

Lecture Notes in Computer Science 4405
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lin Padgham Franco Zambonelli (Eds.)

Agent-Oriented
Software
Engineering VII

7th International Workshop, AOSE 2006
Hakodate, Japan, May 8, 2006
Revised and Invited Papers

13

Volume Editors

Lin Padgham
RMIT University, Melbourne, Australia
E-mail: linpa@cs.rmit.edu.au

Franco Zambonelli
Università di Modena e Reggio Emilia, DISMI
Via Allegri 13, Reggio Emilia, Italia
E-mail: franco.zambonelli@unimore.it

Library of Congress Control Number: 2007920434

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70944-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70944-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12021468 06/3142 5 4 3 2 1 0

Preface

Since the mid 1980s, software agents and multi-agent systems have grown into
a very active area of research with some very successful examples of commercial
development. At AAMAS 2006 Steve Benfield from Agentis described research
on large scale industry system development, which indicated a savings of four
to five times in development time and in cost when using agent technologies.
However it is still the case that one of the limiting factors in industry take up
of agent technology is the lack of adequate software engineering support, and
knowledge in how to systematically develop agent systems.

The concept of an agent as an autonomous system, capable of interacting
with other agents in order to satisfy its design objectives, is a natural one for
software designers. Just as we can understand many systems as being composed
of essentially passive objects, which have state, and upon which we can perform
operations, so we can understand many others as being made up of interacting,
semi-autonomous agents. This paradigm is especially suited to complex systems.
However software architectures that contain many dynamically interacting com-
ponents, each with their own thread of control, and engaging in complex coordi-
nation protocols, are difficult to correctly and efficiently engineer. Agent oriented
modelling techniques are important for supporting the design and development
of such applications.

The AOSE 2006 workshop was hosted by the 5th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2006) held
in Hakodate, Japan. A selection of extended versions of papers from that work-
shop, along with some additional papers, are presented in this volume, which
follows the successful predecessors of 2000 to 2005, published as Lecture Notes
in Computer Science, volumes 1957, 2222, 2585, 2935, 3382 and 3950.

This book has been organised into four parts: Modelling and Design of Agent
Systems, dealing with some specific aspects of modelling agent systems, Mod-
elling Open Agent Systems, dealing with design issues that arise when deal-
ing with agents in the Internet environment, Formal Reasoning About Designs,
which looks at the use of reasoning methods to analyse designs, and finally Test-
ing, Debugging and Evolvability.

Part I: Modelling and Design of Agent Systems

The first part focusses on issues of modelling and design in agent systems. This
is an extremely important activity and one which has, over the last few years,
received a great deal of attention within a range of AOSE methodologies. The
three papers in this part address specific aspects of modelling and design for
agent systems.

VI Preface

The first paper “An Agent Environment Interaction Model” by Scott De-
Loach and Jorge Valenzuela looks in detail at how to design and specify the in-
terface of an agent system with its environment, using actions to represent both
sensors and effectors. Agents exist over time, in environments which are dynamic
and changing, and they typically affect their environments. Consequently the
specification of the environment and the agent’s interaction with it is a key part
of modelling agent systems. The approach described is integrated into O-MASE,
the extended version of the well established MASE methodology developed by
the first author.

The second paper on “Allocating Goals to Agent Roles during MAS Require-
ments Engineering” by Jureta et al. explores how to design roles, and ultimately
agents, to ensure that non-functional goals are addressed. They provide a sys-
tematic approach for assigning non-functional goals to roles, and heuristics for
selecting between different options. Focussing on this assignment of goals to roles
at an early stage in the process allows agent organisational structures to emerge
from the role definitions.

The third and final paper in this part by Garcia, Choren and von Flach, en-
titled “An Aspect-Oriented Modeling Framework for Multi-Agent Systems De-
sign” is about modelling concerns that cut across all or many parts of an agent
application such as mobility, error handling or security. They build on Aspect
Oriented Programming, introducing a meta-modelling framework for representing
these crosscutting concerns in an agent oriented design. They integrate aspect-
oriented abstractions into their agent oriented modelling language called ANote.

Part II: Modelling Open Agent Systems

Part two deals with some of the complexities that arise when dealing with agents
in the Internet environment. Two papers deal with design of governance struc-
tures for providing some control over autonomous agents, while one deals with
modelling agent mobility.

Kusek and Jezic’s paper “Extending UML Sequence Diagrams to Model
Agent Mobility” looks at a number of different ways to potentially model agent
mobility, using extensions of UML sequence diagrams. Their aim is to cap-
ture agent creation, migration paths, and current location. They evaluate the
strengths and the weaknesses of the different approaches based on clarity, space
needed for representing larger systems, and representation of mobility. They
conclude that choice of the most preferred approach depends on the application
characteristics of how many agents and nodes there are in the system to be
modelled.

The papers “Applying the Governance Framework Technique to Promote
Maintainability in Open Multi-Agent Systems” by Carvalho et al., and “Design-
ing Institutional Multi-Agent Systems” by Sierra et al., both deal with specifying
the institutional structures within which agents may interact, and which provide
some guarantees about the behaviours. Both focus on specifying agent interac-
tion patterns or templates, and on the ability to express norms or constraints

Preface VII

regarding agent behaviour. Carvalho et al. use XMLaw and template structures.
Sierra et al. describe the methodology for developing a design in the Islander tool,
which also captures interaction specifications, and norms and constraints. The
methodology used by Sierre et al. is integrated into the Prometheus methodology
as a social or organisational design layer.

Part III: Formal Reasoning About Designs

One of the trends in software engineering, and certainly in agent oriented software
engineering, is to incorporate automated reasoning into design tools to aid the
designer in various ways. This part presents three papers with this general focus.

The first paper, “Modeling Mental States in the Analysis of Multiagent Sys-
tems Requirements” by Lapouchnian and Lespérance looks at formal analysis
by taking an i* specification and mapping it to the Cognitive Agents Speci-
fication Language (CASL). CASL relies heavily on ConGolog for specification
of procedural aspects, and also on modal logics and possible world semantics.
The developer annotates an i* specification and specifies how elements are to
be mapped to the procedural component of CASL. Some transformations are
automated. Once the formal specification exists it becomes possible to do formal
analysis of such things as epistemic feasibility of plans or termination.

The second paper, by Brandão et al., entitled “Observed-MAS: An Ontology-
Based Method for Analyzing Multi-Agent Systems Design Models” focusses on
translating design models to formal ontologies, which describe the Multi Agent
Systems domain. The ontologies are represented in a Description Logic system
and enable analysis of the design using defined queries, which are represented
by ontology instances. Analysis is done in two phases–the first within individual
diagrams while the second looks at relationships between diagrams. The authors
argue that while it is difficult to analyze and establish the well-formedness of
a set of diagrams of a UML-like object-oriented modeling language, it gets far
more complex when the language is extended to add a set of agency related
abstractions. Their approach helps to tame this complexity.

The third paper entitled “Using Risk Analysis to Evaluate Design Alterna-
tives” by Asnar, Bryl and Giorgini, looks at using planning to propose design
alternatives, based on risk-related metrics, which are particularly important in
certain kinds of systems where availability and reliability are crucial. While the
developer must be involved in the reasoning process to agree to any loosening of
constraints, the system they describe provides automated reasoning to suggest
viable alternatives. They illustrate their approach using an Air Traffic Manage-
ment case study.

Part IV: Testing, Debugging and Evolvability

As is well known, implementation is not the final stage of system development.
Systems must always be tested and debugged, and typically they also evolve once

VIII Preface

they are deployed, sometimes becoming whole product lines of related systems.
These last four papers look at these aspects of developing agent systems.

Tiryaki et al. describe “SUNIT: A Unit Testing Framework for Test Driven
Development of Multi-Agent Systems”, which is based on an extension of the
JUnit framework. They propose a test driven multi-agent system development
approach that naturally supports iterative and incremental MAS construction.
This approach is supported by their SUnit system.

The second paper in this part “Monitoring Group Behavior in Goal-Directed
Agents Using Co-efficient Plan Observation” by Sudeikat and Renz describes
an approach to validating the multi-agent cooperative behaviour of a system.
They argue that goal hierarchies developed during requirements engineering,
combined with Belief Desire Intention architectures, are suitable as a basis for
development of a modular approach to checking crosscutting concerns in (BDI)
agent implementations. They provide a case study to illustrate their approach.

The third paper, by Jayatilleke et al., “Evaluating a Model Driven Develop-
ment Toolkit for Domain Experts to Modify Agent Based Systems” describes
evaluation of a toolkit designed to allow domain experts to themselves mod-
ify and evolve an agent application that has been built using this toolkit. The
toolkit builds on design documentation, but provides increased granularity at
the detailed design level, enabling production of fully functional code. Domain
experts then need only change at the design level, in order to obtain an enhanced
implementation. Meteorologists were able to modify an example system that was
based on a real application and actual evolutionary changes to the system.

Finally, the paper entitled “Building the Core Architecture of a NASA Mul-
tiagent System Product Line” by Peña et al. describes techniques adapted from
the field of Software Product Lines (SPL) to enable building of the core ar-
chitecture for a multiagent system where components can be reused to derive
related concrete products with greatly reduced time-to-market and costs. They
illustrate the approach with examples from a NASA mission.

These papers provide a diverse and interesting overview of the work that
is currently being undertaken by a growing number of researchers and research
groups in the area of Agent Oriented Software Engineering. They represent lead-
ing edge research in this field, which is of critical importance in facilitating in-
dustry take-up of powerful agent technologies.

December 2006 Lin Padgham
Franco Zambonelli

Organization

Organizing Committee

Lin Padgham (Co-chair)
RMIT, Australia
Email: linpa@cs.rmit.edu.au

Franco Zambonelli (Co-chair)
University of Modena e Reggio Emilia, Italy
Email: franco.zambonelli@unimore.it

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Jörg Müller, Clausthal University of Technol-
ogy, Germany
Gerhard Weiß, Software Competence Center,
Hagenberg
Michael Wooldridge, University of Liverpool,
UK

Program Committee

Bernard Bauer (Germany)
Federico Bergenti (Italy)
Carole Bernon (France)
Giacomo Cabri (Italy)
Luca Cernuzzi (Paraguay)
Paolo Ciancarini (Italy)
Massimo Cossentino (Italy)
Keith Decker (USA)
Scott DeLoach (USA)
Klaus Fischer (Germany)
Paolo Giorgini (Italy)
Michael Huhns (USA)

Gaya Jayatilleke (Australia)
Juergen Lind (Germany)
Mike Luck (UK)
Andrea Omicini (Italy)
Van Parunak (USA)
Anna Perini (Italy)
Fariba Sadri (UK)
Onn Shehory (Israel)
Michael Winikoff (Australia)
Mike Wooldridge (UK)
Laura Zavala (USA)

Table of Contents

Modelling and Design of Agent Systems

An Agent-Environment Interaction Model . 1
Scott A. DeLoach and Jorge L. Valenzuela

Allocating Goals to Agent Roles During MAS Requirements
Engineering . 19

Ivan J. Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens

An Aspect-Oriented Modeling Framework for Multi-Agent Systems
Design . 35

Alessandro Garcia, Christina Chavez, and Ricardo Choren

Modelling Open Agent Systems

Extending UML Sequence Diagrams to Model Agent Mobility 51
Mario Kusek and Gordan Jezic

Applying the Governance Framework Technique to Promote
Maintainability in Open Multi-Agent Systems . 64

Gustavo Carvalho, Carlos J.P. de Lucena, Rodrigo Paes,
Ricardo Choren, and Jean-Pierre Briot

Designing Institutional Multi-Agent Systems . 84
Carles Sierra, John Thangarajah, Lin Padgham, and
Michael Winikoff

Formal Reasoning About Designs

Modeling Mental States in the Analysis of Multiagent Systems
Requirements . 104

Alexei Lapouchnian and Yves Lespérance

Observed-MAS: An Ontology-Based Method for Analyzing Multi-Agent
Systems Design Models . 122

Anarosa A.F. Brandão, Viviane Torres da Silva, and
Carlos J.P. de Lucena

Using Risk Analysis to Evaluate Design Alternatives 140
Yudistira Asnar, Volha Bryl, and Paolo Giorgini

XII Table of Contents

Testing, Debugging and Evolvability

SUNIT: A Unit Testing Framework for Test Driven Development
of Multi-Agent Systems . 156

Ali Murat Tiryaki, Sibel Öztuna, Oguz Dikenelli, and
Riza Cenk Erdur

Monitoring Group Behavior in Goal-Directed Agents Using Co-efficient
Plan Observation . 174

Jan Sudeikat and Wolfgang Renz

Evaluating a Model Driven Development Toolkit for Domain Experts
to Modify Agent Based Systems . 190

Gaya Buddhinath Jayatilleke, Lin Padgham, and Michael Winikoff

Building the Core Architecture of a NASA Multiagent System Product
Line . 208

Joaquin Peña, Michael G. Hinchey, Antonio Ruiz-Cortés, and
Pablo Trinidad

Author Index . 225

An Agent-Environment Interaction Model

Scott A. DeLoach and Jorge L. Valenzuela

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506
{sdeloach, jvalenzu}@cis.ksu.edu

Abstract. This paper develops a model for precisely defining how an
agent interacts with objects in its environment through the use of its
capabilities. Capabilities are recursively defined in terms of lower-level
capabilities and actions, which represent atomic interactions with the
environment. Actions are used to represent both sensors and effectors.
The paper shows how the model can be used to represent both software
and physical agents and their capabilities. The paper also shows how the
model can be integrated into the Organization-based Multiagent Systems
Engineering methodology.

1 Introduction

There is widespread agreement that the environment in which a multiagent
system is situated is of fundamental importance in the analysis, design, and
operation of the system. However, even with this agreement, few multiagent
methodologies include the modeling of the environment or the agent’s interac-
tions with it as first class entities [10]. In situated multiagent systems, the envi-
ronment is the entity in which agents exist and communicate [6]. Communication
is a critical factor that enables agents to interact and coordinate. Typically, this
interaction and coordination is modeled using direct communication through
the social environment; however, it can also be modeling indirectly through the
physical environment. A social environment is the entity that provides the prin-
ciples, processes and structures that enable the agents to communicate while
the physical environment provides principles and processes that affect objects
within an environment [6]. In [4], Ferber defines a multiagent system as having
six basic entities:

– An environment, E
– A set of objects, O, that exist in E
– A set of agents, A, which are active objects (i.e., a subset of O)
– A set of relations, R, that define relationships between objects in O
– A set of operations, O, that agents can use to sense and affect objects in O
– A set of universal laws that define the reaction of the environment to agent

operations

Based on Ferber’s definition, we have identified five requirements for specifying
agent-environment interaction model. Essentially, an AEI should define:

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 S.A. DeLoach and J.L. Valenzuela

1. A unique entity called the environment
2. The set of objects in the environment (which includes agents)
3. Specific types of relations that may exist between objects in the environment
4. The set of operations that agents may perform upon objects in the

environment
5. The laws that govern the effect of those operations on objects in the

environment

While capturing these elements is essential, we believe it is also critical that
these concepts be captured using a model that shows direct relations between the
objects, agents, and actions as well as specifies the intended effect of each action
unambiguously. We believe it is also important to provide a model that allows
these concepts to be specified and viewed at the appropriate level of abstraction.

While most current multiagent methodologies provide some notion of the en-
vironment or the agent’s interactions with it, no major methodologies possess
a detailed agent-environment interaction model that explicitly defines how the
environment is affected by agents or how the agent perceives the environment.
Including such an agent-environment interaction model is important because it
allows us to explicitly identify (1) how agents directly interact/coordinate with
each other, (2) how agents indirectly interact/coordinate with each other, and
(3) the effect of agents on objects in the environment, which in situated multi-
agent systems often determines whether the system has accomplished its goals.
In addition, agents in situated multiagent systems also generally require some
representation of the environment in order to effectively communicate with other
agents and to achieve their goals. By including a well-defined model of the en-
vironment in the agent-environment interaction model, the analysis, and design
of these agents should be clearer and thus improved over implicit approaches.

The goal of this paper is to present an Agent-Environment Interaction model
(AEI) that can be integrated into appropriate multiagent systems methodolo-
gies. Specifically, we will integrate the AEI Model into the Organization-based
Multiagent Systems Engineering methodology (O-MaSE) [1]. To make the nota-
tion as clear and unambiguous as possible, we use standard UML notation with
liberal use of keywords to denote specific concepts in the model. Obviously, if
our AEI Model is integrated into other methodologies and modeling approaches,
the notation can be adapted as needed.

The paper is organized as follow. In Section 2, we discuss how some current
multiagent methodologies address environmental issues and provide an overview
of O-MaSE [1]. In Section 3, we present our AEI Model and integrate our AEI
Model into O-MaSE. In Section 4, we present a detailed example of the AEI
Model using a robotics Weapons of Mass Destruction (WMD) simulation system.
Finally, in Section 5, we present our conclusions and areas for future work.

2 Related Work

In this section we review four prominent multiagent systems methodologies and
how they model interactions with the environment: Gaia, Message, Prometheus,

An Agent-Environment Interaction Model 3

and O-MaSE. We also analyze how well each of these methodologies meets the
agent environment interaction requirements stated above.

2.1 Gaia

The extended version of Gaia [12] adds some basic concepts and organizational
abstractions to the original version of GAIA [11]. Among these additions is an
Environment Model, which is introduced during the analysis phase. Because the
authors believe that “it is difficult to provide a general modeling abstraction and
general modeling techniques because the environment for different applications
can be very different in nature” [12], they model environmental entities in terms
of abstract computational resources. These resources are modeled as tuples that
the agents may read, (sense), effect, (change), or consume, (remove). Thus the
Gaia Environment Model can be viewed as a list of resources that can be accessed
using an associated name and acted upon based on the type of action associated
with them. An example of a Gaia Environment Model is shown below [12].

reads var1 // readable resource of the environment.
var2 // another readable resource.
change var3 // a variable that can be also changed by the agent.

Analyzing the Gaia Environment Model using our five AEI model require-
ments shows that, while it does include a limited notion of objects, it does not
include any notion of agents (requirement 2). In addition, the Gaia Environ-
ment Model severely limits the types of relations (requirement 3) and actions
(requirement 4) that can be performed on those objects. Finally, the Environ-
ment Model has no notion of environmental laws that affect the environment
objects independently of the agents (requirement 5). A more general notion of
an AEI could be of benefit in the Gaia methodology.

2.2 MESSAGE

In the MESSAGE methodology [5], the MESSAGE modeling language defines
some knowledge-level-concepts like Concrete-Entity, Activity, and MentalSta-
teEntity. One of the concrete entities defined is Agents, which are autonomous
entities that can perform actions that affect resources. The Actions/Activities
are concrete entities and include Tasks and Interaction Protocols. Agents can also
perceive information entries that describe the state of a resource. Another con-
crete entity is a Resource, which represents a non-autonomous entity that agents
can access/use.MESSAGE builds five views of the Analysis Model: Organization,
Goal/Task, Agent/Role, Interaction and Domain views. The Organization view
shows the concrete entities in the system, the environment and the relationship
among them.

Based on our requirements, we see that MESSAGE defines elements of its
environment as containing objects (both agents and resources) that can interact
using actions and messages. However, MESSAGE does not include the notion of
environmental laws that affect the objects in the environment (requirement 5).

4 S.A. DeLoach and J.L. Valenzuela

Even though MESSAGE captures most of the required information, it does not
explicitly define an agent-environment interaction model and does not provide a
flexible way to represent or define actions at an appropriate level of abstraction.

2.3 Prometheus

The aim of the Prometheus System Identification Phase is to identify the basic
functionality of the system along with the inputs, outputs, and important data
structures [7]. Prometheus models these inputs as percepts and defines them as
raw data coming from the environment. Outputs are modeled as actions, which
are defined as the agent’s way to modify the environment. Scenarios are used
in Prometheus to describe how the system operates nominally. Each scenario
consists of a set of steps that can include goals, actions, percepts, scenarios, or
“other” for special types of steps.

The architectural design phase focuses on identifying the agents in the system
and their interaction. Once the agents are identified, the next step is to define the
percepts each agent reacts to and the actions it may perform. Agent interaction is
specified by defining messages and the different repositories to be used. All these
items are depicted in the system overview diagram. The Detailed Design Phase
focuses on defining the capabilities, which are defined in terms of internal events,
plans, and detailed data structures of the agents. Each capability is described
by a descriptor, which includes the definition of its percepts, actions, data read
or written, interaction with other capabilities, and sub-capabilities.

Our analysis reveals that Prometheus does not explicitly define the environ-
ment. It does not define the objects in the environment (requirement 1), the
relationships between them (requirement 2), or the laws that govern the effect
of agent’s actions on the environment (requirement 5). However, Prometheus
does capture the operations that it uses to get percepts from the environment
and perform actions on the environment. Thus Prometheus too could benefit
from an explicit AEI Model.

2.4 Organization-Based Multiagent Systems Engineering

The Organization-Based Multiagent System Engineering (O-MaSE) [1] method-
ology extends the original MaSE [3] methodology to allow the design of orga-
nizational multiagent systems. Some of the weaknesses of MaSE addressed by
O-MaSE include the tendency to generate static organizations, the inability to
model sub-organizations/systems, and the lack of explicit concepts for modeling
interactions with the environment. To model interactions with the environment,
O-MaSE represents both the sensing and manipulation of the environment as a
type of Capability, which is defined as an “atomic entity that defines the agents’
abilities; these abilities include soft abilities such as access to resources or com-
putational algorithms, as well as hard capabilities such as sensors and effectors
[1]. We use this notion of capabilities as the foundation for our AEI Model,
extending it to allow capability composition as well as to model direct inter-
action with the environment. The current version of the O-MaSE metamodel is

An Agent-Environment Interaction Model 5

shown in Fig 1. The important elements for this paper center on the Capabilities
and the Domain Model. In O-MaSE, Capabilities can be either plans or actions,
where plans are algorithmic entities that use actions for low-level operations. The
domain model is relatively simple, consisting of a set of Environment Objects.
Actions interact directly with the Environment Objects.

achieves

 requires

Policy

Role

constrains

Goal

External
Protocol

Actor

participates-in
participates-in

initiates

interacts-with

Internal
Protocol

Org
Agent

Protocol

usesDomain
Model

Environment
Object

Organization

possesses

plays

Plan Action

Message

Agent

Capability
responds

1

1

1 1

Fig. 1. O-MaSE Metamodel

However, even though O-MaSE does provide the notion of capabilities and a
domain model, it does not meet all our requirements for an AEI Model. Specif-
ically, the domain model does not include agents as objects in the environment
(requirement 2) or the definition of the laws that govern the effect of those op-
erations on objects in the environment (requirement 5). In the next section, we
present our AEI Model that ties together the O-MaSE elements to provide a
complete environment interaction model that can be used with O-MaSE and
easily adapted to other main stream multiagent systems methodologies.

3 Agent-Environment Interaction Model

Our proposed AEI Model is composed of three main elements: the Capability
Model, the Environment Model, and a set of Interactions between capabilities

6 S.A. DeLoach and J.L. Valenzuela

and environment objects. Essentially, agents possess capabilities that sense and
act upon objects in the environment via interactions. Fig 2 depicts the inte-
gration of these three parts into our AEI Model. The top part of the figure
represents the Capability Model, which defines capabilities as consisting of a set
of actions, each of which has a single operation that interacts with environment
objects. The bottom part of the figure captures the Environment Model, which
includes an explicit environment that contains a set of environment objects (that
includes agents) and their relationships. The environment objects are governed
by processes that implement specific environmental principles. Interactions are
defined by the intended effect of operations on environment objects.

1 .. n

implements

1 .. n

interaction

possesses

Capability Model

Environment Model

<<Object>>
ObjectName

<<Process>>
ProcessName

<<Principle>>
PrincipleName

<<Environment>>
EnvironmentName

<<Agent>>

<<Capability>>
CapabilityName

<<Action>>
ActionName

operation_1(p1 … pn) : returnType

governs

relation

«performs»

Fig. 2. Agent-Environment Interaction Model

Note that this general model captures all the items advocated by Ferber as
described in Section 1. It also satisfies each of our specific requirements for
an AEI Model: there is a unique entity called the environment, the environment
consists of a set of objects that includes agents, it includes the notion of relations
that may exist between objects in the environment, it defines a set of operations
that agents may perform upon environment objects, and it captures the notion
of laws that govern the effect of those operations on objects in the environment.
The three main entities of our AEI Model are described in more detail in the
following sub-sections.

3.1 Environment Model

In order to define the actions that an agent may perform upon then environment,
it is critical that we understand exactly what types of objects may be in the

An Agent-Environment Interaction Model 7

environment and the attributes of those objects. While environments have been
widely touted as important in multiagent systems design, there is not a well
accepted representation for them. Odell et. al. define the environment as the
entity that provides the principles and processes for agents and objects to exist
and communicate [6] while Russell and Norvig define an environment as an
entity with which agents interact, with properties defined by concepts such as
accessibility, determinism, dynamism, and continuity [9].

In our AEI model we use a simple Environment Model to model the objects
upon which agents perform the basic actions of sensing and affecting the en-
vironment through interactions. Basically, the Environment is a container of
Objects, which can include Agents situated in the environment. All the objects
in the environment are affected by physical Principles that are implemented by
Processes as depicted in Fig 3. Objects are defined simply via a name and a
set of attributes. Here, environment objects are actually more closely related to
object-oriented classes or types than true object instances.

implements

<<Object>>
ObjectName

<<Process>>
ProcessName

<<Principle>>
PrincipleName

<<Environment>>
EnvironmentName

<<Agent>>

governs

relation

Fig. 3. Simple Environment Model

Fig 4 shows an example Environment Model for a Weapons of Mass Destruc-
tion Search (WMD) cooperative robotic search system. In this model, we are
concerned with modeling the types of objects that can be found while doing a
search of an area (office building, etc.) for suspicious boxes that can be clas-
sified as possible chemical, nuclear, or biological weapons based on signatures
produced by the weapons. All objects in the environment have a location within
the environment as well as a size (which we abstractly identify using a type
PhysicalDimension). Robots also have four additional attributes: add, q, R, and
G. The add attribute represents the address of the robot for communication pur-
poses while the q attribute represents the message queue of incoming messages.
As we will see later, the communication capability requires both these attribute
values for proper operation. The R and G attributes represent the current set
of roles and goals assigned to the robot. There are four types of inert objects:

8 S.A. DeLoach and J.L. Valenzuela

doors, inert boxes, chairs, and tables. Each of these has a zero values for the
rad, bio, and chem attributes. Finally, there are the three types of weapons that
can exist: RadWeapons, BioWeapons, and ChemWeapons. Each of the weapon
types are boxes. However, the exact type of weapon (or whether the box is inert)
can be determined only by using special sensors mounted on specific robots.

<<Object>>
BioWeapon

<<Object>>
ChemWeapon

<<Agent>>
DetectRobot

<<Agent>>
SearchRobot <<Object>>

Chair

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Door

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Table

rad = 0;
bio = 0;
chem = 0;

<<Object>>
InertBox

rad = 0;
bio = 0;
chem = 0;

<<Object>>
Box

<<Object>>
Object

xLoc : Integer
yLoc : Integer
size : PhysicalDimension
weight : Integer
rad : RadiationStrength
bio : BioStrength
chem : ChemStrength

communicates

detects

<<Agent>>
Robot

add : Address
q : MessageQueue
R : Roles
G : Goals

<<Object>>
RadWeapon

Fig. 4. WMD Environment Model

There are two relationships shown between objects in the Environment Model.
The communicates relation is shown between two Robots. The communicates
relation is critical in allowing Robots to use their communication capability (as
described in Section 3.2) to send and receive messages. The detects relation is
shown between Robots and all other objects in the environment (including other
Robots). The detects relation allows Robots to use their Search and Pickup
capabilities (see Section 3.2) to detect objects in the environment.

Besides identifying objects and attributes, it is also important to identify the
principles and processes that govern the environment. For instance, in detecting
radiation, there is the well known principle that the amount of radiation inter-
cepted varies as the square of the distance between the source and the sensor.
Thus, we must define a process that determines the amount of radiation detected

An Agent-Environment Interaction Model 9

at any location in the environment. To do this, we must add the amount of ra-
diation produced by all radiation sources in the environment, regardless of how
little they add to the total. Thus, the process that is in play can be defined by
the following equation.

radiation(x, y) =
∑

∀o:Box

o.rad√
(o.x − x)2 + (o.y − y)2

The WMD Environment Model is developed using traditional domain model-
ing or domain analysis techniques common to most object oriented development
methodologies. Essentially, the goal of the domain modeling is to capture the ob-
jects, relationships, and behaviors that define the domain [8]. For our purposes,
the domain is the environment of the multiagent system under development.
A good Environment Model is critical in the definition of the interactions be-
tween the capabilities and the environment objects as the precise definition of
the operations is based on the object attributes.

3.2 Capability Model

As defined by Russell and Norvig, an agent is anything that can sense and
perform actions upon its environment [9]. As described above, most multiagent
systems methodologies represent these sensors and effectors in some way, either
implicitly or explicitly. In our AEI Model, we abstract the notion of sensors and
effectors as agent capabilities. To keep in line with our O-MaSE definition, we
assume capabilities can be either hardware or software based capabilities.

In our AEI Model, we represent the sensors, effectors, or a combination of
both as capabilities. A capability can be defined at different levels of abstraction
like sense, move, jump, etc. The Jump capability can be accomplished by sensing
an obstacle and then passing (moving) over it. We define Capability as an entity
that can perform one or more actions (e.g. sense or move) and can be composed
of other sub-capabilities.

An Action is defined as an entity that represents the agent’s actual sensor or
effector. Specification of the execution of an action is defined via a single accessi-
ble operation. Each action’s operation has a set of preconditions that determine
whether or not the operation can be executed. If the preconditions hold, the
operation may be executed. If the preconditions do not hold, the operation may
not be executed. Operations also have a set of post-conditions that specify the
desired state of the world after completion of the operation. However, because
operations are assumed to be performed in a dynamic environment with external
influences, the post-condition do not guarantee that the desired state will hold.
In reality, the processes that implement the environment principles determine
the actual state of the world after an operation is performed. For instance, if
a robot performs an operation to move forward one meter, the robot may or
may not actually move exactly one meter. Wheel slippage and wind conditions
are environmental processes that help determine exactly how far the robot will
actually move. When such environmental processes are expected by the agent,

10 S.A. DeLoach and J.L. Valenzuela

the agent may predict its own performance or at least sense to determine the
exact result of its operations.

The Capability Model provides support for reusability and modularity by
encapsulating each sensor and effector operation individually in actions. Our
model also provides support for constructing a capability using other capabil-
ities, which we call a composed capability. We depict our Capability Model in
Fig 5. By defining capabilities in terms of other capabilities as well as atomic
actions, the model is very flexible and allows designers to capture sensor and
effector operations at a continuum of granularity levels based on the application
or designer preference.

1 .. n 1 .. n
«performs»

<<Action>>
ActionName

operation_1(p1, ... , pn) : resultType

<<Capability>>
CapabilityName

Fig. 5. Capability Model

The flexibility of capability definition using this model is shown in the follow-
ing examples. In the example shown in Fig 6, the Search capability shows an
agent’s capability to scan and detect items in a particular location as a single
high level action, SearchLocation. This level of abstraction may be appropri-
ate during the initial stages of analysis or when the agent is using a predefined
package that provides higher level services.

<<Capability>>
Search

<<Action>>
SearchLocation

search(loc)
«performs»

Fig. 6. Search Capability Example

In the second example shown in Fig 7, the PickUp capability is shown as being
carried out by performing three lower level actions: Detect, Grab, and Lift. By
defining actions at a lower level than that shown in Fig 6, the definitions of the
actions in Fig 7 could be more easily reused when defining other capabilities
such as Search (which could be defined using Detect) or Transport (which could
use all three along with a Move action). Clearly, the level of abstraction or
refinement should be left to the designer and, thus, our model allows a wide
variety of choices.

Another feature of our Capability Model is the ability to capture the capability
of an agent to send and receive messages in a single, consistent style. Fig 8
shows a simple definition of the Communicate capability, which is carried out by

An Agent-Environment Interaction Model 11

<<Capability>>
PickUp

«performs»«performs»«performs»

<<Action>>
Detect

detectObject()

<<Action>>
Grab

 grip()

<<Action>>
Lift

 lift()

Fig. 7. Carry Capability Example

performing one of three actions: P2PTransmit, Broadcast or Receive. While most
multiagent modeling techniques use special notation for sending and receiving
of messages, they are actually special forms of actions. By allowing designers to
specify communications in the same way as other actions, it actually allows the
designer to specify exactly how communication can be performed.

<<Capability>>
Communicate

«performs»«performs»«performs»

<<Action>>
P2PTransmit

send(message, address)

<<Action>>
Receive

receive() : message

<<Action>>
Broadcast

send(message)

Fig. 8. Communication Capability Example

The AEI Model also allows the designer to create new capabilities out of
existing capabilities. Thus, in Fig 9, the Rescue capability is an example of a
composed capability that uses the previous defined capabilities of Search, Pickup,
and Communicate. In essence, the Rescue capability has access to all the actions
defined as part of the Search, Pickup, and Communicate capabilities.

Complete specification of the Capability Model requires defining pre- and
post-conditions for each of the operations. These pre- and post-conditions com-
pletely and unambiguously define the interactions between agent capabilities and
environment objects, which are defined in the next section.

3.3 Interactions

By executing an operation defined in an action, an agent can sense or manip-
ulate its environment. If this action is to sense, the agent receives information

12 S.A. DeLoach and J.L. Valenzuela

<<Capability>>
Rescue

<<Capability>>
Communicate

<<Capability>>
Pickup

<<Capability>>
Search

Fig. 9. Composed Rescue Capability Example

regarding the environment. If the action modifies an object in the environment,
the environment will change and the agent representation of the environment
will change as well.

As described above, each operation is defined by a pre-condition that de-
termines whether or not the action can be executed and a post-condition that
specifies the desired state of the world after the operation is performed. Again,
the post-condition does not specify the actual state of the world after the oper-
ation is performed, but only the desired state since the environment is governed
by the principles and processes defined in the Environment Model.

An example of the specification of an interaction via operation pre- and post-
conditions is shown below in the definition of the send(message, address) opera-
tion from the P2PTransmit action. For consistency, the notation used is UML’s
Object Constraint Language (OCL).

P2PTransmit: send(message, address)
Pre: not(address = null)
Post: self.possesses.communicates->select(add = address).q->includes(message)

The semantics for this send operation state that if the address given as a
parameter is not null, then the message (also given as a parameter) is added
to the message queue (q) of the agent whose add parameter is equal to the ad-
dress parameter. Since ‘self’ refers to the capability, the reference ‘self.possesses’
follows the possesses relation between capabilities and the agents that possess
them. Thus ‘self.possesses.communicates’ refers to the set of agents with which
the agent possessing the P2PTransmit capability can communicate.

3.4 AEI Model and O-MaSE

The AEI Model fits nicely into the O-MaSE metamodel due to the fact that
O-MaSE already possesses the main concepts used in our AEI Model. While
capabilities and actions existed in the original O-MaSE metamodel, their rela-
tionship had to be adjusted slightly to fit the AEI Model. The integration of the
AEI Model into the O-MaSE metamodel is shown Fig 10; the bold lines repre-
sent the new/modified entities and relations. First, we had to allow capabilities

An Agent-Environment Interaction Model 13

to be composed of lower level capabilities. Next we had to change the semantics
of capabilities being either a plan or an action. To maintain the semantics of the
AEI Model presented, we have also added the constraint that capabilities may be
composed of either a single plan or a set of lower level capabilities and actions.
The Domain Model is used to capture the AEI Environment Model. We added
the concept of environmental properties as a component of the domain model,
where an Environmental Property specifies the principles and processes that
govern the environment. We also added the ability for agents to be represented
as environment objects.

achieves

 requires

Policy

Role

constrains

Goal

External
Protocol

Actor

participates-in
participates-in

initiates

interacts-with

Internal
Protocol

Org
Agent

Protocol

usesDomain
Model

Environment
Object

Organization

possesses

plays

Plan Action

Message

Agent

Capability
responds

1

1

1 1

relation

Environment
Property

Fig. 10. O-MaSE Metamodel Extended with AEI Concepts

4 Example

To illustrate the use of the AEI Model integrated into the O-MaSE methodology,
we chose to model a Weapon of Mass Destruction (WMD) Search system as an
example of a cooperative robotic agent system. The goal for the robot team is to
search a specified area for possible chemical, radioactive or biological weapons
and remove such weapons once they have been positively identified. Each of the
robots on the team have multiple capabilities that allow them to sense various

14 S.A. DeLoach and J.L. Valenzuela

weapon types, navigate, and locate themselves using Global Positioning System
(GPS), and transport the weapons to a safe location.

Based on this system description, we defined an O-MaSE Agent Model in Fig
11. In our current notation, we annotate agents with the “Agent” keyword and
capabilities by the “Capability” keyword. A base robot has three capabilities:
Communication, GPS, and Move. SearchRobots have a Sonar capability to aid
in searching while the RemovalRobots are equipped with Transport capabilities
for removing any identified WMD objects. Finally, there are three types of De-
tectRobots: BioDetectRobots, ChemDetectRobots, and RadDetectRobots. All
the DetectRobots are equipped with the capability to detect a specific type of
WMD: BioDetector, ChemDetector, or a RadDetector. The filled-headed arrows
between agents represent protocols used by the robots. The divideArea protocol
is used at system initialization to determine which SearchRobots will be assigned
which specific areas to search. When a SearchRobot detects a suspicious object,
it uses the detection protocol to find an appropriate DetectRobot to investigate.
If a positive detection is made by the DetectRobot, the SearchRobot uses the
positive protocol to find an available RemovalRobot to remove the WMD object.

detection(loc)

positive(loc)

divideArea(loc)

<<Agent>>
SearchRobot

«capability» Sonar

<<Agent>>
BioDetectRobot

«capability» BioDetector

<<Agent>>
DetectRobot

<<Agent>>
ChemDetectRobot

«capability» ChemDetector

<<Agent>>
RemovalRobot

«capability» Transport

<<Agent>>
RadDetectRobot

«capability» RadDetector

<<Agent>>
Robot

«capability» Communication
«capability» GPS
«capability» Move

Fig. 11. WMD Agent Model

To complete the AEI model, we modeled the WMD environment using an
O-MaSE Domain Model (as shown in Fig 4) and defined the set of capabilities
to sense and manipulate that environment in the O-MaSE Capability Model
as shown in Fig 12. As discussed previously, the level of abstraction for each
capability may be different. For example, the Communication capability is im-
plemented by two actions, P2PTransmit and Receive. The model also includes

An Agent-Environment Interaction Model 15

<<Capability>>
Transport

«performs»«performs»«performs»«performs»«performs»

«performs»

«performs»

<<Capability>>
Move

<<Capability>>
PickUp

<<Action>>
Move

moveTo(loc)

<<Action>>
Turn

turn(deg)

<<Action>>
Detect

detectObject()

<<Action>>
Grab

 grip()

<<Action>>
Lift

 lift()

<<Capability>>
GPS

<<Action>>
GetLocation

getLoc() : Location
«performs»

<<Capability>>
Communication

<<Action>>
P2PTransmit

send(message, address)

<<Action>>
Receive

receive() : message

<<Capability>>
Sonar «performs»

<<Action>>
Sense

detect() : Reading

«performs»

<<Action>>
BioSense

detect() : Bioreading

<<Capability>>
BioDetector

«performs»

<<Action>>
CheSense

detect() : Chemreading

<<Capability>>
ChemDetector

«performs»

<<Action>>
RadSense

detect() : Radreading

<<Capability>>
RadDetector

Fig. 12. WMD Capability Model

a composed capability Transport that uses the Pickup and Move capabilities.
Each base capability is implemented by actions that interact directly with the
objects in the environments.

Assuming the pre- and post-conditions for each operation are defined, the agent
designer may use the operations to design the agent plans. A simple (algorithmic)
plan for the ChemDetectRobot is shown below. It uses the Communication, GPS,

16 S.A. DeLoach and J.L. Valenzuela

Move, and ChemDetector capabilities and their associated actions to define the
plan. For simplicity, we describe the plan using a simple pseudo code approach.
The notation used to access the operations assumes that names are unique and
follows the form CapabilityName.ActionName.OperationName.

ChemDetector Plan

loop
m = Communication.Receive.receive()
if (m.performative = ‘‘possible’’)
Communication.P2PTransmit.send(acknowledge(loc), m.sender)
repeat
Move.Move.moveTo(loc)
currentLoc = GPS.GetLocation.getLoc()

until (currentLoc = loc)
result = ChemDetector.CheSense.detect()
if (result = positive)
Communication.P2PTransmit.send(positive(loc),m.sender)

else
Communication.P2PTransmit.send(negative(loc),m.sender)

end if
end if

end loop

When the ChemDetector robot receives a possible message, it sends an ac-
knowledge message and then moves to the location specified. Once at the appro-
priate location, the robot uses its chemical sensor and returns the result, either
positive or negative.

5 Conclusion and Future Work

In this paper we have described an approach for modeling a multiagent system’s
interactions with its environment. The key concepts in our approach were ca-
pabilities (and the actions they perform) and a model of the environment. We
defined a set of requirements for an Agent Interaction Model based on Ferber’s
definition of a multiagent system. We suggest that our AEI Model captures all
these requirements since it contains a unique entity called the environment (re-
quirement 1) and that is modeled as a set of objects/agents (requirement 2) and
a set of relations between those objects/agents (requirement 3). Through a set of
capabilities possessed by the agents, the agents have access to a set of operations
that they may perform upon environment objects (requirement 4) whose effect
are governed by environmental laws (requirement 5).

We showed how our AEI Model could be integrated into the O-MaSE method-
ology with only slight modifications to the O-MaSE metamodel. Finally, we
presented a WMD Search simulation system design using O-MaSE and the AEI

An Agent-Environment Interaction Model 17

Model. We showed how the model captured the relationship between the agent’s
capabilities and their affect on the environment and how to use those definitions
to model low-level agent plans.

It is our contention that all multiagent systems methodologies should provide
a robust way to define the interaction of agents with their environments. While
most methodologies provide some mechanism for describing these details, most
do not provide a sufficient modeling capability. Thus, we believe that integrating
the concepts of our AEI Model, or elements thereof, into existing methodologies
is not only possible, but would be a positive step toward more complete system
models.

Finally, we are working to fully integrate our AEI Model into the O-MaSE
methodology and into agentTool III (aT3) [2]. We are continuing to evolve O-
MaSE to provide a flexible methodology that can be used to develop both tradi-
tional and organization-based systems. A long term goal is to provide a tailorable
methodology that is fully supported by automated tools. aT3is being developed
as an Eclipse plug-in that will give the agent system designer unprecedented flex-
ibility while providing enhanced verification capabilities between models. Even-
tually, aT3will provide predictive performance metrics to allow the designer to
make intelligent tradeoffs and will generate code for FIPA compliant frameworks.
As defined in this paper, the AEI Model is a key step in fully defining the de-
sign of agents to the point where a higher degree of low-level code generation is
possible.

References

1. DeLoach, S.A. Engineering Organization-based Multiagent Systems. LNCS Vol.
3914, Springer, (2006) 109-125

2. DeLoach, S.A. Multiagent & Cooperative Robotics Laboratory. ”agentTool III
Home Page,” http://macr.cis.ksu.edu/projects/agentTool/agentool3.htm (2006)

3. DeLoach, S.A., Mark F. Wood and Clint H. Sparkman, Multiagent Systems Engi-
neering, The International Journal of Software Engineering and Knowledge Engi-
neering, 11(3) (2001) 231-258

4. Ferber, J. Multi-Agent Systems - An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley, Harlow (1999)

5. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable
1. Initial Methodology. EURESCOM Project P907-GI (2000)

6. Odell, J., Parunak, H., Fleischer, M., Bruckner, S. Modeling Agents and their
Environments. LNCS Vol. 2585, Springer (2002) 16-31

7. Padgham, L. and Winikoff, M. Prometheus: A Methodology for Developing Intel-
ligent Agents. LNCS Vol. 2585, Springer (2003) 174-185

8. Pressman, R. Software Engineering: A Practitioner’s Approach (6 ed.), McGraw-
Hill (2004)

9. Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice
Hall; 2nd ed. (2002)

18 S.A. DeLoach and J.L. Valenzuela

10. Weyns, D., Parunak, H., Michel, F., Holvet, T., and Ferber, J. Environments for
Multiagent Systems State-of-the-Art and Research Challenges. LNAI Vol. 3373,
Springer (2005) 1-47

11. Wooldridge, M. Jennings, N. and Kinny, D. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), (2000) 285-312

12. Zambonelli, F., Jennings, N. R., and Wooldridge, M.J. Developing Multiagent
Systems: The Gaia methodology. In ACM Transaction on Software Engineering
Methodology 12(3), (2003) 317-370

Allocating Goals to Agent Roles
During MAS Requirements Engineering

Ivan J. Jureta1, Stéphane Faulkner1, and Pierre-Yves Schobbens2

1 Information Management Research Unit (IMRU), University of Namur,
8 Rempart de la Vierge, B-5000 Namur, Belgium

iju@info.fundp.ac.be, stephane.faulkner@fundp.ac.be
2 Institut d’Informatique, University of Namur,

8 Rempart de la Vierge, B-5000 Namur, Belgium
pys@info.fundp.ac.be

Abstract. Allocation of goal responsibilities to agent roles in Multi-
Agent Systems (MAS) influence the degree to which these systems
satisfy nonfunctional requirements. This paper proposes a systematic
approach that starts from nonfunctional requirements identification and
moves towards agent role definition guided by the degree of nonfunctional
requirements satisfaction. The approach relies on goal-dependencies to
allow potential MAS vulnerabilities to be studied. In contrast to related
work where organizational patterns are imposed on MAS, roles are con-
structed first, allowing MAS organizational structures to emerge from
role definitions.

1 Introduction

Requirements engineering is concerned with the identification of goals to be
achieved by an information system (IS), the operationalization of these into
the specification of IS services and constraints, the identification of resources
required to perform those services, the assignment of responsibilities for the
resulting requirements to agents, such as humans, devices and software.

At an abstract level, MAS are conceptualized as organizations of autonomous,
collaborative, and goal-driven software components [45]. Flexibility, modularity,
and robustness are some of the qualities hoped from MAS (e.g., [45,14]), mak-
ing them an attractive choice for a range of applications, such as peer-to-peer
computing, electronic commerce, etc.

There is widespread agreement that nonfunctional requirements need to be
considered early in any IS development process (e.g., [8,12,26,38]) in order to
assist reasoning about alternative system structures. While various approaches
have been proposed to transform nonfunctional requirements into functional
system characteristics during system development (e.g., [33,15,20,35,22,2,9]), the
specific issue of using nonfunctional requirements to allocate goals to agent roles
during the RE step of MAS development has received limited attention, and no
systematic approach has been proposed. In this context, this paper proposes a
preliminary approach to allocating goals to agent roles. It is situated within the

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 19–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

20 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

RE step of MAS development process and builds on widely accepted techniques
for Goal-Oriented RE (GORE). The organizational MAS engineering metaphor
is adopted, leading to the allocation of goals to roles instead of agents, in order to
allow encapsulation and modularity nonfunctional requirements to be adequately
addressed [45].

The proposed goal allocation approach advances the state of the art in three
ways: (i) A systematic approach that starts with the identification of nonfunc-
tional requirements and progressively moves towards the generation of and selec-
tion between alternative MAS role structures is proposed. It allows the choice of
goal allocation to agent roles to be justified in relation to the identified nonfunc-
tional requirements. (ii) A novel type of dependency relationship between goals is
used to support the generation of, and selection between, alternative MAS role
structures. (iii) Heuristics for generating and selecting alternative goal-to-role
allocations are proposed.

Because the first step of the approach reuses the accepted goal analysis tech-
niques, there are no obstacles to integrating it into existing MAS Goal-Oriented
Requirements Engineering (GORE) frameworks.

2 Related Work

Within the RE field, GORE frameworks (e.g., [38,40]) have been shown as useful
when engineering MAS requirements (e.g., [6] and related).

In GORE research, the NFR framework [33,8] has been the first to propose a
representation language for nonfunctional requirements and to suggest a method
for relating them to functional requirements. It has been adapted in Tropos, an
agent-oriented development methodology [6], to deal with nonfunctional require-
ments in agent systems. In Tropos, goals are allocated to roles or agents through
dependency links that indicate the need of an agent (the depender) to collabo-
rate with another agent (the dependee) in order to achieve a goal, to have a task
executed, or a resource provided. Tropos has recently been extended with addi-
tional modeling concepts and techniques specifically aimed at analyzing security
nonfunctional requirements (see, e.g., [28,30,31,32]). Tropos assumes that agents
and their goals are given. In [6], the selection of a MAS role structure consists in
instantiating one of the predefined patterns of organizational structure (such as
structure-in-five, pyramid, joint-venture, etc.). Using the qualitative reasoning
techniques from the NFR framework, a pattern is selected by comparing the de-
gree to which each alternative pattern satisfies the identified MAS nonfunctional
requirements. The roles and their interdependencies are thus predefined (i.e., an
organizational structure is selected and roles in that structure are instantiated),
whereas the approach proposed here constructs roles first, allowing the orga-
nizational structure to appear from role definitions. In this respect, the latter
approach seems less rigid for tailoring the MAS structure to nonfunctional re-
quirements. It is guided by the goal dependency relationship to help the engineer

Allocating Goals to Agent Roles During MAS Requirements Engineering 21

to allocate interdependent goal pairs to roles so as to internalize or externalize
the dependencies.

The Tropos security-specific approach [27] considers the allocation of goal
achievement responsibilities to agents or roles by estimating the trustworthiness
between collaborating agents. Trustworthiness is conceptualized as a character-
istic of the collaborator agent and is estimated at system operation time by the
agent requiring the collaboration. As trustworthiness is a characteristic inherent
to individual agents, and not roles, a cautious approach has been adopted in
this paper: the existence of trust is not assumed during the definition of MAS
organizational structures through the allocation of goals to roles.

A formal approach has been proposed in [26] to support decision-making in
the context of comparison and choice of alternative goal refinements that re-
sult in alternative system structures. The approach consists of enriching goal
refinement models with a probabilistic layer for reasoning about partial goal
satisfaction. Being focused on the analysis of alternative goal refinements, the
selection of alternative allocations of goals to agent roles is not considered. The
approach from [26] can be combined with the one proposed in [24], as they share
the same conceptual foundations. A systematic technique is proposed in [24] (for
more details, see, [25]) to support the process of goal refinement in the aim of
generating alternative agents and responsibility assignments for goal achieve-
ment. It consists of checking goal realizability against the capabilities of system
agents to monitor and/or control state variables restricted by the goals. Specific
refinement tactics are given to facilitate the search for agents and agent capa-
bilities, and for refining goals until they are realizable by single agents. While
[24] is similar in motivation to this paper, the approach differs in the following
respects: (i) There is no distinction between agents and agent roles in [24]. This
hampers encapsulation and modularity for large MAS [45]. (ii) [45] use only re-
finement between goals. Below, we propose goal-dependency to allow new forms
of analysis.

The MaSE methodology [42] supports security nonfunctional requirements at
RE time by identifying negative use cases. The RE step (analysis phase) of the
methodology involves goal identification, use case generation for goal achieve-
ment, and agent role definition. The RE step in MaSE relies on diagrammatic
notation accompanied by textual descriptions, and is consequently of limited use
when precise traceability is required. Goal allocation to roles is not treated in a
systematic manner and no heuristics are provided. Similar remarks are relevant
for the MESSAGE [5] MAS development methodology.

Our goal-to-role allocation approach complements the techniques discussed
here. Our approach can be combined to [6] and [32] to introduce an additional
technique to generate and choose between alternative agent roles, while relying
on a formal nonfunctional requirements representation. It can be added to [24]
and [25] to introduce the role concept in their process and account for the possi-
bility of alternative agent role definitions, allowing encapsulation and modularity
nonfunctional requirements to be addressed more adequately.

22 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

Fig. 1. Section of a goal tree for the P2P case study

3 A Process for Allocating Goals to Agent Roles

The proposed goal to role allocation approach consists of three steps described in
the following subsections. Application of the suggested techniques is illustrated
with examples of peer-to-peer MAS requirements discussed informally in [16]
and [27].

3.1 Create a Consistent Goal Tree Containing Precise Requirements

This step uses well-known discovery techniques to identify a set of nonfunctional
and functional requirements, modeled as goals. For illustration, we have used the
KAOS framework [10], [39]. Fig. 1 shows a section of the goal tree built for the
P2P MAS case study. The top goal, RequestedFileOpened is specified as follows:

Goal: Achieve [RequestedFileOpened]
Definition: Every remote file requested by the user should be opened

within at most 10 minutes.
FormalDef: ∀rf : File; p : Peer;Requested(rf, p) ∧ Remote(rf, p)

⇒ �≤10minOpened(fl, p)

3.2 Identify Goal Dependencies

Given a goal tree considered consistent and complete, dependency relation-
ships can be defined between goals. This section first overviews the dependency
conceptualization commonly used in the MAS RE literature. The possibility of
employing another useful dependency type at the MAS RE step is discussed. Fi-
nally, tactics for finding and checking the completeness of the identified, so-called
goal-dependencies are proposed.

Allocating Goals to Agent Roles During MAS Requirements Engineering 23

Dependencies Between Agents. In MAS RE, the following definition of a
dependency relationship has been adopted in i* [44], Tropos [6], GRL [29], and
REF [13]:

“A dependency link is a directed link that goes from the depender to
the dependee; it can connect an agent to a hard or soft goal, a task,
a resource, or vice-versa. In particular, an agent is linked to a goal, a
task or a resource when it depends, in some way, on that goal to be
achieved, that task to be performed or that resource to be provided; a
goal/task/resource is linked to an agent when it depends on that agent
to be achieved/performed/provided.” [13]

The goal-to-role allocation approach presented in this paper relies on another
type of dependency: goal-dependencies. Goal-dependencies are studied before
knowing which agents will be responsible for goal achievement, whereas agent-
dependencies are identified from system agent intentions after the agents are
known. While agent-dependencies allow easier characterization of existing (e.g.,
organizational) conditions, the goal-dependencies are used to define new roles.

Dependencies Between Goals. In Fig. 1, the goal FileTransferStarted is re-
fined into four other goals. As discussed in [38], many goal link types have
been proposed to relate goals with each other, or with other elements of the
requirements models: (i) Refinement links of two kinds have been suggested.
AND-refinements relate a goal to a set of sub-goals (the set if called a goal re-
finement), meaning that achieving all sub-goals in the refinement is sufficient for
satisfying the parent (or refined) goal. OR-refinement links a goal to alterna-
tive refinements. The achievement one of the refinements is sufficient to satisfy
the refined goal [11]. (ii) In NFR [33], weaker versions of refinement links re-
late nonfunctional goals and functional goals. The notion of goal satisficing has
been introduced, and contribution links express that sub-goals are expected to
contribute to the parent goal.

After constructing a refinement of a goal FileTransferStarted, the requirements
engineer knows that the achievement of the sub-goals is sufficient for the refined
goal to be achieved. But refinement links do not indicate the sequence in which
the sub-goals need to be achieved in order for the parent goal to be achieved. This
information is encoded in temporal logic in the KAOS [25] and Formal Tropos
[17] frameworks. But we believe it is worth making it more explicit, since it will
allow specific tools and techniques to be used, and it may be easier to identify
sub-goals by considering the sequence of activities for (parent) goal achievement
[34]. The usual method to refine goals asks how can a parent goal be achieved?
The natural answer to this question describes the sequencing of activities.

We propose thus a new type of inter-goal relationship, named goal-dependency.
Formally, a goal g2 depends on g1 when:

¬g1 ⇒ ¬g2Wg1

The classical temporal operator W is read “unless” (e.g., [25]), and means that
the condition on its left stays true unless the condition on its right becomes

24 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

true. Intuitively, this condition means that g2 cannot be achieved unless g1 is
achieved.

Identification of Goal-Dependencies. Consider the two goals below. The first
formalizes the condition for a file transfer to be started in the case-study P2P
application, the second the condition for a requested file to be considered as
found.

Goal: RequestedFileFound
Definition: When the file has been requested and at least one peer px having and shar-

ing the file is found, the peer p1 that requested the file knows that the file is found, and
the routing peers are found.

FormalDef: ∀p1 : Peer; fl : File; rID : RequestID;p1.req = fl ∧ (∃px : Peer;
px ∈ P ∧ p1 �= px ∧ fl ∈ px.file list ∧ Share(px, fl, rID))
⇒ Found(fl, rID)

Goal: RandomPeersForDataRoutingFound
Definition: The n random peers for data routing are found when n routing peers are

found and each peer confirms availability.
FormalDef: ∀ps, pr : Peer; fl : File; rID : RequestID;Found(fl, rID)∧

Sender(ps, fl, rID) ∧ Receiver(pr, fl, rID)∧
@(∃p1, . . . , pn : Peer; {ps, pr} ∩ {p1, . . . , pn} = ∅
∧ �≤5s Available(p1, rID) ∧ . . . ∧ �≤5sAvailable(pn, rID))

⇒ �RoutingPeers = {p1, . . . , pn}

The existence of predicates that constrain values of the same MAS properties
within different goals indicates that there may be a goal-dependency between
the two goals. In the example, the property constrained in both goals concerns
MAS behavior related to file transfers. It is a goal-dependency, since they have
to be executed in this sequence. Notice that the refinement relationships can-
not be used to determine the sequence between these goals as they are brother
sub-goals.

Applying the reasoning described above, it can be seen that the property
Found(fl, rID) appears in both RandomPeersForDataRoutingFound and Request-
edFileFound goals’ specifications. Domain/solution knowledge allows affirming
that a file first needs to be found before searching for random peers that will
be used to route the file. It is thus assumed that there is a goal-dependency
in which the achievement of RandomPeersForDataRoutingFound depends on the
achievement of RequestedFileFound goals. To accept the reasoning above allows
a goal-dependency identification technique to be proposed:

– (I1) If there is at least one MAS property, constrained in predicates that occur
in formal specifications of two goals g1 and g2, then there is a goal-dependency
between them. The direction of this goal-dependency is undetermined.

– (I2) If temporal operators in formal specifications of goals in a goal-dependency
make it possible to establish the sequence of achievement of one in relation to
the other goal, then the goal-dependency relationship between them is directed
from the goal whose achievement precedes the other goal’s achievement.

Allocating Goals to Agent Roles During MAS Requirements Engineering 25

– (I3) If the goal-dependency direction cannot be determined using (I2), then
domain/solution knowledge can be used to make an assumption and choose
the goal in the goal-dependency whose achievement precedes that of the
other goal.

Information about the temporal sequence of achievement of goals involved in the
goal-dependency can only be extracted from explicit temporal operators of the
predicate which constrain the MAS property giving rise to a goal-dependency.
If there are no temporal operators associated with at least one of the predicates
that constrain the relevant property, domain/solution knowledge will be the
foundation for determining the goal-dependency direction. If neither (I2) nor (I3)
allow the goal-dependency direction to be determined, then the direction remains
undetermined. In the example above, there are few temporal operators in the
goal specifications that allow (I2) to be useful. However, experience and the wide
use of P2P applications allow the requirements engineer to make a reasonable
assumption that a requested file first needs to be found before searching for
routing peers (hence, (I3) is used).

The goal-dependency in the example can be specified with:

Goal-Dependency: FindFileThenSearchForRoutingPeers
Definition: Search for routing peers after the file to be transferred is found.
Involves: RequestedFileFound, RandomPeersForDataRoutingFound.
Direction: RandomPeersForDataRoutingFound DependsOn RequestedFileFound.
CommonProperties: Found(fl, rID).

The proposed goal-dependency identification approach has some desirable char-
acteristics: (i) Undirected goal-dependencies can be found automatically between
all goals in the goal tree, as the goals’ formal specifications contain all the neces-
sary information. (ii) The second step, (I2) may indicate the need for rewriting
goal specifications in order to make them more precise. In the example above,
although it was not possible to determine dependency direction due to few tem-
poral operators in the specifications, the direction was established from domain
knowledge. It may be beneficial in such cases to strengthen the formal specifica-
tions by introducing domain knowledge assumptions. In the example, the speci-
fication of RequestedFileFound could be modified by replacing Found(fl, rID)
with ◦Found(fl, rID), and writing @Found(fl, rID) instead of Found(fl, rID)
in RandomPeersForDataRoutingFound. More precise specifications derived from
acceptable/verifiable domain assumptions arguably lead to higher quality re-
quirements, further facilitating the identification of potential inconsistencies in
the form of additional obstacles and conflicts.

