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Preface

This volume constitutes the proceedings of the joint VLDB workshop on the
Semantic Web, Ontologies and Databases (SWDB-ODBIS 2007), co-located with
the 33rd International Conference on Very Large Data Bases VLDB 2007. In
2007, organizers of the Semantic Web and Databases (SWDB) and the Ontologies
based techniques for DataBases and Information Systems (ODBIS) workshops
decided to join forces in order to further integrate these important areas of
research.

Research on the semantic web and on ontologies has reached a level of matu-
rity where the relationship with databases is becoming of paramount importance.
The objective of this joint workshop was to present databases and information
systems research as they relate to ontologies and the semantic web, and more
broadly, to gain insight into the semantic web and ontologies as they relate to
databases and information systems.

The workshop covered the foundations, methodologies and applications of
these fields for databases and information systems. The papers presented focused
on foundational or technological aspects as well as on research based on experi-
ence and describing industrial aspects of various topics such as semantics-aware
data models and query languages; ontology-based views, mappings, transforma-
tions, and query reformulation; or storing and indexing semantic web data and
schemas.

This volume includes a selection of extended versions of papers presented at
the workshop. We received a total of 11 submissions, each of which was thor-
oughly reviewed by members of the Program Committee. We are grateful to
Marcello Arenas for providing an invited talk entitled“An Extension of SPARQL
for RDFS”. Our sincere thanks go to the Program Committee for conducting a
vigorous review process. We hope that you will find papers that are of interest
to you in this volume.

March 2008 Vassilis Christophides
Martine Collard

Claudio Gutierrez
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Domenico Rosaci Università Mediterranea di Reggio Calabria,

Italy
Michel Scholl CNAM, France
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An Extension of SPARQL for RDFS

Marcelo Arenas1, Claudio Gutierrez2, and Jorge Pérez1

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

Abstract. RDF Schema (RDFS) extends RDF with a schema vocabu-
lary with a predefined semantics. Evaluating queries which involve this
vocabulary is challenging, and there is not yet consensus in the Seman-
tic Web community on how to define a query language for RDFS. In
this paper, we introduce a language for querying RDFS data. This lan-
guage is obtained by extending SPARQL with nested regular expressions
that allow to navigate through an RDF graph with RDFS vocabulary.
This language is expressive enough to answer SPARQL queries involving
RDFS vocabulary, by directly traversing the input graph.

1 Introduction

The Resource Description Framework (RDF) [16,6,14] is a data model for rep-
resenting information about World Wide Web resources. The RDF specification
includes a set of reserved IRIs, the RDFS vocabulary (called RDF Schema), that
has a predefined semantics. This vocabulary is designed to describe special rela-
tionships between resources like typing and inheritance of classes and properties,
among others features [6].

Jointly with the RDF release in 1998 as Recommendation of the W3C, the
natural problem of querying RDF data was raised. Since then, several designs
and implementations of RDF query languages have been proposed (see Haase et
al. [12] and Furche et al. [9] for detailed comparisons of RDF query languages).
In 2004, the RDF Data Access Working Group, part of the Semantic Web Ac-
tivity, released a first public working draft of a query language for RDF, called
SPARQL [21]. Since then, SPARQL has been rapidly adopted as the standard
to query Semantic Web data. In January 2008, SPARQL became a W3C Rec-
ommendation.

The specification of SPARQL is targeted to RDF data, not including RDFS
vocabulary. The reasons to follow this approach are diverse, including: (1) the
lack of a standard definition of a semantics for queries under the presence of
vocabulary and, hence, the lack of consensus about it; (2) the computational
complexity challenges of querying in the presence of a vocabulary with a prede-
fined semantics; and (3) practical considerations about real-life RDF data spread
on the Web. These reasons explain also why most of the groups working on the
definition of RDF query languages have focused in querying plain RDF data.

Nevertheless, there are several proposals to address the problem of querying
RDFS data. Current practical approaches taking into account the predefined

V. Christophides et al. (Eds.): SWDB-ODBIS 2007, LNCS 5005, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Arenas, C. Gutierrez, and J. Pérez

semantics of the RDFS vocabulary (e.g. Harris and Gibbins [11], Broekstra
et al. [7] in Sesame), roughly implement the following procedure. Given a query
Q over an RDF data source G with RDFS vocabulary, the closure of G is com-
puted first, that is, all the implicit information contained in G is made explicit
by adding to G all the statements that are logical consequences of G. Then the
query Q is evaluated over this extended data source. The theoretical formaliza-
tion of such an approach was studied by Gutierrez et al. [10].

From a practical point of view, the above approach has several drawbacks.
First, it is known that the size of the closure of a graph G is of quadratic order in
the worst case, making the computation and storage of the closure too expensive
for web-scale applications. Second, once the closure has been computed, all the
queries are evaluated over a data source which can be much larger than the
original one. This can be particularly inefficient for queries that must scan a
large part of the input data. Third, the approach is not goal-oriented. Although
in practice most queries will use just a small fragment of the RDFS vocabulary
and would need only to scan a small part of the initial data, all the vocabulary
and the data is considered when computing the closure.

Let us present a simple scenario that exemplifies the benefits of a goal-oriented
approach. Consider an RDF data source G and a query Q that asks whether a
resource A is a sub-class of a resource B. In its abstract syntax, RDF statements
are modeled as a subject-predicate-object structure of the form (s, p, o), called
an RDF triple. Furthermore, the keyword rdfs:subClassOf is used in RDFS to
denote the sub-class relation between resources. Thus, answering Q amounts
to check whether the triple (A, rdfs:subClassOf, B) is a logical consequence of
G. The predefined semantics of RDFS states that rdfs:subClassOf is a transitive
relation among resources. Then to answer Q, a goal-oriented approach should not
compute the closure of the entire input graph G (which could be of quadratic
order in the size of G), but instead it should just verify whether there exist
resources R1, R2, . . . Rn such that A = R1, B = Rn, and (Ri, rdfs:subClassOf,
Ri+1) is a triple in G for i = 1, . . . , n− 1. That is, we can answer Q by checking
the existence of an rdfs:subClassOf-path from A to B in G, which takes linear
time in the size of G [18].

It was shown by Muñoz el al. [18] that testing whether an RDFS triple is
implied by an RDFS data source G can be done without computing the closure
of G. The idea is that the RDFS deductive rules allow to determine if a triple is
implied by G by essentially checking the existence of paths over G, very much
like our simple example above. The good news is that these paths can be spec-
ified by using regular expressions plus some additional features. For example,
to check whether (A, rdfs:subClassOf, B) belongs to the closure of a graph G,
we already saw that it is enough to check whether there is a path from A to
B in G where each edge has label rdfs:subClassOf. This observation motivates
the use of extended triple patterns of the form (A, rdfs:subClassOf+, B), where
rdfs:subClassOf+ is the regular expression denoting paths of length at least 1
and where each edge has label rdfs:subClassOf. Thus, one can readily see that a
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language for navigating RDFS data would be useful for obtaining the answer of
queries considering the predefined semantics of the RDFS vocabulary.

Driven by this motivation, in this paper we introduce a language that extends
SPARQL with navigational capabilities. The resulting language turns out to
be expressive enough to capture the deductive rules of RDFS. Thus, we can
obtain the RDFS evaluation of an important fragment of SPARQL by navigating
directly the input RDFS data source, without computing the closure.

This idea can be developed at several levels. We first consider a navigational
language that includes regular expressions and takes advantage of the special
features of RDF. Paths defined by regular expressions has been widely used
in graph databases [17,3], and recently, have been also proposed in the RDF
context [1,4,2,15,5]. We show that although paths defined in terms of regular
expressions are useful, regular expressions alone are not enough to obtain the
RDFS evaluation of some queries by simply navigating RDF data. Thus, we
enrich regular expressions by borrowing the notion of branching from XPath [8],
to obtain what we call nested regular expressions. Nested regular expressions
are enough for our purposes and, furthermore, they provide an interesting extra
expressive power to define complex path queries over RDF data with RDFS
vocabulary.

Organization of the paper. In Section 2, we present a summary of the basics of
RDF, RDFS, and SPARQL, based on Muñoz et al. [18] and Pérez et al. [20].
Section 3 is the core part of the paper, and introduces our proposal for a nav-
igational language for RDF. We first discuss the related work on navigating
RDF in Section 3.1. In Section 3.2, we introduce a first language for navigating
RDF graphs based on regular expressions, and we discuss why regular expres-
sions alone are not enough for our purposes. Section 3.3 presents the language
of nested regular expressions, and shows how these expressions can be used to
obtain the RDFS evaluation of SPARQL patterns. In Section 3.4, we give some
examples of the extra expressive power of nested regular expressions, showing the
usefulness of the language to extract complex path relations from RDF graphs.
Finally, Section 4 presents some conclusions.

2 RDFS and SPARQL

In this section, we present the algebraic formalization of the core fragment of
SPARQL over RDF graphs introduced in [20], and then we extend this formaliza-
tion to RDFS graphs. But before doing that, we introduce some notions related
to RDF and the core fragment of RDFS.

2.1 The RDF Data Model

RDF is a graph data format for representing information in the Web. An RDF
statement is a subject-predicate-object structure, called an RDF triple, intended
to describe resources and properties of those resources. For the sake of simplicity,
we assume that RDF data is composed only by elements from an infinite set U
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lives in

works in

Everton

company

ChileSorace

plays in

sp

range

Barcelona

soccer team

type

soccer player

Ronaldinho

person

sc

sc

type

dom

dom range

sportsman

Fig. 1. An RDF graph storing information about soccer players

of IRIs1. More formally, an RDF triple is a tuple (s, p, o) ∈ U × U × U , where
s is the subject, p the predicate and o the object. An RDF graph (or RDF data
source) is a finite set of RDF triples.

Figure 1 shows an RDF graph that stores information about soccer players.
In this figure, a triple (s, p, o) is depicted as an arc s

p−→ o, that is, s and o are
represented as nodes and p is represented as an arc label. For example, (Sorace,
lives in, Chile) is a triple in the RDF graph in Figure 1. Notice that, an RDF
graph is not a standard labeled graph as its set of labels may have a nonempty
intersection with its set of nodes. For instance, consider triples (Ronaldinho,
plays in, Barcelona) and (plays in, sp, works in) in the RDF graph in Figure 1.
In this example, plays in is the predicate of the first triple and the subject of
the second one, and thus, acts simultaneously as a node and an edge label.

The RDF specification includes a set of reserved IRIs (reserved elements from
U) with predefined semantics, the RDFS vocabulary (RDF Schema [6]). This
set of reserved words is designed to deal with inheritance of classes and proper-
ties, as well as typing, among other features [6]. In this paper, we consider the
subset of the RDFS vocabulary composed by the special IRIs rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, rdfs:domain and rdf:type, which are denoted by
sc, sp, range, dom and type, respectively. The RDF graph in Figure 1 uses these
keywords to relate resources. For instance, the graph contains triple (sportsman,
sc, person), thus stating that sportsman is a sub-class of person.

The fragment of RDFS consisting of the keywords sc, sp, range, dom and type
was considered in [18]. In that paper, the authors provide a formal semantics

1 In this paper, we do not consider anonymous resources called blank nodes in the
RDF data model, that is, our study focus on ground RDF graphs. We neither make
a special distinction between IRIs and Literals.



An Extension of SPARQL for RDFS 5

for it, and also show it to be well-behaved as the remaining RDFS vocabulary
does not interfere with the semantics of this fragment. This together with some
other results from [18] provide strong theoretical and practical evidence for the
importance of this fragment. In this paper, we consider the keywords sc, sp,
range, dom and type, and we use the semantics for them from [18], instead of
using the full RDFS semantics (these two were shown to be equivalent in [18]).

For the sake of simplicity, we do not include here the model theoretical se-
mantics for RDFS from [18], and we only present the system of rules from [18]
that was proved to be equivalent to the model theoretical semantics (that is,
was proved to be sound and complete for the inference problem for RDFS in the
presence of sc, sp, range, dom and type). Table 1 shows the inference system
for the fragment of RDFS considered in this paper. Next we formalize the notion
of deduction for this system of inference rules. In every rule, letters A, B, C, X ,
and Y, stand for variables to be replaced by actual terms. More formally, an
instantiation of a rule is a replacement of the variables occurring in the triples
of the rule by elements of U . An application of a rule to a graph G is defined
as follows. Given a rule r, if there is an instantiation R

R′ of r such that R ⊆ G,
then the graph G′ = G∪R′ is the result of an application of r to G. Finally, the
closure of an RDF graph G, denoted by cl(G), is defined as the graph obtained
from G by successively applying the rules in Table 1 until the graph does not
change.

Example 1. Consider the RDF graph in Figure 1. By applying the rule (1b) to
(Ronaldinho, plays in, Barcelona) and (plays in, sp, works in), we obtain that
(Ronaldinho, works in, Barcelona) is in the closure of the graph. Moreover, by
applying the rule (3b) to this last triple and (works in, range, company), we
obtain that (Barcelona, type, company) is also in the closure of the graph.
Figure 2 shows the complete closure of the RDF graph in Figure 1. The solid
lines in Figure 2 represent the triples in the original graph, and the dashed lines
the additional triples in the closure. ��

In [18], it was shown that if the number of triples in G is n, then the closure
cl(G) could have, in the worst case, Ω(n2) triples.

Table 1.

1. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

2. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

3. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)



6 M. Arenas, C. Gutierrez, and J. Pérez
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Fig. 2. The closure of the RDF graph in Figure 1

2.2 SPARQL

SPARQL is essentially a graph-matching query language. A SPARQL query
is of the form H ← B. The body B of the query, is a complex RDF graph
pattern expression that may include RDF triples with variables, conjunctions,
disjunctions, optional parts and constraints over the values of the variables. The
head H of the query, is an expression that indicates how to construct the answer
to the query. The evaluation of a query Q against an RDF graph G is done in
two steps: the body of Q is matched against G to obtain a set of bindings for
the variables in the body, and then using the information on the head of Q,
these bindings are processed applying classical relational operators (projection,
distinct, etc.) to produce the answer to the query. This answer can have different
forms, e.g. a yes/no answer, a table of values, or a new RDF graph. In this
paper, we concentrate on the body of SPARQL queries, i.e. in the graph pattern
matching facility.

Assume the existence of an infinite set V of variables disjoint from U . A
SPARQL graph pattern is defined recursively as follows [20]:

1. A tuple from (U ∪V )×(U ∪V )×(U ∪V ) is a graph pattern (a triple pattern).
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2),

(P1 OPT P2), and (P1 UNION P2) are graph patterns.
3. If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is a Boolean combination of terms constructed by
using the equality (=) among elements in U ∪ V and constant, and the unary
predicate bound(·) over variables.
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To define the semantics of SPARQL graph patterns, we need to introduce some
terminology. A mapping μ from V to U is a partial function μ : V → U . Slightly
abusing notation, for a triple pattern t we denote by μ(t) the triple obtained
by replacing the variables in t according to μ. The domain of μ, denoted by
dom(μ), is the subset of V where μ is defined. Two mappings μ1 and μ2 are
compatible if for every x ∈ dom(μ1)∩dom(μ2), it is the case that μ1(x) = μ2(x),
i.e. when μ1 ∪ μ2 is also a mapping. Intuitively, μ1 and μ2 are compatibles if
μ1 can be extended with μ2 to obtain a new mapping, and vice versa. Note that
two mappings with disjoint domains are always compatible, and that the empty
mapping μ∅ (i.e. the mapping with empty domain) is compatible with any other
mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of, the union of and
the difference between Ω1 and Ω2 as:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1, μ2 are compatible mappings},
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 � Ω2 = {μ ∈ Ω1 | for all μ′ ∈ Ω2, μ and μ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

Intuitively, Ω1 �� Ω2 is the set of mappings that result from extending map-
pings in Ω1 with their compatible mappings in Ω2, and Ω1 � Ω2 is the set of
mappings in Ω1 that cannot be extended with any mapping in Ω2. The operation
Ω1 ∪ Ω2 is the usual set theoretical union. A mapping μ is in Ω1 Ω2 if it is
the extension of a mapping of Ω1 with a compatible mapping of Ω2, or if it be-
longs to Ω1 and cannot be extended with any mapping of Ω2. These operations
resemble relational algebra operations over sets of mappings (partial functions).

We are ready to define the semantics of graph pattern expressions as a function
that takes a pattern expression and returns a set of mappings. The evaluation of
a graph pattern over an RDF graph G, denoted by � · �G, is defined recursively
as follows:

– �t�G = {μ | dom(μ) = var(t) and μ(t) ∈ G} , where var(t) is the set of
variables occurring in t.

– �(P1 AND P2)�G = �P1�G �� �P2�G .
– �(P1 UNION P2)�G = �P1�G ∪ �P2�G.
– �(P1 OPT P2)�G = �P1�G �P2�G.

The idea behind the OPT operator is to allow for optional matching of pat-
terns. Consider pattern expression (P1 OPT P2) and let μ1 be a mapping in
�P1�G. If there exists a mapping μ2 ∈ �P2�G such that μ1 and μ2 are compati-
ble, then μ1∪μ2 belongs to �(P1 OPT P2)�G. But if no such a mapping μ2 exists,
then μ1 belongs to �(P1 OPT P2)�G. Thus, operator OPT allows information to
be added to a mapping μ if the information is available, instead of just rejecting
μ whenever some part of the pattern does not match.
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The semantics of FILTER expressions goes as follows. Given a mapping μ and
a built-in condition R, we say that μ satisfies R, denoted by μ |= R, if:

– R is bound(?X) and ?X ∈ dom(μ);
– R is ?X = c, ?X ∈ dom(μ) and μ(?X) = c;
– R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y );
– R is (¬R1), R1 is a built-in condition, and it is not the case that μ |= R1;
– R is (R1 ∨R2), R1 and R2 are built-in conditions, and μ |= R1 or μ |= R2;
– R is (R1 ∧R2), R1 and R2 are built-in conditions, μ |= R1 and μ |= R2.

Then �(P FILTER R)�G = {μ ∈ �P �G | μ |= R}, that is, �(P FILTER R)�G is
the set of mappings in �P �G that satisfy R.

It was shown in [20], among other algebraic properties, that AND and UNION
are associative and commutative, thus permitting us to avoid parenthesis when
writing sequences of either AND operators or UNION operators.

In the rest of the paper, we usually represent sets of mappings as tables where
each row represents a mapping in the set. We label every row with the name
of a mapping, and every column with the name of a variable. If a mapping is
not defined for some variable, then we simply leave empty the corresponding
position. For instance, the table:

?X ?Y ?Z ?V ?W
μ1 : a b
μ2 : c d
μ3 : e

represents the set Ω = {μ1, μ2, μ3}, where

– dom(μ1) = {?X, ?Y }, μ1(?X) = a and μ1(?Y ) = b;
– dom(μ2) = {?Y, ?W}, μ2(?Y ) = c and μ2(?W ) = d;
– dom(μ3) = {?Z} and μ3(?Z) = e.

We sometimes write {{?X → a, ?Y → b}, {?Y → c, ?W → d}, {?Z → e}} for
the above set of mappings.

Example 2. Let G be the RDF graph shown in Figure 1, and consider SPARQL
graph pattern P1 = ((?X, plays in, ?T ) AND (?X , lives in, ?C)). Intuitively, P1

retrieves the list of soccer players in G, including the teams where they play in
and the countries where they live in. Thus, we have:

�P1�G =
?X ?T ?C

Sorace Everton Chile

Notice that in this case we have not obtained any information about Ronaldinho,
since in the graph there is not data about the country where Ronaldinho lives
in. Consider now the pattern P2 = ((?X, plays in, ?T ) OPT (?X , lives in, ?C)).
Intuitively, P2 retrieves the list of soccer players in G, including the teams where
they play in and the countries where they live in. But, as opposed to P1, pattern
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P2 does not fail if the information about the country where a soccer player lives
in is missing. In this case, we have:

�P2�G =
?X ?T ?C

Sorace Everton Chile
Ronaldinho Barcelona

��

2.3 The Semantics of SPARQL over RDFS

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query
treats RDFS vocabulary without considering its predefined semantics. For in-
stance, let G be the RDF graph shown in Figure 1, and consider the graph
pattern P = (?X , works in, ?C). Note that, although the triples (Ronaldinho,
works in, Barcelona) and (Sorace, works in, Everton) can be deduced from G,
we obtain the empty set as the result of evaluating P over G (that is, �P �G = ∅)
as there is no triple in G with works in in the predicate position.

We are interested in defining the semantics of SPARQL over RDFS, that is,
taking into account not only the explicit RDF triples of a graph G, but also the
triples that can be derived from G according to the semantics of RDFS. The
most direct way of defining such a semantics is by considering not the original
graph but its closure. The following definition formalizes this notion.

Definition 1 (RDFS evaluation). Given a SPARQL graph pattern P , the
RDFS evaluation of P over G, denoted by �P �rdfs

G , is defined as the set of map-
pings �P �cl(G), that is, as the evaluation of P over the closure of G.

Example 3. Let G be the RDF graph shown in Figure 1, and consider the graph
pattern expression:

P = ((?X, type, person) AND (?X, lives in, Chile) AND (?X, works in, ?C)),

intended to retrieve the list of people in G (resources of type person) that lives in
Chile, and the companies where they work in. The evaluation of P over G results
in the empty set, since both �(?X, type, person)�G and �(?X, works in, ?C)�G

are empty. On the other hand, the RDFS evaluation of P over G contains the
following tuples:

�P �rdfs
G = �P �cl(G) =

?X ?C
Sorace Everton

��

It should be noticed that in Definition 1, we do not provide a procedure for
evaluating SPARQL over RDFS. In fact, as we have mentioned before, a direct
implementation of this definition leads to an inefficient procedure for evaluating
SPARQL queries, as it requires a pre-calculation of the closure of the input
graph.
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3 Navigational RDF Languages

Our main goal is to define a query language that allows to obtain the RDFS
evaluation of a pattern directly from an RDF graph, without computing the
entire closure of the graph. We have provided some evidence that a language for
navigating RDF graphs could be useful in achieving our goal. In this section, we
define such a language for navigating RDF graphs, providing a formal syntax and
semantics. Our language uses, as usual for graph query languages [17,3], regular
expressions to define paths on graph structures, but taking advantage of the
special features of RDF graphs. More precisely, we start by introducing in Section
3.2 a language that extends SPARQL with regular expressions. Although regular
expressions capture in some cases the semantics of RDFS, we show in Section
3.2 that regular expressions alone are not enough to obtain the RDFS evaluation
of some queries. Thus, we show in Section 3.3 how to extend regular expressions
by borrowing the notion of branching from XPath [8], and we explain why this
enriched language is enough for our purposes. Finally, we show in Section 3.4
that the enriched language provides some other interesting features that give
extra expressiveness to the language, and that deserve further investigation. But
before doing all this, we briefly review in Section 3.1 some of the related work
on navigating RDF.

3.1 Related Work

The idea of having a language to navigate through an RDF graph is not new.
In fact, several languages have been proposed in the literature [1,4,2,15,5].
Nevertheless, none of these languages is motivated by the necessity to evaluate
queries over RDFS, and none of them is comparable in expressiveness with
the language proposed in this paper. Kochut et al. [15] propose a language
called SPARQLeR as an extension of SPARQL. This language allows to extract
semantic associations between RDF resources by considering paths in the input
graph. SPARQLeR works with path variables intended to represent a sequence
of resources in a path between two nodes in the input graph. A SPARQLeR
query can also put restrictions over those paths by checking whether they
conform to a regular expression. With the same motivation of extracting
semantic associations from RDF graphs, Anyanwu et al. [5] propose a language
called SPARQ2L. SPARQ2L extends SPARQL by allowing path variables
and path constraints. For example, some SPARQ2L constraints are based on
the presence (or absence) of some nodes or edges, the length of the retrieved
paths, and on some structural properties of these paths. In [5], the authors also
investigate the implementation of a query evaluation mechanism for SPARQ2L
with emphasis in some secondary memory issues.

The language PSPARQL was proposed by Alkhateeb et al. in [2]. PSPARQL
is an extension of SPARQL obtained by allowing regular expressions in the pred-
icate position of triple patterns. Thus, this language can be used to obtain pair
of nodes that are connected by a path whose labeling conforms to a regular
expression. PSPARQL also allows variables inside regular expressions, thus per-
mitting to retrieve data along the traversed paths. In [2], the authors propose a
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formal semantics for PSPARQL, and also study some theoretical aspects of this
language such as the complexity of query evaluation. VERSA [19] and RxPath
[22] are proposals motivated by XPath with emphasis on some implementation
issues.

3.2 Navigating RDF through Regular Expressions

Navigating graphs is done usually by using an operator next, which allows to
move from one node to an adjacent one in a graph. In our setting, we have RDF
“graphs”, which are sets of triples, not classical graphs [13]. In particular, instead
of classical edges (pair of nodes), we have directed triples of nodes (hyperedges).
Hence, a language for navigating RDF graphs should be able to deal with this
type of objects. The language introduced in this paper deals with this problem
by using three different navigation axes, which are shown in Figure 3 (together
with their inverses).

edge-1

b aa

p p

b

edge node

next next-1

node-1

Fig. 3. Forward and backward axes for an RDF triple (a, p, b)

A navigation axis allows moving one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph, and one
can use classical regular expressions over these axes to define a set of paths that
can be used in a query. More precisely, the following grammar defines the regular
expressions in our language:

exp := axis | axis::a (a ∈ U) | exp/exp | exp|exp | exp∗ (1)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. The additional
axis self is not used to navigate, but instead to test the label of a specific node
in a path. We call regular path expressions to expressions generated by (1).

Before introducing the formal semantics of regular path expressions, we give
some intuition about how these expressions are evaluated in an RDF graph. The
most natural navigation axis is next::a, with a an arbitrary element from U .
Given an RDF graph G, the expression next::a is interpreted as the a-neighbor
relation in G, that is, the pairs of nodes (x, y) such that (x, a, y) ∈ G. Given that
in the RDF data model a node can also be the label of an edge, the language
allows to navigate from a node to one of its leaving edges by using the edge axis.
More formally, the interpretation of edge::a is the pairs of nodes (x, y) such that
(x, y, a) ∈ G. We formally define the evaluation of a regular path expression p in
a graph G as a binary relation �p�G, denoting the pairs of nodes (x, y) such that



12 M. Arenas, C. Gutierrez, and J. Pérez

Table 2. Formal semantics of regular path expressions

�self�G = {(x, x) | x ∈ voc(G)}
�self::a�G = {(a, a)}

�next�G = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
�next::a�G = {(x, y) | (x, a, y) ∈ G}

�edge�G = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
�edge::a�G = {(x, y) | (x, y, a) ∈ G}

�node�G = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
�node::a�G = {(x, y) | (a, x, y) ∈ G}

�axis-1�G = {(x, y) | (y, x) ∈ �axis�G} with axis ∈ {next, node, edge}
�axis-1::a�G = {(x, y) | (y, x) ∈ �axis::a�G} with axis ∈ {next, node, edge}

�exp1/exp2�G = {(x, y) | there exists z s.t. (x, z) ∈ �exp1�G and (z, y) ∈ �exp2�G}
�exp1|exp2�G = �exp1�G ∪ �exp2�G

�exp∗�G = �self�G ∪ �exp�G ∪ �exp/exp�G ∪ �exp/exp/exp�G ∪ · · ·

y is reachable from x in G by following a path whose labels are in the language
defined by p. The formal semantics of the language is shown in Table 2. In this
table, G is an RDF graph, a ∈ U , voc(G) is the set of all the elements from U
that are mentioned in G, and exp, exp1, exp2 are regular path expressions.

Example 4. Consider an RDF graph G storing information about transportation
services between cities. A triple (C1, tc, C2) in the graph indicates that there is
a direct way of traveling from C1 to C2 by using the transportation company tc.

If we assume that G does not mention any of the RDFS keywords, then the
expression:

(next::KoreanAir)+ | (next::AirFrance)+

defines the pairs of cities (C1, C2) in G such that there is a way of flying from
C1 to C2 in either KoreanAir or AirFrance. Moreover, by using axis self, we
can test for a stop in a specific city. For example, the expression:

(next::KoreanAir)+/self::Paris/(next::KoreanAir)+

defines the pairs of cities (C1, C2) such that there is a way of flying from C1 to
C2 with KoreanAir with a stop in Paris. ��
Once regular path expressions have been defined, the natural next step is to
extend the syntax of SPARQL to allow them in triple patterns. A regular path
triple is a tuple of the form t = (x, exp, y), where x, y ∈ U∪V and exp is a regular
path expression. Then the evaluation of a regular path triple t = (?X, exp, ?Y )
over an RDF graph G is defined as the following set of mappings:

�t�G = {μ | dom(μ) = {?X, ?Y } and (μ(?X), μ(?Y )) ∈ �exp�G}.
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Similarly, the evaluation of a regular path triple t = (?X, exp, a) over an RDF
graph G, where a ∈ U , is defined as {μ | dom(μ) = {?X} and (μ(?X), a) ∈
�exp�G}, and likewise for (a, exp, ?X) and (a, exp, b) with b ∈ U .

We call regular SPARQL (or just rSPARQL) to SPARQL extended with reg-
ular path triples. The semantics of rSPARQL patterns is defined recursively as
in Section 2, but considering the special semantics of regular path triples. The
following example shows that rSPARQL is useful to represent RDFS deductions.

Example 5. Let G be the RDF graph in Figure 1, and assume that we want to
obtain the type information of Ronaldinho. This information can be obtained
by computing the RDFS evaluation of the pattern (Ronaldinho, type, ?C). By
simply inspecting the closure of G in Figure 2, we obtain that:

�(Ronaldinho, type, ?C)�rdfs
G =

?C
soccer player
sportsman

person

However, if we directly evaluate this pattern over G we obtain a single mapping:

�(Ronaldinho, type, ?C)�G =
?C

soccer player

Consider now the rSPARQL pattern:

P = (Ronaldinho, next::type/(next::sc)∗, ?C).

The regular path expression next::type/(next::sc)∗ is intended to obtain the
pairs of nodes such that, there is a path between them that has type as its
first label followed by zero or more labels sc. When evaluating this expres-
sion in G, we obtain the set of pairs {(Ronaldinho, soccer player), (Ronaldinho,
sportsman), (Ronaldinho, person), (Barcelona, soccer team)}. Thus, the evalua-
tion of P results in the set of mappings:

�P �G =

?C
soccer player
sportsman

person

In this case, pattern P is enough to obtain the type information of Ronaldinho
in G according to the RDFS semantics, that is,

�(Ronaldinho, type, ?C)�rdfs
G = �(Ronaldinho, next::type/(next::sc)∗, ?C)�G.

Although the expression next::type/(next::sc)∗ is enough to obtain the type
information for Ronaldinho in G, it cannot be used in general to obtain the
type information of a resource. For instance, in the same graph, assume that we
want to obtain the type information of Everton. In this case, if we evaluate the
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pattern (Everton, next::type/(next::sc)∗, ?C) over G, we obtain the empty set.
Consider now the rSPARQL pattern

Q = (Everton, node-1/(next::sp)∗/next::range, ?C).

With the expression node-1/(next::sp)∗/next::range, we follow a path that first
navigates from a node to one of its incoming edges by using node-1, and then
continues with zero or more sp edges and a final range edge. The evaluation
of this expression in G results in the set {(Everton, soccer team), (Everton,
company), (Barcelona, soccer team), (Barcelona, company)}. Thus, the evalua-
tion of Q in G is the set of mappings:

�Q�G =
?C

soccer team
company

By looking at the closure of G in Figure 2, we see that pattern Q obtains exactly
the type information of Everton in G, that is, �(Everton, type, ?C)�rdfs

G = �Q�G.
��

The previous example shows the benefits of having regular path expressions
to obtain the RDFS evaluation of a pattern P over an RDF graph G just by
navigating G. We are interested in whether this can be done in general for every
SPARQL pattern. More formally, we are interested in the following problem:

Given a SPARQL pattern P , is there an rSPARQL pattern Q such that
for every RDF graph G, it holds that

�P �rdfs
G = �Q�G?

Unfortunately, the answer to this question is negative for some SPARQL pat-
terns. Let us show this failure with an example. Assume that we want to obtain
the RDFS evaluation of pattern P = (?X, works in, ?Y ) in an RDF graph G.
This can be done by first finding all the properties p that are sub-properties of
works in, and then finding all the resources a and b such that (a, p, b) is a triple
in G. A way to answer P by navigating the graph would be to find the pairs
of nodes (a, b) such that there is a path from a to b that: (1) goes from a to
one of its leaving edges, then (2) follows a sequence of zero or more sp edges
until it reaches a works in edge, and finally (3) returns to the initial edge and
moves forward to b. If such a path exists, then it is clear that (a, works in, b)
can be deduced from the graph. The following is a natural attempt to obtain
the described path with a regular path expression:

edge/(next::sp)∗/self::works in/(next-1::sp)∗/node.

The problem with the above expression is that, when the path returns from
works in, no information about the path used to reach works in has been stored.
Thus, there is no way to know what was the initial edge. In fact, if we evaluate
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the pattern Q = (?X, edge/(next::sp)∗/self::works in/(next-1::sp)∗/node, ?Y )
over the graph G in Figure 1, we obtain the set of mappings:

�Q�G =

?X ?Y
Ronaldinho Barcelona
Ronaldinho Everton

Sorace Barcelona
Sorace Everton

By simply inspecting the closure of G in Figure 2, we obtain that:

�P �rdfs
G =

?X ?Y
Ronaldinho Barcelona

Sorace Everton

and, thus, we have that Q is not the right representation of P according to the
RDFS semantics, since �P �rdfs

G = �Q�G.
In general, it can be shown that there is no rSPARQL triple pattern Q such

that for every RDF graph G, it holds that �(?X, works in, ?Y )�rdfs
G = �Q�G. It

is worth mentioning that this failure persists for a general rSPARQL pattern Q,
that is, if Q is allowed to use all the expressive power of SPARQL patterns (it can
use operators AND, UNION, OPT and FILTER) plus regular path expressions
in triple patterns.

3.3 Navigating RDF through Nested Regular Expressions

We have seen that regular path expressions are not enough to obtain the RDFS
evaluation of a graph pattern. In this section, we introduce a language that
extends regular path expressions with a nesting operator. Nested expressions
can be used to test for the existence of certain paths starting at any axis of a
regular path expression. We will see that this feature is crucial in obtaining the
RDFS evaluation of SPARQL patterns by directly traversing RDF graphs.

The syntax of nested regular expressions is defined by the following grammar:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp|exp | exp∗ (2)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}.
The nesting construction [exp] is used to check for the existence of a path

defined by expression exp. For instance, when evaluating nested expression
next::[exp] in a graph G, we retrieve the pair of nodes (x, y) such that there
exists z with (x, z, y) ∈ G, and such that there is a path in G that follows
expression exp starting in z. The formal semantics of nested regular path ex-
pressions is shown in Table 3. The semantics for the navigation axes of the form
‘axis’ and ‘axis::a’, as well as the concatenation, disjunction, and star closure of
expressions, is defined as for the case of regular path expressions (see Table 2).
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Table 3. Formal semantics of nested regular path expressions

�self::[exp]�G = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ �exp�G}
�next::[exp]�G = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z, w) ∈ �exp�G}
�edge::[exp]�G = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z, w) ∈ �exp�G}
�node::[exp]�G = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z, w) ∈ �exp�G}

�axis-1::[exp]�G = {(x, y) | (y, x) ∈ �axis::[exp]�G} with axis ∈ {next, node, edge}

Example 6. Consider an RDF graph G storing information about transporta-
tion services between cities. As in Example 4, a triple (C1, tc, C2) in the graph
indicates that there is a direct way of traveling from C1 to C2 by using the
transportation company tc. Then the nested expression:

(next::KoreanAir)+/self::[(next::AirFrance)∗/self::Paris]/(next::KoreanAir)+,

defines the pairs of cities (C1, C2) such that, there is a way of flying from C1

to C2 with KoreanAir with a stop in a city C3 from which one can fly to Paris
with AirFrance. Notice that self::[(next::AirFrance)∗/self::Paris] is used to
test for the existence of a flight (that can have some stops) from C3 to Paris
with AirFrance. ��
Recall that rSPARQL was defined as the extension of SPARQL with regular
path expressions in the predicate position of triple patterns. Similarly, nested
SPARQL (or just nSPARQL) is defined as the extension of SPARQL with nested
regular expressions in the predicate position of triple patterns. The following
example shows the benefits of using nSPARQL when trying to obtain the RDFS
evaluation of a pattern by directly traversing an RDF graph.

