
An Agent-Environment Interaction Model

Scott A. DeLoach and Jorge L. Valenzuela

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506
{sdeloach, jvalenzu}@cis.ksu.edu

Abstract. This paper develops a model for precisely defining how an
agent interacts with objects in its environment through the use of its
capabilities. Capabilities are recursively defined in terms of lower-level
capabilities and actions, which represent atomic interactions with the
environment. Actions are used to represent both sensors and effectors.
The paper shows how the model can be used to represent both software
and physical agents and their capabilities. The paper also shows how the
model can be integrated into the Organization-based Multiagent Systems
Engineering methodology.

1 Introduction

There is widespread agreement that the environment in which a multiagent
system is situated is of fundamental importance in the analysis, design, and
operation of the system. However, even with this agreement, few multiagent
methodologies include the modeling of the environment or the agent’s interac-
tions with it as first class entities [10]. In situated multiagent systems, the envi-
ronment is the entity in which agents exist and communicate [6]. Communication
is a critical factor that enables agents to interact and coordinate. Typically, this
interaction and coordination is modeled using direct communication through
the social environment; however, it can also be modeling indirectly through the
physical environment. A social environment is the entity that provides the prin-
ciples, processes and structures that enable the agents to communicate while
the physical environment provides principles and processes that affect objects
within an environment [6]. In [4], Ferber defines a multiagent system as having
six basic entities:

– An environment, E
– A set of objects, O, that exist in E
– A set of agents, A, which are active objects (i.e., a subset of O)
– A set of relations, R, that define relationships between objects in O
– A set of operations, O, that agents can use to sense and affect objects in O
– A set of universal laws that define the reaction of the environment to agent

operations

Based on Ferber’s definition, we have identified five requirements for specifying
agent-environment interaction model. Essentially, an AEI should define:

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 S.A. DeLoach and J.L. Valenzuela

1. A unique entity called the environment
2. The set of objects in the environment (which includes agents)
3. Specific types of relations that may exist between objects in the environment
4. The set of operations that agents may perform upon objects in the

environment
5. The laws that govern the effect of those operations on objects in the

environment

While capturing these elements is essential, we believe it is also critical that
these concepts be captured using a model that shows direct relations between the
objects, agents, and actions as well as specifies the intended effect of each action
unambiguously. We believe it is also important to provide a model that allows
these concepts to be specified and viewed at the appropriate level of abstraction.

While most current multiagent methodologies provide some notion of the en-
vironment or the agent’s interactions with it, no major methodologies possess
a detailed agent-environment interaction model that explicitly defines how the
environment is affected by agents or how the agent perceives the environment.
Including such an agent-environment interaction model is important because it
allows us to explicitly identify (1) how agents directly interact/coordinate with
each other, (2) how agents indirectly interact/coordinate with each other, and
(3) the effect of agents on objects in the environment, which in situated multi-
agent systems often determines whether the system has accomplished its goals.
In addition, agents in situated multiagent systems also generally require some
representation of the environment in order to effectively communicate with other
agents and to achieve their goals. By including a well-defined model of the en-
vironment in the agent-environment interaction model, the analysis, and design
of these agents should be clearer and thus improved over implicit approaches.

The goal of this paper is to present an Agent-Environment Interaction model
(AEI) that can be integrated into appropriate multiagent systems methodolo-
gies. Specifically, we will integrate the AEI Model into the Organization-based
Multiagent Systems Engineering methodology (O-MaSE) [1]. To make the nota-
tion as clear and unambiguous as possible, we use standard UML notation with
liberal use of keywords to denote specific concepts in the model. Obviously, if
our AEI Model is integrated into other methodologies and modeling approaches,
the notation can be adapted as needed.

The paper is organized as follow. In Section 2, we discuss how some current
multiagent methodologies address environmental issues and provide an overview
of O-MaSE [1]. In Section 3, we present our AEI Model and integrate our AEI
Model into O-MaSE. In Section 4, we present a detailed example of the AEI
Model using a robotics Weapons of Mass Destruction (WMD) simulation system.
Finally, in Section 5, we present our conclusions and areas for future work.

