31141,32443,34700,36268,37032,36637)

Looking at the data, one sees that in the last year of origin, only 221 claims emerged
in the first development year, which is appreciably fewer than the losses of the pre-
vious years, while the exposure is about the same. This number has no influence on
the estimates for the development factors in a chain ladder method (the β̂ -values),
but it is proportional to the estimates of future losses in the final year of origin, so it
has considerable influence on the resulting total reserve. See Exercise 10.7.2. This is
why it might be better to forecast the future losses using the Bornhuetter-Ferguson
method, where it is assumed that the forecasts are not, as with chain ladder, propor-
tional to the row sums, but with other quantities deemed appropriate by the actuary.
In this case, this boils down to not multiplying the predicted losses by the α̂i factors
estimated by the chain ladder method, but by the exposures ni. A good first guess
by the actuary would be that the loss ratios remain about the same, meaning in this
case that the number of claims in total for each year of origin is proportional to the
exposure. This leads to Mi = niα̂1/n1 as a prior mean for the row total of losses cor-
responding to year i. In the Bornhuetter-Ferguson method, the row parameters used
are those of the chain ladder method. So implementing this method, using Verbeek’s
algorithm 10.3.1 to find estimated parameters α̂i and β̂ j, goes as follows.

Ri <- tapply(Xij, i, sum); Cj <- tapply(Xij, j, sum)
alpha <- beta <- numeric(TT)
aa <- alpha[1] <- Ri[1]
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bb <- beta[TT] <- Cj[TT] / Ri[1]
for (n in 2:TT) {
aa <- aa + (alpha[n] <- Ri[n]/(1-bb))
bb <- bb + (beta[TT-n+1] <- Cj[TT-n+1] / aa)}
Mi <- ni * alpha[1] / ni[1]
BF <- Mi %*% t(beta); CL <- alpha %*% t(beta)
future <- row(BF) + col(BF) - 1 > TT
rowSums(BF * future) ## 0.0 0.0 0.5 2.6 6.4 13.2 26.3 76.9
rowSums(CL * future) ## 0.0 0.0 0.6 3.1 7.0 19.2 32.1 90.0

The row sums of the future part of the square matrix �Mβ̂ ′ represent the estimated
total numbers of losses by year of origin. So the reserve estimates for the chain
ladder method turn out to be somewhat bigger than those for Bornhuetter-Ferguson.
Contrary to what was expected earlier, this also holds for the final year.

One way to describe the chain ladder method is to construct vectors α̂ and β̂
(with βΣ = 1) in such a way that the deviance (9.29) between the data and the ‘past’
part (upper left triangle) of matrix α̂β̂ ′ is minimized, and to use the ‘future’ part of
this matrix to determine reserves. For Bornhuetter-Ferguson, use the future part of
�Mβ̂ ′ instead. It can be shown, see Verrall (2004), that both these methods arise as
extreme cases in a Bayesian framework with generalized linear models, with a loose
prior for chain ladder and a tight one for Bornhuetter-Ferguson.

In the Bornhuetter-Ferguson method, it is assumed that the effect of the year
of origin on the losses in the chain ladder method is captured by some external
quantity resembling the portfolio growth, represented in our case by the externally
given exposure vector�n. So, instead of α̂iβ̂ j, with βΣ = 1, the mean for cell (i, j) is

estimated as niβ̂ j with β̂ found by the chain ladder method. Evidently, we may get a

closer fit to the past data by choosing a different β̂ . Still assuming the losses to have
a (quasi-)Poisson distribution, we get a generalized linear model with about half the
number of parameters of the chain ladder method. The fit to the observed data will
be worse than with the chain ladder method (which uses optimal α̂ as well as β̂ ),
but we can easily judge by a deviance analysis if the fit is significantly worse.

To estimate the β -values using glm, note that the linear predictor ηi j = logni +
logβ j has a ‘fixed’ component logni, which has to be included with a coefficient 1
for each observation in row i. This can be achieved by using the offset mechanism,
see Section 9.5. The following R program achieves the fitting:

Expo <- ni[i] ## Exposures with each element of Xij
CLi <- glm(Xij˜as.factor(i)+as.factor(j), poisson)
CLoff <- glm(Xij˜offset(log(Expo))+as.factor(j), poisson)

The residual deviance with chain ladder is 34.2 on 21 degrees of freedom, as op-
posed to 62.0 on 28 with the offset model. Note that the data having an ordinary
Poisson structure instead of an overdispersed one (with φ > 1) is not far-fetched; the
unscaled deviance equals the χ2(21) critical value at level 96.5%. The χ2(7) critical
value at level 95% being 14.1, we conclude that the data exhibit more change with
year of origin than just growth in proportion to the number of contracts. The expo-
sure model is of course a restriction of the chain ladder model, with αi = ni/n1 fixed.
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The reader might try other models, by including a calendar year effect, geometric or
general, or a geometric effect of year of origin on top of the exposure.

10.8 Exercises

Section 10.1

1. In how many ways can the data in Table 10.1 be organized in a table, by year of origin, year of
development and calendar year, vertically or horizontally, in increasing or decreasing order?

Section 10.2

1. Apply the chain ladder method to the given IBNR triangle with cumulated figures. What could
be the reason why run-off triangles to be processed through the chain ladder method are usually
given in a cumulated form?

Year of Development year
origin 1 2 3 4 5

1 232 338 373 389 391
2 258 373 429 456
3 221 303 307
4 359 430
5 349

Section 10.3

1. Prove (10.11). What is the mode of the random variables Xi j in model (10.10)?

2. Apply the arithmetic separation method to the data of Exercise 10.2.1. Determine the missing
γ values by linear or by loglinear interpolation, whichever seems more appropriate.

3. Which distance between data and predicted values is minimized by the chain ladder method?
Which by the separation methods?

4. Why is it not an improvement of the model to use a model αiβ jγk rather than only αiβ j?
Making use of R and (10.12), and also by the method of successive substitution, see Section
9.3, verify if the results in De Vylder (1978) have been computed and printed correctly (note
that he did only a few iterations). Using the former method, is it a problem to estimate the
model including the calendar year parameters? Hint: there is a complication because R asks
for starting values if you use glm(...,family=gaussian(link=log),...). Such
starting values are supplied, for example, by specifying mustart=mu.st as a parameter,
where mu.st contains the fitted values of a Poisson fit with log-link, or of a Gaussian fit with
standard (identity) link.
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Section 10.4

1. Verify that the same predictions (10.14) are obtained from the models E[Xi j] = µαiβ j−1 and
E[Xi j] = µαiγ i+ j−2.

2. Argue why in model I, where for i, j = 1, . . . , t, we have E[Xi j] = µαiβ jγi+ j−1, the parameter
γt can be taken equal to 1 without loss of generality, meaning that for t = 8, model I has only
six more parameters to be estimated than model II. Verify that with model I there are 3(t −1)
parameters to be estimated from t(t +1)/2 observations, so model I makes sense only if t > 3.

3. Explain why models IV and V are equivalent.

4. For i = j = 1,3,5,7, compute the values predicted by models (10.15) and (10.16), and compare
these to the actual observations.

5. Verify (10.17). Use it to determine ∑∞
j=1 X̂i j .

6. Reproduce Table 10.10. Compare with a direct (quasi-)Poisson model instead of a two-stage
model.

Section 10.5

1. Using for example help("%*%") to get inspiration, compare the results of the following
calls that are candidates to produce the square of fitted values of a glm-call for the chain
ladder method, and comment:

fitted(CL)
alpha[i]*beta[j]
alpha*beta
alpha%o%beta
alpha%*%beta
outer(alpha,beta)
alpha%*%t(beta)

Find parameters mu, alpha[1:TT] and beta[1:TT], with alpha[1] = beta[1] =
1, but such that they still lead to the same predictions mu*alpha[i]*beta[j].
Also, find equivalent parameter vectors such that the sum of the beta elements equals 1.

2. The calendar year corresponding to an observation can be computed simply as k <- i+j-1.
Using an appropriate call of glm, apply the Arithmetic Separation method (10.9) to the data
of Exercise 10.2.4. To generate fitted values for the lower triangle of the IBNR-data, plot the
coefficients corresponding to the calendar years stored in an array gamma.sep by using the
call plot(log(gamma.sep)), and extrapolate the γk-values geometrically. Then generate
fitted values for the full IBNR-square.

3. Compute the parameter estimates for the Arithmetic Separation method through a method anal-
ogous to Verbeek’s algorithm 10.3.1, involving sums over diagonals. Compare the resulting fits
with those of the previous exercise.

4. The Hoerl-curve gives a functional form for the β j parameters, having β j = exp(γ j + δ log j)
for some real numbers γ and δ . These can be used for all rows in common, or for each row
separately (interaction). Apply this to the example in Table 10.1, and test for significance.
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Section 10.6

1. Using the method described in this section, construct a predictive distribution of the IBNR-
reserve to be held using a gamma error distribution instead of Poisson. Compare the resulting
histograms, as well as the first three estimated cumulants of the resulting distributions. [Apply
glm to the Gamma family with a log-link. Also, check England and Verrall (1999) for when
V (µ) = µ2 instead of V (µ) = µ should be taken into account. Special care should be taken
with the random drawing from the future claims. A gamma random variable has to be generated
for each cell, rather than for all cells combined such as was possible in the quasi-Poisson case.
The final results of the procedure should not deviate too much from the Poisson results, see
England and Verrall (1999), Tables 1 and 2.]

2. Repeat the Poisson bootstrapping but now using Verbeek’s algorithm 10.3.1 instead of call-
ing glm. By calling Sys.time, verify that about 20 bootstrap runs can be processed per
second using glm, and indicate how much faster Verbeek’s algorithm 10.3.1 makes the proce-
dure. Also investigate to how much bias the setting zero of negative observations leads, when
compared with rejecting the full triangle in case any row or column sum proves to be negative.

3. England and Verrall (1999, formula (3.4)) also compute the contribution to the total prediction
error of each separate year of origin i. Essentially, (3.4) equals (3.5) with the summations
restricted to the corresponding row of the IBNR predicted triangle. This can be easily achieved
by using the same code used for implementing formula (3.5), but now with the µ̂k j replaced
by zero for predictions of origin years with k 	= i.
Reproduce the third column of Tables 1 and 2 in England and Verrall (1999), p. 288.

Section 10.7

1. What happens if both offset(log(Expo)) and as.factor(i) are included as a model
term in the example of this section?

2. Find out what happens with the reserves according to chain ladder and Bornhuetter-Ferguson
if the number 221 in the last row is replaced by 180 or by 250.

3. Compute the past and future fitted totals in the chain ladder model for the data of this section;
you should get the values 2121 and 152.0312. Why does the total of the fitted values for past
observations equal sum(Xij)? Is this also the case when the factor year of origin in the glm
call is replaced by the offset term?

4. The cause of the fit of the chain ladder model being rejected at the 5% level (the deviance is
34.2 on 21 df, the critical value qchisq(0.95,df=21) is 32.67057) might be that there is
an effect in the data that is due to the calendar year. Fit a model that incorporates all three time
effects (origin year, development year, calendar year), see also Section 10.3. Do an analysis-
of-deviance on the two models: compare the difference in the deviances with an appropriate
χ2-critical value to judge if adding the extra set of covariates (calendar year as a factor) is
worthwhile, in the sense that the fit is improved significantly.
A problem with incorporating a calendar year effect is that for the lower right triangle, the cal-
endar year effect cannot be estimated, since no data about that calendar year are available. One
way to deal with this problem is to extrapolate the sequence of past calendar year parameters
to the future, for example using linear extrapolation, by fitting a straight line through the points
(i,γi), or geometrically.

5. In policy year 6, the terms of the policies were a little more consumer friendly, while in calen-
dar year 7, the judges were somewhat more lenient. Inspecting the αi and γk (for the calendar
year) estimates confirms this; note that the notion that these years are different from the rest
should not have been inspired by a peek at the estimation results. For that reason, treat these
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two years separately from the rest. So try a model that is a restricted version of the chain lad-
der model in the sense that the effect of year of origin is captured by the known portfolio sizes
except for year 6. Also try a model in which the calendar year parameters are restricted to γ7
arbitrary, γk ≡ 1 otherwise. To estimate the former model, all that has to be done is to replace
as.factor(i) in the chain ladder model by (i==6) as a model term. Note the double
equality sign in a logical expression; the brackets are also necessary.



Chapter 11

I do not fear computers. I fear the lack of them —
Isaac Asimov (1920 - 1992)

11.1 Introduction

In this chapter, we first recall the statistical theory of ordinary linear models. Then

ponent any distribution in the exponential dispersion family of densities. This class
θ , determining the mean, as well as a dispersion parameter,

and contains all the examples we introduced in Chapter 9 as special cases. Starting
from the general form of the density, we derive properties of this family, including

rion, but by analysis of deviance; the corresponding residuals are deviance residuals.
We discuss some alternatives. We also study the canonical link function. Then we
derive the algorithm of Nelder and Wedderburn to determine maximum likelihood
estimates for this family, and show how to implement it in R. The algorithm can be
applied with any link function. A subfamily of the exponential family of densities
not studied in Chapter 9 consists of the compound Poisson–gamma distributions
with fixed shape parameter α for the claim sizes. They have a variance equal to
ψµ p, with µ the mean, ψ the dispersion parameter and p = 2+α

1+α ∈ (1,2). Such
mean-variance structures were first studied by Tweedie.

11.2 Linear Models and Generalized Linear Models

In statistics, regression analysis is a technique to model the relationship between
certain variables. Output is a random response variable Y being measured, also
called dependent variable, response variable, responding variable, explained vari-
able, predicted variable, or regressand. Acting as input are the predictors x1, . . . ,xp,
also called independent variables, controlled variables, manipulated variables, ex-
planatory variables, predictor or predicator variables, control variables, collateral
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has a natural parameter

the mean, variance and mgf. Inference in GLMs is not done by a least squares crite-

we define Generalized Linear Models in their full generality, with as a random com-
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data, covariates or regressors. We assume the latter to be non-random and measur-
able without error.

We first briefly recall (weighted) multiple linear regression models. Assume that
Y1, . . . ,Yn are independent normal random variables with

E[�Y ] =�µ = X�β ; Var[�Y ] = σ2W−1, (11.1)

where the matrix W is diagonal with diagonal elements wii = wi > 0 called weights,
σ2 is the dispersion parameter and �β = (β1, . . . ,βp)

′ is a parameter vector. Just as
in the Bühlmann-Straub setting of Chapter 8, the ith observation is regarded as the
mean of a sample of wi iid observations. So our weights are natural weights, though
other interpretations for the weights are possible. In GLM contexts, the matrix of
regressors X is usually called the design matrix, though statistical problems do not
always result from a designed experiment. Its elements xi j, i = 1, . . . ,n, j = 1, . . . , p
contain for example the age of object i, or represent a membership indicator (dummy
variable) of a subgroup of the observations to which a parameter is attached. The
case wi ≡ 1, so W = I, is called the classical regression model. It is easy to check
that if�Y satisfies a weighted model with design matrix X, then Var[Yi

√
wi] = σ2 for

all i, therefore W1/2�Y follows a classical model with regressors W1/2X, and vice
versa (where W1/2 is diagonal).

Gauss-Markov theory, to be found in any textbook on econometrics or mathe-
matical statistics, gives the following results for linear models.

1. By setting zero the partial derivatives of the loglikelihood and solving the result-
ing system of linear normal equations, one may show that the maximum likeli-
hood equations are of linear form X′WX�β = X′W�Y , therefore we can determine
the ML-estimator of �β explicitly as

β̂ = (X′WX)−1X′W�Y ; (11.2)

2. Similarly, the weighted mean squared residual

σ̂2 =
1
n
(�Y −Xβ̂ )′W(�Y −Xβ̂ ) (11.3)

can be shown to be the maximum likelihood estimator of σ2;
3. β̂ has a multinormal distribution with mean vector �β and as variance matrix the

(Fisher) information matrix or dispersion matrix σ2(X′WX)−1;
4. nσ̂2/σ2 ∼ χ2(n− p), where p is the length of β̂ , so σ̃2 := n

n−p σ̂2 is an unbiased

estimator of σ2;
5. β̂ and σ̂2 are independent;
6. (β̂ , σ̂2) are jointly complete and sufficient statistics for the parameters (�β ,σ2).

If the regressand is not normal but from another family in the exponential class, we
can use generalized linear models (GLM), introduced by Nelder and Wedderburn
in 1972. In probability and statistics, the exponential class is an important class of

More on GLMs
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distributions. This is for mathematical convenience, because of their nice algebraic
properties. Also, they are often very natural distributions to consider. The normal,
gamma, chi-square, beta, Bernoulli, binomial, Poisson, negative binomial and geo-
metric distributions are all subfamilies of the exponential class. So the distribution
of the error term may be non-normal and heteroskedastic, having a variance that
depends on its mean.

Resorting to a GLM is also a remedy for the problem that the response might be
linear in the covariates on some other scale than the identity. The logarithmic scale
is an important special case, because linearity on this scale is equivalent to having a
multiplicative model rather than an additive one. Very frequently this is essential in
insurance applications.

Generalized Linear Models have three characteristics, see Section 9.2:

1. The stochastic component states that the observations are independent random
variables Yi, i = 1, . . . ,n with a density in the exponential dispersion family, see
(11.4) below.

2. The systematic component of the model connects to every observation a linear
predictor ηi = ∑ j xi jβ j, linear in the parameters β1, . . . ,βp. So �η = X�β .

3. The link function connects µi = E[Yi] uniquely to the linear predictor ηi by ηi =
g(µi), so �η = g(�µ).

In the (weighted) linear model,�η and�µ coincide, see (11.1); the link function is the
identity. Note that in a multiplicative (loglinear) model with log µi = ∑α j logxi j, the
coefficients α j are the partial derivatives of log µi with respect to logxi j. So we may

write α j = ∂ µi
µi

/ ∂xi j
xi j

, which means that the parameter α j can be interpreted as the
elasticity of µi with respect to xi j.

We finish this section by giving an example using R.

Example 11.2.1 (Linear and generalized linear models using R)
Assume we have data on the number of trips abroad by groups of wi, i = 1, . . . ,16,
people, of which gender and income are known, as follows:

w <- c(1,2,2,1,1,1,1,4,2,4,2,3,2,1,1,2)
Y <- c(0,1,0,8,0,0,0,30,0,1,1,38,0,0,0,26) / w
gender <- c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)
income <- c(1,2,5,20,1,2,5,20,1,2,5,20,1,2,5,20)

We fit an ordinary linear model and a generalized linear model with Poisson distri-
bution and logarithmic link:

lm(Y ˜ gender+income, weights=w)
glm(Y ˜ gender+income, weights=w, family=poisson)

The linear model says Y ≈−2.45+1.96×gender+0.58× income, the generalized
loglinear model is Y ≈ 0.053×1.68gender×1.28income. The first model gives negative
fitted values in case of low income for gender 0. ∇
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11.3 The Exponential Dispersion Family

Definition, examples and properties In Section 9.2, we listed a number of impor-
tant distributions to describe randomness in Generalized Linear Models. Below, we

can be shown that normal, Poisson, gamma and inverse Gaussian random variables
are all members of the following family, just as Poisson multiples and binomial
proportions.

Definition 11.3.1 (The exponential dispersion family)
The exponential dispersion family of densities consists of the densities of the fol-
lowing type:

fY (y;θ ,ψ) = exp

(
yθ −b(θ)

ψ
+ c(y;ψ)

)
, y ∈ Dψ . (11.4)

Here ψ and θ are real parameters, b(·) and c(·; ·) are real functions. The support of
the density is Dψ ⊂ R. ∇

These densities can be discrete or continuous; in some cases, differentials of mixed
type are needed. The status of the parameter θ is not the same as that of ψ , because
ψ does not affect the mean, in which we are primarily interested. The linear models
we described earlier only aimed to explain this mean. Though except in special
cases, the value of ψ is fixed and unknown, too, in GLM-literature the above family
is referred to as the one-parameter exponential family. The function b(·) is called
the cumulant function, see Corollary 11.3.5. The support Dψ does not depend on θ .
The same goes for the function c(·; ·) that acts as a normalizing function, enforcing
that the density sums or integrates to 1. For the continuous distributions the support
is R for the normal distribution, and (0,∞) for the gamma and inverse Gaussian
distributions. It may also be a countable set, in case of a discrete density. For the
Poisson multiples for example, Dψ is the set {0,ψ,2ψ, . . .}. In the following, we list
some examples of members of the exponential dispersion family. For the specific
form of the function b(·) as well as the support Dψ , we refer to Table D. In the
exercises, the reader is asked to verify the entries in that table.

Example 11.3.2 (Some members of the exponential dispersion family)
The following parametric families are the most important members of the exponen-
tial dispersion family (11.4):

1. The N(µ ,σ2) distributions, with as parameters θ(µ ,σ2) = µ and ψ(µ ,σ2) =
σ2. Note that since the parameter µ denotes the mean here, θ should not depend
on σ2.

2. The Poisson(µ) distributions, with natural parameter θ = log µ and ψ = 1.
3. For all natural m, assumed fixed and known, the binomial(m, p) distributions,

with as natural parameter the ‘log-odds’ θ = log p
1−p and ψ = 1.

4. For all positive r, assumed fixed and known, the negative binomial(r, p) distribu-
tions, for θ = log(1− p) and ψ = 1.

11 More on GLMs

give a general definition of the family of possible densities to be used for GLMs. It



11.3 The Exponential Dispersion Family 301

5. The gamma(α,β ) distributions, after the reparameterizations θ(α,β ) = −β/α
and ψ(α,β ) = 1/α . Note that θ < 0 must hold in this case.

6. The inverse Gaussian(α,β ) distributions, with parameters θ(α,β ) = − 1
2 β 2/α2

and ψ(α,β ) = β/α2. Again, θ < 0 must hold. ∇

Note that there are three different parameterizations involved: the ‘standard’ para-
meters used throughout this book, the parameterization by mean µ and dispersion
parameter ψ that proved convenient in Section 9.2, and the parameterization with θ
and ψ as used in this section. This last parameterization is known as the natural or
canonical parameterization, since the factor in the density (11.4) involving both the
argument y and the parameter θ that determines the mean has the specific form yθ
instead of yh(θ) for some function h(·).
Example 11.3.3 (Gamma distribution and exponential dispersion family)
As an example, we will show how the gamma distributions fit in the exponential
dispersion family. The customary parameterization, used in the rest of this text, is
by a shape parameter α and a scale parameter β . To find the natural parameter θ , as
well as ψ , we equate the logarithms of the gamma(α,β ) density and (11.4):

− logΓ (α)+α logβ +(α −1) logy−βy =
yθ −b(θ)

ψ
+ c(y;ψ). (11.5)

The parameters must be chosen in such a way that θ , ψ and y appear together in
the log-density only in a term of the form θy/ψ . This is achieved by taking ψ = 1

α
and θ = − β

α < 0. To make the left and right hand side coincide, we further take

for the terms not involving θ . In the µ ,ψ parameterization, µ is simply the mean,
so µ = α/β . We see that in the θ ,ψ parameterization, the mean of these random
variables does not depend on ψ , since it equals

E[Y ;θ ] =: µ(θ) =
α
β

= µ = − 1
θ

. (11.6)

The variance is
Var[Y ;θ ,ψ] =

α
β 2 = µ2ψ =

ψ
θ 2 . (11.7)

So the variance is V (µ)ψ , where V (·) is the variance function V (µ) = µ2. ∇

we can derive some useful properties of the exponential dispersion family.

Lemma 11.3.4 (Mgf of the exponential dispersion family)
For each real number t such that replacing θ by θ + tψ in (11.4) also produces a
density, the moment generating function at argument t of the density (11.4) equals

mY (t) = exp
b(θ + tψ)−b(θ)

ψ
. (11.8)

The density (11.4) in its general form permits one to derive the mgf of Y . From this,

b(θ) =− log(−θ), which leaves c(y;ψ) = α logα +(α−1) logy− logΓ (α), y > 0,
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case, it suffices to replace the integrations over the support Dψ in this proof by
summations over y ∈ Dψ

mY (t) =
∫

Dψ
ety exp

[
yθ −b(θ)

ψ
+ c(y;ψ)

]
dy (11.9)

=
∫

Dψ
exp

[
y{θ + tψ}−b(θ + tψ)

ψ
+ c(y;ψ)

]
dy× exp

b(θ + tψ)−b(θ)

ψ
.

So (11.8) follows immediately because we assumed that the second integrand in
(11.9) is a density. ∇

If Y has density (11.4), its cumulant generating function equals

κY (t) =
b(θ + tψ)−b(θ)

ψ
. (11.10)

As a consequence, for the cumulants κ j, j = 1,2, . . . we have

κ j = κ( j)
Y (0) = b( j)(θ)ψ j−1. (11.11)

Because of this, the function b(·) is called the cumulant function. From (11.11) with
j = 1,2, we see that the mean and variance of Y are given by:

µ(θ) = E[Y ;θ ] = κ1 = b′(θ),

σ2(θ ,ψ) = Var[Y ;θ ,ψ] = κ2 = ψb′′(θ).
(11.12)

Note that the mean depends only on θ , but the variance equals the dispersion para-
meter multiplied by b′′(θ). The variance function V (µ) equals b′′(θ(µ)). ∇

We proved in the previous chapter that for some specific examples, the ML-
estimates for E[Yi] in the full model all have residual 0, that is, µ̂i = yi, i = 1, . . . ,n.
This does not always hold; for instance if Yi ∼ uniform(0,2µi), the joint density
is ∏ 1

2µi
I(0,2µi)(yi), therefore the ML-estimators for µi = E[Yi] are Yi/2. But for all

densities in the exponential dispersion family, in the full model the ML-estimates of
E[Yi] can be proved to have zero residual, or what is the same, the ML-estimator for
the mean in a sample of size one from the exponential dispersion family equals the
observation.