The goal-dependency identification process often leads to the possibility of
specifying a large number of goal-dependencies. To make the goal-dependency
set readable, we remove those that are deducible by transitivity, giving its Hesse
diagram.

Completeness of the Goal-Dependency Set. The condition for dependency ex-
istence (¬g1 ⇒ ¬g2Wg1) can be used to verify the completeness of the goal-
dependency set provided that system histories can be generated using e.g., model

26 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

checking techniques. An informal, but practical, completeness criterion is that
each goal in the goal tree is involved in at least one goal-dependency. Any goal
that does not fulfill this condition is outside of the overall process that is to be
realized by the MAS.

Linking Goal-Dependencies to MAS Nonfunctional Requirements. The
aim of relating individual goal-dependencies to MAS nonfunctional requirements
is to know the type of vulnerability that is generated by each goal-dependency.
Similarly to the notion of vulnerability suggested in the context of agent-
dependencies [44], goal-dependencies generate potential vulnerability of MAS:
When a goal being depended upon is not achieved, the goal that depends on it
will not be achieved. Consequently, failure of a goal may lead to the failure of the
future MAS to operate according to the desired quality level.

Recall that Step 1 of the proposed process involved, by application of the
approach for reasoning about partial goal satisfaction [26], the identification of
quality variables and their associated objective functions (to indicate whether
the value of the variables should be maximized or minimized). For example,
the quality variable NumberOfRoutingPeers is relevant for the RandomPeersFor-
DataRoutingFound goal. Following [26] the specification given below can be writ-
ten. That specification enriches the original goal specification with information
about two quality variables that measure the degree of goal achievement. A qual-
ity variable can be conceptualized as kind of metric for measuring the degree to
which a goal is achieved, whereas the sample space gives information on the case
sample used to calculate probability values. The NumberOfRoutingPeers variable
indicates that the probability of having at least two routing peers needs to be
maximized, with a target value of 80%, while it is currently estimated at 30%.
The second variable measures the probability of receiving a response from each
peer regarding its availability for routing within a certain time frame.

Goal: RandomPeersForDataRoutingFound
Definition: The n random peers for data routing are found when n routing peers are

found and each peer confirms availability.
Objective Functions:
Name Def Modal Target Current

HighNumRoutPeers P(NoRoutPeers > 2) Max 80% 30%
LowAvailRespTime P(AvailRespT < 1s) Min 70% 40%

Quality Variables:
NumberOfRoutingPeers: Natural
Sample space: set of routing peer numbers
Def: number of peers that are used to route data between the sender and
the receiver peers
AvailabilityResponseTime: Time
Sample space: set of routing availability responses
Def: time from the request for availability confirmation until the reception of
the response

...

Allocating Goals to Agent Roles During MAS Requirements Engineering 27

In terms of system nonfunctional requirements (i.e., security, privacy, safety, us-
ability, reliability, etc. - see e.g., [18,19,33]), the achievement of the above goal
can be said to affect privacy and performance. In case the number of peers is
small, it becomes easier to trace the entire route between the sender and the
receiver, consequently allowing malicious users to obtain access to private peer
information [16]. Performance is affected in that, the more peers are used to route
data, the less it is likely that the performance in terms of availability response
time will be low. Consequently, the degree to which the goal is achieved affects
the degree to which the above qualities are satisfied. As goal-dependencies are
identified from properties common to goal pairs, each goal-dependency can be
associated with a MAS quality, provided that the members of the dependency’s
CommonProperties attribute can be related to a quality variable. In the example,
if the RandomPeersForDataRoutingFound goal is involved in a directed or undi-
rected goal-dependency that arises from the common property RoutingPeers, it
can be inferred that this goal-dependency can be related to the degree to which
privacy is satisfied in the MAS. In case this same goal is involved in a goal-
dependency arising from the common property Available(pi, rID), the system
performance is the quality to which this goal-dependency is related. The number
of qualities to which a goal-dependency can be related is not restricted.

Relating goal-dependencies to nonfunctional requirements using common prop-
erties and quality variables allows taxonomy of system vulnerabilities to be pro-
posed for the engineered MAS. If a goal-dependency is related to performance,
this goal-dependency is said to generate a performance vulnerability. Rich vulner-
ability taxonomies can be built from existing work in nonfunctional requirements
analysis, such as [3], or standards (e.g., [18,19]). To make explicit the specific vul-
nerability generated by a goal-dependency, the attribute Vulnerability is added to
the goal-dependency specification template. For example:

Goal-Dependency: FindFileThenSearchForRoutingPeers
Definition: Search for routing peers after the file to be transferred is found.
Involves: RequestedFileFound, RandomPeersForDataRoutingFound.
Direction: RandomPeersForDataRoutingFound DependsOn RequestedFileFound.
CommonProperties: Found(fl, rID).
Vulnerability: Reliability.

Before the vulnerabilities can be used to generate and select between alternative
goal to role allocations, the vulnerabilities need to be identified. This can be
realized using the following process. For each goal:
– (VI1) Identify properties in the goal’s formal specification whose values affect

that goal’s quality variables.
– (VI2)For eachproperty identified in (VI1), check if there are goal-dependencies

to which this property gives rise, and which involve the goal.
– (VI3) For each quality variable in the goal, identify system quality whose

degree of satisfaction is measured by that quality variable.

For each goal-dependency involving the goal, indicate vulnerabilities by com-
bining properties found in (VI2) with qualities found in (VI3) to which each
property can be related.

28 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

3.3 Generate and Select Between Alternative Goal-to-Role
Allocations

The purpose of Step 3 is to generate and explore alternative allocations of goals
to roles. Each allocation is a set of agent roles, such that each role is allocated a
set of goals. The achievement of allocated goals becomes the responsibility of the
agent that is selected to occupy the role. Choosing agents to occupy the defined
roles is not treated in this paper.

Allocating Goals to Roles Instead of Agents. Allocating responsibility
for goal achievement directly to agents does not allow encapsulation and modu-
larity nonfunctional requirements to be addressed satisfactorily when specifying
requirements for large MAS. As suggested in [45], as soon as the complexity
of MAS increases, modularity and encapsulation principles require MAS to be
composed of agent roles. An agent can therefore play one or more roles to achieve
goals within multiple and different agent organizations. In order to benefit from
the organizational metaphor [45], it is necessary to ensure the separation of
agents’ action execution characteristics from its expected behavior within MAS
organizations.

In the Gaia MAS development framework ([45,46]), a role is modeled as a set
of responsibilities and permissions. Responsibilities are represented as protocols
(i.e. activities that require interaction with other agents) that the role needs to
execute, while role’s permissions specify resources that the role can access and
under which conditions. At a more abstract level, Gaia responsibilities can be
seen as resulting from MAS goal operationalizations, involving, among other, the
identification of agent capabilities and actions that are required for the goal to be
achieved. Based on the role concept in Gaia, a restrictive way of conceptualizing
a role is to consider it as being a set of MAS goals. While this is one of the many
facets of the role concept used in MAS engineering, it may be sufficient to restrict
the analysis during the RE step at this aspect of role only. Responsibilities
and permissions could be derived from goals specifications later in the MAS
development process. If the proposed goal-to-role allocation approach is to be
used as the first requirements step in, e.g., Gaia, there are no barriers in enriching
the suggested conceptualization with additional facets relevant for methodology-
specific analyses.

The role conceptualization is consequently not fixed in the proposed allocation
approach. It is up to the requirements engineer to choose the degree of expressivity
of role by including its various facets (e.g., goals, permissions, etc.). The goal-to-
role allocation approach does necessitate that the role be characterized at least as
being a set of goals. Otherwise, alternative allocations cannot be studied.

Generate Alternative Roles. An alternative goal-to-role allocation is a set of
roles such that all goals in the goal tree are allocated to at least one role. Using
information about vulnerabilities, it can be shown that each allocation satisfies
to a different degree the MAS qualities. Consequently, the ultimate purpose of
generating alternative allocations is to choose one that is considered as the most
adequate by the MAS RE project stakeholders.

Allocating Goals to Agent Roles During MAS Requirements Engineering 29

Background. Anessential and recurring question in theMASdevelopmentmethod-
ologies is whether to assign some responsibility (often represented as a goal) to a
single agent, or to design the MAS so that the responsibility is fulfilled through
interaction between two or more agents. Claims have been made that the former
structure may increase security and/or robustness, while the later may be more
flexible. In [42], no advice is given to the user of the MaSE methodology. Although
responsibilities are assigned in the case studies discussed in, e.g., [27,32], discus-
sions onwhy the proposed responsibility assignments have been chosen aremissing.
As suggested in the overview of related work, the assignment problem is addressed
in a systematic way only in [6], where predefined MAS organizational structures
are instantiated to determine the responsibility assignments in specific MAS. The
patterns in [6] are based on responsibility assignment structures observed often
in human organizations. However, there is doubt as to the adequacy of imposing a
human organizational structure, elaborated historically in human organizations to
fully-automated or partially-automated organizations of humans and agents sub-
jected to different constraints than classical human organizations. In contrast, the
approach proposed in this paper favors the creation of a structure by relying on
an understanding of key parameters and trade-offs that need to be made when de-
signing roles, instead of fitting a predefined structure to a set of goals.

Internalization vs. Externalization. In economics and organization sciences, most
of the analysis of distributing work between economic agents (such as, e.g., entire
firms) has focused on the question of whether to realize activities internally, or
to assign their responsibility to external agents (e.g., [7,43,36]).

In terms specific to the allocation approach proposed in this paper, the inter-
nalization decision results in a goal-dependency that is under the responsibility
of a single role, i.e., the role contains both goals involved in the dependency
(Fig. 2). Whether a goal-dependency is internalized or externalized will result in
a different degree of MAS nonfunctional requirements satisfaction. For example,
the externalization of a dependency may require interaction between distinct
agents. This in turn could lead to worse response rates of the MAS, security
issues resulting from the possibility of interception of sensitive data communi-
cated between the agents, etc. Consequently, it is assumed in the context of this
paper, that a key parameter to consider when designing roles in MAS is whether
to externalize or internalize goal-dependencies within roles. This is particularly
relevant in the face of the long tradition economics and organization science
preoccupation with internalization and externalization decisions, and when the
organizational metaphor is adopted during MAS development.

Conclusions from seminal works in economics and organization science can be
a valuable source of inspiration for justifying goal to role allocation decisions.
The following motives can be used to argue for/against internalization decisions
in the context of MAS development. Motives to internalize a goal-dependency
(marked with “I”) can be:

– (I-a) According to [7], it is the aim of exploiting economies of speed that pushes
firms towards internalizing activities. Because firm throughput depends on

30 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

Fig. 2. Internalized goal-dependency (left) and externalized goal-dependency (right)

uninterrupted flows of material and payments, precise planning and control
is of paramount importance. As internalization implies that larger parts of
the firm’s environment are under the influence of its management, it could be
the strategy of choice for exploiting economies of speed [37]. A parallel can
be made with the need for speed in MAS operation (or, more generally per-
formance): To favor performance optimization in MAS, it is beneficial to in-
ternalize goal-dependencies, as the agent occupying the role will need to have
capabilities allowing a larger part of MAS to be under its control.

– (I-b) Internalization can reduce transaction costs (e.g., [43]), including the
costs of finding, selling, negotiating, contracting, monitoring, and resolving
disputes with other firms. Although it may be argued that transactions be-
tween MAS agents have no cost, this may not be the case if cost includes
the impact of goal-dependency failure on the degree of MAS qualities sat-
isfaction. Transaction cost between agents may be considered a function of
vulnerabilities generated by the goal-dependency that is externalized and
involves transaction between agent roles. To avoid the ”cost” of the vulner-
abilities, internalization may be the tactic of choice.

– (I-c) In relation to the motives (I-a) and (I-b), if a transaction between firms
involves repeated interaction, it may be better to internalize that transaction
[43]. If two goals in a goal-dependency are likely to be achieved frequently
during MAS operation, it may be beneficial to internalize that dependency.
This allows, e.g., a role to be defined so that it can be occupied only by agents
specialized in achieving the two goals, resulting in reduced vulnerability for
qualities to which the internalized goal-dependency is related.

– (I-d) According to [1], internalization is a means to access and protect knowl-
edge available in other parts of the industry value chain, in order to ensure
advantage over competitors. A MAS reinterpretation can be that data leaks
or malicious access to data passed in order to achieve two goals in a goal-
dependency may be avoided, or at least their probability reduced, if the
goal-dependency is internalized.

Motives to externalize a goal-dependency (marked with “E”):

– (E-a) Internalization carries a commitment to a particular way of doing busi-
ness [4], leading to lower flexibility of the firm in the face of changing envi-
ronment conditions. Building MAS using complex roles requires very specific
agents to be available to occupy the roles. In open MAS, where existing and
new agents may enter and exit, increased internalization of goal-dependencies
commits MAS to a particular way of functioning that may rapidly become
obsolete.

Allocating Goals to Agent Roles During MAS Requirements Engineering 31

Fig. 3. An example of how to record alternative role definitions

– (E-b) Growth in the extent of the markets reduces the incentives to internal-
ize comparatively to externalizing activities through markets [23]. When de-
signing MAS roles, it is relevant to consider externalizing goal-dependencies
if this can allow the definition of roles that can be occupied by a wide variety
of generic agents. This may facilitate changing role occupancy during MAS
operation, allowing, e.g., to replace dysfunctional agents by other available
agents.

– (E-c) Standardization of transactions (and contracts in particular) reduces
the uncertainty a firm faces when externalizing activities (e.g., [23,37]). In
other words, the more predictable the transaction, the more likely it is to be
externalized. In MAS, some goal-dependencies, if externalized may involve
interactions that are standardized, that is, widely used patterns may exist
to codify interactions. Vulnerabilities that appear in such goal-dependencies
may be considered as having a limited impact.

The above considerations need to be perceived as starting points for discussion
when choosing a goal-to-role allocation. They serve to justify decisions when
generating alternative allocations.

A Process to Generate and Select Roles. The process described below can be used
to generate alternative sets of potential MAS agent roles. The process starts by
generating an initial allocation. Then, alternatives are created by changing the
initial role set. For each goal-dependency in the goal tree:

– (GAR1) Identify the vulnerabilities generated by that goal-dependency.
– (GAR2) Discuss whether internalization or externalization would lead to

increasing or reducing the probability of the vulnerability to occur. Base
justifications on motives for internalizing or externalizing discussed above.

– (GAR3) Decide whether to internalize or externalize the goal-dependency.

Although the application of the process above results in a single set of roles,
information about potential alternatives can be recorded during the application
of the process. Consider Fig. 3 as an example of how decisions can be recorded
during the application of the identification process. Each cell in the table is at
the intersection of a goal-dependency and a MAS quality, and is separated in
an upper and lower part. The upper part of a cell represents the impact of the
decision to internalize a goal-dependency on the degree to which the concerned
quality is satisfied in the MAS. The lower part of a cell represents the same

32 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

information for the decision to externalize the goal-dependency. Each part of a
cell may contain one of four symbols: (++) to indicate that the decision supports
strongly and favorably the satisfaction of the concerned quality, (+) to indicate
somewhat favorable support, (-) to indicate somewhat unfavorable support, and
(–) to indicate strong unfavorable support. If the goal-dependency is unrelated
to the quality (i.e., it does not generate a vulnerability for that quality), the cell
is left blank.

Alternative roles can be constructed by choosing, in each non-blank cell, one
cell part to indicate that the concerned goal-dependency needs to be internalized
or externalized. As the table contains all possible individual alternatives (i.e., all
possible internalizations and externalizations of goal-dependencies), it contains
sufficient information to construct any alternative goal-to-role allocation.

While qualitative reasoning techniques, such as the one used to construct and
interpret Fig. 3 have their limitations (notably in terms of accuracy [26]), they
are accessible and are an adequate choice when too little information is available
to provide quantitative motives (as opposed to qualitative ones proposed above).

4 Conclusions and Future Work

A systematic approach for allocating goals to agent roles during the RE step of
the MAS development process is proposed. A novel type of inter-goal link, the
goal-dependency, a type of the dependency relationship, serves two purposes in
the approach. First, it is used to reason about the sequence of goal achievement
in MAS, adding valuable information to classical goal refinement and contribu-
tion links. Second, each goal-dependency can be related, through goal quality
variables and the value of the goal-dependency’s CommonProperties attribute,
to information about nonfunctional requirements of the MAS, to allow MAS
vulnerabilities to be identified, classified for analysis, and used for agent role
definition.

Two additional parameters for organizational design discussed in organiza-
tional sciences are the allocation of decision rights and the grouping of work in
subunits of an organization. Further work is needed to study the tools and meth-
ods for integrating these factors in the process of designing MAS organizations.
The proposed qualitative reasoning technique can be extended to integrate quan-
titative data. The use of goal-dependencies in the analysis of the timed operation
of MAS during the RE step will also be addressed.

References

1. Afuah, A.: Dynamic boundaries of the firm: Are firms better off being vertically
integrated in the face of a technological change? Academy of Management Journal
44, 6 (2001) 1211-1228.

2. Al-Naeem, T., Gorton, I., Ali Babar, M., Rabhi, F., Benatallah, B.: A Quality-
Driven Systematic Approach for Architecting Distributed Software Applications.
Proc. Int. Conf. Softw. Eng., 2005.

Allocating Goals to Agent Roles During MAS Requirements Engineering 33

3. Anton, A., Earp, J., A. Reese, A.: Analyzing Website Privacy Requirements Using
a Privacy Goal Taxonomy. Proc. IEEE Int. Req. Eng. Conf. RE’02, 2002, 23-31.

4. Buzzel, R. D.: Is vertical integration profitable? Harvard Business Rev. (Jan.-Feb.
1983).

5. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chaainho, P.,
Kearney, P., Stark, J., Evans, R., Massonet, P.: Agent-Oriented analysis using
message/uml. Proc. 2nd Int. Worksh. Agent-Oriented Softw. Eng., LNCS 2222,
2002.

6. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the Tropos project. Inf. Sys., 27, 6 (2002) 365-389.

7. Chandler, A.: The Visible Hand - The Managerial Revolution in American Busi-
ness. Cambridge, MA: Belknap Press, 1977.

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Publishing, 2000.

9. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.
Goal-Centric Traceability for Managing Non-Functional Requirements. Proc. Int.
Conf. Softw. Eng., 2005.

10. Dardenne, A., van Lamsweerde, A., Fickas S.: Goal-directed requirements acquisi-
tion. Sc. Comp. Prog., 20 (1993) 3-50.

11. Darimont, R., Van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. Proc. 4th ACM SIGSOFT Symp. Found. of Softw. Eng.
FSE4, 1996, 179-190.

12. Devanbu, P.T., Stubblebine, S.: Software Engineering for Security: a Roadmap.
Proc. 22nd Int. Conf. on Softw. Eng., 2000.

13. Donzelli, P. A goal-driven and agent-based requirements engineering framework.
Req. Eng., 9 (2004) 16-39.

14. Faulkner, S., Kolp, M., Mouratidis, H., and Giorgini, P.: Delegation Mechanisms
for Agent Architectural Design. Proc. 4th Joint conf. Auton. Ag. Multi-Ag. Syst.,
2005.

15. Franch, X.: Systematic Formulation of Non-Functional Characteristics of Software.
Proc. Int. Conf. on Req. Eng. RE’98, 1998.

16. Friedman, A., Camp, L. J.: Peer-to-Peer Security. In Bidgoli, H. (Ed.) The Hand-
book of Information Security. J.Wiley&Sons, 2005.

17. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specify-
ing and Analyzing Early Requirements in Tropos. Req. Eng., 9, 2 (2004) 132-150.

18. IEEE Computer Society: IEEE Standard for a Software Quality Metrics Method-
ology. IEEE Std. 1061-1992, New York, 1992.

19. ISO: ISO/IEC Standards 9126 - Information Technology - Software Product Eval-
uation. ISO, 1991.

20. Issarny, V., Bidan, C., Saridakis, T.: Achieving middleware customization in a
configuration-based development environment: experience with the Aster proto-
type. Proc. 4th Int. Conf. Config. Distr. Syst., 1998.

21. Keller, A., Blumenthal, U., Kar, G.: Classification and Computation of Depen-
dencies for Distributed Management. Proc. 5th Int. Conf. Comp. Comm. ISCC,
2000.

22. Landes, D. Studer, R.: The Treatment of Non-Functional Requirements in MIKE.
Proc. 5th Eur. Softw. Eng. Conf., 1995.

23. Langlois, R. N.: The vanishing hand: the changing dynamics of industrial capital-
ism. Ind. and Corp. Change, 12, 2 (2002) 351-385.

24. Letier, E., van Lamsweerde, A.: Agent-Based Tactics for Goal-Oriented Require-
ments Elaboration. Proc. Int. Conf. Softw. Eng., 2002.

34 I.J. Jureta, S. Faulkner, and P.-Y. Schobbens

25. Letier, E.: Reasoning about Agents in Goal-Oriented Requirements Engineering.
Ph.D. Thesis, Univ. of Louvain, 2001.

26. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering. Proc. SIGSOFT’04/FSE-12, 2004.

27. Liu, L., Yu, E., Mylopoulos, J.: Analyzing Security Requirements as Relationships
Among Strategic Actors. Proc. 2nd Symp. on Req. Eng. Info. Security SREIS’02,
2002.

28. Liu, L., Yu, E., and Mylopoulos, J. Security and Privacy Requirements Analysis
within a Social Setting. Proc. Int. Conf. on Req. Eng., 2003.

29. Liu, L., and Yu, E. Designing information systems in social context: a goal and
scenario modeling approach. Info. Syst., 29 (2004).

30. Mouratidis, H., Giorgini, P., Manson, G., Philp, I.: A natural extension of Tropos
methodology for modelling security. Proc. of the Agent Oriented Meth. Worksh.
OOPSLA, 2002.

31. Mouratidis, H., Giorgini, P., Manson, G.: Modelling Secure Multiagent Systems.
Proc. Auton. Ag. Multi-Ag. Syst., 2005.

32. Mouratidis, H., Giorgini, P., and Manson, G. When security meets software en-
gineering: a case of modelling secure information systems. Info. Syst., 2005. (To
Appear.)

33. Mylopoulos, J., Chung, L., and Nixon, B. Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach. IEEE Trans. on Softw. Eng., 18, 6
(1992) 483-497.

34. Rolland, C., Souveyet, C., and Ben Achour, C. Guiding Goal Modelling Using
Scenarios. IEEE Trans. Softw. Eng. (Dec. 1998).

35. Rosa, N.S., Cunha, R.F., Justo, G.R.R.: ProcessNFL: A Language for Describing
Non-Functional Properties. Proc. 35th Hawaii Int. Conf. Syst. Sci., 2002.

36. Rubin, P. Managing Business Transactions. NY: Free Press, 1990.
37. Sturgeon, T. J.: Modular production networks: a new American model of industrial

organization. Ind. Corp. Change 11, 3 (2002).
38. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.

Proc. 5th IEEE Int. Symp. Req. Eng., 2001.
39. van Lamsweerde, A. Letier, E.: Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. Softw. Eng., 26, 10 (Oct. 2000) 978-1005.
40. van Lamsweerde, A. Goal-Oriented Requirements Enginering: A Roundtrip from

Research to Practice. Proc. 8th IEEE Int. Symp. on Req. Eng., 2004.
41. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-driven

Requirements Engineering. IEEE Trans. Softw. Eng., 24, 11 (1998) 908-926.
42. DeLoach, S.A., Wood, M., Sparkman, C.: Multiagent system engineering. Int. J.

Softw. Eng. Knowl. Eng., 11, 3 (2001) 231-258.
43. Williamson, O. The Economic Institutions of Capitalism. NY: Free Press, 1985.
44. Yu, E. Modeling Strategic Relationships for Process Reengineering. Ph.D. Th.,

Univ. of Toronto, 1995.
45. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-

oriented analysis and design. J. Auton. Ag. M.-Ag. Syst., 3, 3 (2000) 285-312.
46. Zambonelli, F., Jennings, N.R., and Wooldridge, M.: Developing Multiagent Sys-

tems: The Gaia Methodology. ACM Trans. on Softw. Eng. and Meth., 12, 3 (2003)
317-370.

An Aspect-Oriented Modeling Framework for
Multi-Agent Systems Design

Alessandro Garcia1, Christina Chavez2, and Ricardo Choren3

1 Computing Department, Lancaster University, UK
garciaa@comp.lancs.ac.uk

2 Computing Department, Federal University of Bahia, Brazil
flach@dcc.ufba.br

3 Computer Engineering Department, Military Institute of Engineering, Brazil
choren@de9.ime.eb.br

Abstract. A number of concerns in multi-agent system (MAS)design
have a crosscutting impact on agent-oriented models. These concerns
inherently affect several system agents and their internal modeling ele-
ments, such as actions and goals. Examples of crosscutting concerns in
MAS design encompass both internal and systemic properties, such as
learning, mobility, error handling, and security. Without an explicit mod-
eling of such MAS properties, designers can not properly communicate
and reason about them and their broadly-scoped effects. This paper pre
sents a meta-modeling framework for supporting the modular represen-
tation of crosscutting concerns in agent-oriented design. The framework
is centered on the notion of aspects to describe these concerns. It also
defines new composition op-erators to enable the specification on how
aspects affect the agent goals and ac-tions. The proposed framework is a
result of our previous experience in both using aspect-oriented techniques
for MAS design and implementation, and integrating aspect-oriented ab-
stractions in an agent-oriented modeling language, called ANote.

1 Introduction

MAS developers usually face a number of concerns which have a crosscutting
impact on agent-oriented design artifacts, such as goal models and agent models
[2,15,16,30,36,2,18]. A crosscutting concern at MAS design is any broadly-scoped
concern that cannot be modularly captured with the conventional agent-oriented
modeling abstractions and composition mechanisms [18]. For example, the learn-
ing concern is composed of a number of specific goals and actions, which sys-
tematically crosscut the goal hierarchies and actions descriptions associated with
several agents in an application. Other examples of crosscutting MAS concerns
are widely-scoped properties, such as mobility, error handling, and security.

The problem is that these concerns consistently cut across the modularity of
several MAS modeling elements, such as agents, goals, actions, and plans. Very
often, the crosscutting property of such design concerns remains either implicit or
is described in informal ways leading to reduced uniformity, impeding traceability
between higher-level models and implementations, and hindering detailed design

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 35–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 A. Garcia, C. Chavez, and R. Choren

and implementation decisions. Hence there is a pressing need for the conception
of a modeling framework that provides MAS designers with proper support for
the modular representation and reasoning [23] of crosscutting MAS concerns.

In fact, there is a growing number of modeling extensions dealing with cross-
cutting concerns in multi-agent systems [7,21,27,28,37]. However, each of them
introduces a plethora of extensions to the underlying modeling language that are
targeted at supporting one specific agency concern, such as mobility [21], coor-
dination [27], or autonomy [9]. It makes more evident the inadequacy of conven-
tional agent-oriented design languages [8,29,34,38] and respective abstractions
to cope with the crosscutting nature of some MAS concerns. As a result, their
crosscutting effects are inevitably spanned over the resulting agent-oriented de-
sign artifacts. To encompass all crosscutting MAS concerns, it is important to
describe generic abstractions and to devise new composition rules.

The notion of aspects [1,13,22] looks promising for handling crosscutting MAS
concerns in early phases of the software lifecycle. Aspect-Oriented Software De-
velopment (AOSD) is an emerging development paradigm aimed at promot-
ing improved separation of concerns by introducing a new modular unit, called
aspect. However, the existing aspect-oriented modeling approaches have been
limited to the object-oriented and component-oriented paradigms. Moreover,
AOSD has being only systematically investigated to cope with the modularity
of traditional crosscutting concerns, such as distribution [24], persistence [24,25],
exception handling [12], and some design patterns [3,20]. Our previous work has
investigated the interplay of AOSD and agent-oriented software engineering, but
it has focused on different contexts other than agent-oriented design and model-
ing, including architecture design [17,30,19,32], detailed design [14,15], and im-
plementation [10,30,36,26]. In other recent work [18], we have enhanced ANote,
a specific agent-oriented modeling language, with aspect-oriented notation.

In this context, this paper presents a meta-modeling framework to enable
the modular representation of broadly-scoped concerns in agent-oriented design
modeling. Our framework blends core concepts from AOSD with recurring ab-
stractions of agent-oriented design. Our meta-modeling approach enriches agent-
oriented modeling with aspectual composition mechanisms in order to promote
MAS decompositions with superior modularity. The proposed framework is ag-
nostic to specific agent-oriented modeling languages, and relates its aspectual
concepts to fundamental agent-oriented design elements, such as agents, actions,
and goals. The proposed framework is centered on: (i) the notion of aspects to
describe these concerns, and (ii) new composition mechanisms to capture how
MAS aspects affect the agent goals and actions.

The paper is organized as follows. Section 2 illustrates crosscutting concerns
in agent-oriented modeling in terms of an example, and shows the inability of
existing abstractions and composition rules to support their separation. Section 3
presents our aspect-oriented framework for agent-oriented design and modeling.
Section 4 describes the applicability of the concept of aspects in agent-oriented
design according to our approach. Section 5 discusses related work. Section 6
presents concluding remarks.

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 37

2 Crosscutting Concerns in Agent-Oriented Goal
Modeling

This section presents some examples of crosscutting concerns in agent-oriented
design modeling. Section 2.1 presents the main concerns associated with our
running example. Section 2.2 illustrates and discusses some typical examples of
crosscutting concerns in MASs in terms of our case study. Section 2.3 shows the
consequences of not having explicit support for the modularization of crosscut-
ting concerns in agent-oriented design models.

2.1 The Expert Committee Example

The Expert Committee (EC) is a multi-agent application that supports the man-
agement of the reviewing process for research conferences. The EC system en-
compasses three types of software agents: (i) information agents, (ii) user agents,
and (iii) the manager agent. Figures 1 and 2 show a partial design representation
for the EC system [15] specified with the ANote modeling language [21]. AN-
ote defines modeling views that allow for the expression of a MAS design from
seven different perspectives: goal, agent, environment, scenario, action, interac-
tion and organization. For instance, the goal view diagram (Figure 1) provides
the identification of the hierarchy that outlines the system goals. In this dia-
gram, complex goals can be functionally decomposed into more granular goals
until the designer reaches the desired level of goals (functionalities) to distribute
among the agents. These two diagrams support the representation of the agents,
goals and contexts respectively. A context is a scenario that indicates how agents
should achieve goals.

Figure 1 illustrates some goals associated with the information and user agents
respectively. Information agents goals are managing the system information that
is mainly stored in a database, and providing information to the other system
agents and users as requested. User agents are software assistants that represent
system users in reviewing processes. Their basic functionalities are to infer and
to keep information about the users’ research interests and participations in
scientific events.

2.2 Modularity Issues in Goal Models

Designers are able to successfully use agent-oriented abstractions and compo-
sition mechanisms to represent several system concerns in a modular fashion.
For example, the goal composition rules and, or and xor allow for consistently
specifying how goals and sub-goals are combined to realize a given concern.
The ”finding information” and ”reviewing papers” concerns, for instance, can
be smoothly captured in separate goal hierarchies, as illustrated in Figure 1.

However, we can notice in Figures 1 and 2 that there are some concerns which
cannot be represented in a modular way across the design views. Learning and

38 A. Garcia, C. Chavez, and R. Choren

Fig. 1. Crosscutting Concerns in ANote Goal Diagram [18]

mobility are two examples of crosscutting concerns in the agent-oriented design
of the EC system. The set of goals, which is part of and affected by these broadly-
scoped concerns, is spread over the agent-oriented design. The set of goals for a
specific crosscutting concern is surrounded by dotted rectangles in Figure 1. The
mobility concern consists of goals that crosscut distinct goal hierarchies, and of
actions intermingled with diverse scenarios. A similar problem happens with the
learning-specific goals and actions. These two concerns have a huge impact on
the agent structure and behavior since they cut through the primary modularity
of goal hierarchies representing other agent concerns.

The crosscutting manifestation leads to two major problems at the agent-
oriented design level: scattering and tangling [35]. Scattering in agent-oriented
models is the manifestation of design elements that belong to one specific con-
cern, over several modeling units referred to other MAS concerns. For exam-
ple, the mobility-related goals are scattered over multiple goal hierarchies, such
as the ones under the goals ”Perform Consult” and ”Update DB” (Figure 1).

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 39

Fig. 2. Crosscutting Concerns in ANote Scenario Diagrams [18]

Tangling in agent-oriented models is the mix of multiple concerns together in the
same modeling elements. For instance, tangling is evident in the ”Perform Con-
sult” scenario since it is realizing mobility-related and learning-related actions
in addition to its primary actions of performing the consult.

2.3 Side Effects on MAS Design Modularity

Existing agent-oriented modeling abstractions and composition mechanisms do
not provide proper support to isolate crosscutting MAS concerns as exemplified
in Figures 1 and 2. This brings a number of substantial design pitfalls relative
to modularity breakdowns, as described below.

Hindering of modular and compositional reasoning. Tangling and scattering of
MAS concerns hinder both modular and compositional reasoning at the design

40 A. Garcia, C. Chavez, and R. Choren

stage. Developers are unable to reason about a concern while looking only at its
description, including its core goals and actions, and its structural and behavioral
implications in terms of other MAS concerns. Hence its analysis inevitably forces
developers to consider all the design artifacts in an ad hoc manner. For example,
the designers treating the learning and mobility concerns in Figure 1 need to con-
sult the goals associated with all other design concerns across the different views.

Replication of agent-oriented design elements. Replication of goals (and their
actions) in the agent-oriented design is another side effect of tangling and scat-
tering. Replication in turn decreases the system understandability, reusability
and evolvability. For instance, the mobility-specific goal ”Move to Remote Host”
is duplicated in the goal view diagrams due to its crosscutting relationships with
the goals ”Update DB” and ”Find Information”.

Essential information missing. Without appropriate abstractions and composi-
tion mechanisms for crosscutting concerns in agent-oriented models, MAS design-
ers are not able to locally express the structural and behavioral implications of a
given broadly-scoped MAS concern in several design elements and views. The re-
sult is that design information is irrecoverable just because the lack of support
for properly specifying them. For example, the learning concern (Figure 2) would
clearly have a goal ”Learn User Preferences” associated with it, which influences
at least two goals: ”Get Query” and ”Evaluate Chair Proposal”. As the designer
does not have support to describe this crosscutting impact of a learning-specific
goal, such important design information has been lost and such goal is not appear-
ing in the design models. Even if the designers use the standard abstractions and
composition rules of the underlying modeling languages to register such informa-
tion, the learning-specific goal would end up being scattered over two or more goal
hierarchies.

Reduced evolvability and reuse opportunities. Tangling and scattering are two of
the main anti-reuse and anti-evolution factors in the MAS software lifecycle. For
example, it is not easy to understand, in the EC system design, which agent types
are mobile and which have learning abilities. In addition, the goals associated
with learning and mobility concerns are not coherently documented in a single
modular unit so that they can be easily reused in other design contexts. Also,
if the designers need to evolve the system and introduce changes related to the
mobility and learning properties, the evolution process will be cumbersome as
those concerns are intermingled in the system design.

3 An Aspect-Oriented Modeling Framework for MAS
Design

This section describes our approach to address the need for supporting the
modular representation of crosscutting concerns in agent-oriented design. We
present a meta-modeling framework that enriches agent-oriented models with
aspects, which are the design first-class units to overcome tangling and scatter-
ing of concerns. The proposed framework is a result of our previous experience

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 41

in both using aspect-oriented techniques for MAS design and implementation
[14,15,30,36], and integrating aspect-oriented abstractions in an agent-oriented
modeling language, called ANote [18]. The proposed framework is independent
of specific agent-oriented modeling languages, and is composed of 3 models: the
Agent Model, the Aspect Model and the Composition Model. We use entity-
relationship diagrams to illustrate each conceptual model in terms of entity sets
and relations over these sets.

3.1 The Agent Model

The Agent Model is a conceptual meta-model for agent-based system modeling.
The model presented here comprises a set of fundamental agent-oriented design
elements, such as agents, actions, and goals. Figure 3 summarizes the agent
model. An Agent is the module that is able to perform actions; it is the main
abstraction of the agent paradigm. An action is a computation that results in a
change in the state of an agent. An agent acts in the system in order to achieve a
goal. While executing actions, an agent can interact with other agents. A goal is
a system objective, and it defines a state that must be achieved by one or more
agents. The execution of one or more actions allows for the achievement of a goal.
A goal can be of different categories that are organized into a specialization
hierarchy. This means that goals can be decomposed into several alternative
combinations of sub-goals.

Fig. 3. The Core Agent Model: Agents, Goals, and Actions

3.2 The Aspect Model

The Aspect Model is a conceptual framework for AOSD [5,6] that subsumes con-
cepts, relationships and properties for supporting the design of aspect-oriented
modeling languages. These elements are organized around three interrelated con-
ceptual models: (i) the component model, (ii) the join point model and (iii) the
core model (Figure 4). As a generic conceptual framework, the aspect model
needs to be instantiated in order to be used [5]. This means that the designer
of a new aspect-oriented language must adopt a component model, a suitable

42 A. Garcia, C. Chavez, and R. Choren

joint point model, and appropriate structure and semantics for the core model
concepts (aspect and crosscutting).

In our meta-modeling framework, the adopted component model is the agent
model described above and join points are elements related to the structure or
the behavior of agent models, referenced and possibly affected by an aspect. The
join point model represents a conceptual framework that describes the kinds of
join points of interest and the associated restrictions for their use. Agents, Goals
and Actions are defined as join points, that is, locations in agent models that
can be affected by aspects.

The core model represents a conceptual framework used for describing as-
pects and crosscutting. An aspect is a first-class, nameable entity that provides
modular representation for a crosscutting concern and localizes both (a) the
specification of (sets of) join points, and (b) the enhancements to be combined
at the specified join points. The enhancements may add new structure and be-
havior to agents, goals and actions, refine or replace existing behavior. The kinds
of enhancements depend on the kind of component model adopted. For the agent
model, enhancements are goal-like and action-like elements; aspects modularize
crosscutting goals and crosscutting actions.

Fig. 4. The Aspect Model

Crosscutting denotes the generic composition mechanism used to compose
aspects and agents, enhancing them at the designated join points (Figure 5).
Aspects crosscut one or more agents, possibly affecting their structure and be-
havior at those well-defined join points. A join point can be associated with an
agent, a goal, an action, or even an entire plan. The next section discusses the
different composition operators to capture crosscutting structures and behaviors
in MAS designs.

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 43

Fig. 5. An Aspect Model for an Agent Model

3.3 The Composition Model

The Composition Model is a conceptual framework that provides semantics de-
scription of the crosscutting composition mechanism. In other words, this model
characterizes the possible ways aspects may affect agents, their goals, and ac-
tions. Currently, our composition model organizes crosscutting operations ac-
cording to three categories or dimensions (Figure 6): aspect-agent, goal-goal and
goal-action composition. Table 1 presents the semantics description and the pos-
sible crosscutting operations for each composition category.

Fig. 6. Crosscutting dimensions for the Agent Model

Aspect-Agent crosscutting composition basically adds a new goal G to Agent
A. For example, the mobility concern in the EC system design (Section 2.1) is an
example of aspect that introduces the mobility-specific goals ”Move to Remote
Host” and ”Consult Research Agency DB” in the goal hierarchy of Information
Agent. Goal-Action crosscutting composition supports the addition of a new Ac-
tion to some Goal G. The other two categories are further detailed in Table 2.

44 A. Garcia, C. Chavez, and R. Choren

Table 1. Composition Model: crosscutting categories semantics and operations

The Goal-Goal composition style combines an aspect goal G1 with an existing
agent goal G2. For example, the goal ”Learn User Preferences” associated with
the learning concern in the EC system (Section 2.1) needs to be composed with
goals of Information Agent and User Agent, such ”Get Query” and ”Evaluate
Chair Proposal”. The ”merge” operation describes well this kind of goal-goal
composition since the learning aspect enhances the goals of querying the DB
and evaluating the chair proposal without changing the semantics of the state
to be reached (the agent goals).

Figure 7 presents a diagrammatic representation of merge semantics between
Goals. Note that the learning-specific goal ”Learn User Preferences” has been
omitted in the EC design (Figure 2) because the lack of support of the modeling
notation to express such aspectual influence of the learning concern (Section 2.3).

Fig. 7. Goal-Goal composition: Merge

4 Discussions

The Aspect Model abstracts from the kinds of component an aspect affects. In
[6], the Aspect Model was instantiated with the UML object model to provide an
aspect-oriented conceptual framework for object-oriented design and modeling.
Furthermore, the Aspect Model can be instantiated with different agent mod-
els and sets of agent-oriented abstractions. The applicability of the concept of
aspects in agent-oriented design, and the usability of our modeling approach [18]

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 45

Table 2. Crosscutting semantics for Goal-Goal and Action-Action composition

have been evaluated in different contexts and with respect to different modeling
criteria as the ones described in the subsections below. Section 4.1 discusses inte-
grability and extensibility issues, while Section 4.2 focuses on design knowledge
management, evolvability, and reusability.

4.1 Integrability and Extensibility

As presented in Section 3.1, We have used the meta-modeling framework to
introduce aspect-oriented capabilities in the ANote modeling language, which
was straightforward [18]. In fact, we did not experience particular conflicts while
integrating the aspect-oriented meta-model and the ANote meta-model. During
this integration process, we observed that additional join points were necessary
to be defined due to particularities of the ANotes agent model. For example, a
certain precondition can be also part of a crosscutting behavior in ANote models.

The precondition ”Remote Environments are Available” in Figure 2 is part of
the mobility concern. Hence, preconditions need to be also defined as join points
in the aspect-oriented meta-model for the ANote language. The accommodation
of crosscutting pre-conditions and other join points in the extended ANote meta-
model was a smooth step, as our Aspect Model is flexible enough. It supports
this extensibility through a chain of associated meta-abstractions, such as ”join
point” and ”enhancement”, and a comprehensive set of composition styles under
the ”crosscutting” concept.

46 A. Garcia, C. Chavez, and R. Choren

4.2 Design Knowledge Management, Evolvability, and Reusability

We have also assessed the aspect-oriented modeling approach in three case stud-
ies. These MASs encompassed different characteristics, different degrees of com-
plexity, and diverse domains: the Expert Committee system (Section 2.1), a
system for the Trading Agent Competition [33], and a portal development man-
agement system [14,15]. The design of these systems encompassed different cross-
cutting concerns in their agent-oriented models, including adaptation, mobility,
learning, and proactive autonomy.

In fact, we were able to explicitly model the implications of these broadly-
scoped MAS properties in the same way we model the basic MAS behaviors. This
externalized better the knowledge present in the agent-oriented design process,
and provided an improved basis for further evolution and reuse. For example, the
learning-specific goals and its synergistic relationships with other system goals
have been better captured based in our aspect-oriented notation [18]. These
aspectual goals have been lost in the ”non-aspectized” agent-oriented models
(Section 2.3).

5 Related Work

Existing approaches that aim to provide an unifying conceptual framework for
AOSD are tightly coupled to the object-oriented paradigm and the modulariza-
tion problems related to its main abstractions and composition mechanisms. As
far as we know, our work is the only aspect-oriented conceptual framework that
is agnostic to the base component model and that can be easily instantiated to
deal with different sets of abstractions, including agent abstractions.

Since our conceptual framework is the base for enhancing the ANote modeling
language with aspect-oriented notation [18], we also discuss some related work
that deals with existing modeling languages and methodologies (Section 5.1),
and modeling extensions to address specific concerns (Section 5.2). The list of
related work here is not intended to be exhaustive. We have focused on the ones
we believe have explicit links with our aspect-oriented modeling framework. As
elucidated below, what makes our approach distinct from all these approaches is
the expressiveness and precision with which it allows capturing and describing
crosscutting concerns at the agent-oriented design stage.

5.1 Modeling Languages and Methodologies

Tropos provides to some extent abstractions for expressing crosscutting concerns
[4]. However, the focus is on the representation of inter-goal influences in the early
and late requirements development phases. It provides a very-high level set of
abstractions (goals and soft-goals), which allow the description of positive and
negative contributions between goals representing functional and non-functional
MAS properties. Soft goals can be viewed as MAS aspects at the requirements

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 47

level. Although the goal models could be refined in late development stages,
Tropos does not provide a complete composition framework to design stages as
described in our framework.

As pointed out in Section 2, crosscutting relationships naturally emerge in
agent-oriented modeling beyond inter-goal relationships and, as a result, more
concrete composition rules are required. In fact, we believer our agent-oriented
design framework is complementary to the Tropos notations. Soft goals at the
requirement levels can be easily traced backward and forward from our aspect-
oriented agent models (Section 3.1)

Another approach that shows interesting aspect-oriented ideas in the modeling
language is [9]. This approach focuses on representing the system-to-be accord-
ing to several different perspectives; each one of them promoting an abstract
representation of the system. Nevertheless, it only sketches the characteristics of
an autonomy perspective for MAS specification. In addition, it does not address
a comprehensive concern-independent composition framework for modularizing
crosscutting structure and behavior in agent-oriented design.

5.2 Specific Extensions

Several other approaches try to develop extensions and notations that focus on
specific concerns for MAS development, which are typically crosscutting. For
example, the work on [28] reports on a secure architectural description language
(ADL) for MAS. It focuses on the provision of ADL constructs to specify secu-
rity issues in MAS architectures. The specification of security issues is however
entangled to the core components of a MAS architecture. Another work, pre-
sented by Weiss [37], intends to capture autonomy in agent roles using a formal
schema called RNS (standing for ”Roles, Norms, and Sanctions”) which allows
for a specification of an agents autonomy. It deals only with autonomy and it
is mostly concerned with providing a formal schema to describe it, i.e. it is not
focused on how autonomy crosscuts other agent functionalities.

Some graphical notations have also been extended to cope with specific cross-
cutting concerns. For instance, the work reported in [21] demonstrates how Ac-
tivity Diagrams in UML 2.0 can be readily used to model dynamic behaviors
of mobile agent systems and point out why they are effective for them from its
underlying computational model.

In our point of view, the growing number of modeling approaches dealing
with specific crosscutting concerns in agent-oriented systems denotes that there
is a pressing need to define a generic aspect-oriented metamodel and associated
notation that provide support for their proper specification. To encompass all
crosscutting MAS concerns, it is important to describe generic abstractions and
to devise composition rules, as proposed in this paper. The existing AOSD ap-
proaches have been limited to the object-oriented and component-oriented par-
adigms. Our previous contributions have focused in other development phases
other than agent-oriented design.

48 A. Garcia, C. Chavez, and R. Choren

6 Conclusions

This paper is a first attempt to systematically tame broadly-scoped concerns
in agent-oriented design modeling. Many internal agent properties and systemic
properties in the design of MAS are typically crosscutting, and they need to be
handled as such. No matter what kind of decomposition and abstractions the
agent-based software developers are relying on; there are always MAS concerns
that crosscut the boundaries of other concerns. As discussed here, widely-scoped
properties can bring deeper problems to the designers; they can even be scattered
and tangled in more than one design view, as it is the case for the learning
and mobility concerns. Because a clear separation of concerns is a main tenet
in software engineering, the lack of modularization support for those concerns
generates undesirable burdens on agent-oriented design reuse and evolution.

The contributions of this paper were the following. We described a comprehen-
sive list of problems associated with the non-modularized handling of crosscutting
concerns in agent-oriented modeling. To address those problems, we have pro-
posed an aspect-oriented framework for agent-oriented modeling. Our previous
work [18] is an example of aspect-oriented notation, which instantiates our pro-
posed modeling framework by integrating it into the ANote language [9]. Since
our work is a first step towards enhancing agent-oriented design models with as-
pects, we cannot guarantee that our set of composition operators is necessarily
complete. Our goal here was to provide a core meta-modeling framework to sup-
port the central abstractions and composition mechanisms. Further case studies
are necessary to evaluate the coverage degree of our composition operators.

Acknowledgments. Alessandro is supported by European Commission as part
of the grant IST-2-004349: European Network of Excellence on Aspect-Oriented
Software Development (AOSD-Europe), 2004-2008. This work has been also par-
tially supported by CNPq-Brazil under grant No. 479395/2004-7 for Christina.

References

1. AOSD Steering Committee: aosd.net main page. http://aosd.net/ (2006)
2. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software En-

gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook,
volume 11. Springer-Verlag, Berlin Heidelberg New York (2004)

3. Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.: Com-
posing Design Patterns: A Scalability Study of Aspect-Oriented Programming. In:
Proc. of the 5th International Conference on Aspect-Oriented Software Develop-
ment (2006)

4. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information
Systems Engineering: the Tropos Project. Information Systems 27(6), (2002) 365-
389

5. Chavez, C., Lucena, C.: A Theory of Aspects for Aspect-Oriented Development.
In: Proc. 17th Brazilian Symposium on Software Engineering (2003) 130–145

6. Chavez, C.: A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis,
Computer Science Department, PUC-Rio (2004)

An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design 49

7. Cheong, C., Winikoff, M.: Hermes: Designing Goal-Oriented Agent Interactions. In:
Proc. of the 6th International Workshop on Agent-Oriented Software Engineering
(2005)

8. Choren, R., Lucena, C.: Modeling Multi-agent Systems with ANote. Journal of
Software and Systems Modeling 4(3), (2005) 199–208

9. Cossentino, M., Zambonelli, F.: Agent Design from the Autonomy Perspective.
In: Nickles, M., Rovatsos, M., Weiss, G. (eds.): Agents and Computational Au-
tonomy: Potential, Risks and Solutions. LNCS, Vol. 2969. Springer-Verlag, Berlin
Heidelberg New York (2004) 140–150

10. D’Hondt, M., Gybels, K., Jonckers, V.: Seamless Integration of Rule-Based Knowl-
edge and Object-Oriented Functionality with Linguistic Symbiosis. In: Proc. of the
2004 ACM Symposium on Applied Computing (2004) 1328–1335

11. Dijkstra, E.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)
12. Filho, F., Cacho, N., Ferreira, R., Figueiredo, E., Garcia, A, Rubira, C.: Excep-

tions and As-pects: the Devil is in the Details. In: Proc. of the 14th International
Conference on Foundations on Software Engineering (2004)

13. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley (2004)

14. Garcia, A., Sant’Anna, C., Chavez, C., Silva, V., Lucena, C., von Staa, A.: Sep-
aration of Con-cerns in Multi-Agent Systems: An Empirical Study. In: Software
Engineering for Multi-Agent Systems II. LNCS, Vol. 2940. Springer-Verlag, Berlin
Heidelberg New York (2004) 49–72

15. Garcia, A., Lucena, C., Cowan, D.: Agents in Object-Oriented Software Engineer-
ing. Software: Practice and Experience 34(3) (2004) 489-521

16. Garcia, A., Kulesza, U., Sant’Anna, C., Chavez, C., Lucena, C.: Aspects in Agent-
Oriented Software Engineering: Lessons Learned. In: Proc. of the 6th International
Workshop on Agent-Oriented Software Engineering (2005)

17. Garcia, A., Kulesza, U., Lucena, C.: Aspectizing Multi-Agent Systems: From Ar-
chitecture to Implementation. In: Software Engineering for Multi-Agent Systems
III. LNCS, Vol. 3390. Springer-Verlag, Berlin Heidelberg New York (2005) 121–143

18. Garcia, A., Chavez, C., Choren, R.: Enhancing Agent-Oriented Models with As-
pects. In: Proc. of the 5th International Conference on Autonomous Agents and
MultiAgent Systems (2006)

19. Garcia, A., Lucena, C.: Taming Heterogeneous Agent Architectures with Aspects.
Commmunications of the ACM, October 2006. (to appear)

20. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A.: Mod-
ularizing Design Patterns with Aspects: A Quantitative Study. Transactions on
Aspect-Oriented Software Development. LNCS. Springer-Verlag, Berlin Heidelberg
New York (2006) 36–74

21. Kang, M. et al: Modelling Mobile Agent Applications in UML 2.0 Activity Dia-
grams. In: Proc. of 3rd SELMAS Workshop at ICSE 2004 (2004) 104–111

22. Kiczales, G. et al: Aspect-Oriented Programming. In: Akcsit, M., Matsuoka, S.
(eds.): Proc. European Conference on Object-Oriented Programming. LNCS, Vol.
1241. Springer-Verlag, Berlin Heidelberg New York (1997) 220–242

23. Kiczales, G., Mezini, M.: Aspect-Oriented Programming and Modular Reasoning.
In: Proc. of the 27th International Conference on Software Engineering (2005)
49–58

24. Kulesza, U., SantAnna, C., Garcia, A., Coelho, R., von Staa, A., Lucena, C.: Quan-
tifying the Effects of Aspect-Oriented Programming: A Maintenance Study. In:
Proc. of the 9th International Conference on Software Maintenance (2006)

50 A. Garcia, C. Chavez, and R. Choren

25. Kulesza, U., Alves, V., Garcia, A., Lucena, C., Borba, P.: Improving Extensibility
of Object-Oriented Frameworks with Aspect-Oriented Programming. In: Proc. of
the 9th International Conference on Software Reuse (2006)

26. Lobato, C., Garcia, A., Lucena, C., Romanovsky, A.: A Modular Implementation
Framework for Code Mobility. In: Proc. 3rd IEE Mobility Conference (2006)

27. Mallya, A.U., Singh, M.P.: Incorporating Commitment Protocols into Tropos. In:
Proc. of the 6th International Workshop on Agent-Oriented Software Engineering
(2005)

28. Mouratidis, H. et al: A Secure Architectural Description Language for Agent Sys-
tems. In: Proc. of 4th Intl. Conference on Autonomous Agents and Multiagent
Systems (2005) 578–585

29. Odell, J., Parunak, H., Bauer, B.: Extending UML for Agents. In: Proc. of the
Agent-Oriented Information Systems Workshop at AAAI 2000 (2000) 3-17

30. Pace, A., Trilnik, F., Campo, M.: Assisting the Development of Aspect-based MAS
using the SmartWeaver Approach. In: Garcia, A.F., Lucena, C.J.P., Zambonelli,
F., Omicini, A., Castro, J. (eds.): Software Engineering for Multi-Agent Systems.
LNCS, Vol. 2603. Springer-Verlag, Berlin Heidelberg New York (2003) 165–181

31. Parnas, D.: On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12) (1972) 1053–1058

32. SantAnna, C., Lobato, C., Garcia, A., Kulesza, U., Chavez, C, Lucena, C.: On
the Quantitative Asessment of Modular Multiagent Architectures. In: Proc. of
Net.ObjectDays.06 (2006) (to appear)

33. SICS AB: Trading Agent Competition. http://www.sics.se/tac/page.php?id=1
(2006)

34. Silva, V., Lucena, C.: From a Conceptual Framework for Agents and Objects to
a Multi-Agent System Modeling Language. Journal of Autonomous Agents and
Multi-Agent 9(1–2) (2004) 145–189

35. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proc. 21st International Conference
on Software Engineering (1999) 107–119

36. Ubayashi, N., Tamai, T.: Separation of Concerns in Mobile Agent Applications. In:
Third International Conference REFLECTION 2001. LNCS, Vol. 2192. Springer-
Verlag, Berlin Heidelberg New York (2001) 89–109

37. Weiss, G., Rovatsos, M., Nickles, M.: Capturing Agent Autonomy in Roles and
XML. In: Proc. Intl. Conference on Autonomous Agents and Multiagent Systems
(2003) 105–112

38. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software Engineering and Methodology
12(3) (2003) 417–470

Extending UML Sequence Diagrams to Model
Agent Mobility

Mario Kusek and Gordan Jezic

University of Zagreb
Faculty of Electrical Engineering and Computing

Department of Telecommunications
Unska 3, HR-10000 Zagreb, Croatia

{mario.kusek, gordan.jezic}@fer.hr

Abstract. This paper presents a proposal for modeling agent mobility
with UML sequence diagrams. The notations used to model agent mobil-
ity are focused on capturing agent creation, mobility paths and current
agent location. Four approaches are described and compared according
to their clarity, the space needed for graphics and their expression of
mobility. In a case study, the most suitable solution of the proposed
notations for the given scenario is elaborated.

1 Introduction

Agent concepts and mobile software agents have become part of the system and
service architecture of new generation networks. Application areas include the
use of the agents in the operation and management of networks, systems and
services. This is where agents mobility offers important advantages [1]. In current
environments, where a large number of nodes exist, agents perform actions and
migrate through the network changing their locations. In some cases, migration
from node to node can be a permanent event and location changing can be done
frequently. Our goal is to successfully model such a dynamic environment with
a good representation of agent mobility and execution paths.

There are several notations and types of diagrams available for modeling agent
mobility. UML (Unified Modeling Language) has played the most dominant role
in graphical notation in the past several years. Its major advantage is its ex-
pressiveness [2]. UML has proven to be very useful in describing various aspects
of behaviour, but in some cases offers limited support for modeling mobility.
Namely, it is difficult to use UML diagrams to describe some useful parameters
included in agent migration, such as agent creation, migration/execution paths
and current agent location. These mobility parameters have not yet been fully
addressed in current UML sequence diagrams, or by other existing modeling lan-
guages FIPA [3], AUML [4] or AML [5]. Not one of these modeling languages
give an overall view of agent roaming and execution paths [6].

In this paper, we propose four graphical notations for modeling agent mobility.
The notations are extensions of UML sequence diagrams and will be referred to
as the stereotyped mobility diagram, the swimlaned mobility diagram, the state

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 51–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 M. Kusek and G. Jezic

representation mobility diagram, and the frame fragment mobility diagram [7, 8].
The proposed approaches are compared with respect to their clarity regarding
agent creation, migration path and current agent location, and the space required
for graphics. Examples with a different number of agents and nodes will be
considered. In a case study, we evaluate and compare all the proposed notations
for a given price searcher scenario.

The paper is organized as follows: Section 2 presents related work. Section 3
elaborates modeling agent mobility using UML sequence diagrams and proposes
four new graphical notations for this problem. Section 4 gives a case study of
a price searcher scenario in which one of the proposed notations is elaborated.
Section 5 concludes the paper.

2 Related Work

There exist several diagrams and approaches to modeling mobility available
in literature. The following are specialized for agent mobility: FIPA modeling
area - deployment and mobility [4], extending activity diagrams to model mo-
bile systems [9], modeling mobile agent applications with UML 2.0 Activity Di-
agrams [10], sequence diagram for mobility [11], and Agent Modeling Language
(AML) [5].

AUML (Agent UML) supports the modeling of agent mobility with deploy-
ment and activity diagrams [4]. AUML deployment diagrams can depict the
reason an agent moves to a different node and the location to where it moves.
AUML activity diagrams can express agent timing, i.e. when the mobile agent
has to move. Nodes in the activity diagram model agents plans while transitions
model events. The time a mobile agent can move from one node to the next
is determined by a condition indicated on the transition that leads to the end
point (Figure 1).

Fig. 1. Mobility using AUML Activity Diagram

Extending UML Sequence Diagrams to Model Agent Mobility 53

This notation does not depict agent migration paths which give an overall
view of agent migration. An agent migration path can be extracted from various
diagrams such as that in Figure 1.

UML is the standard graphical notation used for modeling object–oriented soft-
ware. Extensions of UML activity diagrams for modeling agent mobility are pre-
sented in [9]. The authors introduced into UML the concepts of location, mobile
objects, mobile locations, move actions and clone actions. Two notations of mobil-
ity in activity diagrams are presented. The first notation is responsibility centered
and focuses on who is performing an action and is based on the standard nota-
tion for activity diagrams. The second notation is location centered and focuses
on where an action is performed, and how activities change this relation (Figure
2). In Figure 2 we can see that the source of the move action is the object–flow
state “Hubert” which is an instance of Passenger. Its location is represented by the
value of attribute “atLoc”. The value is initially set to “MUC” which represents an
airport. The target of the move action is marked with stereotype <<become>>
and is directed to the object–flow state “Hubert” with a new attribute value (the
“atLoc” value becomes “LH123” which represents a plane). Like the previously
suggested notation, this approach does not show agent migration paths either.

Fig. 2. The move action in UML

In [10], the authors propose an extension of activity diagrams in UML 2.0. A
new stereotype <<Host>> with parameter is introduced for a swimlane, which
represents an agent location with a unique name (address) as a parameter in
order to capture the mobility of agents. Agent communication and cloning are
also defined by existing model elements with a rule for subactivities. An agent
movement from location “host1” to “host2” is represented by using the “Go”
activity (Figure 3). This diagram gives a clear representation of agent migration
paths, but timing and message exchanges are not shown.

A notation for modeling agent mobility based on UML sequence diagrams is
used in [11]. The author presents Sequence Diagrams for Mobility (SDM), which
are an extension of UML sequence diagrams for modeling mobile objects, the
interaction between objects and the network topology of nested objects. These
diagrams can not be represented with UML 2.0.