2 Related Work

In this section we review four prominent multiagent systems methodologies and
how they model interactions with the environment: Gaia, Message, Prometheus,

An Agent-Environment Interaction Model 3

and O-MaSE. We also analyze how well each of these methodologies meets the
agent environment interaction requirements stated above.

2.1 Gaia

The extended version of Gaia [12] adds some basic concepts and organizational
abstractions to the original version of GAIA [11]. Among these additions is an
Environment Model, which is introduced during the analysis phase. Because the
authors believe that “it is difficult to provide a general modeling abstraction and
general modeling techniques because the environment for different applications
can be very different in nature” [12], they model environmental entities in terms
of abstract computational resources. These resources are modeled as tuples that
the agents may read, (sense), effect, (change), or consume, (remove). Thus the
Gaia Environment Model can be viewed as a list of resources that can be accessed
using an associated name and acted upon based on the type of action associated
with them. An example of a Gaia Environment Model is shown below [12].

reads var1 // readable resource of the environment.
var2 // another readable resource.
change var3 // a variable that can be also changed by the agent.

Analyzing the Gaia Environment Model using our five AEI model require-
ments shows that, while it does include a limited notion of objects, it does not
include any notion of agents (requirement 2). In addition, the Gaia Environ-
ment Model severely limits the types of relations (requirement 3) and actions
(requirement 4) that can be performed on those objects. Finally, the Environ-
ment Model has no notion of environmental laws that affect the environment
objects independently of the agents (requirement 5). A more general notion of
an AEI could be of benefit in the Gaia methodology.

2.2 MESSAGE

In the MESSAGE methodology [5], the MESSAGE modeling language defines
some knowledge-level-concepts like Concrete-Entity, Activity, and MentalSta-
teEntity. One of the concrete entities defined is Agents, which are autonomous
entities that can perform actions that affect resources. The Actions/Activities
are concrete entities and include Tasks and Interaction Protocols. Agents can also
perceive information entries that describe the state of a resource. Another con-
crete entity is a Resource, which represents a non-autonomous entity that agents
can access/use.MESSAGE builds five views of the Analysis Model: Organization,
Goal/Task, Agent/Role, Interaction and Domain views. The Organization view
shows the concrete entities in the system, the environment and the relationship
among them.

Based on our requirements, we see that MESSAGE defines elements of its
environment as containing objects (both agents and resources) that can interact
using actions and messages. However, MESSAGE does not include the notion of
environmental laws that affect the objects in the environment (requirement 5).

4 S.A. DeLoach and J.L. Valenzuela

Even though MESSAGE captures most of the required information, it does not
explicitly define an agent-environment interaction model and does not provide a
flexible way to represent or define actions at an appropriate level of abstraction.

2.3 Prometheus

The aim of the Prometheus System Identification Phase is to identify the basic
functionality of the system along with the inputs, outputs, and important data
structures [7]. Prometheus models these inputs as percepts and defines them as
raw data coming from the environment. Outputs are modeled as actions, which
are defined as the agent’s way to modify the environment. Scenarios are used
in Prometheus to describe how the system operates nominally. Each scenario
consists of a set of steps that can include goals, actions, percepts, scenarios, or
“other” for special types of steps.

The architectural design phase focuses on identifying the agents in the system
and their interaction. Once the agents are identified, the next step is to define the
percepts each agent reacts to and the actions it may perform. Agent interaction is
specified by defining messages and the different repositories to be used. All these
items are depicted in the system overview diagram. The Detailed Design Phase
focuses on defining the capabilities, which are defined in terms of internal events,
plans, and detailed data structures of the agents. Each capability is described
by a descriptor, which includes the definition of its percepts, actions, data read
or written, interaction with other capabilities, and sub-capabilities.

Our analysis reveals that Prometheus does not explicitly define the environ-
ment. It does not define the objects in the environment (requirement 1), the
relationships between them (requirement 2), or the laws that govern the effect
of agent’s actions on the environment (requirement 5). However, Prometheus
does capture the operations that it uses to get percepts from the environment
and perform actions on the environment. Thus Prometheus too could benefit
from an explicit AEI Model.

