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Abstract. Bounded Model Checking (BMC) is an incremental refutation tech-
nique to search for counterexamples of increasing length. The existence of a
counterexample of a fixed length is expressed by a first-order logic formula that
is checked for satisfiability using a suitable solver.

We apply communicating parallel solvers to check satisfiability of the BMC
formulae. In contrast to other parallel solving techniques, our method does not
parallelize the satisfiability check of a single formula, but the parallel solvers work
on formulae for different counterexample lengths. We adapt the method of con-
straint sharing and replication of Shtrichman, originally developed for sequential
BMC, to the parallel setting. Since the learning mechanism is now parallelized,
it is not obvious whether there is a benefit from the concepts of Shtrichman in
the parallel setting. We demonstrate on a number of benchmarks that adequate
communication between the parallel solvers yields the desired results.

1 Introduction

The term Bounded Model Checking [16,8] refers to symbolic analysis techniques check-
ing finite unravelings of transition systems for satisfaction of a formal specification.
While originally being confined to a refutation technique based on an incremental
search for counterexamples of increasing length, there are now several extensions to
recognize fixed points and allow system verification (see e.g. [12]). Basically, given
a system together with a specification, the existence of counterexamples of increas-
ing length k = 0, 1, . . . is expressed by first-order formulae ϕk that are checked for
satisfiability by a solver suitable for the underlying logic. For discrete systems a SAT
solver is used, while the analysis of linear hybrid automata, for example, requires the
application of a combined SAT-LP solver. Some popular solvers are, e.g., zChaff [24],
BerkMin [15], MiniSAT [13], HySat [14], MathSAT [5], CVC Lite [6], and ICS [10].

Given the high computational cost of checking large BMC instances and driven by
the advent of affordable multiprocessor machines, research recently focusses on the de-
velopment of parallel BMC techniques, too. The main line of research applies parallel
solvers to the same BMC instance, that means, the solvers work on the satisfiability
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check of the same formula ϕk. Thereby, the overall search space is divided into disjoint
parts which are then treated by the involved processes.

Parallel SAT algorithms can be traced back to at least 1994, where Böhm and Speck-
enmeyer presented an approach for a transputer system with up to 256 processors [9].
In subsequent years, a number of more advanced implementations have been devel-
oped. Two of the most powerful distributed SAT solvers nowadays are PaSAT [27] and
PaMira [25]. Both tools use many of the latest improvements in sequential SAT solv-
ing, e.g., conflict-driven learning combined with non-chronological backtracking, vari-
ous efficient decision heuristics, and zChaff’s concept of watched literals. Additionally,
PaMira employs Early Conflict Detection BCP and Implication Queue Sorting [20].
Both features together result in a significantly reduced number of clauses the BCP stage
has to deal with, and by this substantially increase the overall performance.

PaSAT and PaMira also support the exchange of information about the problem in-
stance under consideration, usually encoded as conflict clauses. In traditional parallel
SAT solvers the processes independently generate conflict clauses for their own usage
(in [27] also referred to as lemmas). Every conflict clause, generated by a conflicting
assignment of the variables, is a piece of information that the corresponding process
has learnt about the problem and that might be helpful to cut off parts of the search
space. If the solvers share their knowledge, consisting of their conflict clauses, then this
information enables them to avoid descending into parts of the search tree that have
already been proven to be unsatisfiable by other solvers. If a solver, receiving a conflict
clause, is currently analyzing such an unsatisfiable sub-tree then it can immediately
stop its analysis of the current part of the search tree. Thus exchanging conflict clauses
is helpful in increasing the performance of the overall system.

In this work we introduce a different kind of parallelization of BMC: instead of
applying a distributed SAT solver to a single BMC instance, we do concurrently address
the satisfiability check for different counterexample lengths through parallel solvers.