Example 7. Consider the SPARQL pattern P = (?X, works in, ?Y ). We have
seen that it is not possible to obtain the RDFS evaluation of P with an rSPARQL
pattern. Consider now the nested regular expression:

next::[(next::sp)∗/self::works in]. (3)

It defines the pairs (a, b) of resources in an RDF graph G such that, there exist
a triple (a, x, b) and a path from x to works in in G where every edge has label
sp. The expression (next::sp)∗/self::works in is used to simulate the inference
process in RDFS; it retrieves all the nodes that are sub-properties of works in.
Thus, expression (3) is exactly what we need to obtain the RDFS evaluation
of pattern P . In fact, if G is the RDF graph in Figure 1 and Q the nSPARQL
pattern:

Q = (?X, next::[(next::sp)∗/self::works in], ?Y ),

then we obtain

�Q�G =
?X ?Y

Ronaldinho Barcelona
Sorace Everton

This is exactly the RDFS evaluation of P in G, that is, �P �rdfs
G = �Q�G. ��
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It turns out that nested expressions are the necessary ingredient to obtain the
RDFS evaluation of SPARQL patterns by navigating RDF graphs. To show
that this holds, consider the following translation function from elements in U
to nested expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom
trans(range) = next::range
trans(type) = ( next::type/(next::sc)∗ |

edge/(next::sp)∗/next::dom/(next::sc)∗ |
node-1/(next::sp)∗/next::range/(next::sc)∗ )

trans(p) = next::[(next::sp)∗/self::p ] for p /∈ {sc, sp, range, dom, type}.
By using the results of [18], it can be shown that for every SPARQL triple
pattern of the form (x, a, y), where x, y ∈ U ∪ V and a ∈ U , it holds that:

�(x, a, y)�rdfs
G = �(x, trans(a), y)�G

for every RDF graph G. That is, given an RDF graph G and a triple pattern t not
containing a variable in the predicate position, it is possible to obtain the RDFS
evaluation of t over G by navigating G through a nested regular expression (and
without explicitly computing the closure of G).

Given that the syntax and semantics of SPARQL patterns are defined from
triple patterns, the previous property also holds for SPARQL patterns including
operators AND, OPT, UNION and FILTER. That is, if P is a SPARQL pattern
constructed by using triple patterns from the set (U ∪ V ) × U × (U ∪ V ), then
there is an nSPARQL pattern Q such that for every RDF graph G, it holds that
�P �rdfs

G = �Q�G.
It should be noticed that, if variables are allowed in the predicate position

of triple patterns, in general there is no hope to obtain the RDFS evaluation
without computing the closure, since a triple pattern like (?X, ?Y, ?Z) can be
used to retrieve the entire closure of an RDF graph.

3.4 The Extra Expressive Power of Nested Regular Expressions

Nested regular expressions were designed to be expressive enough to capture the
semantics of RDFS. Beside this feature, nested regular expressions also provide
some other interesting features that give extra expressiveness to the language.
With nested regular expressions, one is allowed to define complex paths by using
concatenation, disjunction and star closure, over nested expressions. It is also
allowed to use various levels of nesting in expressions. Note that these features
are not needed in the translations presented in the previous section.

The following example shows that the extra expressiveness of nested regu-
lar expressions can be used to formulate interesting and natural queries, which
cannot be expressed by using regular path expressions.
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Fig. 4. An RDF graph storing information about transportation services between cities

Example 8. Consider the RDF graph with transportation information in Figure 4.
As in the previous examples, if C1 and C2 are cities and (C1, tc, C2) is a triple in
the graph, then there is a direct way of traveling from C1 to C2 by using the trans-
portation company tc. For instance, (Paris, TGV, Calais) indicates that TGV pro-
vides a transportation service from Paris to Calais. In the figure, we also have extra
information about the travel services. For example, TGV is a sub-property of train
and then, if (Paris, TGV, Calais) is in the graph, we can infer that there is a train
going from Paris to Calais.

If we want to know whether there is a way to travel from one city to another
(without taking into consideration the kind of transportation), we can use the
following expression:

(next::[(next::sp)∗/self::transport])+.

Assume now that we want to obtain the pairs (C1, C2) of cities such that there
is a way to travel from C1 to C2 with a stop in a city which is either London
or is connected by a bus service with London. First, notice that the following
nested expression checks whether there is a way to travel from C1 to C2 with a
stop in London:

(next::[(next::sp)∗/self::transport])+/self::London/

(next::[(next::sp)∗/self::transport])+. (4)

Thus, to obtain an expression for our initial query, we only need to replace
self::London in (4) by an expression that checks whether a city is either London
or is connected by a bus service with London. The following expression can be
used to test the latter condition:

(next::[(next::sp)∗/self::bus ])∗/self::London. (5)
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Hence, by replacing self::London by (5) in nested regular expression (4), we
obtain a nested regular expression for our initial query:

(next::[(next::sp)∗/self::transport])+/

self::[(next::[(next::sp)∗/self::bus])∗/self::London] /

(next::[(next::sp)∗/self::transport])+. (6)

Notice that the level of nesting of (6) is 2. If we evaluate (6) over the RDF graph
in Figure 4, we obtain the pair (Calais, Hastings) as a possible answer since there
is a way to travel from Calais to Hastings with a stop in Dover, from which there
is a bus service to London. ��

4 Concluding Remarks

The problem of answering queries over RDFS is challenging, due to the exis-
tence of a vocabulary with a predefined semantics. Current approaches for this
problem pre-compute the closure of RDF graphs. From a practical point of view,
these approaches have several drawbacks, among others that they are not goal-
oriented: although a query may need to scan a small part of the data, all the
data is considered when computing the closure of an RDF graph.

In this paper, we propose an alternative approach to the problem of answer-
ing RDFS queries. We present a navigational language constructed from nested
regular expressions, that can be used to obtain the answer to RDFS queries by
navigating the input graph (without pre-computing the closure). Besides captur-
ing the semantics of RDFS, nested regular expressions also provide some other
interesting features that give extra expressiveness to the language. We think
these features deserve further and deeper investigation.
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Abstract. The algorithms dealing with the incorporation of new knowl-
edge in an ontology (ontology evolution) often share a rather standard
process of dealing with changes. This process consists of the specification
of the language, the determination of the allowed update operations, the
identification of the invalidities that could be caused by each such opera-
tion, the determination of the various alternatives to deal with each such
invalidity, and, finally, some selection mechanism for singling out the
“best” of these alternatives. Unfortunately, most ontology evolution al-
gorithms implement these steps using a case-based, ad-hoc methodology,
which is cumbersome and error-prone. The first goal of this paper is to
present, justify and make explicit the five steps of the process. The second
goal is to propose a general framework for ontology change management
that captures this process, in effect generalizing the methodology em-
ployed by existing tools. The introduction of this framework allows us to
devise a whole class of ontology evolution algorithms, which, due to their
formal underpinnings, avoid many of the problems exhibited by ad-hoc
frameworks. We exploit this framework by implementing a specific ontol-
ogy evolution algorithm for RDF ontologies as part of the FORTH-ICS
Semantic Web Knowledge Middleware (SWKM).

1 Introduction

Change management is a key component of any knowledge-intensive application.
The same is true for the Semantic Web, where knowledge is usually expressed
in terms of ontologies and refined through various methodologies using ontology
evolution techniques. The most critical part of an ontology evolution algorithm
is the determination of what can be changed and how each change should be
implemented. The main argument of this paper is that this determination can be
split into the following 5 steps, which, although not explicitly stated, are shared
by many ontology evolution tools:

1. Model Selection. The allowed changes, as well as the various alternatives
for implementing each change, are constrained by the expressive power of
the ontology representation model. Thus, the selection of the model may
have profound effects on what can be changed, and how, so it constitutes an
important parameter of the evolution algorithm.
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2. Supported Operations. In step 2, the supported change operations upon the
ontology are specified.

3. Validity Model. Problems related to the validity of the resulting ontology
may arise whenever a change operation is executed; such problems depend
on the validity model assumed for ontologies.

4. Invalidity Resolution. This step determines, for each supported operation
and possible invalidity problem, the different (alternative) actions that can
be performed to restore the validity of the ontology.

5. Action Selection. During this step, a selection process is used to determine
the most preferable among the various potential actions (that were identified
in the previous step) for execution.

Unfortunately, most of the existing frameworks (e.g., [1,6,10,17]) address such
ontology evolution issues in an ad-hoc way. As we will see in Section 3, this
approach causes a number of problems (e.g., reduced flexibility, limited evolution
primitives, non-faithful behavior etc), so evolution algorithms could benefit a lot
from the formalization of the aforementioned change management process. In
Section 2, we define ontology evolution and give a general overview of the state
of the art in the field; this allows us to motivate our work and place it in its
correct context. In Section 3, we describe four typical ontology evolution systems,
namely OilEd [1], KAON [6], Protégé [10] and OntoStudio (formerly OntoEdit
[17]); we show how these systems fit on the aforementioned five-step process and
criticize the ad-hoc methodology that they employ to face these steps.

Section 4 introduces the general formal framework that we employ in order
to model the various steps of this process. Our framework allows us to deal
with arbitrary change operations (rather than a predetermined set). In addi-
tion, it considers all the invalidity problems that could, potentially, be caused
by each change, and all the possible ways to deal with them. Finally, it provides
a parameterizable method to select the “best” out of the various alternative op-
tions to deal with an invalidity, according to some metric. The formal nature of
the process allows us to avoid resorting to the tedious and error-prone manual
case-based reasoning that is necessary in other frameworks for determining in-
validities and solutions to them, and provides a uniform way to select the “best”
option out of the list of available ones, using some total ordering. Our framework
can be used for several different declarative ontological languages and semantics;
however, for implementation and visualization purposes, we instantiate it for the
case of RDF, under the semantics described in [13].

Finally, in Section 5, we exhibit the merits of our framework via the devel-
opment of a general-purpose algorithm for ontology evolution. This algorithm
has general applicability, but we demonstrate how it can be employed for the
RDF case. Then, we specialize our approach for the case of RDF and devise a
number of special-purpose algorithms for coping with RDF changes (similar to
the existing ad-hoc ontology evolution algorithms), which sacrifice generality for
efficiency; the main advantage of such special-purpose algorithms with respect
to the standard ad-hoc methodologies is that, due to their formal underpinnings



On RDF/S Ontology Evolution 23

and their proven compatibility with the general framework, they enjoy the same
interesting properties.

The above algorithms are currently being implemented as part of the FORTH-
ICS Semantic Web Knowledge Middleware (SWKM), which provides generic ser-
vices for acquiring, refining, developing, accessing and distributing community
knowledge. The SWKM is composed of four services, namely the Comparison
Service (which compares two RDF graphs, reporting their differences), the Ver-
sioning Service (which handles and stores different versions of RDF graphs), the
Registry Service (which is used to manipulate metadata information related to
RDF graphs) and the Change Impact Service (which deals with the evolution
of RDF graphs). The SWKM is backed up by a number of more basic services
(Knowledge Repository Services) which allow basic storage and access function-
alities for RDF graphs1. This paper describes the algorithms we employ for the
Change Impact Service of SWKM, as well as the underlying theoretical back-
ground of the service.

2 Related Work and Motivation

2.1 Short Literature Review

Ontology evolution deals with the incorporation of new knowledge in an ontol-
ogy; more accurately, the term refers to the process of modifying an ontology in
response to a certain change in the domain or its conceptualization [5]. Ontology
evolution is an important problem, as the effectiveness of an ontology-based ap-
plication heavily depends on the quality of the conceptualization of the domain
by the underlying ontology, which is directly affected by the ability of an evolu-
tion algorithm to properly adapt the ontology both to changes in the domain (as
ontologies often model dynamic environments) and to changes in the domain’s
conceptualization (as no conceptualization can ever be perfect) [5].

In order to tame the complexity of the problem, six phases of ontology evo-
lution have been identified in [14], occurring in a cyclic loop. Initially, we have
the change capturing phase, where the changes to be performed are determined;
these changes are formally represented during the change representation phase.
The third phase is the semantics of change phase, in which the effects of the
change(s) to the ontology itself are determined; during this phase, possible prob-
lems that might be caused to the ontology by these changes are also identified and
resolved. The change implementation phase follows, where the changes are phys-
ically applied to the ontology, the ontology engineer is informed of the changes
and the performed changes are logged. These changes need to be propagated to
dependent elements; this is the role of the change propagation phase. Finally, the
change validation phase allows the ontology engineer to review the changes and
possibly undo them, if desired. This phase may uncover further problems with
the ontology, thus initiating new changes that need to be performed to improve
1 For more details on the architecture of the SWKM, see:

http://athena.ics.forth.gr:9090/SWKM/index.html
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the conceptualization; in this case, we need to start over by applying the change
capturing phase of a new evolution process, closing the cyclic loop.

This paper focuses on the second and third phase (change representation and
semantics of change), which are the most critical for ontology evolution [12].
Notice that during the change representation phase we determine the requested
change (i.e., what should be changed), whereas during the semantics of change
we determine the actual change (i.e., how the change should be performed). With
respect to the five-step process described in Section 1, the change representation
phase corresponds to the first two steps of our framework, whereas the semantics
of change phase corresponds to the last three steps.

There is a rich literature that deals with the problem of ontology evolution. In
general, two major research paths can be identified [5]. The first focuses on aiding
the user performing changes in ontologies through some intuitive interface that
provides a number of useful editing features; such tools resemble an ontology ed-
itor (and some of them are indeed ontology editors [15]), even though they often
provide many more features than a simple ontology editor would. The second
research path focuses on the development of automated methods to determine
the effects and side-effects of any given update request (which correspond to
phases 2 and 3 of [14]); this approach often borrows ideas from the related, and
much more mature, discipline of belief change [7].

The first class of tools is more mature at the moment, but the second approach
seems more interesting from a research point of view, as well as more promising;
for this reason, it is gaining increasing attention during the last few years [5].
The two research paths are complementary, as results from the second could
be applied to the first in order to further improve the quality of the front-end
editing tools; similarly, automated approaches are of little use unless coupled
with tools that address the practical issues related to evolution, like support
for multi-user environments, transactional issues, change propagation, intuitive
visual interfaces etc (i.e., the remaining four phases of [14]).

2.2 Motivation

Unfortunately, the above complementarity is not sufficiently exploited. Auto-
mated approaches (second research path) seem, in general, detached from real
problems and are not easily adaptable for use in an ontology evolution tool; to
our knowledge, there is no implemented tool that uses one of the algorithms de-
veloped by such approaches. On the other hand, editor-like tools (first research
path) do not provide enough automation and employ ad-hoc methodologies to
deal with the problems raised during an update operation; such ad-hoc method-
ologies cause several problems that are thoroughly discussed in Section 3.

Our approach is motivated by the need to develop a formal framework that
will lead to an easily implementable ontology evolution algorithm. We would
like our approach to enjoy the formality of the second class of tools, and use this
formality as a basis that will provide guarantees related to the behavior of the
implemented system, thus avoiding the problems related to the ad-hoc nature of
existing practical methodologies. This paper is an attempt towards this end. In
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this respect, the work presented here lies somewhere between the two research
paradigms described above, sharing properties with both worlds.

More specifically, our approach could be viewed as belonging to the second
class of works, in the sense that it results to a formal, theoretical model to
address changes. This model is based on a formal framework that is used to
describe the process of ontology evolution as addressed by current editor-like
tools (so it is also related to the first class of works), and allows us to develop
an abstract, general-purpose algorithm that provably performs changes in an
automated and rational way for a variety of languages, under different param-
eters (validity model and ordering). Like other works of the second research
path above, our work is focused on the “core” of the ontology evolution prob-
lem, namely the change representation and semantics of change phases. Issues
related to change capturing, implementation of changes, transactional issues,
change propagation, visualization, interfaces, validation of the resulting ontol-
ogy etc are not considered in this paper.

On the other hand, our approach could be viewed as belonging to the first
class of tools, in the sense that it results to an implemented tool, namely the
Change Impact Service of the SWKM. Our general-purpose algorithm can be
applied for any particular language and set of parameters that is useful for prac-
tical purposes; for the purposes of SWKM we set these parameters so as to
correspond to the RDF language under the semantics described in [13]. Fixing
these parameters also allows us to better present our approach, as well as to
evaluate and verify its usefulness towards the aim of implementing an ontology
evolution tool. In addition to the implementation of the general-purpose algo-
rithm, our formal framework allows the development (and implementation) of
special-purpose algorithms which are more suited for practical purposes; such al-
gorithms provably exhibit the same behavior as the general-purpose one, so we
can have formal guarantees as to their expected output. For reasons explained
in Section 5, both the general-purpose and the special-purpose algorithms are
implemented for the Change Impact Service of SWKM.

3 Evolution Process in Current Systems

In this section, we elaborate on the five steps we described in Section 1 and de-
scribe how some typical ontology evolution tools ([1,6,10,17]) fit into this five-step
process. In addition, we point out the problems that the ad-hoc implementation
of these tools causes, and show how such problems could be overcome through
the use of a formal framework, like the one described in Section 4.

3.1 Model Selection and Supported Operations

Obviously, the first step towards developing an evolution algorithm is the deter-
mination of the underlying representation model for the evolving ontology; this
is what we capture in the first step of our 5-step process. Most systems assume
a language supporting the basic constructs used in ontology development, like
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class and property subsumption relationships, instantiation relationships and
domain and range restrictions for properties.

The selection of the representation model obviously affects (among other
things) the operations that can be supported; for example, OntoStudio [17] does
not support property subsumption relations so all related changes are similarly
overruled. Further restrictions to the allowable changes may be introduced by
various design decisions, which may disallow certain operations despite the fact
that they could, potentially, be supported by the underlying ontology model.
For example, OntoStudio does not allow the manipulation of implicit knowl-
edge, whereas OilED [1] does not support any operation that would render the
ontology invalid (i.e., it does not take any actions to restore validity, but rejects
the entire operation instead). The determination of the allowed (supported) up-
date operations constitutes the second step of our 5-step process.

According to [14,15], change operations can be classified into elementary (in-
volving a change in a single ontology construct) and composite ones (involving
changes in multiple constructs), also called atomic and complex in [16]. Elemen-
tary changes represent simple, fine-grained changes; composite changes repre-
sent more coarse-grained changes and can be replaced by a series of elementary
changes. Even though possible, it is not generally appropriate to use a series
of elementary changes to replace a composite one, as this might cause undesir-
able side-effects [14]; the proper level of granularity should be identified in each
case. Examples of elementary changes are the addition and deletion of elements
(concepts, properties etc) from the ontology. There is no general consensus in
the literature on the type and number of composite changes that are necessary.
In [14], 12 different composite changes are identified; in [11], 22 such operations
are listed; in [16] however, the authors mention that they have identified 120
different interesting composite operations and that the list is still growing! In
fact, since composite operations can involve changes in an arbitrary number of
constructs, there is an infinite number of them. Although composite operations
can, in general, be decomposed into a series of elementary ones, for ad-hoc sys-
tems this is not of much help, as the decomposition of a non-supported operation
into a series of supported ones (even if possible) should be done manually.

The above observations indicate an important inherent problem with ad-hoc
algorithms, namely that they can only deal with a predefined (and finite) set of
supported operations, determined at design time. Therefore, any such algorithm
is limited, because it can only support some of the potential changes upon an
ontology, namely the ones that are considered more useful (at design time) for
practical purposes, and, thus, supported.

3.2 Validity Model and Invalidity Resolution

It is obvious that a user expects his update request to be executed upon the
ontology. Thus, it is necessary for the resulting ontology to actually implement
the change operation originally requested, i.e., that the actual changes performed
upon the ontology are a superset of the requested ones; this requirement will be
called success.
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The naive way to implement an update request upon an ontology would be
to simply execute the request in a set-theoretic way. That would guarantee the
satisfaction of the above principle (success); nevertheless, this would not be
acceptable in most cases, because the resulting ontology could be invalid in some
sense (e.g., if a class is removed, it does not make sense to retain subsumption
relationships involving that class). Thus, another basic requirement for a change
operation is that the result of its application should be a valid ontology, according
to some validity model. This requirement is necessary in order for the resulting
ontology to make sense.

Both the above principles are inspired by research on the related field of belief
revision [3,7], in which they are known as the Principle of Validity and Principle
of Success respectively. The Principle of Success is well-defined, in the sense
that we can always verify whether it is satisfied or not. The Principle of Validity
however, depends on some underlying validity model, which is not necessarily
the same for all languages (ontology models) and/or ontology evolution systems.
Thus, each system should define the validity model that it uses. For example,
do we accept cycles in the IsA hierarchy? Do we allow properties without a
range/domain, or with multiple ranges/domains? Such decisions are included in
the validity model determined in step 3 of our 5-step process. Notice that the
validity model has a different purpose than the ontology model: the ontology
model is used to determine what constructs are available for use in an ontology
(e.g., IsAs), whereas the validity model determines the valid combinations of
constructs in an ontology (e.g., by disallowing cyclic IsAs).

Determining how to satisfy the Principles of Success and Validity during a
change operation is not trivial. The standard process in this respect is to execute
the original update request in a naive way (i.e., by executing plain set-theoretic
additions and deletions), followed by the initiation of additional change opera-
tions (called side-effects) that would guarantee validity. In principle, there is no
unique set of side-effects that could be used for this purpose: in some cases, there
is more than one alternatives, whereas in others there is none. The latter type of
updates (i.e., updates for which it is not possible for both Success and Validity
to be satisfied) are called infeasible and should be rejected altogether. For ex-
ample, the request to remove a class, say C, and add a subsumption relationship
between C and D at the same time would be infeasible, because executing both
operations of the composite update would lead the ontology to an invalid state
(because a removed class C cannot be subsumed by another class) and it can be
easily shown that there is no way (i.e., side-effects) to restore validity without
violating success for this update. The determination of whether an update is in-
feasible or not, as well as of the various alternative options (for side-effects) that
we have for guaranteeing success and validity (for feasible updates) constitutes
the fourth step of our 5-step process.

Let us consider the change operation depicted in Figure 1(a), where the ontol-
ogy engineer expresses the desire to delete a class (B) which happens to subsume
another class (C). It is obvious that, once class B is deleted, the IsAs relating B
with A and C would refer to a non-existent class (B), so they should be removed;
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Fig. 1. Three alternatives for deleting a class

the validity model should capture this case, and attempt to resolve it. One pos-
sible result of this process, employed by Protégé [10], is shown in Figure 1(b);
in that evolution context, a class deletion causes the deletion of its subclasses as
well. This is not the only possibility though; Figures 1 (c) and (d), present other
potential results of this operation, where in (c), B’s subclasses are re-connected
to its father, while in (d), the implicit IsA from C to A is not taken into account.
KAON [6], for example, would give either of the three as a result, depending on
a user-selected parameter.

In this particular example, both KAON and Protégé detect the invalidity
caused by the operation and actively take action against it; however, the valid-
ity model employed by different systems may be different in general. Moreover,
notice that an invalidity is not caused by the operation itself, but by the combi-
nation of the current ontology state and the operation (e.g., if B was not in any
way connected to A and C, its deletion would cause no problems). Therefore, in
order for a mechanism to propose solutions against invalidities, both the ontol-
ogy and the update should be taken into account. Notice that the mechanism
employed by Protégé, in Figure 1, identifies only a single set of side-effects, while
KAON identifies three different reactions. This is not a peculiarity of this exam-
ple; the invalidity resolution mechanism employed by Protégé identifies only a
single solution per invalidity; this is not true for KAON and OntoStudio.

3.3 Action Selection

Since, in the general case, there are several alternative ways (i.e., sets of side-
effects) to guarantee success and validity, we need a mechanism that would
allow us to select one of the alternatives for implementation (execution). This
constitutes the last component of an evolution algorithm (step 5). Such a mech-
anism is “pre-built” into systems that identify only a single possible action, like
Protégé, but can be also parameterizable. KAON, for example, provides a set of
options (called evolution strategies) which allow the ontology engineer to tune
the system’s behavior and, implicitly, indicate what is the appropriate invalid-
ity resolution action for implementation per case. OntoStudio provides a similar
customization over its change strategies.

Notice that our preference for the result of an operation reflects in a prefer-
ence among the possible side-effects of the operation. For instance, if we prefer
the result of Figure 1 (c), we can equivalently say that we prefer the (explicit)
addition of the (implicit) subsumption relation shown in (c) together with the
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deletion of the two initial IsAs as a side-effect to this operation, over the deletion
of the two initial IsAs and class C, shown in (b), or just the deletion of the two
IsAs, as in (d). Therefore, the evolution process can be tuned by introducing
a preference ordering upon the operations’ side-effects that would dictate the
related choice (evolution strategy). Given that the determination of the alterna-
tive side-effects depends on both the update and the ontology, there is an infinite
number of different potential side-effects that may have to be compared. Thus,
we are faced with the challenge of introducing a preference mechanism that will
be able to compare any imaginable pair of side-effects.

It is worth noting here the connection of this preference ordering with the
well-known belief revision Principle of Minimal change [3] which states that the
resulting ontology should be as “close” as possible to the original one. In this
sense, the preference ordering could be viewed as implying some notion of relative
distance between different results and the original ontology, as identified by the
preference between these results’ corresponding side-effects.

3.4 Discussion

To the best of authors’ knowledge, all currently implemented systems employ
ad-hoc mechanisms to resolve the issues described above. The designers of these
systems have determined, in advance (i.e., at design time), the supported opera-
tions, the possible invalidities that could occur per operation, the various alter-
natives for handling any such possible invalidity, and have already pre-selected
the preferable option (or options, for flexible systems like KAON) for imple-
mentation per case; this selection (or selections) is hard-coded into the systems’
implementations.

This approach causes a number of problems. First of all, each invalidity, as
well as each of the possible solutions to each one, needs to be considered individ-
ually, using a highly tedious, manual case-based reasoning which is error-prone
and gives no formal guarantee that the cases and options considered are exhaus-
tive. Similarly, the nature of the selection mechanisms cannot guarantee that the
selections (regarding the proper side-effects) that are made for different opera-
tions exhibit a faithful overall behavior. This is necessary in the sense that the
side-effect selections made in different operations (and on different ontologies)
should be based on an operation-independent “global policy” regarding changes.
Such a global policy is difficult to implement and enforce in an ad-hoc system.

Such systems face a lot of limitations due to the above problems. For exam-
ple, OilED deals only with a very small fraction of the operations that could
be defined upon its modeling, as any change operation that would be trigger-
ing side-effects is unsupported (e.g., the operation of Figure 1 is rejected). In
Protégé, the design choice to support a large number of operations has forced
its designers to limit the flexibility of the system by offering only one way of
realizing a change; in OntoStudio, they are relieved of dealing with (part of) the
complexity of the aforementioned case-based reasoning as the severe limitations
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Fig. 2. Implicit knowledge handling in KAON

on the expressiveness of the underlying model constrain drastically the number
of supported operations and cases to consider. Finally, in KAON, some possible
side-effects are missing (ignored) for certain operations, while the selection pro-
cess implied by KAON’s parameterization may exhibit invalid or non-uniform
behavior in some cases. As an example, consider Figure 2, in which the same
evolution strategy was set in both (a) and (b); despite that, the implicit IsA
from C to A is only considered (and retained) in case (a).

Table 1 summarizes some of the key features of ontology evolution systems,
categorized according to the 5-step process introduced in this paper, and shows
how each step is realized in each of the four systems discussed here, as well as
in the Change Impact Service of SWKM, described in Sections 4, 5 below.

We argue that many of the problems identified in this section could be re-
solved by introducing an adequate evolution framework that would allow the
description of an algorithm in more formal terms, as a modular sequence of
choices regarding the ontology model used, the supported operations, the va-
lidity model, the identification of plausible side-effects and the selection mecha-
nism. Such a framework would allow justified reasoning on the system’s behavior,

Table 1. Summary of ontology evolution tools

Protégé KAON OntoStudio OilED SWKM

Fine-grained Model (Step 1) � � × � �

Change
Representation

Supported
Operations
(Step 2)

Elementary � � � × �

Composite × × × × �
Validity Model
(Step 3)

Faithful × × � � �
Complete × × � × �

Semantics of
Change

Invalidity
Resolution
(Step 4)

No alternatives �

One alternative �
Many alternatives �
All alternatives � �

Selection
Mechanism
(Step 5)

None � �

Per-case � �
Globally �
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without having to resort to a case-by-case study of the various possibilities. To
the best of the authors’ knowledge, there is no implemented system that follows
this policy. In Section 4, we describe such a framework and specialize it for RDF
ontologies.

4 A Formal Framework for RDF/S Ontology Evolution

Our evolution framework consists of a fine-grained modeling of ontologies
(step 1), a description of how both elementary and composite operations can be
handled in a uniform way (step 2), a validity model formalized using integrity
rules (step 3), which also allow us to document how side-effects are generated
(step 4), and, finally, a selection mechanism based on an ordering that captures
the Principle of Minimal Change (step 5). This framework will be instantiated to
refer to RDF updating, but can be used for many different declarative languages,
by tuning the various parameters involved.

4.1 Model Selection, Supported Operations and Validity Model

The representation model we use in this paper is the RDF language, in par-
ticular the model described in [13]. For ease of representation, RDF constructs
will not be represented in the standard way, but we will use an alternative rep-
resentation, which, in short, amounts to mapping each statement of RDF to a
First-Order Logic (FOL) predicate (see Table 2); this way, a class IsA between
A and B, for example, would be mapped to the predicate: C IsA(A, B), while
a triple denoting that the domain of a property, say P , is C, would be denoted
by Domain(P, C). Note that the standard alternative mapping (e.g., for IsA:
∀xA(x)→ B(x)) does not allow us to map assertions of the form “C is a class”,
and, consequently, does not allow us to handle operations like the addition or
removal of a class, property, or instance (see [4] for more details on this issue).
Notice that the same representation pattern can be used for other declarative
languages as well, even though it is more suitable for simpler ones [4].

Table 2. Representation of RDF facts using FOL predicates

RDF triple Intuitive meaning Predicate

C rdf:type rdfs:Class C is a class CS(C)
P rdf:type rdf:Property P is a property PS(P )
x rdf:type rdfs:Resource x is a class instance CI(x)
P rdfs:domain C domain of property Domain(P, C)
P rdfs:range C range of property Range(P,C)
C1 rdfs:subClassOf C2 IsA between classes C IsA(C1, C2)
P1 rdfs:subPropertyOf P2 IsA between properties P IsA(C1, C2)
x rdf:type C class instantiation C Inst(x,C)
x P y property instantiation PI(x, y, P )
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We equip our FOL with closed semantics, i.e., admit the closed world assump-
tion (CWA). This means that, for a set S and a formula p, if S � p, then S � ¬p.
We overload � relation so as to be applicable between two sets as well: for two
sets S, S′ it holds that S � S′ iff S � p for all p ∈ S′. Let us denote by L the set
of ground facts allowed in our model (e.g., C IsA(A, B),¬CS(C)), and L+ the
set of positive ground facts of L (e.g., C IsA(A, B)).

An ontology is represented as a set of positive ground facts only, so an ontology
is any set O ⊆ L+. Given CWA, the definition of an ontology and FOL semantics,
it follows that: (a) an ontology is always consistent (in the standard FOL sense),
(b) a positive ground fact is implied by an ontology iff it is contained in it, and,
(c) a negative ground fact is implied by an ontology iff its positive counterpart
is not contained in it.

An update is any set of positive and/or negative ground facts, so an update
is any set U ⊆ L. According to the Principle of Success, an update should be
implemented upon the ontology. Implementing a positive ground fact contained
in an update is easy: all we have to do is add it to the ontology. However, this
is not true for negative ground facts, because negative ground facts cannot be
contained in an ontology, by definition. By CWA and the property (c) above, we
conclude that “including” a negative ground fact in an ontology is equivalent to
removing its positive counterpart. Given this analysis, we conclude that positive
ground facts in an update correspond to additions, while negative ones corre-
spond to removals. This way of viewing updates allows us to express essentially
any operation, because any operation can be expressed as a set of additions
and/or removals of ground facts in our model. Thus, we put no constraints on
the allowed (supported) update operations.

Our framework needs also to define its validity model in a formal way. Validity
can in general be formalized using a set of integrity constraints (rules) upon the
ontology; therefore, a validity model is a set R of generic FOL formulas, which
correspond to the axiomatization of the constraints of the model. For technical
reasons that will be made apparent later, we constrain R to contain only “∀∃”
formulas. Notice that the validity constraints should: (a) capture the notion of
validity in the standard sense (e.g., that class subsumptions should be applied
between classes in the ontology) and (b) encode the semantics of the various
constructs of the underlying language (RDF in our case), which are not carried
over during the transition to FOL (e.g., IsA transitivity) [4]. The latter type of
constraints is very important, in the sense that it forces an ontology to contain
all its implicit knowledge as well in order to be valid.

Similar to our approach, the authors of [8] consider the case of updating a set
of facts representing a knowledge base, under a set of well-formed constraints
on this base. However this work supports rather näıve changes as it does not
consider any side-effects for a change (storing the updates that violate any rules
as exceptions to the latter) nor composite updates. So, instead of implementing a
more sophisticated change mechanism the authors of [8] emphasize on minimiz-
ing the size of the knowledge base, in the face of an update. Another work which
considers updating structured data under constraints is presented in [2], where
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Table 3. Indicative list of validity rules

Rule ID/Name Integrity Constraint Intuitive Meaning

R3 Domain
Applicability

∀x, y : Domain(x, y) → PS(x)∧CS(y) Domain applies to proper-
ties; the domain of a prop-
erty is a class

R5 C IsA
Applicability

∀x, y : C IsA(x, y) → CS(x) ∧ CS(y) Class IsA applies between
classes

R12 C IsA
Transitivity

∀x, y, z : C IsA(x, y) ∧ C IsA(y, z) →
C IsA(x, z)

Class IsA is Transitive

XML documents are automatically evaluated against a set of rules they should
adhere to. However in case of invalidities, the process of updating the documents
accordingly is left to be done manually. Therefore both of these works are essen-
tially different from our approach as we develop an automated, parameterizable
to its change policy, change mechanism, under a certain validity context (set of
rules).

Table 3 contains an indicative list of the rules we use for RDF [13] (see also [9]
for a similar effort). Notice that the rules presented are only a parameter of the
model; our framework does not assume any particular set of rules (in the same
sense that it does not assume any particular ontology representation language).
However, the task of defining the respective rules becomes increasingly complex
as the expressive power of the underlying logic increases, so this technique is
more useful for less expressive languages (like RDF) [4].

4.2 Formalizing Our Model

We now have all the necessary ingredients for our formal definitions. Initially,
an update algorithm can be formalized as a function mapping an ontology (i.e.,
a set of positive ground facts) and an update (i.e., a set of positive and negative
ground facts) to another ontology. Thus:

Definition 1. An update algorithm is a function • : L+ × L �→ L+.

An ontology is valid iff it satisfies the rules of the validity model R, i.e., iff it
implies all rules in R. Thus:

Definition 2. An ontology O is valid, per the validity model R, iff O � R.

As already mentioned, the Principle of Success implies that all positive ground
facts in an update should be included in the result, whereas the positive counter-
parts of the negative ground facts in an update should not. Thus, any (positive
or negative) ground fact p in an update U should be implied by the result of
the change operation. Of course, this is true for feasible updates; for infeasi-
ble updates, by definition, there is no valid ontology that satisfies the above
requirement. Therefore:
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Definition 3. An update U is called feasible, per the validity model R, iff there
is a valid ontology O (O � R) such that O � U . An update U is called infeasible
iff it is not feasible.

Definition 4. Consider a language L, a set of validity rules R and an update
algorithm • : L+ × L �→ L+. Then:

– The algorithm • satisfies the Principle of Success iff for all valid ontologies
O ⊆ L+ and all feasible updates U ⊆ L, it holds that O • U � U .

– The algorithm • satisfies the Principle of Validity iff for all valid ontologies
O ⊆ L+ and all feasible updates U ⊆ L, it holds that O•U is a valid ontology.

Notice that the above definition does not handle the cases where the input
ontology is not valid to begin with, or when the update is infeasible; these are
limit cases that will be handled separately later.

4.3 Invalidity Resolution and Action Selection

As already mentioned, the raw application of an update would guarantee success
but could often violate validity (i.e., it could violate an integrity constraint). For
example, under the validity context of Table 3, the raw application of the class
deletion of Figure 1 would violate rule R5. In such cases, we need to determine
the various options that we have in order to resolve the invalidity.

The formalization of the validity model using rules has the important prop-
erty that, apart from detecting invalidities, it also provides a straightforward
methodology to determine the various available options for resolving them. In
effect, the rules themselves and the FOL semantics indicate the appropriate side-
effects to be taken when an invalidity is detected. In the example with the class
deletion (Figure 1), rule R5 implies that, in order to restore validity after the
removal of class B (denoted by ¬CS(B)), we must delete the IsAs involving B.

In the general case, detecting and restoring an invalidity would require a FOL
reasoner; however, our assumption that an ontology is a set of positive ground
facts and that a rule is a “∀∃” formula, allows us to develop a much more efficient
way. In particular, a “∀∃” rule can be equivalently rewritten as the conjunction
of a set of subrules, where each subrule is a formula of the form ∀∨∃ (see
Table 4). Thus, by definition, an ontology O is valid iff it implies all subrules
of all rules of the validity model. A subrule is implied by O iff, for all possible
variables, at least one of the constituents of the disjunction is true (i.e., implied).
Thus, a subrule can be violated iff a previously true constituent of the subrule
is, due to the update, rendered false (i.e., not implied) and there is no other
true constituent of the subrule. Similarly, the possible ways to render a violated
subrule true should be chosen among all the constituents of the subrule, i.e., we
should select one of the constituents of the subrule to be rendered true (through
a side-effect); notice that the selected constituent should not be the one that
was rendered false by the update itself (or else we would violate success).