2.4 Organization-Based Multiagent Systems Engineering

The Organization-Based Multiagent System Engineering (O-MaSE) [1] method-
ology extends the original MaSE [3] methodology to allow the design of orga-
nizational multiagent systems. Some of the weaknesses of MaSE addressed by
O-MaSE include the tendency to generate static organizations, the inability to
model sub-organizations/systems, and the lack of explicit concepts for modeling
interactions with the environment. To model interactions with the environment,
O-MaSE represents both the sensing and manipulation of the environment as a
type of Capability, which is defined as an “atomic entity that defines the agents’
abilities; these abilities include soft abilities such as access to resources or com-
putational algorithms, as well as hard capabilities such as sensors and effectors
[1]. We use this notion of capabilities as the foundation for our AEI Model,
extending it to allow capability composition as well as to model direct inter-
action with the environment. The current version of the O-MaSE metamodel is

An Agent-Environment Interaction Model 5

shown in Fig 1. The important elements for this paper center on the Capabilities
and the Domain Model. In O-MaSE, Capabilities can be either plans or actions,
where plans are algorithmic entities that use actions for low-level operations. The
domain model is relatively simple, consisting of a set of Environment Objects.
Actions interact directly with the Environment Objects.

achieves

 requires

Policy

Role

constrains

Goal

External
Protocol

Actor

participates-in
participates-in

initiates

interacts-with

Internal
Protocol

Org
Agent

Protocol

usesDomain
Model

Environment
Object

Organization

possesses

plays

Plan Action

Message

Agent

Capability
responds

1

1

1 1

Fig. 1. O-MaSE Metamodel

However, even though O-MaSE does provide the notion of capabilities and a
domain model, it does not meet all our requirements for an AEI Model. Specif-
ically, the domain model does not include agents as objects in the environment
(requirement 2) or the definition of the laws that govern the effect of those op-
erations on objects in the environment (requirement 5). In the next section, we
present our AEI Model that ties together the O-MaSE elements to provide a
complete environment interaction model that can be used with O-MaSE and
easily adapted to other main stream multiagent systems methodologies.

3 Agent-Environment Interaction Model

Our proposed AEI Model is composed of three main elements: the Capability
Model, the Environment Model, and a set of Interactions between capabilities

6 S.A. DeLoach and J.L. Valenzuela

and environment objects. Essentially, agents possess capabilities that sense and
act upon objects in the environment via interactions. Fig 2 depicts the inte-
gration of these three parts into our AEI Model. The top part of the figure
represents the Capability Model, which defines capabilities as consisting of a set
of actions, each of which has a single operation that interacts with environment
objects. The bottom part of the figure captures the Environment Model, which
includes an explicit environment that contains a set of environment objects (that
includes agents) and their relationships. The environment objects are governed
by processes that implement specific environmental principles. Interactions are
defined by the intended effect of operations on environment objects.

1 .. n

implements

1 .. n

interaction

possesses

Capability Model

Environment Model

<<Object>>
ObjectName

<<Process>>
ProcessName

<<Principle>>
PrincipleName

<<Environment>>
EnvironmentName

<<Agent>>

<<Capability>>
CapabilityName

<<Action>>
ActionName

operation_1(p1 … pn) : returnType

governs

relation

«performs»

Fig. 2. Agent-Environment Interaction Model

Note that this general model captures all the items advocated by Ferber as
described in Section 1. It also satisfies each of our specific requirements for
an AEI Model: there is a unique entity called the environment, the environment
consists of a set of objects that includes agents, it includes the notion of relations
that may exist between objects in the environment, it defines a set of operations
that agents may perform upon environment objects, and it captures the notion
of laws that govern the effect of those operations on objects in the environment.
The three main entities of our AEI Model are described in more detail in the
following sub-sections.

3.1 Environment Model

In order to define the actions that an agent may perform upon then environment,
it is critical that we understand exactly what types of objects may be in the

An Agent-Environment Interaction Model 7

environment and the attributes of those objects. While environments have been
widely touted as important in multiagent systems design, there is not a well
accepted representation for them. Odell et. al. define the environment as the
entity that provides the principles and processes for agents and objects to exist
and communicate [6] while Russell and Norvig define an environment as an
entity with which agents interact, with properties defined by concepts such as
accessibility, determinism, dynamism, and continuity [9].