54 M. Kusek and G. Jezic

Agent Modeling Language (AML) [5] defines metaclasses used to model struc-
tural and behavioral aspects of entity mobility. Movement is depicted with a UML
dependency relationship with the stereotype <<move>> (Figure 4) and is used
in the deployment diagram. MobilityAction (Figure 4a) is used to model the mo-
bility action of entity and MoveAction is used to model the action that results in
the removal of an entity from its current hosting location [12]. This is used in the
activity diagram (Figure 4b). Neither representation depicts agent mobility paths.

<<Host>> host1 <<Host>> host2

<
<

a
g

e
n
t>

>
A

g
e
n
t1

Go Do Task

Fig. 3. “Go” action in UML 2.0

a) MobilityAction b) Activity diagram

Fig. 4. Mobility in AML

All these modeling languages are very useful and are often used in practice, but
they do not provide an overall view of agent roaming and migration paths, so in
some cases offer limited support for modeling mobility. We propose four graphical
notations for modeling agent mobility. These notations are focused on capturing
agent creation, mobility paths and current agent location. These notations should
have a clearer representation of the mentioned features than existing approaches.

Extending UML Sequence Diagrams to Model Agent Mobility 55

3 Modeling Agent Mobility with Sequence Diagrams

In this section we propose four approaches to modeling agent mobility developed
by extending UML sequence diagrams. Our notations are focused on capturing
three basic mobility elements which are useful in analyzing mobile agent system
behaviour. These elements are:

– Current agent location,
– Agent mobility paths, and
– Agent creation.

The notations will also be evaluated according to the number of agents and
nodes involved in the system. For evaluation purposes, we consider the following
example. An agent a1 located at node n1 migrates to node n2 and creates agent
a2 at node n1, a3 at n2, and a4 at n3. The proposed approaches are compared
with respect to:

– The clarity of the notation, and
– The space required for graphics depending on the given number of nodes.

The four notations proposed will be referred to as the stereotyped mobility
diagram, the swimlaned mobility diagram, the state representation mobility di-
agram, and the frame fragment mobility diagram. A description of each follows.

3.1 The Stereotyped Mobility Diagram

In the stereotyped mobility diagram we introduce the following three stereotypes:
<<at>>, <<move>> and <<new>> (Figure 5). An agent is represented with
stereotype <<agent>>. An agent is initially located at node n1 which is indi-
cated with a message with stereotype <<at>>. The agent then migrates from
this location to the location at node n2, which is indicated with message stereo-
type <<move>>. Each agent can create a new one which is indirectly done by
sending a message to the node where the new agent is to be created. This is
indicated with message new (Figure 5). In other words, agent location at a node
is indicated with one stereotyped message, while its migration to another node
is indicated with another one.

This notation of mobility is similar to that described in [11]. Mobility here
is shown as the change of the state of an object as it moves from one location
to another. An agent moves by sending stereotyped messages to the node where
it wants to go. This representation clearly depicts agent mobility paths, agent
creation and current agent location. The downsides of this notation include the
following. For each node there is an object which represents the node and it is
not clear when an agent leaves the node. In the case of large number of nodes,
the diagram is useless.

3.2 The Swimlaned Mobility Diagram

In the swimlaned mobility diagram (Figure 6), a node is represented by a swim-
lane with stereotype <<node>>. A swimlane represents the execution at a

56 M. Kusek and G. Jezic

<<agent>>

a1

<<node>>

n1

<<node>>

n2

<<at>>

<<move>>

create agent

<<agent>>

a3

new

<<agent>>

a2

<<node>>

n3

new

create agent

<<agent>>

a3

new
create agent

Fig. 5. The Stereotyped Mobility Diagram

<<agent>>

a1

<<move>>

<<node>>

n1

<<node>>

n2

<<agent>>

a1

<<agent>>

a3

new

<<node>>

n3

<<agent>>

a1

<<agent>>

a4

new

<<move>>

<<agent>>

a2

new

Fig. 6. The Swimlaned Mobility Diagram

specified node. Agent migration from one node to another is indicated by a mes-
sage with stereotype <<move>>. In such a case, the lifeline of the agent at the
source node is terminated and a new representation at the destination node is
created. The agent continues its execution in the new swimlane. The creation

Extending UML Sequence Diagrams to Model Agent Mobility 57

of a new agent is indicated with message new inside of a certain swimlane which
means that the agent is created at this node.

In other words, a swimlane represents a node and an agent migrates in the
same way as in the approach using stereotyped mobility diagrams, except that
it terminates at the source node and is created again at the destination node.
The diagram has a clear representation of mobility, agents current locations and
agent creation. The diagram gives a clear representation regarding activity on
particular node and agents located on it. This notation requires less space for
graphics than the stereotyped diagram, but in the case of a large number of
nodes it is also useless.

3.3 The State Representation Mobility Diagram

The idea for the state representation mobility diagram is taken from [11] where
mobility is indicated with the change of the state of a moving agent. In the state
representation diagram (Figure 7), mobility is represented with state elements in
the sequence diagram as specified by the UML 2.0 specification [2]. The first state
element starts with “at node” and the rest is the node name where the agent is
located. When an agent moves from one node to another, a new state represents

<<agent>>

a1

<<agent>>

a2

new

at node

n1

at node

n2

at node

n1

<<agent>>

a3

at node

n2

<<agent>>

a4

at node

n3

new

new

Fig. 7. The State Representation Mobility Diagram

58 M. Kusek and G. Jezic

this movement. The creation of new agent is indicated with the message new.
After creation, the agents state indicates its location at a specified node.

This diagram is very similar to the classical UML sequence diagram. It is a
good solution for the notation of agent mobility in a multi–agent system with a
large number of nodes. The diagram gives a clear representation of agent creation
and current agent location. A shortcoming of this approach is poor representation
of migration and execution paths, and poor representation of agent location on
particular nodes. This diagram requires less space for graphics due to its vertical
representation than those previously described. It is suitable for modeling agent
systems with large number of nodes.

An example from practice is the Sniffer agent [13] in the Jade agent platform
[14]. It enables the monitoring of message exchanges between agents. A tool uses
sequence diagrams for representation of agent communication. Using the pre-
sented state representation mobility diagram, it is possible to model a mobility
component of the agents in order to analyze and debug a multi–agent system.

3.4 The Frame Fragment Mobility Diagram

The frame fragment mobility diagram depicts agent mobility with frame frag-
ments in a sequence diagram (Figure 8). Each frame fragment, with interaction
operation node, represents the execution on a node. Agent mobility is represented
by entering the next fragment.

node n2

node n1

<<agent>>

a1

<<agent>>

a3

new

node n1

<<agent>>

a2

new

node n3

<<agent>>

a4

new

the same node

Fig. 8. The Frame Fragment Mobility Diagram

The diagram gives a clear representation of agent creation, current agent lo-
cations, and migration and execution paths. The notation is suitable for systems
with a large number of nodes. The representation of mobility is clearer and re-
quires less space for graphics than the state representation mobility diagram.

Extending UML Sequence Diagrams to Model Agent Mobility 59

A potential problem is that in some cases it is not possible to order agents in such
a way that one frame fragment can represent all the agents at a certain node.

4 Case Study: A Simple Price Searcher

After describing and comparing the proposed approaches for modeling agent
mobility, suppose an agent system with three network nodes (Home, Host1 and
Host2), two stationary agents (Store1 and Store 2 agents) and a mobile agent
(Searcher agent) (Figure 9). On Host1 and Host2 reside Store1 and Store2 agents
responsible for providing pricelists. The Searcher agent is created on the Home
node. Its input parameters are the list of nodes and the item (price list).

Price list

Coffee 5€

Juice 12€

Home

Searcher

Host 1

Store 1

Host 2

Store 2

1

2

3

Price list

Coffee 6€

Juice 10€

Fig. 9. The price searcher scenario

The Searcher agent migrates from the Home node to the Host1 node and
requests the price list from the Store1 agent. The Store1 agent responds with
the entire pricelist. The Searcher extracts the price for the item specified and
migrates to the next node (Host2). After visiting all nodes in the network, the
Searcher agent returns to the Home node and informs the user of its obtained
results, i.e. where and at what price it found the specified item.

The agent system consists of three network nodes and a mobile agent. Because
of the small number of nodes and only one agent involved in the system, it is possi-
ble to model the system with the stereotyped or swimlaned mobility diagrams.The
stereotyped mobility diagram is simple and the diagram offers a clear representa-
tion of agent creation, current location, execution and mobility paths (Figure 10).

Figure 11 presents the swimlaned mobility diagram for this scenario. Informa-
tion regarding activity on particular node is clearer A potential problem may be
caused by agents returning to the same node after migration. Namely, such agents
are shown as two entities (agents) in one swimlane which may be confusing.

Figure 12 presents the scenario modeled with the state representation
(Figure 12a) and the frame fragment mobility diagrams (Figure 12b). These

60 M. Kusek and G. Jezic

<<node>>

home

<<node>>

host1

<<node>>

host2

<<agent>>

store1

<<agent>>

searcher

create agent

new

<<agent>>

store2

<<at>> <<at>>

get

request

<<move>>

get price list

price list

<<move>>

get price list

price list

<<move>> show

results

Fig. 10. The stereotyped mobility diagram for the scenario

<<agent>>

searcher

<<move>>

<<node>> home <<node>> host1

<<agent>>

searcher

<<agent>>

store1

new

<<node>> host2

get request

get price list

price list

<<move>>

<<agent>>

searcher

get price list

price list

<<agent>>

store2

<<agent>>

searcher

show results

<<move>>

th
e

s
a
m

e
a
g
e
n
t

Fig. 11. The swimlaned mobility diagram for the scenario

Extending UML Sequence Diagrams to Model Agent Mobility 61

notations need less space and have a clearer representation of agent creation and
current agent location. The main shortcoming of these notations is their represen-
tation of migration paths for agents returning to nodes at which they were previ-
ously located. Furthermore, it is not clear which agents are placed on which nodes.

<<agent>>

searcher

<<agent>>

store1

at node

home

<<agent>>

store2

get request

get price list

price list

new

get price list

price list

show results

at node

host1

at node

host2

at node

host1

at node

host2

at node

home
node home

node host2

node host1

node home

<<agent>>

a1

<<agent>>

store1

th
e

s
a

m
e

n
o
d

e

get price list

price list

<<agent>>

store2

get price list

price list

new

get request

show results

a) b)

Fig. 12. The state representation (a) and frame fragment mobility diagrams (b) for
the scenario

We feel the stereotyped mobility diagram is the most suitable solution for
the given scenario. It provides a clear notation of the given scenario in which
there is a small number of agents and nodes, only one agent is mobile and all
communication is performed locally.

5 Conclusion

The motivation for this paper was to model agent mobility, focusing on cap-
turing agent creation, migration paths and current agent location since these
parameters have not yet been fully addressed in existing modeling languages.
Four approaches were proposed and their corresponding advantages and draw-
backs were compared according to their clarity, the space needed for graphics
and their representation of mobility.

The stereotyped mobility diagram gives an overall view of nodes and agent mo-
bility paths. The swimlaned mobility diagram gives a clear representation of agent
mobility, current locations and creation. Both stereotyped and swimlaned mobil-
ity diagrams clearly represent agent execution and mobility paths, but they are

62 M. Kusek and G. Jezic

not suitable for modeling the systems with a large number of nodes and agents. In
state representation mobility diagrams, mobility is represented by changing the
state of a moving agent. In frame fragment mobility diagrams, each frame frag-
ment of a sequence diagram represents the execution at a node. The state repre-
sentation and frame fragment mobility diagrams have poorer representations of
migration and execution paths. These diagrams are suitable for modeling multi–
agent systems with mobile agents and a large number of nodes. An advantage of
these approaches is a better overall view of agent roaming and current agent lo-
cation, but in some cases it is not possible to order agents in such a way that one
frame fragment can represent all the agents at a certain node.

It is difficult to say which notation is best since that depends on which aspect
of the representation we wish to focus on. Each notation has its advanatages and
disadvantages for particular conditions which differ with respect to the number
of nodes and agents in the system, the nature of changing locations (migration
frequency; migrating to the same/different locations), creating agents (on the
same node; remotely on other nodes), and communication (with an agent at the
same node; remotely with agents at other nodes). However, it is still possible to
draw some general conclusions. Namely, all the notations have good represen-
tations of mobility paths, current agent location and agent creation. Although
the stereotype mobility diagram is “the simpliest” and the swimlaned mobility
diagram has the best representation from a node activity, both are suitable only
for a small number of nodes. For a large number of nodes, the frame fragment
mobility diagram is better than the state representation mobility diagram in
most cases, except for cases where agents return to nodes at which they were
previously located.

Future work will include investigation of modeling agent mobility in different
UML diagrams. The result of that work will be a UML profile for modeling agent
mobility.

References

[1] Braun, P., Rossak, W.R.: Mobile Agents: Basic Concepts, Mobility Models, and
the Tracy Toolkit. Morgan Kaufmann (2004)

[2] OMG: Unified modeling language: version 2.0 (UML 2.0), final adopted specifi-
cation. Technical report, OMG (2003) Available online at:
http://www.uml.org/#UML2.0.

[3] FIPA Modeling TC: FIPA modeling area: Deployment and mobility. Technical
report, FIPA (2003) Available online at: http://www.auml.org/auml/documents/
DeploymentMobility.zip.

[4] Odell, J., van D. Parunak, H., Bauer, B.: Extending UML for agents. Available
online at: http://www.jamesodell.com/ExtendingUML.pdf (2000)

[5] Cervenka, R., Trencansky, I.: Agent modeling language, language specification,
version 0.9. Technical report, Whitestein Technologies AG (2004) Available online
at: http://www.whitestein.com/resources/aml/wt AMLSpecification v0.9.pdf.

[6] Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers (2004)

http://www.auml.org/auml/documents/DeploymentMobility.zip
http://www.auml.org/auml/documents/DeploymentMobility.zip

Extending UML Sequence Diagrams to Model Agent Mobility 63

[7] Cossentino, M., Bernon, C., Pavon, J.: Modelling and meta–modelling is-
sues in agent oriented software engineering: The agentlink AOSE TFG ap-
proach. Available online at: http://www.pa.icar.cnr.it/˜cossentino/al3tf2/docs/
aosetfg report.pdf (2005)

[8] Kusek, M., Jezic, G.: Modeling agent mobility with UML sequence diagram. Tech-
nical report, University of Zagreb, Faculty of Electrical Engineering and Comput-
ing (2005) presented at Agentlink III AOSE TFG2 – Ljubljana, Slovenia, Avail-
able online at: http://www.pa.icar.cnr.it/˜cossentino/al3tf2/docs/kusek ppt.ppt.

[9] Baumeister, H., Koch, N., Kosiuczenko, P., Wirsing, M.: Extending activity
diagrams to model mobile systems. In Aksit, M., Mezini, M., Unland, R.,
eds.: Lecture Notes in Computer Science – LNCS. Volume 2591. Springer Ver-
lag, Erfurt, Gremany (2003) 278–293 Objects, Components, Architectures, Ser-
vices, and Applications for a Networked World. International Conference Ne-
tObjectDays, NODe 2002, Available online at: http://www.pst.informatik.uni-
uenchen.de/ baumeist/publications/netobjectdays2002.pdf.

[10] Kang, M., Wang, L., Taguchi, K.: Modelling mobile agent applications in
UML 2.0 activity diagrams. Available online at: http://www.auml.org/auml/
supplements/UML2-AD.pdf (2004)

[11] Kosiuczenko, P.: Sequence diagrams for mobility. In: Lecture Notes in Com-
puter Science – LNCS. Volume 2784. Springer Verlag, Finland (2002) 147–158 In
Proc. of Advanced Conceptual Modeling Technique (Er) ’02, Available online at:
http://www.pst.informatik.uni-muenchen.de/personen/kosiucze/SDM.pdf.

[12] Cervenka, R., Trecansky, I., Calisri, M., Greenwood, D.: AML: Agent modeling
language toward industry-grade agent based modeling. In Odell, J., et al., eds.:
Lecture Notes in Computer Science – LNCS. Volume 3382. Springer Verlag (2005)
31–46 Agent–Oriented Software Engineering 2004 (AOSE 2004).

[13] CSELT, Computer Engineering Group of the University of Parma: JADE
Sniffer Agent. (2003) Available online at: http://jade.tilab.com/doc/tools/
sniffer/index.html.

[14] CSELT, Computer Engineering Group of the University of Parma: Java
Agent DEvelopment Framework (JADE). (2003) Available online at: http://jade.
tilab.com/.

http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/aosetfg_report.pdf
http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/aosetfg_report.pdf
http://www.auml.org/auml/supplements/UML2-AD.pdf
http://www.auml.org/auml/supplements/UML2-AD.pdf
http://jade.tilab.com/doc/tools/sniffer/index.html
http://jade.tilab.com/doc/tools/sniffer/index.html
http://jade.tilab.com/
http://jade.tilab.com/

Applying the Governance Framework Technique
to Promote Maintainability in Open

Multi-Agent Systems

Gustavo Carvalho1, Carlos J.P. de Lucena1, Rodrigo Paes1,
Ricardo Choren2, and Jean-Pierre Briot3

1 PUC-Rio - Marqus de So Vicente 225,
4 Andar RDC - Gvea RJ, Brazil

{guga,lucena,rbp}@inf.puc-rio.br
2 SE/8 - IME

Pa Gen Tibrcio 80 - Praia Vermelha,
RJ, Brazil

choren@de9.ime.eb.br
3 LIP6, Université Pierre et Marie Curie (Paris 6)

8 rue du Capitaine Scott, 75015 Paris, France
Jean-Pierre.Briot@lip6.fr

Abstract. Governance means that specifications are enforced dynam-
ically at application runtime. Governance framework is a technique to
design and implement an extensible interaction specification for a family
of open systems. This specification can be refined for particular appli-
cations. We based this proposal on object-oriented framework concepts
and adapted them for distributed agents and interactions. A governance
framework structures the extensions of open system instances as vari-
ations in interactions among agents, defined as templates. Templates
are used to gather core implementation and extension points. Extension
points are ”hooks” that will be customized to implement an instance of
the governance framework. During framework instantiation, templates
are refined to concrete interaction specification. As a proof of concept
experiment, in this paper we propose a framework for instantiating sup-
ply chain management applications as open systems.

Keywords: Interaction protocol, Reuse, Law-enforcement.

1 Introduction

Nowadays, software permeates every aspect of our society, and it is increasingly
becoming a distributed and open asset. Distribution means that it is possible
to integrate different software solutions from different sources or machines and
they work cooperatively to achieve system requirements. Openness is crucial for
software. Open systems are software systems in which autonomous distributed
components interact and may enter and leave the environment at their will
[10]. Auction systems and virtual enterprises are examples of such open and

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 64–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Applying the Governance Framework Technique to Promote Maintainability 65

distributed applications [19]. Software agent technology is considered a promising
approach for the development of open system applications [19].

The specification of open multi-agent systems (open MAS) includes the defi-
nition of agent roles and any other restrictions that the environment imposes on
an agent to enter and participate in conversations. Agents will only be permitted
to interact if they conform to the specification of the open MAS. Since open sys-
tem components are often autonomous, sometimes they behave unpredictably
and unforeseen situations arise. Taming this uncertainty is a key issue for open
software development. The establishment of laws over interaction specification
and their enforcement over software agents create a boundary of tolerated au-
tonomous behavior and can be used to foster the development of reliable systems.

In open software systems, rules that enforce the relationships between agents
are not always fully understood early in the development life cycle. Still, many
more rules are not applied because of the lack of system support for changing
specifications or the complexity of the specifications. Inspired by object-oriented
frameworks [9], governance frameworks are proposed to deal with this complex-
ity, reifying proven software designs and implementations in order to reduce the
cost and improve the quality of software.

Since software systems need to be customized according to different purposes
and peculiarities, it should be possible to express evolution as variations related
to interactions of open systems and to components that inhabit the environment.
Following this hypothesis, we propose to design open systems using extension
points [5] to annotate interaction specification and using laws to customize the
agents’ expected behavior. We argue that some specification elements can be
reused and that some predefined ”hooks” can be refined to develop a set of open
MAS applications in a specific domain.

We are proposing governance frameworks based on some object-oriented frame-
work concepts [9]. This approach provides the necessary modelling capabilities for
constructing reusable implementations of open systems. Governance frameworks
may demonstrate in practice the ability to apply enforcement (or, when needed,
to relax enforcement) for both complex and changing specifications. Besides cus-
tomizations, the compliance of the system to the specification must continue to be
analyzed by a mechanism that governs the laws of interactions in open MAS. We
use the XMLaw description language [16] to map the specification of interaction
rules into a governance mechanism. The purpose of governance frameworks is to
provide an approach to support the development of governance mechanisms.

A proof of concept prototype has been developed based on the specification of
the Trading Agent Competition - Supply Chain Management (TAC SCM) [2, 8,
18]. In this example, we discuss how the changes to the laws of open MAS appli-
cations can be represented as templates that structurally ”hook” the extension
points into the interaction protocol. The goal of this study is to approach the
TAC SCM structure by considering it an open system and, through the analy-
sis of its specifications, we aim to learn about how to extend the interaction
specification and compliance verification in open system applications. The main
purpose of the current investigation is not to contribute to TAC SCM evolution

66 G. Carvalho et al.

as a realistic open system for B2B trading, but rather to show that it is possible
to specify and develop open software systems using extension points.

The contributions of this paper are threefold. First, we jointly apply variations
and laws to specify, implement and maintain extension points in open systems.
Second, we support the implementation of these variations using a law-governed
mechanism. Third, we specified and implemented a governance framework for
supply chain management applications based on TAC-SCM’s specifications.

The organization of this paper is as follows. Section 2 briefly describes the
law-governed mechanism. In Section 3, we discuss the governance framework
approach as a means to design open system for extensions. Section 4 maps the
variations identified in TAC-SCM’s editions into a governance framework for
supply chain management. Section 5 partly describes two instances of the TAC
SCM using our approach. Related work is described in Section 6. Finally, we
describe our conclusions in Section 7.

2 Governing Interactions in Open Systems

Software agents in open MAS are heterogeneous, i.e., the development is done
without a centralized control, possibly by different parties, with different pur-
poses and preferences. The only restriction an open MAS imposes is that the
agents communicate through a common language. In this work we assume that
every agent developer may have an a priori access to the open system speci-
fication, including protocol descriptions and interaction laws and that agents
communicate using ACL.

Law-governed architectures are designed to guarantee that the specifications
will be obeyed. We developed an infrastructure that includes a modification

Fig. 1. Conceptual Model of XMLaw

Applying the Governance Framework Technique to Promote Maintainability 67

of a basic communication infrastructure [4] that is provided to agent develop-
ers. This architecture intercepts messages and interprets the laws previously
described. Whenever necessary, a software support [17] permits extending this
basic infrastructure to fulfill open system requirements or interoperability con-
cerns regarding law monitoring. In this paper, we use the description language
XMLaw [16] to represent the interaction rules of an open system specification.
XMLaw (Fig.1) specifies interaction protocols using time restrictions, norms, or
even time sensitive norms.

Those elements are represented in an XML structure like (Listing 1.1). The
composition and interrelationship among elements is done by events. One law ele-
ment can generate events to signal something to other elements. Other elements
can sense events for many purposes - for instance, activating or deactivating
themselves.

<Laws>
<LawOrganization id =” . . . ” name=”...”>

<Scene id =” . . . ” time−to− l i v e =”...”>
<Creators > . . .</ Creators>
<Entrance>

<Par t i c i pan t r o l e =” . . . ” l im i t =”...”/ >
</Entrance>
<Messages > . . .</Messages>
<Protocol>

<States> . . . </State s>
<Trans i t ions > . . .</ Trans i t ions >

</Protocol>
<Norms > . . . </Norms>
<Clocks > . . .</Clocks>
<Actions > . . .</Actions>

</Scene>
</LawOrganization>

</Laws>

Listing 1.1. XMLaw structure

2.1 Refinement Operators to Specify Laws in Open Multi-Agent
Systems

To design the interaction laws of open MAS to facilitate extensions to deal with
changing requirements, it is necessary to have an instrument to specify which law
elements can be customized and so described as extension points. The extension
points are a means of representing knowledge about the place where modifications
and enhancements in laws can be made. In our context, it is useful to permit the
inclusion of norms, constraints and actions into a pre-defined law specification.

XMLaw [16] has two elements that can be easily plugged into the specification
of interaction laws: actions and constraints. Actions are used to plug services into
open systems. Services are domain specific functionalities that can be triggered
while the mediator monitors agents’ interactions. The first attempt to define
extension points was deferring the definition of the class implementation [5]. We
enhanced this notion with the proposal of refinements operators in XMLaw [6].
Below, we explain how the interaction specification with extension points can be

68 G. Carvalho et al.

prepared to further refinements. The examples below detail laws applied on sales
that are customized according to the period of the year (e.g. discounts are given
in summer and winter). The action giveDiscount (Listing 1.2) will calculate and
apply the discount and the constraint badClient (Listing 1.3) restricts discounts
to this kind of client.

<Actions>
<Action id=”giveDiscount”>

<Element r e f=”payment”
event−type=”t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
</Actions>

Listing 1.2. Action hook

<Constra ints>
<Constra int id=”badClient”/>

</Constra ints>

Listing 1.3. Constraint hook

The abstract attribute defines when a law element is not completely imple-
mented. If no value for the abstract attribute is determined, the element is a
concrete one (default abstract = ”false”). If the law designer wants to specify
that a law element needs some refinements to be used he has to explicitly specify
the attribute abstract with the value true (abstract = ”true”). If a law is de-
fined as concrete, it cannot leave any element to be further refined; all elements
must be fully implemented, otherwise, the interpreter will indicate an error. An
abstract operator can define law elements with some gaps to be filled further
(Listing 1.4). This is the extension point idea, defining clearly the context where
the extensions are expected. Until now, we can defer the definition of the imple-
mentation of actions and constraints classes or the inclusion of any law element.
Below, we structure the usage of the badClient constraint and giveDiscount ac-
tion inside the permission Sale. If this permission active during the enforcement
process, this discount action and verification constraint can be triggered.

<Permiss ion id=”Sale ” ab s t r ac t=”true”>
<Owner> . . .</Owner>
<Act ivat ions> . . . </Act ivat ions>
<Deact ivat ions> . . . </Deact ivat ions>
<Constra ints>

<Constra int id=”badClient”/>
</Constra ints>

<Actions>
<Action id=”ad” c l a s s =”. . .” > . . . </ Action>

<Action id=”giveDiscount ”>...</Action>
</Actions>

</Permission>

Listing 1.4. Abstract operator

Applying the Governance Framework Technique to Promote Maintainability 69

The completes attribute is an operator that is useful to fill the elements that
were left unspecified when a law element was defined as abstract (Listing 1.5). It
is a simple operator to realize extensions as it can just be used to define action
and constraints class implementations. The completes operator turns an abstract
element into a complete one and cannot leave any element unspecified unless it
also redefines this element as an abstract one. The completes operator is limited
to the definition of class implementations.

<Permiss ion id=”SummerSale” completes=”Sale”>
<Constra int id=”badClient ” c l a s s=”BadCustomers”/>
<Action id=”giveDiscount” c l a s s=”Percentage10”/>

</Permission>

Listing 1.5. Completes operator

The extends attribute is a more powerful operator and it is similar to the
specialization operation in object-oriented languages. Basically, an extends op-
erator reuses the description of law elements and includes any modifications that
are necessary to customize the law element to users’ needs, including the rede-
finition of law elements. For example, this operator can include new activation
references, new action elements, and new norm elements and can also superpose
any element that was previously specified. The extends operator also turns an
abstract element into a complete one and cannot leave any element unspecified
unless it redefines this element as an abstract one (Listing 1.6).

<Permiss ion id=”WinterSale” extends=”Sale”>
<Constra ints>

<Constra int id=”badClient ” c l a s s=”BadPayers”/>
</Constra ints>
<Actions>

<Action id=”giveDiscount” c l a s s=”Percentage15”/>

<Action id=”giveSuperDiscount”
c l a s s=”Chr i st imasDiscount”>

<Element r e f=”ch r i s t imas ”
event−type=”c l o c k a c t i v a t i o n ”/>

</Action>
</Actions>

</Permission>

Listing 1.6. Extends operator

3 Improving Governance Mechanism Maintainability

Suppose that it is possible to specify and implement the kernel of a general solu-
tion and this kernel can be customized to different purposes. In this kernel, you
have the exact points that can be modified and enhanced. In our context, this ap-
proach can be used to derive a family of governance mechanisms that share a core

70 G. Carvalho et al.

specification and implementation. The customization is used for two purposes.
First, different governance mechanisms can be derived for different purposes and
application scenarios. Second, different versions of the same governance mecha-
nism can be instantiated during its lifecycle. To realize this scenario, we propose
to use some object-oriented framework concepts. An object-oriented framework
is a reusable; semi-complete application that can be specialized to produce cus-
tom applications [9], i.e., it is a collection of abstract entities that encapsulate
common algorithms of a family of applications [3].

In this work, we focus on understanding how interaction specification en-
hanced by laws can be designed to support extensions. A governance framework
is an extensible design for building governance mechanisms for open MAS. A
solution for open system development is achieved by relaxing the boundary be-
tween a framework (the common part of the family of applications) and its in-
stantiations (the application-specific part). In a governance framework, certain
laws of the open system are abstract, because they are left either unspecified or
incompletely specified because they would expose details that would vary among
particular executable implementations.

A governance framework is flexible by design. Flexibility works in opposition
to the concept of static interaction specification or enforcement. In design time,
customizability ensures the framework may receive new law elements or adapt
the existing ones. For this purpose, a governance framework provides ”hooks”
for its instances; we define abstract definitions for interactions as templates.
Governance functionalities that have specificities according to their applications
are fully implemented later, but all common definitions and implementations
are present in general specifications. The realization of abstract interactions is
deferred to instantiation time.

In MAS, the collaboration structure defines the agent roles and their relation-
ships. Roles are useful to specify general descriptions for agents’ responsibilities
in an organization [20] and they are bound to real software agents in open sys-
tem execution. While playing roles, agents acquire the obligation to obey the law
that is specified for their responsibilities and it is possible to enforce the laws
prescribed in the protocol. Our main purpose is not to discuss how to structure
the component reuse as agent roles [12, 20], which will be realized by external
software agents. We intend to use an agent role at the design level as a means
to describe agents’ responsibilities.

Our main concern is over how agents interact in the open MAS. The inter-
action elements comprehend the specification of dynamical concerns of an open
system. The interaction specification is composed of interaction laws and in-
teraction protocols. Interaction protocols define the context and the sequence
of messages of a conversation between agent roles. The fixed part of interac-
tion specifications is called general interaction. General interactions (Fig. 2) can
be derived by analyzing the application domain. If any interaction element is
common to all intended instances, this element is attached to the core defini-
tion of the framework. Concerning interactions, the variability implies a more

Applying the Governance Framework Technique to Promote Maintainability 71

flexible protocol specification to include some alternatives and options to the
design of a family of similar open MAS. Each interaction element in the open
MAS is a potential extension point. The specification of interaction protocols
can be made flexible enough to include new elements like norms, constraints
and actions that define the desired behavior for the open MAS applications.
Templates (Fig. 2) are part of the flexibility of the open MAS interactions [5].
In governance frameworks, templates are defined as ”hooks” for elements of the
interaction specification that will be refined during the governance mechanism
instantiation.

GovernanceMechanism

GovernanceFrameworks for OpenSystems

InteractionElements

Provided Interaction Specification

General

Interaction
Templates

Customized Interaction

Specification

Refinement

Fig. 2. Governance Framework Overview

Even with extension points, we still need to monitor the entire application; to
gather information about its execution, and also to analyze the compliance of the
system components with the desired behavior. This means that the governance
mechanism must support this peculiarity.

4 Governance Framework for Open Supply Chain
Management

An important characteristic of a good framework is that it provides mature
runtime functionality and rules within the specific domain in which it is to be
applied [9]. Hence, we based our proof of concept prototype on the specification
of the TAC SCM [2, 8, 18]. The game rules have been updated over the last
three years. This evolution was achieved by observing the behavior of differ-
ent agents during the last editions and their consequences (e.g. interaction rules
were defined to protect agents from malicious participants). In our prototype,

72 G. Carvalho et al.

each set of rules can be used to configure a different instance of a framework for
instantiating governance mechanisms in open supply chain management domain.

In TAC SCM, assembler agents need to negotiate with supplier agents to buy
components to produce PCs. A bank agent is used to monitor the progress of the
agents. In the real TAC SCM architecture, there is a TAC Server that simulates
the behavior of the suppliers, customers, and factories. We converted part of
the simulation components present in TAC SCM to external agents or the open
system’s services of a prototypical version. We continue to have the TAC SCM
Server, but this server aims to monitor and to analyze the compliance of agents’
behavior to laws that were previously established.

Analyzing the variability of the negotiation between suppliers and assemblers
over TAC SCM editions we depict the architecture below. The kernel of this
framework is composed of a scene for negotiation, a scene for payment, the defi-
nition of interaction steps (transitions), states and messages, and a permission to
restrict the offer values of an RFQ. The extension points that will be described
here include the permission granted to assemblers to issue requests during one
day (number of permitted requests and how to count them), the constraint to
verify the date in which a request is valid, and the payment method implemented
by actions inside the obligation.

4.1 Kernel Description

In the negotiation, assemblers buy supplies from suppliers to produce PCs. Be-
sides these two roles, there is the bank role. There are six assembler agents that
produce PCs participating in each TAC SCM instance. These participants in-
teract with both suppliers and a bank agent. There are eight different supplier
agents in each supply chain. Only one bank agent is responsible for managing
payments accounts. The agent class diagram [7] (Fig. 3) depicts the roles, their
relationships and their cardinalities.

Fig. 3. Roles, relationships and cardinalities

We decided to organize this scenario in two scenes: one for the negotiation
process between assemblers and suppliers, and the other for the payment in-
volving the assembler and the bank agent. Listing 1.7 details the initial speci-
fication of the scene that represents the negotiation between the supplier and the

Applying the Governance Framework Technique to Promote Maintainability 73

assembler. Each negotiation scene is valid over the duration of the competition,
which is 3300000ms (220 days x 15000ms). Listing 1.8 describes the payment
process. We decided not to specify any time out to the payment scene and this
is represented by the ”infinity” value of the attribute time-to-live.

<Scene id=”nego t i a t i on ” time−to−l i v e =”3300000”>
<Creators>

<Creator r o l e=”assemble r”/>
</Creators>
<Entrance>

<Par t i c i pan t r o l e=”assemble r” l im i t=”6”/>
<Par t i c i pan t r o l e=”supp l i e r ” l im i t=”8”/>

</Entrance>
</Scene>

Listing 1.7. Negotiation scene structure

<Scene id=”payment” time−to−l i v e=” i n f i n i t y ”>
<Creators>

<Creator r o l e=”any”/>
</Creators>
<Entrance>

<Par t i c i pan t r o l e=”assemble r” l im i t=”1”/>
<Par t i c i pan t r o l e=”bank” l im i t=”1”/>

</Entrance>
</Scene>

Listing 1.8. Payment scene structure

Analyzing the evolution of TAC SCM’s requirements, we can observe evi-
dences that interaction protocols have a core definition. In this specification we
can also identify some extension points, which can be customized to provide
different instances of the supply chain. The negotiation between assemblers and
suppliers is related to the interaction between the assembler role and the bank
role. Basically, a payment is made through a payment message sent by the assem-
bler to the bank and the bank’s reply with a confirmation response, represented
by the receipt message ((Listing 1.9 and 1.10, Fig. 4). Fig. 4 is based on the
interaction diagram [7].

Fig. 4. Payment interaction

74 G. Carvalho et al.

<Messages>
<Message id=”payment” template =”...”/ >
<Message id=”r e c e i p t ” template =”...”/ >

</Messages>

Listing 1.9. Payment messages description

<Protocol>
<States>

<State id=”p1” type=” i n i t i a l ”/>
<State id=”p2” type=”execut ion”/>
<State id=”p3” type=”suc c e s s ”/>

</State s>
<Trans i t ions >

<Tran s i t i on id=”pay ingTrans i t ion ”
from=”p1” to=”p2” message−r e f=”payment”/>

<Tran s i t i on id=”paymentConcludedTrans”
from=”p2” to=”p3” message−r e f=”r e c e i p t ”/>

</Trans i t ions >
</Protocol >

Listing 1.10. Payment interaction protocol description

The negotiation between assemblers and suppliers is carried out in five steps,
four messages (Fig. 5, (Listing 1.11) and six transitions. Below ((Listing 1.11
and 1.12), this scene is described in detail using XMLaw. Fig. 5 is based on the
interaction diagram [7].

<Messages>
<Message id=”r f q ” template =”...”/ >
<Message id=” o f f e r ” template =”...”/ >
<Message id=”order ” template =”...”/ >
<Message id=”de l i v e r y ” template =”...”/ >

</Messages>

Listing 1.11. Negotiation interaction protocol: messages

Fig. 5. Negotiation protocol diagram

Applying the Governance Framework Technique to Promote Maintainability 75

<Protocol>
<States>

<State id=”as1 ” type=” i n i t i a l ”/>
<State id=”as2 ” type=”execut ion”/>
<State id=”as3 ” type=”execut ion”/>
<State id=”as4 ” type=”execut ion”>
<State id=”as5 ” type=”suc c e s s ”/>

</State s>
<Trans i t ions >

<Trans i t i on id=”r f qTrans i t i on ” from=”as1”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”newRFQTransition” from=”as2”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”otherRFQTransition ” from=”as3 ”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”o f f e rT r an s i t i o n ” from=”as2 ”
to=”as3 ” message−r e f=”o f f e r ” >...</ Trans i t ion>

<Tran s i t i on id=”orde rTran s i t i on” from=”as3 ”
to=”as4 ” message−r e f=”order”/>

<Tran s i t i on id=”d e l i v e r yTr an s i t i on” from=”as4 ”
to=”as5 ” message−r e f=”d e l i v e r y ” >...</ Trans i t ion>

</Trans i t ions >
</Protocol >

Listing 1.12. Negotiation interaction protocol description

To further illustrate the use of general specifications, we identified the stable
interaction laws in the last three editions of TAC SCM and we implemented it
using XMLaw. This specification is reused in every instance of our governance
framework. This law defines the relation between a request for quote (RFQ) sent
by an assembler and an offer that will be sent by a supplier. Below, we briefly
describe the specification according to [2,8, 18].

”On the following day of the arrival of a request for quotation, the supplier
sends back to each agent an offer for each RFQ, containing the price, adjusted
quantity, and due date. The supplier may respond by issuing up to two amended
offers, each of which relaxes one of the two constraints, quantity and due date: (i)
a partial offer is generated with the quantity of items relaxed; or (ii) an earliest
complete offer is generated with the due date relaxed. Offers are received the
day following the submission of RFQs, and the assembler must choose whether
to accept them. In the case an agent attempts to order both the partial offer and
the earliest complete offer, only the order that arrives earlier will be considered
and the others will be ignored.”

The implementation of this rule in XMLaw is illustrated in Listings 1.13 and
1.14. A permission was created to define a context in the conversation that is used
to control when the offer message is valid, considering the information sent by an
RFQ. For this purpose, two constraints were defined into the permission context,
one determining the possible configurations of offer attributes that a supplier can
send to an assembler, while the other constraint verifies if a valid offer message
was generated - that is, if the offer was sent one day after the RFQ. This per-
mission is only valid if both of the constraints are true. Below, we illustrate the

76 G. Carvalho et al.

offerTransition (Listing 1.13) and describe the permission RestrictOfferValues
and its XMLaw specification (Listing 1.14).

<Tran s i t i on id=”o f f e rT r a b s i t i o n ” from=”as2 ”
to=”as3 ” message−r e f=” o f f e r ”>

<ActiveNorms>
<Norm r e f=”Re s t r i c tO f f e rVa lue s ”/>

</ActiveNorms>
</Trans i t ion>

Listing 1.13. General Transition Specification

<Perm i s s ion id=”Re s t r i c tO f f e rVa lu e s”>

<Owner>Suppl i e r</Owner>
<Act ivat ions>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Act ivat ions>

<Deact ivat ions>

<Element r e f=”o f f e rT r an s i t i o n ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Deact ivat ions>

<Actions>
<Action id=”keepRFQInfo” c l a s s=”norm . a c t i on s . KeepRFQAction”>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>

</Actions>

<Constra ints>

<Constra int id=”checkDates” c l a s s=”norm . c o n s t r a i n t s . CheckValidDay”/>

<Constra int id=”checkAttr ibute s ” c l a s s=”norm . c on s t r a i n t s .
CheckValidMessage”/>

</Constra ints>

</Perm i ss ion>

Listing 1.14. General Norm specification

XMLaw includes the notion of context. Elements in the same context share the
same local memory to share information, i.e., putting, getting and updating any
value that is important for other law elements. Listing 1.14 depicts one example
of context usage. The keepRFQInfo Action preserves the information present
in the RFQ message to be later used by the checkAttributes and checkDates
contraints.

4.2 Extension Point Descriptions

The constraint checkDueDate verifies if the date attribute is according to the
restrictions imposed by the edition of the environment. It means that if the ver-
ification is not true the transition will not be fired. This constraint is associated
with the transition rfqTransition and this transition is specified as abstract to
clearly document the extension point. Listing 1.15 is an example of a template.
In this example, we opted to keep the attribute class of the constraint check-
DueDate not specified, that is, it will be set during framework instantiation.

Applying the Governance Framework Technique to Promote Maintainability 77

<Trans i t i on id=”r f qTrans i t i on ” from=”as1 ” to=”as2”
message−r e f=”r f q ” ab s t r ac t=”true”>

<Constra ints>
<Constra int id=”checkDueDate”/>

</Constra ints>
<ActiveNorms>

<Norm r e f=”AssemblerPermissionRFQ”/>
</ActiveNorms>

</Trans i t ion>

Listing 1.15. Permission and Constraint over RFQ message Templates

According to TAC SCM specifications [2, 8, 18], every day each agent may send
up to a maximum number of RFQs. But the precise number of RFQs has changed
over the last editions of TAC SCM, so it is possible to defer this specification
to instantiation time. We use a template for this purpose and we have created a
permission to encapsulate this requirement (Listing 1.16); in the template some
hooks will guide the specialization of an instance of this framework.

This permission is about the maximum number of requests for quotation that
an assembler can submit to a supplier. To implement this sort of verification,
the constraint checkCounter is associated with the permission AssemblerPer-
missionRFQ. It means that if the verification is not true the norm will not be
valid, even if it is activated. The action ZeroCounter is defined under the per-
mission AssemblerPermissionRFQ and it is triggered by a clock-tick every day,
turning to zero the value of the counter of the number of requests issued by
the assembler during this day. The other action orderID is activated by every
transition transitionRFQ and is used to count the number of RFQs issued by the
assembler, updating a local counter. Finally, a clock nextDay is used to mark
the day period, and this mark is used to zero the counter of RFQs by the action
ZeroCounter. In this paper, we do not describe the clock nextDay specification.

<Permiss ion id=”AssemblerPermissionRFQ” abs t rac t=”true”>
<Owner>Assembler</Owner>
<Act ivat ions>

<Element r e f=”nego t i a t i on ” event−type=”s c e ne c r e a t i o n ”/>
</Act ivat ions>
<Deact ivat ions>

<Element r e f=”orde rTran s i t i on” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Deact ivat ions>
<Constra ints>

<Constra int id=”checkCounter”/>
</Constra ints>
<Actions>

<Action id=”permissionRenew” c l a s s=”tacscm . norm . ac t i on s .
ZeroCounter”>

<Element r e f=”nextDay” event−type=”c l o c k t i c k ”/>
</Action>
<Action id=”orderID”>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Action>
</Actions>

</Permission>

Listing 1.16. Norm description Template

78 G. Carvalho et al.

Another extension point is used to specify the relationship between orders and
offers of the negotiation protocol. According to [2], agents confirm supplier offers
by issuing orders. After that, an assembler has a commitment with a supplier,
and this commitment is expressed as an obligation. It is expected that suppliers
receive a payment for its components. But when they will receive the payment is
not completely specified in this law. Another template specifies the structure of the
ObligationToPay obligation (Listing 1.17), defining that it will be activated by an
order message and it will be deactivated with the delivery of the components and
also with the payment. A supplier will only deliver the product if the assembler has
the obligation to pay for them (Listing 1.18). The assembler can only enter into
the payment scene if it has an obligation to pay for the products (Listing 1.19).
An assembler cannot enter into another negotiation if it has obligations that were
not fulfilled (Listing 1.20).

<Obl igat ion id=”ObligationToPay” ab s t r ac t=”true”>
<Owner>Assembler</Owner>
<Act ivat ions>

<Element r e f=”orde rTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Act ivat ions>
<Deact ivat ions>

<Element r e f=”pay ingTrans i t ion ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Deact ivat ions>
</Obl igat ion>

Listing 1.17. Obligation to pay

<Tran s i t i on id=”orde rTran s i t i on” from=”as3” to=”as4 ” message−r e f=”
order”/>

<Tran s i t i on id=”d e l i v e r yTr an s i t i o n” from=”as4 ” to=”as5 ” message−r e f=”
d e l i v e r y”>

<ActiveNorms>
<Norm r e f=”ObligationToPay”/>

</ActiveNorms>
</Trans i t ion>

Listing 1.18. Negotiation and Payment Scene

<Scene id=”payment” time−to−l i v e=” i n f i n i t y ”>
<ActiveNorms>

<Norm r e f=”ObligationToPay”/>
</ActiveNorms>
. . .

</Scene>

Listing 1.19. Payment scene and ObligationToPay norm

<Scene id=”nego t i a t i on ” time−to−l i v e =”3300000”>
<DeActivatedNorms>

<Norm r e f=”ObligationToPay”/>
</DeActivatedNorms>
. . .

</Scene>

Listing 1.20. Negotiation scene and ObligationToPay norm

Applying the Governance Framework Technique to Promote Maintainability 79

5 TAC SCM Editions as Framework’s Instances

In this section, we present two examples of instantiations of the framework
for open SCM, explaining the refinements proposed to the templates described
above.

In TAC SCM 2004 and according to [2], a supplier will receive an assembler’s
payment after the delivery of components and at this time the cost of the order
placed before will be fully charged. We implemented the payment as an action
where the system forces the agent to pay the entire debit at the end of the
negotiation (Listing 1.23). According to [2], on each day each agent may send
up to ten RFQs to each supplier. An RFQ with DueDate beyond the end of the
negotiation will not considered by the supplier. For this purpose, we implemented
the constraint class ValidDate (Listing 1.21). The constraint class CounterLimit
(Listing 1.22) checks if the local attribute for controlling the number of RFQs
is below the limit of 10. The RFQCounter action increments the same attribute
when receiving new messages of RFQ.

<Tran s i t i on id=”r fq2004 ” completes=”r f qTran s i t i on ”>
<Constra int id=”checkDueDate”

c l a s s=”con s t r a i n t s . ValidDate2004 ”/>
</Trans i t ion>

Listing 1.21. checkDueDate instance for TAC SCM 2004

<Permiss ion id=”AssemblerPermissionRFQ2004 ”
completes=”AssemblerPermissionRFQ”>

<Constra int id=”checkCounter”
c l a s s=”c on s t r a i n t . CounterLimit”/>

<Action id=”orderID” c l a s s=”norm . ac t i on s . RFQCounter”>
</Permission>

Listing 1.22. Permission instance for TAC SCM 2004

<Obl igat ion id=”ObligationToPay2004 ” extends=”ObligationToPay”>
<Actions>

<Action id=”suppl ierPayment”
c l a s s=”ac t i on s . SupplierPayment100”>

<Element r e f=”d e l i v e r yTr an s i t i o n”
event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
</Actions>

</Obl igat ion>

Listing 1.23. Obligation instance for TAC SCM 2004

In TAC SCM 2005, suppliers wishing perhaps to protect themselves from
defaults will bill agents immediately for a down payment on the cost of each
order placed [8]. The remainder of the value of the order will be billed when the
order is shipped. In 2005, the down payment ratio is 10.

80 G. Carvalho et al.

<Tran s i t i on id=”r fq2005 ” completes=”r f qTran s i t i on ”>
<Constra int id=”checkDueDate”

c l a s s=”c on s t r a i n t s . ValidDate2005 ”/>
</Trans i t ion>

Listing 1.24. checkDueDate instance for TAC SCM 2005

<Permiss ion id=”AssemblerPermissionRFQ2005 ”
completes=”AssemblerPermissionRFQ”>

<Constra int id=”checkCounter”
c l a s s=”c on s t r a i n t . CounterLimit2005 ”/>
<Action id=”orderID”

c l a s s=”norm . ac t i on s . RFQCounter2005”> . . . </ Action>
</Permission>

Listing 1.25. Permission instance for TAC SCM 2005

<Obl igat ion id=”ObligationToPay2005 ” extends=”ObligationToPay”>
<Actions>

<Action id=”supplierDownPayment”
c l a s s=”ac t i on s . SupplierPayment10”>

<Element r e f=”orde rTran s i t i on”
event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
<Action id=”suppl ierPayment”

c l a s s=”ac t i on s . SupplierPayment90”>
<Element r e f=”d e l i v e r yTr an s i t i on”

event−type=” t r a n s i t i o n a c t i v a t i o n ”/>
</Action>

</Actions>
</Obl igat ion>

Listing 1.26. Obligation instance for TAC SCM 2005

6 Related Work

Ao and Minsky [1] propose an approach that enhances their Law Governed
Interaction (LGI) with the concept of policy-hierarchy to support that different
internal policies or laws are formulated independently of each other, achieving
a flexibility support by this means. [1] consider confidentiality as a requirement
for their solution. However, the extensions presented here intend to support the
maintenance of governance mechanisms, rather than flexibility for the purpose
of confidentiality.

Singh [15] proposes a customizable governance service, based on skeletons. His
approach formally introduces traditional scheduling ideas into an environment of
autonomous agents without requiring unnecessary control over their actions, or
detailed knowledge of their designs. Skeletons are equivalent to state based ma-
chines and we could adapt and reuse their formal model focusing on the implemen-
tation of a family of applications. But [15] has its focus on building multi-agent
systems instead of providing support for monitoring and enforcement purpose.

Below we describe some useful instruments to promote reuse; they can be seen
as instruments for specifying extendable laws in governance frameworks. COSY

Applying the Governance Framework Technique to Promote Maintainability 81

[11] views a protocol as an aggregation of primitive protocols. Each primitive pro-
tocol can be represented by a tree where each node corresponds to a particular sit-
uation and transitions correspond to possible messages an agent can either receive
or send, i.e., the various interaction alternatives. In AgenTalk [14], protocols in-
herit from one another. They are described as scripts containing the various steps
of a possible sequence of interactions. Koning and Huget [13] deal with the model-
ing of interaction protocols for multi-agent systems, outlining a component-based
approach that improves flexibility, abstraction and protocol reuse.

7 Conclusions

In open MAS, in which components are autonomous and heterogeneous, gov-
ernance is crucial. This paper presented an approach to augment reliability on
customizable open systems. The approach is based on governing the interactions
in the system. This is a non-intrusive method, allowing the independent devel-
opment of the agents of the open system - they are only required to follow the
protocols specified for the system.

The purpose of governance frameworks is to facilitate extensions on gover-
nance mechanisms for open systems. Interaction and roles are first order abstrac-
tions in open system specification reuse. Besides, it is possible to distinguish two
kinds of interaction specification: fixed (stable) and flexible (extensible). The
challenge to developers is to deliver a specification that identifies the aspects of
the open MAS that will not change and cater the software to those areas. Stabil-
ity is characterized by the interaction protocol and some general rules that are
common to all open MAS instances. Extensions on interaction rules will impact
the open MAS and the agents and extensions are specified. The main contri-
bution of this work is to provide a technique to design software that evolves,
therefore reducing maintenance efforts.

With this proposal we aim to improve the engineering of distributed systems,
providing a customizable conformance verification mechanism. We are also tar-
geting improvement in the quality of governance mechanisms of open systems;
this will be achieved by facilitating the extension of governance mechanisms.
We propose to use variations and laws to specify, implement and maintain ex-
tension points. We also support the implementation of these variations using a
law-governed mechanism. The experiment showed that this is an interesting and
promising approach; it improves the open system design by incorporating relia-
bility aspects that can be customized according to application requirements and
it improves maintainability. The application development experience showed us
that it is possible to obtain benefits from the use of proper engineering concepts
for its specification and construction. However, more experiments with real-life
MAS applications are needed to evaluate and validate the proposed approach.

Acknowledgments. We gratefully acknowledge the financial support provided
by the CNPq as part of individual grants and of the ESSMA project (552068/2002-
0) and by CAPES as part of the EMACA Project (CAPES/COFECUB 482/05
PP 016/04).

82 G. Carvalho et al.

References

1. Ao, X. and Minsky, N. Flexible Regulation of Distributed Coalitions. In Proc.
of the 8th European Symposium on Research in Computer Security (ESORICS).
Gjvik Norway, October, 2003.

2. Arunachalam, R; Sadeh, N; Eriksson, J; Finne, N; Janson, S. The Supply Chain
Management Game for the Trading Agent Competition 2004. CMU-CS-04-107,
July 2004

3. Batory, D; Cardone, R. and Smaragdakis, Y. ”Object-Oriented Frameworks and
ProductLines”, 1st Software Product-Line Conference, Denver, Colorado, August
2000.

4. Bellifemine, F; Poggi, A; Rimassa, G. Jade: a fipa2000 compliant agent develop-
ment environment, in: Proceedings 5th international conference on Autonomous
agents, ACM Press, 2001, pp. 216-217

5. Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Extensions on Interaction Laws
in Open Multi-Agent Systems. In: First Workshop on Software Engineering for
Agent-oriented Systems (SEAS 05), 19th Brazilian Symposium on Software Engi-
neering. Uberlndia, Brasil

6. Carvalho, G.; Lucena, C.; Paes, R.; Briot, J.P.; Refinement Operators to Facilitate
the Reuse of Interaction Laws in Open Multi-Agent Systems, International Work-
shop on Software Engineering for Large-scale Multi-Agent Systems (SELMAS’06),
5th, at ICSE 2006, Shanghai, China. In: Proceedings of the Fifth International
Workshop on Software Engineering for Large-scale Multi-agent Systems, p. 75-82,
May 21-22, 2006.

7. Choren, R. and Lucena, C.J.P. Modeling Multi-agent systems with ANote. Software
and Systems Modeling 4(2), 2005, p. 199 - 208.

8. Collins, J; Arunachala,R; Sadeh,N; Eriksson,J; Finne,N; Janson,S. (2005) The Sup-
ply Chain Management Game for the 2005 Trading Agent Competition. CMU-
ISRI-04-139.

9. Fayad, M; Schmidt, D.C.; Johnson, R.E. Building application frameworks : object-
oriented foundations of framework design. ISBN 0471248754, New York: Wiley,
1999.

10. Fredriksson M. et al. First international workshop on theory and practice of open
computational systems. In Proceedings of twelfth international workshop on En-
abling technologies: Infrastructure for collaborative enterprises (WETICE), Work-
shop on Theory and practice of open computational systems (TAPOCS), pp. 355
- 358, IEEE Press, 2003.

11. Haddadi, A. Communication and Cooperation in Agent Systems: A Pragmatic
Theory, volume 1056 of Lecture Notes in Computer Science. Springer Verlag, 1996.

12. Kendall, E. ”Role Modeling for Agent Systems Analysis, Design and Implementa-
tion”, IEEE Concurrency, 8(2):34-41, April-June 2000.

13. Koning, J.L. and Huget, M.P.. A component-based approach for modeling interac-
tion protocols. In H. Kangassalo and E. Kawaguchi (eds) 10th European-Japanese
Conference on Information Modeling and Knowledge Bases, Frontiers in Artificial
Intelligence and Applications.IOS Press, 2000

14. Kuwabara, K; Ishida, T; and Osato, N. AgenTalk: Coordination protocol descrip-
tion for multiagent systems. In First International Conference on MultiAgent Sys-
tems (ICMAS-95), San Francisco, June 1995. AAAI Press. Poster.

15. Singh, M. P., ”A Customizable Coordination Service for Autonomous Agents,”
Intelligent Agents IV: Agent Theories, Architectures, and Languages, Springer,
Berlin, 1998, pp. 93-106.

Applying the Governance Framework Technique to Promote Maintainability 83

16. Paes, R. B.; Carvalho G. R.; Lucena, C.J.P.; Alencar, P. S. C.; Almeida H.O.;
Silva, V. T. Specifying Laws in Open Multi-Agent Systems. In: Agents, Norms and
Institutions for Regulated Multi-agent Systems (ANIREM), AAMAS2005, 2005.

17. Paes, R.B; Lucena, C.J.P; Alencar, P.S.C. A Mechanism for Governing Agent Inter-
action in Open Multi-Agent Systems MCC n 30/05, Depto de Informtica, PUC-Rio,
31 p., 2005

18. Sadeh, N; Arunachalam, R; Eriksson, J; Finne, N; Janson, S. TAC-03: a supply-
chain trading competition, AI Mag. 24 (1) 92-94, 2003.

19. Wooldridge, M; Weiss, G; Ciancarini, P. (Eds.) Agent-Oriented Software Engineer-
ing II, Second International Workshop, AOSE 2001, Montreal, Canada, May 29,
2001, Revised Papers and Invited Contributions, Vol. 2222 of Lecture Notes in
Computer Science, Springer, 2002.

20. Yu, L; Schmid, B.F. ”A conceptual framework for agent-oriented and role-based
workflow modelling”, the 1st International Workshop on Agent-Oriented Informa-
tion Systems, Heidelberg, 1999.

Designing Institutional Multi-Agent Systems�

Carles Sierra1, John Thangarajah2, Lin Padgham2, and Michael Winikoff2

1 Artificial Intelligence Research Institute (IIIA)
Spanish Research Council (CSIC)

Catalonia, Spain
sierra@iiia.csic.es

2 School of Computer Science and Information Technology,
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001, Australia
{johthan, linpa, winikoff}@cs.rmit.edu.au

Abstract. The vision of agents working together on the Internet, in virtual orga-
nizations, is one that is increasingly common. However, one of the issues is the
regulation of the participating agents and their behaviour. A substantial body of
work exists that investigates agent societies and agent organizations, including
work on electronic institutions, such as Islander and Ameli. However, although
such work provides concrete tools for specifying and enacting institutions, there
is a lack of clear documented guidance to designers who are using these tools. In
this paper we describe a methodology for developing an institutional structure for
multi agent systems. This methodology captures the knowledge and experience
within the Islander group, and integrates it with the Prometheus methodology.

1 Introduction

The vision of agents working together on the Internet, in virtual organizations, is one
that is increasingly common. One of the issues however is the regulation of the partici-
pating agents and their behaviour. There is a substantial body of work that investigates
agent societies and agent organizations (for a review see [1]) and electronic institutions
(e.g. [2,3,4]). Methodologies for designing agent organizations such as OperA [5] have
been used for developing industrial systems, and there are various examples of imple-
mented systems. However there is very limited support for developing such systems, in
terms of runtime platforms or design tools. One exception is the Islander design tool [6]
and the Ameli runtime platform [7]. Together these provide an environment for design-
ing and developing electronic institutions. Currently there is no written methodology or
guidance on how to actually use these tools to develop electronic institutions, although
there is considerable experience developed within the Islander group. This paper pro-
vides a methodology for developing an institutional structure for multi agent systems,
capturing the knowledge and experience within the Islander group into a Social Design

� This work was supported by the Australian Research Council under grant LP0453486, in col-
laboration with Agent Oriented Software. We also thank the Australian Tourism Data Ware-
house for use of their tourism content in our agents. Carles Sierra is being supported by the
Spanish Web-I(2) project and the ARC Discovery Grant DP0557168.

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 84–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Designing Institutional Multi-Agent Systems 85

phase, within a slightly modified version of the Prometheus methodology [8], a practi-
cal agent-oriented software engineering methodology that aims to be usable by software
developers and undergraduate students.

Design tools play an extremely important part in supporting the development of com-
plex systems. Consequently this Social Design phase has been developed specifically
to work with the Islander design tool. As the area of methodological support for design
and development of agent organizations, institutions and societies matures, it is likely
that this would be generalized to provide an approach less dependent on the particular
available toolset. However at this stage, we believe it is useful to provide a very concrete
methodology that gives sufficient guidance to the developer that they can successfully
develop a system.

The approach that we have taken is to use the Prometheus Design Tool (PDT1) [9]
and a variant of the Prometheus methodology for doing the initial analysis and sys-
tem specification. The system specified may include the Electronic Institution as a part
of the system, or it may be the entire system. Using this initial design in PDT, the
design of the Electronic Institution component is then carried out within the Islander
tool, and the outcome of this provides information back into the Prometheus design
process for those parts of the system that lie outside the actual Electronic Institution
infrastructure.