Let us explain this process using an example. Consider rule R5, which is
broken down into two subrules, as shown in Table 4. Let’s consider subrule R5.1;
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Table 4. Breaking rules into subrules

Rule ID/Name Subrules of the rule

R3 Domain Applicability R3.1 : ∀x, y : ¬Domain(x, y) ∨ PS(x)
R3.2 : ∀x, y : ¬Domain(x, y) ∨ CS(y)

R5 C IsA Applicability R5.1 : ∀x, y : ¬C IsA(x, y) ∨ CS(x)
R5.2 : ∀x, y : ¬C IsA(x, y) ∨ CS(y)

R12 C IsA Transitivity R12.1 : ∀x, y, z :
¬C IsA(x, y) ∨ ¬C IsA(y, z) ∨ C IsA(x, z)

this subrule is satisfied iff for all variables x, y, it either holds that ¬C IsA(x, y),
or it holds that CS(x). If we remove a class (say B, denoted by ¬CS(B)) which
previously existed in the ontology (cf. Figure 1), we should verify that subrule
R5.1 is still true. This practically amounts to verifying that no class IsA starting
from B exists in the ontology, i.e., that ¬C IsA(B, y) is true for all y. If any such
y exists (say y = C), then we must remove the respective IsA (i.e., ¬C IsA(B, C)
should be recorded as a side-effect).

Rule R12 is similar: R12.1 (which is the only subrule of R12) can be violated
by, e.g., the addition of an IsA (say C IsA(C, B)). This could happen if, for
example, an ontology contains C IsA(B, A), but not C IsA(C, A) (cf. Figure 3).
To see this, set x = C, y = B, z = A in R12.1, Table 4. The difference with
the previous case is that now the violation can be restored in two different
ways: either by removing C IsA(B, A), or by adding C IsA(C, A) (i.e., either
¬C IsA(B, A) or C IsA(C, A) could be selected as side-effects).

Notice that the selected side-effects are updates themselves, so they are en-
forced upon the ontology by being executed along with the original update;
moreover, they could, just like any update, cause additional side-effects of their
own. Another important remark is that, in some cases (e.g., R5.1), the invalidity
resolution mechanism gives a straightforward result, in the sense that we only
have one option to break the invalidity; in other cases (e.g., R12.1), we may
have more than one alternative options. In the cases where we have different
alternative sets of side-effects to select among, a mechanism to determine the
“best” option, according to some metric, should be in place. In Section 3, we
showed that our “preference” among the side-effects can be encoded using an
ordering; given such an ordering (say <), all we need to do is find the minimal
set of side-effects (with respect to <) among all possible ones and implement it.

As usual, our framework does not depend on any particular ordering. For
technical reasons however, not all orderings can be employed for this purpose.
In particular, to guarantee the rationality of the results, the ordering should
depend on the underlying ontology as well (e.g., it is generally accepted that the
removal of a general class is more “severe” than the deletion of a more specific
class, but this criterion implies knowing the position of the class in the class
hierarchy of the ontology). In addition, the ordering should be transitive and
total; furthermore, it should be monotonic with respect to ⊆ (i.e., U ⊆ U ′ implies
U ≤ U ′). Moreover, it should not be affected by void changes: for example, the
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addition of class C is a void operation in an ontology that already contains C and
the removal of class D is a void operation in an ontology that does not contain
D, so the inclusion of CS(C) (or ¬CS(D), respectively) in the side-effects of an
update upon the above ontologies should not affect the “mildness” of the update.
Finally, the ordering should be antisymmetric, modulo void operations (i.e., two
updates have the same “mildness” iff their non-void operations are identical).
We will call update generating an ordering satisfying these properties.

In our implementation, the proposed ordering is based on the ordering shown
in Table 5 among the 18 positive and negative predicates. This ordering is ex-
panded to refer to updates (i.e., sets of ground facts) using the general idea that
an update U1 is “preferable” or “better” than U2 (denoted by U1 < U2) iff the
“worst” predicate used in U1, is “better” than the “worst” predicate used in U2

where the predicates’ relative preference is determined by the order shown in
Table 5. Ties are resolved using cardinality considerations and/or the relative
“importance” of the predicate’s arguments in the original ontology, according to
certain rules that determine “importance”. Further details are omitted due to
space limitations. It can be proven that our ordering is update-generating.

Table 5. Ordering of predicates

PI < C Inst < P IsA < C IsA < ¬PI < ¬C Inst < ¬P IsA < ¬C IsA <
¬Domain < ¬Range < ¬CI < ¬PS < ¬CS < Domain < Range < CI < PS <
CS

4.4 Rational Ontology Evolution Algorithms

Now consider an update U applied upon an ontology O per the update algorithm
•, returning O • U . The question is, what were the effects and side-effects that
were applied upon O to get O • U? The restriction that ontologies contain only
positive ground facts is extremely helpful in this respect too. In particular, we
can define the Delta between two ontologies as follows:

Definition 5. Consider two ontologies O1, O2 ⊆ L+. The Delta between O1 and
O2 is defined as Delta(O1, O2) = {p | p ∈ O2 \O1} ∪ {¬p | p ∈ O1 \O2}.
Notice that the result of Delta is an update, i.e., Delta(O1, O2) ⊆ L; given the
above definition, the actual set of effects and side-effects that were applied upon
O to get O•U is just Delta(O, O•U). Notice that Delta(O, O•U) will just return
the non-void operations that led from O to O •U ; this is not a problem, as void
operations do not affect the ordering. Given this Delta function, the Principle
of Minimal Change can be formalized by requiring that an update algorithm
should return an ontology O •U such that Delta(O, O •U) is minimal compared
to Delta(O, O′) for all other possible results O′.

Of course, we need to specify what are the other “possible results”, which,
as already mentioned, are the ones that satisfy the Principles of Success and
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Validity. Thus, our formal definition of the Principle of Minimal Change should
be coupled with the other principles. We will therefore define a rational update
algorithm to be one that satisfies the Principles of Success and Validity, and,
among all the possible results that satisfy these two principles, it selects the one
that has the minimal impact upon the original ontology (Principle of Minimal
Change). Notice that there are certain limit cases which need to be handled
separately, i.e, the case when the original ontology (to be updated) is invalid,
and the case when the update itself is infeasible:

Definition 6. Consider a language L, a validity model R, an update-generating
ordering < and an update algorithm • : L+ × L �→ L+. Then the algorithm • is
called rational iff it satisfies the following requirements for all O ⊆ L+, U ⊆ L:

Limit Cases: if O is not valid or U is infeasible, then O • U = O
General Case: if O is valid and U is feasible, then • satisfies the following:

Principle of Success: O • U � U .
Principle of Validity: O • U is valid.
Principle of Minimal Change: For any O′ such that O′ � U and O′ is a

valid ontology, it holds that Delta(O, O • U) ≤ Delta(O, O′).

Note that rationality depends on the model (which determines L and L+), the
validity rules (for the Principle of Validity) and the ordering (for the Principle of
Minimal Change). Therefore, there is no “universally rational update algorithm”,
but rationality depends critically on these parameters.

5 Algorithms

5.1 General-Purpose Algorithm

We will now show how one can use the above formal framework in order to de-
velop a rational evolution algorithm (which is shown in Table 6). Let us consider
the update example of Figure 3. Our original update is U = {C IsA(C, B)},
denoting that an IsA between C and B should be added. We first need to check
whether this update will violate any rule (line 4.1); as mentioned in Section 4,
this can be done by checking against all subrules in which ¬C IsA appears. In
general, several rules may be violated, in which case we process them in any or-
der (line 4.2). In our example, it can be verified that the addition of C IsA(C, B)
will only violate subrule R12.1 (IsA transitivity), for x = C, y = B, z = A. This
is true because the addition of C IsA(C, B) should cause the addition of the
implicit knowledge C IsA(C, A) as well. This option is the standard way of sat-
isfying transitivity, but our rule also gives us the alternative to remove the old
IsA between B and A (to prevent the transitivity rule from firing).

In order to explore all alternatives regarding the possible side-effects, the com-
parison (using <) between the first and the second option is postponed until the
full set of side-effects has been computed. Therefore, at this point, the algorithm
suggests two different alternative updates, one per possible side-effect, namely
U1 = {C IsA(C, B), C IsA(C, A)} and U2 = {C IsA(C, B),¬C IsA(B, A)}
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Fig. 3. Adding a class subsumption

(line 4.2.1). Then, the algorithm recursively calls itself twice (once for U1 and
once for U2). Both calls will indicate no further side-effects, as there are no fur-
ther rules violated; in the general case, the side-effects could have side-effects
of their own, so the recursion should continue until no further side-effects exist.
Once all recursions stop, the returned sets of side-effects are compared using <
and the minimal is selected for implementation (line 4.2.2). In this case, the first
option (i.e., U1) is the “best”, according to < (see Table 5), i.e., the IsA between
C and A should be added; this indeed sounds like the most natural result, but
it could be different if the ordering was different.

If, during the recursion, the so-far processed predicates turn out to contradict
each other (line 1), then the particular branch of execution will obviously not
lead to an acceptable solution, so the special value infeasible is returned; if all
branches return infeasible, then the entire update is infeasible (and the recursive
process will also return infeasible). The same special value is returned by certain
branches (line 2) when their cost is predicted to be too large to be an acceptable
solution, so there is no point in exploring them further.

Notice that the general algorithm (Table 6) is applicable for any language L
(i.e., ontology model), validity model R and ordering < and that several details
of the algorithm have been brushed out. The general idea is that the case-based

Table 6. General-purpose algorithm

Input: Model, Rules, Ordering <, Update U, Ontology O
WHILE there exist unprocessed predicates in U execute the following steps:
(1) If the predicates that have been processed so far contradict each other, return
INFEASIBLE
(2) If the total cost of the union of the predicates processed so far and the remaining
predicates (in U) is larger than the best solution found so far, return INFEASIBLE
(3) Select (arbitrarily) an unprocessed predicate in U , say P
(4.1) IF there is no rule violated by P, THEN mark P as processed, add P to the
side-effects of U and recursively call the algorithm using the same U
(4.2) ELSE select (arbitrarily) one violated rule, say R
(4.2.1) FOR each possible way to resolve the violation of R, add the respective
predicates as side-effects in U and recursively call the algorithm using the new U
(4.2.2) When recursion returns compare (using <) the returned side-effects and
return the “best” to the caller
Output: Update U enriched with its side-effects
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reasoning performed manually in other systems is now in-built in the algorithm,
so it is performed automatically and in a parameterizable way. The algorithm’s
complexity depends on its parameters, namely the language, validity model and
ordering; for the particular parameters used for RDF (described above), termi-
nation can be guaranteed:

Theorem 1. For the language, validity rules and ordering described in Section 4,
the algorithm of Table 6 terminates for any input O, U .

Termination is guaranteed by the form of the rules and the ordering (cost model)
used. In particular, it can be shown that, whenever there exists a non-terminating
recursive path (branch), there exists also a terminating one that is significantly
less costly. By carefully choosing the processing order of the various side-effects
(line 4.2.1), we can guarantee that the non-terminating branches will be pruned
in line 2, before jeopardizing termination.

The algorithm described in Table 6 returns the effects and side-effects of the
original update, or the special value infeasible. The end result of this recursive
algorithm can then be trivially applied upon the original ontology, by simply
adding every positive ground fact of the output to the ontology, and removing
the positive counterpart of any negative ground fact of the output from the
ontology. The result will be a valid ontology which should be returned as the
result of the update. The following can be shown:

Theorem 2. For any given language, validity rules and update-generating or-
dering, if the algorithm described above terminates, then it implements a rational
change operation.

The complete proof of the above theorem is quite complicated and technical, so
we provide only a short sketch. Principle of Success is guaranteed by the fact
that our algorithm considers all the predicates in U , and all such predicates are
added to the side-effects of U (line 4.1). The Principle of Validity is guaranteed
as well: the process cannot end unless all violated rules (identified in line 4.2) are
restored (line 4.2.1). Finally, the Principle of Minimal Change is guaranteed in
line 4.2.2: the recursive character of the algorithm will open up several different
branches, each of them spawned by a different way to restore a particular rule
violation. Upon returning of each branch, the calculated cost of each branch is
compared (line 4.2.2) and only the best is kept; notice that the comparison is
made at a position where the entire branch has been explored, so we know its
total cost and can guarantee that no ignored branch can have “minimal” cost
(so it can’t be an acceptable solution). The following corollary is immediate:

Theorem 3. For the language, validity rules and ordering described in Section
4, the algorithm of Table 6 terminates for any input O ⊆ L+, U ⊆ L and it can
be used to implement a rational change operation.

5.2 Special-Purpose Algorithms

A downside of the generality enjoyed by the algorithm of Table 6 is that it is
not efficient. To remedy this problem, we can develop simpler, special-purpose
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algorithms, for the particular application that we are interested in (RDF in our
case). These “instantiations” are much faster than the general algorithm, but
can still be proven equivalent to it, i.e., formally sustained. Thus, we can guar-
antee that they exhibit the expected/desired behavior, by verifying them against
the general-purpose algorithm. Notice that these special-purpose algorithms are
similar to ad-hoc methodologies employed by other systems; however, using our
formal framework and results, one can verify in a straightforward way the cor-
rectness (rationality) of those algorithms (see Theorem 4). Moreover, the general
algorithm could still be used to implement any possible, unforseen operation.

Table 7 shows, as an example, one such special-purpose algorithm for the
removal of a class from an ontology. Notice that some lines of the algorithm
(e.g., (1.4.1)-(1.4.4)) would spawn other special-purpose algorithms for executing
certain operations (in our case, the removal of IsAs, instantiation links etc), thus,
possibly, incurring further side-effects. For this reason, similar algorithms have
been developed for other operations, but are omitted due to space limitations.

Table 7. Special-purpose algorithm: remove class C from ontology O

Remove class C:
(1) If class C is in O THEN
(1.1) Remove all class IsA relationships deriving from C
(1.2) Remove all class IsA relationships arriving in C
(1.3) Remove all instantiation links between a resource and C
(1.4) FOR every property P whose range/domain is C
(1.4.1) Remove all property IsA relationships deriving from P
(1.4.2) Remove all property IsA relationships arriving in P
(1.4.3) Remove all instantiation links of P
(1.4.4) Remove P and the information on its range/domain
(1.5) Remove C

Theorem 4. Consider the language, validity rules and ordering described in
Section 4. Then for U = {¬CS(C)} and any O ⊆ L+, the output of the algorithm
in Table 6 is the same as the output of the algorithm in Table 7.

The above theorem can be easily shown by exhaustively considering all the differ-
ent rule violations that the update under question would cause (by scanning the
validity rules for violations); this would verify that the behavior of the special-
purpose algorithm is identical to the general-purpose one for the particular
order considered. Similarly to the other ontology evolution systems, our special-
purpose algorithms cannot handle all possible update requests. However, we can
always resort to the general-purpose algorithm if the requested operation is not
supported by any special-purpose algorithm. Currently, we have devised and im-
plemented one special-purpose algorithm for each elementary operation, but we
plan to develop more, in order to handle certain useful composite operations.
The selection whether to use a special-purpose algorithm or the general-purpose
one is made by the system itself, in a transparent manner to the user.
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6 Conclusion

In this paper, we identified several difficulties associated with the development of
ad-hoc ontology evolution algorithms. We decomposed the process of coping with
ontology evolution into 5 discrete steps. This way, devising an ontology evolution
algorithm is reduced to the process of instantiating each step in a modular way.
To this end, we presented a formal framework with the aid of which an evolution
algorithm can be materialized as a set of adequate parameterizations, as follows:

1. The ontology representation model and its mapping to FOL.
2. The definition of the allowed change operations in the model. Notice that this

is not necessary, as the framework is general enough to support any update,
but we may want to disallow certain operations for some application.

3. The validity rules that allow us to detect invalidities as well as to determine
how the invalidities can be resolved.

4. The preference ordering that encodes the selection mechanism.

Parameters 1,2 and 4 of our framework correspond to steps 1,2 and 5 respec-
tively. The third parameter corresponds to the validity context, based on which
our framework instantiates steps 3 and 4. Once these parameters are set, we can
apply the general algorithm presented in Table 6 to perform any change. For ef-
ficiency reasons, it may be useful to generate simpler special-purpose algorithms
based on the general one. This can be done only for specific instantiations of the
above parameters, as in the case study of RDF updating presented here.

Our method exhibits a faithful behavior with respect to the various choices
involved, regardless of the particular ontology or update operation at hand. It
has a formal foundation, issuing a solid, consistent and customizable method
to handle any type of change operation, including updates that have not been
considered at design time. Our framework is modular and extensible in the sense
that it could work with any language, rules and/or ordering given.

As already mentioned, the presented algorithms have been implemented for
the Change Impact Service of SWKM, and the initial results are promising. In
the future, we plan to identify and optimize the most commonly used update op-
erations. In addition, we plan to verify the effectiveness of our proposed ordering
using experiments with real users.
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Abstract. Today, most of the data on the web resides in relational
databases. To make the data available for the semantic web mappings
into RDF can be used. Such mappings should preserve the information
about the structure of keys and foreign keys, because otherwise impor-
tant semantic information is lost. In this paper, we discuss several pos-
sible ways to map relational databases into an RDF graph. We discuss
the problem of how to represent the original key and foreign key con-
straints in the resulting RDF graph and demonstrate, that different kinds
of mappings require different solutions. We finally propose to explicitly
represent the structure of keys and foreign keys by means of the vocab-
ulary of a new RDF namespace.

1 Introduction

Today, most of the data on the web resides in relational databases. Typically,
even in the case when several databases represent information about the same ap-
plication domain, they use different schemata. The idea of the semantic web is to
support semantic interoperability between programs exchanging data. To achieve
this goal W3C has standardized several languages to define ontologies [17], which
can be used to define common vocabularies and structures for certain applica-
tions. Prominent examples are the Resource Description Framework RDF [21],
which is considered as the basis for building the semantic web, and the Web
Ontology Language OWL, whose mostly considered variant is based on a De-
scription Logic [18,1]. Using RDF, any kind of information can be represented
by a set of so called triples, where each triple states a subject-property-object
relationship. As each such triple can be understood as a directed edge from the
subject to the object, where the edge is labelled with the respective property,
instead of a set of triples a corresponding RDF graph is considered. Thus, ex-
porting data from relational databases to the semantic web using RDF basically
means to map the relational data into an RDF graph.

A relational database may be physically exported as an RDF graph according
to some mapping, respectively mapped into RDF in a similar fashion to a vir-
tual relational view definition. Several approaches to define such mappings have
already been described [2,5,4,12], however much less attention has been payed
on the question how key and foreign key expressions stated in the relational

V. Christophides et al. (Eds.): SWDB-ODBIS 2007, LNCS 5005, pp. 43–56, 2008.
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database can be represented in RDF. In [12,8] a mapping is proposed which
aims at the representation of keys and foreign keys as well, however the pro-
posed mapping is specific to mapping an Entity-Relationship Model into RDF.

If key and foreign key information is lost when mapping a relational database
into an RDF graph, the representational quality of the result has degraded sub-
stantially. This may become an important issue,

– if a user builds her own knowledge base by integrating several RDF graphs
found on the internet,

– if an exported RDF graph is imported in a relational database at another
place,

– if updates on a materialized RDF graph have to be performed such that key
and foreign key properties have to be checked.

Finally, if an RDF graph is upgraded to OWL, keys and foreign keys could
become interesting for reasoning, as well.

In this paper we will discuss various ways to map a relational database into
RDF. In principle, many different methods may be applied. For each such map-
ping we will discuss how key and foreign key constraints can be expressed. For
some mappings this will be rather straightforward, while other mappings may
require additional constraints, or will require rather contrived solutions. Compli-
cations will arise in situations where a key is built out of several attributes and
some of them are used for a foreign key as well. In addition, RDF is proposed as a
simple data model which allows anyone to make statements about any resource.
Thus a mapping should not only allow to represent the constraints, however has
to give credit to the philosophy of RDF as well. Based on these observations we
consider the mapping problem from relational databases in RDF still to be not
sufficiently understood.

As key and foreign key constraints can not be asserted inside RDF, we will
finally argue that RDF should be extended by a vocabulary which allows the
declaration of keys and foreign keys. When keys and foreign keys are explicitly
stated as part of an RDF graph, RDF processors are enabled to check the cor-
responding constraints and in this way are able to guarantee important quality
criteria of RDF graphs.

The structure of the paper is as follows. In Section 2 we shall introduce the
basic formalism and a running examples which we will use to demonstrate the
various mappings. Mappings from relational databases into RDF are presented
and discussed in Section 3. In Section 4 we present a vocabulary which allows to
express key and foreign key constraints inside an RDF graph. Section 5 finally
concludes the paper.

2 Preliminaries

We shall first introduce the terminology we use in the sequel. We start with
relational databases (cf. [10], Section 3). A relational database schema R is a set
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of relation schemata identified by R, R = (R1, ..., Rn). We use Att(R) to denote
the set of attributes of the relation symbol R. An instance I of R is a tuple
(I1, ..., In), where for 1 ≤ i ≤ n Ii is a finite instance of Ri, i.e. a finite subset
of the n-ary cartesian product over an underlying domain. An element μ ∈ I is
called tuple. Let A ∈ Att(R), we use μ.A to denote the value of the attribute A
of the tuple μ.

A key over R is an expression of the form R[A1, ..., Ak] → R, where R ∈ R
and for 1 ≤ i ≤ k it holds that Ai ∈ Att(R).1 Let I be an instance of R. I
satisfies R[A1, ..., Ak]→ R if and only if ∀μ1, μ2 ∈ I (

∧
1≤i≤k(μ1.Ai = μ2.Ai)→∧

A∈Att(R)(μ1.A = μ2.A)).
A foreign key over R is an expression of the form

R[A1, ..., Ak] ⊆ R′[A′
1, ..., A

′
k], where R, R′ ∈ R, {A1, ..., Ak} ⊆ Att(R),

{A′
1, ..., A

′
k} ⊆ Att(R′), and R′[A′

1, ..., A
′
k]→ R′. R is called child and R′ parent

of the foreign key. I satisfies R[A1, ..., Ak] ⊆ R′[A′
1, ..., A

′
k] if and only if I satisfies

R′[A′
1, ..., A

′
k]→ R′ and ∀μ1 ∈ I ∃μ2 ∈ I ′ (

∧
1≤i≤k μ1.Ai = μ2.A

′
i).

Next we introduce the required RDF terminology adapting definitions in [20]
for our purposes. We consider a vocabulary V = (NC , NP ), where NC is a finite
set of classes and NP is a finite set of properties. Given a vocabulary V , an
interpretation I = (ΔI , ΔD, .IC , .IP ) of V is given as follows:

– ΔI is a nonempty set, called object domain,
– ΔD is a nonempty set, called the data domain, which we assume to be disjoint

from ΔI , ΔI ∩ΔD = ∅,
– .IC is the class interpretation function assigning to each class C ∈ NC a

finite subset CIC ⊆ ΔI ,
– .IP is the property interpretation function assigning to each property Q ∈ NP

a finite subset QIP ⊆ ΔI × (ΔI ∪ΔD).

Based on a given interpretation we can introduce a corresponding RDF graph.
In the RDF document [21] among the nodes of an RDF graph it is distinguished
between RDF URI references and literals. Literals in our framework are the el-
ements of the data domain. By requiring that the object domain and the data
domain are disjoint, we assume that literal values are not identified by URIs
[22]. Therefore, in an RDF graph, literals with identical value will be repre-
sented by different nodes. This fact makes the following definitions a bit more
complicated.

Let I=(ΔI , ΔD, .IC , .IP ) be an interpretation. The RDF graph GI = (N I , EI)
of I then is a directed labelled graph, where

– for the set of nodes N I we have N I = NC ∪ {a, b | (a, b) ∈ QIP , Q ∈ NP , b ∈
ΔI} ∪ {a, ba,Q | (a, b) ∈ QIP , Q ∈ NP , b ∈ ΔD}, and

– for the set of labelled arcs EI we have EI = {(a, Q, b) | (a, b) ∈ QIP , b ∈
ΔI} ∪ {(a, Q, ba,Q) | (a, b) ∈ QIP , b ∈ ΔD} ∪ {(a, rdf : type, C) | a ∈
CIC , C ∈ NC}.

1 We consider for each schema only one key, say the primary key.
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Fig. 1. Tuple-based mapping. Classes are indicated by bold font and typing by dotted
edges.

We exemplify our discussion by means of a small running example. Consider
the following relational schemata:

Employee(SSN, Name, Phone, reportsTo)
Project(ID, Budget)
inProject(Empl, Proj)
usedBy(Tool, Proj, Empl)

To indicate the key of a schema we use bold font. The schemata represent
a scenario in which employees are described by name, ID, phone, and by the
department they report to. Employees may be involved in projects and employees
may use tools, where for a certain tool with respect to a certain project there is
at most one employee who is using it.

We observe that Empl and Proj are foreign keys in schema inProject. More-
over, Empl and Proj together form a foreign key in schema usedBy with respect
to inProject. For concreteness, we consider the following instances:

Employee

SSN Name Phone reportsTo

111 Peter 217-88 Dept00

Project

ID Budget

P11 50

P22 60

inProject

Empl Proj

111 P11

111 P22

usedBy

Tool Proj Empl

Sys99 P11 111

Sys01 P22 111
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A simple kind of mapping from a relational database into RDF is as follows.
Let R be a relation schema, where Att(R) = {A1, . . . , Ak}. Introduce a class CR

and properties QR,A1 , . . . , QR,Ak
. Let I be an instance of R. For every tuple

μ = (a1, . . . , ak) in I introduce a unique blank node nμ and a labelled edge
( nμ, rdf : type, CR). The naming of such blank nodes is arbitrary; for simplicity
we can think of a numbering scheme based on incrementing a counter to assign to
every blank node a unique number. For every nonnull value μ.A of μ, A ∈ Att(R),
introduce an edge ( nμ, QR,A, (μ.A) nµ,QR,A).2 This mapping treats all tuples in
the relation instances separately; we shall call the mapping tuple-based. Applying
the tuple-based mapping we will get the RDF graph depicted in Figure 1 in
which all property values are taken from the data domain, i.e. represented by
literals in quotation marks. This mapping totally ignores that foreign key values
also appear as key values and therefore refer to the same object. A tuple-based
mapping thus has the following two severe deficiencies. It produces a lot of
redundancies as foreign key values appear separate to key values and there is
nothing in the graph which explicitly relates objects according to a foreign key
relationship. Therefore, tuple-based mappings will not be considered further.
The mappings we shall introduce in the next section demonstrate that these
deficiencies result from an imperfect modelling and that they are not inherent
to RDF.

3 Mapping Relational Databases into RDF

There have been several approaches described in the literature, which elaborate
on the mapping of relational databases to an RDF graph (e.g. [2,5,4,12]). In this
section we will discuss mappings with an eye on constraints. We will analyze
possible ways to express the relational key and foreign key constraints in the
resulting RDF graph. The following definitions clarify our notions of relational
key and foreign key in the context of RDF.

To define a key constraint for RDF we first require that each property is inter-
preted by a (total) function. Thus, whenever a property R ∈ NP is involved in
a key constraint, we require an additional functionality constraint to be given.
Let Q ∈ NP . We write Func(C, Q) to state that for any object o ∈ C, on
which a property Q is defined, Q associates o with exactly one other object.
We write Key(C, Q1, . . . , Qn) to state a relational key of class C over proper-
ties Q1, . . . , Qn and we write FK(C, [Q1, . . . , Qn], C′, [Q′

1, . . . , Q
′
n]) to state a

relational foreign key over the respective properties of child C and parent C′.

Definition 1. Let I = (ΔI , ΔD, .IC , .IP o) be an interpretation. Let C ∈ NC,
Q, Qi, Q

′
i ∈ NP , 1 ≤ i ≤ n. Let ψ be a constraint. I satisfies ψ, I |= ψ, if there

holds:

– Let ψ be a functionality constraint Func(C, Q).
{x | #{y | (x, y) ∈ QIP } = 1, x ∈ CIC} = ∅.

2 A discussion how to represent a null value in RDF is beyond the scope of this paper.
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– Let ψ be a relational key constraint Key(C, Q1, . . . , Qn) and let I |=
Func(C, Qi), 1 ≤ i ≤ n.
If ∃o1, o2 ∈ CIC such that ∃vi ∈ ΔI ∪ΔD, 1 ≤ i ≤ n,

where (o1, vi), (o2, vi) ∈ QIP

i , then o1 = o2.
– Let ψ be a relational foreign key constraint FK(C, [Q1, . . . , Qn], C′,

[Q′
1, . . . , Q

′
n]) and let I |= Key(C′, Q′

1, . . . , Q
′
n), 1 ≤ i ≤ n.

If o1 ∈ CIC then ∃o2 ∈ C′IC such that
(o1, vi) ∈ QIP

i implies (o2, vi) ∈ Q′IP

i , 1 ≤ i ≤ n.

Keys and foreign keys according to these definitions are called relational to dis-
tinguish them from more generally defined keys. It is required that objects can
be uniquely identified by properties directly related to them. Keys in a more
general sense [14] could also be defined by means of path expressions in which
the uniquely identifying property is defined by the composition of functional
properties. We will return to this issue later again.

3.1 Value-Based Mappings

There are several ways to improve the tuple-based mapping. As a first approach,
we represent key attribute values by URIs3 and now are able to reference the
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Fig. 2. Value-based mapping. Values of key attributes are URIs. References to foreign
key attribute values are represented by dashed edges.

3 For space reasons and not to overload our notation we consider only relative URIs
in this paper.
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key attribute values of parent objects from the respective child objects. This is
demonstrated by Figure 2. Mappings following this approach are called value-
based mappings. For example, properties IP P and iP E of the objects in class
inProject now directly refer to the key values of the respective objects of class
Employee and Project. Analogously, with respect to the foreign keys of the
objects in class usedBy, we now directly refer to the respective key values of the
objects in class Employee and Project.

Value-based mappings preserve the key and foreign key constraints that have
been defined in the source relational database, because every key and foreign
key stated in the relational database can be expressed by a relational key and
foreign key constraint over the resulting RDF graph. We will next show, that
such a direct correspondence does not immediately hold for other mappings,
whose application seems to be quite natural in the context of RDF.

3.2 URI-Based Mappings

A popular mapping approach is based on encoding key values in URIs such that
each object can be uniquely identified (cf. [4,5]) and then be further described
by its properties. RDF triples that express links between such URIs express
nothing else than foreign key relationships. At a first glance such an approach
seems to solve the representation problem of keys and foreign keys in RDF in a
very elegant and concise way.

However, keys may be built out of several attributes which themselves may be
even foreign key attributes, in general. This typically will happen when relations
are used to represent relationships between objects. In the Employee-Project-
inProject example, the key of relation inProject is given by the keys of rela-
tions Employee and Project; we thus assume that one employee may work for
several projects and one project may be processed by several employees. Hav-
ing formed the corresponding URIs out of key values, the original foreign key
constraint now appears as a less explicit constraint on the URI string-values.
For example, if employee 111 works for project P11, then this will give rise to
a relationship between 111 and P11. Following the above sketched approach we
would first introduce the two URIs 111, P11, then a combined URI 111&P11
and then define triples (111&P11, iP E, 111), respectively (111&P11, iP P,
P11). As we can see, the foreign key problem still exists; however the foreign key
relationships cannot be expressed over triples, but over URI values. This means,
whenever there exists a URI 111&P11 in the RDF graph, there must also ex-
ist a triple (111&P11, iP E, 111) and we would not accept a triple (111&P11,
iP E, 222). In the RDF standard [21] RDF is proposed as an open-world frame-
work that allows anyone to make statements about any object (resource). If a
user is going to make a statement about object 111&P11, she would certainly
expect that there exists an object 111 as well. This means that there are still
constraints reflecting foreign key constraints which are to be guaranteed.

The technique we have just described is one of the mappings suggested in [4,5],
where such URIs are formed using string concatenation. However the syntax
of URIs gives us enough room to construct URIs from key values in a more
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Fig. 3. URI-based mapping. Objects are represented by URIs which are build out of
the corresponding key values. References between objects are represented by dashed
edges.

standardized way. We propose to use the query part of an URI to build unique
URIs by still making the origin of the components of such URIs visible. This
is demonstrated in Figure 3. We call mappings following this idea URI-based
mappings.

The discussion so far clearly shows that using key values to construct URIs
representing an object may produce complications even though the approach
looks attractive at first glance. When such URIs contain foreign key values,
then a consistency problem arises which can only be solved by carefully check-
ing the string representations of the URIs. For example, with respect to URI
?Emp=111&Tool=SYS99 representing an object of class usedBy and URI
?Emp=111&Proj=P11 representing an object of class inProject it has to be guar-
anteed that both Emp-parts are equal.

3.3 Object-Based Mappings

The next type of mappings identify objets by blank nodes and represent foreign
key relationships by links between such blank nodes. We call this kind of mapping
object-based; such mappings are also possible using the approach proposed in [4].
Different to the URI-based mappings, keys still are explicitly represented by
properties. Therefore, in principle, key values can be represented by literals.
However, as we will see later, there are reasons why it should be not only possible
to reference objects, but key values as well. Therefore, key values are represented
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Fig. 4. Object-based mapping

by URIs in the sequel. As with the URI-based mappings there is no need to
explicitly introduce properties for foreign keys - a link from the child object to
its parent is sufficient. A mapping of this kind is shown in Figure 4.

As we can see, foreign key constraints are represented by links. However we
need a constraint to ensures that such links will indeed exist. Such constraints
are called participation constraints and are well-known from entity-relationship
modelling (see also [15]). Let C, C′ ∈ NC be classes and Q ∈ NP a property.
Let Q represent a foreign key relationship and consider C as the child class
and C′ the parent class. We write Partcipate(C, Q, C′) to state a participation
constraint which can be formalized in our RDF setting as follows.

Definition 2. Let I = (ΔI , ΔD, .IC , .IP o) be an interpretation. Let φ =
Partcipate(C, Q, C′). We define I satisfies φ, I |= φ, if there holds:

If o1 ∈ CIC then ∃o2 ∈ C′IC such that (o1, o2) ∈ QIP .

When carefully looking at Figure 4 the question arises where we have represented
the key values of the objects of class usedBy with respect to the property giving
us the ID of the project for which a certain employee uses a tool. As the key
and the foreign key of class usedBy overlap, in some sense, the foreign key has
stolen the key property giving us the project ID being part of the key. Therefore,
the key for usedBy is not given by properties directly associated with usedBy,
but given by property uB T of usedBy and the path formed by the functional
properties uB iP, iP P and P ID. Thus, for being able to check key constraints,
the notion of relational keys is too limited and a more general definition of key is
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in order. We write Key(C, Q◦
1 . . . Q◦

n) to state a general key constraint of class C
over property paths Q◦

1, . . . , Q
◦
n, where each Q◦

i , 1 ≤ i ≤ n is a path of functional
properties Qij ∈ NP , 1 ≤ i ≤ n, 1 ≤ j ≤ ni, ni ≥ 1, which is written Qi1 . . . Qini .

Definition 3. Let I = (ΔI , ΔD, .IC , .IP o) be an interpretation. Let C ∈ NC,
Q◦

i a path of functional properties Qi1, . . . , Qini , where Qij ∈ NP , 1 ≤ i ≤ n,
1 ≤ j ≤ ni, ni ≥ 1. Let ψ be a general key constraint Key(C, Q◦

1, . . . , Q
◦
n). I

satisfies ψ, I |= ψ, if there holds:4

If ∃o1, o2 ∈ CIC such that ∃vi ∈ ΔI ∪ΔD, 1 ≤ i ≤ n,

where (o1, vi), (o2, vi) ∈ QIP

i1 ◦ . . . ◦QIP

ini
, then o1 = o2.

General keys have been studied in description logics [14] and object-oriented
databases [6,3]; the key concept as proposed by XML Schema [24] resembles
general keys, as well. If we understand RDF as a formalism which has been
introduced to allow to extend a given RDF graph by new information in a
very flexible and open way, it is not clear to us, whether it is feasible to allow
to define key properties by paths of properties. Keys seem to us much easier
to comprehend when they are directly related with the respective objects. In
Figure 5, to this end we introduce a property uB P which applied on objects of
class usedBy returns the missing P ID-value such that the key Tool, Proj for
objects of class usedBy now can be expressed by a relational key again. The price
we have to pay is an additional constraint which guarantees that property uB P
and property path uB iP.iP P.P ID will give the same value when applied on
the same object. Such constraints have been called subobjectproperty-chain [19].
We write SubPChain(C, Q1, . . . , Qn, S) to state a subobjectproperty-chain and
formalize it according to our needs as follows:

Definition 4. Let I = (ΔI , ΔD, .IC , .IP o) be an interpretation. Let φ =
SubPChain(C, R1, . . . , Rn, S). We define I satisfies φ, I |= φ, if there holds:5

{(x, y) | (x, y) ∈ RIP
1 ◦ . . . ◦RIP

n , x ∈ CIC} =
{(x, y) | (x, y) ∈ SIP , x ∈ CIC}.

3.4 Discussion

In the preceding sections we have discussed various kinds of mappings from rela-
tional databases to RDF. This discussion does not claim to have been exhaustive.
For example, [12] proposes a mapping in which attributes A are represented by
objects oA and each tuple t of a (entity-) relation identifies a property Qt which
then is used to assign oA some value v out of the object or value domain. This
would give rise to the triple (oA, Qt, v). This technique is interesting as well and
is based on the original formal definitions of the Entity-Relationship Model [9].

4 The operator ◦ denotes the composition of binary relations.
5 In contrast to [19] we can require equality of sets instead of a subset-relationship,

because all properties involved are functional.
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Fig. 5. Object-based mapping. To directly relate each object with its key properties,
additional properties are introduced.

However, values may also appear as subjects in other triples whose predicates
now do not correspond to tuples in a (entity-) relation, however to attributes
of the given Entity-Relationship schema. Therefore, to our understanding, a re-
sulting RDF graph is likely to be difficult to comprehend.