In our AEI model we use a simple Environment Model to model the objects
upon which agents perform the basic actions of sensing and affecting the en-
vironment through interactions. Basically, the Environment is a container of
Objects, which can include Agents situated in the environment. All the objects
in the environment are affected by physical Principles that are implemented by
Processes as depicted in Fig 3. Objects are defined simply via a name and a
set of attributes. Here, environment objects are actually more closely related to
object-oriented classes or types than true object instances.

implements

<<Object>>
ObjectName

<<Process>>
ProcessName

<<Principle>>
PrincipleName

<<Environment>>
EnvironmentName

<<Agent>>

governs

relation

Fig. 3. Simple Environment Model

Fig 4 shows an example Environment Model for a Weapons of Mass Destruc-
tion Search (WMD) cooperative robotic search system. In this model, we are
concerned with modeling the types of objects that can be found while doing a
search of an area (office building, etc.) for suspicious boxes that can be clas-
sified as possible chemical, nuclear, or biological weapons based on signatures
produced by the weapons. All objects in the environment have a location within
the environment as well as a size (which we abstractly identify using a type
PhysicalDimension). Robots also have four additional attributes: add, q, R, and
G. The add attribute represents the address of the robot for communication pur-
poses while the q attribute represents the message queue of incoming messages.
As we will see later, the communication capability requires both these attribute
values for proper operation. The R and G attributes represent the current set
of roles and goals assigned to the robot. There are four types of inert objects:

8 S.A. DeLoach and J.L. Valenzuela

doors, inert boxes, chairs, and tables. Each of these has a zero values for the
rad, bio, and chem attributes. Finally, there are the three types of weapons that
can exist: RadWeapons, BioWeapons, and ChemWeapons. Each of the weapon
types are boxes. However, the exact type of weapon (or whether the box is inert)
can be determined only by using special sensors mounted on specific robots.

<<Object>>
BioWeapon

<<Object>>
ChemWeapon

<<Agent>>
DetectRobot

<<Agent>>
SearchRobot <<Object>>

Chair

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Door

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Table

rad = 0;
bio = 0;
chem = 0;

<<Object>>
InertBox

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Box

<<Object>>
Object

xLoc : Integer
yLoc : Integer
size : PhysicalDimension
weight : Integer
rad : RadiationStrength
bio : BioStrength
chem : ChemStrength

communicates

detects

<<Agent>>
Robot

add : Address
q : MessageQueue
R : Roles
G : Goals

<<Object>>
RadWeapon

Fig. 4. WMD Environment Model

There are two relationships shown between objects in the Environment Model.
The communicates relation is shown between two Robots. The communicates
relation is critical in allowing Robots to use their communication capability (as
described in Section 3.2) to send and receive messages. The detects relation is
shown between Robots and all other objects in the environment (including other
Robots). The detects relation allows Robots to use their Search and Pickup
capabilities (see Section 3.2) to detect objects in the environment.

Besides identifying objects and attributes, it is also important to identify the
principles and processes that govern the environment. For instance, in detecting
radiation, there is the well known principle that the amount of radiation inter-
cepted varies as the square of the distance between the source and the sensor.
Thus, we must define a process that determines the amount of radiation detected

An Agent-Environment Interaction Model 9

at any location in the environment. To do this, we must add the amount of ra-
diation produced by all radiation sources in the environment, regardless of how
little they add to the total. Thus, the process that is in play can be defined by
the following equation.

radiation(x, y) =
∑

∀o:Box

o.rad√
(o.x − x)2 + (o.y − y)2

The WMD Environment Model is developed using traditional domain model-
ing or domain analysis techniques common to most object oriented development
methodologies. Essentially, the goal of the domain modeling is to capture the ob-
jects, relationships, and behaviors that define the domain [8]. For our purposes,
the domain is the environment of the multiagent system under development.
A good Environment Model is critical in the definition of the interactions be-
tween the capabilities and the environment objects as the precise definition of
the operations is based on the object attributes.

3.2 Capability Model

As defined by Russell and Norvig, an agent is anything that can sense and
perform actions upon its environment [9]. As described above, most multiagent
systems methodologies represent these sensors and effectors in some way, either
implicitly or explicitly. In our AEI Model, we abstract the notion of sensors and
effectors as agent capabilities. To keep in line with our O-MaSE definition, we
assume capabilities can be either hardware or software based capabilities.