In a naive setting, without relating the SAT-checks of different BMC instances, such
a parallelization would immediately provide ideal, linear speedup. Solvers optimized
towards BMC do, however, exploit constraints of earlier SAT-checks to aggressively
prune the search space of the subsequent ones (see e.g. [26,14,2]). These pruning tech-
niques are developed for sequential execution. Our primary goal is to preserve linear
speedup even when parallelizing such optimized BMC engines.

The BMC formulae ϕk for different ks describe similar problems, i.e., the formulae
have some common sub-formulae. We make use of this fact and let the parallel solvers
exchange information in the form of conflict clauses. However, knowledge sharing is
not as simple as before: In parallel SAT solvers like PaSAT or PaMira, as described
above, the solvers communicate conflict clauses in order to help each other with in-
formation which part of the state space does not need to be searched through. Without
modification, this method does not work in our case when the different solvers have to
solve different problems: a conflict clause, generated by some solver, may result from
clauses that some of the other solvers do not have in the clause set they have to satisfy
and thus those other solvers must not make use of that conflict clause.

In [14,2] we dealt with constraint sharing and replication (CSR) in the style of
Shtrichman [26]. Recall, that sequential BMC defines a sequence of SAT problems
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ϕ0, ϕ1, . . ., which are checked sequentially one after the other. CSR can be seen as a
method of communicating at the interface between the different BMC SAT problems:
the conflict clauses after the SAT check of one problem are analyzed and used to prune
the check of the following BMC problems when possible. Constraint sharing re-uses
those conflict clauses whose generation involved only clauses that are part of the next
SAT problem, too. Constraint replication shifts conflict clauses in time: if all clauses
involved in the generation of a conflict clause are present in the next SAT check with
the same variables but at different computation depth, i.e., with different indices, then
we can insert that conflict clause after renaming the variables accordingly. Constraint
replication can also be applied on-the-fly. In that case, shifted copies of new conflict
clauses are added immediately after conflict resolution, when possible.

In the context of the AVACS project [1] we are interested in the analysis of linear
hybrid automata. Linear hybrid automata are transition systems with mixed discrete-
continuous behavior. Additionally to the discrete part, time passes while control stays in
the locations, and the values of the real-valued variables evolve continuously according
to some linear flows.1 Consequently, the BMC formulae for linear hybrid automata are
not only Boolean combinations of Boolean variables, but additionally of some linear
constraints over the real-valued variables.

In [14,2] we showed that CSR speeds up the satisfiability checks remarkably not
only for discrete systems (e.g. circuits) but also for linear hybrid automata. Our expe-
rience shows that in the mixed discrete-continuous case the search in the real domain,
involving some LP solving techniques, is very time-consuming. Thus, for the hybrid
case CSR is especially important to make use of the conflicts found in the real domain.

Now, if we start several SAT solvers running in parallel and solving BMC problems
for different counterexample lengths independently using CSR, the expected speedup of
CSR plus the linear speedup due to parallelization will not be reached. The reason is
the following: In sequential BMC with CSR, each BMC instance is solved completely
before the next check starts. As CSR re-uses the conflict clauses, the forthcoming check
will not run into the same conflicts again. However, in the parallel case, if the differ-
ent solvers do not communicate, they may find the same conflict independently, thus
wasting time.

Even if the solvers communicate, yielding constraint sharing, we need to apply con-
straint replication to the communicated clauses immediately after communication, in
order to get the same speedup as in the sequential case for each of the solvers. Without
immediate constraint replication, the different solvers often find the same problem at
different time instances. This entails on the one hand unnecessarily finding the same
conflict twice, and on the other hand increased constraint propagation time: constraint
replication at the beginning of the SAT checks may produce lots of subsumed clauses.

In this paper we integrate the standard parallel SAT-solving paradigm and CSR in
the context of BMC. We parallelize the learning algorithm using communicating SAT
solvers such that we can keep the speedup of the sequential case for each of the parallel
solvers and at the same time, due to parallelization, the experiments show an additional
linear speedup.

