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Preface

The international conference Numerical Methods and Applications has been a
traditional forum for scientists of well-known research groups from various coun-
tries providing an opportunity for sharing ideas and establishing fruitful scientific
cooperation.

The papers in this volume were presented at its sixth issue: International
Conference on Numerical Methods and Applications (ICNM&A 2006) held in
Borovets, Bulgaria, August 20–24, 2006. The conference was organized by the
Faculty of Mathematics and Informatics at “St. Kliment Ohridski” University
of Sofia, in cooperation with GAMM and IMACS. The Institute of Mathematics
and Informatics and the Institute for Parallel Processing, Bulgarian Academy of
Sciences, were co-organizers of this traditional scientific meeting.

In total, 119 participants from 27 countries all over the world attended the
conference and 111 talks, including nine invited talks, were delivered. This vol-
ume contains 87 papers submitted by authors from 24 countries.

During ICNM&A 2006 a wide range of problems concerning recent theoret-
ical achievements in numerical methods and their applications in mathematical
modeling were discussed. Specific topics of interest were the following: finite dif-
ference and finite volume methods; finite element and boundary element methods;
multigrid and domain decomposition; level set and phase field methods; Monte
Carlo methods; numerical linear algebra; parallel algorithms; computational me-
chanics; engineering applications. The keynote lectures reviewed some of the
advanced achievements in these fields. The ICNM&A 2006 talks were delivered
by researchers representing some of the strongest research teams in the field
of numerical methods and their application for solving wide range of practical
problems.

The success of the conference and the present volume are due to the joint
efforts of many colleagues from various institutions and organizations. We ex-
press our deep gratitude to all the members of the Scientific Committee for
their valuable contribution to the scientific spirit of the conference, as well as for
their help in reviewing the submitted papers. The special sessions represented
the combined efforts of organizers whose contributions deserve to be recognized:
Enrique Alba, Rene Alt, Radim Blaheta, Stefka Fidanova, Krasimir Georgiev,
Todor Gurov, Aneta Karaivanova, Johannes Kraus, Svetozar Margenov, Sve-
toslav Markov, Gradimir Milovanović, Bojan Popov, Per Grove Thomsen, and
Zahari Zlatev. We are also grateful to the staff involved in the local
organization.

The conference was partly supported by project BIS-21++ funded by the
European Commission in FP6 INCO via grant 016639/2005.



VI Preface

We hope that this meeting among scientists who develop and study numer-
ical methods, on one hand, and researchers who use them for solving real-life
problems, on the other, has broadened their horizons and has contributed to
their mutual enrichment.

December 2006 Todor Boyanov
Stefka Dimova

Krasimir Georgiev
Geno Nikolov
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Abstract. We consider a nonlinear system of elliptic equations, which
arises when modelling the heat diffusion problem coupled with the elec-
trical diffusion problem. The ohmic losses which appear as a source term
in the heat diffusion equation yield a nonlinear term which lies in L1. A
finite volume scheme is proposed for the discretization of the system; we
show that the approximate solution obtained with the scheme converges,
up to a subsequence, to a solution of the coupled elliptic system.

Keywords: Nonlinear elliptic system, Diffusion equation, Finite volume
scheme, L1-data, Ohmic losses.

1 Introduction

It is well known that the diffusion of electricity in a resistive medium induces
some heating, known as ohmic losses. Such a situation arises for instance in the
modelling of fuel cells, see e.g. [16], [17] and references therein. Let φ denote
the electric potential, and let κ denote the electrical conductivity. Then the
ohmic losses may be written as κ∇φ · ∇φ. Since φ is the solution of a diffusion
equation, it is reasonable to seek φ in the space H1(Ω), so that ∇φ · ∇φ ∈ L1.
Hence the heat diffusion equation has a right hand–side in L1, and its analysis
falls out of the usual variational framework. Our aim in this paper is to study the
convergence of approximate solutions to the resulting coupled problem obtained
with a cell centred finite volume scheme.

The theory of elliptic and parabolic equations with irregular right–hand–side
goes back to the pioneering work of G. Stampacchia [23], where solutions to the
linear problem are defined by duality. Later on, L. Boccardo, T. Gallouët and co-
authors (see [3] and references therein) introduced the tools and setting in which
one may define solutions to such problems: these so-called entropy solutions [4]
were found to be equivalent to the so-called renormalized solutions of P.-L. Lions
and F. Murat [22], as well as to the solutions obtained by approximation, as defined
by [10]. In the linear case, all these solutions are also equivalent to those of [23].

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Other solutions obtained by approximation were defined thanks to numeri-
cal schemes. They also lead to the existence existence of a solution, but more
importantly, they yield a constructive way to compute approximate solutions of
the problem. The convergence of the finite volume scheme was proven in [20] for
the Laplace equation with right–hand–side measure; the proof was generalized in
[11] to noncoercive convection diffusion problems. The convergence of the finite
element scheme, with irregular data, on bi-dimensional polygonal domains was
proven for Delaunay triangular meshes in [18] and in [6] for three–dimensional
tetrahedral meshes under geometrical conditions. Under regularity assumptions
on the solutions, error estimates may be obtained by interpolation [8], [6]. The
convergence order of finite element solutions is also studied in [24] for ellip-
tic boundary value problems when the second member is piecewise smooth but
discontinuous along some curve.

In the present paper, we recall some of the properties which have been estab-
lished for the discretization of elliptic problems by finite volumes. We then show
how the techniques introduced in the above references may be used to prove
the convergence of a discretization scheme for the approximation of the above
mentioned heat and electricity diffusion problem, since the resulting system of
semilinear elliptic partial differential equations is such that the right-hand-side
of the second equation depends on the solution of the first one and is in L1.

The paper is organized as follows: in Section 2 we recall the main principle and
properties of finite volume schemes for elliptic problems; in Section 3, we present
the continuous problem, its weak form and the known result about existence [19].
In section 4, we describe the finite volume method for the approximation of the
system and prove the existence of a solution to the resulting discrete system for
both cases. The convergence of the finite volume cases in section 5. The proof of
convergence is based on a priori estimates, compactness result and a passage to
the limit in the scheme. Some conclusions are drawn in the last section.

2 The Cell Centered Finite Volume Method

Finite volume methods are known to be well suited for the discretization of
conservation laws; these conservation laws may yield partial differential equations
of different nature (elliptic, parabolic or hyperbolic) and also to coupled systems
of equations of different nature.

Let Ω be a polygonal open subset of R
d, T ∈ R, and let us consider a balance

law written under the general form:

ut + div(F (u,∇u)) + s(u) = 0 on Ω × (0, T ), (1)

where F ∈ C1(R×R
d, Rd) and s ∈ C(R, R). Let T be a finite volume mesh of Ω.

For the time being, we shall only assume that T is a collection of convex polyg-
onal control volumes K, disjoint one to another, and such that: Ω̄ = ∪K∈T K̄.
The balance equation is obtained from the above conservation law by integrating
it over a control volume K and applying the Stokes formula:
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∫
K

ut dx +
∫

∂K

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0,

where nK stands for the unit normal vector to the boundary ∂K outward to K
and dγ denotes the integration with respect to the (d−1)–dimensional Lebesgue
measure. Let us denote by E the set of edges (faces in 3D) of the mesh, and EK
the set of edges which form the boundary ∂K of the control volume K. With
these notations, the above equation reads:∫

K

ut dx +
∑

σ∈EK

∫
σ

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0.

Let k = T/M , where M ∈ N, M ≥ 1, and let us perform an explicit Euler
discretization of the above equation (an implicit or semi-implicit discretization
could also be performed, and is sometimes preferable, depending on the type of
equation). We then get:
∫

K

u(n+1) − u(n)

k
dx +

∑
σ∈EK

∫
σ

F (u(n),∇u(n)) · nK dγ(x) +
∫

K

s(u(n)) dx = 0,

where u(n) denotes an approximation of u(·, t(n)), with t(n) = nk. Let us then
introduce the discrete unknowns (u(n)

K )K∈T , n∈N (one per control volume and
time step); assuming the existence of such a set of real values, we may define a
piecewise constant function by:

u
(n)
T ∈ X(T ) : u

(n)
T =

∑
K∈T

u
(n)
K 1K ,

where X(T ) denotes the space of functions from Ω to R which are constant
on each control volume of the mesh T , and 1K is the characteristic function of
the control volume K, where 1K(x) = 1 if x ∈ K and 1K(x) = 0 otherwise. In
order to define the scheme, the fluxes

∫
σ

F (u(n),∇u(n)) · nK dγ(x) need to be
approximated as a function of the discrete unknowns. We denote by FK,σ(u(n)

T )
the resulting numerical flux, the expression of which depends on the type of flux
to be approximated.

The coupled system which is the aim of our study is a system of diffusion equa-
tions. Let us now consider a linear diffusion reaction equation, that is equation
(1) with F (u,∇u) = −∇u, and s(u) = bu, b ∈ R+:

ut −Δu + bu = 0 on Ω, (2)

the flux through a given edge then reads:∫
σ

F (u) · nK,σ =
∫

σ

−∇u · nK,σ,

so that we need to discretize the term
∫

σ −∇u · nK,σ; this diffusion flux involves
the normal derivative to the boundary, for which a possible discretization is
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obtained by considering the differential quotient between the value of uT in K
and in the neighbouring control volume, let’s say L:

FK,σ(uT ) = −m(σ)
dKL

(uL − uK). (3)

where m(σ) stands for the (d− 1)–dimensional Lebesgue measure of σ and dKL

is the distance between some points of K and L, which will be defined further.
We then obtain the following numerical flux:

FK,σ(uT ) = −m(σ)
dKL

(uL − uK).

However, we are able to prove that this choice for the discretization of the diffu-
sion flux yields accurate results only if the mesh satisfies the so-called orthogo-
nality condition, that is, there exists a family of points (xK)K∈T , such that for
a given edge σKL, the line segment xKxL is orthogonal to this edge (see figure
1). The length dKL is then defined as the distance between xK and xL. This
geometrical feature of the mesh will be exploited to prove the consistency of the
flux. Of course, this orthogonality condition is not satisfied for any mesh. Such a
family of points exists for instance in the case of triangles, rectangles or Voronöı
meshes. We refer to [12] for more details.

xL

xK

L
K

m(σ)

σKL

dKL

dK,σ

Fig. 1. Notations for a control volume

3 The Continuous Coupled Problem

We wish to find some numerical approximation of solutions to the following non-
linear coupled elliptic system, which models the thermal and electrical diffusion
in a material subject to ohmic losses:

−∇ · (κ(x, u(x))∇φ(x)) = f(x, u(x)), x ∈ Ω (4)
φ(x) = 0, x ∈ ∂Ω, (5)

−∇ · (λ(x, u(x))∇u(x)) = κ(x, u(x))|∇φ|2(x), x ∈ Ω, (6)
u(x) = 0, x ∈ ∂Ω, (7)
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where Ω is a convex polygonal open subset of R
d, d = 2 or 3, with boundary ∂Ω,

φ denotes the electrical potential and u the temperature; the electrical conduc-
tivity κ, the thermal conductivity λ and the source term f are functions from
Ω × R to R satisfying the following Assumptions:

Assumption 1. The functions κ, λ and f , defined from Ω×R to R, are bounded
and continuous with respect to y ∈ R for a.e. x ∈ Ω, and measurable with respect
to x ∈ Ω for any y ∈ Ω, and such that:

∃α > 0; α ≤ κ(x, y) and α ≤ λ(x, y), ∀y ∈ R, for a.e. x ∈ Ω. (8)

The following existence result was proven in [19]:

Theorem 1. Under Assumption 1, there exists a solution to the following weak
form of Problem (4)– (7):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(φ, u) ∈ H1
0 (Ω)× ∩p< d

d−1
W 1,p

0 (Ω),∫
Ω

κ(·, u)∇φ · ∇ψ dx =
∫

Ω

f(·, u)ψ dx, ∀ψ ∈ H1
0 (Ω)∫

Ω

λ(·, u)∇u · ∇v dx =
∫

Ω

κ(·, u)|∇φ|2v dx, ∀v ∈ ∪r>dW
1,r
0 (Ω),

(9)

where here and in the sequel, dx denotes the integration symbol with respect to
the Lebesgue measure in R

d or R
d−1.

Note that the exponents d
d−1 and d are conjugate, ant that, for r > d the space

W 1,r
0 (Ω) is continuously imbedded in the space C(Ω, R); therefore all terms in

(9) make sense. In the case d = 2, we have u ∈W 1,p
0 for all p < 2, but in general,

u 
∈ H1
0 (Ω). Similarly, if d = 3, u ∈W 1,p

0 for all p < 3
2 .

The proof of this theorem relies mainly on the analysis tools which were
developed for the analysis of elliptic equations with irregular right–hand–side,
see for instance [3] and references therein. We shall not need to assume this
existence result for our present analysis. Indeed, the existence of a solution to (4)–
(7) is obtained as a by–product of the convergence of the scheme. Nevertheless,
a large part of the convergence analysis of the schemes is inspired from the ideas
developed in [19] for the existence result, and we shall again use the ideas of [3]
in our proofs.

4 The Discretization Schemes

In [17], the numerical simulation of solid oxide fuel cells relies on a mathematical
model involving a set of semilinear partial differential equations, the unknowns
of which are the temperature, the electrical potential and the concentrations of
various chemical species in the porous media of the cell. System (4)–(7) is a sub–
problem of this latter model, obtained by leaving out the chemical species diffu-
sion equations. In [17], three different discretization schemes were implemented
and compared, namely the linear finite element method, the mixed finite element
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method, and the cell centred finite volume method. Because of interface condi-
tions involving the electrical current, a precise approximation of the electrical
flux is needed at the interfaces, the linear finite element method was found to be
less adapted than the two latter methods, so that finally the mixed finite element
method and the cell centered methods were numerically compared. The cell cen-
tred finite volume method was found to be easier to implement and comparable
to the mixed finite element method as to the ratio precision vs. computing time,
so that it was finally chosen for the simulations of different geometries of fuel
cells [16]. Here we shall give a theoretical justification of the convergence of and
the cell centred finite volume method for the discretization of system (4)–(7).
The convergence of a linear finite element scheme is proven in a forthcoming
paper [5].

To define a finite volume approximation, we introduce an admissible mesh T
in the sense of [12, Definition 9.1 page 762], which we recall here for the sake of
completeness:

Definition 1 (Admissible meshes). Let Ω be an open bounded polygonal sub-
set of R

d, d = 2 or 3. An admissible finite volume mesh of Ω, denoted by T , is
given by a family of “control volumes”, which are open polygonal convex subsets
of Ω , a family of subsets of Ω contained in hyperplanes of R

d, denoted by E
(these are the edges in two space dimensions, or faces in three space dimensions,
of the control volumes), with strictly positive (d− 1)-dimensional measure, and
a family of points of Ω satisfying the following properties:

(i) The closure of the union of all the control volumes is Ω.
(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K \ K =
∪σ∈EK σ. Furthermore, E = ∪K∈T EK .

(iii) For any (K, L) ∈ T 2 with K 
= L, either the (d− 1)-dimensional Lebesgue
measure of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E, which will then be
denoted by σKL.

(iv) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and,
if σ = σKL, it is assumed that xK 
= xL, and that the straight line going
through xK and xL is orthogonal to σKL.

(v) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that
σ ∈ EK . We assume that if xK /∈ σ, then the straight line going through xK

and orthogonal to σ intersects σ.

An example of two cells of such a mesh is given in Figure 1, along with some
notations. Item (iv) of the above definition was referred to in the previous section
as the “orthogonality property”:

We refer to [12] for a description of such admissible meshes, which include
triangular meshes, rectangular meshes, or Voronöı meshes. Here, for the sake of
simplicity, we assume that the points xK ∈ K. The finite volume approximations
φT and uT of φ and u solution to (9) are sought in the space X(T ) of functions
from Ω to R which are constant over each control volume of the mesh, that is:

X(T ) = {u ∈ C(Ω, R); u|K ∈ P0 for all K ∈ T }, (10)
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where P0 denotes the set of constant functions. The finite volume scheme is
classically obtained from the balance form of Equations (4) and (6) on a control
volume K, that is:

−
∫

∂K

(κ(·, u)∇φ) · nKdx =
∫

K

f(·, u)dx (11)

−
∫

∂K

(λ(·, u) · ∇u) · nKdx =
∫

K

κ(·, u)|∇φ|2dx, (12)

where nK denotes the unit normal vector to ∂K outward to K and dx denotes the
integration symbol on d dimensional domain Ω or the d−1 dimensional boundary,
with respect to the Lebesgue measure. Let EK denote the set of edges or faces
of ∂K, decomposing the boundary of K into edges or faces, ∂K = ∪σ∈EK σ, we
may rewrite (11)-(12) as:

−
∑

σ∈EK

∫
σ

(κ(·, u)∇φ) · nK,σdx =
∫

K

f(·, u)dx (13)

−
∑

σ∈EK

∫
σ

(λ(·, u) · ∇u) · nK,σdx =
∫

K

κ(·, u)|∇φ|2dx. (14)

Let us write the sought approximations as φT =
∑

K∈T φK1K , uT =
∑

K∈T uK1K ;
we then set

fK(uK) =
1

m(K)

∫
K

f(x, uK)dx. (15)

Let E denote the set of edges (or faces in 3D) of the mesh, and Eint (resp. Eext)
the set of edges laying in Ω (resp. on ∂Ω). For σ ∈ E , let Fκ

K,σ

(resp. Fλ
K,σ ) be an approximation of the flux

∫
σ
(κ(x, u(x))∇φ(x)) · nK,σdγ(x)

(resp.
∫

σ(λ(x, u(x)) ·∇u(x)) ·nK,σdγ(x)), and let JK(uT , φT ) denote an approx-
imation of the nonlinear right-hand-side 1

m(K)

∫
K κ(x, u(x))|∇φ|2(x)dx, with the

notation uT = (uK)K∈T and φT = (φK)K∈T . With these notations, a finite
volume approximation may then be written under the form:⎧⎪⎪⎨

⎪⎪⎩

∑
σ∈EK

Fκ
K,σ = m(K)fK(uK), ∀K ∈ T ,

∑
σ∈EK

Fλ
K,σ = m(K)JK(uT , φT ), ∀K ∈ T ,

(16)

provided one defines the expressions Fκ,λ
K,σ and JK(uT , φT ) with respect to the

discrete unknowns (φK)K∈T and (uK)K∈T .
The discrete fluxes are consistent and conservative, and are given by the clas-

sical two–points formula:

Fκ
K,σ =

{
m(σ)τκ

σ (uT )(φK − φL), if σ = K|L ∈ Eint,
m(σ)τκ

σ (uT )φK if σ ∈ EK ∩ Eext,
(17)

Fλ
K,σ =

{
m(σ)τλ

σ (uT )(uK − uL) if σ = K|L ∈ Eint,

m(σ)τλ
σ (uT )(uK), if σ ∈ EK ∩ Eext,

(18)
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where τκ
σ (and, similarly τλ

σ ) is defined through a harmonic average, that is:

τκ
σ (uT ) =

⎧⎪⎪⎨
⎪⎪⎩

κK(uK)κL(uL)
dK,σκL(uL) + dL,σκK(uK)

if σ = K|L ∈ Eint,

κK(uK)
dK,σ

, if σ ∈ Eext ∩ EK ,
(19)

where the values κK(uK) and λK(uK) are defined by (15), replacing f by κ or λ.
The term JK(uT , φT ) is defined as:

JK(uT , φT ) =
1

m(K)

∑
σ∈EK

m(DK,σ)Jσ(uT , φT ), (20)

where, for K ∈ T and σ ∈ EK , we define the half dual cell DK,σ delimited by
xK and σ (see Figure 1) by

DK,σ = {txK + (1 − t)x, (x, t) ∈ σ × (0, 1)},

and

Jσ(uT , φT ) =
τκ
σ (uT )
dσ

(Dσφ)2d (21)

with

Dσφ =
{
|φK − φL| if σ ∈ Eint,

|φK | if σ ∈ Eext

We show in Theorem 2 below the existence of (φK)K∈T and (uK)K∈T solution to
(16)–(21). This entitles us to define the functions φT and uT ∈ X(T ) with respec-
tive values φK and uK on cell K, along with the function JT (uT , φT ) ∈ X(T )
with value JK(uT , φT ) on cell K. To prove the existence of a finite volume solu-
tion (φT , uT ) to the problem (16)-(21), we use Brouwer’s theorem. To this end
we combine Lebesgue’s theorem with the fact that X(T ) is a finite dimensional
space.

Theorem 2. Let (κ, λ, f) be three functions satisfying the Assumption 1. Let
X(T ) be the finite volume space defined in Definition 2. Then there exists at
least a solution (uT , φT ) ∈ (X(T ))2 to the problem (16)-(21).

The proof is based on the fixed point theorem. In fact, the existence of a solution
to (9) was proven in [19] using Schauder’s fixed point theorem; here, since the
space is finite–dimensional, we need only use Brouwer’s theorem. The proof is
an easy adaptation of that of [19] so we omit it.

5 Convergence of the Finite Volume Approximation

5.1 The Convergence Result

In this section, we shall prove that a solution of (16)-(21) converges, as hT =
sup{diam(K), K ∈ T } tends to 0, towards a solution of (9), as stated in the
following theorem:
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Theorem 3. Under Assumption 1, let (Tn)n∈N be a sequence of admissible
meshes in the sense of Definition 1. Let (φn, un) be a solution of the system
(16)-(20) for T = Tn, and let J n(un, φn) be defined by (20). Assume that
hn = sup{diam(K), K ∈ Tn} → 0, as n → ∞, and that there exists ζ > 0
(not depending on n), such that:

dσ ≤ ζdK,σ, ∀σ ∈ En, ∀K ∈ Tn. (22)

Then, there exists a subsequence of (Tn)n∈N, still denoted by (Tn)n∈N, such that
(φn, un) converges to a solution (φ, u) ∈ H1

0 (Ω)×∩q< d
d−1

W 1,q
0 of (9), as n→∞,

in the following sense:

‖φn − φ‖L2(Ω) → 0, as n→ +∞, (23)

‖un − u‖Lp(Ω) → 0, as n→ +∞, for all p <
d

d− 2
. (24)

Moreover,
∫

Ω

J n(un, φn)(x)dx→
∫

Ω

κ(x, u(x))|∇φ|2(x)dx as n→ +∞. (25)

Proof. For the sake of clarity, we only list here the main ingredients of the proof
and refer to lemmata proven below for the details.

Let (φn)n∈N ⊂ L2(Ω) and (un)n∈N ⊂ L2(Ω) be such that, for any n ∈ N, the
pair (φn, un) is a solution of (16)-(20), with T = Tn (recall that this solution
exists by Theorem 2).

From Lemma 1 below, we know that the sequences (φn)n∈N and (un)n∈N are
bounded for respectively, the L2 norm and the Lq norm, with q < d

d−2 . Note
that condition (22) is needed here since it is required when using the discrete
Sobolev inequality (see e.g. [9]) to obtain the uniform bound of (un)n∈N in an
Lq norm from a discrete W 1,p

0 estimate. Then, following [12] Lemma 9.3 page
770 or [13], one may easily get some uniform estimates on the translates of φn

in the L2 norm and of un in the Lp norm.
We may therefore use a discrete Rellich theorem (see e.g. [11], Proposition

2.3) to obtain that the sequences (φn)n∈N and (un)n∈N are relatively compact
in, respectively, L2(Ω) and Lp(Ω), for p < d

d−2 . The estimates on the tranlations
also yield the regularity of the limit (Proposition 2.4 of [11]), that is, if φ is a
limit of the sequence (φn)n∈N in L2(Ω), then φ ∈ H1

0 (Ω); similarly, if u is a limit
of the sequence (un)n∈N in Lp(Ω), then u ∈ ∩q< d

d−1
W 1,q

0 (Ω).
Hence, for any sequence (Tn)n∈N of admissible meshes satisfying (22) and

such that size(Tn) → 0, as n → ∞, there exists a subsequence, still denoted by
(Tn)n∈N, such that:

1. un converges to some u ∈ ∩q< d
d−1

W 1,q
0 (Ω) in Lp(Ω), for all p < d

d−2 , and
therefore in L2(Ω), as n→∞.

2. φn converges to some φ ∈ H1
0 (Ω), in L2(Ω), as n→∞.
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Thanks to the Lebesgue dominated theorem, we also get that κ(·, un)→ κ(·, u)
and f(·, un)→ f(·, u) as n→∞, in the Lp norm for any p < d

d−2 .
One then obtains by a straightforward adaptation of the proof of Theorem 2

in [13], that the function φ ∈ H1
0 (Ω) is the (unique, for the considered function

u) weak solution of the first equation of (9), that is:
∫

Ω

κ(x, u(x))∇φ(x) · ∇ψ(x) dx =
∫

Ω

f(x, u(x))ψ(x) dx, ∀ψ ∈ H1
0 (Ω).

A straightforward adaptation of the proof of the convergence of the discrete H1
0

norm in [12] (Theorem 9.1, proof page 776) yields that the discrete ohmic losses
converge to the continuous ones, that is:

∑
σ∈E

m(σ)τκ
K|L(un

K)(φn
L − φn

K)2 →
∫

Ω

κ(x, u(x))|∇φ|2(x)dx as n→ +∞,

which proves (25).
In order to prove (23) and (24), there now only remains to show that u satisfies

the second equation of (9). In order to do so, we proceed in a now classical way,
that is, we multiply the second equation of the scheme (16) by ψ(xK) where ψ is
a smooth function with compact support in Ω, we sum over K ∈ Tn, and obtain:

∑
K∈T

∑
σ∈E

m(σ)τλ
σ (un

K)(un
K − un

L)ψ(xK) =
∑
K∈T

m(K)J n
K(un, φn)ψ(xK) (26)

Let us now pass to the limit as n → +∞. A straightforward adaptation of the
proof of e.g. Theorem 2 in [13] yields that the left hand side of (26) tends to
−
∫
Ω u∇ · (λ(·, u)∇ψ)(x)dx, as n→ +∞. Moreover, we show in Lemma 2 below

that the right hand side of (26) tends to
∫

Ω
κ(x, u(x))|∇φ|2(x)ψ(x) d x, so that,

by density of C∞(Ω) we get that u satisfies

−
∫

Ω

λ(x, u(x))∇u(x) · ∇ψ(x) dx =
∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x) d x

for all ψ ∈ ∪q>dW
1,q
0 (Ω). This concludes the proof of the theorem.

In the following sections, we shall derive the estimates and the intermediate
convergence results which were used in the above proof.

5.2 Estimate on the Approximate Solutions and Compactness

Recall that the approximate finite volume solutions are piecewise constant; hence
they are not in the spaces W 1,p, and we need therefore to define a discrete W 1,p

norm (see also [9,12]) in order to obtain some compactness results.

Definition 2 (Discrete W 1,p norm). Let Ω be an open bounded subset of R
d,

d = 1, 2 or 3, and let T be an admissible finite volume mesh in the sense of
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Definition 1. For uT ∈ X(T ), uT =
∑

K∈T uK1K, and p ∈ [1, +∞),

‖uT ‖1,p,T =

(∑
σ∈E

m(σ)dσ(
Dσu

dσ
)p

) 1
p

,

with the notation

Dσu =
{
|uK − uL| if σ ∈ Eint,

|uK | if σ ∈ Eext

To prove the convergence of (φT , uT ), we prove at first some estimates on φT
and uT .

Lemma 1. Under Assumption 1, let T be an admissible mesh in the sense of
Definition 1, and let ζT > 0 be such that:

dσ ≤ ζT dK,σ, ∀σ ∈ E , and for any K ∈ T . (27)

Let (φT , uT ) be a solution of (16)-(20). Then there exists C1 ∈ R
�
+, only depend-

ing on Ω, d, ‖f‖L∞(Ω×R,R), ‖κ‖L∞(Ω×R,R), and α such that

‖φT ‖1,2,X(T ) ≤ C1 (28)

‖φT ‖L2(Ω) ≤ C1, (29)

and
‖JT (uT , φT )‖L1(Ω) ≤ C1. (30)

Moreover, for all q ∈ [1, d
d−1), there exists C2 ∈ R

�
+ only depending on Ω, d,

‖f‖L∞(Ω×R,R),‖κ‖L∞(Ω×R,R), ‖λ‖L∞(Ω×R,R), ζT , q, α such that

‖uT ‖1,q,X(T ) ≤ C2, (31)

and
‖uT ‖Lp∗ ≤ C2. (32)

Proof. The proof of (28) follows [12], Lemma 9.2 page 768 and the estimate
(29) is then obtained by the discrete Poincaré inequality [12] Lemma 9.1 page
765. Let us then prove the L1 estimate (30) on the right hand side JT (uT , φT ).
Indeed, by definition of JT (uT , φT ),

‖JK(uT , φT )‖L1(Ω) =
∑
K∈T

∑
σ∈EK

m(DK,σ)Jσ(uT , φT ) =
∑
σ∈E

m(Dσ)Jσ(uT , φT ),

where Dσ denotes the “diamond cell” around σ, that is Dσ = DK,σ ∪ DL,σ

if σ = K|L ∈ Eint, and Dσ = DK,σ if σ ∈ Eext ∩ EK . From the definition of
Jσ(uT , φT ), noting that m(Dσ) = 1

dm(σ)dσ , and using Assumption 1, one then
obtains that:

‖JK(uT , φT )‖L1(Ω) ≤
‖κ‖
α
‖φT ‖1,2,T .

which proves (30). Since JT (uT , φT ) ∈ L1(Ω), one obtains (31) by a straight-
forward adaptation of [20], Lemma 1 (see also [11], Theorem 2.2). The estimate
(32) follows from a discrete Sobolev inequality [9].
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5.3 Passage to the Limit on the L1 Term

Lemma 2. Under Assumption 1, let (Tn)n∈N be a sequence of admissible meshes
in the sense of Definition 1. Let (φn, un) be a solution of the system (16)-(20)
for T = Tn, and let J n(un, φn) ∈ X(Tn) be defined by (20). Assume that hn =
max{diam(K), K ∈ Tn} → 0, as n → ∞, and that there exists ζ > 0, not
depending on n, such that (22) holds. Assume that

1. un converges to some u ∈ ∩q< d
d−1

W 1,q
0 (Ω) in L2(Ω), as n→∞.

2. φn converges to some φ ∈ H1
0 (Ω), in L2(Ω), as n→∞.

Let ψ ∈ C1
c (Ω, R), and let ψn ∈ X(Tn) be defined by:

ψn(x) = ψ(xK), for a.e. x ∈ K, ∀K ∈ Tn.

Then:�
Ω

J n(un, φn)(x)ψn(x) dx →
�

Ω

κ(x, u(x))|∇φ|2(x)ψ(x)dx as n→ +∞. (33)

Thus, J n(un, φn) → |∇φ|2 as n → +∞ for the weak � topology of (C(Ω))
′
, where

C(Ω)) denotes the set of continuous functions with compact support on Ω.

Proof. Assume that n is large enough so that the function ψ (which has a com-
pact support in Ω) vanishes on the cells neighbouring the boundary ∂Ω. Noting
that m(DK,σ) = 1

dm(σ)dK,σ , one has:
∫

Ω

J n (un, φn)(x)ψn(x) d x =
∑

K∈T n

∑
σ∈EK

m(σ)dK,στκ
σ (un)

(Dσφn)2

dσ
ψ(xK)

= T
n
7 + T

n
8 ,

where

T
n
7 =

∑
K∈Tn

∑
σ∈EK

m(σ)dK,στκ
σ (un)

(Dσφn)2

dσ
ψ(xL), (34)

and

T
n
8 =

∑
K∈Tn

∑
σ=K|L∈EK

m(σ)dK,στκ
σ (un)

(Dσφn)2

dσ
(ψ(xK)− ψ(xL)).

Since dK,σ ≤ dσ and |ψ(xK) − ψ(xL)| ≤ 2 hn‖∇ψ‖(L∞(Ω))d and τκ
σ (un) ≤

‖κ‖2
L∞(Ω×R,R)

αdσ
, we have

|Tn
8 | ≤ 2

‖κ‖2L∞(Ω×R,R)

α
hn‖∇ψ‖(L∞(Ω))d‖φn‖21,2,X(T ).

Using (28) we then obtain that:

|Tn
8 | → 0, as n→ +∞.
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We turn now to the term T
n
7 , reordering the sum on the edges in the right hand

side of (34), we get

T
n
7 =

∑
σ=K|L∈Eint

m(σ)τκ
σ (un)

(Dσφn)2

dσ
ψσ

where

ψσ =
dK,σψ(xL) + dL,σψ(xK)

dσ
, σ ∈ Eint and σ = K|L (35)

We may then decompose T
n
7 = T

n
9 + T

n
10, with

T
n
9 = −

∑
σ=K|L∈Eint

m(σ)τκ
σ (un)(φn

L − φn
K)(φn

Kψn
K − φn

Lψn
L), (36)

and

T
n
10 = −

�
σ=K|L∈Eint

m(σ)τκ
σ (un) ((φn

L − φn
K)φn

K(ψσ − ψK) − (φn
L − φn

K)φn
L(ψσ − ψL)) .

Reordering the sum of the right hand side of (36) on the control volumes,
using the fact that φn is the solution of the first equation of the finite volume
scheme (16), and that un (resp.φn) converges to u (resp. φ) in L2(Ω) as n→∞,
we get that:

T
n
9 →

�
Ω

κ(x, u(x))|∇φ|2(x)ψ(x)dx+

�
Ω

κ(x, u(x))∇φ(x) · ∇ψ(x)φ(x)dx (37)

as n→ +∞. Reordering the sum of T
n
10 on the edges of the control volumes and

using Lemma 2 in [14] (see [5] for details), we get

T
n
10 → −

�
Ω

∇φ(x) · ∇ψ(x)φ(x)κ(x,u(x)) dx as n→ +∞, (38)

from which it is easy to see that
�

Ω

J n (un, φn)(x)ψn(x) →
�

Ω

κ(x, u(x))|∇φ|2(x)ψ(x)dx,

which proves (33).

6 Conclusion and Perspectives

We proved here the convergence of a cell centred finite volume method for the
coupled heat and potential equation; the condition on the considered meshes is
such that the discrete maximum principle holds. Indeed, the technique of proof
mimics the tools used for the existence the continuous case, which requires the
monotonicity of the operator. In the case of the cell centred finite volume, the
scheme satisfies the maximum principle for any admissible mesh. These include
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triangles and rectangles in two space dimensions, and Voronöı meshes in any
dimension.

In two space dimensions, the piecewise linear finite element method satisfies
the discrete maximum principle for triangular meshes under the Delaunay con-
dition. It is easy to show that under this condition, the matrix of the scheme
is identical to that of the cell-centred finite volume on the dual Voronöı mesh.
Therefore, the convergence of the finite element scheme may be obtained from
that of the finite volume scheme, as explained in [18].

In three space dimensions, there is no known way to build a Voronöı mesh
from a tetrahedral one, and therefore one must proceed directly with the finite
element interpolation operator, as in [6] in the case of a linear diffusion operator,
and [5] in the case of the present coupled problem. In the three–dimensional case,
a known sufficient condition for the maximum principle to hold on a tetrahedral
meshes is that all angles of all the faces be strictly acute. Unfortunately, there
does not seem to be an easy way to construct such meshes in practise [2], so that
convergence results for the finite element scheme in 3D remain quite academic.
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13. Eymard, R., Gallouët, T., Herbin, R.: Convergence of finite volume schemes for
semilinear convection diffusion equations. Numer. Math. 82 (1999) 91–116
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Abstract. Mathematical physics problems are often formulated by
means of the vector analysis differential operators: divergence, gradient
and rotor. For approximate solutions of such problems it is natural to
use the corresponding operator statements for the grid problems, i.e., to
use the so-called VAGO (Vector Analys Grid Operators) method. We
discuss the possibilities of such an approach in using general irregular
grids. The vector analysis difference operators are constructed using the
Delaunay triangulation and the Voronoi diagrams. The truncation error
and the consistency property of the difference operators constructed on
two types of grids are investigated.

1 Introduction

Applied problems are mostly defined in the form of systems of partial differential
equations supplemented by the corresponding boundary and initial conditions.
To solve approximately the boundary-value problems, the finite-difference and
finite-element methods are used.

To formulate the mathematical physics problems, one can use the differential
vector analysis operators: the invariant first-order divergence, gradient and rotor
operators. For approximate solution of such problems, it is natural to use the
corresponding operator statements for the grid problems. In this case [3], one
speaks of Mimetic Finite Difference Operators. Mimetic discretization methods
for the numerical solution of continuum mechanics problems use analogs of iden-
tities from vector calculus or differential forms to both derive and analyze the
discretization.

The advantages of such an approach are that we do not have to define a
concrete coordinate system. This is especially interesting for considering irregular
computational grids. In using vector analysis grid operators it is natural to use
the approach with direct substitution of the vector analysis differential operators
by the grid operators.

The universal balance method (integro-interpolational method, finite-volume
method) is mainly used to construct discrete problems [4]. In this case, the
difference scheme is constructed by integrating the input equation with respect
to the control volume (part of the computational domain adjoining to given
computational node). For the Delauney triangulation it is natural to use the

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 16–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Voronoi polygons (the set of points lying closer to this node than to the others)
as the control volume.

In this paper the questions concerning the construction of computational grids
are considered. For the given set of nodes the Delauney triangulation (D-grid) is
constructed. The dual grid (V -grid) constructed on the vertices of the Voronoi
polyhedrons linked to the D-grid. On these grids the scalar and vector grid
functions are defined. On the introduced grids the vector analysis grid opera-
tors of the gradient (grad), the divergence (div) and the rotor (rot, curl) are
constructed. Primary consideration is given to the investigation of the trunca-
tion error of the vector analysis grid operators. The important properties of the
consistency of the approximations of individual operators are determined. The
paper [5] gives examples of applying the introduced vector analysis grid oper-
ators to the approximate solution of some classes of the mathematical physics
problems.

2 Grids and Grid Functions

Consider the computational grids and their corresponding scalar and vector func-
tions. The general unstructured grid is constructed on the basis of the Delaunay
triangulation and the Voronoi diagrams.

2.1 Delaunay Triangulation and Voronoi Diagrams

For the given points the triangulation can be performed in different ways. Note
also that for a given set of nodes we obtain the same number of triangles by any
triangulation method. So we need to optimize the triangulation by some criteria.
The main optimization criterion consists in the following: the obtained triangles
should be close to equilateral ones (there should be no too sharp angles). This is
a local criterion belonging to one triangle. The second (global) criterion consists
in that adjacent triangles do not differ too widely in area — the criterion of grid
uniformity.

There is a special triangulation — the Delaunay triangulation [1], which has a
number of optimum properties. One of them is the tendency of obtained triangles
to equiangular ones. The above mentioned property can be formulated more
exactly in the following way: in the Delaunay triangulation the minimum value
of inner angles of triangles is maximized. The formal definition of the Delaunay
triangulation is associated with the property that for each triangle all the other
nodes are situated outside the circumcircle. For our further presentation the
relation between the Delaunay triangulation and the Voronoi diagram is very
important.

The Voronoi polygon for a separate node is a set of points lying closer to this
node than to all the other nodes. For two points the sets are defined by the
half-plane bounded by a perpendicular to the middle of the segment connecting
these two points. The Voronoy polygon thereby will be the intersection of such
half-planes for all pairs of nodes created by this node and all the other nodes.
Note that this polygon is always convex.
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Each vertex of the Voronoi polygon is a point of contact of three Voronoi
polygons. The triangle constructed by the corresponding nodes of contacting
Voronoi polygons is associated with each of these vertices. This is exactly the
Delaunay triangulation. Thus between the Voronoi diagram and the Delaunay
triangulation a unique correspondence is established.

2.2 General Notations

Assume that the computational domain is a convex polyhedron Ω with the
boundary ∂Ω. In the domain Ω = Ω ∪∂Ω we consider the grid ω, which consists
of nodes xD

i , i = 1, 2, . . . , MD, and the angles of the polyhedron Ω are nodes.
Let ω be a set of inner nodes and ∂ω is a set of boundary nodes, i.e., ω = ω ∩Ω,
∂ω = ω ∩ ∂Ω.

Each node xD
i , i = 1, 2, . . . , MD, connect a certain part of the computational

domain, namely, the Voronoi polyhedron or its part belonging to Ω. The Voronoi
polyhedron (polygon) for a separate node is a set of points lying closer to this
node than to all the other ones:

Vi = {x | x ∈ Ω, |x − xD
i | < |x − xD

j |, j = 1, 2, . . . , MD }, i = 1, 2, . . . , MD,

where | · | is the Euclidean distance. Each vertex xV
k , k = 1, 2, . . . , MV of the

Voronoi polyhedron is associated with the tetrahedron constructed by the ap-
propriate nodes contacting the Voronoi polyhedrons. We will assume that all
vertices of the Voronoi polyhedrons lie either inside the computational domain
Ω or on its boundary ∂Ω. These tetrahedrons determine the Delaunay triangu-
lation — a dual triangulation to the Voronoi diagram. The D-grid in the domain
Ω is determined by the set of nodes (vertices of tetrahedrons of the Delaunay
triangulation) xD

i , i = 1, 2, . . . , MD, the V -grid is defined by the set of nodes
(vertices of polyhedron of the Voronoi diagram) xV

k , k = 1, 2, . . . , MV .
We mark a separate tetrahedron Dk of the Delaunay triangulation. This

tetrahedron is identified by the number k of the Voronoi polyhedron vertex,
k = 1, 2, . . . , MV . The tetrahedrons Dk, k = 1, 2, . . . , MV cover the entire com-
putational domain, so

Ω =
MV∪
k=1

Dk, Dk = Dk∪∂Dk, Dk∩Dm = ∅, k �= m, k, m=1, 2, . . . , MV .

For common planes of the tetrahedron we use the notations

∂Dkm = ∂Dk ∩ ∂Dm, k �= m, k, m = 1, 2, . . . , MV .

The boundary of the computational domain ∂Ω consists of the planes of Delau-
nay tetrahedrons. Let

∂D0 = ∂Ω, ∂Dk0 = ∂Dk ∩ ∂D0, k = 1, 2, . . . , MV .

We associate the Voronoi polyhedron Vi, i = 1, 2, . . . , MD with the node of the
main grid i. Thus, we have

Ω =
MD∪
i=1

V i, V i = Vi ∪ ∂Vi, Vi ∩ Vj = ∅, i �= j, i, j = 1, 2, . . . , MD
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and
∂Vij = ∂Vi ∩ ∂Vj , i �= j, i, j = 1, 2, . . . , MD.

For each tetrahedron Dk, k = 1, 2, . . . , MV , we define the set of neighbors
WD(k), having common planes with Dk, i.e.,

WD(k) = {m | ∂Dk ∩ ∂Dm �= ∅, m = 0, 1, . . . , MV }, k = 1, 2, . . . , MV .

In this case, m = 0 means that the tetrahedron Dk contacts the boundary. We
define also the neighbors for each Voronoi polyhedron Vi, i = 1, 2, . . . , MD:

WV (i) = {j | ∂Vi ∩ ∂Vj �= ∅, j = 1, 2, . . . , MD}, i = 1, 2, . . . , MD.

We assume that the introduced Delaunay triangulation and the Voronoi dia-
gram are regular [2]. For the notations

hD
k = diam(Dk) — diameter Dk,

�D
k = sup {diam(S) | S — sphere in Dk}, k = 1, 2, . . . , MV

the regularity condition of the Delaunay triangulation is

hD
k

�D
k

≤ σ > 0, k = 1, 2, . . . , MV .