Property 11.3.6 (ML-estimates of the means in the full model)
The parameter value θ̃ maximizing the density fY (y;θ ,ψ) of (11.4) is such that
y = E[Y ;θ ,ψ], so θ̃ = (b′)−1(y). ∇

Proof. The result follows easily from (11.4), since ∂ log fY (y;θ ,ψ)/∂θ = 0 must
hold for the maximum, so y = b′(θ) = E[Y ;θ ,ψ] by (11.12). Note that b′′(θ) is the
variance function, therefore positive, so E[Y ;θ ,ψ] increases with θ . ∇

11 More on GLMs

Proof. We give a proof for the continuous case only; for the proof of the discrete

. We can rewrite the mgf as follows:

Corollary 11.3.5 (Cgf, cumulants, mean and variance)
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Subfamilies of the exponential family (11.4) with different µ and φ but the same
norming c function and cumulant function b (and hence the same mean-variance

tial dispersion family into another in the same subfamily with a different dispersion
parameter ψ but with the same natural parameter θ , while taking an Esscher trans-

Property 11.3.7 (Taking sample means)
Let Y1, . . . ,Ym

let Y = (Y1 + · · ·+Ym)/m be the sample mean. If Y is a member of an exponential

ψ , then Y is in the same exponential dispersion subfamily with parameters θ and
ψ/m, if this pair of parameters is allowed.

mY (t) =
{

mY

( t
m

)}m
= exp

b(θ + tψ/m)−b(θ)

ψ/m
. (11.13)

meters θ and ψ/m. ∇

So taking the average of a sample of size m brings us from the parameter pair (θ ,ψ)
to (θ ,ψ/m). By the same token, we can get from (θ ,nψ ′) to (θ ,ψ ′) by taking the
average of a sample of size n. Then combining the two operations, we can get from
(θ ,ψ) to (θ ,nψ/m) and back. Taking limits, we can get from (θ ,ψ) to any other
dispersion parameter (θ ,αψ), α > 0. This all provided that these ψ-values lead to
a density in the subfamily.

Example 11.3.8 (Poisson multiples and sample means)
For Poisson, only φ = 1 is allowed, therefore we embed these distributions in a two-
parameter family, as follows. By Property 11.3.7, the sample means of m Poisson(µ)
random variables have a density in the exponential dispersion family (11.4), with
b(·), c(·; ·) and θ the same as for the Poisson density, but ψ = 1/m instead of ψ = 1,
and support Dψ = {0, 1

m , 2
m , . . .} Such a sample mean is a Poisson(mµ) random vari-

able, multiplied by 1/m. Extending this idea, let ψ > 0 be arbitrary, not specifically
equal to 1/m for some integer m, and look at

Y = ψM, where M ∼ Poisson(µ/ψ). (11.14)

It can be shown that Y has density (11.4) with θ = log µ and b(θ) = eθ , just as
with ordinary Poisson distributions, but with arbitrary ψ > 0. The support of Y is
{0,ψ,2ψ, . . .}.

As we saw, for ψ = 1/m we get the average of m Poisson(µ) random variables.
When ψ = n, the resulting random variable has the property that taking the average
of a sample of size n of it, we get a Poisson(µ) distribution. So it is natural to call

form gives us a density with the same ψ but different θ . To prove this, we use the

dispersion subfamily with fixed functions b(·) and c(·; ·) and with parameters θ and

relationship, see Section 11.4) are related by two operations: averaging and Esscher

Proof. By (11.8), we have for the mgf of Y :

This is exactly the mgf of a member of the exponential dispersion family with para-

be a sample of m independent copies of the random variable Y , and

cgf (11.10).

transformation. In fact by averaging we can transform a density in the exponen-



304

such random variables Poisson sample means. If ψ = n/m, (11.14) is the sample
average of m random variables of the type with ψ = n. So for these values, too, it
is rational to call the random variable Y a Poisson average. But in view of (11.14),
we also speak of such random variables as Poisson multiples. Note that for ψ > 1,
we get a random variable in the exponential family with a variance larger than the
mean. These variables can be used as an approximation (for which a GLM can be
estimated) for an ‘overdispersed Poisson’ random variable. ∇

Remark 11.3.9 (Binomial and negative binomial distributions)
ψ leads to a density in

random variables, the device of taking multiples ψ times random variables also
leads to an extended class of multiples of (negative) binomial random variables with
parameters (µ ,ψ). For the binomial case, the interpretation as averages in case of

∇

the same θ but different ψ . We can also obtain other members of the exponential
dispersion family with the same ψ but with different θ . This is done by using the
Esscher transformation that we encountered before, for example in Chapter 5.

Recall the Esscher transform with parameter h of a differential dF(y), which is

dFh(y) =
ehydF(y)∫
ehzdF(z)

, (11.15)

with the transformed density is easily seen to be equal to mh(t) = m(t + h)/m(h).
h has the

form

κh(t) =
b(θ +(t +h)ψ)−b(θ)

ψ
− b(θ +hψ)−b(θ)

ψ

=
b(θ +hψ + tψ)−b(θ +hψ)

ψ
.

(11.16)

the same scale parameter ψ , and location parameter θh = θ +hψ .
Transforming a density like in (11.15) is also known as exponential tilting. ∇

Corollary 11.3.11 (Generating the exponential dispersion family)
It can be shown that the Esscher transform with parameter h ∈ R transforms

1. N(0,1) into N(µ,1) when h = µ ;
2. Poisson(1) into Poisson(µ) when h = log µ ;
3. binomial(m, 1

2 ) into binomial(m, p) when p = 1
1+e−h , so h = log p

1−p ;

4. negative binomial(r, 1
2 ) into negative binomial(r, p) when p = 1− 1

2 eh, so h =
log(2(1− p));

11 More on GLMs

rational multiples (ψ = n/m) is not valid in general.

Corollary 11.3.10 (Exponential dispersion family and Esscher transform)

distributions proper, only ψ = 1 is allowed. For fixed r or n, just as for Poisson

For the continuous error distributions, any positive value of

provided the denominator is finite, that is, the mgf with F(·) exists at h. The mgf

the subfamily, but for the (negative) binomial distributions, just as for the Poisson

For a differential dF in the exponential dispersion family, the cgf of dF

In Property 11.3.7, we found how to generate exponential family members with

This is again a cgf of a member of the same exponential dispersion subfamily with
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5. gamma(1,1) into gamma(1,β ) when h = 1−β ;
6. inverse Gaussian(1,1) into inverse Gaussian(α,α2) when α =

√
1−2h, so h =

(1−α2)/2.

So all examples of distributions in the exponential dispersion family that we have
given can be generated by starting with prototypical elements of each type, and next
taking Esscher transforms and multiples of type (11.14), if allowed. ∇

11.4 Fitting criteria

To judge the quality of a fit, we can look at the residuals and at various variants of
the loglikelihood ratio reflecting the distance between fits and observations.

11.4.1 Residuals

Three types of residuals for observation y and (fitted) mean µ are commonly used:

Pearson residuals rP = y−µ
σ , where σ is the standard deviation, dependent on µ

through σ2 = φV (µ), with V (·) the variance function; these residuals are very
simple, but often remarkably skewed.

Deviance residuals rD = sign(y− µ)
√

d, where d is the contribution of the ob-
servation to the deviance D = −2φ log(L̂/L̃) (see Section 9.4). In other words,
the deviance is considered as a sum of squared residuals with the proper sign:

D = ∑di = ∑(rD
i )2 = 2∑

i
wi{yi(θ̃i − θ̂i)− [b(θ̃i)−b(θ̂i)]}. (11.17)

Here θ̃i is such that E[Y ; θ̃i,φ ] = yi (the unrestricted maximum, see Property
11.3.6), and θ̂i is the maximum likelihood estimate of θi under the current model.
See Exercise 11.3.6. Special cases are (9.29) for Poisson and (9.32) for gamma;
see also Exercise 11.3.7. For example, the deviance residual for Poisson, with
w = 1, θ = log µ and b(θ) = eθ , is

rD = sign(y−µ)
√

2
(
y log(y/µ)− y+ µ

)
. (11.18)

Anscombe residuals are based on transformed observations a(y), where the func-
tion a(·) is chosen to make a(Y ) ‘as normal as possible’. It proves that a good
choice for a(·) in a GLM with variance function V (·) has

a′(y) = V (y)−1/3. (11.19)
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By the delta method of Example 9.1.1, a first order approximation for E[a(Y )] is

a(µ), while Var[a(Y )] ≈ (
a′(µ)

)2
Var[Y ]. This leads to the Anscombe residual

rA =
a(y)−a(µ)

a′(µ)
√

V (µ)
. (11.20)

Some examples of Anscombe residuals are

Poisson: V (µ) = µ1, so rA =
3
2 (y2/3 −µ2/3)

µ1/6
; (11.21)

gamma: V (µ) = µ2, so rA =
3(y1/3 −µ1/3)

µ1/3
; (11.22)

inverse Gaussian: V (µ) = µ3, so rA =
logy− log µ

µ1/2
. (11.23)

It turns out that Anscombe residuals and deviance residuals are in fact often very
similar. As an illustration of this, in Exercise 11.3.9 the reader is asked to compare
Taylor expansions for the squares of the three residuals at y = µ for the case of
Poisson errors (φ = 1). The first non-zero term is (rP)2 = (y− µ)2/µ for all three,
the second is −(y−µ)3/(3µ2) for both (rA)2 and (rD)2.

In Example 9.1.1 it is shown that for the Poisson case, a(Y ) = Y 2/3 has skew-
ness near zero. In the gamma case, the cube-root transformation a(Y ) = Y 1/3 is the
well-known Wilson-Hilferty (1931) transformation to normalize χ2 random vari-
ables. In Exercise 2.5.14 the square root of gamma variables was used, which has
near-constant variance and third and fourth moments close to those of the normal
distribution.

11.4.2 Quasi-likelihood and quasi-deviance

The fit criterion used in GLM theory for statistical inference is the loglikelihood
ratio. In case of normality, this is equal to the least squares distance to a ‘full’ model
with a parameter for every observation i. In case of Poisson, gamma and other dis-
tributions, it is equal to other suitable distances between observations and fitted
values. Every test (Student, F) that can be used in ordinary linear models is valid

Assume we have observations yi, i = 1, . . . ,n, from independent Yi having density
(11.4), with natural parameters θi and dispersion parameters ψi = φ/wi with a fixed
φ and natural weights wi. For the corresponding means, write µi = E[Yi] = b′(θi).
The means depend on unknown parameters �β = (β1,β2, . . .)

′ by �µ = g−1(X�β ).
Consider the ratio of the sample density with parameters θi,ψi and the maxi-

mized one in the full model with parameters θ̃i,ψi such that yi = b′(θ̃i); see Property
11.3.6. The logarithm of this ratio equals

11 More on GLMs

asymptotically in GLMs.
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n

∑
i=1

log fY (yi;θi,ψi)−
n

∑
i=1

log fY (yi; θ̃i,ψi). (11.24)

Using (11.4), this can be rewritten as

n

∑
i=1

(
yiθi −b(θi)

φ/wi
− yiθ̃i −b(θ̃i)

φ/wi

)
=

n

∑
i=1

∫ θi

θ̃i

yi −b′(θ)

φ/wi
dθ . (11.25)

Substitute µ = b′(θ), so dµ
dθ = b′′(θ) = V (µ) > 0. Then (11.25) equals

q(µ1, . . . ,µn) :=
n

∑
i=1

∫ µi

yi

yi −µ
V (µ)φ/wi

dµ . (11.26)

Note that of the density (11.4), only the variance function V (·) has remained in
(11.26). The function q is called the quasi-likelihood (QL). The QL is the logarithm
of the likelihood ratio of the current model and the ‘full’ model, so it is actually a
log-likelihood ratio, not a likelihood.

We also might have obtained relation (11.26) by using

∂�

∂ µ
=

∂�

∂θ
∂θ
∂ µ

=
y−b′(θ)

φ/w
1

b′′(θ)
=

y−µ
φV (µ)/w

, y ∈ Rφ/w. (11.27)

Inserting V (µ) = µk for k = 0,1,2,3 in (11.26), we get in (11.24) the likelihood
ratios corresponding to a normal, Poisson, gamma and inverse Gaussian GLM.

Remark 11.4.1 (Two-dimensional cross-tables)
In a model with µi j = αiβ j as in Section 9.3, we can write down the normal equa-
tions to maximize (11.26). We get systems like (9.22), (9.18) and (9.23) by taking
V (µ) = µk for k = 0,1,2, respectively. But replacing V (µ) by µi in the QL (11.26)
leads to the Bailey-Simon method. ∇

The QL allows other variance functions to be studied, leading to an extended class
of possible models. An example is V (µ) = µ2(1− µ)2, 0 < µ < 1, for which the
QL can be computed, but for which there is not an actual distribution having this
log-likelihood ratio. Also, there is no support restriction in the QL, so the yi need
for example not be integers (or integer multiples of φ ) in the Poisson case.

The quasi-likelihood can be shown to have enough in common with ordinary
log-likelihood ratios to allow many asymptotic results to still remain valid.

The likelihood ratio Λ is the ratio of the maximized likelihood under a model
resulting in means µ̂1, . . . , µ̂n (depending on parameters β̂1, β̂2, . . . ), divided by the
one maximized without imposing any restrictions on the means, i.e., under the ‘full’
model, and therefore

logΛ = q(µ̂1, . . . , µ̂n). (11.28)

The scaled deviance, see Section 9.4, is just −2logΛ , while D = −2φ logΛ is the
deviance. In the same way, the quasi-deviance is defined as −2φq.
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Performing the integration in (11.26) for a fixed power variance function V (µ) =
µ p and dispersion parameter φ , we find the corresponding quasi-deviance. For all
p /∈ {1,2}, we get the following general expression:

Dp = 2
n

∑
i=1

wi

(
y2−p

i − (2− p)yiµ1−p
i +(1− p)µ2−p

i

(1− p)(2− p)

)
. (11.29)

For p = 0, we get the least squares distance D0. For p ∈ (0,1), we get a quasi-
deviance that is not the deviance with an exponential family density. In the limit for
p → 1 we get the Poisson deviance (9.29). For p ∈ (1,2), Dp is the deviance of the
Tweedie distributions of Section 11.7. In the limit for p → 2, the gamma deviance
(9.32) arises. The deviance D3 is the one of the inverse Gaussian distributions.

Maximizing the likelihood with respect to �β for the distributions corresponding
to V (µ) = µ p means maximizing the expressions Dp. When estimation is done
maximizing a quasi-deviance instead of the likelihood itself, one speaks of quasi-
likelihood (QL) estimation. The scaled deviance can be regarded as a distance in
Rn between the vector of fitted values µi and the vector of observed values yi. It is
a sum of contributions for each observation taking into account its precision. This
contribution gets reduced if the observation is less precise, that is, large.

11.4.3 Extended quasi-likelihood

The deviance is measured in terms of the dispersion parameter φ . The variance
function also determines the units of measurement for the deviance, so simply dif-
ferencing these discrepancy measures across variance functions is not feasible. The
problem is that the quasi-deviance does not represent a likelihood but a loglikeli-
hood ratio, comparing with the full model. This is fine when only estimation of the
means is desired. But to compare different variance functions such as V (µ) = µ p

it is necessary to widen the definition of quasi-likelihood. To get a likelihood in-
stead of a likelihood ratio with respect to the saturated model, Nelder and Pregibon
(1987) propose to look at the extended quasi-likelihood. We confine ourselves to the
Tweedie family with a variance function V (µ) = µ p.

Definition 11.4.2 (Extended quasi-likelihood)
The extended quasi-likelihood (EQL) for the exponential densities having variance
functions V (µ) = µ p is defined as

Q+
p (�µ,φ ;�y) = −1

2

n

∑
i=1

log
(
2πφyp

i

)− 1
2φ

Dp(y1, . . . ,yn; µ1, . . . ,µn), (11.30)

where Dp is as in (11.29), and φ is the dispersion parameter. ∇

Note that the estimates of the parameters β obtained by maximizing the EQL Q+
p

coincide with the ML-estimates. The estimate of φ obtained by setting zero the

11 More on GLMs
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partial derivative of Q+
p with respect to φ is the mean deviance, without correction

for parameters estimated.
When the likelihood itself can be computed, there is not much point in optimizing

the EQL. But the EQL can already be computed when only the coefficient p in the
variance function is known, thus allowing to compare quasi-likelihood models.

Property 11.4.3 (EQL approximates loglikelihood ratio)
The extended quasi-likelihood (11.30) has values approximating the loglikelihood
ratio for current model and saturated model.

Proof. The first term in (11.30) (about) equals the maximized loglikelihood under
the saturated model, as can be inferred, for p = 0,1,2,3, from:

log fY (y; µ = y,φ)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= − 1

2 log(2πφ) for N(µ ,φ),

≈− 1
2 log(2πφy) for Poisson(µ ,φ),

≈− 1
2 log(2πφy2) for gamma( 1

φ , 1
µφ ),

= − 1
2 log(2πφy3) for IG( 1

µφ , 1
µ2φ ).

(11.31)

This can easily be verified for the cases p = 0 and p = 3. For other values of p, the
proof is omitted, but for p = 1,2, the approximation is based on Stirling’s formula
for y! = yΓ (y) and Γ (α):

y! ≈
√

2πy (y/e)y and Γ (α) ≈
√

2π/α (α/e)α . (11.32)

For the Poisson case with µ = y and φ = 1, this gives

log
(
e−yyy/y!

)≈−y+ y logy− log
(√

2πy
(y

e

)y
)

= −1
2

log(2πy). (11.33)

For the gamma case with p = 2, from (11.32) we get

log
(

fY (y; µ = y,φ)
)

= log
( 1

Γ (α)
β α yα−1e−βy

)∣∣∣
α= 1

φ ,β= 1
yφ

≈− log
(√

2πφ (φe)−1/φ)+
1
φ

log
1

yφ
+
( 1

φ
−1

)
logy− 1

φ

= −1
2

log
(
2πφy2).

(11.34)

Adding up the values (11.31) for all i gives the first term of the EQL. ∇

Remark 11.4.4 (Improved EQL for Poisson)
An improved Stirling approximation for y! is obtained by adding an extra term:

y! ≈
√

2π(y+1/6) (y/e)y. (11.35)

For the quasi-Poisson random variables with p = 1 and arbitrary φ , the correction
term in the EQL (11.30) is then equal to − 1

2 ∑ log
(
2πφ(yi +1/6)

)
. ∇
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11.5 The canonical link

In the definition of the exponential dispersion family we gave, the parameterization
used leads to a term of the form yθ in the loglikelihood. Because of this property,
θ is called the natural or canonical parameter. There is also a natural choice for the
link function.

Definition 11.5.1 (Canonical link function)
The standard link or canonical link is defined as the link function η = g(µ) with
the property that the natural parameter θ coincides with the linear predictor η . ∇

Note that η(θ) = g(µ(θ)), so η ≡ θ holds if the link function g(µ) is the inverse
function of µ(θ) = b′(θ). This canonical link has several interesting properties.
Property 9.3.9 shows that in a Poisson GLM with log-link, the marginal fitted and
observed totals coincide. This result can be extended.

Property 11.5.2 (Canonical link and marginal totals)
If in any GLM with covariates xi j and canonical link g(·), the fitted value for ob-
servation i = 1, . . . ,n under a maximum likelihood estimation is µ̂i = g−1(η̂i) =

g−1
(

∑p
j=1 xi j β̂ j

)
, it can be proved that the following equalities hold:

∑
i

wi yi xi j = ∑
i

wi µ̂i xi j, j = 1, . . . , p. (11.36)

If the xi j are dummies characterizing membership of a certain group like a row or
a column of a table, and the yi are averages of wi iid observations, on the left hand
side we see the observed total, and on the right the fitted total.

Proof. To prove the equalities (11.36), recall that the β̂ j that maximize the loglike-
lihood must satisfy the normal equations. The loglikelihood of the parameters when
y is observed equals

�(β1, . . . ,βp;y) = log fY (y;β1, . . . ,βp). (11.37)

An extremum of the total loglikelihood based on the entire set of observations Y1 =
y1, . . . ,Yn = yn satisfies the conditions:

∑
i

∂
∂β j

�(β1, . . . ,βp;yi) = 0, j = 1, . . . , p. (11.38)

For the partial derivative of � with respect to β j we have by the chain rule and by
the fact that θ ≡ η for the canonical link:

∂�

∂β j
=

∂�

∂θ
∂θ
∂β j

=
∂�

∂θ
∂η
∂β j

, j = 1, . . . , p. (11.39)

With dispersion parameter φ and known a priori weights wi, using (11.4) and
µ(θ) = b′(θ), see (11.12), we get for observation i = 1, . . . ,n:

11 More on GLMs
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∂�

∂β j
=

wi(yi −µi)xi j

φ
, j = 1, . . . , p. (11.40)

The loglikelihood of the whole sample y1, . . . ,yn is obtained by summing over all
observations i = 1, . . . ,n. Setting the normal equations equal to zero then directly
leads to maximum likelihood equations of the form (11.36). ∇

A related property of the standard link is the following.

Property 11.5.3 (Sufficient statistics and canonical link)
In a GLM, if the canonical link θi ≡ ηi = ∑ j xi j β j is used, the quantities S j =

∑i wi Yi xi j, j = 1, . . . , p, are a set of sufficient statistics for β1, . . . ,βp.

Proof. We will prove this by using the factorization criterion, hence by showing that
the joint density of Y1, . . . ,Yn can be factorized as

fY1,...,Yn(y1, . . . ,yn;β1, . . . ,βp) = g(s1, . . . ,sp;β1, . . . ,βp)h(y1, . . . ,yn), (11.41)

for s j = ∑i wi yi xi j, j = 1, . . . , p and suitable functions g(·) and h(·). Write

fY1,...,Yn(y1, . . . ,yn; β1, . . . ,βp) =
n

∏
i=1

exp
(yiθi −b(θi)

φ/wi
+ c(yi;φ/wi)

)

= exp∑
i

yi ∑ j xi j β j −b
(

∑ j xi j β j

)
φ/wi

exp∑
i

c(yi;φ/wi)

= exp
1
φ

[
∑

j
β j ∑

i
wi yi xi j −∑

i
wi b

(
∑

j
xi j β j

)]
× exp∑

i
c
(
yi;

φ
wi

)
.

(11.42)

From this representation, the required functions g(·) and h(·) in (11.41) can be de-
rived immediately. The fact that the support of Y does not depend on θ or on the β j

parameters is essential in this derivation. ∇

Remark 11.5.4 (Advantages of canonical links)
Sometimes it happens in actuarial practice that the observations have been aggre-
gated into a table, of which, for reasons of confidentiality, only the marginals (row
and column sums) are available. Also, it often happens that policies have been
grouped into cells, to save time and space. If one uses a standard link, the marginal
totals, as well as the cell totals, apparently are sufficient statistics, hence knowing
only their outcomes, the maximum likelihood parameter estimates can still be de-
termined. The standard link also has advantages when the optimization algorithm
of Nelder and Wedderburn is used. It leads to somewhat fewer iteration steps being
necessary, and also divergence is much more exceptional. ∇

Example 11.5.5 (Canonical links for various error distributions)
As stated above, the canonical link θ(µ) makes the natural parameter θ linear in
the β parameters. Because µ(θ) = b′(θ), the canonical link is nothing but g(µ) =
(b′)−1(µ). The canonical links are listed in Table D. For the normal distributions
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with b(θ) = 1
2 θ 2, the canonical link is the identity function. For the Poisson and the

Poisson multiples, we have µ(θ) = eθ and hence the log-link is the standard link.
For the gamma, the canonical link is the reciprocal. For the binomial it is the logit
link θ = log p

1−p . This is also known as the log-odds, being the logarithm of the
so-called odds-ratio p/(1− p).

If θ ≡ η and moreover η ≡ µ , then apparently b′(θ) = θ holds, and the sequence
of cumulants (11.13) implied by this belongs to the normal distribution. ∇
Example 11.5.6 (Threshold models: logit and probit analysis)
Assume that the observations Yi denote the fractions of successes in ni independent
trials, i = 1, . . . ,n, each with probability of success pi. Further assume that a trial
results in a success if the ‘dose’ di administered in trial i exceeds the tolerance Xik,
k = 1, . . . ,ni, which is a random variable having an N(µi,σ2) distribution. Here µi

is a linear form in the ancillary variables. Apparently

pi = Φ(di; µi,σ2) = Φ
(

di −µi

σ

)
. (11.43)

Therefore, we have a GLM with a binomial distribution for the random component
and with η = Φ−1(p) as a link function. For the binomial distribution we have the
following canonical link function:

θ = η = log
p

1− p
. (11.44)

Solving this for p leads to p = eη/(eη + 1). Now if we replace the distribution of
the tolerances Xik by a logistic(µi,σ) distribution with cdf FXik(d) = ed∗/(ed∗ + 1)
for d∗ = (d −µi)/σ , we get a binomial GLM with standard link.

i

in case of a logistic distribution, of logit analysis. The second technique is nothing
but a binomial GLM involving a multiplicative model not for the probability of
success p itself, but rather for the odds-ratio p/(1− p), therefore a canonical link.
Probit analysis can be applied in the same situations as logit analysis, and produces
similar results.

Logit and probit models can be applied with credit insurance. Based on certain
characteristics of the insured, the probability of default is estimated. Another ap-
plication is the problem to determine probabilities of disability. In econometrics,
analyses such as these are used for example to estimate the probability that some
household owns a car, given the number of persons in this household, their total
income, and so on. ∇

11.6 The IRLS algorithm of Nelder and Wedderburn

a whole range of useful models, have a formulation sufficiently tight to allow for

11 More on GLMs

The GLMs introduced in Nelder and Wedderburn (1972), though encompassing

In case the thresholds X have a normal distribution, we speak of probit analysis,
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one general solution method to exist to solve all of them. This method is called the
iteratively reweighted least squares (IRLS) algorithm.