When mapping relational databases into RDF, we can choose mappings which
preserve relational constraints and still use the linking capabilities of RDF (value-
based mapping). However, we can also choose mappings which try to take the
most advantage of the flexibility offered by RDF. Such mappings are attractive,
but make it rather contrived to express key and foreign key constraints (URI-
based mappings), or enforce the introduction of other kinds of constraints, which
are not familiar in relational databases (object-based mapping). Which approach
is the most appropriate one depends on the kind of applications for which a
resulting RDF graph is assumed to be used. In the next section we will outline a
technique that will allow us to state relational key and foreign key constraints as
part of an RDF graph. A value-based mapping in conjunction with an explicit
statement of the existing key and foreign key constraints inside the same RDF
graph seems to us an attractive compromise between relational modelling and
RDF modelling.

4 Keys and Foreign Keys Vocabulary for RDF

To get a clean and general solution for expressing keys and foreign keys inside
an RDF graph we now propose to make that information explicit by means
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of an appropriate namespace. As a first idea one could use the XML-schema
namespace [24], which allows to express keys and foreign keys, where the latter
are called keyref. However, XML in contrast to RDF is a hierarchical model
equipped with an implicit notion of order. Therefore, semantics of keys and for-
eign keys in XML and RDF are different, though similar in spirit. For these
reasons we decided to extend the RDF vocabulary by a new dedicated names-
pace, which will be identified by prefix rdfc. This namespace extends the RDF
vocabulary by two (meta-) classes rdfc:Key and rdfc:FKey, whose instances
represent the key and foreign key definitions of the (application) classes. In ad-
dition, the namespace contains properties rdfc:Key, rdfc:FKey and rdfc:Ref
which will allow to attach keys and foreign keys to classes and to associate for-
eign keys with the respective key of the parent class. The construction we shall
outline is in the spirit of the PRIMARY KEY and REFERENCE-clause in SQL.

Keys and foreign keys may be built out of several components and therefore
will be of type rdf:Bag. The construction is demonstrated in Figure 6. Start-
ing from the graph depicted in Figure 2 we proceed as follows. We introduce
objects E Key, P Key, iP Key and uB Key, respectively. In addition we introduce
objects iP FKey1, iP FKey2 and uB FKey to represent the two foreign keys of
class inProject and the foreign key of class usedBy. We add corresponding
typing edges from the newly introduced objects to classes rdfc:Key and class
rdfc:FKey, respectively. Next, we add the corresponding edges labelled with
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rdfc:FKey

uB_FKey
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Fig. 6. Keys and foreign keys definitions are explicitly represented as part of an RDF
graph. The typing of keys and foreign keys is visualized only for class inProject.
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rdfc:Key, respectively rdfc:FKey, in order to relate a key and foreign key to its
respective class, i.e. one class out of Employee, Project, inProject, usedBy
for each key, respectively foreign key. In addition, for each foreign key we intro-
duce an edge labelled rdfc:ref to associate the foreign key with the respective
key of the parent class. Finally, as keys and foreign keys are of type rdf:Bag
as well, we add corresponding typing edges and also indicate the components of
keys and foreign keys by the edges labelled with rdf: 1 and rdf: 2.

If we assume an RDF query language be given, which allows to traverse a RDF
graph in edge and inverse edge direction, e.g. SPARQL [23], it is easy to see, how
for each class its key and its foreign keys can be determined. Therefore, whenever
we are interested in this information, e.g. for checking the constraints, we can
first extract the constraints from the graph and then perform the checking. In [13]
we show that all these steps can be performed using SPARQL.

5 Conclusion

In this paper we have argued to introduce key and foreign key constraints into
RDF to explicitly state semantic information about the information represented
by an RDF graph. Checking of the constraints is possible by testing appropriate
SPARQL-queries for emptiness (cf. [13]), in a similar way to constraint checking
using SQL. In [15,16,7] constraints are investigated with respect to OWL. In
[15] the fundamental difference between constraints in relational databases and
ontology languages is discussed and [16,7] present possible ways of integration.
While these approaches emphasize the description logic point of view on con-
straints, we are interested in the question, how key and foreign key constraints
can be expressed depending on the particular mapping applied from a relational
database into an RDF graph. In addition, we show how these constraints can be
expressed as part of an RDF graph. As a consequence, processing of the RDF
data originating from relational data and RDF data originating from relational
schema (meta-) data, in particular keys and foreign keys, becomes possible, e.g.
using SPARQL or rule languages like F-Logic [11]. In contrast, the description
logic based approaches allow query answering and powerful logical reasoning.
Our approach to extend RDF by constraints and the description logic based
approach can therefore be considered orthogonal and we expect that both will
be useful for semantic web applications.

Acknowledgement. I wish to thank Wolfgang May and Michael Schmidt for
their insightful comments on this paper.
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Abstract. Supporting SPARQL queries over relational databases be-
comes an active topic recently. However, it has not received enough con-
sideration when SPARQL queries include restrictions on values (i.e filter
expressions), whereas such a scenario is very common in real life ap-
plications. Challenges to solve this problem come from two aspects, (1)
databases aspect. In order to fully utilize the well-developed SQL op-
timization engine, the generated SQL query is desired to be a single
statement. (2) SPARQL query aspect. A practical SPARQL query often
embeds several filters, which require comparisons between RDF results
of different types. The type of RDF resources needs to be dynamically
determined in the translation. In this paper, we propose an effective ap-
proach to support SPARQL queries over relational databases, with the
above challenges in mind. To ensure the seamless translation, a novel
facet-based scheme is designed to handle filter expressions. Optimization
strategies are proposed to reduce the complexity of the generated SQL
query. Experimental results confirm the effectiveness of our proposed
techniques.

1 Introduction

The Resource Description Framework (RDF) data is often persisted in relational
DBMSs by triple stores. The RDF data is represented as a collection of triples
<subject, predicate, object>. SPARQL [1] is W3C’s recommendation for RDF
query. Based on matching graph patterns, it provides lots of facilities to extract
RDF subgraphs. Given a data source D, a SPARQL query consists of a pattern
which is matched against D and the values obtained from this matching.

As one of the building blocks of SPARQL query, a SPARQL filter expres-
sion restricts the graph pattern matching solutions. It provides the following
functionalities: 1) The ability to restrict the value of literals and arithmetic ex-
pressions; 2) The ability to preprocess the RDF data by built-in functions. For
example, isIRI(term) returns true if term is an IRI. Therefore, in real appli-
cations, users often submit various SPARQL queries including filter expressions
to express their specific requirements on results. For example, a campus ana-
lyst may issue the following query in Figure 1, which requests IRI and optional

V. Christophides et al. (Eds.): SWDB-ODBIS 2007, LNCS 5005, pp. 57–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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SELECT ?person ?tel WHERE {

?person rdf:type bm:GraduateStudent

{

{ ?person bm:like ?interest } UNION

{ ?person bm:love ?interest }

} .

OPTIONAL { ?person bm:telephone ?tel } .

?person bm:age ?age .

FILTER ( ?age < 25 &&

REGEX(STR(?interest), "Ball$") )

}

Fig. 1. An example of SPARQL query

telephone number of all graduated students with age less than 25 and have an
interest of ball sports, in a UOBM [2] ontology (The bm:age is an extended
property of the UOBM).

Previous methods on supporting SPARQL over relational databases [3,4,5]
mainly supported basic SPARQL query patterns. They either ignored filter ex-
pressions due to complexity or adopted memory-based method for evaluation.
For example, in Sesame [6,3] or Jena2 [7], a SPARQL query with a global filter
expression is first translated into a SQL without filter expressions, and then the
results are further filtered in Java program. If there are nested filter expressions
in an optional query pattern, only part of the query pattern is evaluated, then
the results are filtered in the program and further SQLs are issued one by one.
Therefore, the evaluation of filter expressions is a time consuming operation due
to the expensive I/O cost. How to efficiently and scalably process SPARQL query
with filter expressions is still an open question [4,5].

A single SQL query translated from a SPARQL query can fully utilize the
well-developed SQL optimization engine. This is because existing DBMS opti-
mizers usually make a query plan based on one SQL statement. In addition, the
generated single SQL query can be directly embedded into other SQL queries
as a sub-query, which can be optimized by DBMSs as a whole. A seamless inte-
gration of SPARQL queries with SQL queries is attractive to real applications.
However, the requirement of a single SQL statement is a strong constraint to
the translation.

Mutually-interwaved filter expressions make the translation of SPARQL dif-
ficult. Filter expressions often consist of multiple functions and operators, and
a filter operator may have different behaviors on different operands. When the
operands are variables or complex expressions, it is usually hard to determine
their actual type. Furthermore, variables may be bound to different kinds of
literals in different results. That is, the type of RDF resources needs to be dy-
namically determined in the translation. As Figure 2, a user wants to query the
students whose interest and major are the same. However, the classification in-
formation in the RDF triple data is string in some cases and the code of integer in
other cases. The comparison function over string and integer literal are different
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<Student1, interest in, 12>
<Student1, major in, 16>
<Student2, interest in, “Art”>
<Student2, major in, “Art”>
<Student3, interest, 21>
<Student3, major, 21>

Select ?x
Where {
?x interest ?y .
?x major ?z .
Filter (?y = ?z)

}

?y

?z

Fig. 2. An example of dynamic data type of RDF resource

in the SPARQL standard. Therefore, the generated SQL should be able to adopt
different comparison methods for different types of operands.

To address the above problem, we present a complete translation process from
a SPARQL query to a SQL query. The main contributions of the paper are as
follows.

– We propose an effective method to translate a complete SPARQL query into
a single SQL, so that the generated SQL can be directly embedded as a
sub-query into other SQL queries. By that way, SPARQL queries can be
seamlessly integrated with SQL queries.

– We present a novel idea of facet-based scheme to translate filter expressions
into SQL statements and support most of SPARQL features, such as nested
filters in optional patterns.

– We propose two optimization strategies for SQL generation, and perform
experiments on benchmark data. The experimental results show the effec-
tiveness of our method.

1.1 Preliminaries: SPARQL Pattern Tree

The generated SQL may be different for different database schemas. To simplify
the discussion, we assume that all the triples are stored in a triple table, in which
internal IDs are used instead of IRIs or literal strings. The IRI and literal strings
are stored in two separate tables. Most known RDF stores adopt such a schema.

AND

TRIPLE

TRIPLE TRIPLE

TRIPLEOR TRIPLE FILTER

non-op non-op op non-op

non-op
op

: Non-optional pattern
: Optional pattern

Fig. 3. An example SPARQL pattern tree
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Generally, the graph pattern part in a SPARQL query can be expressed as a
SPARQL pattern tree. The tree shows the backbone of the SPARQL query and
is used in the translation. Similar pattern trees are used in [4]. Figure 3 shows
the SPARQL pattern tree of the query in Figure 1. There are four possible types
of nodes in the pattern tree:

(1) AND node, which corresponds to conjunction of graph patterns in a
SPARQL query. In our approach, an AND node can have multiple child nodes.
That is, consecutive nested AND patterns are included in one AND node as
child nodes. Each child node has a flag indicating whether the node is optional
or not. In this way, the optional patterns in SPARQL queries are also covered
by AND nodes.

(2) OR node, which corresponds to a UNION pattern in a SPARQL query.
Similar to the AND pattern, nested UNION patterns are represented by one OR
node.

(3) TRIPLE node, which represents a graph pattern with a single triple.
The subject, predicate and object in the triple could be constants or variables.

(4) FILTER node, which represents a filter expression in a SPARQL query.
A FILTER node is always connected to an AND node as a special child node.
In bottom-up semantics of SPARQL, only variables appearing in corresponding
AND pattern can be used in the filter.

AND node, OR node and TRIPLE node represent graph patterns in the RDF
graph. We call them pattern nodes.

The remainder of this paper is organized as follows. Section 2 describes the
problem of filter expression translation. Section 3 presents our translation method.
Section 4 proposes two optimization strategies. Section 5 presents an example of
our translation. Section 6 provides experimental analysis. In section 7, we briefly
survey the related work. Section 8 concludes this paper.

2 Problem Statement

A SPARQL filter can not be translated into a SQL expression straightforwardly.
The result of a filter expression or a sub-expression is an RDF object, which
could be a literal, an IRI reference or an error (e.g. when applying functions on
unbound values). However, the result of a SQL expression is always a primitive
value, such as a string, a double or an integer. Taking literals as an example, we
know that a literal could have a lexical form, an optional language tag and an
optional datatype. It is always hard to describe a literal object by a primitive
value.

Fortunately, we found that usually only a primitive part of an RDF object is
used in a function or operator. Thus, we define “facets” of RDF objects which
facilitates the translation from a SPARQL filter to a SQL expression.

With the concept of facet, the problem of filter translation changes from
“What is the SQL for a filter expression” to “What is the SQL for the Boolean
Facet of a filter expression”.
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2.1 Facet of an RDF Object

A facet of an RDF object is somewhat like a view, or a data field of an object.
The value of each facet is always a primitive value of a specific type. We define
the following facets:

– IRI Facet, which is the full IRI string of an IRI reference. The primitive
datatype is string. For literals, this facet is not available.

– Lexical Facet, which is the lexical form of a literal. The primitive datatype
is string. This facet is only available for literals.

– Language Facet, which is the language tag of a literal. The primitive datatype
is string. This facet is only available for literals. If the literal is a typed literal
or a plain literal without a language tag, the value is an empty string. This
is consistent with the definition of the built-in SPARQL function “Lang” .

– Datatype Facet, which is the full IRI of the datatype of a typed literal. The
primitive datatype is string. This facet is only available for literals. For plain
literals, the value is a NULL.

– Numeric Facet, which is the numeric value of a numeric literal. The prim-
itive datatype is double. This facet is only available for typed literals with
datatype xsd:float, xsd:double, xsd:decimal or a sub-type of xsd: decimal.

– Boolean Facet, which is the boolean value of a boolean literal. Boolean Facet
is translated into SQL predicates, such as “a=b” or “a IS NULL”. This facet
is only available for typed literals with datatype xsd:boolean.

– Date time Facet, which is the date time value of a date time literal. In
implementation, we map a date time value into a 64-bit integer, so that the
nature time order keeps in this mapping. Thus, the primitive datatype is
64-bit integer. This facet is only available for typed literals with datatype
xsd:dateTime.

– ID Facet, which is the internal ID of the RDF object. The primitive datatype
is integer. As a constant or a calculated result is not required to have a
corresponding internal ID, this facet is only available for variables.

IRI, Lexical, Language and Datatype Facets express natural attributes of
RDF objects. Numeric, Boolean and Date time Facets express typed literals in
corresponding native data types of databases, which facilitates the translation
of filter expressions. ID Facet is used to check whether a variable is bound or
not.

3 SPARQL to SQL Translation

In this section, we discuss in detail our facet-based SPARQL to SQL translation
approach. We refer to it as the FSparql2Sql. The FSparql2Sql consists of two
parts: translation of pattern nodes and translation of filter expressions.

3.1 Translation of Pattern Nodes

Similar to the approach in [4], each pattern node is translated into a SQL sub-
query. For each variable in the pattern, there is a corresponding column in the
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query result, which contains the ID of the candidate result. If a variable is
unbound, a NULL is returned in that column instead.

– A TRIPLE node is translated into a simple SELECT query on the triple
table. If there are constants in the triple pattern, a corresponding WHERE
clause is added to the query. Otherwise, the columns are renamed to the
corresponding variable names. When one variable appears multiple times in
the triple pattern, an equivalent constraint of these columns should be added
to the WHERE clause. For example, a triple pattern:

{?person bm:isFriendOf ?person}

is translated into:

SELECT subject AS person FROM triple
WHERE predicate = pID and subject = object

Here, the pID stands for the ID the IRI <bm:isFriendOf>.
– An AND node is translated into a query on consequent joins of the sub-

queries from its child pattern nodes.
If a child node is optional, a left join is used instead of an inner join. When

all the child nodes are optional, a dummy table should be appended as the
first table in the joined table list, so that other sub queries can be left joined
to this table. The dummy table is the table containing only one line and one
column.

In addition, we keep tracing each variable on whether it could be possibly
unbound. The different states will affect the join conditions used. Also, the
COALESCE function might be used to combine results from multiple queries.

Finally, if there are child FILTER nodes, they are translated into SQL
expressions and added to the WHERE clause of the query.

– An OR node is translated into a UNION of the sub-queries. If the variable
sets of the sub-queries do not match each other, dummy columns containing
constant NULL should be added to the sub-queries.

3.2 Translation of Filter Expressions

We support the primary operators and functions of filter expressions, which
includes:

– (1) IRI constants and literal constants;
– (2) named variables;
– (3) calculation operators (+, -, *, /);
– (4) comparison operators (=, !=, >, <, >=, <=);
– (5) logical operators (&&, ||, !);
– (6)built-in functions (bound,isIRI,isLiteral,datatype,lang,str,regex).
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&&

?age “25”^^<xsd:integer>

< REGEX

STR “Ball$”

?interest

E3 E4 E6 E8

E7

E5E2

E1

Fig. 4. A filter expression tree

A SPARQL filter expression can be parsed into a filter expression tree. Non-
leaf nodes are operators or functions, while leaf nodes are constants or variables.
Figure 4 shows the filter expression tree of the FILTER clause in Figure 1.

By a filter expression tree, the goal of the translation is to get the SQL repre-
senting the Boolean Facet of the root node. For a specific facet of an expression
node, its translation result is recursively constructed from generating SQLs of
its child nodes.

In the following, we adopt “X.Lexical” to represent the generated SQL for
the Lexical Facet of “X”. Similarly, “X.ID” represents the SQL for the ID Facet
of “X”, and so on.

Literal Constants and IRI Constants. The translation of constants in a
filter expression is rather straightforward. The translation results for all kinds of
supported facets are just SQL constants as described in the facet definitions. For
literal constants, the lexical, language and datatype facet is always available. For
typed literals, the numeric, boolean and date time facet might also be available.
For IRI reference constants, the only available facet is the IRI facet.

Variables. As internal IDs are used to encode IRIs and literals, the IRI table
and literal table should be used to get the actual IRI or literal value of the
variable.

In order to effectively translate the Numeric, Boolean and Date Time Facets
of variables, we suggest to three additional tables in the database schema, which
map the literal IDs to these facet values, respectively.

Therefore, if the SQL for a specific facet of a variable is requested, the corre-
sponding table is added (using left join) to the SQL query, and the corresponding
column in that table is provided as the translation result.

In order to avoid unnecessary join operations, during the translation of graph
pattern nodes, we keep tracking the possible binding value of each variable. For
example, if a variable appears in the subject or predicate position of a triple, the
value of the variable cannot be a literal. Thus, if the SQL for a literal related
facet is requested, we can directly return a NULL.

Comparison Operators. The translation of comparison operators is the most
complex in all operators. Because the non-equality operators (>, <, >= and <=)
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can be used between numeric literals, simple literals, string literals, boolean lit-
erals or date time literals, while the equality operators (= and !=) can be further
used between all kinds of RDF terms. According to SPARQL specifications,
different comparison methods should be used for different types of operands.

CASE Expression. It is often hard to determine the types of operands, espe-
cially when the operands are complex expressions. The types of operands need
to be bound dynamically. To deal with this problem, we choose to use SQL
CASE Expression in the translation. A CASE Expression often consists of sev-
eral WHEN clauses, in order to provide different results for different cases. The
CASE...WHEN statement is defined in ANSI SQL-92 standard which is widely
supported by many existing DBMSs.

We use the Lexical Facet of operator “>” as an example. For each facet available
in both operands, we add a corresponding WHEN clause to the CASE expression.

1) If the Numeric Facet is available, add

WHEN X.Numeric > Y.Numeric THEN ‘true’
WHEN X.Numeric <= Y.Numeric THEN ‘false’

2) If the DateTime Facet is available, add

WHEN X.DateTime > Y.DateTime THEN ‘true’
WHEN X.DateTime <= Y.DateTime THEN ‘false’

3) If the Boolean Facet is available, add

WHEN X.Boolean AND NOT Y.Boolean THEN ‘true’
WHEN NOT X.Boolean OR Y.Boolean THEN ‘false’

4) If the Lexical Facet is available, add

WHEN X.Language = ‘’ AND Y.Language = ‘’ THEN
CASE WHEN X.Datatype IS NULL

AND Y.Datatype IS NULL THEN
CASE WHEN X.Lexical > Y.Lexical THEN ‘true
WHEN X.Lexical <= Y.Lexical THEN ‘false’ END

WHEN X.Datatype = xsd:string
AND Y.Datatype = xsd:string THEN
CASE WHEN X.Lexical > Y.Lexical THEN ‘true’
WHEN X.Lexical <= Y.Lexical THEN ‘false’ END

END

* The xsd:string stands for its full URI SQL string.
After the above steps, we obtain the final translation result, which is probably

a complex CASE expression. We will discuss how to optimize it in Section 4.

Built-in Functions. We can see that all these built-in functions always return
an IRI or a literal with a fixed type as the result (except for error results). For
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example, the bound, isIRI, isLiteral and regex functions always return a
boolean typed literal. The lang and str functions always return a plain literal
with no language tag. The datatype function always returns an IRI reference.

The translation for Language and Datatype Facet is simply a string constant
decided by the function or operator. For other facets, when error happens, it is
ensured that a NULL is returned instead of the normal results. In order to reduce
the complexity of the translation, a constant is always returned, no matter error
happens or not. Thus, only the lexical(or boolean) facet is used in the translation
to determine if an expression gives an error result or not. We take bound functions
as an example below.

The bound functions always return a boolean typed literal. As described
above, the language facet and datatype facet will always return a constant. The
boolean facet is translated to an “IS NULL” predicate on the ID facet, IRI facet
or lexical facet of the operand expression, respectively. In some rare cases, the
lexical facet of these functions is required. The result of the lexical facet should
be the canonical representation of the boolean values, that is, string “true” or
“false”. In this case we have to use a CASE expression over the “IS NULL”
predicate to give the string result.

Calculation Operators. The calculation operators include +, -, * and /. These
operators may only be used between numeric literals and always gives a numeric
literal as the result. As described above, we always use double as the datatype in
our translation for numeric values. Thus, for the numeric facet, the translation
result is simply the calculation operator over the numeric facet of the operands.
When the lexical facet is required, we have to use a SQL function to convert the
numeric result into a string. Note that the numeric-to-string conversion func-
tion is not contained in SQL standard and thus may various between different
databases.

Logical Operators. The logical operators include \&\&, || and !. These op-
erators may only be used between boolean literals and always returns a boolean
literal as the result. The language and datatype facet will always give a constant
as the result. For the boolean facet, the translation result is simply the corre-
sponding SQL logical operator (AND, OR or NOT) over the boolean facet of
the operands. If the lexical facet is required, we have to use an additional CASE
expression to change the result of the SQL predicate into a string “true” or
“false”. The SQL will look like this. (E.boolean represents the translate result
of the boolean facet of the whole expression.)

CASE WHEN E.boolean THEN ‘true’
WHEN NOT E.boolean THEN ‘false’

END

Here, a second WHEN clause is used instead of the ELSE clause because when
the E.boolean returns an UNKNOWN as the result, the result of the lexical
facet should be an NULL instead of the “false”. Furthermore, the SPARQL
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Table 1. logical-AND and logical-OR truth table

A B A || B A && B A B A || B A && B

T T T T E T T E

T F T F F E E F

F T T F E F E F

F F F F E E E E

T E T E

Table 2. Translation of build-in functions

Function Generated SQLs For Different Facets
Boolean Lexical Lang. Datatype IRI

bound(X) X.ID IS NOT

NULL

CASE WHEN X.ID IS NOT

NULL THEN ‘true’ ELSE

‘false’ END

An
empty
string.

The IRI of
xsd:boolean

(N/A)

isIRI(X) X.IRI IS

NOT NULL

CASE WHEN X.IRI IS NOT

NULL THEN ‘true’ ELSE

‘false’ END

An
empty
string.

The IRI of
xsd:boolean

(N/A)

isLiteral(X) X.Lexical

IS NOT NULL

CASE WHEN X.Lexical IS

NOT NULL THEN ‘true’ ELSE

‘false’ END

An
empty
string.

The IRI of
xsd:boolean

(N/A)

datatype(X) (N/A) (N/A) (N/A) (N/A) X.Datatype

lang(X) (N/A) X.Language An
empty
string.

A NULL
constant.

(N/A)

str(X) (N/A) COALESCE(X.IRI,

X.Lexical)

An
empty
string.

A NULL
constant.

(N/A)

regex(X,
pattern)

X.Lexical

LIKE

likePattern

(limited by
the expres-
siveness
of LIKE
operator)

CASE WHEN X.Lexical LIKE

likePattern THEN ‘true’

WHEN X.Lexical NOT LIKE

likePattern THEN ‘false’

END

An
empty
string.

The IRI of
xsd:boolean

(N/A)

* X.Lexical represents the generated SQL for the Lexical Facet of “X”;
* X.ID represents the SQL for the ID Facet of “X”, and so on.

logical-AND and logical-OR truth table for true (T), false (F), and error (E)
[1] is as following Table 1, which just corresponds with the semantic of SQL
logical-AND and logical-OR.

Tables 2 and 3 show the translations of built-in functions, calculation opera-
tors and logical operators on various facets.
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Table 3. Translation of Calculation Operators and Logical Operators

Ops Generated SQLs For Different Facets
Numeric Boolean Lexical Lang. Datatype

X op Y

(op is
+, -, *

or /)

X.Numeric

op
Y.Numeric

(N/A) CHAR(X.Numeric op Y.Numeric)

The number-to-string conversion
function may be different in var-
ious databases.

An
empty
string.

The IRI of
xsd:double.

X op Y

(op is
&& or
||)

(N/A) X.Boolean

AND

Y.Boolean

for &&

X.Boolean

OR

Y.Boolean

for ||

CASE WHEN X.Boolean AND

Y.Boolean THEN ‘true’ WHEN

NOT (X.Boolean AND Y.Boolean)

THEN ‘false’ END

For ||, replace the “AND” with
“OR” in the SQL.

An
empty
string.

The IRI of
xsd:boolean.

! X (N/A) NOT

X.Boolean

CASE WHEN X.Boolean THEN

‘false’ WHEN NOT X.Boolean

THEN ‘true’ END

An
empty
string.

The IRI of
xsd:boolean.

* X.Lexical represents the generated SQL for the Lexical Facet of “X”;
* X.ID represents the SQL for the ID Facet of “X”, and so on.

4 Optimization

Our facet-based translation may generate very complex result SQL statement.
For example, in order to meet the requirement of dynamic types of operands,
CASE expressions and lots of constants will appear in the generated SQL. As
far as we know, most database optimizers (e.g., DB2) can not perform good
optimization over complex constant and CASE expressions, since these expres-
sions are not commonly appeared in hand-written SQLs. Therefore, additional
optimization over CASE expression and constant are needed.

4.1 Optimization on CASE Expression

The CASE expression in generated SQLs can sometimes be replaced by other
expressions which can be well optimized by DBMS engines. For example, by our
algorithm, a simple filter expression “?X != <http://foo/boo>” is translated
into the following SQL expression. The t1 is a local nickname of the IRI table.

(CASE WHEN t1.IRI <> ‘http://foo/boo’ THEN ‘true’
WHEN t1.IRI = ‘http://foo/boo’ THEN ‘false’

END) = ‘true’

However, the above SQL expression can be simply rewritten into another SQL
expression with the same semantics:

t1.IRI <> ‘http://foo/boo’
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In order to solve this problem, we apply a special optimization on CASE ex-
pressions. We try to find such “=” predicates in the expression which meet all
following requirements:

1. One side is a constant while the other side is a CASE expression with exactly
two WHEN clauses.

2. Predicates of the two WHEN clauses are exactly the negation of each other.
There are two kinds of negations. One is replacing the main operator with
the inverse one, while the other is adding a NOT outside.

3. One of the results matches the constant on the other side of the “=” while
the other does not.

If such a predicate is found, we replace the whole predicate with the predicate
inside the WHEN clause, whose result matches the constant.

4.2 Optimization on Constant Expression

Optimization on constant expressions are especially important for the auto-
generated SQLs. One reason is that lots of constants (such as results of Lan-
guage Facet, Datatype Facet, etc.) may appear in the SQL expression, while
most existing database optimizers can not perform good optimization over com-
plex constant expressions.

Another reason is that after this process, it is more likely that the optimization
on CASE expression can be applied, as useless WHEN clauses might be totally re-
moved in the process. Therefore, we recursively optimize the constant expressions
in the generated SQL. Table 4 shows several examples. <A> and <B> represent
arbitrary sub-expressions.

Table 4. Constant expression optimization examples

Before Optimization After Optimization

‘ab’ <> ‘’ 0=0

‘ab’ IS NULL 0<>0

<A> AND 0=0 <A>

<A> OR 0=0 0=0

COALESCE(<A>, ‘ab’, <B>) COALESCE(<A>, ‘ab’)

COALESCE(<A>, NULLIF(‘’,‘’), <B>) COALESCE(<A>, <B>)

CASE WHEN 0<>0 THEN <A> WHEN <B> ... CASE WHEN <B> ...

CASE WHEN 0=0 THEN <A> WHEN <B> ... <A>

5 An Example of Translation

In this section, we take the query in Figure 1 as an example to explain the
translation for filter expressions. The E1 to E8 in Figure 4 are the names of the
expression nodes.
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(1) The goal of translation is to generate SQLs for the Boolean Facet of the
root node E1. E1 is an expression node with && operator. By the translation of
&& in Table 3, we get

E1.Boolean = E2.Boolean AND E5.Boolean

(2) E2 is an expression node with < operator. By the processes in Section 3.2,
we get the (2.1) to (2.3) steps.

(2.1) As E3 and E4 can provide a Numeric Facet, the SQLs for E2.Boolean
includes the following WHEN clauses:

WHEN E3.Numeric < E4.Numeric THEN ‘true’
WHEN E3.Numeric >= E4.Numeric THEN ‘false’

(2.2) As E3 and E4 can provide a Lexical Facet, the SQLs for E2.Boolean
further includes the following WHEN clause:

WHEN E3.Language = ‘’ AND E4.Language = ‘’ THEN
CASE WHEN E3.Datatype IS NULL

AND E4.Datatype IS NULL THEN
CASE WHEN E3.Lexical < E4.Lexical THEN ‘true’

WHEN E3.Lexical >= E4.Lexical THEN ‘false’
WHEN E3.Datatype = xsd:string
AND E4.Datatype = xsd:string THEN
CASE WHEN E3.Lexical < E4.Lexical THEN ‘true’

WHEN E3.Lexical >= E4.Lexical THEN ‘false’
END

* The xsd:string stands for its full URI SQL string.

(2.2.1) As E3 ?age is a variable node, as the description in Section 3.2, two
left joins (one for Numeric Facet, the other for Lexical, Language and Datatype
Facets) are added to the SQLs of the parent AND node, and the corresponding
columns are returned as the result of these facets.

(2.2.2) E4 is a literal constant node, so the results of the requested facets are
as follows:

E4.Numeric = 25.0 E4.Lexical = ‘25’
E4.Language = ‘’ E4.Datatype = xsd:integer

(2.3) Adding a “= ‘true’” after the big CASE expression, we get the complete
translation result of E2.Boolean.

(3) E5 is a REGEX function, by Table 2 the Boolean Facet is translated
to “E6.Lexical LIKE ‘%Ball’”. The ‘%Ball’ is translated from the regular
expression pattern “Ball$”.

(3.1) The Lexical Facet of E6 should be translated to the IRI Facet or Lexical
Facet of E7. However, we can know from the triple patterns that variable ?inter-
est is bound to objects of object property “bm:like” or “bm:love”, and thus must
be IRI references. So the translation of E6.Lexical becomes simply E7.IRI. In
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order to translate E7.IRI, one more left join is added in order to retrieve the
actual IRI string for variable ?interest.

(4) Now we have the following translation result before the optimization step:

(CASE
WHEN ?age.Numeric < 25.0 THEN ‘true’
WHEN ?age.Numeric >= 25.0 THEN ‘false’
WHEN ?age.Language = ‘’ AND ‘’ = ‘’ THEN
CASE WHEN ?age.Datatype IS NULL

AND xsd:integer IS NULL THEN
CASE WHEN ?age.Lexical < ‘25’ THEN ‘true’

WHEN ?age.Lexical >= ‘25’ THEN ‘false’
WHEN ?age.Datatype = xsd:string
AND xsd:integer = xsd:string THEN
CASE WHEN ?age.Lexical < ‘25’ THEN ‘true’

WHEN ?age.Lexical >= ‘25’ THEN ‘false’
END

END) = ‘true’ AND ?interest.IRI LIKE ‘%Ball’

Notice that ?age.Numeric corresponds to the value column in Numeric table,
and so forth. The SQL result includes several CASE clauses for the comparisons
of ?age with different possible data types.

Optimization for the generated SQL. The optimization includes following
steps:

(1) By the the optimizations on constant expressions,
“xsd:integer IS NULL” and “xsd:integer = xsd:string” can be replaced with
false constants, i.e., “0<>0”.

(2) The two surrounding WHEN clauses can be totally removed as the condition
is never true. Now, the nested CASE expression have no more WHEN clauses inside
and is replaced by “NULLIF(‘’,‘’)”.

(3) The clause “WHEN ?age.Language = ‘’ AND ‘’ = ‘’ THEN NULLIF(‘’,‘’)”
can be removed, as it is the last WHEN clause and the result is the same as the
ELSE part, which is NULL by default. The SQL becomes:

(CASE
WHEN ?age.Numeric < 25.0 THEN ‘true’
WHEN ?age.Numeric >= 25.0 THEN ‘false’

END) = ‘true’ AND ?interest.IRI LIKE ‘%Ball’

(4) It can be seen that the “=” predicate meets the requirements for the CASE
expression optimization described in Section 4.1. We get the final translate result
after this optimization, which is a very simple SQL:

?age.Numeric < 25.0 AND ?interest.IRI LIKE ‘%Ball’



An Effective SPARQL Support over Relational Databases 71

6 Experimental Analysis

All experiments were run on a 3.0GHz Core 2 Duo PC with 2GB RAM, running
Microsoft Windows XP Professional. IBM DB2 9.1 Enterprise edition is used as
the backend store. We implemented the FSparql2Sql in SOR [8]. The Sesame
v1.2.6 [3] is extended with DB2 support and adopted for comparison purpose.

To better evaluate filter expressions, we extend the University Ontology Bench-
mark (UOBM)[2] with a new property “bm:age”. Every student and professor
are given an integer age. The largest dataset includes 1.1M instances and 2.4M
relationship assertions. Six adopted SPARQL queries are shown in Table 5. We
further adopted Query 7 to Query 25 for testing the functionality of FSparql2Sql
on built-in functions (refer to Table 6), comparison operators ( refer to Table 7),
logical operators (refer to Table 8) and calculation operators (refer to Table 9),
respectively.

Effectiveness Analysis. As shown in Figure 5(a), the execution time of Sesame
with a global filter (i.e., Q1) or not (i.e., Q0) is almost the same. Because Sesame
uses the same SQL for them and evaluates global filters in Java program. The
queries with a nested filter (i.e., Q2) is definitely slower than the ones without
it. The reason is that lots of SQL queries are generated and executed for the
nested filter. Figure 6(a) show the same tendency for a more complex group of
queries.

For FSparql2Sql, we can observe from Figure 6(b) that the queries with a
global filter run faster than the one without it, while the queries with a nested

Table 5. SPARQL Queries

Groups Queries Notes

Group 1
Q0. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y

}

Q0 is a simple triple
pattern query with-
out Filter.

Q1. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y < 25)

}

Q1 extends Q0 with
global filters.

Q2. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

OPTIONAL {

?x bm:age ?y .

FILTER (?y < 25)

}

}

Q2 extends Q0 with
nested filters in op-
tional patterns.

Group 2
Q3. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:isAdvisedBy ?y .

?y bm:age ?z

}

Q3 is a complex
triple pattern query
without Filter.

Q4. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:isAdvisedBy ?y .

?y bm:age ?z .

FILTER (?z > 50)

}

Q4 extends Q3 with
global filters.

Q5. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

OPTIONAL {

?x bm:isAdvisedBy ?y .

?y bm:age ?z .

FILTER (?z > 50)

}

}

Q5 extends Q3 with
nested filters in op-
tional patterns.
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Table 6. SPARQL Queries of built-in functions

Groups Queries Notes

Group3 (built-in
functions)

Q7. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (bound(?x))

}

function bound

Q8. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (isIRI(?x))

}

function isIRI

Q9. SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (isLiteral(?y))

}

function isLiteral

Q10.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (datatype(?y) = xsd:integer)

}

function datatype

Q11.SELECT ?x WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:like ?interest .

FILTER (lang(?interest) = EN”) ”
}

function lang

Q12.SELECT ?x WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:like ?interest .

FILTER (REGEX(STR(?interest), Ball$”))”
}

function STR

Table 7. SPARQL Queries of Comparison Operators

Groups Queries Notes
Group4 (compari-
son operators)

Q13.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y < 25)

}

operator <

Q14.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y <= 25)

}

operator <=

Q15.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y > 25)

}

operator >

Q16.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y >= 25)

}

operator >=

Q17.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y = 25)

}

operator =

Q18.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (?y != 25)

}

operator !=

filter use almost the same time as the normal ones. Figure 6(b) show the same
tendency for a more complex group of queries. This is because FSparql2Sql suc-
cessfully translates the global filter directly into a WHERE condition, and translates
the nested filter expressions into left joins with WHERE conditions.