In the rest of this paper we provide some background on Islander, and the view
of Electronic Institutions that Islander and Ameli are designed to support. We then
describe in detail the design process for developing an Electronic Institution, embedding
this within the Prometheus methodology. In order to illustrate the design process in a
concrete way, we take an example of an (very limited) Electronic Institution for travel
bookings, and use this for illustration throughout the methodological description.

2 Background: ISLANDER

The idea behind Electronic Institutions (EIs) is to mirror the roles traditional institu-
tions play in the establishment of “the rules of the game”– that is, the set of conventions
that articulate agents’ interactions. The essential roles EIs play are both descriptive
and prescriptive: the institution makes the conventions explicit to participants, and it
warrants their compliance. Development environments to realize Electronic Institutions
involve a conceptual framework to describe agent interactions as well as an engineering
framework to specify and deploy actual interaction environments. Work on such a de-
velopment environment has been happening for some time within the Intelligent Agents
Group at the Artificial Intelligence Research Institute of Spain [2,3,4,10]. Considerable
experience in the deployment of applications as EIs (e.g. [11,12]) provide confidence
in the validity of the approach.

EIs are socially-centered, and neutral with respect to the internals of the partici-
pating agents. They provide a regulated virtual environment where the relevant inter-
actions among participating entities take place. The Electronic Institution provides an
infrastructure which ensures, as well as specifies, legitimate interactions. In order to re-
alize this infrastructure all interactions are considered to be speech acts, and any effect

1 Freely available from www.cs.rmit.edu.au/agents/pdt

www.cs.rmit.edu.au/agents/pdt

86 C. Sierra et al.

on the shared environment is considered to happen only as a result of illocutions uttered
by participating agents.

The Islander tool supports specification of an EI which is then executable using the
Ameli runtime environment2. Conceptually there are four main areas to be specified
using Islander, and we will describe each in turn. These are:

– The Dialogical Framework which specifies the roles within the particular domain
and the ontology.

– The Interaction Structure which describes the scenes, the pattern of allowable
interactions within each scene, and also the effect these interactions have within
the shared environment.

– The Performative Structure which provides an overview of the connections be-
tween different scenes and possibly other (sub-)Performative structures, and the
role-flow policies.

– Norms and Constraints which capture rules which will be enforced by the EI.

2.1 Dialogical Framework

A role defines a particular pattern of behaviour and all participants within an EI take
on a particular role. For example, in an auction house there may be buyers and sellers.
Participants may change their roles over time, for example an agent acting as a buyer
at one point may act as a seller at another. It may also be the case that we restrict an
agent from acting as a buyer and seller at the same time, this is done by specifying a
particular relationship between roles called DSD (Dynamic Separation of Duties). A
stronger version of this relationship, called SSD (Static Separation of Duties) prevents
agents from playing two incompatible roles within an institution even if they are played
at different times.

We also need to distinguish between internal and external roles. The internal roles
define a set of roles that will be played by staff agents which correspond to employees
in traditional institutions. Agents that are external to the institution cannot take on these
roles and are restricted to external roles. When defining an EI we need to consider the
roles that participants may take on, whether the roles are internal or external and the
relationship between roles if any.

We need to settle on a common illocutory language that serves to tag all pertinent
interactions, or more properly, the valid speech acts. Formally, we consider each inter-
action to be an illocutory formulae: ι(speaker, listener, ϕ, t). The speech acts that we
use start with an illocutory particle (inform, request, accept, . . .) that a speaker ad-
dresses to a listener, at time t, and the content ϕ of the illocution is expressed in some
object language whose vocabulary is the EI’s ontology. The speaker and listener are
roles within the EI.

To fill in these formulae therefore, we need vocabulary and grammar, and we need
to refer to speakers and listeners, actions and time. We call all this the Dialogical
Framework because it includes all that is needed for agents to participate in admissible
dialogues in a given EI. Two important aspects of the Dialogical Framework are the

2 Further details about electronic institutions can be found at http://e-institutor.iiia.csic.es

http://e-institutor.iiia.csic.es

Designing Institutional Multi-Agent Systems 87

Social Structure model which captures the roles and their relationships, and the Ontol-
ogy model which defines the entities in the domain.

2.2 Interaction Structure

Interactions between agents are articulated through recurrent dialogues which we call
scenes. Each scene follows some type of conversation protocol, that restricts the pos-
sible interactions between roles. Scenes also represent the context in which the uttered
illocutions must be interpreted, as the same message may have different meanings in
different contexts.

The protocol of a scene is specified by a directed graph whose nodes represent the
different states of a dialogical interaction between roles (e.g. see figure 6). Each state
indicates the agents that are allowed to enter or leave a particular scene. The transitions
from one state to another are labeled with illocution schemata from the scene’s dialogi-
cal framework (whose sender, receiver and content may contain variables) or timeouts.
These transitions may also have constraints and actions attached. Constraints are used
to restrict the paths that the scene execution can follow. For example, in an auction
scene it is possible to specify as a constraint, that a buyer can only submit a bid that is
greater than the previous bid. Actions are used to specify any updates to the shared state
of the institution when a transition occurs.

At execution time agents interact by uttering grounded illocutions matching the spec-
ified illocution schemata, and so binding their variables to values, building up the scene
context.

2.3 Performative Structure

Activities in an electronic institution are organized in a performative structure as the
composition of multiple, distinct, and possibly concurrent, dialogical activities, each
one involving different groups of agents playing different roles.

A performative structure can be seen as a network of scenes, whose connections are
mediated by transitions. It determines the role-flow policy among the different scenes
by showing how agents, depending on their roles, may move into different scenes (other
conversations), and showing when new scenes (conversations) are created.

In all EIs we assume that there is always an initial and a final scene, which are the
entry and exit points of the institution. Each scene can have multiple instances at run-
time. An example is shown in figure 5 on page 96. Rounded rectangles depict scenes,
and arcs between them indicate the paths that agents can take.

A Transition can be thought of as a gateway between scenes or as a change of con-
versation. When an agent leaves a particular scene, there are different transitions that
could happen: An Or transition allows an agent to choose which target scene(s) to enter.
An And transition forces agents to synchronize before progressing to different scenes
together. The arc of a transition to a target scene is labeled with new if the scene is
created for the first time, and one, some or all indicating if the agent enters one, some
or all instances of the target scene type.

88 C. Sierra et al.

In each transition it is possible to also specify if an agent takes on a different role
when entering a new scene. Hence the performative structure provides an overview of
the path and roles taken up by an agent from the start to the end scene within an EI.

2.4 Norms and Commitments

The main purpose of an EI is to control the interactions between the participants and
ensure that they all adhere to agreed rules.

Actions within an institution are speech acts. These speech acts create obligations or
socially binding commitments whose fulfillment is ensured by the institution. We make
such intended effects of commitments explicit through normative rules.

We define the predicate uttered(s, w, i) that allow us to express the connection be-
tween illocutions and norms. It denotes that a grounded illocution unifying with the illo-
cution scheme i has been uttered at state w of scene s (the state w is an optional element).

A normative rule is specified using the following three elements: (i) Antecedent: the
actions that trigger the activation of the norm, expressed as a predicate defined above;
(ii) Defeasible antecedent: the utterance which releases the agent from the obligations
described in the consequent; also expressed as an uttered predicate; and (iii) Conse-
quent: the set of obligations. An obligation is expressed as Obl(x, i, s), denoting that
the agent bound to role x is obliged to utter i in scene s.

3 Designing Institutional MAS with Islander and Prometheus

In exploring how the design of an Islander EI is typically done, we have identified that
it is useful to begin with a slight modification of the Prometheus System Specification
phase.

This phase in Prometheus consists of a number of interleaving, iterative steps, to
define goals, roles, scenarios and environmental interface in the form of actors, actions
and percepts. These elements, as well as the ontology, then provide input to a new
phase which we call the Social Design phase, where the EI can be specified in the
Islander tool. Specifically, the roles are incorporated into Islander’s social structure,
the scenarios are used as a starting point for developing the performative structure and
the interaction model, goals are used to help identify norms, and, of course, ontology
elements identified in the system specification phase feed into developing the ontology
in the Social Design phase (see figure 1).

Once the Electronic Institution has been designed, there is additional information
which can be provided back into Prometheus’ Architectural Design phase, in order to
design the agents that will join the institution. The institution is used as a starting point
for the design. Specifically, the social structure and the norms identified in the Social
Design phase are used, in addition to the system interface and goals, in determining
which agent types should exist; and the interaction model is used as a starting point for
defining interaction protocols.

In order to illustrate the methodology in greater detail we use a simple example of an
EI for making flight and hotel arrangements. In this EI, agents can make and accept flight
and hotel bookings, including payment for these. The idea is that the EI provides a trusted
interaction space in which agents can engage in these interactions with other agents.

Designing Institutional Multi-Agent Systems 89

The remainder of this section explains the design methodology in greater detail, us-
ing this example. Section 3.1 covers the System Specification phase, with particular
focus on the changes that have been made to the existing phase in Prometheus. Sec-
tion 3.2 covers in detail the (new) Social Design phase, and section 3.3 briefly indicates
how the Architectural Design phase has been modified to make use of the information
produced in the Social Design phase. The detailed design phase is unchanged and is not
discussed in this paper.

Scenarios Goals

Analysis

Model

(incl. actors)

Roles OntologyS
y
s
te

m

S
p
e
c

Performative

Structure

Interaction

Model

Social

Structure

Norms

Ontology &

Information

Model

S
o
c
ia

l
D

e
s
ig

n
A

rc
h
.
D

e
s
ig

n

Interaction

Protocol
Includes

messages

Agent types
(use data coupling,
acquaintance etc.)

System

Overview

Diagram

Data

… Detailed Design …

Interface
(percepts,

actions)

Fig. 1. Revised Methodology

3.1 System Specification

In order to appropriately use the Prometheus System Specification phase in conjunc-
tion with designing an electronic institution, there are a few changes that need to be
made. In the standard Prometheus approach, we would start with identifying the actors,
persons or entities, including software, that are external to the system, and that would
interact with the system. In this case, the natural starting point is identification of the
roles that will interact within the Electronic Institution. In our example these could be
a Customer3 role, a Travel Agent role, and a Banker role. These are external to the Insti-
tution, so one option could be to model them as Prometheus actors. However we choose

3 We use san serif font to indicate names in the design. Due to limitations with the tool multi-
word names do not have spaces in the figures (e.g. TravelAgent), but, for readability, do have
spaces in the paper’s text (e.g. Travel Agent).

90 C. Sierra et al.

to retain actors as the entities external to both the Institution and the software agents
which we are designing. In our example, the actors may be Airline companies (with
whom our electronic travel agent must eventually make a booking), Hotel proprietors,
and Human customers.

Having identified the roles, (which will eventually be played by agents) we then
identify the main scenarios for the EI. In this case we identify a Travel Booking scenario
and a Payment scenario. The Customer and the Travel Agent roles are involved in the
Travel Booking scenario, while the Bank and the Customer roles are involved in the
payment scenario (called Pay Booking). The details of the interaction of the roles, with
respect to the scenario is left until the Social Design phase.

If desired, we can identify the external actors that our roles will interact with, and the
percepts or actions that we expect to be a part of those interactions. This information
can then be used in the design of the agents that will be able to fill these roles. We iden-
tify that the Travel Agent role can be expected to have a booking action for interaction
with the Airline and the Hotel proprietor. (We may later decide that we also want a con-
firmation percept from actor to Travel Agent). Similarly we identify a Request percept
from the human customer to the agent that will play the Customer role, and an action
to Provide Itinerary (again, further interaction may well be defined later).

We also add to the System Design phase a step to identify soft goals and to link these
to particular entities if appropriate. In our example we identify three soft goals: reliable
service provision; safe transactions; and ability to hold reservations for three days. The
first of these we leave unattached, while safe transactions is attached to the Pay Booking
scenario, and the ability to hold (unpaid) reservations is attached to the Travel Booking
scenario.

The resulting analysis overview diagram is shown in figure 2. Boxes with stick fig-
ures denote either roles or actors (the distinction is indicated in the name), large squares
denote soft goals, and arrows-like icons (with the indication “scenario”) denote scenar-
ios. Percepts are star-bursts, and actions are arrows (e.g. Provide Itinerary).

Having identified the roles and the main scenarios, we then further develop both the
goals and the scenarios.

Goals: Whereas in “classical” Prometheus, goals are all system goals, which will be
eventually allocated to specific agents, here we distinguish between three types of goals:
individual goals that are allocated to a role (and later to an agent type), joint goals that
are achieved by a group of roles (eventually agents), and social goals, where the EI
plays a part in ensuring that these goals are achieved.

In deciding what type a given goal should be we consider whether it belongs to a
single role (so is probably an individual goal), or to multiple roles (in which case it is
probably joint or social). If any of the roles that the goal is assigned to are institutional
(“staff”) roles, then it must by definition be a social goal. However, at this stage in the
process we may not have enough information to determine whether a goal should be
joint or social, and so we may defer this decision until the Social Design phase.

As in “classical” Prometheus, the identification of system goals goes hand in hand
with identification of scenarios and scenario steps. Goals are refined by techniques such
as asking ‘how can we achieve this goal?’ [13]; and refinement and abstraction, along

Designing Institutional Multi-Agent Systems 91

Fig. 2. Analysis diagram

with combining similar subgoals that arise in different parts of the system, eventually
leads to a well developed goal hierarchy.

In addition to the individual/joint/social distinction, we have also introduced soft
goals and the Goal Overview Diagram has been extended to show these. Soft goals are
(optionally) linked to goals and provide information on the desired properties of the
system. This information is captured explicitly so that it can be used later to develop
constraints (in scenes) or norms (see section 3.2).

For example, figure 3 shows the goal overview diagram for the travel agent example.
It shows that the high-level goal Travel Booking is a joint goal, as are its three child goals
(Find Flights, Find Hotels and Make Booking). However, the sub-goals of Pay Booking
are clearly individual goals.

Scenarios: Prometheus scenarios, which are identified for each actor that will interact
with the system, contain steps (which can be goals, percepts actions or sub-scenarios).
In modelling scenarios within EIs it is natural to think of these scenario steps conceptu-
ally as joint activities involving some number of agents. Joint activities in our example
would be Make Booking, Pay Booking, etc. The details that need to be recorded for a
joint activity (name, roles, goal, and relevant data) are the same as for a scenario but
without any steps. Consequently, rather than introduce joint activity as a new step type,
we simply allow the steps of a scenario to be optional. A minor change is that we allow
the goal in the scenario descriptor to be a set of goals, interpreted as a conjunction,
rather than a single goal. Figure 4 depicts the Travel Booking scenario with joint activi-
ties (scenarios) as the steps4.

4 Note that this scenario uses the roles of Hotel Provider and Flight Provider instead of the
more general super-role Travel Agent.

92 C. Sierra et al.

Travel Booking(J)

Find Flights(J) Find Hotels(J) Make Booking(J)

Pay Booking(J)

Make Payment(I) Check Funds(I) Receive Payment(I)

Reliable

Providers

(social)

Bookings

held for 3 days

(social)

Safe

Transactions

(Joint)

Fig. 3. Goal Overview Diagram. Ovals denote goals, and rectangles denote soft goals.

Scenario: Travel Booking
Goal(s): Travel Booking
Steps:
Type Name Role(s) Data used Data produced
1 Scenario Find Flights Flight Provider Flights Info

Customer
2 Scenario Find Hotels Hotels Provider Hotels Info

Customer
3 Scenario Make Booking Flight Provider Flights Info Bookings

Customer
4 Scenario Make Booking Hotels Provider Hotels Info Bookings

Customer
5 Scenario Pay Booking Bank, Customer Bookings Bookings, Flights Info
6 Scenario Pay Booking Bank, Customer Bookings Bookings, Hotels Info

Fig. 4. Example Scenario

Roles and Ontology: In standard Prometheus roles are identified by grouping goals
(along with percepts and actions) into clusters and identifying a role that would manage
these goals. Here we have already identified some roles in the analysis overview diagram.
The clustering of goals may identify additional roles. In our example we identify the
additional roles of Flight Provider, Hotel Provider, and payer. We then extend the standard
Prometheus process to consider and capture sub-role relationships. In our example we
identify Flight Provider and Hotel Provider as sub-types of Travel Agent. The exclusion
relationships between roles (static separation of duties (SSD), and dynamic separation
of duties (DSD)), required by Islander, is however left until the Social Design phase.

In addition to the roles played by agents entering the Electronic Institution, Islander
has a concept of internal roles which are played by staff agents, and are part of manag-
ing the infrastructure of the EI. We do not necessarily identify these internal roles dur-
ing the System Specification phase, as they are typically introduced during the Social

Designing Institutional Multi-Agent Systems 93

Design phase, where consideration is given to managing the infrastructure functions of
the EI. If some such roles are identified at this stage, they should be marked as internal.

During scenario specification there is identification of data used and produced, which
is the start of ontology definition, and is defined as such. In our example we identified
Flight Info, Hotel Info and Booking as three necessary items in the ontology, and made
some initial decisions about fields required.

Summary of Modifications to Prometheus: There are five modifications to the stan-
dard Prometheus process in order to have a process which facilitates and feeds into the
Social Design phase done in Islander. These are:

(a) The analysis overview diagram was changed to capture roles (that would be taken
on by agents entering the EI) as well as the actors external to the system, and also
to include soft goals.

(b) A role hierarchy is developed, if appropriate. Also a distinction is introduced be-
tween internal roles (“staff” roles of the EI) and external roles (to be taken on by
agents operating within the EI).

(c) Steps are made optional in a scenario to allow use of scenarios for modelling joint
activities.

(d) The goal overview diagram is extended to allow soft-goals to be captured, and to
allow different types of goals to be distinguished.

(e) Identification of data in scenario steps is extended to a preliminary ontology de-
velopment activity.

3.2 Social Design

The social design phase, specifying the details of the Electronic Institution (completed
using the Islander tool), takes input from the Prometheus based system specification.
We structure this phase as eight separate steps. Note that, as with all system design and
development, these are iterative rather than strictly sequential. The steps, along with the
part of Islander that is addressed in each step, are as follows:

1. Develop the social structure (roles and relationships)
Social Structure model (in the Dialogical Framework)

2. List scenes with participating roles (input to step 3)
3. Develop the performative structure (network of scenes) and initial flow

Performative structure model
4. For each scene, define the interaction structure: basic conversation stages, and flow

of conversation
Interaction Structure

5. Develop the ontology (influenced by interaction model)
Ontology Model (in the Dialogical Framework)

6. Define the information model, actions and constraints
Interaction Model

7. Identify and specify norms
Norms and Commitments Model

8. Check that all social goals have been achieved

94 C. Sierra et al.

In particular, steps 4-6 are performed for each scenario and are very iterative. We
have presented them as distinct steps for two reasons. Firstly, because the steps are con-
cerned with different parts of Islander (e.g. steps 4 and 5 are concerned with the inter-
action model and the ontology model respectively). Secondly, because the sequencing
of the steps can vary: one possibility is to perform steps 4-6 for one scene, then perform
them for the next scene, and so on; but it is also possible to perform steps 4 and 5 for
each scene in sequence, and only then continue with step 6.

The rest of this section describes these steps in detail, with reference to our travel
example.

Step 1: Develop the Social Structure (Roles and Relationships). In this (simple)
step we refine the roles identified in the system specification phase by adding further
relationship information.

We begin by simply transcribing the roles that have been identified in the previous
phase. In our example these are Travel Agent, Customer, Bank, Flight Provider and Hotel
Provider. We then add any additional roles we recognize as being necessary internal
roles (though these may well be added later when considering norms), and further de-
velop the role structure if desired. In our example we decide to introduce an internal
Reliability Monitor role to maintain information about providers in order to support the
soft goal of “Reliable Providers”.

Finally, we consider and specify exclusivity relationships: which roles cannot be
filled by the same agent. As discussed in section 2, Islander defines both a static and a
dynamic separation of duties. In our example, it is fairly clear that the Reliability Monitor
should be separate from the provider or consumer of the service that is being monitored,
and so we add an SSD (Static) relationship between the Reliability Monitor and the Travel
Agent, and between the Reliability Monitor role and the Customer role.

Step 2: List Scenes with Participating Roles. Having refined the roles that exist in
the institution, the next step is to define the scenes that these roles will participate in. A
good starting point for identifying scenes is to take the joint activities (sub-scenarios)
that are the steps of scenarios in the previous phase. (These are primarily scenarios that
have no sub-scenario steps.) It is also useful to consider whether certain scenarios can
be generalized into a common scenario type which permits two or more of the existing
scenarios to be merged. There are certain commonly-used types, such as information
seeking, that can often be used to do this generalization.

For example, looking at the scenario in figure 4, we have six sub-scenarios that could
become scenes. In this case we decide that finding a flight and finding a hotel may have
significant differences in the information that is exchanged, but that once information
has been found, booking a hotel and booking a flight are likely to be similar enough that
they can be merged into a more generic booking scene. Similarly, paying for a flight and
paying for a hotel are merged into a payment scene. This gives us the following scenes:
Hotel Info, Flight Info, Booking, and Payment. Additionally, Islander requires a starting
and ending scene (respectively called Enter and Exit), and so these are added.

If the scenario structure is deeply nested, then it may be useful to use nested perfor-
mative structures as a way of modeling the interaction in such a way that the complexity
at each level is manageable.

Designing Institutional Multi-Agent Systems 95

When defining scenes, we need to think about a number of properties of scenes such
as cardinalities (will there be one instance of the scene or many?), what triggers scene
creation, and, where there are multiple scene instances, whether agents join all scene
instances, one instance only, or some subset of the scene instances. For example, for
the Hotel Info scene we choose to have one scene per Hotel Provider, with the Customer
choosing to join some subset of the available scenes. Since there is one scene instance
per Hotel Provider, it makes sense for new scene instances to be created when a Hotel
Provider moves into the scene.

Finally, we need to consider whether multiple scenes may map to the same under-
lying scene type. In Islander, nodes in the performative structure are scenes, which are
instances of scene types. Although often there is a one-to-one mapping between scenes
and scene types, in some cases, multiple scenes map to the same scene type. For ex-
ample, it may be possible to define a scene type Travel Info which both Hotel Info and
Travel Info are instances of. However the message contents (as well as the roles) must
be the same, if scenes are of the same type. As the information required about flights is
quite different than that required for hotels we decide not to generalize to a Travel Info
scene type as it would preclude us from having the flight/hotel specific structure in the
messages.

Step 3: Develop the Performative Structure (Network of Scenes) and Initial Flow.
Having defined what scenes exist, based on the scenarios, we now develop the per-
formative structure which shows how the scenes are linked up and how agents “flow”
between the scenes. Additionally, we define which roles play parts in which scenes (ini-
tial information is based on the scenarios), and specify how many instances of the roles
can take part in a scene instance. For example, one of the scenes is Flight Info. This scene
involves the roles of Customer and Flight Provider, with potentially many Customers,
but exactly one Flight Provider. We define the minimum number of Customer roles to
be 0, and the maximum 1, while both minimum and maximum for the Flight Provider
role are defined as 1.

In order to obtain the flows between scenes we can start by mapping the flow im-
plied within our scenarios from the previous phase. We then visit each scene in turn
to determine where else each agent might go, from that scene, other than what was
captured in the scenario. In the particular scenario we had developed a Customer and
Flight Provider start off (after entry) in the Flight Info scene. In the following step, the
Customer is in the Hotel Info scene, implying that the Customer can move from Flight
Info to Hotel Info. In generalizing we recognize that the customer can move back and
forth between these two scenes, and could in fact come to either of them after the entry
scene. Scenario variation descriptions from the system specification phase may provide
information regarding additional flows. When specifying how a role can move between
scenes, we must also consider whether they will go to one, some, or all instances of that
scene. For example we have a Flight Info scene for each provider, so a Customer may
well choose to go (simultaneously) to multiple scene instances. Therefore we choose
some as the specification.

By default if a role can transition to multiple scenes, we use an OR connector. If
there is only a single choice, we could make it either AND or OR. However we choose
OR, in order to highlight any actual cases of AND which are more unusual.

96 C. Sierra et al.

As we define the flows it is sometimes necessary to introduce new roles. For example,
in defining the flow into the Booking scene, we need the Customer to be able to be
accompanied by either the Flight Provider (coming from the Flight Info scene), or the
Hotel Provider (coming from the Hotel Info scene). As the flight and hotel providers will
play the same role within the Booking scene, we need to introduce a new role, which
each of them can transform into. We introduce the Booking Provider role, which is added
to the role structure. We also introduce the role Payer at this stage for the Banking scene,
which the Customer transforms into, as it is somewhat more generic.

As we develop the performative structure it sometimes becomes quite complex, in
which case it can be advantageous to abstract a part of it and have nested performative
structures. Figure 5 shows the performative structure developed for our example. It
could be an option to abstract the structure between flightinfo, hotelinfo and booking
into a sub-performative structure (which is actually the scenario structure identified at
the top level in the analysis overview).

Step 4: for each Scene, Define the Interaction Structure. The next step involves de-
velopment of the details of the interaction within a particular scene. The representation
used here is a directed graph, which can be seen as an annotated finite state machine.
Transitions between states are messages, with the contents defined according to the on-
tology model. Consequently there is substantial interaction with step 5, development of
the ontology. Each state is also annotated with information as to which role types can
enter (“+”) or leave (“−”) at that state. There is also a “stay-and-go” (“+−”) annota-
tion which allows an agent to simultaneously be in multiple scenes. For example, when
a Flight Provider leaves a scene, with a Customer, in order to make a booking (in the
Booking scene), it also stays within the Flight Info scene to attend to other customers.

Figure 6 shows the annotated states and message transitions for the Hotel Info scene
in our example. There are some issues to determine in setting up when a Customer may
leave the scene. If we wished to require that a Customer waited to receive the response
to a request, before leaving, we would not allow them to leave at S1. However this would
have the effect that no Customer would be able to leave while any Customer was awaiting

Fig. 5. Performative Structure (from Islander)

Designing Institutional Multi-Agent Systems 97

Fig. 6. Hotel Info Scene (from Islander)

a response. If finding information took some time, this could cause unnecessary delays.
Consequently we allow a Customer to leave without waiting to receive a response, if
desired. Customers tell Hotel Providers when they are ready to go and book so both can
ask the infrastructure to leave and enact a booking scene. The scene ends when the Hotel
Provider sends a closing message, as customers can come and go as desired.

Part of this step also involves defining the structure of the relevant messages, which
is done in Islander by opening a message specification window, where we specify the
illocutionary particle, sender, receiver, and message content. For example, the left-most
request arc may be specified as being from a Customer to a Hotel Provider, and contain-
ing a location, desired check in and check out dates, and the class of hotel sought.

Step 5: Define the Ontology. There is some initial ontological information specified
during the System Specification phase, as one identifies the information needed within
scenarios. This can be brought into the Social Design and provides the basis for more
thorough refinement and development. In our example the types of data that have been
identified are Hotel Info, Flight Info and Booking. We determine that Booking really needs
to be specialized into Flight Booking and Hotel Booking, so these are added to the ontology.

As messages are developed in a scene, this typically results in further additions to the
ontology. For example when defining the messages in the Hotel Info scene we recognize
the need for a Hotel Info data type and add this into the ontology.

Step 6: Define the Information Model. Having defined the details of scenes, we also
need to specify what information needs to be maintained within the system, for use
either by the institution, or by the agents filling the roles. All information that will
be referenced within constraints or norms, needs to be part of the information model.
Actions then need to be defined for the roles which modify and access this information
model. For each property in the information model it must be considered whether the
information should be defined per role, or per institution.

One particular type of information that needs to be maintained in our example is
the bookings that a customer has, and the payments which are due for those bookings.
This is clearly information which is required for each Customer role. Consequently we

98 C. Sierra et al.

create Payment Due, as a list of Payment Details, within the Customer role. We then add
actions that update this. For example an accept in the Booking scene causes the action
to add the payment to the list of payments due for that Customer. In the Payment scene
when a payment is successful (i.e. confirmed by the Bank) this results in an action to
remove that payment from the list.

Constraints are also added at this stage. An example constraint in our model is that a
Customer can only request to make a Payment that is in its Payments Due list.

Step 7: Identify and Specify Norms. Norms are conditions that should be ensured by
the infrastructure of the institution. They are specified in Islander, in terms of
an antecedent utterance which triggers the commitments associated with the norm, a
consequent which captures the commitment or obligation, and an utterance (called the
defeasible antecedent) which specifies when the commitment is regarded as being ful-
filled. The norms are usually defined towards the end of the Social Design process when
the infrastructure is fully defined. An example norm from our travel institution is that
if a Booking is made, the agent cannot leave the institution until the corresponding pay-
ment is made.

Step 8: Check all Social Goals are Achieved. Finally we check through all of the
social goals to ensure that some aspect of the institution does ensure that these are met.
In our example one of the social goals that was identified was ensuring that service
providers were reliable. This is not something that can be specified by a norm or con-
straint based on the current specification. One solution may be to introduce a scene
where customers can make complaints which will be maintained by the institution, and
any provider having too many complaints could then be banned from entering the insti-
tution, thus providing some level of realization of this social goal.

Iteration through the Islander Models: The steps described should ensure a thorough
design of the electronic institution within Islander. They cover each of the Islander mod-
els: the Dialogical Framework with the roles and ontology, the Performative Structure
that captures the scenes and transitions between them, the Interaction Model which
specifies the allowable communication patterns within each scene, and the Norms and
Commitments.

3.3 Architectural Design

The main tasks of the Architectural Design in Prometheus are to determine the agent
types, to specify various details regarding these, and to develop protocol specifications,
including messages. This results in a system overview diagram which gives an overview
of the agents, the interactions between them, and the interface to the environment (in
terms of percepts and actions); as well as interaction protocols specified in AUML5,
which are developed by refining scenarios to give interaction diagrams, which in turn
are generalized to provide protocol specifications. As part of developing the protocols,
the messages between agents are also specified.

5 http://www.auml.org

http://www.auml.org

Designing Institutional Multi-Agent Systems 99

The decision as to which roles to combine into agents is based on standard software
engineering concepts of cohesion, coupling and modularity. The agent goals, along with
the percepts they receive and the actions they execute, are then propagated from the
system specification. In addition the developer is prompted to consider a range of ques-
tions regarding initialization, cardinality, and other aspects of the agent.

This step, of deciding how to group roles into agents, remains essentially unchanged,
except that the Social Design phase may well influence this. We do add a field in the
agent descriptor to allow specification of norms that apply to an agent. This information
will then be passed to the detailed design where agent behaviour should be developed
to respect these norms.

The introduction of the Social Design phase means that a large part of the mes-
sage and interaction specification has already been done. We note though that there is
some difference in that the interactions of the Social Design phase are between roles,
whereas standard Prometheus design specifies interactions between agent types. If the
choice is made to implement an agent type for each role in the Social Design there is
no difference. However, if some roles are combined into a single agent type, then some
adjustments may be needed.

For example in our travel institution we may decide to combine the Flight Provider
and the Hotel Provider into a single Travel Agent agent type. This combination is
straightforward in that none of the specified interactions are between Flight Provider
and Hotel Provider. Consequently we can just replace Flight Provider and Hotel Provider
by Travel Agent as we convert the interaction specified in the scene, to an AUML
protocol.6 In cases where there are potential interactions between roles that have been
incorporated into the same agent type, we must ensure that we do still specify the
interactions that may happen as a result of two agent instances of this type, playing
different roles.

The ontology of the Social Design phase can be incorporated directly into the Archi-
tectural Design, and once the mapping between roles and agents is clear, it is obvious
which agents deal with which data.

It may be the case that not all agents in the system being developed participate in
the electronic institution. If this is the case standard Prometheus process needs to be
followed to develop the interaction protocols involving these agents. In some cases
there may be a situation where an agent is interacting with another agent outside the EI,
within the same protocol that it is interacting within the EI. From the point of view of
the EI, these additional interactions are part of the agent internals. But from the point
of view of the entire system they are part of a larger interaction protocol. For example
if our system included an agent, outside of the EI, whose job it was to continually
search the Internet for good flight deals within Europe, then our flight provider may
well interact with this agent to get up to date information, between the request and the
inform within the Islander flight info scene.

Consequently, although a substantial amount of information can be incorporated
from the Social Design into the Architectural Design, it is still necessary to consider
all the Prometheus steps, in the case that there are some parts of the system that do not
participate in the electronic Institution.

6 This can likely be automated, but we have not yet done this, nor investigated it fully.

100 C. Sierra et al.

4 Related Work

Engineering multi agent systems (MAS) is an intricate task that sits on top of disciplines
like distributed and normative systems, and that frequently uses metaphors from the
social sciences (e.g. sociology, economy, or psychology). It would therefore be lengthy
to try and make a complete summary of the state of the art that covers all the sources of
influence. We will therefore concentrate on work that is more directly related to MAS
organizations and software development methodologies.

The organization of a MAS consists of the roles, relationships, and power and au-
thority relationships among the roles that structure the behaviour of the agents. For any
agent, the access permissions, actions allowed, and interactions permitted depend to
a large extent on what roles the agent might incarnate within an organization. For in-
stance, the organization associated to an electronic institution is called its social model
and is specified as a set or roles, a role hierarchy, and user-defined relationships. The
actions permitted are determined by some system-defined relationships (static and dy-
namic separation of duties), by the role flow policy in the performative structure, and
by the protocols within scenes.

All MAS have an organization of some sort underpinning them, and in the literature
of agents there is a large corpus of work devoted to studying the algorithmics and the
problem solving capabilities that different organizations may show. Some of the most-
studied organizational structures are hierarchies, coalitions and teams.

Hierarchies [14] are the most primitive, where the tree of the hierarchy determines
the interactions that might happen (between parents and children only) and thus how
the information flows (up and down), and the authority relationship (top-down). Elec-
tronic institutions could be embedded with hierarchical organizations if care is taken
in the performative structure to only allow the type of interactions that the hierarchy
establishes. The authority relationship is mapped easily by the hierarchy defined in the
social model.

Coalitions [15] are organizations that are much more dynamic in the sense that the
structure is not fixed at specification time but it is an ‘agreement’ that agents commit to
in order to act in a co-ordinated way. Coalitions need therefore to be formed at run time
upon a certain common goal. Algorithms to determine the optimal coalition structure
for a problem have been studied [16].

Teams [17], like coalitions, are dynamically organized groups of agents that have
different individual goals but that co-operate to attain a certain global goal that requires
the concourse of all of the members of the team. In both cases, coalitions and teams, the
institutional perspective is that of laying down the infrastructure that would permit the
dialogues and commitments among the agents (together perhaps with norms that would
punish the violation of agreements).

A large number of MAS software development methodologies have been proposed
recently (e.g. see [18,19]). Although they are based on strong agent-oriented founda-
tions and offer original contributions at the design level, they are unsatisfactory for
developing EIs: most MAS methodologies, although they necessarily deal with struc-
tures of agents and interations between agents, do not explicitly represent community or
social concepts. More generally, the formal definition of organization-centered patterns

Designing Institutional Multi-Agent Systems 101

and social structures in general (e.g. [5,20,21]), and their computational realization re-
main open issues (as noted in [22]).

This work provides a detailed methodology for developing an explicit institutional
structure, and embeds this into an existing MAS methodology. The integration within
the Prometheus methodology means that Prometheus (and PDT) can then be used to
design and develop the agents that will participate in the specified Electronic Institution.

Our approach shares some similarities with the OperA methodology [5]. OperA
builds upon the idea of an organizational model, consisting of roles and their rela-
tionships, similar to those we use, and an interaction model inspired by the electronic
institution concept, that determines the activities agents get engaged in. Norms are non-
operational concepts in OperA that describe the behaviour of agents in an abstract way.
In our approach we opt for a more grounded approach that permits certain verifications
of agent behaviour. Finally, OperA defines the initial part of the interaction network
(start scene) as the setting of a social model where agents agree on social contracts that
later on they will freely respect in their interactions.

Although some agent infrastructures such as DARPA COABS7 and FIPA compliant
platforms such as JADE [23] deal with many issues that are essential for open agent in-
teractions — communication, identification, synchronization, matchmaking — they are
arguably too distant from organization-centered patterns or social structures. Also, al-
though some infrastructure work, perhaps most notably the work on TuCSoN [24], has
investigated linking lower-level infrastructure with social laws (e.g. [25]), clear method-
ological guidance for a designer has not been well addressed.

Among the few other proposals we can mention the proposal by Hanachi [26] that
allows for specifications of interaction protocols that need to be subsequently compiled
into a sort of executable protocol brokers called moderators. Also, in Tropos, the specifi-
cations are transformed into agent skeletons that must be extended with code. However,
at execution time there is no mechanism to ensure that agents follow the specification
of the system.

A promising line of work is the one adopted by Omicini and Castelfranchi (e.g. [27]).
It postulates some significant similarities with the EI approach: focus on the social
aspects of the interactions, a unified metaphor that prevails along the development cy-
cle, and the construction of tools to implement methodological ideas. However, the ac-
tual development of the methodology and the associated tools appears to be still rather
tentative.

5 Conclusion

We have presented a methodology for designing e-institutions that extends the
Prometheus methodology with a social design phase, where Islander is used to design
an institution.

It appears to be relatively straightforward to actually integrate the two tools (PDT
and Islander) by means of XML specifications of entities that are passed between them.
This work is currently in progress. We are also investigating developing skeleton code
from the Prometheus Detailed Design, which can be integrated into Ameli at runtime.

7 http://coabs.globalinfotek.com/

http://coabs.globalinfotek.com/

102 C. Sierra et al.

References

1. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review 19 (2005) 281–316

2. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD Monogra-
phy. Vol. 19 (2003)

3. Rodrı́guez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Electronic
Institutions. IIIA Phd Monography. Vol. 14 (2001)

4. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. IIIA Phd Monography.
Vol. 8 (1997)

5. Dignum, V.: A Model for Organizational Interaction. PhD thesis, Dutch Research School
for Information and Knowledge Systems (2004) ISBN 90-393-3568-0.

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2002), Bologna, Italy (2002) 1045–1052

7. Arcos, J.L., Esteva, M., Noriega, P., Rodrı́guez, J.A., Sierra, C.: Engineering open environ-
ments with electronic institutions. Journal on Engineering Applications of Artificial Intelli-
gence 18 (2005) 191204

8. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons (2004) ISBN 0-470-86120-7.

9. Padgham, L., Thangarajah, J., Winikoff, M.: Tool Support for Agent Development using
the Prometheus Methodology. In: First international workshop on Integration of Software
Engineering and Agent Technology (ISEAT 2005), Melbourne, Australia (2005)

10. Esteva, M., Rodrı́guez-Aguilar, J.A., Sierra, C., Arcos, J.L., Garcia, P.: On the formal speci-
fication of electronic institutions. In Sierra, C., Dignum, F., eds.: Agent-mediated Electronic
Commerce: The European AgentLink Perspective. Number 1991 in Lecture Notes in Artifi-
cial Intelligence. Springer-Verlag (2001) 126–147

11. Rodrı́guez-Aguilar, J.A., Noriega, P., Sierra, C., Padget, J.: Fm96.5 a Java-based Electronic
Auction House. In: Second International Conference on The Practical Application of Intelli-
gent Agents and Multi-Agent Technology(PAAM’97). (1997) 207–224

12. Cunı́, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C., Solchaga, T.: MASFIT: Multi-agent
Systems for Fish Trading. In: 16th European Conference on Artificial Intelligence (ECAI
2004), Valencia, Spain (2004) 710–714

13. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering (RE’01),
Toronto (2001) 249–263

14. Fox, M.S.: Organization structuring: Designing large complex software. Technical Report
CMU-CS-79-155, Carnegie-Mellon University (1979)

15. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial
Intelligence 101 (1998) 165–200

16. Chvatal, V.: A greedy heuristic for the set covering problem. Mathematics of Operations
Research 4 (1979)

17. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7 (1997)
83–124

18. Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea Group Pub-
lishing (2005)

19. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering
for Agent Systems. The Agent-Oriented Software Engineering Handbook. Kluwer Publish-
ing (2004) ISBN 1-4020-8057-3.

Designing Institutional Multi-Agent Systems 103

20. Parunak, H., Odell, J.: Representing social structures in UML. In: Agent-Oriented Software
Engineering II. LNCS 2222. Springer-Verlag (2002) 1–16

21. Vazquez, J., Dignum, F.: Modelling electronic organizations. In: Multi-Agent Systems and
Applications III. Volume 2691 of LNAI. Springer-Verlag (2003) 584–593

22. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering and Methodology 12 (2003)
317–370

23. Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-Agent Systems with JADE. In
Castelfranchi, C., Lesperance, Y., eds.: Intelligent Agents VII. Number 1571 in Lecture Notes
in Artificial Intelligence. Springer-Verlag (2001) 89–103

24. Cremonini, M., Omicini, A., Zambonelli, F.: Multi-agent systems on the Internet: Extending
the scope of coordination towards security and topology. In Garijo, F.J., Boman, M., eds.:
Multi-Agent Systems Engineering. Volume 1647 of LNAI., Springer-Verlag (1999) 77–88
9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAA-
MAW’99), Valencia, Spain, 30 June – 2 July 1999. Proceedings.

25. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The coordination
viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents VI. Agent Theories,
Architectures, and Languages. Volume 1757 of LNAI., Springer-Verlag (2000) 250–259 6th
International Workshop (ATAL’99), Orlando, FL, USA, 15–17 July 1999. Proceedings.

26. Hanachi, C., Sibertin-Blanc, C.: Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems. Journal of Autonomous Agents and Multiagent Systems 8 (2004)

27. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: Third International Joint Con-
ference on Autonomous Agents and Multi-agent Systems (AAMAS’04), New York, USA
(2004) 286–293

Modeling Mental States in the Analysis of Multiagent
Systems Requirements

Alexei Lapouchnian1 and Yves Lespérance2

1 Department of Computer Science, University of Toronto, Toronto, ON, M5S 3G4, Canada
alexei@cs.toronto.edu

2 Department of Computer Science and Engineering, York University, Toronto,
ON, M3J 1P3, Canada

lesperan@cs.yorku.ca

Abstract. This paper describes an agent-oriented requirements engineering ap-
proach that combines informal i∗ models with formal specifications in the multia-
gent system specification formalism CASL. This allows the requirements
engineer to exploit the complementary features of the frameworks. i∗ can be used
to model social dependencies between agents and how process design choices af-
fect the agents’ goals. CASL can be used to model complex processes formally.
We introduce an intermediate notation to support the mapping between i∗ mod-
els and CASL specifications. In the combined i∗-CASL framework, agents’ goals
and knowledge are represented as their mental states, which allows for the for-
mal analysis and verification of, among other things, complex agent interactions
where agents may have different goals and different (incomplete) knowledge. Our
models can also serve as high-level specifications for multiagent systems.

1 Introduction

Modern software systems are becoming increasingly complex, with lots of intricate
interactions. The recent popularity of electronic commerce, web services, etc. confirms
the need for software engineering methods for constructing applications that are open,
distributed, and adaptable to change. This is why many researchers and practitioners
are looking at agent technology as a basis for distributed applications.

Agents are active, social, and adaptable software system entities situated in some
environment and capable of autonomous execution of actions in order to achieve their
set objectives [25]. Furthermore, most problems are too complex to be solved by just
one agent; one must create a multiagent system (MAS) with several agents having to
work together to achieve their objectives and ultimately deliver the desired application.
Therefore, adopting the agent-oriented approach to software engineering means that the
problem is decomposed into multiple, autonomous, interacting agents, each with their
own objectives (goals). Agents in MAS frequently represent individuals, companies,
etc. This means that there is an “underlying organizational context” [7] in MAS. Like
humans, agents need to coordinate their activities, cooperate, request help from oth-
ers, etc., often through negotiation. Unlike in object-oriented or component-based sys-
tems, interactions in multiagent systems occur through high-level agent communication

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 104–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Modeling Mental States in the Analysis of Multiagent Systems Requirements 105

languages, so these interactions are mostly viewed not at the syntactic level, but “at the
knowledge level, in terms of goal delegation, etc.” [7].

In requirements engineering (RE), goal-oriented approaches (e.g, KAOS [3]) have
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level
stakeholder objectives are identified as goals and later refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environment.
Reliance on goals makes goal-oriented requirements engineering methods and agent-
oriented software engineering a great match. Moreover, agent-oriented analysis is cen-
tral to requirements engineering since the assignment of responsibilities for goals and
constraints among the components in the system-to-be and the agents in the environ-
ment is the main result of the RE process. Therefore, it is natural to use a goal-oriented
requirements engineering approach when developing MAS. With GORE, it is easy
to make the transition from the requirements to the high-level MAS specifications.
For example, strategic relationships among agents will become high-level patterns of
inter-agent communication. Thus, it would be desirable to devise an agent-oriented RE
approach with a formal component that supports rigorous formal analysis, including
reasoning about agents’ goals and knowledge.

In the above context, while it is possible to informally analyze small systems, for-
mal analysis is needed for any realistically-sized system to determine whether such
distributed requirements imposed on each agent in a MAS are correctly decomposed
from the stakeholder goals, consistent and, if properly met, achieve the system’s overall
objectives. Thus, the aim of this work is to devise an agent-oriented requirements engi-
neering approach with a formal component that supports reasoning about agents’ goals
(and knowledge), thereby allowing for rigorous formal analysis of the requirements
expressed as the objectives of the agents in a MAS.

In our approach, we integrate the i∗ modeling framework [27] with CASL [19, 18], a
formal agent-oriented specification language that supports the modeling of agent mental
states. This gives the modeler the flexibility and intuitiveness of the i∗ notation as well
as the powerful formal analysis capability of CASL. To bridge the gap between informal
i∗ diagrams and formal CASL specifications we propose an intermediate notation that
can be easily obtained from i∗ models and then mapped into CASL. With our i∗-CASL-
based approach, a CASL model can be used both as a requirements analysis tool and as
a formal high-level specification for a multiagent system that satisfies the requirements.
This model can be formally analyzed using the CASLve [20, 18] tool or other tools and
the results can be fed back into the requirements model.

One of the main features of this approach is that goals (and knowledge) are assigned
to particular agents thus becoming their subjective attributes as opposed to being ob-
jective system properties as in many other approaches (e.g., Tropos [1] and KAOS [3]).
This allows for the modeling of conflicting goals, agent negotiation, information ex-
change, complex agent interaction protocols, etc.

The rest of the paper is organized as follows: Section 2 briefly describes the concepts
of i∗ and CASL, Section 3 discusses our approach in detail, and Section 4 concludes
the paper.

106 A. Lapouchnian and Y. Lespérance

2 Background

2.1 The i∗ Framework

i∗ [27] is an agent-oriented modeling framework that is mostly used for requirements
engineering. i∗ centers on the notion of intentional actor and intentional dependency.
Actors are described in their organizational setting and have attributes such as goals,
abilities, beliefs, etc. In i∗, an actor can use opportunities to depend on other actors
in achieving its objectives, at the same time becoming vulnerable if those actors do
not deliver. Dependencies in i∗ are intentional since they appear as a result of actors
pursuing their goals.

To illustrate the approach, we use a variant of the meeting scheduling problem, which
has become a popular exemplar in Requirements Engineering. In the context of the
i∗ modeling framework a meeting scheduling process was first analyzed in [27]. We
modified the meeting scheduling process to make our models easier to understand. For
instance, we take the length of meetings to be the whole day. We also introduced a
legacy software system called the Meeting Room Booking System (MRBS) that handles
the booking of meeting rooms. The complete case study is presented in [8].

Fig. 1. SD (A) and SR (B) models for the meeting scheduler process

The i∗ framework has two main components: the Strategic Dependency (SD) model
and the Strategic Rationale (SR) model. The former describes the external relationships
among actors, while the latter focuses on exploring the rationale behind the processes in
organizations from the point of view of participating actors. SD models are networks of
actors (which can be agents, positions, and roles) and dependencies. Depending actors
are called dependers and depended-upon actors are called dependees. There can be four
types of dependencies based on what is being delegated — a goal, a task, a resource,
and a softgoal. Softgoals are related to the notion of non-functional requirements [2]
and model quality constraints on the system.

Modeling Mental States in the Analysis of Multiagent Systems Requirements 107

Fig. 1A is the SD diagram showing the computerized Meeting Scheduler (MS) agent
in its environment. Here, the role Meeting Initiator (MI) depends on the MS for schedul-
ing meetings and for being informed about the meeting details. The MS, in turn, de-
pends on the MP (Meeting Participant) role for attending meetings and for providing
his/her available dates to it. The MS uses the booking system to book rooms for meet-
ings. The Disruptor actor represents outside actors that cause changes in participants’
schedules, thus modeling the environment dynamics.

SR models enable the analyst to assess alternatives in the definition of actor processes
to better address their concerns. Four types of nodes are used in SR models — goals,
tasks, softgoals, and resources — and three types of links — means-ends links, task
decompositions links, and softgoal contribution links. Means-ends links specify alter-
native ways to achieve goals; task decomposition links connect tasks with components
needed for their execution. For example, Fig. 1B is a simple SR model showing some
details of the MI process. To schedule meetings, the MI can either do it manually, or del-
egate it to the scheduler. Quality requirements (softgoals), such as MinimizeEffort
in Fig. 1B, are used to evaluate these alternatives. Contribution links specify how alter-
natives contribute to quality constraints.

2.2 The Formal Foundations: CASL

The Cognitive Agents Specification Language (CASL) [19, 18] is a formal specification
language that combines theories of action [15, 16] and mental states [17] expressed in
the situation calculus [10] with ConGolog [4], a concurrent, non-deterministic agent-
oriented programming language with a formal semantics. In CASL, agents’ goals and
knowledge are modeled formally; communication actions are provided to update these
mental states and ConGolog is then used to specify the behaviour of agents. This com-
bination produces a very expressive language that supports high-level reasoning about
the agents’ mental states. The logical foundations of CASL allow it to be used to specify
and analyze a wide variety of MAS including non-deterministic systems and systems
with an incompletely specified initial state.

CASL specifications consist of two parts: the model of the domain and its dynam-
ics (the declarative part) and the specification of the agents’ behaviour (the procedural
part). The domain is modeled in terms of the following entities: 1) primitive actions
— all changes in the domain are due to primitive actions being executed by agents;
2) situations, which are states of the domain that result from the execution of se-
quences of actions (there is a set of initial situations, with no predecessor, correspond-
ing to the ways agents think the world might be like initially); 3) fluents, which are
predicates and functions that may change value from situation to situation. The fluent
Room(meetingID,date,room,s), where s is a situation parameter, models the
fact that a room has been booked on some day for some meeting in a situation s.

To specify the dynamics of an application domain, we use the following types of
axioms: 1) action precondition axioms that describe under what conditions actions can
be performed; 2) successor state axioms (SSA), which were introduced in [15] as a
solution to the frame problem and specify how primitive actions affect fluents; 3) initial

108 A. Lapouchnian and Y. Lespérance

state axioms, which describe the initial state of the domain and the initial mental states
of the agents; 4) other axioms that include unique name axioms for actions and domain
independent foundational axioms.

Agents’ behaviour is specified using a rich high-level programming language with
recursive procedures, loops, conditionals, non-determinism, concurrency, and interrupts
[4]. The following table lists most of the available constructs:

α, primitive action
φ?, wait for a condition (test)
δ1 ; δ2, sequence
δ1 | δ2, nondeterministic branch
π v. δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
for v : φ do δ endFor, for loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority
guard φ do δ endGuard, guard
〈 v : φ → δ until α 〉, interrupt
p(θ), procedure call

The guard operator (defined in [8]) blocks execution of the program δ until its condition
φ holds. For an interrupt operator, when its condition φ holds for some value of v, the
interrupt triggers and the body δ is executed. Afterwards, the interrupt may trigger again
provided that the cancellation condition α does not hold. The “for loop” construct is
defined in [18].

Also, CASL supports formal modeling of agents’ goals and knowledge. The rep-
resentation for both goals and knowledge is based on a possible worlds semantics in-
corporated into the situation calculus, where situations are viewed as possible worlds
[11, 17]. CASL uses accessibility relations K and W to model what an agent knows and
what it wants respectively. K(agt,s’,s) holds if the situation s’ is compatible with
what the agent agt knows in situation s, i.e., in situation s, the agent thinks that it
might be in the situation s’. In this case, the situation s’ is called K-accessible. When
an agent does not know the value of some formula φ, it considers possible (formally, K-
accessible) some situations where φ is true and some where it is false. An agent knows
some formula φ if φ is true in all its K-accessible situations: Know(agt,φ ,s) =
∀ s’(K(agt,s’,s) ⊃ φ[s’]). Constraints on the K relation ensure that agents
have positive and negative introspection (i.e., agents know whether they know/don’t
know something) and guarantee that what is known is true. Communication actions
such as inform are used for exchanging information among agents. The preconditions
for the inform action ensure that no false information is transmitted. The changes to
agents’ knowledge due to communication and other actions are specified by the SSA
for the K relation. The axiom ensures that agents are aware of the execution of all ac-
tions. This formal framework is quite simple and idealized. More complex versions of
the SSA can be specified, for example, to handle encrypted messages [19] or to provide

Modeling Mental States in the Analysis of Multiagent Systems Requirements 109

belief revision [21]. For convenience, abbreviations KWhether(agt,φ,s), which
means that the agent knows either φ or its negation, and KRef(agt,θ,s), which
indicates that the agent knows the value of θ, are used.

The accessibility relation W(agt,s’,s) holds if in situation s an agent considers
that everything that it wants to be true actually holds in s’, which is called W-accessible.
Goal(agt,ψ,s) indicates that in situation s the agent agt has the goal that ψ holds.
The definition of Goal says that ψ must be true in all W-accessible situations that have
a K-accessible situation in their past. This way, while agents may want something they
know is impossible to obtain, the goals of agents must be consistent with what they cur-
rently know. In our approach, we mostly use achievement goals that specify the desired
states of the world. We use the formula Goal(agt,Eventually(ψ),s) to state
that agt has the goal that ψ is eventually true. The request and cancelRequest
actions are used to request services and cancel these requests. Requests are used to es-
tablish intentional dependencies among agents. The dynamics of the W relation, which
is affected by request, etc., are specified by a SSA. There are constraints on the W
and K relations, which ensure that agents’ goals are consistent and that agents introspect
their goals. See [18, 19] for more details about CASL, as well as [8] for details about
how we have adapted it for use with i∗ for requirements engineering.

3 The i∗-CASL Process

3.1 Increasing Precision with iASR Models

Our aim in this approach is to tightly associate SR models with formal specifications
in CASL. The standard SR diagrams are geared to informal analysis and can be very
ambiguous. For instance, they lack details on whether the subtasks in task decomposi-
tions are supposed to be executed sequentially, concurrently, under certain conditions,
etc. CASL, on the other hand, is a precise language. To handle this precision mismatch
we use Intentional Annotated SR (iASR) models that help in bridging the gap between
SR models and CASL specifications. Our goal is to make iASR models precise graph-
ical representation for the procedural component of CASL specifications. The starting
point for developing an iASR diagram for an actor is the regular SR diagram for that
actor (e.g., see Fig. 1B). It can then be appropriately transformed into an iASR model
through the steps described below.

Annotations. The main tool that we use for disambiguating SR models is annota-
tions. Annotations allow analysts to model the domain more precisely and to cap-
ture data/control dependencies among goals and other details. Annotations, proposed
in [24] for use with SR models and ConGolog, are textual constraints on iASR models
and can be of several types: composition and link annotations, and applicability con-
ditions. Composition annotations (specified by σ in Fig. 2A) are applied to task and
means-ends decompositions and specify how the subtasks/subgoals are to be combined
to execute/achieve the supertask/supergoal. Four types of compositions are allowed: se-
quence (”;”), which is default for task decompositions, concurrency (”‖”), prioritized
concurrency (”〉〉”), and alternative (”|”), which is the default for means-ends decom-
positions. These annotations are applied to subtasks/subgoals from left to right. The

110 A. Lapouchnian and Y. Lespérance

choice of composition annotations is based on the ways actions and procedures can be
composed together in CASL. In some approaches, for example, the Trust-Confidence-
Distrust method of [6] that also uses i∗, sequencing among subtasks/subgoals is cap-
tured using precedence links. We believe that the arrangement of nodes from left to
right based on their sequence/priority/etc. simplifies the understanding of models.

Fig. 2. Specifying annotations (A) and using them to synchronize procedural and declarative com-
ponents (B) in CASL specifications

Link annotations (γi in Fig. 2A) are applied to subtasks/subgoals (ni) and specify
how/under what conditions they are supposed to be achieved/executed. There are six
types of link annotations (corresponding to CASL operators): while and for loops, the if
condition, the pick, the interrupt, and the guard. The pick (pick(variableList,
condition)) non-deterministically picks values for variables in the subtask that sat-
isfy the condition. The interrupt (whenever(variableList,condition,
cancelCondition)) fires whenever there is a binding for the variables that sat-
isfies the condition unless the cancellation condition becomes true. Guards (guard(
condition)) block the subtask’s execution until the condition becomes true. The ab-
sence of a link annotation on a particular decomposition link indicates the absence of
any conditions on the subgoal/subtask.

The third annotation type is the applicability condition (ac(condition)). It ap-
plies to means-ends links used with goal achievement alternatives and specifies that the
alternative is only applicable when the condition holds.

Agent Goals in iASR Models. A CASL agent has procedural and declarative compo-
nents. iASR diagrams only model agent processes and therefore can only be used to
represent the procedural component of CASL agents. The presence of a goal node in
an iASR diagram indicates that the agent knows that the goal is in its mental state and
is prepared to deliberate about whether and how to achieve it. For the agent to modify
its behaviour in response to the changes to its mental state, it must detect that change
and synchronize its procedural and declarative components (see Fig. 2B). To do this
we use interrupts or guards with their conditions being the presence of certain goals or
knowledge in the mental state of the agent. Procedurally a goal node is interpreted as
invoking the means to achieve it.

In CASL, as described in [19], only communication actions have effects on the men-
tal state of the agents. We, on the other hand, would like to let agents change their
mental state on their own by executing the action commit(agent,φ), where φ is a

Modeling Mental States in the Analysis of Multiagent Systems Requirements 111

formula that the agent/modeler wants to hold. Thus, in iASR diagrams all agent goals
must be acquired either from intentional dependencies or by using the commit ac-
tion. By introducing goals into the models of agent processes, the modeler captures the
fact that multiple alternatives exist in these processes. Moreover, the presence of goal
nodes suggests that the designer envisions new possibilities for achieving these goals.
By making the agent acquire the goals, the modeler makes sure that the agent’s mental
state reflects the above intention. By using the commit action, the modeler is able to
“load” the goal decomposition hierarchy into the agents’ mental states. This way the
agents would be able to reason about various alternatives available to them or come up
with new ways to achieve their goals at runtime. This is unlike the approach in [24]
where agent goals had to be operationalized before being formally analyzed.

Softgoals. Softgoals (quality requirements) are imprecise and thus are difficult to han-
dle in a formal specifications language. Therefore, we use softgoals to help in choosing
the best process alternatives (e.g., by selecting the ones with the best overall contri-
bution to all softgoals in the model) and then remove them before iASR models are
produced. Alternatively, softgoals can be operationalized or metricized, thus becoming
hard goals. Since in this approach softgoals are removed from iASR models, applica-
bility conditions can be used to capture in a formal way the fitness of the alternatives
with respect to softgoals (this fitness is normally encoded by the softgoal contribution
links in SR diagrams). For example, one can specify that phoning participants to notify
them of the meeting details is applicable only in cases with few participants (see Fig. 5),
while the email option is applicable for any number of participants. This may be due to
the softgoal “Minimize Effort” that has been removed from the model before the iASR
model was produced.

Fig. 3. Adding iASR-level agent interaction details

Providing Agent Interaction Details. i∗ usually abstracts from modeling any details
of agent interactions. CASL, on the other hand, models high-level aspects of inter-agent
communication. Because of the importance of agent interactions in MAS, in order to
formally verify MAS specifications in CASL, all high-level aspects of agent interaction

112 A. Lapouchnian and Y. Lespérance

must be provided in the iASR models. This includes the tasks that request services or
information from agents in the system, the tasks that supply the information or inform
about success or failure in providing the service, etc. We assume that the communication
links are reliable.

