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Abstract— The use of wearable sensors for home 
monitoring provides an effective means of inferring a 
patient’s level of activity. However, wearable sensors 
have intrinsic ambiguities that prevent certain activities 
to be recognized accurately. The purpose of this paper is 
to introduce a robust framework for enhanced activity 
recognition by integrating an ear-worn activity recogni-
tion (e-AR) sensor with ambient blob-based vision sen-
sors. Accelerometer information from the e-AR is fused 
with features extracted from the vision sensor by using a 
Gaussian Mixture Model Bayes classifier. The experi-
mental results showed a significant improvement of the 
classification accuracy compared to the use of the e-AR 
sensor alone. 
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I. INTRODUCTION  

Monitoring the status of the elderly or chronically ill pa-
tients in their own homes is an essential requirement for 
delivering more effective pervasive healthcare. By continu-
ous monitoring of key physiological parameters of the pa-
tients, wearable sensors can provide a rich source of infor-
mation about their current status of health [1]. There is also 
increasing evidence to suggest that major episodes are often 
preceded by changes in behaviour and domicile activity, 
which may be detected from detailed information about the  
posture, gait and general activity of the patient based on 
ambient sensing [2]. To achieve truly pervasive health 
monitoring, it is necessary to integrate wearable/ implant-
able sensors provided by a body sensor network (BSN) with 
data acquired from ambient environment sensors. 

Recently, various systems for home monitoring have 
been developed based on either wearable or ambient sen-
sors. Frameworks using wearable sensors are typically 
based on accelerometers [15,16], ECG sensors [18], pulse 
oximeters (Sp02) [16], temperature [15], and bend sensors 
[12,13,18].  Other wearable sensors include humidity, 
acoustic and light sensors [14]. By the use of wearable sen-

sors, it provides an effective means of monitoring the bio-
physical status of the patient. Due to the lack of a global 
reference, however, it can be difficult to use this data to 
infer certain physical activities. For example, a wearable 
accelerometer positioned on the head can detect local mo-
tion but not whether the subject is standing or sitting. Either 
ambient or additional wearable sensors (typically positioned 
on the joints) need to be used for achieving the required 
body posture differentiation.  

For monitoring environments based on ambient sensors, 
current systems include the use of cameras [4,11,21,24], IR 
sensors, ambient sound [21], heat, as well as contact sensors 
mounted on furniture [19]. These systems can provide in-
formation about the spatial location and general activity of 
the subject within the environment. The weakness of ambi-
ent sensing is that it is often too ambiguous to differentiate 
detailed information about the subject, which in many cases 
can only be derived from a wearable system. 

Existing research has shown that there is a complemen-
tary relationship between the two sensing paradigms. Effec-
tive sensor fusion can be used to combine the strengths of 
ambient and wearable sensors by fusing sensory data at 
hardware, raw data, feature, or decision levels [22]. At the 
hardware level, it can be achieved by using simple thresh-
olds [15]. At the data level, dimensionality reduction such 
as Principal Component Analysis (PCA) is often deployed 
before further pattern classification techniques are applied. 
At this level of sensor fusion, modelling methods such as 
Gaussian mixtures [14], Bayes networks [21] or Hidden 
Markov Models (HMM) methods are common.   

The purpose of this paper is to develop a framework for 
improved activity recognition by integrating an ear-worn 
activity recognition (e-AR) sensor with ambient blob sen-
sors. Data independently obtained by each sensor is pre-
processed for dimensionality reduction before the applica-
tion of a Bayesian classifier. To assess the improved accu-
racy of the proposed method, we evaluated the classifier 
against a lab-based home monitoring scenario. Significant 
improvements in the recognition rates of all activities have 
been achieved when compared to using wearable or ambient 
sensors alone.  



II. SYSTEM DESIGN 

A. Wearable e-AR Sensor 

The e-AR sensor [16] is based on the BSN platform [20] 
that consists a Texas Instruments  MSP430 processor, Chip-
con CC2420 radio transceiver, Atmel 512KB EEPROM, 
MCC ChipOX SpO2 module and a 3-axis accelerometer. 
The integrated e-AR sensor used for this study is shown in 
Fig. 1(a). For activity recognition in this study, the main 
information used was derived from the 3-axis accelerometer 
whereas SpO2 signals of the e-AR sensor were not used.   
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Fig. 1 (a) The e-AR sensor used in this study [16] and (b) the data proc-
essing pipeline for the ambient blob sensor. 