11.6.1 Theoretical description

To maximize the loglikelihood (11.4) for β1, . . . ,βp, we must solve the normal equa-

tions for the maximum likelihood parameter estimates β̂ j, j = 1, . . . , p:

n

∑
i=1

∂
∂β j

�(β1, . . . ,βp;yi) = 0, j = 1, . . . , p. (11.45)

One way to solve such a set of equations is to use Newton-Raphson iteration. In
this technique, to approximate the root of f (x) = 0 we solve h(x) = 0 instead, with
h(x) = f (xt)+ f ′(xt)(x−xt) a linear approximation to f (x) at the current best guess
xt for the root. In a one-dimensional setting, we then find a better approximation
xt+1 as follows:

xt+1 = xt − ( f ′(xt))
−1 f (xt). (11.46)

For an n-dimensional optimization, this technique leads to the same formula, but
with the points x replaced by vectors. Also, in our case where the f (xt) are first
derivatives, the reciprocal is the inverse of the matrix of second partial derivatives
of l, that is, of the Hessian matrix. The algorithm of Nelder and Wedderburn replaces
the Hessian by its expected value, so it uses the information matrix. The technique
that arises in this way is called Fisher’s scoring method. We will show that the
system of equations to be solved in the iteration step in this case equals the one of a
particular weighted regression problem.

To this end, temporarily consider one sample element and drop its index i. Re-
call that for mean, variance function and linear predictors, with g denoting the link
function, we have, see (11.12):

µ(θ) = b′(θ); V (µ) = ∂ µ/∂θ = b′′(θ); η = ∑
j

x jβ j = g(µ). (11.47)

Applying the chain rule to the loglikelihood � corresponding to the density in (11.4)
then leads to

∂�

∂β j
=

∂�

∂θ
∂θ
∂ µ

∂ µ
∂η

∂η
∂β j

=
y−b′(θ)

φ/w
1

b′′(θ)

∂ µ
∂η

x j =
y−µ
φ/w

1
V (µ)

∂ µ
∂η

x j. (11.48)

Just as in (11.26), of the likelihood, only the variance function has remained. The
link function η = g(µ) determines ∂ µ/∂η = ∂g−1(η)/∂η . For the second partial
derivatives we have:

∂ 2�

∂β j∂βk
=

∂ 2�

∂η2 x jxk. (11.49)
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Using the chain rule and the product rule for differentiation we get

∂ 2�

∂η2 =
∂

∂η

(
∂�

∂θ
∂θ
∂η

)
=

∂θ
∂η

(
∂ 2�

∂θ∂η

)
+

∂�

∂θ
∂ 2θ
∂η2

=
∂ 2�

∂θ 2

(
∂θ
∂η

)2

+
∂�

∂θ
∂ 2θ
∂η2 .

(11.50)

By the equality ∂�/∂θ = w(y−µ)/φ , its derivative ∂ 2l/∂θ 2 = −w/φ ∂ µ/∂θ and
∂ µ/∂θ = b′′(θ) = V (µ), we get

∂ 2�

∂η2 =
w
φ

[
−V (µ)

(∂θ
∂ µ

)2(∂ µ
∂η

)2
+(y−µ)

∂ 2θ
∂η2

]
=

w
φ

[
− 1

V (µ)

(∂ µ
∂η

)2
+(y−µ)

∂ 2θ
∂η2

]
.

(11.51)

In case of a canonical link, hence θ ≡ η and therefore ∂ 2θ/∂η2 = 0, only the
first term remains. In Fisher’s scoring method, the actual Hessian in the Newton-
Raphson iteration is replaced by its expected value, that is, the negative of the Fisher
information matrix I . In this case, too, the second term of (11.51) vanishes. To get
the expectation over the entire sample, we take the sum over all observations, and
the following expression for the ( j,k) element of I remains:

I jk = E

[
− ∂ 2�

∂β j∂βk

]
= ∑

i

wi

φ
1

V (µi)

(∂ µi

∂ηi

)2
xi jxik

= ∑
i

Wiixi jxik

φ
=

1
φ
(
X′WX

)
jk .

(11.52)

Here W is a diagonal weight matrix with

Wii =
wi

V (µi)

(
∂ µi

∂ηi

)2

, (11.53)

depending on the µi. Since η = g(µ), we have ∂ηi/∂ µi = g′(µi).
In view of (11.48), using these same weights and taking ui = (yi −µi)g′(µi), the

lhs of the normal equations ∂�/∂β j = 0, j = 1, . . . , p, can be written as:

∂�

∂β j
= ∑

i

Wii xi j (yi −µi)

φ
g′(µi), or

∂�

∂β
=

1
φ

X′W�u. (11.54)

Using Fisher’s scoring method amounts to finding an improved estimate �b∗ for �β
from the old one�b as follows:

�b∗ =�b+I
−1 ∂�

∂β
, or equivalently I

(
�b∗ −�b

)
=

∂�

∂β
. (11.55)

11 More on GLMs
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Let η̂ and µ̂ be the vectors of linear predictors and fitted values when the parameter
vector equals�b, so

η̂ = X�b and µ̂ = g−1(η̂) (11.56)

then by (11.52)

I�b =
1
φ

X′WX�b =
1
φ

X′Wη̂ , (11.57)

so we can rewrite the Fisher scoring iteration equation (11.55) as follows:

I�b∗ =
1
φ

X′W�z where zi = η̂i +(yi − µ̂i)g
′(µ̂i). (11.58)

The elements zi are called the modified dependent variable. Note that zi = g∗(yi; µi)
with g∗(·; µi) the linear approximation to g(·) at µi.

So, noting that the factor 1/φ cancels out, a maximum likelihood estimate of β
is found by the following iterative process:

Repeat

�b∗ :=
(
X′WX

)−1 X′W�z;

using�b∗, update the ‘working weights’ W,

as well as the ‘working dependent variable’�z

until convergence.

(11.59)

In the special case of an ordinary linear model, we have η = g(µ) = µ and V (µ)≡ 1,
so the normal equations ∂�/∂β j = 0 are a linear system, and have as a solution the
above expression with �y replacing �z and weights Wii = wi; no iteration steps are
necessary. Note that Fisher’s scoring method summarized in (11.59) indeed is an
iteratively reweighted least squares algorithm.

For a good initial solution, we do not need a guess for �b directly, but we can
also proceed as follows. First compute good guesses for µi and ηi by taking µi =
yi, i = 1, . . . ,n (take care when at the boundary in a binomial or Poisson model)
and constructing ηi by applying the link-function to µi. From these, compute initial
values for Wii and take zi = ηi. Now use regression to find a first guess for the b j.

11.6.2 Step-by-step implementation

As an example, assume that we want to estimate a Poisson GLM on 10 observations,
with an intercept and a trend as covariates, and no weights. The design matrix X then
has a vector of ones as its first column; the second is (1,2, . . . ,10)′.

• Initialize:

X ← design matrix [column of ones, column 1, . . . ,10]

�y ← dependent variable
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�z ← g(�y) (link function)

W ← diagonal matrix containing prior weights [all equal to 1]
�b ← (X′WX)−1 X′W�z (find starting values by weighted regression)

All this is accomplished by the R commands:

X <- cbind(rep(1,10),1:10)
y <- c(14,0,8,8,16,16,32,18,28,22)
z <- log(y+(y==0))
W <- diag(10)
b <- solve(t(X) %*% W %*% X) %*% t(X) %*% W %*% z
cat("Start:", b[1], b[2], "\n")

In R, solve(A) produces the inverse of matrix A. Note that we cannot just take
z <- log(y) in case y==0, see Exercise 11.6.1.

• Repeat the following steps until convergence:

�η ← X�b; �µ ← g−1(�η) [see (11.56)]

Wii ← 1
Var[Yi]

(
∂ µi
∂ηi

)2
[see (11.53)]

�z ← X�b+g′(�µ) · (�y−�µ) [entrywise product; see (11.58)]

S ← (X′WX)−1; �b ← SX′W�z [see (11.59)]

Implementation of this iterative process requires:

for (it in 1:5){
eta <- as.vector(X %*% b)
mu <- exp(eta) ## eta = g(mu) = log(mu)
W <- diag(mu) ## (g’(mu))ˆ(-2)/V(mu) = muˆ2/mu
z <- X %*% b + (y-mu)/mu ## d eta/d mu = g’(mu) = 1/mu
S <- solve(t(X) %*% W %*% X)
b <- S %*% t(X) %*% W %*% z
cat("it =", it, b[1], b[2], "\n")}

Of course when to stop the iteration is not a trivial problem, but simply doing
five iteration steps suffices in this case; see below.

• In the end, the following results are produced:
�b = estimate of �β
S = estimate of Var[�b]: the Fisher information matrix.

This is because, asymptotically,�b−�β ∼ N(�0,I −1).

Note how closely the R-commands to run this example, with naively implemented
loop and some output, follow the description of the IRLS algorithm given.

The values of�b produced by this R code are:

Start: 1.325353 0.2157990
it = 1 1.949202 0.1414127
it = 2 1.861798 0.1511522
it = 3 1.859193 0.1514486
it = 4 1.859191 0.1514489
it = 5 1.859191 0.1514489

11 More on GLMs
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To make R do the computations, simply do

coef(glm(y˜I(1:10),poisson))
(Intercept) I(1:10)
1.8591909 0.1514489

11.7 Tweedie’s Compound Poisson–gamma distributions

In actuarial applications, the relevant random variables generally are claim totals.
Such claim totals are zero with positive probability, but, in many models, contin-
uously distributed otherwise. Usually, a compound Poisson model is suitable to
model such totals. By cleverly choosing the claims distribution, we can get expo-
nential families of claim distributions with a variance function V (µ) = µ p for any
p ∈ (1,2). This enables us to tackle the problem of estimating and testing the para-
meters using GLM-methods. These distributions are in the so-called Tweedie class.
We already saw the cases µ p with p = 0,1,2,3.

For any exponent p ∈ (1,2), by a suitable choice of the parameters of the count-
ing distribution and the claim size distribution we can achieve that the compound
Poisson–gamma distributions form a subfamily of the exponential dispersion fam-
ily with mean µ and variance function of the form V (µ) = µ p. First we look at a
parameterization with parameters µ > 0 and ψ > 0. Assume that Y ∼ compound
Poisson(λ ) with gamma(α,β ) claim sizes, and parameters satisfying

λ =
µ2−p

ψ(2− p)
; α =

2− p
p−1

;
1
β

= ψ(p−1)µ p−1. (11.60)

Using (3.60), it is easy to verify that in this way we get a family of distributions with
mean λα/β = µ and variance λ

(
α/β 2 +(α/β )2

)
= λα(α +1)/β 2 = ψµ p. Note

that all claim sizes have common α , hence the same shape, dictated by the value of
the exponent p in the variance function; the expected claim numbers and the scale
vary to generate all possible (µ ,ψ) combinations.

We want to show that for this particular choice of parameters (11.60), the ‘den-
sity’ of Y can be written as in Definition 11.3.1, both for y = 0 and for y > 0. Note
that the cdf of Y is a mixed distribution in the sense of Section 2.2. We have

fY (y) = e−βy e−λ
∞

∑
n=1

β nα

Γ (nα)
ynα−1 λ n

n!
, y > 0. (11.61)

Now because of the choice in (11.60), it is not difficult to see that λβ α does not
depend on µ , only on the parameter ψ and the constant p. Therefore the sum in
(11.61) depends on ψ and y, but not on µ . To check that (11.61), together with
dFY (0) = Pr[Y = 0] = e−λ , is of the form (11.4), we define c(y,ψ), y > 0, as the
logarithm of the sum in (11.61), and c(0,ψ) = 0. Next, we equate −β = θ/ψ as
well as λ = b(θ)/ψ . This gives
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θ = −βψ =
1

(1− p)µ p−1 , (11.62)

so
µ(θ) = (θ(1− p))−1/(p−1) , (11.63)

and

b(θ) = λψ =
µ2−p

2− p
. (11.64)

′
cases of a Poisson multiple (p = 1) and a gamma variate (p = 2) can be obtained

understood as follows. For p ↓ 1, in the limit we get Poisson(µ/ψ) many claims
that are degenerate on ψ . When p ↑ 2, at the same time λ → ∞ and α ↓ 0, in such
a way that λα → µ/ψ . The resulting limit distribution is the gamma(µ/ψ,1/ψ)
distribution.

Actual distributions in the exponential dispersion family with a variance function
V (µ) = µ p exist for all p /∈ (0,1). For p ∈ (0,1), still the quasi-likelihood (11.26)
can be maximized to obtain parameter estimates.

Remark 11.7.1 (Negative binomial random variables)
For any fixed r, the negative binomial(r, p) distribution also has a variance func-
tion ‘between’ those of Poisson and gamma, with V (µ) = µ + µ2/r. Being integer-
valued, it might be a better choice to model overdispersed counts, see Examples
3.3.1 and 3.3.2, but it is somewhat more awkward to use than the quasi-Poisson
family. ∇

11.7.1 Application to an IBNR problem

A package tweedie extending R exists that enables one to easily estimate a
GLM from Tweedie’s family of distributions. It was contributed by Peter Dunn
and Gordon Smyth, see, for example, Dunn and Smyth (2005), and offers den-
sity (dtweedie), tail probability (ptweedie), quantile (qtweedie) and random
sample (rtweedie) for any given Tweedie distribution with parameters µ , φ and
p, where Var[Y ] = φ µ p. Also, it contains R code to produce a GLM family object
with any power variance function and any power link g(µ) = µq, where q = 0 de-
notes the log-link. It includes the Gaussian, Poisson, gamma and inverse Gaussian
families as special cases with p = 0, p = 1, p = 2 and p = 3, and provides access
to a range of generalized linear model response distributions that are not otherwise
provided by R. It is also useful for accessing distribution-link combinations that are
not supported by the glm function.

To illustrate the actuarial use of Tweedie’s class of distributions, we generated
an IBNR triangle containing drawings from Yi j, i, j = 1, . . . ,10, i + j ≤ 11, having
Tweedie distributions with mean µi j = µric jγ i−1δ j−1 and variance V (µ) = ψµ p

i j.

11 More on GLMs

The reader may check that, as it should be, V (µ(θ)) = µ (θ) holds. Note that the

as limits of this class. This fact may be verified by taking limits of the mgfs, or
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Table 11.1 Estimation results for some values of p in [1,2], selected to find the ML-estimate

p φ̂ Reserve loglikelihood

1 86.85 17287 −∞
1.25 12.83 17300 −376.844
1.5 2.08 17369 −368.463
1.75 0.40 17605 −367.764

2 0.10 18233 −374.902
1.384 4.75 17325 −370.883
1.616 0.94 17447 −367.312
1.759 0.38 17619 −367.867
1.654 0.73 17484 −367.229

The parameter values chosen were p = 1.5, ψ = 2, µ = 104, γ = 1.03, δ = 0.9. The
ri were known relative exposures for each row, the c j given development factors for
each column in the IBNR-triangle. Expressed as percentages, their values are

r = (100,110,115,120,130,135,130,140,130,120);

c = (30,30,10,20,5,3,1,0.5,0.3,0.2).
(11.65)

To estimate the parameters γ , δ and µ we used a log-link and a power variance
function V (µ) = µ p, generating a deviance Dp as in (11.29). In Table 11.1, we find
the estimation results with some values of p, the last few chosen by R’s function
optimize. We list the estimated dispersion parameter (taken to be the mean de-
viance). Using the function dtweedie, we can actually compute the likelihood.
An alternative is to use a quick-and-dirty implementation of formula (11.61). Un-
less p = 1 or p = 2, the following function only works for scalar arguments, and it
is not optimized for speed or guaranteed to be numerically stable:

dTweedie <- function (y, power, mu, phi)
{ if (power==2) s <- dgamma(y, 1/phi, 1/(phi*mu)) else
if (power==1) s <- dpois(y/phi, mu/phi) else
{ lambda <- muˆ(2-power)/phi/(2-power)
if (y==0) s <- exp(-lambda) else
{ alpha <- (2-power)/(power-1)
beta <- 1 / (phi * (power-1) * muˆ(power-1))
k <- max(10, ceiling(lambda + 7*sqrt(lambda)))
s <- sum(dpois(1:k,lambda) * dgamma(y,alpha*(1:k),beta))

} }
return(s) }

Next to the resulting loglikelihood, we list in Table 11.1 the estimate of the IBNR-
reserve to be held, which is equal to the sum over all future predicted values µ̂i j =

µ̂ric j γ̂ i−1δ̂ j−1, for those i, j = 1, . . . ,10 with i + j > 11. Note that the value of φ̂
varies very strongly with p, being about right (φ = 2) only for p close to the actual
value 1.5. The loglikelihood is maximal at p = 1.654, but the actual value p = 1.5
leads to an acceptable value as well. The ML-estimate of the reserve equals 17484.
Observe that the required reserve increases with the exponent p, but that it is not
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very sensitive to the value of p, just as, it turns out, are the parameter estimates γ̂ , δ̂
and µ̂ . To fit a Tweedie GLM, you can use the tweedie family object as found in
the statmod package contributed by Gordon Smyth. A family object specifies the
name of the family, the variance function µ p, the link function µq or log µ , as well
as its name and inverse function, the deviance residuals function, the AIC function,
the function µ(η), the initialization calls needed, and which µ and η values are
valid. The R code to produce these results is given below.

require(statmod)###If "FALSE" results, download it from CRAN first
TT <- 10; i <- rep(1:TT, each=TT); j <- rep(1:TT, TT)
past <- i + j - 1 <= TT; n <- sum(past)
Expo <- c(100, 110, 115, 120, 130, 135, 130, 140, 130, 120)
Runoff <- c(30, 30, 10, 20, 5, 3, 1, 0.5, 0.3, 0.2)
Off <- rep(Expo, each=TT) * rep(Runoff, TT); lOff <- log(Off)
##note that future values are input as 0.01; they get weight 0 anyway
Xij <- scan(n=100)
4289.93 3093.71 1145.72 1387.58 293.92 189.17 42.36 11.41 4.31 12.39
3053.09 2788.81 682.44 1475.69 253.31 100.58 79.35 15.48 8.06 0.01
4388.93 2708.67 688.42 2049.57 353.20 266.43 109.42 47.90 0.01 0.01
4144.15 2045.63 1642.27 1310.97 548.97 159.87 69.86 0.01 0.01 0.01
2912.73 4078.56 1652.28 2500.94 394.99 220.89 0.01 0.01 0.01 0.01
5757.18 5200.83 1177.65 2486.30 580.29 0.01 0.01 0.01 0.01 0.01
4594.18 3928.15 1236.01 2729.68 0.01 0.01 0.01 0.01 0.01 0.01
3695.03 3688.23 1300.97 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3967.13 4240.97 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4933.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
round(xtabs(Xij˜i+j)) ## produces a table of the input values
y <- Xij[past]
Tweedie.logL <- function(pow)
{ gg <- glm(Xij˜i+j+offset(lOff), tweedie(pow,0), wei=as.numeric(past))
reserve <- sum(fitted.values(gg)[!past])
dev <- deviance(gg); phi.hat <- dev/n
mu <- fitted.values(gg)[past]; hat.logL <- 0
for (ii in 1:length(y))
{ hat.logL <- hat.logL + log(dTweedie(y[ii], pow, mu[ii], phi.hat)) }
cat("Power =", round(pow,3), "\tphi =", round(phi.hat,2),

"\tRes. =", round(reserve), "\tlogL =", round(hat.logL,3), "\n")
hat.logL }

for (pow in c(1,1.25,1.5,1.75,2)) Tweedie.logL(pow)
oo <- optimize(Tweedie.logL, c(1.01,1.99), max=T, tol=1e-4)

If pow=1, the density of the observed values is zero, since they are not multiples of
Poisson outcomes. R warns that the observations are not integer.

11.8 Exercises

Section 11.2

1. Describe the design matrices X used in both fits in the example at the end of this section.
Note that an intercept is implied, so the first column of X is a column of ones. Check with
model.matrix(lm.).
To check if vcov(lm.) is the ML-estimated Fisher information matrix σ̂2(X′WX)−1, do

mean(lm.$residualsˆ2*w) *
solve(t(model.matrix(lm.))%*%diag(w)%*%model.matrix(lm.)) /

vcov(lm.)

11 More on GLMs
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Here solve(A) computes the inverse of matrix A, t(A) gives its transpose, diag(w) is a
diagonal matrix with vector w as its diagonal, %*% does a matrix multiplication and / does an
elementwise division.
Instead of σ̂2, which quantity is used by R to compute the variance/covariance matrix?
In the output of summary(glm.), find where the quantities sqrt(diag(vcov(glm.)))
occur. In this case, diag(A) produces a vector of the diagonal elements of matrix A; yet an-
other use of this function is diag(n) for scalar n, producing an n×n identity matrix.

Section 11.3

1. Prove the relations E
[ ∂�(θ ,Y )

∂
]
= 0 as well as E

[
∂ 2�(θ ,Y )

∂θ 2

]
+E

[( ∂�(θ ,Y )
∂θ

)2
]
= 0, where �(θ ,y) =

log fY (y;θ ,φ) for fY as in (11.4). From these relations, find E[Y ;θ ] and Var[Y ;θ ].

2. Check the validity of the entries in Table D for all distributions listed. Verify the reparameteri-
zations, the canonical link, the cumulant function, the mean as a function of θ and the variance
function. Also determine the function c(y;φ).

3. The marginal totals equations are fulfilled, by (11.36), for the Poisson distribution in case of a
log-link. Prove that the same holds for all power link functions g(µ) = µα , α > 0, by adding
up the ML-equations, weighted by β j . What is the consequence for the deviance of Poisson
observations with this link function?

4. The same as the previous exercise, but now for gamma observations.

5. Show that in general, the scaled deviance satisfies (11.17).

6. From the expression in the previous exercise, derive expressions for the scaled deviances for
the normal, Poisson, binomial, gamma and inverse Gaussian distributions.

7. Prove the statements about Esscher transforms in Corollary 11.3.11.

8. Show that the Anscombe residuals for Poisson, gamma and inverse Gaussian are as given in
(11.21)–(11.23).
Show that (11.17) reduces to (11.18) when the deviance residual for Poisson is computed.
Compare Taylor expansions at y = µ for the case of Poisson errors (φ = 1) for the squares of

the three residuals. The first term should be (rP)2 = (y−µ)2

µ for all three, the second is − (y−µ)3

3µ2

for both (rA)2 and (rD)2.
For µ = 1 and y = 0, .2, .4, .6,1,1.5,2,2.5,3,4,5,10, compare the values of rP, rA and rD in
case of a Poisson distribution.
Draw a sample Y1, . . . ,Y1000 from a gamma distribution with shape α = 5 and scale β = 1. For
p = 1/3 and p = 1/2, do a visual test for normality of Y p by inspecting normal Q-Q plots, see
Figure A.3.
Now let the gamma shape parameter be α = 0.1. Draw a histogram of the values a(Y ) = 3

√
Y .

Are the resulting residuals 3(y1/3 −µ1/3)/µ1/3 indeed more or less symmetric?

9. Investigate the standard normality of the Anscombe residual (11.22) of X ∼ gamma(µ,1), with
µ = 1,2,5,10,20,50. Take a sample of size 1000 and do a Student test for the mean, an F-test
for the variance, and the test known as the Jarque-Bera test, see Appendix (A.1), for the third
and fourth moment. Inspect Q-Q plots.

10. In the same way as the previous exercise, analyze standard normality of the Anscombe residual
(11.23) for the case X ∼ Inverse Gaussian(µ,1).
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Section 11.4

1. Plot the variance as a function of the mean for some values of p in a compound Poisson–
gamma GLM with parameters (11.62). Compare with the same for a negative binomial(r, p)
GLM.

2. Check that V (µ(θ)) = µ ′(θ) holds when µ(θ) is as in (11.62).

3.

4. Find the quasi-likelihood for the case V (µ) = µ2(1−µ)2.

5. When µi j = αiβ j as in (9.7), write down the normal equations corresponding to (11.26). Also,
verify the statements in Remark 11.4.1.

6. Verify the formula for Dp. Verify D1 and D2 by direct integration, and compare with the
corresponding relations (9.29) and (9.32). Verify that they also follow as limits from Dp. Verify
D0.

7. Verify that the maximum extended QL estimators of the β parameters as well as for φ are as
described. Also verify if the ML estimator of φ coincides with the maximum extended QL
estimator.

8. Compare extended QL and ordinary loglikelihood ratio for the (inverse) Gaussian case (p = 0
and p = 3).

Section 11.5

1. What does Property 11.5.2 imply about the sum of the residuals if there is a constant term in
the model? And if there is a factor in the model? (See also Exercise 11.3.3.)

Section 11.6

1. Why the exception for the case y==0 in the initialization phase of the example at the end of
this section?

2. In a Poisson GLM with standard link, what are the values of the working dependent variable
and weights? If �β is known, what are mean and variance of the working dependent variables
Zi?

3. Compare vcov(g) and S. The same for model.matrix(g) and X. Compare the standard
errors of the parameter estimates in the output of summary(g) with sqrt(diag(S)).

4. In our example in this section, iteration is stopped after 5 iterations, which turns out to be
adequate. How should the code be changed to allow the iteration to be stopped after a fixed
maximum number of iterations, or earlier when the state ‘convergence’ has been reached,
taken to mean that both coefficients b have exhibited a relative change of 10−6 or less?
Hint: use break to jump out of a for-loop, as in Section 3.5. Define the state ‘convergence’
as abs(dev-devold) / (abs(dev)+0.1) < tol for some suitable scalar quantity
dev and some small value of tol.

5. How should the code be changed for a binomial distribution with a standard (logit) link? Take
the same y-vector and fix the number of experiments at 50.