In our AEI Model, we represent the sensors, effectors, or a combination of
both as capabilities. A capability can be defined at different levels of abstraction
like sense, move, jump, etc. The Jump capability can be accomplished by sensing
an obstacle and then passing (moving) over it. We define Capability as an entity
that can perform one or more actions (e.g. sense or move) and can be composed
of other sub-capabilities.

An Action is defined as an entity that represents the agent’s actual sensor or
effector. Specification of the execution of an action is defined via a single accessi-
ble operation. Each action’s operation has a set of preconditions that determine
whether or not the operation can be executed. If the preconditions hold, the
operation may be executed. If the preconditions do not hold, the operation may
not be executed. Operations also have a set of post-conditions that specify the
desired state of the world after completion of the operation. However, because
operations are assumed to be performed in a dynamic environment with external
influences, the post-condition do not guarantee that the desired state will hold.
In reality, the processes that implement the environment principles determine
the actual state of the world after an operation is performed. For instance, if
a robot performs an operation to move forward one meter, the robot may or
may not actually move exactly one meter. Wheel slippage and wind conditions
are environmental processes that help determine exactly how far the robot will
actually move. When such environmental processes are expected by the agent,

10 S.A. DeLoach and J.L. Valenzuela

the agent may predict its own performance or at least sense to determine the
exact result of its operations.

The Capability Model provides support for reusability and modularity by
encapsulating each sensor and effector operation individually in actions. Our
model also provides support for constructing a capability using other capabil-
ities, which we call a composed capability. We depict our Capability Model in
Fig 5. By defining capabilities in terms of other capabilities as well as atomic
actions, the model is very flexible and allows designers to capture sensor and
effector operations at a continuum of granularity levels based on the application
or designer preference.

1 .. n 1 .. n
«performs»

<<Action>>
ActionName

operation_1(p1, ... , pn) : resultType

<<Capability>>
CapabilityName

Fig. 5. Capability Model

The flexibility of capability definition using this model is shown in the follow-
ing examples. In the example shown in Fig 6, the Search capability shows an
agent’s capability to scan and detect items in a particular location as a single
high level action, SearchLocation. This level of abstraction may be appropri-
ate during the initial stages of analysis or when the agent is using a predefined
package that provides higher level services.

<<Capability>>
Search

<<Action>>
SearchLocation

search(loc)
«performs»

Fig. 6. Search Capability Example

In the second example shown in Fig 7, the PickUp capability is shown as being
carried out by performing three lower level actions: Detect, Grab, and Lift. By
defining actions at a lower level than that shown in Fig 6, the definitions of the
actions in Fig 7 could be more easily reused when defining other capabilities
such as Search (which could be defined using Detect) or Transport (which could
use all three along with a Move action). Clearly, the level of abstraction or
refinement should be left to the designer and, thus, our model allows a wide
variety of choices.

Another feature of our Capability Model is the ability to capture the capability
of an agent to send and receive messages in a single, consistent style. Fig 8
shows a simple definition of the Communicate capability, which is carried out by

An Agent-Environment Interaction Model 11

<<Capability>>
PickUp

«performs»«performs»«performs»

<<Action>>
Detect

detectObject()

<<Action>>
Grab

 grip()

<<Action>>
Lift

 lift()

Fig. 7. Carry Capability Example

performing one of three actions: P2PTransmit, Broadcast or Receive. While most
multiagent modeling techniques use special notation for sending and receiving
of messages, they are actually special forms of actions. By allowing designers to
specify communications in the same way as other actions, it actually allows the
designer to specify exactly how communication can be performed.

<<Capability>>
Communicate

«performs»«performs»«performs»

<<Action>>
P2PTransmit

send(message, address)

<<Action>>
Receive

receive() : message

<<Action>>
Broadcast

send(message)

Fig. 8. Communication Capability Example

The AEI Model also allows the designer to create new capabilities out of
existing capabilities. Thus, in Fig 9, the Rescue capability is an example of a
composed capability that uses the previous defined capabilities of Search, Pickup,
and Communicate. In essence, the Rescue capability has access to all the actions
defined as part of the Search, Pickup, and Communicate capabilities.

