
Network Selection Box: An Implementation of
Seamless Communication

Stefan Chevul1, Lennart Isaksson1, Markus Fiedler1,
Peter Lindberg2, and Roland Waltersson2

1 Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
371 79 Karlskrona, Sweden

{stefan.chevul, lennart.isaksson, markus.fiedler}@bth.se
2 Saab Communication,

SE-351 80 Växjö, Sweden
{peter.lindberg, roland.waltersson}@saabgroup.com

Abstract. During recent years, it has become evident that mobility
functions will have a profound impact on current and future wireless
networks. Users expect service connectivity anywhere and anytime with-
out having to think about the underlying communication systems used
at that particular moment in time.

On this background, this paper presents a ready-to-deploy implemen-
tation of a mobility framework that supports seamless communication
and represents an important enabler for adaptive applications through
its simple QoS feedback mechanism. The framework selects the best avail-
able network through a decision algorithm that takes advantage of both
experience with different network types for certain types of services and a
link performance monitoring concept. The impact of the proposed frame-
work on performance in terms of processing and throughput overhead is
also discussed.

1 Introduction

The emergence of mobile networks has led to mobile end-users who expect access
to information sources from anywhere at anytime. Such access should preferably
be implemented in a seamless way: the user should be able to use a service with-
out even having to think about which network technology is used at the moment.
If a change of network technology is necessary, for instance due to the fact that
a user leaves the coverage area of a Wireless Local Area Network (WLAN) hot
spot and has to be connected via General Packet Radio Service (GPRS) instead,
that change should happen more or less “on the fly”, i.e. during ongoing com-
munication without breaking the session. Thus, with seamless communication,
we mean roaming between different types of networks or network operators in a
handover-fashion, preserving connectivity to the selected service as far as possi-
ble and minimizing the performance degradation perceived by the application.

J. Garćıa-Vidal and L. Cerdà-Alabern (Eds.): Wireless and Mobility, LNCS 4396, pp. 171–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 S. Chevul et al.

The main goal is to be Always Best Connected (ABC). This is defined as always
connected according to a decision based on different static and dynamic criteria
aiming at optimizing the perception of a certain type of service.

Unfortunately, the Internet Protocol (IP) is not designed to deal gracefully
with mobility. In IP, the point-of-attachment to the Internet is uniquely identi-
fied by the node’s IP address. Thus, the IP address is tied tightly to the network
where the device is located. In order to keep the Internet connectivity, the mo-
bile device has to change its IP address every time its point-of-attachment to
the Internet changes. This makes it impossible for the node to maintain trans-
port layer connection during a location change. In other words, the connectivity
breaks and the corresponding data transmission has to be re-initiated.

The Internet Engineering Task Force (IETF) has proposed Mobile IP (MIP)
[1] as a solution for mobility in the future all-IP networks [2]. Although MIP
has been standardized, it is hardly implemented in the Internet. The main rea-
sons are the limited number of IPv4 addresses and MIP mechanism issues such
as the triangular routing, frequent and long distant registration updates, and
single-point of failures [3]. MIP also requires additional network elements to be
introduced in the network, e.g. Foreign Agent and Home Agent etc. This has a
direct impact on the cost of deploying a MIP enabled network. Floroiu et al. [4]
reports of a case study of seamless handover in MIP for WLAN/GPRS. The
results show that the Round Trip Time (RTT) is one of the important parame-
ters indicating performance degradation. Seamless handover was only considered
between two different types of wireless technologies.