6. If we take an ordinary linear model with identity link for y instead of a Poisson GLM, what
changes should be made in the R code above, and what happens to the output?

11 More on GLMs

Verify that the mgf of the compound Poisson–gamma distribution is of the form (11.8).
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7. Using the fact that ML-estimates of the parameters satisfy the marginal totals equations in
a Poisson GLM with standard link, determine the optimal parameter values by successive
substitution. Compare the likelihoods after each iteration step with those of IRLS.

8. A certain credit insurer has classified a number of insureds into groups of size about 60 on the
basis of certain characteristics, has given each group a score based on these characteristics and
counted how many defaulted, as follows:

Size <- c(59,60,62,56,63,59,62,60)
Score <- c(69,72,76,78,81,84,86,88)
Def <- c( 6,13,18,28,52,53,61,60)

Adapt the IRLS algorithm above to estimate the default probability as a function of the score,
using a logit link η = log µ

1−µ . Check your algorithm with the glm output.
Hint: do not just set z <- log(Def/(Size-Def)) to initialize but add 0.5 to both nu-
merator and denominator.

9. Show that for a normal GLM with identity link, no iterations of Fisher’s scoring method are
necessary. Does the same hold for a normal GLM with some other link?

10. The canonical link θ(µ) expresses the natural parameter θ as a function of the mean µ in a
GLM. Show that dθ(µ)/dµ = 1/V (µ) as well as db(θ(µ))/dµ = µ/V (µ). Verify this for the
cases V (µ) = µ j , j = 0,1,2,3.

Section 11.7

1. Determine the maximized likelihood in the full model, see (11.31), for a Tweedie distribution
with V (µ) = µ p, 1 < p < 2. Incorporate the refined Stirling formula (11.35). What does the
EQL look like?

2. Run the following R code:

hist(rtweedie(1000, power=1.001, mu=1, phi=1), breaks=41)
sum(dtweedie((1:1999-.5)/100, 1.5, 1, 1)) / 100 +
dtweedie(0, 1.5, 1, 1)

Explain the results.

3. Generate a 6× 6 IBNR triangle of Tweedie distributed claim totals, with variance function
V (µ) = µ p for p = 1.2. Take the mean of observation Xi j to be proportional to α i−1 for α =
1.03 and to β j , with β = (1, .9, .4, .2, .1, .05), and take E[X11] = 10. Do an analysis similar to
the one in this section, and report your results.



Appendix A
The ‘R’ in Modern ART

Of fundamental importance is that S is a language. This makes S
much more useful than if it were merely a “package” for
statistics or graphics or mathematics. Imagine if English were
not a language, but merely a collection of words that could only
be used individually – a package. Then what is expressed in this
sentence is far more complex than any meaning that could be
expressed with the English package —
Patrick J. Burns (S Poetry, 1998)

This appendix provides an informal introduction to the concepts behind the software
R and the programming language S it implements. The aim is to get a feeling of how
R operates and how its output should be interpreted when applied to problems from
actuarial risk theory. Many texts about using R are available, see the references. The
first section of this appendix was inspired by Burns’ (2005) guide for the unwilling
S user, the second shows how to do some exploratory data analysis on stock prices.
In the third section, we illustrate the use of R by generating a portfolio of automobile
insurance risks, to be used for testing purposes. For the analysis of such a portfolio
using Generalized Linear Models, see Section 9.5.

A.1 A short introduction to R

R is a programming environment that is well suited for solving statistical and econo-
metric problems. As regards risk theory, it is important that it offers many useful
mathematical functions like the Fast Fourier Transform (FFT). Another essential
capability of R is solving Generalized Linear Models (GLM) in the sense of Nelder
and Wedderburn (1972). See Chapters 9–11. Both R and S-Plus implement the S lan-
guage to fit and analyze statistical models, and currently they differ only on minor
details. R is also known as GNU-S, where the acronym GNU is short for “GNU’s
Not Unix”. Apart from being stable, fast, always up-to-date and very versatile, the
chief advantage of R is that it is available to everyone free of charge. And because it
is open-source software, its sourcetexts are available, so it is not a black box system
where one has to guess how programmers have interpreted and implemented the
theory. It has extensive and powerful graphics abilities, and is developing rapidly,
being the statistical tool of choice in many academic environments.

Our basic environment is Windows, but R is available on many more platforms.
To start up R, download a copy of the program on www.r-project.org (the
CRAN website) and install it. Put a shortcut to the program on your desktop, and
click on it to enter R’s graphical user interface. To quit, press for example Alt-F4.

325
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S is an interactive language. User programs are not compiled, but interpreted and
executed. The program R prompts the user for input, displaying its prompt >. After
a command is entered, R responds. Just typing the name of an object will cause R to
print it, so a “hello world” program involves simply typing in the string

"Hello world!"

Statements to be executed can also be stored in a script file. To execute them, use
cut-and-paste, or open the file in R’s own script editor by choosing File→ Open
script. Then use one of the Run commands that have become available under
Edit, or click an appropriate icon with the same effect. Or just press Ctrl-R to run
the current line or selection.

Objects Almost everything in R is an “object”. Object oriented programming
(OOP) is a programming paradigm that uses objects and their interactions to de-
sign applications and computer programs. Many modern programming languages
support OOP. R objects may hold a single value, a vector of values, a matrix or a
more general record. The most common object is a vector containing real, integer or
complex numbers, character strings, or Boolean variables (TRUE or FALSE). A ma-
trix also has a single type of entry, but has rows and columns. A vector is not always
the same as a matrix with just one column. A data frame is a matrix that may have
different types in different columns. There is only one type within each column of
a data frame. The components of a list can be any sort of object including another
list. The result of a regression, for example, is an object containing coefficients,
residuals, fitted values, model terms and more.

Vectors and lists can have names, and each element or component gets a name.
The rectangular objects have dimnames: names for each row and each column. Data
frames must have dimnames, matrices may or may not.

A factor is a division into categories. For example, drivers might be of type
“Rural”, “City” or “Other”, called the levels of this factor. Also, a quantitative vari-
able like a policy year or a bonus-malus class might be treated as a factor.

Objects that must be saved need to get a name. One name identifies a whole
object; “names” and “dimnames” just specify pieces of objects. Valid names are
most combinations of letters, digits, the period (".") and the underscore ("_").
For example .a, ._ and just . are acceptable names, though _a and _ are not. For
obvious reasons, a name .1 is also not legal, but ..1 is.

Many people will experience trouble with the fact that names are case-sensitive.
So T and t are two different names; T and TRUE are Boolean values ‘true’, t(B) is
the transpose of a matrix B. The family of gamma distributions in a generalized lin-
ear model is to be referred to as Gamma, to avoid confusion with gamma(y) denot-
ing the gamma function Γ (y) (factorials). But the Poisson family is just poisson.

Some names are reserved, like return, break, if, TRUE, FALSE. The short
versions T and F are not reserved in R, though redefining them might lead to prob-
lems. The same holds for c, t and q for example.

The way to assign names to objects is to give the name, then the two characters
<- (the ‘gets arrow’, pronounced ‘gets’ and best surrounded by spaces), then the
command that creates the object:
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const <- 1/sqrt(2*pi)

The ‘gets’ operator also has a rightward form: a <- 1 and 1 -> a have the same
effect. Another way to do an assignment is simply a = 1, but this is not allowed
under all circumstances.

Reading from a file To read a large object produced for example by Excel, first
write it to a text file. Having its roots in UNIX, R treats the backslash \ as an escape
character, so type filename and path, for example, as

fn <- "C:\\R-files\\somefile.text" ## or equivalently:
fn <- "C:/R-files/somefile.text"

Simply using a single forward slash / instead works fine in Windows systems. Note
that the remainder of a line after a # symbol is treated as comment.

To put the numbers written to a file into a vector, use the scan function. It
expects numbers separated by white space, and reads on until the end of the file. It
can also be used for keyboard input, or input from a script; then it reads on until a
blank line. The command could be:

> vec <- scan("C:/Documents and Settings/Rob Kaas/
+ Desktop/anyfile.txt")

Here, we list not just the command to be given to R, but also R’s prompt >. Com-
mands can be split up over several lines. Since the first command line above ended
in the middle of a character string, R assumes it is not finished, so it gives its con-
tinuation prompt + and waits for the remainder of the command. But quite often,
this continuation prompt appearing indicates a typing error, notably when a closing
bracket is omitted somewhere.

Later on, you can inform R that you actually want to store the numbers in vec
in a matrix, for example by

mat <- matrix(vec, ncol=5, byrow=TRUE)

This instructs R to stack the numbers in vec in a matrix with 5 columns, but not in
column major order such as is standard in R and some other languages, but by row.

To read from a file saved by a spreadsheet program as a comma separated file, do
one of these:

pp <- scan("thefile.csv", sep=",") ## or:
pp <- scan("thefile.csv", dec=",", sep=";")

The second form applies in systems where the decimal point is replaced by a
comma. Then the separation character in a .csv file is a semicolon. In this text,
we will generally work with small enough datasets to include the numbers in the
script file, or type them in at the keyboard, using Xij <- scan(n=15) to store
15 numbers in Xij.
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Combining numbers into a vector To combine elements into a vector, use c():

> numbers <- c(0, 3:5, 20, 0)
> numbers
[1] 0 3 4 5 20 0

In this listing, there is input echoed by R, which is preceded by a screen prompt >,
as well as output. The [1] starting the response says that the line begins with the
first element. By 3:5 we denote the sequence of numbers 3, 4 and 5.

The c function may also concatenate other things than numbers:

words <- c("Testing", "testing", "one", "two", "three")

One way of creating matrices is to bind vectors together. The rbind function treats
the vectors as rows:

> a.matrix <- rbind(numbers, 1:6)
> a.matrix

[,1] [,2] [,3] [,4] [,5] [,6]
numbers 0 3 4 5 20 0

1 2 3 4 5 6

While other languages involve heavy use of for-loops, they are best avoided in R, as
it is an interpreted language rather than a compiled one. This is often possible when
doing the same operation on all elements of a vector, for instance taking the sum
or the mean of a vector of values. The first way given below to store the first 107

squares in a takes about half a second, the second one more than a minute:

n <- 1e7; a <- (1:n)ˆ2
for (i in 1:n) a[i] <- iˆ2

Matrix multiplication in a programming language like Pascal is not a trivial matter.
In R, we simply do

> a.matrix %*% 2:7
[,1]

numbers 170
112

From the output one sees that the result is a 2× 1 matrix, with two rows and one
column, which is not quite the same as a 2-vector. Note that %*% is used for matrix
multiplication; a.matrix * numbers does elementwise multiplication when
applied to matrices or vectors. Operators with % signs around them are variants of
the ones without. Compare the following ways to multiply vector (1,2,3) with itself:

> 1:3 * 1:3 ## elementwise product; equals (1:3)ˆ2
[1] 1 4 9
> t(1:3)*1:3 ## elementwise product (as a matrix)

[,1] [,2] [,3]
[1,] 1 4 9
> ## inner product (as a matrix);
> 1:3 %*% 1:3 ## equals t(1:3)%*%1:3 and crossprod(1:3)

[,1]
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[1,] 14
> ## outer product;
> 1:3 %*% t(1:3) ## equals 1:3%o%1:3 and crossprod(t(1:3))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

As a matrix multiplication of a 1×3 matrix (row vector) by a 3×1 matrix (column
vector), the inner product is a scalar (1×1 matrix): (1,2,3)(1,2,3)′ = 12 +22 +32 =
14; the outer product (1,2,3)′(1,2,3) is a 3×3 matrix with the cross products i j for
i, j = 1,2,3.

Extracting parts of objects Extracting pieces of objects is done by subscripting,
using square brackets. There are four common ways of indexing.

1. Positive numbers select the index numbers that you want:

> words[c(3:5, 1)]
[1] "one" "two" "three" "Testing"

2. In R, vectors are always numbered with 1 as their first element. This makes it
possible to use negative numbers to give the indices to be left out:

> numbers[-4]
[1] 0 3 4 20 0

3. If there are names, you can select the names that you want.
4. Logicals: select the locations that you want.

> numbers[numbers < 10]
[1] 0 3 4 5 0

Testing equality with real numbers needs to be done with care, since the inexactness
of computed numbers can cause equality not to hold exactly. Our computer gives:

> sqrt(2)ˆ2 == 2
[1] FALSE

From the [1] we see that R is actually printing a vector (of length 1). Note that a
double symbol ‘==’ means equality, so a==1 results in FALSE or TRUE, but a=1 is
an assignment, or a named argument of a function. Similarly, a < -1 is Boolean,
but a<-1, without a space between the < and the -, denotes an assignment.

It is possible to replace the values of part of an object:

> numbers2 <- numbers
> numbers2[4:5] <- c(17,19)
> numbers2
[1] 0 3 4 17 19 0

In matrices and data frames the rows and columns are subscripted separately:
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> a.matrix[2:1, numbers>4]
[,1] [,2]

4 5
numbers 5 20

The result is a submatrix of a.matrix with the second and the first row (in that
order), and all columns where the numbers vector has an element larger than 4.

Leave a blank in a dimension to indicate that you want all the rows or columns:

> a.matrix[, c(1,3,5)]
[,1] [,2] [,3]

numbers 0 4 20
1 3 5

Lists are created with list, almost always with the tag=object form. The $
operator is used to extract a component out of a list.

> list1 <- list(num=numbers, char=words)
> list1$char
[1] "Testing" "testing" "one" "two" "three"

Doing arithmetic In arithmetic, the usual order of operations applies. Use paren-
theses to modify the default order of computation; spaces are generally ignored:

> 9*3 ˆ-2
[1] 1
> (9*3)ˆ-2
[1] 0.001371742
> -2ˆ-.5
[1] -0.7071068
> (-2)ˆ-.5
[1] NaN

The vectors need not have the same length. Consider the command:

> c(1,0)+(-1:4)
[1] 0 0 2 2 4 4

We can visualize this as below. The first two columns of this table show the original
problem. The next two columns show the expanded form of the problem; the shorter
vector is copied down its column until it is as long as the other vector. If the length of
the longer vector is not a multiple of the one of the shorter vector, R gives a warning.
Once the expansion is done, the resulting vectors can be added. The answer is shown
in the final column of the table.
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original expanded answer

c(1,0) -1:4 c(1,0) -1:4 c(1,0)+(-1:4)

1 −1 1 −1 0
0 0 0 0 0

1 1 1 2
2 0 2 2
3 1 3 4
4 0 4 4

Missing values are denoted by NA and propagate through calculations. Use is.na
to test for missing values; the first command below compares elements to the value
NA, and the result of these comparisons is not true or false, but simply NA.

> c(1, 7, NA, 3) == NA
[1] NA NA NA NA
> is.na(c(1, 7, NA, 3))
[1] FALSE FALSE TRUE FALSE

Parameters for functions We already met a few R-functions: c, scan and sqrt
for example. Usually not all of a function’s arguments need to be given, as many of
them will have default values. The call scan("thefile.csv", sep=",")
used earlier was invoked with two arguments. The first is not named so it must refer
to the first argument of the function. The second is named by sep. Since it is named,
it need not be the second argument of the function.

The name used to specify the sep argument could have been shortened to se,
but not to just s because there are other arguments to scan that begin with s; use
args(scan) to see this function’s arguments and default values; scan produces
the full source text of this function. Special rules apply to functions like c that have
an arbitrary number of arguments.

Generic functions For functions like print, plot and summary, what happens
depends on the parameters given. A data frame is printed much like a matrix. When
print sees a data frame, it invokes a function designed to print data frames. What
generic functions do depends on the class of the object on which they operate.

Making plots When you just plot an object, the result often makes sense. For
example plot(numbers) plots the values against the index numbers. To add a
line a + bx with intercept a = 10 and slope b = 20 to the plot, call abline(10,
20). Another useful graphics function for exploratory data analysis is hist to plot
a histogram. Right-click on a plot to save it, to the clipboard or as a PostScript file.

Using R’s help facility To get help with specific R functions, type a question mark
followed by the name of the function. For example, ?objects, or, equivalently,
help(objects). More information is found by help.search("objects").

At the end of help pages, there are illustrative examples that can be pasted into
the R-console and run, or reproduced, for example, by example(glm). For
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the interested reader, there are many texts on the internet about using R. Or type
help.start() in R and click away.

A.2 Analyzing a stock portfolio using R

To illustrate how R can be used in risk management, assume that we are interested
in buying a portfolio consisting of stocks of one company manufacturing tyres and
another producing liquor. Our historical data consist of the weekly stock prices in
the latest three calendar years, and on the basis of that, we want to predict the fu-
ture behavior of a portfolio consisting of a mix of these two stocks. R has a lot of
functionality to handle time series, but we will use standard functions only here.

The prices were as follows:

Tyres <- scan(n=157)
307 315 316 314 324 310 311 295 278 295 318 343 342 323 328 303
309 307 315 296 313 316 317 306 307 326 330 330 333 341 337 353
356 359 349 351 359 360 363 342 337 334 352 357 360 368 363 366
366 365 381 401 401 421 422 425 417 427 436 440 432 406 401 420
420 424 416 403 400 392 391 390 406 415 429 420 415 420 417 445
447 449 447 450 460 470 495 507 518 516 522 524 484 497 490 500
464 458 446 450 471 485 486 501 506 502 494 497 465 478 490 496
517 506 497 483 474 495 499 483 477 481 474 479 431 438 431 436
434 453 442 445 461 463 481 490 470 480 497 507 503 508 485 492
490 519 506 539 542 553 558 562 532 510 512 504 474
Liquor <- scan(n=157)
781 784 757 741 728 726 743 746 768 752 758 754 779
777 780 815 791 779 802 797 800 860 873 854 855 846
824 833 838 851 827 847 859 853 926 935 952 962 958
943 938 949 1000 1003 1018 1022 1026 1019 1037 1026 999 1011
994 1036 1030 1028 1005 1006 1005 970 983 984 980 996 975
976 987 1008 1057 1054 1040 1045 1057 1101 1096 1094 1108 1102
1104 1105 1092 1098 1113 1076 1060 1054 1054 1057 1078 1077 1091
1093 1079 1086 1064 1134 1167 1217 1155 1171 1174 1213 1218 1250
1329 1350 1334 1318 1315 1310 1368 1370 1389 1420 1377 1366 1424
1455 1475 1478 1458 1430 1409 1407 1414 1409 1402 1386 1392 1391
1445 1448 1462 1474 1482 1495 1525 1547 1538 1436 1465 1454 1460
1476 1521 1588 1581 1587 1539 1574 1537 1518 1530 1500 1554 1532
1498

To show their behavior in time, we look at some standard plots, see Figure A.1.

par(mfrow=c(1,2))
plot(Tyres, xlab="Week", type="l")
plot(Liquor, xlab="Week", type="l")

The first line serves to produce two plots next to each other; see ?par for more
possibilities to change the way plots look.

If St , t = 1,2, . . . , are the stock prices, one may look at the simple, net or arith-
metic returns (St+1−St)/S(t), but here we look at the logarithms of the returns (geo-
metric returns). In the celebrated Black-Scholes setting based on geometric Brown-
ian motion, the log-returns are independent and normally distributed. Using the fact
that Tyres[-1] is the Tyres vector without its first element, we can calculate
the log-returns without using a for-loop:
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Tyres.lr <- log(Tyres[-1]/Tyres[-length(Tyres)])
Liquor.lr <- log(Liquor[-1]/Liquor[-length(Liquor)])

To produce plots of the log-returns, for Tyres against Liquor and for both against
time, see Figure A.2, do:

par(mfrow=c(1,3))
plot(Tyres.lr, Liquor.lr, main="Scatterplot log-returns")
plot(Tyres.lr, xlab="Week", type="l")
plot(Liquor.lr, xlab="Week", type="l")

To judge if the marginal distributions are indeed normal, we can do a visual test for
normality by inspecting normal Q-Q plots, see Figure A.3. These plots are produced
by the calls

par(mfrow=c(1,3))
qqnorm(Tyres.lr, main="Normal Q-Q plot Tyres")
qqline(Tyres.lr)
qqnorm(Liquor.lr, main="Normal Q-Q plot Liquor")
qqline(Liquor.lr)

In Q-Q plots, the sample quantiles are plotted against the theoretical quantiles. If the
normal Q-Q plots are close to a straight line, the marginals might well be normal.
In our cases, the fit is not very good; the diagonal line through the first and third
quartile (produced by qqline) is not followed closely. Since the sample quantiles
in the tails are larger than in case of normality, the tails of the distributions are too
‘thick’ for normal distributions.

Other graphical means to judge normality are plotting a histogram and compar-
ing it to a fitted normal density. The third graph in Figure A.3 can be produced as
follows:

hist(Tyres.lr, prob=T, breaks=21)
curve(dnorm(x, mean=mean(Tyres.lr), sd=sd(Tyres.lr)), add=T)
lines(density(Tyres.lr))

In the final line, we add a so called kernel density estimate, see ?density. A kernel
density estimator of a density is easy to visualize conceptually. As a kernel function
we take for example a normal density with some suitably chosen standard deviation
and divided by n. We place it centered at each of the n data points, and then simply
add all of them together to form a kernel density estimate. In fact if {y1, . . . ,yn} are
the realizations of a random sample Y1, . . . ,Yn from a continuous random variable Y ,
and X is a discrete r.v. having probabilities Pr[X = yi] =

1
n , i = 1, . . . ,n, then the cdf

of X is the empirical cdf of Y1, . . . ,Yn. If additionally, U is a standard normal random
variable, independent of X , then the cdf of X + σU is a kernel density estimate for
the cdf of Y . If the estimated kernel density is very similar to the fitted normal
density, we can conclude that the log-returns might well be normal. For log-returns
of weekly stock prices, the normality assumption is of course more plausible than
for daily prices, because of the Central Limit Theorem.

A statistical test for normality of a sample X1, . . . ,Xn is the test known as the
Jarque-Bera test. Its test statistic JB is defined as
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JB =
n
6

(
S2 +

K2

4

)
. (A.1)

Here n is the number of observations (or degrees of freedom in general), S is the
sample skewness and K is the sample kurtosis. They are computed as

S =
µ̂3

σ̂3 =
1
n ∑n

i=1

(
Xi −X

)3(
1
n ∑n

i=1

(
Xi −X

)2
)3/2

;

K =
µ̂4

σ̂4 −3 =
1
n ∑n

i=1

(
Xi −X

)4(
1
n ∑n

i=1

(
Xi −X

)2
)2 −3,

(A.2)

where X = 1
n ∑Xi is the sample mean and σ̂2 = 1

n ∑(Xi −X)2. The statistic JB ap-
proximately has a χ2(2) distribution; asymptotically, under the null-hypothesis both
its terms can be shown to be independent squares of standard normal random vari-
ables. If either skewness or kurtosis deviates from its ‘normal’ value 0, JB will be
large. The critical value at 95% level is 6.0. To test if our Tyres logreturns possibly
arose from a normal distribution, do

x <- Tyres.lr - mean(Tyres.lr)
m2 <- mean(xˆ2); m3 <- mean(xˆ3); m4 <- mean(xˆ4)
S2 <- m3ˆ2/m2ˆ3; K <- m4/m2ˆ2 - 3
JB <- length(x)/6 * (S2 + Kˆ2/4)
p.value <- 1-pchisq(JB, df=2)
##JB = 9.305275; p.value = 0.009536414

The test statistic JB = 9.3 is larger than 6.0, so normality of the logreturns is re-
jected. The Liquor logreturns produce an even larger JB = 18.9.

In the sequel, however, we will proceed as if the log-returns are not just mar-
ginally normal, but in fact bivariate normal. The plots in Figure A.3 say nothing
about the stocks having a joint normal distribution. But to see if this is a valid as-
sumption, we can look at scatterplots of the log-returns, see Figure A.2.

The parameters µT ,σT ,µL,σL and ρT,L of the bivariate normal distribution can
easily be estimated, for example by:

Tyres.lr.mean <- mean(Tyres.lr)
Tyres.lr.sd <- sd(Tyres.lr)
Liquor.lr.mean <- mean(Liquor.lr)
Liquor.lr.sd <- sd(Liquor.lr)
Tyres.Liquor.lr.corr <- cor(Tyres.lr, Liquor.lr)
## Results in 0.00278 0.03226 0.00418 0.02235 0.06142

Suppose we want to purchase a portfolio of equal parts of Tyres stocks at the current
price 474 and Liquor stocks at price 1498. Then we are interested, for example, in
its future performance over a horizon of two calendar years, or 104 weeks. Based on
our data, we assume that the weekly log-returns (Xi,Yi), i = 158, . . . ,261, have a bi-
variate normal distribution with parameters as computed above, and are independent
for different i. Writing
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X = X158 + · · ·+X261; Y = Y158 + · · ·+Y261, (A.3)

the random variable to be predicted is

S = 474eX +1498eY . (A.4)

By the fact that Cov(∑Xi,∑Yi) = ∑Cov(Xi,Yi) if the pairs (Xi,Yi) are independent,
estimates of the parameters of (X ,Y ) can be computed by:

Periods <- 104
mean.X <- Periods * Tyres.lr.mean
mean.Y <- Periods * Liquor.lr.mean
sd.X <- sqrt(Periods * Tyres.lr.sdˆ2)
sd.Y <- sqrt(Periods * Liquor.lr.sdˆ2)
cov.XY <- Periods * Tyres.Liquor.lr.corr *

Tyres.lr.sd * Liquor.lr.sd
r.XY <- cov.XY / sd.X / sd.Y

Since X and Y are bivariate normal, S in (A.4) is a sum of dependent lognormal
random variables. To compute the cdf and quantiles of S is a tough problem, see
also Section 7.7. One way to proceed is by just simulating a lot of outcomes of S
and looking at sample quantiles instead of theoretical quantiles. For that, we need a
method to generate drawings from (X ,Y ).