For example, the SR model with the goal dependency RoomBooked (see Fig. 1A)
in Fig. 3A is refined into the iASR model in Fig. 3B showing the details of the requests,
the interrupts with their trigger conditions referring to mental states of the agents, etc.
Here, the parameter mid (“meeting ID”) is a unique meeting identifier. Since achieved
goals remain in the mental state of an agent, all interrupts dealing with the acquisition
of goals through dependencies must be triggered only for new instances of these goals.
We usually leave these details out in iASR models. For instance, we have left out the
part of the interrupt condition that makes sure that only unachieved instances of the
goal RoomBooked trigger the interrupt in Fig. 3B. We present an example of the fully
specified interrupt in the next section.

3.2 Mapping iASR Diagrams into CASL

Once all the necessary details have been introduced into an iASR diagram, it can be
mapped into the corresponding formal CASL model, thus making the iASR model
amenable to formal analysis.

The modeler defines a mapping m that maps every element (except for intentional
dependencies) of an iASR model into CASL. Specifically, agents are mapped into con-
stants that serve as their names as well as into CASL procedures that specify their be-
haviour; roles and positions are mapped into similar procedures with an agent parameter
so that they can be instantiated by individual agents. For concrete agents playing a num-
ber of roles, the procedures corresponding to these roles will be combined to specify
the overall behaviour of the agent. These procedures are normally executed in paral-
lel. However, one may also use prioritized concurrency, which is available in CASL,
to combine agent’s roles. Leaf-level task nodes are mapped into CASL procedures or
primitive actions; composition and link annotations are mapped into the correspond-
ing CASL operators, while the conditions present in the annotations map into CASL
formulas.

Mapping Task Nodes. A task decomposition is automatically mapped into a CASL
procedure that reflects the structure of the decomposition and all the annotations.

Fig. 4. Example iASR task decomposition

Modeling Mental States in the Analysis of Multiagent Systems Requirements 113

Fig. 4 shows how a portion of the Meeting Scheduler’s task for scheduling meetings
can be decomposed. This task will be mapped into a CASL procedure with the follow-
ing body (it contains portions still to be recursively mapped into CASL; they are the
parameters of the mapping m):

proc ScheduleMeeting(mid)
m(GetDateRangeFromMI(mid));
guard m(KnowDates(mid)) do

m(RemoveWeekendDates(mid))
endGuard;
for p: m(Ptcp(mid)) do m(GetSchedule(p)) endFor;
guard m(KnowSchedules(mid)) do

m(FindCompatibleDates(mid))
endGuard;
for d: m(CompatibleDate(d,mid)) do

m(TryDate(d,mid))
endFor;
. . .

endProc

Note how the body of the procedure associated with the ScheduleMeeting task is
composed of the results of the mapping of its subtasks with the annotations providing the
composition details. This procedure can be mechanically generated given the mapping
for leaf-level tasks and conditions.

Leaf-level tasks in our approach can be mapped either into primitive actions or CASL
procedures. While mapping leaf-level tasks into CASL procedures may reduce model
size and increase the level of abstraction (since in this way further details of agent
processes will be hidden inside these procedures), restricting the mapping of the leaf-
level tasks to primitive actions with the same name allows the CASL procedures to be
automatically constructed from these actions based on iASR annotations.

Mapping Goal Nodes. In our approach, an iASR goal node is mapped into a CASL
formula, which is the formal definition for the goal, and an achievement procedure,
which encodes how the goal can be achieved and is based on the means-ends de-
composition for the goal in the iASR diagram. For example, a formal definition for
MeetingScheduled(mid,s) could be: ∃d [AgreeableDate(mid,date,s)
∧ AllAccepted(mid, date,s) ∧ RoomBooked(mid,date,s)]. This
says that there must be a date agreeable for everybody on which a room is booked
and all participants agree to meet. This definition is too ideal since it is not always
possible to schedule a meeting. One can deidealize [22] MeetingScheduled to al-
low for the possibility of no common available dates or no available meeting rooms. To
weaken the goal appropriately, one needs to know when the goal cannot be achieved.
Modeling an achievement process for a goal using an iASR diagram allows us to un-
derstand how that goal can fail and thus iASR models can be used to come up with a
correct formal definition for the goal. The following is one possibility for deidealizing
the goal MeetingScheduled:

114 A. Lapouchnian and Y. Lespérance

MeetingScheduledIfPossible(mid,s)=
//1. The meeting has been successfully scheduled
SuccessfullyScheduled(mid,s)∨
//2. No agreeable (suitable for everybody) dates
∀d[IsDate(d)⊃ ¬ AgreeableDate(mid,d,s)] ∨
//3. For every agreeable date at least one participant declined
∀d[AgreeableDate(mid,d,s)⊃ SomeoneDeclined(mid,d,s)]∨
//4. No rooms available
∀d[SuggestedDate(mid,d,s)∧ AllAccepted(mid,d,s)]⊃

RoomBookingFailed(mid,date,s)]

The ability of CASL agents to reason about their goals gives us an opportunity to avoid
maintaining agents’ schedules explicitly in the meeting scheduler example. Instead, we
rely on the presence of goals AtMeeting(participant,mid,date,s) in the
agents’ mental states as indications of the participants’ willingness and intention to at-
tend meetings on specific dates (the absence of meeting commitments indicates an avail-
able time slot). Then, we can use the initial state axiom below (which can be shown to
persist in all situations) to make the agents know that they can only attend one meeting
per time slot (day):

∀agt[Know(agt,∀p,mid1,mid2,date[
AtMeeting(p,mid1,date,now)∧ AtMeeting(p,mid2,date,now)
⊃ mid1=mid2],S0)]

Since CASL prevents agents from acquiring conflicting goals, requests from the Meet-
ing Scheduler that conflict with already acquired AtMeeting goals will not be accom-
modated.

Generating Goal Achievement Procedures. The achievement procedures for goals are
automatically constructed based on the means for achieving them and the associated
annotations (see Fig. 5). By default, the alternative composition annotation is used,
which means that some applicable alternative will be non-deterministically selected
(other approaches are also possible). Note that the applicability condition (ac) maps
into a guard operator to prevent the execution of an unwanted alternative.

Fig. 5. Generating achievement procedures

Modeling Mental States in the Analysis of Multiagent Systems Requirements 115

Generally, an agent’s means to achieve its goals typically work, but it is rare that
they will always work. Thus, we cannot guarantee that the means for achieving the goal
that are represented in the achievement procedure for that goal are always capable of
achieving it. We therefore state that the achievement procedure will sometimes achieve
the goal, instead of saying that it will, in fact, always achieve the goal. This semantic
constraint is expressed in the following formula. It says that there exist situations s and
s’ such that the achievement procedure starts executing in s, terminates successfully
in s’, and the CASL formula representing the agent’s goal holds in s’:

∃s,s’.Do(AchievementProcedure,s,s’)∧ GoalFormula[s’]

However, if one needs more assurance that the goal will, in fact, be achieved, then
one must use agent capabilities in place of the regular procedures. There has been a
lot of work on capabilities in the agent community (e.g., [13]). Here, we view goal ca-
pabilities as goal achievement procedures that are guaranteed to succeed under certain
circumstances. Goal capabilities (task capabilities are also discussed in [8]) are rep-
resented in iASR models by special nodes (see Fig. 6) that are mapped into a CASL
formula that represents the goal of the capability, the achievement procedure that is
constructed similarly to a goal achievement procedure, a context condition that must
hold when the capability is invoked, and the specification of the behaviour of the other
agents in the environment that is compatible with the capability. The following formula
describes the constraints on goal capabilities:

∀s.ContextCond(s)⊃
AllDo((AchieveProc;GoalFormula?) ‖ EnvProcessesSpec,s)

The formula states that if we start the execution in a situation where the context condi-
tion of the capability holds, then all possible executions of the goal achievement proce-
dure in parallel with the allowable environment behaviours terminate successfully and
achieve the goal. The designer needs to determine what restrictions must be placed on
the processes executing concurrently with the capability. One extreme case is when no
concurrent behaviour is allowed (EnvProcessesSpec = nil). The other extreme
is to allow the execution of any action. Of course, the specification for most capabilities
will identify concrete behaviours for the agents in the environment, which assure the
successful execution of the achievement procedure. For example, suppose an agent has
a goal capability to fill a tank with water. It is guaranteed to succeed unless the tank’s
valve is opened. Here is the corresponding specification for the outside processes com-
patible with the capability (pick an action; if the action is not openValve, execute it;
iterate):

EnvProcessesSpec =
(π action.(action �= openValve)? ; action)≤k

Here, δ≤k represents a bounded form of nondeterministic iteration where δ can be exe-
cuted up to k times (k is a large constant). We must bound the number of environment
actions, otherwise the process will have nonterminating executions.

Fig. 6 shows the graphical notation for capabilities. Here, T1Cap is a task capability
that executes Task_1, while G1Cap is a goal capability that achieves the goal G1.

116 A. Lapouchnian and Y. Lespérance

Note that G1Cap shows the internals of the capability, while T1Cap is an abbreviated
form that hides all the details of the capability. Detailed discussion of capabilities in
this approach is presented in [8].

Fig. 6. Using goal and task capability nodes in iASR models

Modeling Dependencies. Intentional dependencies are not mapped into CASL per se
— they are established by agent interactions. iASR tasks requesting help from agents
will generally be mapped into actions of the type request(FromAgt,ToAgt,
Eventually(φ)) for an achievement goal φ. We add a special abbreviation
DoAL(δ,s,s′) (Do At Least) to be used when establishing task dependencies. It
stands for Do(δ ‖(πa.a)∗,s,s′), which means that the program δ must be exe-
cuted, but that other actions may occur. Thus, to ask an agent to execute a certain known
procedure, the depender must request it with: request(FromAgt,ToAgt, DoAL(
SomeProcedure)).

In order for an intentional dependency to be established we also need a commitment
from a dependee agent to act on the request from the depender. Thus, the dependee must
monitor its mental state for newly acquired goals. Here is an interrupt that is used by
the MP to check for a request for the list of its available dates:

〈mid:
Goal(mp,DoAL(InformAvailableDates(mid,MS),now,then))∧
Know(mp, ¬∃s,s’(s � s’ � now ∧

DoAL(InformAvailDates(mid,MS),s,s’)))→
InformAvailDates(mid,MS)
until SystemTerminated 〉

Here, if the MP has the goal to execute the procedure InformAvailDates and
knows that it has not yet executed it, the agent sends the available dates. The can-
cellation condition SystemTerminated indicates that the MP always monitors for
this goal. Requesting agents use similar interrupt/guard mechanism to monitor for re-
quested information or confirmations. Cancellation conditions in interrupts allow the
agents to monitor for certain requests/informs only in particular contexts (e.g., while
some interaction protocol is being enacted).

Modeling Mental States in the Analysis of Multiagent Systems Requirements 117

The i∗ notation, even if modified as presented in this paper, may not be the most ap-
propriate graphical notation for representing agent interaction protocols since it usually
concentrates on strategic dependencies and does not have facilities for modeling low-
level agent interaction details. A notation like AgentUML [12] may be more suitable
for this task. However, iASR models still can be used for modeling agent interactions.
To illustrate this, we present a simplified version of an interaction protocol called Net-
Bill [26]. The protocol describes the interactions between a customer and a merchant.
In NetBill, once a customer accepts a product quote, the merchant sends the encrypted
goods (e.g., software) and waits for payment from the customer. Once the payment is
received, the merchant sends the receipt with the decryption key (see Fig. 7).

Fig. 7. The NetBill interaction protocol

Fig. 8 shows a fragment of a high-level iASR representation of the NetBill proto-
col (note that we omit goal/task parameters for brevity) centered on the customer side.
Here, we specify a particular context for the use of the protocol by including the actor
Customer that has the goal PurchaseProduct, which can be achieved by using the
NetBill interaction protocol. Since, i∗ allows for creation of modular diagrams where
agents can exhibit certain behaviour by playing appropriate roles, we make use of the
protocol by delegating the task PurchaseProduct to a role NetBill Customer, which
in turn interacts with another role NetBill Merchant. While Customer and Netbill Cus-
tomer are two separate roles in Fig. 8, they will most likely be played by the same agent
(by concurrently executing the procedures for the two roles).

Inside the NetBill Customer role, the task PurchaseProduct is decomposed into
two tasks, request(KnowPrice) and EvaluateQuote, and the goal
SendPayment. These tasks and goal represent the important chunks of the customer’s
behaviour in the NetBill protocol: the request of a product quote, the evaluation and
possible acceptance of the quote, and the payment for the product. We use guard an-
notations to make sure that these sub-behaviours are only executed when appropriate.
Note that the conditions in the guards refer to the mental state of the agent. Thus, the
request for product quote is executed only when the agent does not know the quote’s
value (¬KRef(Quote))), while the evaluation of the quote only takes place once the
agent knows it. Similarly, a payment is made only after the agent knows that it has
received the desired product. The parallel decomposition (note the concurrency anno-
tation) together with the use of the guard annotations allow for the possibility of agents
executing their protocols flexibly. For example, in case of NetBill, if the agent already

118 A. Lapouchnian and Y. Lespérance

Fig. 8. iASR model for NetBill

knows the price for a product, the quote request step will be skipped. Similarly, if the
customer agent knows that some particular merchant always has the best price for cer-
tain products, it can request the delivery of the product right away. We now show how
the customer part of the NetBill protocol modeled in Fig. 8 is represented in CASL:

procPurchaseProduct(cust,merch,product)
KRef(cust,Quote(product)) do
request(cust,merch,Eventually(
KRef(cust,Quote(product))))

endGuard
‖
guard KRef(cust,Quote(product)) do
if Know(cust,GoodPrice(Quote(product)))then
AcceptQuote(cust,merch,product)

endIf
endGuard
‖
guard Know(cust,ReceivedProduct(merch,product)) do
Pay(cust,merch,product)

endGuard
endProc,

where the procedure Pay is defined as follows:

procPay(cust,merch,product)
commit(cust,Eventually(SendPayment(merch,product)));
guard Goal(cust,Eventually(SendPayment(merch,product)))do
SendPayment(merch,product)

endGuard
endProc

Modeling Mental States in the Analysis of Multiagent Systems Requirements 119

3.3 Formal Verification

Once an iASR model is mapped into the procedural component of the CASL specifi-
cation and after its declarative component (e.g., precondition axioms, SSAs, etc.) has
been specified, it is ready to be formally analyzed. One tool that can be used for that is
CASLve [20, 18], a theorem prover-based verification environment for CASL. CASLve
provides a library of theories for representing CASL specifications and lemmas that
facilitate various types of verification proofs. [18] shows a proof that there is a termi-
nating run for a simplified meeting scheduler system as well as example proofs of a
safety property and consistency of specifications. In addition to physical executability
of agent programs, one can also check for the epistemic feasibility [9] of agent plans,
i.e., whether agents have enough knowledge to successfully execute their processes.

Other approaches could be used as well (e.g., simulation or model checking). How-
ever, tools based on these techniques work with much less expressive languages than
CASL. Thus, CASL specifications must be simplified before these methods can be used
on them. For example, most simulation tools cannot handle mental state specifications;
these would then have to be operationalized before simulation is performed. The Con-
Golog interpreter can be used to directly execute such simplified specifications, as in
[24]. Model checking methods (e.g. [5]) are restricted to finite state specifications, and
work has only begun on applying these methods to theories involving mental states
(e.g., [23]).

If expected properties of the system are not entailed by the CASL model, it means
that the model is incorrect and needs to be fixed. The source of an error found during
verification can usually be traced to a portion of the CASL code and to a part of its
iASR model since our systematic mapping supports traceability.

3.4 Discussion

Our choice of CASL as the formal language is based on the fact that compared to other
formalisms (e.g., [14]), it provides a richer language for specifying agent behaviour
(with support for concurrency), so it makes it easier to specify complex MAS. We use
a version of CASL where the precondition for the inform action requires that the in-
formation being sent by an agent be known to it. This prevents agents from transmitting
false information. The removal of this restriction allows the modeling of systems where
agents are not always truthful. This can be useful when dealing with security and pri-
vacy requirements. However, dealing with false information may require belief revision
(see [21]). Similarly, the precondition for request makes sure that when requesting
services from other agents, the sender does not itself have goals that conflict with the
request. Relaxing this constraint also allows for the possibility of modeling malicious
agents. Other extensions to CASL to accommodate various characteristics of applica-
tion domains are possible (e.g., a simple way of modeling trust is discussed in [8]). We
also note that in CASL all agents are aware of all actions being executed in the system.
Often, it is useful to lift this restriction, but dealing with the resulting lack of knowledge
about agents’ mental states can be challenging.

120 A. Lapouchnian and Y. Lespérance

4 Conclusion

In the approach presented in this paper and in [8], we produce CASL specifications from
i∗ models for formal analysis and verification. The approach is related to the Tropos
framework in that it is agent-oriented and is rooted in the RE concepts. Our method is
not the first attempt to provide formal semantics for i∗ models. For example, Formal
Tropos (FT) [5], supports formal verification of i∗ models through model checking.
Also, in the i∗-ConGolog approach [24], on which our method is based, SR models
are associated with formal ConGolog programs for simulation and verification. The
problem with these methods is that goals of the agents are abstracted out and made
into objective properties of the system in the formal specifications. This is because
the formal components of these approaches (the model checker input language for FT
and ConGolog for the i∗-ConGolog approach) do not support reasoning about agent
goals (and knowledge). However, most agent interactions involve knowledge exchange
and goal delegation since MAS are developed as social structures, so formal analysis
of goals and knowledge is important in the design of these systems. We propose a
framework where goals are not removed from the agent specifications, but are modeled
formally and can be updated following requests. This allows agents to reason about their
objectives. Information exchanges among agents are also formalized as changes in their
knowledge state. In our approach, goals are not system-wide properties, but belong to
concrete agents. The same applies to knowledge. This subjective point of view provides
support for new types of formal analysis. Our method is more agent-oriented and allows
for precise modeling of stakeholder goals. Modeling of conflicting stakeholder goals, a
common task in RE, and agent negotiations is also possible. In future work, we plan to
develop a toolkit to support requirements engineering using our approach, to look into
handling quality constraints (softgoals) in our approach, as well as to test the method
on more realistic case studies.

References

[1] Castro J., Kolp M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems, 27(6) (2002) 365–389

[2] Chung, L.K., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer (2000)

[3] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisitions.
Science of Computer Programming, 20 (1993) 3–50

[4] De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, A Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence, 121 (2000) 109–169

[5] Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
Analyzing Early Requirements in Tropos. RE Journal, 9(2) (2004) 132–150

[6] Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., Meister, M.: Re-
quirements Modeling for Organization Networks: A (Dis-)Trust-Based Approach. In Proc.
RE’01 (2001) 154–163

[7] Jennings, N.R.: Agent-Oriented Software Engineering. In Proc. MAAMAW-99 (1999) 1–7
[8] Lapouchnian, A.: Modeling Mental States in Requirements Engineering — An Agent-

Oriented Framework Based on i∗ and CASL. M.Sc. Thesis. Department of Computer Sci-
ence, York University, Toronto (2004)

Modeling Mental States in the Analysis of Multiagent Systems Requirements 121

[9] Lespérance, Y.: On the Epistemic Feasibility of Plans in Multiagent Systems Specifications.
In Proc. ATAL-2001, Revised papers, LNAI 2333, Springer, Berlin (2002) 69–85

[10] McCarthy, J., Hayes, P.: Some Philosophical Problems From the Standpoint of Artificial
Intelligence, Machine Intelligence, Vol. 4, Edinburgh University Press (1969) 463–502

[11] Moore, R.C.: A Formal Theory of Knowledge and Action. Formal Theories of the Common
Sense World, J.R. Hobbs, R.C. Moore (eds.). Ablex Publishing (1985) 319–358

[12] Odell, J., Van Dyke Parunak, H. and Bauer, B.: Extending UML for Agents. In Proc. AOIS-
2000, Austin, TX, USA (2000) 3–17

[13] Padgham, L., Lambrix, P.: Agent Capabilities: Extending BDI Theory. In Proc. AAAI-
2000, Austin, TX, USA (2000) 68–73

[14] Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI Architecture. In Proc.
KR’91 (1991) 473–484

[15] Reiter, R.: The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes)
and a Completeness Result for Goal Regression. Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy, V. Lifschitz (ed.), Academic
Press (1991) 359–380

[16] Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge MA (2001)

[17] Scherl, R.B., Levesque, H.: Knowledge, Action, and the Frame Problem. Artificial Intelli-
gence, 144(1–2) (2003) 1–39

[18] Shapiro, S.: Specifying and Verifying Multiagent Systems Using CASL. Ph.D. Thesis. De-
partment of Computer Science, University of Toronto (2004)

[19] Shapiro, S., Lespérance, Y.: Modeling Multiagent Systems with the Cognitive Agents Spec-
ification Language — A Feature Interaction Resolution Application. In Proc. ATAL-2000,
LNAI 1986, Springer, Berlin (2001) 244–259

[20] Shapiro, S., Lespérance, Y., Levesque, H.: The Cognitive Agents Specification Language
and Verification Environment for Multiagent Systems. In Proc. AAMAS’02, Bologna, Italy,
ACM Press (2002) 19–26

[21] Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated Belief Change in the
Situation Calculus. In Proc. KR-2000 (2000) 527–538

[22] van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-Directed Elaboration of Require-
ments for a Meeting Scheduler: Problems and Lessons Learnt. Proc. RE’95, York, UK,
(1995) 194–203

[23] van Otterloo, S., van der Hoek, W., Wooldrige, M.: Model Checking a Knowledge Ex-
change Scenario. Applied Artificial Intelligence, 18:9-10 (2004) 937–952

[24] Wang, X., Lespérance, Y.: Agent-Oriented Requirements Engineering Using ConGolog and
i∗. In Proc. AOIS-01 (2001) 59–78

[25] Wooldridge, M.: Agent-Based Software Engineering. IEE Proceedings on Software Engi-
neering, 144(1) (1997) 26–37

[26] Yolum, P., Singh, M.P.: Commitment Machines. In Proc. ATAL-2001, Revised Papers,
LNAI 2333, Springer, Berlin (2002) 235–247

[27] E. Yu. Towards modeling and reasoning support for early requirements engineering. In
Proc. RE’97, Annapolis, USA (1997) 226–235

Observed-MAS: An Ontology-Based Method for
Analyzing Multi-Agent Systems Design Models

Anarosa A.F. Brandão1, Viviane Torres da Silva2, and Carlos J.P. de Lucena3

1 Laboratório de Técnicas Inteligentes - PCS-POLI-USP,
Av. Prof. Luciano Gualberto, trav. 3, 158, sala C2-50

São Paulo - Brazil - 05508-900
anarosabrandao@gmail.com

2 Departamento de Sistemas Informáticos y Programación, UCM
C/ Profesor José Garćıa Santesmases, s/n,

Ciudad Universitaria, 28040 Madrid
viviane@fdi.ucm.es

3 Computer Science Department, PUC-Rio
R. Marquês de São Vicente, 225,

Rio de Janeiro - Brazil - 22453-900
lucena@inf.puc-rio.br

Abstract. Agents are becoming a popular technology for the develop-
ment of distributed, heterogeneous and always available systems. The
application of agent technologies requires extensions to the existing object-
oriented modeling languages to accommodate agent-related abstractions
such as roles, organizations and environments. If it is difficult to analyze
and establish the well-formedness of a set of diagrams of aUML-like object-
oriented modeling language, it gets far more complex when the language
is extended to add a set of agency related abstractions. In order to tame
such complexity, we propose an ontology-based method for analyzing MAS
specifications described using a modeling language that extends UML to
accommodate the agency characteristics. The method proposes a two-
phase approach that covers different sets of MAS design properties. These
properties are the ones related to each individual diagram and the ones as-
sociated with pairs of diagrams. The later take into consideration the inter-
dependencies between diagrams. The method also provides features that
allow the suggestion of some design guidelines whichmay improve theMAS
design quality.

1 Introduction

Object-orientation (OO) proved to be a powerful computational model for the
development of real scale software systems. In order to help the design of such
systems, several modeling languages for large OO applications have been consol-
idated. The UML standard [27] is an example that consists of a set of diagrams
that capture different views of an OO software system. These views cover as-
pects such as how the system is to be used, how it is structured and how it will
behave. The models that represent real size OO applications using UML usually

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 122–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Observed-MAS: An Ontology-Based Method 123

lead to very complex sets of diagrams whose well-formedness is very difficult
to check, even independently of the applications. Until recently, the analysis of
UML models to check the proper use of its many design artifacts and their al-
lowed interrelationships has mostly been done in an ad hoc manner in successive
versions of UML support tools such as [26]. Only recently, more systematic ap-
proaches to UML design checking have been developed [3][11][15][17][30]. They
will be discussed in the related work section of this paper.

The nature of nowadays distributed, heterogeneous, always available systems
composed by autonomous components popularized the software agent and re-
lated abstractions (eg.: roles, organizations, environments) [28][32]. Since agents
co-exist with objects for the solution of large scale distributed and heterogeneous
systems, extensions of UML that incorporate the abstractions of the agent world
have been proposed [2][29][31].

If the establishment of the well-formedness of a set of UML diagrams used
to design a particular OO application is itself a difficult problem, it gets far
more complex when UML is extended by adding the set of agency abstractions
required by the new computational paradigm. The analysis of MAS designs
represented by modeling languages that extend UML is indeed very complex
and may compromise the adoption of the agent technology. Therefore, there is a
need for an approach that facilitates the analysis of such designs by helping the
designers to automatically detect inconsistencies in them.

The paper presents Observed-MAS, an ontology-based method for analyzing
MAS design models. The goal of the method is to facilitate the design activity by
providing automatic detection of design inconsistencies and improvements. The
design models are translated to formal specifications based on ontologies which
describe the MAS domain and the specification of the modeling language being
used to design the MAS. Therefore, each generated specification is composed
by an ontology [5][12] that specifies a set of domain and modeling language
properties and also by sets of previously defined queries used to analyze the
designs, which are represented by ontology instances.

This paper is organized as follows: Section 2 presents an overview of the
proposed method; Sections 3 and 4 explain the first and the second phases of
the method, respectively; Section 5 describes some related work and, finally, in
Section 6 we present our conclusions and future work.

2 The Method Overview

The proposed method provides support for the analysis of MAS designs repre-
sented by MAS modeling languages. The method is based on the specification of
MAS and on the specification of the modeling language being used to design the
MAS. By analyzing the designs according to both specifications, it is possible to
check both the MAS properties (independently of the modeling language) and
the modeling language properties themselves.

The specification of the MAS domain is described by the TAO metamodel [28].
The main role of the TAO (Taming Agents and Objects) metamodel is to provide

124 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

a conceptual framework to understand the distinct abstractions that compose
a MAS and the relationships that occur between them in order to support the
development of large-scale MAS. The proposed framework elicits an ontology
that connects consolidated abstractions, such as objects and classes, and other
abstractions, such as agents, roles and organizations, which are the foundations
for object and agent-based software engineering. The framework defines the core
abstractions found in MAS and also their properties, relationships and the way
these entities execute and interact. TAO metamodel was defined based on the
analysis of several methods, methodologies and modeling languages.

In TAO, a MAS comprises classes and instances of agents, objects and or-
ganizations. TAO entities are agent, object, organization, role (agent and object
role), environment and event. Agents, organizations, and objects inhabit environ-
ments [13]. While objects represent passive elements, such as resources, agents
represent autonomous elements that manipulate objects. Agents have beliefs and
goals, they know how to execute some actions and plans, and they are always
playing a role in an organization. An organization describes a set of roles [4]
that might limit the behavior of its agents, objects and sub-organizations [32].
Furthermore, organizations have axioms that guide the behavior of agents that
play roles in it. Agents and objects can be members of different organizations
and play different roles in each of them [21]. Agents may interact with each
other and cooperate either to achieve a common goal, or to achieve their own
goals [33]. TAO defines several relationships such as Inhabit, Play, Ownership,
Control, Dependency, Association, and Aggregation that are used to characterize
the interaction kinds between the linked entities. Fig. 1. illustrates the entities
and the relationships defined in TAO. In general, the specification of a modeling

Fig. 1. The abstractions and relationships of the TAO conceptual framework

language is based on a metamodel that describes the properties and characteris-
tics of the language. In order to illustrate our approach, the modeling language
being used in this paper is MAS-ML (Multi-Agent System Modeling Language)
[28]. MAS-ML extends UML by including the agent-related abstractions iden-
tified in TAO. The MAS-ML metamodel describes the artifacts (or diagrams)

Observed-MAS: An Ontology-Based Method 125

that are used to express both the structural and the behavioral aspects of MAS.
MAS-ML defines three structural diagrams (the extended UML class diagram,
the organization diagram and the role diagram) and two dynamic diagrams (the
extended UML sequence and activity diagrams).

Both specifications - MAS domain and modeling language specifications - are
represented by using ontologies and related queries. Ontologies are composed
by concepts, properties and axioms, where properties represent the relations be-
tween the concepts and axioms represent the constraints over the concepts and
relations. Therefore, the use of ontologies to formalize the MASs domain and the
modeling language is justified through the direct translation from design mod-
els into ontology instances and, consequently, the creation of knowledge-bases
(KBs) that can be manipulated by using the reasoning services (or queries an-
swers) that are available for this kind of data. The general idea of the Observed-
MAS applied to the MAS-ML modeling language is presented on Fig. 2. From

Fig. 2. Observed-MAS applied to MAS-ML: general idea

the general idea presented in Fig. 2, the method definition was based in two
principles: flexibility and consistency analysis. The first is related to the desired
flexibility during the modeling activity, when the existence of some design in-
consistencies is natural and even expected. The second is related to the analysis
of the modeling, when the diagrams that compose it are analyzed individually
and parwise. Therefore, the method was divided in two phases whose schema is
briefly described on Fig. 3. Both phases present an ontology to formally support
the design analysis and two sets of queries: one related to the MAS design or
domain properties violations and the other related to guidelines for designers
to improve or facilitate the building of their design models. During phase one
(F1), the design is analyzed according to the MAS domain properties and to the

126 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

Fig. 3. The Observed-MAS schema

modeling language intra-model properties by using queries. The MAS domain
properties focus on the characteristics of MAS, independently of the modeling
language used to describe it. Intra-model properties are related to the internal
specification of a diagram defined by the MAS modeling language metamodel.
The ontology used in phase one (Ont1) identifies the MAS domain entities and
relationships as well as the modeling language diagrams, by stating what are the
entities and relationships that are commonly used in MAS and specified in the
modeling language diagrams. The ontology properties are also defined in order
to relate the identified entities and relationships. These properties are specially
important for the definition of the sets of queries (QV1 and QD1) which analyze
ontology instances (the design of MAS) to: (i) find out violations of the MAS do-
main properties and of intra-model properties (QV1), and (ii) offer the designer
some guidelines to improve the design of each MAS-ML diagram according to
the MAS domain properties (QD1). Moreover, Ont1 doesn’t describe the axioms
which restrict both the internal specification of the MAS entities and the struc-
ture of the modeling language diagrams. These characteristics are responsible
for the desired flexibility during the building of design models.

In phase two (F2), the design is analyzed according to the modeling language
inter-model properties by using queries (QV2 and QD2). A MAS inter-model
property is related to the interdependence defined by the MAS modeling lan-
guage metamodel concerning pairs of different diagrams. The analysis of these
properties begins when the analysis of the first phase has been completed and
the design has been updated according to the inconsistencies detected during the
first phase by the QV1 queries. The ontology of phase two (Ont2) is an extension
of Ont1 with the addition of axioms which describe the MAS domain and mod-
eling language intra-model properties. These characteristics of Ont2 assure that
each MAS entity and each diagram of the modeling is individually consistent
with their specification. The queries QV2 are used to reason about ontology
instances (that represent design models) in order to find out parts of the design
that violate the modeling language inter-model properties. In addition, the QD2

Observed-MAS: An Ontology-Based Method 127

queries are also used to reason about the design and to provide guidelines related
to MAS-ML inter-model properties helping designers to improve their models
according to the MAS domains properties. Nevertheless, phase two contemplates
the principle of consistency analysis.

To formalize the specification of the MAS domain and the modeling language,
we adopted Description Logics (DL) [1] because it is a decidable subset of first
order logic and there is a recommendation from OMG [17] of using a DL-based
language (OWL [19]) as a standard for ontologies description. Therefore, the
ontologies that support the proposed method are described using a state-of-the-
art DL reasoning system, which implements the DL ALCHIQr+(D)- [23]. Note
that the user of the method can choose any ontology language to describe the
ontologies and the queries proposed in phase one and two. The user does not
need to be an expert in DL to use the method itself. However, to use the MAS
domain properties and the first ontology as they are described in this paper there
is a need to understand DL characteristics.

To validate the results of the method applied to the MAS-ML modeling lan-
guage, a case study was developed considering the domain of conference manage-
ment [8], where authors can submit papers and a chair distributes these papers
among the reviewers for evaluation. The Expert Committee is an application
solution developed as an example of MAS for the conference management do-
main. In the Expert Committee system, agents play different roles to achieve
their goals. The system supports the following activities: paper submission, re-
viewer assignment, review submission, and acceptance or rejection notification.
The case study will be partially illustrated during the method phases description.

3 Phase One: Analyzing MAS and Intra-model
Properties

The specification produced by using Ont1 represents a MAS design, since it uses
MAS abstractions defined in the ontology. However, such design may be not con-
sistent with MAS domain properties and with the modeling language properties
since Ont1 does not describe axioms that guarantee such consistence. For that
reason, queries (QV1) are described and associated with the ontology to analyze
the design and detect MAS domain or MAS-ML intra-model inconsistencies. The
detection is automatically provided by the reasoning services from the DL-based
system and the query answers inform the designer where the inconsistencies are.

3.1 Ont1: The First Ontology

Ont1 partially formalizes the MAS domain by identifying the MAS entities’
classes and properties, and the relationships that can be used between them.
The ontology does not fully formalize the MAS domain since it does not state
axioms that are associated with the entities’ properties and relationships. For
instance, although Ont1 identifies the MAS entities, it does not describe their
internal properties. Moreover, Ont1 does not completely specify the modeling

128 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

Fig. 4. Part of Ont1 concepts hierarchy

(signature
:atomic-concepts (...

static-model class-model organization-model
role-model)

:roles ((has-class :domain static-model
:range class
:inverse is-in-static-model)

(has-relationship :domain static-model
:range relationship
:inverse is-relationship-of)

...) ...) ...

Fig. 5. Example of some ontology properties

language because it does not describe rules related to intra and inter-model
properties. Fig. 4 illustrates part of the Ont1 concepts hierarchy.

An important issue during the description of Ont1 is the specification of the
ontology properties, which are used during the queries definition. Fig. 5 illus-
trates part of the ontology code showing the definition of two ontology properties
(has-class and has-relationship), which are used to define queries that analyze
intra-model properties of MAS-ML static diagrams. During the modeling of the
Expert Committee MAS an organization model was designed to describe the re-
lations between the organization who was responsible for managing the reviewing

Observed-MAS: An Ontology-Based Method 129

Fig. 6. The organization-model of the Expert Committee case study

process of scientific papers (organizing-institution) and the other participants
of the process. Therefore, an agent-classwas defined (researcher) related to role
classes (author, reviewer, pc-member· · ·) in order to provide means for the agent
to play those roles. Fig. 6 briefly presents the referred diagram, whose associated
ontology instance code in the KB is partially showed in Fig. 7.

3.2 QV1: The Intra-model Queries

While describing Ont1, the MAS entities were not completely specified. The on-
tology only states the available entities but does not describe its internal proper-
ties to provide the desired flexibility during early stages of the design activity.
For instance, the organization model presented on Fig. 6. is incomplete according
to the MAS domain properties. In fact, TAO states that each agent-class must
have at least one assigned goal. Fig. 8 illustrates Query I that detects the agent
classes that have not assigned goals, i.e., the agent classes that are not being
used according to such specification. It is clear in Fig.6 that the researcher agent
hasn’t any goal assigned. Therefore, after applying Query I to the KB associated
with our case study (Fig. 7), we obtain the answer presented on Fig. 9. Fig. 8 and

130 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

(instance researcher agent-class)
(instance organizing-institution main-organization-class)
(instance expert-committee passive-environment-class)
(instance chair agent-role-class)
(instance pc-member agent-role-class)
(instance the-organizing-model organization-model)
(instance play-1 play)
(instance assoc-1 association)
...
(related the-organizing-model assoc-1 has-relationship)
(related the-organizing-model play-1 has-relationship)
...
(related the-organizing-model researcher has-class)
(related the-organizing-model organizing-institution has-class)
(related the-organizing-model pc-member has-class)
...
(related play-1 researcher has-end1)
(related play-1 pc-member has-end2)
(related assoc-1 researcher has-end1)
(related assoc-1 organizing-institution has-end2)...

Fig. 7. Expert Committee entities and relationships represented in the KB

(retrieve (?agentwithoutgoal)
(and (?agentwithoutgoal agent-class)

(?agentwithoutgoal NIL has-goal)))

Fig. 8. (Query I) Agent classes without assigned goals

-- >((?AGENTWITHOUTGOAL RESEARCHER))

Fig. 9. Query I result for the Expert Committee design

(retrieve (?orgmd ?relation)
(and (?orgmd organization-model)

(?relation relationship)
(?orgmd ?relation has-relationship)
(not (?relation (or ownership play inhabit)))))

Fig. 10. (Query II) Finding bad structured organization diagram

-- >(((?ORGMD THE-ORGANIZING-MODEL) (?RELATION ASSOC-1)))

Fig. 11. Query II result for the Expert Committee design

Observed-MAS: An Ontology-Based Method 131

(retrieve (?role-1 ?role-2 ?prtcl)
(and (?role-1 agent-role-class)

(?role-2 agent-role-class)
(?prtcl protocol)
(?role-1 ?prtcl has-protocol)
(?role-2 ?prtcl has-protocol)))

Fig. 12. (Query III) Suggesting agent role classes that define common protocols

(instance chair agent-role-class)
(instance pc-member agent-role-class)...
(related pc-member solve-conflict-prtcl has-protocol)
(related chair solve-conflict-prtcl has-protocol)

Fig. 13. Agent role classes that have same protocols

Fig. 9 show how queries can be used to analyze the design according to the MAS
domain properties. But they are also used to analyze the design according to
the modeling language intra-model properties. In fact, the MAS-ML metamodel
specifies that only the relationships ownership, play and inhabit can be modeled
in organization diagrams. The organization diagram presented on Fig. 6 has a
violation to the aforementioned property, since there is an association relation-
ship between the researcher agent and the organizing-institutionorganization.
Fig. 10 depicts Query II that analyzes the design to detect if there is an orga-
nization diagram that has not allowed relationships. This is one of the queries
that compose QV1. Applying Query II to this diagram specification, the result
will contain the pairs (organization-model, relationship) which are detected by
Query II (Fig. 11).

3.3 QD1: MAS-ML Intra-model Design Queries

The definition of some MAS-ML design guidelines rules is based on MAS prop-
erties, such as interaction. It is an agreement in the MAS community that agents
interact through the use of protocols. Therefore, it is interesting to suggest the
designers how one can represent its use. The MAS-ML metamodel specifies that
protocols are defined in the context of agent role classes and the interaction
between agents is made while they play roles. The objective of Query III (Fig. 12)
is to inform the designer about agent role classes that have at least one common

--> (((?ROLE-1 PC-MEMBER) (?ROLE-2 CHAIR) (?PRTCL
SOLVE-CONFLICT-PRTCL))...)

Fig. 14. Query III result for the Expert Committee design

132 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

Fig. 15. Example of a role model for the Expert Committee case study

(implies agent-class (some has-goal goal))

Fig. 16. Formalization of an agent internal property: having at least one goal

protocol, meaning that agent classes related to the agents that play those agent
roles can interact. Fig. 13 illustrates the solve-conflict-prtclprotocol being
defined by two agent role classes, chairand pc-member, represented in our case
study KB. By applying Query III to the KB, the result is the tuple (pc-member,
chair, solve-conflict-with-pc-prtcl) shown in Fig. 14. This means that two
agents playing the roles pc-memberand chairmay interact since they have com-
mon protocols. This answer will guide the designer during the construction of a
role model which describes a relationship between the roles chairand pc-member,
as shown in Fig. 15.

4 Phase Two: Analyzing Inter-model Properties

Phase two should begin only after all inconsistencies detected at phase one have
been solved. In this context, the ontology instance that represents the design has
no MAS domain or intra-model inconsistencies remaining. However, it is possible
that some inter-model inconsistencies remain since inter-model properties have
not been analyzed yet. In order to guarantee that the ontology instance being
used in this phase has no MAS domain or intra-model inconsistencies, the rules
described by the queries QV1 were transformed into axioms of the ontology
used in phase two. The ontology used in this phase (Ont2) fully formalizes the

(implies organization-model (and (some has-class class))
(all has-relationship (or ownership play inhabit)))

Fig. 17. Formalization of an organization diagram

Observed-MAS: An Ontology-Based Method 133

MAS domain and the intra-model properties of the modeling language. Queries
(QV2) are used in this phase to analyze the design according to the inter-model
properties that have not been checked yet.

4.1 Ont-2: The Second Ontology

Ont2 is an extension of Ont1 through the addition of new axioms defined based
on the MAS domain and intra-model queries from phase one. In order to exem-
plify the Ont2 axioms, consider queries I and II described in Section 3. These
queries were transformed into axioms to formalize the agent internal property of
having goals (Fig. 16) and the organization diagram structure (Fig. 17).

4.2 QV2: The MAS-ML Inter-model Queries

Since the MAS domain and intra-model properties are already described in the
ontology axioms, it is now necessary to analyze the design according to the mod-
eling language inter-model properties. Such properties state restrictions between
the modeling diagrams. Fig. 18 illustrates a query related to one of the inter-
model properties that relates two static diagrams - the role and the organization
diagrams. In fact, the MAS-ML metamodel states that every role class must be
defined in an organization diagram since every role is defined in the context of
an organization. Query IV (Fig. 18) analyzes the design to find out if there is
an agent role class defined in a role diagram and not defined in any organization
diagram of the modeling. Unfortunately, Query IV is computationally complex
and the RACER system doesn’t answer it for large KBs. Therefore, we combine
the results (Query IV) from the two queries described in Fig. 19 and get the
desired answers. Considering our case study, suppose that the designer hasn’t
modeled the pc-memberagent role only in the organization diagram but do it in
the role diagram. According to the MAS-ML metamodel all the agent role classes
modeled in a role model must be modeled in some organization model as well. In
the considered example, as we had only one of each MAS-ML static diagrams,
the results of Query IV-A, illustrated in Fig. 20, indicate that the agent role class
reviewer, which is modeled in the role diagram called the-role-model, must be
modeled in the organization diagram called the-organizing-model, as well.

4.3 QD2: MAS-ML Inter-model Design Queries

Query VI (Fig. 21) is an example of an inter-model guideline query related
to the interaction of agents in MAS. As stated before, agents interact through
protocols and the MAS-ML metamodel defines protocols in the context of agent
role classes. Agent role classes are specified in organization diagrams and the
relations among them are specified in role diagrams. If there is an agent role
class modeled in an organization diagram and isn’t modeled in any role diagram,
it means that the agent playing that role cannot interact with any other agent.
Since agents are interactive entities, its interesting to inform the designer about

134 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

(retrieve (?agrl ?rlmd)
(and (?agrl agent-role-class)

(?rlmd role-model)
(?rlmd ?agrl has-class)
(not (?agrl (some is-in-static-model

organization-model)))))

Fig. 18. (Query IV) Interdependence between role and organization diagrams

(retrieve (?agrl ?rlmd)
(and (?agrl agent-role-class)

(?rlmd role-model)
(?orgmd organization-model)
(?rlmd ?agrl has-class)
(not (?orgmd ?agrl has-class))))

(retrieve (?orgmd) (?orgmd organization-model))

Fig. 19. (Query IV-A) Combining queries to find the interdependence between role
and organization diagrams

such situation. Query VI finds out the agent role classes that were modeled in
an organization diagram but were not modeled in a role diagram. Observe that
Query VI is similar to Query IV (Fig. 18) and again, due to computational
limitations for large KBs, we combine the results of the queries described in
Query VI-A (Fig. 22) to get the desired results.

5 Related Work

Dong and colleagues [9] used Z and the theorem proving Z/EVES to verify do-
main ontologies coded in DAML+OIL [7]. They defined the Z semantics for the
DAML+OIL language primitives and their associated constraints to check if the
ontology definition is according to them. In this sense, they check the static (or
structural) part of the ontology which means class (concept) inconsistency, sub-
sumption and instantiation testing. They also show that it is possible to check
other ontology properties by defining theorems that relate ontology classes and
roles. Our work is related to theirs in the sense that we define the semantics
for a MAS modeling language metamodel with its associated diagrams and con-
straints using a DL-based language to check if the design models coded in that

--> (((?AGRL REVIEWER) (?RLMD THE-ROLE-MODEL)))
--> (((?ORGMD THE-ORGANIZING-MODEL)))

Fig. 20. Inter-model query result

Observed-MAS: An Ontology-Based Method 135

(retrieve (?agrl ?orgmd)
(and (?agrl agent-role-class)

(?orgmd organization-model)
(?orgmd ?agrl has-class)
(not (?agrl (some is-in-static-model role-model)))))

Fig. 21. (Query VI) Agent roles in organization and role diagrams

(retrieve (?agrl ?orgmd)
(and (?agrl agent-role-class)

(?rlmd role-model)
(?orgmd organization-model)
(?orgmd ?agrl has-class)
(not (?rolemd ?agrl has-class))))

(retrieve (?rolemd) (?rolemd role-model))

Fig. 22. (Query VI-A) Combining queries to help designers to use good practices during
MAS design

modeling language and translated to DL are consistent with their metamodel.
Our approach allows not only the checking of structural properties of the models,
but some dynamic properties as well.

Kalfoglou and Robertson [14] used ontologies to reason about domain spec-
ifications correctness. They considered the correctness of an application spec-
ification relatively to the application domain. In this sense, they propose the
use of an ontology that describes the application domain to guide the specifica-
tion engineer. Therefore, as they are considering a formal specification for the
application which is based on an ontology which describes the application do-
main, they can automatically check the existence of ontological inconsistencies
in the application specification. Considering the four layer cake of the metadata
architecture from OMG-MOF [19], their work navigates between the domain
model layer (M1) and the instance layer (M0) while ours navigates between the
metamodel layer (M2) and the domain model layer (M1), which means that
we are considering the overall class of MAS applications, independently of the
considered application domain.

Since modeling languages do not have a precise semantics yet, several works
address the problem of design models verification [3][11][15][17][30]. Kim and
Carrington [15] give a translation from a UML class model to an Object-Z spec-
ification, but they don’t provide means to verify the model. Our work defines
an ontology-based method that provides a formal description of MAS design
models and uses knowledge-based reasoning techniques to verify these models
consistency.

Ekenberg and Johannesson [11] define a logic framework for determining de-
sign correctness. Their framework is described in FOL (first order logic) and it

136 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

provides guidelines to translate UML models and to detect some inconsistencies
in the models. Their framework is general and the use of the translation rules
depend on the designer skills in FOL, since there is not an automatic support
for this activity yet. We define an ontology-based method that uses an ontology
description language based on DL, which is a decidable subset of FOL. The
translation of MAS design models to the ontology description language can be
done automatically by using systems such as RICE [25] or ProtÃ c©gÃ c© [23]
with RACER, among others. Also, the verification of consistency is automated
by applying the reasoning and inference services to the generated KB.

Mens, Straeten and Simmonds [17][30] use DL to detect inconsistencies and to
maintain consistency between UML models in a context of software evolution. Due
to the context of their work, they only consider consistency checking between dif-
ferent models. They define the Classless instance conflict [30] as the conflict that
arises when an object in a sequence diagram is the instance of a class that doesn’t
exist in any class diagram. Their work is related to ours in the way they check con-
sistency between models. Our work considers a MAS context and extends the idea
of classless instance when, for example, we verify the absence, in any organization
diagram, of classes that were predefined in role diagrams or class diagrams.

Berardi [3] uses DL to formally describe a UML class diagram and the CORBA-
FaCT [10] and the RACER system to reason about them in order to classify the
models concerning their consistency. Such approach is very similar to ours since
the diagram description using DL could be considered an ontology for the UML
class diagrams. However, while they provide support for verification of a class of
models according to an object-oriented metamodel we do the same for all possible
models according to a multi-agent-oriented metamodel.

Perini et al [22] combine formal and informal specification to model agent
systems using the TROPOS methodology and the Formal Tropos specification.
A Formal Tropos specification extends a Tropos specification by adding annota-
tions and constraints that characterize valids behaviors of the model. Their work
is concerned about the specification of functional requirements. Our method also
combines formal and informal specification of MAS, since we translate an infor-
mal specification to a formal one, but we are concerned about a specification
that allows the analysis of the design structure and properties. Although our
method is focused on non-functional requirements analysis, functional require-
ments specified through the use of sequence diagrams can be verified using it.

6 Conclusions and Future Work

This paper presents an ontology-based method for analyzing MAS design models
based on ontologies that describe the MAS domain and the metamodel of a MAS
UML-like modeling language. The proposed method is composed of two phases
that support the desired flexibility during the design activity. Such flexibility al-
lows syntactical incorrectness during the creation of design models. The models

Observed-MAS: An Ontology-Based Method 137

themselves are checked in phase 1 (by analyzing the intra-model properties)
while the interdependencies between the models are checked in phase 2 (by
analyzing the inter-model properties). Finally, the method also provides features
that allow the suggestion of some design guidelines which may improve the design
quality. Such guidelines are good practices rules of design using the modeling
language.

The proposed method provides a back-end for graphical tools that support
the modeling activity of MAS described in MAS modeling languages. We im-
plemented a tool called MAS-DCheck [6] that can be integrated to a graphical
tool such as the ones previously described. We are integrating MAS-DCheck to
a MAS-ML graphical tool for editing MAS-ML models [16] in order to allow the
analysis of the models during their building. Thus, the inconsistencies that arise
during design construction will be automatically detected and informed to the
designer. This will help designer not even to decrease the time of building but
to improve quality of MAS designs, as well.

An issue that we are considering is the computational cost associated with the
models analysis. In this sense, we are classifying the properties that are analyzed
in this version of the method in order to select the ones that must be analyzed
and the ones that may be analyzed. After such a classification we’ll intend to
generate an optimized version of the method.

References

1. Baader, F., Calvanese, D. McGuiness, D., Nardi, D. and Patel-Schneider, P. The
description Logic Handbook - Theory, Implementation and Applications, Cambridge
Univ. Press, (2003)

2. Bauer, B. MÃ 1
4 ller, J.P. and Odell, J. Agent UML: A Formalism for Specifying

Multiagent Software Systems In: Ciancarini and Wooldridge (Eds) Agent-Oriented
Software Engineering, Springer-Verlag, LNCS vol 1957, (2001).

3. Berardi,D. Using DLs to reason on UML class diagrams, in Proceedings of th KI-
2002 Workshop on Applications of Description Logics, (2002).

4. Biddle, J; Thomas, E. Role Theory: Concepts and Research, John Wiley and Sons,
New York, (1966).

5. Borst, W.N. Construction of Engineering Ontologies, University of Twente, En-
schede, NL, Center for Telematica and Information Technology, (1997).

6. Brandão, A.A.F. An ontology-based method for structuring and analyzing multia-
gent systems models PhD Thesis, Pontifical Catholic University of Rio de Janeiro
- PUC-Rio, Brazil, (2005) (in Portuguese)

7. DAML+OIL - DARPA Agent Markup Language http://www.daml.org/
8. DeLoach, S. A. Analysis and Design of Multiagent Systems Using Hybrid Coor-

dination Media. In: Proceedings of the 6th World Multi-Conference on Systemic,
Cybernetics and Informatics (SCI 2002) , Florida - USA, (2002), pp. 14–18.

9. Dong,J.S., Lee,C.H., Li, Y.F. and Wang, H. Verifying DAML+OIL and Beyond in
Z/EVES, In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE’04), (2004), pp. 201–210.

10. FaCT - Fast Classification of Terminologies, available at:
http://www.cs.man.ac.uk/˜horrocks/FaCT

138 A.A.F. Brandão, V.T. da Silva, and C.J.P. de Lucena

11. Ekenberg L. and Johannesson,P. A framework for determining design correctness,
Knowledge Based Systems, Elsevier, 17 (5-6), (2004), pp. 249–262.

12. Gruber,T.R. A Translation Approach to Portable Ontology Specification, Knowl-
edge Acquisition, 5, (1993), pp. 199–220.

13. Jennings, N. Agent-Oriented Software Engineering. In: Proceedings of the 20th Intl.
Conf. on Industrial and Engineering Applications of Artificial Intelligence, (1999),
pp 4–10.

14. Kalfoglou, Y. and Robertson, D. A case study in applying ontologies to
augment and reason about the correctness of specifications, in Proceedings
of the 11th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE99), Kaiserlautern, Germany, (1999), available at
http://www.ecs.soton.ac.uk/people/yk1/ (04/19/2005).

15. Kim,S and Carrington,D. A Formal Mapping Between UML Models and Object-Z
Specifications, in Proceedings of the ZB’2000, International Conference of B and
Z Users, York, UK, (2000).

16. de Maria, B.A.; Silva, V.T.; Lucena, C.J.P., Choren, R. VisualAgent: A Soft-
ware Development Environment for Multi-Agent Systems, In Proceedings of the
19th Brazilian Symposiun on Software Engeneering (SBES 2005), Tool Track,
Uberlândia, MG, Brazil, October 3-7, (2005).

17. Mens,T., Straeten,R. and Simmonds,J. Maintaining Consistency between UML
Models with Description Logic Tools, in Proceedings of the Workshop on Object-
Oriented Reengineering at ECOOP 2003, (2003).

18. Object Management Group - OMG http://www.omg.org/
19. Object Managment Group: OMG - Meta Object Facility (MOF) Specification,

version 1.4, available at http://www.omg.org/cgi-bin/doc?formal/2002-04-03 (last
visited 04/25/2005).

20. OWL -Ontology Web Language, available at http://www.w3c.org/TR/owl-
features/

21. Parunak, H. and Odell, J. Representing Social Structures in UML. In: Proceedings
of Agent Oriented Software Engineering,(2001), pp 1–16.

22. Perini, A. Pistore, M. Roveri, M. and Susi, A. Agent-oriented modeling by inter-
leaving formal and informal specification, in Giorgini, P., Muller, J. and Odell, J.
(Eds) Modeling Agents and Multi-Agent Systems, LNCS 2935, Springer-Verlag,
(2003), pp 36–52.

23. Protégé 2000 Ontology Editor - available at http://protege.stanford.edu/
24. RACER, Renamed Abox and Concept Expression Reasoner, a vailable at:

http://www.sts.tu-harburg.de/ r.f.moeller/racer
25. RICE, Racer Interactive Client Environment

http://www.cs.concordia.ca/ haarslev/racer/rice.jar
26. Rational Rose. http://www-306.ibm.com/software/rational/
27. Rumbaugh,J., Jacobson,I. and Booch,G. The Unified Modeling Language Reference

Manual. Addison-Wesley, (1999).
28. Silva, V., Garcia, A., Brandão, A., Chavez, C., Lucena, C., Alencar, P. Taming

Agents and Objects in Software, in Garcia, Lucena, et al (Eds) Software Engineer-
ing for Large-Scale Multi-agent Systems- Research Issues and Practical Applica-
tions, Lecture Notes in Computer Science, 2603, (2003), 1–16.

29. Silva, V. and Lucena, C. From a Conceptual Framework for Agents and Objects to
a Multi-Agent System Modeling Language, In: Sycara, K., Wooldridge, M. (Eds.),
Journal of Autonomous Agents and Multi-Agent Systems, 9, (2004), 145–189.

Observed-MAS: An Ontology-Based Method 139

30. Straeten,R. and Simmonds,J. Detecting Inconsistencies between UML Models Us-
ing Description Logic, in Proceedings of the 2003 International Workshop on De-
scription Logics, available at http://CEUR-WS.org

31. Wagner, G. The Agent-Object-Relationship Metamodel: Towards a Unified View
of State and Behavior, Information Systems, 28, 5, (2003), 475–504.

32. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering: The State
of the Art, In: Ciancarini and Wooldridge (Eds) Agent-Oriented Software Engineer-
ing, Springer-Verlag, LNCS, 1957, (2001).

33. Zambonelli, F., Jennings, N. and Wooldridge, M. Organizational Abstractions for
the Analysis and Design of Multi-Agent Systems, In: Ciancarini and Wooldridge
(Eds) Agent-Oriented Software Engineering, Springer-Verlag, LNCS, 1957, (2001).

Using Risk Analysis to Evaluate Design Alternatives

Yudistira Asnar, Volha Bryl, and Paolo Giorgini

Department of Information and Communication Technology
University of Trento, Italy

{yudis.asnar,volha.bryl,paolo.giorgini}@dit.unitn.it

Abstract. Recently, multi-agent systems have proved to be a suitable approach
to the development of real-life information systems. In particular, they are used in
the domain of safety critical systems where availability and reliability are crucial.
For these systems, the ability to mitigate risk (e.g., failures, exceptional events)
is very important. In this paper, we propose to incorporate risk concerns into
the process of a multi-agent system design and describe the process of exploring
and evaluating design alternatives based on risk-related metrics. We illustrate the
proposed approach using an Air Traffic Management case study.

1 Introduction

Multi-Agent Systems (MAS) have recently proved to be a suitable approach for the
development of real-life information systems. The characteristics they exhibit (e.g., au-
tonomy and ability to coordinate their activities), are indeed useful for safety critical
and responsive systems [1]. This is because their subsystems can work independently
and respond to events (e.g., failure, exceptional situation, unexpected traffic, etc.) as
quick and correct as possible. For instance, a disaster management involves several
stakeholders that work autonomously, cooperatively and responsively in unpredictable
environments. In this scenario, agents can be used, for example, to assist stakeholders
in managing traffic during the rescue period and then reduce the probability of chaotic
situations [2].

In a safety critical system, human lives heavily depend on the availability and reli-
ability of the system [3]. For this reason, countermeasures are introduced to mitigate
as much as possible the effects of occurring failures. For instance, OASIS Air Traffic
Management system [4], which exploits autonomous and responsive agents, is used to
manage airspace and schedule air traffic flow. In this case, a designer ensures that agents
perform their tasks properly and do not endanger the aircrafts. OASIS implements mon-
itor components/agents that compare the prediction of aircraft locations (i.e., the results
of predictor agents) and the actual aircraft position. In case of a significant discrep-
ancy, the monitor agent notifies the scheduler agent to re-schedule the landing time of
related aircraft. The introduction of a monitor agent corresponds to a countermeasure
to prevent the risk of a collision. However, since designers can not have a complete
knowledge about future events/situations, they are not able to elicit all the necessary
countermeasures.

A different approach is adopted in the Autonomous Nano Technology Swarm
(ANTS) project [1], where three different types of agents (ruler, messenger and worker)

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 140–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Risk Analysis to Evaluate Design Alternatives 141

cooperate one another in order to explore asteroids. An important feature of ANTS is
that, since agents can be damaged or even destroyed by the asteroid, rulers have the
ability to re-organize the remaining messenger and worker agents. Basically, this run-
time re-organization corresponds to a countermeasure that is adopted to compensate the
loss of damaged agents. This introduces at design-time the problem of enabling agents
with automatic adaptation capabilities [5] to deal with the effect of failures occurring at
run-time.

In [6,7], we have proposed an approach to support the design of secure and coopera-
tive systems. The main idea was to use planning techniques to find and evaluate possible
design alternatives. The objective of this paper is to extend the approach to MAS design
and introducing a suitable risk-based metric for evaluating alternatives. We introduce a
process based on the following steps:

– system actors, their goals and capabilities, goal decompositions, and possible de-
pendency relationships among actors are identified;

– the above information are passed as input to a planner that search for a possible
plan able to satisfy all actors’ goals;

– the plan is evaluated w.r.t. risk, that is it is checked whether the risk associated to
goals is under a predefined threshold;

– if the evaluation reveals that changes are still necessary, the problem is refined, a
new plan is generated and then evaluated.

In safety critical systems, it is important to have a responsible for any decision taken.
This requires that the human designer being part of the decisional process and, par-
ticularly, being the responsible of the approval of the final solution. Our framework is
meant to be a Computer-Aided Software Engineering (CASE) tool that helps a designer
in defining and evaluating each design alternative with respect to the associate risk level.
The approach can also be used to assist the designer in performing the runtime design
of a MAS.

The paper is structured as follows. We start by introducing a case study which then
will be used to illustrate our approach. The approach itself is detailed in Section 3,
where we explain how the problem of selecting a suitable MAS design can be framed
as a planning one, and then in Section 4, where the process of the risk-based evaluation
of the obtained alternative design is explained. The application of our approach to the
case study is presented in Section 5, which is followed by a short overview of the related
work and some conclusive remarks in Sections 6 and 7, respectively.