Complete specification of the Capability Model requires defining pre- and
post-conditions for each of the operations. These pre- and post-conditions com-
pletely and unambiguously define the interactions between agent capabilities and
environment objects, which are defined in the next section.

3.3 Interactions

By executing an operation defined in an action, an agent can sense or manip-
ulate its environment. If this action is to sense, the agent receives information

12 S.A. DeLoach and J.L. Valenzuela

<<Capability>>
Rescue

<<Capability>>
Communicate

<<Capability>>
Pickup

<<Capability>>
Search

Fig. 9. Composed Rescue Capability Example

regarding the environment. If the action modifies an object in the environment,
the environment will change and the agent representation of the environment
will change as well.

As described above, each operation is defined by a pre-condition that de-
termines whether or not the action can be executed and a post-condition that
specifies the desired state of the world after the operation is performed. Again,
the post-condition does not specify the actual state of the world after the oper-
ation is performed, but only the desired state since the environment is governed
by the principles and processes defined in the Environment Model.

An example of the specification of an interaction via operation pre- and post-
conditions is shown below in the definition of the send(message, address) opera-
tion from the P2PTransmit action. For consistency, the notation used is UML’s
Object Constraint Language (OCL).

P2PTransmit: send(message, address)
Pre: not(address = null)
Post: self.possesses.communicates->select(add = address).q->includes(message)

The semantics for this send operation state that if the address given as a
parameter is not null, then the message (also given as a parameter) is added
to the message queue (q) of the agent whose add parameter is equal to the ad-
dress parameter. Since ‘self’ refers to the capability, the reference ‘self.possesses’
follows the possesses relation between capabilities and the agents that possess
them. Thus ‘self.possesses.communicates’ refers to the set of agents with which
the agent possessing the P2PTransmit capability can communicate.

3.4 AEI Model and O-MaSE

The AEI Model fits nicely into the O-MaSE metamodel due to the fact that
O-MaSE already possesses the main concepts used in our AEI Model. While
capabilities and actions existed in the original O-MaSE metamodel, their rela-
tionship had to be adjusted slightly to fit the AEI Model. The integration of the
AEI Model into the O-MaSE metamodel is shown Fig 10; the bold lines repre-
sent the new/modified entities and relations. First, we had to allow capabilities

An Agent-Environment Interaction Model 13

to be composed of lower level capabilities. Next we had to change the semantics
of capabilities being either a plan or an action. To maintain the semantics of the
AEI Model presented, we have also added the constraint that capabilities may be
composed of either a single plan or a set of lower level capabilities and actions.
The Domain Model is used to capture the AEI Environment Model. We added
the concept of environmental properties as a component of the domain model,
where an Environmental Property specifies the principles and processes that
govern the environment. We also added the ability for agents to be represented
as environment objects.

achieves

 requires

Policy

Role

constrains

Goal

External
Protocol

Actor

participates-in
participates-in

initiates

interacts-with

Internal
Protocol

Org
Agent

Protocol

usesDomain
Model

Environment
Object

Organization

possesses

plays

Plan Action

Message

Agent

Capability
responds

1

1

1 1

relation

Environment
Property

Fig. 10. O-MaSE Metamodel Extended with AEI Concepts

4 Example

To illustrate the use of the AEI Model integrated into the O-MaSE methodology,
we chose to model a Weapon of Mass Destruction (WMD) Search system as an
example of a cooperative robotic agent system. The goal for the robot team is to
search a specified area for possible chemical, radioactive or biological weapons
and remove such weapons once they have been positively identified. Each of the
robots on the team have multiple capabilities that allow them to sense various

14 S.A. DeLoach and J.L. Valenzuela

weapon types, navigate, and locate themselves using Global Positioning System
(GPS), and transport the weapons to a safe location.