To generate a sample of multivariate random normal n-tuples with arbitrary mean
and variance matrix, we can use the R function mvrnorm. It is to be found in the
library MASS consisting of objects associated with Venables and Ripley’s (2002)
book ‘Modern Applied Statistics with S’. Below, as an illustration, we will explain
the Cholesky decomposition method in a bivariate setting with n = 2.

Let U and V be independent standard normal. Then for all real α , we have

r(U,U +αV ) =
Cov[U,U +αV ]

σU σU+αV
=

1√
1+α2

, (A.5)

meaning that for r > 0, the correlation of U and U +αV equals r if we take

α =
√

1/r2 −1. (A.6)

Then W = r · (U + αV ) is standard normal, too. It has correlation r with U also in
case r < 0; for r = 0, take W = V . Finally let

X ′ = E[X ]+U
√

Var[X ]; Y ′ = E[Y ]+W
√

Var[Y ], (A.7)

then S′ := 474eX ′
+1498eY ′ ∼ S with S as in (A.4).

So the problem of drawing pseudo-random outcomes from the distribution of S
has been reduced to generating streams of univariate independent standard normal
random variables U and V . This can be achieved in R by simply calling the function
rnorm. In its standard mode, it applies the inverse standard normal cdf Φ−1(·) to
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Fig. A.4 Histogram of S/1000, with estimated kernel density and normal density

iid uniform(0,1) arguments U1,U2, . . . ; the latter can be obtained by invoking the
function runif.

As a result of all this, the following code generates a sample of one thousand
outcomes of S, in which (X ,Y ) has a bivariate normal distribution with parameters
as computed above:

set.seed(2525) ## initialize the random number generator
U <- rnorm(1000); V <- rnorm(1000)
alpha <- sqrt(1/r.XYˆ2-1) * sign(r.XY)
X <- mean.X + sd.X * U
Y <- mean.Y + sd.Y * (U + alpha * V) * r.XY
S <- Tyres[length(Tyres)]*exp(X) +

Liquor[length(Liquor)]*exp(Y)

See Figure A.4 for the histogram with estimated kernel density and fitted normal
density, produced by

par(mfrow=c(1,1)); S1000 <- S/1000
hist(S1000, breaks=21, prob=T)
lines(density(S1000))
curve(dnorm(x, mean=mean(S1000), sd=sd(S1000)), add=T)

Sample quantiles of S, as a percentage of the purchase price, are found as follows:

> pr <- c(2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99, 99.5)/100
> S <- S/(Tyres[length(Tyres)] + Liquor[length(Liquor)])
> round(100*quantile(S, pr))
2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99% 99.5%
102 109 117 133 152 173 191 207 227 243 252
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So judging from the 2.5%, 50% and the 97.5% quantiles, the bi-annual returns are
roughly 50%±25%. And a portfolio of one stock Tyres and one stock Liquor, with
current price 474 + 1498 = 1972, will be worth at least 152% of that in two years
with probability 50%, between 109% and 207% with probability 90%, and it will
decrease in value in about one in forty cases. But in one out of 200 cases, it will
sell for more than 2.5 times the original value. This is all under the stipulation that
future stock prices will follow our estimated model for the past prices. Apart from
the fact that (joint) normality of the log-returns was firmly rejected, a quick look at
Figure A.1 shows that for the Tyres stock, for example, it is entirely plausible that
the increasing trend in the price stopped around week 100.

A.3 Generating a pseudo-random insurance portfolio

Assume we want to generate pseudo-random data for an automobile insurance port-
folio of which the policies have the following risk factors:

• sx two gender levels, in proportions 6 : 4;
• jb job class, three levels in proportions 3 : 2 : 1;
• re region of residence, with three levels, in proportions 3 : 3 : 4;
• tp type of car, with three levels, in proportions 7 : 5 : 8.

Most factors are independent. For example, the probability of having both jb=1
and re=3 is 3

3+2+1 · 4
3+3+4 = 1

5 . The last two factors, however, are mutually corre-
lated, which means that the probabilities of levels for re depend on the level of tp,
and vice versa. The combined factor levels have the following joint probabilities:

tp 1 2 3

re 1 0.10 0.05 0.15
2 0.15 0.10 0.05
3 0.10 0.10 0.20

Drawing the first two risk factors is easy to do using R’s sample function.

n.obs <- 10000; set.seed(4)
sx <- as.factor(sample(1:2, n.obs, repl=T, prob=c(6,4)))
jb <- as.factor(sample(1:3, n.obs, repl=T, prob=c(3,2,1)))

The first argument of sample gives the possible values, the second the number of
drawings to be generated. Drawing without replacement is the default, so we must
add repl=T. The prob=c(6,4) parameter indicates the relative probabilities of
the values, so the probability of gender level 1 above equals 60%. All risk factors
are to be treated as factors, that is, their values 1,2, . . . are merely class labels.

To draw the values of the correlated factors tp and re with the given probabil-
ities, we first draw a combination of these two factors (re.tp, with 9 levels), and
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recode levels 1,4,7 to tp=1, levels 2,5,8 to tp=2 and levels 3,6,9 to tp=3, and
analogously for re. To show that what we did is what we wanted, we make a table
of the numbers of policies, broken down by these two factors. As we no longer need
it, we delete the auxiliary vector re.tp at the end.

re.tp <- sample(1:9, n.obs, repl=T, prob=c(2,1,3,3,2,1,2,2,4))
tp <- as.factor(c(1,2,3,1,2,3,1,2,3)[re.tp])
re <- as.factor(c(1,1,1,2,2,2,3,3,3)[re.tp])
table(list(region=re, type=tp)); rm(re.tp)

Many policies are terminated before the end of the policy year. In that case, the
exposure-to-risk time is some fraction of a year. In fact, we want, whatever the
value of the other factors, 80% of the policies to have an exposure time mo of 12
months (four quarters), 10% 6 months, and the remaining 10% 3 months.

mo <- 3 * sample(1:4, n.obs, repl=T, prob=c(1,1,0,8))

For each policy, let µi denote the average number of claims per policy year. It is
a function of the risk factors given only; each factor operates multiplicatively and
independently, so there is no interaction in the sense that certain combinations of
risk factors lead to a value different from that brought on by the main effects.

We assume the claim numbers of each policy to follow a Poisson process, see
Chapter 4. To get the actual Poisson parameter with policy i, each µi must be multi-
plied by the exposure in years, see (3.73). As one sees below, in our fictitious port-
folio, an increase by one in any factor level leads to 20% more claims on average,
except that jb does not have any influence. The base level is 0.05.

mu <- 0.05 * c(1,1.2)[sx] *
c(1,1,1)[jb] *
c(1,1.2,1.44)[re] *
c(1,1.2,1.44)[tp]

y <- rpois(n.obs, mu * mo/12)

In our example, the sample size was 10 000. In practice, much larger portfolio sizes
occur, even millions. R holds objects it is using in memory. So then the amount
of random access memory (RAM) in the computer starts playing a role. Also for
example fitting a generalized linear model (GLM) takes minutes instead of millisec-
onds. Therefore it would be advantageous if we could, without too much loss of
information, look at group totals instead of the individual policies. We split up our
portfolio into cells of policies having the same levels for all four risk factors, there-
fore also the same average annual number of claims. The number of such cells is
2× 3× 3× 3 = 54. If the weights wk denote the total number of exposure years in
cell k, and µk the Poisson parameter for each policy in force one full year in that cell,
it is easy to show that the total number of claims has a Poisson(wkµk) distribution.

In this situation, the individual claim numbers do not give more information
about the value of the Poisson parameter in a cell than their total does; it can be
shown that, given the total number of claims in a cell, the distribution of the in-
dividual claim numbers, or any statistic derived from them, does not depend on
this parameter. This last property characterizes a sufficient statistic with respect to
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a parameter. So if we assume the model (Poisson process) to be correct and only
the parameters to be unknown, to estimate these parameters we may work with an
aggregated version of the portfolio just as well as with the full portfolio.

All this only makes sense if the risk factors have only few levels such as here; the
original price of the vehicle would, for example, have to be rounded to multiples of
1000, and weight classes containing intervals of actual car weights would have to
be introduced. To condense the data, we use R’s aggregate function:

aggr <- aggregate(list(Expo=mo/12,nCl=y,nPol=1),
list(Jb=jb,Tp=tp,Re=re,Sx=sx), sum)

aggr[sort(sample(1:54,20)),]

For each combination of the risk factors in the second parameter of aggregate,
a cell is created and stored as a row of the data frame aggr. In addition the sum
function is applied to the list of quantities specified in the first parameter. The last
line prints all columns of the data frame for a sorted sample of 20 of the 54 cells.
There is a row for each cell, and the following columns:

• Jb, Tp, Re, Sx are the factor levels for the cell. Jb has levels 1,2,3,1,2,3, . . . ;
the first 27 cells have level 1 for Sx;

• Expo is the accumulated exposure time (in years) of all policies in the cell;
• nCl represents the total number of claims made in a particular year;
• nPol counts the number of policies with these levels of the risk factors.

Note that, for example, jb is a vector of length n.obs, while the column aggr$Jb
of the data frame has length only 54. In Section 9.5, a quite similar portfolio is
studied using the techniques of Chapter 9.



Appendix B
Hints for the exercises

I was gratified to be able to answer promptly. I said I don’t
know — Mark Twain (1835 - 1910)
It’s so much easier to suggest solutions when you don’t know
too much about the problem — Malcolm Forbes (1919 - 1990)

CHAPTER 1

Section 1.2

1. Use the following characterization of convexity: a function v(x) is convex if, and only if, for
every x0 a line l0(x) = a0x +b0 0 0 0 0
all x [usually, l0(·) is a tangent line of v(·)]. Take x0 = E[X ]. If v(x) = x2, we get Var[X ] ≥ 0.

2. 0 ±h] = 0.5.

3. Apply the previous exercise to prove that both functions +v and −v are convex.

4.
w < 625.

5. Apply Jensen’s inequality to (1.11).

6. P+ = 20; P+ ≈ 19.98.

7. W = 161.5.

8.
are x with u′′(x) > 0 and with u′′(x) < 0.

9. π[X ] = 3/4, π[2X ] = 4/3.

Section 1.3

4. Use limα↓0
log(mX (α))−log(mX (0))

α
dlog(mX (α))

dα
∣∣
α=0 or use a Taylor series argument.

5.

6. PX = 412.5 < PY ; α > 0.008.

7. Logarithmic. P = 4 solves E[u(w−P+2N)] = u(w).

8. α ≥ 0.05. Dimension of α is money−1.

9.

10. Logarithmic utility. Use l’Hôpital’s rule, or write wc = ec logw and use a Taylor expansion.

11. Power utility functions. What is dlogu′(w)
dw ?

341

exists, such that l (x ) = v(x ) and moreover l (x) ≤ v(x) for

=

Examine the inequalities E[u(X)] > E[u(Y )] and E[u(X)] > u(w). X is preferred over w for

See Table A at the end for the mgf of X .

What is the mgf of X?

Taking w = 0, u(0) = 0 and u(1) = 1 gives u(2) > 2, u(4) = 2u(2) and u(8) < 2u(4). There

Pr[X = xConsider especially the random variables X with
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12. Assume Var[X ] > 0 and α > 0, so Var[eαX ] > 0, and use Jensen’s inequality.

13. P+ = 50.98, P− = 50.64.

Section 1.4

1. Linear on (−∞,2] with π(0) = 2.5, π(2) = 0.5; π(x) = (4− x)2/8 on [2,4], and π(x) = 0 on
[4,∞). In your sketch it should be visible that π ′(2+0) 	= π ′(2−0).

2. Use (1.38) to find fS(d).

3. Use partial integration.

4.

5. Use (1.39).

6. E[I(X)] = E[(X −d)+]+d Pr[X ≥ d].

7. Based on a sample of 1000000 standard normal elements, the R-program computes estimates
of E[X |X > 1], E[XIX>1] and E[(X − 1)+]. The theoretical values can be derived using the
previous exercise.

CHAPTER 2

Section 2.2

1. a) E[X ] = 1/2; Var[X ] = 9/4; b) E[X ] = 1/2; Var[X ] = 37/12.

2. E[Y ] = 7/4, Var[Y ] = 77/48.

3. P+ = 5.996 	= 1.1×100log(19/18), so not quite perfectly.

4. E[X ] = 60; mX (t) = 0.9e0 1000t +
∫ 1000

0 0.00008etxdx = · · ·
5. Condition on I = 1 and I = 0.

6. IX +(1− I)Y for I ∼ Bernoulli(0.5), X ≡ 2 and Y ∼ uniform(2,4), independent.

7. c = 1/3, dG(1) = dG(2) = 1/2, dH(x) = dx/2 on (0,1)∪ (2,3).

8. E[T ] = E[Z], E[T 2] 	= E[Z2].

9. N(0,q2 +(1−q)2) and N(0,1).

10. Use that W = 2
3 X1 + 1

3W ′ with W ′ ∼ W 1

mW−1/2(t) = ∏E
[

exp(t(2Xi −1)/3i)
]
= . . . .

Section 2.3

1. Cf. Table 2.1.

2. Total number of multiplications is quadratic: 6n2 −15n+12, n ≥ 3.

3. Write (2.30) as ϕ(s; µ1 + µ2,σ2
1 +σ2

2 )× ∫
ϕ(x; µ3,σ2

3 )dx.

4.
(n

h

)
+
( n

h−1

)
=(n+1

h

)
for all n and h.

Use that when the variance is fixed, stop-loss is optimal; next apply the previous exercise.

independent of X , see (2.25). For the mgf, use

+0.02e

For the second part, use induction, the convolution formula, and the relation
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Section 2.4

1. fS(s) = 2(e−s − e−2s); mS(t) = 2
1−t − 2

2−t .

3. κ4 = E[(X −µ1) ]−3σ4.

4.

5. κ3 = 0, κ4 = −0.1.

6. Use (2.49) and Table A.

8.
p = 0.4264056.

9. (1−2q)/
√

therefore q ∈ {0,0.5,1} must hold. Symmetry holds for all three of these q-values.

10. Use (2.50) and Table A.
j

the same.

extended to all complex numbers, like (1− t)−1 for the exponential distribution. E[eitX ] =
E[e−itX

whenever this is the case.

16. δ = 3
√

2.

17. Show that g(n)
X (1) = E[X(X −1) · · ·(X −n+1)], and argue that the raw moments can be com-

puted from these so-called factorial moments. See (2.50).

Section 2.5

1. You should get the following results (fill in the question marks yourself):

Argument: 3−0 3+0 3.5 4−0 4+0

Exact: .080 ? .019 ? .004
NP: .045 ? .023 ? .011
Gamma: .042 ? .021 ? .010
CLT: .023 ? .006 ? .001

2. Solve x = s+ γ(s2 −1)/6 for s. Verify if this inversion is allowed!

4. Use l’Hôpital’s rule to prove that limγ↓0
[√

9/γ2 +6x/γ +1 − 3/γ
]

= x. Take X∗ = (X −
µ)/σ , then approximate Pr[X∗ ≤ z] by Pr[Z∗ ≤ z], where Z∗ = (Z −α/β )β/

√
α , and Z ∼

gamma(α,β ) with skewness γ , therefore α = 1/γ2 ∗ ≤ z] →
Φ(z) because of the CLT.

5. Using (2.59), we see that the critical value at 1− ε is 18+6(y+(y2 −1)/9) if Φ(y) = 1− ε .

6. The χ2

7.

] implies that the imaginary part of the functions must be equal to zero.

15. Use Exercise 11. For symmetry, Pr[Z = 0] = Pr[Z = 10] is necessary. Prove that Z is symmetric

See Table A at the end of the book for the mgfs.

11. The cumulants are the coefficients of t / j! in the cgf.

X is symmetric around µ if X − µ ∼ µ −X . There are two solutions: p = 0.04087593 and

12. Their pgfs are polynomials of degree n, and they are identical only if all their coefficients are

13. Show that X/δ and Y/δ have the same pgf.

14. Where is the mgf defined, where the characteristic function? Sometimes this function can be

q(1−q) (see Table A). If X is symmetric, then the third central moment equals 0,

4

distribution is a special case of the (translated) gamma approximation.

. Then for α → ∞, we have Pr[Z

If α is integer, Poisson-probabilities can be used to find gamma-cdfs.
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8. For example for ε = 0.95: a table gives 28.9, (2.26) gives 28.59. The NP approximation from
Exercise 5 gives 28.63.

9. Loading = 21.14%.

10. Loading = 21.60%.

11. For x = −1 we find (3/γ −1)2 ≥ 0 under the square-root sign.

12. Using Table A one finds γ = 0,2,4,6,14,∞ for the skewnesses in cases (i)–(vi).

13. Let X1 be a claim of type 1, then Pr[X1 = 0] = 1−q1, Pr[X1 = j] = q1 p1( j), j = 1,3. E[S1] = 20,
Var[S1] = 49.6, capital is E[S]+1.645

√
Var[S] = 99.999.

14. Use that E[Ut ] =
∫

ut fU (u)du = . . . .

16. You should get 0.0103, 0.0120, 0.0113 in cases (i)–(iii) for translated gamma, and 0.0120,
0.0138, 0.0113 in cases (iii)–(v) for NP.

17. Avoid taking square roots of negative numbers.

21. E.g. E[Y 2] = E[U2]+ γ
3 E[U(U2 −1)]+ γ2

36 E[(U2 −1)2] = . . .

Section 2.6

1. 1−Φ(g(d)) with g2(d) = {B−380+10d}2

297+49.5d2 , d ∈ [2,3].

2. Maximize g2(d).

3. 1−Φ(1.984) = .0235.

CHAPTER 3

Section 3.2

1. For Poisson(λ ): E[S] = λ µ1, Var[S] = λ µ2, mS(t) = eλ (mX (t)−1).

2. Use (2.50).

3. Let N′ denote the number of females, then we have N′ = B1 + · · ·+ BN , if N is the number
of eggs and Bi

′ ∼
Poisson(λ p).

4. Pr[S = 0,1,2,3,4] = e ,0.2e−2 −2 −2 −2.

5. f (4,5,6) = 0.2232,0.1728,0.0864; E[S] = 3.2, Var[S] = 3.04.

6. E[S] = 3.2 (see Exercise 5), Var[S] = 5.6.

7. Use mathematical induction. Or: prove that lhs=rhs by inspecting the derivatives as well as one
value, for example at x = 0.

Section 3.3

1.
limr→∞(1−λ/r)r = e−λ .

,0.42e

= 1 if from the ith egg, a female hatches. Now use (3.5) to prove that N

−2

Examine the mgfs; fill in p = 1−

,0.681333e

λ/r in the negative binomial mgf and let r → ∞. Use that

,1.0080667e
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2. In 3.3.1 if Λ is degenerate; in 3.3.2 if c ↓ 0.

3. Compare the claim numbers and the claim sizes.

Section 3.4

1. See Example 3.4.3.

2. If x1 = x2, the frequency of this claim amount is N1 +N2.

3. p(0) = p(1) = p(2)/2 = p(3) = p(4).

4. Show that Pr[N′ = n,N −N′ = m] = Pr[N′ = n]Pr[N −N′ = m] for all n and m. Or: apply
Theorem 3.4.2 with x1 = 0 and x2 = 1.

5. Show that Pr[N1 = 1]Pr[N2 = 1] = 0.3968×0.3792 	= Pr[N1 = 1,N2 = 1] = 0.144. (Note that
Theorem 3.4.2 was proved for the Poisson-case only.)

6. S = x1N1 + x2N2 + · · · and S0 = 0N′
0 + x1N′

1 + x2N′
2 + · · · with Nj,N′

j ∼ ·· ·
7. Adding the second column takes n2/2 operations, the third n2/3, in total . . .

Section 3.5

1. f (s) = 1
s [0.2 f (s−1)+0.8 f (s−2)+1.8 f (s−3)+3.2 f (s−4)]; f (0) = e−2

2. Verify s = 0 separately; for s > 0, use (3.15) and induction.

3. Check if every point in the (a,b) plane has been dealt with. Make a sketch.

4. There are 2t multiplications λhp(h) for h = 1, . . . , t. For m > t: t(t + 1)/2, for m ≤ t: m(m +
1)/2 + m(t − m). Asymptotically the number of operations increases linearly with t if the
maximal claim size is finite, and quadratically otherwise.

5. E[N] = ∑n nqn = ∑n≥1 n(a+b/n)qn−1 = a∑n≥1(n−1)qn−1 +a+b, and so on.

6. Interpolate between π(2) and π(3). d = 2.548. [The stop-loss premiums are linear because the
cdf is constant.]

7. Use Panjer and interpolation.

8. S2 ∼N1 +3N3 with N1 ∼ Poisson(2) and N3 ∼ Poisson(1). Should you interpolate to determine
the cdf?

9. λ p(1) = α , 2λ p(2) = 2α and p(1)+ p(2) = 1− p(0).

10. π(2.5) = 1.4014.

11. Subtract (3.34) from E[(S−0)+].

12. Start with E[(S−(d−1))2
+]−E[(S−d)2

+] = · · · . If p(d) is the expression to be computed, then
p(d −1)− p(d) = 2π(d −1)−1+F(d −1).

13. Implement (3.27) instead of (3.31).

14. Logarithmic(1− p), see (3.16); use pr = er log p = 1+ r log p+O(r2).

16. Use relation (3.34). The function rev reverses a vector, while cumsum computes its cumula-
tive sums.
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Section 3.6

1. Think dice. After the first two function calls, y[1:64] contains the probabilities of one die
showing {0, . . . ,63} pips.

Section 3.7

1. CLT: 0.977, gamma: 0.968, NP: 0.968.

2. α = 15, β = 0.25, x0 = −20. NP: FS(67.76) ≈ 0.95, and FS(E[S]+3
√

Var[S]) ≈ 0.994 (Note:
Φ(3) = 0.999).

Section 3.8

1. If S∗ is the collective model approximation with λ j = − log(1−q j), prove that λ j > q j , hence
E[S∗] = ∑ j λ jb j > E[S]; analogously for the variance.

2. S̃: E = 2.25, Var = 3.6875, γ = 6.41655σ−3 = 0.906. S ∼ compound Poisson with λ = 1.5,
p(1) = p(2) = 0.5, therefore E = 2.25, Var = 3.75, γ = 6.75σ−3 = 0.930. S̃: α = 4.871,
β = 1.149, x0 = −1.988. S: α = 4.630, β = 1.111 and x0 = −1.917.

4. The second. The ratio of the resulting variances is approximately 80%.

5. Use the fact that the first factor of the terms in the sum decreases with x.

6. Max[S] = 3000, Max[T ] = 4000; E[S] = E[T ] = 30; Var[S] = 49.5, Var[T ] = 49.55; the claim
number distribution is binomial(2000,0.01) for both; S ∼ weighted sum of binomial random
variables, T ∼ compound binomial. If Bi ∼ Poisson, then S ≡ T ∼ compound Poisson.

7. Compound Poisson(10Pr[X > β ]), with claims ∼ uniform(0,2000− β ). Equivalently, it is
compound Poisson(10) with claims ∼ (X −β )+.

8. P1: z2
1n1q1(1 − q1) + · · · ; P2: larger. ‘The’ collective model: equal. The ‘open’ collective

model: different.

9.
leads to a random variable ∼ N1 + 3N3 with Nk ∼ Poisson(q1 p1(k)), k = 1,3. So T ∼ M1 +
2M2 + 3M3 with M1 ∼ Poisson(25), M2 ∼ Poisson(20), M3 ∼ Poisson(5). Panjer: f (s) =
1
s ∑h hλ p(h) f (s−h) = 1

s [25 f (s−1)+40 f (s−2)+15 f (s−3)]. Apply NP or gamma.

10. Binomial(n,q), Poisson(nq), Poisson(−n log(1−q)), no.

Section 3.9

1. Additionally use that E[Y j] = mlogY

2. βX ∼ gamma(α,1) if X ∼ gamma(α,β ); X/x0 ∼ Pareto(α,1) if X ∼ Pareto(α,x0); e−µ X ∼
Lognormal(0,σ2) if X ∼ Lognormal(µ,σ2); βX ∼ IG(α,1) if X ∼ IG(α,β ).

4. A vital step is that p(x) ≥ p(0)e−βx for all x ≥ 0.

5. Pr[Z − z > y|Z > z] = q(z)e−αy +(1−q(z))e−βy if q(z) = qe−αz

qe−αz+(1−q)e−β z .

q(·) is monotonous with q(0) = q, q(∞) = 1.

( j), where the mgfs can be found in Table A.

Replacing the claims on a contract of type 1 by a compound Poisson(1) number of such claims
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6. The median of the lognormal distribution is eµ . Mode: f ′(x) = 0 holds for x = eµ−σ2
.

7. Mode of IG is (−3+
√

9+4α2)/2α .

9. You should find 6.86647, 6.336969, 5.37502, 4.919928 for these quantiles.

21. Think numbers of successes/failures. Recall Example 2.5.2.

23. X U1/α ∼ gamma(α,1).

24. We get Bernoulli(p), binomial(n, p), N(0,1), N(µ,σ2), lognormal(µ,σ2), exponential(1), expo-
nential(β ), gamma(n,β ), Pareto(1,1), Pareto(β ,x0), Weibull(α,β ) and Gompertz(b,c) r.v.’s (in
this order).

25. By Example 3.3.1, the Ni r.v.’s are negative binomial with parameters α,(β/wi)/(β/wi + 1),
with α = 1/40, β = 1/2.

28. X ∼ logistic(µ,σ ) if FX (d) = et/(et + 1), where t = (d − µ)/σ , so FX (d) = p ⇐⇒ d = . . .
Then use Y = F−1

X (U) = . . . with U ∼ uniform(0,1).

Section 3.10

1. 1000×0.0004; 1000× .0070 (NP) or 1000× .0068 (Translated gamma).