In this paper, we present an implementation and evalutation of a new mo-
bility management concept that supports seamless communication independetly
of MIP. The concept is called Network Selection Box (NSB). Ideally, a NSB
has several networks to select from e.g. General Packet Radio Service (GPRS),
Universal Mobile Telecommunications System (UMTS), Wireless Local Area
Network (WLAN), Digital Audio Broadcast (DAB), etc. Based on knowledge of
the requirements of an application in terms of performance and cost and acces-
sibility, the NSB will choose an appropriate network that fulfills these requisites
at the lowest possible expense. In case an available network cannot meet the
requirements but still provides connectivity, it is considered as as limited appro-
priate. Such a limitation might be known beforehand [5] – the service needs more
than the network in question can offer – but it might also arise during operation,
e.g. due to bad transmission conditions. The latter is revealed by more or less
continuous monitoring of the different network paths. The NSB achieves seamless
communication by hiding the change of current point-of-attachment to the Inter-
net from the application through a virtual network interface (TAP), thus mak-
ing the handover transparent for the application. Furthermore, through control
messages to the application, the NSB provides a simple Quality of Service (QoS)
feedback mechanism. One of the side effects of the NSB is the overhead in terms
of more data to be sent and more processing to be performed. In some way
this can be considered as the price of achieving seamless communication in the
existing access networks without needing to make any changes in these networks.

Network Selection Box: An Implementation of Seamless Communication 173

The remainder of the paper is organized as follows. In Section 2 foundation of
mobility issues are described together with a proposed solution. The architecture
of the proposed mobility framework is described in detail in Section 3, while
Section 4 presents a performance assessment of the NSB implementation in order
to reveal its impact on the data streams as such. Finally Section 5 presents
conclusion and outlook.

2 Foundations of Mobility and Seamless Communication

The main challenge when it comes to mobility is the fact that IP protocol does
not support any mobility by itself. This is reflected in the way IP addresses
are used, mainly as topological locators and network interface identities. Thus,
every time a mobile node changes the point of attachment to the Internet, it
changes its IP address. E.g., a switch from WLAN to any cellular network, such
as GPRS or UMTS, results in a change of IP address. Most transport protocols,
e.g. Transmission Control Protocol (TCP), can not handle IP address changes
without breaking the communication session.

In order to attain seamless communication, the communication session must
be maintained as far as possible to ensure minimal packet loss and performance
degradation perceived by the application. This can be achieved by hiding the
change of the IP address from the application, i.e. making the handovers trans-
parent to the application. The NSB adopts a virtual network interface (TAP)
for this purpose, see Figure 1. The TAP device consists of a driver running in
kernel mode and origins from the open source VPN project OpenVPN [6]. In

Client
app. TAP

NSB

NSB TAP Server

app.

UDP/TCP in UDP UDP/TCP UDP/TCP

Fig. 1. Virtual Network Interface in the NSB

most respects, the TAP device works as any network interface; it will show up in
Microsoft Windows XP as just another network connection, to which an IP ad-
dress may be assigned. By allocating a low metric to the TAP device, we ensure
that any application will bind its sockets to the TAP, unless if the application
specifically states another network interface. At the sender, the original packet
is encapsulated in a new User Datagram Protocol (UDP) datagram or Trans-
mission Control Protocol (TCP) segment before sending it through the physical
network interface to the Internet, as depicted in Figure 2. Thus, with the aid
of the TAP device, a tunnel is implemented and the change of IP address is
hidden from the application. On the receiver side, the outer header (by default
a UDP header) is removed, and the original datagram sent by the application

174 S. Chevul et al.

UDP Payload UDP hdr UDP hdr IP hdr IP hdr

UDP payload = original frame

Eth. hdr

Fig. 2. Encapsulated packet for tunnelling purpose

is recovered. The application socket bound to the TAP device will receive the
datagram seamlessly.

3 Network Selection Box (NSB) Architecture

The NSB is implemented as client-server architecture; the building blocks are
shown in Figure 3. The NSB consists of the following building blocks: TAP de-
vice, NSB Controller, Network Selector, Link Monitor, Link Parameter database
and Roaming Policy.