1 The linearity of the flows allows us to express the BMC formulae in a decidable logic for
which efficient solvers are available.
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The rest of the paper is structured as follows: Section 2 deals with BMC and SAT
solving, and Section 3 describes our parallelization technique. In Section 4 we present
the experimental results, and finally we draw conclusions in Section 5.

2 Bounded Model Checking

We first give a short review of bounded model checking [16,8] and briefly describe how
state-of-the-art SAT solvers check satisfiability of propositional formulae. In this paper
we restrict ourselves to safety properties; for lifeness properties see e.g. [8].

2.1 Encoding Finite Transition Systems

Given a finite transition system, its initial condition and transition relation can be de-
scribed by propositional formulae Init(s) and Transt(s, s′) for all t ∈ T with T the
set of transitions, where s and s′ explicitly denote the free variables occurring in the
given formulae: s = (v0, . . . , vm) contains all variables and s′ = (v′0, . . . , v

′
m) copies

of them in order to describe the target valuation after a transition.
Let Safe(s) be a propositional formula describing a safety property of the system.

Counterexamples of a fixed length k, i.e., runs of length k violating the property Safe
in their final state, can be described by the following formula:

ϕk(s0, . . . , sk) = Init(s0) ∧
(∧

i=0,...,k−1
∨

t∈T Transt(si, si+1)
)

∧ ¬Safe(sk) .

Starting with k = 0 and iteratively increasing k ∈ N, BMC checks whether the BMC
instances ϕ0, ϕ1, ϕ2, . . . are satisfiable. The algorithm terminates at depth k if ϕk is
satisfiable, i.e., an unsafe state is reachable from an initial state in k steps.

2.2 Satisfiability Checking

The formulae ϕk describing counterexamples of length k are checked for satisfiability
by a traditional SAT solver.

First, the Boolean formula is transformed into a conjunctive normal form (CNF). In
order to keep the formula as small as possible, auxiliary Boolean variables are used
to build the CNF [30]. A formula in CNF-form is a conjunction of clauses, while
each clause is the disjunction of literals. We distinguish between positive literals be-
ing Boolean variables, and negative literals being negated ones.

In order to satisfy the formula, each of the clauses must be satisfied, i.e., at least one
literal in each clause must be true. The SAT solver assigns values to the variables in
an iterative manner. After each decision, i.e., free choice of an assignment, the solver
propagates the assignment by searching for unit-clauses, i.e., clauses in that all literals
but one are already false; the remaining literal is implied to be true, since otherwise the
clause would not be satisfied.

If two unit-clauses imply different values for the same variable, a conflict occurs.
In this case a conflict analysis can take place which results in nonchronological back-
tracking and conflict learning [22,33]. Intuitively, the solver applies resolution to some
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unit-clauses, using the implication tree, and inserts a new conflict clause thereby strength-
ening the problem constraints and restricting the state space for further search.

For performing the experiments of Section 4, we developed our own SAT solver,
which – from a top level point of view – works quite similarly to zChaff [24] and Berk-
Min [15]. While not being as optimized as other state-of-the-art solvers, it incorpo-
rates most of the algorithms employed by modern SAT engines to accelerate the search
process, like conflict-driven learning, non-chronological backtracking, and watched lit-
erals. The development of our own solver was necessary for our experiments, since there
is no parallel solver available which supports constraints over the reals, as necessary for
checking hybrid automata.

Our tool exploits the concept of lazy theorem proving [7] to provide a decision pro-
cedure for LinSAT formulae, i.e. CNFs where the atoms can be both propositional vari-
ables and linear inequations over the reals. It tightly integrates a Davis-Putnam style
SAT solver with a linear programming (LP) routine, combining the virtues of both meth-
ods: LP adds the capability of solving large conjunctive systems of linear inequalities
over the reals, whereas the SAT solver accounts for fast Boolean search and efficient
handling of disjunctions (see e.g. [32,5,7,11]). The basic idea of the integration is to
build a Boolean abstraction of the hybrid problem by replacing each non-propositional
constraint occuring in the input formula by a fresh auxiliary Boolean variable. The SAT
solver checks the satisfiability of a Boolean abstraction, while the LP solver checks the
consistency of the assignments in the real domain.