2. Subtract from E[(S−0)+] = E[S].

3. Work with (X −µ)/σ rather than with X . E[(X −µ)+] = σϕ(0) = · · ·
4. To compute E[(S− (S−d)+)2], approximate E[(S−d)2] just as in (3.29).

5. λxα
0 d1−α/(α −1).

6. Write X = eY , so Y ∼ N(µ,σ2), and find E[(eY −d)+]. Or verify the derivative.

7. π(d) is convex.

8. Determine the left and right hand derivatives of E[(N − d)+] at d = 1 from difference ratios.
Pr[N = 1] = 0.2408.

9. Use the fact that U is symmetric.

10. Use Exercises 3.2.1 and 3.9.9.

11. Use (3.105) for the gamma distribution, (3.104) for the normal distribution, Exercise 3.10.6
for the lognormal.

Section 3.11

1. Use partial integration and
∫ ∞

0 (µ − t)+dt = 0.5µ2. The function (µ − t)+ consists of two tan-
gent lines to the stop-loss transform.

4. Use and prove that (x− t)+ +(y−d)+ ≥ (x+ y− (t +d))+, and apply induction. Further, use
the given rule of thumb to show that the premiums are about equal.

5. Var[T ]/Var[S] = 1.081; E[(T −d)+]/E[(S−d)+] = 1.022,1.177,1.221 for d = 0.5,1,1.5. Note
that d = 0.5 ≈ µ +σ/6, d = 1 ≈ µ +σ , d = 1.5 ≈ µ +2σ .

6. Take f (x) = E[(U − x)+]−E[(W − x)+] and δ = 1; we have f (x) = 0, x ≤ 0.

22. Use the factorization theorem and (3.86).
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CHAPTER 4

Section 4.2

1. f (t−s)dt
1−F(t−s) .

2. pn(t +dt) = pn(t)+ p′n(t)dt = (1−λdt)pn(t)+λdt pn−1(t). Both sides denote the probability
of n claims in (0, t +dt).

Section 4.3

1. See further the remarks preceding (4.11).

2. Use (4.10).

3. mX (t) < ∞ for t < 3, and R = 1.

4. θ = 2.03.

5. c = logmS(R)/R with R = | logε|/u.

6. R = 0.316.

7. R = 1; θ = 1.52 > 0.4 (or use dR/dθ > 0).

8. Solve θ and R from 1 +(1 + θ)µ1R = mX (R) = (1−R)−2 for 0 < R < 1; this produces R =
[3+4θ −√

9+8θ ]/[4(1+θ)]. No: R < 1 must hold.

9. mY (r) is finite for r ≤ 0 and r ≤ β/2, respectively, and infinite otherwise.

10. Consider dR
dc . Then use dc

dR ≥ 0.

Section 4.4

1. Compare the surpluses for θ < 0 and θ = 0, using the same sizes and times of occurrence of
claims.

2. See (4.32): (1 + θ)−1 = 0.5, therefore θ = 1, θ/{(1 + θ)µ1} = 1 gives µ1 = 0.5, hence X ∼
exponential(β ) with β = 2; λ is arbitrary. Or: claims ∼ IX with I ∼ Bernoulli(q).

3. Because of Corollary 4.4.2 we have R = 1; no; (α +βe−u)−1.

4. 1−ψ(0) > Pr
[
no claim before ε/c & no ruin starting from ε

]
> 0. Or: ψ(ε) < 1, therefore

R > 0, therefore ψ(0) < 1 by (4.26).

5. R = 6 is ruled out since mX (6) = ∞; R = 0 is also not feasible. Then, look at ψ(0) and the
previous exercise, and at ψ(u) for large u.

6. R = 0.5; c = 2
5 .

Section 4.5

1. U(T̃ ) = −1; ψ̃(u) = e−R̃(u+1) with R̃ = log(p/q).

2. Processes with adjustment coefficient R̃ apparently are only profitable (as regards expected
utility) for decision makers that are not too risk averse.
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3. It is conceivable that ruin occurs in the continuous model, but not in the discrete model; the
reverse is impossible; Pr[T ≤ T̃ ] = 1 implies that ψ̃(u) ≤ ψ(u) for all u.

4. Use (4.32). ψ̃(u) ≤ e−R̃u = e−Ru with R = 1. But a better bound is ψ̃(u) ≤ ψ(u).

Section 4.6

1. Rh = {θ −αξ}/{(1−α)(1+θ −α(1+ξ ))}; relative safety loading after reinsurance: {θ −
αξ}/{1−α}. α must satisfy 0 ≤ α ≤ 1 and α < θ/ξ .

2. Safety loading after reinsurance: {θ −ξ e−β}/{1− e−β}.

3. R̃ = {5−8α}/{2(1−α)2} is maximal for α = 0.25.

4. R = (1−2α)/{(1−α)(3−4α)}, so 0 ≤ α < 0.5.

Section 4.7

1. L1 ∼ uniform(0,b); L1 ∼ exponential with the same parameter as the claims.

2. L = 0 means that one never gets below the initial level.

3. ψ(0) = . . . as well as . . . , and hence . . .

6. See also Exercise 4.3.1.

Section 4.8

1. γ = 1+θ .

3. R = 2, θ = −1+1/(0.5+α). θ > 0 =⇒ ·· · . Use that ψ(u) decreases if ψ ′(0) < 0.

4. ψ(u) = 4
9 e−2u + 1

9 e−4u.

5. e−2u; I ∼ Bernoulli( 1
9 ).

6. ψ(u) = 2
5 e−0.3u − 1

15 e−0.8u.

7. ψ(u) = 5
8 e−u − 1

24 e−5u.

8. One gets a non-increasing step function, see (4.60). A density like this is the one of a mixture
of uniform(0,x) distributions; it is unimodal with mode 0.

10. p(x) = 2(e−x − e−2x); take care when R = 2.5.

11. c = c1 + c2, λ = λ1 +λ2 = 9, p(x) = 1
9 p1(x)+ 8

9 p2(x) = · · · , and so on.

Section 4.9

1. β = E[L]/{E[L2]− (1+θ)E2[L]}; α = (1+θ)βE[L].
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CHAPTER 5

Section 5.2

1. Take the derivative of (5.6) and set zero.

2. Portfolio premium = 49.17; optimal u = 104.21; optimal R = 0.0287; premiums for A and B
are 5.72 and 1.0287 (variance premium) and 5.90 and 1.0299 (exponential premium).

Section 5.3

1. (a) 1 (b)–(d) 1+α (e) − log(1−α)/α (h) − logε (i) ∞ (j) (1−h)−1.

2. Show that (α2π ′[X ;α])′ = αVar[Xα ], with Xα the Esscher transform of X with parameter
α > 0.

3. If N ∼ Poisson(λ ) and X ∼ gamma(α,β ), then the premium is 1.1λα/β .

4. λ
γ [mX (γ)−1].

5. λα
β [1+ γ

β (1+α)].

6. Use κX (h) = logE[ehX ].

7. Members of the same family with different parameters result.

8. Show: derivative of the Esscher premium = variance of the Esscher transform.

9. λE[XehX ].

10. Use Exercise 5.3.6 and a Taylor expansion.

11. Use E[eαX ] ≥ eα(b−ε) Pr[X ≥ b− ε].

15. Such a mixture is additive.

16. Such a condition is: ‘X and Y not positively correlated’.
π[X +Y ]−π[X ]−π[Y ] = · · · ≥ 0 ⇐⇒ |ρXY | ≤ 1.

Section 5.5

2. Cauchy-Schwarz; check this in any text on mathematical statistics.

Section 5.6

1. TVaR = 9.022945; ES = 0.1651426

2. Use Figures 5.1 and 5.2 and the definitions (5.35) and (5.41).

5. CTE[X +Y ;0.9] = 0.95, while CTE[X ;0.9] = 0.95.

6. Let U = (S−α)/β , and use VaR[U ; p] = p, TVaR[U ; p] = 1+ p
2 , ES[U ; p] = 1

2 (1− p)2.

7. TVaR[U ; p] = ϕ(Φ−1(p))
1−p if U = S−µ

σ . Substitute u = Φ−1(t) in (5.41) to prove this.

8. Use the result in Exercise 3.9.6.
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10. Use partial fractions to find
∫ z−1

1
1

z−t
1
t2 dt =

∫ z−1
1

(
a

z−t + b+ct
t2

)
dt.

11. π[2S;h] = · · · = 2π[S;2h] > 2π[S;h] if h > 0.

CHAPTER 6

Section 6.2

1. 45%; 760% vs. 900%

Section 6.3

1. See the text before (6.9).

2. All rows of P2 are (p, pq,q2).

3. l(∞) = (p,q), e(λ ) = λe−λ (c−a)/[c(1− e−λ )+ae−λ ].

4. Use b(λ ) > (c−b)(1− e−2λ ), and ue−u/(1− e−u) = u/(eu −1) ≤ 1 for u ≥ 0.
e(λ ) ≈ 1 for b � c and λ small.

7. α = 0.3.

8. e(0.050) ≈ 0.50

9. s/(1− t) = p/(1− p).

CHAPTER 7

Section 7.2

1. Use Theorem 7.2.3.

2. Use the previous exercise, or the additivity/multiplicativity properties of gamma random vari-
ables.

3. Compare Bi to AiBi for suitable Bernoulli variables.

6. Verify that FN(i) ≥ FM(i) for i = 0,1,2,3. Why is that also sufficient for N ≤st M?

7. Take Y = X + I with I = I(X) = 0 if X ∈ {0,2}, and I = 1 otherwise.
Alternatively, fill a table with probabilities Pr[X = i,Y = j] such that the marginals are correct
and Pr[X = i,Y = j] = 0 for i > j.

Section 7.3

1. Look at the ratio of the densities. To avoid convergence problems, write the stop-loss premiums
as finite sums: ∑∞

d = ∑∞
0 −∑d−1

0 .

2. Use the previous exercise and Exercise 7.2.3.
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3. Use that (x + y− d)+ ≤ (x− 1
2 d)+ + (y− 1

2 d)+ for all non-negative x, y and d. From this,
it follows that E[(X1 + X2 − d)+] ≤ 2E[(X1 − 0.5d)+] = E[(2X1 − d)+]; independence is not
necessary.

4. E[(X −a1)+] = E[(Y −a1)+]; E[(X −a3)+] = E[(Y −a3)+]; so E[(X −d)+] and E[(Y −d)+]

example Section 7.4.2.

5. Let G(x) = p on (a,b) and let F(x0 +0)≥ p, F(x0−0) < p. Then F ≤G on (−∞,x0), F ≥G on
(x0,∞). Note that unless F ≡ G, F ≥ G everywhere nor F ≤ G everywhere can hold, otherwise
unequal means result.

7.

8. See Exercise 4.

9.

10. X ≤e Y .

14. Consider a series expansion for mY (t)−mX (t).

16. If d ≥ 0.5 then V ≤SL W . If d < 0.5, we never have V ≤SL W . If E[W ] ≤ E[V ], hence d ≤
1−√

1/2, then W ≤SL

17. See Theorem 7.6.2.

18. X1 ≤SL X2 ≤SL X3 ≤SL X4 because of earlier exercises. X2 ≤SL X5 by dispersion. X3 ≤SL X5
nor X5 ≤SL X3 since Var[X ] > Var[X3] but Pr[X3 > 15] > 0, and the same for X4. To show that

5(et−1)/{2/3 + 1/3e5t} as t → ∞, or use a similar
argument as above.

p p is {1− t + t2 p(1− p)}−1. Use (p(Y −d)+(1− p)(Z−d))+ ≤
p(Y −d)+ +(1− p)(Z−d)+, as well as E[Xp|X1/2] ≡ X1/2 and Corollary 7.3.16.

i

(q0,q1,q2) ≤SL (1/4,1/4,1/4,1/4).

21. By counting frequencies of claim amounts, write S2 = 2N2 + · · ·+ 5N5 and S1 = N1 + S2. Or:
S3 ∼ S2 if λ3 = 5, p3(x) = 1/5 for x = 0,2,3,4,5. Note: only compare compound Poisson
distributions with the same λ .

22. E[X ] = E[Y ] rules out stochastic order.
E[(Y −d)+] = 1

2{E[( 3
2 X−d)+]+E[( 1

2 X −d)+]}= 3
4 E[(X− 2

3 d)+]+ 1
4 E[(X−2d)+]≥E[(X−

d)+] because of convexity.

23. λ = 0; λ such that e−λ ≤ 1/4 and (1+λ )e−λ ≤ 3/4, hence · · · ; λ ≥ 1.

25. If p j < p < pk, replace A j and Ak by B j ∼ Bernoulli(p) and Bk ∼ Bernoulli(p j + pk − p), and
use Exercise 7.3.8. Proceed by induction.

26. Examine when the densities cross once, when twice. There is stochastic order when p5 ≥ 1
6

or (1− p)5 ≥ 1
6 , stop-loss order when p5 ≥ 1

6 , hence p ≥ 0.699, and stop-loss order the other

way when p ≤ 0.5. Verify that for p ∈ ( 1
2 , 5
√

1/6), neither X ≤SL Y nor Y ≤SL X holds.

Section 7.4

1. The cdf is monotonous in p as well as µ . The stop-loss premiums are pµe−d/µ . In case of
equal means pµ , there is stop-loss monotony in µ .

2. Use earlier results found on order between binomial random variables.

3. mM(logmX (t)) ≤ mM(logmY (t)) ≤ mN(logmY (t)), t ≥ 0.

exponential order does not hold, consider e

If H is the uniform(0,3) cdf, consider G with G = F on (−∞,1.5), G = H on [1.5,∞).

5

19. No: E[X ] ≡ 1. The mgf of X

15. No, no, no. [Why is it sufficient to prove only the last case?]

cannot cross. Or: the cdfs cross once, the densities twice. For such a counterexample, see for

V , since the cdfs cross once.

20. G and V are cdfs of compound distributions with claim size ∼ F(·). So determine q such that

a) Consider the ratio of the densities; b) use Example 7.3.4 for Poisson(E[M]).
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4. X ≤e Y .

5. One recognizes the stop-loss premiums at d of the retained claims after reinsurance of type
stop-loss, excess of loss, and proportional, all with equal expected value.

6. The reasoning that larger skewness implies fatter tails implies larger stop-loss premiums breaks
down because of (3.116).

7. E[S] = E[T ] precludes stochastic order. To show that S ≤SL T , find the sign changes in fS(x)−
fT (x), x = 0,1,2,3,4, under the assumption that instead of 1000 policies, there is only one
policy in class i = 1,2, and use Theorem 7.3.13.

8. Compare the means, that is, the stop-loss premiums at d = 0, and also look at the ratio of the
stop-loss premiums for large d, using l’Hôpital’s rule.

9. See the final sentence of this section.

10. mX (t)−mY (t) = · · ·

Section 7.5

1. If E[(X −d)+] > E[(Y −d)+], then E[(X − t)+] > E[(Y − t)+] for all t because of the form of
the stop-loss transform of X . This is impossible in view of (3.115).

3. If (7.36) applies, it is the maximum, otherwise it is the best of {0, 0̄} and {b, b̄}.

5. {b, b̄} resp. {0, 0̄}. Express the third raw moment in t = (d −µ)/σ .

6. Consider E[(X −d)(X − d̄)2] for d = 0 and d = b.

7. Use concentration and dispersion. Variances: λE2[Y ], λE[Y 2], λbE[Y ].

Section 7.6

3. X ∼ Bernoulli(0.5), Y ≡ 1.

4. By the Rule of thumb 3.10.6, the ratio of the stop-loss premiums is about 5 to 3.

6. For point (x,y) with x > y to be in the support of the comonotonic joint cdf H(x,y) =
min{FX (x),FY (y)}, we must have H(x,y) > H(y,y). This is impossible because of FX (y) ≥
FY (y).

7. What does a table of the joint probabilities look like?

9. For TVaR, use the corresponding properties of VaR. To prove c), take d′ = VaR[Y ; p] in char-
acterization (5.43) of TVaR.

10. Use that Var[XU +YU ] is maximal. What does it mean that Pr[X ≤ x]Pr[Y ≤ y] = min{Pr[X ≤
x],Pr[Y ≤ y]} for all x,y?

11. Recall that X +Y as well as XU +YU are normal r.v.’s.

Section 7.7

2. The conditional distribution of X , given Z = z is again normal, with as parameters
E[X |Z = z] = E[X ]+ρ σX

σZ
(z−E[Z]) and Var[X |Z = z] = σ2

X (1−ρ2) for ρ = r(X ,Z).

4. Pr[gi(U,Z) ≤ x] =
∫

Pr[F−1
Xi|Z=z(U) ≤ x]dFZ(z) = · · · .
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5. Conditionally on X = x, the first term of S
′
u equals x with probability one, the second has the

conditional distribution of Y , given X = x.

Section 7.8

1. Pr[X ≤ x|Y ≤ y] = Pr[X ≤ x,Y ≤ y]/Pr[Y ≤ y] ≥ ·· · , hence · · ·
2. 1 2 1 2

3.
To determine the Spearman rank correlation of X and Y , compute

∫∫
uvc(u,v)dudv to show

that this correlation is α/3. Kendall’s τ equals τ = 2α/9.

5. r(X ,Y ) = {eσ −1}/
√

(eσ2 −1)(e−1). Since σ → ∞ implies r(X ,Y ) ↓ 0, there exist perfectly
dependent random variables with correlation arbitrarily close to zero. But ρ = τ = 1 for any
value of σ , hence Kendall’s and Spearman’s association measures are more well-behaved than
Pearson’s.

6. r(X2,(X +b)2) = (1+2b2)−
1
2 .

CHAPTER 8

Section 8.2

1. The basis for all these covariance relations is that Cov[Ξi + Ξit ,Ξ j + Ξ ju] = 0 if i 	= j; = a if
i = j, t 	= u; = a+ s2 if i = j, t = u.

4. a) Minimize Var[{Xj,T+1 −m−Ξ j}+{m+Ξ j − zX j − (1− z)X}]. b) z(X j −X).

5. az+a(1− z2)/(Jz); s2 +a(1− z){1+(1− z)/(Jz)}; a(1− z){1+(1− z)/(Jz)}.

6. zX j +(1− z)X/[1+a/(Jzm2)] ≤ (8.9), hence biased downwards.

7. Sum of premiums paid is JX .

8. Use E[(X j −X)2] = (a+ s2/T )(1−1/J) and E[(Xjt −X j)
2] = s2(1−1/T ).

9. Set d
dp E[(Y − p)2] = 0, or start from E[{(Y −µ)+(µ − p)}2] = · · ·

10. Block-diagonal with blocks aJ + s2I, with I the identity matrix and J a matrix of ones.

Section 8.3

1. Take expectations in Cov[X ,Y |Z] = E[XY |Z]−E[X |Z]E[Y |Z].

Prove that C(1,1) = 1 and c(u,v) ≥ 0 if |α| ≤ 1, and that the marginal cdfs are uniform(0,1).

Use Pr[X ≤ x ,X ≤ x ] ≥ Pr[X ≤ x ]Pr[X ≤ x ], and condition on Y = y and Z = z.
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Section 8.4

1. The Lagrangian for this constrained minimization problem is ∑t α2
t s2/wt − 2λ (αΣ − 1). Set-

ting the derivatives with respect to αi equal to zero gives αi/wi = λ/s2 for all i.
Or: ∑t α2

t /wt = ∑t({αt −wt/wΣ}+wt/wΣ )2/wt = · · ·
2. See the remarks at the end of this section.

3. Follow the proof of Theorem 8.4.1, starting from the MSE of a linear predictor of m instead of
m+Ξ j .

4. Analogous to Theorem 8.2.4; apply Exercise 8.2.9.

9. See Remark 8.4.3.

10. s̃2 = 8, ã = 11/3 =⇒ z̃ = · · · =⇒ m̃+Ξ j = 12.14,13.88,10.98

Section 8.5

2. Use Bayes’ rule.

3. Use Exercise 8.3.1 to determine Cov[X1,X2].

4. Take the derivative of the density and set zero.

5. α̃ = 1.60493; τ̃ = 15.87777; χ2 = 0.22.

6. Use that Λ ≡ E[N|Λ ].

CHAPTER 9

Section 9.2

1. For example the mean of a gamma(α = 1/ψi,β = 1/(ψiµi) r.v. equals α/β = µi. For the
variances: ψi; µi; ψiµi; ψiµi(1−µi); ψiµ2

i ; ψiµ2
i . See Table D.

2. Coefficient of variation: s.d./mean = · · · = √
φ ; skewness = 2

√
φ .

Section 9.3

4. Constant coefficient of variation.

6. The same values result for xiy j , but 0.1 times the χ2 value.

8. Negative with BS, 0 with marginal totals method.

Section 9.4

1. L̂ and L̃ can be found by filling in µi = µ̂i and µi = yi in (9.28).

3. Take the sum in (9.17) over both i and j.
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CHAPTER 10

Section 10.1

1. 24.

Section 10.2

2. The mode of the lognormal(µ,σ2) distribution is eµ−σ2
, see Exercise 3.8.6.

5. See the previous chapter.

Section 10.3

1. Xi j ∼ lognormal; see Table A and Exercise 3.8.6.

Section 10.4

1. Replace the αi in the first model by αiγ i−1.

2. 3(t −1) < t(t +1)/2 if t ≥ 4.

4. (10.14) implies X̂11
0 = 102.3; (10.16) implies X̂11 = 101.1.

5. Use that ∑∞
j=1 β j−1 = (1−β )−1.

CHAPTER 11

Section 11.3

1. Start from e�(y) ∂�
∂θ = ∂el(y)

∂θ
2. See also Example 11.3.3.

3. Use ∂�
∂β j

= ∂�
∂θ

dθ
dµ

dµ
dη

∂η
∂β j

= · · · , see (11.39). Add up the ML-equations weighted by β j , and use

ηi = ∑
j

xi jβ j .

5. Fill in θ̃i and θ̂i in log fY
6. Derive b(θ(µ)) from b(θ) and θ(µ).

7.

= 102.3×1.00×1×0.42

, and exchange the order of integration and differentiation.

Compute the densities, or look at the mgfs.

(y;θ ,ψ), see (11.4), and (9.27), (9.29) and (9.32).



Appendix C
Notes and references

When a thing has been said and well, have no scruple. Take it
and copy it — Anatole France (1844 - 1924)

In spite of the motto of this chapter (another famous saying by the same author
is “If a million people say a foolish thing, it is still a foolish thing”), we will try
to give credit where credit is due. Additional material on many subjects treated
in this book, apart from the references indicated by chapter, can be looked up in
your library in two recent encyclopedias: Melnick & Everitt (Eds., 2008) as well as
Teugels & Sundt (Eds., 2004). Also, search engines and online encyclopedias often
provide access to useful material. Required for studying the book is a course on
mathematical statistics on the level of Bain & Engelhardt (1992) or a similar text.

CHAPTER 1

Basic material in the actuarial field on utility theory and insurance is in Borch (1968,
1974). The utility concept dates back to Von Neumann & Morgenstern (1944). The
Allais paradox is described in Allais (1953). For a description of Yaari’s (1987)
dual theory of risk, see Wang & Young (1998) and Denuit et al. (1999), but also the
book Denuit et al. (2005). Both utility theory and Yaari’s dual theory can be used
to construct risk measures that are important in the framework of solvency, both in
finance and in insurance, see for example Wason et al. (2004).

CHAPTER 2

Since the seminal article of Panjer (1981) on recursions for the collective model, also
many recursion relations for (approximate and exact) calculation of the distribution
in the individual model were given. All these methods assume that the portfolio
consists of rather large groups of identical policies. We refer to De Pril (1986),
Dhaene & De Pril (1994), Dhaene et al. (2006), Sundt (2002) as well as Sundt &
Vernic (n.d.) for an overview.

357
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CHAPTER 3

For collective models, see also the textbook Bowers et al. (1986, 1997). Many other
books cover this topic, for example Seal (1969), Bühlmann (1970), Gerber (1979),
Goovaerts et al. (1990), Heilmann (1988) and Sundt (1999), as well as the work
by Rolski et al. (1998). Beard et al. (1977, 1984) contains a lot of material about
the NP approximation. While collective risk models assume independence of the
claim severities, a new trend is to study the sum of dependent risks, see for example
Denuit et al. (2005). A text on statistical aspects of loss distributions is Hogg &
Klugman (1984), or more recently Klugman et al. (1997). Some references propa-
gating the actuarial use of the inverse Gaussian distributions are Ter Berg (1980a,
1980b, 1994). The rejection method was an idea of Von Neumann (1951); for a de-
scription of this and many other numerical methods, see also Press et al. (2007).
Panjer’s recursion was introduced in Panjer (1981), extended by Sundt & Jewell
(1981). The function Panjer.Poisson in Remark 3.5.7 was inspired by the
package actuar by Vincent Goulet. Bühlmann (1984) compares Panjer’s recur-
sion and Fast Fourier Transform based methods by counting the number of multi-
plications needed.

CHAPTER 4

Ruin theory started with F. Lundberg (1909), Cramér (1930, 1955), as well as
O. Lundberg (1940). An interesting approach based on martingales can be found in
Gerber (1979). The ruin probability as a stability criterion is described in Bühlmann
(1970). The book by Beekman (1964) gives an early connection of Poisson processes
and Wiener processes. A more recent book is Embrechts et al. (1997). Many pa-
pers have been published concerning the numerical calculation of ruin probabilities,
starting with Goovaerts & De Vylder (1984). Note that F.E.C. De Vijlder published
under the nom de plume De Vylder. Gerber (1989) derives the algorithm (4.79) to
compute ruin probabilities for discrete distributions. Babier & Chan (1992) describe
how to approximate ruin probabilities using the first three moments of the claims;
see also Kaas & Goovaerts (1985). Seal (1978) calls survival probabilities ‘The Goal
of Risk Theory’.