 

B. Ambient Blob Sensors 

The ambient sensor proposed in this study is a self-
contained module consisting of a video sensor, on-board 
processor, wireless communication and battery [4]. It has a 
wall mount design and can be integrated into the home 
environment similar to a PIR security device. Video data 
observed by the device is processed on board in real-time 
and the sensor communicates only derived signal metrics 
such as the silhouette of a moving object and its local mo-

tion in the form of optical flows. Communication between 
ambient nodes is used to provide large scale tracking and 
improves the overall system robustness. The ambient sensor 
being under development, CCTV cameras were used in this 
experiment. Under this sensing paradigm, blobs represent-
ing the monitored subject are first extracted from the video 
signal using a background statistical model, where every 
pixel is represented as a Gaussian mixture distribution 
maintained over time as proposed by Lee [10]. Incoming 
signals are compared with the existing background model 
and segmented into a binary map of foreground and 
background. The use of normalized RGB colour space re-
duces the sensitivity of the algorithm to shadows. Post-
processing of the foreground object based on mathematical 
morphology is used for noise removal.   

In addition to the extraction of blob profiles, the optical 
flow within the blob is also extracted, which is based on the 
classical technique proposed by Horn and Schunck [8]. 
Optical flow can be considered as a natural extension of the 
blob silhouette as it also captures the motion of the limbs. 
This information has been used previously for gesture rec-
ognition [25] and activity recognition in a multi-resolution 
framework [9]. The complete data processing work flow is 
summarized in Fig 1(b). 

It is important to note that the silhouette and optical flow 
extracted by each ambient sensor do not carry any appear-
ance information and no image data is transmitted to other 
devices. This is important for home care environments 
where privacy is of high priority.  

 
 

 
 

Fig. 2 A schematic diagram of the proposed ambient and wearable 
monitoring system.  
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C. Overall System Integration 

For the motion data provided by the e-AR sensor, the ac-
celerometer signal is intrinsically linked to the patient’s 
movement. On its own, it is capable of differentiating ac-
tivities such as walking, standing, and sleeping. For certain 
activities, however, the readings from the e-AR sensor are 
ambiguous, e.g, standing and sitting still. In these cases, the 
e-AR sensor cannot correctly classify the patient’s activity 
as it cannot obtain a global perspective of the body’s posi-
tion just from the head motion alone. It is expected that by 
fusing the e-AR data with the ambient sensors at the data 
level, it is a possible to obtain a much more reliable activity 
classification result for a wider range of activities. Fig. 2 
illustrates a schematic diagram outlining the proposed sys-
tem.  

III. AMBIENT AND WEARABLE SENSOR FUSION 

For effective sensor fusion, two types of features are ex-
tracted from the e-AR accelerometers: tilt and movement 
frequency spectrum. To derive the tilt information, the ac-
celerometers are pre-calibrated such that the acceleration 
due to gravity can be evaluated. A record of the total accel-
eration in the three axes allows the calculation of the gravity 
constant component on each of the accelerometers. It is 
therefore possible to separate the relative head acceleration 
and gravity acceleration to the tilt with respect to the verti-
cal axis. Moving window Fast Fourier Transform (FFT) was 
also computed on the acceleration data to the intrinsic fre-
quency of the movement.   

Table 1 Features used in classification 

Sensor Feature Size 
e-AR Acceleration X axis 1 
e-AR Acceleration Y axis 1 
e-AR Acceleration Z axis 1 
e-AR FFT acceleration X axis 11 
e-AR FFT acceleration Y axis 11 
e-AR FFT acceleration Z axis 11 
e-AR Head tilt X 1 
e-AR Head tilt Z 1 
Blob Blob speed estimation 1 
Blob Blob aspect ratio 1 
Blob Subject height estimation 1 
Blob Subject optical flow intensity 1 
Blob Subject optical flow correlation 1 
Blob Subject optical flow aspect ratio 1 

 
From the ambient sensor, the derived features used for 

sensor fusion include the aspect ratio and mean velocity of 
the blob. The calculation of the optical flow is based on the 
iterative application of the following equation: 
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for iteration k for a given pixel. In this equation kV  is the 

optical flow vector, I , xI , yI and tI  the image intensity 

and its partial derivatives and kV the average of kV  in its 
neighbourhood. In the above equation, α is a regularization 
constant to ensure the smoothness of the result derived. 
After noise filtering, the main moving elements of the field-
of-view are extracted and the bounding box is calculated 
from the the eigenvectors of the covariance matrix of the 
blobs as proposed by Lahanas et al. [23]. A complete list of 
the features used for the classifier is summarised in Table 1. 