2.3 Symmetries of BMC Problems

The formulae of BMC problems have a special structure: they describe computations,
starting from an initial state, executing k transition steps, and leading to a state violat-
ing the specification. Accordingly, the set of clauses generated by the SAT solver can be
grouped into clauses describing (1) the initial condition (I-clauses), (2) one of the tran-
sitions (T-clauses), and (3) the violation of the specification (S-clauses). Furthermore,
the T-clauses can be grouped into k groups describing the k computation steps. Those k
T-clause groups describe the same transition relation, but at different time points. That
means, they are actually the same up to variable renaming. For example, some BMC
problem for counterexample length k = 3 could be represented by a clause set like
this:2

I-clauses T-clauses S-clauses
(x0 ∨ y0), . . . (x0 ∨ y1 ∨ z0), . . . , (x1 ∨ y1 ∨ z0) (y3 ∨ z3), . . .

(x1 ∨ y2 ∨ z1), . . . , (x2 ∨ y2 ∨ z1)
(x2 ∨ y3 ∨ z2), . . . , (x3 ∨ y3 ∨ z2)

We say that a T-clause describing the ith transition step is a T[i−1,i]-clause, since it in-

volves state-vector components with indices i−1 to i; we call i−1 the lower boundary
and i the upper boundary of the clause. Similarly, I-clauses are also called I[0,0]-clauses

2 The value of a Boolean variable v in the ith state of the computation is denoted by vi, the value
of its negation by vi.
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and S-clauses in iteration k also S[k,k]-clauses. We also write T[i,≤j] when being unspe-
cific about the upper boundary i ≤ j′ ≤ j; we use similar notation for I- and S-clauses
and lower boundaries. Furthermore we say that we shift a clause by d meaning that we
replace each variable index i by i + d.

2.4 Constraint Sharing and Replication

Usually, the conflict clauses learned during the SAT check of a BMC instance ϕk get
removed before the satisfiability check of the next BMC instance ϕk+1. However, they
can also be partially re-used in the style of Shtrichman [26], thereby excluding search
paths from the SAT search already before the search starts: If a conflict clause is the
result of a resolution applied to clauses that are present also in the next BMC iteration,
then the same resolution could be applied in the new setting, too, and thus we can
keep those conflict clauses. Furthermore, if all clauses used for resolution to generate
a conflict clause are present with a shifted instance, then the same resolution could be
made using the shifted instances. Accordingly, we distinguish between the following
conflict clause types:

– I[0,j]-conflict-clauses are the result of resolution applied to I[0,≤j]- and possibly
T[≥0,≤j]-(conflict-)clauses. They can be re-used without any modification in all
iterations k′ ≥ j.

– S[i,k]-conflict-clauses are the result of resolution applied to S[≥i,k]- and possibly
T[≥i,≤k]-(conflict-)clauses. They can be re-used in all iterations k′ ≥ k − i when
shifted by k′ − k.

– T[i,j]-conflict-clauses are the result of resolution applied to (conflict) clauses of
type T[≥i,≤j]. They can be inserted in iteration k′ ≥ j − i in all instances shifted
by −i, . . . , k′ − j.

– IS-conflict-clauses are the result of resolution applied to (conflict) clauses of both
types I and S. They cannot be re-used in other iterations.

In a sequential setting, a single solver is used to check all the BMC formulae for
incremental counterexample lengths. Thereby, the conflict clauses can be re-used in the
above manner: before each iteration k, the conflict clauses generated in the iterations
less than k are analyzed and adapted to the depth k. Alternatively, T-conflict-clauses
can also be replicated on-the-fly directly after their generation, within the width of the
current BMC instance.