CHAPTER 5

The section connecting premium principles to the discrete ruin model is based on
Bühlmann (1985); insurance risk reduction by pooling was described in Gerber
(1979). In the 1970’s premium principles were a hot topic in actuarial research.
The basics were introduced in Bühlmann (1970). See also Gerber (1979, 1983) and
Goovaerts et al. (1984) for characterizations of premium principles. Goovaerts &
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Dhaene (1998) give a characterization of Wang’s (1996) class of premium princi-
ples. The notion of coherent risk measures is advocated in Artzner et al. (1997,
1999), but see also Huber (1981). The optimality of VaR in the sense of Remark
5.6.2 and the fact that the optimal cost then is a TVaR was demonstrated in Dhaene
et al. (2008). Note that in the literature, there is confusion about the terms TVaR,
CVaR, CTE, and ES. See Remark 5.6.9.

CHAPTER 6

Pioneering work in the theoretical and practical aspects of bonus-malus systems can
be found in Bichsel (1964), as well as in Loimaranta (1972). Denuit et al. (2007)
gives a comprehensive description of the insurance aspects of bonus-malus systems.
The study that led to the Dutch bonus-malus system described in this chapter was
described in De Wit et al. (1982). Bonus-malus systems with non-symmetric loss
functions are considered in Denuit & Dhaene (2001).

CHAPTER 7

The notion of stop-loss order entered into the actuarial literature through the pa-
per by Bühlmann et al. (1977). In the statistical literature many results generalizing
stop-loss order are available in the context of convex order. See for example Karlin
& Studden (1966). A standard work for stochastic orders is Shaked & Shanthiku-
mar (1994). Applications of ordering principles in operations research and reliability
can be found in Müller & Stoyan (2002). Recently, the concept of convex order has
been applied in the financial approach to insurance where the insurance risk and
the financial risk are integrated. Comonotonic risks play an important role in these
dependency models. Review papers about this topic are Dhaene et al. (2002a,b).
Forerunners to Chapter 7 are the monograph by Kaas et al. (1994), based on the
Ph.D. thesis by Van Heerwaarden (1991). See also the corresponding chapters of
Goovaerts et al. (1990). A comprehensive treatment of the actuarial theory of de-
pendent risks and stochastic orders can be found in Denuit et al. (2005). The choice
of the conditioning variable V in Section 7.7 is discussed in Vanduffel et al. (2008).

CHAPTER 8

The general idea of credibility theory can be traced back to the papers by Mowbray
(1914) and Whitney (1918). A sound theoretical foundation was given by Bühlmann
(1967, 1969). See also Hickman & Heacox (1999), which is the source of the motto
with this chapter. Several approaches can be taken to introduce credibility theory.
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One is the Bayesian approach using a least squares error criterion and a risk pa-
rameter Θ that is a random variable characterizing some hidden risk quality. An-

this text we use a variance components model such as often encountered in econo-
metrics. The advantage of this approach, apart from its simplicity and elegance, is
the explicit relationship with ANOVA, in case of normality. A textbook on vari-
ance components models is Searle et al. (1992). We have limited ourselves to the
basic credibility models of Bühlmann, because with these, all the relevant ideas of
credibility theory can be illustrated, including the types of heterogeneity as well as
the parameter estimation. For a more complete treatment of credibility, the reader
is referred to Dannenburg et al. (1996), which was the basis for our Chapter 8, or
to the Ph.D. thesis of Dannenburg (1996). The interpretation of a bonus-malus sys-
tem by means of credibility theory was initiated by Norberg (1976); for the negative
binomial model, we refer to Lemaire (1985).

CHAPTER 9

The paper by Nelder & Wedderburn (1972) introduces the generalized linear model
(GLM). The textbook McCullagh & Nelder (1989) contains some applications in
insurance rate making. A textbook on Generalized Linear Models geared towards
an actuarial audience is De Jong & Heller (2008). The heuristic rate making tech-
niques are treated more fully in Van Eeghen et al. (1983). Antonio & Beirlant (2007)

mixed models. The cube-root transformation in Example 9.1.1 is the well-known
Wilson-Hilferty (1931) transformation to normalize χ2 random variables.

CHAPTER 10

The first statistical approach to the IBNR problem goes back to Verbeek (1972).
The three dimensions of the problem were introduced in De Vylder (1978). An
encyclopedic treatment of the various methods is given in Taylor (1986); see also
Taylor (2000). The triangle of Taylor & Ashe (1983) is used in many texts on IBNR
problems. The relation with generalized additive and multiplicative linear models
is explored in Verrall (1996, 2000). The model behind the chain ladder method is
defended in Mack (1993, 1994). Doray (1996) gives UMVUEs of the mean and
variance of IBNR claims for a model with lognormal claim figures, explained by
row and column factors. Research currently goes in the direction of determining the
economic value of run-off claims with discounting. The statistical framework gives
the extrapolated claim figures as a cash flow. The calendar year is of a different na-
ture than the development year and the year of origin, because it includes inflation
and discounting. A reference is Goovaerts & Redant (1999). Both the analytical es-

describes credibility theory as well as GLMs as special cases of generalized linear

other approach applies projections in Hilbert spaces, as in De Vylder (1996). In
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timate of the prediction error of the chain ladder method in Section 10.6 and the
bootstrap method were proposed by England & Verrall (1999) and England (2002).
The Bornhuetter-Ferguson method of IBNR reserving was introduced in Bornhuet-
ter & Ferguson (1982). Verrall (2004) shows that this method as well as the chain
ladder method can be described as generalized linear models in a Bayesian frame-
work. The data in Section 10.7 are from a contest organized by ASTIN NL.

CHAPTER 11

The Gauss-Markov theory can be found in Bain & Engelhardt (1992, Ch. 15). See
also McCullagh & Nelder (1989) for the theory behind generalized linear models.
The IRLS algorithm was developed in Nelder & Wedderburn (1972). The name
Tweedie has been associated with this family by Jørgensen in honor of M.C.K.
Tweedie (1984). The extended quasi-likelihood was introduced in Nelder & Pregi-
bon (1987). Dunn & Smyth (2005) describe the numerical aspects of the functions
d/p/q/rtweedie they contributed to R. The use of Tweedie’s class of exponen-
tial dispersion models for claims reserving in described in Wüthrich (2003).

APPENDIX A

Next to the informal introduction by Burns (2005) that inspired Appendix A.1, there
is a wealth of other useful material on R on http://cran.r-project.org,
the official CRAN website. For instance Paradis (2005) is a good text for beginners.
A recent text describing the use of R in statistics is Crawley (2007). The MASS
library is based on Venables & Ripley (2002). The Jarque-Bera test is described in
Bera & Jarque (1980). Racine & Hyndman (2002) describe how to use R to teach
econometrics.
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Bühlmann H., Gagliardi B., Gerber H.U. & Straub E. (1977). “Some inequalities for stop-loss
premiums”, ASTIN Bulletin, 9, 169–177.
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Table A The most frequently used discrete and continuous distributions

Distribution Density & support Moments & cumulants

Binomial(n,p)
(0 < p < 1, n ∈ N)

(
n
x

)
px(1− p)n−x

x = 0,1, . . . ,n

E = np,Var = np(1− p),

γ =
σ3

(1− p+ pet)n

Bernoulli(p) ≡ Binomial(1,p)

Poisson(λ )

(λ > 0)
e−λ λ x

x!
, x = 0,1, . . .

E = Var = λ ,
γ = 1/

√
λ ,

κ j = λ , j = 1,2, . . .

exp[λ (et −1)]

Negative
binomial(r,p)

(r > 0, 0 < p < 1)

(
r + x−1

x

)
pr(1− p)x

x = 0,1,2, . . .

E = r(1− p)/p
Var = E/p,

γ = (2−p)
pσ

(
p

1− (1− p)et

)r

Geometric(p) ≡ Negative binomial(1,p)

Uniform(a,b)

(a < b)

1
b−a

; a < x < b
E = (a+b)/2,
Var = (b−a)2/12,
γ = 0

ebt − eat

(b−a)t

N(µ,σ2)

(σ > 0)

1

σ
√

2π
exp

−(x−µ)2

2σ2

E = µ , Var = σ2, γ = 0
(κ j = 0, j ≥ 3)

exp(µt + 1
2 σ2t2)

Gamma(α ,β )
(α,β > 0)

β α

Γ (α)
xα−1e−βx,x > 0

E = α/β , Var = α/β 2,
γ = 2/

√
α

(
β

β − t

)α
(t < β )

Exponential(β ) ≡ gamma(1,β )

χ2(k) (k ∈ N) ≡ gamma(k/2,1/2)

Inverse
Gaussian(α ,β )

(α > 0,β > 0)

αx−3/2√
2πβ

exp

(−(α −βx)2

2βx

)
E = α/β , Var = α/β 2,
γ = 3/

√
α

eα(1−
√

1−2t/β )

(t ≤ β/2)

F(x) = Φ
( −α√

βx
+
√

βx

)
+ e2α Φ

( −α√
βx

−
√

βx

)
, x > 0

Beta(a,b)
(a > 0,b > 0)

xa−1(1− x)b−1

B(a,b)
, 0 < x < 1 E =

a
a+b

, Var =
E(1−E)

a+b+1

Lognormal(µ ,σ2)

(σ > 0)

1

xσ
√

2π
exp

−(logx−µ)2

2σ2 ,

x > 0

E = eµ+σ2/2, Var = e2µ+2σ2 − e2µ+σ2
,

γ = c3 +3c with c2 = Var/E2

Pareto(α ,x0)

(α,x0 > 0)

αxα
0

xα+1 , x > x0 E =
αx0

α −1
, Var =

αx2
0

(α −1)2(α −2)

Weibull(α ,β )

(α,β > 0)
αβ (βy)α−1e−(βy)α

,x > 0
E = Γ (1+1/α)/β ,
Var = Γ (1+2/α)/β 2 −E2,
E[Yt ] = Γ (1+ t/α)/β t

np(1− p)(1−2p)

Mgf
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Table B Standard normal distribution; cdf Φ(x) and stop-loss premiums π(x)

+0.00 +0.05 +0.10 +0.15 +0.20

x Φ(x) π(x) Φ(x) π(x) Φ(x) π(x) Φ(x) π(x) Φ(x) π(x)

0.00 0.500 0.3989 0.520 0.3744 0.540 0.3509 0.560 0.3284 0.579 0.3069
0.25 0.599 0.2863 0.618 0.2668 0.637 0.2481 0.655 0.2304 0.674 0.2137
0.50 0.691 0.1978 0.709 0.1828 0.726 0.1687 0.742 0.1554 0.758 0.1429
0.75 0.773 0.1312 0.788 0.1202 0.802 0.1100 0.816 0.1004 0.829 0.0916
1.00 0.841 0.0833 0.853 0.0757 0.864 0.0686 0.875 0.0621 0.885 0.0561
1.25 0.894 0.0506 0.903 0.0455 0.911 0.0409 0.919 0.0367 0.926 0.0328
1.50 0.933 0.0293 0.939 0.0261 0.945 0.0232 0.951 0.0206 0.955 0.0183
1.75 0.960 0.0162 0.964 0.0143 0.968 0.0126 0.971 0.0111 0.974 0.0097
2.00 0.977 0.0085 0.980 0.0074 0.982 0.0065 0.984 0.0056 0.986 0.0049
2.25 0.988 0.0042 0.989 0.0037 0.991 0.0032 0.992 0.0027 0.993 0.0023
2.50 0.994 0.0020 0.995 0.0017 0.995 0.0015 0.996 0.0012 0.997 0.0011
2.75 0.997 0.0009 0.997 0.0008 0.998 0.0006 0.998 0.0005 0.998 0.0005
3.00 0.999 0.0004 0.999 0.0003 0.999 0.0003 0.999 0.0002 0.999 0.0002
3.25 0.999 0.0002 1.000 0.0001 1.000 0.0001 1.000 0.0001 1.000 0.0001
3.50 1.000 0.0001 1.000 0.0000 1.000 0.0000 1.000 0.0000 1.000 0.0000

Table C Selected quantiles of the standard normal distribution

x 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417

Φ(x) 0.900 0.950 0.975 0.990 0.995 0.999 0.9995 0.99995 0.999995

Examples of use: Φ(1.17) ≈ 0.6Φ(1+0.15)+0.4Φ(1+0.20) ≈ 0.879;
Φ−1(0.1) = −1.282; Φ(−x) = 1−Φ(x); π(−x) = x+π(x).

NP approximation: If S has mean µ , variance σ2 and skewness γ , then

Pr

[
S−µ

σ
≤ x

]
≈ Φ

(√
9
γ2 +

6x
γ

+1− 3
γ

)

and Pr

[
S−µ

σ
≤ s+

γ
6
(s2 −1)

]
≈ Φ(s)

Translated gamma approximation: If G(·;α,β ) is the gamma cdf, then

Pr[S ≤ x] ≈ G(x− x0;α,β ) with α =
4
γ2 ;β =

2
γσ

;x0 = µ − 2σ
γ

.



370 D Tables

Table D The main classes of distributions in the GLM exponential dispersion family, with the

customary parameters as well as the (µ,φ) and (θ ,φ) reparameterizations, and more properties

Distribution Density (µ,φ) reparameterization Cumulant function b(θ)

Domain Canonical link θ(µ) E[Y ;θ ] = µ(θ) = b′(θ)

Variance function V (µ)

N(µ,σ2) 1
σ
√

2π e−
(y−µ)2

2σ2 φ = σ2 θ 2

2

θ(µ) = µ θ

V (µ) = 1

Poisson(µ) e−µ µy

y! φ = 1 eθ

y = 0,1,2, . . . θ(µ) = log µ eθ

V (µ) = µ

Poisson(µ,φ) e−µ/φ (µ/φ)(y/φ)

(y/φ)! θ(µ) = log µ eθ

y = 0,φ ,2φ , . . . V (µ) = µ eθ

Binomial(m, p)
(m

y

)
py(1− p)m−y µ = mp; φ = 1 m log(1+ eθ )

(m ∈ N fixed) y = 0, . . . ,m θ(µ) = log µ
m−µ

meθ

1+eθ

V (µ) = µ(1− µ
m )

Negbin(r, p)
(r+y−1

y

)
pr(1− p)y µ = r(1−p)

p ; φ = 1 −r log(1− eθ )

(r > 0 fixed) y = 0,1, . . . θ(µ) = log µ
r+µ

r eθ

1−eθ

V (µ) = µ(1+ µ
r )

Gamma(α,β ) 1
Γ (α) β α yα−1e−βy µ = α

β ; φ = 1
α − log(−θ)

y > 0 θ(µ) = − 1
µ − 1

θ

V (µ) = µ2

IG(α,β ) αy−3/2√
2πβ

exp −(α−βy)2

2βy µ = α
β ; φ = β

α2 −√−2θ

y > 0 θ(µ) = − 1
2µ2

1√−2θ

V (µ) = µ3

Tweedie(λ ,α,β )
∞
∑

n=1

β nα ynα−1e−βy

Γ (nα)
λ ne−λ

n! µ = λα
β ; φ = α+1

β µ1−p {(1−p)θ}(2−p)/(1−p)

2−p

(α fixed; for y > 0; θ(µ) = µ1−p

p−1 {(1− p)θ}1/(1−p)

p = α+2
α+1 ) e−λ for y = 0 V (µ) = µ p
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Knowledge is of two kinds. We know a subject ourselves, or we
know where we can find information on it —
Samuel Johnson (1709–1784)

! (negation), 95, 283
+ (continuation prompt), 327
-> (‘reversed gets arrow’), 327
. (dot), 326

: (colon operator), 328
<- (‘gets arrow’), 326
==, 253, 263, 264, 295, 316, 319, 322, 329,

331
> (prompt), 326, 327
| or || (‘or’), 54, 110
? (help), 331
# (comments), 327
$, 321, 330
%*%, 189, 283, 289, 291, 293, 316, 328, 329
%o%, 189, 293, 329

(underscore), 326

abline, 331
accident proneness, 222
additive effects, 232, 233
additive model, 231, 236, 238, 262
additivity, 117, 118, 121–123, 133, 166
adjustment coefficient, ix, 88, 91–93, 97–101,

109, 111–114, 116, 117, 160, 164, 165,
198, 348

aggregate, 255, 340
AIC, 263, 320
Akaike information criterion (AIC), 248, 250,

276
aliased, 238
all, 95
Allais paradox, 8, 357
analysis of deviance, 234, 247
ANOVA, 204, 209, 220, 233, 234, 360
anova, 206, 220, 251, 258, 263
Anscombe residual, 305, 321

Antonio, xiv, 360
any, 49
args, 331
arithmetic returns, 332
as.factor, 249, 338
as.numeric, 253, 285
as.vector, 187
association measure, 191, 192, 194, 354
attach, 253
averaging, 303

Bailey-Simon, 239, 241, 244, 262, 307, 355
Bain, xiii
balanced Bühlmann model, 204, 206, 207,

209, 213, 218, 219
BAN, 241
Bayes, xii, 204, 213, 225, 248, 271, 291, 355,

360, 361
Beard, 358
Beekman, 358
Beekman’s convolution formula, 101, 104
Beirlant, 360
Bernoulli distribution, 21, 37, 38, 59, 65, 70,

77, 86, 122, 123, 134, 153, 159, 162,
164, 166, 169, 182, 195, 197, 198, 299,
342, 348, 349, 351–353, 368

best linear unbiased estimator (BLUE), 227
beta distribution, 85, 166, 299, 368
Bichsel, 359
big O notation O(·), 29, 34, 49, 54–57, 233
binom d/p/q/r, 33, 71
binomial distribution, xii, 31, 38, 41, 51, 53,

78, 84, 86, 133, 152, 156, 166, 168, 181,
196–198, 234, 259, 299, 300, 304, 312,
321, 322, 346, 352, 368, 370

binomial theorem, 28
Black-Scholes, 85, 332

371

(forward slash & backslash), 327/ v.\
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block-diagonal, 227, 354
Blomqvist’s β , 151, 191, 193, 202
Bonferroni’s inequality, 191, 200
bonus guarantee, 252
bonus-malus, x, xii, 135, 136, 138, 139, 141,

142, 144, 146, 161, 222, 223, 225–227,
233, 234, 237, 252, 276, 359, 360

Boolean, 279, 326, 329
bootstrap, xii, 268, 281, 283–288, 290, 294,

361
Borch, 357
Bornhuetter-Ferguson, xii, 268, 270, 271, 273,

290, 291, 294, 361
Bowers, 358
break, 54, 222, 240, 322, 326
Brownian motion, 183
Bühlmann, 115, 118, 204, 206, 212–214, 358,

359
Bühlmann-Straub, 204, 213–215, 217, 218,

220, 228, 235
Burns, 325
byrow, 327

c (combine function), 282, 328, 331
canonical (standard) link, 236, 297, 310–312,

314, 321, 323
canonical parameter, 301
Cantor cdf and set, 25
capital at ruin, 95, 97, 98, 102
CAPM, 154
case-sensitive, 326
cash invariance, 120
cat, 289, 316
Cauchy distribution, 84
Cauchy-Schwarz, 134, 350
cbind, 316
ceiling, 49, 319
Central Limit Theorem (CLT), viii, xiii, 30–34,

36, 39, 42, 57–59, 80, 84, 150, 201, 334,
343, 346

chain ladder, xii, 268–270, 272–275, 278, 279,
281, 283, 284, 290, 292–294, 361

characteristic function, viii, xiii, 18, 28, 30, 38,
54, 343

Chebyshev’s inequality, 97
Cheng, xiv
chi-square, 224, 229, 234, 239, 240, 355
chi-square distribution, 39, 80, 85, 205, 219,

237, 241, 245, 247, 276, 278, 279, 299,
335, 343, 368

chisq d/p/q/r, 294, 335
Cholesky decomposition, 187, 336
claim frequency, 136, 259
claim number distribution, 61

claim number process, 90
claim process, 90
claim severity, ix, 61, 136, 138, 166, 259
claim size distribution, 317
classical regression, 298
coef, 282, 285, 286, 317
coefficient of variation, 15, 82, 84, 151, 231,

236, 243, 247, 262, 279, 355
coherent risk measure, 116, 127, 128
coinsurance, 116, 125
col, 283, 285, 289
collective estimator, 215
collective experience, 203
collective model, viii, x, xi, 18, 41, 59–61, 81,

82, 87, 149, 164, 199, 346
colSums, 240
column major order, 283, 327
comonotone equivalent, 184, 187, 189
comonotonic, 151, 179–181, 183, 185,

190–192, 194, 195, 199, 200, 202, 353
comonotonic additive, 200
comonotonic copula, 194
comonotonic joint distribution, 179
comonotonic lower bound, 188
comonotonic support, 179–181
comonotonic upper bound, 184, 187, 189
complete market, 116
compound binomial, 41, 53, 54, 81, 346
compound distribution, 42–44, 50, 54, 57, 121,

160, 162–164, 176, 352
compound geometric, 101, 102, 104, 108, 150,

164
compound model, 61
compound negative binomial, 41, 46
compound Poisson, 41, 46–48, 51, 52, 57–60,

78–81, 85, 91, 96, 98, 116, 133, 198,
212, 233, 240, 254, 281, 346, 352

negative risk amounts, 61
compound Poisson–gamma, xiii, 254, 297,

317, 322
compounding, 149, 153, 160–163, 172, 198
concave, 3, 4, 6, 119, 159, 168, 170, 176, 199

downward/upward, 3
concentration, 154, 162, 172, 196, 353
concordance, 191
conditional covariances, decomposition rule,

212, 228, 354
conditional mean, 162, 188
Conditional Tail Expectation (CTE), 116, 130,

134, 359
Conditional Value-at-Risk (CVaR), 131, 359
conditionally iid random variables, 212
confidence level, 116, 126, 127
conflicting criteria, 99
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connected closure, 179
consistency, 120, 122
constant relative risk aversion (CRRA), 15
contingency tables, 237
convex, 3, 4, 14, 91, 98, 120, 123, 124, 126,

157, 159, 160, 163, 170, 175, 177, 182,
197, 199, 208, 347, 352

convex lower bound, 184
convex order, 159, 177, 180, 182, 185, 187,

188, 192, 200, 359
convolution, viii, 17, 25–28, 37, 41, 44, 47, 48,

53, 61, 70, 153, 161, 164
formula, 27, 44, 342
power, 26, 161, 198

convolve, 49, 61, 83
copula, xi, 151, 194
cor, 335
corner restriction, 272
correction for continuity, 31, 38, 39
countermonotonic, 191

copula, 194
lower bound, 195

counting distribution, 317
cov2cor, 189
covariance matrix, 188, 189, 227
covariance structure, 204
covariate, xii, 235
Cramér, 358
CRAN, 325
credibility, xi, 136, 184, 203, 213

estimator, 271
factor, 203, 207–209, 215, 217, 228
forecast, 225
mean, 228
premium, xii, 203, 209, 211, 227
theory, xi, 233, 359

greatest accuracy, 204
limited fluctuation, 203

credibility theory, 360
credible mean is exact Bayesian, 225
credit insurance, 312
cross products, 329
cross-classification model, 213
cross-classified observations, 233
cross-tabulation, 249
crossprod, 329

cum3, 201
cumsum, 52, 80, 95, 283

cumulant function, 300, 302, 303, 321

67, 78, 133, 302, 343, 350
cumulated loss figures, 283

cumulation, 46, 61, 64
cumulative distribution function (cdf), viii, 10,

18
curve, 287, 334, 337

Dannenburg, xiv, 360
data frame, 253, 326, 329, 331, 340
data.frame, 249
De Jong, 360
De Pril, 357
De Vijlder, 358, 360
De Vijlder’s IBNR-credibility model, 214
De Vijlder’s least squares, 274
De Vylder, 358
De Wit, 359
decreasing marginal utility, 3
deductible, 1
defective, 90
degenerate, 122, 162, 345
delta method, 232, 281, 284, 289, 306
density (kernel density estimate), 201, 287,

334
Denuit, xiv, 357–359
dependence measures, 151
dependent risks, xi, 151
design matrix, 233, 260, 289, 298, 315, 320
development factor, 269, 319
deviance, 234, 245–247, 263, 276, 278–280,

305, 319, 321
residual, 237, 263, 285, 297, 305, 321
scaled, 245, 276, 307, 321

Dhaene, xiv, 357, 359
diag, 146, 189, 201, 316, 321
differential, 20, 23, 26, 37, 90, 120, 156, 196
digamma (psi function), 67
dimnames, 326
direct method, 243, 245, 262
discount factor, 183
dispersion, 154, 162, 172, 196, 198, 352, 353
dispersion matrix, 298
dispersion parameter, 235, 245, 247, 281, 297,

298, 301–303, 308, 310, 319
diversification, 196
dividend, 87, 115, 117, 118, 133
Doray, 360
dummy trap, 238, 276

Dunn, xiii, 318, 361

Edgeworth approximation, 35
eigen, 145
eigenvalue, 139, 145, 187
eigenvector, 139, 143, 144, 147
elasticity, 136, 141, 299

cumulant, 29, 37–39, 58, 117, 302, 312, 343

csv (comma separated file), 327, 331

cumulant generating function (cgf), 18, 29, 30,

dummy variable, 238, 271, 276, 298, 310
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elementwise multiplication, 328
empirical cdf, 189
Engelhardt, xiii
England, xii, 361
entrywise product, 316
epigraph, 3
equivalence principle, 119, 241
Erlang distribution, 62, 70
Esscher premium, 120, 123, 124, 133, 134, 350
Esscher transform, 120, 133, 303, 304, 321,

350
estimation variance, 287, 288
Euler-Mascheroni constant, 79
ex post premium rating, 137
exact credibility, 225
example, 331
excess of loss reinsurance, 73, 81, 99–101,

113, 163, 168, 196, 198, 254, 353
exp d/p/q/r, 71
Expected shortfall (ES), 116, 129, 130, 134,

