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Abstract. Systems of parametric interval equations are encountered in
many practical applications. Several methods for solving such systems
have been developed during last years. Most of them produce both outer
and inner interval solutions, but the amount of overestimation, resp.
underestimation is not exactly known. If a solution of a parametric sys-
tem is monotonic and continuous on each interval parameter, then the
method of combination of endpoints of parameter intervals computes
its interval hull. Recently, a few polynomial methods computing the in-
terval hull were developed. They can be applied if some monotonicity
and continouity conditions are fulfilled. To get the most accurate inner
approximation of the solution set hull for problems with any bounded
solution set, an evolutionary optimization method is applied.

1 Introduction

The behavior of the loaded truss structure or analog linear circuit can be de-
scribed by a system of parameter-dependent linear equations [2,5,6,7,16,17]. As-
suming some model parameters are unknown and lie in given intervals will lead
to a parametric system of linear interval equations. Several methods for solv-
ing such systems have been developed during last years [5,6,10,12,15,16]. Most
of them compute both outer and inner interval approximations of the solution
set hull, but the amount of overestimation, resp. underestimation is not exactly
known. It can be estimated by a comparison of inner and outer approximations
of the solution set hull [12,15].

If a solution of the parametric system is monotonic and continuous on each
parameter interval, then the method of combination of endpoints of parameter
intervals (CEPI in brief) [2,14] computes interval hull of the parametric solution
set, that is the tightest interval vector containing this set. Unfortunately, because
the complexity of the CEPI method – 2k real systems have to be solved, where
k is the number of interval parameters – increases at an exponential rate as
a factor of the number of parameters, it can be applied to problems with small
number of parameters. Recently, a few polynomial methods computing interval
hull were developed [14]. They can be applied if the solution of the parametric
system is continous and monotonic on each interval parameter. In [13] Popova
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shows, that when some sufficient conditions are fulfilled, the interval hull (or
some bounds) of the parametric solution set can be easily computed.

To get the best inner approximation of the solution set hull for problems with
bounded (non-monotonic and non-continous) solution set, and a lot of inter-
val parameters, an evolutionary optimization method (EOM in brief) is applied
in Section 3. In Section 4 some numerical examples are presented and used to
evaluate the results of the EOM method. They include two examples of para-
metric systems with non-monotonic solution set, and two test examples of truss
structures. The computations performed show that the EOM method produces
a high-quality approximation of the interval hull of a parametric solution set.

2 Preliminaries

Let ��, ��n, ��n×n denote the set of real compact intervals, interval vectors,
and interval square matrices, respectively [9]. Italic faces will denote real quanti-
ties, while bold italic faces will denote their interval counterparts.

Consider linear algebraic system

A(p)x = b(p) (1)

with coefficients being functions that are linear in parameters

aij(p) = ωij0 +
k∑

ν=1

ωijν · pν , bj(p) = ω0j0 +
k∑

ν=1

ω0jν · pν , (2)

(i, j = 1, . . . , n); where p = {p1, . . . , pk}� ∈ �
k is a vector of parameters,

ω ∈ (�k+1)((n+1)×n) is a matrix of real (k + 1)-dimensional vectors.
Assuming some model parameters are unknown and lie in given intervals

pi � pi (i = 1, . . . , k) would give a family of systems (1) which is usually
written in a symbolic compact form

A(p)x = b(p), (3)

and is called parametric interval linear system.
Parametric solution set of the system (3) is defined [4,15] as

S(p) = {x | A(p)x = b(p), p ∈ p} . (4)

If the solution set is bounded, then its interval hull exists and is defined as

�S(p) = [inf S(p), sup S(p)] =
⋂

{y ∈ ��
n | S(p) ⊆ y} . (5)

In order to guarantee that the solution set is bounded, the matrix A(p) must be
regular, i.e. A(p) must be regular for all p ∈ p.