Likewise, for the Voronoi diagram we have

hV
i = diam(Vi) — diameter Vi,

�V
i = sup {diam(S) | S — sphere in Vi},

hV
i

�V
i

≤ σ > 0, i = 1, 2, . . . , MD,

and
h = max

i,k
{hV

i , hD
k },

meas(Dk) =
∫

Dk

dx, k = 1, 2, . . . , MV ,

meas(Vi) =
∫

Vi

dx, i = 1, 2, . . . , MD.

The other notations for the Voronoi diagram and Delaunay triangulation will be
considered later.
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2.3 Scalar and Vector Grid Functions

We will approximate the scalar functions of the continuous argument by the
scalar grid functions that are defined in the nodes of the D-grid or in the nodes
of the V -grid. We denote by HD the set of grid functions defined on the D-grid

HD = { y(x) | y(x) = y(xD
i ) = yD

i , i = 1, 2, . . . , MD }.

For the functions y(x) ∈ HD, vanishing on the boundary ∂ω, we define

H0
D = { y(x) | y(x) ∈ HD, y(x) = 0, x ∈ ∂ω }.

We consider the scalar product and the norm for the scalar grid functions from
HD by

(y, v)D =
MD∑
i=1

yD
i vD

i meas(Vi), ‖y‖D = (y, y)1/2
D .

This scalar product and the norm are grid analogs of the scalar product and the
L2(Ω)-norm for the scalar functions of the continuous argument.

Likewise for the grid functions defined on the V -grid we define the space

HV = { y(x) | y(x) = y(xV
k ) = yV

k , k = 1, 2, . . . , MV }.

For the functions y(x) ∈ HV we have

(y, v)V =
MV∑
k=1

yV
k vV

k meas(Dk), ‖y‖V = (y, y)1/2
V .

The approximation of continuous argument vector functions is a more difficult
task. The simplest approach is connected with the assignment of three Cartesian
components of the vector function in the nodes of the D-grid or in the nodes of
the V -grid for approximating the vector field in the appropriate control volume
— the Voronoi polygon for the nodes of the D-grid or the Delaunay tetrahedron
for the V -grid nodes. The use of such an approximation for general unstructured
grids is unjustified and connected with technical difficulties.

To determine the vector field in the control volume, it is natural to use the
components of the sought function normal to the corresponding planes of the
control volume. Choosing the initial and the final node, we connect with each
tetrahedron edge Dk, k = 1, 2, . . . , MV or polyhedron edge Vi, i = 1, 2, . . . , MD,
a vector — the directed edge. For Delaunay triangulation the normals to the
planes are the directed edges of Voronoi diagram and vice versa. For the approx-
imation of the vector functions thereby we can use projections of the vectors on
the directed edges. We will further use exactly this variant with the description
of the vector field in the control volume by means of vector projections on the
edges of the control volume.

We will orient the Delaunay triangulation edges by the unit vector

eD
ij = eD

ji, i = 1, 2, . . . , MD, j ∈ WV (i),
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directed from the node with a smaller number to the node of a larger number.
Likewise, we define the unit vectors

eV
km = eV

mk, k = 1, 2, . . . , MV , m ∈ WD(k)

for the directed edges of the Voronoi diagram.
The vector function y(x) on the Delaunay triangulation is defined by the

components
yD

ij = y eD
ij , i = 1, 2, . . . , MD, j ∈ WV (i),

that are given in the middle of the edges

xD
ij =

1
2
(xD

i + xD
j ).

Using the Voronoi diagram, the components are given at the point on the edge
xV

km defined as a point of intersection of the edge and the corresponding plane
of the Delaunay triangulation, thereby

yV
km = y eV

km, k = 1, 2, . . . , MV , m ∈ WD(k).

Taking into consideration the introduced notations, the points xV
k0 lie on the

boundary ∂Ω.
Note that in the two-dimensional case the nodes of the vector function as-

signment in the Delaunay triangulation and the Voronoi diagram coincide. In
this case, we have the local orthogonal coordinate system and this property can
be used for constructing grid problems. In general three-dimensional case this is
not true.

For the Delaunay triangulation used and the Voronoi diagram we define the
length of the edges in the following way:

lDij = |xD
i − xD

j |, i = 1, 2, . . . , MD, j ∈ WV (i),

lVkm = |xV
k − xV

m|, k = 1, 2, . . . , MV , m ∈ WD(k).

We denote by HD the set of grid vector functions determined by the com-
ponents yD

ij , i = 1, 2, . . . , MD, j ∈ WV (i) that are given in the middle of the
edges. In a similar way we denote by HV the set of grid vector functions de-
fined by the components yV

km, k = 1, 2, . . . , MV , m ∈ WD(k). If the tangential
components of the grid vector functions y ∈ HD vanish on the boundary, we
define

H0
D ={y | y ∈ HD, y(x) eD

ij = 0, x = xD
ij ∈ ∂ω, =1, 2, . . . , MD, j∈WV (i) },

H0
V = {y | y ∈ HV , y(x) eV

k0 = 0, k = 1, 2, . . . , MV }.

Consider the scalar product and the norm in HD:

(y,v)D =
1
2

MV∑
k=1

∑
m∈WD(k)

∑
(i,j)∈QD(k,m)

yD
ij vD

ij |xV
m − xV

km| meas(∂Dkm),
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‖y‖D = (y,y)1/2
D ,

where

QD(k, m) = {(i, j) | xD
i ,xD

j ∈ ∂Dkm, i = 1, 2, . . . , MD, j ∈ WV (i)}

is the set of vertices of the plane ∂Dkm. Likewise, we define

(y,v)V =
1
2

MD∑
i=1

∑
j∈WV (i)

∑
(k,m)∈QV (i,j)

yV
km vV

km |xD
i − xD

ij | meas(∂Vij),

‖y‖V = (y,y)1/2
V ,

QV (i, j) = {(k, m) | xV
k ,xV

m ∈ ∂Vij , k = 1, 2, . . . , MV , m ∈ WD(k)}
for the scalar product and the norm in HV .

3 Vector Analysis Grid Operators

We consider the problems of mathematical physics defined in terms of the vec-
tor analysis operators: divergence, gradient and rotor operators. Turning to the
discrete problem, we should have the grid analogs of these operators. On the
other hand we cannot always use the standard finite-element approximation. In
particular, this also concerns the construction of the grid analogs of the vector
analysis operator.

3.1 Grid Gradient and Divergence Operators

The set of grid functions HD or HV can be the domain of definition of the
grid gradient operator. In the first case, we denote the grid gradient operator
by gradD, and in the second case, gradV . Taking into account the chosen edge
orientation, at the points xD

ij we set

(gradDy)D
ij = η(i, j)

yD
j − yD

i

lij
, i = 1, 2, . . . , MD, j ∈ WV (i), (1)

i.e., the range of values of the operator gradD : HD → HD is the set of vector
grid functions HD. In (1), we use the following notation:

η(i, j) =
{

1, j > i,
−1, j < i.

For the truncation error of the grid operator gradD we have

(gradDu)(x) = (gradu)(x) + g(x), g = O(h2), x = xD
ij , (2)

i = 1, 2, . . . , MD, j ∈ WV (i)
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provided that u(x) is a sufficiently smooth functions. Here and below we shall
not give an accurate formulation of the requirements for the smoothness of the
functions used (solution, coefficients etc.).

For the values of the grid operator gradV : HV → HV at the points xV
km ∈ Ω

we set

(gradV y)V
km = η(k, m)

yV
m − yV

k

lkm
, (3)

k = 1, 2, . . . , MV , m ∈ WD(k), m �= 0.

In this case, the truncation error has only the first order because the first deriva-
tives are approximated at the point xV

km that is not situated in the middle of
the edge of the Voronoi polyhedron

(gradV u)(x) = (gradu)(x) + g(x), g = O(h), x = xV
km, (4)

k = 1, 2, . . . , MV , m ∈ WD(k), m �= 0.

Now construct the grid analogs of operator div on the set of the vector grid
functions y ∈ HD and y ∈ HV . Start from the divergence equality. For the
Voronoi polyhedron this equality is written in the following form:

∫

Vi

div u dx =
∑

j ∈WV (i)

∫

∂Vij

(u · nV
ij) dx, (5)

where nV
ij is the normal to the edge ∂Vij outside with respect to Vi. To construct

the grid operator divD : HD → HD we use the elementary formulas of integra-
tion for the left- and right-hand sides (5). This leads to the grid analogs of the
operator div in the form of

(divD y)D
i =

1
meas(Vi)

∑
j ∈WV (i)

(nV
ij ·eD

ij) yD
ij meas(∂Vij), i = 1, 2, . . . , MD. (6)

Similarly, on the nodes of the V -grid we define the values of the grid analogs
of the divergence operator on the set of vector grid functions y ∈ HV . Start
from the divergence theorem, rewriting for the Delauney tetrahedron:

∫

Dk

div u dx =
∑

m∈WD(k)

∫

∂Dkm

(u · nD
km) dx, (7)

where nD
km is the normal to the edge ∂Dkm outside with respect to Dk. Approx-

imation (7) leads to the following presentation:

(divV y)V
k =

1
meas(Dk)

∑
m∈WD(k)

(nD
km · eV

km) yV
km meas(∂Dkm) (8)

for the grid operator divV : HV → HV .
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To estimate the error of the constructed approximations of the divergence
operator, we take into account the fact that the introduced D-grid and V -grid
are regular. For the left-hand side of (7) we have

∫

Dk

div u dx = meas(Dk) ((divV u)V
k + g(xV

k )),

where g(xV
k ) = O(h). Similarly, for the right-hand side we get

∑
m∈WD(k)

∫

∂Dkm

(u·nD
km) dx =

∑
m∈WD(k)

(nD
km·eV

km) (u(xV
km)+q(xV

km))meas(∂Dkm),

where q(xV
km) = O(h) in the three-dimensional case. For two-dimensional prob-

lems our approximation of the right-hand side (7) corresponds to the quadrangle
formula and so q(xV

km) = O(h2).
Taking into account the last fact in the general three-dimensional case for the

error of formula (8), we obtain

(divV u)(x) = (div u)(x) + g(x) + (divV q)(x), g = O(h), q = O(h), (9)

x = xV
k , k = 1, 2, . . . , MV .

For two-dimensional problems we have

(divV u)(x) = (div u)(x) + g(x), g = O(h), (10)

x = xV
k , k = 1, 2, . . . , MV .

Similarly to (9), we get

(divDu)(x) = (div u)(x) + g(x) + (divDq)(x), g = O(h), q = O(h), (11)

x = xD
i , i = 1, 2, . . . , MD,

for the truncation error.
Thus, in general, the truncation error for the grid divergence operators divD

and divV equals to O(1). However, there exists a special divergence expression of
the truncation error saving the situation in the case of approximation of problems
of mathematical physics.

3.2 Grid Rotor Operators

Now we construct grid analogs of the operator rot noticing, as for the other
vector analysis operators, two modifications of such operators. To construct the
grids operators on the derived grid, we use the following integral equality (the
Stokes theorem): ∫

S

(rotu · n)dx =
∮

∂S

(u · l) dx, (12)
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where S is a simply connected surface spanned on the contour ∂S, l thereby is a
tangent vector. And the direction of the normal vector n coordinated with the
orientation of the contour ∂S according to the right-hand screw rule.

Construct the grid operator rotD : HD → HV on the set of vector grid
functions y ∈ HD. We use (12) for the edge ∂Dkm. It follows that

∫

∂Dkm

(rotu · nD
km) dx =

∑
(i,j)∈QD(km)

xD
j∫

xD
i

χ(nD
km, eD

ij)(u · eD
ij) dx. (13)

The outside normal nD
km to the side ∂Dkm defines the orientation of the tracing

edges of the side ∂Dkm. The value of χ(nD
km, eD

ij) depends on the orientation of
the edges of the side ∂Dkm:

χ(nD
km, eD

ij) =
{

1, if the vector eD
ij corresponds to positive tracing,

−1, otherwise.

for the left-hand side of (13) we set
∫

∂Dkm

(rotu ·nD
km) dx = meas(∂Dkm) (nD

km ·eV
km) ((rotDu)V

km +g1(xV
km)), (14)

where g1(xV
km) = O(h) for a sufficiently smooth vector function u. The nodes

xD
ij are situated in the middle of the edges, and using the quadrangle formula

for the approximation of right-hand side of (13), we obtain

∑
(i,j)∈QD(km)

xD
j∫

xD
i

χ(nD
km, eD

ij)(u · eD
ij) dx =

∑
(i,j)∈QD(km)

χ(nD
km, eD

ij)l
D
ij (u(xD

ij ) + g2(xD
ij )), (15)

where q2(xD
ij ) = O(h2). Taking into account (13)–(15), we define the values of

the grid operator rotD : HD → HV by the rule

(rotDy)V
km = (nD

km · eV
km)

1
meas(∂Dkm)

∑
(i,j)∈QD(km)

χ(nD
km, eD

ij) yD
ij lDij , (16)

k = 1, 2, . . . , MV , m ∈ WD(k).

For the truncation error we have the following representation:

(rotDu)(x) = (rotu)(x) + g(x), g = O(h), x = xV
km (17)

k = 1, 2, . . . , MV , m ∈ WD(k).



26 P. Vabishchevich

In the same way we construct the grid operator rotV : HV → HD:

(rotV y)D
ij = (nV

ij · eD
ij)

1
meas(∂Vij)

∑
(k,m)∈QV (ij)

χ(nV
ij , e

V
km) yV

km lVkm, (18)

i = 1, 2, . . . , MD, j ∈ WV (i).

Similarly to (17), we can get the following special representation of the truncation
error for the grid operator rotV

(rotV u)(x) = (rotu)(x) + g(x) + (rotV q)(x), g = O(h), q = O(h),

x = xD
ij , i = 1, 2, . . . , MD, j ∈ WV (i).

(19)

The last component of the error appears due to the fact that the contour integral
is approximated by the edges the point xV

km, in general, is not situated in the
middle of the edges.

3.3 Consistency of the Vector Analysis Grid Operators

We note the following most important properties of the vector analysis operators

rot grad = 0, (20)

div rot = 0. (21)

If relation (20) (or (21)) holds for the grid analogs, then we say that such grid
operators are consistent as to property (20) (or (21)).

Taking into account (1) and (16), we get

rotD gradD y = 0, y(x) ∈ HD, (22)

i.e., the grid operators rotD and gradD are consistent as to property (20). Like-
wise, we determine the consistency of the operators rotV and gradV

rotV gradV y = 0, y(x) ∈ HV . (23)

The consistency as to property (21) holds for pairs of the operators divD, rotV
and divV , rotD. For the grid divergence and rotor operators we have

divV rotD y = 0, y(x) ∈ HV , (24)

divD rotV y = 0, y(x) ∈ HD. (25)

We consider that the self-adjointness and antisymmetry to be the most impor-
tant properties of the grid operators of mathematical physics. These properties
arise from the corresponding properties of the vector analysis grid operators. In
order to clarify this question, we first recall the following facts concerning the
vector analysis differential operators.
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We have
div∗

D = − gradD (26)

on the set of grid functions v ∈ H0
D and y ∈ HD. Similarly, using (8), we obtain

(v, divD y)D + (gradD v,y)D = 0

on the set of functions v(xV
km) = 0, xV

km ∈ ∂Ω, i.e.,

div∗
V = − gradV . (27)

For the grid vector functions v ∈ H0
D, u ∈ HV , using (16), (18), we obtain

(v, rotV u)D = (rotDv,u)V .

Therefore,
rot∗V = rotD (28)

holds. This equality can be considered as the grid analog of self-adjointness of
the differential rotor operator.

Acknowledgements

This work was supported by the INTAS under grant 03-50-4395.

References

1. Aurenhammer, F., Klein, R.: Voronoi diagrams. In Sack, J., Urrutia, G., eds.:
Handbook of Computational Geometry, Elsevier Science Publishing (2000) 201–290

2. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland,
Amsterdam, New York (1978)

3. Robidoux, N., Steinberg, S.: A discrete vector calculus in tensor grids. (2002)
4. Samarskii, A.A.: The theory of difference schemes. Volume 240 of Monographs and

Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York (2001)
5. Vabishchevich, P.: Finite-difference approximation of mathematical physics prob-

lems on irregular grids. Computational Methods in Applied Mathematics 5(3)
(2005) 294–330



On Some Computational Aspects of the

Variational Data Assimilation Techniques

Zahari Zlatev

National Environmental Research Institute
Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, Denmark

Abstract. It is important to incorporate all available observations when
large-scale mathematical models arising in different fields of science and
engineering are used to study various physical and chemical processes.
Variational data assimilation techniques can be used in the attempts to
utilize efficiently observations in a large-scale model. Variational data as-
similation techniques are based on a combination of three very important
components

– numerical methods for solving differential equations,
– splitting procedures

and

– optimization algorithms.

It is crucial to select an optimal (or, at least, a good) combination of
these three components, because models which are very expensive com-
putationally become much more expensive (the computing time being
often increased by a factor greater than 100) when a variational data
assimilation technique is applied. Therefore, it is important to study the
interplay between the three components of the variational data assimi-
lation techniques as well as to apply powerful parallel computers in the
computations. Some results obtained in the search for a good combina-
tion will be reported. Parallel techniques described in [1] are used in the
runs related to this paper.

Modules from a particular large-scale mathematical model, the Uni-
fied Danish Eulerian Model (UNI-DEM), are used in the experiments.
The mathematical background of UNI-DEM is discussed in [1], [24] The
ideas are rather general and can easily be applied in connection with
other mathematical models.

1 Statement of the Problem

It is important to start the computations with a good set of initial values of the
concentrations when short-time air pollution forecasts are to be calculated by
applying large-scale air pollution models. Good initial values are normally not
available and, therefore, one has to find a way to produce good initial values.
Different data assimilation techniques and available observations can be used in
the efforts to resolve this task. It should be noted here that data assimilation
techniques are very useful also in the efforts to solve many other important tasks

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 28–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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related to large-scale computations with environmental models (see [6], [7] and
[20]). Data assimilation techniques can also be applied in many other fields of
science and engineering (see [15]).

Assume that observations are available at every tp , p ∈ {0, 1, 2, . . . , P}. These
observations can be taken into account in an attempt to improve the results
obtained by a given model. This can be done by minimizing the value of the
following functional (see, for example, [16]):

J{c̄0} =
1
2

P∑
p=0

< W (tp) (c̄p − c̄obs
p ) , c̄p − c̄obs

p >, (1)

where

– the functional J{c̄0} is depending on the initial value c̄0 of the vector of the
concentrations at time t0 (because the model results c̄p depend on c̄0),

– W (tp) is a matrix containing some weights, and
– <, > is an inner product in an appropriately defined Hilbert space (it will

be assumed here that the usual vector space is used, i.e. it is assumed that
c̄ ∈ Rq where q is the number of chemical species which are involved in the
model).

It is seen that the functional J{c̄0} depends on both the weights and the
differences between calculated by the model concentrations c̄p and observations
c̄obs
p at the time-levels tp at which observations are available. W (tp) will be

assumed to be the identity matrix I in this paper, but in general weights are to
be defined in some way and used in the computations.

The task is to find an improved initial field c̄0, which minimizes the functional
J{c̄0} . This can be achieved by using some optimization algorithm. Most of the
optimization algorithms are based on the application of the gradient of J{c̄0} .
The adjoint equation has to be defined and used in the calculation of the gradient
of the functional J{c̄0}.

2 Algorithmic Representation

A data assimilation algorithm can be represented by applying the procedure
described in Fig. 1. An optimization procedure is needed for the calculations that
are to be carried out in the loop ”DO ITERATIONS”. In many optimization
subroutines, the direction of the steepest descent is to be found and then the
value of parameter ρ that gives the largest decrease in the direction found is to
be used in an attempt to improve the current solution. In practice, however, it
is only necessary here to find a good standard minimization subroutine. In our
experiments we used the subroutine E04DGF from the NAG Numerical Library
[18]. This subroutine uses a preconditioned conjugate gradient methods and is
based on the algorithm PLMA, described in [9] and in Section 4.8.3 of [10].
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C
Initialize scalar variables, vectors and arrays; set gradient to zero

C
DO ITERATIONS = 1, MAX ITERATIONS

C
DO LARGE STEPS = 1, P STEP

C
F START=(LARGE STEPS-1)∗P LENGTH+1
F END=LARGE STEPS∗P LENGTH
DO FORWARD STEPS = F START,F END

Perform forward steps by using the sub-model 1
Perform forward steps by using the sub-model 2

END DO FORWARD STEPS
C

Form the adjoint equation and update the value of the functional
DO BACKWARD STEPS = F END,1,-1

Perform backward steps by using the adjoint equation 2
Perform backward steps by using the adjoint equation 1

END DO BACKWARD STEPS
Update the value of the gradient of the functional

C
END DO LARGE STEPS

C
Compute an approximation of the optimization parameter ρ
Update the initial values field:
NEW FIELD=OLD FIELD + ρ∗GRADIENT
Check the stopping criteria
Exit from loop DO ITERATIONS
when the stopping criteria are satisfied

C
END DO ITERATIONS

C
Perform output operations and stop the computations

C

Fig. 1. An algorithm for performing variational data assimilation by performing multi-
ple backward calculations. P STEP is equal to P . P LENGTH is equal to the number
of time-steps that are to be carried out between two time-points tp and tp+1 at which
observations are available.

It is assumed in the derivation of the algorithm presented in Fig. 1 that a
simple sequential splitting procedure is used and that the model under conside-
ration is split into two sub-models. The results can easily been extended for
the case where the model is split into more than two sub-models and/or where
some other splitting procedures are applied (different splitting procedures are
discussed in detail in Chapter 2 of [25]). Note that the sub-models in the loop
related to the adjoint equations are used in reverse order (see Fig. 1).

The algorithm sketched in Fig. 1 is designed under the assumption that the
backward calculations (with the adjoint equations) are carried out every time
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when the forward computations are performed to a time-point at which observa-
tions are available. It can be proved that this is not necessary. One can perform
the forward calculations from the starting time-point to the end time-point and
than carry out the backward mode only once from the end time-point to the
starting time-point (see Chapter 10 in [25]).

3 Major Components of the Data Assimilation Algorithm

The data assimilation algorithm presented in Fig. 1 consists of three major
computational parts:

– At every time-step (both a forward time-step and a backward time-step)
we need a numerical algorithm for solving differential equations,
because both the model and the adjoint equation are normally represented
by systems of differential equations that are to be handled numerically.

– The discretization of the systems of differential equations leads to very time-
consuming numerical tasks (these tasks are described by huge systems of
ordinary differential equations). This is why some kind of splitting is nor-
mally used when large models are to be handled numerically. As mentioned
before, a simple sequential splitting procedure is used in Fig. 1. This splitting
procedure consists of two sub-models only. In practice, the original model is
normally split into more than two sub-models.

– An optimization algorithm has to be used in order to minimize the func-
tional (1). Most of the optimization algorithms are using the gradient of the
functional in the computational process. The sub-models obtained by the se-
lected splitting procedure and the corresponding adjoint equations are used
to calculate the gradient.

From the algorithm given in Fig. 1, it can clearly be seen that the computa-
tions are carried out on three levels:

– On the lowest level, numerical methods for solving differential equations
are to be used.

– On the middle level, some splitting procedure is to be applied in order
(i) to split the model, (ii) to construct the corresponding adjoint equations
and (iii) to treat the sub-models and the corresponding equations in some
prescribed order.

– On the highest level, the optimization procedure is to be used.

The interplay of the methods used on these three levels must be studied
carefully in the efforts to design a good data assimilation algorithm which is
robust, fast and sufficiently accurate.

4 Treatment of a Simple Transport-Chemistry Problem

The following simple transport-chemistry problem is used in this sections in
order to illustrate how the data assimilation techniques discussed in the previous
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section can be implemented. The problem is described mathematically by a
system of partial differential equations (PDEs), in which it is assumed that V is
a positive constant:

∂c̄

∂t
= −V

∂c̄

∂x
+ f(t, x, c̄), x ∈ [a, b], t ∈ [0, T ], c̄ ∈ Rn, c(0, x) = c̄0. (2)

The system of PDEs given by (2) can be considered as a mathematical de-
scription of a very simple environmental transport-chemistry model. Normally,
three-dimensional transport is used in the modern model. Moreover several other
physical processes (diffusion, deposition, emissions, etc.) have to be included (see,
for example, [3], [4], [5], [8], [13], [19], [21] and [24]). However, some important
topics related to the implementation of data assimilation techniques can easily
be explained by using (2). Note also that in the actual computations some mod-
ules from the Unified Danish Eulerian Model (UNI-DEM), ([24], [25]) have been
implemented and used.

The model described by the system of PDEs (2) is split into two sub-models:
a pure transport sub-model and a pure chemistry sub-model:

∂ḡ

∂t
= −V

∂ḡ

∂x
, x ∈ [a, b], t ∈ [0, T ], ḡ ∈ Rq, (3)

∂h̄

∂t
= f(t, x, h̄), x ∈ [a, b], t ∈ [0, T ], h̄ ∈ Rq. (4)

The calculations with the two sub-models (3) and (4) are carried out as follows.
Assume that the calculations from t = t0 to t = tn have been completed and
an approximation c̄n to c̄(tn+1, x) has to be computed. We set ḡn = c̄n and
calculate with the selected numerical method for the treatment of (3) ḡn+1.
We proceed by setting h̄n = ḡn+1 and by calculating h̄n+1 using the selected
numerical method for the treatment of (4). Then we set c̄n+1 = h̄n+1. In this
way, the computations needed to calculate an approximation at t = tn+1 are
completed and we can proceed in the same way to compute an approximation
at the next time-point t = tn+2. It is still necessary to explain how to start the
computations, i.e. how to calculate an approximation c̄1 to c̄(t1, x). However,
this is not a problem, because c̄0 is given, see (2).

4.1 The Transport Sub-model and Its Adjoint Equation

It is important to emphasize here the fact that (3) is a system of q independent
scalar PDEs, where q is the number of the chemical species involved in the model.
Therefore it is quite sufficient to show how any of these scalar equations can be
solved. Assume that the number of grid-points on the Ox axis is Nx + 1 and let

∂g

∂t
= −V

∂g

∂x
, x ∈ [a, b], t ∈ [0, T ], g ∈ R, (5)
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be any of the scalar equations forming the system of PDEs (3), i.e. g is equal to
some component gi of ḡ where i = 1, 2, . . . , q. Consider the grids:

Gx = {xi|i = 0, 1, . . . , Nx, x0 = a, xNx = b} (6)

and

Gt = {tn|n = 0, 1, . . . , Nt, t0 = 0, tNt = T } (7)

Let xi ∈ Gx and tn ∈ Gt . Different numerical methods can be used to
calculate approximations

gi,n ≈ g(tn, xi) (8)

of the exact solution at point (tn, xi).
Formula (9), which is given below, can be obtained by using the notation

wi = (V xi�t)/4�x) and simple finite differences:

− wigi−1,n+1 + gi,n+1 + wigi+1,n+1 = wigi−1,n + gi,n − wigi+1,n. (9)

where i = 2, 3, . . . , Nx − 2.
Let us assume, for the sake of simplicity, that periodic boundary conditions

are given by the following formulae (in fact, only one boundary condition is quite
sufficient, but considering two boundary condition will be necessary if diffusion
terms are added):

c0,n = 0, cNx,n = 0, n = 0, 1, . . . , Nt. (10)

By applying (10), formula (9) can be rewritten for i = 1 as

g1,n+1 + w1g2,n+1 = g1,n − w1g2,n (11)

and for i = Nx − 1 as

− wNx−1gNx−2,n+1 + gNx−1,n+1 = wNx−1gNx−2,n + gNx−1,n. (12)

Denote

g̃n = (g1,n, g2,n, . . . , gNx−1,n)T . (13)

By using the notation introduced by (13), it is possible to rewrite (9), (11)
and (12) in a matrix form:

(I − A)g̃n+1 = (I + A)g̃n ⇒ g̃n+1 = Dḡn, (14)

D
def= (I − A)−1(I + A), (15)

where I is the identity matrix and A is a matrix which has non-zero elements only
on the two diagonals that are adjacent to the main diagonal (and, more precisely,
−wi on the diagonal below the main diagonal and wi on the diagonal above the
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main diagonal). Formula (15) has to be modified, by adding an appropriate
vector αn in its right-hand-side, when some other definition, different from that
given in (10), is to be used in connection with the boundary conditions.

If g̃n has already been calculated, then (14) can be used to proceed with the
calculation of g̃n+1 . Thus, if an initial field, g̃0, is given, then (14) can be used
to calculate successively, step-by-step, approximations of the exact solution.

As mentioned above, it is necessary to calculate the gradient Grad{J} of the
functional J{c̄0} from (1) in order to find an improved initial field c̄0. Assume
as in the first section of this chapter that observations are available at times
{tp | p = 0, 1, . . . , P}. Assume also that the calculations by formula (14) for
some n + 1 = p have been completed. It is then necessary to form the adjoint
variable

q̃p = W̃p (c̃p − c̃obs
p ) (16)

and to use it as a starting value in the integration of the adjoint equation
backward from t = tp to t = t0 (let us reiterate that we have assumed that
W̄p = I for all values of p). The backward calculations can be carried out by
using the following formula, which is the discrete adjoint equation corresponding
to (14):

q̃n = −DT q̃n+1, (17)

where D is defined in (15).

4.2 The Chemistry Sub-model and Its Adjoint Equation

There are no spatial derivatives in the chemical sub-model. If we consider this
sub-model at the spatial grid-points used in the transport model, then a system
of ordinary differential equations (ODEs) can be obtained. It is easily seen that
in fact this systems of ODEs consists of several independent and smaller systems.
Each of the smaller systems contains q equations and the number of such systems
is equal to the number Nx + 1 of spatial grid-points. It is quite sufficient to
illustrate how any of the small systems can be handled numerically.

Denote by h̃(t) and and f̃(t, h̃) the values h(t, xi) and f(t, xi, h) for any i,
i = 0, 1, . . . , Nx. Then the system of ODEs corresponding to the chosen index i
can be written as

dh̃

dt
= f̃(t, h̃) (18)

The system (18) contains q equations and one such system has to be treated
at every time-step and at every spatial grid-point. The system is stiff (discussion
about different aspects of the concept of stiffness for systems of ODEs can be
found, for example, in [11], [12], [14] and [23]) and therefore it has to be solved by
using implicit numerical methods for stiff systems of ODEs. The use of the simple
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Backward Euler Method, which has in some sense best stability properties, is
based on the following formula:

h̃n+1 = h̃n + �tf̃(tn, h̃n+1), (19)

where �t is the time-stepsize used and h̃n is an approximation of h̃(tn).
The adjoint equation of (19), which has to be handled in the backward mode,

can be written in the following form:

q̃n = q̃n+1 − �t

[
−∂f(cn)

∂c

]T

q̃n, (20)

where the adjoint variable is denoted by q̃.

4.3 Algorithmic Representation of the Calculations

The algorithm given in Fig. 1 can easily be modified for the particular problem
described by (2). The resulting algorithm is given in Fig. 2.

Comparing the algorithm given in Fig. 1 with the algorithm given in Fig. 2,
it is seen that there are four differences:

– The action ”Perform forward steps by using the sub-model 1” from
Fig. 1 is replaced in Fig. 2 by a loop carried out over the chemical species.
This loop can be executed in parallel.

– The action ”Perform forward steps by using the sub-model 2” from Fig. 1
is replaced in Fig. 2 by a loop carried out over the spatial grid-points. This
loop can be executed in parallel.

– The action ”Perform backward steps by using the adjoint equation 2” from
Fig. 1 is replaced in Fig. 2 by a loop carried out over the spatial grid-points.
This loop can be executed in parallel.

– The action ”Perform backward steps by using the adjoint equation 1”
from Fig. 1 is replaced in Fig. 2 by a loop carried out over the chemical
species. This loop can be executed in parallel.

The algorithm shown in Fig. 2 illustrates an important fact: not only is the
splitting procedure used leading to the treatment of smaller problems, but ad-
ditionally any parallel tasks appear in a very natural way. This can be
used to solve the problem more efficiently if a parallel computer is available.

4.4 Need of Synchronization of the Numerical Methods

It is desirable to synchronize the numerical methods that are used in the different
parts of the data assimilation algorithm in order to get better performance. It is
easy to see that the numerical methods used in the data assimilation algorithm
presented in this section are not synchronized. Consider the order of accuracy
of the numerical methods used in the different parts:

– The numerical method used in the treatment of the transport sub-model is
of second order.
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C
Initialize scalar variables, vectors and arrays; set gradient to zero

C
DO ITERATIONS = 1, MAX ITERATIONS

C
DO LARGE STEPS = 1, P STEP

C
F START=(LARGE STEPS-1)∗P LENGTH+1
F END=LARGE STEPS∗P LENGTH
DO FORWARD STEPS = F START,F END

DO CHEMICAL SPECIES=1,q
Perform computations by using formula (14)

END DO CHEMICAL SPECIES
DO SPATIAL POINTS=1,NX

Perform computations by using formula (19)
END DO SPATIAL POINTS

END DO FORWARD STEPS
C

Form the adjoint equation and update the value of the functional
DO BACKWARD STEPS = F END,1,-1

DO SPATIAL POINTS=1,NX
Perform computations by using formula (20)

END DO SPATIAL POINTS
DO CHEMICAL SPECIES=1,q

Perform computations by using formula (17)
END DO CHEMICAL SPECIES

END DO BACKWARD STEPS
Update the value of the gradient of the functional

C
END DO LARGE STEPS

C
Compute an approximation of the optimization parameter ρ
Update the initial values field:
NEW FIELD=OLD FIELD + ρ∗GRADIENT
Check the stopping criteria
Exit from loop DO ITERATIONS
when the stopping criteria are satisfied

C
END DO ITERATIONS

C
Perform output operations and stop the computations

C

Fig. 2. Adapting the algorithm presented in Fig. 1 to the simple transport-chemistry
example studied in this section

– The Backward Euler Method, which is used in the treatment of the chemistry
sub-model, is of first order.

– The sequential splitting procedure is of order one.
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The order of accuracy s of the combined method (methods for solving diffe-
rential equation + splitting procedure) is usually given by the formula:

s = min{p1, p2, r} (21)

where (i) p1 is the order of the numerical methods used in the treatment of
the first sub-model, (ii) p2 is the order of the numerical methods used in the
treatment of the first sub-model and (iii) r is the order of the splitting procedure.

Formula (21) shows that the order of the combined method is one. This indi-
cates that if we are interested to have a combined method of order two, then it
is necessary to use the following rules in the selection of numerical methods for
solving differential equations and splitting procedures:

– A numerical method of order two has to be chosen for the treatment of the
chemistry sub-model. Both the Trapezoidal Rule and the Implicit Mid-point
Rule are obvious candidates. However, the stability properties of these two
numerical methods are poorer than the stability properties of the used in
this paper Backward Euler Method (see, for example, [11] and [12]). This
means that if the chemical sub-model leads to system of very stiff ODEs
(which is often the case), then it is not advisable to use these two methods.
One can apply some Runge-Kutta method of order two with good stability
properties, but these methods are as a rule much more expensive than the
three methods mentioned above. This short discussion shows very clearly
that the choice is, at least, not very easy.

– Also a splitting procedure of order two has to be chosen. A possible choice is
the symmetric splitting procedure introduced by Marchuk and Strang (see,
[17], and [22]). It should be mentioned here, however, that the symmetric
splitting is more expensive computationally than the simpler sequential split-
ting procedure. Thus, also in this part the decision is not an easy task.

5 Concluding Remarks

A data assimilation technique consists of three computational parts:

– numerical method for solving differential equations,
– splitting procedures

and

– optimization algorithms.

These three parts were discussed in this paper. Many conditions are to be
satisfied if one is interested in achieving an accurate, robust and fast algorithm.
It is not very easy to satisfy all these conditions. On the other hand, however,
the data assimilation techniques lead to huge computational tasks. Therefore,
efficiency is highly desirable.
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The stability properties of the data assimilation techniques are an important
issue. Only a few results related to the stability are obtained until now. More
research is needed in this direction. Some stability results are given in [2].

Better optimization algorithms are also highly desirable. The big problem is
that most of the optimization subroutines are using vector norms in the stop-
ping criteria. The problems arising in the the transport-chemical models are
extremely badly scaled (see [24] and [25]). Therefore it is desirable to use rela-
tive component-wise checks in the stopping criteria.
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Abstract. In the last years the need to solve complex physical mod-
els increased. Because of this motivation to solve complex models with
efficient methods, we deal with advanced operator-splitting methods.
They are based on weighted iterative operator-splitting methods and
decouple complicate problems in simpler problems. The stability of the
weighted splitting method is discussed and the efficiency of such meth-
ods. For the stiff-problems we present the A-stability property and the
choice of the weighted parameters. The theory for the semi-discretized
equations is introduced with respect to the gained ODE’s. A general
stability-theory for linearized operators is proposed and discussed for
stiff-problems. Finally we concern the weighted operator-splitting meth-
ods for multi-dimensional and multi-physical problems.

1 Introduction

We motivate our studying on multi physics problems with decomposable pro-
cesses, e.g. flow- and reaction parts. Decomposition methods provide an efficient
methodology for solving PDE’s, because of the possibility of adapting componen-
twise the discretization and solver methods to the local behavior of the solution.
One could adapt the methods to different scales in time and space with respect to
the physical behavior. Based on these contributions we present a flexible iterative
operator-splitting method for applications on stiff partial differential equations.
The possibility to decouple the full problem in simpler problems reduce the
amount of computations. The discussion of the methods with respect to the sta-
bility and consistency is done to develop a flexible solver method. The stability
is considered for commutative operators. We obtain stable methods in the sense
of A-stability and could apply our method to well-known linear test-examples.

The paper is organized as follows. A mathematical model based on the
convection-reaction equations is introduced in section 2. The iterative operator-
splitting methods and the modifications to weighted methods are described in
section 3. In section 4 we introduce the stability analysis of the methods and
derive the A-stability. The numerical experiments are discussed in section 5.
Finally we discuss our future works in the area of splitting and decomposition
methods.
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2 Mathematical Model

The motivation for the study presented below is coming from a computational
simulation of time-dependent processes, for example in bio-remediation [1] or
radioactive contaminants [4].

The mathematical equations are given by

∂t R c + ∇ · vc = f(c, t), (1)
f(c, t) = λ(t) c , time-dependent reactions, (2)
c0 = c(x, 0) , initial condition, (3)
n · v c = 0 , boundary condition. (4)

The unknown c = c(x, t) is considered in Ω × (0, T ) ⊂ IRd × IR+, the space-
dimension is given by d . The parameter R ∈ IR+ is constant and is named as
retardation factor. The reaction λ(t) is a nonlinear time-dependent functions. v
is the divergence-free velocity.

In the following we describe the Operator-Splitting method for decoupling in
two equation-parts in 2 operators as a basic tool for solving our equations.

3 Unsymmetric Weighted Iterative Splitting Method

The proposed unsymmetric weighted iterative splitting method is a combination
between a sequential splitting method, see [6], and an iterative operator splitting
method, see [2]. The weighting factor ω is used as an adaptive switch between
lower and higher order splitting methods, see [3]. The following algorithm is
based on the iteration with fixed splitting discretization step-size τ . On the
time interval [tn, tn+1] we solve the following sub-problems consecutively for
i = 0, 2, . . . 2m.

dci(t)
dt

= Aci(t) + ω Bci−1(t), with ci(tn) = cn (5)

and c0(tn) = cn , c−1 = 0.0,

dci+1(t)
dt

= ω Aci(t) + Bci+1(t), (6)

with ci+1(tn) = ω cn + (1 − ω) ci(tn+1),

where cn is the known split approximation at the time level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(tn+1). Our
parameter ω ∈ [0, 1]. For ω = 0 we have the sequential-splitting and for ω = 1
we have the iterative splitting method, cf. [2].

Because of the weighting between the sequential splitting and iterative split-
ting method, also the initial-conditions are weighted. So, we have the final results
of the first equation (5) appearing in the initial condition for the second (6).
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4 Stability Theory

We concentrate on the stability theory for the linear ordinary differential equa-
tions with commutative operators. First we apply the recursion for the general
case and obtain the commutative case.

4.1 Recursion

We study the stability for the linear system (5) and (6). We treat the special
case for the initial-values with ci(tn) = cn and ci+1(tn) = cn for an overview.
The general case ci+1(tn) = ωcn + (1 − ω)ci(tn+1) could be treated in the same
manner.

We consider the suitable vector norm || · || on IRM , together with its induced
operator norm. The matrix exponential of Z ∈ IRM×M is denoted by exp(Z).
We assume that

|| exp(τ A)|| ≤ 1 and || exp(τ B)|| ≤ 1 for all τ > 0.

It can be shown that the system (5)–(6) implies || exp(τ (A + B))|| ≤ 1 and is
itself stable.

For the linear problem (5) and (6) it follows by integration that

ci(t) = exp((t − tn)A)cn +
∫ t

tn

exp((t − s)A) ω Bci−1(s) ds, (7)

ci+1(t) = exp((t − tn)B)cn +
∫ t

tn

exp((t − s)B) ω Aci(s) ds. (8)

With elimination of ci we get

ci+1(t) = exp((t − tn)B)cn + ω
∫ t

tn exp((t − s)B) A exp((s − tn)A) cn ds

+ω2
∫ t

s=tn

∫ s

s′=tn exp((t − s)B) A exp((s − s′)A) B ci−1(s′) ds′ ds. (9)

For the following commuting case we could evaluate the double integral
∫ t

s=tn∫ s

s′=tn as
∫ t

s′=tn

∫ t

s=s′ and could derive the weighted stability-theory.

4.2 Commuting Operators

For more transparency of the formula (9) we consider a well-conditioned system
of eigenvectors and the eigenvalues λ1 of A and λ2 of B instead of the operators
A, B themselves. Replacing the operators A and B by λ1 and λ2 respectively,
we obtain after some calculations

ci+1(t) = cn 1
λ1 − λ2

(ωλ1 exp((t − tn)λ1) + ((1 − ω)λ1 − λ2) exp((t − tn)λ2))

+ cn ω2 λ1λ2

λ1 − λ2

∫ t

s=tn

(exp((t − s)λ1) − exp((t − s)λ2)) ds. (10)

Note that this relation is symmetric in λ1 and λ2.
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A-Stability. We define zk = τλk, k = 1, 2. We start with c0(t) = un and we
obtain

c2m(tn+1) = Sm(z1, z2) cn, (11)

where Sm is the stability function of the scheme with m-iterations. We use (10)
and obtain after some calculations

S1(z1, z2) = ω2 cn +
ω z1 + ω2 z2

z1 − z2
exp(z1) cn (12)

+
(1 − ω − ω2) z1 − z2

z1 − z2
exp(z2) cn,

S2(z1, z2) = ω4 cn +
ω z1 + ω4 z2

z1 − z2
exp(z1) cn (13)

+
(1 − ω − ω4) z1 − z2

z1 − z2
exp(z2) cn

+
ω2 z1 z2

(z1 − z2)2
((ωz1 + ω2z2) exp(z1)

+(−(1 − ω − ω2)z1 + z2) exp(z2)) cn

+
ω2 z1 z2

(z1 − z2)3
((−ωz1 − ω2z2)(exp(z1) − exp(z2))

+((1 − ω − ω2)z1 − z2)(exp(z1) − exp(z2))) cn.

Let us consider the stability given by the following eigenvalues in a wedge

W = {ζ ∈ C : | arg(ζ) ≤ α}.