Comparing Figures 5(a) and (b), we can see that the FSparql2Sql is almost
50 times faster than Sesame even for queries without filters. This is mainly due
to the differences between two systems, such as different database schemas and
the batch strategy adopted in FSparql2SqlȦnd FSparql2Sql clearly outperforms
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Table 8. SPARQL Queries of Logical Operators

Groups Queries Notes

Group6 (logical
operators)

Q19.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (isLiteral(?y) && isURI(?x))

}

operator &&

Q20.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:age ?y .

FILTER (isLiteral(?y) || isURI(?x))

}

operator ||

Q21.SELECT ?x WHERE {

?x rdf:type bm:GraduateStudent .

?x bm:like ?interest .

FILTER (! REGEX(STR1(?interest), Ball$”))”
}

operator !

Table 9. SPARQL Queries of Calculation Operators

Groups Queries Notes

Group7 (calcula-
tion operators)

Q22.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?y rdf:type bm:GradudateStudent .

?x bm:age ?age1 .

?y bm:age ?age2 .

FILTER ((?age1 + ?age2 ) > 40)

}

operator +

Q23.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?y rdf:type bm:GradudateStudent .

?x bm:age ?age1 .

?y bm:age ?age2 .

FILTER ((?age1 - ?age2 ) > 0)

}

operator -

Q24.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?y rdf:type bm:GradudateStudent .

?x bm:age ?age1 .

?y bm:age ?age2 .

FILTER ((?age1 / ?age2 ) = 1)

}

operator /

Q25.SELECT ?x ?y WHERE {

?x rdf:type bm:GraduateStudent .

?y rdf:type bm:GradudateStudent .

?x bm:age ?age1 .

?y bm:age ?age2 .

FILTER ((?age1 * ?age2 ) > 400)

}

operator *

Sesame about 100 and 150 times for global and nested filter, respectively. This is
because FSparql2Sql fully utilizes the filter information to generate more efficient
SQLs.

Scalability and Functionality Test. To test the scalability of FSparql2Sql
we adopt a simple query of Query 1 and a more complex query as shown in
Figure 1 (we numbered it as Query 6). Figure 7(b) shows the execution time of
FSparql2Sql increase slowly with the number of universities. Figure 7(a) shows
the results of Sesame over the same queries. Compared Figures 7(a) and (b), we
can see that FSparql2Sql achieves average 100 performance gain over Sesame in
Queries 1 and 6.

FSparql2Sql supports almost all filter expressions in SPARQL. In order to
show the functionality of FSparql2Sql we test the queries defined in Tables 6, 7,
8 and 9 over thress universities. Figure 8, 9, 10 and 11 show our FSparql2Sql can
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Fig. 5. Execution Time on Query Group 1
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Fig. 6. Execution Time on Query Group 2
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Fig. 7. Execution Time on Queries 1 and 6

well support all these built-in functions and operators and almost show linearly
increase over the number of universities.

Therefore, we claim that our FSparql2Sql is an effective method to generate
more efficient SQLs and better utilize the DBMS optimizers.
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7 Related Work

There are research work around semantics of SPARQL [9,1]. Jorge Perez et al. [9]
provided a compositional semantics and complexity bounds, and showed that the
evaluation of SPARQL patterns is PSPACE-complete without filter conditions.
Different from these works on SPARQL itself, our method mainly focuses on
supporting SPARQL queries over relational DBs.

Some other works proposed methods to support basic query patterns of
SPARQL [3,4,5,10], including triple patterns, union patterns and optional pat-
terns. For filter expression, They either ignore it due to complexity, or evaluate it
based on memory. Cyganiak [4] presented a relational model of SPARQL and de-
fined relational algebra operators (join, left outer join, projection, selection, etc.)
to model SPARQL. Using relational algebra operators similar to [4], Harris [5]
presented an implementation of SPARQL queries on top of a relational database
engine, but only including a subset of SPARQL (there are no UNION opera-
tor and nested optional blocks). Sparql2Sql [7] and Sesame [6] query module
are two famous query engines for SPARQL. They rewrite SPARQL queries into
SQL statements. However, filter expressions are not handled by the database,
but evaluated in Java code. In this paper, we show effective schemes to translate
practical filter expressions into SQL statements so that a SPARQL query can be
completely represented by a SQL query.
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A SQL table function is defined in Oracel 10gR2 to accept RDF queries as
a subquery [11], instead of supporting new query languages, e.g. RDQL[12].
RDF graph patterns defined in the table function as input are similar to the
basic SPARQL patterns and can be considered as a small subset of SPARQL in
terms of query capability. Compared with Oracle’s RDF query based on triple
patterns, we support most SPARQL features, such as nested optional patterns
and complex filter expressions.

8 Conclusions

Aiming to a seamless integration of SPARQL queries with SQL queries, we pro-
posed an effective method to translate a complete SPARQL query into a single
SQL. The translated SQL query can be directly used as a sub-query by other SQL
queries and evaluated by well-optimized relational database engine. In particu-
lar, we proposed effective schemes to translate filter expressions into SQL state-
ments, which is ignored or not well addressed by existing methods. Finally, we
investigated optimization strategies to improve query performance significantly.
Future work is to support more SPARQL features, such as XQuery functions.
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Abstract. The COntext INterchange (COIN) strategy is an approach
to solving the problem of interoperability of semantically heterogeneous
data sources through context mediation. The existing implementation of
COIN uses its own notation and syntax for representing ontologies. More
recently, the OWL Web Ontology Language is becoming established as
the W3C recommended ontology language. A bridge is needed between
these two areas and an explanation on how each of the two approaches
can learn from each other. We propose the use of the COIN strategy
to solve context disparity and ontology interoperability problems in the
emerging Semantic Web both at the ontology level and at the data level.
In this work we showcase how the problems that arise from context-
dependant representation of facts can be mitigated by Semantic Web
techniques, as tools of the conceptual framework developed over 15 years
of COIN research.

1 Introduction

Making computers understand humans is, generously put, a hard task. One of
the main reasons for which this is such a hard task is because even humans can-
not understand each other all the time. Even if we all spoke the same language,
there still exist plenty of opportunities for misunderstanding. An excellent ex-
ample is that of measure units. Again, we don’t even have to go across different
names to find differences: in the US, a gallon (the so-called Winchester gallon)
is approximately 3785 ml while in the UK, the “same” gallon is 4546 ml, almost
1 liter more. So when we find a piece of information in a database on cars, for
instance, and we learn that a particular model has a fuel tank capacity of 15
gallons, how much gas can we actually fit inside, and, consequently, for how long
can we drive without stopping at a gas station?

The answer to the previous problem comes easy if we know where we got the
data from: if the information was from the US, we know we can fit inside 56.78
liters of gas, while if it comes from the UK, it is 68.19 - a difference of about 11
liters, with which a car might go for another 100 miles (or 161 km if the driver
is not American or British).

V. Christophides et al. (Eds.): SWDB-ODBIS 2007, LNCS 5005, pp. 77–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Many more such examples exist (see [NAS] for a particularly costly one) and
the reason for which they persist is mainly because it is hard to change the
schema of relational databases that do not include the units of their measure-
ments simply because when they were designed, they were designed for a single
context, where everybody would know what the units are. With globalization,
off-shoring, out-sourcing and all the other traits of the modern economical envi-
ronment, those assumptions become an obstacle to conducting efficient business
processes.

Even in the context of a purely-semantic web application, such as the Potluck
[pot] project developed at the Computer Science and Artificial Intelligence Lab-
oratory at MIT (CSAIL), contextual information is not explicitly approached.
The user is allowed to mash-up together information from different sites, but
it is not taken into account the fact that those different data sources may have
different assumptions about an entire array of concepts. This paper shows how
the COIN strategy can be implemented in this new environment and how it can
contribute to it.

1.1 Semantic Web � COntext INterchange

Our current work acknowledges the successes that the Semantic Web community
has achieved, particularly in the standardization of expressive new languages,
and builds on top of that, providing methods to address the problem of context
mediation or context interchange. The two areas, Semantic Web research and
Context Mediation research, are complementary to each other. Each one pro-
vides the means for, and, at the same time, enhances the other. In particular,
context mediation research helps resolve semantic heterogeneity in OWL/RD-
F/XML data, while semantic web research provides the standards for ontology
representation and reasoning. Figure 1 depicts this mutually beneficial environ-
ment.

1.2 Approach Overview

Semantic web tools rely heavily on mathematical logic to perform inferences.
The result of this, in combination with our desire to maintain a 100% pure logic
approach, is that facts cannot be deleted or modified. For instance, even if we
define a relation hasName to be of functional type (i.e. have a unique object for
each subject), it is still legal to have two entries with different objects, such as
(location1,hasName,‘London’) and (location1,hasName, ‘Londres’), the
conclusion of which will be that the names “London” and “Londres” denote the
same location. This has both advantages and disadvantages which we will not
discuss here, but refer the reader to a wealth of literature on mathematical logic.
Instead, we focus on how we model context in this framework.

Continuing the automobile-related example from the previous section, let us
imagine a scenario where we are a British individual looking to purchase a car,
and one of our main concerns is the environment, so we want a car that has a
low gas consumption. Of course, we would prefer a more sporty car, if possible.
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Fig. 1. Interaction between Semantic Web research and Context Mediation Research

We use the wealth of information on the Internet to do this, either via a mash-up
tool like Potluck [pot], or just by browsing different car manufacturers’ websites.

Imagine we look at a Ford Focus on www.ford.com, a mid-size car, and see that
it does 24 mpg (miles per gallon). Since we are also interested in sports cars, we
look at the Lotus, on www.grouplotus.com, and see that an introductory model
does 25 mpg. We might then be convinced to spend the extra money to save the
environment while enjoying the thrills of a true sports car. Unfortunately for us,
it’s not quite like that. We have the same misunderstanding that we mentioned
before: the gallon. While the Focus considers an American gallon, the Lotus
uses the British gallon. So if we transform the 24mpg of the Focus into British
gallons, we get 28.8mpg - tempering our enthusiasm for the sports car.

This example is anecdotal but at the same time characteristic of the prob-
lems that occur when bringing together, mechanically, information residing in
different databases.

We had previously analyzed a “Weather” example, where temperature units
were converted automatically between Celsius and Fahrenheit [LM07]. Here, we
extend that example and add a twist to it: now, the units are no longer different
in their notation: mpg simply means different thing if we are in the US or in the
UK.

Listing 1.1 shows an existing piece of information regarding the gas consump-
tion of a car, while Listing 1.2 shows how we might represent different values of
the same mileage using prefixes of relations.

Listing 1.1. Existing data regarding the gas consumption of a car

1 <?xml version="1.0"?>
2 <rdf:RDF
3 <US:mileage rdf:ID="mileage1">
4 <US:hasValue rdf:datatype="[...]#float">
5 24</US:hasValue>
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6 </US:mileage>
7 <US:Automobile rdf:ID="Focus">
8 <US:hasName rdf:datatype="[...]#string">
9 Ford Focus</US:hasName>

10 <US:hasMileage rdf:resource="#mileage1"/>
11 </US:Automobile>
12 </rdf:RDF>

Listing 1.2. A possible solution to representing context, by adding an additional
hasValue relation to the Mileage object. It is simple and intuitive of the fact that we
are dealing indeed with the same mileage.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 <US:mileage rdf:ID="mileage1">
4 <US:hasValue rdf:datatype="[...]#float">
5 24</US:hasValue>
6 <UK:hasValue rdf:datatype=‘‘[...]#float’’>
7 28.8</UK:hasValue>
8 </US:mileage>
9 <US:Automobile rdf:ID="Focus">

10 <US:hasName rdf:datatype="[...]#string">
11 Ford Focus</US:hasName>
12 <US:hasMileage rdf:resource="#mileage1"/>
13 </US:Automobile>
14 </rdf:RDF>

The way to add this new relation is by defining a SWRL [HPSB+04] rule such
as the one in Listing 1.3 and then querying the results with a query in SPARQL
[PS07] as in Listing 1.4.

Listing 1.3. SWRL rule that generates a value in the UK context

1 US:hasValue(?mileage, ?mileageValue) ∧
2 US:hasMileage(?car, ?mileage) ∧
3 swrlb:multiply(?product,?mileageValue,12) ∧
4 swrlb:divide(?newValue,?mileageValue,10)
5 → UK:hasValue(?mileage, ?newValue)

Listing 1.4. SPARQL query that retrieves the value in the UK context

1 SELECT ?mileageValue
2 WHERE { ?l US:hasMileage ?mileage .
3 ?l US:hasName "Ford Focus" .
4 ?mileage UK:hasValue ?mileageValue
5 }
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The SWRL rule in Listing 1.3 simply states that in order to get the UK
mileage from the US mileage we have to multiply the original value by 1.2. Since
SWRL does not handle floating point values, we do this my a multiplication in
line 3 and a division in line 4.

The query in Listing 1.4 first identifies an entity � (names starting with ?
represent variables) which has a particular name (“Ford Focus”) and a mileage.
It returns the UK value of the mileage of the object �.

This all seems very intuitive. As always, the problems lie in the details: How
do we determine a conflict of contexts? How do we identify the correct rule to
be applied? How should the data and rules be organized into files? Do we apply
the rule to the entire dataset thus generating massive amounts of new data, or
should we just apply it to the subset being queried?

After providing some background in Sections 2 and 3, we introduce the basic
representation of context using the Ontology Web Language (OWL [MvH04])
in Section 4 and present our conflict identification and resolution method in
Section 5.

2 Background and Related Work

2.1 COntext INterchange

The idea of the COntext INterchange [GBMS99] system is to re-use massive
amounts of data that already exist but that are incomplete due to design as-
sumptions that omitted constants from the dataset. When two or more such
datasets are put together, or queried together, what were implied constants in
each of them become variables in the aggregated dataset and consequently needs
to be added back in the data. This is in most cases unfeasible due to the rigidity
of the data structures or simply due to the fact that the end user has no control
over the repository where the data exists.

The core of the COntext INterchange approach is a context mediator that
rewrites queries coming from a user context into a context-sensitive mediated
query that addresses the differences in meaning between the receiver and the
sources. Conceptually, the context mediator is structured around a domain model
that consists of semantic types, attributes and modifiers.

A semantic type is, as the name indicates, a conceptual entity. For instance,
in the Automobile example of Section 3, the column mileage has no meaning
by itself until it is associated with a semantic type Mileage. The coincidence in
names is just because humans created both entities, but it should be clear to the
reader that the column could very well have been named milespergallon and
the semantic type ST2842. The important difference between semantic types
and the columns with which they are associated is that the semantic types come
enriched with semantics and attributes. In this simple example, Mileage has only
one attribute, value.

In turns, an attribute may come endowed with a modifier. Again, using the
Automobile example, we can imagine that the value attribute of the Mileage
semantic type has a modifier unit. This is called a modifier because it changes
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the meaning of the attribute to which it refers - it modifies it. The modifier value
could be Kilometers per liter (kml) or Miles per gallon (mpg). In our example,
we will only consider mpg, but keep in mind that it will mean different things in
different contexts - something that we will need take into consideration and to
model.

COIN uses this architecture to automatically determine differences in contexts
and resolve queries in a way that is easy to interpret correctly by the user, even if
the data is expressed in a different context. Existing application include financial
reporting and analysis, airfare and car-rental aggregators, etc. [Fir03].

2.2 A Glance at the Semantic Web

Though the COIN methodology precedes the Semantic Web, and despite the
many similarities in objectives and motivation, the two have developed mostly
independently. The wide spectrum of tools that have been proposed by different
research groups to achieve the targets of the original paper by Berners-Lee et
al. [BLHL01] make a quick but complete summary virtually impossible. In this
section we just look at the few tools that we identify to be “best”, both in
terms of the appropriateness for our own purposes, and also in terms of their
acceptance and popularity within the Semantic Web community.

Clearly, one of the pillars of current Semantic Web research is the Web On-
tology Language (OWL) [MvH04]. To query the data stored in OWL format,
one could map it back to a relational database and query it with SQL or use a
“native” query language such as SPARQL [PS07]. For most purposes, SPARQL
can be translated back to SQL, but the advantage of it lies in being able to
query directly the RDF graph that underlies any ontology. It has the status of
Working Draft of the W3C since October 2006. The necessity of defining a new
query language for tuples, such as SPARQL may be questionable at first glance,
since SQL is also working with tuples, though represented in a different way,
and XQuery, also developed within the W3C, addresses the problem of querying
XML, of which OWL is but a flavor. In [Mel06], the author argues that though it
is true that most data could be represented conceptually in RDF and expressed
in either relational databases or basic XML and thus queried by either SQL
or XQuery, SPARQL provides a much easier way of querying the RDF graph,
making the entire development process, including debugging, more fluent.

After representation and query languages, the Semantic Web framework re-
quires a rule language to make inferences on the existing data, thus enabling
the creation of the smart agents described in the original Berners-Lee paper.
Though SWRL [HPSB+04] has gained most attention in the past few years,
the language has not yet been standardized by the W3C and many different
implementations exist, that rarely support the full specification, mainly because
in that case the reasoning becomes undecidable. One of the most popular im-
plementation is SWRLTab [swr] - an extension to the Protégé framework [pro],
that uses mainly the Jess [jes] inference engine (though it could use other en-
gines too). Other implementations are: R2ML [r2m], Bossam [bos], Hoolet [hoo],
Pellet [pel], KAON2 [kao] and RacerPro [rac].
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3 From Tables to Information

The first step towards making the data understandable by different agents1 per-
forming their activities in different contexts is to understand the fact that we
are only dealing with representations of concepts and facts. As we exemplified
before, 15 = 56.78 = 12.49 if one is gallons (US), one is liters and one is gallons
(UK). Consequently, it makes more sense to have an abstract concept repre-
senting this volume and attach to it the knowledge that it may be expressed in
different ways.

A tempting way of moving information out of the restrictive relational
database is to encode it using XML. Using a näıve method implemented in most
database systems, this would result in, literally, a data dump. For instance, a
simple table containing cars and mileage values (Table 1) can be expressed as in
Listing 1.5.

Using XML does not solve our problem. As discussed in [Mad01], XML is not
a silver bullet - it is just another way to express the data. It only provides a
more flexible way, allowing us to add more meaning to it. A simple “data dump”
from the relational database is not enough for two reasons: First, as we see in
Listing 1.5, the file mixes together the structure of the data with the data itself.
Conceptually, these are different and should be represented as such. Second, the
data itself is stored as if to preserve the physical appearance of the table (i.e. a
sequence of rows, each with a few columns) rather than to preserve its underlying
meaning. It is thus clear that a different approach is needed.

Table 1. Sample relational table

Automobile Mileage

Ford Focus 24

Lotus Elise S 25

Listing 1.5. XML representation of relational database

1 <?xml version="1.0"?>
2 <mysqldump xmlns:xsi="[...]XMLSchema-instance">
3 <database name="test">
4 <table_structure name="US cars">
5 <field Field="automobile" Type="varchar(20)" />
6 <field Field="mileage" Type="float(11)" />
7 </table_structure>
8 <table_data name="cars">
9 <row>

10 <field name="automobile">Ford Focus</field>
11 <field name="mileage">24</field>

1 we prefer the term ’agents’ to show that they can be either human end-users or other
computer systems.
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12 </row>
13 [...]
14 </table_data>
15 </database>
16 </mysqldump>

There exist attempts to extract ontological information from relational tables
[Ast04, LM04]. What we want here is not nearly as ambitious as in these works.
For our purpose, we don’t necessarily need to infer a full scale ontology from
the data, but simply to express things that are the same as being the same and
things that are different as being different. It sounds simple for a human being,
but computers have serious difficulties in performing even this simple task.

The first thing we want to do is separate the structure of the representation
from the data itself. Listing 1.6 shows how we can define an ontological structure
to organize the data in the table. We use the term “ontological” simply because
we use the ontology specification language, OWL, but one should not imagine
a complex theory behind it: in this listing we simply state that we deal with
two concepts (Automobile and Mileage) who are connected by a relationship
hasMileage. The difference between this approach and the simple XML dump is
that here automobile and mileage are regarded as concepts, rather than fields
in a table. It is a subtle, but essential difference. Here, a particular instance of
the Automobile class has a name, but is separate from its name. This distinction
will allow us later to specify that Ford Focus is the same car as Focus and
that 28.8 is the same mileage as 24 (one using British gallons and one using
American gallons). This way, in the data file shown in Listing 1.7 we can define
the abstract mileage mileage1 and give it a value and then define the abstract
car Focus and give it a name and associate it with the abstract mileage value. In
these listings, an ObjectProperty relates two instances of two classes, while a
DatatypeProperty relates the instance of a class to a pre-defined type (integer,
string, etc.).

Listing 1.6. legacyUS.owl:Ontology structure for the information in the relational
database

1 <?xml version="1.0"?>
2 <rdf:RDF[...]
3 xml:base="legacyUS.owl">
4 <owl:Ontology rdf:about=""/>
5 <owl:Class rdf:ID="Car"/>
6 <owl:Class rdf:ID="Mileage"/>
7 <owl:ObjectProperty rdf:ID="hasMileage">
8 <rdfs:domain rdf:resource="#Car"/>
9 <rdfs:range rdf:resource="#Mileage"/>

10 </owl:ObjectProperty>
11 <owl:DatatypeProperty rdf:ID="hasValue">
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12 <rdfs:range rdf:resource="[...]#float"/>
13 <rdfs:domain rdf:resource="#Mileage"/>
14 </owl:DatatypeProperty>
15 <owl:FunctionalProperty rdf:ID="hasName">
16 <rdfs:range rdf:resource="[...]#string"/>
17 <rdfs:domain rdf:resource="#Car"/>
18 <rdf:type rdf:resource="#DatatypeProperty"/>
19 </owl:FunctionalProperty>
20 </rdf:RDF>

Listing 1.7. legacyUSdata.owl:Data represented using the ontological structure

1 <?xml version="1.0"?>
2 <rdf:RDF [...]
3 xmlns:US="legacyUS.owl#"
4 xmlns:contexts="contexts.owl#"
5 xml:base="legacyUSdata.owl">
6 <owl:Ontology rdf:about="">
7 <owl:imports>
8 <rdf:Description rdf:about="legacyUS.owl">
9 </rdf:Description>

10 </owl:imports>
11 </owl:Ontology>
12 <US:Mileage rdf:ID="mileage1">
13 <US:hasValue [...]">24</US:hasValue>
14 </US:Mileage>
15 <US:Car rdf:ID="Focus">
16 <US:hasName [...]>Ford Focus<US:hasName>
17 <US:hasMileage rdf:resource="#mileage1"/>
18 </US:Car>[...]
19 </rdf:RDF>

Listings 1.6 and 1.7 show the kind of input our system considers as source.
We call the files legacy because they are obtained directly from existing data,
without any context information. With respect to the amount of reasoning nec-
essary at this point, our requirements are quite low since the machine needs
not understand the concepts, but merely identify them as concepts rather than
rows or columns in a table. The translation from the relational-model repre-
sentation to our ontological representation is easily done automatically using
one of the several available transformation languages such as XSLT [Cla99],
FleXML [Ros01] or HaXml [WR99]. Subsequently, we can use expressions like
isSemanticType(Car, ST398) to express the fact that the type Car defined in
Listing 1.6 represents the conceptual type ST 398. We refer to such expression
as elevation axioms because they elevate the class Car from its meaning as a
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collection of entities in a legacy database, to a conceptual level. Using such el-
evation axioms instead of attaching properties to the original class Car reduces
the amount of work that the user needs to do by increasing the reusability of
the code.

4 Separating Context from Data Representation

In order to be able to do the things outlined in Section 1.2 we first need to estab-
lish a way to represent context. The flexibility of the RDF and OWL languages
allow for such a variety of architectures to be defined, that one of the problems
we faced was focusing on one in particular, one that provides, in our opinion,
the best solution for future extensions.

Initially, we had reduced the possibilities to three models (Figure 2).

Context

Source

Semantic
Type

Modifier

hasSources
hasContext

hasSemanticTypes
hasSource

hasModifiers
hasSemanticType

(a) Semantic Type is part of
the Source

Context

Source

Semantic
Type

Modifier

hasSources
hasContext

hasModifiers
hasSemanticType

se
pyTcit

na
meSs a

h
txet

n
o

C
ni

(b) Semantic Type is de-
fined in the Context

Context

Source

Semantic
Type

Modifier

hasSources
hasContext

inContext

hasSemanticType
hasModifiers

hasModifiers

(c) Semantic Type is inde-
pendent of the Context

Fig. 2. Models for context expression

4.1 Model 1: Semantic Type as Part of the Source

This model was our initial approach and it states that a data source should
have a context and that it should contain a set of semantic types. It is the most
basic approach because it attempts to link everything directly to the legacy data
source.

This model was not eventually acceptable because a source should not actually
contain a semantic object. It contains objects that we subsequently identify as
being automobiles, mileages, temperatures, locations, or anything else. By itself,
it contains only some non-identifiable classes and objects that, in the COIN
methodology, have to be related to semantic types via the elevation axioms.
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4.2 Model 2: Semantic Type as Part of the Context

From the first model, we have learned that the semantic types need to be defined
separately from the data itself. Consequently, we considered having them defined
as part of the context. This method provides sufficient flexibility to allow each
user that defines his or her own context to have complete freedom as to what it
considers to be significant types and how these should be represented.

The disadvantage of the method also lies in the flexibility we just mentioned:
additional mediation is needed and even if two users define two contexts with
semantic types having exactly the same representation, they still appear as du-
plicates when everything is put together to allow query answering. (see Figure 3:
the instance browser at the middle of the image shows duplicate semantic types
corresponding to each of the two contexts defined)

Fig. 3. Duplicate definitions of Semantic types using the second model

4.3 Model 3: Semantic Types Defined Independently of Everything
Else

Finally, the chosen model considers the semantic types to be independent of both
the context and the source. In fact, we should imagine these semantic types as
defined in an external ontology. This method provides the most independence
between the different concepts. Figure 4 presents a more detailed view than
the one in Figure 2, showing the files used for each component and referencing
Listings presented in this paper. We will be using three files to express context,
in addition to the two files that represent the data. Two of the three are also
represented in Figure 4, while the third - the contextDefs.owl file in Listing 1.8
provides the basic definitions needed for context representation. As such, it can
be though of as the entire Figure 4 (without the sources). The contextDefs.owl
files defines the context as a set of modifiers attached to a semantic type (some
items present in the file will be explained in the next sections).
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Fig. 4. Our model, along with the files that contain each component

Listing 1.8. contextDefs.owl: the context definition

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xml:base="contextDefs.owl">
4 <owl:Ontology rdf:about=""/>
5 <owl:Class rdf:ID="Context"/>
6 <owl:Class rdf:ID="Query"/>
7 <owl:Class rdf:ID="TriggeredRules"/>
8 <owl:Class rdf:ID="SemanticType"/>
9 <owl:Class rdf:ID="Modifier"/>

10 <owl:Class rdf:ID="ModifierValue"/>
11 <owl:ObjectProperty rdf:ID="hasModifiers">
12 <rdfs:range rdf:resource="#Modifier"/>
13 <rdfs:domain rdf:resource="#SemanticType"/>
14 </owl:ObjectProperty>
15 <owl:ObjectProperty rdf:ID="isSemanticType">
16 <rdfs:range rdf:resource="#SemanticType"/>
17 </owl:ObjectProperty>
18 <owl:DatatypeProperty rdf:ID="hasValue">
19 <rdfs:range rdf:resource="[...]#string"/>
20 <rdfs:domain rdf:resource="#ModifierValue"/>
21 </owl:DatatypeProperty>
22 <owl:ObjectProperty rdf:ID="hasContext"/>
23 <owl:ObjectProperty rdf:ID="inContext">
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24 <rdfs:range rdf:resource="#Context"/>
25 <rdfs:domain rdf:resource="#ModifierValue"/>
26 </owl:ObjectProperty>
27 <owl:ObjectProperty rdf:ID="isForModifier">
28 <rdfs:range rdf:resource="#Modifier"/>
29 </owl:ObjectProperty>
30 <owl:DatatypeProperty rdf:ID="ruleName">
31 <rdfs:domain rdf:resource="#TriggeredRules"/>
32 <rdfs:range rdf:resource="[...]#string"/>
33 </owl:DatatypeProperty>[...]
34 </rdf:RDF>

The following listing (Listing 1.9) contains the file that represents the sys-
tem’s understanding of the world : a list of concepts, what properties they have
(modifiers) and how they relate to each other. In our example, it states that
automobiles have a mileage attribute that is measured by mileage unit.

Listing 1.9. contextOntology.owl: Semantic types definitions (including the modi-
fiers they accept)

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns="contextOntology.owl#"
4 xmlns:contextDef="contextDefs.owl#"
5 xml:base="contextOntology.owl">
6 <owl:Ontology rdf:about="">
7 <owl:imports rdf:resource="contextDefs.owl"/>
8 </owl:Ontology>
9 <contextDef:SemanticType rdf:ID="Mileage">

10 <contextDef:hasModifiers>
11 <contextDef:Modifier rdf:ID="MileageUnit"/>
12 </contextDef:hasModifiers>
13 </contextDef:SemanticType>
14 <contextDef:SemanticType rdf:ID="Automobile"/>
15 </rdf:RDF>

Finally, Listing 1.10 shows the instance of a context: all, or just a subset of
modifiers, are assigned values in this file. In this listing, Lines 10-13 give a label to
the context, which will be used in differentiating modifier values with similar
representations in different contexts (like mpg in our case). Then, lines 14-20 define
the mpg modifier value, identifying its context and the modifier it applies to.

Listing 1.10. UScontext.owl: Context instance file

1 <?xml version="1.0"?>
2 <rdf:RDF



90 M. Lupu and S. Madnick

3 xmlns="UScontext.owl#"
4 xmlns:contextOntology="contextOntology.owl#"
5 xmlns:contextDef="contextDefs.owl#"
6 xml:base="UScontext.owl">
7 <owl:Ontology rdf:about="">
8 <owl:imports rdf:resource="contextOntology.owl"/>
9 </owl:Ontology>

10 <contextDefs:Context rdf:id="USContext">
11 <rdfs:label rdf:datatype="[...]#string">
12 USContext</rdfs:label}
13 </contextDefs:Context>
14 <contextDefs:ModifierValue rdf:ID="mpg">
15 <contextDefs:inContext rdf:resource="#USContext"/>
16 <contextDefs:isForModifier rdf:resource=
17 "contextOntology.owl#MileageUnit"/>
18 <contextDefs:hasValue rdf:datatype="[...]#string">
19 mpg</contextDefs:hasValue>
20 </contextDefs:ModifierValue>
21 </rdf:RDF>

4.4 Automatic Identification of Context

In Listing 1.10 we identified explicitly the context of a modifier value by means
of the inContext property in line 15. This may seem redundant considering that
the value is defined in a file specific to this context. In fact, this property can be
automatically asserted using the from named construct in the SPARQL query
language. Listing 1.11 shows how this can be done, with results in Table 2.

Listing 1.11. Using the from named construct we can identify to which context each
modifier value belongs to

1 prefix contextDefs:<contextDefs.owl#>
2 select ?src ?modifier ?value
3 from named <UKcontext.owl>
4 from named <UScontext.owl>
5 where {
6 graph ?src{
7 ?modifier contextDefs:hasValue ?value
8 }
9 }

The results in column src of Table 2 may be used to replace the labels in
Listing 1.10. In the remaining of the presentation we will assume that the labels
have already been set, either manually, or using the method we just indicated.
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Table 2. Result of query in listing 1.11

src modifer value

contextUS.owl contextOntology:MileageUnit mpg

contextUK.owl contextOntology:MileageUnit mpg

4.5 The Mediator File

To make the system work, one file needs to import all these bits and pieces to-
gether and build the construct of the COntext INtegration strategy. We call this
the mediator file. Listing 1.12 shows an extract of its contents, in particular the
import statements and the way we define the context of a source. In this example,
the source is just the Mileage entity mileage1 defined in the legacyUSdata.owl
file (Listing 1.7). However, it can be anything else: an entire file, a class or just
an instance as in this case.

Listing 1.12. The mediator file puts together all the different pieces of the architecture
and defines particular contexts of the sources

1 <rdf:RDF>
2 xmlns:UKdefs="legacyUK.owl#"
3 xmlns:USdefs="legacyUS.owl#"
4 xmlns:USdata="legacyUSdata.owl#"
5 xmlns:contextDefs="contextDefs#"
6 [...]
7 <owl:Ontology rdf:about="">
8 <owl:imports rdf:resource="UScontext.owl"/>
9 <owl:imports rdf:resource="UKcontext.owl"/>

10 <owl:imports rdf:resource="legacyUSdata.owl"/>
11 <owl:imports rdf:resource="legacyUK.owl"/>
12 </owl:Ontology>
13 <rdf:Descripton rdf:about="legacyUSdata.owl#mileage1">
14 <j.0:isSemanticType rdf:resource=
15 "contextOntology.owl#Mileage"/>
16 <j.0:hascontext rdf:resource="UScontext.owl#"/>
17 </rdf:Description>
18 </rdf:RDF>

In the listing above, lines 2-4 give names to particular ontologies, names which
we will use in defining the rules and the queries below.

Now we can, for instance, identify the context of a source using a query similar
to the following:

Listing 1.13. Query to identify the context of a source

1 prefix contextDefs:<contextDefs.owl#>
2 select ?data ?context
3 where {?data contextDefs:hasContext ?context}
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In our example, the results of this query is shown in Table 3.

Table 3. Results of the context query in Listing 1.13

data context

USdata:mileage1 USContext:USContext

5 Context Conflict Identification and Resolution

In the previous sections we have explained how a user might query the data to
find out what is the appropriate context it refers to. In this section we will show
how we do this automatically for the purpose of context conflict determination
and how this determination will trigger the necessary conversion rules. We will
continue to use the example of cars and mileages presented throughout this work.

The approach we follow in this work is a two-step approach: first, we need to
determine the need for a conversion (i.e. determine the existence of two different
contexts) and then apply the corresponding rule.

These two phases are implemented in two sets of rules: first a trigger rule
analyses the data and the query to identify potential conflicts. If one such conflict
is identified, a flag is raised, to announce the necessity of the application of a
conversion rule. We will describe the implementation of this flag shortly. Upon
assertion of the trigger flag, the corresponding rule will automatically be triggered
and context mediation will take place by addition of new data to the dataset.

5.1 The Trigger Rule

The idea of the trigger rule is to look for conflicts and add a flag, in the form of
a small text representing the needed conversion, which is added to a collection
of triggers called TriggeredRules1 in our example.

Listing 1.14 shows the exact rule used to determine conflicts between any two
attributes of the same type.

Listing 1.14. Rule for the determination of context conflict

1 USdefs:hasValue(?attribute, ?attributeValue) ∧
2 contextDefs:hascontext(?attribute, ?dataContext) ∧
3 contextDefs:hascontext(Query_1, ?queryContext) ∧
4 differentFrom(?dataContext, ?queryContext) ∧
5 contextDefs:isSemanticType(?temp, ?semType) ∧
6 contextDefs:hasModifiers(?semType, ?modifier) ∧
7 contextDefs:isForModifier(?modVal, ?modifier) ∧
8 contextDefs:hasValue(?modVal, ?dataModVal) ∧
9 contextDefs:inContext(?modVal, ?datacontext) ∧

10 contextDefs:isForModifier(?modVal1, ?modifier) ∧
11 contextDefs:hasValue(?modVal1, ?queryModVal) ∧
12 contextDefs:inContext(?modVal1, ?querycontext) ∧
13 rdfs:label(?queryContext, ?c1) ∧
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14 rdfs:label(?dataContext, ?c2) ∧
15 swrlb:stringConcat(?tn0,":",?queryModifierValue) ∧
16 swrlb:stringConcat(?tn1,?c1,?tn0) ∧
17 swrlb:stringConcat(?tn2,"-to-",?tn1) ∧
18 swrlb:stringConcat(?tn3,?dataModifierValue,?tn2) ∧
19 swrlb:stringConcat(?tn4,":",?tn3) ∧
20 swrlb:stringConcat(?triggername,?c2,?tn4)
21 → contextDefs:ruleName(TriggeredRules1, ?triggername)

A detailed explanation follows:

Lines 1-4 identify the difference between the contexts of the data and the query.
Lines 5-6 identify the semantic type and modifier
Lines 7-9 identify the value of the modifier in the context of the dataset
Lines 10-12 do the same for the value of the modifier in the query context.
Lines 13-14 identify the labels of each context, used later in generating the

trigger name
Lines 15-20 generate the name of the trigger
Line 21 asserts the trigger

In this implementation, the attribute itself is linked by a hasContext relation to
a particular context. In other situations, such a relation may only be defined for
the entire dataset, rather than for individual attributes. This is not a problem,
as a SWRL rule can extend the hasContext rule from a class to its components.

In our running example, this rule would generate a flag of the form USContext:
mpg-to-UKContext:mpg.

5.2 The Conversion Rule

The actual conversion rule that transforms the miles per gallon measure unit
from Winchester gallons to Imperial gallons is shown in Listing 1.15. Line 1
checks the existence of the triggered flag and, if this condition is satisfied, it
performs the necessary mathematical conversion functions (lines 2-4) and asserts
the new value in line 5.

The result of applying both rules on the knowledge base is shown in Figure
5. We can see that two new facts have been asserted: first, the trigger rule has
discovered the context conflict and, second, upon assertion of the conflict, the
conversion rule has been triggered to compute the new value.

