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    Abstract   The host cells and the events in the cells during Torque teno (TT) virus 

infection are at present unknown. Replicating TT virus DNA has been detected in 

liver, in peripheral blood mononuclear cells (PBMC), and in bone marrow. By 

alternative splicing this small virus generates three mRNA species, from which by 

alternative translation initiation at least six proteins are produced. The functions of 

the proteins are not yet fully understood. However, functions associated with, e.g., 

DNA replication, immunomodulation, and apoptosis have been suggested to reside 

in the multifunctional proteins of anelloviruses.    

   Replication of TTV 

 Torque teno virus (TTV) DNA is present in several organs and tissues, reflecting a 

potentially wide host cell tropism for TTV. Identification of a host cell has been 

attempted by detecting the presence of TTV DNA (in situ methods or DNA quan-

tification) in certain cells, or by detecting replicating TTV DNA [gel separation 

methods, strand-specific primer extension, or full-length polymerase chain reaction 

(PCR)] in tissues. With the latter methods, double-stranded, circular, and poten-

tially replicating TTV DNA has been detected in a variety of tissues: e.g., lung, 
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stimulated peripheral blood mononuclear cells (PBMC), bone marrow, liver, lymph 

node, thyroid gland, spleen, pancreas, and kidney (Bando et al. 2001; Mariscal 

et al. 2002; Okamoto et al. 2000b; Okamoto et al. 2000c; Okamoto et al. 2001). In 

experimental TTV infections of Rhesus monkeys, viral DNA was detected in vari-

ous organs, whereas replicating TTV DNA was detected only in liver, bone marrow, 

and the small intestine (Luo et al. 2000; Xiao et al. 2002). Could all these cell types 

be the hosts for TTVs? As noted by Takahashi and co-workers, since TTV is 

present in the cells of the immune system that invade multiple tissues in inflamma-

tion, it should be carefully determined whether TTV really harbors in the cells 

inherent in each of the tissues (Takahashi et al. 2002). 

 Cells circulating in blood and originating from the hematopoietic compartment 

have been strong candidates for TTV host cells, and the presence of TTV in PBMC 

was confirmed by fluorescent in situ hybridization (Lopez-Alcorocho et al. 2000; 

Mariscal et al. 2002; Zhong et al. 2002). Furthermore, PBMC can be infected with 

TTV, and when stimulated, the cells produce infectious TTVs (Maggi et al. 2001a; 

Mariscal et al. 2002). It has been suggested that some genotypes could have prefer-

ence for PBMC (Okamoto et al. 1999) and that PBMC could serve as a reservoir 

for TTV (Chan et al. 2001a; Garbuglia et al. 2003; Maggi et al. 2001b). The precur-

sors for hematopoietic cells reside in bone marrow. The observation that during 

myelosuppression in bone marrow-transplant recipients the levels of TTV DNA are 

decreased, led to a suggestion that hematopoietic cells could sustain TTV replica-

tion (Kanda et al. 1999). Further evidence showing replicating TTV DNA in bone 

marrow (Okamoto et al. 2000b; Yu et al. 2002; Zhong et al. 2002) and clearance of 

TTV after bone marrow transplantation (Chan et al. 2001b) support the hypothesis 

that the hematological compartment could be the site of replication and/or sus-

tained persistence of TTV. 

 In addition to the hematopoietic cells, the presence of high TTV DNA levels in 

saliva (Deng et al. 2000; Gallian et al. 2000) has led to investigations of oropharyn-

geal tissue as a putative target/host tissue for TTV infection. TTV DNA has been 

detected by in situ hybridization in the cytoplasm of oral epithelial cells (Rodriguez-

Inigo et al. 2001), and TTV DNA loads in the nasal cavity exceed those in serum, 

suggesting that the nasal cavity could be the primary site of TTV infection (Maggi 

et al. 2003). 

 Due to the history of TTV as a potential hepatitis virus, liver as a main target 

organ for TTV infection has also been studied extensively. TTV is found by in situ 

methods in the nucleus and/or the cytoplasm of hepatocytes in patients with liver 

damage (Cheng et al. 2000; Comar et al. 2002; Jiang et al. 2000) without any 

cytopathological changes (Ohbayashi et al. 2001; Rodriguez-Inigo et al. 2000). 