Based on this system description, we defined an O-MaSE Agent Model in Fig
11. In our current notation, we annotate agents with the “Agent” keyword and
capabilities by the “Capability” keyword. A base robot has three capabilities:
Communication, GPS, and Move. SearchRobots have a Sonar capability to aid
in searching while the RemovalRobots are equipped with Transport capabilities
for removing any identified WMD objects. Finally, there are three types of De-
tectRobots: BioDetectRobots, ChemDetectRobots, and RadDetectRobots. All
the DetectRobots are equipped with the capability to detect a specific type of
WMD: BioDetector, ChemDetector, or a RadDetector. The filled-headed arrows
between agents represent protocols used by the robots. The divideArea protocol
is used at system initialization to determine which SearchRobots will be assigned
which specific areas to search. When a SearchRobot detects a suspicious object,
it uses the detection protocol to find an appropriate DetectRobot to investigate.
If a positive detection is made by the DetectRobot, the SearchRobot uses the
positive protocol to find an available RemovalRobot to remove the WMD object.

detection(loc)

positive(loc)

divideArea(loc)

<<Agent>>
SearchRobot

«capability» Sonar

<<Agent>>
BioDetectRobot

«capability» BioDetector

<<Agent>>
DetectRobot

<<Agent>>
ChemDetectRobot

«capability» ChemDetector

<<Agent>>
RemovalRobot

«capability» Transport

<<Agent>>
RadDetectRobot

«capability» RadDetector

<<Agent>>
Robot

«capability» Communication
«capability» GPS
«capability» Move

Fig. 11. WMD Agent Model

To complete the AEI model, we modeled the WMD environment using an
O-MaSE Domain Model (as shown in Fig 4) and defined the set of capabilities
to sense and manipulate that environment in the O-MaSE Capability Model
as shown in Fig 12. As discussed previously, the level of abstraction for each
capability may be different. For example, the Communication capability is im-
plemented by two actions, P2PTransmit and Receive. The model also includes

An Agent-Environment Interaction Model 15

<<Capability>>
Transport

«performs»«performs»«performs»«performs»«performs»

«performs»

«performs»

<<Capability>>
Move

<<Capability>>
PickUp

<<Action>>
Move

moveTo(loc)

<<Action>>
Turn

turn(deg)

<<Action>>
Detect

detectObject()

<<Action>>
Grab

 grip()

<<Action>>
Lift

 lift()

<<Capability>>
GPS

<<Action>>
GetLocation

getLoc() : Location
«performs»

<<Capability>>
Communication

<<Action>>
P2PTransmit

send(message, address)

<<Action>>
Receive

receive() : message

<<Capability>>
Sonar «performs»

<<Action>>
Sense

detect() : Reading

«performs»

<<Action>>
BioSense

detect() : Bioreading

<<Capability>>
BioDetector

«performs»

<<Action>>
CheSense

detect() : Chemreading

<<Capability>>
ChemDetector

«performs»

<<Action>>
RadSense

detect() : Radreading

<<Capability>>
RadDetector

Fig. 12. WMD Capability Model

a composed capability Transport that uses the Pickup and Move capabilities.
Each base capability is implemented by actions that interact directly with the
objects in the environments.

Assuming the pre- and post-conditions for each operation are defined, the agent
designer may use the operations to design the agent plans. A simple (algorithmic)
plan for the ChemDetectRobot is shown below. It uses the Communication, GPS,

16 S.A. DeLoach and J.L. Valenzuela

Move, and ChemDetector capabilities and their associated actions to define the
plan. For simplicity, we describe the plan using a simple pseudo code approach.
The notation used to access the operations assumes that names are unique and
follows the form CapabilityName.ActionName.OperationName.

ChemDetector Plan

loop
m = Communication.Receive.receive()
if (m.performative = ‘‘possible’’)
Communication.P2PTransmit.send(acknowledge(loc), m.sender)
repeat
Move.Move.moveTo(loc)
currentLoc = GPS.GetLocation.getLoc()

until (currentLoc = loc)
result = ChemDetector.CheSense.detect()
if (result = positive)
Communication.P2PTransmit.send(positive(loc),m.sender)

else
Communication.P2PTransmit.send(negative(loc),m.sender)

end if
end if

end loop

When the ChemDetector robot receives a possible message, it sends an ac-
knowledge message and then moves to the location specified. Once at the appro-
priate location, the robot uses its chemical sensor and returns the result, either
positive or negative.