Connections

Controller

QoS Needs

Network
Selector

Link
Monitor

Link
Parameters

Roaming
Policy

Application

Data

NSB

UMTS
GPRS
WLAN
DAB

Generic Service

TAP

Fig. 3. Building blocks of the NSB

The Controller is responsible for sending packets, receiving packets, sending
and reacting to control messages, and executing handovers between the different
available wireless networks. The Controller on the server side is also responsible
for allocating virtual IP addresses to clients and, for each client, it keeps a list
with available networks (and their perceived quality) that packets may be sent
over. This database is updated by control messages sent from clients.

Network Selection Box: An Implementation of Seamless Communication 175

The Network Selector determines the best network to use at the moment. For
this purpose, a simple decision algorithm is implemented. The decision algorithm
decides for each packet to be sent which network to choose. This decision is based
upon recent measurements of link performance in terms of RTT, packet loss and
time-outs. This task is carried out by the Link Monitor. These values are stored
in the Link Parameter database on the server and in a separate database on
the client. Based on own measurements [7,8], an a-priory network selection is
derived [5].

The Roaming Policy depends on general scanning and predefined priorities
depending on the service selected. The predefined priorities are also based on
current status of the connection. The general scanning also depends on distinc-
tion of rank, which means choosing the best technology in advance. For example,
an a-priory for streaming service is associated with the following list of priori-
ties: WLAN (1), UMTS (2), and GPRS (3). Now let us imagine that there is no
WLAN connectivity, and that GPRS experiences a high RTT. In this case the
network selector decides that UMTS is currently the best link to send packets
over, although UMTS initially had a lower priority than the WLAN network.

3.1 Implementation and Communication Management

Both NSB Client and Server were implemented on desktop computers, running
the popular Microsoft Windows XP. C# .NET was used as the programming
language.

The NSB uses blocking, synchronous send and receive operations, running
in different threads. On the client, one socket is created for each network. All
sockets are UDP sockets. UDP is better suited for encapsulation of IP since UDP
provides a connectionless transmission medium for IP, thus avoiding nesting one
reliability layer into another i.e. TCP over TCP that essentially produces a whole
level of redundancy.

To assure that packets are sent on the intended interface, a route is created in
the routing table for each added network, with the same metric value as the other
networks. In this way, Windows will not route packets in an undesirable way.

Prior to sending each packets, the NSB server refers to the tables in the
Controler and the evaluateSend() method in the Network Selector to find the
best network to use. The NSB client uses a similar table and the evaluateSend()
method. In this way, the NSB can be seen as a multiplexer.

The NSB uses control messages for communication management between NSB
client and server. Furthermore, the control messages are also used to monitor
network performance. All control messages use the same UDP sockets as the
data traffic with the exception of the APPPREF message, which uses a separate
port. Table 1 lists the control messages.

The two control messages REGISTER and ACKREGISTER are used for address
allocation. The client sends a REGISTER request together with information about
his first network. The server answers with an ACKREGISTER message containing
the virtual IP. In this sense the server operates much like a Dynamic Host
Configuration Protocol (DHCP) server, although the address lease times are

176 S. Chevul et al.

Table 1. NSB control messages

Message Direction Interface Explanation

REGISTER Client – Server NSB – NSB Register with server and
get a virtual IP.

ACKREGISTER Server – Client NSB – NSB Response to register request.
ADDNET Client – Server NSB – NSB A new network is available.
REMOVENET Client – Server NSB – NSB A network was lost.
IAMALIVE Client – Server NSB – NSB Client is alive and wants to keep

his virtual IP.
BYE Client – Server NSB – NSB Client logging of, release

virtual IP.
NETSTAT Both ways NSB – NSB Network statistics.
ACKNETSTAT Both ways NSB – NSB Response to NETSTAT message.
APPPREF App. App. – NSB For controlling NSB settings

and QoS feedback.

generally infinite. The client will keep this address until it disconnects with the
control message BYE.

ADDNET and REMOVENET are sent by the client when a new network is connected
or when a connection is lost. ADDNET contains the virtual IP of the client, and
information about the new network. The REMOVENET message is not that critical,
as the server’s monitor will discover a network loss anyway within time. It is sent
to speed up the server’s adoption to the new situation.