For stability we have |Sm(z1, z2)| ≤ 1 whenever z1, z2 ∈ Wπ/2.
In the following theorem the stability is given for the first two iteration steps

of the unsymmetric weighted iterative splitting method.

Theorem 1. We have the stability given as:

For S1 we have A-stability with
maxz1≤0,z2∈Wα |S1(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω = 1

4√3
.

For S2 we have A-stability with

maxz1≤0,z2∈Wα |S2(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2] with ω ≤
(

1
8 tan2(α)+1

)1/8

.

Proof. We consider a fixed z1 = z, Re(z) < 0 and z2 → −∞ . Then we obtain

S1(z, ∞) = ω2(1 − ez) (14)
and S2(z, ∞) = ω4(1 − (1 − z)ez). (15)

If z = x + iy, x < 0 then we obtain:
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1.) For S1 we get

|S1(z, ∞)|2 = ω4(1 − 2 exp(x) cos(y) + exp(2x)), (16)

and hence |S1(z, ∞)| ≤ 1 ⇔ ω4 ≤ 1
1 − 2 exp(x) cos(y) + exp(2x)

. (17)

Because of x < 0 and y ∈ IR we could estimate −2 ≤ 2 exp(x) cos(y) and
exp(2x) ≥ 0. From (17) we obtain ω ≤ 1

4√3
.

2.) For S2 we get

|S2(z, ∞)|2 = ω8{1 − 2 exp(x)[(1 − x) cos(y) + y sin(y)] (18)
+ exp(2x)[(1 − x)2 + y2]}.

After some calculations we could obtain

|S2(z, ∞)| ≤ 1 ⇔ exp(x) ≤ (
1
ω8

− 1)
exp(−x)

(1 − x)2 + y2
+ 2

|1 − x| + |y|
(1 − x)2 + y2

. (19)

We could estimate for x < 0 and y ∈ IR : |1−x|+|y|
(1−x)2+y2 ≤ 3/2 and 1

2 tan2(α) <

exp(−x)
(1−x)2+y2 where tan(α) = y/x. Finally, we get the bound ω ≤

(
1

8 tan2(α)+1

)1/8

.

Remark 1. The stability is derived for ordinary differential equations with linear
operators. For applications in linear partial differential equations we assume a
discretization of the spatial operators, so that we obtain a system of linear ordi-
nary differential equations. These equations can be treated as described below.

5 Numerical Results

5.1 First Example

We deal with a first order partial differential-equation given as a transport equa-
tion in the following example

∂tu1 = −v1∂xu1 − λ1u1, (20)
∂tu2 = −v2∂xu2 + λ1u1 − λ2u2, (21)

u1(x, 0) =
{

1 , for 0.1 ≤ x ≤ 0.3,
0 , otherwise, (22)

u2(x, 0) = 0 , for x ∈ [0, X ], (23)

where λ1, λ2 ∈ IR+ and v1, v2 ∈ IR+. We have the time-interval t ∈ [0, T ] and
the space-interval x ∈ [0, X ].

The analytical solutions are given in [5].
We rewrite the equation-system (20)–(23) in operator notation, and end up

with the following equations

∂tu = Au + Bu, (24)

u(x, 0) =
{

(1, 0)T , for 0.1 ≤ x ≤ 0.3,
(0, 0)T , otherwise, (25)
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where u = (u1, u2)T . Our splitted operators are

A =
(

−v1∂x 0
0 −v2∂x

)
, B =

(
−λ1 0
λ1 −λ2

)
. (26)

We use the finite difference method as spatial discretization method and solve
the time-discretization analytically.

The spatial discretization is done as follows, we concentrate on the interval
x ∈ [0, 1.5] and we consider a uniform partition of it with step Δx = 0.1. For
the transport-term we use an upwind finite difference discretization given as :

∂xui =
ui − ui−1

Δx
. (27)

For initial-values we use the given impulses

u1(x) =
{

1 , 0.1 ≤ x ≤ 0.3
0 , otherwise (28)

and u2(x) = 0 , x ∈ [0, 1.5]. (29)

In the following equations we write the iterative operator splitting algorithm
taking into account the discretization in space. The time-discretization is solved
analytically. For time-integration we apply implicit Euler methods for the semi-
discretized equations.

For the parameters of equations (20)–(23) we use λ1 = 0.01, λ2 = 104, v1 = 1.0
and v2 = 0.5. For the time-interval t ∈ [0, 1] we apply the time-steps Δt = 1.0
and Δt = 0.2.

For the end-time tend = 1, we check the results for the end-point x1 = 1.0.
We get the exact solution of our equation, see [5]

u1(x1, tend) = 9.9004 × 10−1 , u2(x1, tend) = 9.901 × 10−7.

We present the computed results in Table 1. The results are improved with the
selected weighting factors ω. For weighting factors around 0.3 we can stabilize

Table 1. Numerical results for the first example with the weighted method

Number of Iterative approx1 approx2 error1 error2 ω
time-part. Steps

1 2 0.9010315283 0.0000179191 8.900847 × 10−2 1.692903 × 10−5 0.3
1 2 0.9028283841 0.0000494056 8.721162 × 10−2 4.841555 × 10−5 0.5
1 2 0.9040595631 0.0000710110 8.598044 × 10−2 7.002093 × 10−5 0.6
1 2 0.9055125761 0.0000965245 8.452742 × 10−2 9.553440 × 10−5 0.7
1 4 0.9000930952 −0.0018767031 8.994690 × 10−2 1.877693 × 10−3 0.3
1 4 0.9006999095 −0.0142537213 8.934009 × 10−2 1.425471 × 10−2 0.5
5 2 0.9227053726 0.0505299263 6.733463 × 10−2 5.052894 × 10−2 0.3
5 2 1.2627573122 0.0009437033 2.727173 × 10−1 9.427132 × 10−4 0.5



46 J. Geiser

our method for small time-steps, but we have problems with large time-steps. A
better stabilization for larger time-steps is obtained with values of ω around 0.5.
A balance between the number of time-partitions and iterative steps can lead to
an optimal weighting factor.

5.2 Second Test-Example

We deal with a nonlinear ordinary differential equation given as

du(t)
dt

= −(1 + t + t2/2)u(t) , (30)

u(0) = 1 , (initial conditions) , (31)

where we have the time-interval t ∈ [0, 2]. The analytical solution is:

u(t) = exp(−(t + t2/2 + t3/6)), for 0 ≤ t ≤ 2 , (32)

We rewrite the equation-system (30)–(31) in operator notation, and end up with
the following equations :

du(t)
dt

= A(t)u(t) + B(t)u(t) , u(0) = 1, (33)

Our splitted operators are

B(t) = −t2/2 quadratic part. (34)

According to the weighted splitting method, we divide our system of ODE’s in
step i and i + 1 as following

dui(t)
dt

= −(1 + t)ui(t) − ω(t2/2)ui−1(t) ,

dui+1(t)
dt

= −ω(1 + t)ui(t) − (t2/2)ui+1(t) ,

with ui(0) = 1 and ui+1(0) = ω + (1 − ω)ui(tn+1).
For the steps i and i + 1 we can derive analytical solutions and apply them

in our numerical scheme.
The numerical results are compared for the end-time t = 2 with the exact

solution given as 0.0048279500. Our results are presented in Table 2.
Because of the time-dependent problem one of the best weighting-factor ω

is around 0.3 and one shift to a lower order method. In table 2 we can see
that the computed results are positive with more time-partitions and more
iteration-steps and we obtain more the analytical results. It can also be found
an optimal weighting factor is a balance between the time-steps and the
iterative steps.
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Table 2. Numerical results for the second example with the weighted method

Number of Iterative approx error ω
time-part. Steps

5 2 −0.0081201319 1.294808 × 10−2 0.3
5 4 −0.0081201324 1.294808 × 10−2 0.3

10 2 0.0683816109 6.355366 × 10−2 0.3
10 2 0.0208173736 1.598942 × 10−2 0.5
10 4 0.0683816109 6.355366 × 10−2 0.3
10 4 0.0208173736 1.598942 × 10−2 0.5

6 Conclusion and Discussions

We present a modified iterative Operator-Splitting method and we could study
the behavior for the stiff case. Because of the weighting factor we obtain sta-
bilized results and a good choice between iteration-steps and weighting factors
is possible. As in the analysis presented, we can see an good result with 2 − 4
iteration-steps and weighting factors of 0.5 − 0.6. In the next step the discus-
sion for nonlinear operators with respect to applications in fluid-dynamics is
proposed.
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Abstract. The subject of our research is to solve accurately ODEs,
which appear in mathematical models arising from several physical
processes. For this purpose we develop a new class of weighted itera-
tive operator splitting methods. We present applications to systems of
linear ODEs, which might contain also stiff parameters. The benefit of
the proposed method is demonstrated with regard to convergence results
and comparison to analytical solutions. We provide improved results
and convergence rates in comparison with classical operator splitting
methods.

1 Introduction

Mathematical equations representing complex models with coupled processes
often involve transport and reaction equations. An important design principle
for many successful numerical methods for such systems is operator splitting
(OS). The efficiency of OS lies in the possibility to deal with simpler problems
and solve them with adapted methods. We present a new weighted iterative OS
method and confirm its effectiveness with two applications on systems of ODEs.
Weighted OS schemes are based on the idea that the methods can be stabilized
with some weighting factor, which actually weights between first order and higher
order OS methods, and lead to better approximations with few iterative steps.
The numerical results show that the proposed scheme offers higher accuracy
compared with already known OS methods.

2 Mathematical Model

The motivation for our research originates from a computational simulation of
bio-remediation or radioactive contaminants [1]. The mathematical model is il-
lustrated by following equations

R
∂c

∂t
+ ∇ · (vc − D∇c) = f(c) ,

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 48–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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f(c) = cp , p > 0, chemical-reaction

f(c) =
c

1 − c
, bio-remediation

The unknown function c = c(x, t) is considered in Ω × (0, T ) ⊂ IRd × IR . The
parameter R ∈ IR+ is constant and is named retardation factor. The functions
f(c) are nonlinear, for example bio-remediation or chemical reaction. D is the
Scheidegger diffusion-dispersion tensor and v is the velocity. In this work we
deal only with linear systems of ODEs in order to verify the effectiveness of our
approach and it is a subject currently under research how to apply these ideas
to more complicated nonlinear problems, as the one mentioned above.

3 The New Weighted Iterative Splitting Method

Our goal is to improve the convergence of the results for the iterative OS method
[2], which is a traditional, powerful concept used in many diverse fields of applied
mathematics for the design of effective numerical schemes. We focus our study
on Cauchy problems of the form

dc(t)
dt

= Ac(t) + B c(t), t ∈ (0, T ), c(0) = c0,

where A and B are linear operators represented by matrices.
The following algorithm is based on the iteration with fixed splitting dis-

cretization step-size Δt = tn+1 − tn, which is actually the step-size of a uniform
partition 0 = t0 < t1 < . . . < tN−1 < tN = T of the time interval [0, T ]. On
the intervals [tn, tn+1], n = 0, 1, . . .N − 1, we solve the following sub-problems
consecutively for i = 0, 2, . . .2m.

The Initial idea is the unsymmetric weighted iterative splitting method:

dci(t)
dt

= Aci(t) + ω Bci−1(t), with ci(tn) = cn (1)

and c0(tn) = cn , c−1 = 0,

dci+1(t)
dt

= ω Aci(t) + Bci+1(t), (2)

with ci+1(tn) = ω cn + (1 − ω) ci(tn+1) ,

where cn is the known split approximation at the time level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(tn+1). The
parameter ω ∈ [0, 1]. For ω = 0 we have the sequential splitting and for ω = 1
we have the iterative splitting method, cf. [2].

Because of the weighting between the sequential splitting and iterative split-
ting method, also the initial-conditions are weighted. So, we have the final results
of the first equation (1) appearing in the initial condition for the second (2). This
initial weighting idea faces problems in the convergence analysis, because of the
unsymmetry. We are led to construct a new weighted splitting method, according
to the following scheme:
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The new idea is the symmetric weighted iterative splitting method:

dci(t)
dt

= 2ωAci(t) + (1 − 2ω) Bci−1(t), (3)

with ci(tn) = cn and c0(tn) = cn , c−1 = 0,

dci+1(t)
dt

= (1 − 2ω) Aci(t) + 2ωBci+1(t), (4)

with ci+1(tn) = 2ω cn + (1 − 2ω) ci(tn+1) ,

where cn is the known split approximation at the time level t = tn. The split
approximation at the time-level t = tn+1 is defined as cn+1 = c2m+1(tn+1). The
parameter ω ∈ [0, 1]. For ω = 0 we have the sequential splitting and for ω = 0.5
we have the iterative splitting method, cf. [2].

From a software development point of view, the above described numerical
scheme can be realized in a stepwise manner, starting with a simple solver for
each subproblem and then replacing each solver independently of the other by a
more advanced solver, until a desired level of sophistication is reached.

4 Numerical Results

4.1 First Test-Example of an ODE

In order to verify the efficiency of our proposed scheme we concentrate on a
simple system of ODEs. We could then study the behavior for stiff-problems
when λ2 >> λ1 ≈ 0.

du1(t)
dt

= −λ1u1 + λ2u2 , (5)

du2(t)
dt

= λ1u1 − λ2u2 , (6)

u1(0) = 1 , u2(0) = 1 (initial conditions) , (7)

where λ1 = 0.04 and λ2 = 1 104 are the decay factors. The time-interval is
t ∈ [0, 1].

We rewrite the equation-system (5)–(7) in operator notation, and end up with
the following equations :

du

dt
= Au + Bu , u(0) = (1, 1)T ,

where u(t) = (u1(t), u2(t))T for t ∈ [0, 1] and our splitted operators are

A =
(

−λ1 λ2

0 0

)
, B =

(
0 0
λ1 −λ2

)
.

For the system of ODEs (5)–(7) we can derive the analytical solution by
integrating it :

u1(t) = u10 + u20 exp(−(λ1 + λ2)t) ,

u2(t) =
λ1

λ2
u10 − u20 exp(−(λ1 + λ2)t) ,
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According to the new second weighted splitting method, we divide our system
of ODEs in step i and i + 1 as follows

Step i

dui
1

dt
= −2ωλ1u

i
1 + 2ωλ2u

i
2 ,

dui
2

dt
= (1 − 2ω)λ1u

i−1
1 − (1 − 2ω)λ2u

i−1
2 ,

ui
1(0) = u10 , ui

2(0) = u20 ,

Step i + 1

dui+1
1

dt
= −(1 − 2ω)λ1u

i
1 + (1 − 2ω)λ2u

i
2 ,

dui+1
2

dt
= 2ωλ1u

i+1
1 − 2ωλ2u

i+1
2 ,

ui+1
1 (0) = u′

10 , ui+1
2 (0) = u′

20 ,

where t ∈ [0, Δt], u′
10 = 2ωu10 + (1 − 2ω)ui

1(t
n+1) and u′

20 = 2ωu20 + (1 −
2ω)ui

2(tn+1).
For steps i and i+1 we can derive analytical solutions and apply them in our

numerical scheme. The analytical solutions are given as

ui
1(t) = u10exp(−2ωλ1t) + u20

λ2

λ1
+ ui−1

1 (t)
[
(1 − 2ω)λ2t − 1 − 2ω

2ω

λ2

λ1

]

+ ui−1
2 (t)

[
−(1 − 2ω)

λ2
2

λ1
t +

1 − 2ω

2ω

λ2
2

λ2
1

]
,

ui
2(t) = (1 − 2ω)(λ1u

i−1
1 (t) − λ2u

i−1
2 (t))t + u20,

and

ui+1
1 (t) = (2ω − 1)(λ1u

i
1(t) − λ2u

i
2(t))t + u′

20,

ui+1
2 (t) = u′

20exp(−2ωλ2t) + u′
10

λ1

λ2
+ ui

2(t)
[
(1 − 2ω)λ1t − 1 − 2ω

2ω

λ1

λ2

]

+ ui
1(t)

[
−(1 − 2ω)

λ2
1

λ2
t +

1 − 2ω

2ω

λ2
1

λ2
2

]
,

We compute with our given scheme and compare with the values of the analytical
solutions at the end-time t = 1, which are u1,exact = 1 and u2,exact = 4 · 10−6.
The numerical results are presented in Table 1, for ω = 0.6 and 0.9. Table 2
shows the results of the traditional iterative method for comparison. Figure 1
shows the behavior of the error for the solution u2 as a function of the number
of iterations, for several values of ω. We see clearly that if we have 10 or more
time partitions, the method provides convergence for all values of ω. A closer
examination informs that ω = 0.6 is the optimal value of ω for this specific
example.
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Table 1. Numerical results for the first example with the new weighted method

Number of Iterative err1 err2 ω
time-partitions Steps

1 2 1.000299 × 100 1.195833 × 10−9 0.6

1 2 1.001168 × 100 4.670030 × 10−9 0.9

1 10 1.000308 × 100 1.230005 × 10−9 0.6
1 10 1.001455 × 100 5.817809 × 10−9 0.9

1 200 1.000308 × 100 1.230005 × 10−9 0.6

1 200 1.001455 × 100 5.819514 × 10−9 0.9

10 2 3.428597 × 101 1.330296 × 10−4 0.6
10 2 4.430855 × 102 1.767357 × 10−3 0.9

10 10 2.311510 × 10−5 3.999908 × 10−6 0.6

10 10 5.415010 × 10−1 1.835200 × 10−6 0.9
10 200 3.269149 × 10−6 3.999987 × 10−6 0.6

10 200 1.580502 × 10−5 3.999937 × 10−6 0.9

150 2 2.285723 × 100 5.028608 × 10−6 0.6

150 2 2.953858 × 101 1.131697 × 10−4 0.9
150 10 1.337681 × 10−6 3.999995 × 10−6 0.6

150 10 3.609851 × 10−2 3.856809 × 10−6 0.9

150 200 1.462200 × 10−8 4.000000 × 10−6 0.6
150 200 7.084913 × 10−8 4.000000 × 10−6 0.9

Table 2. Numerical results for the first example with the iterative method

Number of Iterative err1 err2
time-partitions Steps

1 2 9.607895 × 103 3.842758 × 10−2

1 10 9.607894 × 103 3.842757 × 10−2

1 200 9.607894 × 103 3.842757 × 10−2

10 2 9.896297 × 103 1.027203 × 100

10 10 2.548589 × 108 7.638750 × 102

10 200 2.548589 × 108 7.638750 × 102

150 2 4.000800 × 10−4 1.600320 × 10−9

150 10 3.809891 × 10−2 3.047906 × 10−7

150 200 3.809891 × 10−2 3.047906 × 10−7

4.2 Second Test-Example of an ODE

We study another ODE and separate the complex operator in two simpler op-
erators.

du1(t)
dt

= −16u1 + 12u2 + 16 cos(t) − 13 sin(t) , (8)

du2(t)
dt

= 12u1 − 9u2 − 11 cos(t) + 9 sin(t) , (9)

u1(0) = 1 , u2(0) = 0 (initial conditions) , (10)

where the time-interval is t ∈ [0, π/4].
For the equation-system (8)–(10) we can derive the analytical solution:

u1(t) = cos(t), u2(t) = sin(t)

At the end-point t = π/4 we have u1,exact =
√

2
2 , u2,exact =

√
2

2 .
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We rewrite the equation-system (8)–(10) in operator notation, and end up
with the following equations :

du

dt
= A(u) + B(u) , u(0) = (1, 0)T ,

where u(t) = (u1(t), u2(t))T for t ∈ [0, π/4]. Due to the singularity of this exam-
ple, we must choose among several possibilities the optimal assignment for the
splitted operators. We select

A(u) =
(

−16u1 − 13 sin(t)
12u1 + 9 sin(t)

)
, B(u) =

(
12u2 + 16 cos(t)
−9u2 − 11 cos(t)

)
.

For the sake of simplicity and for economy of space we write here the operator-
splitting scheme and the solutions for every step only for the iterative method.
The new weighted method is applied absolutely similarly, according to the
scheme (3)–(4).

Step i

du1,i

dt
= −16u1,i + 12u2,i−1 + 16 cos(t) − 13 sin(t) ,

du2,i

dt
= 12u1,i − 9u2,i−1 − 11 cos(t) + 9 sin(t) ,

ui
1(t

n) = 1 , ui
2(t

n) = 0 ,
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Step i + 1

du1,i+1

dt
= −16u1,i + 12u2,i+1 + 16 cos(t) − 13 sin(t) ,

du2,i+1

dt
= 12u1,i − 9u2,i+1 − 11 cos(t) + 9 sin(t) ,

ui+1
1 (tn) = 1 , ui+1

2 (tn) = 0 ,

where t ∈ [0, Δt], and Δt = π/4.

For the steps i and i + 1 we can derive analytical solutions and apply them
in our numerical scheme. The analytical solutions are given as

ui
1(t) =

3
4
u2,i−1 +

269
257

cos(t) − 192
257

sin(t) − 12
257

exp(−16t)

ui
2(t) =

401
257

sin(t) − 9
257

cos(t) +
3
4

exp(−16t)
12
257

,

and

ui+1
1 (t) =

8
41

sin(t) +
113
41

cos(t) +
4
3

exp(−9t)
2

123
+

26896
15129

ui+1
2 (t) =

4
3
u1,i − 54

41
cos(t) +

35
41

sin(t) − exp(−9t)
2

123
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Table 3. Numerical results for the second example with the new weighted method,
ω = 0.9, in comparison with the iterative method

Number of Iterative err1(weighted) err2(weighted) err1(iter) err2(iter)
time-part. Steps

1 4 3.53579 × 102 1.56711 × 100 6.90483 × 10−1 7.52328 × 10−1

1 10 3.53579 × 102 1.53395 × 100 6.90483 × 10−1 9.33215 × 10−1

1 50 3.53579 × 102 1.53370 × 100 6.90483 × 10−1 5.22929 × 100

10 4 3.40879 × 102 7.75019 × 10−1 3.72598 × 10−3 2.93505 × 10−1

10 10 3.40846 × 102 7.75013 × 10−1 3.72598 × 10−3 1.36090 × 100

10 50 3.40846 × 102 7.75013 × 10−1 3.72598 × 10−3 4.06530 × 101

100 4 2.31925 × 10−1 2.68301 × 10−3 4.40903 × 10−4 5.20919 × 10−2

100 10 1.67892 × 10−3 2.68301 × 10−3 4.40903 × 10−4 3.08888 × 100

100 50 3.96724 × 10−5 2.68301 × 10−3 4.40903 × 10−4 7.52127 × 101

The results are presented in Table 3 in comparison with the results of the new
proposed weighted method.

5 Conclusion and Discussions

The intention of this work is to introduce a modified weighted iterative Operator-
Splitting method and to confirm the accuracy of the proposed scheme through
application on two systems of ODEs. We obtain better convergence results in
comparison with traditional iterative splitting, even for a stiff case of parame-
ters. With appropriate assignment of the weighting factor we can stabilize the
method, and actually with less iterations. The suitable modifications of the ideas
presented here for applying them on PDEs with respect to convection-diffusion-
reaction equations are issues currently under research.
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Abstract. In the present paper we concentrate on algebraic two-level
and multilevel preconditioners for symmetric positive definite problems
arising from discretization by Rannacher-Turek non-conforming rotated
bilinear finite elements on quadrilaterals. An important point to make is
that in this case the finite element spaces corresponding to two successive
levels of mesh refinement are not nested (in general). To handle this, a
proper two-level basis is required in order to fit the general framework
for the construction of two-level preconditioners for conforming finite
elements and to generalize the methods to the multilevel case.

The proposed variants of hierarchical two-level basis are first intro-
duced in a rather general setting. Then, the involved parameters are
studied and optimized. As will be shown, the obtained bounds – in par-
ticular – give rise to optimal order AMLI methods of additive type. The
presented numerical tests fully confirm the theoretical estimates.

1 Introduction

In this paper we consider the elliptic boundary value problem

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN ,
(1)

where Ω is a polygonal domain in R
2, f(x) is a given function in L2(Ω), the

diffusion coefficient a(x) is a piece-wise smooth and strictly positive function,
uniformly bounded in Ω, n is the outward unit vector normal to the boundary
Γ = ∂Ω, and Γ = Γ̄D ∪ Γ̄N . The weak formulation of problem (1) reads as
follows:

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 56–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Given f ∈ L2(Ω) find u ∈ V ≡ H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫
Ω

a(x)∇u(x) · ∇v(x)dx. (2)

The variational problem (2) is discretized using the finite element method. That
is, the continuous space V is replaced by a finite dimensional subspace Vh which
corresponds to a given partition Th of the domain Ω. Moreover, we assume
that Th is obtained by a proper refinement of a coarser partition TH . Then the
problem is: find uh ∈ Vh, such that

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, where Ah(uh, vh)=
∑
e∈Th

∫
e

a(e)∇uh ·∇vhdx.

Here a(e) is a constant defined by the integral averaged value of a(x) over each
element from the coarser partition TH .

1.1 The Two-Level Setting

We are concerned with the construction of a two-level preconditioner M for Ah,
such that the spectral condition number κ(M−1Ah) of the preconditioned ma-
trix M−1Ah is uniformly bounded with respect to the meshsize parameter h and
possible coefficient jumps. The classical theory for constructing optimal order
two-level preconditioners was first developed in [3,8], see also [2], for the case of
linear conforming finite elements. The general framework requires to define two
nested finite element spaces VH ⊂ Vh that correspond to two consecutive (regu-
lar) mesh refinements TH and Th of the domain Ω. Let {φ

(k)
H , k = 1, 2, · · · , |NH |}

and {φ
(k)
h , k = 1, 2, · · · , |Nh|} denote the set of standard finite element nodal

basis functions for the spaces VH and Vh, respectively. We split the set of mesh-
points (nodes) Nh from Th into two groups: the first group contains the nodes NH

from TH and the second one consists of the rest, where the latter are the newly
added node-points Nh\H from Th\TH . Next we define the so-called hierarchical
basis functions

{φ̃
(k)
h , k = 1, 2, · · · , |Nh|} = {φ

(l)
H onTH} ∪ {φ

(m)
h onTh\TH}. (3)

Let then Ãh be the corresponding hierarchical stiffness matrix. Under the split-
ting (3) both matrices Ah and Ãh admit in a natural way a two-by-two block
structure

Ah =
[
A11 A12

A21 A22

]
}Nh\H

}NH
, Ãh =

[
A11 Ã12

Ã21 AH

]
}Nh\H

}NH
. (4)

As is well-known, there exists a transformation matrix J =
[

I1 0
J21 I2

]
, which re-

lates the nodal point vectors for the standard and the hierarchical basis functions
as follows,

ṽ =
[
ṽ1

ṽ2

]
= J

[
v1

v2

]
,

ṽ1 = v1

ṽ2 = J21v1 + v2
.
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1.2 Two-Level Preconditioners of Additive and Multiplicative Type

Consider a general matrix A, which is assumed to be symmetric positive definite
and partitioned as in (4). The quality of this partitioning is characterized by the
corresponding CBS inequality constant:

γ = sup
v1∈Rn1 , v2∈Rn2

vT
1 A12v2(

vT
1 A11v1

)1/2 (
vT

2 A22v2

)1/2
, (5)

where n1 = |Nh\H | and n2 = |NH | denote the cardinality of the sets Nh\H and
NH , respectively.

Consider now two preconditioners to A under the assumptions

A11 ≤ C11 ≤ (1 + δ1)A11 and A22 ≤ C22 ≤ (1 + δ2)A22. (6)

The inequalities (6) are in a positive semidefinite sense where C11 and C22 are
symmetric and positive definite matrices for some positive constants δi, i = 1, 2.
The additive preconditioner MA and the multiplicative preconditioner MF are
then introduced as

MA =
[
C11 0
0 C22

]
, and MF =

[
C11 0
A21 C22

] [
I1 C−1

11 A12

0 I2

]
, (7)

respectively. When C11 = A11 and C22 = A22, then the following estimates hold
(see, e.g., [2]):

κ(M−1
A A) ≤ 1 + γ

1 − γ
, and κ(M−1

F A) ≤ 1
1 − γ2

.

2 Rannacher-Turek Finite Elements

Nonconforming finite elements based on rotated multilinear shape functions were
introduced by Rannacher and Turek [12] as a class of simple elements for the
Stokes problem. More generally, the recent activities in the development of ef-
ficient solution methods for non-conforming finite element systems are inspired
by their attractive properties as a stable discretization tool for illconditioned
problems.

The unit square [−1, 1]2 is used as a reference element ê to define the isopara-
metric rotated bilinear element e ∈ Th. Let ψe : ê → e be the corresponding
bilinear one-to-one transformation, and let the nodal basis functions be deter-
mined by the relation

{φi}4
i=1 = {φ̂i ◦ ψ−1

e }4
i=1, {φ̂i} ∈ span{1, x, y, x2 − y2}.

For the variant MP (mid point), {φ̂i}4
i=1 are found by the point-wise interpola-

tion condition φ̂i(b
j
Γ ) = δij , where bj

Γ , j = 1, 4 are the midpoints of the edges of
the quadrilateral ê. Then,

φ̂1(x, y) = (1 − 2x + (x2 − y2))/4, φ̂2(x, y) = (1 + 2x + (x2 − y2))/4,

φ̂3(x, y) = (1 − 2y − (x2 − y2))/4, φ̂4(x, y) = (1 + 2y − (x2 − y2))/4.
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The variant MV (mean value) corresponds to integral midvalue interpolation
conditions. Let Γê =

⋃4
j=1 Γ j

ê . Then {φ̂i}4
i=1 are determined by the equality

|Γ j
ê |−1

∫
Γ j

ê

φ̂idΓ j
ê = δij , which leads to

φ̂1(x, y) = (2 − 4x + 3(x2 − y2))/8, φ̂2(x, y) = (2 + 4x + 3(x2 − y2))/8,

φ̂3(x, y) = (2 − 4y − 3(x2 − y2))/8, φ̂4(x, y) = (2 + 4y − 3(x2 − y2))/8.

3 Hierarchical Two-Level Splittings

Let us consider two consecutive discretizations TH and Th. Figure 1 illustrates
a macro-element obtained after one regular mesh-refinement step. We see that
in this case VH and Vh are not nested. As shown in [3], the constant γ can be
estimated locally over each finite element (macro-element) E ∈ TH , which means
that γ = max

E
γE , where

γE = sup
u ∈ V1(E), v ∈ V2(E)

AE(u, v)√
AE(u, u)AE(v, v)

, v �= const.

The spaces Vk(E) above contain the functions from Vk restricted to E and AE(u, v)
corresponds to A(u, v) restricted over the element E of TH (see also [10]). Let us
introduce the following macro-element level transformation matrix JE :

JE =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2

2
2

1 −1
1 −1

1 −1
1 −1

α11 α12 α13 α14 1 1
α21 α22 α23 α24 1 1
α31 α32 α33 α34 1 1
α41 α42 α43 α44 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

7 III 8

1
2

3
6

I

4

II

9

10

IV
11

12

5

(a) One macro-element

3

2

1

4

(b) One element

Fig. 1. Uniform refinement on a general mesh
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3.1 Two-Level Splitting by Differences and Aggregates (DA)

Let φ1, . . . , φ12 denote the standard nodal basis functions for the macro-element
E depicted in Figure 1. Then we define

V (E) = span {φ1, . . . , φ12} = V1(E) ⊕ V2(E) ,
V1 (E) = span {φ1, φ2, φ3, φ4, φ5 − φ6, φ9 − φ10, φ7 − φ8, φ11 − φ12}
V2 (E) = span {φ5 + φ6 +

∑
j=1,4

α1jφj , φ9 + φ10 +
∑

j=1,4

α2jφj ,

φ7 + φ8 +
∑

j=1,4

α3jφj , φ11 + φ12 +
∑

j=1,4

α4jφj} .

Using the related transformation matrix (8), the macro-element stiffness matrix
is transformed into a hierarchical form

ÃE = JEAEJT
E =

[
ÃE,11 ÃE,12

ÃE,21 ÃE,22

]
φ̃i ∈ V1(E)
φ̃i ∈ V2(E)

. (9)

Following the local definitions, we can similarly construct the new hierarchical
basis ϕ̃ = {ϕ̃

(i)
h }|Nh|

i=1 and the corresponding splitting

Vh = V1 ⊕ V2 . (10)

Our aim is to analyze the constant γ = cos(V1, V2) for the splitting (10)
locally. If Ae denotes the element matrix (with constant coefficients on macro-
element level) then a necessary condition serving this purpose is

(i) ker(ÃE,22) = ker(Ae) .

In view of (8) and (9), condition (i) holds if and only if

4∑
i=1

αij = 1 , ∀j ∈ {1, 2, 3, 4}. (11)

When the two-level algorithm is recursively generalized to the multilevel case, it
is further useful to have

(ii) ÃE,22 = pAe

for some positive p. This proportionality can be met in a very general setting
for the DA splitting of the Crouzeix-Raviart finite element space, see [9].

3.2 ”First Reduce” (FR) Two-Level Splitting

The ”first reduce” (FR) two-level splitting is based on the simplified local two-
level transformation matrix JE that is obtained from (8) by taking αij = 0
∀i, j ∈ {1, 2, 3, 4} but additionally passing through an exact elimination of the
degrees of freedom corresponding to “interior” nodes, which are not shared by
any two neighboring macro-elements in the global mesh. For our analysis we
proceed as follows:
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Step 1: We observe that the upper left block of

Ãh =
∑

E∈Th

ÃE =

⎡
⎣ Ã11 Ã12

Ã21 Ã22

⎤
⎦

is a block-diagonal matrix. The diagonal entries of Ã11 are 4× 4 blocks,
corresponding to the interior points {1, 2, 3, 4}, cf. Figure 1, which are
not connected to nodes in other macro-elements. Thus, the correspond-
ing unknowns can be eliminated exactly, i.e., to be done locally. There-
fore, we first compute the local Schur complements arising from static
condensation of the “interior degrees of freedom” in ÃE and obtain the
(8 × 8) matrix BE . Next we split BE as

BE =
[
BE,11 BE,12

BE,21 BE,22

]
}two-level half-difference basis functions
}two-level half-sum basis functions

written again in two-by-two block form with blocks of order (4 × 4).
Step 2: We are now in a position to estimate the CBS constant corresponding

to the 2 × 2 splitting of B. Following the general theory, it suffices to
compute the minimal eigenvalue of the generalized eigenproblem

SEvE = λ
(1)
E BE,22vE , vE ⊥ (1, 1, . . . , 1)T ,

where SE = BE,22 − BE,21B
−1
E,11BE,12, and then

γ2 ≤ max
E∈Th

γ2
E = max

E∈Th

(1 − λ
(1)
E ). (12)

4 Uniform Estimates of the CBS Constant

4.1 DA Algorithm

The following results can be verified using a computer algebra program such as
MATHEMATICA. A more detailed discussion, including numerical experiments
for anisotropic problems, can be found in Ref. [11].

Variant MP:

Lemma 1. There exists a DA two-level splitting satisfying the condition (ii) if
and only if p ≥ 3/7. Then, the obtained solutions for αij are invariant with
respect to the local CBS constant γ2

E = 1 − 1/(4p), and for the related optimal
splitting we have γ2

MP ≤ 5/12.

Variant MV:

Lemma 2. There exists a DA two-level splitting satisfying the condition (ii) if
and only if p ≥ 2/5. Then, the obtained solutions for αij are invariant with
respect to the local CBS constant γ2

E = 1 − 1/(4p), and for the related optimal
splitting we have γ2

MV ≤ 3/8.
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Table 1. Linear AMLI V-cycle: number of PCG iterations

1/h 32 64 128 256 512 1024

DA/MP ε = 1 15 (8) 21 (10) 29 (13) 39 (16) 49 (19) 61 (22)
ε = 0.01 15 (8) 22 (10) 29 (13) 39 (16) 50 (19) 63 (22)

FR/MP ε = 1 11 (6) 15 (8) 19 (9) 24 (11) 28 (12) 34 (14)
ε = 0.01 11 (6) 15 (8) 20 (9) 24 (11) 30 (12) 36 (14)

DA/MV ε = 1 14 (8) 20 (10) 28 (13) 36 (16) 45 (18) 56 (21)
ε = 0.01 14 (8) 20 (11) 28 (13) 37 (16) 47 (18) 59 (22)

FR/MV ε = 1 12 (7) 16 (9) 21 (10) 26 (12) 31 (14) 37 (16)
ε = 0.01 13 (7) 17 (9) 22 (10) 27 (12) 33 (14) 39 (16)

4.2 FR Algorithm

For the two-level FR splitting we get the following uniform bounds with respect
to the size of the discrete problem and any possible jumps of the (piece-wise
constant) diffusion coefficient a(e) between macro-elements E ∈ TH :

Variant MP:

λ
(1)
E =

5
7

, γ2
E = 1 − λ

(1)
E =

2
7
, and therefore γ2

MP ≤ 2
7
.

Variant MV:

λ
(1)
E =

5
8

, γ2
E = 1 − λ

(1)
E =

3
8
, and therefore γ2

MV ≤ 3
8
.

Let us remind that the obtained estimates hold theoretically for the two-level
algorithm only. This is because the matrix BE,22 is only associated with the coarse
discretization TH and is not proportional to the related element stiffness matrix Ae.

5 Numerical Results

We compare the convergence properties of the preconditioned conjugate gra-
dient (PCG) method using either the additive or the multiplicative variant
of the multilevel preconditioner based on either DA or FR splitting for MP
and MV discretization of the model problem (1). We subdivide the square
domain Ω = [0, 1]2 into four subdomains of equal shape and size, i.e., Ω =
Ω1∪. . .∪Ω4, where Ω1 = [0, 1/2]2, Ω2 = [1/2, 1]×[0, 1/2], Ω3 = [0, 1/2]×[1/2, 1],
and Ω4 = [1/2, 1]2. The diffusion coefficient is given by a(e) = 1 on subdo-
mains Ω1 and Ω4, a(e) = ε on Ω2, and a(e) = ε−1 on Ω3. The first Table 1
summarizes the number PCG iterations that reduce the residual norm by a
factor 106 when performing a single V-cycle of linear algebraic multilevel it-
eration (AMLI). In the second Table 2 we list the corresponding results for
the linear AMLI W-cycle (employing properly shifted second-order Chebyshev
polynomials for stabilizing the condition number, see [5,6]). Finally, the third
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Table 2. Linear AMLI W-cycle: number of PCG iterations

1/h 32 64 128 256 512 1024

DA/MP ε = 1 15 (8) 16 (8) 17 (8) 18 (8) 18 (8) 18 (8)
ε = 0.01 15 (8) 17 (8) 17 (8) 18 (8) 18 (8) 19 (8)

FR/MP ε = 1 11 (6) 12 (6) 12 (6) 13 (6) 13 (6) 13 (6)
ε = 0.01 11 (6) 12 (6) 13 (6) 13 (6) 13 (6) 13 (6)

DA/MV ε = 1 14 (8) 15 (9) 16 (9) 16 (9) 16 (9) 16 (9)
ε = 0.01 14 (8) 16 (10) 16 (9) 16 (9) 17 (9) 17 (9)

FR/MV ε = 1 12 (7) 14 (7) 14 (7) 14 (7) 14 (7) 14 (7)
ε = 0.01 13 (7) 14 (7) 15 (7) 15 (7) 15 (7) 15 (7)

Table 3. Non-linear AMLI W-cycle: number of (outer) GCG iterations

1/h 32 64 128 256 512 1024

DA/MP ε = 1 15 (8) 17 (8) 17 (8) 17 (8) 17 (8) 17 (8)
ε = 0.01 15 (8) 17 (8) 17 (8) 17 (8) 17 (8) 17 (8)

FR/MP ε = 1 11 (6) 12 (6) 12 (6) 13 (6) 13 (6) 13 (6)
ε = 0.01 11 (6) 12 (6) 13 (6) 13 (6) 13 (6) 13 (6)

DA/MV ε = 1 14 (8) 15 (8) 15 (8) 16 (8) 16 (8) 16 (8)
ε = 0.01 14 (8) 15 (8) 16 (8) 16 (8) 16 (8) 16 (8)

FR/MV ε = 1 13 (7) 14 (7) 14 (7) 14 (7) 14 (7) 14 (7)
ε = 0.01 13 (7) 14 (7) 15 (7) 15 (7) 15 (7) 15 (7)

Fig. 2. CPU-time for additive (dark) and multiplicative (light) preconditioning (loga-
rithmic scale)

Table 3 refers to the (variable-step) non-linear AMLI method stabilized by two
inner generalized conjugate gradient iterations at every coarse level, cf., [7],
and using a direct solve on the coarsest mesh with mesh-size 1/h = 16 as in
the other tests. The results for the multiplicative variant are put in parenthe-
ses in each case. Though the number of iterations approximately doubles in
most cases when switching from multiplicative to additive preconditioning the
CPU-time (in most situations) increases only by 10 to 50 per cent, which is due
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to the lower operation count per application of the additive preconditioner, see
[1,4]. This effect is illustrated in Figure 5, which depicts the logarithm (to the
basis 2) of the CPU-time in milliseconds measured on a 2 GHz Linux-PC for
the case of the DA splitting and MV discretization. Moreover, (in accordance
with the analysis) both preconditioners, the additive as well as the multiplica-
tive method, are perfectly robust with respect to jump discontinuities in the
coefficient a(e) as can be seen from the almost identical results shown in the
respective first (ε = 1) and second (ε = 0.01) column of Tables 1–3. The so-
lution of the largest problem with approximately 2 million degrees of freedom
took around 215 milliseconds, which is approximately 30 seconds on a single
processor! Finally, we want to stress that the additive method has also excellent
parallelization properties.
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Abstract. The numerical solution of systems of convection-diffusion
equations is considered. The problem is described by a system of second
order partial differential equations (PDEs). This system is discretized
by Courant-elements. The preconditioned conjugate gradient method is
used for the iterative solution of the large-scale linear algebraic systems
arising after the finite element discretization of the problem. Discrete
Helmholtz preconditioners are applied to obtain a mesh independent su-
perlinear convergence of the iterative method. A parallel algorithm is
derived for the proposed preconditioner. A portable parallel code using
Message Passing Interface (MPI) is developed. Numerical tests well il-
lustrate the performance of the proposed method on a parallel computer
architecture.

2000 Mathematics Subject Classification: 65N12, 68W10, 65F10,
74S05.

1 Introduction

The generalized conjugate gradient (GCG) method has become the most wide-
spread way of solving nonsymmetric linear algebraic systems arising from dis-
cretized elliptic problems, see [3] where an extensive summary is given on the
convergence of the CGM. For discretized elliptic problems, the CGM is mostly
used with suitable preconditioning (cf. [3]), which sometimes relies on Hilbert
space theory (cf. [6]) and then provides mesh independent convergence. More-
over, it has been shown in [6] that the GCG method can be competitive with
multigrid methods.

The CGM for nonsymmetric equations in Hilbert space has been studied in
[4,5]: in the latter superlinear convergence has been proved in Hilbert space and,
based on this, mesh independence of the superlinear estimate has been derived
for FEM discretizations of elliptic Dirichlet problems. The mesh independent
superlinear convergence results have been extended from a single equation to
systems of PDEs in a recent paper [7] in the framework of normal operators in
Hilbert space. An important advantage of the obtained preconditioning method

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 65–73, 2007.
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for systems is that one can define decoupled preconditioners, hence the size
of the auxiliary systems remains as small as for a single equation, moreover,
parallelization of the auxiliary systems is available. The main goal of this paper
is to develop an efficient MPI parallel code using multiple processors, based on
a proper summary of the theoretical result for systems of PDEs.