 Infection and replication of TTV has been examined also in various cell lines. 

Desai and co-workers infected a liver cell line, Chang, a B lymphoblast cell line, 

Raji, and stimulated PBMCs with TTV genotype 1 (genogroup 1)-positive sera. 

The infected Chang cells produced constant, low amounts of TTV, whereas in 

PBMC and Raji cells the release of viruses was transient (Desai et al. 2005). Leppik and 

co-workers transfected a Hodgkin’s lymphoma-derived cell line (L428) with a full-

length TTV clone of tth8-isolate (genogroup 5), whereas Kakkola and co-workers 
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transfected monkey kidney-, human erythroid-, liver-, and kidney-derived cell lines 

(Cos-1, KU812Ep6, Huh7, Chang liver, UT/Epo-S1, 293T, and 293) with a full-

length TTV clone of isolate HEL32 of genotype 6, a member of genogroup 1 

(Kakkola et al. 2007; Leppik et al. 2007). Both studies showed, by  Dpn I restriction 

enzyme and Southern analysis, the recirculation and replication of TTV DNA in 

human-derived cell types. 

 In addition to the presence of TTV DNA in certain cell types, the enhancer activ-

ity of the TTV promoter of isolate VT416 (genotype 1) has been investigated in 

various cell lines. The activity was highest in K562 human erythroleukemia cells, 

and also in HepG2 human hepatocellular carcinoma cells (Kamada et al. 2004), 

which further support that these two cell types are targets of TTV infection. Taken 

together, the best candidates at the moment for TTV host cells are cells of hepatic 

and erythroid origin, as well as the epithelium of the respiratory tract. However, it 

is also possible that only a specific subset of those cells or yet unidentified cell 

types could be the main targets for TTV infection and replication. In addition, the 

various TTV genotypes can differ in host cell tropism thereby further complicating 

the picture.  

  Replication Mechanism 

 The majority of small DNA viruses depend on the host cell replication machinery 

for virus replication. Viruses either infect actively dividing cells or induce their host 

cells to enter S-phase, and subsequently prevent apoptosis. Based on sequence 

analysis TTV is not assumed to encode a DNA polymerase for replication, but 

instead it would use cellular polymerases. Indeed, in the presence of aphidicolin, a 

drug blocking the cellular DNA polymerase, DNA replication of HEL32 TTV 

(genotype 6) did not occur, indicating that TTV utilizes for DNA replication the 

cellular replication machinery (Kakkola et al. 2007). 

 The exact mechanism of TTV replication is unknown. It is assumed, based on 

similarities with other circular single-stranded (ss)DNA viruses, that TTV could 

use the rolling circle mechanism (Mushahwar et al. 1999). Probably, as has been 

shown with the TTV-related circoviruses, viral proteins are needed to interact with 

cellular proteins for the initiation of replication. For this task circoviruses encode 

replication-associated proteins with specific Rep-motifs that bind to the replication 

initiation site (Mankertz et al. 1998; Niagro et al. 1998). Based on the amino acid 

sequence, TTV open reading frame (ORF)1 seems to contain similar Rep-motifs 

(Erker et al. 1999; Mushahwar et al. 1999; Tanaka et al. 2001). In addition to 

replication-associated proteins, animal circoviruses have conserved sequences and 

genomic structures that are involved in replication (Mankertz et al. 2004; Niagro 

et al. 1998; Todd et al. 2004). The untranslated region (UTR) of TTV also contains 

sequences that could form similar structures (Hijikata et al. 1999; Mushahwar et al. 

1999; Peng et al. 2002). Whether these structures and proteins of TTV are used in 

viral replication is currently unknown.  