IAMALIVE is used by the client to hold on to a virtual IP address. The server
expects all clients to send this message periodically, otherwise it assumes that
the client has crashed without notification and releases the client’s virtual IP so
that others can use it. When the client NSB shuts down normally, it sends a BYE
message to tell the server that it does not need its virtual IP anymore.

Applications have that possibility to control the NSB by using the APPPREF
control message. The message contains information about the requirements of
the application in terms of e.g. performance and cost. This information is used by
the Network Selector to find the most suitable network to use. Applications do
not need to control the NSB as the NSB implements automatic network selection.
APPPREF are also used by the application in order to enquire QoS status of the
network connection used at the moment.

Through control messages NETSTAT (issued by the sender and includes a time
stamp) and ACKNETSTAT (issued by the receiver upon reception of a NETSTAT
message) the application-level RTT is measured. If no ACKNETSTAT message has
been received for a predefined period of time, it is considered lost. A specific
network is classified as unavailable when a predefined number of ACKNETSTAT
are lost. According to our experience, this value is set to five. However, the value
might be further tuned for special network and application scenarios.

In addition, the NETSTAT and ACKNETSTAT packets contain information about
how many packets that were sent by the sender and received at the receiver side
in the last time period. In this way, packet loss can be measured.

Network Selection Box: An Implementation of Seamless Communication 177

4 Performance Evalutation of the NSB

The NSB can be viewed as a middleware, therefore its impact on the network
performance as perceived by the application must be evaluated. We investi-
gate whether the NSB is transparent from a performance viewpoint or it is a
bottleneck that introduces loss and throughput reductions. To this end mea-
surement of streaming traffic is considered. The measurements are produced by
using a cooperative UDP tool, consisting of a traffic generator and a receiver.
Both generator and receiver have to run simultaneously at each end in order to
implement coordinated and comparative measurements. The generator, devel-
oped in C#, is trying to send UDP datagrams of constant length as regularly as
possible with a sequence number inside each datagram. The datagrams are not
sent back-to-back, but spaced in order to yield a certain load, hence exact tim-
ing on the sender side is important. The minimal time the packets are spaced
is hereafter called inter-packet delay. The software tries to keep this value as
closely as possible. Since the original C# time stamp resolution is limited to 10
milliseconds, specific coding was necessary to improve the time stamp resolu-
tion to one thousand of a millisecond. This was achieved by using performance
counters in conjunction with the system time to provide smaller time incre-
ments. To this aim the kernel32.dll functions QueryPerformanceCounter and
QueryPerformanceFrequencywere used. References [9] and [10] discuss the time
stamping issue in detail.

4.1 Measurement Setup

For the measurements, two scenarios were considered: the first is called the
downlink scenario (cf. Figure 4), in which the client is connected to a base
station (BS) and the server to the Internet via 100 Mbps Ethernet. The second
one is called the uplink scenario (cf. Figure 4), in which the server is connected
to a BS and the client to the Internet via 100 Mbps Ethernet. The scenario
names are based on the direction of the data traffic in reference to the BS. The
encapsulation used by the TAP device, cf. Figure 2, leads to an overhead of 42

Fig. 4. Uplink and downlink scenario

178 S. Chevul et al.

bytes that potentially can lead to undesirable fragmentation. Hence, the tool
takes as a parameter the desired packet length in order to yield comparable load
on the link.

4.2 Measurements and Results

The first case presented is a modestly loaded UMTS uplink measurement where
the NSB is not used. By choosing a payload size of 158 bytes and a nominal
inter-packet delay of 100 ms, the server transmission rate was set to 12.64 kbps
which is matched by the averaged throughput at the application for both server
and client. The plots from the time domain are displayed in Figure 5. Jitter at
the senders sleep function is hardly visible, cf. Figure 5 (top). Figure 5 (second
from top) shows very small jitter in the senders send function, three orders
of magnitude smaller as compared to the jitter at senders sleep function. The
inter-packet delay at the client side, cf. Figure 5 (bottom), displays distinct burst
deviations that seem to originate from the UMTS channel itself. The client does
not indicate any packet loss.