We consider systems of the form

− div(Ki∇ui) + bi · ∇ui +
l∑

j=1

Vijuj = gi

ui|∂Ω
= 0

⎫⎪⎬
⎪⎭ (i = 1, . . . , l) (1)

under the following
Assumptions BVP.

(i) the bounded domain Ω ⊂ R
N is C2-diffeomorphic to a convex domain;

(ii) for all i, j = 1, . . . , l, Ki ∈ C1(Ω), Vij ∈ L∞(Ω) and bi ∈ C1(Ω)N ;
(iii) there is m > 0 such that Ki ≥ m holds for all i = 1, . . . , l;
(iv) letting V = {Vij}li,j=1, the coercivity property

λmin

(
V + V T

)
−max

i
div bi ≥ 0 (2)

holds pointwise on Ω, where λmin denotes the smallest eigenvalue;
(v) gi ∈ L2(Ω).

Items (iii) and (iv) ensure the coercivity property (6) which is a crucial assump-
tion for Theorem 1.

Systems of the form (1) arise, e.g., from the time discretization and New-
ton linearization of nonlinear reaction-convection-diffusion systems which occur
frequently in meteorological air-pollution models [12].

We write the considered system in a short vector form using the corresponding
n-tuples:

Lu ≡ − div(K∇u) + b · ∇u + V u = g

u|∂Ω = 0

}
, (3)

where

u =

⎛
⎜⎝

u1

...
ul

⎞
⎟⎠ , g =

⎛
⎜⎝

g1

...
gl

⎞
⎟⎠ , div(K∇u) =

⎛
⎜⎝

div(K1∇u1)
...

div(Kl∇ul)

⎞
⎟⎠ , b·∇u =

⎛
⎜⎝

b1 · ∇u1

...
bl · ∇ul

⎞
⎟⎠ .

The FEM discretization of (3) leads to a linear algebraic system Lhc = gh.
This can be solved by the GCG method using a preconditioner. In this paper
we consider decoupled symmetric Helmholtz preconditioners

Siui := − div(Ki∇ui) + ηiui (i = 1, . . . , l) (4)

where ηi ∈ C(Ω), ηi ≥ 0 are suitable functions. The n-tuple S of the elliptic
operators Si and the corresponding matrix Sh can be defined in the same way
as previously, hence the preconditioned form of the discretized equation is

S−1
h Lhc = fh ≡ S−1

h gh. (5)
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2 The Preconditioned Generalized Conjugate Gradient
Method

Now let us consider the operator equation Lu = g with an unbounded linear
operator L : D → H defined on a dense domain D, and with some g ∈ H ,
where H is an infinite dimensional complex separable Hilbert space. We have
the following

Assumptions A.

(i) The operator L is decomposed in L = S + Q on its domain D where S is a
self-adjoint operator in H .

(ii) S is a strongly positive operator, i.e., there exists p > 0 such that

〈Su, u〉 ≥ p‖u‖2 (u ∈ D). (6)

(iii) There exists � > 0 such that � 〈Lu, u〉 ≥ � 〈Su, u〉 (u ∈ D).
(iv) The operator Q can be extended to the energy space HS , and then S−1Q is

assumed to be a compact normal operator on HS .

The generalized conjugate gradient, least square (GCG-LS) method is defined
in [2]. The full version of the GCG-LS method constructs a sequence of search
directions dk and simultaneously a sequence of approximate solutions uk. Fol-
lowing the terminology of [2,4], the definition also involves an integer s ∈ N,
further, we let sk = min{k, s} (k ≥ 0). The full version of the algorithm for the
solution of the preconditioned operator equation

S−1Lu = f ≡ S−1g (7)

in HS is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) Let u0 ∈ D be arbitrary, let r0 be the solution of Sr0 = Lu0 − g;
d0 = −r0; and z0 be the solution of Sz0 = Ld0;

for any k ∈ N : when uk, dk, rk, zk are obtained, let

(2a) the numbers α
(k)
k−j (j = 0, . . . , k) be the solution of

k∑
j=0

α
(k)
k−j 〈Szk−j , zk−l〉 = −〈rk, Szk−l〉 (0 ≤ l ≤ k);

(2b) uk+1 = uk +
k∑

j=0

α
(k)
k−jdk−j ;

(2c) rk+1 = rk +
k∑

j=0

α
(k)
k−jzk−j ;

(2d) β
(k)
k−j = 〈Lrk+1, zk−j〉 /‖zk−j‖2S (j = 0, . . . , sk);

(2e) dk+1 = −rk+1 +
sk∑

j=0

β
(k)
k−jdk−j ;

(2f) zk+1 be the solution of Szk+1 = Ldk+1.

(8)

When symmetric part preconditioning is used, a more simple truncated algo-
rithm is applicable, namely the so-called GCG-LS(0) (see [4] for details), where
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only the previous search direction dk and the auxiliary vector zk are used, so
the previous ones do not have to be stored. Assumptions A imply that the op-
erator of the preconditioned equation S−1L has the form I + S−1Q, which is a
compact perturbation of the identity operator, hence the following convergence
result (cf. [5,7]) is applicable. Recall that a compact operator has countably
many eigenvalues (with multiplicity), clustering at zero.

Theorem 1. Let Assumptions A hold. Denoting the unique solution by u∗, the
generalized conjugate gradient method applied for equation (7) yields for all k ∈ N

Qk :=
(‖ek‖L
‖e0‖L

)1/k

≤ 2
�

(
1
k

k∑
i=1

∣∣λi(S−1Q)
∣∣
)
→ 0 as k →∞ (9)

where ek = uk−u∗ is the error vector and λi = λi(S−1Q) (i ∈ N) are the ordered
eigenvalues of the operator S−1Q (|λi| ≥ |λi+1|).

3 Superlinear Convergence for Elliptic Systems

Let us consider the Hilbert space H = L2(Ω)l with the inner product 〈u,v〉 =∫
Ω

∑l
i=1 uivi and define the operators L and S according to (3) and (4) on the

dense domain
D(L) = D(S) = D :=

(
H2(Ω) ∩H1

0 (Ω)
)l

.

Now we can use the convergence theorem for this problem in the space L2(Ω)l by
verifying that L and S satisfy Assumptions A. First, we apply Theorem 1 using
the truncated algorithm when S is the symmetric part of L. Then we consider
the full version (8) and use Theorem 1 for problems with constant coefficients
when the normality of the preconditioned operator in the corresponding Sobolev
space can be ensured.

First symmetric part preconditioning is considered, that is S = (L + L∗)/2.
Since Q = L − S is antisymmetric, it can be shown easily, that the operator
S−1Q is antisymmetric in HS , therefore it is normal automatically. We have for
u,v ∈ D

〈Lu,v〉 =
∫

Ω

⎛
⎝ l∑

i=1

(
Ki∇ui · ∇vi + (bi · ∇ui)vi

)
+

l∑
i,j=1

Vijujvi

⎞
⎠ . (10)

The divergence theorem and the boundary conditions imply (see [4]) that

〈Su,v〉 =
∫

Ω

⎛
⎝ l∑

i=1

(
Ki∇ui · ∇vi −

1
2

(div bi)uivi

)
+

1
2

l∑
i,j=1

(Vij + Vji)ujvi

⎞
⎠ .

The operator S itself falls into the type (4) if and only if

Vij = −Vji (i �= j) and ηi = Vii −
1
2

(div bi). (11)
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Proposition 1. (cf. [7]). Under Assumptions BVP and condition (11), Assump-
tions A are satisfied and therefore the truncated GCG-LS algorithm for system
(1) converges superlinearly in the space H1

0 (Ω)l according to the estimate (9)
with the parameter � = 1.

Using the truncated algorithm can be beneficial, but it is a significant restriction
not to have the freedom to choose the coefficients ηi of S in (4). For convection-
dominated problems, large values of ηi might compensate the large b [8]. Now
let us consider the preconditioner operator (4) with arbitrary nonnegative pa-
rameters ηi.

Proposition 2. (cf. [7]). Assume that Ki ≡ K ∈ R, ηi ≡ η ∈ R and bi ≡ b ∈
R

N are constants, V ∈ R
l×l is a normal matrix and suppose that Assumptions

BVP hold. Then the full version of the preconditioned GCG-LS algorithm (8)
for system (1) with the preconditioning operator (4) converges superlinearly in
the space H1

0 (Ω)l according to the estimate (9).

Now let us consider the discretized problem (5). Then as shown in [7], the GCG
method can be defined similarly as in (8), simply replacing L and S by Lh

and Sh, in particular, in step (2f) zk+1 is defined as the FEM solution of the
problem Szk+1 = Ldk+1 in the considered subspace Vh. Then the right-hand
side of (9) provides a mesh independent superlinear convergence estimate for the
discretized problem. Besides the superlinear convergence result, the advantage
of the preconditioning method (4) is that the elliptic operators are decoupled,
i. e. the corresponding matrix Sh is symmetric block-diagonal, hence auxiliary
equations for the discretized system like Shzh = Lhdh (step (2f) in algorithm
(8)) can be divided into l parts and they can be solved simultaneously.

4 Parallelization of the GCG-LS Algorithm

The basic advantage of the proposed preconditioner is its inherent parallelism.
The kth iteration of the full version of GCG-LS algorithm consists of two matrix-
vector multiplications with matrix Lh, one preconditioning step (solving a system
of equations with the preconditioner), solving a system of k equations, 2k +s+2
inner products, and s + 2 linked triads (a vector updated by a vector multiplied
by a scalar).

Let us consider a parallel system with p processors. We divide the vectors
uk, dk, rk, zk (defined in (8)) in such a way that first

⌈
l
p

⌉
blocks are stored in

the first processor, blocks for i =
⌈

l
p

⌉
+ 1, . . . , 2

⌈
l
p

⌉
in the second processor

and so on. Then the preconditioning step and linked triads do not need any
communication between processors. The computation of inner products requires
one global communication to accumulate the local inner products computed on
each processor. Communication time for computing inner products increases
with the number of processors but in general it is small. The matrix-vector
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multiplication requires exchanging of data between all processors. Communica-
tion time for matrix-vector multiplication depends on the size of the matrix and
on the number of processors.

5 Numerical Experiments

In this section we report the results of the experiments executed on a Linux
cluster consisting of 4 dual processor PowerPCs with G4 450 MHz processors,
512 MB memory per node. The developed parallel code has been implemented
in C and the parallelization has been facilitated using the MPI library [10,11].
We use the LAPACK library [1] for computing the Cholesky factorization of
the preconditioner and for solving the linear systems arising in GCG-LS. The
optimization options of the compiler have been tuned to achieve the best perfor-
mance. Times have been collected using the MPI provided timer. In this paper
we report the best results from multiple runs.

The first test problem is a class of systems (1) with l = 2, 3, . . . , 10 equations,

where bi =
(

1
0

)
and the matrix V is skew-symmetric with elements which

are randomly generated constants. Our second test problem comes from the
time discretization and Newton linearization of a nonlinear reaction-convection-
diffusion system of 10 equations, used in meteorological air-pollution models [12].
Since the run times here have proved to be very similar to the case of a random
10× 10 matrix in the first test problem, we will only present the test results for
the first problem.

In what follows, we analyze the obtained parallel time Tp on p processors,
relative parallel speed-up Sp = T1

Tp
≤ p and relative efficiency Ep = Sp

p ≤ 1.
In our experiments we used a stopping criterion ‖rk‖ ≤ 10−14. Table 1 shows

the required number of iterations. The obtained parallel time Tp on p processors
is presented in Tables 2 and 3. Here l denotes the number of equations. The first
column consists of the number of processors. The execution time for problems
with h−1 = 32, 64, 128, 192, 256 in seconds is shown in the next columns. The
execution times of the full and truncated version of the algorithm are similar.
Because of that we put in Table 3 execution times only for systems of 8 and 10
equations. One can see that for relatively small problems, the execution time on

Table 1. Number of iterations

1/h l
1 2 3 4 5 6 7 8 9 10

8 9 10 11 12 12 12 13 13 14 14
16 9 10 12 12 13 13 13 14 14 14
32 9 10 12 12 13 13 14 14 14 14
64 9 10 12 12 13 13 14 14 14 14

128 9 10 12 12 13 13 14 14 14 14
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Table 2. Execution time for full version of GCG-LS

p h−1

32 64 128 256

l = 2

1 0.13 1.06 11.30 130.06
2 0.46 0.99 6.50 69.31

l = 3

1 0.22 1.91 19.05 207.86
2 0.55 1.47 13.24 143.40
3 0.60 1.39 8.41 79.30

l = 4

1 0.32 2.64 25.62 648.18
2 0.63 1.86 14.43 332.55
3 0.62 1.67 14.58 149.23
4 0.65 1.66 10.05 84.37

l = 5

1 0.43 3.44 32.73 912.90
2 0.66 2.26 20.79 216.12
3 0.68 2.10 16.25 153.08
4 0.69 1.95 16.31 155.75
5 0.76 2.06 12.38 94.59

l = 6

1 0.54 3.96 39.92 1237.71
2 0.74 2.59 22.10 219.50
3 0.75 2.22 17.15 156.95
4 0.76 2.24 18.09 161.69
5 0.82 2.19 19.06 165.57
6 0.86 2.27 14.98 105.21

p h−1

32 64 128 192 256

l = 7

1 0.66 5.13 47.11 171.49 1479.28

2 0.79 3.17 28.60 103.44 667.80
3 0.77 2.74 23.54 82.53 227.45
4 0.82 2.70 19.14 62.73 166.62
5 0.88 3.55 20.95 66.59 361.98
6 0.94 2.80 21.71 68.22 176.53
7 0.97 2.78 18.56 51.21 119.14

l = 8

1 0.79 5.96 54.17 306.79 1725.53

2 0.86 3.74 29.99 104.48 771.83
3 0.84 3.30 25.52 86.95 233.69
4 0.86 3.08 19.95 64.44 170.92
5 0.94 3.55 22.14 69.20 178.03
6 1.02 3.62 24.37 73.58 183.49
7 1.07 3.78 25.52 76.36 190.79
8 1.08 4.67 22.30 59.38 132.55

l = 10

1 1.08 7.97 70.15 688.04

2 0.97 4.89 38.64 132.98 1111.04

3 0.95 4.16 32.82 113.15 685.93
4 0.99 4.43 28.75 94.33 248.61

5 1.12 4.13 25.35 76.26 434.87
6 1.18 4.50 27.88 81.52 197.62
7 1.22 4.69 29.99 86.40 205.91
8 1.30 5.49 32.45 92.05 212.42

one processor is less than one second and parallelization is not necessary. For
medium size problems the parallel efficiency on two processors is close to 90%
but on three and more processors it decreases. The reason is that communication
between two processors in one node is much faster than communication between
nodes. For the largest problems (h−1 = 256) the available physical memory was
not enough to solve the problem on one processor. The corresponding numbers
in boxes show an atypical progression which is due to the usage of swap memory.
The numerical results show that the main advantage of the parallel algorithm is
that we can easily solve large problems using a parallel system with distributed
memory.

Figure 1 shows the speed-up Sp of the full version of the algorithm obtained for
h−1 = 128 and l = 3, 4, . . .10. As it was expected when the number of equations
l is divisible by the number of processors p the parallel efficiency of the parallel
algorithm is higher. The reason is the partitioning of the vectors uk, dk, rk, zk

onto the processors described in previous section.
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Table 3. Execution time for GCG-LS(0) for s = 5

p h−1

32 64 128 256

l = 8

1 0.84 6.07 57.02 2046.74

2 0.48 3.46 31.01 935.01
3 0.51 3.16 26.69 255.81
4 0.59 2.99 21.45 189.93
5 0.67 3.52 23.86 428.05
6 0.76 3.62 26.81 437.50
7 0.82 4.15 29.04 215.17
8 0.85 5.38 26.00 155.73

p h−1

32 64 128 256

l = 10

1 1.16 8.51 76.50

2 0.65 4.87 41.57 1335.88

3 0.67 4.55 36.44 817.74
4 0.71 4.46 32.03 275.20

5 0.86 4.72 29.53 522.18
6 0.96 5.14 32.62 533.91
7 1.06 5.77 35.31 471.83
8 1.09 6.60 38.63 482.45
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Fig. 1. Speed-up of the full version of GCG-LS algorithm

6 Concluding Remarks and Future Work

In this paper we have reported on the parallel performance of a new precon-
ditioner applied to the generalized conjugate gradient method used to solve a
sparse linear system arising from systems of convection-diffusion equations. The
proposed preconditioner has inherent parallelism — the preconditioning step is
implemented without any communications between processors. We have shown
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that the code parallelizes well, resulting in a highly efficient treatment of large-
scale problems.

The next step in development of the parallel code will be the implementation
of matrix vector products using nonblocking MPI Isend functions and avoiding
communications for zero elements of the matrix V . In this way we can overlap
the computation of part of the product and communication between processors.
Our future plans include an approximation of the blocks of the preconditioner
in order to implement a parallel preconditioning step on multiprocessor systems
with more processors.
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Comparative Analysis of Mesh Generators and

MIC(0) Preconditioning of FEM Elasticity
Systems

Nikola Kosturski and Svetozar Margenov

Institute for Parallel Processing, Bulgarian Academy of Sciences

Abstract. In this study, the topics of grid generation and FEM appli-
cations are studied together following their natural synergy. We consider
the following three grid generators: Triangle, NETGEN and Gmsh. The
quantitative analysis is based on the number of elements/nodes needed
to obtain a triangulation of a given domain, satisfying a certain minimal
angle condition. After that, the performance of two displacement decom-
position (DD) preconditioners that exploit modified incomplete Cholesky
factorization MIC(0) is studied in the case of FEM matrices arising from
the discretization of the two-dimensional equations of elasticity on non-
structured grids.

Keywords: FEM, PCG, MIC(0), displacement decomposition.

1 Introduction

Mesh generation techniques are now widely employed in various scientific and
engineering fields that make use of physical models based on partial differential
equations. While there are a lot of works devoted to finite element methods
(FEM) and their applications, it appears that the issues of meshing technologies
in this context are less investigated. Thus, in the best cases, this aspect is briefly
mentioned as a technical point that is possibly non-trivial.

In this paper we consider the problem of linear elasticity with isotropic materi-
als. Let Ω ⊂ IR2 be a bounded domain with boundary Γ = ∂Ω and u = (u1, u2)
the displacement in Ω. The components of the small strain tensor are

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ 2 (1)

and the components of the Cauchy stress tensor are

τij =
2∑

k,l=1

cijklεkl(u), 1 ≤ i, j ≤ 2 , (2)

where the coefficients cijkl describe the behavior of the material. In the case of
isotropic material the only non-zero coefficients are

ciiii = λ + 2μ, ciijj = λ, cijij = cijji = μ . (3)

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 74–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Now, we can introduce the Lamé’s system of linear elasticity (see, e.g., [2])

(λ + μ)∇(∇ · u)i + μΔui + Fi = 0, 1 ≤ i ≤ 2 (4)

equipped with boundary conditions

ui(x) = gi(x), x ∈ ΓD ⊂ ∂Ω,

∑2
j=1 τij(x)nj(x) = hi(x), x ∈ ΓN ⊂ ∂Ω ,

where nj(x) denotes the components of the outward unit normal vector n onto
the boundary x ∈ ΓN . The finite element method (FEM) is applied for dis-
cretization of (4) where linear finite elements on a triangulation T are used.
The preconditioned conjugate gradient (PCG) [1] method will be used for the
solution of the arising linear algebraic system Kuh = fh.

2 MIC(0) DD Preconditioning

We first recall some known facts about the modified incomplete Cholesky fac-
torization MIC(0), see, e.g. [4,6]. Let A = (aij) be a symmetric n × n matrix
and let

A = D − L − LT , (5)

where D is the diagonal and −L is the strictly lower triangular part of A. Then
we consider the factorization

CMIC(0) = (X − L)X−1(X − L)T , (6)

where X = diag(x1, . . . , xn) is a diagonal matrix, such that the sums of the rows
of CMIC(0) and A are equal

CMIC(0)e = Ae, e = (1, . . . , 1) ∈ IRn . (7)

Theorem 1. Let A = (aij) be a symmetric n × n matrix and let

L ≥ 0
Ae ≥ 0

Ae + LT e > 0 where e = (1, . . . , 1)T .
(8)

Then there exists a stable MIC(0) factorization of A, defined by the diagonal
matrix X = diag(x1, . . . , xn), where

xi = aii −
i−1∑
k=1

aik

xk

n∑
j=k+1

akj > 0 . (9)

It is known, that due to the positive offdiagonal entries of the coupled stiffness
matrix K, the MIC(0) factorization is not directly applicable to precondition
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the FEM elasticity system. Here we consider a composed algorithm based on a
separable displacement two-by-two block representation

(
K11 K12

K21 K22

)
uh = fh . (10)

In this setting, the stiffness matrix K is spectrally equivalent to the block-
diagonal approximations CSDC and CISO

CSDC =
(

K11

K22

)
, CISO =

(
A

A

)
, (11)

where A =
1
2
(K11 + K22). This theoretical background of this displacement

decomposition (DD) step is provided by the second Korn’s inequality [2]. Now
the MIC(0) factorization is applied to the blocks of (11). In what follows, the
related preconditioners will be referred to as CSDC-MIC(0) and CISO-MIC(0), cf.,
References [2,4,5].

3 Diagonal Compensation: Condition Number Estimate

The blocks K11, K22, and A correspond to a certain FEM elliptic problem on the
triangulation T . When there are some positive off-diagonal entries in the matrix,
the stability conditions for MIC(0) factorization are not satisfied. The diagonal
compensation is a general procedure to substitute A by a proper M -matrix Ā, to
which the MIC(0) factorization is then applied. Here, we will restrict our analysis
to the case of isotropic DD, i.e., we will consider the piece-wise Laplacian matrix

A =
∑
e∈T

Ae (12)

where the summation sign stands for the standard FEM assembling procedure.
The following important geometric interpretation of the current element stiffness
matrix holds (see, e.g., in [3])

Ae = te

⎛
⎝α + β −α −β

−α α + 1 −1
−β −1 β + 1

⎞
⎠ , (13)

where θ1 ≥ θ2 ≥ θ3 ≥ τ > 0 are the angles of the triangle e ∈ T , a = cot θ1,

b = cot θ2, c = cot θ3, α =
a

c
and β =

b

c
. Since |a| ≤ b ≤ c, the element-by-

element diagonal compensation is mandatory applied if and only if a < 0. Then,
the modified element and global stiffness matrices read respectively as follows

Āe = te

⎛
⎝ β 0 −β

0 1 −1
−β −1 β + 1

⎞
⎠ , Ā =

∑
e∈T

Āe. (14)

Note that Āe ≡ Ae if a ≥ 0.
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Fig. 1. D̃ =

{
1 − t2

2t2
≤ α < 0,

1 − αt2

t2(1 + α)
≤ β ≤ 1

}

Theorem 2. The relative condition number κ(Ā−1A) is uniformly bounded by
a constant, depending only on the minimal angle τ . More precisely

κ = κ(Ā−1A) ≤ c(τ) = t2 (15)

where t = cot τ .

Proof. We consider the generalized eigenvalue problem Āeu = λAeu, u �= ce.
The case a < 0 corresponds to (α, β) ∈ D̃, see Fig. 1. Straightforward computa-
tions lead to λ1 = 1 + α +

α

β
, λ2 = 1, and therefore

κ ≤ κe =
λ2

λ1
=

β

α + β + αβ
≤ t2 .

In the final estimate we have used that the maximal value of κe is achieved at

the corner point of D̃, (α, β) =
(

1 − t2

2t2
, 1
)

, which completes the proof. 	


4 Comparison of Mesh Generators

In this section, we compare the following three mesh generators:

– Triangle (http://www.cs.cmu.edu/˜quake/triangle.html);
– NETGEN (http://www.hpfem.jku.at/netgen/);
– Gmsh (http://geuz.org/gmsh/).

In the previous section we have seen the impact of the minimal angle on the
preconditioning. Let us remind also that the minimal angle directly reflects on
the accuracy of the FEM approximation as well as on the condition number of
the related stiffness matrix. Since a larger minimal angle usually leads to a larger
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(a) (b) (c)

Fig. 2. Meshes generated by: (a) Triangle; (b) NETGEN; (c) Gmsh

number of elements and nodes in the resulting mesh it is natural to compare the
generators based on the numbers of elements and nodes, needed to obtain a mesh
with a certain minimal angle.

The domain we chose for this comparison is a disc. The generated meshes,
related minimal angles, and numbers of elements and nodes are shown in Fig. 2
and Table 1 respectively.

The results clearly show that Triangle achieved the biggest minimal angle,
while also the smallest number of elements and nodes. Note that various pa-
rameters may influence the quality of the resulting mesh. Triangle is also the
only one of the compared generators that has the minimal angle as a parameter.
Triangle’s documentation states that the algorithm often succeeds for minimum
angles up to 33 ◦ and usually doesn’t terminate for larger angles.

5 Numerical Experiments

The presented numerical test illustrate the PCG convergence rate of the two
studied displacement decomposition algorithms. For a better comparison, the
number of iterations for the CG method are also given. Starting with a given
coarse mesh, we refine it uniformly connecting the midpoints of each element.
Obviously, such a refinement preserves the minimal angle.

Remark 1. The experiments are performed using the perturbed version of the
MIC(0) algorithm, where the incomplete factorization is applied to the matrix

Table 1. Resulting Mesh Properties

Generator Minimal angle Elements Nodes

Triangle 33.122 ◦ 386 229
NETGEN 27.4256 ◦ 440 256
Gmsh 31.8092 ◦ 688 380
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Ã = A + D̃. The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . , d̃n) is defined
as follows:

d̃i =
{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi
, (16)

where 0 < ξ < 1 is a constant and wi = −
∑

j>i aij .

Remark 2. A generalized coordinate-wise ordering is used to ensure the condi-
tions for a stable MIC(0) factorization.

5.1 Model Problem in the Unit Square

We consider first a model pure displacement problem in the unit square Ω =
[0, 1] × [0, 1] and ΓD = ∂Ω. The material is homogeneous with λ = 1 and
μ = 1.5, and the right-hand side corresponds to the given solution u1 = x2 +
cos(x + y), u2 = x3 + y4 + sin(y − x). A uniform initial (coarsest) triangulation
with a mesh size h = 1/8 is used. The stopping criteria used is ‖r(k)‖∞ ≤
10−10‖r(0)‖∞.

5.2 Model Problem in a Disc

The pure displacement problem with the same given solution and the same
stopping criteria as in the the unit square is considered. The computational
domain Ω is a disc with outer radius 1 and inner radius 0.2. The unstructured
initial mesh is shown in Fig. 2(a).

5.3 Computer Simulation of a Pile Foundation System

We consider the simulation of a foundation system in multi-layer soil media is
considered. The system consists of two piles with a linking plate. Fig. 3 (a) shows
the geometry of Ω and the related weak soil layers. The mesh is locally refined
in areas with expected concentration of stresses, see Fig. 3 (b). The material
characteristics of the concrete (piles) are λp = 7666.67 MPa, μp = 11500 MPa.
The related parameters for the soil layers are as follows: λL1 = 28.58 MPa,
μL1 = 7.14 MPa, λL2 = 9.51 MPa, μL2 = 4.07 MPa, λL3 = 2.8 MPa, μL3 =
2.8 MPa, λL4 = 1.28 MPa, μL4 = 1.92 MPa. The forces, acting on the top cross-
sections of the piles are F1 = (150 kN, 2000 kN) and F2 = (150 kN, 4000 kN).

Table 2. Model Problem in the Unit Square

Mesh N CG ISO-MIC(0) SDC-MIC(0)

1 81 67 24 19
2 289 129 30 24
3 1089 246 41 32
4 4225 445 59 44
5 16641 853 81 61
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Fig. 3. Pile Foundation. (a) Geometry of the pile system and the soil layers; (b) The
initial mesh with a local refinement; (c) vertical displacements; (d) vertical stresses.

Dirichlet boundary conditions are applied on the bottom side. Table 4 contains
the PCG convergence rate for Jacobi1 and the two MIC(0) DD preconditioners.
The stopping criteria here is ‖r(k)‖∞ ≤ 10−3‖r(0)‖∞. Fig. 3 (c) and (d) show
the vertical displacements and vertical stresses respectively.

Table 3. Model Problem in the Disc

Mesh Nodes CG ISO-MIC(0) SDC-MIC(0)

1 229 68 28 27
2 844 150 42 40
3 3232 335 62 61
4 12640 712 97 98
5 49984 1448 159 161

5.4 Concluding Remarks

The rigorous theory of MIC(0) preconditioning is applicable to the first test
problem only. For a structured grid with a mesh size h and smoothly varying
1 The diagonal of the original matrix is used as a preconditioner.
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Table 4. Pile Foundation System

Mesh Nodes Jacobi ISO-MIC(0) SDC-MIC(0)

1 1449 725 291 227
2 5710 1604 412 349
3 22671 3523 585 527
4 90349 7468 848 811
5 360729 15370 1274 1334

material coefficents, the estimate κ(C−1
h Ah) = O(h−1) = O(N1/2) holds, where

Ch is the SDC-MIC(0) or ISO-MIC(0) preconditioner. The number of PCG
iterations in this case is nit = O(N1/4). The reported number of iterations
fully confirm this estimate. Moreover, we observe the same asymptotics of the
PCG iterations for the next two problems, which is not supported by the theory
up to now. As we see, the considered algorithms have a stable behaviour for
unstructured meshes in a curvilinear domain (see Fig. 2(a)). The robustness in
the case of local refinement and strong jumps of the coefficients is well illustrated
by the last test problem.
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Abstract. The paper deals with an efficient solution technique to large–
scale discretized shape and topology optimization problems. The effi-
ciency relies on multigrid preconditioning. In case of shape optimization,
we apply a geometric multigrid preconditioner to eliminate the under-
lying state equation while the outer optimization loop is the sequential
quadratic programming, which is done in the multilevel fashion as well. In
case of topology optimization, we can only use the steepest–descent opti-
mization method, since the topology Hessian is dense and large–scale. We
also discuss a Newton–Lagrange technique, which leads to a sequential
solution of large–scale, but sparse saddle–point systems, that are solved
by an augmented Lagrangian method with a multigrid preconditioning.
At the end, we present a sequential coupling of the topology and shape
optimization. Numerical results are given for a geometry optimization in
2–dimensional nonlinear magnetostatics.

1 Introduction

The process of engineering design involves proposing a new prototype, testing it
and improvements towards another prototype. This loop can be simulated on a
computer if we can exactly determine the design space of improvements, the ob-
jective function which evaluates the tests, and the state constraints that model
the underlying physical laws. Nowadays, with the rapid progress in computing
facilities, the computer aided design requires software tools that are able to solve
problems which still fit to the memory (milions of unknowns) and their solution
times are in terms of hours. In this spirit, multigrid techniques [2,7] proved to be
the relevant methods for partial differential equations. Recently, they have been
extended to multigrid–based optimization in optimal control [1,11], in parame-
ter identification [4] or in topology optimization [6]. This paper is a summary of
our recent contributions within the multigrid optimization context [8,9]. More-
over, it extends our latest development in multigrid preconditioning of mixed
systems [10] towards the topology optimization.
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We consider a sufficiently regular fixed computational domain Ω ∈ IR2 and
the weak formulation of the following 2–dimensional nonlinear magnetostatical
state problem:

{
−div

(
ν(x, ‖grad(u(x))‖2, q(x)) grad(u(x))

)
= J(x) for x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω,
(1)

where u denotes a scalar magnetic potential so that curl(u):=(∂u/∂x2, −∂u/∂x1)
is a magnetic flux density, J denotes an electric current density and ν is the
following nonlinear magnetic reluctivity:

ν(x, η, q(x)) := ν0 + (ν(η) − ν0)q(x), ν(η) := ν1 + (ν0 − ν1)
η4

η4 + ν−1
0

,

where ν0 := 1/(4π10−7) [mH−1], ν1 := 5100 ν0 is the air and ferromagnetic
reluctivity, respectively, and where q : Ω → {0, 1} denotes a topology design,
which tells us whether the point x belongs to the air or the ferromagnetics.

As a typical example we consider a direct electric current (DC) electromag-
net, see Fig. 1. It is used for measurements of Kerr magnetooptic effects with
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Fig. 1. Benchmark problem

applications in development of high–density magnetic or optic data recording
media. The measurements require the magnetic field among the pole heads to
match a prescribed constant field. Our aim is to design a geometry of the fer-
romagnetic yoke and pole heads that preserves the requirement. We will discuss
topology optimization, where only the current sources are fixed, as well as shape
optimization, where, additionally, some initial topology is fixed, which makes
the computation less expensive due to the less freedom in the design.
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In the shape optimization case, we fix the topology, which means that the
shape design splits the domain Ω into two distinct subdomains as follows:

q(x, p) :=
{

0 for x ∈ Ω0(p),
1 for x ∈ Ω1(p),

where p ∈ P denotes a parametrization, e.g. Béziér, of the shape of the split-
ting interface Γ (p) := ∂Ω0(p) ∩ ∂Ω1(p). Then, we consider the following shape
optimization problem:

{
min
p∈P

I(u(p))

subject to (1) and |Ω1(p)| ≤ Vmax,
(2)

where Vmax > 0 denotes a maximal admissible volume of the ferromagnetic parts.
We assume I to be twice differentiable and coercive and P to be a compact set
of sufficiently regular shapes. In our experiments I will measure inhomogeneities
of the magnetic field density in the following manner:

I(u) :=
1

2|Ωm|

∫
Ωm

‖curl(u(x)) − Bgiven‖2 dx +
εu

2|Ω|

∫
Ω

‖∇u‖2 dx,

where the term with εu > 0 regularizes the coercitivity and Ωm is as in Fig. 1.
In the topology optimization case, we relax the integer constraint q(x) ∈ {0, 1}

to the continuous constraint q ∈ [0, 1] so that in (1) we replace q(x) by qρ(q(x)),
which is the following penalization of intermediate values:

qρ(q) :=
1
2

(
1 +

1
arctan(ρ)

arctan(ρ(2q − 1))
)

with ρ � 0 being the penalty parameter. The relevant topology optimization
problem under consideration reads as follows:

{
min
q∈Q

{
I(u(qρ(q))) + εq

2|Ω|
∫

Ω
q2 dx

}

subject to (1) and
∫

Ω qρ(q(x)) dx ≤ Vmax,
(3)

where Q :=
{
q ∈ L2(Ω) : 0 ≤ q ≤ 1

}
and the additional term in the objective

functional, with εq > 0, regularizes its coercitivity with respect to q.

2 Multigrid Nested Shape and Topology Optimization

We aim at an efficient numerical solution to large–scale discretized shape optimi-
zation problems arising from (2). In this case the number of design variables is
one–order less than the number of state variables, thus the shape Hessian is
dense, but rather small, and the overall computational work is performed in
the state elimination. After a discretization, the state equation (1) leads to the
following nonlinear system of equations:

A(u, q(p))u = J .



Multigrid–Based Optimal Shape and Topology Design in Magnetostatics 85

The latter is solved by the nested approach, which means that u in the equation
above is eliminated for each shape design p using a nested Newton method with
multigrid preconditioned conjugate gradients (MCG) method in the most inner
iterations. We propose to couple this nested Newton method with the most outer
quasi–Newton optimization method as depicted in Fig. 2.

Given pinit, discretize at the first level: h(1) −→ p
(1)
init, A

(1), J (1).
Solve by a quasi-Newton method coupled with a nested Newton method, while

using a nested direct solver: p
(1)
init −→ p

(1)
opt.

Store the first level preconditioner C(1) :=
[
A

(1)
lin (p

(1)
opt)

]−1

.

FOR l = 2, . . . DO

Refine: h(l−1) −→ h(l), p
(l)
init, A

(l), J (l).

Prolong: p
(l−1)
opt −→ p

(l)
init.

Solve by a quasi-Newton method coupled with a nested Newton method, while

using the nested MCG method preconditioned with C(l−1): p
(l)
init −→ p

(l)
opt.

Store the l–th level multigrid preconditioner C(l) ≈
[
A

(l)
lin(p

(l)
opt)

]−1

.

END FOR

Fig. 2. Multigrid shape optimization: the algorithm

For numerical experiments, which were computed using the software
Netgen/NgSolve developed by Joachim Schöberl et al. at the University Linz,
Austria, see Tab. 1. In the table the second and the fourth column respectively
depict the numbers of shape design variables and the numbers of nodes in the
discretizations. We can observe an optimal behaviour in terms of the CG itera-
tions, see the numbers before the slash in the sixth column, that are precondi-
tioned using the same geometric multigrid preconditioner throughout the whole
algorithm, thus it effectively acts for changing designs p. The multigrid precondi-
tioner is built from the linearizations A

(l)
lin(p(l)

opt) := dA(l)(0, p
(l)
opt)/du, therefore,

the numbers of iterations within the nonlinear steps decay, see the numbers af-
ter the slash in the sixth column. Note also that the sensitivity analysis for the
shape optimization is performed via an adjoint nonlinear equation, the solution

Table 1. Multigrid shape optimization: numerical results

level design outer state maximal inner CG steps time
variables iterations variables iterations linear/nonlinear

1 19 10 1098 3 direct solver 32s
2 40 15 4240 3 3/14–25 2min 52s
3 82 9 16659 4 4–5/9–48 9min 3s
4 166 10 66037 4 4–6/13–88 49min 29s
5 334 13 262953 5 3–6/20–80 6h 36min
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of which takes about the same computational work as the nested state elimina-
tion Newton method, which we have to differentiate in the usual adjoint sense,
see [9] for the details.

In case of nested topology optimization we avoid a Newton technique in the
outer optimization loop, as the topology Hessian is both dense and large–scale.
Therefore, we use a steepest–descent optimization method. With this only dif-
ference we can apply the algorithm from Fig. 2 to the problem (3). The topology
sensitivity analysis is again as expensive as the cost evaluation, when using the
adjoint method.

3 Multigrid All–at–Once Topology Optimization

Now we aim at developing a Newton method for large–scale discretized topol-
ogy optimization problems arising from (3). For sake of clarity, let us assume
the ferromagnetic reluctivity to be constant ν(η) := ν1, which is the case of
linear magnetostatics. Contrary to shape optimization, in topology optimization
the numbers of state and design variables are of the same order, therefore the
topology Hessian is both dense and large–scale, and the nested Newton approach
can not be applied. We rather prescribe the state constraint in terms of a La-
grange multiplier λ ∈ H1

0 (Ω) and we propose to use an active set strategy to
fulfill the other inequality constraints. This leads to a sequence of the follow-
ing saddle–point systems, which are large–scale, but sparse and well–structured:
Find (δuk, δqk, δλk) ∈ H1

0 (Ω) × L2(Ω) × H1
0 (Ω):

⎛
⎝ L , sym. , sym.

B(λk, qk) , I(uk, qk, λk) , sym.
L(qk) , B(uk, qk)T , 0

⎞
⎠
⎛
⎝ δuk

δqk

δλk

⎞
⎠ = −

⎛
⎝f(uk, qk, λk)

g(uk, qk, λk)
c(uk, qk)

⎞
⎠ (4)

where the entries are the following bilinear or linear forms:

L(u, v) :=
∫

Ω

(1|Ωm + εu)∇u∇v dx, L(qk)(u, v) :=
∫

Ω

ν(qρ(qk))∇u∇v dx,

B(vk, qk)(p, v) :=
∫

Ω

(ν1 − ν0)
d qρ

d q
(qk)∇vkp∇v dx,

I(uk, qk, λk)(p, q) :=
∫

Ω

(
εq + (ν1 − ν0)

d2 qρ

d q2
(qk)∇uk∇λk

)
p q dx,

f(uk, qk, λk)(v) :=
∫

Ωm

(curl(uk) − Bgiven) curl(v) dx

+
∫

Ω

(εu∇uk + ν(qρ(qk))∇λk) ∇v dx,

g(uk, qk, λk)(p) :=
∫

Ω

(
εqqk + (ν1 − ν0)

d qρ

d q
(qk)∇uk∇λk

)
p dx,
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c(uk, qk)(v) :=
∫

Ω

ν(qρ(qk))∇uk∇v dx −
∫

Ω

J v dx,

where u, v ∈ H1
0 (Ω), p, q ∈ Q. The update can be given by the following line–

search:

uk+1 := uk + tk δuk, qk+1 := PQ̃(qk + tk δqk), λk+1 := λk + tk δλk,

where tk > 0 and PQ̃ : L2(Ω) → Q̃ is the projection onto Q̃ := {q ∈ Q :∫
Ω

qρ(q(x)) dx ≤ Vmax}. Unfortunately, so far we have not found a successful
globalization strategy to find a proper tk, while the simple one based on minimi-
zation of the norm of the right–hand side of (4) failed.

3.1 Multigrid–Lagrange Method for the Stokes Problem

As a first step towards solution to (4), we focuse on solution to a linear system.
We realize that (4) is rather similar to the 2–dimensional Stokes problem: Find
(u, q) ∈ [H1

0 (Ω)]2 × L2(Ω):
(

A , sym.
B , 0

)(
u
q

)
=
(

F
0

)
(5)

where for v, w ∈ [H1
0 (Ω)]2 and for p ∈ L2(Ω) the operators reads as follows:

A(v, w) :=
∫

Ω

∑2
i=1 ∇vi∇wi dx, B(v, p) :=

∫
Ω div(v) p dx and F (v) :=

∫
Ω f v dx,

where f ∈ [L2(Ω)]2. Note that the solution is unique up to a constant hydro-
statical pressure q.

Our algorithmic development is based on a variant of the augmented Lagran-
gian method proposed in [5], the convergence of which was proven to depend only
on the smallest eigenvalue of A. Therefore, we build a multigrid preconditioner to
A, denoted by Â−1 and the multigrid preconditioner to the L2(Ω)–inner product,
denoted by M̂−1, which leads to a method of linear computational complexity,
see [10] for details. Denote the augmented Lagrange functional of (5) by

L(u, q, ρ) :=
1
2
A(u, u) − F (u) + B(q, u) +

ρ

2
‖Bu‖2

L2(Ω)′ ,

where ‖.‖L2(Ω)′ denotes the norm in the dual space to L2(Ω), which can be
evaluated due to the Riesz theorem as follows: ‖Bu‖L2(Ω)′ ≈ ‖Bu‖

M̂−1 :=√
(Bu)T M̂−1(Bu), where M̂ is an approximation of the mass matrix. The algo-

rithm based on a semi–monotonic augmented Lagrangian technique and multi-
grid preconditioning is described in Fig. 3. In the algorithm the inner minimiza-
tion is realized via the conjugate gradients method preconditioned with Â−1,
i.e. the inner loop is optimal. It is important that the inner loop is terminated
with a precision proportional to the violence of the constraint Bu = 0. From the
theory in [5] and the fact that we use optimal preconditioners, it follows that also
the number of outer iterations is bounded by a constant independently from the
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fineness of discretization, i.e. the algorithm is of assymptoticaly linear complex-
ity with respect to the number of unknowns. The key point for the optimality
of the outer loop is that we preserve a kind of monotonicity of the augmented
Lagrange functional, see Fig 3 for the condition for the increase of the penalty
ρ. Under this condition we have also proven [10] a uniform upper bound on ρ.