2.5 Extension to Linear Hybrid Automata

The previously presented approach can be naturally extended to BMC of linear hy-
brid automata. Hybrid automata [3,18] are a formal model to describe systems with
combined discrete and continuous behavior. We consider the class of linear hybrid au-
tomata, whose behavior can be described by Boolean combinations of linear (in)equa-
tions over real-valued variables.

Applying BMC, counterexamples of a linear hybrid automaton can be encoded sim-
ilarly to that of a finite transition system. In the hybrid case the underlying logic is the
existential fragment of the first-order logic over (R, +, <, 0, 1), i.e., formulae are the
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Boolean combinations of (in)equations over linear terms using real-valued variables.
The satisfiability check of those formulae is done by a combined SAT-LP solver. For
a detailed description of the encodings, the satisfiability checks, and for optimizations
see [2].

3 Parallel BMC

We are going to transfer the BMC technique into a parallel setting. Assume n solvers
running in parallel, where each solver checks a different BMC instance of the same
system for satisfiability. An additional master process makes the book-keeping of the
BMC problems already checked and assigns the unresolved instances to the distributed
solvers. When becoming idle due to completion of its previous instance, each solver
asks the master process which counterexample length to check next. Starting at 0, the
master distributes the problem instances in the order of increasing unraveling depth.

After receiving the first BMC instance to check, each solver generates the corre-
sponding clause set and starts the satisfiability check.

If one of the solver runs into a conflict, it generates a conflict clause, which is then
sent to the master process. In addition to the literals constituting the clause, the solver
sends the conflict’s type and boundaries. For example, the sequence of literals of a T[i,j]-
conflict-clause is augmented with the information that it is a T-clause with boundaries
i to j. IS-conflict-clauses are not sent, since they cannot be re-used in other iterations.
After sending, the solver replicates the conflict clause, if possible, and the SAT algo-
rithm continues. During replication, we remember which clause is the highest instance
of the conflict, i.e., the one shifted by the highest value. To avoid multiple copies, only
the highest instance will be shifted in future.

In order to benefit from conflict clauses generated by other solvers, each solver fre-
quently fetches from the master new conflict clauses sent by the other solvers. Note that
solvers receiving some clauses do actually process a BMC instance of another length
than the sending solver does. Therefore, a solver checking iteration k may receive a
T[i,j]-conflict-clause with j − i > k. In this case, the solver must not yet make use of
the clause, but may of course memorize it for later use when it attacks a larger BMC
instance.

Thus each receiving solver checks whether it can currently make use of the received
conflict clause. If so, the clause and possible replications get inserted into the solver’s
clause set. S-clauses get shifted into the right position before insertion. Again, when
replicating T-clauses, the highest instance is marked. It is important that received con-
flict clauses are replicated on-the-fly directly after their reception, and not later before
the next satisfiability check: If different shifted instances of the same conflict are found
or received, the solver would replicate all of them before the next check, resulting in
multiple copies of the same clauses. That would increase propagation time.3 Replicating
on-the-fly alleviates this problem, since all processes insert all possible shifted instances
within a small time frame, such that the probability that two solvers find the same con-
flict in the same or in a different instance is significantly reduced (see Section 4 for
some experimental results).

3 One could also employ subsumption checks to avoid this effect.
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Otherwise, if the width of the conflict is too large for the current iteration of the
receiver, the clause is inserted as a silent clause: though it is syntactically stored, it will
not influence the current SAT check.

Before a solver starts a new iteration, it adds possible new replications of the al-
ready active T-conflict-clauses, adapts the S-conflict-clauses, and deletes all IS-conflict-
clauses. Note that, in order to reduce subsumption, only the highest instances get shifted
with all possible positive values, and the new highest instances get marked. Besides that,
the solver checks which silent clauses may be activated and eventually replicated. In the
above example, the solver may make use of the previously silent T[i,j]-conflict-clause
when the new iteration k′ that the solver is going to check is at least j − i. In this case
the conflict clause shifted by −i, . . . , k′ − j can be added to the clause set.