0 100 200 300 400 500
98

100

102
Sleep function, server

T
im

e
[m

s] Max: 100.0 ms
Avg. sleep time: 99.9 ms
Min: 99.8 ms

No. of packets: 600

0 100 200 300 400 500
0

0.5

1
Send function, server

T
im

e
[m

s] Max: 0.2 ms
Avg. send time: 0.1 ms
Min: 0.0 ms

0 100 200 300 400 500
98

100

102 Max: 100.2 ms
Avg. sleep + send time: 100.0 ms
Min: 99.9 ms

Sleep + send function, server

T
im

e
[m

s]

0 100 200 300 400 500 600
80

100

120
Client

T
im

e
[m

s]

Samples

Max: 402.5 ms
Avg. inter packet delay: 100.0 ms
Min: 0.8 ms

No. of packets: 600
Packet loss: 0.0 %

Fig. 5. Timeplot UMTS uplink without NSB and with 100 ms inter-packet delay

In the second case, the NSB is activated and compensation for the introduced
overhead is done by decreasing the payload by the size of the overhead, i.e. 42
bytes. Thus, the payload is set to 116 bytes and the frame size on the link layer
is kept the same, i.e. 200 bytes. The nominal inter-packet delay is also maintained

Network Selection Box: An Implementation of Seamless Communication 179

at 100 ms. Figure 6 indicates a rather small jitter at the client side. Distinct burst
deviations are identified. As in the previous case, these bursts seem to originate
from the UMTS channel itself, rather than from the NSB. Still the client does
not indicate any packet loss. Table 3 summarizes the statistical results from all
measurements, including the uplink measurements.

0 100 200 300 400 500
98

100

102
Sleep function, server

T
im

e
[m

s] Max: 100.0 ms
Avg. sleep time: 99.9 ms
Min: 99.6 ms

No. of packets: 600

0 100 200 300 400 500
0

0.5

1
Send function, server

T
im

e
[m

s] Max: 0.4 ms
Avg. send time: 0.1 ms
Min: 0.0 ms

0 100 200 300 400 500
98

100

102 Max: 100.3 ms
Avg. sleep + send time: 100.0 ms
Min: 99.7 ms

Sleep + send function, server

T
im

e
[m

s]

0 100 200 300 400 500 600
80

100

120
Client

T
im

e
[m

s]

Samples

Max: 398.6 ms
Avg. inter packet delay: 100.0 ms
Min: 0.3 ms

No. of packets: 600
Packet loss: 0.0 %

Fig. 6. Timeplot UMTS uplink with NSB and 100 ms inter-packet delay

The UMTS downlink case without NSB is depicted in Figure 7. Here the
payload size is set to 1158 bytes and a nominal inter-packet delay to 100 ms.
The server transmission rate was set to 92.64 kbps, which is matched by the av-
eraged throughput at the application for both server and client. Figure 7 shows
that the mean inter-packet delay at the client side is slightly smaller than the
mean inter-packet delay at the server, displaying distinct burst deviations. The
client does not experience any packet loss. Figure 8, shows the UMTS down-
link case when the NSB is activated. The payload is set 1116 bytes in order
to compensate for the overhead introduced by the NSB. The frame size of the
link layer amounts to 1200 bytes. The nominal inter-packet delay is also main-
tained at 100 ms. No packet loss is perceived by the client. However, Figure 8
(bottom) displays several distinct burst deviations indicating that more jitter is
perceived by the client. Table 3 summarizes the statistical results of the downlink
measurements.