56 Kakkola et al.

  RNA Processing of TTV 

 Due to the lack of an efficient culture system to support TTV replication, the tran-

scription profile of TTV has been largely gained from cells transfected with TTV 

plasmids. Kamahora and co-workers analyzed in transfected Cos-1 cells the 

TTV mRNAs transcribed from a construct that contained a linearized TTV 

genome (VT416, genotype 1) (Kamahora et al. 2000). Subsequently, Okamoto 

and co-workers detected TTV mRNAs (of TYM9-isolate; genogroup 3) in human 

bone marrow cells from a TTV-infected patient with acute myeloblastic leukemia, 

in which TTV was actively replicating (Okamoto et al. 2000a). More recently, the 

detailed TTV transcription profile was characterized by transfection of a clone of 

the TTV genotype 6, HEL32 isolate in human 293 cells (Qiu et al. 2005). In addi-

tion, Leppik and co-workers showed the presence of additional splice variants in 

L428 Hodgkin’s lymphoma cells transfected with tth7 and tth8 isolates (geno-

group 5) (Leppik et al. 2007). 

 Three species of TTV mRNAs (2.8–3.0 kb, 1.2 kb, and 1.0 kb) have been 

detected in transfected Cos-1, 293 and L428 cells, as well as in infected bone mar-

row cells (Kamahora et al. 2000; Leppik et al. 2007; Okamoto et al. 2000a; Qiu et al. 

2005). The genetic map of TTV generated by transfection of a clone of TTV geno-

type 6 is shown in Fig.  1  (Qiu et al. 2005), with the nucleotide numbers referring 

to GenBank accession number AY666122 (Kakkola et al. 2002). All the three TTV 

mRNAs are transcribed from a single promoter, which is located in the region 

−154/−76 (the RNA initiation site is denoted as position +1) (Kamada et al. 2004), 

and are polyadenylated at a single site at nt 2978 in HEL32. Therefore, all three 

mRNAs have the same 5′- and 3′-ends in common. All the mRNAs splice out a small 

intron (~100 nt) located approx. 70 nt from the RNA initiation site. The two short 

mRNAs (1.2 kb and 1.0 kb) have further been spliced approx. 400 nt downstream 

of the small intron, excising another larger intron with alternative 3′ splice sites 

2A1 (nt 2315) and 2A2 (nt 2505) (Qiu et al. 2005). The large 2.8-kb mRNA is 

unspliced in the region of the large intron. All the splice junctions detected in trans-

fected cells or infected bone marrow cells are at their corresponding locations in all 

TTV genomes tested (Kamahora et al. 2000; Leppik et al. 2007; Okamoto et al. 

2000a; Qiu et al. 2005). 

 Approximately half of the TTV mRNAs of HEL32 (genotype 6) are unspliced 

at the second intron, which generates the abundant 2.8-kb mRNA. The ratio of 

mRNAs spliced at 2A1 relative to mRNAs spliced at 2A2 is approx. 1:10. The 2.8-, 

1.2-, and 1.0-kb mRNAs comprise approx. 60%, 5%, and 35% of the total TTV 

RNA, respectively (Qiu et al. 2005). Consistent with this observation, it has been 

shown that during TTV genotype-1 infection of bone marrow cells, the large 

mRNA was the predominant mRNA (Okamoto et al. 2000a). 

 The polyadenylation signal (AUUAAA) at nt 2978 of the HEL32 TTV isolate 

is nonconsensus but functional (Qiu et al. 2005), while the isolates VT416 and 

TYM9 use a canonical polyadenylation site (Kamahora et al. 2000; Okamoto 
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et al. 2000a). All the TTV RNAs are cleaved at the same site at approx. nt 3000 

(Qiu et al. 2005). 

 The transcription map of the TTV genotype 1 was determined by transfection of 

a clone of VT416, and is shown in Fig.  2 . Analysis of the sequences of the donor 

and acceptor sites in 16 TTVs from various genotypes retrieved from the database 

showed that all the splice sites use the conserved GT–AG donor and acceptor 

sequences (Kamahora et al. 2000). 

Fig. 1 The genetic map of TTV genotype 6. The RNA initiation site (+1), splice donors (D), and 

acceptors (A), and the polyadenylation signal, p(A), are shown with nucleotide numbers (GenBank 

accession number AY666122). The three species of TTV mRNA are shown with their relative 

sizes and abundance (% of total) on the left. Six ORF expression strategies are diagrammed in the 

map. The ORF1 and ORF2 proteins are encoded from the singly spliced 2.8-kb mRNA by alterna-

tive translation, using O1AUG at nt 581 and O2AUG at nt 354, respectively. The ORF2/2 and 

ORF2/3 proteins (referred to as ORF2–4 and ORF2–5 proteins, respectively, by Kamahora et al. 