2 Case Study

In this paper, we use the Air Traffic Management (ATM) case study that is used in
the SERENITY Project1 to validate security and dependability patterns. An ATM is
categorized as a safety-critical system because it is closely related to the safety of human
lives. Therefore, an ATM system is required to be available and reliable all the time of
its operation. However, having a 100% available and reliable system is hardly possible,

1 http://www.serenity-project.org

142 Y. Asnar, V. Bryl, and P. Giorgini

Fig. 1. Airspace Division between ACC-1 and ACC-2

because there are many events that can obstruct the system which can not be known in
advance (i.e., during the system development phase). For example, in a specific sector,
aircraft traffic can exceed the safety threshold which was not anticipated during the
design of the ATM. These events can compromise the availability and reliability of
sub-components of the ATM system (e.g., radar processor, CWP2).

An Air traffic Control Center (ACC) is a body authorized to provide air traffic control
(ATC) services in certain airspace. These services comprise controlling aircraft, man-
aging airspace, managing flight data of controlled aircraft, and providing information
about the situation of the air. Suppose there are two adjacent ACCs, namely ACC-1 and
ACC-2 (Fig. 1), where the airspace of ACC-1 is surrounded by the airspace of ACC-2.
The airspace is organized into several adjacent volumes, called sectors. For instance,
the airspace of ACC-1 is divided into sectors (Sec 1-1 and Sec 2-1), and ACC-2 has its
airspace divided into 4 sectors (Sec 1-2, 2-2, 3-2, and 4-2). Each sector is operated by
a team, consisting of a controller (e.g., Sec 1-1 has C1-1 as a controller), and a planner
(e.g., P1-1 is a planner for Sec 1-1). For the sake of communication, several adjacent
sectors in an ACC are supervised by a supervisor (e.g., SU1-1 supervises Sec 1-1 and
2-1 and SU1-2 supervises Sec 1-2 and 2-2). In this scenario, the supervisor role is as-
signed to a human agent, while software agents cover the role of controller and planner.
To simplify, we simple call actor, both human agent and software agent. The supervisor
also acts as a designer and so, responsibly, approve/decline the new plans. The scenario
starts from the normal operation of ATM in which SU1-1 delegates the control of sector
1-1 to team 1 formed by controller C1-1 and planner P1-1.

C1-1 and P1-1 work together providing ATC services to the aircraft in sector 1-1.
C1-1 controls aircraft to guarantee the safe vertical and horizontal separation of each

2 Controller Working Position (CWP) is a set of resources allocated to support a controller to
perform his/her tasks.

Using Risk Analysis to Evaluate Design Alternatives 143

aircraft, while P1-1 manages the flight data of the controlled aircraft and the airspace of
sector 1-1.

One day during summer holidays, a flight bulletin reports that there will be an in-
crease of the en-route traffic in sector 1-1. According to the analysis made by P1-1, this
goes beyond the capacity of a single controller (C1-1). Thus, SU1-1 needs to re-design
his sectors in a way that the en-route traffic can be handled safely. He can

– divide the airspace into smaller sectors s.t. each controller covers a smaller area and
consequently, the number of sectors that are supervised by SU1-1 is increased; or

– delegate a part of the airspace to the adjacent supervisor (it could be from the same
or different ACC).

Each alternative introduces different requirements. For instance, when dividing the
airspace, SU1-1 needs to ensure the availability of a controlling team (G14, G21 in
Table 1) and the availability of a set of CWP (G15, G22 in Table 1). Conversely,
if SU1-1 decides to delegate a part of his airspace to another supervisor, then SU1-1
needs to define delegation schema (G10 in Table 1) and to have sufficient level of
“trust” towards the target supervisor and his team to manage the delegated airspace.
Moreover, SU1-1 needs to be sure that the target supervisor has sufficient infrastructure
(e.g., radar, radio communication coverage) to provide ATC services in the delegated
airspace.

The details of the ATM case study are presented in Section 5, including organiza-
tional setting and capabilities of each actor. In the following sections, we explain how
to encode the case study as a planning problem, and then how to evaluate and refine the
candidate plan so to maintain the level of risk below a predefined threshold.

3 Planning Domain

Generating design alternatives can be framed as a planning problem: generating a de-
sign alternative means constructing a plan that satisfies the system’s goals. The basic
idea behind the planning approach is to automatically determine the course of actions
(i.e. a plan) needed to achieve a certain goal, where an action is a transition rule from
one state of the system to another [8,9]. Actions are described in terms of preconditions
and effects: if a precondition is true in the current state of the system, then the action is
performed. As a consequence of an action, the system will be in a new state where the
effect of the action is true.

Thus, to define the planning problem, we need to formalize

– the initial and the desired states of the system;
– the actions of the planning domain;
– the planning domain axioms.

In order to represent the initial state of the system (i.e. actor and goal properties, and
social relations among actors), first order logic is used with conjunctions of predicates
and their negations, specifying the states of the system. To describe our domain we use
the following predicates.

144 Y. Asnar, V. Bryl, and P. Giorgini

– For the goal properties:
• satisfied(G – goal), which becomes true when the goal G is fulfilled. The

predicate is used to define the goal of the planning problem (i.e., to specify,
which goals should be satisfied in the final state of the system);

• and/or subgoaln(G, G1, G2, ..., Gn – goal) represents the predefined way
of goal refinement, namely, it states that G can be and/or-decomposed into n
and/or-subgoals;

• type(G – goal, GT – goal type) is used to typify goals;
• criticality h/m/l(G – goal) represents the criticality of the goal, one of high,

medium, or low. The criticality level implies the minimum needed level of
trust between the actors when the goal is delegated. For instance, if the criti-
cality of the goal G is high, then it could be delegated from the actor A1 to the
actor A2 only if A1 can depend on A2 for the type of goals which G belongs to
with the high level of trust.

– For the actor properties:
• wants(A – actor, G – goal) represents the initial actor’s desires;
• can satisfy(A – actor, G – goal) and can satisfy gt(A – actor, GT –

goal type) are used to represent the capabilities of an actor to satisfy a goal,
or a specific type of goal, respectively.

– For the actor dependencies:
• can depend on gt h/m/l(A1, A2 – actor, GT – goal type) means that actor

A1 can delegate the fulfillment of the goal of type GT to actor A2, and the trust
level of the dependency between these actors for this specific goal type is high,
medium, or low, respectively.

A plan, constructed to fulfill the goals, can contain the following actions, defined in
terms of preconditions and effects, expressed with the help of the above predicates.

– Goal satisfaction. An actor satisfies a goal if it is among its desires (either initially,
or after the delegation from another actor), and it has the capability to satisfy it.

– Goal decomposition. A goal could be decomposed either into the and-subgoals,
meaning that all of them should be satisfied to satisfy the initial goal, or into the
or-subgoals, which represent alternative ways of achieving the goal.

– Goal delegation. An actor might not have enough capabilities to achieve its goals
by itself and therefore, it has to delegate the responsibility of their satisfaction to
other actors. As was mentioned before, the delegation can only take place if the
level of trust between the actors is not lower than the criticality level required for
the goal to be delegated.

– Goal relaxation. If there is no way to find a dependency relation which satisfies the
required level of trust, then the goal criticality might be relaxed (i.e., lowered). This
can be a risky action, as in many cases it is not safe to lower the level of criticality.
Therefore, to minimize the risk, as soon as the delegation has been performed, the
goal criticality is restored to the original value.

To complete the planning domain, we use axioms which hold in every state of the
system and are used to complete the description of the current state. For example, to

Using Risk Analysis to Evaluate Design Alternatives 145

propagate goal properties through goal refinement, the following axiom is used: a goal
is satisfied if all its and-subgoals or at least one of the or-subgoals are satisfied.

We have chosen LPG-td [10], a fully automated system for solving planning prob-
lems, for implementing our planning domain. LPG-td supports the PDDL (Planning
Domain Definition Language) 2.2 specification, which was used to formalize system
states, actions and axioms described above. The details on how and why this planner
has been chosen have been addressed in [6]. We also refer the reader to [6] and [7] for
the details on how the actions and axioms of the planning domain were implemented in
PDDL 2.2.

4 Evaluation Process

After a design alternative, called a candidate plan, is generated by the planner, it should
also be evaluated and modified based on a number of criteria, and finally approved by
a designer. By modifying the candidate plan we mean refining the problem definition
by identifying the actions that should be avoided to get the less risky design alternative.
The refinement of the problem definition is followed by replanning.

Previously, we proposed a way of evaluating a candidate plan, which is based on the
load distribution concerns [7]. It is assumed that the actors want to keep the number
and complexity of actions they are involved in, below the predefined thresholds. In this
work, we propose another form of evaluation, namely adopting a risk evaluation metric.
The goal of the iterative planning-and-evaluation procedure is to select a plan among
the available alternatives that has an acceptable level of risk. In this framework, we
consider two types of risk. The first type is the risk about the satisfaction of a goal, called
satisfaction risk (sat-risk). Sat-risk represents the risk of a goal being denied/failed
when an actor attempts to fulfill it. The value of this risk is represented in terms of the
following predicates: FD (Fully Denied), PD (Partially Denied), and ND (Not Denied).
These predicates are taken from [11], and represent the high, medium, and low level of
sat-risk, respectively. The second type of risk is related to the risk of goal delegation.
It is based on the requirement that the level of trust between two actors should match
the criticality of the delegated goal. For instance, if a link between two agents is highly
trusted, than it can be used for delegating goals of any criticality level, but if the level of
trust of a delegation link is medium then only goals with low and medium criticality
can be delegated through this link, and the risk is introduced when the criticality of a
goal should be lowered before it could be delegated.

The process of selecting a suitable design alternative is illustrated in Algorithm 1,
which should be run twice. In the first execution, the algorithm constructs a plan with-
out any relaxation actions (i.e., relax=false). If there is no solution then the second
execution is preformed allowing relaxation actions. Some steps in the algorithm are
fully automated (e.g., run planner line 3), while some still need a human involvement
(e.g., adding the allowed actions to the whitelist in line 7). The algorithm is iterative
and comprises the following phases: planning, evaluation, and, finally, plan refinement.
There are two evaluation steps in the algorithm: STEP-1 evaluates the risks of goal
satisfactions (line 4), and STEP-2 evaluates relaxation actions (line 6). The first exe-
cution does only STEP-1, and if the second execution is necessary, both STEP-1 and

146 Y. Asnar, V. Bryl, and P. Giorgini

Algorithm 1. Planning and Evaluation Process
Require: domain {domain description in PDDL}

problem {goal and initial state of the problem in PDDL}
whitelist {a list of allowed action}
relax{allow/not relaxation}

1: boolean finish←false
2: while not finish do
3: plan ←run planner(domain, problem, relax)
4: if not evaluate sat(plan) then
5: refine sat(plan, problem)
6: else if relax and not evaluate act(plan) then
7: refine act(plan, problem,whitelist)
8: else
9: finish ←true

10: end if
11: end while
12: return plan

STEP-2 are executed. Each evaluation step is followed by a refinement action (line 5
or 7), which aims at changing the planner input s.t. during the next iteration it will pro-
duce the better (i.e. less risky) candidate plan. In the following we give details on the
two evaluation steps of the algorithm.

STEP 1: Goal Satisfaction Evaluation

After a candidate plan is elicited (line 3), it should be evaluated and refined, s.t. it meets
the requirements imposed on it (i.e., the level of risk associated with the plan is below
the predefined threshold). The aim of the first evaluation step (line 4 of the Algorithm)
is to assure that sat-risk values of the candidate plan, i.e. the likelihood of each system
goal being denied/failed, are at most equal to the accepted ones, specified by a designer.

By examining the candidate plan, the goal model of each top goal can be constructed,
as the one in Fig. 3. A goal model shows how a top goal is refined into atomic tangible
leaf goals, i.e. for each leaf goal there is an actor that can fulfill it. Starting from the
sat-risk values of leaf goals, the risk values are propagated up to the top goals with
the help of so called forward reasoning. Forward reasoning is an automatic reasoning
technique introduced in [11], which takes a set of sat-risk of leaf goals as an input.
Notice that sat-risk value depends on which actor satisfies the leaf goal according to
the candidate plan. The algorithm propagates the qualitative values assigned to the leaf
goals along the goal tree up to the top goal, and thus the corresponding value for the top
goal is calculated.

If sat-risk of one top goal is higher than the specified threshold, then the refinement
process needs to be performed. The refinement (line 5) identifies those assignments of
the leaf goals to actors that should be avoided in order to have the sat-risk values of the
top goals within the specified thresholds. The refinement process starts by generating
a possible set of assignment (i.e., sat-risk values of the leaf goals) that results in the
top goals having the sat-risks below the specified thresholds. This set of assignments

Using Risk Analysis to Evaluate Design Alternatives 147

is called a reference model. Basically, the reference model is a set of maximum sat-
risk values of leaf goals that results in the top goals, which sat-risks do not violate the
thresholds. If the sat-risk values of leaf goals in the goal model are below the maximum
specified in the reference model, then the sat-risk of the top goals are acceptable. The
reference model can be obtained automatically using backward reasoning [12], which
aims at constructing the assignments of leaf goals to actors s.t. the specified sat-risk
value for the top goals are achieved. According to [12], a goal model is encoded as a
satisfiability (SAT) problem, and a SAT solver is used to find the possible assignments
that satisfy the SAT formula.

By comparing the sat-risk values of leaf goals in the goal model with the correspond-
ing values in the reference model, the riskier goal satisfaction actions are detected (i.e.,
the leaf goal in the goal model that has higher sat-risk than the corresponding value in
the reference model). For instance, in Fig. 3 the risk-sat of goal capable managing
airspace (G19) that is satisfied by actor P1-1 is FD (Fully Denied), while according
to the reference model, the value of G19 should be at most PD (partially denied).
Therefore, the problem definition needs to be refined s.t. P1-1 does not satisfy G19 .
However, we can not refine the problem by simply specifying G19 must not be satis-
fied by P1-1, because in Fig. 3 the goal model states that the satisfaction of G19 by
P1-1 is too risky. Ideally, we specify “the path of actions” from the top goal that lead
to the goal G19 being satisfied by P1-1. To simplify the refinement process, we only
consider one action involving G19 , performed just before P1-1 satisfies it. In case of
Fig. 2(b), such an action (called previous related action) is and decompose G3 into
G18 and G19 , which is performed by P1-1. Thus, the refinement predicate that should
be introduced in the problem definition is the following.

¬(satisfy(P1−1, G19) ∧ and decompose2(P1−1, G3, G18, G19))

After the problem definition is refined, the planner is run again to elicit a new candidate
plan using the refined problem definition. All the above described steps can be done
automatically, without any interference a designer.

STEP 2: Action Evaluation

The second evaluation step (line 6 of the Algorithm) is performed to guarantee that the
relaxation actions in a candidate plan are acceptable/not risky. In our framework, we
assume that relaxing the criticality of a goal from high to medium, or from medium to
low, can be performed safely only by the owner of a goal. We say that goal G is owned
by A if G was initially wanted by A (i.e., in the initial state A wants G to be satisfied). In
this case all the subgoals of G are also said to be owned by A. We use the term further
relaxation to refer to the situation when the relaxation is done by another actor (i.e.,
not the owner). Further relaxation is assumed to be a risky action, but sometimes it is
impossible to find a plan without it. This action could be allowed by the interference of
a designer adding it to the whitelist.

For instance, in the ATM case study SU1-1 intends to increase his airspace capacity in
response to the traffic increase by delegating his airspace(G11)to SU1-2. As the fulfill-
ment of G11 is critical (the criticality level is high), SU1-1 needs to have high trust level
towards SU1-2 for delegating G11 (i.e., can depend on gt h(SU1−1, SU1−2, G11)

148 Y. Asnar, V. Bryl, and P. Giorgini

should be true). Later, SU1-2 refines G11 into the subgoals control the aircraft (G2)
and manage the airspace(G3). For satisfying these goals, SU1-2 needs to depend on
the controller C1-2 for G2 , and on the planner P1-2 for G3 , because they are the ones
that have the capabilities to satisfy the corresponding goals. Let us assume the trust level
of the dependency of SU1-2 towards C1-2 for G2 is medium. Thus, SU1-2 needs to
further relax the criticality of G2 s.t. it can be delegated to C1-2.

Basically, the evaluation aims to guarantee that there is no relaxation action taken by
an actor which is not the owner of the goal. Otherwise, the designer needs to explicitly
allow the actor to do this action (i.e., add it to the whitelist). Notice that relaxation
actions are introduced only in the second run of algorithm. During the refinement phase
(line 7) the problem definition is changed to meet this requirement, which is followed
by replanning.

5 Experimental Results

In this section, we illustrate the application of our approach to the ATM case study.
The following subsections detail the case study formalization, and the planning-and-
evaluation process, performed in accordance with Algorithm 1. The aim of the process
is to elicit an appropriate plan for SU1-1’s sector, taking into account the constraints and
the risk of each alternative. The scenario starts with the intention of SU1-1 to increase
the capacity of airspace (G6) as a response to the air traffic increase in sector 1-
1. SU1-1 faces a problem that C1-1 is not available to control (G14) more traffic.
Therefore, SU1-1 needs to modify sector 1-1 without involving C1-1 s.t. the increase
of air traffic can be handled.

5.1 Case Study Formalization

The following inputs should be provided for Algorithm 1:

– A formalized problem definition, which contains all the properties of the actors of
the ATM system, and their goals. The complete list of properties can be found in
Table 2.

– Goals of the planning problem (e.g., satisfy G6 without involving C1-1 in satisfy-
ing G14).

– A list of authorized further relaxation actions (whitelist).
– Risk values of goal satisfaction actions. Table 1 shows all sat-risk values of the

satisfaction actions.
– Accepted risk values (e.g., risk value of G6 is at most PD).

In Table 1, the goal criticality values are presented in column Crit. Goal criticality
(high, medium, or low) denotes a minimum level of trust between two actors that is
needed if one actor decides to delegate the goal to another actor. For instance, goal
manage airspace(G3) is categorized as a highly critical goal, and goal analyze air
traffic(G8)has low criticality. Thus, these goals require different level of trust for being
delegated to another actor.

Moreover, Table 1 shows the risk levels of satisfying a goal when an actor tries to
achieve it. Note that, the sat-risk level of a goal depends on which actor satisfies the

Using Risk Analysis to Evaluate Design Alternatives 149

Table 1. Goals Criticality and Satisfaction Risk (Criticality = H: High, M: Medium, L: Low and
sat-risk = Full Denied, Partial Denied, and Not Denied)

�����Goal
Actor

C1-1 C2-1 P1-1 P2-1 SU1-1 C1-2 P1-2 SU1-2
Id. Description Crit.

G1 Manage Aircraft within ACC
G2 Control Aircraft H
G3 Manage Airspace H
G4 Manage Flight Data M PD
G5 Maintain Air Traffic Flow in Peak-Time
G6 Increase Airspace Capacity
G7 Analyze Air Traffic L
G8 Re-sectorize within ACC
G9 Delegate Part of Sector
G10 Define Schema Delegation M ND PD
G11 Delegate Airspace H
G12 Have Controlling Resources
G13 Have Capability to Control the Aircraft ND PD PD
G14 Avail to Control FD ND
G15 Have Control Working Position for Controller H ND PD
G16 Have Authorization for FD Modification M ND ND
G17 Have Capability to Manage FD ND PD
G18 Have Resources for Planning M ND
G19 Have Capability to Manage Airspace FD PD PD
G20 Have Capability to Analyze Air Traffic PD
G21 Avail to Plan ND ND ND
G22 Have Control Working Position for Planner H ND ND

goal. sat-risk takes one of the tree values: FD (Fully Denied), PD (Partially Denied),
or ND (Not Denied). For instance, the table states G19 can be satisfied either by actor
P1-1, P2-1, or P1-2, and each actor has different level of risk (sat-risk) – full, partial,
and partial, respectively. The empty cells in Table 1 imply the actor does not have
capabilities to fulfill the corresponding goal.

Table 2 shows properties of actors and their goals in ATM case study. Namely, it
represents actor capabilities (can satisfy), possible ways of goal refinements (decom-
pose), and possible dependencies among actors (can depend on) together with the
level of trust for each dependency. For instance, actor SU1-1 can satisfy goals G15 ,
G18 , and G22 , and the actor has knowledge to decompose G1 , G5 , G6 , G8 ,
and G9 . And SU1-1 has high level of trust to delegate G2 to C1-1 or C2-2. The same
intuition is applied for the other cells.

5.2 Planning and Evaluation Process

STEP 0: Planning. After specifying the inputs, the planner is executed to elicit a can-
didate plan to fulfill the predefined goals, which is shown in Fig. 2(a). These goals state
that the plan should satisfy G6 , and the solution should not involve C1-1 to satisfy G14
because C1-1 is already overloaded controlling the current traffic. Moreover, the plan-
ner should not involve the other ACC (i.e., SU1-2) by avoiding the delegation of G11
to SU1-2 even it is possible in Table 2. Before adopting the candidate plan (Fig. 2(b)),
two evaluation steps explained in previous section should be performed to ensure the
risk of the candidate plan is acceptable.

150 Y. Asnar, V. Bryl, and P. Giorgini

Table 2. List of Actors and Goal Properties for the ATM Case Study. (Level of trust: H: High, M:
Medium, L: Low).

Actor can satisfy decompose can depend on
type top-goal sub-goals level dependum dependee

SU1-1 G15 And G1 G2, G3 H G2 C1-1, C2-1
G18 And G5 G6, G7 H G3 P1-1, P2-1
G22 Or G6 G8, G9 H G4 P1-1, P2-1

And G8 G2, G3, G4 M G7 P1-1
And G9 G10, G11 M G10 P1-1

L G10 SU1-2
H G11 SU1-2

P1-1, P2-1 G17 And G3 G18, G19 H G22 SU1-1
G19 And G4 G16, G17, G18
G21 And G7 G18, G20

P1-1 G10 L G16 C1-1
G20

P1-2 L G16 C2-1
C1-1, C2-1 G13 And G2 G4, G12, G13 H G15 SU1-1

G14 And G12 G14, G15
G16

C1-1 M G4 P1-1
C2-1 M G4 P2-1

M G4 P1-1
SU1-2 G10 And G11 G2, G3 M G2 C1-2

G15 M G3 P1-2
G22

P1-2 G19 And G3 G19, G21, G22 M G22 SU1-2
G21

C1-2 G4 And G2 G4, G13, G15 M G15 SU1-2
G13

STEP 1: Goal Satisfaction Evaluation assesses the satisfaction risk of a candidate
plan. The goal model of goal G6 (in Fig. 3) is constructed on the basis of the candidate
plan (in Fig. 2(b)). The goal model shows which actors are responsible for satisfying the
leaf goals. For instance, G19 must be satisfied by P1-1 and, moreover, in this scenario,
G9 is left unsatisfied because the other or-subgoal, G8 , was selected to satisfy G6 .

In this scenario, we assume that the acceptable sat-risk value for G6 is PD. To cal-
culate the sat-risk value of goal G6 , forward reasoning is performed (i.e., the sat-risk
values of leaf goals in Table 1 are propagated up to the top goal). This reasoning mech-
anism is a part of the functionality of the GR-Tool3, a supporting tool for goal analysis.
By means of the forward reasoning, we obtain that the sat-risk of G6 is FD, which is
higher than the acceptable risk (i.e., PD). Thus, the refinement is needed to adjust the
problem definition, so that a less risky plan is constructed during the next replanning.
The refinement starts with the elicitation of a reference model using backward reason-
ing. The reference model specifies that all leaf goals must have at most PD sat-risk
value in order the sat-risk of top goal G6 not to be higher than PD.

By comparing the sat-risks of leaf goals in the goal model with the reference model,
G19 (satisfied by P1-1) is detected to be a risky goal; its sat-risk (in Table 1) is FD
which is higher than the one in the reference model. Therefore, the problem definition
is refined to avoid P1-1 satisfying G19 . As G19 is a subgoal of G3 , the decompo-
sition action is also negated, as the previous related action, according to the procedure

3 http://sesa.dit.unitn.it/goaleditor

Using Risk Analysis to Evaluate Design Alternatives 151

(satisfied G6)
(not(satisfy C1-1 G14))
(not(delegate SU1-1 SU1-2 G11))

(a) Goal of Problem Definition

0: (OR DECOMPOSES2 SU1-1 G6 G8 G9)
1: (AND DECOMPOSES3 SU1-1 G8 G2 G3 G4)
2: (DELEGATES SU1-1 C2-1 G2)
3: (AND DECOMPOSES3 C2-1 G2 G4 G12 G13)
4: (SATISFIES C2-1 G13)
5: (AND DECOMPOSES2 C2-1 G12 G14 G15)
6: (SATISFIES C2-1 G14)
7: (DELEGATES C2-1 SU1-1 G15)
8: (SATISFIES SU1-1 G15)
9: (DELEGATES C2-1 P2-1 G4)
10: (DELEGATES SU1-1 P2-1 G4)
11: (AND DECOMPOSES3 P2-1 G4 G16 G17 G18)
12: (SATISFIES P2-1 G17)
13: (DELEGATES P2-1 SU1-1 G18)
14: (SATISFIES SU1-1 G18)
15: (RELAX2L P2-1 G16)
16: (DELEGATES P2-1 C2-1 G16)
17: (SATISFIES C2-1 G16)
18: (DELEGATES SU1-1 P1-1 G3)
19: (AND DECOMPOSES2 P1-1 G3 G18 G19)
20: (SATISFIES P1-1 G19)

(b) The Candidate Plan after STEP 0

Fig. 2. Plan for Increasing Air Space Capacity

explained in the previous section. Thus, the problem definition is refined, and the goal of
the planning problem is now of the form shown in Fig. 4(a). Afterwards, the planner is
run to elicit a new candidate plan. Basically, the new candidate plan is almost the same
with the previous plan (Fig. 2(b)), the only difference is in lines 18-20 (see Fig. 4(b)).
Later, this candidate plan is evaluated by going through the next step to ensure all the
actions (especially, further relaxations) are acceptable in terms of risks.

STEP 2: Action Evaluation filters the malicious relaxation actions. The scenario starts
from the goal G6 which is wanted by SU1-1. As all the other goals of the candidate
plan are the result of the refinement of G6 , the owner of all of them is again SU1-1.
Thus, relaxing the criticality of any goals that is performed by any actors except SU1-1
is seen as a risky action.

For instance, P2-1 relaxes the criticality of G16 (line 15 in Fig. 2(b)) to low instead
of medium. By default this action is a risky one and should be avoided, unless the
designer states explicitly that this action is not risky by adding it to the whitelist. Once
it is considered unacceptable, the goal of the planning problem should be extended with
the negation of the relaxation action (i.e., (not (relax2l P2-1 G1))).

Moreover, the designer can also introduce rules to avoid certain actions. For in-
stance, the designer may prevent C2-1 from delegating G4 to P2-1 (line 9 in
Fig. 2(b)) by adding a new predicate to the goal of the planning problem (namely,
(not (delegate C2-1 P2-1 G4))). For the sake of simplicity all the possible relaxation
actions in the candidate plan are put to the whitelist, so we do not refine the problem
definition any further.

152 Y. Asnar, V. Bryl, and P. Giorgini

Fig. 3. The Goal Model of Candidate Plan in Fig. 2(b)

(satisfied G6)
(not (satisfy C1-1 G14))
(not (delegate SU1-1 SU1-2 G11))
(not (and (satisfy P1-1 G19)(and decompose2 P1-1 G3 G18 G19)))

(a) Problem Definition Refinement after STEP 1
............
18: (DELEGATES SU1-1 P2-1 G3)
19: (AND DECOMPOSES2 P2-1 G3 G18 G19)
20: (SATISFIES P2-1 G19)

(b) Final Plan for Satisfying G6

Fig. 4. Final Problem Definition and Plan for increase the airspace capacity(G6)

Thus, the last candidate plan to redesign SU1-1’s sector is approved s.t. the traffic
increase can be handled. Moreover, the plan is guaranteed to have risk values less/equal
than the predefined thresholds (i.e., sat-risk of G6 is less or equal than PD).

6 Related Work

Several approaches have been proposed in literature to use risk analysis in the design of
a software system. CORAS [13] has been developed as a framework for risk analysis of
security critical systems. Basically, CORAS consists of context identification, risk iden-
tification, risk analysis, risk evaluation, and risk treatment. CORAS can be integrated
with other risk modeling frameworks, such as Failure Mode, Effects, and Criticality

Using Risk Analysis to Evaluate Design Alternatives 153

Analysis (FMECA) [14], Fault Tree Analysis (FTA) [15], Hazard and Operability (HA-
ZOP) [16]. This methodology has been tested with security systems, especially in the
E-Commerce and Telemedicine area. In reliability engineering community, Defect De-
tection and Prevention (DDP) [17] has been proposed to assess the impact of risk and
related mitigation to the system. The DDP framework deals with three types of data:
Objective, Risk, and Mitigation. The objective is defined as the goal the system has to
achieve. The risk is defined as the thing that, once it occurs, leads to the failure of the
objective. Finally, the mitigation is a course of actions that can be applied to reduce the
risk. With the help of DDP the designer can assess how the introduction of a mitigation
impacts to the objectives. In this approach, a designer must construct the system design
before assessing the risk. Our approach, on the other hand, is aimed to automate both
the design and its evaluation.

The field of AI planning has been intensively developing during the last decades,
and has found a number of interesting applications (e.g., robotics, process planning,
autonomous agents, etc.). There are two basic approaches to the solution of planning
problems [8]. One is graph-based planning algorithms in which a compact structure,
called Planning Graph, is constructed and analyzed. In the other approach the planning
problem is transformed into a SAT problem and a SAT solver is used. There exist sev-
eral ways to represent the elements of a classical planning problem (i.e. the initial state
of the world, the system goal, or the desired state of the world, and the possible actions
system actors can perform). The most widely used, and to a certain extent standard
representation is PDDL (Planning Domain Definition Language), the problem specifi-
cation language proposed in [18]. Current PDDL version, PDDL 2.2 [19] used during
the last International Planning Competition [20], supports many useful features (e.g.,
derived predicates and timed initial literals).

A few works can be found which relate planning techniques with information system
design. In [21] a program called ASAP (Automated Specifier And Planner) is described,
which automates a part of the domain-specific software specification process. ASAP
assists the designer in selecting methods for achieving user goals, discovering plans that
result in undesirable outcomes, and finding methods for preventing such outcomes. The
disadvantage of the approach is that the designer still performs a lot of work manually
while determining the combination of goals and prohibited situations appropriate for
the given application, defining possible start-up conditions and providing many other
domain-specific expert knowledge. Some works present a planning application to assist
an expert in designing control programs in the field of Automated Manufacturing [22].
The system they have built integrates POCL (Partial Order Causal Link), hierarchical
and conditional planning techniques [22,9]. The authors consider standard planning
approaches to be not appropriate with no ready-to-use tools for the real world, while in
our paper the opposite point of view is advocated, and the off-the-shelf planner is used.

7 Conclusion

In this paper, we have proposed an approach to incorporate risk analysis into the process
of MASs design. The approach is based on the use of planning to explore the space of
alternative designs and risk-based evaluation metrics to evaluate the resulting solutions.

154 Y. Asnar, V. Bryl, and P. Giorgini

We argue that the approach is particularly suitable for the design of critical and respon-
sive systems, such as air traffic management, health-care systems, disaster management
(e.g., post-disaster urban planning), traffic management, etc.

The proposed framework is meant to support a designer in generating, exploring, and
evaluating design alternatives either during the initial, classical design, or during run-
time redesign of a MAS. We consider runtime redesign of high importance for modern
information systems, which operates in continuously changing environment and then
require highly adaptable characteristics. Among the limitations of our approach, we
would like to mention that it only supports a centralized viewpoint (i.e., the design-
ers viewpoint), while the different actors of a system may have different priorities and
criticalities. We consider this issue being an interesting direction for future work.

Acknowledgments

We would like to thank to Gabriel Kuper, Sameh Abdel-Naby, Hamza Hydri Syed, and
anonymous reviewers for all the useful comments. This work has been partially funded
by EU Commission, through the SENSORIA and SERENITY projects, by the FIRB
program of MIUR under the ASTRO project, and also by the Provincial Authority of
Trentino, through the MOSTRO project.

References

1. Truszkowski, W., Rash, J., Rouff, C., Hinchey, M.: Asteroid exploration with autonomic
systems. In: Engineering of Computer-Based Systems, 2004. Proceedings. 11th IEEE Inter-
national Conference and Workshop on the. (May 2004) 484–489

2. Matsui, H., Izumi, K., Noda, I.: Soft-restriction approach for traffic management under dis-
aster rescue situations. In: ATDM’06: 1st Workshop on Agent Technology for Disaster Man-
agement. (2006)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Trans. Dependable Sec. Comput. 1(1) (2004)
11–33

4. Ljungberg, M., Lucas, A.: The OASIS Air-Traffic Management System. In: PRICAI’92: In
Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence.
(1992)

5. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: Autonomous and autonomic systems:
a paradigm for future space exploration missions. Systems, Man and Cybernetics, Part C,
IEEE Transactions on 36(3) (2006) 279–291

6. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security requirements models
through planning. In: CAiSE’06, Springer (2006) 33–47

7. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing cooperative IS: Exploring and evaluating
alternatives. In: CoopIS’06. (2006) 533–550

8. Weld, D.S.: Recent Advances in AI Planning. AI Magazine 20(2) (1999) 93–123
9. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report, University

of St. Gallen (2005)
10. LPG Homepage: LPG-td Planner. http://zeus.ing.unibs.it/lpg/
11. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Techniques

for Goal Models. Journal of Data Semantics (October 2003)

Using Risk Analysis to Evaluate Design Alternatives 155

12. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for
Goal Models. In: CAISE ’04: In Proceedings International Conference on Advanced Infor-
mation Systems Engineering. Volume 3084., Springer (June 2004) 20–33

13. Fredriksen, R., Kristiansen, M., Gran, B.A., Stolen, K., Opperud, T.A., Dimitrakos, T.: The
CORAS framework for a model-based risk management process. In: Safecomp ’02: In Pro-
ceedings Computer Safety, Reliability and Security. Volume LNCS 2434., Springer (2002)
94–105

14. DoD: Military Standard, Procedures for Performing a Failure Mode, Effects, and Critical
Analysis (MIL-STD-1692A). U.S. Department of Defense (1980)

15. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. U.S Nuclear Regu-
latory Commission (1981)

16. USCG: Risk Based Decision Making Guidelines. http://www.uscg.mil/hq/g-m/risk/e-
guidelines/RBDMGuide.htm (November 2005)

17. Feather, M.S.: Towards a Unified Approach to the Representation of, and Reasoning with,
Probabilistic Risk Information about Software and its System Interface. In: 15th IEEE Inter-
national Symposium on Software Reliability Engineering, IEEE Computer Society (Novem-
ber 2004) 391–402

18. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL – The Planning Domain Definition Language. In: Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems. (1998)

19. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the 4th inter-
national planning competition. Technical Report 195, University of Freiburg (2004)

20. IPC-4 Homepage: International Planning Competition 2004. http://ls5-www.cs.uni-
dortmund.de/ edelkamp/ipc-4/

21. Anderson, J.S., Fickas, S.: A proposed perspective shift: viewing specification design as a
planning problem. In: IWSSD ’89: 5th Int. workshop on Software specification and design.
(1989) 177–184

22. Castillo, L., Fdez-Olivares, J., Gonzlez, A.: Integrating hierarchical and conditional planning
techniques into a software design process for automated manufacturing. In: ICAPS 2003,
Workshop on Planning under Uncertainty and Incomplete Information. (2003) 28–39

SUNIT: A Unit Testing Framework for Test
Driven Development of Multi-Agent Systems

Ali Murat Tiryaki, Sibel Öztuna, Oguz Dikenelli, and Riza Cenk Erdur

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

ali.murat.tiryaki@ege.edu.tr, sibel.tamer@gmail.com,
oguz.dikenelli@ege.edu.tr, cenk.erdur@ege.edu.tr

Abstract. Complex and distributed nature of multi-agent systems
(MASs) makes it almost impossible to identify of all requirements at
the beginning of the development. Hence, development of such systems
needs an iterative and incremental process to handle complexity and the
continuously changing na-ture of the requirements. In this paper, a test
driven multi-agent system devel-opment approach that naturally sup-
ports iterative and incremental MAS con-struction is proposed. Also a
testing framework called as SUnit which supports the proposed approach
by extending JUnit framework is introduced. This framework allows writ-
ing automated tests for agent behaviors and interactions between agents.
The framework also includes the necessary mock agents to model the or-
ganizational aspects of the MAS.

1 Introduction

Agent oriented software engineering (AOSE) [1] aims to build complex and
distrib-uted software systems based on agent abstraction. To build such sys-
tems, developers need agent-specific methodologies. As a result, definition of
such methodologies is one of the most explored topics in AOSE area.

Lots of agent-specific methodologies which use a waterfall like process, such as
Gaia [2,3], SODA [4] and Prometheus [5] and which use an incremental process
but do not provide any implementation level support to handle this iterative
process, such as INGENIAS [6] and Tropos [7] have been proposed in the liter-
ature. But, it’s clear that it is almost impossible to collect all the requirements
in the beginning of the development of such complex systems. Moreover, MASs
may operate as open organizations that further complicate, to comprehend all
functional and nonfunctional requirements at the early phases of the develop-
ment. Therefore, we need an iterative and incremental development approach
and its implementation level support to handle the complexity and continuously
changing nature of the requirements.

Software engineering researchers and practitioners have also realized that they
need a different development process rather than the traditional ones to model
the complex systems in dynamically changing domains [8]. So, agile processes
have been proposed to tackle these complexities. All of these agile processes

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 156–173, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 157

basically introduce some light-weight practices to execute iterative and incre-
mental development in a controllable way. It is natural to think that these
practices can be transferred to AOSE, since the basic problems have similar
characteristics [9,10].

In the literature, there are some pioneering works which try to apply agile
practices to MAS development. For example, Knublauch [11,12] used practices
of extreme programming (XP) [8], which is the one of the most known agile
development processes for MAS development. Although this work proves the
effectiveness of XP practices in terms of MAS development, the agent develop-
ment framework and process meta model, which are used during development,
are very simple. Based on the selection of a very simple framework infrastruc-
ture, test driven practice of XP looks like object based test driven development.
So the scalability of these practices is questionable when they are applied using
a realistic development framework and meta models.

Another important work has been introduced by Chella et. all [13] to trans-
form well known Passi methodology to Agile Passi. This group also developed a
testing framework to provide automated testing approach for testing multi-agent
systems [14,15]. Although this framework allows testing an agent’s internal be-
haviors, they didn’t introduce an approach to develop MASs with the iterative
and evolutionary style and dependently their testing framework does not support
such an approach.

In this paper, first of all, we propose a test driven approach to develop MASs
iteratively and incrementally. For each MAS scenario, proposed approach identi-
fies agent task(s), interactions and organizational responsibilities in an iterative
and evolutionary way during test driven implementation. Agent oriented test
driven de-velopment (AOTDD) is an approach to develop MASs in an incre-
mental and iterative way with a testing framework support. This approach is
used in the implementation level of MAS development. So, other well-known
MAS development methodologies can use AOTDD after the design artifacts
are identified, to support iterative development. To support the proposed ap-
proach, a testing framework, called as SUnit, was implemented on the top of the
Seagent multi-agent system development framework [16]. This testing framework
allows developers to write automated tests for agent behaviors, agent to agent
and agent to organization interactions to verify the functionality of the scenario
at hand.

This document is organized as follows; in the following section, we define
a conceptual framework to present our test driven approach. In section 3, we
mention Seagent framework briefly. Section 4 presents software architecture of
the testing framework implemented. Each subtitle in this section deals with one
of the modules of this framework. During the representation of SUnit framework
an example plan structure is used to show usage and effectiveness of AOTDD
approach and SUnit testing framework. Section 5 evaluates SUnit frame-work
on an experimental case study.

158 A.M. Tiryaki et al.

2 Conceptual Framework for Test Driven Development
of MASs

Test driven development (TDD) [17] is a style of software development in which
development is driven by automated tests. The development cycle of TDD is
very simple; developer defines functional tests for a unit/task, then implements
the code that passes these written tests and finally, the code is refactored [18] to
improve the design. Although this cycle seems very simple, it implicitly supports
the iterative and incremental construction of task at hand such as; the cycle
begins with writing the test(s) for a single unit. During the implementation of the
unit, interactions of the unit with other units are defined simply by using mock
and/or dummy objects. Then the process flows iteratively and incrementally by
developing real units to replace the mock/dummy ones. Of course, initial design
decisions such as specified interactions and unit functionalities can be improved
through out the process with refactoring practice.

In XP, TDD can only be applied successfully, if developer has an implicit
knowl-edge about the general system metaphor [8]. System metaphor is a story
that everyone -customers, programmers and managers- can tell about how the
system works. The metaphor in XP replaces of what other software researchers
call “software architecture”. Implicit knowledge of the metaphor allows devel-
opers to identify architectural units and their dependencies with the functional
units during the execution of the TDD process.

To transfer the TDD style to the agent oriented development, we first have
to define the necessary concepts for agent oriented test driven development
(AOTDD) to replace the traditional ones. First concept is scenario. Each sce-
nario defines an elementary process within MASs, which produce a net value
for the initiator of the scenario. In AOTDD, scenarios are conceptually different
than traditional ones in a way that they can be initiated by autonomous agents
themselves. Another concept is the agent itself which replaces the traditional
objects/units.

Beyond the basic AOTDD concepts, agents form an organization and live
within an environment. So, we have to define a metaphor for the target MAS
model to apply AOTDD. Our metaphor which is shown in figure 1 is the synthesis
of Gaia [2,3] and Passi [13] meta-models.

Now, it is time to define AOTDD process based on the concepts and metaphor
defined so far. Figure 2 shows the visual description of AOTDD cycle. In the
following paragraphs, each step will be explained in detail.

At first, we take a role that will be played by an agent. At the beginning of
the scenario development, developer identifies the initiator role of the scenario
to start the AOTDD cycle.

In the second step, developer selects an agent that executes the role and
identifies one of its tasks to satisfy the responsibility of selected role in terms of
scenario at hand. At this stage, developer simply draws and/or thinks about the
initial plan structure that will execute the developed tasks at hand.

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 159

Agent

OrganizationEnvironmentOntology

Environment

Resource Role

Task

OrganizationalOntology

Communication

Message

*

member

Fig. 1. The MAS metaphor

1. Take a role that will
be played by an agent

2. Select an agent that
executes the role

3. Write the tests
required

4. Implement the
initial plan

5. Refactor the
tests&design
by improving

agent&organiational
interactions

Fig. 2. Iterative cycle of AOTDD

In the third step, developer writes tests that will validate the task(s) being
developed. Writing the automatic tests for autonomous agents is not simple as
in the object oriented development case. MASs have different levels for testing.
We specified three testing level for MAS development. These levels are;

160 A.M. Tiryaki et al.

– Structural Test Level: Agent tasks are implemented using a planning par-
adigm such as Hierarchical Task Network (HTN) [19] formalism. These plan
structures can be in very complex forms. Hence, developer has to validate
correctness of the plan structure at the first test level.

– Action Test Level: Each plan may have more than one executable action.
At this level, developer has to test functionality of these actions separately.

– Flow Test Level: Each agent interacts with other agents and organiza-
tional units -such as directory facilitator- to satisfy the requirements of the
developed plan. Hence, some tests must be written to verify the correctness
of the specified interactions.

Of course, a testing framework is required to manage this process. In section 4,
we will introduce SUnit framework that is developed to manage the AOTDD
cycle.

In step four, developer implements the task at hand based on the defined plan
structure in step 2 and the tests written in step 3. To execute this step, testing
framework must provide mock agent(s) and an infrastructure to develop dummy
agent(s) based on the metaphor defined. SUnit framework provides a mock agent
to simulate FIPA’s directory facilitator structure1. Developer simply implements
the plan which runs the written tests, using the provided mock agents and the
real agents developed at the earlier cycles if necessary.

Agent tasks can be very complex to identify all tests and to construct the over-
all structure in a single step. During the implementation of the plan structure,
develop-ers can identify additional requirements that expand the plan structure.
At this point, they write required test by backing the previous step and then con-
tinue to implement the plan structure. So, there is an internal iteration between
step three and step four.

In the final step, developer may refactor the initial design decisions. For ex-
ample, previous plan structure can be transferred to a better structure by identi-
fying reusable task(s) within the task and/or the new agent(s) or organizational
interactions can be identified to improve modularity or robustness of the system.

At the end of the cycle, HTN plan of the target task is completed by validating
all written tests using the mock agents. Then, this cycle is repeated for each of
these mock agents to transform them to the real agent that plays a specific role
within the scenario. Consequently, the scenario is implemented in an iterative
and incremental style following the cycle defined.

3 Seagent MAS Development Framework

SUnit testing framework was implemented on the top of the Seagent multi agent
system development framework and it has some dependences to this framework.
Therefore, we mention Seagent framework briefly in this section. This framework
was implemented by Seagent research group that includes authors of this paper.

1 http://www.fipa.org/specs/fipa00023/

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 161

Seagent is specialized for semantic web based multi agent system development
and includes some new built-in features for this purpose. It uses semantic web
ontology standards in each layer of its software architecture. For example, an
OWL based content language is used within the FIPA communication protocols
and Seagent agent internal architecture can interpret this language. Moreover,
its internal architecture has necessary infrastructure to handle OWL and RDF
models within its internal memory and has a pluggable architecture to connect
different knowledge bases like Jena2.

Seagent’s layered software architecture is shown in figure 3. Each layer and
packages of the layers have been specially designed to provide build-in support for
se-mantic web based multi agent system (MAS) development. In the following,
we briefly mention each layer with an emphasis on the semantic support given
by that layer.

Fig. 3. Seagent Platform Overall Architecture

The bottom layer is responSeagent framework brieflysible of abstracting plat-
form’s communication infrastructure implementation. Seagent implementsFIPA’s
Agent Communication and Agent Message Transport specifications to handle
agent messaging. Although Communication Infrastructure Layer can transfer any
content using FIPA ACL and transport infrastructure, Seagent platform only sup-
ports FIPA RDF content language since it is very suitable to transfer semantic web
enabled content.

The second layer includes packages, which provide the core functionality of
the platform. The first package, called as Agency, handles the internal func-
tionality of an agent. Agency package provides a built-in ’agent operating sys-
tem’ that matches the goal(s) to defined plan(s), which are defined using HTN
planning formalism [19]. It then schedules, executes and monitors the plan(s).

2 http://jena.sourceforge.net

162 A.M. Tiryaki et al.

From semantic web based devel-opment perspective, an agent’s internal architec-
ture must support semantic web on-tology standards for messaging and internal
knowledge handling to simplify seman-tic based development. For this purpose,
Agency package provides a build-in support to parse and interpret FIPA RDF
content language to handle semantic web based messaging.

The second package of the Core Functionality Layer includes service sub-
packages, one for each service of the platform. These services follow the FIPA
standards but they are implemented differently using the capabilities of a se-
mantic web infrastructure. In the Seagent implementation, DF uses an OWL
ontology to hold agent capabilities and includes a semantic matching engine to
be able to return agent(s) with semantically similar capabilities to the requested
ones. Similarly, AMS stores agents’ descriptions in OWL using FIPA Agent Man-
agement Ontology and can be queried semantically to learn descriptions of any
agent that is currently resi-dent on the platform.

Besides implementing standard services in a semantic way, Seagent platform
provides two new services to simplify semantic web based MAS development.
The first one is called as Semantic Service Matcher (SSM). SSM is responsible
for connecting the platform to the semantic web services hosted in the outside of
the platform. SSM uses ’service profile’ construct of the Web Ontology Language
for Semantic Web Services (OWL-S) standard for service advertisement and this
knowledge is also used by the internal semantic matching engine for discovery of
the service(s) upon a request. The second unique service is the Ontology Manager
Service (OMS). The most critical support of the OMS is its translation support
between the ontologies. Through the usage of the ontology translation support,
any agent of the platform may communicate with MAS and/or services outside
the platform even if they use different ontologies.

Third layer of the overall architecture includes pre-prepared generic agent
plans. We have divided these generic plans into two packages. Generic Behavior
package collects domain independent reusable behaviors that may be used by
any MAS such as well known auction protocols (English, Dutch etc.). On the
other hand, Generic Semantic Behaviors package includes only the semantic web
related behaviors. In the current version, the most important generic semantic
behavior is the one that executes dynamic discovery and invocation of the exter-
nal services. This plan is defined as a pre-prepared HTN structure and during
its execution, it uses SSM ser-vice to discover the desired service and then using
OWL-S ’service grounding’ construct it dynamically invokes the found atomic
web service(s). Hence, developers may include dynamic external service discov-
ery and invocation capability to their plan(s) by simply inserting this reusable
behavior as an ordinary complex task to their HTN based plan definition(s).

4 The SUnit Testing Framework

In this section basic functionalities and software architecture of the SUnit testing
framework are defined. SUnit introduces a test environment that supports the
developer to create and execute tests in a uniform and automatic way during

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 163

MAS development. It lets developers to build the tests and to collect these tests
in a test suite effortlessly in an incremental way. It also supports test creation
on the plan structure being developed, confirmation of internal behavior of the
plans, and validation of plan execution at run time.

SUnit framework is built on top of the Seagent [16] MAS development environ-
ment. As mentioned section 3, Seagent support HTN approach as the planning
paradigm like well-known RETSINA [20] and DECAF [21] architectures. There-
fore, SUnit has a slight dependency to HTN approach. However, we think that
our test driven approach can be used for other planning paradigms with the help
of test environments that would be developed for these paradigms specially. In
addition to the dependency described above, there is another dependency be-
tween SUnit and Seagent framework. Flow test module uses events sent by the
Seagent planner to check the plan flow. This module can also be used for other
environments that send similar events with the simple modifications.

The SUnit which is implemented in the Java programming language extends
the JUnit unit testing framework3. In JUnit, unit tests are written by using
TestCase class that extends Assert class. Hence, written test cases directly use
the assertion method of Assert class. Assert class is the focal point of the JUnit.
This class includes static methods that help the user to create private test cases.
Each of these assertion methods asserts that a condition is true, and if it isn’t,
it throws an AssertionFailedError with the given message. AssertionFailedError
is caught by the TestRunner and it reports a test failure - in case the user
is using the graphical version of TestRunner, the famous red bar appears. So,
every assertion method in JUnit Framework have return type void. JUnit’s class
diagram and its relationships with SUnit’s main classes are shown in figure 4.

Agent plan structures, tasks in these structures and interactions between these
tasks have different characteristics from traditional class structures and relation-
ships among them. Hence, specialized assertion methods are required for testing
agent plan structures. SUnit is built on JUnit to provide these assertion methods
for agent level verification. All SUnit methods use JUnit methods inside for ob-
ject level verification and are specialized for testing agent plans and interactions.

Each SUnit method throws AssertionFailedError exception through the use of
JUnit. AssertionFailedError is caught by the SeagentTestRunner that extends
the TestRunner of JUnit framework. Thus, every assertion method in SUnit
framework have return type void like JUnit methods. Besides the availability of
the standard JUnit interface, an extended interface is also appended to view the
specialized messages about the relevant errors. This paves the way for eliminating
the errors. The SUnit interface is shown in figure 5.

At run time, HTN structure is expanded to a graph structure whose leaf nodes
include executable actions. So, agent functionality can be verified by writing
test cases for each executable action and correctness of the plan structure. MAS
organization functionality can be verified using methods of flowTest module since
they can check the correctness of the messages coming from other agents and
organizational entities (like directory service).

3 http://www.junit.org

164 A.M. Tiryaki et al.

Assert Test

TestResultTestCaseTestRunner TestSuite

SUnitTestCase

SUnitStructuralTestCase

SeagentTestRunner

SUnitActionTestCase SUnitFlowTestCase

JUnit

SUnit

Fig. 4. JUnit and SUnit classes

The test environment consists of three submodules that handle three testing
levels discussed in section two. These sub modules are Structural Test Module
for structural test level, the Action Test Module for action test level and the
Flow Test Mod-ule for flow test level. Each of these modules has an abstract
class which is extended from SunitTestCase as shown in figure 4. SunitTestCase
class extends the TestCase class of JUnit framework whose functionalities can
be inherited through this extension.

In the following subsections, we discuss the design and usage of each module
of SUnit using a HTN diagram from an implemented case study. This case study
is an experimental work on the tourism domain and HTN example given in figure
6 is the plan of “Traveler”agent that is used to find and book a proper room for
the human traveler.

In HTN formalism, a complex task is the task that includes one or more
tasks. “Find and book a room” is a complex task in our plan structure. The
directly executable tasks are called as primitive tasks. “Get reservation informa-
tion” task in the plan above is an example of primitive task. Provisions represent
the information needs of a task and can be thought as a generalization of both
parameters and runtime variables. In our plan, “Hotel info” is a provision of
the task “Get reservation information”. An outcome is a state which shows how
a task is finished and returns the result(s) of this task. In the plan structure
shown in figure 6, OK is the outcome of task “Find hotels”. Information flow
relationships between the tasks are represented by the provision-outcome links.
In the plan structure mentioned above, there is a provision-outcome link be-
tween the outcome OK of the task “Find hotels” and “hotel info” provision of

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 165

Fig. 5. SUnit interface

Find and book
a room

location OK

fail

Find hotels

location OK

Get reservation
information

hotel info OK

Ask availability

hotel info OK

fail

Find and book
a room

hotel info OK

failreservation reservation

Fig. 6. Initial HTN diagram of the “arrange holiday” plan

the task “Get reservation information”. The meaning of this link is that if the
execution of “Find hotels” raises the outcome OK, its result is supplied to “ho-
tel info” provision of the task “Get reservation information”. The outcome and
provision transmissions between subtasks and parent tasks are represented by
inheritance and disinheritance links. In our sample plan structure, there is an
inheritance between provision “location” of “Find and book a room” task and
provision “location” of “find hotels” task.

166 A.M. Tiryaki et al.

4.1 Structural Test Module

Structural test module was developed to check the rules of HTN formalism and
assist the developer for developing structurally correct plan structures. Using
this module, developer first writes tests for a high level HTN plan and then
develops this plan while validating its structural correctness using written tests.
Later, he/she adds sub-tasks by writing their structural test firstly. Thus, this
module makes possible to develop plan structure in a test driven way.

Methods that are used for structural testing are situated in an abstract class
called as SunitStructuralTestCase. The methods of this class deal with the facts
like, accuracy of some critical components of a complex task, consistency of
provision-outcome links between subtasks or integrity of plan task. For each
complex task in the plan, at least one structural test case should be implemented
by extending this abstract class and assigning the complex task that would be
tested, using the setBehaviourClass() method of this class. Then, these written
test cases can be collected in a junit.framework.TestSuite to take the advantage
of automated tests.

For the HTN structure shown in figure 6, some critical structural tests which
were defined during the“writing tests”step of AOTDD cycle, are shown in figure 7.

First assert method named “assertProvisionSender”checks whether provision
“reservation” of the “askAvailability” task is supplied by an outcome of the task
“getReservationInformation”. If not; asserts false with an explanatory message.

Second assert method named “assertDisinheritanceSender” checks whether
disinheritance named “disinheritOK” is sent by the “bookingARoom” sub-task
and received by“findAndBookingARoom”complex task. This method also checks
whether the “findAndBookingARoom” complex task has a proper provision to
send. If not; asserts false with a suitable message.

By writing tests iteratively and then developing the structure to pass these
tests, a high level accurate task structure is obtained. Afterwards, it is time to
jump to the lower levels of the plan structure.

For each sublevel of the plan, structural test steps mentioned before are ap-
plied again and an accurate structure that passes all structural tests, developed.
This process is pursued until all complex task structures in the original plan are
implemented. At the end of this process, whole structure of “Find and book a
room” task was fully defined.

With this top-down development approach, whole HTN structure is developed
iteratively beginning from the higher level tasks. This strategy also enabled de-
signing more realistic HTN structures by specifying the detailed structure at the
implementation phase.

4.2 Action Test Module

In the Hierarchical Task Network manner, complex tasks are reduced to primitive
tasks (sometimes called as actions) to operate. In this sense, primitive tasks are
executable components of a complex task. So, one has to define consistent and
accurate primitive tasks to develop an efficient plan.

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 167

pub l i c void testLeve lOne (){
a s s e r tProv i s i onS end er (a skAva i l ab i l i t y , r e s e rv a t i on ,

ge tRese rvat ion In fo rmat ion) ;
a s s e r tD i s i nh e r i t an c eS ende r (dis inheritOK , bookingARoom) ;

}

Fig. 7. A sample structural test case

A primitive task operates according to the provided provisions and may gen-
erate an outcome and/or some messages to another agent in the platform. Con-
sidering the distributed and dynamic nature of multi agent systems, provision
values are unstable in these systems. This makes handling extreme provision
values mandatory. Action Test Module was designed to examine outcomes or
messages in respect to user defined provision sets for primitive tasks.

Methods that are used for action testing are situated in an abstract class called
as SunitActionTestCase. To write an action test for a task, one has to extend
this abstract class by passing the task name as parameter. So, action tests know
its task. Also, assignActionClass() method knows the return value since it can
access the task’s original outcome value(s). Methods of this class check the results
of primitive task(s) such as outcomes and/or generated messages.

For every primitive task in a plan, a set of action test cases should be imple-
mented. These test cases can be generated for a set of ordinary provision values or
possible extreme provision values. All implemented test cases could then be col-
lected in a junit.framework.TestSuite to take the advantage of the automated tests.

In our example plan, test cases for each primitive task such as “get reservation
in-formation” and “evaluate hotel information”must be defined. Such a test case
for “evaluate hotel information” action is shown in figure 8.

The first assert method named “assertActionOutcome” checks whether task
“evaluate hotel information” generates an outcome named “outcome1” when the
user defined provision value for the “hotelInfo” provision is provided. If not;
asserts false with a message.

The second assert method named“assertOutcomeType”checks whether“eval-
uate hotel information” task generates an outcome named “outcome1”which re-
turn the value of the type “hotel.class”when the user defined provision value for
“hotelInfo” provision is provided. If not; asserts false with a message.

During the implementation of primitive tasks, it may be observed that some
of the tests do not cover some extreme provision values. For example; if none of
the hotels is selected as the proper hotel after execution of the “evaluate hotel
information” task, an empty list is generated as the value of the “OK” outcome.
This fault probably would cause problems in the dependent subtasks. To solve
this problem, an outcome named “FAIL” is added to the “evaluate hotel infor-
mation” task and the task code is changed to produce “FAIL” outcome when
“hotel list” provision is empty. By applying this adjustment, “find and book a
proper room” task is run without producing any error for these extreme values.

168 A.M. Tiryaki et al.

pub l i c void t e s t 1 () {
Outcome outcome1 = new Outcome (” Ev a l u a t eAv a i l i b i l i t y ” ,

”OK” , ” a v a i l a b i l i t y ”) ;
outcome1 . setValue (hote l2) ;
assertActionOutcome (outcome1) ;
assertActionOutcomeType (outcome1 , h o t e l . c l a s s) ;

}

Fig. 8. A sample action test case

This adjustment naturally required rearrangement of some structural and action
test cases.

At the end of the action test phase, well-defined primitive tasks which exe-
cuted as expected and could handle extreme provision values are implemented.
Besides this, with the guidance of action tests, plan structure is improved as
mentioned above.

4.3 Flow Test Module

To execute a plan, an agent has to interact with other agents on the platform via
messages. These messages affect operation of the plan. Hence, run time behavior
against various messages has to be tested to build reliable plans.

Flow Test Module of SUnit was designed to evaluate outcomes or outgoing
messages of the tasks in respect to the incoming messages or predefined mes-
sage sets. Execution order and status of tasks are also examined. Test envi-
ronment provides an infrastructure to validate the values and the types of the
returned result. Infrastructure is dependent on the communication standards
of Seagent platform. Seagent uses FIPA RDF content language and OWL4 to
transfer knowledge within the message content. SUnit gets the returned value
and/or type of the OWL concept from the Seagent framework and can check the
correctness of this concept’s type with the expected type. Developers are capa-
ble to assess these criteria by extending the SunittFlowTestCase via particular
assert methods. SunitFlowTestCase class includes assert methods which operate
through interacting the PlanHandler component of SUnit. It handles the Plan-
ListenerObject that listens to the generated plan events by the concerned agent.
The test class which is extended from the SunitFlowTestCase is responsible to
launch the agent in to the platform. As implied, all concerned events are kept in
the PlanHandler component to be reasoned after the plan execution. The class
diagram of the Flow Test Module of the SUnit is shown in figure 9.