Listing 1.15. Conversion rule

1 contextDefs:ruleName(TriggeredRules1,
2 "USContext:mpg-to-UKContext:mpg") ∧
3 USdefs:hasValue(?mileage, ?mileageValue) ∧
4 swrlb:multiply(?mileage1, ?mileageValue, 12) ∧
5 swrlb:divide(?newValue, ?mileage1, 10)
6 → UKdefs:hasValue(?mileage, ?newValue)
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Fig. 5. With two rules in the knowledge base, the conversion between mileage units
has been performed automatically. In the lower half of the image we can see that the
new mileage value (28.8) has been correctly asserted.

5.3 Query Alteration

The simple way in which we have defined the conversion rule (Listing 1.15)
allows us to re-write the query in an equally simple manner. Listings 1.16 and
1.17 show the original and, respectively, the new query for obtaining the value
of the mileage for the Focus. As it can be observed, the only difference is the
prefix of the hasValue relationship.

Listing 1.16. Original query

1 SELECT ?mileageValue
2 WHERE { ?loc USdefs:hasMileage ?mileage.
3 ?loc USdefs:hasName "Ford Focus".
4 ?mileage USdefs:hasValue ?mileageValue}

Listing 1.17. New query for the UK context

1 SELECT ?mileageValue
2 WHERE { ?loc USdefs:hasMileage ?mileage.
3 ?loc USdefs:hasName "Ford Focus".
4 ?mileage UKdefs:hasValue ?mileageValue}

Despite its ease of use and implementation, the current method is not per-
fect. The relation UKdefs:hasValue is not directly linked to the UK context.
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Formally, it has no link to any specific context. Though this approach can be
implemented programatically, our future work, described in the next section,
aims towards an ever closer integration with the semantic web tools.

6 Future Work

Our work so far has shown how we can approach the problem of context in-
terchange using the COIN strategy via the tools of the Semantic web. To fully
achieve all the features that are currently available in COIN there are still steps
ahead, some of which we describe in this section.

The solution presented in the previous section relies on external programing
languages to transform a query such that it returns the result in a different
context. A better solution would be to have a new tertiary relation, similar to
the one that defined the value of a modifier in a particular context. This new
relation, which we call hascontextValue links together an attribute, a value and
a context. As we have seen, SWRL can only express binary relations directly,
so the only way to implement this relation is to define it as an owl:class with
three binary relations. Now, the conversion rule needs to infer the new tertiary
relation that links the attribute to the new value in the new context. Such a
rule can be created following the Semantic Web best practices [NRHW06] as in
Listing 1.18.

Listing 1.18. Tertiary relation implemented as an OWL class

1 <owl:Class rdf:ID="hascontextValueRelation"/>
2 <owl:ObjectProperty
3 rdf:ID="hascontextValueRelation context">
4 <rdfs:range rdf:resource="#Context"/>
5 </owl:ObjectProperty>
6 <owl:ObjectProperty
7 rdf:ID="hascontextValueRelation attribute"/>
8 <owl:ObjectProperty
9 rdf:ID="hascontextValueRelation value"/>

The difficulty in inferring this relation in the conversion rule is that a new
instance has to be generated: a new individual of the hascontextValue type that
would link the three components (attribute, value and context). Unfortunately,
the current standard SWRL specification does not provide means to instantiate
classes, thus making this solution temporarily unfeasible. This leavs only the
option of an “impure” approach using external programming tools.

7 Conclusion

In this work we describe how the COntext INterchange strategy can be im-
plemented using the Semantic Web tools, in particular using OWL, SWRL and
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SPARQL. We acknowledge the existence of massive amounts of data in relational
databases that lack all the necessary data required for users other than the orig-
inal designers of the database and describe how the information present in these
databases can be “elevated” to a knowledge base. Subsequently, we show how to
structure information pertaining to the context of the data - how to model the
definitions of semantic type, modifier and modifier value. Using these models we
show how the necessary conversions of the data values can be made by using a
two-step process involving pairs of trigger and conversion rules.
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Abstract. In order to cope with the expected size of the Semantic Web
(SW) in the coming years, we need to benchmark existing SW tools
(e.g., query language interpreters) in a credible manner. In this paper we
present the first RDFS schema generator, termed PoweRGen, which takes
into account the morphological features that schemas frequently exhibit
in reality. In particular, we are interested in generating synthetically the
two core components of an RDFS schema, namely the property (relation-
ships between classes or attributes) and the subsumption (subsumption
relationships among classes) graph. The total-degree distribution of the
former, as well as the out-degree distribution of the Transitive Closure
(TC) of the latter, usually follow a power-law. PoweRGen produces syn-
thetic property and subsumption graphs whose distributions respect the
power-law exponents given as input with a confidence ranging between
90 − 98%.

1 Introduction

Semantic Web (SW) [4] gains increasing popularity nowadays. A significant
amount of RDF/S schema and instance descriptions are already available on
the WWW. According to [3], 16.69% of XML documents rely on RDF/S [6],
while their volume reaches the 31.71% of the available XML data. As the size of
the SW is expected to be further increased in the coming years, the scalability of
SW storage, query or update tools becomes crucial [24]. Following the tradition
of data management community, new benchmarks and synthetic data genera-
tors need to be developed for the SW. This need is also underlined by the recent
RDF/S benchmarking initiatives undertaken by the W3C consortium [28].

Unlike XML data generators [21,2], which rely on fixed DTDs or XML schemas,
we pay particular attention to the synthetic generation of SW schemas spec-
ified in RDFS [6]. This is motivated by the fact that advanced SW reasoning
functionalities (e.g., concerning subsumption relationships) can be built only by
exploiting the additional information encoded in these schemas.

Our focus in RDFS, instead of OWL, schemas is motivated by the fact that
the majority of available SW schemas rely on the RDFS specification (according

V. Christophides et al. (Eds.): SWDB-ODBIS 2007, LNCS 5005, pp. 98–116, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to [9], 85.45% relies on RDFS, while 14.55% on OWL). Additionally, the core
RDFS features are also exploited by OWL. Therefore, our work can be seen as a
basis that can be extended to OWL schema generation.

RDFS schemas are essentially graphs whose arcs are of different nature,
namely, a) arcs representing subsumption relationships among classes, and b)
arcs representing relations between classes (e.g., has a) or attributes (e.g., title),
collectively called properties. In this context, for each RDFS schema we essen-
tially need to generate two graphs that have the same set of nodes (i.e., classes
or literal types), namely, the subsumption, and the property graph.

It is well known that a power-law is a function of the form f(x) ∝ x−b.
The total-degree distribution of the property graph, as well as the out-degree
(i.e., the class descendants) distribution of the Transitive Closure (TC) of the
subsumption graph usually follow a power-law distribution [25]. Furthermore,
classes that appear as domain of many properties are located highly in the class
hierarchies, i.e., classes with high out-degree in the property graph are located at
the first levels of the subsumption graph. Thus, synthetic RDFS schemas should
exhibit similar features with those frequently encountered in reality.

In this paper we propose the first synthetic RDFS schema generator, termed
PoweRGen, which takes as input: a) the number of schema classes and properties,
b) the characteristic exponents of the aforementioned power-laws, c) the depth
of the subsumption graph, and d) the knowledge whether the subsumption graph
should be a DAG or a tree. The property graph of the generated schemas follows
the power-law given as input (98% confidence). The same is also true for the
subsumption graph in the case of trees. For DAGs, the generated subsumption
graph approximates with a 90.3% confidence a power-law, whose characteristic
exponent follows (99.4% confidence) the one given as input.

The remainder of this paper is organized as follows: Section 2 introduces the
main features of the property and subsumption graph forming an RDFS schema.
Section 3 presents the generation of RDFS schemas. Section 4 presents the results
of an experimental evaluation, while Section 5 compares our graph generation
method with related work. Finally, Section 6 identifies issues for future research.

2 Semantic Web Schema Graphs

RDFS schemas are usually represented as directed labeled graphs, whose nodes
are classes or literal types and arcs are properties. These graphs may have self-
loops (representing recursive properties) and multiple arcs (when two classes
are connected by several properties). The leftmost part of Figure 1 depicts an
example of a schema. In particular, SW schemas have two different kinds of arcs:
subsumption arcs (rdfs:subclassOf ), and user defined ones. The former comprises
subsumption relationships among classes (which are transitive in nature), while
the latter comprises attributes or relationships among classes, which are called
properties. As the interpretation of these two arc kinds is different, for each
RDFS schema we need to define two graphs: a) the property (e.g., the second
part of Figure 1) and b) the subsumption graph (e.g., the third part of Figure 1).
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Fig. 1. A SW schema and its constituent graphs

Both graphs have the same set of nodes (i.e., the union of classes and literal types
used in the schema) but they comprise different kinds of arcs.

Definition 1. The property graph of a schema is a directed graph Gp = ({C ∪
L}, P ), where C is a set of nodes labeled with a class name, L is a set of nodes
labeled with a literal type, P is a set of arcs of the form 〈c1, p, c2〉 where c1 ∈ C,
c2 ∈ C ∪ L, and p is a property name.

Definition 2. The subsumption graph of a schema is a directed graph Gs =
(C, Ps), where C is a set of nodes labeled with a class name and Ps is a binary
relation over the elements of C.

By considering the RDFS semantics [6] we can obtain the TC of the subsumption
graph of a schema (e.g. the rightmost part of Figure 1).

Definition 3. Let Gs = (C, Ps) be the subsumption graph of a schema. The
TC of the subsumption graph, denoted by G∗s, is the pair (C, P ∗

s ) where P ∗
s is

the TC of Ps.

It should be stressed that, according to the RDF/S semantics [14], class subsump-
tion is a transitive relation and hence we should study the TC of the subsumption
graph. The effect of the subsumption to the property graph is implicit.

Concerning the property graph, the out-(resp. in-) degree of a class is the
frequency of occurrence of this class in the ranges (resp. domains) of properties,
while the total-degree of a class is the frequency of occurrence of this class in
either the ranges or the domains of properties. Furthermore, the out-(resp. in-)
degree of a class in the TC of the subsumption graph corresponds to transitive
subclasses (resp. superclasses) of this class.

2.1 RDFS Schema Graph Features

In this Section, we briefly recall the experimental results of [25] highlighting the
main graph features exhibited by an adequate large corpus1 of big sized schemas
available on the SW. In particular, we are interested on the core RDFS features

1 For more information see http://athena.ics.forth.gr:9090/RDF/VRP/SWSchemas/
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|propertiesFrom(c)| = |{p ∈ P | from(p)=c}|

|propertiesTo(c)| = |{p ∈ P | to(p)=c}|

|properties(c)| = |propertiesFrom(c)|  + |propertiesTo(c)| 
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Fig. 2. Main graph features of SW schemas

which are also exploited by OWL. We report the degree distributions of the prop-
erty and subsumption graph. Additionally, we report combinatorial findings con-
cerning the two graphs (e.g., the class distribution per level of the subsumption
hierarchy, as well as, the number of related properties) which allows us to sketch
a more accurate picture about the morphology of real RDFS schemas.

Degree Distributions. In order to analyze the degree distributions of schema
graphs, 4 (mainly) Discrete Random Variables (DRV) were considered. In partic-
ular, 3 of them corresponded to the in-/out-/total-degrees of the property graph,
Gp, and the fourth to the out-degrees (corresponding to class descendants) of the
TC of the subsumption graph, G∗s. Possible power-laws were investigated on two
functions related to each DRV:

i) complementary cumulative probability density function (CCDF), i.e., P (X ≥
x)

ii) the relationship among the values of its range set, denoted by D, and their
rank in decreasing order (VR), i.e., a function f : [1, ..., |D|]→ D.

Implicitly, probability density function (PDF), i.e., P (X = x), was also consid-
ered, since CCDF and PDF are essentially the same and whenever PDF follows a
power-law with exponent b, CCDF follows a power-law with exponent b− 1 [7].

The results of the analysis of [25] are summarized in Figure 2. The main con-
clusion drawn was that the majority of RDFS schemas approximate a power-law
for the total-degree functions (94.8% for VR and 67.2% for CCDF) of the property
graph, while for out- and in-degrees the corresponding percentages are signifi-
cantly lower. The characteristic power-law exponents for the total-degree VR
(resp. CCDF) lie in [0.79, 2.18] (resp. [0.65, 2.05]). Concerning the subsumption
graph, the out-degree VR (resp. CCDF) approximate a power-law for the 87.9%
(resp. 60.2%) of RDFS schemas. The characteristic exponents in this case lie in



102 Y. Theoharis, G. Georgakopoulos, and V. Christophides

[0.97, 2.44] (resp. [0.54, 1.47]) for VR (resp. CCDF). Class ancestors distribution
was not observed to follow a power-law (nor any other) distribution for real
SW schemas.

Morphological Features. An interesting observation that correlates the prop-
erty graph with the subsumption graph is that most properties have as domain,
classes which are located highly in the class hierarchy, i.e., somewhere between
the root and the middle level. This fact shows that the specification of a class
in RDFS schemas is used more for classification purposes rather than for refin-
ing classes with additional properties. The same trend was observed for range
classes, although the dominance of classes located higher over those located lower
in the subsumption graph is not so important as for property domains.

Furthermore, the consideration of one additional DRV corresponding to num-
ber of classes per hierarchy level revealed the skewness of the distribution of
classes per level. Specifically, the VR function approximates (for the 42.1% of
real RDFS schemas) a power-law while the PDF always approximates the uni-
form distribution. Moreover, the corresponding exponent of the VR function
approximately depends linearly on the number of nodes (classes). In addition,
the level, denoted by k, at which the maximum number of nodes are located is
approximately 0.75× depth for real RDFS schemas, while the number of classes
located at a specific level decreases as long as its distance to k increases. Last,
on average the 75% of classes of real RDFS schemas are leaves.

Finally, there exists a strong correlation between the out- and in-degrees of
nodes of Gp. In other terms, classes that appear as domain of many proper-
ties appear also as range of many (the same or other) properties. Last but not
least, the percentage of self-loops (i.e., recursive properties) is quite significant,
i.e., 12.6% in the average case. The average percentage of multiple arcs, that is
properties that share the same domain and range, is slightly higher, i.e., 17.7%.

3 Synthetic SW Schema Generation

In this Section, we present the main algorithmic steps of the power-law based
RDFS synthetic schema generator (PoweRGen). In particular, PoweRGen com-
prises the:

i) generation of the total-degree (resp. out-degree) sequence of Gp (resp. G∗s). To
this end, it exploits two methods to sample a bag of values from a DRV that
follows a power-law,

ii) generation of the property (resp. subsumption) graph by using GenerateGp

(resp. GenerateGs) algorithms. These algorithms are based on Linear Pro-
gramming and exploit features that schemas frequently exhibit in reality (see
Section 2.1)

iii) mapping of nodes of Gp to nodes of G∗s in order to construct the output
schema.

In the sequel, we elaborate on each one of the above three steps.
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3.1 Sampling a DRV That Follows a PL

To generate the total-degree sequence of Gp, as well as the out-degree sequence of
G∗s. we exploit two methods (see [23]) to sample a bag of values from a DRV that
follows a power-law. The former implements well known ideas and is indepen-
dent of the nature of the PDF function. The latter applies only when the VR func-
tion is a power-law. The former is useful in the case that the DRV is bounded
by a maximum value. This is actually the case of out-degrees of G∗s in which the
maximum allowed value is |C|−1 (i.e., root descendants). The latter is useful in
the case that the sum of the bag of sampled values is predefined. This is actu-
ally the case of the total-degrees of Gp, where the sum of all total-degree values
should be equal to twice the number of schema properties (graph arcs).

3.2 Generating the Property Graph

Bellow, we explain in detail algorithm GenerateGp.

Algorithm. GenerateGp

Inputs.
b: the VR exponent of the total-degree distribution,
Nc/Np: the number of schema classes/properties,
p0: percentage of classes that neither appear as domain

nor as range of any property.

(1) D := V RSampling(b, 	(1 − p0) × Nc
, 2 × Np);
Din := ∅; Dout := ∅;

(2) for i = 1 to Nc do
Din[i] = Dout[i] = 1

2
× D[i];

(3) Choose randomly nodes and attach on them a set S
of 	0.126 × Np
 self-loops (modify Din and Dout);

(4) Choose randomly pairs of nodes and attach on them a set
M of 	0.177 × Np
 multiple arcs (modify Din and Dout);

(5) E := the set of arcs of the solution of the
LP1 instance corresponding to Din and Dout;

(6) Ep = E � S � M ;

Using VRSampling we can generate the total-degree sequence, denoted by D,
of the Gp based on the VR exponent of the total-degree distribution, denoted
by b (step 1). We choose to generate D instead of Dout and Din, because
the percentage of real RDFS schemas that approximate a power-law for the
total-degree distribution is bigger than the corresponding percentages for out-
and in-degree distributions (see Section 2.1). We should also mention that there
exist classes in real SW schemas that neither appear as domain nor as range of
any property, i.e., their total-degree is 0. The percentage of such classes, denoted
by p0, can be a parameter of the generator (a typical value is 50%). Hence, we
generate D by setting (b, N, sum) = (b, �(1− p0)×Nc�, 2×Np) in VRSampling.
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As a next step (2), we need a method that splits D into Dout and Din.
This method should adhere to the fact that there exists a strong correlation
between the out- and in-degrees of nodes. Additionally the sum of Dout elements
should be equal to the sum of Din, since it equals the number of graph arcs. A
simple formula that adheres to both conditions is

∑
v∈V D(v) =

∑
v∈V Dout(v)+∑

v∈V Din(v).
Furthermore, we will randomly choose nodes (whose both out- and in-degree

are bigger than 1) to assign them (0.126 × Np in total) self-loops and pairs
of nodes (whose both out- and in-degree are bigger than 2) to assign them
(0.177 × Np in total) multiple arcs (steps 3 and 4). Let S be the set of the
chosen self-loops and M the set of the chosen multiple arcs. For each self-loop
〈u, u〉, we consider that Dout(u) := Dout(u) − 1 and Din(u) := Din(u) − 1.
Similarly for each multiple arc 〈u, v〉, we consider that Dout(u) := Dout(u)− 1
and Din(v) := Din(v)− 1.

We can reduce the problem of generating a directed graph without self-loops
and multiple-arcs given Dout and Din as follows:

(LP1). Let G be a graph and let E be the set of its candidate arcs. The genera-
tion of G given its out- and in-degree sequences can be reduced to an LP instance
of the form:

min 0T x∑
(v,u)∈E xv,u = Dout(v), ∀v ∈ V∑
(u,v)∈E xu,v = Din(v), ∀v ∈ V

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E

We consider as candidate edges all the N×(N−1) possible edges of a directed
graph without self-loops and multiple edges. We should stress that, although we
allowed the edges variables xu,v to take non-integer values, every solution of
an LP1 instance is integral (all the variables xu,v ∈ {0, 1}). This is ensured
by the fact that (see Theorem 1) the matrix A of every LP1 instance is (for
a proof see [23]) totally unimodular (TUM), i.e., every square submatrix of A
has determinant equal to 0 or ±1. It is well known [15,27] that if A is a TUM
matrix, then all the vertices of the polytope {x : Ax = b, x ≥ 0} are integer for
any integer vector b. Simplex algorithm seeks for the optimum in the vertices
of the polytope defined by an LP instance. Since, every vertex of the polytope
defined by an LP1 instance is integral every solution of it is integral (in our case
xu,v ∈ {0, 1}).
Theorem 1. Every LP1 instance can be described as {x : Ax = b, 0 ≤ x ≤ 1}
where A is a TUM m× n matrix.

Attributes. In addition, we need to consider arcs which have as destination
Literals (e.g., String, Integer), i.e., attributes of classes. After generating Gp we
can add to the set of its nodes V , the Literal types, as specified in XML schema2.

2 http://www.w3.org/XML/Schema
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Then we connect them to the pre-existent nodes of Gp under the condition
that the total-degree sequence of Gp remains the same. This constraint can be
satisfied by replacing a number k of arcs of the form 〈u, v〉, where u, v correspond
to classes, such that Dout(v) = 0 (nodes representing literal types should have
out-degree zero), with arcs of the form 〈u, w〉, where w is a node that corresponds
to a Literal type. The number k of the attributes can be given as input (e.g., as
a percentage of Np).

Labeling properties. We should notice, that the output of GenerateGp is
a bag of unlabeled edges, i.e. pairs of nodes. In the current implementation of
PoweRGen, we consider a unique label (URI) per property in order to generate
an RDFS schema. However, we provide the appropriate abstractions that are
needed by a programmer to implement his one labeling policy. For instance, one
might need the same property to have multiple domains / ranges. In that case,
one should label with the same URI more than one edges.

3.3 Generating the Subsumption Graph

In order to generate Gs we consider as additional input the characteristic expo-
nent, denoted by b, of the power-law of the PDF function of the class descendants
distribution. Moreover, we take into account the depth, denoted by d, of Gs as
well as the information whether Gs should be a DAG or a tree. Bellow, we detail
GenerateGs algorithm.

Algorithm. GenerateGs

Inputs.
b: the PDF exponent of the class descendants distribution,
Nc: the number of schema classes.

(1) Dout := PDFSampling(b,Nc − 1, 0.25 × Nc);
(2) for i = 1 to 	0.75 × Nc
 − 1 do

Dout := Dout � {0};
(3) γ := 0.0017 × Nc + 1.36;
(4) S := V RSampling(γ, d, Nc) (Order S in descending order);
(5) k = 	 3

4
× d
;

(6) L := the set of G∗
s levels ordered according to f(l) = |k − l|;

(7) for i = 1 to d do
for j = 1 to S[i] do

Din.append(L[i]);
(8) Order Dout in descending and Din in ascending order;
(9) E := the set of arcs of the solution of the LP2

(or LP3 if Gs is considered to be a DAG) instance
corresponding to Din and Dout;

(10) if Gs is a Tree, then Es := E;
else Es := the transitive reduction of E;
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Generating Dout of G∗
s. Using the PDFSampling method, we can generate

the out-degree sequence of G∗s. Specifically, the biggest allowed value is Nc − 1,
since the root node has Nc−1 descendants. Furthermore, on average the 75% of
classes of real RDFS schemas are leaves, i.e. their out-degree is 0. Thus, we choose
the following parameters (b, M, N) = (b, Nc−1, 0.25×Nc) for the sampling (step
1). To obtain a sequence of length Nc we add 0.75×Nc−1 times (corresponding
to the 0.75% of leaf classes) the value 0 (step 2).

Generating Din of G∗
s. The generation of Din of G∗s is not as easy as that

of Dout. This is due to the fact that no frequent pattern has been observed for
the distribution of class ancestors. The best choice in this case, is to exploit the
fact that the classes per level VR approximates a power-law for a significant
proportion of real SW schemas (see Section 2.1). Moreover, the characteristic
VR exponent, denoted by γ, approximately depends linearly on the number of
nodes (classes). In this respect, we can produce a sequence of values, which
correspond to the number of nodes that are located at a specific level. To this
end, we sample according to the classes per level VR function with parameters
(b, N, sum) = (γ, d, Nc). This is due to the fact that we want to distribute Nc

nodes to d levels (steps 3 and 4).
However, we still do not know to which level a specific value of the sampled set,

denoted by S, corresponds. We exploit the fact that the level, denoted by k, at
which the maximum number of nodes are located is approximately 0.75× depth
for real SW schemas. Let xi be the i − th biggest value of S. We order levels
of G∗s according to their distance to the most populated level, i.e., L = 〈k, k +
1, k− 1, k + 2, k− 2, ...〉 (step 6). Then, we consider that xi nodes are located at
level L(i).

Combining Dout and Din of Gp. If Gs is a tree, the level at which a node is
located coincides with the number of its transitive ancestors, i.e., its in-degree
in G∗s (step 7). However, if Gs is a DAG, the level of a node consists only the
maximum lower bound for its in-degree. In the sequent, we use the symbol Din
only for trees, while symbol Din− for DAGs.

Trees We can reduce the problem of generating a tree given the degree sequences
(Dout and Din) of its TC as follows:

(LP2). Let Vi = {v ∈ V | Din(v) = i} and d be the maximum value of i. Vi

corresponds to the set of nodes located to the i− th level of the tree G and d to
its depth. Then the problem of generating G given the sequences of its transitive
closure is reduced to the LP instance of the form:

min 0T x∑
u∈Vi+1

(Dout(u) + 1)× xv,u = Dout(v), ∀i ∈ [0, d− 1], ∀v ∈ Vi∑
u∈Vi−1

xu,v = 1, ∀i ∈ [1, d], ∀v ∈ Vi

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E

To determine the candidate arcs (LP2 variables) of G, we observe that, an
arc 〈u, v〉 ∈ V ×V can be an arc of a Tree G : (V, E) only if, Dout(u) > Dout(v)
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Fig. 3. An Example of a Tree (left) / DAG (right)

and Din(u) = Din(v)−1. The first condition, (i.e., Dout(u) > Dout(v)) denotes
that u should have more descendants than v and holds for every DAG (see for
instance both parts of Figure 3), while the second one (i.e., Din(u) = Din(v)−1)
denotes that u should have one less ancestor than v and holds only for Trees. For
instance, in the DAG of the right part of Figure 3, there exists an edge 〈2, 4〉,
but Din(2) = 1 and Din(4) = 3, i.e., Din(2) = Din(4)− 1.

Moreover, it is evident that if arc 〈u, v〉 exists in the tree, then all v descen-
dants, as well as v itself, are descendants of u. This fact is expressed by the
constraints of the form

∑
u∈Vi+1

(Dout(u) + 1)× xv,u = Dout(v). The condition
that every tree node has only one parent is captured by the constraints of the
form

∑
u∈Vi−1

xu,v = 1.
We should notice that the value of every candidate edge is integral in every

LP2 instance solution (for a proof see [23]):

Theorem 2. Every solution, x∗ of an LP2 instance is integral. Specifically, it
holds that x∗ ∈ {0, 1}n.

Directed Acyclic Graphs. We can reduce the problem of generating a TC DAG
given Dout and Din− as follows:

(LP3). Let G∗ be a transitively closed DAG and E∗ be the set of its candidate
arcs. Then, the generation of G∗ given its out-degree sequence, Dout and a
sequence Din−, s.t., Din−(u) denotes the level of node u in G∗, can be reduced
to an LP instance of the form:

min 0T x∑
(u,v)∈E∗ xu,v = Dout(u), ∀u ∈ V∑
(v,u)∈E∗ xv,u ≥ Din−(u), ∀u ∈ V

xu,v + xv,w − xu,w ≤ 1, ∀〈u, v〉, 〈v, w〉 ∈ E∗

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E∗

To determine the candidate arcs of G, we observe that, an arc 〈u, v〉 ∈ V ×V can
be an arc of a transitively closed DAG G∗ : (V, E∗) only if, Dout(u) > Dout(v)
and Din(u) < Din(v)). We should notice that the strict inequalities guarantee
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that no cyclic path can be obtained by the considered set of candidate arcs3.
Otherwise, all the nodes of the cyclic path would have exactly the same out-and
in-degree, since G∗ is transitively closed.

The constraint xu,v + xv,w − xu,w ≤ 1 guarantees that whenever both arcs
xu,v, xv,w exist (i.e., xu,v = xv,w = 1), the transitive arc xu,w also exists. This
is justified as follows: whenever either xu,v or xv,w does not exist, the above
inequality obviously holds, since it is of the form a − b ≤ 1, where a, b ∈ [0, 1].
We focus on the case that both xu,v and xv,w exist. Then, xu,w also exists
because G∗ is transitively closed. Hence, xu,v + xv,w − xu,w = 1 + 1 − 1 ≤ 1,
which obviously holds as equality.

We should mention that (unlike LP1 and LP2 ) the solutions of LP3 instances,
are not integral in the general case. As a consequence, we should devise a method
for obtaining the set of arcs of the generated graph. To this end, we can consider
a threshold value T ∈ [0, 1] and that an arc 〈u, v〉 exists iff xu,v ≥ T . In Section 4
we will examine threshold values that yield good approximations with respect
to the given power-law.

Handling Infeasibility of LP instances. If the produced LP2/LP3 instance
is infeasible, we conclude that there does not exist a tree/DAG whose tran-
sitive closure simultaneously realizes the given sequences. In that case we go
back to step (1). PDFSampling uses a pseudo-random number generator and
consequently a different Dout is produced for each PDFSampling method call.

3.4 Combining Both Graphs

At the last PoweRGen step we consider that Gs : (Vs, Es) and Gp : (Vp, Ep)
are generated. Since they have the same set of nodes we should define an one-
to-one function h : Vs → Vp that maps each node of Gs to one and only node
of Gp. To this end, we exploit the fact that nodes with high out-degree in the
Gp are located highly in the Gs. Specifically, let k be the level of G∗s at which
the source nodes (corresponding to domains of properties) of most arcs of Gp

are located. We order the nodes of Vp in descending out-degree order and we
reach a list P . Also, let Vi be the set of nodes of G∗s located at level i, i.e.,
Vi = {v ∈ Vs | Din(v) = i}. Then, we map each of the first |Vk| nodes of P to
one and only node of Vk. Similarly, we map the next |Vk+1| nodes of P to one
and only node of Vk+1 and the next |Vk−1| nodes of P to one and only node of
Vk−1. This process continues until we map the nodes of V0 and of Vd to nodes
of Vp.

4 Experimental Evaluation

In this Section we experimentally evaluate PoweRGen on two axis, namely, the
effectiveness and the efficiency of the proposed algorithm. Figure 4 (resp. Fig-
ure 5) shows the generated Gp (resp. Gs) of a schema with 300 classes, 1000
3 Replace inequalities with equalities to allow cyclic paths.
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Fig. 4. Synthetic Gp example

Fig. 5. Synthetic Gs example

properties, total-degree VR exp. 0.6, depth = 5 and class descendants PDF exp.
1.7. The figures have been drawn using StarLion [26] and VRP [1] visualization
facilities.

4.1 Effectiveness

To investigate to what extent a function approximates a power-law, we rely
on a commonly used method (based on the least square errors method), called
Linear Regression [20], to fit a line in a set of 2-dimensional points and, thus,
to investigate whether the log-log plot of a function approximates a line. The
accuracy of the approximation is indicated by the correlation coefficient, the
absolute value of which (hereafter called ACC) always lies in [0, 1]. An ACC
value 1.0 indicates perfect linear correlation, i.e., the points are exactly on a
line. Additionally, if PDF follows a power-law with exponent β, i.e., P (X =
x) = αx−β , then CCDF follows a power-law with exponent β − 1, i.e., P (X ≥
x) = γx−(β−1) (see [7] for details). Based on this fact, we do Linear Regression
on CCDF plots [7] and the results regarding PDF immediately follow.

Total degree CCDF and VR functions of Gp are illustrated in Figure 6 (upper).
As one can observe the CCDF is almost a power-law (ACC = 0.98). This small
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Fig. 6. Gp total-degree and G∗
s out-degree functions of our example

divergence from a strict power-law (i.e., ACC = 1.0) is due to the VRSampling
method (see Section 2.1).

In the case of Gp and trees for Gs, we generate schemas whose degree se-
quences are sampled by the power-law distributions assumed as input. On the
other hand, in the case of DAGs for Gs the LP3 instance solutions usually have
coordinates (corresponding to arcs of G∗s) that are real numbers in (0, 1). To
reach a final set of arcs we will consider a threshold value T ∈ [0, 1]: an arc
〈u, v〉 exists iff xu,v ≥ T . The use of such heuristic may miss some transitive arcs
of G∗s. For instance, consider that T = 0.6 and in the LP solution xu,v = 0.7,
xv,w = 0.8 and xu,w = 0.5. Then, xu,v + xv,w − xu,w = 1 ≤ 1, as required for
the arcs of a TC DAG. However, to make the solution integral, we consider that
xu,v = xv,w = 1 and xu,w = 0. Concerning the value of T , we should notice that
a big threshold value (e.g., T = 0.9), decreases the probability of missing transi-
tive arcs, but ignores many arcs and thus the generated Dout and Din roughly
diverge from the given ones. On the other hand, a small threshold value (e.g.,
T = 0.1), results in bigger number of arcs than in the given sequences. After
experiments we found that T = 0.6 leads to best approximations with respect
to the given power-law.

To measure the quality of the approximations yielded by the above threshold,
we generated 1000 subsumption DAGs with parameters: 300 classes, depth = 5
and b = 1.7. Table 1 shows the distribution of the exponents and the ACC val-
ues of the generated subsumption graphs. The average computed value for b is
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Table 1. PDF power-law exponent and ACC of 1000 subsumption graphs with given
b = 1.7

Min Max Mean St.dev. COV

b 1.6 1.767 1.691 0.032 0.047
ACC 0.874 0.922 0.903 0.006 0.007

1.691, while the average ACC value is 0.903. We conclude that the out-degree
distribution of G∗s approximates (ACC = 0.903, i.e., 90.3%) a power-law whose
characteristic PDF exponent approximates (1.691

1.7 = 0.994, i.e., 99.4%) 1.7. Fig-
ure 6 (bottom) illustrates the CCDF and the VR functions of the out-degree of
one of the 1000 generated subsumption graphs.

4.2 Efficiency

In this Section we report the time and memory requirements of the LP instances
produced for the generation of synthetic SW schemas of various size. To solve
the LP instances we used the academic software Soplex [29]. The measurements
regarding memory and runtime reported below are strongly depended on the
efficiency of Soplex. Improved measurements can be obtained by using more so-
phisticated simplex implementations, such as the commercial CPLEX [16]. We
also measure the number of variables and constraints of the produced LP in-
stances that show the complexity of the reduction of our problem to the LP in-
stances and are independent of the specific software implementation of simplex.
Experiments were carried out on a PC with a Pentium IV 3.2GHz processor and
2 GB of main memory, over Suse Linux (v10.1).

Figure 7 (upper left) shows the number of variables and constraints of the LP1
instances that are produced to generate Gp for various number of classes, namely
300−1000. Specifically, we considered as constant b = 0.6 and Np = 1000 and we
vary Nc. Figure 7 (upper right) shows the time and space requirements of Soplex
to solve the LP1 instances produced to generate Gp. As one can observe, the
generation of typically sized schemas with 700 classes and 1000 properties [25]
needs 60 sec and 114 MB memory.

Figure 7 (middle left) shows the number of variables and constraints of the
LP3 instances that are produced to generate DAGs for Gs for various number of
classes, namely 100−700. Specifically, we considered as constant b=2.2, depth=7
and vary Nc. Figure 7 (middle right) shows the time and space requirements of
Soplex to solve the LP3 instances. We should mention that Soplex crashes for
schemas with more than 700 classes. This is due to the transitivity constraints,
whose number equals the number of all triples u, v, w of nodes, such that 〈u, v〉,
〈v, w〉 are candidate arcs.

On the other hand, in case of trees, the generation of Gs is much more efficient.
To show this fact we considered the degree sequences of the transitive closures
of trees whose 75% of nodes are leaves and we reduce their generation to an LP2
instance. We exponentially increase the number of classes, which is computed as a
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Fig. 7. Efficiency measures for LP1 (upper) / LP3 (middle) / LP2 (bottom) instances

power of 2. Figure 7 (bottom left) shows the number of variables and constraints
of the produced LP2 instances, while Figure 7 (bottom right) the corresponding
runtime and memory requirements.

4.3 Experimental Conclusions

As a general remark, PoweRGen produces synthetic property and subsump-
tion graphs whose distributions respect the power-law exponents given as input
with a confidence ranging between 90 − 98%. Regarding efficiency, PoweRGen
is scalable concerning the generation of Gp and of Gs in case of trees. On the
other hand, in the case of DAGs for Gs, the memory needs rapidly increase with
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u2 u3u1 un
… …

Fig. 8. Algorithm [12,13] Generating Undirected Graphs

respect to the number of classes. However, we should notice, that, even in that
case, we can generate schemas up to 700 classes, which exceeds the class number
of most real RDFS schemas [23].

5 Related Work

To the best of our knowledge, there does not exist any related work on a general
purpose synthetic RDFS schema generator. A recent work [22] has proposed
a method to generate small sized schemas by varying the URIs of resources.
The motivation of that generator was to evaluate ontology mapping methods.
Therefore the focus on the generation process was given to the way that URIs
are produced, e.g. a URI is substring of an other. On the other hand, PoweRGen
imitates graph features RDFS schemas frequently exhibit in reality and the URIs
of the produced properties are of very minor interest, e.g. we assign typical URIs
of the form Prop1, Prop2 etc. [11,19] propose a simplistic method to generate
SW data as instances of an RDFS (or OWL) schema given as input.

Moreover, [21,2] focus on the generation of XML data that are valid against
either a predefined DTD [21] or an XML schema given by the user [2]. However,
the full potential of the SW lies on the existence of schemas, which can be
exploited to support advanced reasoning services against the available SW data.
As a consequence, we need to also generate the schemas, except for the data.
Note also, that SW schemas (as well as instance descriptions) are actually graphs,
while XML documents are trees.

In addition, [12,13] considered only the generation of simple graphs (undi-
rected, without self-loops and multiple-arcs). Their work is based on the result
of [8,10], which can be summarized as follows. Let n denote the number of nodes
of the graph we wish to generate. Let ui, 1 ≤ i ≤ n denote nodes and d1 ≥ d2 ≥
... ≥ dn intended degrees of these nodes. The necessary and sufficient condition
for a degree sequence to be realizable is:

∑k
i=1 di ≤ k(k−1)+

∑n
i=k+1 min{k, di}.