2000) are initiated at the O2AUG, and are translated from the doubly spliced 1.2- and 1.0-kb 

mRNAs, respectively. ORF1/1 and ORF1/2 proteins are encoded by the 1.2- and 1.0-kb mRNAs, 

respectively, using the O1AUG at nt 581. The different reading frames are indicated by different 
fill patterns. (Adapted from Qiu et al. 2005)
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 Analysis of RNA transcripts produced in the L428 Hodgkin’s lymphoma cells 

transfected with isolates tth7 and tth8 (genogroup 5) confirmed the presence of the 

above-described TTV mRNAs (Leppik et al. 2007). However, 12 additional tran-

scripts were also identified by RT-PCR. These transcripts were suggested to have 

resulted from additional splicing events and also from intragenomic rearrangements 

(leading to subgenomic isolates) within the TTV genome. Transfection of T cell 

leukemia-, Burkitt’s lymphoma-, kidney-, and liver-derived cell lines (Jurkat, 

HSB2, BJAB, Raji, 293, HepG2) resulted in similar transcription profiles with both 

tth7 and tth8 isolates. Interestingly, differences between cell lines were observed; 

the T cell leukemia cell line HSB2 showed no TTV transcription, and 2/12 tran-

scripts were produced specifically only in L428 cells (Leppik et al. 2007). This 

 Fig. 2  The genetic map of TTV genotype 1. The RNA initiation site, splice junctions, and the 

polyadenylation signal are shown with nucleotide numbers (GenBank accession number 

NC_002076). The three species of TTV mRNAs with the relative sizes are shown on the  left . Five 

predicted ORF expression strategies are diagrammed in the map. The ORF1, ORF2, and ORF3 

proteins are predicted to be encoded from the singly spliced 3.0-kb mRNA by alternative transla-

tion, using O1AUG at nt 589, O2AUG at nt 353 and O3AUG at nt 372, respectively. The  ORF2–4  

and  ORF2–5  proteins are equivalent to the  ORF2/2  and  ORF2/3  proteins, respectively, of geno-

type 6 as diagrammed in Fig. 1. The proteins are predicted from the coding capabilities of the 

genomes of TTVs (TA278 and VT416, genotype 1). (Adapted from Kamahora et al. 2000)
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variation in transcription, possibly resulting in translation of a variety of proteins 

from different TTV strains with different cell types, could have implications on the 

biological and/or pathogenetic differences of the TTV strains.  

  Protein Expression of TTV 

 The genome of TTV is a circular single-stranded negative-sense DNA of approx. 

3,800 nt in length. Thus expression of TTV mRNA must employ efficient strategies, 

including both alternative splicing and alternative translation initiation. All three TTV 

mRNAs use alternative AUGs for translation, and therefore at least six TTV proteins 

are expressed in genotype 6 (Qiu et al. 2005). Antibodies in TTV-infected individuals 

have been detected toward all six proteins of the HEL32 isolate of genotype 6 

(Kakkola et al. 2002; Kakkola et al. in press), and toward the N- and C-termini of the 

ORF1-encoded protein of genotype-1 isolates (Handa et al. 2000; Ott et al. 2000). 

 The abundant 2.8-kb mRNA of HEL32 expresses the ORF1 and ORF2 proteins 

by alternative AUG usage. The TTV ORF1 protein (~81 kDa) is the largest encoded 

by TTV mRNA (Fig. 1), and (for genotype 6) is predicted to be 736 amino acids 

(aa) in length, initiating at the AUG at nt 581 (O1AUG). The ORF2 protein 

(~13 kDa; Fig. 1) is encoded by the 2.8-kb mRNA in the second ORF, initiating at 

the AUG at nt 354 (O2AUG) and extending for 117aa (Qiu et al. 2005). Although 

the Kozak translation signal of the O1AUG (ORF1) in most of the TTV isolates 

represents more of a consensus sequence (a/gcc AUG g) than that of the O2AUG 

(Kamahora et al. 2000), the relative usage of these two AUGs has not been conclu-

sively determined. 