As mentioned above, an agent has to interact with other agents and orga-
nizational units such as FIPA’s Directory Facilitator via messages to execute
a plan. Even when the agents being communicated with are not on the plat-
form, the plan being developed has to be tested at runtime. Abnormal messages
that influence the plan execution should also be managed. On the other hand,

4 http://www.w3.org/2004/OWL/

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 169

it may not be possible to find the provider of the exceptional messages at the
desired time.

For these reasons, a mock agent called as MessageSet was included to the
Flow Test Module. This agent has a mechanism to hold some or all of the in-
coming message requirements of the plan and provides the required message to
the concerned agent and/or organizational units during execution. The message
need is deduced from the plan events generated by the agent under interest.

In the case of not to find the required message in the message set, the agent
has to wait for a real message which is provided from the other agents on the
platform. This brings the flexibility on the plan flow test which can be done in
respect to the incoming messages or predefined artificial messages.

The same mechanism is also used to simulate organizational abstraction. In
the current version, we support FIPA’s Directory Facilitator standard to man-
age organizational aspects of the multi-agent system. To create a fake Directory
Facilitator service, a reusable message structure has been developed. This struc-
ture is used to generate FIPA messages that includes DF ontology instance with
given concept values. Then this message is inserted into the message set to pro-
vide agent organization interaction.

To facilitate the plan implementation, an additional interface is included in
the Flow Test Module. This interface monitors the plan events such as execution
of a task, generation of an outcome or arrival of a message, in order to debug
the plan in a comprehensive way.

During the structural and action test level, the plan is built structurally;
primitive tasks are tested and coded. At the structural and action test phases
other agents that play defined roles within the scenario are not needed. However,
at the flow test phase, the plan is tested at runtime.

For our example plan, the interactions with the hotel role have not been
defined yet. So, the “find and book a room” plan has to be isolated from the
organization and tested at runtime. In order to accomplish this, message sets

PlannerListener

SUnitFlowTestCase

Agent

PlanEvent

ActionEvent MessageQueueEvent

MessageSetPlanHandler
 interacts assigned

 handles

 listens

 launchess

......

 generates

Fig. 9. Class Diagram of the Flow Test Module

170 A.M. Tiryaki et al.

pub l i c c l a s s Fu l l I s o l a t edTe s t extends SunitFlowTestCase {
. . .
pub l i c MessageSet ass ignMessageSet () {

MessageSet mySet= new MessageSet () ;
FIPAMsg aMessage = new FIPAMsg () ;
. . .
mySet . addMessage (aMessage) ;
. . .
r e tu rn mySet ;

}
pub l i c void t e s tFo rF i r s tLev e l (){

. . .
assertActionOutcome (getReservat ionIn format ion , ”OK”) ;
assertAct ionExecuted (getReservat ion In format ion) ;
assertMessageArr ived (aMessage) ;

}
}

Fig. 10. A sample flow test case

are used. To simulate all of the communicating agents in the task execution, a
message for each interaction is created to provide external messages and added
to message set. Then a test case is written for each message set to validate
interactions. An example case is shown in figure 10.

The first assert method named “assertActionOutcome” checks whether the
“getReservationInformation” action generates “OK” outcome when the plan is
executed with the defined messageSet. If not; asserts false.

The second assert method named “assertActionExecuted”checks whether the
“getReservationInformation”action is executed during the plan operation. If not;
asserts false.

The third assert method named“assertMessageArrived”checks whether a mes-
sage identified with “aMessage” is received during the plan execution. If not;
asserts false.

Although the developer insures the plan execution against the message sets,
the real interactions with other agents are also a crucial issue to implement the
scenario. At the following cycles of the AOTDD, each message from the message
set is transfered to the real agents that play the corresponding role following
again the same cycle. During the implementation of these plans, the AOTTD
cycle is followed for the each plan. With the guidance of the test case failure
messages, accurate interactions between the agents are accomplished.

5 Evaluation

AOTDD and SUnit framework have been evaluated during the development of
an experimental case study implemented by Seagent Research Group by col-
laborating with an industrial partner. The case is in the tourism domain and

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 171

industrial partner is one of the well-known hotel information system developers
in Turkey. The case study is experimental, since its main goal is to convince the
industrial partner to the applicability of MAS technology to their domain.

Two main stories have been implemented so far. These stories were developed
using the AOTDD approach. First one deals with room booking based on user
preferences defined in a semantic way. Traveler agent initiates this scenario.
In this scenario, a proper hotel is found first, then the hotel is queried for an
available room, and if a room can be found, that room is booked. Traveler agent
interacts with the DF, hotel agent and negotiator agent during the scenario
execution. Second scenario is initiated by the hotel agent to find a customer for
an empty room. Details of the design of the system can not be added to this paper
because of space limitations. Here, we aim to present our group’s observations
and experiences about the effectiveness of SUnit framework in terms of iterative
and incremental MAS development.

When we started to develop SUnit framework, we did not include structural
test module in the requirements, since nobody realized its benefits at that mo-
ment. But our experiences have showed that it is difficult to develop HTN struc-
tures which include more than 20 tasks and lots of levels. Hence, we added
structural test module to the SUnit. During the development of this case study,
all developers agree on that structural test module was very helpful while con-
structing HTN structures incrementally.

Best example for the use of structural test module is the plan of traveler agent
which books a proper room. This plan is the core of the scenario and has a very
complex HTN structure. Developers constructed this plan first including only
proper hotel selection and then added new requirements (such as negotiation) in
an incremental way. Structural test module directly supported this incremental
construction by verifying the correctness of each of the newly added task in terms
of the correctness of the plan at hand.

Action test module verified the functionality of the developed plan by ver-
ifying each primitive task of the plan. During development, the project group
wrote action tests firstly for critical and complex actions and action test module
worked effectively to develop robust primitive tasks as in ordinary test driven de-
velopment. Our experiences showed that developers deeply understood the plan
structure when they wrote action tests. So, action tests also helped to improve
the quality of plan structure.

All of case study developers agree on the effectiveness of the flow test mod-
ule. Moreover, they think that implementation of a MAS system is very difficult
without such a support. During the development, we observed that flow test
module directly supports the iterative development. For example, development
group first implemented and verified the traveler agent plans by using the sim-
ple mock agents. We observed that creation of real agents is relatively simple
since their implementation requirements are defined during the mock agent im-
plementation process. After the development of an agent using the mock agents,
new agent(s) can be added to the organization in an iterative and robust way
since flow test module secures the previously developed agent plans. Also, new

172 A.M. Tiryaki et al.

agents can more easily construct since mock agents include necessary protocol
implementation for collaboration of the previous developed agents.

6 Conclusion

It is clear that iterative and incremental development is the most critical prac-
tice of any kind of software development. So, we think that development of MAS
tools and processes that support iterative and incremental MAS development is a
very important research topic for agent oriented software engineering community.
In this paper, a new approach called as AOTDD and SUnit testing framework
that supports this approach have been proposed for developing MASs in an iter-
ative and incremental style. This approach and SUnit framework have been used
by our group during the development of an experimental MAS. Our observations
and feedbacks from the developers show that, this approach and SUnit frame-
work are very effective in designing the systems iteratively and incrementally. This
approach also supports early fault detection in every cycle of development with the
support of SUnit and simplifies maintenance of the system. The source code and
javadoc files of SUnit framework and the tourism demo developed are accessible
on the SUnit project web site: http://seagent.ege.edu.tr/wiki/index.php/SeaUnit

References

1. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: the state of
the art. In: First international workshop, AOSE 2000 on Agent-oriented software
engineering, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (2001) 1–28

2. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3
(2000) 285–312

3. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12 (2003) 317–370

4. Omicini, A.: Soda: societies and infrastructures in the analysis and design of agent-
based systems. In: First international workshop, AOSE 2000 on Agent-oriented
software engineering, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (2001)
185–193

5. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent
agents. In: AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2002) 37–38

6. Gómez-Sanz, J., Pavón, J.: Agent oriented software engineering with ingenias.
In: Proceedings of the 3rd Central and Eastern Europe Conference on Multiagent
Systems, Springer Verlag, LNCS (2005) 394–403

7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 8 (2004) 203–236

8. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional (2004)

SUNIT: A Unit Testing Framework for Test Driven Development of MASs 173

9. Cernuzzi, L., Cossentino, M., Zambonell, F.: Process models for agent-based de-
velopment. Journal of Engineering Applications of Artificial Intelligence 18 (2)
(2005)

10. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9 (2004) 253–
283

11. Knublauch, H.: Extreme programming of multi-agent systems. In: AAMAS ’02:
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems, New York, NY, USA, ACM Press (2002) 704–711

12. Knublauch, H., Rose, T.: Tool-supported process analysis and design for the devel-
opment of multi-agent systems. In Giunchiglia, F., Odell, J., Weiß, G., eds.: AOSE.
Volume 2585 of Lecture Notes in Computer Science., Springer (2002) 186–197

13. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile passi:
Tailoring a design process to meet new needs. In: IEEE/WIC/ACM International
Joint Conference on Intelligent Agent Technology (IAT-04). (2004)

14. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-agent systems
implementation and testing. In: From Agent Theory to Agent Implementation,
Fourth International Symposium (AT2AI-4). (2004)

15. Cossentino, M., Seidita, V.: Composition of a new process to meet agile needs using
method engineering. In Choren, R., Garcia, A.F., de Lucena, C.J.P., Romanovsky,
A.B., eds.: SELMAS. Volume 3390 of Lecture Notes in Computer Science., Springer
(2004) 36–51

16. Dikenelli, O., Erdur, R.C., Gumus, O.: Seagent: a platform for developing semantic
web based multi agent systems. In: AAMAS ’05: Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multiagent systems, New York,
NY, USA, ACM Press (2005) 1271–1272

17. Link, J., Frolich, P.: Unit Testing in Java: How Tests Drive the Code. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

18. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison-Wesley,
Reading/Massachusetts (1999)

19. Williamson, M., Decker, K., Sycara, K.: Unified information and control flow in
hierarchical task networks. In: Theories of Action, Planning, and Robot Control:
Bridging the Gap: Proceedings of the 1996 AAAI Workshop, Menlo Park, Califor-
nia, AAAI Press (1996) 142–150

20. Paolucci, M., Kalp, D., Pannu, A.S., Shehory, O., Sycara, K.: A planning com-
ponent for retsina agents. In: Lecture Notes in Artificial Intelligence, Intelligent
Agents VI. (1999)

21. Graham, J.R., Decker, K.S., Mersic, M.: Decaf - a flexible multi agent system
architecture. Autonomous Agents and Multi-Agent Systems 7 (2003) 7–27

Monitoring Group Behavior in Goal-Directed
Agents Using Co-efficient Plan Observation

Jan Sudeikat and Wolfgang Renz

Multimedia Systems Lab,
Faculty of Engineering and Computer Science,

Hamburg University of Applied Sciences,
Berliner Tor 7, 20099 Hamburg, Germany

{sudeikat|wr}@informatik.haw-hamburg.de

Abstract. Purposeful, time– and cost–oriented engineering of Multi–
Agent Systems (MAS) requires developers to understand the relation-
ships between the numerous behaviors exhibited by individual agents
and the resulting global MAS behavior. While development methodolo-
gies have drawn attention to verification and debugging of single agents,
software producing organizations need to validate that the MAS, as a
cooperative system exhibiting group behavior, is behaving as expected.
Recent research has proposed techniques to infer mathematical descrip-
tions of macroscopic MAS behavior from microscopic reactive and adap-
tive agent behaviors. In this paper, we show how similar descriptions can
be adjusted to MAS composed of goal–directed agent architectures. We
argue that goal-hierarchies found in Requirements Engineering and Be-
lief Desire Intention (BDI) architectures are suitable data structures to
facilitate a stochastic modeling approach. To enable monitoring of agent
behaviors, we introduce an enhancement to the well-known capability
concept for BDI agents. So-called co–efficient capabilities are a novel
approach to modularize crosscutting concerns in BDI agent implemen-
tations. A case study applies co–efficient plan observation to exemplify
and confirm our modeling approach.

1 Introduction

Agents as a basic design metaphor introduce a novel modeling approach to com-
plex systems. Autonomous entities as atomic design artifacts enable an intuitive
decomposition of software systems as independent actors, interacting with each
other. Their interplay forms the actual application. Due to the autonomous na-
ture of the entities, the inherent complexity of these kinds of systems introduces
new levels of uncertainty [1]. Individual agent knowledge and reasoning capabil-
ities may lead to unexpected individual behaviors, inhibiting predictions of the
microscopic agent actions and interactions. The sum of these microscopic behav-
iors cause macroscopic system behavior, enabling self–organized properties and
emergent phenomena [2].

To enable purposeful, time– and cost–oriented engineering of Multi–Agent
Systems (MAS) it is necessary to ensure the developed system will behave as in-
tended. Up to date, a few facilities to monitor and visualize MAS (e.g. [3,4,5]) as

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 174–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Monitoring Group Behavior in Goal-Directed Agents 175

well as individual agents [6] have been reported for this purpose. These allow de-
velopers to examine macroscopic and/or microscopic behaviors via simulations.
While testing is extensively and successfully used to ensure system behavior
in traditional (e.g. procedural, object–oriented) development efforts, the lack of
a general methodology to infer global from local behavior [7], impairs similar
approaches for MAS behaviors. Therefore, this paper discusses how to derive
mathematic models of macroscopic system behaviors from MAS implementa-
tions under averaged environmental conditions.

The well–known Belief–Desire–Intention (BDI) architecture has been estab-
lished to develop deliberative agents [8,9]. Implementations use the concrete
concepts of beliefs, goals and plans, to design and implement individual agents
[10,11]. While these abstractions aid development by sophisticated modeling and
development methodologies (e.g. [12,13]), the applied reasoning facilities amplify
the inherent uncertainty in MAS [1].

Recent research [14,15,16] has developed means to infer mathematical de-
scriptions of the macroscopic system behavior from microscopic agent behaviors.
These can be used to estimate MAS behavior in typical environments, supporting
MAS refactoring and redesign while reducing the need for expensive simulation
cycles. Inferring stochastic models from these hierarchies requires to map plans
and goals to macroscopic observable agent behaviors, resulting in coarse–grained
agent models. In this paper we argue that goal–hierarchies, found in Require-
ments Engineering (RE) and BDI architectures, can be exploited to guide the
identification of suitable mappings and therefore derive similar, phenomenologic
models, which postulate an underlying stochastic process. These models can
be used to validate the overall system behavior and guide the identification of
relevant observables for performance measurement. Being able to quantify the
expected macroscopic MAS behavior and therefore to revise the expectations on
simulation results has impact on system evaluation and validation. We exemplify
this process and present tool support.

Modularization [17] is justified by the separation of concerns principle. The
functionality of a modular software system can be divided in core and crosscut-
ting concerns which commonly describe non-functional properties [18]. Aiming
towards automated monitoring of the identified observables with minimum in-
trusion to the original agent code, we introduce a novel modularization approach
for BDI agents. Modularization has been introduced to BDI–based AOSE by ca-
pabilities [19,20]. While these are currently used to capture core concerns, we
introduce an enhancement to this concept, which allows to define crosscutting
concerns inside BDI agents. Exploiting the event based execution mechanism
of a BDI agent platform1, it is possible to register capabilities for contributive
processing on certain BDI reasoning events.

This paper is structured as follows. The next section summarizes current ap-
proaches to model macroscopic MAS behaviors, followed by a description of how
to derive similar mathematical descriptions from goal hierarchies. Tool support
for evaluation of these models is based on the concept of co–efficient capabilities

1 The Jadex system – presented in section 4.1.

176 J. Sudeikat and W. Renz

which are introduced in section 4. The following section 5 exemplifies our ap-
proach by a case study including mathematical analysis and evaluation results.
Finally, we conclude and give prospects for future work.

2 Stochastic Models for Global MAS Behavior

A certain method to derive quantitative, macroscopic descriptions for the mean
occupation number of the agents states has been introduced for reactive agents
by Lerman et al. [14,15,21]. Such descriptions are essentially given by so–called
Rate Equations, which are a well established tool for describing average par-
ticle numbers in homogeneous systems, e.g. steered tank reactors in chemical
reaction systems or population dynamics of biological species and other fields.
These equations result from Master Equations describing the underlying Markov
processes of these systems [22]. Focusing on reactive agent architectures, namely
homogenous robotic applications, these equations have been successfully applied
to study numerous examples, e. g. foraging [15] and coalition formation [14].

The rationale for a stochastic description of a MAS is the observation that
the sum of the microscopic agent behaviors directly reflects the overall system
behavior. When agents have a fixed number of executable behaviors or states
(e.g. searching and homing), a state of the system can be described by the
fraction of agents executing either of them. In order to quantify these fractions,
the reactive agents are modeled as Finite State Automaton and the macroscopic
behavior of a MAS can be characterized by the fractions of agents executing in
certain microscopic states [15]. The dynamics of the MAS can be described by
Rate Equations for these occupation numbers postulating an underlying time–
continuous Markov process.

In [15] a structured process to derive these equations automatically from mi-
croscopic agent models has been proposed. This process is composed of four
steps: (1) identification of discrete actions in the agent behavior, (2) induction
of an automaton to describe agent reasoning, (3) translation of the automaton
into a set of coupled differential equations and finally, (4) solving the derived
equations for appropriate initial conditions and parameter regimes. In relation
to [15] we present a process, adjusted to derive stochastic models from BDI–
based MAS. We argue that that there is actually no automaton needed, but
reactive planing systems can be described in similar ways.

3 Deriving Models from Goal–Hierarchies

Derivation of the above described models, expressing the intended system behav-
ior, demands two major modeling efforts. First, appropriate agent states need
to be identified, depending on the intended observations on the overall system.
Secondly, the parameters – rates quantifying state transitions – need to be mea-
sured to be adjusted, according to implementation details and environmental
constraints. The following section shows how goal/plan–hierarchies can guide

Monitoring Group Behavior in Goal-Directed Agents 177

the first effort. The second effort is exemplified in a case study in section 5
applying tool support which is presented in section 4.

3.1 Goal–Hierarchies

Goal Oriented Requirements Engineering (GORE) uses goals to elaborate, struc-
ture, specify and analyse requirements for systems under development [23]. Goals
in this respect are prescriptive statements of intent, their satisfaction requires
(active) components of the system and the environment to cooperate [24]. These
range from strategic objectives to fine–grained responsibilities of the individ-
ual agents and are typically organized in AND/OR graphs, describing refine-
ment and abstraction of single goals. An AND refinement of a goal requires all
subgoals to be satisfied, while OR refinement denotes alternative ways to goal
satisfaction.

The usage of goals in the design phase is especially inviting for Agent Ori-
ented Software Engineering (AOSE) methodologies (e.g. [12,13]) aiming towards
implementations based on the well–known BDI architecture [9,10]. This model
has been successfully applied to the development of cognitive agents, applying
reactive planing. Bratman [8] developed a theory of human practical reasoning,
which describes rational behavior by the notions Belief, Desire and Intention.
Implementations of this model introduced the concrete concepts of Goals and
Plans, leading to a formal theory and an executable model [9].

Beliefs represent the local information of agents about both the environment
and its internal state. The structure of the beliefs defines a domain dependent
abstraction of the environment. This describes the view–point of an agent toward
its self and its surrounding. Goals represent agent desires, commonly expressed
by certain target states inside agent beliefs (see [25] for a discussion of goals
in available BDI systems). Finally, plans are the executable means by which
agents satisfy their goals. Single plans are not just a sequence of basic actions,
but may also dispatch sub-goals. Therefore goal/plan hierarchies of actual BDI
implementations are composed of interleaved sequences of these (cf. figure 1).

While plans can be generated at runtime (e. g. [26]), BDI agents typically
choose from a library of available plans. Since these are developed at design time,
BDI agents apply reactive planing. Agent internal reasoning decides which goals
to pursue – goal deliberation [27] – and which plans to execute in order to achieve
the selected goals – meta-level reasoning (problems of this are discussed in [20]),
leading to both pro–active and reactive behaviors. To enable reasoning, goals and
plans are annotated with conditions that constrain their instantiation (creation
condition) and execution context (context condition). While these conditions
are typically defined in terms of belief values, describing agent and environment
(sensor input) states.

3.2 Deriving Agent States from Subtrees

Figure 1 gives an impression of the goal hierarchies identified in RE and AOSE
methodologies. Following a notation introduced by the Tropos methodology [12],

178 J. Sudeikat and W. Renz

it displays a goal dependency inside an agent. To accomplish a top–level goal
(Goal 1). The agent can either pursue Goal 2 or Goal 3 (OR decomposition),
leading to different courses of action, observable on a macroscopic level. The
distinct behaviors are described by the resulting subtrees, which have the de-
composed goals as root nodes. Therefore, a GPS can be divided into underlying
subtrees (cf. figure 1) when goals/plans are found to be OR decomposition, forc-
ing agents to decide which course of actions to take. In the following, we will
examine the interplay of the distinct behavioral pattern that are expressed by
these goal/plan subtrees (GPS). In figure 1, these trees are surrounded by cubes.

Fig. 1. Goal hierarchy inside a deliberative agent

The decomposition into distinct GPS is necessary but not sufficient to identify
observable agent behaviors. While different courses of actions will allow to be
distinguished by their GPSs, human intervention is necessary to identify appro-
priate, macroscopic observable agent states based on the application domain and
the intended level of granularity. BDI implementations provide different types
of goals (summarized in [25]), but these do not influence the structure of the
GPSs, since they are used to abstract from the detailed conditions that lead to
plan execution.

Due to the applied reactive planing mechanism (cf. section 3.1), the inter-
play with the environment causes agent actions. Thus in many cases, a Markov
assumption will be justified. In this respect our abstraction approach aligns
with research in [28], where the relation between Markov Decision Processes
(MDP) and BDI architectures is examined. The obtained results stress that
BDI agents can be understood as reactive systems and vice versa. The fractions
of agents executing in the distinct GPSs are candidates for states in a corre-
sponding Markov Model. So the microscopic behaviors can be abstracted to be
described as macroscopic agent states by phenomenological, macroscopic Rate
Equations. This is exemplified in section 5. Identification of the GPSs in an

Monitoring Group Behavior in Goal-Directed Agents 179

available BDI-implementation is guiding the search for the macroscopic observ-
ables of interest. After the possible states of execution for the types of agent have
been identified at the intended level of granularity, a stochastic model, composed
of couples Rate Equations, can be assumed [14,15].

In order to compare these models to actual MAS implementations in an actual
environment the transition rates between the states need to be measured to be
compared to expected values. The next section introduces tool support for this
purpose.

4 Monitoring Agent Execution

The distributed and concurrent nature of MAS complicates the comprehension of
MAS behavior, which is crucial for systematic development processes. Therefore,
analysis and visualization tools have been developed [3,5,6,29]. These mainly rely
on two mechanisms. First, messages between agents can be tapped by a third
party, e .g. observing agents, and secondly logging messages generated inside
agent source code can be analysed.

Once the relevant observables have been identified (section 3.2), we want to
measure in which goal/plan subtrees the agents are actually executing, depend-
ing on environmental conditions. In general, the macroscopic observable behavior
of individual agents or their exchanged messages do not allow to infer directly
which plans are executed. The annotation of plans with logging information
requires additional effort from developers. This section describes a mechanism
— inspired by the notion of crosscutting concerns in modular software struc-
tures [18,30] — to enable automatic observation of plan execution with minimum
intrusion to the original agent code.

4.1 Co–efficient Capabilities

In [20] capabilities have been proposed to modularize BDI agents in functional
clusters. These capabilities comprise beliefs, goals, plans and a set of visibility
rules of these elements to the surrounding agent, referenceable under a specific
namespace. They allow recursive inclusions of capabilities an are used to define
specific functionalities which can be imported by different agent types. In [20]
the usage of capabilities is exemplified by client and bidder capabilities which
encapsulate the functionality for initialization and participation of a negotiation.

In [19], a general and coherent export/import mechanisms for the comprised
elements has been proposed. In addition, the creation semantics of capability
elements and the parametrization of imported capabilities have been enabled by
the adoption of initial mental states which provide a set of default configurations.

Aiming towards minimal–intrusive measurement of GPS transitions, we pro-
pose an enhancement to this modularization concept, which allows to define
crosscutting concerns in agent implementations. Modularization [17] is a key
aspect in software engineering. The functionality of a software system can be
decomposed into core concerns, which are to be separated into different compo-
nents or modules and so–called Aspects [30], which crosscut them. Crosscutting

180 J. Sudeikat and W. Renz

prime examples are inter alia failure recovery, monitoring and logging. While
conventional development paradigms (e.g. procedural, object–oriented) capture
these aspects as non–functional requirements, aspect–oriented programming ex-
plicitly express these as software artifacts to be weaved into the static structure
of a software system. According to the aspectual terminology, pointcuts define
of a set of join points. These are well–defined points in a program’s execution,
e.g. the call of specific methods. When a pointcut evaluates to true, it triggers
the execution of advices. These hold the executable code of an aspect and define
when it is executed. This terminology will be revisited in 4.1.

In this respect capabilities [19,20,31] intend to define and modularize core
concerns in BDI agents. Figure 2 (left) shows modularization by capabilities
between agents. Two agent types share functionality by inclusion of the same
capability. Similar to conventional development efforts — without the notion of
aspects — non–functional concerns can be captured in modules, resp. capabilities
and executed by explicit references [19] to elements inside these modules.

The right hand side in figure 2 shows a co–efficient capability (CC), which
automates this referencing, by exploitation of the local reasoning mechanisms.
Being registered at an agent allows BDI reasoning events, like the instantiation
of plans or belief changes, to trigger processing in the CC (arcs towards the
capability) without code change in the executed agent. Reasoning inside the CC
may cause BDI specific events inside the surrounding agent, e. g. the adoption
of goals or the change of belief values (arc from the capability). We name these
capabilities co–efficient, because they register for contributive processing on cer-
tain BDI reasoning events. This allows crosscutting functionalities, like logging,
failure recovery etc., to be automatically triggered, without explicit references
in goals or plans.

Fig. 2. Modularization of concerns in MAS – left: capabilities are shared by different
agents; right: co–efficient capabilities

Implementation Issues. The described mechanism has been implemented
using the Jadex system2. A suite of tools facilitate development, deployment
and debugging of Jadex–based MAS. The single agents consist of two parts.
First, they are described by Agent Definition Files (ADF), which denote the
2 http://vsis-ww.informatik.uni-hamburg.de/projects/jadex

Monitoring Group Behavior in Goal-Directed Agents 181

structures of beliefs and goals among further implementation dependent details
in XML3 syntax. The ADF describe agents as well as capabilities. Agents include
capabilities by referencing the corresponding XML file in their ADF. Secondly,
the activities agents can perform are coded in plans, these are ordinary Java4

classes.
The Jadex platform allows implementations of a certain interface (jadex.

runtime.ISystemEventListener), to be registered at individual agents. The Jadex
Introspector and Tracer development tools [32], accompanying the Jadex dis-
tribution, use this mechanism to observe agent reasoning. A CC comprises an
implementation of this interface in order to register for a set of events of interest.
Being automatically notified by occurences of these events for a specific agent
allows to respond, e.g. by dispatching novel BDI events in the capability itself
or the surrounding agent.

The available reasoning events comprise structural changes, processing events
and communication. Structural changes may be the addition and removal of
beliefs, goals, plans and capabilities. Processing events denote the activities per-
formed by agents, like reading/writing access to beliefs as well as so–called inter-
nal events, e.g. timeouts. Communicative events denote reception and sending
of messages. Since the implementation of CCs relies on an available capability
implementation [19], the recursive inclusion of these is possible. Several CCs can
be present in one agent and these can respond to overlapping sets of events.

Usage of Crosscutting Concerns. The notion of crosscutting concerns,
namely aspect-oriented programming [30], has found minor attention in devel-
opment efforts for MAS. While aspects have been utilized in object–oriented im-
plementations of agent models and agent infrastructures (e. g. [33,34,35]), only
recently have aspects been proposed to structure agent models [36,37]. While
in [36] an agent oriented modeling language has been extended with aspects,
proposes [37] a modeling framework and meta-model for aspects in MAS. In
this paper we transfer the notion of crosscutting concerns to the BDI architec-
ture with respec to the pro–active reasoning cycle of these agents, utilizing an
established modularization concept for their encapsulation.

We adopt vocabulary from aspect–oriented programming to express simi-
lar modularization in BDI agents. All Jadex reasoning events are possible join
points. They define points in the agent reasoning which possibly trigger process-
ing inside a CC. Pointcuts are expressed by different implementations of the
listener object, allowing several pointcuts and therefore several distinct concerns
in one co–efficient capability. These pointcuts are responsible to initiate reason-
ing inside the co–efficient capability or modify the agent, according to triggering
events.

In aspect–oriented programming advices may execute before, after or around
join points [30]. To date, the BDI advices can only be executed after the join
point has been processed. While aspect–oriented programming is concerned with

3 http://www.w3.org/XML/
4 http://java.sun.com/

182 J. Sudeikat and W. Renz

Fig. 3. Implemented monitoring architecture. Description see text.

the sequence of execution, a classification of advices in BDI agents has to take
the influence of events into account. In the previous section it has been shown
that the available join points can be grouped in structural, processing and com-
municative events. The influence of these needs to be distinguished between
introducing and removing events, which change the structure of the agent. Ex-
amples are the addition or deletion of new beliefs or goals. The Processing Events
comprise affecting and informing events. While the former ones affect the agent
state, e. g. writing belief values, the latter ones describe the processing inside
agents, like reading beliefs.

Aiming towards comprehensive software systems based on BDI technology,
modularization and reusability of BDI agent code is a topic of growing concern.
The capability concept [19,20] has been introduced to BDI agent architectures
in order to allow decomposition of agents. Developers can structure agent code
according to the primary functionalities and have to ensure that crosscutting
concerns are addressed whenever appropriate. The presented mechanism allows
developers to separately express crosscutting concerns in BDI agents to be au-
tomatically unified into working systems.

However, the mechanism should be applied with care. Performance of the
agent will be reduced by exhaustive processing inside pointcuts. These should
be implemented as instantaneous actions. In addition, the crosscutting behavior
of the CC reduces the traceability of the agent actions.

4.2 Monitoring Architecture

The described mechanism has been used to enable monitoring of GPS transitions.
Goals, responsible for message transfer to an observing agent, are dispatched ac-
cording to the introduction and removal of plans. This logging mechanism is en-
capsulated in a CC. Figure 3 describes how a CC has been used to monitor agent
execution. The implementation is separated in two capabilites that encapsulate
the observing (left) and the observed (right) functionalities. The observing agent
mainly handles incoming messages that inform about state transitions in the

Monitoring Group Behavior in Goal-Directed Agents 183

observed agents and stores the transmitted informations. This functionality can
be straightforward clustered according to [20,19]. In the observed agent(s) the
CC mechanism is utilized to allow an automated recording of state transitions.
On agent startup the CC registers itself for a set of events at the surrounding
agent (1). Therefore it is notified when one of these events occures (2), examines
the kind of event and dispatches an according event in the capability. If a state
transitions has been registered, an according message is send to the observing
agent (resp. capability), which stores the obtained information in its beliefbase
for further processing (5).

5 Case Study

To confirm the above described modeling and analysis approach, we examine an
example MAS from the Jadex–Project. This example scenario has been inspired
by a case study in [38], where hierarchical structures of static, predefined roles
are examined. In order to allow for cooperative behavior, the system has been
generalized as follows. The objective for a group of robots (agents) in the so–
called Marsworld, is to mine ore on a far distant planet. The mining process is
composed of (1) locating the ore, (2) mining it on the planets surface and (3)
transporting the mined ore to the home base. Therefore, a collection of three
distinct types of agents are released from a home base to a bounded environment.
All of them have a sensor range to detect occurrences of ore in the soil an
start immediately a searching behavior. In order to search for occurrences of ore
randomly selected locations are visited. Sensed occurrences of ore are reported
to the so-called sentry agent. This robot is equipped with a wider sensor range
and can verify, whether a suspicious spot actually accommodates ore (constant
time delay). When ore is found, the location is forwarded to a randomly selected
production agent, equipped with a dedicated mining device. After mining is
finished (constant time delay) a group of carry agents is ordered to transport
ore to the home base (constant number of round trips). When the ordered actions
have been performed agents continue searching.

5.1 Rate Equations

In the outlined scenario agents change between two distinct behaviors. They
either search for ore or perform a dedicated action, i.e. sense ore, mine ore or
transport ore. As discussed in section 3.2, these behaviors will be reflected by
distinct goal/plan subtrees in BDI–based implementations. The goal–hierarchy
of each agent type is OR–decomposed in 2 GPSs. Therefore all agent types can be
represented with two distinct states, where one is responsible for the searching
behavior (free state) and the other one for the agent specific action (bound
state). Since both behaviors include movement and further actions, implemented
by goal/plan structures, more fine grained views on the MAS are possible and
can be treated similar to the following exemplification. Furthermore, it can get
important to include states of the environment into the dynamic description, as

184 J. Sudeikat and W. Renz

for our case study. These are the states of the targets, which attract the different
agents.

Since detections of ore generate sensing actions by the sentry agents, leading
to orders for the remaining agent types, the MAS can be described similar to a
chemical reaction chain as shown in figure 4. The generation of orders is reflected
by inclusion of targets (T). These resemble occurrences of ore which attract the
different agent types (sentries, producers, carriers resp. Ms, Mp, Mc).

Fig. 4. Reaction chain inside the marsworld case study with free and bound states.
Explanation of the parameters in see text.

The Rate Equations are derived from an underlying stochastic model defined
by Master Equations for the assumed Markovian process. State changes then oc-
cur at certain rates, i.e. certain transition probabilities per time unit. Therefore,
agent states are described by time–dependent space–averaged continuous occu-
pation numbers. This is correct, if the occupation numbers are determined as
an average over an ensemble of simulations run with the same initial conditions
and identical environment. Identification of these states is a major modeling
effort, guided by the GPSs (cf. section 3.2). Once the agent states have been
identified the rates can be described by examination of the events that trigger
state transition. After these preliminaries, we write down the macroscopic rate
equations for our MAS (cf. [15]), assuming that state changes occur at certain
rates, i.e. certain transition probabilities per time unit and explain the meaning
of the variables and terms in the following:

ṄL(t) = −αLs (Ms − Ns)NL − αLp (Mp − Np) NL − αLc (Mc − Nc)NL

Ṅs(t) = αLs (Ms − Ns) NL + αLp (Mp − Np) NL + αLc (Mc − Nc) NL − μsNs

Ṅa(t) = −αap (Mp − Np) Na + μsNs

Ṅp(t) = αap (Mp − Np) Na − μpNp

Ṅe(t) = −αec (Mc − Nc) Ne + μpNp

Ṅc(t) = αec (Mc − Nc) Ne − μcNc

Ṅd(t) = μcNc

In both figure 4 and the above Rate Equations, Nk, k ∈ {L, a, e, d} denote
the number of targets loaded, activated, exhausted or dead respectively. The
Nj , j ∈ {s, p, c} denote the number of agents (sentries, producers or carriers

Monitoring Group Behavior in Goal-Directed Agents 185

resp.) being bound to a target, namely sentry bound to loaded target for ex-
amination, producer bound to an activated target for exploration and career
bound to an exhausted target for transporting the material to the home-base.
The non–linear terms describe that in order to reach these bound states, a free
agent has to meet an appropriate target with rate coefficients αkj > 0 denoting
the overall binding rates. Since the number of agents of each type is a fixed
number Mj > 0, the number of free agents in the walking state is Mj − Nj ≥ 0.
The linear terms describe the finite life–time of these bound states due to the
agents finishing their work with the bound target. The corresponding release
rates μj > 0 are mean inverse working times per target for each agent of type
j ∈ {s, p, c}. Each binding starts when the agent either encounters an appro-
priate target or receives a message containing an appropriate targets position.
In the latter case, the binding time includes the time for moving to the targets
location and for processing the target.

The general solution of the system of differential equations may not be nec-
essary because some approximations can be made. Since some of the variables
are fast, i.e. assume quasistationary values without delay, such variables can be
eliminated by setting their derivative to zero. In this way Na and Ne can be
eliminated since the sentries and producers will send messages when they finish
their work with the target, leading to an instantaneous binding of the target to
the next agent to get involved. By this approximation the system is simplified
but exhibits still interesting non–linear behavior. On the other hand, effects due
to spatial inhomogeneities are not included.

5.2 Simulation Results

Simulations were performed for up to ten agents, up to ten targets and up to
several hundred runs to ensure good statistics comparable to the Rate Equations.
The average occupation number of the bound states for the three agent types are
displayed in figure 5 as a function of time. As expected, the sentries start to work
followed by the producers and finally the carriers with some time delay. Since
the sentries are mainly in the search state and finish their work with the targets
fast, the corresponding amplitude is small. Most of the work has to be done
by the carriers since they need to shuttle between the target and the homebase
several times according to their limited transport capacity.

In our simulations targets are given random but, for all runs, identically fixed
locations (frozen-in disorder). This is a realistic szenario for simulating the MAS
behavior in a given environment. As a consequence, additional delay times occur
according to the minimum path length necessary for an agent starting at the home
base to get bound. These initial delay times are due to the initial spatial inhomoge-
niety of the system and thus not included into the rate equations given above but
need to be introduced for describing our set-up. We have initial delay times of 2,
6 and 16 seconds for the sentries, producers and carriers, respectivly. Apart from
the latter effects of spatial propagation and frozen-in disorder, the rate equations
describe very well the time evolution of the BDI–based MAS measured through
the occupation numbers of the GPSs representing the bound states.

186 J. Sudeikat and W. Renz

Fig. 5. The average occupation number of the bound states, i. e. the GPSs for the
three agent types as a function of time, simulation data and theory (parameters cf.
figure 5)

The analytical solutions of the rate equations fit the data very well, justify-
ing that the derived equations resemble the actual system dynamics which are
implementation dependent. The long–time behavior, for all agent types, is domi-
nated by the slow, approximately exponential decay of the loaded target number
according to the agents limited search efficiency μL := αLsMs +αLcMc +αLpMp

which is μL = 0.019s−1 corresponding to a mean decay time of 53 seconds in
figure 5. The onset is dominated by two effects, the mean time to reach the
target after receiving the message and the mean working time. Both effects are
combined in the release rates μj , j ∈ {s, p, c}. The onset of the sentries is fitted
well with μs = 0.13s−1. Producers are faster (μp < μs) and follow the sentries
with the same rate (obvious from the differential equations). Only the carriers
are slower with μc = 0.07−1.

The system is interesting also for it exhibits non–linear and cooperative be-
havior. At the low agent numbers we explore, the discreteness of the occupation
numbers plays an important role. So all carry agents are booked up when a tar-
get gets exhausted leading to a saturation effect, which is contained in the rate
equations. Furthermore search efficiency depends on the activities of all agents.
In the beginning, all three agent types search for targets. Then the effective
search success diminishes since a large amount of producers and carriers gets
bound and cannot search anymore. Thus the number of activated targets will
decrease leading to a reduction of work for producers and carriers and search
efficiency will increase again. This system instability according to the agents co-
operativity is certainly not wanted. But again the rate equations for the GPSs

Monitoring Group Behavior in Goal-Directed Agents 187

occupation numbers give clear evidence of such unexpected and unwanted be-
havior including estimations of corresponding parameter ranges.

6 Conclusions

In this paper, we showed how macroscopic models of MAS behavior can be derived
from goal/plan hierarchies in BDI implementations of reactive planing agents.
These models describe the MAS in typical environment settings, enabling to es-
timate and redesign [39] the macroscopic system behavior with minor simulation
effort. In order to measure transition rates between different courses of actions an
extension to the capability concept, allowing modularization of BDI agents, has
been outlined. Inspired by the notion of crosscutting concerns in modular soft-
ware structures, this extension allowed the automated observation of BDI agent
behavior with minimum intrusion to agent source code. The simulation results
have been compared to analytical results obtained from Rate Equations.

Future work will examine benefits and limitations of this explicit representation
of crosscutting concerns in BDI implementations. Programming of BDI–oriented
aspects, demands an automated weaving process and aspect visualization to sup-
port traceability for developers5. An adoption if this notion in current BDI based
development efforts may lead towards a more comprehensive examination how of
aspect–oriented concepts, e. g. as defined in the meta–model described in [37], fit
in this particular agent architecture. In addition to a novel modularization con-
cept, the described mechanism enables adaptive, e.g. self modifying, behaviors in
BDI agents and assertion–like invariant checking in BDI–reasoning [40].

The derived macroscopic model described the intended MAS behavior. We
compared this model to the actual MAS implementation by simulation and in-
tend to automate this process, allowing invariants of global MAS properties to be
checked in controlled simulation settings. By adoption of automatically weaved
co–efficient capabilities and a generic simulation environment it is foreseeable to
test BDI–based MAS with minor cost.

The applied modeling approach and mathematical techniques relate micro-
scopic agent actions to global system behavior. We expect further examination
of these relations (e. g. in [7]) aided by the presented tool–set to have impact on
system design and optimization for cooperative and self–organizing MAS [41]. In
addition, the presented abstraction technique may aid the construction of MDPs
from BDI agent declarations and vice versa. This has been questioned in [28],
as a mean to reuse the domain knowledge, implicitly represented in BDI agent
implementation, for the creation of purely reactive agents.

Acknowledgments

One of us (J.S.) would like to thank the Distributed Systems and Information
Systems (VSIS) group at Hamburg University, particularly Winfried Lamersdorf,
Lars Braubach and Alexander Pokahr for inspiring discussion and encouragement.
5 The AJDT-Project exemplifies this – http://www.eclipse.org/ajdt/

188 J. Sudeikat and W. Renz

References

1. Jennings, N.R.: Building complex, distributed systems: the case for an agent-based
approach. Comms. of the ACM 44 (4) (2001) 35–41

2. Wolf, T.D., Holvoet, T.: Emergence and self-organisation: a statement of similari-
ties and differences. In: Proc. of ESOA’04. (2004) 96–110

3. Guerin, S.: Peeking into the black-box: Some art and science to visualizing agent-
based models. In: Proceedings of the 2004 Winter Simulation Conference. (2004)

4. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging
distributed multi-agent systems. In: Proc. of AGENTS ’99. (1999) 326–333

5. Szekely, P., Rogers, C.M., Frank, M.: Interfaces for understanding multi-agent
behavior. In: Proc. of the 6th int. conf. on Intel. user interfaces. (2001) 161–166

6. Lam, D.N., Barber, K.S.: Comprehending agent software. In: Proc. of the 4th int.
joint conf. on autonomous agents and multiagent systems (AAMAS ’05). (2005)

7. Yamins, D.: Towards a theory of ”local to global” in distributed multi-agent sys-
tems (i). In: Proc. of AAMAS ’05, ACM Press (2005) 183–190

8. Bratman, M.: Intentions, Plans, and Practical Reason. Harvard Univ. Press. (1987)
9. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of

the First Int. Conference on Multiagent Systems. (1995)
10. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: an experiment with

a mobile robot. In: Proc. of AAAI 87, Seattle, Washington (1987) 677–682
11. Pokahr, A., Braubach, L., Lamersdorf, W.: A flexible BDI architecture supporting

extensibility. In: The 2005 IEEE/WIC/ACM Int. Conf. on IAT-2005. (2005)
12. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An

agent-oriented software development methodology. Journal of Autonomous Agents
and Multi-Agent Systems (2004) Kluwer Academic Publishers.

13. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. Number ISBN 0-470-86120-7. John Wiley and Sons (2004)

14. Lerman, K., Galstyan, A.: A general methodology for mathematical analysis of
multiagent systems. USC Inf. Sciences Tech.l Report ISI-TR-529 (2001)

15. Lerman, K., Galstyan, A.: Automatically modeling group behavior of simple
agents. In: Agent Modeling Workshop, AAMAS-04, New York, NY (2004)

16. Lerman, K., Jones, C.V., Galstyan, A., Mataric, M.J.: Analysis of dynamic task
allocation in multi-robot systems. Int. J. of Robotics Research 25 (2006) 225–241

17. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15 (1972) 1053–1058

18. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.
Commun. ACM 44 (2001) 29–32

19. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the capability concept for
flexible BDI agent modularization. In: Proc. of PROMAS-2005. (2005)

20. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in
functional clusters. In: ATAL ’99, Springer-Verlag (2000) 277–289

21. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In: ISAB-04. Volume 3342 of LNCS. (2004)

22. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (2001)
23. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In

Proc. RE01 - Int. Joint Conference on Requirements Engineering (2001)
24. Van Lamsweerde, A.: Goal-oriented requirements engineering: A roundtrip from

research to practice. In: Proc. of RE’04. (2004) 4–8 (Invited Keynote Paper)

Monitoring Group Behavior in Goal-Directed Agents 189

25. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for BDI
agent systems. In: Proc. of PROMAS’04. (2004)

26. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting bdi agents
with deliberative planning techniques. In: The 5th International Workshop on
Programming Multiagent Systems (PROMAS-2006). (2006)

27. Pokahr, A., Braubach, L., Lamersdorf, W.: A bdi architecture for goal deliberation.
In: Proc. of AAMAS ’05. (2005) 1295–1296

28. Simari, G., Parsons, S.: On the relationship between mdps and the bdi architecture.
In: Proc. of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems. (2006)

29. Padgham, L., Winikoff, M., Poutakidis, D.: Adding debugging support to the
prometheus methodology. Engin. Applications of Art. Intel. 18 (2005) 173–190

30. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proc. of ECOOP. Springer (1997)

31. Padgham, L., Lambrix, P.: Agent capabilities: Extending bdi theory. In: Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence. (2000) 68–73

32. Pokahr, A., Braubach, L., Leppin, R., Walczak, A.: Jadex Tool Guide - Release
0.93. Distributed Systems Group, University of Hamburg, Germany. (2005)

33. Garcia, A., Silva, V., Chavez, C., Lucena, C.: Engineering multi-agent systems
with aspects and patterns. Journal of the Brazilian Computer Society 8 (2002)
57–72

34. Robbes, R., Bouraqadi, N., Stinckwich, S.: An aspect-based multi-agent system.
In: Research Track of the ESUG 2004 Smalltalk Conference, Köthen (Anhalt),
Germany (2004)

35. Garcia, A., Kulesza, U., SantAnna, C., Chavez, C., Lucena, C.: Aspects in agent-
oriented software engineering: Lessons learned. In: Proceedings of the 6th Work-
shop on Agent-Oriented on Software Engineering, in conjunction with the AA-
MAS05 Conference, Utrecht, The Netherlands (2005)

36. Garcia, A., Chavez, C., Choren, R.: Enhancing agent–oriented models with as-
pects. In: AAMAS ’06: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, ACM Press (2006)

37. Garcia, A., Chavez, C., Choren, R.: An aspect–oriented modeling framework for
designing multi–agent systems. In: Proc. of the 7th Inernational Workshop on
Agent Oriented Software Engineering (AOSE’06). (2006)

38. Ferber, J.: Multi-Agent Systems. Addison Wesley (1999)
39. Sudeikat, J., Renz, W.: On the redesign of self–organizing multi–agent systems.

International Transactions on Systems Science and Applications 2 (2006) 81–89
Special Issue on SOAS’06.

40. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W., Renz, W.: Validation
of bdi agents. In: Proc. of the Fourth International Workshop on Programming
Multi-Agent Systems (ProMAS’06). (2006)

41. Renz, W., Sudeikat, J.: Mesoscopic modeling of emergent behavior - a self-
organizing deliberative minority game. In: Engineering Self-Organising Systems.
(2005) 167–181

Evaluating a Model Driven Development Toolkit for
Domain Experts to Modify Agent Based Systems�

Gaya Buddhinath Jayatilleke, Lin Padgham, and Michael Winikoff

School of Computer Science and Information Technology,
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001, Australia
{gjayatil, linpa, winikoff}@cs.rmit.edu.au

Abstract. An agent oriented approach is well suited for complex application do-
mains, and often when such applications are used by domain experts they iden-
tify modifications to be made to these applications. However, domain experts are
usually limited in agent programming knowledge, and are not able to make these
changes themselves. The aim of this work is to provide support so that domain
experts are able to make modifications to agent systems. In this paper we re-
port on an evaluation of our Component Agent Framework for domain Experts
(CAFnE) framework and toolkit, giving a detailed account of a usability study
we conducted with a group of experienced meteorologists.

1 Introduction

The agent oriented paradigm is becoming increasingly popular for building systems
which are relatively complex, and which operate in dynamic domains. One advantage
of agent based architectures is that it is relatively easy to extend and expand an appli-
cation as new conditions are discovered or prioritised. Often there are many nuances in
the application domain which are understood by domain experts, but may not be fully
captured initially in a requirements analysis. Our aim in the work reported here has been
to empower domain experts who take delivery of an agent based software application,
to be able to modify and evolve it without the assistance of agent programmers.

To facilitate this we have developed a detailed model of agent based systems that
facilitates modelling of the system at a level of detail sufficient to produce code for
real applications. Our vision is that a software developer would use this approach and
the associated toolkit to develop agent applications. Domain experts who are not pro-
grammers (and certainly not programmers of agent applications) would then be able to
modify and evolve the application to deal with both growing requirements, and devel-
oping understanding of nuances of desired behaviour.

In order to evaluate our approach we have taken a simplified version of an actual
agent application developed in collaboration with an industry partner, and implemented
it in our system. We have then identified some changes that the actual application had

� This work was supported by the Australian Research Council (Linkage Grants LP0347025 and
LP0453486) in collaboration with the Australian Bureau of Meteorology and Agent Oriented
Software Pty. Ltd.

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 190–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluating a Model Driven Development Toolkit for Domain Experts 191

undergone, and have asked domain experts (meteorologists) to attempt to make these
changes using our system. We have observed and recorded these attempts and analysed
the extent to which our approach and toolkit appear to be successful.

In this paper we first (section 2) provide a brief overview of the experimental appli-
cation, which was a meteorological alerting system developed as part of a collaborative
grant with the Victorian branch of the Australian Bureau of Meteorology, and Agent
Oriented Software Group. We then briefly describe our approach and toolkit (section
3). Additional publications [1,2] provide greater detail on both the toolkit and the ap-
plication. The major part of the paper, and its main contribution, is a description of the
evaluation of our system based on sessions with five meteorologists (sections 4 and 5).
Section 4 presents the evaluation methodology, and in section 5 we analyse the success
of our approach at four different conceptual levels. We conclude that while the user
interface could be improved, the approach appears to be quite successful. The fact that
the study is based on a real system, and that the changes parallel actual changes made
to the initial system, lends credibility to the study.

2 Overview of the Sample Application

The application on which this study was based is an alerting system which has been
developed between 2002 and 2005, as part of a collaboration between the Australian
Bureau of Meteorology, RMIT, and Agent-Oriented Software Group. This system, and
some of the success in using the agent paradigm has been reported previously [1]. The
purpose of the system is to monitor a wide range of meteorological data, alerting per-
sonnel to anomalous situations, interactions between data from different sources that
may not otherwise be noticed, extreme or escalating situations, and so on. The initial
prototype version of the system (see Figure 1) monitored for discrepancies between
data from forecasts for airport areas (Terminal Area Forecasts: TAFs) and data from
automated weather stations (AWSs) on the ground at airports. Significant discrepancies
resulted in an alert to a relevant human operator.

This system was designed and implemented as a multiagent system because it had
a number of characteristics that were a good match with the agent paradigm, including
the environment being highly dynamic, and there being a need for the system to be able
to exhibit both reactive behaviour (responding rapidly to changes in the weather) and
proactive behaviour (e.g. initiating monitoring of certain conditions such as tracking a
storm). Finally, the system consists of a number of entities that may join and leave the
system dynamically, and this is important for the system’s reliability and extensibility
[1]. However, it should be noted that the scope of the system used for this evaluation did
not include some of these aspects, for instance the system did not incorporate proactive
behaviour.

We re-implemented a simplified version of the system using our toolkit, where data
(TAFs and AWSs) were generated by a simulator, and alerts were simply pop-up win-
dows on the machine running the system. The initial system consisted of five agents:
one for receiving TAF data, one for receiving AWS data, one for doing discrepancy

192 G.B. Jayatilleke, L. Padgham, and M. Winikoff

Fig. 1. The Weather Alerting Application

calculations, and two for providing alerts to end users (one for Melbourne, one for
Sydney). The system overview diagram, depicting the high level system architecture,
can be seen in Figure 5. Note that two of the agent instances, those providing alerts to
end users, are of the same agent type (GuiAgent), thus there are five agent instances,
but only four agent types.

Figure 2 shows an agent overview diagram for the AlertAgent. This shows how the
agent’s internals are structured in terms of plans, messages which trigger these plans,
and data. Although both the system and agent overview diagrams show the static struc-
ture of the system, i.e. what parts are connected to what other parts, it is often possible
to fairly easily understand the dynamics of an agent from its overview diagram. For
example, from Figure 2 we can see that an AWSDataEv message triggers the Han-
dleAwsDataPlan which in turn triggers checking for discrepancies in temperature and
pressure. The plans that check for discrepancies can trigger a warning (SendWarning-
ToSubscribed).

After re-implementing the system in our framework, we then identified some early
changes (or types of changes) that had been made to the actual system, on the request of
meteorologists (i.e. domain experts) involved in the project. These included adding an
agent for receiving alerts at a new location, alerting on more of the available data, adding
the ability to process completely new meteorological data (volcanic ash readings), and
adding a more flexible alerting threshold. This then provided the basis for our evaluation
activity with meteorologists.

Evaluating a Model Driven Development Toolkit for Domain Experts 193

Fig. 2. Agent Overview Diagram for the AlertAgent. Envelopes depict messages, the “pill” shapes
are plans, and cylinders are data.

3 CAFnE Framework and Toolkit

The CAFnE1 toolkit supports the generation of complete executable code from a struc-
tured model of the application. It is envisaged that an application is developed, by an
application developer, using the toolkit to define the relevant conceptual components.
It is hoped that due to the intuitive nature of the agent model a domain expert will be
able to readily understand the application design, and will in fact be able to modify and
further develop it. Because fully executable code is generated based on the model, the
domain expert is thus able to modify and extend the application.

3.1 Conceptual Structure

Starting with the modelling of agents done in SMART [3], and reviewing this against
application needs based on our experiences, we developed a simple agent model shown
in Figure 3. This model identifies a list of basic component types required for

1 CAFnE stands for Component Agent Framework for domain Experts.

194 G.B. Jayatilleke, L. Padgham, and M. Winikoff

Fig. 3. Simple agent model used in CAFnE

modelling an agent application, namely: attribute, entity, environment, goal, event, trig-
ger, plan, step, belief and agent. Further details of these, along with a discussion of the
relationship between the CAFnE and the SMART concepts, can be found in [4].

In order to generate executable code from these basic components we adopted a
Model Driven Development approach as used in the Model Driven Architecture (MDA)
[5] of the Object Management Group (OMG). We use three (M0, M1 and M2) of the
four levels used in MDA for application modelling. Figure 4-(a) shows these modelling
levels and examples of entities in each layer from the meteorology application.

Each level in the model hierarchy is an instance of the level above. At the meta-
meta level (M2 equivalent) we define the domain and platform independent generic
component types listed earlier. These generic types are then used in the meta level (M1
equivalent) to define domain dependent component types. This specifies the types of en-
tities required for the particular application domain. The M0 level defines the runtime
components of the system which are bound to the domain and also to a runtime plat-
form. In other words, M0 represents the runtime system in a given agent programming
language.

We use XML Schema for representing M2, XML for M1 and JACK [6] agent lan-
guage as M0, the runtime platform. The transformation from M1 (XML) to M0 (JACK
code) is done using a set of transformation rules written in XSLT2.

Figure 4-(b) gives an overview of the main modules of the toolkit. The Compo-
nent Definition Generation (CDG) Module is responsible for generating the appropriate
XML specifications for the components defined by the user via the UI Module. The
output of the CDG Module is a set of XML files that comply with the XML Schema
definitions of the component types.

The Transformation Module transforms the platform independent XML specifica-
tions to executable code in an agent language. This is achieved by applying a set of
XML-Transformations (XSLT) to the XML component specifications generated by the

2 http://www.w3.org/TR/xslt

http://www.w3.org/TR/xslt

Evaluating a Model Driven Development Toolkit for Domain Experts 195

Fig. 4. An overview of CAFnE concepts

CDG Module. Specifics of the Transformation modules including the rules and how
it operates are described in [4]. Currently the Transformation Module generates JACK
agent language code. However, if one wishes to run a CAFnE application in a dif-
ferent agent platform (such as Jadex) it is only required to change the XSLT rules.
Thus a technical advantage of the CAFnE platform is that it allows an application to
be transformed and run in different runtime platforms without changing the high level
application model.

3.2 Relationship to the Prometheus Methodology for Software Design

Many of the domain independent concepts exist in a range of agent design and develop-
ment methodologies, which can therefore be adapted for building the application using
the CAFnE toolkit. We build on the Prometheus methodology [7] and the support tool
available for development using this methodology called PDT3 [8].

Prometheus supports development of the level M1 entities for goal, event, trigger,
plan, belief and agent. In addition, the developer using CAFnE must define the en-
vironment and its attributes as well as the plan steps. Steps are executable units used
in plans, making it easier to formulate plans. CAFnE constrains (and guides) the de-
veloper in modelling the application with these components, thus making it easier for
domain experts to understand and make modifications. However CAFnE also provides
additional flexibility, by allowing plan steps to have arbitrary target platform code (cur-
rently JACK/Java). This provides a mechanism for greater flexibility where needed.

3.3 Usage for Modifications

Once an application is developed, what the domain expert is provided with is a set
of graphical and textual models that present the information from level M1. One of
the most important graphical models for an overview of the system is the Prometheus
system overview diagram. Figure 5 shows this, (upper right frame) within the toolkit,
for the experimental meteorology application.

3 Prometheus Design Tool. (http://www.cs.rmit.edu.au/agents/pdt)

http://www.cs.rmit.edu.au/agents/pdt

196 G.B. Jayatilleke, L. Padgham, and M. Winikoff

Fig. 5. The Prometheus Design Tool (PDT) user interface. A starburst icon is a “percept”, i.e.
information from the environment. A box with a stick figure is an agent, and an envelope shape
denotes a message.

Clicking on a particular agent type opens up an “agent overview diagram” in this
frame which shows the domain dependent types of plans, events, triggers and goals
within an agent type. The details of plan steps, attributes and beliefs are available in the
CAFnE text based frame at the bottom right of figure 5, called the “Descriptor pane”.

The specific agent instances, and their corresponding initial beliefs are accessible
from the “Initialization” option in the “Diagrams” pane in the upper left frame
(figure 5). When expanded these can be viewed graphically in the upper right frame.
CAFnE allows the user to specify what agent instances will exist at runtime, includ-
ing their names, and what agent types they instantiate. Additionally, it is possible to
specify, for each agent instance, what initial beliefs the agent will have. This allows dif-
ferent agent instances to be given different beliefs, for example, an agent instance that
is responsible for displaying alerts for the city of Melbourne would begin with a belief
that it is covering the region of Melbourne, whereas another agent instance of the same
type that was responsible for, say, Sydney, would begin its life with the belief that it is
covering the region of Sydney.

Evaluating a Model Driven Development Toolkit for Domain Experts 197

The domain expert who wishes to modify an application does this by interacting with
the model available via the CAFnE toolkit. For example to add a new type of agent, this
can be introduced graphically into the system overview diagram. Expanding it then
allows introduction of relevant plans and events which the agent can handle. The tool
also supports copying existing entities (together with their included components) and
then modifying. This is a particularly useful way for non-programmers to envisage and
realise system additions. To add a new instance of an existing type requires addition
into the initialization model. Further detail on using the CAFnE tool is available in [4].

4 Evaluation Methodology

4.1 Participants

In order to evaluate our toolkit and approach, we identified, through our relationship
with the Bureau of Meteorology, five experienced forecasters who were willing to spend
a couple of hours in an individual interview, using the toolkit. None of the forecasters
had been previously involved with our project with the Bureau of Meteorology.

All five participants had at least fifteen years of experience in weather forecasting.
Three participants had varying levels of experience in programming (shown in table 1)
with only two of them currently being involved in programming activities (shown in
the “Comments” column). None of the participants had designed or implemented agent
based systems prior to the study.

Table 1. Domain Expert Profiles: Programming Experience

Participant Familiarity Experience Comments
A C, Python 10yrs Current work involves programming
B Java 10yrs Current work involves programming
C - 0yrs No Programming Experience
D C, C++ - Past programming experience
E - 0yrs No Programming Experience

4.2 Materials

Participants were emailed a description of the evaluation process along with three doc-
uments that provided an overview of the toolkit and the sample application, one week
prior to the evaluation session. The documents included a Brief User Guide to the
CAFnE Toolkit, a document describing the functions available as plan steps for the
sample application and a design overview of the Sample Weather Alerting System.
Participants were also given a web link4 for downloading and experimenting with the
toolkit prior to the exercise.