180 S. Chevul et al.

0 100 200 300 400 500
98

100

102
Sleep function, server

T
im

e
[m

s] Max: 99.9 ms
Avg. sleep time: 99.9 ms
Min: 99.2 ms

No. of packets: 600

0 100 200 300 400 500
0

0.5

1
Send function, server

T
im

e
[m

s] Max: 0.2 ms
Avg. send time: 0.1 ms
Min: 0.1 ms

0 100 200 300 400 500
98

100

102 Max: 100.7 ms
Avg. sleep + send time: 100.0 ms
Min: 99.3 ms

Sleep + send function, server

T
im

e
[m

s]

0 100 200 300 400 500 600
80

100

120
Client

T
im

e
[m

s]

Samples

Max: 405.0 ms
Avg. inter packet delay: 99.6 ms
Min: 8.0 ms

No. of packets: 600
Packet loss: 0.0 %

Fig. 7. Timeplot UMTS downlink without NSB and 100 ms inter-packet delay

0 100 200 300 400 500 600
98

100

102
Sleep function, server

T
im

e
[m

s] Max: 100.0 ms
Avg. sleep time: 99.9 ms
Min: 99.8 ms

No. of packets: 601

0 100 200 300 400 500 600
0

0.5

1
Send function, server

T
im

e
[m

s] Max: 0.2 ms
Avg. send time: 0.0 ms
Min: 0.0 ms

0 100 200 300 400 500 600
98

100

102 Max: 100.1 ms
Avg. sleep + send time: 100.0 ms
Min: 99.9 ms

Sleep + send function, server

T
im

e
[m

s]

0 100 200 300 400 500 600
80

100

120
Client

T
im

e
[m

s]

Samples

Max: 404.0 ms
Avg. inter packet delay: 99.8 ms
Min: 8.0 ms

No. of packets: 601
Packet loss: 0.0 %

Fig. 8. Timeplot UMTS downlink with NSB and 100 ms inter-packet delay

Network Selection Box: An Implementation of Seamless Communication 181

The next case is a stress test of the NSB. To this aim, the UMTS network
is replaced with a Local Area Network (LAN) 10 Mbps link. The payload size
is set to 1458 bytes with no NSB used and 1416 bytes with NSB activated.
Thus, the frame size at the link layer is kept at 1500 bytes. When the NSB is
not used, the jitter perceived by the client is rather high together with some
moderate amount of packet loss, cf. Figure 9. On the other hand, when NSB is
activated, the client still perceives rather high jitter while there is no packet loss,
cf. Figure 10. Table 3 summarizes the statistical results from all measurements.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10
Sleep function, sender

T
im

e
[m

s] Max: 4.5 ms
Avg. sleep time: 1.8 ms
Min: 0.0 ms

No. of packets: 30000

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10
Send function, sender

T
im

e
[m

s] Max: 4.4 ms
Avg. send time: 0.2 ms
Min: 0.2 ms

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10 Max: 6.2 ms
Avg. sleep + send time: 2.0 ms
Min: 0.2 ms

Sleep + send function, sender

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10
Client

T
im

e
[m

s]

Samples

Max: 22.5 ms
Avg. inter packet delay: 2.0 ms
Min: 0.1 ms

No. of packets: 29995
Packet loss: 0.0 %

Fig. 9. Timeplot LAN without NSB and 2 ms inter-packet delay

4.3 Handover Delays

Handover delays between WLAN and UMTS were investigated. Two scenarios
were considered: the first addresses handover without backup network, in which
the client first has to detect the network loss, then make a decision regarding
which network to connect to, and finally establish the connection. This means
that when connecting to the UMTS network, the time for dialling is included in
the delay. In the second scenario, handover with a backup network is considered.
In this scenario the UMTS network is already connected, thus the delay does not
include time for dialling although it includes the time to detect loss of network
connection. Network loss can be detected either by the loss of ACKNETSTAT con-
trol messages or through the socket API reporting failed a send. Hence, choosing