A vector x = [x, x] ∈ ��
n is called inner approximation of S ⊆ �

n if

inf
s∈S

si � xi and sup
s∈S

si � xi, i = 1, . . . , n,

resp. outer approximation of S ⊆ �
n if

inf
s∈S

si � xi and sup
s∈S

si � xi, i = 1, . . . , n.
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3 Evolutionary Optimization

The problem of computing optimal inner approximation of the solution set hull
of the parametric linear system (3) can be written as a problem of solving 2n
constrained optimization problems: for i = 1, . . . , n,

min
{
f(p) =

(
A(p)−1b(p)

)
i

| p ∈ p
}

(6)

and
max

{
f(p) =

(
A(p)−1b(p)

)
i

| p ∈ p
}

, (7)

where p ∈ ��
k is a vector of interval parameters.

Theorem 1. Let A(p) be regular, p ∈ ��
k, and xi

min, xi
max denote the global

solutions of the i-th minimization (6), resp. maximization (7) problems. Then
the interval vector x = [xmin, xmax] =

([
xi

min, xi
max

])n

i=1 = �S(p).

Proof. ⊆: xi
min, xi

max ∈ S(p)i, hence
[
xi

min, xi
max

]
⊆ �S(p)i. ⊇: take any x ∈

S(p), then x = A(p)−1b(p) for some p ∈ p. Since for each p ∈ p xi
min �

(A(p)−1b(p))i � xi
max, then S(p)i ⊆

[
xi

min, xi
max

]
and hence

�S(p)i ⊆
[
xi

min, xi
max

]
. �

The optimization problems (6) and (7) will be solved using an evolutionary ap-
proach [3,8,11]. As a result of the minimization (maximization) problem one will
obtain a value greater of equal (less or equal) to the actual minimum (maximum).
The final result will be the inner approximation of the solution set hull.

3.1 Evolutionary Algorithm Description

Optimization is performed using the evolutionary algorithm shown in Fig. 1.
Each evolutionary algorithm requires some input parameters. These are: popu-
lation size (popsize), crossover rate (cr), mutation rate (mr), number of genera-
tions (ng). All of them have great influence on the result of the optimization, but
the choice of the best values is still a matter of trial. Suggestions for parameter
values can be found in the literature [1,8,11].

For t = 0, . . . ng, the population P (t) =
{

pt
1, . . . , pt

ng

}
consists of individu-

als characterized by k-dimensional vectors of real numbers pt
i = {pt

i1, . . . , p
t
ik}T

with pt
ij ∈ pj , i = 1, . . . , popsize, j = 1, . . . , k. The elements p0

ik of the initial
population P (0) are generated randomly based on the uniform distribution.

The two following genetic operators are employed [8]:

- non-uniform mutation - this one-argument operator vouch for the system
adaptation ability. If the element pj of the individual p is chosen for mutation,
then p′ =

{
p1, . . . , p′j , . . . , pk

}� with

p′j =

{
pj +

(
pj − pj

)
r (1 − t/ng)

b
, if q < 0.5

pj +
(
pj − p

j

)
r (1 − t/ng)

b
, if q � 0.5,
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where r, q are random numbers from [0, 1], t is a number of generation, ng is
a number of generations, and b is a parameter of the system describing the
level of heterogeneity; the probability that mutation factor is close to zero
increases as t increases from 0 to ng;

- arithmetic crossover - this two-argument operator is defined as linear combi-
nation of two vectors. If the parents p1 and p2 are chosen for crossover, then
the offsprings are

p1′ = rp1 + (1 − r)p2, p2′ = (1 − r)p1 + rp2,

where r is a random number from [0, 1]; arithmetic crossover guarantees that
the elements of the vectors p1′ and p2′ lie in parameter intervals.

Let P ′(t) denote the population after the crossover process, and P ′′(t) - the
population after the mutation process. The best (wrt fitness function), (7))
popsize individuals, from the combined population P (t) ∪ P ′′(t), form a new
population P (t + 1).

Initialize parameters
t := 0
Initialize population P (t) of popsize size
while t < ng do

P ′(t) ←− Crossover−with−cr−rate(P (t))
P ′′(t) ←− Mutate−with−mr−rate(P ′(t))
Evaluate the fitness f(P ′′(t))
P (t + 1) ←− Select−popsize(P (t) ∪ P ′′(t))
t:=t+1

end while

Fig. 1. Pseudo-code of an evolutionary algorithm

4 Numerical Examples

In this section the results of the EOM are presented. Two small parametric linear
systems with non-monotonic solution set and two exemplary truss structures are
included to evaluate the performance of the EOM method. Several variants of the
input parameter values have been examined. The best results have been obtained
for the following values: population size popsize = 10 (exs. 1, 2), popsize = 16
(exs. 3, 4), crossover rate cr = 0.1, mutation rate mr = 0.9, b = 96, number of
generations ng = 80 (exs. 1, 2), ng = 100 (exs. 3, 4).