As none of the participants had actually been able to find time to read the documen-
tation or experiment with the toolkit prior to the evaluation interview, the first 30-45

4 http://www.cs.rmit.edu.au/∼gjayatil/cafneEval

http://www.cs.rmit.edu.au/~gjayatil/cafneEval

198 G.B. Jayatilleke, L. Padgham, and M. Winikoff

minutes of the interview was spent going through these materials. The participants were
then presented with the descriptions of the requested changes along with a description
of the observable outcome once each change was successfully made.

4.3 Modifications Specified

We developed descriptions of four5 different modifications to be made to the system,
which paralleled enhancements or modifications that had been made by programmers
to the actual system. The changes were:

1. Show alerts for Darwin - a new city;
2. Add ability to alert on wind data - a new weather data type;
3. Add ability to show volcanic ash alerts - a new type of alert and data source; and
4. Change the threshold for alerting from a fixed to a variable value.

Of these the third change is the most difficult, and the first is the most straightforward.
Table 2 shows these changes, with the right column indicating the entities which require
modification in order to realise the change. This information was not given to partic-
ipants, what was given to participants was a detailed description of the requirements
for each change, along with an indication of what would be seen once the change was
successfully made (see Table 3 for an example description of change number 2, as it
was provided to the forecasters).

4.4 Data Collection

There were three types of data collected: recording of all verbal comments and inter-
action; noting of timing information; and a questionnaire (see appendix A) which was
filled in at the end of each session asking a set of questions regarding how easy they
found the tool and the concepts with respect to understanding and realizing the changes.
This questionnaire also included a set of questions on the background of the participants
regarding their experience in the weather domain, programming in general and agent
programming.

While making the changes, participants were asked to think out loud and ask ques-
tions as they worked on understanding and making the changes. The interviewer (who
was the first author) was limited to observing, capturing data and providing assistance
on clarifying agent concepts and toolkit functions. The interviewer was not involved
in helping the user in any way with deriving design solutions for the changes given.
Questions answered by the interviewer included ones such as “How do I copy a plan?”,
“Do I have to fill all these description boxes?”, and “How do I change this link from
Plan A to Plan B?”. Questions not answered by the interviewer included ones such as
“Am I supposed to create a Plan here?”, “Ah! I need an agent instance here, don’t I?”,
and “Do I need to send this data to Agent B?”.

Timing information was recorded for each change, starting when a subject began
reading the description of the required change and ending when the subject declared it
as complete.

5 We actually had five changes, but as no-one had time to look at the fifth change we have
excluded it from the study.

Evaluating a Model Driven Development Toolkit for Domain Experts 199

Table 2. Changes List

No Change title Description Related Concepts
1 Make the system

show alerts for the
City of Darwin

The initial system only showed alerts for the
cities of Sydney and Melbourne. The change
is intended to make the system show alerts for
Darwin.

Agent Type, Agent In-
stance

2 Add the ability to alert
on Wind Data

The initial system only alerted on discrepan-
cies based on Temperature and Pressure data.
Modifications are to be made to process Wind
data and generate alerts on any Wind speed
based discrepancies.

Plan, Event

3 Add the ability to
show Volcanic Ash
Alerts

This change required users to add a new read-
ing (Volcanic Ash levels in atmosphere) by us-
ing a new agent type (Volcanic Ash Agent)
and generate alerts if the ash levels were above
a certain limit.

Agent, Type, Events,
Plan, Step

4 Implement a variable
threshold for alerting

The original version of the system used a fixed
discrepancy threshold for all regions. For any
region, if the discrepancy between the actual
reading and the forecast is over this value,
an alert was generated. With this modifica-
tion, the system is to have variable thresholds
based on the region (i.e. Sydney, Melbourne
and Darwin)

Plan, Belief

5 Analysis

Within the available time most participants were able to complete (or attempt) three
changes. Table 4 shows the time (in minutes) taken by each subject, and whether the
change was successfully accomplished. A ✓ next to the time indicates a successful
implementation and ✧ indicates a partial completion.

One interesting observation here is the consistency in the times taken by each user.
The amount of time taken to make a change is quite consistent between users. The time
taken also confirms our assessment of the first change as being the easiest, but does not
clearly indicate the third change as being harder than changes 2 or 4.

These results clearly indicate that a domain expert with only a short introduction (of
around 40 minutes) to the concepts and the toolkit, is able to make moderately complex
modifications to an existing agent system, without the help of an expert agent developer.
However some difficulties were also experienced and not all attempts were successful
within the time available. We analysed our data to determine where improvements may
be needed in order to facilitate greater ease of use and success.

In analysing and evaluating the data collected from our interviews, we refer to the
cognitive model of program understanding developed by Letovsky et al. [9,10]. In [9]
Letovsky identifies three components in the cognitive model of program understanding.
A knowledge base that includes programming expertise and problem-domain knowl-
edge; a mental model that specifies the understanding of the existing program and an

200 G.B. Jayatilleke, L. Padgham, and M. Winikoff

Table 3. Change Description

CHANGE 2: Add the ability to alert on WindData

Background: The current system only supports generating alerts based on the temperature
(data type TEMP) and pressure (data type PRESS) data discrepancies between AWS and
TAF. However the AWS and TAF also contain details about Wind (data type WIND) such
as wind speed. This data is not used to generate alerts.

Required Change: You are to make the necessary changes to the system in order to gen-
erate alerts on wind forecasts. The tolerance level for issuing an alert for a discrepancy
between TAF and AWS reading for wind should be 10 units.

Expected Outcome: Alerts on Wind will be displayed

Table 4. Times taken (in minutes)by each subject (Note: dna = did not attempt; ✓ = complete
implementation; ✧ = partial implementation)

Participant Change 1 Change 2 Change 3 Change 4

A 15 ✓ 30 ✓ 25 ✧ dna
B 15 ✓ 30 ✓ dna dna
C 20 ✓ 30 ✓ 30 ✧ dna
D 15 ✓ 35 ✓ 30 ✓ 30 ✓

E 20 ✓ 25 ✓ dna 35 ✧

assimilation process used to construct the mental model using the knowledge base
and stimulus material (such as program code, design documents etc.). The assimila-
tion process used by programmers in software maintenance is further evaluated in [10]
where a Systematic Strategy of understanding a program is claimed to be superior to an
As-Needed Strategy in maintenance tasks. The Systematic Strategy refers to a program-
mer understanding the global view of the application before attempting a modification
whereas the As-Needed Strategy refers to limiting this knowledge to the part or parts of
the system affected by the change.

In the following we evaluate to what extent the participants were able to develop
an adequate knowledge base, in terms of the required agent concepts. We then explore
to what extent they have succeeded in obtaining a mental model of the application
program, with a focus on a global understanding (facilitating the Systematic Strategy)
rather than understanding only of relevant parts (for an As-Needed Strategy). We then
look at the participants’ ability to make the changes at two levels: the design level cov-
ering what changes need to be made, in what components, and the implementation level
covering actually realising these changes through the CAFnE toolkit user interface.

5.1 Agent Concept Knowledge

The Knowledge Base as identified in the Letovsky model is the understanding of the
programming environment and the problem domain. As we are working with domain

Evaluating a Model Driven Development Toolkit for Domain Experts 201

experts, we assume understanding of the problem domain. Therefore in our case the
Knowledge Base evaluation concerns understanding of the agent concepts used in the
CAFnE framework.

None of the participants had prior experience in building or modifying agent sys-
tems. Subjects spent an average of 40 minutes in browsing the CAFnE user guide and
the sample application to acquire this knowledge. Subjects thought out loud while go-
ing through the application and seeing the concepts in use appeared to solidify their
understanding. When asked if they understood the functions of the basic components
(e.g. plan, event, belief) and the agent model (figure3-(a)), they commented that the
concepts are easy to grasp and intuitive.

However, while the users understood the simple agent model, some of the users
faced difficulties and had to clarify their understanding while attempting the changes.
The majority of the difficulties could be categorised as conceptual problems and inter-
face problems. A common conceptual problem was the difference between the design
diagrams (at the M1 level) and the instance diagram (at the M0 level). Subjects such as
C and E, who were new to programming, needed further explanations in how these two
levels differ. Another example is the use of Attributes. Subjects needed help in under-
standing the use of Attributes in Steps and Events, and how they hold values at runtime.
While part of this may be attributable to the newness of the ideas, the representation of
the concepts in the tool was sometimes confusing and led to interface based problems.
For example the Trigger in a plan descriptor form is represented with a drop down list
of all incoming triggers. This confused the users as a plan by definition can only have
one trigger. In these situations the subjects asked questions to clarify the view they had
in mind. These are areas we plan to improve on, especially to narrow the gap between
the agent model and the representation in the toolkit.

5.2 Program Knowledge

Program Knowledge is the mental model of Letovsky [9]. It refers to the understanding
of the existing design of the application. In particular we are interested in whether the
participants were able to develop a holistic overall understanding suitable for a System-
atic Strategy of modification.

In the case of the evaluation, the participants were totally new to the application de-
sign, but they were familiar with the data and the domain requirements. For example,
the participants were familiar with the AWS and TAF data formats and contents, and the
process of alerting based on discrepancies. This allowed the participants to easily un-
derstand the high level view (i.e. the inter-agent level) of the application. They were all
able to easily explain how the data flowed through the system. CAFnE helps this process
by visualising the application at the inter-agent (System Overview Diagram) and intra-
agent (Agent Overview Diagram) levels. All the participants first got a broader view
of the application using the System Overview Diagram, and then drilled down for fur-
ther details using the Agent Overview Diagrams. By following the data flow in these
diagrams, subjects were able to develop an understanding of the causal relationships
between components in the system at different levels, such as between agents, between
plans and between events. As indicated in [10], the ability to understand the causal re-
lationships between application components forms strong mental models that lead to

202 G.B. Jayatilleke, L. Padgham, and M. Winikoff

correct modifications. However, developing this understanding did require the partici-
pants to manually follow through processes based on data flow. One improvement could
be to provide some inbuilt mechanism for visualizing the data flow.

However, although participants were able to develop a good understanding of the
application’s design, there were a number of areas where they struggled somewhat, and
where ways of providing additional support should be investigated.

One area where participants struggled was in understanding some details of the ap-
plication design that were less related to the domain. For example, the use of a subscrip-
tion mechanism between the agents. When it was explained, participants were able to
readily understand this architecture and later use it correctly in making the new regional
agent instance (i.e. change 1) receive alerts from the AlerterAgent.

Another area where users struggled was in understanding what each plan does within
an agent. They often referred to plan steps or followed the flow of information in and
out of the plan to understand its use. Again, some mechanism that allows visualisation
of the dynamic process where plans are used is likely to assist in this area.

Finally, another aspect which caused some difficulties was some of the details around
runtime initialization of agents, including the use of start up plans6 in agents, and the
use of beliefsets to hold configuration details. It is expected that better design documen-
tation would address many of these issues.

It should be noted that the participants were operating in time-limited conditions,
gaining their understanding of the application’s design, as well as the CAFnE concepts,
within 40 minutes or so. Nearly all the users commented that they needed more time
with the application, to, in their words “play around”, to understand it better. However,
they did feel that it was sufficiently clear and intuitive that, given more time, they would
develop a strong understanding.

5.3 Conceptual Design of Change

Conceptual Design of Change is the derivation of a solution to the problem given in
the change description at the conceptual level without actually implementing it using
the tool. It is a product of the agent concept knowledge, domain knowledge, program
knowledge and the users’ capacity to use these in formulating a design change.

In all the changes attempted by users, they were able to come up with a design change
relatively easily and rapidly. This was indicated by the thinking out loud practice they
adhered to through out the session. Following are some statements made by participants
in this stage:

“I need an agent instance for Darwin, don’t I?”
— attempting change 1

“I need to make a copy of this plan [pointing to CheckTemperatureDiscrep-
ancy] and this event [pointing to TemperatureData]”

— attempting change 2

“I have to make an agent type similar to AWSSourceAgent and rename it.”
— attempting change 3

6 Plans that are run automatically when the agent is created.

Evaluating a Model Driven Development Toolkit for Domain Experts 203

The basic agent model used in CAFnE and the Prometheus based graphical notation
used to represent the concepts appeared to be successful in providing the understanding
necessary to conceptualise the changes required. This is further highlighted by the fact
that the partially completed changes shown in table 4 (with a ✧), were all solutions
which were correct at the conceptual level, though the users were unable to implement
them within the time frame.

As expected, users looked for patterns similar or close to the one they needed in
the change. By examining these available patterns users derived partial or complete
solutions to the changes. A good example of this is change 2, where users recognised
the similarity between Wind data and Temperature data and developed their solution for
handling Wind data by looking at how the Temperature data was handled.

While users understood what needed to be done conceptually, realisation of this via
the tool interface was somewhat more problematic.

5.4 Implementation

Implementation refers to the encoding of the desired modifications or additions using
the CAFnE toolkit interface. During this phase users were given assistance when spe-
cific questions were asked about carrying out a certain operation, such as “how do I
copy a plan?”, or “how do I change this link from plan A to plan B?”. The assumption
here was that more time to find the information in the manual, or greater familiarity,
would allow the users to resolve these questions without assistance. However in the
context of limited evaluation time, it made sense to directly provide this information.
On the other hand, no assistance was given in deciding what to do - only in the details
of how to accomplish it via the tool interface.

Most users indicated that they found the diagrams and the graphical notation easy to
understand. They commented that these diagrams reflected how they pictured an agent
system, especially the system overview diagram. This was consistent with feedback
from a preliminary evaluation with students where the tool did not provide overview di-
agrams. This lack was a significant issue in gaining an understanding of how individual
entities (plans, events, etc.) fitted together and what role they played in the system.

Users heavily utilized the copy and paste functions in replicating patterns similar to
the one they needed to implement. Examples include copying and renaming an agent
instance in change 1, and copying plans and events in changes 2 and 3. Another useful
feature was the ability, at the click of a button, to transform the application model to
executable code and run it, in order to see the outcome of a change. Two of the users
realized after making change 2 that alerts for wind were not being displayed at runtime.
With further investigation they were able to find the problem7 and correct it. Users also
found the warnings and errors shown at the transformation level useful. This allowed
them to eliminate model based errors such as missing inputs in Steps, and plans without
triggers.

The main complaint from the users while using the prototype tool was the lack of
features in the user interface which are normally found in other Windows applications.

7 They had copied and pasted from the Temperature handling parts of the system, but hadn’t
changed all references to Temperature to be references to Wind.

204 G.B. Jayatilleke, L. Padgham, and M. Winikoff

These included features such as an Edit menu with Undo, Copy, Cut and Paste, right
click popup menu for diagram components and drag & drop functions where applicable.

Users like A and B with a programming background had comments on things such
as “use of Java standards for GUIs” and “more textual access to steps than with GUI
widgets”. Others highlighted the need for using less computer science terms such as
“Initialization”, and “Instance” and more training to overcome some of the usability
issues. However these do not impact our fundamental concerns regarding the adequacy
of the framework and of the tool functionality.

Most users commented that working at the more abstract diagram and form level
seemed much easier than directly working with textual code. For example, when shown
the Java code generated, participant E with no programming experience commented:

“Wow! It’s lot easier than typing all that [Java code]. ”

“that’s neat stuff [code generation], I mean in the end you could have do-
main experts, people that just know their job but hopeless at coding do just
this [clicking diagrams] and do that [filling forms] and run”

— participant C

6 Conclusion and Future Work

This paper described an evaluation of a conceptual framework of domain independent
component types and the associated toolkit which enables applications to be built and
modified in a structured manner, using these component types. The evaluation of the
toolkit and approach was done by five meteorologists, using a simplification of an actual
agent-based system, making changes that the real system had undergone.

We have provided a detailed analysis of related work in [4] and found the only similar
work in the agent setting to be [11]. Most existing agent toolkits are made for experi-
enced programmers and do not provide the same level of support for domain experts.

Our approach is consistent with Model Driven Development (MDD), since fully
functional executable code is derived from the models. One area for future work is
to compare our (agent-based) approach with more mainstream approaches to MDD
such as the OMG’s Model Driven Architecture8 (MDA). Our belief is that the MDA
is not well suited for domain experts since it relies on the UML, which is not likely to
be known by domain experts, and which is considerably more complex than our mod-
els. However, clearly an experimental evaluation of this opinion would be valuable,
although it is beyond the scope of this work.

Overall, the findings of our work can be summarised as:

1. Domain experts with varying programming experience, and with no experience
with agent design or programming were able to rapidly (35-40 minutes) become
familiar with the CAFnE concepts and begin comprehending an agent system de-
sign.

2. Users were able to go through the system and understand the functionality from the
various diagrams provided.

8 http://www.omg.org/mda

http://www.omg.org/mda

Evaluating a Model Driven Development Toolkit for Domain Experts 205

3. Participating domain experts could make moderately complex changes and run the
system, without any prior knowledge of the agent approach or (in some cases) of
programming.

4. Users found it easier to work at the higher level of abstraction given by the tool,
and the overview diagrams provided were seen as useful.

5. Additional support for understanding the flow of processes within the system would
probably be helpful.

6. Realizing the changes was hampered by various issues in the GUI, such as non-
adherence to user interface standards, due to its prototype nature. In future work
we plan to improve the user interface and to provide some mechanism for more
readily understanding the role of a component and visualizing the data flow in a
particular process.

In conclusion, we were able to demonstrate clearly that domain experts who are not
expert programmers, and in some cases had no programming experience, were able to
make modifications to an agent system using CAFnE. Furthermore, the domain experts
were able to learn the concepts of CAFnE, become familiar with the design of the sys-
tem, and make a number of changes, all within two hours. That the system in question
is based on a real system, and that the changes parallel actual changes made to the real
system, lends strength to this conclusion.

References

1. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological
alerting system: Issues and solutions. In: Proceedings of the 27th Australasian Computer
Science Conference, Dunedin, New Zealand (2004) 351–358

2. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based develop-
ment framework for agents. International Journal of Computer Systems Science and Engi-
neering 20/4 (2005)

3. Luck, M., d’Inverno, M.: A conceptual framework for agent definition and development.
In: Proceedings of the fourth International Workshop on Agent Theories, Architectures, and
Languages (ATAL). (1998) 155–176

4. Jayatilleke, G., Padgham, L., Winikoff, M.: Component agent framework for non-experts
(CAFnE) toolkit. In Unland, R., Calisti, M., Klusch, M., eds.: Software Agent-Based Appli-
cations and Prototypes, Birkhaeuser Publishing Company (2005) 169–196

5. Kleppe, A., Warmer, J., Bast, W.: MDA Explained, The Model Driven Architecture: Practice
and Promise. Addison-Wesley Publishing Company, ISBN: 0-321-19442-X (2003)

6. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents - Components
for Intelligent Agents in Java. Technical Report 1, Agent Oriented Software Pty. Ltd, Mel-
bourne, Australia (1999) Available from http://www.agent-software.com.

7. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons, ISBN 0-470-86120-7 (2004)

8. Padgham, L., Thangarajah, J., Winikoff, M.: Tool support for agent development using the
Prometheus methodology. In: First international workshop on Integration of Software Engi-
neering and Agent Technology (ISEAT). (2005) 383–388

206 G.B. Jayatilleke, L. Padgham, and M. Winikoff

9. Letovsky, S.: Cognitive processes in program comprehension. In: Papers presented at the
first workshop on Empirical studies of programmers, Norwood, NJ, USA (1986) 58–79

10. Littman, D.C., Pinto, J., Letovsky, S., Soloway, E.: Mental models and software maintenance.
In: Papers presented at the first workshop on Empirical studies of programmers, Norwood,
NJ, USA (1986) 80–98

11. Goradia, H.J., Vidal, J.M.: Building blocks for agent design. In: Fourth International Work-
shop on Agent Oriented Software Engineering. (2003) 17–30

Evaluating a Model Driven Development Toolkit for Domain Experts 207

A Questionnaire

Domain Expert’s Name: Date/Time:

1. Understanding BDI concepts and process [/10]

Understanding of Data-Event-Plan (theoretically BDI) based agents.

1.1 Have you heard about BDI agent concepts before? YES NO

If yes, give details.

1.2 Did you find the description about the agent model provided in the Toolkit Help easy to

understand? YES NO

If not,

1.2.1 What parts did you find difficult to understand? (most to least)

1.3 Can you briefly explain how a Trigger-Plan based agent (used in CAFnE) works?

2- Understanding sample application idea [/10]

Understanding the design of the application.

2.1 Did you understand the purpose of the sample application? (explain)

2.2 Did you find the details given in the design document sufficient to understand how the

application works?

(if yes)

2.2.1 Can you provide a brief description of what each agent does?

(if no)

2.2.1 What aspects did you find hard to understand?

2.2.2 What can you suggest to improve the understanding?

3- Understanding changes and how they are realized

This is the clear understanding of what is required of a particular change, what changes are

needed in the design and using the tool to do it.

[Note: these questions were asked for each change]

Change 1: Show Alerts for Darwin [/10]

3.1.1. Do you understand what the change is about? (explain)

3.1.2. Do you understand what modifications are required in the design (explain)

3.1.3 What aspects of using the tool did you find difficult in making this change?

3.1.3.1 How do you think it can be improved?

3.1.4 If the change was not correctly done, find and note the reasons for the cause. Might

include reasons such as wrong understanding of the model, design etc.

3.1.5 If the change was correctly done, but deviated significantly from the anticipated design

change, find and note the reasons for the design decisions.

Building the Core Architecture of a NASA
Multiagent System Product Line�

Joaquin Peña1, Michael G. Hinchey2, Antonio Ruiz-Cortés1,
and Pablo Trinidad1

1 University of Seville, Spain
{joaquinp, aruiz}@us.es, trinidad@lsi.us.es

2 NASA Goddard Space Flight Center, USA
Michael.G.Hinchey@nasa.gov

Abstract. The field of Software Product Lines (SPL) emphasizes build-
ing a family of software products from which concrete products can be
derived rapidly. This helps to reduce time-to-market, costs, etc., and can
result in improved software quality and safety. Current Agent-Oriented
Software Engineering (AOSE) methodologies are concerned with devel-
oping a single Multiagent System. The main contribution of this paper is
a proposal to developing the core architecture of a Multiagent Systems
Product Line (MAS-PL), exemplifying our approach with reference to a
concept NASA mission based on multiagent technology.

1 Introduction

Many organizations, and software companies in particular, develop a range of
products over periods of time that exhibit many of the same properties and
features. The multiagent systems community exhibits similar trends. However,
the community has not as yet developed the infrastructure to develop a core
multiagent system (hereafter, MAS) from which concrete (substantially similar)
products can be derived.

The software product line paradigm (hereafter, SPL) augurs the potential of
developing a set of core assets for a family of products from which customized
products can be rapidly generated, reducing time-to-market, costs, etc. [1], while
simultaneously improving quality, by making greater effort in design, implemen-
tation and test more financially viable, as this effort can be amortized over
several products. The feasibility of building MASs product lines is presented in
[2], but no specific methodology is proposed. In this paper, we propose an ap-
proach for performing the first stages in the lifecycle of building a multiagent
system product line (MAS-PL).

� The work reported in this article was supported by the Spanish Ministry of Science
and Technology under grants TIC2003-02737-C02-01 and TIN2006-00472 and by
the NASA Software Engineering Laboratory, NASA Goddard Space Flight Center,
Greenbelt, MD, USA.

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 208–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Building the Core Architecture of a NASA Multiagent System Product Line 209

For enabling a product line, one of the important activities to be performed
is to identify a core architecture for the family of software products. Unfortu-
nately, there is no AOSE methodology that demonstrates how to do this for
MAS-PLs. Our approach is based on the Methodology for analysing Complex
Multiagent Systems (MaCMAS) [3], an AOSE methodology focused on dealing
with complexity, which uses UML as a modeling language and builds on our
current research and development experience in the field of SPLs.

Roughly, our approach consists of using goal-oriented requirement documents,
role models, and traceability diagrams in order to build a first model of the
system, and later use information on variability and commonalities throughout
the products to propose a transformation of the former models that represent
the core architecture of the family.

The main contributions of this paper are: (i) we introduce feature models
in the agent field in order to document variabilities and commonalities across
products; (ii) we provide an automatic algorithm and a prototype for performing
commonality analysis (that is to say, to automatically analyze the probability
that a feature appears in a product); (iii) we propose an operation to compose the
models corresponding to a feature that allows us to build the core architecture
which includes those features whose probability of appearing is above a given
threshold.

2 Motivating MAS-PL with a NASA Case Study

There has been significant NASA research on the subject of agent technology,
with a view to greater exploitation of such technologies in future missions.

The ANTS (Autonomous Nano Technology Swarm) concept mission,1 for ex-
ample, will be based on a grouping of agents that work jointly and autonomously
to achieve mission goals, analogous to a swarm in nature.

Lander Amorphous Rover Antenna (LARA) is a sub-mission, envisaged for
the 2015-2020 timeframe, that will use a highly reconfigurable-in-form rover
artifact. Tens of these rovers, behaving as a swarm, will be used to explore the
Lunar and Martian surfaces. Each of these “vehicles” or rovers will have the
ability to change its form from a snake-like form, to a cylinder, or to an antenna,
which will provide them with a wide range of functional possibilities. They are
envisaged as possible building materials for future human lunar bases.

Prospecting Asteroid Mission (PAM) is a concept sub-mission based on the
ANTS concepts that will be dedicated to exploring the asteroid belt. A thousand
pico-spacecraft (less than 1kg each) may be launched from a point in space
forming sub-swarms, and deployed to study asteroids of interest in the asteroid
belt. Saturn Autonomous Ring Array (SARA) is also a concept sub-mission
similar to PAM but whose goal is analysis of the Rings of Saturn.

Although based on mainly the same concepts, these sub-missions differ. For
example, in PAM, spacecraft should be able to protect themselves from solar
storms, while in SARA this is not of concern, but as a higher gravitational force
1 http://ants.gsfc.nasa.gov/

210 J. Peña et al.

exists, the spacecraft should be capable of avoiding gravitational “pull” and
collisions with particles of the rings, as well as with other spacecraft. Another
example is the mechanism used for motion in these missions. Some of them
require ground-based motion, i.e. LARA, while other missions involve flying
spacecraft employing gas propulsion and solar sails for power.

Thus, ANTS represents a number of sub-missions, each with common features,
but with a wide range of applicability, and hence several products.

Being able to build a MAS-PL for these sets of sub-missions, with a set of
reusable assets at all the levels (software artifacts, software processes, engineering
knowledge, best practices, etc.), can drastically reduce temporal and monetary
costs in the development of such missions.

In [2], a number of challenges are presented in the context of MAS-PL. In this
paper we cover some of these challenges, which has motivated this research to
address the following issues:

SPL for distributed systems. Distributed systems have not been a hot topic
in the SPL field. We will explore a case study based on the ANTS concept
mission presented above, which is a highly complex distributed system. Thus,
this represents a first step towards addressing this challenge.

AOSE deficiencies. AOSE does not cover many of the activities of SPL. These
are mainly concentrated on commonality analysis, and its implications for
the entire SPL approach. This motivates us to cover this issue, validating
our approach with the case study presented.

3 Background Information

As a result of combining two different fields, we have to contextualize our work
in both research areas. In this section, we provide an overview of SPL and AOSE
illustrating the points of synergy between them.

3.1 Software Product Lines

The field of software product lines covers the entire software lifecycle needed
to develop a family of products where the derivation of concrete products is
achieved systematically or even automatically when possible.

Its software process is usually divided into two main stages: Domain Engi-
neering and Application Engineering. The former is responsible for providing
the reusable core assets that are exploited during application engineering when
assembling or customizing individual applications [4]. Although there are other
activities, such as product management, in this section we do not try to be
exhaustive, but only discuss those activities directly related to this paper and
relevant to our approach. Thus, following the nomenclature used in [4], the ac-
tivities, usually performed iteratively and in parallel, of domain engineering that
correlate with our approach are:

Building the Core Architecture of a NASA Multiagent System Product Line 211

The Domain Requirements Engineering activity describes the requirements
of the complete family of products, highlighting both the common and variable
features across the family. In this activity, commonality analysis is of great im-
portance for aiding in determining which are the common features and which
of them are present only in some products. The models used in this activity for
specifying features show when a feature is optional, mandatory or alternative
in the family. One of the most accepted models here is feature models [5]. A
feature is a characteristic of the system that is observable by the end user [6].
Features represent a concept quite similar to system goals (used in AOSE) and
the models used to represent them present a correlation with hierarchical system
goal requirement documents [2]. Our approach is based on this correlation.

In Figure 1, we show a subset of the feature model from our case study. As
can be seen, in this kind of model the features for all products are shown along
with information on whether they are mandatory, optional, or alternative. For
example, the feature flight and orbit is mandatory, while the feature walk is
optional. In addition, the features snake, amoeba, and rolling must be present
only if their parent is present, and, as they are related by an or-relation, when a
product possesses the feature walk it must also possess at least one of the former
features.

The Domain Design activity produces architecture-independent models that
define the features of the family and the domain of application. Many ap-
proaches have been discussed in the literature to perform this modeling. Some
of these approaches use role models to represent the interfaces and interac-
tions needed to cover certain functionality independently (a feature or a set
of features). The most representative are [7,8], but similar approaches have ap-
peared in the OO field, for example [9,10]. We build on this correlation using
agent-based role models at the acquaintance organization to represent features
independently.

Then, in the Domain Realization activity, a detailed architecture of the family
is produced adding mechanisms such as components that can be customized, or
frameworks for these components, in order to enable the rapid derivation of prod-
ucts. In SPL, there exist some approaches where collaboration-based models (role
models) are composed to produce the core architecture, e.g. [7,8]. In these ap-
proaches, component-based models are used where each component is assigned a
set of interfaces and a set of connectors to specify interactions among them. Again,
this is similar approach to the approach of some AOSE methodologies in building
the architecture of the system, called the structural organization, e.g. [11].

3.2 Overview of MaCMAS/UML

The organizational metaphor has been proven to be one of the most appropriate
tools for engineering a MAS, and has been successfully applied, e.g., [12,13,11].
It shows that a MAS organization can be observed from two viewpoints [11]:

Acquaintance point of view: shows the organization as the set of interac-
tion relationships between the roles played by agents.

212 J. Peña et al.

Mandatory Optional

At least one
of them

Only one
of them

If father present, the heir is:

Dependency
Flight and

Orbit

...

Move

Snake Amoeba Rolling

Walk

Gas
prop.

Use Sail
to Orbit

and flight

Fig. 1. Sub-set of the feature model of our case study

Structural point of view: shows agents as artifacts that belong to sub-orga-
nizations, groups, teams. In this view agents are also structured into hierar-
chical structures showing the social structure of the system.

Both views are intimately related, but they show the organization from
radically different viewpoints. Since any structural organization must include
interactions between agents in order to function, it is safe to say that the acquain-
tance organization is always contained in the structural organization. Therefore,
a natural map is formed between the acquaintance organization and the corre-
sponding structural organization. This is the process of assigning roles to agents
[11]. Then, we can conclude that any acquaintance organization can be modeled
orthogonally to its structural organization [14].

MaCMAS is the AOSE methodology that we use for our approach and is based
on previously developed concepts [3]2 It is specially tailored to model complex
acquaintance organizations [15].

We have adopted this approach because it presents several common features
with SPL approaches, that eases the integration of both fields. Going into details,
the main reasons are: First, after applying it we obtain a hierarchical diagram,
the traceability diagram, that is quite close to a feature model. Second, it matches
well with product lines, since it also produces a set of role models that represent
the materialization of each system goal at the analysis level. Third, it provides
UML-based models which are the de-facto standard in modeling, and which
will decrease the learning-curve for engineers. Fourth, it provides techniques
for composing acquaintance models, which is needed for building the structural
organization of the system, allowing us to group together those features that
are common to all of the products in the product line and thus, build the core
architecture.

For the purposes of this paper we only need to know a few features of MaC-
MAS, mainly the models it uses. Although a process for building these models
is also needed, we do not address this in this paper, and refer the interested

2 See http://james.eii.us.es/MaCMAS/ for details and case studies of this methodology.

Building the Core Architecture of a NASA Multiagent System Product Line 213

A) Plan Model

B) Role Model

Measure
risk of solar

storms
Protecting

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

normalizeSTVect(Vector3):Vector3

Role Goal: Self-protection
mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSC

SelfProtecSC

SelfProtecSC

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSC.stormIntensity

SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Fig. 2. “Self-protection from solar storms” autonomic property model

reader to the literature on this methodology. From the models it provides, we
are interested in the following:

a) Static Acquaintance Organization View: This shows the static interac-
tion relationships between roles in the system and the knowledge processed
by them. In this category, we can find models for representing the ontology
managed by agents, models for representing their dependencies, and role
models. For the purposes of this paper we only need to detail role models:
Role Models: show an acquaintance sub-organization as a set of roles col-

laborating by means of several multi-Role Interactions (mRI) [16]. mRIs
are used to abstract the acquaintance relationships amongst roles in the
system. As mRIs allow abstract representation of interactions, we can
use these models at whatever level of abstraction we desire.

214 J. Peña et al.

In Figure 2.B), we show the role model corresponding to an auto-
nomic feature of our case study that models how to materialize protection
from a solar storm at the domain design level. Roles are represented as
UML-interface-like shapes, and mRIs are shown as UML-collaboration-
like shapes. Both notations are extended with some information required
for modeling agents, such as goals, or collaboration patterns. One exam-
ple of role a is SelfProtectSC ; it shows its goals, the knowledge that
should be managed to fulfill these goals, and the services it provides to
be able to achieve its goals. One example of an mRI is Measure Storms : it
is linked to its participant roles, and it shows the goal it fulfills, the pat-
tern of collaboration between its participating roles, and the knowledge
it both needs and produces in order to fulfill the goal.

b) Behavior of Acquaintance Organization View: The behavioral aspect
of an organization shows the sequencing of mRIs in a particular role model.
It is represented by two equivalent models:

Plan of a role: separately represents the plan of each role in a role model
showing how the mRIs of the role sequence. It is represented using UML
2.0 ProtocolStateMachines [17]. It is used to focus on a certain role, while
ignoring others.

Plan of a role model: represents the order of mRIs in a role model with
a centralized description. It is represented using UML 2.0 StateMachines
[17]. It is used to facilitate the understanding of the whole behavior of a
sub-organization.

In Figure 2.A), we show the plan of the role model. As can be seen,
each transition in the state machine represents an mRI execution. In this
model, we can show that we have to execute the mRI measure storms un-
til the risk of solar storms is higher than a constant, shown with a guard.
Thus, when the guard holds, we have to execute the mRI sailAsShield.

c) Traceability view: This model shows how models in different abstraction
layers relate. It shows how mRIs are abstracted, composed or decomposed
by means of classification, aggregation, generalization or redefinition. Notice
that we usually show only the relations between interactions because they
are the focus of modeling, but all the elements that compose an mRI can also
be related. Finally, since an mRI presents a direct correlation with system
goals, traceability models clearly show how a certain requirement system
goal is refined and materialized. Notice that we do not show this model
since, adding commonalities and variabilities, it is equivalent to the feature
model that we show later.

4 Overview of Our Approach for Building the Core
Architecture

From all the activities that have to be performed for setting up a product line,
we show here a subset concerning the development of the core architecture from

Building the Core Architecture of a NASA Multiagent System Product Line 215

Build
Features
Model

Build
Features
Model

Acq. Org.
Model

Acq. Org.
Model

Traceability
Model

Traceability
Model

Features ModelFeatures Model

Requirements
Statement

Goal
Hierarchy

Core
Architecture

Core
Architecture

Build
Acquaintance
Organization

Build
Acquaintance
Organization

Analyze
Commonalities

Analyze
Commonalities

Commo-
nalities

document

Compose Core
features

Compose Core
features

Fig. 3. Overview of our approach

the modeling point of view. Thus, we do not cover activities such as product
management since it falls out of the scope of this paper.

In Figure 3, we show the Software Process Engineering Metamodel (SPEM)
definition of the software process of our approach. The first stage to be performed
consist of developing a set of models in different layers of abstraction where we
obtain a MaCMAS traceability model and a set of role models showing how
each goal is materialized. This is achieved by applying the MaCMAS software
process. The second activity shown is responsible for adding commonalities and
variabilities to the traceability model. Later, we perform a commonality analysis
to find out which features, called core features, are more used across products.
Finally, we compose the role models corresponding to these features to obtain
the core architecture. The following sections describe these activities.

5 Building the Acquaintance Organization and the
Feature Model

After applying MaCMAS, as we were building a MAS that covers the func-
tionality of all products in the family, we obtain a model of the acquaintance
organization of the system: role models, plan models and a traceability model.
Once we have built the acquaintance organization, we have to modify the trace-
ability diagram to add information on variability and commonalities, as shown
in Figure 5, to obtain a feature model of the family. We do not detail this process
since it relies on taking each node of the traceability diagram and determining if
it is mandatory, optional, alternative, or-exclusive, or if it depends on other(s),
as shown in the figure.

MaCMAS guides this entire process using hierarchical goal-oriented require-
ment documents from which all of the models are produced. Thus, there is a
direct traceability between system goals and role models. This traceability is

216 J. Peña et al.

Space

<<Environment>>
Solar Disc

stormVector: Vector3
stormIntensity:Real

SelfProtecSS

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

Role Goal: Self-protection
mRI Meassure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSS

SelfProtecSS

SelfProtecSS

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSS.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSS.stormVector

 SelfProtecSS.stormIntensity

MeassureStorms
Goal: Meassure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSS.stormIntensity

SelfProtecSS.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Avoid
Crashing

Avoid run a
out of
power

Protect
from solar

storms

Self-
Protection

Measure
solar storms

Switch off
sub-sytems

Use sail as
a shield

Avoid
crashing

Avoid
Out power

Prot.
Solar St

SelfSelf--ProtectionProtection
RoleRole

<<<<environmetenvironmet>>>>
SpaceSpace

A
bs

tr
ac

tio
n

L
ay

er
3

A
bs

tr
ac

tio
n

L
ay

er
4

Fig. 4. Role model/features relationship

Explore
Universe

Explore and
Discover

Set Objetive
and Approach

Orbit
Search new

objective
Inform

objective
Evaluate
Interest

Avoid
Crashing

Avoid run a
out of
power

Protect
from solar

storms

Measure
image

Send Data
Earth

Self-
Protection

A
b

st
ra

ct
io

n
L

ay
er

 1
A

b
st

ra
ct

io
n

La
ye

r
2

A
b

st
ra

ct
io

n
L

ay
er

 4
A

b
st

ra
ct

io
n

La
ye

r
3

...

...

...

...

...
...

Move

Walk

Measure

Measure
X-ray

Mandatory Optional

At least one
of them

Only one
of them

If father present, the heir is:

Dependency

Learn

Amoeba Rolling
Measure

solar storms
Switch off

sub-sytems
Use sail as

a shield
Gas
prop.

Use Sail
to Orbit

and Flight
Snake

Digital
Camera

Optical
Camera

Fig. 5. Features model of our case study

feasible since when a system goal is complex enough to require more than one
agent in order to be fulfilled, a group of agents are required to work together.
Hence, a role model shows a set of agents, represented by the role they play, that
join to achieve a certain system goal (whether by contention or cooperation).
MaCMAS uses mRIs to represent all of the joint processes that are required
and are carried out amongst roles in order to fulfill the system goal of the role

Building the Core Architecture of a NASA Multiagent System Product Line 217

model. These also pursue system sub-goals as shown in Figure 4, where we can
see the correlation between these elements and the feature model obtained from
the traceability diagram. Note that the role model of this figure can be also seen
in Figure 2.

6 Commonality Analysis

To build the core architecture of the system we must include those features
that appear in all the products and those whose probability of appearing in a
product is high. In [18,19] the authors define the commonality of a feature as the
percentage of products defined within a feature model that contains the feature.
A calculation method for this and many other operations related to feature
models analysis is proposed using Constraint Satisfaction Problems (CSP). The
definition of commonality is the following:

Definition 1 (Commonality). Let M be a feature model and F the feature
within M whose commonality we want to calculate. Let P be the set of products
defined by M and PF the subset of products P containing F . commonality(F)
is defined as follows:

commonality(M, F) =
|PF | · 100

|P |
Considering the previous definition, for any full-mandatory feature (this means a
feature that appears in all the products in the family) PF = P , its commonality
will be 100%. For any other non-full-mandatory feature, PF ⊂ P and therefore
its commonality will be less than 100%.

Calculating the commonality of every feature, we can easily determine which
are the full-mandatory features and consequently the role models that must be
used to build the core architecture. For those features whose commonality is less
that 100%, we have to consider which of them will be part of the core and which
will not. We propose to use a threshold, that must be calculated empirically for
each domain, to make this decision. Consequently those features whose common-
ality is above the threshold will be also used to build the core architecture.

In addition, tools that help engineers with automated analysis of features
models are of high value [18]. We have extended the prototype3 presented in [18]
to automatically calculate the commonality of all the features of our case study.
The results obtained with the prototype are shown in Figure 6. As shown in this
figure, these features are ordered by their commonality. The figure also show the
threshold that we have selected, set up at the 60%, for considering a feature to
be core or not.

We use the following fictitious scenario to document our example: We have
realized that the commonality for the features self-protection from a solar storm
and orbiting is 100%. Thus we have to add them to the core architecture, since
they appear in all the possible products.
3 This prototype along with this and other case studies is available at http://www.tdg-

seville.info/topics/spl

218 J. Peña et al.

0%

20%

40%

60%

80%

100%

120%

A
V

O
ID

-C
R

A
S

H
IN

G

E
X

P
LO

R
E

-A
N

D
-D

IS
C

O
V

E
R

E
X

P
LO

R
E

-U
N

IV
E

R
S

E

M
O

V
E

S
E

A
R

C
H

-N
E

W
-O

B
JE

C
T

IV
E

S
E

N
D

-D
A

T
A

-E
A

R
T

H

S
E

LF
-P

R
O

T
E

C
T

IO
N

S
E

T
-O

B
JE

C
T

IV
E

-A
N

D
-A

P
P

R
O

A
C

H

M
E

A
S

U
R

E

A
V

O
ID

-O
U

T
-P

O
W

E
R

P
R

O
T

E
C

T
-F

R
O

M
-S

O
LA

R
-S

T
O

R
M

S

M
E

A
S

U
R

E
-S

O
LA

R
-S

T
O

R
M

S

S
W

IT
C

H
-O

F
F

-S
U

B
S

Y
S

T
E

M
S

U
S

E
-S

H
A

IL
-A

S
-A

-S
H

IE
LD

O
R

B
IT

 A
N

D
 F

LI
G

H
T

W
A

LK
M

E
A

S
U

R
E

-I
M

A
G

E

G
A

S
-P

R
O

P
A

G
A

T
IO

N

U
S

E
-S

A
IL

-O
R

B
IT

-F
LI

G
H

T
M

E
A

S
U

R
E

-X
R

A
Y

M
E

A
S

U
R

E
-T

E
M

P
E

R
A

T
U

R
E

E
V

A
LU

A
T

E
-I

N
T

E
R

E
S

T
IN

F
O

R
M

-O
B

JE
C

T
IV

E

A
M

O
E

B
A

R
O

LL
IN

G
S

N
A

K
E

S
E

LF
-H

E
A

LI
N

G

LE
A

R
N

O
P

T
IC

A
L-

C
A

M
E

R
A

D
IG

IT
A

L-
C

A
M

E
R

A

C
O

M
M

O
N

A
LI

T
Y

Threshold = 60%

Fig. 6. Commonalities of the features in our example

As these features are related, since if a spacecraft is orbiting and measuring
and it determines that there exists a risk of a solar storm, the spacecraft must
first escape the orbit and later power down subsystems or use its sail as a shield
to avoid crashing, we are forced to compose them to model their dependencies
and provide agents with all the roles needed to safely protect from solar storms
in any situation. Notice that we have limited our example to two role models to
simplify the example, but in the real world we must also take into account the
rest of the related features.

Once we have determined the set of features, and thus, the set of role models
to be taken into account for the core architecture, we must compose them as
described in the following section.

7 Composition of the Core Features

We have to take into account that when composing several role models, we can
find: emergent roles and mRIs, artifacts that appear in the composition yet they
do not belong to any of the initial role models; composed roles, the roles in the
resultant models that represent several initial roles as a single element; and,
unchanged roles and mRIs, those that are left unchanged and imported directly
from the initial role models.

Once those role models to be used for the core architecture have been de-
termined, we must complete the core architecture by composing role models.

Building the Core Architecture of a NASA Multiagent System Product Line 219

Importing an mRI or a role requires only adding it to the composite role model.
The following shows how to compose roles and plans.

7.1 Composing Roles

When several roles are merged in a composite role model, their elements must
be also merged as follows:

Goal of the role: The new goal of the role abstracts all the goals of the role
to be composed. This information can be found in requirements hierarchical goal

A) Plan Model

Orbiting After Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

B) Role Model

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition:
Orbiter.astModel <> empty

Instantiation Rule:
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers.includes(c
))

Guard:
Dist(relativePos,
AsteroidRela-
tivePos)<dist

 Measurer

Orbiter

Orbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter

Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition:
not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)

guard: not
(Orbiter.AmIIn-
sideOrbit(Orbi-
ter.relativePos,
Orbiter.orbitM)

guard:
Orbiter.MeasureFi-
nished(astModel)

1..n

1..n

Fig. 7. “Orbiting and measuring an asteroid” autonomous property

220 J. Peña et al.

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard:
SelProtecS
C.stormInte
n-sity >
Risk-
ForSystems-
Factor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensity
> RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidDa-
ta)::OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit
models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter.astModel <> empty

Instantiation Rule :
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes(c))

Guard:
Dist(relativePos,Astero
idRelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::B
ool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit
Model

mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect
from solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition:
not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
not
(Orbiter.AmIIn-
sideOrbit(Orbi-
ter.relativePos,
Orbiter.orbitM)

guard:
Orbiter.MeasureFi-
nished(astModel) or
(SelProtecSC.stormIntensit
y > RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Fig. 8. Composed role model

diagrams or we can add it as the and (conjunction) of the goals to be composed.
In addition, the role goal for each mRI can be obtained from the goal of the
initial roles for that mRI.

Cardinality of the role: It is the same as in the initial role for the corre-
sponding mRI.

Initiator(s) role(s): If mRI composition is not performed, as in our case
study, this feature does not change.

Interface of a role: All elements in the interfaces of roles to be merged must
be added to the composite interface. Note that there may be common services
and knowledge in these interfaces. When this happens, they must be included

Building the Core Architecture of a NASA Multiagent System Product Line 221

only once in the composite interface, or renamed, depending on the composition
of their ontologies.

Guard of a role/mRI: The new guards are the and (conjunction) of the
corresponding guards in initial role models if roles composed participate in the
same mRI. Otherwise, guards remain unchanged.

In our case study, we have to compose the role models corresponding to the
features self-protection from a solar storm and orbiting. The model for the former
feature was shown in Figure 2, and the role model of the later is shown in
Figure 7.

After applying the approach described above, the composed role model ob-
tained is shown in Figure 8. As we can see, the roles Orbiter and SelfProtectSC
have been composed into a single role called SelfProtectingOrbiter. These roles
has been composed because the agent that plays one of the roles also has to play
the other as they are dependent (mRIs escape orbit, power off sub-systems, and
use sail as a shield have to be sequenced in a certain way).

Since the rest of the roles are orthogonal, that is to say they do not interact
with each other, they have been left unchanged and all mRIs have been also
added without changes.

7.2 Composing Plans

The composition of plans consists of setting the order of execution of mRIs in
the composite model, using the role model plan or role plans. We provide several
algorithms to assist in this task: extraction of a role plan from the role model

Analyzing
risk of solar

storms
Protecting

 SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Analyzing
risk of solar

storms

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

EscapeOrbit

Fig. 9. Composed plan model

222 J. Peña et al.

plan and vice versa, and aggregation of several role plans; see [20] for further
details of these algorithms.

Thanks to these algorithms, we can keep both plan views consistent automat-
ically. Depending on the number of roles that have to be merged we can base
the composition of the plan of the composite role model on the plan of roles or
on the plan of the role model. Several types of plan composition can be used for
role plans and for role model plans:

Sequential: The plan is executed atomically in sequence with others. The
final state of each state machine is superimposed with the initial state of the
state machine that represents the plan that must be executed, except the initial
plan that maintains the initial state unchanged and the final plan that maintains
the final state unchanged.

Parallel: The plan of each model is executed in parallel. It can be documented
by using concurrent orthogonal regions of state machines (cf. [17]).

Interleaving: To interleave several plans, we must build a new state machine
where all mRIs in all plans are taken into account. Notice that we must usually
preserve the order of execution of each plan to be composed. We can use algo-
rithms to check behavior inheritance to ensure that this constraint is preserved,
since to ensure this property the composed plan must inherit from all the initial
plans [21].

The composition of role model plans has to be performed following one of the
plan composition techniques described previously. Later, we are interested in the
plan of one of the composed roles, as it is needed to assign the new plan to the
composed roles; we can extract it using the algorithms mentioned previously.

We can also perform a composition of role plans following one of the techniques
to compose plans described previously. Later, if we are interested in the plan of
the composite role model, for example for testing, we can obtain it using the
algorithms mentioned previously.

Regarding our example, as the self-protection must be taken into account
during the whole process of orbiting and measuring, and not in a concrete state,
we must perform a parallel composition of their plans, with a minor interleaving
of the mRI escape orbit in the self protection plan, as is shown in Figure 9.

8 Conclusions

The field of software product lines offers many advantages to organizations pro-
ducing a range of similar software systems. Reported benefits of the approach
include reduced time-to-market, reduced costs, and reduced complexity. Simul-
taneously, the ability to spread development costs over a range of products has
enabled adopters to invest more significantly in software quality.

Multiagent systems have a wide field of applicability, across a whole plethora
of domains. However, many key features, including communication, planning,
replication, security mechanisms, to name but a few, are likely to be very similar
across all MAS, particularly in a given domain.

Building the Core Architecture of a NASA Multiagent System Product Line 223

Key to the development of MAS-PLs is the identification of the core MAS
from which a family of concrete products may be derived. We have described
an initial approach to building this part of the infrastructure needed to enable
a product line approach in MAS.

The approach matches well with existing AOSE methodologies and promises
to open a field of research and development that may make MAS and MAS-based
systems more practical in an industrial context.

We are continuing to investigate the use of such an approach in current and
future NASA missions. For example, we have applied MAS-PL to manage evo-
lutionary systems that benefits from the results of this paper [22]. Initial results
are promising and over time we envisage significant benefits from employing a
product line approach to such missions.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison–Wesley (2001)

2. Peña, J., Hinchey, M.G., Rúız-Cortes, A.: Multiagent system product lines: Chal-
lenges and benefits. Communications of the ACM (2006)

3. Pena, J.: On Improving The Modelling Of Complex Acquaintance Organisations
Of Agents. A Method Fragment For The Analysis Phase. PhD thesis, University
of Seville (2005)

4. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering :
Foundations, Principles and Techniques. Springer (2005)

5. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison–Wesley (2000)

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson., A.: Feature-oriented domain
analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University (1990)

7. Jansen, A., Smedinga, R., Gurp, J., Bosch, J.: First class feature abstractions for
product derivation. IEE Proceedings - Software 151 (2004) 187–198

8. Smaragdakis, Y., Batory, D.: Mixin layers: an object–oriented implementation
technique for refinements and collaboration-based designs. ACM Trans. Softw.
Eng. Methodol. 11 (2002) 215–255

9. D’Souza, D., Wills, A.: Objects, Components, and Frameworks with UML: The
Catalysis Approach. Addison–Wesley, Reading, Mass. (1999)

10. Reenskaug, T.: Working with Objects: The OOram Software Engineering Method.
Manning Publications (1996)

11. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
GAIA methodology. ACM Transactions on Software Engineering and Methodology
12 (2003)

12. Odell, J., Parunak, H., Fleischer, M.: The role of roles in designing effective agent
organisations. In Garcia, A., Castro, C.L.F.Z.A.O.J., eds.: Software Engineering for
Large-Scale Multi-Agent Systems. Number 2603 in LNCS, Berlin, Springer–Verlag
(2003) 27–28

13. Parunak, H.V.D., Odell, J.: Representing social structures in UML. In Müller,
J.P., Andre, E., Sen, S., Frasson, C., eds.: Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, ACM Press (2001) 100–101

224 J. Peña et al.

14. Kendall, E.A.: Role modeling for agent system analysis, design, and implementa-
tion. IEEE Concurrency 8 (2000) 34–41

15. Peña, J., Levy, R., Corchuelo, R.: Towards clarifying the importance of interactions
in agent-oriented software engineering. International Iberoamerican Journal of AI
9 (2005) 19–28

16. Peña, J., Corchuelo, R., Arjona, J.L.: A top down approach for mas protocol
descriptions. In: ACM Symposium on Applied Computing SAC’03, Melbourne,
Florida, USA, ACM Press (2003) 45–49

17. (OMG), O.M.G.: Unified modeling language: Superstructure. version 2.0. Final
adopted specification ptc/03–08–02, OMG (2003) www.omg.org.

18. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated reasoning on feature
models. LNCS, Advanced Information Systems Engineering: 17th International
Conference, CAiSE 2005 3520 (2005) 491–503

19. Benavides, D., Ruiz-Cortés, A., Trinidad, P., Segura, S.: A survey on the automated
analyses of feature models. XV Jornadas de Ingenieŕıa del Software y Bases de
Datos,JISBD 2006 (2006)

20. Peña, J., Corchuelo, R., Arjona, J.L.: Towards Interaction Protocol Operations for
Large Multi-agent Systems. In: Proceedings of FAABS’02. Volume 2699 of LNAI.,
MD, USA, Springer–Verlag (2002) 79–91

21. Liskov, B., Wing, J.M.: Specifications and their use in defining subtypes. In: Pro-
ceedings of the eighth annual conference on Object-oriented programming systems,
languages, and applications, ACM Press (1993) 16–28

22. Peña, J., Hinchey, M.G., Resinas, M., Sterritt, R., Rash, J.L.: Managing the evo-
lution of an enterprise architecture using a mas-product-line approach. In: 5th
International Workshop on System/Software Architectures (IWSSA’06), Nevada,
USA, CSREA Press (2006) to be published

Author Index

Asnar, Yudistira 140

Brandão, Anarosa A.F. 122
Briot, Jean-Pierre 64
Bryl, Volha 140

Carvalho, Gustavo 64
Chavez, Christina 35
Choren, Ricardo 35, 64

da Silva, Viviane Torres 122
de Lucena, Carlos J.P. 64, 122
DeLoach, Scott A. 1
Dikenelli, Oguz 156

Erdur, Riza Cenk 156

Faulkner, Stéphane 19

Garcia, Alessandro 35
Giorgini, Paolo 140

Hinchey, Michael G. 208

Jayatilleke, Gaya Buddhinath 190
Jezic, Gordan 51
Jureta, Ivan J. 19

Kusek, Mario 51

Lapouchnian, Alexei 104
Lespérance, Yves 104

Öztuna, Sibel 156

Padgham, Lin 84, 190
Paes, Rodrigo 64
Peña, Joaquin 208

Renz, Wolfgang 174
Ruiz-Cortés, Antonio 208

Schobbens, Pierre-Yves 19
Sierra, Carles 84
Sudeikat, Jan 174

Thangarajah, John 84
Tiryaki, Ali Murat 156
Trinidad, Pablo 208

Valenzuela, Jorge L. 1

Winikoff, Michael 84, 190

	Title page
	Preface
	Organization
	Table of Contents
	An Agent-Environment Interaction Model
	Introduction
	Related Work
	Gaia
	MESSAGE
	Prometheus
	Organization-Based Multiagent Systems Engineering

	Agent-Environment Interaction Model
	Environment Model
	Capability Model
	Interactions
	AEI Model and O-MaSE

	Example
	Conclusion and Future Work

	Allocating Goals to Agent Roles During MAS Requirements Engineering
	Introduction
	Related Work
	A Process for Allocating Goals to Agent Roles
	Create a Consistent Goal Tree Containing Precise Requirements
	Identify Goal Dependencies
	Generate and Select Between Alternative Goal-to-Role Allocations

	Conclusions and Future Work

	An Aspect-Oriented Modeling Framework for Multi-Agent Systems Design
	Introduction
	Crosscutting Concerns in Agent-Oriented Goal Modeling
	The Expert Committee Example
	Modularity Issues in Goal Models
	Side Effects on MAS Design Modularity

	An Aspect-Oriented Modeling Framework for MAS Design
	The Agent Model
	The Aspect Model
	The Composition Model

	Discussions
	Integrability and Extensibility
	Design Knowledge Management, Evolvability, and Reusability

	Related Work
	Modeling Languages and Methodologies
	Specific Extensions

	Conclusions

	Extending UML Sequence Diagrams to Model Agent Mobility
	Introduction
	Related Work
	Modeling Agent Mobility with Sequence Diagrams
	The Stereotyped Mobility Diagram
	The Swimlaned Mobility Diagram
	The State Representation Mobility Diagram
	The Frame Fragment Mobility Diagram

	Case Study: A Simple Price Searcher
	Conclusion

	Applying the Governance Framework Technique to Promote Maintainability in Open Multi-Agent Systems
	Introduction
	Governing Interactions in Open Systems
	Refinement Operators to Specify Laws in Open Multi-Agent Systems

	Improving Governance Mechanism Maintainability
	Governance Framework for Open Supply Chain Management
	Kernel Description
	Extension Point Descriptions

	TAC SCM Editions as Framework's Instances
	Related Work
	Conclusions

	Designing Institutional Multi-Agent Systems
	Introduction
	Background: ISLANDER
	Dialogical Framework
	Interaction Structure
	Performative Structure
	Norms and Commitments

	Designing Institutional MAS with Islander and Prometheus
	System Specification
	Social Design
	Architectural Design

	Related Work
	Conclusion

	Modeling Mental States in the Analysis of Multiagent Systems Requirements
	Introduction
	Background
	The $i*$ Framework
	The Formal Foundations: CASL

	The $i*$-CASL Process
	Increasing Precision with iASR Models
	Mapping iASR Diagrams into CASL
	Formal Verification
	Discussion

	Conclusion

	Observed-MAS: An Ontology-Based Method for Analyzing Multi-Agent Systems Design Models
	Introduction
	The Method Overview
	Phase One: Analyzing MAS and Intra-model Properties
	Ont1: The First Ontology
	QV1: The Intra-model Queries
	QD1: MAS-ML Intra-model Design Queries

	Phase Two: Analyzing Inter-model Properties
	Ont-2: The Second Ontology
	QV2: The MAS-ML Inter-model Queries
	QD2: MAS-ML Inter-model Design Queries

	Related Work
	Conclusions and Future Work

	Using Risk Analysis to Evaluate Design Alternatives
	Introduction
	Case Study
	Planning Domain
	Evaluation Process
	Experimental Results
	Case Study Formalization
	Planning and Evaluation Process

	Related Work
	Conclusion

	SUNIT: A Unit Testing Framework for Test Driven Development of Multi-Agent Systems
	Introduction
	Conceptual Framework for Test Driven Development of MASs
	Seagent MAS Development Framework
	The SUnit Testing Framework
	Structural Test Module
	Action Test Module
	Flow Test Module

	Evaluation
	Conclusion

	Monitoring Group Behavior in Goal-Directed Agents Using Co-efficient Plan Observation
	Introduction
	Stochastic Models for Global MAS Behavior
	Deriving Models from Goal--Hierarchies
	Goal--Hierarchies
	Deriving Agent States from Subtrees

	Monitoring Agent Execution
	Co--efficient Capabilities
	Monitoring Architecture

	Case Study
	Rate Equations
	Simulation Results

	Conclusions

	Evaluating a Model Driven Development Toolkit for Domain Experts to Modify Agent Based Systems
	Introduction
	Overview of the Sample Application
	CAFnE Framework and Toolkit
	Conceptual Structure
	Relationship to the Prometheus Methodology for Software Design
	Usage for Modifications

	Evaluation Methodology
	Participants
	Materials
	Modifications Specified
	Data Collection

	Analysis
	Agent Concept Knowledge
	Program Knowledge
	Conceptual Design of Change
	Implementation

	Conclusion and Future Work
	Questionnaire

	Building the Core Architecture of a NASA Multiagent System Product Line
	Introduction
	Motivating MAS-PL with a NASA Case Study
	Background Information
	Software Product Lines
	Overview of MaCMAS/UML

	Overview of Our Approach for Building the Core Architecture
	Building the Acquaintance Organization and the Feature Model
	Commonality Analysis
	Composition of the Core Features
	Composing Roles
	Composing Plans

	Conclusions

	Author Index