182 S. Chevul et al.

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
Sleep function, sender

T
im

e
[m

s] Max: 8.3 ms
Avg. sleep time: 1.8 ms
Min: 0.0 ms

No. of packets: 29999

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10
Send function, sender

T
im

e
[m

s] Max: 25.1 ms
Avg. send time: 0.2 ms
Min: 0.1 ms

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10 Max: 26.9 ms
Avg. sleep + send time: 2.0 ms
Min: 0.3 ms

Sleep + send function, sender

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10
Client

T
im

e
[m

s]

Samples

Max: 55.2 ms
Avg. inter packet delay: 2.0 ms
Min: 0.1 ms

No. of packets: 29999
Packet loss: 0.0 %

Fig. 10. Timeplot LAN with NSB and 2 ms inter-packet delay

a different parameter value for the number of missed ACKNETSTAT might reduce
the time for detecting a network loss. Network loss can also be detected through
the Windows Management Instrumentation (WMI). This method was used in the
early stage of the NSB development but was abandoned due to severe memory
leakage in the WMI that was not resolved by Microsoft.

From Table 2 it can be observed that the handover delay when a backup
UMTS network exists is considerably shorter as compared to the case when no
backup network exists. The longer delay partly arises from the additional time
it take to connect to the UMTS, i.e. the time it takes for the modem to dial the
UMTS connection.

The handover delay can be further reduced by decreasing the times for detect-
ing network loss, which can be achieved by choosing different parameter values
for the number of missing ACKNETSTAT control message.

Table 2. NSB handover delay between WLAN and UMTS networks

min [s] mean [s] max [s]

without backup network 6.98 9.13 10.26
with backup network 2.18 3.10 4.00

Network Selection Box: An Implementation of Seamless Communication 183

4.4 Relative Overhead vs. Frame Size Ration

The encapsulation used by the TAP device, cf. Figure 2, implies an overhead
of 42 bytes. This has a minor impact on the application-perceived throughput
hence the MTU of application is reduced in order to avoid fragmentation on the
link layer. The overhead also results in larger frame size on the link layer. On the
other hand, large frames at the link layer have a positive effect on the efficiency.

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Frame size [bytes]

O
ve

rh
ea

d
[%

]

 Fig. 11. Relative overhead vs. frame size ration

Table 3. Overview of the NSB performance assessment

UMTS LAN
uplink downlink

IPD 100 ms IPD 100 ms IPD 2 ms
excl. NSB incl. NSB excl. NSB incl. NSB excl. NSB incl. NSB

sleep
function,
server [ms]

min 98.8 99.6 99.2 99.8 0.0 0.00
mean 99.9 99.9 99.9 99.9 1.8 1.8
max 100.0 100.0 99.9 100.0 4.5 8.3
stddev 0.0 0.0 0.0 0.0 0.1 0.2

send
function,
server [ms]

min 0.0 0.0 0.1 0.0 0.2 0.1
mean 0.1 0.1 0.1 0.0 0.2 0.2
max 0.2 0.4 0.2 0.2 4.4 25.1
stddev 0.0 0.0 0.0 0.0 0.1 0.3

sleep +
send
function,
server [ms]

min 98.9 99.7 99.3 99.9 0.2 0.3
mean 100.0 100.0 100.0 100.0 2.0 2.0
max 100.2 100.3 100.7 100.1 6.2 26.9
stddev 0.0 0.0 0.0 0.0 0.2 0.3

client [ms]

min 0.8 0.3 8.0 8.0 0.0 0.0
mean 100.0 100.0 99.6 99.8 2.00 2.0
max 402.5 398.6 405.0 404.0 22.5 55.2
stddev 32.1 37.1 34.9 82.2 0.3 0.5

184 S. Chevul et al.

In Figure 11 the ratio between the overhead and frame size is plotted. When us-
ing frames larger than 450 byte the overhead is less than 10 % of the frame size.

Table 3 summarizes the statistical results from the measurements. We recog-
nize that the client perceives more jitter than the server. This behaviour has also
been observed in [7,8,5]. However, the jitter seems to originate from the physical
layer rather than from the NSB. In fact even when considering different load
scenarios, we have not seen any considerable differences between using the NSB
or not doing so.