The algorithm is iterative and maintains the residual degrees of vertices. In
each iteration step it picks an arbitrary vertex u and adds arcs from u to du

vertices of highest residual degree, where du is the residual degree of u (see Fig-
ure 8). The residual degrees of the latter du vertices are updated appropriately.
By connecting with du highest degree vertices the algorithm ensures that the
necessary and sufficient condition holds for the residual problem instance. This
algorithm is not suitable for synthetic SW schema generation. Specifically, for
the generation of Gs we need to consider the arcs transitivity. Moreover, both
Gs and Gp are directed graphs.
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Fig. 9. Algorithm [18] Generating Directed Graphs (left) and its output (right)

Moreover, [18] proposed a reduction of the problem of generating directed
graphs that simultaneously satisfy two given degree sequences to the Max Flow
problem. In particular, let din =(din,1, din,2, ..., din,n) and dout =(dout,1, dout,2, ...,
dout,n) be sequences of integers (in no particular sorted order), with

∑n
i=1 din,i =∑n

i=1 dout,i. We wish to construct a directed graph on n nodes, such that node
ui has din,i incoming arcs and dout,i outgoing arcs, 1 ≤ i ≤ n. Consider the
graph that has a source s, a sink t, a set of nodes L = {l1, ..., ln} and a set of
nodes R = {r1, ..., rn}. There is a link of capacity 1 directed from each li to each
rj , for 1 ≤ i, j ≤ n and i = j. There is a link of capacity dout,i directed from
s to each li, for 1 ≤ i, j ≤ n. Finally, there is a link of capacity din, i directed
from each ri to t, for 1 ≤ i, j ≤ n. We may now consider integral maximum flows
from s to t. If there is such a flow of value

∑n
i=1 din,i =

∑n
i=1 dout,i, then the

corresponding degree sequences are simultaneously realizable and the flow gives
a directed graph that satisfies, simultaneously, in-degrees din,i and out-degrees
dout,i.

Figure 9 illustrates an example for this algorithm, where din = 〈0, 1, 1, 1, 2〉
and dout = 〈2, 2, 1, 0, 0〉. The maximum integral flow of the graph of Figure 9
(left), is maxFlow = 5 =

∑
d∈din

d =
∑

d∈dout
d. Hence, din, dout are simultane-

ously realizable and the graph of the maximum flow, which is drawn in Figure 9
(right), satisfies them. This algorithm can be used for the generation of Gp, but
not of that of Gs since: a) the arcs transitivity needs to be considered and b) Gs

is a DAG (i.e., no cycles are allowed).
Furthermore, [5] studied the number of simple undirected graphs that realize

a given sequence and proposed non deterministic algorithms to generate one of
them. Specifically, they focused on how each one of the graphs that realize the
given sequence is generated from their algorithms with as uniform distribution
as possible. Although theoretically interesting, that work cannot be used in our
case, given that it considers undirected graphs (while both Gp and Gs are di-
rected) and also ignores the transitivity of arcs (needed to be considered for
Gs).

Finally, there exist works that generate graphs exhibiting power-law degree
distributions (see [7] for a survey). However, a) the power-law arise after a big
number of node insertions in the graph, b) the characteristic exponent is fixed or
is constrained to big values (e.g., bigger than 2) and c) the transitivity of arcs is
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not handled. Hence, we can not use these generators, because a) RDFS schema
graphs are relatively small sized, b) the power-law exponent should be fully
parameterizable (it lies in [0.79, 2.18] for total-degree VR, while in [1.54, 2.47] for
class descendants PDF for real schemas) and c) we should enforce as much as
possible arcs transitivity for Gs.

6 Future Work

As future work, we plan to explore the possibility of devising a more efficient
method to generate Gs when it is considered to be a DAG. To this end, it
would be interesting to investigate if graph generation methods exploiting the
ideas of self-similarity and fractals [17], could be modified to take as input the
degree sequences, or at least the characteristic power-law exponent of their
distribution. We also plan to exploit the algorithms presented in this paper for
synthetic SW data generation as a part of our ongoing RDF/S benchmarking
efforts [24].
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Abstract. We consider peer-to-peer systems in which peers share structured data
through the use of schema mappings. Peers express their queries and rewrite in-
coming queries on their local schema. We assume the existence of one or more
ontologies describing the domain of interest of the peers. The ontologies are used
to semantically annotate each peer schema, making explicit the type of infor-
mation provided by it. A major problem in such a system is that peers cannot
easily judge the semantic relativeness of their interests to interests of other peers,
as these are expressed by the respective local schemas. Moreover, peers cannot
evaluate the semantic relativeness of answers that they receive to their queries. In
this paper, we propose a semantic similarity measure for evaluating the semantic
relativeness between peer schemas, as well as between queries and their rewrit-
ten versions on other peers. The similarity measure is first introduced under the
assumption of a shared ontology among the community of peers, and then it is
extended, employing ontology matching and translation techniques, to support
the comparison of class expressions accross multiple ontologies. The proposed
similarity measure adopts the notions of recall and precision from the field of
Information Retrieval. Our goal is to use this measure for the identification of se-
mantically relevant peers and the evaluation of the quality of the received answers
based on the semantic annotations, the mappings, and the queries issued.

1 Introduction

Peer-to-peer overlays (hereafter P2P) have been consistently used in the previous years
for massive sharing and exchange of unstructured data. Emerging applications of the
P2P paradigm are the Peer Data Management Systems (PDMS’s) -e.g., [1,2]- which
hold a leading role in sharing semantically rich information. PDMS’s consist of au-
tonomous sources that store and manage structured data locally, revealing part of their
local data schema to the rest of the peers. Pure P2P systems -i.e., without super-peers-
are considered to operate in lack of a global schema. Without a reference schema, peer

� This work was performed while the author was with IBM at IBM Almaden Research Center,
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databases express and answer queries based on their local schema. In particular, peers
that are directly linked, i.e., acquainteed, establish a common way of exchanging and
comprehending each others’ data. Usually this is realized in the form of mappings be-
tween the peer schemas. Using the peer mappings and some suitable rewriting algo-
rithm, two acquainted peers can propagate queries to each other.

The nature of structured data stored in the overlay enforces strict methods of query-
ing and query rewriting. However, frequently, the user intends to obtain information that
is semantically relevant to the posed query, rather than information that strictly com-
plies to structural constraints. The available rewriting algorithms for structured data
target the classic data integration problem [3] and consider only queries that can be
completely rewritten to the target schema under a set of mappings. Still, such approach
is not enough for a P2P environment where peers seek and are satisfied with informa-
tion semantically similar, but not necessary identical, to their requests (as in the case of
popular P2P file sharing applications).

An example application where the semantic similarity plays a significant role, is
the creation of social networks. Recently, new social networking services have been
emerging, that are similar to human social networks. Services such as MySpace1 and
Orkut2, to mention a few, form virtual communities, with each participant setting his/her
own characteristics and interests. Their goal is to allow members to form relationships
through communication with other members and sharing of common interests. In these
applications, the search for identical information among the users is not realistic.

Hence, there is a necessity for investigating the notion of semantic similarity of peer
schemas, and furthermore peer queries, with their rewritten versions. Using such simi-
larity criteria, users can identify peers sharing similar interests to theirs. For each spe-
cific query they pose, the system can decide which peers can rewrite it better and, thus,
give more satisfying answers. Peer schemas and query rewritings can be ranked ac-
cording to their semantic relativeness to a reference schema or to an original query,
respectively.

Nevertheless, it is not straightforward to encounter the semantic similarity problem in
the context of structured data without any additional semantic information [4]. Database
schemas and respective mappings cannot capture sufficient semantic metadata so that
a qualitative solution for the semantic similarity problem can be anticipated. In our
work, to deal with this problem, we rely on Semantic Web technology. Specifically,
we consider a PDMS accompanied by one or more domain ontologies, which are used
to semantically annotate the content a peer makes available to the network. Note that
the use of these ontologies does not contravene the requirements of the lack of global
schema and peer autonomy: peer schemas do not have to adhere to any restrictions; they
may just use terms from these ontologies to semantically describe their elements.

Contributions. Our main contributions are as follows.

– We address the problem of semantic similarity of schemas and queries for a PDMS
enhanced with one or more domain ontologies.

1 http://www.myspace.com
2 http://www.orkut.com
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– We propose the use of the measures recall and precision for quantifying the notion
of semantic similarity.

– We propose a combined similarity measure, taking into consideration (a) the se-
mantics of the peers’ schemas, (b) the mappings between the peers, and (c) the
queries issued by the peers.

– We extend the proposed similarity measure for the comparison of elements across
different ontologies.

Outline. In the rest of this paper, Section 2 formally defines the problem under con-
sideration and introduces a running example used throughout the paper to clarify the
concepts introduced. Section 3 shows how the measures recall and precision can be
used for the semantic comparison of peer schemas. Section 4 describes how the tech-
niques may extend to queries and mappings. Section 5 extends the proposed similarity
measures to deal with semantic annotations derived from different ontologies. Finally,
Section 6 demonstrates the state of the art, while Section 7 concludes the paper with a
prospect of the future.

2 Framework and Problem Description

2.1 Preliminaries

The Semantic Web [5] is emerging as a vision to enhance the current Web with machine-
processable metadata, specifying the intended meaning of the provided information
in a formal and explicit manner. Software agents can then leverage these metadata to
“understand”, process, and reason about the described resources, therefore increasing
the degree of automation, the efficiency, and the effectiveness of searching, sharing, and
combining information. Ontologies have a central role in this effort. An ontology can
be defined as a formal specification of a shared conceptualization [6]. OWL has been
proposed by W3C as a recommendation for a language for specifying ontologies on
the Web [7]. OWL is based on Description Logics [8], a decidable fragment of first-
order logic, constituting an important and commonly used knowledge representation
formalism. Using OWL, one can describe the knowledge about a particular domain in
terms of

– a set of classes, representing the entities of interest in the domain of discourse, and
– a set of properties, representing attributes of these entities or relationships between

them.

In particular, two types of properties are provided:

– object properties, which relate instances of one class to instances of another class,
and

– datatype properties, which relate instances of one class to values of a specified
datatype.

Classes, as well as properties, may be organized in an appropriate hierarchy. Further-
more, it is possible to specify restrictions on the values and/or the minimum and/or
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OWL construct Notation Description

owl:Class C Classes
owl:ObjectProperty P Object properties
owl:DatatypeProperty P Datatype properties
owl:equivalentClass C1 ≡ C2 Class equivalence
rdfs:subClassOf C1 � C2 Class subsumption
owl:equivalentProperty P1 ≡ P2 Property equivalence
rdfs:subPropertyOf P1 � P2 Property subsumption
owl:Thing � The class containing all the individuals
owl:Nothing ⊥ The class containing no individuals
owl:DataRange d Data types
rdfs:domain domain(P ) The domain of a property
rdfs:range range(P ) The range of a property
owl:allValuesFrom ∀P.C Value restrictions on object properties
owl:allValuesFrom ∀P.d Value restrictions on datatype properties
owl:minCardinality ≥n P Min cardinality restriction
owl:maxCardinality ≤n P Max cardinality restriction

Fig. 1. OWL constructs and notation used

maximum cardinality of a property with respect to a specific class. Finally, the use of
custom data types can be provided by an extension of OWL, such as OWL 1.1 [9] or
OWL-Eu [10]. Figure 1 summarizes the OWL constructs and notation used throughout
the paper. Additionally, we use the notation P (C) to denote the set of properties that
are related to a class C, and the notation R(PC) to denote the set of restrictions on a
property P with respect to a class C.

2.2 Problem Description

We consider an unstructured PDMS. Each peer possesses a local database exposing a
relational schema. Queries are issued according to this schema. Each peer shares data
with its acquainted peers via a set of mappings, which are used for query rewriting
between the respective schemas. We focus our study on SPJ queries, and mappings of
the well known forms GAV-LAV-GLAV [3] as they are adapted to the P2P paradigm
[11]. A query Q specifies the information to be retrieved, by means of a set of attributes
to be returned (SELECT clause), and a set of conditions to be applied (WHERE clause).

In addition, we assume the existence of a domain ontology, providing a shared con-
ceptualization of the domain of interest for the community of peers (observe Figure
2a.) The domain ontology may be provided by a third-party, such as a standardization
organization. This is a realistic hypothesis for a wide range of applications, involving
networks where peers are professionals, companies, or organizations (e.g., universities,
libraries, hospitals), exchanging information about a specific domain. An alternative
case is the collaborative construction of the ontology within the peer network itself.
In large-scale peer-to-peer networks, where global consensus is difficult to achieve and



Ontology-Based Data Sharing in P2P Databases 121

Fig. 2. Unstructured network of semantic peers with (a) single ontology (b) multiple ontologies

maintain, there may exist several ontologies, allowing different views of the domain,
and clusters of peers using either of these ontologies (observe Figure 2b.) In these cases
the proposed approach is still applicable, provided that mappings between these ontolo-
gies are available. For simplicity, we first introduce the proposed similarity measure
assuming the existence of a shared ontology (Sections 3 and 4), and then we extend it
to deal with the case of multiple ontologies (Section 5).

The domain ontology is used to semantically annotate the schemas of the peers par-
ticipating in the network, describing the type of information that a peer makes available
to other peers. The semantic annotation of a peer’s schema is achieved by declaring
correspondences between terms in the peer schema and terms in the domain ontology.
The high-level architecture of the system is depicted in Figure 2. Solid lines represent
pairwise mappings between acquainted peers, while dashed lines represent correspon-
dences between elements of the local schema and elements of the domain ontology.

Definition 1. A semantic peer is a tupleP=(R,O,A), whereR is the peer’s database
schema, O the domain ontology used, and A the peer’s semantic annotation. A holds
the set of annotations A for the relations in R. Each A consists of a pair of the form
(R,C) and a set of pairs of the form (R.t,Ci.P ), Ci∈C. That is, a relation R is se-
mantically annotated by means of a set of classes C. Each Ci∈C is an ontology class,
possibly enhanced with additional restrictions to make explicit the semantics of the un-
derlying relation, i.e., Ci ≡ C′

i �k Rk, C′
i∈O. Attributes R.t are annotated by means

of properties of the same set of classes, i.e., (R.t,Ci.P ), Ci ∈ C.

Our work aims at the exploitation of the information conveyed by the ontology and the
annotations to provide a measure that represents how semantically close are two peers
P1 and P2, namely Sem Sim(P1,P2). Furthermore, when a query Q is forwarded
by P1 to P2 and is rewritten to Q′ based on the corresponding mappings, then it is
usually degraded. This means that some part of Q cannot be rewritten on peer P2 [4].
Hence, our goal is to provide a measure of the degree of match between the requested
information Q and the retrieved information Q′, i.e., Sem Sim(P1,P2, Q, Q′).

Having such qualitative measures for the semantic relationship between the peers is
important, when, for instance, a peer chooses its acquaintances or evaluates the quality
of the answers returned by another peer.
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hasName

hasMember

hasSinger

Person

Band

xsd:string

xsd:int

released

Album

year

type

Genre

Jazz

<owl:Class rdf:ID="Genre"/>
<owl:Class rdf:ID="Jazz">

<rdfs:subClassOf rdf:resource="#Genre" />
</owl:Class>
<owl:ObjectProperty rdf:ID="hasMember">

<rdfs:domain rdf:resource="#Band" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasSinger">

<rdfs:subPropertyOf rdf:resource="#hasMember" />
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#hasName">

<rdfs:domain rdf:resource="#Band"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

Fig. 3. A sample ontology and a snippet of the corresponding XML representation

2.3 Motivating Example

As a motivating example, consider a simple scenario where in the context of a social
network system, two peers, P1 and P2, want to exchange data about music bands. Sup-
pose that P1 and P2 have the following schemas and mapping:

P1 : bands(name, members, year)
P2 : bands(name, singer, year)

MP1,P2 : bands(name, members, year) : − bands(name, singer, year)
(1)

An ontology for the music domain is used to describe semantically the contents of
the peers. A sample snippet of such ontology is illustrated in Figure 3. Nodes represent
classes or datatypes, while edges represent properties. Dashed lines between two classes
or properties represent subsumption relation.

Furthermore, we assume that P1 contains information about bands having at least
one album, while P2, being more specialized, stores information about bands that play
Jazz music, were formed before the year 2000, and have released at least 3 albums.
These facts can be made explicit by each peer, by annotating the relations and attributes
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Schema element Ontology element

bands.name hasName
bands.members hasMember
bands.year year
bands Band P1

(a) Peer P1

Schema element Ontology element

bands.name hasName
bands.singer hasSinger
bands.year year
bands Band P2

(b) Peer P2

Fig. 4. Semantic annotation of peer schemas

in its local schema using terms from the domain ontology, as shown in Figure 4, where
Band P1 and Band P2 two new classes defined as follows:

Band P1 : Band � ≥ 1released

Band P2 : Band � ∀type.Jazz � ≥ 3released � ∀year.(≤ 2000)
(2)

For simplicity, we have assumed a single relation for each peer in this example.
The case of multiple relations linked with foreign keys is handled similarly: the class
definition would contain an additional object property, corresponding to the foreign key,
and having as range the class annotating the linked relation.

Exchanging data between P1 and P2 is meaningful and useful for both peers. How-
ever, information available at P2 is only partially sufficient for the information needs
of P1, while, inversely,P1 contains much information that is irrelevant for the interests
of P2. This obviously affects the quality of results that may be obtained by each peer.
Notice also the asymmetry in the two directions. A qualitative measure is needed so
that each peer may evaluate how suitable a particular acquaintance is, both in general,
as well as with respect to a specific query.

3 Semantic Comparison of Peer Schemas

In this section, we propose a measure of the semantic similarity between the type of
information provided by two peers, namely Sem Sim(P1,P2). This measure is based
on the use of the notions recall and precision adopted from the field of Information Re-
trieval. Using the pair of values (recall, precision) to express the degree of semantic
similarity between two peers, the measure proposed provides an intuitive way (a) to
account for the asymmetry resulting from the specific direction considered in the com-
parison, and (b) to express the extend to which the information provided by a peer is a
subset or superset of the requested information.

Recall and precision are widely used measures for evaluating the performance of
Information Retrieval systems [12], which in general, are defined as follows.

– Recall is the proportion of relevant material actually retrieved in answer to a search
request.

– Precision is the proportion of retrieved material that is actually relevant.
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retrieved 

items

relevant 

items

Fig. 5. Results for a search request

In Figure 5 the notion of both measures is pictorially depicted. For a given query, the
values of recall and precision are calculated by

recall =
|relevant ∩ retrieved|

|relevant|
precision =

|relevant ∩ retrieved|
|retrieved|

(3)

A single measure combining recall and precision is the weighted harmonic mean,
a.k.a. the F-measure. The general formula for non-negative real a is:

Fa =
(1 + a) ∗ precision ∗ recall

a ∗ precision + recall
(4)

Choosing a > 1, it weights recall more than precision. In the literature, typical values
for a are 0.5, 1, 2. Although we may express the similarity measure in terms of the F-
measure, we will refer to the measure proposed as a pair of values (recall, precision);
the two different metrics may be of different value and use to the peer. The latter can
decide whether to employ the F-measure and determine appropriately the value of a.

The semantics of the peer’s schema is made explicit by its annotation, which com-
prises a set of classes. Thus, instead of estimating the semantic similarity Sem Sim
(P1, P2) between two peers P1 and P2, it suffices to estimate the similarity between
the respective sets of classes in the ontology, i.e., Sem Sim(CP1 , CP2). For simplic-
ity, we first focus our study on the similarity between two classes and then, we extend
the results for comparing two sets of classes. Hence, to adapt the notions of recall and
precision in our context, we consider as relevant items the instances of the class in the
semantic annotation of the requesting peer and as retrieved items the instances of the
class in the semantic annotation of the provider peer. Therefore:

recall(CP1 , CP2) =
| {x |x ∈ (CP1 � CP2)} |
| {x |x ∈ CP1} |

precision(CP1 , CP2) =
| {x |x ∈ (CP1 � CP2)} |
| {x |x ∈ CP2} |

(5)

Notice that the above definitions for recall and precision have the following
properties:
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– When the two classes are equivalent, i.e., CP1 ≡CP2 ≡CP1 �CP2 , then recall =
1 and precision = 1, meaning that the contents of the two peers refer to the same
type of entities.

– When CP1 �CP2 , then CP1 �CP2 ≡CP1 , thus recall = 1 and precision < 1,
meaning that P2 contains information that is not of interest for P1.

– When CP1 �CP2 , then CP1 �CP2 ≡CP2 , thus recall < 1 and precision = 1,
meaning that P2 can only partial cover the information needs of P1.

– When ¬(CP1 �CP2 � ⊥), then recall < 1 and precision <1, meaning that part
of the information of each peer is of interest to the other.

– Finally, when CP1 �CP2 � ⊥, then recall = 0 and precision = 0. Essentially this
means that the acquaintance with this peer is of no use.

Calculating the recall and precision from equations (5) requires knowledge about the
extensions of the schemas, possibly using statistical techniques. However, in this paper,
we focus on a different approach and calculate these measures based on the semantic
information conveyed by the domain ontology, and in particular (a) the class hierarchy,
(b) the property hierarchy, and (c) the restrictions on the properties of the classes. As
the above approaches may be used together, our future plans include the improvement
of the method by using both approaches in a combined way.

In the case of classes that are not described by any properties, the recall and precision
can be measured by the ratio of their common ancestors. This is a common approach for
measuring the similarity between classes in a taxonomy [13,14]. Thus, if A(C) denotes
the set of superclasses of a class C, then:

recall(C1, C2) =
|A(C1) ∩A(C2)|
|A(C2)|

precision(C1, C2) =
|A(C1) ∩A(C2)|
|A(C1)|

(6)

Notice that the values of recall and precision obtained from equations (6) adhere to
the cases discussed previously.

Similarly, the recall and precision between two properties, p1 and p2, can be mea-
sured by the ratio of their common superproperties, as inferred by the property hierarchy
in the domain ontology:

recall(p1, p2) =
|A(p1) ∩A(p2)|
|A(p2)|

precision(p1, p2) =
|A(p1) ∩A(p2)|
|A(p1)|

(7)

Concerning restrictions defined on the properties of a class, three different cases can
be identified: (a) value restrictions on object properties (e.g., ∀type.Jazz); (b) value re-
strictions on datatype properties (e.g., ∀year.(≤ 2000)); and (c) cardinality restrictions
(e.g., ≥ 3released). In the first case, we consider the recall and precision between the
two classes to which the values of the property are restricted. The other two cases can
be handled by checking for a subsumption relationship between the two restrictions R1
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condition recall(R1, R2) precision(R1, R2)

R1 ≡ R2 1 1
R1 � R2 1 0.5
R1 � R2 0.5 1
¬(R1 � R2 � ⊥) 0.5 0.5
R1 � R2 � ⊥ 0 0

Fig. 6. Different cases of subsumption relationship between two restrictions R1 and R2

and R2 as depicted in Figure 6. More accurate results may be obtained in the case that
statistical knowledge about the value distributions of the underlying data is available.

Thus, equations (7) are updated to account also for the existence of restrictions, as
follows:

recall(p1, p2) =
|A(p1) ∩A(p2)|
|A(p2)| ·

∏
R(p2)

recall(R′
i(p1), Ri(p2))

precision(p1, p2) =
|A(p1) ∩A(p2)|
|A(p1)| ·

∏
R(p1)

precision(Ri(p1), R′
i(p2))

(8)

where R(p) is the set of restrictions on property p, and R(p), R(p′) denote a pair of cor-
responding restrictions; i.e., of the same type. The product is used in equations (8) as
a decreasing monotonic function that captures the intuition that each factor contributes
negatively to the final result. If no corresponding restriction is set on one of the com-
pared properties, then, in the case of value restriction on object properties, the restricted
range is compared to the default range of the property. In the other two cases, the value
of recall or precision, accordingly, is set to a fixed value; the default is 0.5. Here, we do
not consider the case of other intermediate values in the range (0, 1) that may capture
richer ranking semantics; e.g., year < 2005 may be preferable to year < 2007 for
a request year < 2004; currently, both have precision equal to 0.5. (However, in that
case one should deal with the issue of data range and distribution; a problem that we
have left as a future extension to our approach.)

Therefore, given two classes C1 and C2, the recall and precision is calculated by
adding the results for their individual properties and normalizing to the number of prop-
erties:

recall(C1, C2) =

∑
P (C2)

recall(p(C1), p′(C2))

|P (C2)|

precision(C1, C2) =

∑
P (C1)

precision(p(C1), p′(C1))

|P (C1)|

(9)
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where P (C) denotes the set of properties of class C, and p(C1), p′(C2) a pair of corre-
sponding properties in the compared classes.

Example (Cont’d). We demonstrate the presented approach by applying the derived
equations to estimate the semantic similarity between the schemas of the two peers,
P1 and P2, of the motivating example introduced in Section 2.3. The schema of each
peer comprises a single relation, semantically described by the definitions shown in
the formulae (2). Given these definitions, and the ontology shown in Figure 3, from
equations (9) follows that:

recall(P1,P2) = (3 · 1 + 3 · 0.5)/6 = 0.75
precision(P1,P2) = 1

The above results reflect, as expected, the fact that the type of information provided
by peer P2 is more restricted w.r.t. that provided by peer P1.

The comparison can be extended to sets of classes, by comparing each class in the
one set to its matching class in the other set (i.e., the class maximizing recall or pre-
cision, accordingly), and then normalizing to the cardinality of the sets. Therefore, for
two sets of classes, C1 and C2, the following equations hold:

recall(C1, C2) =

∑
Ci∈C1

max
Cj∈C2

recall(Ci, Cj)

|C1|

precision(C1, C2) =

∑
Cj∈C2

max
Ci∈C1

precision(Ci, Cj)

|C2|

(10)

4 Extending to Queries and Mappings

So far, we have considered only the peers’ semantic annotations, which refer to all the
content potentially stored in the peer. Therefore, the previous analysis applies to the case
of unrestricted exchange of information between two peers. However, the similarity
needs to be evaluated also with respect to a specific query issued at a peer, as well as
the mappings between two peers, which determine how the query is rewritten.

When a query Qo is forwarded from P1 to P2, it is rewritten according to the map-
pings, resulting in a query Qr. During the rewriting process, some attributes may not
be rewritten, or may be approximately rewritten, while conditions may be lost or in-
serted, due to the nature of the specified mappings (e.g. due to value constraints in
the mappings). As a result, the retrieved information may not completely adhere to the
initial request. Therefore, the previous analysis needs to be extended to consider two
additional factors:

– the portion of attributes that were rewritten and how accurate the rewriting was, and
– the conditions specified, both in the original query Qo and its rewritten version Qr.
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Algorithm SSR
Input: The original query Qo, issued at peer P1 = (R1,O,A1)

The target peer P2 = (R2,O,A2)
The mappings M1,2 between the schemas of the two peers

Output: The recall and precision measures between the original query Qo

and the produced rewritten query Qr

1. Begin
2. RQo ← the set of relations appearing in Qo

3. CQo ← the set of classes annotating the relations in RQo

4. CQo,e ← CQo

5. Foreach condition w in Qo {
6. R.t ← the attribute to which w is applied
7. C ← the class corresponding to R
8. P ← the property corresponding to t
9. D ← the class or datarange representing the restricted value

10. C ← C � ∀P.D
11. CQo,e ← update definition of C
12. }
13. Qr ← rewrite(Qo, M1,2)
14. CQr ,e ← repeat lines 2-12 for Qr

15. recall = recall(CQo,e, CQr,e)
16. precision = precision(CQo,e, CQr ,e)
17. End.

Fig. 7. Algorithm for measuring the semantic similarity for rewritten queries

Any conditions existing in the query, either directly specified by the user or result-
ing from the mappings, further restrict the information requested or provided by the
peer. Hence, these conditions need to be taken into account, together with the restric-
tions already existing in the classes semantically describing the peer’s schema. For this
purpose, each condition in the query is translated to a corresponding value restriction,
which is added to the respective class in the peer’s annotation. The process goes as
follows:

1. A query Qo is issued at peer P1.
2. Based on the peer’s semantic annotations, the set of classes CQo is selected, con-

taining the classes annotating the relations in Qo.
3. Each class in CQo is enhanced with additional value restrictions on its properties,

according to the conditions specified in Qo, resulting in the set CQo,e.
4. Qo is sent to peer P2, where it is rewritten as Qr, according to the corresponding

mappings.
5. Steps 2 and 3 are repeated for the rewritten version of the query and the semantic

annotations of P2, resulting in the set of classes CQr ,e.

Afterwards, the first step to evaluate the quality of the performed rewriting is to
calculate the recall and precision between the two sets of classes CQo,e and CQr,e. This
is achieved by equations (10). The aforementioned process is formally described by the
algorithm SSR, which is depicted in Figure 7.
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The second factor to consider is the rewriting of the attributes appearing in the SE-
LECT part of the query. If an attribute t was rewritten to an attribute t′, then the quality
of this rewriting is measured by the value of recall and precision between the corre-
sponding properties pt and pt′ annotating these attributes. This is achieved by equa-
tions (7). The sum over all attributes is then calculated and normalized to the number
of attributes in the query. If a SELECT attribute failed to be rewritten, then the value of
recall for it is zero, as the corresponding information can not be retrieved. Precision is
not affected, since no redundancy in the results is caused.

The results from the two factors are multiplied, since both contribute negatively to
the quality of the performed rewriting:

recall(CQo,e, CQr ,e, Qo, Qr) =

�

t∈SELECT (Qo)

recall(pt, pt′)

|SELECT (Qo)| × recall(CQo,e, CQr,e)

precision(CQo,e, CQr ,e, Qo, Qr)=

�

t′∈SELECT (Qr)

precision(pt, pt′)

|SELECT (Qr)| ×precision(CQo,e, CQr,e)

(11)

Example (Cont’d). We revisit the example of Section 2.3 to demonstrate two indicative
cases.

Case 1. Assume that P1 is interested in bands formed at the 80’s, so it issues the
query:

Qo : SELECT name, members, year FROM bands

WHERE year ≥ 1980 AND year < 1990

Based on this query, the definition of P1 is updated as:

CQo,e : Band � ≥ 1released � ∀year.([1980, 1990))

The query is then forwarded to P2, and is rewritten as:

Qr : SELECT name, singer, year FROM bands

WHERE year ≥ 1980 AND year < 1990

Notice that the attribute members, corresponding to the property hasMember, has
been rewritten as singer, corresponding to the property hasSinger � hasMember.
The definition of P2 is then updated accordingly:

CQr,e : Band � ∀type.Jazz �
≥ 3released � ∀year.([1980, 1990))
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Being more restrictive, the condition on attribute year overwrites the previously exist-
ing restriction in the definition.

Applying equations (11) results in:

recall(P1,P2, Qo, Qr) = [(2 · 1 + 0, 5)/3] · [(4 · 1 + 2 · 0.5)/6] = 0.7
precision(P1,P2, Qo, Qr) = 1

Notice how the value of recall is affected negatively by the rewriting of members to
singer, and positively by the presence of the condition on attribute year in the issued
query, which counteracts the respective restriction in the annotation of P2.

Case 2. Assume now that the attribute year was not present in P2’s schema or in the
mapping. Then, the rewritten query may be:

Qr : SELECT name, singer FROM bands

Since no conditions are present in the rewritten query, P2’s definition is not affected.
Applying equations (11) results in:

recall(P1,P2, Qo, Qr) = [(1 + 0.5 + 0)/3] · [(4 · 1 + 2 · 0.5)/6] = 0.42
precision(P1,P2, Qo, Qr) = 1 · (5.5/6) = 0.92

Notice that the failure to rewrite the attribute year significantly reduces the value of
recall. Due to that failure, the returned bands have the restriction year≤2000, instead
of the requested year∈ [1980, 1990), which negatively affects the value of precision.

5 Comparison of Peers and Queries with Multiple Ontologies

In the previous sections, we have presented a semantic similarity measure for peer
schemas and queries propagated in the P2P network, assuming the existence of a single
ontology that is used to annotate the elements of the schemas exposed by each peer.
Even though this constitutes a valid assumption for several applications, maintaining
an agreement to a common ontology, as the network size grows, becomes increasingly
difficult. Therefore, it is important to consider how the proposed approach generalizes
to the case of an environment where different peers may employ different ontologies
to describe their schemas, as shown in Figure 2b. To maintain semantic interoperabil-
ity in the absence of a common ontology, appropriate mappings need to be established
between the terms used in the involved ontologies. In fact, a significant body of work ex-
ists addressing the issue of schema/ontology matching, as this constitutes a critical step
in a variety of applications, such as data warehouses, catalog integration, agent com-
munication, Web services coordination, and so on. In this section, we give an overview
of the basic techniques underlying the state-of-the-art approaches for ontology match-
ing and extend our similarity measure for comparing elements mapped from different
ontologies.
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Mapping Elements from Different Ontologies. A recent survey of ontology matching
techniques is presented in [15]. As in [15], we consider as a mapping between the
elements e and e′ of two ontologies O and O′, respectively, a tuple (id, e, e′, M, c),
where: id is a unique identifier for the particular mapping element; M is the relation
between the elements e and e′, i.e. equivalence (≡), subsumption (�), overlap (�); and
c ∈ [0, 1] is a measure expressing the degree of confidence that M holds. Typically
the matching process exploits, usually in a hybrid or composite way, techniques of the
following types.

– Element matching. Similarity between elements is calculated based on their names
and descriptions (i.e. labels, comments). Usually, a pre-processing occurs first,
using Natural Language Processing techniques, such as tokenization (for exam-
ple, EmployeeRecord → 〈Employ, Record〉), lemmatization/stemming (e.g.,
salaries→ salary), and stopword elimination (e.g., removing articles or preposi-
tions.) Then, string matching techniques are applied, such as prefix or suffix match-
ing, edit distance, and n-grams (see [16] for a comparison of string matching tech-
niques).

– Structure matching. In contrast to the previous case, where two elements are com-
pared in isolation, these techniques consider the relations of these elements to other
elements, using tree- or graph-matching techniques. For example, the similarity
between two inner nodes can be calculated based on the similarity of their chil-
dren. Alternatively, model-based approaches encode the intended semantics of each
node, together with domain and structural knowledge, in a set of logical formulae,
shifting the problem to one of logical satisfiability, that can be solved by employing
standard SAT solvers.

– Auxiliary information. It is possible that the matcher uses external resources to
obtain additional information to guide the matching process. Typical cases are the
use of domain-specific thesauri, general-purpose dictionaries (e.g. WordNet [17]),
repositories of previously mapped elements/structures, user feedback.

Translating Elements to a Different Ontology. Once appropriate mappings between
two ontologies have been established, either manually, semi-automatically or automat-
ically, these mappings can be used to merge the two ontologies or to translate elements
from one ontology to the other. Examples of tools for ontology merging are OntoMerge
[18] and PROMPT [19]. However, creating and maintaining a merged ontology incurs
a significant overhead.

On the other hand, a translation service for OWL ontologies is presented in [20]. The
translation relies on a provided mapping between the vocabularies of the two ontologies.
Then, a class C1 from the source ontology can be characterized as strongly-translatable,
equivalent, identical, weakly-translatable or approximately-translatable to a class C2

from the target ontology, depending on its name mapping and the translatability of its
associated properties and restrictions.

For the translation process, we follow a similar approach, which however differs in
two issues. First, instead of the above categorization of the translatability of a class,
we need to derive a quantitative measure for the quality of the translation. Second, the
aforementioned work translates classes from the source ontology to already existing
classes from the second ontology. For example, assume that:
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C1 : Department � ≥20hasEmployee and C2 : Team � ≥10hasWorker

are two classes from the source and target ontology, respectively. Then, with respect to
the name mappings:

(Department→ Team) and (hasEmployee→ hasWorker)

C1 is strongly-translatable to C2. However, we translate a class expression by “rewrit-
ing” it according to the name mappings, i.e., replacing each term in the expression to its
corresponding term in the target ontology, thus allowing the result of the translation to
be a potentially new expression in the target ontology. Thus, in the previous example,
the translated expression would be:

C′
1 : Team �≥20hasWorker.

The intuition behind that lies in the need to deal with the generated class expressions
for annotating user queries.

Therefore, we consider a translation function fT , that translates a (simple or com-
plex) class or property from a source ontology O1 to a target ontology O2 as follows:

– a simple class or property is translated to the class or property specified by the
corresponding mapping

– a complex class is translated by translating the terms in its definition; if a term is
not translatable, the corresponding part of the expression is omitted.

As discussed at the beginning of this section, the considered mapping elements have
the form (id, e, e′, M , c), with c ∈ [0, 1] and M = (equivalent, more general, less
general, overlap). (For more complex translations, in the presence of mappings which
are themselves class expressions, a theoretical investigation is provided in [21].) Ap-
parently, a translation may often result in loss of quality, either due to the (unintended)
generalization or specialization of the original concept’s meaning or due to the inabil-
ity to translate (part of) it. Therefore, the quality of the translation has to be measured
and taken into account. We use the measures of recall (rT ) and precision (pT ) for this
purpose. Specifically, for a property p, given the corresponding mapping element (id,
p, p′, R, c), we measure the translation recall and precision by:

(rT (p), pT (p)) = ((0.5x · c, 0.5y · c)) (12)

where

(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) if M = equivalent

(1, 0) if M = more general

(0, 1) if M = less general

(1, 1) if M = overlap

(13)

If an element is not translatable then both recall and precision are equal to zero. Notice
that the value 0.5 used in equation (12) is a default value. Other values may be used,
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derived, for example, from knowledge of the application domain or the confidence level
of the match provided by the matcher.