The above mechanisms aim at preserving linear speedup from parallelization even
if constraint sharing is used, a mechanism that suits the sequential world better. Com-
munication between the solvers has the role of knowledge transfer, such that none of
the solvers has disadvantages from the fact that it does not compute each BMC instance
incrementally, but skips over some that get computed by the others. In the next section
we show by means of benchmarks that without exchanging conflict clauses, the effect
of constraint sharing and replication in the parallel case does not yield the same speedup
as in the sequential setting.

4 Experimental Results

We implemented a prototype SAT solver which works mainly as described in Sec-
tion 2.2. For communication we use MPICH2 [17], an implementation of the Massage
Passing Interface (MPI) standard. It is worth to mention that our approach works well
only if communication is very fast. To satisfy this requirement, we designed the com-
munication as simple as possible. It is very important that a process does not loose time
by checking incoming messages if no message is there, or that it does not have to wait
long when sending. Direct synchronous communication between the solvers seems to
be disadvantageous, since the processes have to wait for each other. MPICH supports
buffered, i.e., asynchronous communication, only in a restricted manner: there is a fast
algorithm to check whether there have arrived some messages along some channels, but
it can happen that a process must wait when sending if the buffer is full. For that reason,
we introduce an additional master process acting as a communication hub and provid-
ing sufficient buffer capacity (see also [19,23] for such master-solutions). The master
receives messages from the solvers, buffers copies for all other solvers, and forwards
them when the solvers are ready to receive. This way communication can proceed with-
out long waiting times. Thus we have one more process, but the solvers themselves need
negligible time for communication (for experimental results see Figure 3).

For our experiments we used a network of 4 computers each having two AMD
Opteron(tm) 250/252 processors with 2400-2600 MHz, 1024 kB L2 cache, and be-
tween 4 and 16 GB of main memory. We measured the relative performance of 1, 2, and
5 parallel solvers supported by a master process. We performed experiments with com-
municating solvers using constraint sharing and replication. To test the effectiveness
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of these algorithmic enhancements, we also measured the running times when the
solvers do not use constraint sharing and replication or when no communication takes
place.

The running times (except in Figure 3) are given as the CPU times per processor for
each BMC iteration. For each iteration, the CPU time per processor is computed as the
runtime of that instance divided by the number of parallel solvers. Thus the depicted
values correspond to the system time: the sum of the values for the iterations 0 to k is
approximately the system time up to iteration k.

The running times contain the CPU times for the SAT checks including the commu-
nication times as well as the times needed for the generation of the BMC problems for
the different counterexample lengths. We have run each experiment 4 times and show
the average results below.

To give an example of a discrete benchmark, we applied BMC to check invariants of
UsbPhy (Universal Serial Bus), taken from the VIS benchmark suite [28,31]. As for
hybrid automata, we applied BMC to Fischer’s mutual exclusion protocol [21] for 2, 3,
and for 4 processes. The specification states the mutual exclusion property, i.e., that at
each time point there is at most one process in its critical section. The Railroad Crossing
[18] is a further hybrid benchmark. It consists of 3 parallel automata modeling a train, a
railroad crossing gate, and a controller. The specification requires that the gate is always
fully closed when the train is close to the railroad crossing. Further hybrid benchmarks
are a model of an elastic approach to train distance control and a model of a Renault
Clio 1.9 DTI RXE, equipped with a simple cruise controller as reported in [29].4 To
test the behavior also for deep counterexample search, we have chosen invariant safety
properties, i.e., there exists no counterexample for the systems used, but for the elastic
train train control at depth 22.

Figure 1 shows results for different settings for Fischer’s protocol for 4
processes. Figure 1 a) motivates CSR by comparing the running times for a single
solver with and without CSR. For all the benchmarks applied, CSR leads to substan-
tially shorter running times.