5 Conclusion and Outlook

We have described and evaluated a ready-to-deploy mobility framework that
supports seamless communication and represents an important enabler for adap-
tive applications through a simple QoS feedback mechanism. The framework is
called NSB, and ideally has several networks to select from e.g. GPRS, UMTS,
WLAN, etc. The design of the NSB has been described in detail, where the
network selection is based on measured network performance.

Performance evaluation of the framework indicates that the NSB is trans-
parent to the upper layers, in terms of throughput, although rather small jitter
at the receiver has been identified. The fact that no loss occurred during the
measurements is partly due to that the server uses a blocking send function.
Hence, in case the server transmits datagrams too fast, the send function itself
holds packets until they can be sent, which can be considered as some kind of
force feed-back. No performance implication was found besides the tunnel-typical
overhead of 42 bytes.

Furthermore, measurements of handover delays between WLAN and UMTS
networks indicate that rather short handover delays can be achieved when a
backup network such as UMTS was available. The handover delays are highly
dependent on how fast a network loss can be detected and whether there exists
backup network connectivity.

Future work includes a refined roaming strategy that will take advanced per-
formance monitoring into account and faster handover by optimizing the cor-
responding parameter setting. Also additional measurements of one-way delays
and TCP goodput are considered.

References

1. C. Perkins. IP Mobility Support for IPv4. Technical Report IETF RFC 3344,
August 2002.

2. L. Morand and S. Tessier. Global Mobility Approach with Mobile IP in All IP
Networks. In IEEE International Conf. on Communications (ICC), pages 2075–
2079, May 2002.

3. J-.W. Lin and J. Arul. An efficient fault-tolerant approach for Mobile IP in wireless
systems. In IEEE Trans. on Mobile Computing, volume 2, pages 207–220, July-
Sept. 2003.

Network Selection Box: An Implementation of Seamless Communication 185

4. J.W. Floroiu, R. Ruppelt, D. Sisalem, and J. Voglimacci. Seamless handover in
terrestrial radio access networks: a case study. IEEE Communications Magazine,
41(11):110–116, Nov. 2003.

5. M. Fiedler, L. Isaksson, S. Chevul, P. Lindberg, and J. Karlsson. Measurements and
Analysis of Application-Perceived Throughput via Mobile Links. In Proceedings
of the 2005 3rd Performance Modeling and Evaluation of Heterogeneous Networks
(HET-NETs), July 2005.

6. OpenVPN. URL: http://openvpn.net/.
7. S. Chevul, J. Karlsson, L. Isaksson, M. Fiedler, P. Lindberg, and L. Strandén.

Measurements of application-perceived throughput in DAB, GPRS, UMTS and
WLAN Environments. In Proceedings of RVK’05, Linköping, Sweden, June 2005.

8. L. Isaksson, S. Chevul, M. Fiedler, J. Karlsson, and P. Lindberg. Application-
Perceived Throughput Process in Wireless Systems. In Proceedings of ICMCS’05,
Montreal, Canada, August 2005.

9. S. Chevul. On Application-Perceived Quality of Service in Wireless Networks.
Licentiate Dissertation Series No. 2006:11. Blekinge Institute of Technology, 2006.

10. S. Chevul, L. Isaksson, M. Fiedler, and P. Lindberg. Measurement of Application-
Perceived Throughput of an E2E VPN Connection Using a GPRS Network. In
Wireless Systems and Network Architectures in Next Generation Internet, Second
International Workshop of the EURO-NGI Network of Excellence, pages 255–268,
Villa Vigoni, Italy, 2005.

	Introduction
	Foundations of Mobility and Seamless Communication
	Network Selection Box (NSB) Architecture
	Implementation and Communication Management

	Performance Evalutation of the NSB
	Measurement Setup
	Measurements and Results
	Handover Delays
	Relative Overhead vs. Frame Size Ration

	Conclusion and Outlook