The measurement for a class is derived similarly, with the difference that the trans-
latability of its properties, including potential restrictions, is also taken into account.
Due to the way the translation is performed, cardinality restrictions, as well as value re-
strictions on datatype properties are always translatable, provided that the property on
which the restriction is applied is translatable. For a value restriction Rp on an object
property p (e.g. ∀p.C), the translatability of the restriction is dependent on the trans-
latability of the class being the filler of the restriction (i.e. C), denoted by φ(Rp). Thus,
the following equations hold.

rT (C) = 0.5x · c ·

∑
P (C)

rT (p) · rT (φ(Rp))

|P (C)|

pT (C) = 0.5y · c ·

∑
P (C)

pT (p) · pT (φ(Rp))

|P (C)|

(14)

where (x,y) as in equation 13. Finally, when translating sets of classes, the quality of
the translation can be assessed by the average quality of translation of the classes in the
set:

rT (C) =

∑
C∈C

rT (C)

|C| , pT (C) =

∑
C∈C

pT (C)

|C| (15)

Comparing elements across ontologies. Given the above procedures for matching and
translating elements between different ontologies, the next step is to extend the intro-
duced similarity measure to cover these cases. In Section 3, we defined a measure of
semantic similarity, in terms of the notions of recall and precision, for pairs of proper-
ties, classes, and sets of classes belonging in the same ontology (see equations (8), (9)
and (10), respectively). In the following, we extend these functions (distinguished by
the symbol =) so that they can be applied to elements from different ontologies. This is
based on the observation that additional loss of quality may result due to the inaccurate
translation (or no translation) of (parts of) the compared elements. Therefore, assum-
ing that e1 is an element (i.e., a property p, a class C or a set of classes C) from the
source ontology O1, e′1 = fT (e1) its translation to the target ontology O2, and e2 the
corresponding (i.e., the most similar) element of e′1 in the target ontology, then:

recall 	=(e1, e2) = rT (e1) · recall(e′1, e2)

precision	=(e1, e2) = pT (e1) · precision(e′1, e2)
(16)

6 Related Work

The importance of semantics in P2P overlays has been apparent from the early stages
of research in this field. One of the first works to consider semantics is [22], which
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suggests the construction of semantic overlay networks, i.e., SONs. Another work in
the steps of [22] is [23], which suggests the dynamic construction of the interest-based
shortcuts in order for peers to route queries to nodes that are more likely to answer them.
Towards this end, the work in [24] and [25] exploits implicit approaches for discovering
semantic proximity based on the history of query answering and the least recently used
nodes. Additionally, SQPeer is an extensive work on PDMS that share RDF data and
they localize the query patterns using views [26]. In the same spirit, our work focuses
on overlays that share structured data and considers the problem of semantic similarity
of schemas and queries.

Furthermore, semantics have been considered in the specialized field of structured
P2P overlays. GridVine manages mapping of complex data and schemas of meta-data,
specifically RDF [27]. The system allows schema inheritance and the creation and in-
dex of translation links that map pairs of schemas. Similarly, pSearch forms a structured
semantic overlay [28]. Documents as well as queries are represented as semantic vec-
tors. Both GridVine and pSearch base search efficiency on the structured form of the
overlay, and, thus, their solution is not applicable to the semantic diversity problem
in an unstructured P2P system. In contrast to these works, we consider the problem
of semantic similarity in unstructured P2P overlays. Additionally, Bibster exploits on-
tologies in order to enable P2P sharing of bibliographic data [29]. Ontologies are used
for importing data, formulating and routing queries and processing answers. Peers ad-
vertise their expertise and learn through ontologies about peers with similar data and
interests. However, Bibster does not incorporate the ontology information into any kind
of semantic similarity, as our work does.

Query similarity has been explored in several works in the recent past. Some of these
works deal with keyword matching in the database environment [30,31] or with the pro-
cessing of imprecise queries [32,33,34]. The work in [35] deals with attribute similarity,
but focuses on numeric data and on conclusions about similarity that can be deduced
from the workload. Furthermore, in [36] queries are classified according to their struc-
tural similarity; yet, the authors focus on features that differentiate queries with respect
to optimization plans. The works in [37] and [4] deal with semantic similarity, which
can be extracted from structural query features. Finally, the work in [38] considers the
semantic similarity of schemas in a PDMS and proposes the creation of a distributed
index that is used in order to route queries effectively. Nevertheless, these works do
not consider the problem of both extracting and measuring semantic information of
schemas. Our work fulfills this research gap and, moreover, considers the position and
semantic evaluation of complex structured queries.

In [39] a notion of syntactic similarity is used to measure the extent to which a query
is preserved after transformation. To achieve semantic interoperability in a bottom-up,
semi-automatic manner, two feedback mechanisms are presented: one at the schema
level, namely analyzing query translations along cycles in the network, and another at
the data level, namely analyzing query results obtained through composite translations.
This approach can be viewed as complementary to ours, as it can be used to incremen-
tally develop global agreements among the participating peers.

In [40] a similarity measure for DL concepts is proposed. Concepts are represented
in disjunctive normal form, and similarity is measured based on the overlap of these
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descriptions. The proposed similarity measure is symmetric for primitive concepts. For
defined concepts it is asymmetric. However, similarity decreases only when the user’s
search concept is more specific than the examined one, while in the case that the exam-
ined concept is more specific than the requested by the user, similarity is not affected.

A graph-based semantic similarity is proposed in [41] to measure semantic relation-
ships among pairs of Web pages, based on topical directories. The approach is based on
the use of a weighting scheme to distinguish the role of different edges (e.g., hierarchi-
cal vs. non-hierarchical).

7 Conclusions

In this paper, we have dealt with that arise in P2P systems consisting of peer databases,
i.e., peers that share structured data through the use of schema mappings. In such sys-
tems, information is requested by queries that are issued on local schemas and are
rewritten to schemas of acquainted peers through mappings. Such a system can be
enhanced with an ontology, which describes the domain of interest of the participat-
ing peers. We have discussed the semantic diversity between peer schemas, as well as
between queries and their rewritten versions on other peers. We have chosen to rely
on Semantic Web technology and, specifically, the use of domain ontologies, which
enables peers to semantically annotate their elements despite the absence of a global
schema. Using these ideas, we have proposed a similarity measure for schemas and
queries based on the notions of recall and precision. The measure introduced takes into
consideration the semantic annotations of schema elements and the structure and se-
mantics of queries, as well as of the mappings used for the rewriting.

As future work, we intend to experiment on the proposed measure in order to iden-
tify semantically relevant peers, and evaluate the quality of the received answers to
peer queries. A challenge is to adapt our method to a social network application and to
evaluate its effectiveness in that domain. Social networks form naturally a P2P environ-
ment. We believe that the proposed approach would be beneficial in such a setting, as it
would allow the participants to semantically express their interests, thus choosing their
acquantancies based on their information needs. Furhtermore, we plan to investigate
the notion of synopsis of similarity values, so that they can guide the propagation of
queries to the most relevant peers in the overlay. Another direction to explore is the use
of summaries and statistical techniques to extend the measure of similarity at the data
level.
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39. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: Start making sense: The chatty web approach
for global semantic agreements. J. Web Sem. 1(1), 89–114 (2003)

40. Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the description
logic cnr in geographic information retrieval. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM 2006 Workshops. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidelberg (2006)

41. Maguitman, A.G., et al.: Algorithmic computation and approximation of semantic similarity.
In: World Wide Web, vol. 9(4), pp. 431–456 (2006)



Maintaining Semantic Mappings between

Database Schemas and Ontologies

Yuan An1 and Thodoros Topaloglou2

1 College of Information Science and Technology
Drexel University, USA
yan@ischool.drexel.edu

2 Department of Mechanical and Industrial Engineering
University of Toronto, Canada
thodoros@mie.utoronto.ca

Abstract. There is a growing need to define a semantic mapping from
a database schema to an ontology. Such a mapping is an integral part
of the data integration systems that use an ontology as a unified global
view. However, both ontologies and database schemas evolve over time
in order to accommodate updated information needs. Once the ontology
and the database schema associated with a semantic mapping evolved,
it is necessary and important to maintain the validity of the semantic
mapping to reflect the new semantics in the ontology and the schema. In
this paper, we propose a formulation of the mapping maintenance prob-
lem and outline a possible solution using illustrative examples. The main
points of this paper are: (1) to differentiate the semantic mapping mainte-
nance problem from the schema mapping adaptation problem which only
adapts mappings when schemas change; (2) to develop an approach for
specifying the validity of a semantic mapping in terms of two-way legal
instances translation between two models; (3) to explore the approach of
using simple correspondences to capture changes to ontologies/schemas;
and (4) to sketch a solution using examples.

1 Introduction

A semantic mapping from a database schema to an ontology defines a semantic
relationship between the schema and the ontology. For example, a many-to-
many relationship between a concept C1 and a concept C2 in an ontology may
be mapped to relational tables storing attributes of C1 and C2 and a linking
table that maintains the association of the identifiers1 of C1 and C2. Such a
semantic mapping can be expressed in a declarative language that encodes the
formal semantics of the schemas. In recent years, we are witnessing a growing
demand for defining semantic mappings from database schemas to ontologies.
For example, semantic mappings are integral part of ontology-based information
integration systems [8,13], and data integration efforts in the context of the
1 We assume that a subset of attributes of a concept in an ontology acts as identifier

of the concept.
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Semantic Web. Furthermore, a recent work [1] suggests that the semantics of
database schemas expressed in terms of semantic mappings from schemas to
conceptual models/ontologies provide opportunities to improve the capabilities
of traditional schema mapping tools, even when different database schemas are
associated with different conceptual models or ontologies.

However, both ontologies and schemas change over time in order to accommo-
date new information needs. Such change may cause an existing semantic map-
ping invalid. Therefore, once a semantic mapping from a schema to an ontology
has been created, it is important and necessary to automatically, at least to
some extent, maintain the validity of the semantic relationship when the schema
and ontology evolve. We call this process maintaining semantic mappings under
evolution or mapping maintenance for short. A typical solution to the mapping
maintenance problem is to regenerate the semantic mapping between the evolved
ontology and schema. The problem of the mapping regeneration solution is that
the solution can be costly in terms of human effort and expertise. The reason is
that semantic mapping creation is a demanding task which requires huge amount
of human effort, because both the schema and the ontology that are related by a
semantic mapping are complex artifacts which may contain hundreds and thou-
sands modeling constructs. There are existing methods and tools, e.g., [3,2], for
creating semantic mappings from database schemas to ontologies. But almost
all the current tools are semi-automatic and interactive, requiring humans in-
volved in the process. A better solution to the mapping maintenance problem is
to incrementally update the existing semantic mapping to reflect changes in the
ontology or schema. In this paper, we report on our preliminary study on the
problem of incrementally maintaining a special type of semantic mapping, which,
in a local-as-view fashion, relates a single atom (e.g., a table) in a schema with
a conjunctive formula encoding a substructure in an ontology. The formalism is
presented in Section 3.

The aims of the maintenance are two-fold: first, to preserve the semantic
relationship between the schema and the ontology when the schema and ontology
are modified; second, to reuse the existing semantic mapping as much as possible.
A similar problem has been studied for adapting schema mappings under schema
evolution. Two possible approaches are proposed in the literature: a schema
change approach (SCA) [15] and a mapping composition approach (MCA) [16].
Both solutions focus on reusing the semantics encoded in previous mappings for
merely adapting the mappings. Schemas are not updated accordingly. In our
situation, adapting the ontology/schema associated with a semantic mapping
along with the mapping will be essential for achieving desired goals. Consider
a very simple case. Suppose the semantics of a relational database schema is
expressed in terms of an ontology. If the database engineer wants to modify the
schema by adding a new column to a table representing a concept in the ontology,
it may be desirable to add a new attribute to the concept in the ontology in
order to maintain the semantic relationship that covers the new element of the
schema. Maximizing the coverage over schema will be one of the desired goals
for maintaining a semantic mapping.
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Although mapping maintenance is important and necessary for many applica-
tions, solutions to the problem are rare. This is due to many challenges involved,
including: how to define validity/consistency of mapping and detect inconsis-
tency of a mapping; what is a right mapping language; how to capture changes
to ontologies and database schemas; how to devise a plan for updating mappings
according to the intent and expectation of the user; and what are the principles
for a systematic maintenance solution.

In this paper, we formulate the maintenance problem. We propose a speci-
fication for the validity of a semantic mapping. Subsequently, we describe the
desired goals for maintaining semantic mappings between database schemas and
ontologies, and we outline our solution for addressing the problem using a com-
prehensive set of examples.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces our formalism for a semantic mapping from a schema to
an ontology. Section 4 characterizes schema and ontology evolution. Section 5
outlines a solution to the problem of semantic mapping maintenance. Finally,
Section 6 concludes this paper.

2 Related Work

The directly related work is the study on schema mapping adaptation [15,16].
The goal of schema mapping adaptation is to automatically update a schema
mapping by reusing the semantics of the original mapping when the associ-
ated schemas change. Yu & Popa [16] explore the schema mapping composition
approach. Schema evolutions are captured by formal and accurate schema map-
pings, and schema adaptation is achieved by composing the evolution mapping
with the original mapping. On the other hand, the schema change approach in
[15] proposed by Velegrakis et al. incrementally changes mappings each time a
primitive change occurs in the source or target schemas. Both solutions focus
on reusing the semantics encoded in existing mappings for merely adapting the
mappings without considering the synchronization between schemas. This is due
to the nature of their problems where schema mappings are primarily used for
data exchange [10], i.e., translating a data instance under a source schema to
a data instance under a target schema. If a schema mapping connecting two
schemas which are semantically inconsistent, then the data exchange process
simply does not always produce a target instance. Our approach is different
from these solutions in that we aim to maintain the semantic validity of seman-
tic mappings through incremental updates on the mappings as well as associated
ontologies/schemas.

Other related work includes schema evolution in object-oriented databases
(OODB). The problem of schema evolution in OODB is to maintain the consis-
tency of an OODB when its schema is modified. The challenges are to update the
database efficiently and minimize information loss. A variety of solutions, e.g.,
[6,5,9,12], have been proposed in the literature. Our problem is different from the
schema evolution problem in OODB in that we aim at the semantic consistency
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between a schema and an ontology. However, we can draw some insights from
the extensive study of the schema evolution problem in OODB. In AutoMed
[7,11], schema evolution and integration are combined in one unified framework.
Source schemas are integrated into a global schema by applying a sequence of
primitive transformations to them. The same set of primitive transformations
can be used to specify the evolution of a source schema into a new schema. In
our approach, we do not ask users to specify a sequence of transformations.

Another mapping maintenance problem studied in [14] mainly focus on de-
tecting inconsistency of simple correspondences between schema elements when
schemas evolve. This problem is complementary to the problem we consider here.

3 Semantic Mappings between Ontologies and Schemas

3.1 Relational Schemas and Ontologies

Here we focus on relational schemas described in the relational model. The basic
data representation construct of the relational model is relation, which consists
of a set of tuples. The schema of a relation or a table specifies the name of the
relation, the name of each column (or attribute or field), and the type of each
column. Furthermore, we can make the description of the collection of data more
precise by specifying integrity constraints, which are conditions that the tuples
in a table must satisfy. Here, we consider key and foreign key (abbreviated as
f.k. henceforth) constraints. A key in a table is a subset of the columns of the
table that uniquely identifies a tuple. A f.k. in a table T is a set of columns F
that references the key of another table T ′ and imposes a constraint that the
projection of T on F is a subset of the projection of T ′ on the key of T ′. A
relational schema thus consists of a set of relational tables and a set of key and
f.k. constraints. Formally, we use the notation T (k1, k2, ..., kn, y1, y2, ..., ym) to
represent a relational table T with key K = (k1, k2, ..., kn).

An ontology describes a subject matter in terms of concepts, relationships,
and attributes. In this study, we do not restrict ourselves to any particular lan-
guage for describing ontologies. Instead, we use a generic conceptual modeling
language (CML) which has the following features. The language allows the repre-
sentation of classes/concepts/entities (unary predicates over individuals), object
properties/relationships (binary predicates relating individuals), and datatype
properties/attributes (binary predicates relating individuals with values such as
integers and strings); attributes are single valued in this paper. Concepts are
organized in the familiar ISA hierarchy. Relationships and their inverses (which
are always present) are subject to constraints such as specification of domain and
range, plus cardinality constraints of the form k..l; if the lower bound, k = 1,
the relationship is called , total, if the upper bound, l = 1, the relationship is
called functional. In addition, a subset of attributes of a concept is specified
as the identifier of the concept. As in the Entity-Relationship model, a strong
entity has a global identifier, while a weak entity is identified by an identifying
relationship plus a local identifier. An ontology thus contains a set of concepts,
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relationships, and attributes as well as a set of identification and cardinality
constraints.

We can represent a given ontology using a labeled directed graph, called an
ontology graph. We construct the ontology graph from an ontology by considering
concepts as nodes and relationships as edges. A many-to-many relationship p
between concepts C and D will be written in text as C ---p--- D . It will be
important for our approach to distinguish functional edges – ones with upper
bound cardinality of 1, and their composition: functional paths. If the relationship
p is functional from C to D, we write C ---p->-- D .

3.2 Semantic Mappings between Ontologies and Schemas

In this study, we use the semantic mapping notion that is proposed in [4] which
relates tables in a schema with formulas over an ontology. The formula over an
ontology is in a subset of conjunctive formulas and encodes a subtree in the ontol-
ogy graph. In particular, we assume that the semantics of a table is represented
by a subtree (subgraphs can be transformed into subtrees by duplicating nodes
in cycles). We call such a subtree a semantic tree (or s-tree), where columns of
the table associate uniquely with attribute of the concepts in the s-tree. This as-
sumption also corresponds to the standard database design practice where each
table is derived from a structure, usually, a subtree, in a conceptual model. After
encoding s-trees in conjunctive formulas by using unary predicates for concepts,
binary predicates for attributes, and binary predicates for binary relationships
(see [4]), we can represent a semantic mapping between a relational schema and
an ontology using a set of formula of the form T (X)↔ Φ(X, Y ), where T is a ta-
ble with columns X and Φ is a conjunctive formula over predicates representing
an s-tree. X and Y are quantified variables as specified later.

Example 1. Gene expression databases maintain information on genes, bio-
logical samples and measurements on genes over samples. Biological sample is a
central concept being modeled in a gene expression database. To record informa-
tion about a sample which can be a tissue, cell, or RNA material that originates
from a donor of a given species, one needs to create a sub-schema that we will
refer to as the sample database (SDB). Suppose that a SDB contains a table

sample(sample ID, species, organ, pathology,..., donor ID),

where the underlined column sample ID is the key of the table and donor ID is a
foreign key to a table called donor.

The semantics of the sample table can be expressed in terms of an s-tree in an
ontology as shown in Figure 1 which is described in the UML notation, where
identifier of a concept is indicated by the keyword key. The s-tree contains two
concepts, SAMPLE and PERSON, and a relationship, originates, between the two
concepts.

Graphically, we use dashed double-arrows to indicate the correspondences be-
tween columns of the relational table and attributes of concepts in the ontology.
The correspondences plus the s-tree gives rise to a semantics of the table. Fur-
thermore, the semantics of the table is expressed in the following formula
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SAMPLE

SID: key
species
organ
pathology
diagnosis

PERSON

PID: key
type
age
gender
autopsy

originates1..* 1..1

sample(sample_ID, species, organ, pathology,…, donor_ID)

Fig. 1. The sample table and Its Semantics

sample(sample ID, species,..., donor ID) ↔
SAMPLE(x1), SID(x1, sample ID), species(x1, species),
..., PERSON(x2), originates(x1, x2), PID(x2, donor ID). �

Valid Semantic Mappings. Given a semantic mapping formula T (X) ↔
Φ(X, Y ) which relates a table T (X) in a schema with a conjunctive formula
Φ(X, Y ) encoding an s-tree G in an ontology. We say that T (X) ↔ Φ(X, Y ) is
valid if the table and the s-tree G are “semantically compatible”. More specif-
ically, we define the validity by using two logical formulas ∀X(T (X) → ∃Y.Φ
(X, Y )) and ∀X, Y (Φ(X, Y ) → T (X)), plus the key and f.k. constraints of the
schema and the identification and cardinality constraints of the ontology.

The formula ∀X(T (X)→ ∃Y.Φ(X, Y )) can be considered as the formal spec-
ification for translating instances from the table to the s-tree, and the formula
∀X, Y (Φ(X, Y )→ T (X)) can be considered as the formal specification for trans-
lating instances from the s-tree to the table. Let ΣT be the set of key and f.k.
constraints of T . Let ΣS be the set of identification and cardinality constraints
of S. An instance I of T is a legal instance if I satisfies all constraints in ΣT . An
instance J of S is a legal instance if J satisfies all constraints in ΣS . For each
legal instance I of T , we can generate an instance J ′ of S through ∀X(T (X)→
∃Y.Φ(X, Y )) by instantiating Y . For each legal instance J of S, we can generate
an instance I ′ of T through ∀X, Y (Φ(X, Y )→ T (X)). If both J ′ and I ′ are legal
instances of S and T , respectively, then we say that T and S are “semantically
compatible.”

We now define a valid semantic mapping using semantically compatible in-
stances. Specifically, a formula T (X) ↔ Φ(X, Y ) relating a table T (X) in a
schema with a conjunctive formula Φ(X, Y ) encoding an s-tree G in an ontol-
ogy is a valid semantic mapping formula, if and only if for each legal instance
of T , we can generate a legal instance of G through ∀X(T (X) → ∃Y.Φ(X, Y )),
and for each legal instance of G, we can generate a legal instance of T through
∀X.Y (Φ(X, Y ) → T (X)).

Having the definition about a valid semantic mapping formula, we attempt
to (semi-)automatically maintain the validity of each formula when the schema
and the ontology related by the formula evolve. In the next section, we begin
with a characterization of possible changes in schemas and ontologies.
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4 Evolution of Schemas and Ontologies

Changes to schemas and ontologies can be characterized by mappings [16] or
by sequences of evolution primitives [15,5]. Consider a mappingM between two
schema S1 and S2. If one of the schemas, e.g., S1, evolves to a new schema S′1,
the mapping composition approach (MCA) for schema mapping adaptation will
compose the mappingM with an evolution mappingM′ between S′1 and S1 to
derive a new mapping between S′1 and S2, while the schema change approach
(SCA) will look at a sequence of primitive changes for adaptingM.

Both MCA and SCA approaches are inadequate in dealing with the problem
of maintaining a semantic mappingM between a schema S and an ontology O.
First of all, neither MCA nor SCA approach attempts to maintain the validity
of the semantic mapping. For example, if the key information of a table in S
changes, the mapping M may not change, but the ontology O may need to be
modified in order to keepM as a valid semantic mapping. However, current MCA
and SCA approaches only consider mapping adaptation. Second, the MCA does
not capture the changes of adding elements to schemas. If an element is added, it
will leave the existing mapping unchanged. Third, it is not guaranteed that the
current SCA approach would maintain the semantics of the existing mapping
by using a sequence of primitive changes, as the set of primitive changes for
schema evolution may not cover some changes encountered in ontology evolution.
For example, one of primitive changes that may happen in ontology evolution
but are not captured by the set of primitive changes for schema evolution is
adding/deleting an ISA relationship between two concepts.

In this study, we use a set of correspondences to link elements of the previ-
ous schema/ontology to elements of the new schema/ontology when a schema/
ontology changes. We then analyze the existing semantic mapping and the
semantics in the new schema/ontology. Through the set of correspondences,
we will then (semi-)automatically adapt both the semantic mapping and the
schema/ontology to maintain the validity of the semantic mapping.

Example 2. Figure 2 depicts on the left an old ontologyO1 consisting of a single
concept BIOSAMPLE. On the right is the new ontology O′

1 which was evolved
from O1 by adding a new concept TISSUE. The dashed double-arrows from
attributes of the BIOSAMPLE concept in O1 to attributes of the BIOSAMPLE
and TISSUE concepts in O′

1 capture the relationship between the old ontology
and the new ontology. �
Changes to schemas and ontologies can be classified along two orthogonal axes.
First, on the action axis, changes can be classified into (1) changes for adding/
deleting elements; (2) changes for merging/splitting elements; (3) changes for
moving/copying elements; (4) changes for renaming elements; and (5) changes
for modifying constraints. Second, on the effect axis, changes can be classified
into (i) changes that cause mapping modification; (ii) changes that cause the
related schema (or ontology) modification; and (iii) changes that cause both
mapping and the related schema (or ontology) modification. The classification
along the effect axis is mainly concerned with maintaining the validity of a



Maintaining Semantic Mappings between Database Schemas and Ontologies 145

BIOSAMPLE

biosample_ID: key
species

organ
….

TISSUE

biosample_ID: key
donor_disease
….

ISA

BIOSAMPLE

biosample_ID: key
species
organ
donor_disease
….

O 1

O’
1

Fig. 2. The Correspondences between Old and New Ontologies

semantic mapping as specified in Section 3. In the next section, we discuss our
solution to the maintenance problem by associating changes classified along the
action axis with changes classified along the effect axis.

5 Maintaining the Semantic Mappings

We outline an algorithm for maintaining semantic mappings between relational
schemas and ontologies. The input to the algorithm consists of a relational
schema S, an ontology O, an existing valid semantic mapping M between S
and O, a new schema S′ (or ontology O′) evolved from S (or O), and a set of
element correspondences M′ between S and S′ (or between O and O′). The
output of the algorithm is an ontology O′′ (or a schema S′′) and the semantic
mappingM′′ between S′ and O′′ (or between O′ and S′′). The ontology O′′ may
be just the original ontology O, if the schema S evolved and only the semantic
mapping gets adapted without any changes in the original ontology. Similarly,
the schema S′′ may be just the original schema S, if what evolved was the on-
tology O and there are no needs to change the original schema in order to adapt
the semantic mapping.

Figure 3 graphically describes the semantic mapping maintenance settings.
Figure 3 (a) shows the situation where the schema S evolved to a new schema
S′.M is the existing semantic mapping; M′ is the set of correspondences from
elements of S′ to elements of S. The aim of the mapping maintenance is to adapt
M to a new semantic mapping M′′ between S′ and O (or O′′ if the original
ontology needs to be modified.) Likewise, Figure 3 (b) show the situation when
the ontology O evolved to O′,M needs to be adapted toM′′ between S (or S′′)
and O′.

The maintenance algorithm is based on the knowledge about the existing
semantic mapping and the analysis of the semantics in the changes to the
schema/ontology. We first explore the knowledge encoded in a semantic mapping
as studied in the previous work for discovering semantic mappings from schemas
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(a)

(b)

S’ S O/O’’

S/S’’ O O’

M

M

M’

M’

M’’

M’’

Fig. 3. Maintenance of Semantic Mapping

to ontologies [4]. Then we illustrate the algorithm by analyzing the semantics in
changes using means of examples.

A semantic mapping formula T (X) ↔ Φ(X, Y ) associates a table T (X) with
an s-tree in an ontology. There is additional knowledge about the association/
relationship [4]. Specifically, an s-tree can be decomposed into several skeleton
trees: a skeleton tree corresponding to the key of the table, skeleton trees cor-
responding to f.k.s of the table, and skeleton trees corresponding to the rest of
the columns of the table. Each skeleton tree has an anchor concept which is the
root of the skeleton tree. To satisfy the semantics of the key in a table, the s-tree
is connected by functional paths from the anchor of the key skeleton tree to the
anchors of f.k. skeleton trees and other skeleton trees.

Example 3. Figure 4 shows a table sample(sid,tid,donor) storing the information
about a sample, where sid is the sample identifier, tid is the identifier of the test
that screens the sample, and donor is the identifier of the person donating the
sample. The concept SAMPLE is modeled as a weak entity owned by the TEST
concept. Therefore, the key of the sample table is the combination of the key of
a table for the TEST concept and the local identifier sid. In addition, the donor
column is a f.k. referencing the key of a table for the PERSON concept.

The semantics of the sample table is represented in terms of the s-tree above it
in Figure 4. This s-tree consists of the skeleton tree SAMPLE ---screenedIn->--

TEST for the key of the sample table and the skeleton tree PERSON for the f.k.
of the sample table. The anchor of the key skeleton tree is the concept SAMPLE,

tid: key sid: key

SAMPLETEST

pid: key

PERSON

screenedIn

*1 1*

originates

sample( s id,tid ,donor)

Fig. 4. Skeleton Trees in a Semantic Mapping
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while the anchor of the f.k. skeleton tree is the concept PERSON. The s-tree is
connected by a functional edge originates from the anchor SAMPLE to the anchor
PERSON. �
Each s-tree in a semantic mapping that consists of a key skeleton tree corre-
sponding to the key of the table, skeleton trees corresponding to f.k.s of the
table, skeleton trees corresponding to other columns of the table, and functional
paths from the anchor of the key skeleton tree to anchors of other skeleton trees.
To maintain a semantic mapping when the schema/ontology changes, we aim
at maintaining the s-tree associated with the table. Our goals for maintaining
semantic mappings are as follows.

Goal 1. For a valid semantic mapping M between a schema S and an ontology
O, if M has been adapted to M′′ after some changes to the schema/ontology,
then each mapping formula m ∈ M′′ must be a valid semantic mapping formula
as specified in Section 3.

Goal 2. For a valid semantic mapping M between a schema S and an ontology
O, if M has been adapted to M′′ after some changes to the schema/ontology,
then for each element e ∈ S that was covered by M (i.e., e was referred to by
some mapping formulas inM), e is covered byM′′ if e was not deleted from S,
and for each new element e′ added to S, e′ is also covered by M′′.

The first goal specifies the fundamental requirement for semantic mapping main-
tenance, that is, to maintain the validity of a semantic mapping according
to the definition. The second goal requires that the semantic mapping after
adapted should cover as much the remaining schema as covered by the exist-
ing semantic mapping and cover any newly added elements. The second goal
comes from our intention of using semantic mappings for expressing seman-
tics for database schemas. That is, for a database schema, we do not want to
lose semantic information expressed in terms of the semantic mapping from the
schema to an ontology after the semantic mapping is adapted due to changes to
the schema/ontology.

The following examples outline the mapping maintenance algorithm in an
intuitive way. The complete algorithm will be available in a full paper. At the
present, the maintenance algorithm focuses on a pair of a schema and an ontology
that are related by a semantic mapping.

Example 4. The following semantic mapping formula relates a relational table
sample(sid,donor) with an s-tree in an ontology as shown in Figure 5 (a):

sample(sid, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
originates(x1, x2), pid(x2, donor).

First, we consider changes that add new column(s) to the relational table.

(1) Add a column that is neither part of the key nor a f.k.. For example, a new
column species was added to the sample table. In this case, the algorithm will
suggest to add a new attribute to the anchor of the skeleton tree corresponding
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sid: key

SAMPLE

pid: key

PERSON
1*

originates

sample( sid ,donor)

tid: key sid: key

SAMPLETEST

pid: key

PERSON

screenedIn

*1 1*

originates

sample( sid,test ,donor)

sid: key
species

SAMPLE

pid: key

PERSON
1*

originates

sample( s id,species,donor)

sid: key

SAMPLE

pid: key

PERSON
1*

originates

sample( s id,disease, donor)

dsid: key

DISEASE_STAGE
1

disease
*

(a)

(d)

(c)

(b)

sample( sid ,donor)

sample( sid ,donor)

sample(s id,donor)

Fig. 5. Add Element to Schema

to the key as shown in Figure 5 (b) and update the semantic mapping formula
to:

sample(sid, species, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
species(x1, species), originates(x1, x2), pid(x2, donor).

(2) Add a column that is a f.k.. For example, a new column disease was added
to the table sample where disease is a f.k. referencing to the key of a table T ′ for
the concept DISEASE STAGE. In this case, the algorithm finds a functional path
from the anchor of the key skeleton tree for the key of the table sample to the
anchor of the skeleton tree for the key of table T ′ as shown in Figure 5 (c), and
updates the semantic mapping as the following candidate formula:

sample(sid, disease, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
DISEASE STAGE(x3), disease(x1, x3), dsid(x3, disease),
originates(x1, x2), pid(x2, donor).
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Note that there may be multiple functional paths connecting the anchor SAMPLE
to the anchor DISEASE STAGE, so the user will examine the candidate formulas
to choose the expected one.

(3) Add a column that becomes part of the key of the table. For example, a new
column test was added to the table sample. If test is not a f.k., then the algorithm
suggests to add an attribute as part of the identifier of the anchor of the skeleton
tree for the key of the table. If test is a f.k., then the algorithms recomputes the
skeleton tree for the key of the table as shown in Figure 5 (d), and suggests to
update the semantic mapping as the following candidate formula:

sample(sid, test, donor) ↔
SAMPLE(x1), sid(x1, sid), PERSON(x2),
TEST(x3), screenedIn(x1, x3), tid(x3, test),
originates(x1, x2), pid(x2, donor).

As in case (2), the user needs to examine all candidate formulas.

Let us now consider changes that add new element(s) to the ontology. The
following changes do not affect the semantic mapping: adding a new attribute
which does not become part of the identifier of concepts in the s-tree, adding a
new concept, and adding a new ordinary relationship. If an attribute is added to
a concept in the s-tree such that the concept is an anchor of a skeleton tree, then
the algorithm suggests to update the table by adding a column as part of the
key or to update a f.k. that corresponds to the new identifier of the concept. Of
course, the update of the f.k. must be carried out in a cascade fashion starting
with the key referenced by the f.k.. If a new identifying relationship is added for
changing the anchor corresponding to the key of the table from a strong entity
to a weak entity, then the algorithm suggests to update the key of the table by
combining the identifier of the owner entity and the local identifier of the weak
entity. The semantic mapping formula is updated accordingly. �
For a semantic mapping, changes that delete elements from the schema can be
classified into: deleting a table, deleting an attribute that is not part of the key
nor a f.k. of a table, deleting a f.k. of a table, and deleting part of the key of a
table. The first three deletions result in updating a semantic mapping formula
that references the deleted elements without updating the ontology. The last
deletion would require updating the identifier of the associated concepts in the
ontology. Changes that delete elements from the ontology would require updating
the associated schema in order to maintain the validity of the semantic mapping.
In general, if some changes in the ontology (or schema) cause updates in the
associated schema (or ontology) in order to maintain the validity of the semantic
mapping, the updates will not be carried out automatically; instead, the system
will prompt the suggested updates and ask the user what next action should be:
executing the update or prohibiting the changes in the ontology (or schema).

The next kinds of changes are merging/splitting elements and changing con-
straints in schema/ontology. In this paper, we omit discussion about merg-
ing/splitting, and we use the following example to illustrate how to maintain a
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semantic mapping when some constraints are changed in the associated schema
and ontology.

Example 5. Suppose the following existing semantic mapping formula relate
a relational table treat(tid,sgid) with an s-tree TREATMENT ---appliesTo---

SAMPLE GROUP in an ontology:

treat(tid, sgid) ↔
TREATMENT(x1), tid(x1, tid), SAMPLE GROUP(x2),
appliesTo(x1, x2), sgid(x3, sgid).

where the key of the table is the combination of both columns tid and sgid which
are identifiers of concepts TREATMENT and SAMPLE GROUP, respectively, and
the relationship
appliesTo is many-to-many.

Later, the data modeler obtained a better understanding of the application by
realizing that each treatment only applies to one sample group. Consequently,
s/he changed the key of the treat table from the combination of columns tid and
sgid to the single column tid. Having this change in the schema, the maintenance
algorithm will suggest to change the relationship appliesTo from a many-to-
many relationship to a functional relationship TREATMENT ---appliesTo->--

SAMPLE GROUP .
Conversely, if the database designer obtained a better understanding of the

application and changed the appliesTo relationship from many-to-many to func-
tional, then the algorithm will suggest to update the key of the table treat from
the combination of tid and sgid to the single column tid.

In both cases, the semantic mapping formula does not change. �
In summary, the basic principle of maintaining semantic mappings under schema/
ontology evolution is to repair the semantic relationship between a table and an
s-tree according to knowledge in existing mappings and changes. Specifically, the
algorithm attempts to align the key and foreign key constraints in the table with
integrity constrains in the ontology by suggesting necessary updates.

6 Conclusions

A semantic mapping between a database schema and an ontology specifies a se-
mantic relationship between the schema and the ontology. For relational schemas,
we represented the semantic mapping as a set of relationships between relational
tables and s-trees in an ontology. Such a relationship can be represented in terms
of a formula with precisely defined semantics. Once such a semantic mapping
is established, it is important to maintain the validity of the semantic mapping
when the schema or ontology evolves. Mapping maintenance is a challenging
problem and it will benefit from a principled and systematic solution. Here we
reported on a preliminary effort to define such a solution which will empower
database designers, administrators, and integrators.
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Unlike the traditional solutions to the problem of schema mapping adaptation,
our solution attempts to adapt both the semantic mapping and the associated
schema and ontology in order to maintain the validity of the semantic mapping.
Based on the previous study on discovering semantic mappings from database
schemas to ontologies, we aim at repairing the semantic relationship between
a table and an s-tree by analyzing the semantics in changes to align integrity
constraints in schemas and ontologies.

Future work includes developing the complete algorithm and conducting ex-
periments for testing the performance of the solution using both synthetic and
real-world semantic mapping evolution scenarios. In addition, we are interested
in developing solutions to the problem of maintaining general semantic
mappings.
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