Figure 1 b) shows what happens when parallelizing the solver with applying CSR
but without communicating information between the solvers. I.e., CSR is only applied
locally on a per-solver basis. The speedup due to parallelization is very small; the run-
ning times are sometimes even longer for the parallelized version than for the sequen-
tial setting. The reason is illustrated in Figure 1 c) by listing the number of conflicts
in each iteration. Without communication, the number of conflicts may increase when
employing more solvers. When a solver has computed a problem instance k and starts
to compute a new instance k′ > k, then during the computation of the new instance k′

it will find conflicts that already occurred in other solvers computing instances between
k and k′. However, since the solver computing k′ is not informed about those conflicts,
it may run into the same conflicts again.

To complete the picture, Figure 1 d) compares the running times when using
CSR with and without communication between the solvers. Figure 1 e) shows the

4 These two hybrid benchmarks are very complex in the real domain, i.e., the satisfiability check
of their BMC instances requires a massive usage of the LP-solver. This yields, at least for deep
BMC instances, long running times even for only a few conflicts.
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Fig. 1. CPU times per processor and iteration in different settings for Fischer’s protocol for 4
processes

corresponding number of conflicts for each iteration. Communication between the solvers
massively reduces the increment of the conflicts with a growing number of solvers. We
observe that communication becomes more and more important when increasing the
number of solvers, since the number of iterations that are skipped over by a solver after
finishing instance k and before starting a new instance k′ increases, and so the number
of conflict clauses the solver did not get informed about. The last diagram f) of Figure 1
shows for two communicating solver using CSR the effect when not applying on-the-fly
constraint replication, but replicating only at the beginning of a new SAT check.

Figure 2 shows the running times for the different benchmarks, when applying par-
allelized CSR and communication. We obtain, that the running times of the sequential
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Fig. 2. CPU times per processor and iteration for different benchmarks with CSR and with
communication
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Bench- depth M 1 solver 2 solvers 5 solvers 10 solvers
mark k Time C Time C Time C Time C

usb 200 1 973 ( 0 ) 13 487 ( 0 ) 13 201 ( 0 ) 13 99 ( 0 ) 13
2 990 ( 0 ) 1 491 ( 0 ) 1 197 ( 0 ) 1 100 ( 0 ) 1
3 − (−) − 504 (< 1) 1 201 (< 1) 1 103 (< 1) 1

Railroad 200 1 798 ( 0 ) 72 399 ( 0 ) 72 165 ( 0 ) 72 81 ( 0 ) 72
crossing 2 14 ( 0 ) 3 8 ( 0 ) 5 7 ( 0 ) 10 10 ( 0 ) 17

3 − (−) − 7 (< 1) 3 3 (< 1) 4 1 (< 1) 6
Cruise 20 1 2254( 0 ) 798 1129( 0 ) 798 454 ( 0 ) 798 225 ( 0 ) 798

controller 2 317 ( 0 ) 262 278 ( 0 ) 275 183 ( 0 ) 387 148 ( 0 ) 582
3 − (−) − 158 (< 1) 240 67 (< 1) 235 37 (< 1) 240

Train 22 1 120 ( 0 ) 9 62 ( 0 ) 9 27 ( 0 ) 9 13 ( 0 ) 9
distance 2 85 ( 0 ) 8 50 ( 0 ) 8 22 ( 0 ) 9 10 ( 0 ) 10
control 3 − (−) − 49 (< 1) 7 20 (< 1) 8 10 (< 1) 9

Fischer 2 200 1 242 ( 0 ) 258 121 ( 0 ) 258 47 ( 0 ) 258 23 ( 0 ) 258
2 16 ( 0 ) 6 9 ( 0 ) 10 5 ( 0 ) 24 3 ( 0 ) 46
3 − (−) − 8 (< 1) 6 3 (< 1) 5 1 (< 1) 6