Example 1
Assume the two-dimensional parametric linear system is of the form:

[
p1 1 + p2
−2 3p1 − 1

]
·
[
x1
x2

]
=

[
2p1
0

]
, p1 = [0, 1],p2 = [0, 1]. (8)
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The numerical results are presented in Table 1. Column 2 contains the mid-
point solution, columns 3 - the result of the EOM method, column 4 - the
interval hull (IH). In case of two-dimensional system the interval hull can be
easily computed. From (8) one gets two equations p1x1 + (1 + p2)x2 = 2p1 and
−2x1 + (3p1 − 1)x2 = 0. Eliminating p1 from these equations gives the equation
2x2 + 3(1 + p2)y2 + xy − 4x − 2y = 0 which, with p2 ∈ [0, 1], define the pencil
of ellipses. The intersection of the pencil with the united solution set gives the
parametric solution set.

Table 1. Numerical results for Example 1

x0 EOM IH
x1 0.1538 [−0.087, 1] [−0.087, 1]
x2 0.6154 [0, 1.026] [0, 1.026]

Example 2
The three-dimensional parametric linear system is of the form:

⎡

⎣
p1 p2 + 1 −p3

p2 + 1 −3 p1
2 − p3 4p2 + 1 1

⎤

⎦ ·

⎡

⎣
x1
x2
x3

⎤

⎦ =

⎡

⎣
2p1

p3 − 1
−1

⎤

⎦ , (9)

where p1 ∈ p1 = [0, 1], p2 ∈ p2 = [0, 1], p3 ∈ p3 = [0, 1].
The numerical results of the EOM method, the direct method (DM) [17], and

the Monte Carlo method (MC) (100000 samples), are presented in Table 2.

Table 2. Numerical results for Example 2

x0 MC EOM DM
x1 0.286 [−0.866, 2.641] [−1, 2.667] [−2.184, 4.685]
x2 0.048 [−0.65, 0.328] [−0.667, 0.333] [−0.84, 1.337]
x3 −1.571 [−5.592, 0.679] [−5.667, 1] [−11.163, 2.663]

Example 3. (25-bars plane truss structure)
Consider the truss structure shown in Fig. 2. Young’s modulus
E= 2.1 × 1011 [Pa], cross-section area C= 0.004 [m2]. Assume the stiffness of
all bars is uncertain by ±5%. This gives 25 interval parameters. The vector of
displacements d is a solution of the parametric system K(p)d = q(p), where
K(p) is parameter-dependent stiffness matrix, q(p) is parameter-dependent vec-
tor of forces. Numerical results are presented in table 3. Column 2 contains
the midpoint solution (d0), columns 3, 4 - the result, resp. the relative error
(rerr = (d − d)/(2 · d0)) of the Monte Carlo method (100000 samples), columns
5, 6 - the result, resp. the relative error of the EOM method, columns 7, 8 - the
result, resp. the relative error of the DM method.
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Fig. 2. 25-bar plane truss structure

Table 3. Numerical results for example 3

d0 [×10−5] MC [×10−5] rerr[%] EOM [×10−5] rerr[%] DM [×10−5] rerr[%]