Given η > 0, β > 1, ν > 0, ρ(0) > 0, u(0) ∈ V , p(0) ∈ Z, precision ε > 0
and feasibility precision εfeas > 0
FOR k := 0, 1, 2, . . . DO

Find u(k+1) : ‖∇uL(u(k+1), p(k), ρ(k))‖
Â−1 ≤ min

{
ν‖Bu(k+1)‖

M̂−1 , η
}

IF ‖∇uL(u(k+1), p(k), ρ(k))‖
Â−1 ≤ ε and ‖Bu(k+1)‖

M̂−1 ≤ εfeas

BREAK
END IF

p(k+1) := p(k) + ρ(k)M̂−1Bu(k+1)

IF k > 0 and L(u(k+1), p(k+1), ρ(k)) < L(u(k), p(k), ρ(k−1)) + ρ(k)

2
‖Bu(k+1)‖2

M̂−1

ρ(k+1) := βρ(k)

ELSE

ρ(k+1) := ρ(k)

END IF
END FOR

u(k+1) is the solution.

Fig. 3. Multigrid preconditioned semi–monotonic augmented Lagrangian method

There is an advantage to the classical inexact Uzawa method [3], since in our
algorithm we do not need to have independent constraints, i.e. B does not need
to be a full rank matrix. Nevertheless, in case of B being full rank and with a
special setup (βν2 ≈ ρ(0)), the penalty ρ is never updated and the algorithm
in Fig. 3 becomes the inexact Uzawa method applied to the system

(
A + ρ(0)BT M̂−1B , sym.

B , 0

)(
u
q

)
=
(

F
0

)

with (1/2)Â−1 as a preconditioner for the (1,1) block and (λ/‖B‖2)M̂−1 as a
preconditioner for the Schur complement, where λ is the ellipticity constant of
A. Thus, the theory of [3] applies, see [10].

The numerical results were obtained for the data Ω := (0, 1)2, f(x1, x2) :=
sign(x1) sign(x2)(1, 1), u(0) := 0, p(0) := 0, ε := 10−3, εfeas := 10−3, η := 0.1,
ρ(0) := 1, β := 10, ν := 1. We employed Crouzeix–Raviart finite elements and a
block multiplicative multigrid smoother with 3 pre– and 3 post–smothing steps.
The results are depicted in Tab. 2 and they were computed in Matlab. The
columns in Tab. 2 respectively denote the level, the numbers of Crouzeix–Raviart
nodes, the numbers of elements, the numbers of outer iterations (before the slash
in the fourth column), the numbers of inner PCG iterations throughout all the
outer iterations (after the slash in the fourth column), and the sum of all the
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Table 2. Multigrid solution to the Stokes problem

level l size(ul) size(ql) outer/PCG total PCG
iterations iterations

1 56 32 6/1,0,1,2,4,8 16
2 208 128 6/1,0,1,2,5,13 22
3 800 512 6/1,0,1,2,5,14 23
4 3136 2048 6/1,0,1,2,6,14 24
5 12416 8192 6/1,0,1,2,6,15 25
6 49408 32768 6/1,0,1,2,6,16 26

inner PCG iterations per level. From the last column we can see that the total
number of PCG iterations becomes at higher levels almost constant, which is
the expected multigrid behaviour.

4 Coupling of Topology and Shape Optimization

The coarsely discretized optimal topology design serves as the initial guess for
the shape optimization. The first step towards a fully automatic procedure is
a shape identification. The second step, we are treating now, is a piecewise
smooth approximation of the shape by a Bézier curve Γ (p). Let qopt ∈ Q be an
optimized discretized material distribution. We solve the following least square
fitting problem:

min
p∈P

∫
Ω

[qopt − χ (Ω1 (Γ (p)))]2 dx, (6)

where χ(Ω1) is the characteristic function of Ω1.
When solving (6) numerically, one encounters a problem of intersection of the

Bézier shapes with the mesh on which qopt is elementwise constant. In order to
avoid it we use the property that the Bézier control polygon converges linearly
to the curve under the procedure that adds control nodes so that the resulting
Bézier shape remains unchanged. The integration in (6) is then replaced by a
sum over the elements and we deal with intersecting of the mesh and a polygon.

Note that the least square functional in (6) becomes non-differentiable
whenever a shape touches the grid. Nevertheless, we compute forward finite dif-
ferences, which is still acceptable for the steepest-descent optimization method
that we use. The smoothness can be achieved by smoothing the characteristic
function χ(Ω1).

We consider the benchmark problem depicted in Fig. 1 and simplified as in
Fig. 4 (a). Given the initial design qinit := 0.5, we start with the topology
optimization. The coarse topology optimization problem involves 861 design,
1105 state variables and the optimization runs in 7 steepest descent iterations
taking 2.5 seconds, when using the adjoint method for the sensitivity analysis.
The second part of the computation is the shape approximation. We are looking
for three Bézier curves that fit the optimized topology. There are 19 design
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Fig. 4. Coupled topology and shape optimization: (a) initial topology design; (b)
optimal shape design

parameters in total and solving the least square problem (6) runs in 8 steepest–
descent iterations taking 26 seconds when using numerical differentiation. See
Fig. 4 (b) for the resulting geometry.
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10. Lukáš, D., Dostál, Z.: Optimal multigrid preconditioned semi–monotonic augmented
Lagrangians Applied to the Stokes Problem, Num. Lin. Alg. Appl. (submitted)
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Abstract. It is well-known that iterative methods of optimal order
complexity with respect to the size of the system can be set up by
utilizing preconditioners based on various multilevel extensions of two-
level finite element methods (FEM), as was first shown in [5]. Thereby,
the constant γ in the so-called Cauchy-Bunyakowski-Schwarz (CBS)
inequality, which is associated with the angle between the two subspaces
obtained from a (recursive) two-level splitting of the finite element space,
plays a key role in the derivation of optimal convergence rate estimates.
In this paper a generalization of an algebraic preconditioning algorithm
for second-order elliptic boundary value problems is presented, where
the domain is discretized using linear Crouzeix-Raviart finite elements
and the two-level splitting is defined by differentiation and aggregation
(DA). It is shown that the uniform estimate on the constant γ (as pre-
sented in [6]) can be improved if a minimum angle condition, which
is an integral part in any mesh generator, is assumed to hold in the
triangulation. The improved values of γ can then be exploited in the
set up of more problem-adapted multilevel preconditioners with faster
convergence rates.

Keywords: multilevel preconditioning, hierarchical basis, differentiation
and aggregation.

1 Introduction

The target problems in our study are self-adjoint elliptic boundary value pro-
blems of the form

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω

u = 0 on ΓD (1)

(a(x)∇u(x)) · n = 0 on ΓN

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 91–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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where Ω ⊂ �
2 denotes a polygonal domain and f(x) is a given function in

L2(Ω). The matrix a(x) := (aij(x))i,j∈{1,2} is assumed to be bounded, symme-
tric and uniformly positive definite (SPD) on Ω with piecewise smooth functions
aij(x) in Ω := Ω ∪ ∂Ω, and n represents the outward unit normal vector onto
the boundary Γ := ∂Ω with Γ = Γ D ∪ Γ N .

Let us assume that the domain Ω is discretized using triangular elements and
that the fine-grid partitioning, denoted by Th, is obtained by a uniform refine-
ment of a given coarser triangulation TH . If the coefficient functions aij(x) are
discontinuous along some polygonal interfaces, we assume that the partitioning
TH is aligned with these lines to ensure that a(x) is sufficiently smooth over each
element E ∈ TH . The discrete weak problem of the above problem then reads
as follows:

Given f ∈ L2(Ω), find uh ∈ Vh such that Ah(uh, vh) = (f, vh) ∀ vh ∈ Vh (2)

is satisfied, where

Ah(uh, vh) :=
∑
e∈Th

∫
e

a(e)∇uh(x) · ∇vh(x) dx, (f, vh) :=
∫

e

f vh dx, (3)

and Vh := {v ∈ L2(Ω) : v
∣∣
e

is linear on each e ∈ Th, v is continuous at
the midpoints of the edges of triangles from Th and v = 0 at the
midpoints on ΓD}.

In our study we will consider the case of piecewise linear Crouzeix-Raviart
finite elements, where the nodal basis is associated with the midpoints of the
edges rather than at the triangle vertices as used in standard conforming FEM.
The construction of multilevel hierarchical preconditioner is based on a two-
level framework (cf., e.g., [5,6]). The needed background for the estimates on
the constant γ in the CBS inequality can be found in [1]. It was shown in [3] for
hierarchical basis splitting of the conforming finite elements that under certain
assumptions γ can be estimated locally by considering a single finite macro-
element E ∈ TH , which means that γ := max

E∈TH

γE , where

γE = sup
u∈V1,E , v∈V2,E

AE(u, v)

[AE(u, u)AE(v, v)]1/2
(4)

and Vi,E := Vi

∣∣
E

simply denotes the restriction of the functions of the vector
space Vi (i = 1, 2) to the macro-element E ∈ TH and, analogously, AE(., .) :=
A(., .)

∣∣
E

. With this local definition it can then be shown that γ depends on
the construction of the subspaces V1 and V2 (i.e. on the type of basis functions
chosen), but is independent of the mesh-size parameter h if, e.g., the refinement
is performed by congruent triangles, of the geometry of the domain Ω and is
also independent of any discontinuities of the coefficients involved in the bilinear
form AE(., .) as long as they do not occur within the element E itself.

In Section 2 we discuss the generalization of the two-level splitting by diffe-
rences and aggregates (DA) without restrictions to mesh and coefficient aniso-
tropy and show that it comprises the standard DA-splitting. In Section 3 the
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effect of this generalization on γ w.r.t. a minimum angle condition, as commonly
used in numerical implementations, is studied. We show that the application of
the generalized DA-splitting in a multilevel approach yields the convergence of
the underlying stiffness matrix to its counterpart for the equilateral triangle for
which the best CBS constant holds. This means that the local CBS constant is
continuously improved at each level when applied in a multilevel precondition-
ing framework based on the generalized DA-splitting. The paper concludes in
Section 4 with a brief summary of the main results.

2 Generalization of the 2-Level Splitting by Differences
and Aggregates (GDA-Splitting)

In order to derive estimates for the CBS-constant, it is known, that it suffices
to consider an isotropic (Laplacian) problem in an arbitrarily shaped triangle T .
Let us denote the angles in such a triangle, as illustrated in Fig. 1, by θ1, θ2

and θ3 := π − θ1 − θ2 and without loss of generality let us assume θ1 ≥ θ2 ≥ θ3.
Then, with a := cot θ1, b := cot θ2 and c := cot θ3, the condition |a| ≤ b ≤ c
holds in the triangle (cf. [4,2]).

A simple computation shows that the standard nodal basis element stiffness
matrix for a non-conforming Crouzeix-Raviart (CR) linear finite element ACR

e

coincides with that for the conforming (c) linear element Ac
e, up to a factor 4

and can be written as

ACR
e = 2

⎛
⎜⎜⎝

b + c −c −b

−c a + c −a

−b −a a + b

⎞
⎟⎟⎠ . (5)

The hierarchical stiffness matrix at macro-element level is then obtained by
assembling four such matrices according to the numbering of the nodal points,
as shown in Fig. 1(b). But, first we have to know on how to obtain a proper
decomposition of the vector space Vh, which is associated with the basis functions
at the fine grid. This will be dealt with in the following.

For the non-conforming Crouzeix-Raviart finite element, where the nodal basis
functions correspond to the midpoints along the edges of the triangle rather that

(a) III

II

1 2

3
7 4

5

98

4
1 2

I3

θ1

3θ

θ2

(b)

6

Fig. 1. Crouzeix-Raviart finite element (a) Discretization (b) Macro-element in detail
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at its vertices (cf. Fig. 1), the natural vector spaces VH := span{φI , φII , φIII}
and Vh :=span{φi}9

i=1 (cf. the macro-element in Fig.1(b)) are no longer nested.
This renders a direct construction with V2 := VH , as used for conforming ele-
ments, impossible. Consequently, the hierarchical basis functions have to be cho-
sen such that the vector space can be written as a direct sum of the resulting
vector subspaces V1 and V2. That means, the decomposition by differences and
aggregates (DA) on the macro-element level is to be based on the splitting
V(E) := span {ΦE} = V1(E)

⊕
V2(E), where ΦE := {φ

(i)
E }9

i=1 denotes the set
of the ”midpoint” basis functions of the four congruent elements in the macro-
element E, as depicted in Fig. 1(b).

A generalized form of the DA-decomposition can be obtained by enhancing the
aggregates in the vector space V2(E), while leaving V1(E) unaltered: Instead of
utilizing only the nodal basis function along the corresponding edge of the inner
element, numbered as element 4 in the macro-element, as illustrated in Fig. 1,
we now enhance the aggregates by using a linear combination of all three inner
basis functions. The generalized DA-splitting (GDA) is thus defined by

V1(E) := span {φ1, φ2, φ3, φ4 − φ5, φ6 − φ7, φ8 − φ9} and

V2(E) := span {φ123 + φ4 + φ5, φ312 + φ6 + φ7, φ231 + φ8 + φ9} , (6)

where φijk := ciφi + cjφj + ckφk and i, j, k ∈ {1, 2, 3}. The corresponding trans-
formation matrix for this generalized DA-splitting reads

JDA =

⎛
⎜⎜⎝

I3 0

0 J−

1
2I3 + C J+

⎞
⎟⎟⎠ with C :=

⎛
⎜⎜⎝

c1 − 1
2 c2 c3

c3 c1 − 1
2 c2

c2 c3 c1 − 1
2

⎞
⎟⎟⎠ . (7)

Compared to the standard DA-splitting, as introduced in [6], solely the lower-
left block 1

2I3 is now enhanced by the non-zero matrix C, as given above, where
I3 denotes the 3 × 3 unity matrix. The coefficients c1, c2 and c3 have yet to be
determined such that the CBS constant is improved compared to the standard
DA-algorithm, where the latter can be retrieved by the setting c1 = 1

2 and
c2 = c3 = 0. The matrices J− and J+ in Eq. (7) are given as

J− :=
1
2

⎛
⎜⎜⎝

1 −1

1 −1

1 −1

⎞
⎟⎟⎠ and J+ :=

1
2

⎛
⎜⎜⎝

1 1

1 1

1 1

⎞
⎟⎟⎠ . (8)

The matrix JDA transforms a vector of macro-element basis functions ϕE :=
(φ(i)

E )9i=1 to the hierarchical basis vector ϕ̃E := (ϕ̃(i)
E )9i=1 = JDA ϕE . The hierar-

chical stiffness matrix at macro-element level can then be computed in a cost-
saving way from its standard counterpart as

ÃE = JDA AE JT
DA (9)
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and can be decomposed into a 2×2 block-matrix according to the basis functions
of V1 and V2. Similarly, a two-by-two block structure for the hierarchical global
stiffness matrix

∑
E∈TH

ÃE =: Ãh =

(
Ã11 Ã12

Ã21 Ã22

)
(10)

can be obtained, whereby the upper-left block Ã11 corresponds to the interior
degrees of freedom (such as to element 4 in the macro-element, as depicted in
Fig. 1(b)) plus the differences of the nodal unknowns along the edges of the
macro-element E ∈ TH . The lower-right block on the other hand corresponds to
the aggregates of nodal unknowns, as defined by V2(E) for the macro-elements.

The analysis of the related two-level method can again be performed locally
by considering the corresponding problems at macro-element level. In order to
ensure the extension of the generalized two-level splitting to the multilevel case,
we have to show that Ã22 is properly related to the AH , the stiffness matrix at
the coarser level.

Remark 1. In [6] it was shown that for the standard DA-splitting the CBS
constant is uniformly bounded w.r.t. both coefficient and mesh anisotropy by
γ2 ≤ 3

4 . And, if Ã22 denotes the stiffness matrix as defined by (10) and AH is
the stiffness matrix corresponding to the finite element space VH of the coarse
grid discretization TH , equipped with the standard nodal basis {φ

(k)
H }k=1,...,NH ,

then these two matrices are related as Ã22 = 4 AH .

For the generalized DA-splitting this latter relation takes the form

Ã22 = R · AH , (11)

where R is a non-diagonal matrix. As will be shown in the next section, a succes-
sive application of R yields convergence of the stiffness matrix to its counterpart
corresponding to the equilateral case with the smallest CBS-constant. Hence,
this property can be exploited in a multilevel GDA-preconditioner, where the
CBS-constant is continuously improved with each level of refinement.

Remark 2. From symmetry reasons (since the macro-element was obtained by
uniform refinement of a triangle at the coarser level) one obtains c3 = c2. Note
that ker(ÃE,22) = ker(S̃E), where S̃E is the Schur complement in the generalized
eigenvalue problem and subscript E indicates that the evaluations are performed
at macro-element level, is a necessary and sufficient condition to have γ2

E < 1.
As a result and based on the construction of the hierarchical basis, on the rela-
tion (11) and on the c3-setting given above, it follows that c1 = 1

2 − 2 c2 must
hold.

Hence, the generalized DA-splitting only depends on c2 ∈ [0, 1
4 ], which can now

be used to optimize the CBS-constant. In the following section we will study the
behaviour of γE for varying values of c2 and varying angles θi, i = 1, 2, with
θ3 = π − (θ1 + θ2) in the triangle.
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3 Study on the Local CBS Constant and on the Property
of A(k) in a Multilevel Preconditoning Approach

The analysis in this section is performed locally, i.e., for a single but arbitrary
macro-element E ∈ T(k). Therefore the obtained results are local, but they
straightforwardly provide the global estimates, such as γ ≤ max

E∈TH

γE .

It can be shown that the function maxc2∈[0,1/4] γ
2
E(c2, θ1, θ2, θ3) attains its

minimum at θ3 = θ2 for arbitrary but fixed θ1 and its overall minimum of 3
8 for

the equilateral triangle. This means, that γ2
E can be improved compared to its

value of 3
4 , as obtained for the standard DA-algorithm, where c2 = 0, if the angles

in the triangles are chosen sufficiently large. Hence, we want to investigate the
effect of c2 on the CBS constant subject to a minimum angle condition. Together
with the assumptions of Section 2, we now use θ1 ≥ θ2 ≥ θ3 ≥ θmin , which yields
|a| ≤ b ≤ c ≤ d := cot(θmin) .

0 0.05 0.1 0.15 0.2

0.6

0.65

0.7

0.75

Θ_min ��25°,30°,35°��solid,dashed,dotted�

Fig. 2. Distribution of max
θk≥θmin, k=1,2,3

γ2
E(c2, θ1, θ2, θ3) for different values of θmin and

comparison with the distribution for the standard DA-algorithm (solid straight line)

Figure 2 shows the distribution of the maximum values of γ2
E(c2, θ1, θ2, θ3)

w.r.t. θ1, θ2 and θ3 for different settings of θmin ∈ {20◦, 25◦, 30◦}, as commonly
used in commercial mesh generators. The three γ2

E-curves are nearly identical
for values of c2 less than about 0.05, but spread out for larger values of c2.
It can also be seen that the CBS constant is significantly improved for larger
θmin-values and properly chosen values of c2.

Applied in a multilevel context, Eq. (11) (at elemental level) takes the form

A(k+1)
e = R(k) · A(k)

e , (12)

where A
(k)
e denotes the element stiffness matrix at level k. The stiffness matrix

at the coarsest level is given by A
(0)
e , which is assembled by element stiffness

matrices of the form (5) up to a certain constant factor, and A
(k+1)
e := Ã

(k)
E,22.

Since we will normalize the matrix w.r.t. one of its entries in the following, the
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constant factor, however, will cancel out. R(k) := R(k)(a, b, c) designates the
relation matrix between the local stiffness matrices at levels k + 1 and k. Note
that A

(k+1)
e is used as the coarse grid matrix at the next finer level and can again

be written in the form (5) with the only difference that it now corresponds to a
triangle with modified angles (cf. [7]). Consequently, by the GDA construction
the stiffness matrix A

(k)
e is positive semi-definite at all levels. For all element

stiffness matrices A
(k)
e the following results can be shown:

Lemma 1. Let A
(k)
e be the stiffness matrix at level k and let A

(k+1)
e := Ã

(k)
E,22

(with Ã
(k)
E,22 defined in analogy with (10)) be the corresponding element stiffness

matrix at level k + 1, which is related to A
(k)
e according to (12). Let

B(k) := c A(k)
e /A

(k)
e,12 (13)

be the normalized local stiffness matrix at level k, where A
(k)
e,12 denotes the (1, 2)-

entry of the matrix A
(k)
e . Then, under the assumption of convergence and c2 > 0,

the limiting value of B(k) is given by the normalized stiffness matrix correspond-
ing to the equilateral triangle, denoted as Beq, with a = b = c = 1/

√
3.

Note that for c2 = 0 (the standard DA-splitting) the triangle remains the same
at all levels, which yields a constant sequence of the cotangens of the angles in
the initial triangle.

Theorem 1. Let B(k) be the normalized element stiffness matrix at a given
level k ∈ �0, as given by Eq. (13), and let c2 be bounded away from zero, i.e.,
c2 ∈ [c2,min, 1/4] with c2,min > 0. Then,

‖B(k+1) − Beq‖F ≤ q ‖B(k) − Beq‖F (14)

is satisfied for some positive q < 1, where ‖.‖F denotes the Frobenius norm of a
given matrix. Since q ∈ [0, 1) this yields

‖B(k) − Beq‖F −→ 0 if k → ∞ . (15)

The limiting value is thus given by the stiffness element matrix Beq, which
corresponds to the equilateral triangle.

Remark 3. Note that due to Eqs. (12) and (13) the matrices A
(k)
e and B(k) only

differ by the constant scaling factor α(k) := c /A
(k)
e,12 at each level. Hence, the

convergence (to the minimal value of 3
8 ) of the CBS-constants for the normalized

matrices B(k) also holds for the original matrices A
(k)
e .

If c2 ∈ (0, 1/4], it can be shown that the upper bound value of the conver-
gence factor, q̄, lies in the interval [4/5, 1) and is monotonically decreasing for
increasing values of c2.

The improvement of the convergence rate in Eq. (15) is confirmed in the following
example, where the behaviour of the true convergence factor q (< q̄), as obtained
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Table 1. Study of the convergence factor q and of ‖B(k)−Beq‖F for different c2-values
at different levels k

c2 = 0.12 c2 = 0.20

k q ‖B(k) − Beq‖F q ‖B(k) − Beq‖F

1 0.963 1.496 0.853 1.325

3 0.961 1.379 0.826 0.876

5 0.959 1.260 0.803 0.518

10 0.954 0.971 0.763 0.104

20 0.945 0.502 0.732 0.003

from Eq. (14), and of the Frobenius norm of the distance between B(k) and Beq

is studied at different levels and for different settings of c2 for the triangle with
(θ1, θ2, θ3) = (85o, 70o, 25o) with an initial value of ‖B(0) − Beq‖F = 1.554 at
level 0.

From the results in Table 1 it can be seen that the larger the value of c2 the
smaller the value of the convergence factor q and thus the faster the convergence
(w.r.t. level k) is towards the (normalized) equilateral case. Consequently, the
CBS-constant decreases faster for larger values of c2 since the stiffness matrix
resembles more and more its equilateral counterpart.

For further details and proofs of the stated results, the reader is referred to [7].

4 Concluding Remarks

A generalized splitting based on differences and aggregates (GDA) was intro-
duced by enhancing the aggregates in the decomposition of the vector spaces.
For c2 = 0 the standard DA-approach can be retrieved for which the CBS
constant γ2 is uniformly bounded by 3/4 w.r.t. to both coefficient and mesh
anisotropy. It was shown that for the GDA-splitting the local CBS constant
can significantly and continuously be improved with each level of refinement if
the mesh triangulation satisfies a reasonable minimum angle condition. An ex-
ploitation of this favourable behaviour for the set up of a self-adaptive multilevel
GDA-preconditioner is subject to future research.
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Abstract. The iterative method to solve the equations modelling
the coupled consolidation problem is presented. The algorithm is tes-
ted in the finite element package Hydro-geo for the geotechnical
constructions.

1 Introduction

Coupled problems appear in the real world everywhere. Description of differ-
ent mechanical phenomena such as flow, mechanical behavior, thermal effects,
leads to coupled systems of differential equations. The finite element method
is widely used to solve such problems. The most important part of the finite
element method algorithm is the procedure of solving the set of linear and non-
linear equations. For big problems it is the most time consuming part of all
calculations. In the case when the coupled problems are taken under consider-
ation the structure of the system of equations leads to the application of the
block solvers. Each block describes different phenomena or the coupled part, has
different condition coefficient and can be calculated independently from others.
As the example the consolidation problem is considered and calculated using
Hydro-geo package. The large systems of linear equation, especially in the situ-
ation when matrices are sparse or bounded, can be easily solved by the parallel
iterative method. This method with block structure of the matrix can also be
very easy implemented on distributed memory system. The iterative methods
allow splitting matrix between separated memory and require to send only the
solution vector at each step of the calculation. The cost of the communication is
small comparing the direct methods which require sending the parts of matrices.
The application of the iterative methods unfortunately can lead to the problems
with convergence. In the paper the conjugate gradient method is used to solve
the set of equations.

In Section 2 numerical procedure implemented in the finite element package
Hydro-geo is recall after [6]. The benchmark problem used for testing is presented
in Section 3. The algorithm used to solve the set of equation by iterative method
is described in Section 4.

The work is sponsored by the project of Polish Ministry of Science
No 4 T07E 020 29 at Warsaw University of Technology, Faculty of Environmental
Engineering.
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2 Numerical Procedure

The finite element method package Hydro-Geo [7] oriented at hydro and geotech-
nical problems is developed at Warsaw University of Technology and next ex-
tended to allow the parallel calculations [9,10]. In the paper the new algorithm
for solving the set of equations is presented.

In the finite element package Hydro-Geo the virtual work principle, continu-
ity equation with boundary conditions is the starting points for numerical for-
mulation. The finite element method is applied to solve initial boundary value
problems. Several procedures stemming from elasto-plastic modelling can be
coupled with the time stepping algorithm during the consolidation process. The
elasto-plastic soil behavior is modelled by means of visco-plastic theory (Perzyna,
1966). The finite element formulation for the elasto-plastic consolidation com-
bines overlapping numerical processes. The elasto pseudo-viscoplastic algorithm
for numerical modelling of elasto-plastic behavior is used after Zienkiewicz and
Cormeau (1974). The stability of the time marching scheme was proved by
Cormeau (1975). The pseudo-viscous algorithm developed in finite element com-
puter code Hydro-Geo is successfully applied to solve a number of boundary value
problems, D�luzewski (1993). The visco-plastic procedure was extended to cover
the geometrically non-linear problems by Kanchi et al (1978) and also developed
for large strains in consolidation, D�luzewski (1997) [5]. The pseudo-viscous pro-
cedure is adopted herein for modelling elasto-plastic behavior in consolidation.
In the procedure two times appear, the first is the real time of consolidation
and the second time is only a parameter of the pseudo-relaxation process. The
global set of equations for the consolidation process, called the Biot’s equation,
is derived as follows

(
KT L
LT −(S + ΘΔtHi)

)
•

(
Δui

Δpi

)
=

(
0 0
0 −ΔtH i

)
•

(
ui

pi

)
+

(
ΔF i

Δq

)
(1)

where KT is the tangent stiffness array, considering large strains effects, L
is the coupling array, S is the array responsible for the compressibility of the
fluid, H is the flow array, u are the nodal displacements, p are the nodal
excesses of the pore pressure, ΔF i is the load nodal vector defined below

ΔF i = ΔFL + ΔRi
I + ΔRi

II (2)

ΔF i is the load increment, ΔRi
I is the vector of nodal forces due to pseudo-visco

iteration, ΔRi
II is the unbalanced nodal vector due to geometrical nonlinearity.

ΔRi
I takes the following form

ΔRi
I =

∫
(i−1)
t+ΔtV

BT
(i−1)D(t+Δt

t+ΔtΔενp
i )t+Δt

i−1 dv (3)

and is defined in the current configuration of the body. The subscripts indicate
the configuration of the body, and superscripts indicate time when the value is
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defined (notation after Bathe (1982)). ΔRi
I stands for the nodal vector which

results from the relaxation of the stresses. For each time step the iterative pro-
cedure is engaged to solve the material non-linear problem. The i-th indicates
steps of iterations. Both local and global criterions for terminating the iterative
process are used. The iterations are continued until the calculated stresses are
acceptable close to the yield surface, F ≤ Tolerance at all checked points, where
F is the value of the yield function. At the same time the global criterion for this
procedure is defined at the final configuration of the body. The global criterion
takes its roots from the conjugated variables in the virtual work principle, where
the Cauchy stress tensor is coupled with the linear part of the Almansi strain
tensor. For two phase medium, the unbalanced nodal vector ΔRi

II is calculated
every iterative pseudo-time step.

ΔRk−1 =
∫

t+ΔtV NT f t+ΔtdV +
∫

t+ΔtS NT tt+ΔtdS

−
∫
(k−1)
t+Δt V

BT
(k−1)D(t+Δt

t+Δtσ
j(k−1) + mt+Δt

t+Δtp
(k−1))(k−1)

t+Δt dV
(4)

The square norm on the unbalanced nodal forces is used as the global crite-
rion of equilibrium. The iterative process is continued until both criterions are
fulfilled.

More details can be find in [8].
In the problem presented above the integration over time leads to more accu-

rate results for the shorter time steps provided the time step is not shorter than
the critical one [5,14]. There is a time step bellow which the results show the
oscillation of the excess pore pressure in space. The shortest time step which still
gives the smooth distribution of the excess pore pressure is called the critical
time step. In the paper we do not discuss the problem. The appropriate condition
of the solution convergence is presented in [5] and assumed to be fulfilled.

3 Benchmark Problem: Two-Dimensional Consolidation

The problem is presented precisely in [5]. The axisymmetrical problem solved
analytically by Gibson et al (1970) is modelled. A layer of clay is analyzed. The
clay layer resting in the rigid smooth and impermeable foundation is loaded
by uniformly distributed traction within a circle. The time stepping process is
started from very short time step and next continued until the complete decay of
the express pore pressure is observed. The following material data are assumed:
G = 333.3kPa, ν = 0.25, permeability k = 10−7m/s, unit weight of water
γw = 10kN/m3.

4 Parallel Numerical Algorithm for Solving the Set of
Equations for Consolidation Problem

The block formulation of the coupled problems makes natural the application of
the block methods for solving the sets of linear equations. The large matrixes can
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be split into blocks and put into separate memories of the distributed machine.
The parallel calculations are reached due to the matrix operations on separate
blocks. The standard numerical algorithms should be rebuilt for the block version
or the standard libraries can be used. For big problems the matrix of the system
of linear equations is put on distributed memories and iterative methods is used
to obtain solution of the set of equations. For the consolidation problem the
coefficient matrix is bad-conditioned [1,2,11,12,13].

The condition coefficient for whole matrix of the consolidation problem is of
the range 106 at least. At the same time the condition coefficients of blocks
built for separate parts, responsible for different phenomena, are much smaller.
For the iterative methods with the whole uncoupled system calculation we do
not reach the convergence. The method which allows us to have solution is the
uncoupled approach.

We use the following notation to simplify the Biot’s equation:
(

K L
LT W

)
•

(
Δu
Δp

)
=

(
f1

f2

)
(5)

where K is the tangent stiffness array, considering large strains effects, L
is the coupling array, W is the array responsible for the compressibility and
flow of the fluid, u are the nodal displacements, p are the nodal excesses of
the pore pressure, Δx means the x’s increment.

Remark. When we consider the norms of the matrices in consolidation equation
the following occurs:

||K|| >> ||L|| >> ||W ||

where ||.|| denotes the norm of matrix.

Example. The calculated matrix K for the Gibson problem has the norm of
the range O(103), the matrix W has the norm of the range O(10−3) and the
matrix L has the norm of the range 0(1). The solution vector Δu has the norm
equal O(10−3) and the vector Δp has the norm equal O(1). The differences of
the range causes the problems with convergence of the iterative method.

4.1 Algorithm

The iterative methods for the set of equations for consolidation problem on the
main level on matrix division leads to the following iterative formula:

K • Δui+1 = f1 − L • Δpi (6)

W • Δpi+1 = f2 − LT • Δui

Next, both above equations can be solved in parallel, possibly by block
methods.

For each of the equations (6) the Conjugate Gradient algorithm is used. The
algorithm is as follows:
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Algorithm

1. Determine Δu0 and Δp0 as the solution of the block Gauss elimination.
2. For i = 1, 2, ... until convergence do

(i) solve
K • Δui+1 = f1 − L • Δpi

and
W • Δpi+1 = f2 − LT • Δui

each by the Conjugate Gradient method
(ii) Δui+1 = Δui

(iii) Δpi+1 = Δpi

End For
As the stop condition the error of both equations are used:

min(f1 − L • Δpi+1 − K • Δui+1, f2 − LT • Δui+1 − W • Δpi+1).

and expected to be smaller than the assumed tolerance.

4.2 Convergence

The main problem to achieve convergence is to find the start vector for iterations.
We use simple block Gaussian elimination. Such solution for large problems is
not proper because of the numerical error but it is very good start point for
iterative methods. In fact we improve the solution reached by direct method.

The block uncoupled iterative formula allows us to reach the convergence. The
iterative methods used for the whole coupled set of equations do not converge
for our test Gibson problem independently on the size of the matrix. We do
not obtain the solution even for small problems. The speed of the convergence
depends on the start point. It means that the change of the solutions in the
successive time steps can not be too big.

5 Conclusion

The uncoupled iterative method allows us to calculate big problems in parallel.
The most difficult part is the convergence of the method. In the paper the
start point was chosen as the non-accurate solution from the direct method. In
future by applying the preconditioning we can reach better convergence for the
arbitrary start point for iteration.
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Abstract. The paper deals with a finite element solution of transient
thermo-elasticity problems. In this context, it is especially devoted to
the parallel computing of nonstationary heat equations, when the linear
systems arising in each time step are solved by the overlapping domain
decomposition method. The numerical tests are performed by OpenMP
and/or MPI solvers on a large benchmark problem derived from geoen-
vironmental model KBS.

1 Introduction

The work is motivated by the model of the prototype nuclear waste repository
located at Äspö in Sweden. The aim is mathematical modelling and computer
simulation of complex phenomena in the studied domain.

In this paper, we consider the finite element solution of thermo-elasticity prob-
lems, which are not fully coupled. We suppose, that deformations are very slow
and do not influence temperature fields. Thus, we can divide the problem in two
parts. Firstly, we determine the temperature distribution by solving the nonsta-
tionary heat equation. Secondly, we solve the linear elasticity problem at given
time levels.

The numerical solution of both problems leads to the repeated solution of large
linear systems. For this purpose, we use iterative solvers based on the conjugate
gradient method with Schwarz-type preconditioners. Such approach naturally
allows the parallel implementation of the solvers and so consequently enables to
process the original problem more efficiently. We shall investigate these facts by
numerical tests on a large geoenvironmental benchmark problem.

The presented work is a continuation of [2]. By the numerical experiments, it
shows the stability of the parallel solvers with the one-level Schwarz precondi-
tioner, when the heat conduction problem is solved. Herewith, the efficiency of
both the OpenMP and MPI solvers is demonstrated on a parallel computer up
to 16 used processors.

2 From Thermo-Elasticity to Linear Equations

The thermo-elasticity problem is formulated to find the temperature τ = τ(x, t)
and the displacement u = u(x, T ),

τ : Ω × (0, T ) → R , u : Ω × (0, T ) → R3 ,

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 106–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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that fulfill the following equations

κρ
∂τ

∂t
= k

∑
i

∂2τ

∂xi
2

+ Q(t) in Ω × (0, T ) ,

−
∑

j

∂σij

∂xj
= fi (i = 1, . . . , 3) in Ω × (0, T ) ,

σij =
∑
kl

cijkl [εkl(u) − αkl(τ − τ0)] in Ω × (0, T ) ,

εkl(u) =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
in Ω × (0, T )

together with the corresponding boundary and initial conditions specified below.
The expressions represent the nonstationary heat conduction equation, the

equilibrium equations, the Hook’s law and the tensor of small deformations,
respectively. The used symbols have the following meaning: κ is the specific
heat, ρ is the density of material, k is the coefficient of the heat conductivity, Q
is the density of the heat source, f is the density of the volume (gravitational)
forces, cijkl are the components of the elasticity tensor, αkl are the coefficients
of the heat expansion and τ0 is the reference (initial) temperature.

For the heat conduction, we use the boundary conditions

τ(x, t) = τ̂ (x, t) on Γ0 × (0, T ) ,

−k
∑

i

∂τ

∂xi
ni = q on Γ1 × (0, T ) ,

−k
∑

i

∂τ

∂xi
ni = H(τ − τ̂out) on Γ2 × (0, T ) ,

where Γ = Γ0 ∪ Γ1 ∪ Γ2. These conditions prescribe the temperature, the heat
flow through the surface heat flux q and the heat transfer to the surrounding
medium with the temperature τ̂out. The symbol H denotes the heat transfer
coefficient.

For the elasticity, we apply the boundary conditions

un =
∑

i

uini = 0 on Γ̃0 × (0, T ) ,

σt = 0 on Γ̃0 × (0, T ) ,∑
j

σijnj = gi (i = 1, . . . , 3) on Γ̃1 × (0, T ) ,

setting the displacement, the stresses and the surface loading. Here, Γ = Γ̃0∪Γ̃1.
As the initial conditions, we specify the initial temperature,

τ(x, 0) = τ̂0(x) in Ω .

After the variational formulation, the whole thermo-elasticity problem is dis-
cretized by the finite elements in space and the finite differences in time. Us-
ing the linear finite elements and the backward Euler time discretization, it



108 J. Starý, O. Jakl, and R. Kohut

leads to the solution of linear equations for vectors τ j , uj of nodal tempera-
tures and displacements at the time levels tj (j = 1, . . . , N) with the time steps
Δtj = tj − tj−1. It gives the time stepping algorithm in Figure 1.

Here, Mh is the capacitance matrix, Kh is the conductivity matrix, Ah is the
stiffness matrix, qh comes from the heat sources and bh represents the volume
and the surface forces including a thermal expansion term.

find τ 0: Mhτ 0 = τ0

find u0: Ahu0 = b0 = bh(τ 0)

for j = 1, . . . , N:

compute dj = Mhτ j−1 + qj
h

find τ j : (Mh + ΔtjKh)τ j = dj

find uj : Ahuj = bj = bh(τ j)

end for

Fig. 1. The time stepping algorithm for thermo-elasticity problems

To optimize the computational effort, we use the adaptive time steps. It
means, that we can test the time change of the solution and change the time
step size if the variation is too small or too large. The testing is based on a local
comparison of the backward Euler and Crank-Nicholson steps [3].

3 Solution of Linear Systems

The most of the computational work is concentrated to the repeated numerical
solution of two large systems of linear equations. In each time step, we must
solve the linear system for the heat conduction,

(M + ΔtK)τ = d .

At several time levels, chosen according to the needs of geomechanical exper-
tise (e.g. when the temperature reaches its maximum), we solve also the linear
system for the elasticity,

Au = b ,

as a post-processing step. We use iterative solution of both systems based on the
well proven preconditioned conjugate gradient method. Whereas in the sequen-
tial case the preconditioning is based on the incomplete factorization, parallel
solvers take advantage of the additive Schwarz method for the preconditioning
step.

More precisely, in the parallel solution the domain is decomposed along the
Z direction into m non-overlapping subdomains Ω̃k, which are then extended
so that adjacent subdomains Ωk overlap themselves by two or more layers of
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elements, see Figure 2. In practice, the minimal overlap is usually applied. Us-
ing the one-level additive Schwarz method, the preconditioning step can be
expressed as

g = Gr =
m∑

k=1

IkB−1
k Rkr ,

where Bk are the finite element matrices corresponding to subproblems on Ωk

and Ik, Rk =IT
k are the interpolation and restriction matrices, respectively. If B

denotes the finite element matrix of the whole problem, Bk =RkBIk. The local
subproblems are solved inexactly, when the matrices Bk are replaced by their
incomplete factorizations B∗

k.
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Fig. 2. 1-D domain decomposition along the vertical Z axes. Each hexahedron is fur-
ther divided into six tetrahedral finite elements.

Moreover, in the preconditioner for the elliptic elasticity problems, we employ
the coarse grid created algebraically by aggregation of the original fine grid
nodes. Such improvement results in the two-level Schwarz method [5] and ensures
the numerical scalability.

On the contrary, in the parabolic problem of the heat conduction, when rea-
sonable assumptions hold [4], we can maintain numerical scalability without help
of a coarse grid correction in the preconditioner, see [2] and Table 1. But here,
another trouble can occure. For small values of Δt, the matrix (M +ΔtK) is
not an M-matrix and its incomplete factorization fails for the preconditioning.
However, we can apply the incomplete factorization to the matrix (ML+ΔtK),
where ML is the lumped matrix M , which has each diagonal element equal to
the sum of the elements on the corresponding row.

4 Parallel Implementation of Solvers

The described thermo-elasticity solvers were integrated into the in-house finite
element software package GEM, which serves both for experimental purposes and
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practical computations in geomechanics. Here, we shall describe only the new
solvers for the nonstationary heat conduction part. The elasticity part, when
needed, is solved separately by the original parallel conjugate gradient solver
using the two-level additive Schwarz preconditioner, see [7].

We conceived the implementation of the solvers as an opportunity to make a
practical comparison between the two main standards in parallel programming,
message passing and shared memory, and their widely accepted representants,
MPI and OpenMP standards. Accordingly, we implemented two parallel solvers.

Let us recall that OpenMP requires shared-memory parallel hardware and al-
lows a simple and scalable directive-based programming, which exploits prima-
rily loop-level parallelism based on local analysis of individual loops. Whereas
message passing of MPI is supported and generally available on all parallel ar-
chitectures including distributed-memory systems.

Both the solvers, written in Fortran, follow the same algorithm and work with
the same parallel decomposition, reflecting the different conception, syntax and
semantics of the MPI and OpenMP parallel constructs. In this decomposition,
the k-th of m concurrent processes corresponds to the subproblem Ωk and works
with a locally stored portion of data, including the matrices Mk, Kk and the vec-
tors τk, qk, for example. It simply follows the time stepping algorithm presented
in Figure 1.

This approach has very modest requirements on data exchange. In fact during
the iteration phase, the k-th process needs to communicate just locally with
its neighbours, i.e. the (k+1)-th and (k−1)-th processes. In addition to few
single value transfers summarizing local inner products, the communication is
realized mainly when the matrix-by-vector multiplication, the preconditioning
or the nonstationary loading are computed. The amount of the data transferred
is quite small, proportional to the overlapped region. Thus, the parallelization
has very good assumptions to be efficient and scalable.

5 Numerical Experiments

In the background of our interest in the modelling of the thermo-mechanical
phenomena is its relevancy to the assessment of the underground repositories of
the nuclear waste - a highly urgent topic worldwide, with a great impact on the
future of nuclear power utilization. In this context, one of the most internation-
ally recognised project is the Äspö Prototype Repository in Sweden, which is
a full-scale experimental realization of the KBS-3 concept of spent nuclear fuel
repository [6], where modelling of such phenomena as heat transfer, moisture
migration, solute transport and stress/strain development can be verified. We
have chosen this model in a simplified form for our numerical experiments.

5.1 Geoenvironmental Model KBS

Our benchmark problem is set up as a coupled thermo-elasticity problem with
the thermal effects caused by the radioactive waste. The computational domain
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has dimensions 158×57×115m and lies 450m below the ground surface. It closes
about a 65m long tunnel with two separate sections consisting of four and two
deposition holes, respectively. Each of deposition holes, intended for a storage of
canisters filled with spent nuclear fuel, is 8 m deep and has 1.75m diameter.

The model is discretized by linear tetrahedral finite elements with 2 586 465
degrees of freedom for the heat conduction and 7 759 395 degrees of freedom for
the elasticity computations. The time interval is 100 years, the adaptive time
stepping begins with the time step 10−4 and requires totally 47 time steps.