 The small 1.2-kb mRNA of HEL32 expresses TTV proteins ORF2/2 and 

ORF1/1 with sizes of 31 and 22 kDa, respectively; the smallest 1.0-kb mRNA 

expresses TTV proteins ORF2/3 and ORF1/2 with sizes of 30 and 16 kDa respec-

tively. Expressions of these proteins were confirmed by transfection of the TTV 

clone in 293 cells (Qiu et al. 2005). The presence of ORF2 (nt 2315–2807) and 

ORF3 (nt 2502–2979) at the 3′ termini of both the 1.2- and 1.0-kb mRNAs in virtu-

ally all TTV sequences in the database supports their usage during the viral life 

cycle. The 1.0-kb spliced mRNAs of HEL32, which use the 2A2 splice acceptor 

and encode the ORF2/3 and ORF1/2 proteins, are approx. 7 times more abundant 

than the 1.2-kb spliced mRNAs that use the 2A1 acceptor and encode the ORF2/2 

and ORF1/1 proteins (Fig. 1). Whether these differences can be seen also in the 

corresponding protein abundances is unknown. The transcription maps of the three 

different isolates, VT416 of genotype 1, HEL32 of genotype 6 (both belonging to 

genogroup 1), and isolate TYM9 (belonging to genogroup 3) are similar (Kamahora 

et al. 2000; Okamoto et al. 2000a; Qiu et al. 2005), and this is likely to hold true 

also for the other TTV genotypes. Indeed, similarities have been shown also in 

representatives of genogroup 5 (isolates tth7 and tth8) in which, however, addi-

tional transcripts—produced by variant splice sites and by intragenomic rearrange-

ments—have been detected (Leppik et al. 2007).  
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  Functions of TTV Proteins 

 The functions of the TTV proteins are poorly understood since neither a virus culture 

system nor an animal model is available. Furthermore, there are as yet no reports of 

TTV purification, whereby the structural proteins forming the virus capsid have not 

been identified. An animal circovirus, chicken anemia virus (CAV), which causes 

severe immunosuppression, anemia, and thrombocytopenia (Noteborn et al. 1991), 

has one structural protein, VP1. The TTV ORF1 and ORF2 encoded proteins have 

been shown (for the HEL32 isolate) to be predominantly localized in the cytoplasm 

(Qiu et al. 2005), and the former is assumed to be a structural and replication-associated 

protein based on similarities with CAV VP1, i.e., possessing an arginine-rich 

N-terminus and Rep-motifs (Erker et al. 1999; Mushahwar et al. 1999; Tanaka et al. 

2001). The expression level of ORF1 was, for an unknown reason, extremely low 

following transfection of the full-length clone of genotype 6 into 293 cells (Qiu et al. 

2005). In HEL32 the two ORF1-related proteins, ORF1/1 and ORF1/2, are distrib-

uted evenly both in the cytoplasm and the nucleus, and when compared to the ORF2-

containing genes (described below), are transcribed at a low level (Qiu et al. 2005). 

Interestingly, TTV (isolate TRM1, genotype 1)  ORF1 -transgenic mice have morpho-

logical changes in renal epithelial cells. The expression of the ORF1 gene in mice 

affected the maturation of renal epithelial cells in a dose-dependent manner. However, 

it was not determined which of the three ORF1-containing proteins was responsible 

for the changes, as small spliced mRNAs with a potential to express ORF1/1 or 

ORF1/2 proteins were also detected (Yokoyama et al. 2002). 

 The TTV ORF2 protein (SANBAN of genogroup 3) has been studied in cells trans-

fected with ORF2 complementary DNA (cDNA) (Zheng et al. 2007). Following 

transfection into human cell lines the TTV ORF2 protein was shown to suppress both 

the canonical and the noncanonical nuclear factor (NF)-κB pathways by interacting 

with the catalytic subunits (inhibitor of κB[1κB] kinase) IKKα and IKKβ of the IκBα 

kinase complex, thus inhibiting its degradation. By hindering NF-κB from reaching the 

nucleus the TTV ORF2 protein also indirectly decreased the expression of the inflam-

mation factors interleukin (IL)-6, IL-8, and cyclo-oxygenase (COX)-2. NF-κB activa-

tion is a protective response of the host to viral pathogens. This suggests that the TTV 

ORF2 protein may be involved in the regulation of the host innate and adaptive immu-

nity. Thus, the role of the ORF2 protein in immune evasion may be an important aspect 

of TTV biology. 