5 Conclusion and Future Work

In this paper we have described an approach for modeling a multiagent system’s
interactions with its environment. The key concepts in our approach were ca-
pabilities (and the actions they perform) and a model of the environment. We
defined a set of requirements for an Agent Interaction Model based on Ferber’s
definition of a multiagent system. We suggest that our AEI Model captures all
these requirements since it contains a unique entity called the environment (re-
quirement 1) and that is modeled as a set of objects/agents (requirement 2) and
a set of relations between those objects/agents (requirement 3). Through a set of
capabilities possessed by the agents, the agents have access to a set of operations
that they may perform upon environment objects (requirement 4) whose effect
are governed by environmental laws (requirement 5).

We showed how our AEI Model could be integrated into the O-MaSE method-
ology with only slight modifications to the O-MaSE metamodel. Finally, we
presented a WMD Search simulation system design using O-MaSE and the AEI

An Agent-Environment Interaction Model 17

Model. We showed how the model captured the relationship between the agent’s
capabilities and their affect on the environment and how to use those definitions
to model low-level agent plans.

It is our contention that all multiagent systems methodologies should provide
a robust way to define the interaction of agents with their environments. While
most methodologies provide some mechanism for describing these details, most
do not provide a sufficient modeling capability. Thus, we believe that integrating
the concepts of our AEI Model, or elements thereof, into existing methodologies
is not only possible, but would be a positive step toward more complete system
models.

Finally, we are working to fully integrate our AEI Model into the O-MaSE
methodology and into agentTool III (aT3) [2]. We are continuing to evolve O-
MaSE to provide a flexible methodology that can be used to develop both tradi-
tional and organization-based systems. A long term goal is to provide a tailorable
methodology that is fully supported by automated tools. aT3is being developed
as an Eclipse plug-in that will give the agent system designer unprecedented flex-
ibility while providing enhanced verification capabilities between models. Even-
tually, aT3will provide predictive performance metrics to allow the designer to
make intelligent tradeoffs and will generate code for FIPA compliant frameworks.
As defined in this paper, the AEI Model is a key step in fully defining the de-
sign of agents to the point where a higher degree of low-level code generation is
possible.

References

1. DeLoach, S.A. Engineering Organization-based Multiagent Systems. LNCS Vol.
3914, Springer, (2006) 109-125

2. DeLoach, S.A. Multiagent & Cooperative Robotics Laboratory. ”agentTool III
Home Page,” http://macr.cis.ksu.edu/projects/agentTool/agentool3.htm (2006)

3. DeLoach, S.A., Mark F. Wood and Clint H. Sparkman, Multiagent Systems Engi-
neering, The International Journal of Software Engineering and Knowledge Engi-
neering, 11(3) (2001) 231-258

4. Ferber, J. Multi-Agent Systems - An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, Harlow (1999)

5. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable
1. Initial Methodology. EURESCOM Project P907-GI (2000)

6. Odell, J., Parunak, H., Fleischer, M., Bruckner, S. Modeling Agents and their
Environments. LNCS Vol. 2585, Springer (2002) 16-31

7. Padgham, L. and Winikoff, M. Prometheus: A Methodology for Developing Intel-
ligent Agents. LNCS Vol. 2585, Springer (2003) 174-185

8. Pressman, R. Software Engineering: A Practitioner’s Approach (6 ed.), McGraw-
Hill (2004)

9. Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice
Hall; 2nd ed. (2002)

18 S.A. DeLoach and J.L. Valenzuela

10. Weyns, D., Parunak, H., Michel, F., Holvet, T., and Ferber, J. Environments for
Multiagent Systems State-of-the-Art and Research Challenges. LNAI Vol. 3373,
Springer (2005) 1-47

11. Wooldridge, M. Jennings, N. and Kinny, D. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), (2000) 285-312

12. Zambonelli, F., Jennings, N. R., and Wooldridge, M.J. Developing Multiagent
Systems: The Gaia methodology. In ACM Transaction on Software Engineering
Methodology 12(3), (2003) 317-370

	An Agent-Environment Interaction Model
	Introduction
	Related Work
	Gaia
	MESSAGE
	Prometheus
	Organization-Based Multiagent Systems Engineering

	Agent-Environment Interaction Model
	Environment Model
	Capability Model
	Interactions
	AEI Model and O-MaSE

	Example
	Conclusion and Future Work