5.2 Computer Systems

With courtesy of the UPPMAX [1], the solvers, originally developed on our small
local computing facilities, were ported to the following parallel systems, where
the experiments presented below were conducted:

Ra: A cluster delivered by Sun (2005) and based on the AMD Opteron CPUs.
In total 99 (non-homogenous) nodes with 280 cores (the total peak perfor-
mance 1.34TFlops), 688GB of (distributed) memory, low-latency InfiniBand
(10Gbit/s) and Gigabit Ethernet interconnects, 12TB of raw disk space. Em-
ployed computing nodes Sun V20z with two AMD Opteron 250 processors
(2.4GHz). For more than 4 processors of this new machine, we experience a
strange behaviour with rather long computing times, which are still under
investigation.

Simba: A shared-memory multiprocessor of the type Sun Fire E 15000 (2001),
in total having 48 UltraSPARC-III/900 processors (the theoretical peak per-
formance 86GFlops), 48GB of shared memory, Sun Fireplane system inter-
connect (9.6GB/s) and 3.4TB disk storage. Simba is a “virtual server” on
this system with 36CPUs and 36GB of main memory assigned.

5.3 Results

We tested our parallel solvers on the benchmark problem derived from the geoen-
vironmental model KBS. With respect to our previous long-term experience with

Fig. 3. KBS-3 concept and the finite element mesh of 391×63×105 nodes
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Table 1. The dependence of the number of PCG iterations on the time step size Δt
and various number of processors #P. Values of Δt are presented in years.

Δt
#P 0.0001 0.001 0.01 0.1 1.0 5.0 10.0 100.0 1000.0

1 11 11 16 26 38 46 60 109 193
2 12 12 16 26 38 49 64 118 222
4 12 12 16 26 38 49 64 125 238
4 18 17 17 27 41 50 53 83 142 aggr.
8 14 16 20 26 39 50 68 146 281

12 14 16 20 25 42 54 78 183 328
16 14 16 20 26 42 56 84 212 395

sequential and parallel solvers for the elasticity problems [7], only the nonsta-
tionary heat conduction part was computed.

We shall begin with the solution of linear system only in the first time step,
which started from the initial zero guess and continued up to the relative resid-
ual accuracy 10−6. The results, showing the number of preconditioned conjugate
gradient iterations depending on the time step size Δt and the number of proces-
sors #P, are collected in Table 1. The number of subproblems corresponds to the
number of used processors. We tested the usage of the one-level additive Schwarz
preconditioner. In case of #P=4, the efficiency of the two-level method was also
investigated. The local subproblems are solved inexactly by using an incomplete
factorization as well as the subproblem on the coarse grid of 60×10×17 nodes
created by aggregation.

The results prove the numerical stability of the parallel solvers, when for
the given time step size, the number of iterations is almost constant with the
growing number of subproblems. It holds for sufficiently “small” time step sizes,
say Δt ≤ 5, which are acceptable for most of applications. However for the
given number of subproblems, the number of iterations naturally grows with the
increasing time step size. But such growth is again acceptable for even Δt ≤ 10.
This fact supports an idea to use only the one-level preconditioner. Otherwise
especially in cases of larger time step sizes, the two-level preconditioner could
be more appropriate and more efficient.

Now, we shall consider the whole sequence of 47 time steps, when the linear
system is allways solved with the initial guess taken from the previous step. The
results of parallel computations using both OpenMP and MPI approaches are
shown in Table 2.

Both the parallel solvers show very good scalability up to 16 used processors.
However, a comparison of the computing times on Simba confirms a higher per-
formance of the MPI solver, which is faster than the OpenMP one. The difference
is up to 36% and shows necessity of the further optimization of the OpenMP
code. The computing times on the modern and powerful Ra are approximately
five times shorter than on the older and slower Simba.
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Table 2. Parallel computations on Simba and Ra. The total number of iterations # It
and the computing time T in dependence on the number of processors #P. The relative
speed-up S of each parallel solver is related to the sequential run of the same code.

Simba - OpenMP Simba - MPI Ra - MPI
# P # It T [s] S # It T [s] S # It T [s] S

1 1341 6292 1344 5931 1344 1144
2 1421 4101 1.63 1424 3169 1.87 1421 643 1.78
4 1425 2082 3.44 1428 1577 3.76 1426 314 3.64
8 1514 1120 6.34 1514 833 7.12

12 1578 872 8.48 1581 596 9.95
16 1614 751 10.09 1618 483 12.28

6 Conclusion

This work outlines applications of parallel computing in geotechnics. The experi-
ments with the solution of the nonstationary heat conduction part of the model
KBS confirm a good efficiency of the used parallel solvers based on the conju-
gate gradient method, domain decomposition technique. Especially in the case
of the MPI code, the parallel solver shows to be much more efficient than the
sequential one for the solution of such kind of large practical problems.
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Parallel Incomplete Factorization of 3D NC

FEM Elliptic Systems

Yavor Vutov
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Abstract. A new parallel preconditioner for solution of large scale
second order 3D FEM elliptic systems is presented. The problem is dis-
cretized by rotated trilinear non-conforming finite elements. The
algorithm is based on application of modified incomplete Cholesky fac-
torisation (MIC(0)) to a locally constructed modification B of the orig-
inal stiffness matrix A. The matrix B preserves the robustness of the
point-wise factorisation and has a special block structure allowing par-
allelization. The performed numerical tests are in agreement with the
derived estimates for the parallel times.

Keywords: FEM, PCG, MIC(0), Parallel Algorithms.

1 Introduction

We consider the model elliptic boundary value problem:

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,

u = 0 on ΓD, (1)
(a(x)∇u(x)) · n = 0 on ΓN ,

where Ω = [0, 1]3 ⊂ IR3, ΓD ∪ ΓN = ∂Ω and a(x) is a symmetric and positive
definite coefficient matrix. The problem is discretized using non-conforming finite
elements method (FEM). The resulting linear algebraic system is assumed to be
large. The stiffness matrix A is symmetric and positive definite. For large scale
problems, the preconditioned conjugate gradient (PCG) method is known to be
the best solution method [1].

The recent efforts in development of efficient solution methods for non-
conforming finite element systems is inspired by their importance for various
applications in scientific computations and engineering [10,3,9]. The goal of this
study is to develop a new parallel PCG solver for the arising 3D FEM elliptic sys-
tems. A locally modified approximation of the global stiffness matrix is proposed
allowing for: a) a stable MIC(0) (modified incomplete Cholesky) factorization;
and b) a scalable parallel implementation. The considered non-conforming FEM
and MIC(0) factorization are robust for problems with possible jumps of the
coefficients.

The algorithm is based on the experience in developing such kind of algorithms
for 2D problems using conforming FEM elements on skewed meshes [8] and

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 114–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Parallel Incomplete Factorization of 3D NC FEM Elliptic Systems 115

non-conforming rotated bilinear FEM elements [5,9,6]. The rotated trilinear non-
conforming finite elements on hexahedrons are used for the numerical solution
of (1).

We assume that Ωh = wh1
1 × wh2

2 × wh3
3 is a decomposition of the computa-

tional domain Ω ⊂ IR3 into hexahedrons. The degrees of freedom are associated
with the midpoints of the sides. The standard computational procedure leads to
the linear system of equations Ax = b, where the stiffness matrix A is sparse,
symmetric and positive definite.

The rest of this paper is organised as follows. Section 2 describes the element-
by-element construction of the preconditioner. Section 3 contains the parallel
implementation details and estimates of parallel times. Some results from nu-
merical experiments, are presented in Section 4. Short concluding remarks are
given at the end.

2 Preconditioning Strategy

We use PCG algorithm with preconditioner based on MIC(0) factorization. The
MIC(0) factorization of a real sparse symmetric matrix A has the form:

CMIC(0)(A) = (X − L)X−1
(
X − LT

)
. (2)

Here (−L) is the strictly lower triangular part of A, and X is a diagonal matrix.
Since we are going to use CMIC(0) as a preconditioner, we are interested in the
case when X > 0. This holds when A is a M matrix. More details about MIC(0)
factorization can be found in [7,4].

To solve the system with preconditioner (2) one have to solve one system with
lower triangular matrix, one with upper triangular and one with diagonal matrix.
The solution of the systems with triangular matrices is based on recursive compu-
tations. That is why the PCG algorithm with MIC(0) factorization as a precondi-
tioner is inherently sequential. To construct a parallel MIC(0) solver, we introduce
a locally constructed approximation B of the original stiffness matrix A.

Following the standard FEM assembling procedure we write A in the form
A =

∑
e∈ωh

LT
e AeLe, where Ae is the element stiffness matrix, Le stands for

the restriction mapping of the global vector of unknowns to the local one corre-
sponding to the current element e. Let us consider the following approximation
Be of Ae.

Ae =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

⎤
⎥⎥⎥⎥⎥⎥⎦

Be =

⎡
⎢⎢⎢⎢⎢⎢⎣

b11 0 a13 a14 a15 a16

0 b22 a23 a24 a25 a26

a31 a32 b33 0 a35 a36

a41 a42 0 b44 a45 a46

a51 a52 a53 a54 b55 0
a61 a62 a63 a64 0 b66

⎤
⎥⎥⎥⎥⎥⎥⎦

The local numbering follows the pairs of the opposite nodes of the reference
element. On fig. 1 (a) and (b) are shown the connectivity patterns of the matrices
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Ae and Be. The modification actually removes the links between the degrees of
freedom on pairs of opposite sides. The diagonal entries of Be are modified to
hold the rowsum criteria. Assembling the locally defined matrices Be we get
the global one B =

∑
e∈ωh

LT
e BeLe,. The sparsity structure of the matrices A

(a) (b)

1 23

4

5

6

1 2
3

4

5

6

1 2

3

4

6

(c)

5

Fig. 1. (a) Connectivity pattern of Ae;(b) Connectivity pattern of Be; (c) 2D projection
of the finite element used in further figures

and B is illustrated by Figure 2. Lexicographic node numbering is used. The
important property of the matrix B is that its diagonal blocks are diagonal
matrices.

Fig. 2. Sparsity pattern of the matrices A (on the left) and B (on the right), for the
division of Ω into 2x2x6 hexahedrons. Non-zero elements are drawn as black dots.

It can be shown that matrices A and B are spectrally equivalent with an
uniform estimate for the condition number κ(B−1A) . We can now introduce
the preconditioner C for A which is defined as a MIC(0) factorization of B,
that is, C = CMIC(0)(B). This needs of course B to allow for a stable MIC(0)
factorization which has been analysed in [5] for the 2D case. The diagonal blocks
of B allow a parallel implementation of the resulting PCG algorithm.
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Fig. 3. Data distribution: np = 3, n1 = 2, n2 = 2, n3 = 6. Communication scheme for
matrix-vector multiplication (a), and for the solution of systems with lower triangular
matrices (b).

3 Parallel Implementation

Let us have np ≤ n3 + 1 processors denoted by P1, P2, . . . , Pnp . We assume
that the domain is decomposed into n1 × n2 × n3 non-conforming hexahedral
elements. On fig. 3 is illustrated the partitioning of the domain into finite el-
ements. A 2D projection on each ”slice” of finite elements is used (see fig. 2
(c)). Since the ”slices” have common sides, the nodes belonging to those sides
appear twice (once on each 2D projection). Each vertical line of nodes cor-
responds to one of the diagonal blocks of the matrices A and B. The cor-
responding blocks have a varying size of n3 or n3 + 1. The total number of
these blocks is k = n1(3n2 + 1) + n2. To handle the system with the precondi-
tioner CMIC(0)(B)w ≡ (X − L)X−1

(
X − LT

)
w = v one has to solve systems

L̃y ≡ (X − L)y = v, X−1z = y and L̃T w = z, L is the strictly lower triangular
part of the matrix B. The triangular systems are solved using standard forward
or backward recurrences. This can be done in k stages. Within stage i the block
yi is computed. Since the blocks L̃ii, are diagonal, computations of each compo-
nent of yi are independent of each other and can be performed in parallel. That
is the reason to distribute the entries of yi among all the processors as shown
on fig. 3. Therefore each processor Pj receives a strip of the computational do-
main. These strips are almost equally sized. Elements of all vectors and rows
of all matrices which participate in PCG algorithm are distributed in the same
manner. The processor Pi is responsible for the local computations on its strip.
Let us see now how are performed the operations in the PCG algorithm, and
what kind of communications are required.

Each PCG iteration consists of one solution of a system with the precon-
ditioning matrix CMIC(0)(B), one matrix vector multiplication with the
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original matrix A, two inner products, and three linked vector triads of the form
v := αv + u. The number of operations for one iteration of the PCG algorithm
is N PCG

it ≈ 27N , N = 3n1n2n3 + n1n2 + n1n3 + n2n3.
For the triads, each processor calculates its part of the vector v and no com-

munication is required. After computing the inner products corresponding to
their parts of the vectors, the processors have to perform one global reduction
operation to sum up the final result.

To obtain the components of the matrix-vector multiplication Av for which
the processor Pi is responsible, it needs to receive from the processors Pi−1

and Pi+1 some components of the vector v. The number of these components is
4n1n2+n1+n2. Because of the even distribution of nodes that lay on the splitting
planes between the strips, half of that number is to be received by each of the
processors Pi−1 and Pi+1. On fig. 3 (a), with sign × are marked ellements to be
transferred to P2. While these communications are in progress the components of
Av which do not depend on the components of v in the neighbouring processors
can be computed. These components are marked with sign �.

Let us go back to the solution of the preconditioner system (see (2)). The
solution of a system with a diagonal matrix is trivial and does not require any
communications. As we saw, the solution of the triangular systems can be done
in k stages. On each stage, the part of the solution, corresponding to one verti-
cal line of nodes, is computed. After each stage, the processors have to exchange
some components in order the computations in the next stage to be performed.
Three different patterns of transfers are required. They are illustrated with dif-
ferently dashed lines and arrows. Transfer of one or two components between
each pair of nodes in both directions is required per each vertical line. Again,
computations for the inner components, marked with sign �, can be overlapped
with the communications.

Estimation of the parallel times is derived under the following assumptions: a)
the execution of M arithmetic operations on one processor takes time T = Mta,
where ta is the average unit time to perform one arithmetic operation on a single
processor, b) the time to transfer M data elements between two neighbouring
processors can be approximated by T comm = ts + Mtc, where ts is the start-up
time and tc is the incremental time for each of the M elements to be transferred,
and c) send and receive operations between each pair of neighbouring processors
can be done in parallel. We get the following expressions for the communication
times:

T comm(C−1v) ≈ 6n1n2(ts + 2tc), T comm(Av) ≈ ts + 2n1n2tc.

The above communications are completely local. The inner product needs one
broadcasting and one gathering global communication but they do not contribute
to the leading terms of the total parallel time. The parallel properties of the al-
gorithm do not depend on the number of iterations, so it is enough to evaluate
the parallel time per iteration, and use it in the speedup and efficiency analy-
sis. As the computations are almost equally distributed among the processors,
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assuming there is no overlapping of the communications and computations one
can write for the total time on np processors:

T it
np

≈ 27Nta
np

+ T comm(C−1v) + T comm(Av)

=
27(n1n2 + n3(3n1n2 + n1 + n2))ta

np
+ ts + 2n1n2(3ts + 7tc)

What we can observe is that the communication time is practically independent
of the number of processors. The situation changes if we have overlapping of
computations and communications. One can expect in that case some reduction
of the time T it

np
. However, with increasing of np this effect will weaken. The

overlapping can notably reduce the influences of networks’ latencies and slow
speeds. This is true only if the amount of the computations overlapped is big
enough. Of course, there is always an overhead for the communications related to
the communication calls – buffering, addresses computations, etc. The speedup
Snp = T1/Tnp will grow with n3 and it will grow even if n1 and n2 grow as n3

up to the theoretical limit Snp = np. However, typically, for the real life parallel
systems ts 	 tc and ts 	 ta, and we could expect good speedups and efficiencies
Enp = Snp/np only when n3 	 np ts/ta.

4 Numerical Tests

The presented algorithm is coded in C++ using the MPI library. Two different
reorderings of the calculations are performed to improve the overlapping of the
computations and communications: 1) when computing Ax and solving the tri-
angular systems, first are performed the computations which do not depend on
the values stored in neighbouring processors. 2) some of the vector operations of
the PCG algorithm are performed simultaneously with the solution of the pre-
conditioner. It is observed that the later optimisation also improves the cache
utilisation.

The experiments are performed on two parallel platforms. These platforms
are referenced further as ”A” and ”B”. Platform ”A” is an ”IBM SP Cluster
1600” made of 64 nodes p5-575 interconnected with a pair of connections to
the Federation HPS (High Performance Switch). Each p5-575 node contains
8 SMP processors Power5 at 1.9GHz and 16GB of RAM. Platform ”B” is a
”Cray XD1” cabinet, fully populated with 72 2-way nodes, totally 144 AMD
Opteron processors at 2.4GHz. Each node has 4GB of memory. The CPUs are
interconnected with the Cray RaidArray network.

We consider the model Poisson equation in a unit cube with homogeneous
Dirichlet boundary conditions assumed on the right side of the domain. The
partitioning is uniform, let n1 = n2 = n3 = n. The size of the discrete prob-
lem is N = 3(n3 + n2). A relative stopping criterion (C−1ri,ri)

(C−1r0,r0) < 10−9 is used
in the PCG algorithm, where ri stands for the residual at the i-th iteration
step.
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Table 1. Number of iterations and sequential times in seconds

n N nit TA TB

31 92 256 22 1.2 0.7
63 762 048 31 10.7 7.4

127 6 193 536 44 105.6 78.4
255 49 939 200 63 1098.6 834.0

The mesh size parameter n, the total number of unknowns N , the itera-
tion count nit and the sequential times TA and TB on platforms ”A” and ”B”
respectively are presented in Table 1. The experiment with n = 255 was not run
on platform ”B” due to lack of enough physical memory available on a single
node. The corresponding time in the table is obtained by a simple extrapola-
tion. It is used later to estimate the speedups and the efficiencies of the tests
on 4 and 8 processors. One can observe that: 1) the iteration count grows as
O(n1/2) = O(N1/6); 2) the time per iteration is proportional to N .

Table 2. Parallel speedups and efficiencies

n np SA
np

SB
np

31 2 1.18 1.39
4 1.00 1.61
8 0.96 1.98

63 2 1.30 1.59
4 1.83 2.00
8 2.15 2.46

127 2 1.60 1.74
4 2.30 2.70
8 2.22 3.79

255 2 1.64 -
4 2.63 2.91
8 4.06 4.09

EA
np

EB
np

0.59 0.70
0.25 0.40
0.12 0.25

0.65 0.79
0.44 0.50
0.27 0.33

0.80 0.87
0.57 0.67
0.28 0.47

0.82 -
0.65 0.72
0.51 0.51

In the Table 2. are presented the speedups and efficiencies of the performed
parallel tests, np is the number of processors used. With SX

np
and EX

np
are denoted

speedup and efficiency on platform ”X” using np processors. One can see that for
a given number of processors the speedup and efficiency grow with the problem
size. Conversely for fixed n, the speedup and the efficiency decrease with the
number of processors. For small ratios n/np they are still far from the theoretical
upper bounds Snp ≤ np and Enp ≤ 1. Unfortunately the ratio n/np is strongly
bounded in real-life computations. As n increases, the total memory requirements
increase as n3. Therefore one has to choose np sufficiently large in order to fit
the required for the computations vectors in the RAM. The applicability of the
proposed algorithm will increase in the future when larger amount of memory
will be available per CPU.
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5 Conclusions

A new parallel MIC(0) preconditioner for 3d elliptic problems is proposed and
studied. Estimates for the parallel times have been derived. The presented nu-
merical tests are in a good agreement with the theoretical results. The future
plans are addressed to improvement of the parallel efficiency based on a more
appropriate modification B of the original stiffness matrix A [2]. Its block struc-
ture will be with larger diagonal blocks on the diagonal corresponding to mesh
nodes of the entire plane. As a result, the number of communication steps in
the solution of the preconditioner will decrease and more computations could be
overlapped with the communications.
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Abstract. This paper addresses the problem of tracking extended objects. Exam-
ples of extended objects are ships and a convoy of vehicles. Such kind of objects
have particularities which pose challenges in front of methods considering the
extended object as a single point. Measurements of the object extent can be used
for estimating size parameters of the object, whose shape is modeled by an el-
lipse. This paper proposes a solution to the extended object tracking problem by
mixture Kalman filtering. The system model is formulated in a conditional dy-
namic linear (CDL) form. Based on the specifics of the task, two latent indicator
variables are proposed, characterising the mode of maneuvering and size type,
respectively. The developed Mixture Kalman filter is validated and evaluated by
computer simulation.

1 Introduction

Most of the target tracking algorithms available in the literature consider the moving ob-
ject as a single point and estimate its center of mass based on the incoming sensor data,
e.g., range and bearing. However, recent high-resolution sensor systems are able to re-
solve individual features or measurement sources on an extended object. The possibility
to additionally make use of this measurements is referred to extended target tracking.

There exist several ways for modelling object extent parameters. A simple ellipsoidal
object model is proposed in [1,2] and adopted in our work. The lengths of the major and
minor axes of the ellipse have to be calculated, based on the measurements of down-
range object extent. Shape parameters are included in [1] in the state vector together
with kinematic parameters and are estimated by Extended and Unscented Kalman Fil-
ters (EKFs and UKFs) and particle filtering. However, it is pointed out in [1,2] that the
EKF implementation is prone to divergence due to high nonlinearity conditions and a
particle filtering approach can avoid this problem.

Having in mind the inferences in [1,2] and suggestions in [3], we developed in [4] a
joint state and parameter estimation algorithm. It combines the advantages of a subopti-
mal Bayesian interacting multiple model (IMM) filter and of the Markov Chain Monte

� Research supported in part by the Bulgarian Foundation for Scientific Investigations:
MI-1506/05 and by Center of Excellence BIS21++, 016639.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 122–130, 2007.
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Carlo (MCMC) approach. Based on the assumption that the unknown shape parame-
ters are defined over a discrete set of values, a data augmentation (DA) algorithm for
finite mixture estimation [5] is proposed for shape parameters estimation. On the other
hand, an IMM filter estimates the kinematic states of a maneuvering ship. The DA pro-
cedure provides a precise and convergent size estimate, but it is achieved at the cost of
increased computational complexity, since DA is basically an iterative procedure.

In this paper we propose an alternative solution, using a mixture Kalman filter
(MKF). The MKF is a sequential Monte Carlo technique for state estimation of con-
ditional dynamic linear systems [6,7]. It recursively generates samples of some indi-
cator variables based on sequential importance sampling and integrates out the linear
and Gaussian state variables conditioned on these indicators. Due to marginalisation,
the MKF is more accurate than the conventional particle filters. In addition, the fea-
tures of the task, connected with the motion regimes and size type can be modelled by
the indicator variables. The algorithm implemented here is inspired by the ideas in [8],
addressing the problem of tracking maneuvering and bending extended target in clut-
tered environment. Kinematics and shape modes are included in a common modal state
vector. In contrast to [8], we consider an indicator vector, comprising two indicator
variables characterising the motion regime and the object size. An algorithm with two
indicator variables is proposed in [9] (Ch.11) relying on different models and aimed
at another application. In this paper we explore the capabilities of mixture Kalman fil-
tering to accomplish both on-line tracking and size type determination of the extended
object. The developed MKF is compared with an IMM-DA algorithm.

The paper is organised as follows. Section 2 describes the system dynamics and the
measurement model. Section 3 presents the general MKF framework and the designed
MKF algorithm for ship tracking. Section 4 illustrates and compares the proposed al-
gorithm performance with an IMM-DA algorithm.Conclusions are given in Section 5.

2 System Dynamics and Measurement Models

System Model. Consider the following model of a discrete-time jump Markov system,
describing the object dynamics and sensor measurements

xk = F (λk,1)xk−1 + G (λk,1)wk (λk,1) , (1)

z1
k = H (λk,1)xk + v1

k (λk,1) , (2)

z2
k = L

(
θλk,2 , xk

)
+ v2

k (λk,2) , k = 1, 2, . . . , (3)

where xk ∈ R
nx is the base (continuous) state vector with the transition matrix F (λk,1),

λk,1 and λk,2 are modal states, z1
k ∈ R

nz is the measurement vector with the mea-
surement matrix H (λk,1), z2

k is the scalar measurement of the object extent and k =
1, 2, . . . is a discrete time. The noises are Gaussian distributed processes having char-
acteristics: wk (λk,1) ∼ N(0, Q (λk,1)), v1

k (λk,1) ∼ N(0, R (λk,1)) and v2
k (λk,2) ∼

N(0, RL (λk,2)). The matrices are known, assuming that Λk = {λk,1, λk,2} is known.
Consider a base state vector in the form xk = (xk, ẋk, yk, ẏk)′, where x and y spec-
ify the object position with respect to known observer position and (ẋ, ẏ) is the object
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Fig. 1. Position of the ship versus the position of the observer

velocity in the Cartesian plane, centered at the observer location (Fig. 1). In particular,
we focus on ship tracking.

The modal (discrete) state λk,1 ∈ S � {1, 2, . . . , s} is a first-order Markov chain
with transition probabilities pij � Pr {λk,1 = j | λk−1,1 = i} , (i, j ∈ S) and known
initial probability distribution. All possible motion regimes of the maneuvering ship are
modelled by the modal state λk,1. Denote by θ = (�, γ)′ a parameter vector, containing
the unknown shape parameters: the length of the major axis of the ship ellipse � and
the ratio of the lengths of the minor and major axes γ (aspect ratio). Based on a priori
information about ship types, we assume that θ takes values from a known discrete
(size type) set θ ∈ T � {θ1, θ2, . . . , θt} with known prior distribution: Pθ0(i) �
Pr {θ = θi} , i ∈ {1, . . . , t}, such that Pθ0(i) ≥ 0, and

∑t
i=1 Pθ0(i) = 1. Consider

the mapping ϕ : {1, 2, . . . , t} → {θ1, θ2, . . . , θt}.
The modal state λk,2 takes its values from the set Nt � {1, 2, . . . , t} with the prob-

ability P (λk,2 = i|λk−1,2) = P (λk,2 = i) = 1/t and represents the size type. In the
MKF framework, the modal states λk,1 and λk,2 are referred to indicator variables. The
index k of λk,2 indicates that the size parameters are calculated at time instant k, not
that the size type is time-varying. Note also that S is the set of maneuvering modes,
whereas Nt is the set of integers, corresponding to the ship types.

Measurement Equation. Similarly to [1,2], we assume, that a high-resolution radar
provides measurements of range r and bearing β to the object centroid, as well as the
object down-range extent L along the observer-object line-of-sight (LOS), Fig. 1. The
relationship between L and the angle φ between the major axis of the ellipse and the

target-observer LOS is given by L(φ) = �
√

cos2φ + γ2sin2(φ). If it is assumed that

the target ellipse is oriented so that its major axis is parallel to the velocity vector (ẋ, ẏ),
the along-range target extent can be written in terms of the state vector and θ

L(φ(xk)) = θ(1)
√

cos2φ(xk) + θ(2)2sin2φ(xk), (4)

where φ(xk) = arctan ((xkẏk − ẋkyk) / (xkẋk + ykẏk)).
Let us denote z1

k = (rk, βk)′, z2
k = Lk and zk = ((z1

k)′, z2
k)′. There exist a non-

linear relationship between the state and measurements: z1
k = h (xk) + v1

k, where

h(xk) =
(√

(xk − xo)2 + (yk − yo)2 , arctan((yk − yo)/(xk − xo))
)′

(5)
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and (xo, yo) is the location of the observer. It is common practice in tracking applica-
tions, to perform measurement conversion from polar (rk, βk) to Cartesian (xk, yk) co-
ordinates: z1

k = (rk cos(βk), rk sin(βk))′. Thus, the measurement equation becomes
linear with a simple measurement matrix H . The components of the converted mea-
surement noise covariance matrix Rc can be found in [12].

The problem that we consider has own particularities: the measurements of L are not
used for the base state estimation. The kinematic states are estimated through r and β.
The estimated kinematic states are, however, used for the estimation of � and γ. This is
the motivation for presenting the system under consideration in the form (1)-(3).

The goal is to estimate the state vector xk and the extent parameter vector θ, based
on all available measurement information Zk = {z1, z2, . . . , zk}.

3 Extended Object Tracking by MKF

MKF summary. The object-measurement equations (1)-(3) describe a special state-
space model, namely the conditional dynamic linear model (CDLM). When condition-
ing on the indicator vectors Λi = {λi,1, λi,2}, i = 1, . . . , k, the CDLM becomes a
dynamic linear model (DLM), and all the xs, s = 1, ..., k can be integrated out recur-
sively by using a standard Kalman filter [6,9,10]. If the Monte Carlo (MC) sampling is
working in the space of indicator variables instead of in the space of the state variables,
we obtain the MKF, which gives more accurate results than the MC filters dealing with
xk directly. The MKF uses a Gaussian mixture distribution to represent the posterior
distribution of xk, which distinguishes it from the MC filters where the posterior state
distribution is approximated by a set of samples. When the model is CDLM the “true”
target distribution is indeed a mixture of Gaussians, although the number of mixture
components increases exponentially with k.

Suppose we have a collection of N Kalman filters, KF
(1)
k−1, . . . , KF

(j)
k−1, . . . , KF

(N)
k−1

at time k−1. Each KF
(j)
k−1 is characterisied by the mean vector μ

(j)
k−1, its state covariance

P
(j)
k−1, and the set of indicator vectors Λ̃

(j)

k−1 =
(
Λ

(j)
1 , Λ

(j)
2 , . . . , Λ

(j)
k−1

)
up to time

k − 1, i.e., with
(
μ

(j)
k−1, P

(j)
k−1, Λ̃k−1

)
. Since the CDLM is reduced to a DLM when

conditioning on Λ̃
(j)

k−1, the mean vector μ
(j)
k−1 and covariance matrix P

(j)
k−1, constitute

a sufficient statistics at time k − 1. Each filter is associated with a weight w
(j)
k−1. The

guideline on how to update the filter KF
(j)
k−1 → KF

(j)
k at time k can be described as

follows [11]:

The first step is connected with the computation of a trial sampling density for Λk =
{i1, i2} , i1 ∈ S, i2 ∈ Nt:

L(j)

k,{i1,i2} �P
(
Λk = {i1, i2} |Λ̃(j)

k−1, Z
k
)
∝

p
(
zk|Λk = {i1, i2} , Λ̃

(j)

k−1, Z
k−1

)
P

(
Λk = {i1, i2} |Λ̃(j)

k−1

)
, (6)

where (6) holds, since Λk is independent on Zk−1. It can be seen that the measurement
zk has a Gaussian conditional density
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p(zk|Λk = {i1, i2} ,Λ̃
(j)

k−1, Z
k−1) = (7)

p(z1
k|λk,1 = i1, KF

(j)
k−1) p(z2

k|λk,2 = i2, λk,1 = i1, KF
(j)
k−1)

p(z1
k|λk,1 = i1, KF

(j)
k−1) ∼ N

(
z1

k; Hμ
(j)
k|k−1, S

(j)
k

)
,

p(z2
k|λk,2 = i2, λk,1 = i1, KF

(j)
k−1) ∼ N

(
Lk; L

(
θi2 , μ

(j)
k|k−1

)
, RL

)
, where μ̂

(j)
k|k−1 is

the predicted state and S
(j)
k is the measurement prediction covariance, calculated by a

Kalman filter, adjusted for Λk = {i1, i2}.

At the second step, the indicator vector Λk = {i1, i2} is imputed with probability,

proportional to L(j)
k,{i1,i2}. Then the filter mean μ̂k|k and covariance P k|k are updated

for the sampled indices {i1, i2}. Thus, the required quantities at time instant k: KF
(j)
k

and Λ̃
(j)

k =
(

Λ̃
(j)

k−1, Λ
(j)
k

)
are obtained.

Finally, the weight for this updated filter estimate is calculated as

w
(j)
k = w

(j)
k−1p

(
zk|Λ̃

(j)

k−1, Z
k−1

)
= w

(j)
k−1 ×

∑
i1,i2

L(j)
k,{i1,i2}. The on-line estimate

of the state vector is: x̂k = 1
Wk

∑N
j=1 w

(j)
k μ̂

(j)
k|k, where Wk =

∑N
j=1 w

(j)
k .

MKF for state and size parameters estimation. The detailed scheme of the algorithm,
designed for the model (1)-(3) is given below:

Algorithm Outline

1. Initialisation, k = 0
* For j = 1, . . . , N ,

sample λ
(j)
0,1 from the set S with probability P (λ

(j)
0,1 = i1) ∝ P0(i1), i1 ∈ S and λ

(j)
0,2 from

the set Nt with probability P (λ
(j)
0,2 = i2) ∝ Pθ0(i2), i2 ∈ Nt. Form Λ̃

(j)

0 =
{

λ
(j)
0,1, λ

(j)
0,2

}
.

Set KF
(j)
0 =

{
μ

(j)
0 , P

(j)
0 , Λ̃

(j)

0

}
, where μ

(j)
0 = μ̂0 and P

(j)
0 = P 0 are the mean and

covariance of the initial state x0 ∼ N (μ̂0, P 0). Set the initial weights w
(j)
0 = 1/N .

* end for j ; Set k = 1.

2. For j = 1, . . . , N complete:

– For each Λk = {i1, i2} , i1 ∈ S and i2 ∈ Nt compute
- one step prediction for each Kalman filter KF

(j)
k−1

(μ
(j)
k|k−1)

(i1) = F (i1)μ
(j)
k−1|k−1,

(P
(j)

k|k−1
)(i1) = F (i1)P

(j)

k−1|k−1
F (i1)

′ + GQ(i1)G
′,

(z
(j)
k|k−1)

(i1) = H(μ
(j)
k|k−1)

(i1),

(S
(j)
k )(i1) = H(P

(j)

k|k−1)
(i1)H ′ + Rc(i1).

- on receipt of a measurement zk calculate the likelihood
L(j)

k,{i1,i2} = p(z1
k|λk,1 = i1, KF

(j)
k−1) p(z2

k|λk,2 = i2, λk,1 = i1, KF
(j)
k−1)×
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p(Λk = {i1, i2} |Λ̃(j)

k−1), where

p(z1
k|λk,1 = i1, KF

(j)
k−1) = N

(
z1

k; (z
(j)

k|k−1)
(i1), (S

(j)
k )(i1)

)
,

p(z2
k|λk,2 = i2, λk,1 = i1, KF

(j)
k−1) = N

(
Lk; L

(
θi2 , (μ

(j)

k|k−1
)(i1)

)
, RL

)
,

p(Λk = {i1, i2} |Λ̃(j)

k−1) = p(λk,1 = i1|Λ̃(j)

k−1)p(λk,2 = i2);
p(λk,1 = i1|λ(j)

k−1,1) = p
λ
(j)
k−1,1,i1

and p(λk,2 = i2) = 1/t.

– sample Λ
(j)
k = {i1, i2} with a probability, proportional to L(j)

k,{i1,i2};

suppose that Λ
(j)
k = {�1, �2} . Append Λ

(j)
k to Λ̃

(j)

k−1 and obtain Λ̃
(j)

k .

– perform KF
(j)
k update step for Λ

(j)
k = {�1, �2}:

K
(j)

k|k = (P
(j)

k|k−1
)(�1)(H)′[(S(j)

k )(�1)]−1,

μ
(j)
k|k = (μ

(j)
k|k−1)

(�1) + K
(j)
k|k[z1

k − (z
(j)
k|k−1)

(�1)],

P
(j)

k|k = (P
(j)

k|k−1)
(�1) − K

(j)

k|k(S
(j)
k )(�1)(K

(j)

k|k)′,

– update the importance weights: w
(j)
k = w

(j)
k−1

∑
i1,i2

L(j)
k,{i1,i2};

normalise the weights w
(j)
k = w

(j)
k /

∑N
j=1 w

(j)
k

3. Compute the output estimates and posterior probabilities of indicator variables
x̂k =

∑N
j=1 μ

(j)
k|kw

(j)
k , P (λk,1 = i1) =

∑N
j=1 1(λ

(j)
k,1 = i1)w

(j)
k , i1 ∈ S

P (λk,2 = i2) =
∑N

j=1 1(λ
(j)
k,2 = i2)w

(j)
k , i2 ∈ Nt, θ̂k =

∑t
i=1 P (λk,2 = i) θi

1(·) is an indicator function such that
1(λk = �) = 1, if λk = � and 1(λk = �) = 0 otherwise;

Compute the effective sample size: Neff = 1/
∑N

j=1

(
w

(j)
k

)2

4. If Neff < Nthres , resample with replacement N particles :(
μ

(j)

k|k, P
(j)

k|k, Λ̃
(j)

k

)
, j = 1, . . . , N , according to the weights; set w

(j)
k = 1/N .

5. Set k ←− k + 1 and go to step 2.

4 Simulation Results

The algorithm performance is evaluated by simulations over trajectories, including con-
secutive segments of uniform motion and maneuvers (a typical scenario is shown in
Fig.2(a), [4]). The observer is static, located at the origin of x − y plane. The initial
target state is x0 = (18000, −14, 90000, 5)′. The object performs two turn maneuvers
with a normal acceleration of ±1.4 [m/s2]. Its length is � = 50 [m] and the aspect ratio
is γ = 0.2. The sensor parameters are as follows [2]: sampling interval T = 0.2 [s]; the
noise covariances of measurement errors along range, azimuth and along-range target
extent are respectively: R = diag{52 [m]2, 0.22 [deg]2} and RL = 52 [m]2.

Root-Mean Squared Errors (RMSEs) [12] are selected as a quantitative measure for
the algorithm performance evaluation. The results presented below are based on 100
Monte Carlo runs.
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The set S of the indicator variable λk,1 contains s = 3 elements, corresponding
to three motion models. The first model corresponds to the nearly constant velocity
motion. The next two models are matched to the nearly coordinated turn maneuvers
with a turn rate of ω = ±0.1 [rad/s]. The form of the transition matrices in (1) for
these models can be found in [12].

We assume that θ takes values from a set T = {(30, 0.15), (50, 0.2), (70, 0.25),
(100, 0.3)} with equal initial probabilities. Therefore, the set Nt of the indicator vari-
able λk,2 contains t = 4 elements. Note that θ2 corresponds to the true θ.

The scenario and initial conditions are selected the same as in [4], in order to compare
the MKF with the combined IMM-DA algorithm, developed in [4] in terms of accuracy
and complexity. The DA is implemented in a sliding window mode, with a window size
of 160 scans. The number of iterations is M = 180 and the “warming up” initial interval
of the Markov chain, producing the θ estimate, is m0 = 100.

The posterior probability of indicator variable λk,1, k = 1, . . . , 200, estimated by
the MKF procedure, is given in Fig.2(b). The switches between maneuvering modes
(λ1 = 2 and λ1 = 3) reproduce well the left and right turns performed by the extended
object.

Comparative plots of the true and estimated ship parameters, � and γ, obtained by
MKF and IMM-DA, are presented in Fig.(3). Both algorithms - MKF and DA provide
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size estimates converging to the true parameters. It can be seen from Fig.(4), that MKF
produces larger RMSEs than the IMM-DA procedure. This has an explanation with the
fact that the DA is an off-line procedure and the extent parameters are estimated based
on collected measurements in a window. The size estimates are computed along with
tracking, but with a certain delay. The MKF gives on-line estimates. In some applica-
tions, this is important for rapid classification and decision making.

The better IMM-DA performance is achieved at the increased computational load.
The IMM-DA execution time is approximately 1.7 times larger than the MKF compu-
tational time. The MKF is implemented with a sample size N = 300.

5 Conclusions

A MKF for extended object tracking is developed and studied in this paper. The algo-
rithm is designed for a ship, whose shape is modelled by an ellipse. Simulation results
for an object having three dynamic models and four size types are given to illustrate
the ability of MKF to track a maneuvering ship and estimate its length and aspect ratio.
Comparative results with the IMM-DA algorithm show, that the algorithm offers a good
trade-off between accuracy and computational time.
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Abstract. Exact error estimates for evaluating multi-dimensional inte-
grals are considered. An estimate is called exact if the rates of conver-
gence for the low- and upper-bound estimate coincide. The algorithm
with such an exact rate is called optimal. Such an algorithm has an
unimprovable rate of convergence.

The problem of existing exact estimates and optimal algorithms is
discussed for some functional spaces that define the regularity of the
integrand. Important for practical computations data classes are con-
sidered: classes of functions with bounded derivatives and Hölder type
conditions.

The aim of the paper is to analyze the performance of two optimal
classes of algorithms: deterministic and randomized for computing multi-
dimensional integrals. It is also shown how the smoothness of the inte-
grand can be exploited to construct better randomized algorithms.

1 Introduction: Definitions and Basic Notations

The problem of evaluating integrals of high dimension is an important task
since it appears in many important scientific applications of financial mathemat-
ics, economics, environmental mathematics and statistical physics. Randomized
(Monte Carlo) algorithms have proved to be very efficient in solving multidimen-
sional integrals in composite domains [16], [6].

In this paper we are interested in exact error estimates for evaluating multi-
dimensional integrals. An estimate is called exact if the rates of convergence for
the low- and upper-bound estimate coincide. An algorithm which reaches such
an unimprovable rate of convergence is called optimal. The class of functions with
bounded derivatives and Hölder type conditions are considered. We discuss the

� Partially supported by the NSF of Bulgaria through grant number I-1405/04 and
by the Bulgarian IST Centre of Competence in 21 Century – BIS-21++ (contract
# INCO-CT-2005-016639).

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 131–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



132 I.T. Dimov and E. Atanassov

unimprovable limits of complexity for two classes of algorithms: deterministic–
A and randomized–AR. Having these unimprovable rates an important question
arises: which one of the existing algorithms reaches these unimprovable rates?
We analyze the performance, i.e., number of operations (or the computational
cost) of A and AR classes of algorithms. It should be mentioned here that the
performance analysis is connected with complexity that will be defined in Section
2. The complexity characterizes the problem for a given class of algorithms (not
the algorithm itself). In Section 2 we present the computational model and
show how the computational cost is connected with the complexity. In Section
3 we prove some error estimates for Hölder functions. Performance analysis of
algorithms with unimprovable convergence rate is given in Section 4. Complexity
of the integration problem for Hölder functions are considered in Section 5. In
Section 6 we present some concluding remarks.

Let us introduce some basic notations used in the paper. By x = (x1, . . . , xd)
we denote a point in a closed domain G ⊂ IRd, where IRd is d-dimensional
Euclidean space. The d-dimensional unite cube is denoted by Ed = [0, 1]d.

Definition 1. Let d, p be integers, and d, p ≥ 1. Consider the class Wp(α; G)
of real functions f defined over G, possessing all the partial derivatives: Drf =

∂rf(x)

∂x
r1
1 ...∂x

rd
d

, r1 + . . . + rd = r ≤ p, which are continuous when r < p and

bounded in sub norm when r = p. The semi-norm ‖ . ‖ on Wp(α; G) is defined
as α =‖ f ‖= sup

{
|Dpf | , |r1, . . . , rd| = p, x ≡ (x1, . . . , xd) ∈ Ed

}
.

Definition 2. Define the class Hp
λ(α, G), (0 < λ ≤ 1) of functions from W p,

which derivatives of order p satisfy the Hölder condition with a parameter λ:

Hp
λ(α, G)≡

⎧⎨
⎩f ∈ W p : |Dpf(y1, . . . , yd) − Dpf(z1, . . . , zd)| ≤ α

d∑
j=1

|yj − zj |λ
⎫⎬
⎭ .