Fischer 3 200 1 5688( 0 ) 10830 2815( 0 ) 10830 1093( 0 ) 10830 552 ( 0 ) 10830
2 63 ( 0 ) 265 39 ( 0 ) 517 27 ( 0 ) 1222 24 ( 0 ) 2323
3 − (−) − 35 ( 1 ) 330 17 ( 2 ) 360 8 ( 3 ) 297

Fischer 4 100 1 nn (nn) nn nn ( nn ) nn 3945( 0 ) 43514 1971( 0 ) 43514
2 1186( 0 ) 3268 1054( 0 ) 6086 787 ( 0 ) 11944 820 ( 0 ) 23045
3 − (−) − 637 ( 11 ) 3289 341 ( 15 ) 3658 277 ( 9 ) 4259

Fig. 3. Total running times. Notations: Time=total SAT check time for all iterations up to depth k
(average communication time per solver in brackets) in seconds, C=average number of conflicts
per iteration, M=method. We distinguish the methods (1) without CSR and without communica-
tion, (2) with CSR but without communication, and (3) with CSR and with communication.

solver using CSR, which is already substantially shorter than without CSR, can be fur-
ther improved by a linear factor when using our parallel approach with communication.

Finally, Figure 3 shows for each benchmark the total running times, i.e., the sum of
the running times for all instances, up to the shown depth. We distinguish the methods
(1) without CSR, (2) with CSR but without communication, and (3) with CSR and with
communication. Besides the running times, the average total communication time per
solver is given in brackets. Note, that the communication is very fast; for most bench-
marks it amounts to less than 1 second. Additionally, the average number of conflicts
per iteration is listed. Again, the results are presented for 1, 2, and for 5 solvers. To give
an impression of the behavior for more massive parallelism, we also list the results for
10 parallel solvers. However, since we had only 8 CPUs but 11 processes (10 solvers
and a master), the listed running times, i.e., the average CPU times per solver, do not
correspond to the real system times observed, but state an estimated running time for 11
processors calculated based on measurements stemming from a time-sharing execution.

Since one single solver cannot communicate, the corresponding fields are not filled.
By nn we denote that the computation was timed out because the total running time
reached the timeout threshold of 10000 seconds.

To conclude the results, the experiments show that communication between parallel
solvers using CSR yields an additional linear speedup to the improvement of CSR.
Without communication, the effect of CSR gets worse with an increasing number of
solvers.
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5 Conclusions

In this paper we introduced a parallel SAT solving technique for bounded model check-
ing. The parallelization is different from existing approaches: instead of solving a single
problem instance using parallel solvers, we let different solvers solve different BMC in-
stances. In order to speed up the search, we apply constraint sharing and replication and
let the solvers communicate the conflict clauses found during their SAT checks. The
experiments performed show that the positive effect of constraint sharing and replica-
tion can only be preserved under parallelization if the solvers communicate the conflict
clauses among themselves. With communication, the full advantage of sequential CSR
can be maintained in the concurrent setting, yielding linear speedup from parallelization.

The efficiency of other parallelization techniques strongly depends on how the state
space gets split. The experiments show that our parallelization technique is stable: Each
BMC instance is solved by a single solver, and thus we do not have to split the state
space. With parallelized CSR we obtain a remarkable and consistent speedup for all
benchmarks used. As for future work, we will compare our results with the application
of other parallel SAT-solvers.

Furthermore, motivated by the positive findings obtained using our approach, we
will combine both kinds of parallelization: on the one hand, instead of having a single
solver checking each BMC instance, we will use a group of solvers for this purpose that
work in parallel on the same problem by sharing the search space, similarly to PaSAT
and PaMira. On the other hand, we will parallelize those solver groups as described
in this paper to check for existence of counterexamples of different lengths. This com-
bined approach we will build on the HySAT solver [14] which is more efficient than the
prototype solver employed for these experiments.
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