 CAV VP2 possesses a functional protein-tyrosine phosphatase (PTPase)-like 

domain (Peters et al. 2002; Takahashi et al. 2000). The ORF2 proteins of TTV, 

SAV/TT midi virus (TTMDV) and Torque teno minivirus (TTMV) also share a high 

similarity with the CAV VP2 (Andreoli et al. 2006; Biagini et al. 2001; Takahashi 

et al. 2000), of which the latter has been shown to exert phosphatase activity (Peters 

et al. 2002). Protein phosphatases are known to have important functions in the 

regulation of gene transcription, signal transduction, and mitogenesis, and in 

cytokine responses of lymphocytes (Ong et al. 1997; Schievella et al. 1993). The 

CAV VP2 PTPase activity may regulate these events in infected lymphocytes, 

which could lead to profound immunosuppression and anemia in chickens 
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(Noteborn et al. 1991; Peters et al. 2002). The five TTV ORF2 coding sequences of 

the TTV SANBAN group (genogroup 3) have a high amino acid similarity (53%–

55%), with an identity of 22%–26%, with the CAV VP2 (Peters et al. 2002). 

However, the sequence variation of TTV ORF2 may interfere with the PTPase 

function, which could contribute to the pathogenesis of different anelloviruses. 

 The ORF2/2 and ORF2/3 proteins of HEL32, genotype 6 [corresponding to 

the respective ORF2-ORF4 and ORF2-ORF5 proteins of genotype 1 (Kamahora 

et al. 2000)] are exclusively localized in discrete foci in the nucleus (Qiu et al. 

2005) implying roles in genome expression and replication. Both contain the 

ORF2 protein at the N-termini, with the ORF2/3 transcript being the most abun-

dant (Qiu et al. 2005). Considering the high expression level of the ORF2-

containing TTV transcripts of HEL32 (ORF2, ORF2/2 and ORF2/3), it will be 

interesting to determine whether all of these corresponding proteins have PTPase 

activities and to understand their roles in TTV pathogenesis. The ORF2/2 protein 

not only shares the N-terminus with the ORF2 protein (Kamahora et al. 2000; Qiu 

et al. 2005), but also has a serine-rich domain at the C-terminus (Asabe et al. 

2001), capable of generating different phosphorylation sites, similar to hepatitis 

C virus (HCV) NS5A (Tellinghuisen et al. 2008). This suggests that a phosphor-

ylated version of the ORF2/2 protein may play a similar role in binding the DNA 

template as does the NS5A of HCV in viral replication. 

 In TTV genotype 1, isolate TA278, an additional protein at nt 372–686 in read-

ing frame 3 was proposed to be encoded from the N-terminus of the 3.0-kb mRNA 

(Fig. 2). Due to the similarity to apoptin, the main apoptosis-inducing agent of CAV 

(Kooistra et al. 2004; Miyata et al. 1999), this putative 105-aa protein (~12 kDa) 

was termed TTV-derived apoptosis-inducing protein (TAIP). Both TAIP and apop-

tin induced p53-independent apoptosis in human hepatocellular carcinoma (HCC) 

cell lines; however, unlike apoptin, TAIP was only weakly apoptotic in other human 

cancer cell lines (Kooistra et al. 2004). Interestingly, the 5′-end of the ORF3-

encoding region in e.g., HEL32 (genotype 6) is interrupted with stop codons, 

whereby the TAIP-related ORF3 protein is not expressed from TTV genotype 6. 

The activity of TAIP, coupled with the heterogeneity of TTV isolates, could contribute 

to some extent to the putatively variable pathogenesis of TTV. 

 Overall, our knowledge of the function of TTV proteins is to a large extent lim-

ited by the lack of an efficient cell culture system and by restricted availability of 

the virus itself. However, it is possible that, for example, the multifunctional nature 

of TTV ORF2-containing proteins could confer pathogenetic diversity to this large 

genus of anelloviruses.   
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