Usually randomized algorithms reduce problems to the approximate calculation
of mathematical expectations. The mathematical expectation of the random
variable θ is denoted by Eμ(θ), where μ denotes some probability measure.(The
definition of probability measure is given in [11].) Sometimes Eμ(θ) is abbrevi-
ated to Eθ. We shall further denote the values (realizations) of a random point
ξ or random variable θ by ξ(i) and θ(i)(i = 1, 2, . . . , n) respectively. If ξ(i) is
a d-dimensional random point, then usually it is constructed using d random
numbers γ, i.e., ξ(i) ≡ (γ(i)

1 , . . . , γ
(i)
d ). Let I be the desired value of the integral.

Assume for a given random variable θ one can prove that Eθ = I. Suppose the
mean value of n realizations of θ: θ(i), i = 1, . . . , n is considered as a Monte Carlo
approximation to the solution: θ̄n = 1/n

∑n
i=1 θ(i) ≈ I. One can only state that

a certain randomized algorithm can produce the result with a given probability
error.

Definition 3. If I is the exact solution of the problem, then the probability error
is the least possible real number Rn, for which P = Pr

{
|ξn − I| ≤ Rn

}
, where

0 < P < 1. If P = 1/2, then the probability error is called probable error.
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So, dealing with randomized algorithms one has to accept that the result of the
computation can be true only with a certain (even high) probability. In most
cases of practical computations it is reasonable to accept an error estimate with
a given probability.

2 Computational Model

Consider the following problem of integration:

I =
∫

Ed

f(x)dx, (1)

where Ed ≡ [0, 1]d, x ≡ (x1, . . . , xd) ∈ Ed ⊂ IRd and f ∈ C(Ed) is an integrable
function on Ed. The computational problem can be considered as a mapping of
function f : {[0, 1]d → IRd} to IR [10]: S(f) : f → IR, where S(f) =

∫
Ed f(x)dx

and f ∈ F0 ⊂ C(Ed). We will call S the solution operator. The elements of F0

are the data, for which the problem has to be solved; and for f ∈ F0, S(f) is
the exact solution. For a given f we want to compute (or approximate) S(f).
We will be interested to consider subsets F0 of C(Ed) and try to study how the
smoothness of F0 can be exploited. A similar approach (which is in fact included
in the above mentioned consideration) is presented in [18].

We will call a quadrature formula any expression A =
∑n

i=1 cif(x(i)), which
approximates the value of the integral S(f). The real numbers ci ∈ IR are called
weights and d dimensional points x(i) ∈ Ed are called nodes. It is clear that for
fixed weights ci and nodes xi the quadrature formula A may be used to define
an algorithm. The algorithm A belongs to the class of deterministic algorithms
A. We call a randomized quadrature formula any formula of the following kind:
AR =

∑n
i=1 σif(ξ(i)), where σi and ξ(i) are random weights and nodes.

The computational cost of a deterministic algorithm A will be defined as a
supremum (over all integrands f from F0) of the time (number of operations)
needed to perform the algorithm A:τ(A) = supf∈F0

τ(A, f). For a randomized
algorithm AR ∈ AR we will have: τ(AR) = supf∈F0

Eμ{τ(AR, f, ω)}. As a good
measure of the cost can be considered

τ(A, f) = kn + c and τ(AR, f, ω) = kRn + cR,

where n is the number of nodes and k, kR are constants depending on the function
f , dimensionality d and on the domain of integration (in our case on Ed) and
constants c and cR depend only on d and on the regularity parameter of the
problem (in the case of Hp

λ(α, G) - on p + λ). These constants describe the so-
called preprocessing operations, i.e., operations that are needed to be performed
beforehand.

We assume that one is happy to obtain an ε-approximation to the solution
with a probability 0 < P < 1. For a given positive ε the ε-complexity of the
integration problems S and SR are defined as follows: Cε(S) = infA∈A{τ(A) :
r(A) ≤ ε} and Cε(SR) = infAR∈AR{τ(AR) : r(AR) ≤ ε}, where the errors r(A)
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and r(AR) are defined in the Section 3. One can see that in our consideration
ε-complexity characterizes the problem for a given class of algorithms (not the
algorithms itself).

3 Exact Error Estimates in Functional Spaces

Generally, we assume that the problem of integration is not solved exactly, that
is S(f) differs from A(f). We define the error as

r(A) = sup
f∈F0

|S(f) − A(f)|

in the deterministic case and as

r(AR) = sup
f∈F0

Eμ

∣∣S(f) − AR(f, ω)
∣∣ = sup

f∈F0

∫
Ed

∣∣S(f) − AR(f, ω)
∣∣ dμ(ω),

where A(f, ω) is Σ-measurable in ω for each f in the randomized case.
Let us now define the subset F0 ≡ Hp

λ(α, Ed). In [2] Bakhvalov proved the
following theorem:

Theorem 1. (Bakhvalov [2]) For any deterministic way of evaluating the inte-
gral (1), i.e., for any algorithm from A

sup
f∈Hp

λ(α,Ed)

r(A) ≥ c′(d, p + λ)αn− p+λ
d (2)

and for any randomized way of evaluating the integral (1), i.e., for any algorithm
from AR

sup
f∈Hp

λ(α,Ed)

r(AR) ≥ c′′(d, p + λ)αn− p+λ
d − 1

2 . (3)

The constants c′(d, p + λ) and c′′(d, p + λ) depend only on d and p + λ. This
theorem gives the best possible order for both algorithmic classes A and AR.

In our work [1] we construct two randomized algorithms AR
1 and AR

2 , and
prove that both have the best possible rate (3) for integrands from W p(α, Ed).
The proposed algorithms allow to extend the estimates for the functional class
Hp

λ(α, Ed), where 0 < λ ≤ 1. Here we give the essential idea of the algorithms
(for more details we refer to [1]). In algorithm AR

1 we divide the unit cube Ed

into n = qd disjoint cubes: Ed =
⋃qd

j=1 Kj. Then we select m random points
ξ(j, s) = (ξ1(j, s), ..., ξd(j, s)) from each cube Kj , such that all ξi(j, s) are uni-
formly distributed and mutually independent. We consider the Lagrange inter-
polation polynomial of the function f at the point z: Lp(f, z), which uses the

information from the function values at exactly
(

p + d − 1
d

)
points satisfying a

special property [1]. The second algorithm AR
2 is a modification which calculates

the Newton interpolation polynomial. AR
2 involves less operations for the same
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number of random nodes. Finally, we use the following randomized quadrature
formula:

I(f) ≈ AR
1 =

1
qdm

qd∑
j=1

m∑
s=1

(f(ξ(j, s)) − Lp(f, ξ(j, s))) +
∫

Kj

Lp(f, x)dx. (4)

Now, for functions from Hp
λ(α, Ed) we can prove the following theorem:

Theorem 2. The quadrature formula (4) satisfies

Rn ≤ c
′
(d, p + λ)

1
m

αn
− 1

2− p+λ
d and

(
E

(∫
Ed

f(x)dx − I(f)
)2
)1/2

≤ c
′′
(d, p + λ)

1
m

αn
− 1

2− p+λ
d ,

where the constants c
′
(d, p + λ) and c

′′
(d, p + λ) depend implicitly on the points

x(r), but not on n.

Proof. The proof is a modification of the proof given in [1]. Indeed, taking into
account that f belongs to the space Hp

λ(α, Ed) one can use the following in-
equality: |f(ξ(s, t) − Lp(f, ξ(j, s)| ≤ cd,p+λαn−p−λ. Using the above inequality
and applying similar technique used in the proof of Theorem 2.1 from [1] we
prove the theorem.

Both algorithms AR
1 and AR

2 are unimprovable by rate for all functions from
Hp

λ(α, Ed). Indeed, r(AR
I1

) ≤ c′′1(d, p + λ)αn− p+λ
d − 1

2 for the algorithm AR
1 and

r(AR
I2

) ≤ c′′2 (d, p + λ)αn− p+λ
d − 1

2 for the algorithm AR
2 .

4 Performance Analysis of Algorithms with
Unimprovable Convergence Rate

In this subsection the computational cost of both algorithms AR
1 and AR

2 are
presented. The following theorem can be proved:

Theorem 3. [1] The computational cost of the numerical integration of a func-
tion from Hp

λ(α, Ed) using randomized algorithm AR
i (i = 1, 2) can be presented

in the following form:
τ(AR

i , x, ω) = kR
i n + cR

i ,

kR
1 ≤

[
m +

(
d + p − 1

d

)]
af + m[d(br + 2) + 1] (5)

+2
(

d + p − 1
d

)[
m + 1 + d +

(
d + p − 1

d

)]
, (6)
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kR
2 ≤

[
m +

(
d + p − 1

d

)]
af + m[d(br + 2 + k) + 1] (7)

+2
(

d + p − 1
d

)
(d + 1 + m), (8)

where br denotes the number of operations used to produce a uniformly distributed
random number in [0, 1), af stands for the number of operations needed for each
calculation of a function value, and cR

i = cR
i (d, p + λ) depends only on d and

p + λ.

Remark 1. The performance analysis results of Theorem 3 shows that the com-
putational cost of both algorithms is linear with the number of nodes n. With
such a cost an error of order n−p+λ

d − 1
2 is reached. Such an order is unimprovable

in Hp
λ(α, Ed).

Optimal algorithms for functions from W p(α, Ed) are also proposed in
[7,12,14,4,15,17,9]. It is not an easy task to construct a unified algorithm with
unimprovable rate of convergence for any dimension d and any value of p. Var-
ious methods for Monte Carlo integration that achieve the order O

(
N− 1

2−
p
d

)
are known. While in the case of p = 1 and p = 2 these methods are fairly simple
and are widely used (see, for example, [17,14,13]), when p ≥ 3 such methods
become much more sophisticated.

Using the same construction as in [1] it is easy to show that for the determin-
istic case there exists an algorithm for which r(A) ≤ c′A(d, p + λ)αn− p+λ

d . As an
example of such an algorithm could be considered the algorithm AR

1 proposed
in [1] in which the nodes are fixed points.

5 Complexity of the Integration Problem for Functional
Spaces

5.1 Complexity for Hölder Spaces

Now we are ready to formulate a theorem given the estimates of the ε-complexity
of the problem.

Theorem 4. For F0 ≡ Hp
λ(α, Ed) the ε-complexity of the problem of integra-

tion S is Cε(S) = k (cA(d, p + λ)α)
d

p+λ
(

1
ε

) d
p+λ for the class of deterministic

algorithms A, and Cε(S) = kR (cAR(d, p + λ)α)
d

p+λ+d/2
(

1
ε

) d
p+λ+d/2 for the class

of randomized algorithms AR.

Proof. According to the definition of the cost of the algorithm we should take the
worst algorithm in sense of τ(A, f) corresponding to f ∈ Hp

λ(α, Ed). According
to the Bakhvalov’s theorem [2] one can write:

sup
f∈Hp

λ(α,Ed)

τ(A, f) = kn + c = k (c′A(d, p + λ)α)
d

p+λ

(
1

r(A)

) d
p+λ

+ c.
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Now, for a given ε > 0 we should take inf
{

k (c′A(d, p + λ)α)
d

p+λ

(
1

r(A)

) d
p+λ

:

r(A) ≤ ε}. Let us note, that this is a non-uniform complexity notion: for each
ε > 0 a separate A can be designed. However, following the remark that the
algorithms A are uniform over the set of problems, and the fact that the infimum
of the number of preprocessing operations described by c is zero, one can get:

Cε(S) = k (c′A(d, p + λ)α)
d

p+λ

(
1
ε

) d
p+λ

,

which proves the first part of the theorem concerning the deterministic algo-
rithms. The result for the randomized algorithms can be proved similarly.

Corollary 1. The ε-complexity of the problem of integration strongly depends
on the dimension of the problem for the class of deterministic algorithms. With
the increasing of dimensionality the ε-complexity goes exponentially to infinity
for the class F0 = Hp

α(λ, Ed).

Corollary 2. In the case of randomized algorithms the ε-complexity of the inte-
gration problem for functions from F0 = Hp

α(λ, Ed) goes asymptotically to
(

1
ε

)2
.

Remark 2. The fact that the ε-complexity exponentially depends on d makes
the class of deterministic algorithms infeasible for large dimensions.

Remark 3. In the last case the ε-complexity does not increase exponentially with
d. This is why for high-dimensional integration Monte Carlo is a right choice.
Nevertheless, the results presented here demonstrate that the smoothness can
be exploited to improve the rate of convergence by a factor of n− p+λ

d over the
rate of standard randomized algorithms n− 1

2 . This fact allows to decrease the

ε-complexity from (1/ε)2 by a factor of
(

1
ε

)− 4(p+λ)
2(p+λ)+d .

6 Concluding Remarks

As a general remark, one can conclude that as smaller is the order of regularity
as simpler randomized algorithm should be used. Even for low dimensions (d =
1, 2) Monte Carlo is a right choice if the functional class has no smoothness.
It is important to note that the level of confidence P (0 < P < 1) does not
reflect on the rate of convergence of the probability error Rn. It reflects only
on the constant kR. That’s why the choice of the value of P is not important
for the convergence rate (respectively, for the rate of algorithmic complexity).
Nevertheless, for practical computations it may be of great importance to have
the value of the constant in order to get the number of operations for a given
algorithm (as we have done in Section 4).

In case of non-regular input data (discontinues functions and/or singularities)
there are special techniques well developed in Monte Carlo algorithms [8,16,3,1].
These techniques allow to include the singularity into the density function of
special choice (see, for instance [4,5]).
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As a general remark it should be emphasized that the randomized algorithms
have better convergence rate for the same regularity of the input data. The re-
sults can be extended to optimal algorithms for solving integral equations. An
important obvious advantage of randomized algorithms is the case of bad func-
tions, i.e., functions that do not satisfy some additional conditions of regularity.
The main problem with the deterministic algorithms is that normally they need
some additional approximation procedure that require additional regularity. The
randomized algorithms do not need such procedures. But one should be careful
because

– the better convergence rate for randomized algorithms is reached with a
given probability less than 1, so the advantage of Monte Carlo algorithms is
a matter of definition of the probability error. Such a setting of the problem of
error estimation may not be acceptable if one needs a guaranteed accuracy or
strictly reliable results. In fact, we see that this is a price paid by randomized
algorithms to increase their convergence rate.

– If the nature if the problem under consideration do not allow to use the
probability error for estimates or the answer should be given with a guaran-
teed error then the higher convergence order randomized algorithms are not
acceptable.
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Abstract. This paper is addressed to the numerical solving of the ren-
dering equation in realistic image creation. The rendering equation is
integral equation describing the light propagation in a scene accordingly
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are the Monte Carlo methods for solving the rendering equation in order
to create photorealistic images.

In this work we consider the Monte Carlo solving of the render-
ing equation in the context of the parallel sampling scheme for hemi-
sphere. Our aim is to apply this sampling scheme to stratified Monte
Carlo integration method for parallel solving of the rendering equa-
tion. The domain for integration of the rendering equation is a hemi-
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ing allows to solve the rendering equation in parallel. It is known that
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truncation error (systematic error) receiving the fixed number of iter-
ation. Then the rendering equation is solved iteratively using Monte
Carlo approach. At each iteration we solve multi-dimensional integrals
using uniform hemisphere partitioning scheme. An estimate of the rate
of convergence is obtained using the stratified Monte Carlo
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1 Introduction

The main task in the area of computer graphics is photorealistic image creation.
From mathematical point of view, photorealistic image synthesis is equivalent
to the solution of the rendering equation [9]. The rendering equation is a Fred-
holm type integral equation of second kind. It describes the light propagation
in closed domains called scenes. The kernel of the rendering equation is deter-
mined by the used illumination model. The illumination model (see [11] for a
survey of illumination models) describes the interaction of the light with a point
on the surface in the scene. Each illumination model approximates the BRDF
(bidirectional reflectance distribution function), taking into account the mate-
rial surface characteristics. The physical properties like reflectivity, roughness,
and colour of the surface material are characterized by the BRDF. This function
describes the light reflection from a surface point as a ratio of outgoing to in-
coming light. It depends on the wavelength of the light, incoming, outgoing light
directions and location of the reflection point. The BRDF expression receives
various initial values for the objects with different material properties. Philip
Dutré in [4] presents a good survey of the different BRDF models for realistic
image synthesis.

One possible approach for the solution of rendering equation is the Monte
Carlo methods, which has been in the focus of mathematical research for several
decades. Frequently the Monte Carlo methods for numerical integration of the
rendering equation are the only practical method for multi-dimensional integrals.
The convergence rate of conventional Monte Carlo method is O(N− 1

2 ) which
gives relatively slow performance at realistic image synthesis of complex scenes
and physical phenomena simulation. In order to improve Monte Carlo method
and speed up the computation much of the efforts are directed to the variance
reduction techniques. The separation of the integration domain [12] is widely
used Monte Carlo variance reduction method. Monte Carlo algorithms using
importance separation of the integration domain are presented in [8], [7], [2],
[5] and [6]. The method of importance separation uses a special partition of
the domain and computes the given integral as a sum of the integrals on the
sub-domains. An adaptive sub-division technique of spherical triangle domains
is proposed by Urena in [14]. Keller [10] suggests the usage of low discrepancy
sequences for solving the rendering equation and proposes Quasi Monte Carlo
approach. The idea is to distribute the samples into the domain of integration,
as uniformly as possible in order to improve the convergence rate.

Further in this paper we consider the Monte Carlo solving of rendering equa-
tion with uniform hemisphere separation. The technique of uniform hemisphere
partition was introduced by us and described in [3]. The uniform separation of
the integration domain into uniformly small by probability as well as by size sub-
domains fulfills the conditions of the Theorem for super convergence presented
in [12]. We show that the variance is bounded for numerical solving of the multi-
dimensional integrals. Due to uniform separation of integration domain, this ap-
proach has hierarchical parallelism which is suitable for Grid implementations.
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2 Rendering Equation for Photorealistic Image Creation

The light propagation in a scene is described by rendering equation [9], which is
a second kind Fredholm integral equation. The radiance L, leaving from a point
x on the surface of the scene in direction ω ∈ Ωx (see Fig. 1), where Ωx is the
hemisphere in point x, is the sum of the self radiating light source radiance Le

and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫

Ωx

L(h(x, ω′),−ω′)fr(−ω′, x, ω) cos θ′dω′.

The point y = h(x, ω′) indicates the first point that is hit when shooting a ray
from x into direction ω′. The radiance Le has non-zero value if the considered
point x is a point from solid light source. Therefore, the reflected radiance in
direction ω is an integral of the radiance incoming from all points, which can
be seen through the hemisphere Ωx in point x attenuated by the surface BRDF
fr(−ω′, x, ω) and the projection cos θ′, which puts the surface perpendicular to
the ray (x, ω′). The angle θ′ is the angle between surface normal in x and the
direction ω′. The law for energy conservation holds, because a real scene always
reflects less light than it receives from the light sources due to light absorption
of the objects, i.e.:

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1. That means the incoming
photon is reflected with a probability less than 1, because the selected energy is
less than the total incoming energy. Another important property of the BDRF
is the Helmholtz principle: the value of the BRDF will not change if the incident
and reflected directions are interchanged, fr(−ω′, x, ω) = fr(−ω, x, ω′).

Many BRDF for realistic image synthesis are based on surface microfacet
theory. They are considered as function defined over all directions ω′ ∈ Ωx (see
[15]). For example, the BRDF function of Cook-Torrance (see [1], [4] and [11])
depends on the product of three components: Fresnel term - F , microfacets
distribution function - D and geometrical attenuation factor - G; all depending
on ω′. More detailed look at those functions gives us the assumption that Cook-
Torrance BRDF has continuous first derivative.

Fig. 1. The geometry for the rendering equation
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3 Parallel Monte Carlo Approach for the Rendering
Equation

In order to solve the rendering equation by classical Monte Carlo approach we
estimate the integral over the domain Ωx. This is done by independently sam-
pling N points according to some convenient probability density function p(ω′),
and then computing the Monte Carlo estimator ξN . Let us consider the sampling
of the hemisphere Ωx with p(ω′) = 1

Ωx
= 1

2π , where p =
∫

Ωx

p(ω′)dω′ = 1. It is

known that the estimator ξN has the following form:

ξN =
2π

N

N∑
i=1

Le(h(x, ωi
′),−ωi

′)fr(−ωi
′, x, ω) cos θi

′.

The parallel Monte Carlo approach for solving the rendering equation is based
on the strategy for separation of the integration domain Ωx into non-overlapping
sub-domains, as described in [3]. We apply the symmetry property for partition-
ing of the hemisphere Ωx . The coordinate planes partition the hemisphere into
4 equal areas. The partitioning of each one area into 6 equal sub-domains is
continued by the three bisector planes. In Fig. 2 is shown the partitioning of the
area with positive coordinate values of X, Y and Z into 6 equal sub-domains.

Fig. 2. Partitioning of the domain of integration

Let us now apply the partitioning of the hemisphere Ωx into 24 non-overlapping
equal size sub-domains of orthogonal spherical triangles Ωix , where Ω�ABC =
Ωix = 1

24Ωx = π
12 for ix = 1, 2, . . . , 24.

We can rewrite the rendering equation as:

L(x, ω) = Le(x, ω) +
24∑

ix=1

∫

Ωix

L(h(x, ω′),−ω′)fr(−ω′, x, ω) cos θ′dω′,
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where Ωx =
⋃24

ix=1 Ωix . Therefore, the solution of rendering equation can be find
as a sum of integrals over equal size non-overlapping sub-domains Ωix .

Consider the probability:

p =
∫

Ωx

p(ω′)dω′ =
24∑

ix=1

∫

Ωix

p(ω′)dω′ =
24∑

ix=1

pix = 1,

it is obvious that pix =
∫

Ωix

p(ω′)dω′ = 1
24 for ix = 1, 2, . . . , 24. Each sub-domain

is sampled by random points Nix ∈ Ωix with a density function p(ω′)/pix . For all
sub-domains N independent sampling points are generated in parallel using the
sampling scheme for hemisphere from [3], where N = 24Nix for ix = 1, 2, . . . , 24,
t.e. the random sampling point are equal number in each sub-domain. In this
case the sum of integrals for solving the separate rendering equation is estimated
(see [12]) by:

ξ∗N =
24∑

ix=1

π

12Nix

Nix∑
s=1

Le(h(x, ωix,s
′),−ωix,s

′)fr(−ωix,s
′, x, ω) cos θix,s

′.

Comparing the two approach it is known (see in [12]) that the variance of ξ∗N
is not bigger to the variance of ξN or always V ar[ξ∗N ] ≤ V ar[ξN ]. Somting more,
one can see that in our case of domain separation V ar[ξ∗N ] = 1

24V ar[ξN ]. Also,
the main advantages of this stratified sampling approach is the easy parallel
realization.

4 Monte Carlo Solving of Multi-dimensional Integrals

The global illumination (see in Fig. 3) in realistic image synthesis can be modeled
as stationary linear iterative process. According to the Neumann series, the
numerical solving of rendering equation is iterative [13] process, where multi-
dimensional integrals are considered.

For solving multi-dimensional integrals, let us suppose that kε is maximum
level of recursion (recursion depth or number of iterations, see [1]) sufficient for

Fig. 3. Global illumination as iterative process



Parallel Monte Carlo Approach for Integration of the Rendering Equation 145

numerical solving of the integral with a desired truncation error ε. In this case on
each iteration we have to solve the multi-dimensional integrals of the following
type:

L(j) = Lj − Lj−1 =
∫

Ωx1

. . .

∫

Ωxj

K1(x1, ω
′
1) . . .Kj(xj , ω

′
j)Le(xj+1, ω

′
j)dω′

1 . . . dω′
j ,

where Kj(xj , ω
′
j) = fr(−ω′

j, xj , ω
′
j−1)cosθ′j for j = 1, . . . , kε and L0 = Le(x1, ω)

(note that L0 = Le(x1, ω) = 0 if the point x1 is not a point from solid light
source). The total domain of integration Ωx can be represented as:

Ωx = Ωx1 ×Ωx2 × . . .×Ωxkε
=

kε∏
j=1

⎛
⎝ 24⋃

ixj
=1

Ωixj

⎞
⎠ = 24kε

( π

12

)kε

.

Let us consider the integral L(j) in the case when j = kε or L(j) = L(kε).
Using the partitioning of each domain Ωxj (for j = 1, 2, . . . , kε) of non-overlap

equal size spherical triangle sub-domains Ωxj =
24⋃

ixj
=1

Ωixj
with size Ωixj

=
(

π
12

)

for ixj = 1, 2, . . . , 24; we can rewrite the multi-dimensional integral L(kε) as:

L(kε) =
24∑

ix1=1

. . .

24∑
ixkε

=1

∫

Ωix1

. . .

∫

Ωixkε

Le(xkε+1, ω
′
kε

)F (ω′
1, . . . , ω

′
kε

)dω′
1 . . . dω′

kε
,

where F (ω′
1, . . . , ω

′
kε

) =
∏kε

j=1 Kj(xj , ω
′
j). For numerical solving of integral L(kε),

we use N realization of random samples and N = 24kε . It means that only one
random sample is generated in each sub-domain Ωs for s = 1, 2, . . . , N , received
after partitioning of Ωx. Then approximate the integral L(kε) with ξ

∗(kε)
N :

ξ
∗(kε)
N =

( π

12

)kε
N∑

s=1

Le
s(xkε+1, ω

′
kε

)Fs(ω′
1, . . . , ω

′
kε

)

with the integral approximation error εN =
∣∣∣ξ∗(kε)

N − L(kε)
∣∣∣ =

√
V ar

�
ξ
∗(kε)
N

�

N .

According to the statements proofed in [12], the variance V ar
[
ξ
∗(kε)
N

]
can be

estimated as:

V ar
[
ξ
∗(kε)
N

]
≤ c2L2N−1− 2

kε ,

where the first partial derivatives of F (ω′
1, . . . , ω

′
kε

) are limited by an existing

constant L,
∣∣∣ ∂F
∂ω′

j

∣∣∣ ≤ L for j = 1, 2, . . . , kε and the constant c = kεc1c2. Also,
there exist constants c1 and c2 such that:

ps ≤
c1

N
and ds ≤

c2

N
1

kε

,

where ps is the probability and ds is diameter of the domain Ωs for each s =
1, 2, . . . , N . Since all Ωs for each s = 1, 2, . . . , N are of equal size, it is obvious
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that p = 24kεps = 1 or ps = 1
24kε

. The diameter ds for each s = 1, 2, . . . , N

can be calculated as ds =
√

kε

∣∣∣max
(
ÂC, ÂB, B̂C

)∣∣∣ =
√

kε

∣∣∣ÂB
∣∣∣, where

∣∣∣ÂB
∣∣∣

is the length of arc ÂB in the spherical triangle �ABC shown in Fig. 2. We
recall the derived in [3] transformations, where tan ÂB = 1

cos ϕ at ϕ = π
4 and

therefore the length of arc ÂB is arctan
(√

2
)
. Therefore, ds =

√
kε arctan

(√
2
)

for s = 1, 2, . . . , N .
Now we estimates the constants c1 and c2 by the inequalities:

N

24kε
≤ c1 =⇒ 1 ≤ c1 and dsN

1
kε ≤ c2 =⇒

√
kεarctan

(√
2
)
N

1
kε ≤ c2.

Therefore we can write:

V ar
[
ξ
∗(kε)
N

]
≤ c2L2N−1− 2

kε = k2
εc2

1c
2
2L

2N−1− 2
kε

which is equivalent to:

V ar
[
ξ
∗(kε)
N

]
≤ k3

ε arctan2
(√

2
)

L2N−1⇒V ar
[
ξ
∗(kε)
N

]
≤ arctan2

(√
2
)

L2 k3
ε

24kε
.

The variance is bounded if we solve multi-dimensional integrals with uniform
hemisphere separation approach. The last inequality shows us that the conver-
gence rate for iterative solution of rendering equation with a desired truncation
error ε depends on the sufficient recursion depth kε. Also, the multi-dimensional
integrals are numerically solved with a rate of convergence O(N−1). This is
through the uniform separation of the integration domain into uniformly small
by probability as well by size sub-domains, all of them matching the conditions of
the Theorem for super convergence (see the proof in [12]). Summing the variance
for all kε iterations we obtain: V ar [ξ∗N ] =

∑kε

j=1 V ar
[
ξ
∗(j)
N

]
=
(

N−1
23N

)
V ar [ξN ],

where the variance V ar [ξN ] indicates the variance for solving the rendering equa-
tion by N independent random sampling points without uniform separation of
integration domain. Therefore, the total variance for solving of the rendering
equation with uniform hemisphere separation is reduced.

5 Conclusion

The parallel Monte Carlo approach for solving of the rendering equation pre-
sented in this paper is based on partitioning of the hemispherical domain of
integration by a way introduced by us in [3]. Essentially, this approach accumu-
lates the stratified sampling by uniform separation of the integration domain. In
fact, the uniform separation scheme is variance reduction approach and speed
up the computations. The uniform separation of the integration domain hints
for the applying of low discrepancy sequences as shown in [10]. The combination
of uniform separation with the usage of low discrepancy sequences for numeri-
cal solving of the rendering equation could improve the uniformity of sampling
points distribution and more so to reduce the variance. On the other hand this



Parallel Monte Carlo Approach for Integration of the Rendering Equation 147

Monte Carlo approach includes hierarchical parallelism. Therefore, it is suitable
for implementation in algorithms with parallel realization of computations and
completely can utilize the power of Grid computations. Thus, the main advan-
tages of this approach lie in the efficiency of parallel computations. The future
research of the parallel Monte Carlo approach under consideration for rendering
equation could be developed in the following directions: 1) Investigation of the
utilization of low discrepancy sequences with the uniform separation of integra-
tion domain. 2) Development of computational parallel Monte Carlo algorithms
for creation of photorealistic images. 3) Creation of parallel Monte Carlo and
Quasi Monte Carlo algorithms for high performance and Grid computing.
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1 Introduction

The main task in the area of computer graphics is realistic image synthesis.
For creation of photorealistic images the solution of a Fredholm type integral
equation must be found. This integral equation is called rendering equation and
it is formulate first by Kajiya in [3]. The rendering equation describes the light
propagation in closed domains called frequently scenes (see Fig. 1).

Fig. 1. The geometry for the rendering equation

The radiance L, leaving from a point x on the surface of the scene in direction
ω ∈ Ωx, where Ωx is the hemisphere in point x, is the sum of the self radiating
light source radiance Le and all reflected radiance:

L(x, ω) = Le(x, ω) +
∫

Ωx

L(h(x, ω′),−ω′)fr(−ω′, x, ω) cos θ′dω′.

Here h(x, ω′) is the first point that is hit when shooting a ray from x into
direction ω′. The radiance Le has non-zero value if the considered point x is a
point from solid light source. Therefore, the reflected radiance in direction ω is
an integral of the radiance incoming from all points, which can be seen through
the hemisphere Ωx in point x attenuated by the surface BRDF (Bidirectional
Reflectance Distribution Function) fr(−ω′, x, ω) and the projection cos θ′. The
angle θ′ is the angle between surface normal in x and the direction ω′. The law
for energy conservation holds, i.e.:

∫
Ωx

fr(−ω′, x, ω) cos θ′dω′ < 1, because a real
scene always reflects less light than it receives from the light sources due to light
absorption of the objects.

When the point x is a point from a transparent object the transmitted light
component must be added to the rendering equation. This component estimates
the total light transmitted trough the object and incoming to the point x from
all directions opposite to the hemisphere Ωx. The transmitted light in direction
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ω is an integral similar to the the reflected radiance integral where the domain
of integration is the hemisphere Ωx in point x and BRDF is substituted by the
surface BTDF (Bidirectional Transmittance Distribution Function) [2]. In this
case the integration domain for solving the rendering equation is a sphere Ω(x)

in point x, where Ω(x) = Ωx

⋃
Ωx.

Applying Monte Carlo methods for solving the rendering equation, we must
sample the solid angle subtended by unit hemisphere or unit sphere in order
to perform the numerical integration of the rendering equation. The sampling
of certain solid angle is a fundamental operation in realistic image synthesis,
which requires generating directions over the solid angle. To generate sampling
directions for numerical integration of the rendering equation it is enough to
generate points over unit hemisphere or unit sphere.

A good survey of different sampling algorithms for unit sphere and unit hemi-
sphere is given by Philip Dutré in [2]. Some of them generate the sampling points
directly over the hemisphere and sphere. Others first find points uniformly on the
main disk, and then project them on the hemisphere or the sphere. Deterministic
sampling methods for spheres are proposed in [7] and applied in robotics, where
the regularity of Platonic solids is exploited. Arvo [1] suggests a sampling algo-
rithm for arbitrary spherical triangle and Urena [6] shows an adaptive sampling
method for spherical triangles.

Further in this paper we consider the parallel samples generation over sphere
and hemisphere for Monte Carlo solving of rendering equation.

2 Partitioning of Sphere and Hemisphere

Consider hemisphere and sphere with center in the origin of a Descartes coordi-
nate system. Similarly to the Bresenham algorithm [5] for raster display of circle
we apply the symmetry property for partitioning of hemisphere and sphere. It is
obvious that the coordinate planes partition the hemisphere into 4 equal areas
and the sphere into 8 equal areas. The partitioning of each one area into sub-
domains can be continued by the three bisector planes. One can see that the
bisector planes to the dihedral angles (−→X,

−→
Y ), (−→X,

−→
Z ) and (−→Z ,

−→
Y ), partition

each area into 6 equal sub-domains. In Fig. 2 we show the partitioning of the
area with positive coordinate values of X, Y and Z into 6 equal sub-domains.

As described above we can partition the hemisphere into 24 and respectively
the sphere into 48 equal sub-domains. Something more, due to the planes of
partitioning each sub-domain is symmetric to all others. The symmetric property
allows us to calculate in parallel the coordinates of the symmetric points. For
example to calculate the coordinates of the point P3 we consecutively multiply
the coordinates of the point P0(x0, y0, z0) by two matrix of symmetry:

P0(x0, y0, z0) ∗

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ ∗

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ = P2(z0, y0, x0) ∗

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ = P3(z0, x0, y0).
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Fig. 2. Partition of a spherical area into 6 sub-domains

Table 1. Parallel Sample Coordinates Calculation of Hemisphere

P0(x0, y0, z0) P
′
0(−x0, y0, z0) P

′′
0 (−x0,−y0, z0) P

′′′
0 (x0,−y0, z0)

P1(y0, x0, z0) P
′
1(−y0, x0, z0) P

′′
1 (−y0,−x0, z0) P

′′′
1 (y0,−x0, z0)

P2(z0, y0, x0) P
′
2(−z0, y0, x0) P

′′
2 (−z0,−y0, x0) P

′′′
2 (z0,−y0, x0)

P3(z0, x0, y0) P
′
3(−z0, x0, y0) P

′′
3 (−z0,−x0, y0) P

′′′
3 (z0,−x0, y0)

P4(x0, z0, y0) P
′
4(−x0, z0, y0) P

′′
4 (−x0,−z0, y0) P

′′′
4 (x0,−z0, y0)

P5(y0, z0, x0) P
′
5(−y0, z0, x0) P

′′
5 (−y0,−z0, x0) P

′′′
5 (y0,−z0, x0)

Table 2. Parallel Sample Coordinates Calculation of Sphere

P0(x0, y0, z0) P
′
0(−x0, y0, z0) P

′′
0 (−x0,−y0, z0) P

′′′
0 (x0,−y0, z0)

P1(y0, x0, z0) P
′
1(−y0, x0, z0) P

′′
1 (−y0,−x0, z0) P

′′′
1 (y0,−x0, z0)

P2(z0, y0, x0) P
′
2(−z0, y0, x0) P

′′
2 (−z0,−y0, x0) P

′′′
2 (z0,−y0, x0)

P3(z0, x0, y0) P
′
3(−z0, x0, y0) P

′′
3 (−z0,−x0, y0) P

′′′
3 (z0,−x0, y0)

P4(x0, z0, y0) P
′
4(−x0, z0, y0) P

′′
4 (−x0,−z0, y0) P

′′′
4 (x0,−z0, y0)

P5(y0, z0, x0) P
′
5(−y0, z0, x0) P

′′
5 (−y0,−z0, x0) P

′′′
5 (y0,−z0, x0)

P 0(x0, y0,−z0) P
′
0(−x0, y0,−z0) P

′′
0 (−x0,−y0,−z0) P

′′′
0 (x0,−y0,−z0)

P 1(y0, x0,−z0) P
′
1(−y0, x0,−z0) P

′′
1 (−y0,−x0,−z0) P

′′′
1 (y0,−x0,−z0)

P 2(z0, y0,−x0) P
′
2(−z0, y0,−x0) P

′′
2 (−z0,−y0,−x0) P

′′′
2 (z0,−y0,−x0)

P 3(z0, x0,−y0) P
′
3(−z0, x0,−y0) P

′′
3 (−z0,−x0,−y0) P

′′′
3 (z0,−x0,−y0)

P 4(x0, z0,−y0) P
′
4(−x0, z0,−y0) P

′′
4 (−x0,−z0,−y0) P

′′′
4 (x0,−z0,−y0)

P 5(y0, z0,−x0) P
′
5(−y0, z0,−x0) P

′′
5 (−y0,−z0,−x0) P

′′′
5 (y0,−z0,−x0)
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Therefore, sampling the hemisphere and calculating the coordinates of a sam-
pling point P0(x0, y0, z0) from a given sub-domain, we can calculate in parallel
the other sampling point coordinates for the hemisphere in accordance to the
Table 1.

The coordinate of symmetric points when we sampling the sphere can be
calculated in a same way. The Table 2. represents the parallel coordinates calcu-
lations for the sphere. Note that the marked with P

(·)
(·) points in Table 2. are the

same as the respective points presented in Table 1. and only differ in negative
sign of the Z coordinate.

This kind of partitioning allows to sample only one sub-domain and to cal-
culate in parallel all other samples for the hemisphere or sphere. Since the sym-
metry is identity the generation of uniformly distributed random samples in a
sub-domain leads to the uniform distribution of all samples in the hemisphere
and sphere.

3 Algorithms for Parallel Sampling Scheme

In this section we consider the problem for sampling a sub-domain in the terms
of hemisphere and sphere partitioning, described in the previous section. Each
sub-domain represents solid angle subtended by orthogonal spherical triangle
with fixed vertices and computable parameters. In order to generate uniformly
distributed random samples of the sub-domain we propose two algorithms.

3.1 Algorithm 1

This algorithm is very similar to the Arvo’s [1] algorithm for sampling of arbi-
trary spherical triangle. Let us consider the solid angle subtended by the spherical
triangle �ABC shown in Fig. 3.

Due to the partitioning planes, we can observe, that the arcs ÂB, B̂C and
ÂC are the arcs of the main (central) circles. The angle γ is equal to π

2 and the
length of the arc B̂C is π

4 . One can write the following identities:

cos ÂB = cos B̂C · cos ÂC + sin B̂C · sin ÂC · cos γ

cos β = − cos γ · cos α + sin γ · sin α · cos ÂC

sin B̂C

sin α
=

sin ÂB

sin γ
.

The first two expressions are spherical cosine law for the arc ÂB and for
the angle β, as well the third is spherical sine law. By definition the angle β is
the angle between tangents to the spherical arcs in the point B which is equal
to the dihedral angle between the partitioning planes. Therefore, the angle β is
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Fig. 3. Sampling point generation by Algorithm 1

always equal to the angle ϕ. Since the arc ÂB is arc from the central circle in the
orthogonal spherical triangle, it equals to θ, we can write the following equality:

tan ÂB =
1

cos β
⇒ tan θ =

1
cos ϕ

.

Similarly to the strategy presented in [1] we attempt to generate a sample
by mapping of the unit square onto orthogonal spherical triangle. With other
words we seek a bijection F (u, v) : [0, 1]2 → �ABC, where u and v are ran-
dom variables uniformly distributed in [0, 1]. Now we introduce the following
transformation:

ϕ =
uπ

4
and θ = arctan

v

cos ϕ
= arctan

v

cos uπ
4

,

where u, v ∈ [0, 1]; ϕ ∈ [0,
π

4
] and θ ∈ [0, arctan

1
cos ϕ

]. The algorithm can be

described as:


 Generate Random Variables:( real u , real v)

 Calculate angles : ϕ =

uπ

4
and θ = arctan

v

cos uπ
4


 Calculate the sampling point coordinates:
Px = cos ϕ · sin θ, Py = sin ϕ · sin θ and Pz = cos θ


 Return Sampling Point: P (Px, Py, Pz).

3.2 Algorithm 2

This algorithm tries to compute directly the unit radius vector of a sampling
point inside to the orthogonal spherical triangle. Consider a point P inside
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Fig. 4. Sampling point generation by Algorithm 2

for the spherical triangle �ABC shown in Fig. 4. The coordinates of an ar-
bitrary sampling point P could be calculated by finding the intersection point
of spherical triangle �ABC with the two coordinate planes having normal vec-
tors Nx(1, 0, 0) and Ny(0, 1, 0), and rotated respectively on angle ϕ and angle θ,
where θ, ϕ ∈ [0,

π

4
]. It is clear that when θ = ϕ =

π

4
, the point P ≡ A and when

θ = ϕ = 0, the point P ≡ B.
The rotations of the coordinate planes are defined by the matrices of rotation.

Let, Ryθ is the matrix of rotation on angle θ around the axis Y and Rzϕ is the
matrix of rotation on angle θ around the axis Z:

Ryθ =

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ and Rzϕ =

⎛
⎝ cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

⎞
⎠.

Applying the rotations to the normal vectors Nx(1, 0, 0) and Ny(0, 1, 0) we
calculate the normal vectors N ′

x and N ′
y to the rotated coordinate planes:

N ′
x = NxRyθ = (cos θ, 0,− sin θ) and N ′

y = NyRzϕ = (− sin ϕ, cos ϕ, 0).

The normalized vector product of the vectors N ′
x and N ′

y compute the coor-
dinate of point P as:

P =
N ′

x ×N ′
y∣∣N ′

x ×N ′
y

∣∣ with |P | = 1

where N ′
x ×N ′

y = (sin θ cos ϕ, sin θ sin ϕ, cos θ cos ϕ) and

∣∣N ′
x ×N ′

y

∣∣ =
√

sin2 θ + cos2 θ cos2 ϕ =
√

cos2 ϕ + sin2 θ sin2 ϕ.
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The algorithm can be described as:


 Generate Random Variables:( real u , real v)

 Calculate angles : ϕ =

uπ

4
and θ =

vπ

4

 Calculate the sampling point coordinates:

Px =
sin θ · cos ϕ√

sin2 θ + cos2 θ cos2 ϕ
, Py =

sin θ · sin ϕ√
sin2 θ + cos2 θ cos2 ϕ

and Pz =
cos θ · cos ϕ√

sin2 θ + cos2 θ cos2 ϕ

 Return Sampling Point: P (Px, Py, Pz).