359
expected utility, viii, 1, 2, 8, 12, 99, 115, 160,

170, 348
expected value premium, 119, 133
experience rating, x, 135, 203, 222, 225, 227
explained deviance, 278
explained variation, 24, 184, 186, 229, 278
explanatory variable, 231, 233
exponential class, 298
exponential dispersion family, 231, 234, 246,

271, 297, 299–305, 310
exponential distribution, ix, 6, 15, 22, 37, 38,

43, 44, 60, 64, 72, 82–84, 88, 90, 91, 93,
106, 109, 112–114, 118, 124, 133, 166,
197, 198, 246, 343, 348, 349, 368

minima/maxima, 114
mixtures/combinations, ix, 69, 70, 82, 83,

85, 88, 106, 107, 109, 114
sum/convolution, 70, 71, 88

exponential moments, 28
exponential order, 160, 165, 197–199, 352
exponential premium, 6, 14, 74, 112, 115,

117–122, 125, 133, 150, 169, 197, 350
exponential tilting, 304
exponential utility, 5–7, 14, 15, 22, 88, 91, 119,

122, 123, 125, 160, 197
exposure, 63, 239, 240, 243, 253, 290, 319,

339, 340
weights, 235

extended quasi-likelihood, 308, 309, 322, 323,
361

extrapolation, 274

f d/p/q/r, 206

factor, 238, 248, 276, 326, 338
factorial moment, 343
factorization criterion, 84, 311
FALSE or F, 326
Farlie-Gumbel-Morgenstern, 194, 202
Fast Fourier Transform (FFT), viii, 18, 42, 49,

54, 55, 57, 61, 83, 325
fft, 57, 80
fire insurance, 72, 83
Fisher (F) distribution, 85, 205, 219
Fisher information matrix, 314, 316
Fisher test, 205, 219, 228, 321
Fisher’s scoring method, 313–315, 323
fitted, 285, 286, 289
fixed point, 220, 240
for (looping mechanism), 283, 286, 291, 328
for-loop, 57, 328, 332
formula, 251, 263
Fréchet, xi
Fréchet/Höffding bounds, 179, 191, 194
franchise insurance, 15
ftable, 249, 253
Fubini, 10, 103, 105, 111, 161, 192, 193
full credibility, 203
full model, 236, 237, 245–247, 302
function, 54, 319
functional invariance, 163, 196

gamma d/p/q/r, 32, 33, 66, 319
gamma v. Gamma (Γ (y) & GLM-family), 326
gamma distribution, ix, xii, 7, 15, 38, 39, 44,

47, 63, 65–68, 73, 85, 95, 107, 109, 112,
114, 133, 150, 166, 169, 186, 196, 197,
204, 223–225, 227, 229, 231, 234–236,
243, 246, 247, 262–264, 279, 281, 294,
299–301, 305, 306, 308, 309, 312, 318,
321, 326, 343, 346, 350, 351, 368, 370

Gauss-Markov, xii, 298, 361
gaussian, 292
generalized linear model (GLM), xii, 136, 204,

231, 233, 234, 236–239, 242, 243, 245,
262, 268, 271, 281, 283, 291, 297–300,
306, 311, 312, 317, 318, 323, 325, 326,
339, 360, 361

geometric Brownian motion, 332
geometric distibution, 62, 164, 299, 368
geometric returns, 332
Gerber, xiv, 107, 116, 122, 358
gl (generate levels), 249
GLIM, 233, 238, 276
glm, xii, 250, 258, 260, 263, 272, 276,

281–285, 288, 291, 293, 294, 299, 317,
318
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glmm (Generalized Linear Mixed Models), xii,
204, 360

GNU, 325
Gompertz distribution, 62, 83, 84
good driver/bad driver, 223
Goovaerts, xiv, 122, 124, 358–360
Goulet, xiv, 358

Höffding, xi
Hölder’s inequality, 126, 134
Hachemeister’s credibility-regression model,

214
hazard rate, 88, 109
head, 54
Heilmann, 358
Heller, 360
hello world, 326
help; help.search; help.start,

331
Hessian matrix, 313, 314
heterogeneity, 169
heterogeneity parameter, 221
heterogeneous, 203
heteroskedasticity, xiii, 235, 249, 299
Hilbert space, 360
hist, 287, 323, 331, 334, 337
Hoerl-curve, 276, 293
Hogg, 358
homogeneous estimator, 207
homogeneous linear estimator, 208
homogeneous portfolio, 211
homogeneous premium principle, 2, 121
homoskedasticity, 232, 233, 235
Hu, xiv
hunger for bonus, 140, 147, 252, 257

I (‘as is’), 317
IBNER; IBNFR, 265
IBNR, xii, 233, 234, 265, 268, 271, 276, 280,

360
prediction interval, 280
rectangle/square, 280
triangle, 318

if, 49, 222, 326
improved upper bond, 200
incomplete information, 150, 171, 199
increasing, 3
increments

infinitesimal, 90
stationary and independent, 90

independence, 150
independence copula, 194
indicator function, 26, 59
indicator random variable, 19

individual estimator, 215
individual experience, 203
individual model, viii, x, xi, 17, 18, 25, 41, 59,

61, 81, 82, 149, 164, 199, 357
induction, 27, 37, 56, 79, 92, 93, 342, 344
Inf, 95
infinite divisibility, 47
infinitesimal number, 20, 22, 90, 92, 93
inflation, 37, 87, 267, 273–276, 278–280
information matrix, 298, 313
inner product, 329
intensity, 90, 141, 223, 225
interaction, 238, 248, 251, 255, 260, 263, 276,

293, 339
interest term structures, 183, 186
interpolation, 292
invariance properties, 149, 150, 160
invariance property of ML-estimators, 223
inverse cdf, 17
inverse gamma distribution, 186, 201
inverse Gaussian distribution, 39, 63, 67, 68,

72, 82–84, 112, 166, 231, 234–236, 300,
301, 305, 306, 308, 318, 321, 346, 358,
370

inversion formula for characteristic function,
55

inversion method, 62
invgauss -/d/p/q/r, 69, 318, 320, 323
is.na, 331
iterative estimator, 228
iterative formula of conditional expectations,

20
iteratively reweighted least squares, 313, 315,

316, 323, 361
iterativity, 121, 122

Jørgensen, 361
Jarque-Bera test, 321, 334, 361
Jensen’s inequality, 4, 6, 14, 83, 233, 341, 342
Jewell, 358
Jewell’s hierarchical model, 213
joint tail behavior, 194
jointly complete, 298

Kaas, xiv, 358, 359
Karlin, 359
Kendall’s τ , 151, 191, 193, 202, 354
kernel density estimate, 201, 287, 334
Klugman, 358
Koning, xiv
kurtosis, 335

l’Hôpital’s rule, 168, 341, 343, 353
Laeven, xiv
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Lagrange, 216, 355
larger risk, 149, 152, 153
law of iterated expectations, 20
law of large numbers, 30, 150, 171
law of total expectation, 20
law of total variance, 23, 186
least related, 191
least squares, xi, 213, 242, 245, 246, 262, 275,

360
Lemaire, 223, 360
length, 282, 335
less dangerous, 156
lexicographical order, 197
liability, 17, 22, 72, 83, 136, 265, 267
library, 69, 187
light-tailed risk, 28
likelihood, 245, 246
likelihood ratio, 245
linear estimator, 228
linear model, 297, 299, 315, 322
linear predictor, 209, 215, 235, 299
linear utility, 5
linearity properties of covariances, 227
lines, 190, 201, 287, 334, 337
link function, 235, 237, 297, 299, 312, 316
list, 264, 330, 339, 340
lm, 206, 220, 299
lnorm d/p/q/r, 85
loading factor, 91, 99–101, 112–114, 117, 118,

133
log-link, 271, 274, 321
log-odds, 300, 312
logarithmic distribution, 46, 51, 57, 80
logarithmic utility, 5, 15, 341
logistic distribution, 85, 312
logit, 233, 312, 322, 323
logLik, 263
loglikelihood, 234, 236, 237, 305, 310, 311
lognormal distribution, ix, 39, 62, 63, 67, 71,

72, 82, 84, 85, 112, 134, 166, 183–187,
201, 202, 264, 274, 336, 346, 347, 356,
360, 368

Loimaranta, 359
efficiency, x, 136, 141–144, 146, 147, 229,

351
long run claim frequency, 46
loss ratios, 204, 258, 259, 264, 270, 271, 290
lower.tri, 187
Lundberg, 358
Lundberg’s exponential upper bound, ix, 88,

91–93, 95, 97, 98, 116, 117, 150, 165

main effect, 260, 339
Makeham distribution, 63, 83, 84

Malinovskii, xiv
malus, 59
marginal totals, 241, 242, 245, 262, 272, 274,

310, 311, 321, 323, 355
marginal totals property of CL, 269
marginal utility, 3, 6, 14, 119
Markov, x, 136, 138
martingale, 97, 358
MASS, 187, 336
matrix, 283, 327
matrix multiplication, 328
max, 65, 319
maximal aggregate loss, 88, 102, 104, 108,

110, 150, 164, 349
maximal loss premium, 120, 121
maximal stop-loss premium, 174, 175, 199
maximum copula, 194
maximum likelihood, xii, 42, 63, 64, 66, 69,

71, 72, 83, 223, 229, 233, 236, 237, 239,
241–243, 245–247, 262, 263, 271, 272,
274–276, 281, 297, 310, 311

maximum premium, 1, 4–7, 14, 22
McCullagh, 360, 361
mean, 69, 201, 287, 321, 335
mean squared error (MSE), 207–211, 213, 215,

268, 281, 288, 289, 355
mean value principle, 120, 121, 123
mean-square-between and -within, 205
mean-variance order, 149, 151, 154, 192
mean-variance relation, 236, 246, 250, 257,

258, 264, 281, 297, 303
measure theory, xiii
median, 82, 83, 274, 284, 347
memoryless, 88, 90, 102, 138
Mersenne-Twister, 62
method of moments, 65, 71, 223, 229, 247
mfrow, 332, 334
min, 72
minimal chi-square estimator, 239
minimal stop-loss premium, 175, 199
minimum copula, 194
minimum premium, 1, 4, 6, 14
mirror property of CL, 269
missing values, 331
mixed continuous/discrete cdf, 19, 317
mixed random variables and mixed

distributions, 18, 21, 69, 161
mode, 82, 83, 166, 176, 199, 229, 263, 292,

347, 349, 356
model formula, 260
model matrix, 289
model.matrix, 289, 321, 322
modified dependent variable, 315
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20, 28, 30, 37, 38, 43, 68, 87, 88, 92,
160, 165, 166, 185, 301, 303, 304, 341,
343, 344, 346, 352

moral hazard, 136

167–169, 197
more related, 151, 190, 192
Morgenstern, 2, 357
mortality rate, 83

most related, 191, 194
motor insurance, 66, 83, 136, 166, 169, 204,

222, 234, 248, 252, 325, 338
Mowbray, 359
multicollinearity, 238, 276
multiplicative effects, 232
multiplicative model, xii, 231, 236, 239, 241,

242, 245, 263
mustart, 292
mvrnorm, 187, 336

NA, 331
NaN, 40
natural parameter, 235, 297, 300, 301, 303,

311, 323
natural weight, 213, 215, 235, 298
nbinom d/p/q/r, 65
negative binomial distribution, ix, 38, 41, 45,

46, 51, 61, 63–65, 67, 78, 80, 85, 168,
169, 197, 223, 224, 231, 299, 300, 304,
318, 322, 344, 368, 370

negative binomial model, 222
negative claim amounts, 57, 61, 83
Nelder, xii, 233, 234, 297, 298, 311, 312, 325,

360, 361
nested models, 237, 247, 276, 278, 279
net premium, 1, 6–9, 115, 118–121
Newton-Raphson, 313, 314
no rip-off, 120, 134
no unjustified loading, 134
no-claim protection, 147
non-decreasing, 3
Norberg, 360
norm d/p/q/r, 16, 33, 62, 72, 187, 220,

336
normal distribution, xii, 15, 18, 31, 37–39, 44,

47, 58, 61–63, 67, 68, 73, 75, 84, 85, 98,
134, 166, 180, 186, 187, 200, 201, 204,
220, 225, 231, 234–237, 243, 245–247,
262, 263, 274, 298–300, 311, 312, 318,
321, 336, 341, 342, 353, 368–370

bivariate, 134, 188, 200, 335
multivariate, 183, 184, 186–188, 298

quantiles, 369
stop-loss premium, 369

normal equations, 63, 239, 240, 242–245, 298,
307, 310, 311, 313–315, 322

normal power approximation (NP), viii, 18, 31,
33–35, 38–40, 42, 58, 74, 75, 80, 83, 85,
344, 346, 347, 358, 369

null model, 236
numeric, 146, 283, 286
Numerical Algorithms Group (NAG), 233

Object oriented programming (OOP), 326
odds-ratio, 312
offset, 250, 291
offset, 250, 291, 294, 320
once-crossing, 153, 155, 196, 200, 352
one-dimensional analysis, 254
one-parameter exponential family, 300
optim, 63, 65–67, 71
optimal reinsurance, 35, 168
optimize, 63, 65–67, 320
ordering of risks, x, 149
outer, 293
outer product, 188, 282, 329
overdispersed Poisson, 246, 247, 280, 304
overdispersion, viii, 45, 46, 61, 64, 264, 291,

318
overlapping claim frequencies, 226

Panjer, 357, 358
Panjer’s recursion, ix, 41, 49–53, 57, 61, 79,

82, 83, 110, 114, 345, 346
par, 332, 334, 337
parameter identifiability, 238, 239, 242, 272
parameter uncertainty, 45, 61, 64, 284
Pareto distibution, 28, 39, 61–63, 72, 82, 84,

85, 128, 134, 166, 346, 368
Pareto-optimal, 13
partial credibility, 204
partial fractions, 37, 70, 106
partial integration, 9, 32, 34, 45, 73, 78, 105,

108, 111, 177, 197, 342, 347
Pascal, 328
pay-as-you-go, 265
Pearson residual, 237, 285, 305, 321
Pearson’s correlation coefficient r, xi, 151,

191, 193, 195, 202, 336
percentile premium, 120
plot, 190, 331, 332, 334
pmax (parallel), 16, 286
pmin (parallel), 189
pois d/p/q/r, 33, 40, 49, 64, 286, 319,

339
poisson, 286

most antithetic, 191, 194

more dangerous, 154, 157, 159, 160, 164,

moment generating function (mgf), viii, 6, 18,
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Poisson distribution, viii, xii, 27, 31–33, 38,
41, 45, 46, 48, 51, 59–61, 63, 65, 78,
79, 81, 84–86, 88, 90, 133, 141, 156,
164, 169, 196–199, 204, 223–225, 229,
231–236, 239–242, 246, 247, 254, 259,
263, 264, 272, 274, 277, 279–281, 294,
299, 300, 303–306, 308–310, 312, 318,
321, 326, 343–346, 350, 352, 368, 370

mixture, 169, 212, 223, 224, 259, 264
overdispersed (ODP), 166, 234
sample means/multiples, 39, 161, 199, 234,

235, 246, 257, 300, 303, 312, 318, 370
Poisson process, ix, 39, 44, 45, 61, 63, 64, 81,

88, 90–93, 98, 99, 102, 103, 111–114,
141, 222, 224, 339, 358

Poisson regression, 233
Poisson-gamma mixture, xii, 223
polyroot, 107
positive dependence, 191
positive quadrant dependent (PQD), 191, 194,

202
positively homogeneous, 134
posterior distribution, 224
power link, 318
power utility, 5, 14, 15, 341
power variance function, 318
precision, double/extended, 54
premium principle, ix, 115, 119, 120, 122, 123,

358
principle of equivalence, 6
print, 331
prior distribution, 224, 229
priority, 9

30, 38, 52, 55, 343
probability integral transform, 18, 62, 178
probit, 233, 234, 312
process variance, 284, 287, 288
product copula, 194
proportional reinsurance, 2, 12, 13, 15,

99–101, 113, 163, 196, 198, 353
proportionality, 121
ps (Postscript file), 331
pseudo-estimator, 220–222, 228
pseudo-random samples, 62, 64–66, 69, 71,

72, 83, 85, 336, 338

Q-Q plot, 321, 334
qqline, 334
qqnorm, 334
quadratic loss, 224
quadratic utility, 5–7, 14
quantile, 132, 287, 338
quantile risk measure, 116, 126

quasi-deviance, 306, 307
quasi-likelihood, 246, 306–308, 318, 322
quasi-Poisson, 234, 264, 284, 318
quasipoisson, 285, 286

R, vii–xiv, 15–361
random access memory (RAM), 339
random number generator, 62, 65
random numbers, 31, 62, 69, 187, 195, 285,

337

Rao-Blackwell theorem, 162
rare event, 45, 63
rating factor, x, 136, 137, 223
rating system, 234, 258, 264
ratio of stop-loss premiums, 77, 347, 353
rbind, 16, 65, 189, 328
RBNFS, 265
Re, 80
read.table, 253
record low, 102, 104, 164
recuperations, 283
Redant, 360
regression, 206, 214, 231, 232, 274, 276, 297
regression matrix, 289
regressor, 235
reinsurance and ruin probability, 99
rejection method, 62, 84, 358
renewal process, 111

repeat, 54, 222
require, 320
residual, 234, 236, 237, 246, 262, 285, 297,

305, 322
weighted mean squared, 298

respects order, 200
retained loss, 74, 85
retained risk, 168
retention, 9
return, 319, 326
returns (arithmetic and geometric), 332
rev, 54, 80
Riemann-Stieltjes, viii, 17, 20
Ripley, 336
risk aversion, viii, 1, 3–8, 14, 15, 22, 60, 88,

91, 112, 113, 115, 117, 119, 123, 125,
160, 168–170, 177, 348

risk factor, x, 136, 223, 241, 248, 249, 251,
252, 259, 338

correlated, 254, 255, 257, 338
interaction, 255, 339
orthogonal, 255

risk measure, ix, 115, 126, 357
risk neutral, 4, 6

rep, 189, 201, 282, 290, 320

probability generating function (pgf), 18, 29,

rank, xi, 191, 193, 194
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risk parameter, 169, 212, 360
risk premium, 215
risk process, 89
risk structure, 207
risk tolerance, 116, 125
riskier risk, 149
rm, 339
Rolski, 358
round, 264
row, 283, 285, 289
rowSums, 240
rowSums, 291
ruin, 87, 89, 120
ruin model, ix, xi, 115, 116
ruin probability, ix, x, 87, 92, 95–97, 104, 110,

112–117, 126, 150, 164, 166, 172, 176,
348, 349, 358

approximations, 88, 108
discrete distributions, 107, 110
discrete time, 88, 98, 113, 117, 349
explicit expression, 106
exponential claims, 93, 97, 106
finite time, 88
lower bound, 97
mixtures/combinations of exponential

distributions, 106
recursive formula, 105

ruin process, 160, 165, 198
rule of thumb, 77, 86, 185, 347, 353
run-off triangle, xii, 266–268, 273, 275, 290,

292

S, vii, 233, 325, 326
S-Plus, vii, 233
safety loading, ix, 15, 39, 91, 104, 113, 114,

119, 120, 134, 165, 344, 349
sample, 286, 338, 340
sample mean, 303, 335
sample variance, 201, 227
SAS, 233
saturated model, 236
scale parameter, 67, 68, 82, 166, 235, 301
scaled deviance, 234
scan, 249, 284, 327, 331, 332
Schmidt, xiv
script file, 326
sd, 201, 287, 335
Seal, 358
Searle, 360
sep, 331
separation model, 267, 268, 273, 274, 278,

279, 292, 293
separation theorem, 159, 165, 197, 199
sequence, 282, 290

set.seed, 16, 65, 67, 220, 286, 337, 338
shape parameter, 67, 70, 166, 235, 236, 297,

301
Shiu, xiv
shrinkage effect, 210
sign, 188
singularities, 260
skewness, 29, 31, 32, 38, 39, 58, 68, 74, 75, 82,

85, 166, 198, 199, 201, 232, 233, 262,
264, 284, 306, 335, 343, 344, 353, 355

Sklar’s theorem, 194
smoothing theorem, 20
Smyth, xiii, 318, 361
solidarity, 135, 258
sort, 340
solve, 146, 316, 321
solvency, 357
sparse vector algorithm, 41, 48, 79
Spearman’s rank correlation ρ , 151, 191, 193,

195, 202, 354
spreading of risks, 170
St. Petersburg paradox, 2, 15
standard deviation premium, 119, 169
starting values, 316
Stata, 233
statistic, 162, 209, 218, 222, 247
statmod, 69
statmod, 69, 320
stats, 72
steady state, 139, 141–144, 147, 229
Stirling’s formula, 309, 323
stochastic component, 234, 299
stochastic matrix, 138, 145
stochastic order, 153–155, 157, 159, 160, 163,

166, 167, 196, 198, 352
stochastic process, 89
stop, 54
stop-loss order, 149, 151, 157, 159–164, 169,

171, 172, 176, 177, 192, 196, 198–200,
352, 359

stop-loss premium, 9, 73, 75–77, 79, 172
stop-loss reinsurance, xi, 1, 8, 9, 11, 13, 15, 73,

99, 150, 168, 198
stop-loss transform, 10, 15, 175, 197, 347
str, 253
structure distribution, 46, 169, 207, 212, 223,

224
structure parameter, 204, 207, 212, 217, 223

unbiased estimators, 218
structure variable, 62, 84, 121, 162, 169, 184,

223
Studden, 359
Student distribution, 85
Student test, 321
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subadditivity, 116, 131–133
successive substitution, 239, 240, 242, 243,

275, 292, 323
sufficient statistic, 65, 84, 225, 298, 311, 339
sum, 84
sum-of-squares-within/between, 217
summary, 331
sums of dependent random variables, 176
Sundt, xiv, 357, 358
superadditivity, 128, 129
SuppDist, 69
support, 4
surplus process, 89, 102, 164
survival data, 233
survival function, 62
survival probability, 87, 93
symmetry, 232
Sys.time, 294
systematic component, 235, 299

t (transpose), 145, 206, 283, 289, 321, 326
table, 146, 339
tabulate, 65
tail, 54
Tail-Value-at-Risk (TVaR), 116, 129–131, 134,

359
Tang, xiv
tapply, 206, 221, 240, 255, 264, 282, 283,

291
Taylor, 284, 360
Taylor expansion, 35, 117, 201, 232, 306, 321,

341, 350
Ter Berg, 358
Teugels, 357
thicker-tailed, 149, 154, 156

indirectly, 156, 157
thicker-tailed, indirectly, 157
Tomas, xiv
top-down premium calculation, 116
tower rule, 20
transforming identical risks, 170
transition matrix, 138, 140, 144
transition probability, 138, 143, 147
transitivity, 157
translated gamma approximation, viii, 18, 31,

32, 34, 39, 40, 42, 58, 73–75, 80, 81, 83,
85, 134, 186, 343, 346, 347, 369

translation equivariance, 120
translation invariance, 120
translative, 134
trapezoidal rule, 55, 76, 86
triangular distribution, 84
TRUE or T, 206, 326
trunc, 282

Tweedie, xiii, 297, 308, 317, 318, 323, 361,
370

tweedie -/d/p/q/r, 318, 361
two-point risk, 172, 199, 353

unbiased, 162, 207–210, 213, 216, 217, 220,
227, 228, 233

undefined wife, 77, 81
underflow, 58
unif d/p/q/r, 62, 84, 195, 220, 337
uniform distribution, 18, 22, 26, 27, 31, 36–38,

80, 81, 84, 134, 152, 166, 178, 179, 194,
197, 198, 302, 337, 342, 346, 349, 352,
354, 368

unimodal, 32, 166, 176, 199, 349
uninsurable, 7, 119
uniroot, 63, 66, 67, 71, 85, 99, 111, 112
urn-of-urns, 17, 70
utility equilibrium, 4
utility function, 1–5, 8, 14, 113, 117, 154, 159,

168, 170, 197
utility theory, 1, 154, 177, 357

valuation function, 120
Value-at-Risk (VaR), viii, x, 17, 116, 126–129,

131, 134, 178, 186, 359
Van Eeghen, 360
Van Heerwaarden, xiv, 359
Vanduffel, xiv, 201, 202, 359
var, 201
variance components model, 204, 206, 212,

213, 360
variance decomposition rule, 23, 43
variance function, 235, 302, 308, 317, 318, 323
variance premium, 117, 119, 133, 350
variance ratio, 205, 219
variate, 238, 248, 276
variational calculus, 124
vcov, 289, 321, 322
Vector Autoregressive (VAR) models, 116
Venables, 336
Verbeek, 360
Verbeek’s algorithm, 272, 274, 282, 283, 286,

290, 293, 294
Verbeek’s inequality, 176
Verrall, xii, xiv, 360, 361
virtual experience, 204, 211, 217, 225, 226,

228
Von Neumann, 2, 357, 358
Vyncke, xiv

waiting time, 44, 60, 90, 111
Wald distribution, 68
Wang, 357
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Wason, 357
Wedderburn, xii, 234, 297, 298, 311, 312, 325,

360, 361
weibull d/p/q/r, 83
Weibull distribution, 62, 83, 84
weighted average, 64
weighted mean, 228
weighted regression, 298, 316
weights, 64, 66, 213, 215, 227, 228, 235, 238,

243, 250, 253, 255, 264, 298, 316, 339
a priori, 310

weights, 299, 320
white noise, 204, 206
Whitney, 359
Wiener process, 358
Wilson-Hilferty transformation, 306, 360

within-variation, 207
working dependent variable, 315, 322
working weights, 315, 322
Wüthrich, 361

xtabs (cross-tabulation), 249, 253, 289

Yaari’s dual theory, 8, 357
Young, 357

zero claims, 50, 79
zero dependence, 191
zero utility, x, 4, 15, 37, 115, 119, 121, 128,

150, 169
zero-modified or zero-truncated distribution,

80
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