dx
2 62.2 [60.26, 64.34] 3.27 [59.12, 65.57] 5.19 [56.47, 67.9] 9.2

dy
2 −74.32 [−76.95, −71.95] 3.37 [−78.33, −70.66] 5.16 [−79.99, −68.63] 7.64

dx
3 50.83 [49.16, 52.69] 3.46 [48.33, 53.57] 5.16 [47.27, 54.37] 6.98

dy
3 −85.68 [−88.6, −83.05] 3.24 [−90.33, −81.45] 5.18 [−92.86, −78.49] 8.39

dx
4 66.66 [64.66, 68.96] 3.22 [63.34, 70.31] 5.23 [61.01, 72.3] 8.47

dy
4 −82.83 [−85.6, −80.31] 3.19 [−87.33, −78.73] 5.19 [−89.45, −76.18] 8.01

dx
5 63.81 [61.85, 65.98] 3.23 [60.62, 67.31] 5.24 [58.56, 69.04] 8.21

dy
5 −102.7 [−106.03, −99.81] 3.03 [−108.17, −97.74] 5.08 [−111.82, −93.56] 8.89

dx
6 55.12 [53.28, 57.15] 3.51 [52.41, 58.08] 5.15 [51.41, 58.8] 6.7

dy
6 −103.18 [−106.5, −100.29] 3.01 [−108.65, −98.21] 5.06 [−112.53, −93.81] 9.07

dx
7 59.52 [57.59, 61.56] 3.33 [56.53, 62.79] 5.26 [54.57, 64.46] 8.31

dy
7 −108.93 [−112.32, −105.9] 2.95 [−114.66, −103.74] 5.01 [−119.04, −98.8] 9.29

dx
8 59.88 [57.88, 62.1] 3.52 [56.95, 63.1] 5.14 [56.03, 63.71] 6.41

dy
8 −108.45 [−111.85, −105.41] 2.97 [−114.18, −103.26] 5.03 [−118.57, −98.32] 9.33

dx
9 54.76 [53.01, 56.89] 3.54 [51.99, 57.78] 5.28 [50.05, 59.45] 8.58

dy
9 −101.98 [−105.03, −99.10] 2.90 [−107.42, −97.06] 5.08 [−111.56, −92.41] 9.39

dx
10 64.16 [62.11, 66.53] 3.44 [61.03, 67.61] 5.13 [60.14, 68.17] 6.28

dy
10 −100.56 [−103.63, −97.69] 2.95 [−105.96, −95.64] 5.13 [−109.91, −91.19] 9.31

dx
11 50.47 [48.64, 52.45] 3.77 [47.81, 53.38] 5.52 [45.89, 55.04] 9.06

dy
11 −82.83 [−85.62, −80.19] 3.27 [−87.36, −78.69] 5.23 [−90.46, −75.21] 9.21

dx
12 67.02 [64.9, 69.4] 3.35 [63.75, 70.62] 5.12 [62.73, 71.3] 6.39

dy
12 −84.25 [−87.06, −81.69] 3.18 [−88.87, −80.05] 5.23 [−92.33, −76.18] 9.58

dx
13 56.01 [54, 58.28] 3.82 [53.13, 59.16] 5.38 [51.43, 60.58] 8.17

dy
13 −73.25 [−75.8, −70.86] 3.37 [−77.23, −69.62] 5.20 [−80.18, −66.3] 9.47

dx
14 117.13 [113.57, 121.14] 3.23 [111.55, 123.29] 5.01 [110.18, 124.07] 5.93

Example 4. (Baltimore bridge 1820)
Every bar of the bridge (Fig. 3) has Young’s modulus E= 2.1 × 1011 [Pa], cross-
section area C= 0.004 [m2]. Assuming the stiffness of all bars is uncertain by ±5%
will give 45 interval parameters. The computational time of the EOM method
increased about 7 times. Most coordinates of the vector solution, produced by the
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Fig. 3. Baltimore bridge 1820

EOM method, were exactly equal to the interval hull. The remaining coordinates
differed only slightly from the exact hull solution. The result of the EOM method
is not included because of the limit for the number of pages.

5 Conclusions

The problem of solving parametric linear systems has been considered in Sec-
tion 2. In Section 3 the evolutionary optimization method EOM for approxi-
mating from below the solution set hull of parametric linear systems has been
described. Computations performed in Section 4 show that the EOM is a pow-
erful tool for solving such systems. The EOM method produced a very accurate
approximation of the interval hull of all parametric solution sets considered. It is
simple and quite efficient. The main advantage of the EOM method is that it can
be applied to any parametric linear system with bounded solution set. The EOM
method can be used to solve problems with a lot of interval parameters. However,
since the accuracy of the EOM method is not exactly known it should be used in
conjunctions with methods that compute inner and outer approximations. The
comparison of the EOM method with existing methods solving parametric linear
systems will be a subject of future work.
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