Sensor fusion is performed based on a Gaussian Bayes 
EM classifier based on the e-AR and the blob sensor data. A 
Gaussian Mixture Model (GMM) is used to model each 
activity class. For the implementation of the classifier, we 
used the Bayes Net Toolkit (BNT) [5] and a total of nine 
classes were modelled to describe different activities. The 
activities used for classification in this study include walk-
ing, standing still, standing with head tilted on the side, 
sitting at the dining table, reading at the table, eating, sitting 
on the sofa, lounging on the sofa and eventually lying down.  

For each of the activities considered, three quarters of the 
data were used for training of the inference system and the 
rest for validation. For training, an Expectation-
Maximisation (EM) iterative method was used to compute 
the maximum likelihood fit [6]. Given a dataset {x1..R} to be 
classified in c classes, and assuming that the conditional 
probability density function (PDF) P(X=x) for each of these 
classes is Gaussian, we try to find the best fit of: 
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covariance and the estimates of the weights of the mixtures 
at the iteration t, respectively. The expectation and maximi-
zation steps are performed iteratively until convergence. 
The expectation step for each class i, based on Bayes’ law 
can be represented as the following: 
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Because the Gaussian PDF is differentiable, the maximiza-
tion of the likelihood step for each class i can be expressed 
as: 
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Once the model is computed through EM, the remaining 
data is used to evaluate the accuracy of the classifier based 
on the marginal probability of every activity. The highest 
probability was chosen for the final classification. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the proposed technique, a purpose built simu-
lated home environment was used. Data was recorded for 
two actors wearing an e-AR sensor. A total of 9 activities 
were performed by the actors with each activity lasted for 
approximately one minute. The classification results by 
using the proposed method as compared those with the e-
AR sensor alone are presented in Table 2. A detailed analy-
sis of inter-class misclassification as illustrated as confusion 
matrices with and without sensor fusion is provided in Fig-
ure 3. 

From the results shown in Table 2, it is evident that by in-
corporating ambient sensing with the e-AR sensor, activity 
classification is improved significantly. This is particularly 
obvious for classes where the e-AR sensor was ambiguous 
due to a lack of global information. For example, reading is 
not easily classified with the e-AR sensor only, as very little 
temporal and global orientation information is available. 
With the use of the blob sensor, this improves significantly 
because of the strong difference of the appearance cue. The 
same effects are visible in differentiating classes such as 
standing with the head tilted and sitting activities such as 
eating and reading, which are not well classified by the e-
AR sensor alone. In these cases, the optical flow features 
provide a good clue about the type of activity, which sig-
nificantly improves the sensitivity and specificity of the 
system. In the current implementation, however, the differ-
entiation between sitting on the chair and on the sofa is 

relatively low, as evident from the confusion matrix shown 
in Figure 3.   

Table 2 Comparison of activity classification rates between using a 
wearable sensor alone and with the proposed combined system 

Class Activity e-AR 
sensor 
alone 

e-AR + 
ambient 
sensing 

1 Walking 79% 100% 
2 Standing 83% 75% 
3 Standing (head 

tilted) 
65% 80% 

4 Sitting 73% 47% 
5 Reading 55% 80% 
6 Eating 39% 81% 
7 Sitting (sofa) 84% 90% 
8 Lounging 77% 92% 
9 Lying down 100% 100% 

 
 

   
(a)   (b) 

Fig. 3  The confusion matrices showing how the algorithm differentiates 
eating and reading activities with (a) the e-AR sensor only and (b) after 
sensor fusion. The main non-diagonal element in (b) is the confusion 

between sitting on a chair and on the sofa. 

V. CONCLUSIONS AND FUTURE WORK  

In this paper, we have proposed a sensor fusion frame-
work for integrating ambient and wearable e-AR sensors. 
Our experiments illustrate the practical value of the method 
by improving classification rates for most activities investi-
gated in this study. This clearly demonstrates the fact that 
ambient environment sensors can be used to overcome some 
of the ambiguities in activity recognition by using wearable 
sensing alone. This is a desirable feature for the effective 
deployment of future pervasive patient monitoring systems.   

In the current system, we did not explicitly handle the 
spatial dependency between the ambient sensor and the 
patient. This projective relationship can influence the ambi-
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ent sensor readings. We are currently looking into resolving 
this issue by using multi-view geometry to derive pose 
invariant 3D representations. Other areas for further im-
provement include the development of robust learning ca-
pabilities of the ambient sensors and real-time implementa-
tion of the proposed sensor fusion paradigm directly on the 
sensor nodes.  
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