4 Conclusion

The presented parallel sampling scheme for Monte Carlo solving of the rendering
equation uses partitioning of the hemisphere or sphere by a natural way. The
sphere or hemisphere is divided into equal sub-domains of orthogonal spherical
triangles by applying the symmetry property. The advantages of this approach
lie in the parallel computations. Sampling only one sub-domain, the sampling
points over hemisphere or sphere are calculated in parallel. This approach is suit-
able for realization over parallel (MIMD, multiple instruction - multiple data)
architectures and implementation on Grid infrastructures. The proposed algo-
rithms for sampling of orthogonal spherical triangles accommodate the stratified
sampling. Instead of using random variables u and v for sampling point gener-
ation we can apply low discrepancy sequences as shown in [4]. This fact leads
to parallel Quasi-Monte Carlo approach for solving of the rendering equation,
which is a subject of future study and research.
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Abstract. In this work we propose a hybrid Monte Carlo method for
solving the Levinson equation. This equation describes the electron-
phonon interaction on a quantum-kinetic level in a wire. The evolution
problem becomes inhomogeneous due to the spatial dependence of the
initial condition. The properties of the presented algorithm, such as com-
putational complexity and accuracy, are investigated on the Grid by mix-
ing quasi-random numbers and pseudo-random numbers. The numerical
results are obtain for a physical model with GaAs material parameters
in the case of zero electrical field.

1 Introduction

The Levinson equation [1] describes a femtosecond relaxation process of optically
excited electrons which interact with phonons in an one-band semiconductor.
The equation is an important tool for studying quantum effects in semiconduc-
tor devices [2]. Monte Carlo (MC) algorithms for solving such equations require
large amounts of CPU time [3]. The spread of computational grids makes the
parallelization properties of these algorithms important for the practical imple-
mentation. On the other hand quasi-Monte Carlo (QMC) methods [4] can offer
higher precision and/or faster convergence for some kinds of integral equation
problems, that are usually solved by MC methods. Careful study of the equation
under consideration is needed in order to justify their usage.

In this paper we study a hybrid Monte Carlo method by mixing quasi-random
numbers and pseudo-random numbers for solving the Levinson equation. After
reduction of the dimension [5], the quantum-kinetic equation has the following
integral form:

fw(z, kz, t) = fw,0(z − h̄kz

m , t, kz) + (1)

+
t∫
0

dt′′
t∫

t′′
dt′

∫
G

d3k′{K1(kz ,k′, t′, t′′)fw(z + h(kz , q
′
z, t, t

′, t′′), k′
z , t

′′)}

+
t∫
0

dt′′
t∫

t′′
dt′

∫
G

d3k′{K2(kz ,k′, t′, t′′)fw(z + h(kz , q
′
z, t, t

′, t′′), kz, t
′′)},

� Supported by the Ministery of Education and Science of Bulgaria under Grant No.
I1405/04 and by the EC FP6 under Grant No: INCO-CT-2005-016639 of the project
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where

h(kz , q
′
z, t, t

′, t′′) = − h̄kz

m
(t − t′′) +

h̄q′z
2m

(t′ − t′′)

K1(kz ,k′, t′, t′′) = S(k′
z , kz, t

′, t′′,q′
⊥) = −K2(k′, kz, t

′, t′′)

S(k′
z, kz , t

′, t′′,q′
⊥) =

2V

(2π)3
|G(q′

⊥)F(q′
⊥, kz − k′

z)|2 ×
[

(n(q′) + 1) cos
(

ε(kz) − ε(k′
z) + h̄ωq′

h̄
(t′ − t′′)

)

+n(q′) cos
(

ε(kz) − ε(k′
z) − h̄ωq′

h̄
(t′ − t′′)

)]
,

and
∫

G d3k′ =
∫

dq′
⊥

∫ Q2

−Q2
dkz. The domain G is specified in the next section.

The Bose function, nq′ = 1/(exp(h̄ωq′/KT ) − 1), describes the phonon distri-
bution, where K is the Boltzmann constant and T is the temperature of the
crystal. h̄ωq′ is the phonon energy which generally depends on q′ = q′

⊥ + q′z =
q′
⊥ + (kz − k′

z), and ε(kz) = (h̄2k2
z)/2m is the electron energy.

The electron-phonon coupling constant F is chosen according to a Fröhlich
polar optical interaction:

F(q′
⊥, kz − k′

z) = −
[
2πe2ωq′

h̄V

(
1
ε∞

− 1
ε s

)
1

(q′)2

] 1
2

, (2)

(ε∞) and (εs) are the optical and static dielectric constants. G(q′
⊥) is the Fourier

transform of the square of the ground state wave function |Ψ |2.
The equation describes electron evolution which is quantum in both, the real

space due to the confinements of the wire, and the momentum space due to the
early stage of the electron-phonon kinetics. The kinetics resembles the memory
character of the homogeneous Levinson or Barker-Ferry models [9], but the evo-
lution problem becomes inhomogeneous due to the spatial dependence of the
initial condition fw,0. The cross-section of the wire is chosen to be a square with
side a so that:

|G(q′
⊥)|2 = |G(q′x)G(q′y)|2 =

(
4π2

q′xa ((q′xa)2 − 4π2)

)2

4 sin2(aq′x/2)

(
4π2

q′ya
(
(q′ya)2 − 4π2

)
)2

4 sin2(aq′y/2)

We note that the Neumann series of integral equations of type (1) converges, [3].
Thus, we can construct a MC estimator to evaluate suitable functionals of the
solution.
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2 The Monte Carlo Method

The values of the physical quantities are expressed by the following general
functional of the solution of (1):

Jg(f) ≡ (g, f) =
∫ T

0

∫
D

g(z, kz, t)fw(z, kz, t)dzdkzdt. (3)

Here we specify that the phase space point (z, kz) belongs to a rectangular
domain D = (−Q1, Q1) × (−Q2, Q2), and t ∈ (0, T ). The function g(z, kz, t)
depends on the quantity of interest. In particular, we focus on the Wigner func-
tion fw(z, kz, t), the wave vector (and respectively the energy) f(kz , t), and the
density distribution n(z, t). The latter two functions are given by the integrals

f(kz, t) =
∫

dz

2π
fw(z, kz, t); n(z, t) =

∫
dkz

2π
fw(z, kz, t). (4)

The evaluation is performed in fixed points by choosing g(z, kz, t) as follows:

(i) g(z, kz, t) = δ(z − z0)δ(kz − kz,0)δ(t − t0),

(ii) g(z, kz, t) =
1
2π

δ(kz − kz,0)δ(t − t0), (5)

(iii) g(z, kz, t) =
1
2π

δ(z − z0)δ(t − t0).

We construct a biased MC estimator for evaluating the functional (3) using
backward time evolution of the numerical trajectories in the following way:

ξs[Jg(f)] =
g(z, kz, t)

pin(z, kz, t)
W0fw,0(., kz, 0) +

g(z, kz, t)
pin(z, kz, t)

s∑
j=1

Wα
j fw,0

(
., kα

z,j , tj
)
,

(6)
where

fw,0

(
., kα

z,j , tj
)

=
{

fw,0

(
z + h(kz,j−1, q

′
z,j , tj−1, t

′
j , tj), kz,j , tj

)
, if α = 1,

fw,0

(
z + h(kz,j−1, q

′
z,j , tj−1, t

′
j , tj), kz,j−1, tj

)
, if α = 2,

Wα
j = Wα

j−1

Kα(kzj−1,kj , t
′
j, tj)

pαptr(kj−1,kj , t′j, tj)
, Wα

0 = W0 = 1, α = 1, 2, j = 1, . . . , s .

The probabilities pα, (α = 1, 2) are chosen to be proportional to the absolute
value of the kernels in (1). The initial density pin(z, kz, t) and the transition
density ptr(k,k′, t′, t′′) are chosen to be tolerant1 to the given function g(z, kz, t)
and the kernels, respectively. The first point (z, kz0, t0) in the Markov chain is
chosen using the initial density, where kz0 is the third coordinate of the wave
vector k0. Next points (kzj , t

′
j , tj) ∈ (−Q2, Q2) × (tj , tj−1) × (0, tj−1) of the

Markov chain:

(kz0, t0) → (kz1, t
′
1, t1) → . . . → (kzj , t

′
j , tj) → . . . → (kzs, t

′
s, ts), j = 1, 2, . . . , s

1 r(x) is tolerant of g(x) if r(x) > 0 when g(x) �= 0 and r(x) ≥ 0 when g(x) = 0.
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do not depend on the position z of the electrons. They are sampled using the
transition density ptr(k,k′, t′, t′′) as we take only the kz-coordinate of the wave
vector k. Note the time t′j conditionally depends on the selected time tj . The
Markov chain terminates in time ts < ε1, where ε1 is a fixed small positive
number called a truncation parameter. In order to evaluate the functional (3) by
N independent samples of the estimator (6), we define a Monte Carlo method

1
N

N∑
i=1

(ξs[Jg(f)])i
P−→ Jg(f (s)) ≈ Jg(f). (7)

f (s) is the iterative solution obtained by the Neumann series of (1), and s is
the number of iterations. In order to obtain a MC computational algorithm, we
have to specify the initial and transition densities. Also, we have to describe
the sampling rule needed to calculate the states of the Markov chain by using
SPRNG library [8].

We note the MC estimator is constructed using the kernels of the equa-
tion (1). That is why we suggest the transition density function to be propor-
tional of the term (2) that contains the singularity, namely: ptr(k,k′, t′, t′′) =
p(k′/k)p(t, t′, t′′), where

p(t, t′, t′′) = p(t, t′′)p(t′/t′′) =
1
t

1
(t − t′′)

, p(k′/k) = c1/(k′ − k)2.

c1 is the normalized constant. Thus, if we know t, the next times t′′ and t′

are computed by using the inverse-transformation rule. The function p(k′/k) is
chosen in spherical coordinates (ρ, θ, ϕ), and the wave vector k′ are sampled in
the same way as it is described in [7].

The choice of pin(z, kz, t) depends on the choice of the function g(z, kz, t) in
(5). Thus, by using one and the same Markov chains the desired physical quan-
tities (values of the Wigner function, the energy and the density distributions)
can be evaluated simultaneously.

3 Background on Quasi-Monte Carlo Methods and
Quasirandom Numbers

Quasi-Monte Carlo methods and algorithms are popular in many areas from
physics to economy. The constructive dimension of the algorithms can be several
hundreds or even more, but fewer dimensions offer decreased error. Monte Carlo
and quasi-Monte Carlo algorithms are frequently executed on parallel super-
computers or clusters. Scrambling (see [6] provides a way of combining the ad-
vantages of Monte Carlo and quasi-Monte Carlo methods, offering authomatic
error estimation.

Definition 1. Discrepancy of a sequence σ = {xi}N
i=1 in Es:

D∗
N (σ) = sup

I⊂Es

∣∣∣∣AN (τ, I)
N

− μ (E)
∣∣∣∣ .
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For low-discrepancy sequences D∗
N (σ) = O(N−1 logs N).

The Koksma-Hlawka inequality relates integration error with discrepancy:
∣∣∣∣∣∣
∫

Es

f (x) dx − 1
N

N∑
i=1

f(xi)

∣∣∣∣∣∣ ≤ V (f)D∗
N(σ).

Improved convergence - in practice the log factor is not observed. Can be either
completely deterministic or include some randomness. Some families of sequences
can be tuned to the particular application. Faster generation than pseudo-
random numbers. Authomatic error estimation can be achieved. Amenable to
parallel implementation.

Definition 2. Let A1, . . . , As be infinite matrices,

Ak =
{

a
(k)
ij

}
, i, j = 0, 1, . . . ,

with a
(k)
ij ∈ {0, 1}, such that a

(k)
ii = 1 for all i and k, a

(k)
ij = 0 if i < j, and

let τ (1), . . . , τ (s) be sequences of permutations of the set {0, 1}. The nth term of
the low-discrepancy sequence σ is obtained by representing n in binary number
system:

n =
r∑

i=0

bi2i, and setting: x(k)
n =

r∑
j=0

2−j−1τ
(k)
j

(
j⊕

i=0

bia
(k)
ij

)
.

Definition 3. Let p1, . . . , ps be distinct prime numbers, and let the integer mod-
ifiers k1, . . . , ks be given, ki ∈ [0, pi − 1] . Fix also some scrambling terms b

(i)
j ∈

[0, pi − 1]. If the representation of n in pi -adic number system is:

n =
m∑

j=0

a
(i)
j pj

i ,

then the ith coordinate of the modified Halton sequence σ(p1, . . . , ps; k1, . . . , ks)
is defined as

x(i)
n =

m∑
j=0

imod
(
a
(i)
j kj+1

i + b
(i)
j , pi

)
p−j−1

i .

The original Halton sequence is obtained when all the modifiers are one, and all
the scrambling terms are zero.

4 The Hybrid Monte Carlo Algorithm

The idea of the hybrid Monte Carlo algorithm consists of using pseudo-random
numbers for some dimensions and quasi-random numbers for the other dimen-
sions. Error estimation is achieved by means of scrambling of the quasi-random
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sequence. The use of scrambling corrects the correlation problem found in the
previous purely quasi-Monte Carlo algorithm. We decided to sample the times
using the Halton quasi-random sequence and to sample the other quantities,
related to spacial dimensions, using pseudo-random numbers. A schematic de-
scription of the algorithm is given below, assuming that we only need to compute
the Wigner function at one point (k1, z1). In the algorithm, ε1 is the truncation
parameter.

– Input number of trajectories to be used N , relaxation time T , other param-
eters, describing the initial condition.

– For i from 1 to N sample a trajectory as follows:
• set time t := T , weight W := 1,k = k1, z := z1

• prepare the next point of the Halton sequence to be used (x1, x2, . . . , xn),
with n sufficiently big (n = 100 in our case), and set j = 1

• repeat until t > ε1:
∗ k is simulated using pseudorandom numbers
∗ t′ , t are simulated using consecutive dimensions of the Halton se-

quence, i.e. the points x2j−1, x2j , by the formulae

t2 := tx2j−1, t1 := t2 + x2j(t − t2), t′ := t1, t = t2

∗ multiply the weight: W := W ∗ t(t − t2)
∗ compute the two kernels K1 and K2

∗ select which one to use with probability proportional to their abso-
lute values.

∗ multiply the weight: W := W ∗ (|K1| + |K2|) sgn (Km) if Km is the
kernel selected

∗ sample q using a spline approximation of the inverse function
∗ multiply the weight by the appropriate integral: W := W ∗ I
∗ modify k, depending on the kernel and the electric field applied:

knew = k − c3 ∗ (t − t2) if K1 was chosen or knew = k − c3 ∗ (t − t2)
if K2 was chosen

∗ modify z: znew = z − c1 ∗ k ∗ (t − t2) − c2 ∗ (t − t2) ∗ (t + t2)
∗ compute the contribution of this iteration to the Wigner function:

add W ∗ ψ(z, k) to the estimator, where ψ(z, k) is the value of the
initial condition

∗ increment j := j + 1

The constructive dimensionality of the algorithm is 4n, where n is the maximal
length of the trajectory. We use 2n pseudorandom numbers for each trajectory,
and the dimensionality of the Halton sequence is 2n.

5 Parallel Implementation for Grids

Monte Carlo methods are inherently parallelizable. Parallelization over Grid is
done via pre-processing and post-processing phase. The Monte Carlo and quasi-
Monte Carlo simulations that we need to perform require hours of CPU time,
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due to the exponential dependence on the time T [3]. Naturally we come to the
idea of using computational Grids in order to perform the computations in a
feasible timeframe (a day or two for obtaining a set of results). We divided the
work into chunks and we used as a package of parallel pseudo-random generators
the SPRNG [8]. For generating the scrambled Halton sequences, we used our
ultra-fast generators, which provide the necessary functionality:

– portable, multi-platform
– using assembly language where possible for best performance
– providing a fast-forward operation, which permits jumping ahead in the se-

quence without unnecessary overhead

We used our framework for massive job submission, which allows submission and
control of hundreds, even thousands of jobs on the Grid, with redundancy and
failover. Due to the use of quasi-random numbers, we had to achieve fault toler-
ant operation of the framework. The inputs are entered into a MySQL database.
The jobs that we submit to the Grid are placeholder jobs, which obtain their
input from a web service, offering authentication and authorization using Grid
certificates and connecting to the database. The jobs are monitored throughout
their lifetime and their status is available from the database. The failover proce-
dures allowed us to discard lost/aborted jobs without problems. In this way we
can see when all the work is completed. The jobs were submitted to several clus-
ters from the EGEE production service2, and we strove to achieve the maximal
throughput that we could. During our work on this paper, we submitted several
thousands of jobs in total, each requiring between 1 and 20 hours of CPU time.

6 Numerical Experiments

The numerical results presented in Figures 1-2 are obtained for the following
GaAs material parameters: the electron effective mass is 0.063, the optimal
phonon energy is 36 meV, the static and optical dielectric constants are εs = 12.9
and ε∞ = 10.92. The initial condition is a product of two Gaussian distribu-
tions of the energy and space. The k2

z distribution corresponds to a generating
laser pulse with an excess energy of about 150 meV. The z distribution is cen-
tered around zero. The side of the wire is chosen to be 10 nanometers. Hybrid
MC solutions for the energy distribution, f(kz, t), are presented on Fig.1, where
t = 120, 140, 160, 180 femtoseconds. The solutions are estimated for 130 points in
2 The Enabling Grids for E-sciencE (EGEE) project is funded by the European Com-

mission and aims to build on recent advances in grid technology and develop a service
grid infrastructure which is available to scientists 24 hours-a-day. The project aims
to provide researchers in both academia and industry with access to major comput-
ing resources, independent of their geographic location. The EGEE project identifies
a wide-range of scientific disciplines and their applications and supports a number
of them for deployment. To date there are five different scientific applications run-
ning on the EGEE Grid infrastructure. For more information see http://public.eu-
egee.org/
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Fig. 1. Energy distribution at different evolution times. The quantum solution shows
broadening of the replicas.
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Fig. 2. Electron density along the wire at different evolution times

the interval (0, Q2), where Q2 = 60×107m−1. Hybrid MC solutions for the elec-
tron density, n(z, t0, are shown on Fig.2 at fixed evolution times. Here, solutions
are estimated for 200 points in the interval (0, Q1), where Q1 = 35 × 109m−1.
The number of Markov chain realizations (stochastic trajectories) is N = 2.5
millions, when t = 140fs. The number of trajectories increases up to 10 millions
with increasing the evolution time. The results for the computational complexity
(CPU time) are shown in Table 1. It is clear that the use of the hybrid algo-
rithm is preferable than the MC algorithm. The QMC algorithm has the least
complexity. However, noise appears in the QMS solutions. That is why they are
not shown in this paper.

Table 1. The computational complexity (CPU time) and RMS error of all algorithms
for 2 500 000 trajectories

t CPU time RMS error

MC 120fs 242m5.220s 0.038623
algorithm 140fs 251m0.690s 0.146971

Hybrid 120fs 233m8.530s 0.037271
algorithm 140fs 234m9.980s 0.150905

QMC 120fs 201m0.870s 0.028626
algorithm 140fs 223m3.050s 0.136403
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7 Conclusions

We developed a hybrid Quasi-Monte Carlo algorithm, which combines the ad-
vantages of Monte Carlo and Quasi-Monte Carlo algorithms. The new algorithm
does not exhibit the bias, observed in the previous Quasi-Monte Carlo algorithm
for high values of the evolution time. The statistical error of the hybrid algo-
rithm is of the same magnitude as that of the Monte Carlo algorithm. The results
obtained by the hybrid algorithm gave results, consistent with the results ob-
tained by using pseudo-random numbers. The generation of the low-discrepancy
sequences is faster than that of pseudo-random numbers, which makes the new
method faster overall. The algorithm was implemented in a Grid environment,
which enabled us to obtain results much faster than we could using our local
cluster, because we utilized several Grid clusters at once.
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Abstract. This paper presents work on solving elliptic BVPs problems
based on quasi-random walks, by using a subset of uniformly distributed
sequences—completely uniformly distributed (c.u.d.) sequences. This ap-
proach is novel for solving elliptic boundary value problems. The en-
hanced uniformity of c.u.d. sequences leads to faster convergence. We
demonstrate that c.u.d. sequences can be a viable alternative to pseudo-
random numbers when solving elliptic boundary value problems. Analy-
sis of a simple problem in this paper showed that c.u.d. sequences achieve
better numerical results than pseudorandom numbers, but also have the
potential to converge faster and so reduce the computational burden.

Keywords: completely uniformly distributed sequences, Monte Carlo
methods, acceptance-rejection, Markov chains, BVPs.

1 Introduction

Monte Carlo (MC) methods are based on the simulation of stochastic pro-
cesses whose expected values are equal to computationally interesting quantities.
Standard MC simulation using pseudorandom sequences can be quite slow due
to its convergence rate is only O(N−1/2) [21] for N sample paths. Quasi-Monte
Carlo (QMC) simulation, using deterministic sequences that are more uniform
than random ones, holds out the promise of much greater accuracy, close to
O(N−1) [15] in optimal cases. Randomized versions of QMC simulation can in
some cases bring a typical error close to O(N−3/2) [22]. QMC simulation is not
a magic bullet, however, as shown in the works of Morokoff [18]. The asymptotic
error magnitudes are the ones ”close to” above, multiplied by (logN)k, where
k depends on the dimension of the simulation. In high dimensions these pow-
ers of logN do not become negligible at any computationally possible sample
size. This loss of effectiveness has been documented for a series of test problems.
� Supported by the Ministry of Education and Science of Bulgaria under Grant No.
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BIS-21++.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 165–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



166 A. Karaivanova, H. Chi, and T. Gurov

Perhaps more startling is the fact that a considerable fraction of the enhanced
convergence of the quasi-Monte Carlo integration is lost when the integrand is
discontinuous. In fact, even in two dimensions one can loose the approximately
O(N−1) QMC convergence for an integrand that is discontinuous on a curve
such as a circle. In the best cases the convergence drops to O(N−2/3), which is
only slightly better than regular MC integration.

There are some very efficient MC methods for the solution of elliptic boundary
value problems (BVPs), see for example [4,24,16]. While it is often preferable
to solve a partial differential equation with a deterministic numerical method,
there are some circumstances where MC methods have a distinct advantage.
For example, when the geometry of a problem is complex, when the required
accuracy is moderate, when a geometry is defined only statistically, or when a
linear functional of the solution, such as a solution at a point, is desired, MC
methods are often the most efficient method of solution.

The use of QMC methods for BVPs is studied in [20,18,13,17,7] etc. Here we
refer to [17] where quasi-Monte Carlo variants of three Monte Carlo algorithms:
Grid-Walk, Walk-on-Spheres and Walk-on-Balls, are considered. The first one
uses a discretization of the problem on a mesh and solves the linear algebraic
system which approximates the original problem. The second two methods use an
integral representation of the problem which leads to a random walk on spheres
or to a random walk on balls method. Different strategies for using quasirandom
sequences are proposed and tested in order to generate quasirandom walks on
grids, spheres, and balls. Theoretical error bounds are established, numerical ex-
periments with model elliptic BVPs in two and three dimensions are also solved.
The rate of convergence and the computational complexity of the QMC meth-
ods and the corresponding MC methods are compared both theoretically and
numerically. The QMC methods preserve the advantages of the Monte Carlo for
solving problems in complicated domains, and show better rates of convergence
for QMC methods with direct simulation (Grid-Walk and Walk-on-Spheres) and
slightly better for Walk-on-Balls (WoB) only for some parameters of the differ-
ential equation.

Recently, Owen and Tribble [23] showed that a subset of quasi-random num-
bers (QRNs) called, completely uniformly distributed (c.u.d.) sequences, can
replace pseudorandom numbers in Markov chain Monte Carlo methods. Their
results motivated us to apply c.u.d. sequences in the WoB method.

2 Background(Random Walks on Balls)

Let G ⊂ R
3 be a bounded domain with boundary ∂G. Consider the following

elliptic BVP:

Mu ≡
3∑

i=1

(
∂2

∂xi
2

+ bi(x)
∂

∂xi
)u(x) + c(x)u(x) = −φ(x), x ∈ G (1)

u(x) = ψ(x), x ∈ ∂G. (2)
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Assume that the boundary ∂G, and the given function bi(x), c(x) ≤ 0, φ(x), and
ψ(x), satisfy conditions ensuring that the solution of the problem (1), (2) exists
and is unique, [4,19]. In addition, assume that ∇ · b(x) = 0. The solution, u(x),
has a local integral representation for any standard domain, T , lying completely
inside the domain G, [19]. To derive this representation we proceed as follows.
The adjoint operator of M has the form:

M∗ =
3∑

i=1

(
∂2

∂xi
2

− bi(x)
∂

∂xi
) + c(x)

In the integral representation we use Levy’s function defined as:

Lp(y, x) = μp(R)
∫ R

r

(1/r − 1/ρ)p(ρ)dρ, r < R,

where

μp(R) = (4πqp)−1, qp(R) =
∫ R

0

p(ρ)dρ,

p(r) is a density function, and r = |x − y| =
(∑3

i=1 (xi − yj)2
)1/2

. Then the
following integral representation holds, [4]:

u(x) =
∫

T

[u(y)M∗
y Lp(y, x) + Lp(y, x)φ(y)]dy

+
∫

∂T

3∑
j=1

νj

[(
Lp(y, x)

∂u(y)
∂yj

− u(y)
∂L(y, x)

∂yi

)
− bj(y)u(y)Lp(y, x)

]
dyS,

where ν = (ν1, ν2, ν3) is the exterior normal to the boundary ∂G, and T is any
closed domain in G.

For the special case where the domain is a ball T = B(x) = {y : |y−x| ≤ R(x)}
with center x and radius R(x), B(x) ⊂ G, and for p(r) = e−kr, k ≥ b∗+Rc∗ (b∗ =
maxx∈G |b(x)|, c∗ = maxx∈G |c(x)|), the above representation can be simplified,
[3,4]:

u(x) =
∫

B(x)

M∗
y Lp(y, x)u(y)dy +

∫
B(x)

Lp(y, x)φ(y)dy. (3)

Moreover, M∗
y Lp(y, x) ≥ 0, y ∈ B(x) for the above parameters k, b∗ and c∗, and

so it can be used as a transition density in a Markov process.
We can consider our problem (1, 2) as an integral equation (3) with kernel:

k(x, y) =
{

M∗
y Lp(y, x) , when x �∈ ∂G

0 , when x ∈ ∂G,

and the right-hand side given by

f(x) =

⎧⎪⎨
⎪⎩

∫
B(x)

Lp(y, x)φ(y)dy , when x �∈ ∂G

ψ(x) , when x ∈ ∂G.
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However, for the above choice of k(x, y), ||K|| < 1, and the corresponding Neu-
mann series of the integral equation (3) converges. Thus, the last representation
allows to construct the WoB procedure for solving the problem. To ensure the
convergence of the MC method, a biased estimate is constructed (see [4]) by
introducing an ε-strip, ∂Gε, of the boundary, ∂G, ∂Gε = {x ∈ G : d(x) < ε}
where d(x) is the distance from x to the closest point of the boundary, ∂G. The
transition density function of the Markov chain is chosen as follow:

p(x, y) = k(x, y) = M∗
y Lp(y, x) ≥ 0, (4)

|x − y| ≤ R, where R is the radius of the maximal ball with center x, and lying
completely in G. Now, we construct a random walk ξ1, ξ2, . . . , ξkε such that every
point ξj , j = 1, . . . , kε − 1 is chosen in the maximal ball B(xj−1), lying in G, in
accordance with density (4). The Markov chain terminates when it reaches ∂Gε,
so that ξkε ∈ ∂Gε.

If we are interested to estimate the solution at the point ξ0, we choose the
initial density function of the Markov chain to be δ(x − ξ0). Then u(ξ0) =
E[θ(ξ0)], where

θ(ξ0) =
kε−1∑
j=0

∫
B(ξj)

Lp(y, ξj)φ(y)dy + ψ(ξkε), (5)

is the biased MC estimator for the solution of the (3) and E[θ(ξ0)] is its mathema-
tical expectation.

2.1 The Monte Carlo Simulation

The Monte Carlo algorithm for estimating u(ξ0) consists of simulating N Markov
chains with a transition density given in (4), scoring the corresponding realiza-
tions of θ[ξ0] and accumulating them. Direct simulation of the points in the
Markov chain using WoB procedure by the density function (4) is problematic
due to the complexity of the expression for M∗

y L(y, x). It is computationally
easier to represent p(x, y) in spherical coordinates as p1(r)p2(w|r). Thus, given
ξj−1, the next point is ξj = ξj−1 + rw, where the distance, r, is chosen with
density

p1(r) = (ke−kr)/(1 − e−kR), (6)

and the direction, w, is chosen according to:

p2(w/r) =

1 +
∑3

i=1 bi(x + rw)wi + c(x + rw)r
e−kr

∫ R

r

e−kρdρ − c(x + rw)r2

e−kr

∫ R

r

e−kρ

ρ
dρ.

(7)
To simulate the direction, w, the acceptance-rejection method (ARM) is used
with the following majorant:

h(r) = 1 +
b∗

e−kr

∫ R

r

e−kρdρ. (8)
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3 Completely Uniformly Distributed (C.U.D.) Sequences

Quasirandom (Uniformly distributed mod 1) sequences are constructed to mini-
mize the discrepancy, a measure of the deviation from uniformity and therefore
quasirandom sequences are sometimes described as low-discrepancy sequences.
The discrepancy quantifies the lack of uniformity or equidistribution of points
placed in a set, usually in the unit hypercube, [0, 1)s. The most widely studied
discrepancy measures are based on the star discrepancy [20]. For any sequence
{xn} ∈ [0, 1)s with N points, define E as a subset of the unit cube, vol(E)
as the volume of E, and #{xi ∈ E} as the number of points in E. Then the
star-discrepancy of this sequence is given by

D∗
N = sup

E⊆[0.1)s

∣∣∣∣#{xi ∈ E}
N

− vol(E)
∣∣∣∣ . (9)

For a one-dimensional point set, the star-discrepancy is the Kolmogorov-Smirnov
statistic [8] based on the uniform distribution. Quasirandom sequences aim to
have the fraction of their points within any subset E as close as possible to the
subset’s volume fraction. A sequence {xi}1≤i≤N is a low-discrepancy sequence
if its star-discrepancy satisfies

D∗
N ≤ Cs

(log N)s

N
, (10)

where the constant Cs depends only on the dimension s. The accuracy of a
QMC estimate strongly depends on the discrepancy of the sequence. Therefore,
the convergence rate of QMC is close to O(N−1) [21,1] instead of O(N−1/2).

An infinite sequence {xi} is uniformly distributed mod 1, if we have

lim
n−→∞

D∗
n(x1, x2, . . . , xn) = 0, (11)

An infinite sequence {xi} is completely uniformly distributed if zk
i is uniformly

distributed mod 1 for any positive integer k, where zk
i = (xi, xi+1, . . . , xi+k−1) ∈

(0, 1]k . Therefore, if a sequence is completely uniformly distributed, it is a uni-
formly distributed sequence. Those c.u.d. sequences have a slightly stronger prop-
erty than uniformly distributed sequences, namely, c.u.d. sequences are a subset
of uniformly distributed sequences. The idea of c.u.d. sequences was introduced
by Korabov in [11]. The description of the construction of c.u.d. sequences can
be found in [10,12,25,14]. An example showing the difference between c.u.d. se-
quences and quasirandom sequences in MC simulation was given by [6]. A proved
statement that guarantees the existence of c.u.d. sequences can be found in [9].
The c.u.d. sequence is the universal sequence for computing multi-dimensional
integrals, modeling Markov chains and pseudorandom numbers [8].

3.1 Quasirandom Walks on Balls

The use of quasirandom numbers for integration of high-dimensional problems
improved the results over standard MC techniques. Loh (see [15]) theoretically



170 A. Karaivanova, H. Chi, and T. Gurov

showed that QMC can converge faster than MC, and QMC has been success-
fully used to approximate high-dimension integrals [2] in situations where MC
has difficulties in achieving good results. One would think that improvements
in MCMC should easily translate to QMCMC, but difficulties arise because of
the sequential nature of Markov Chain. Despite these difficulties, Owen [23]
extended work of [2,6] and showed that in principle, QMC can deliver supe-
rior results over Markov Chain runs, although many problems still need to
be explored.

According to the two papers [6,23], any c.u.d. sequence can replace pseudo-
random numbers in sequential Monte Carlo methods, such as Metropolis-Hasting
algorithm. Random walk is a special case of Metroplolis algorithm. In the paper
[17], we proposed an algorithm for quasirandom walk on balls, where we used a
QRN-PRN hybrid to generate the walks on balls or spheres. We have to restrict
to use quasirandom numbers in the algorithm of quasirandom walks. Here, we
use the same algorithms, but we replace all PRNs with c.u.d. sequences.

3.2 Constructions of C.U.D. Sequences

The original construction of completely uniformly distributed sequences is re-
lated to the {θn} sequence [12], where θ > 1. A simple and practical construc-
tion of c.u.d. sequence is to use the full period of a linear congruential genera-
tor [5]. This helps us to explain why the only successful sequence in Hofmann
and Mathe’ paper[6] is the pseudorandom number sequence. Recently, Levin
[14] modified low-discrepancy sequences and constructed c.u.d. sequences with
lower discrepancy. The low-discrepancy sequences are based on digital inversion
method, which is the central idea behind the construction of current low-discre-
pancy sequences, such as Halton, Faure and Sobol sequences. Niederreiter [21]
extended these methods in arbitrary bases and dimensions.

We use the construction of c.u.d. sequences [10,25]

Theorem 1. Let μn = k log pi, with 1 ≤ k ≤ nr, and 1 ≤ i ≤ r, where p1, p2, ....
are prime, nr = [e(ln r)3 ] + 1, and n = mr + (i − 1)nr + k with m1 = 0, mr =∑r−1

j=1 nj. Then μn is completely uniformly distributed.

Here [x] is the operation of keeping the integer part of any real number, for
example [2.345] = 2. This c.u.d. sequence is easy to implement. Shparlinskii (see
[25]) modified the coefficients of k, log pi and obtained a c.u.d. sequence with
discrepancy close to O(N−1).

4 Numerical Tests

We use the same test problem as in [17] to test our new scheme.
The results are shown on Figure 1. Here we use LCG as pseudorandom number

generator and the experiments are done for different number of trajectories. The
advantage of using c.u.d. sequences is obvious.
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Fig. 1. Walk-on-Balls. Relative errors in the solution at the center point (0.5, 0.5, 0.5)
using PRNs and c.u.d. sequences.

5 Conclusions

A new scheme for solving BVPs via completely uniformly distributed sequences
is proposed. The advantage of this scheme is that it provides faster convergent
rate based on c.u.d. sequences. This scheme is an alternative for solving BVPs
using pseudorandom numbers. However, our numerical results are very prelim-
inary results. In future, more numerical tests have to be done using a set of
c.u.d. generators and different transition probabilities. Also, problems with more
complicated differential operators and domains have to be considered. We will
provide a library of various c.u.d. sequences.
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Abstract. This paper gives brief information about a new electronic
course for enhanced learning in making optimal decisions using the Multi-
Attribute Decision Making paradigm. Emphasis is put on the construc-
tion of the exams of this electronic course. In order to provide ready
to use tests for students’ exams, an algorithm based on a Monte Carlo
method was conceived. This algorithm and its benefits are presented.
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1 Introduction

Any modern hands-on approach in education is based on the idea that, in the
learning process, the students should be active participants instead of passive
learners. In order to improve the outcomes of the teaching act, the educa-
tional system must involve professors who are experts in the course area (Multi-
Attribute Decision Making (MADM) [1], [2], in this case), understand students’
psychology, master the pedagogical art, and are familiar with the modern In-
formation and Communication Technology (ICT) tools [3], [4], [5]. As a part of
the project Excellency Level Tools for Multi-Attribute Decision Making Field’s
Promotion, belonging to The Romanian National Excellency Research Program,
an electronic course designed to teach students how to make optimal decisions
is being prepared. This electronic course benefits from the work of a large team
of researchers that includes several international collaborators.

In this paper we will focus on the MADM electronic course’s testing com-
ponent. In order to generate exams from a questions and problems bank for
a multitude of students in a continuous world wide open session, a Monte
Carlo procedure has been defined. Despite the fact that the equitable selec-
tion of random questions and problems, with collisions avoided, even when
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considering exams given (a defined) long time ago is time consuming, this pro-
cedure ensures that the exam’s generation time appears insignificant to each
student. The Monte Carlo procedure is not a simulation, but it is running at
warm, because it generates exams and shows when the questions and problems
bank needs to be enriched if one desires to maintain the initial exigency in
producing exams.

2 The MADM Electronic Course and Its Exams

The electronic course will provide knowledge regarding a basic problem of De-
cision Theory: the Optimal Choice Problem (OCP) [6]. The course is structured
into five modules:

a. Defining the mathematical model. This module presents the first part
of the MADM mathematical model, which includes structured information and
defines the common knowledge about that.
b. Treating the model’s inconsistency. This module presents the second
part of the MADM mathematical model, which includes unstructured informa-
tion, and defines the expert knowledge about that. The expert knowledge [7] is
expressed through a set of production rules that deal with the potential draw-
backs of a MADM model, i.e. syntactic/semantic errors, incorrectness, incom-
pleteness or incredibleness.
c. Normalization and solving methods for OCPs. This module presents
different procedures of reducing multiple decision makers, multiple states of na-
ture problems to single decision maker, single state of nature problems, as well
as a large set of solving methods for this kind of problems.
d. IT for Design of MADM software applications. This module covers
three levels of technology for rapid design of MADM software applications.
e. OPTCHOICE - MADM modeling and solving software. The last mod-
ule is a tutorial on the MADM modeling and solving pervasive service (available
to anyone on the Internet, free of charge, from any place and at any time). The
service uses the software named OPTCHOICE, which will cover the needs to
define and solve optimal choice problems in the MADM paradigm.

The five modules of the MADM electronic course can only be approached
sequentially, following the order established by design, so that a higher-order
module becomes available only after passing the exam given at the end of the
preceding module. The course is successfully completed when passing a gradua-
tion exam, which can only be taken after passing five end-of-module exams.

At the end of each module, 100 questions, divided into 10 classes of 10 ques-
tions each, are made available but no answers are provided. Throughout module
#4, 100 problems with solutions are included, and the students are expected to
learn how to solve them or similar problems.

An end-of-module exam consists of 10 randomly selected questions, one from
each of the equivalence classes. A graduation exam consists of 5 questions, one
from each module, plus one of the available problems but with modified data. The
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problem may be solved either by hand or by using the OPTCHOICE software.
However, an indication of the success of the authors’ efforts in this course is
when the students are capable of using proficiently the OPTCHOICE software.

Being administered on the Internet, in order to avoid certain possible fraud
methods specific to electronic-format exams, it is essential that each exam to be
randomly generated from the questions and problems bank in such a way that
elementary-level collisions in a long period of time in the past are avoided. A
period of time is defined by two dates: one in the past and the other one given
by the current date of the course’s server. A direct approach of this problem,
without any precaution, has a serious drawback: when a large number of students
located in different parts of the world take exams, the response time to the query
of generating new exams can be large enough to become frustrating for some of
the students. The algorithm that will provide a solution to this problem is based
on a Monte Carlo method. Using mechanisms of planning the inputs crowding
in the system (i.e. the queries of generating exams) and releasing the outputs
from the system (i.e. the exams completion by students), the algorithm prompts
the administrators when to enrich the questions and problems bank, and also
indirectly shows the necessary volume in each category.

In this setting, there are two random variables to consider: the generating time
of a randomly selected exam and the response time (or the exam completion
time) of a randomly selected student. We will use the real exam generating time
instead of the theoretical exam generating time. The response time, on the other
hand, needs to be modeled carefully as described in the next section.

2.1 Modeling the Response Time

Let X be the response time of a randomly selected individual that takes the in-
teractive, computer-based exam. Then X is a continuous random variable with
probability density function f(x). If n randomly selected individuals take the
exam, then their response times X1, ..., Xn represent independent (as there is
no communication between students and their exams are different), identically
distributed random variables with probability density function f(x). The func-
tion f can be either completely specified (when both the type of the distribution
of X and the corresponding parameters are identified) or partially specified (the
type is determined, but the corresponding parameters are unknown). This sec-
tion presents a method of approximating the function f :

a. One uses the sample X1, ..., Xn to construct a relative frequency histogram
for the variable X . Using a sample of size equal to 90, provided by a real two-hour
exam from an Operations Research electronic course, one observes the shape of
the histogram.
b. One uses the relative frequency histogram to hypothesize the type of the
distribution of X . One anticipates, based on the mound-shaped histogram, that
the response time X has a Weibull, gamma, or normal distribution. Because
the possible distributions of X are now partially specified, one of the methods of
estimating parameters, for instance the method of moments, must be used before
going to the next step (see for instance [8] for details).
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c. One formulates the null and the alternative hypotheses of a goodness-of-fit
statistical test for each of the three possible distributions. The hypotheses are:
i) H1

0 : X has a Weibull distribution (with specified parameters) and H1
a : X does

not have a Weibull distribution, ii) H2
0 : X has a Gamma distribution and H2

a :
X does not have a Gamma distribution, iii) H3

0 : X has a normal distribution
and H3

a : X does not have a normal distribution.
d. One conducts the goodness-of-fit statistical tests (see [9]). The sample of size
90 indicates that X has approximately a normal distribution.

When the MADM course will run and the first data about its exams duration
will become available, the entire procedure for modeling the response time as a
random variable will be applied again for more accurate results.

The following algorithm can be used to simulate the response time of a ran-
domly selected student under the assumption that if there are no time constraints
then the response time is normally distributed with mean μ and standard de-
viation σ. The algorithm makes use of a random number generator capable of
generating random numbers uniformly distributed on the interval (0,1). In C,
C++, or Pascal, the function RANDOM uses such a random number generator.

EXITSTUD

START

z = 0

FOR i = 1, 12

u = RANDOM

z = z + u

ENDFOR

z = z - 6

x = miu + z * sigma

STORE exam_duration FROM MIN(x, 120)

STOP

The variable exam duration stores the simulated response time of a randomly
selected student for a 120-minute exam.

2.2 A Monte Carlo Type Algorithm for Exams Generation

At the beginning one mentions that the authors have constructed a bank of
questions and problems that is large enough to generate a large number of ex-
ams. As indicated before, the Monte Carlo algorithm runs at warm primarily on
this bank but also on the other electronic course data / knowledge components.
What this algorithm does is more than just a simulation. When an exam is gen-
erated, it is stored in the section of generated exams. When a student requests
an exam, that exam is typically already generated, and if not, then the exam
is generated momentarily by the Monte Carlo procedure which starts automat-
ically. If the electronic course administrator follows the generation process and
the statistical information provided by the Monte Carlo procedure, it is impos-
sible to end up in this situation. The exams which have been given to students
are kept for a while in the active zone of the data base, and any newly generated
exam is compared to the existing exams to avoid collisions on any components.
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Fig. 1. From questions and problems to ready to use exams

When the administrator decides that the validation base is too large and con-
tains too many old exams, these exams are transferred from the active zone into
the statistical component of the data base.

Before presenting the algorithm, we will make several preliminary remarks:

a. The processes of generating exams and administering them run concurrently.
At the beginning, if the Monte Carlo procedure has not been launched before the
exams start, no problems are anticipated, as most exams are typically generated
in less than 10 seconds, including the time necessary for tele-transmission. This
time is considered good in today’s technological conditions.
b. If an exam is interrupted by a student and continued within 24 hours (which
is a facility for students) the difference between the exam duration time and the
exam generation time is even larger than in the previous case, which allows the
process of generating new exams to run and produce a reserve of new exams.
Therefore, in this case the condition that the students only wait during a part of
the exam generation time (i.e. while the exams are transferred on the Internet)
is easily satisfied.
c. The concurrent algorithm stops when no new questions are left in the ques-
tions bank. No stop criterion is used for problems, as they are selected from the
problems bank for which the data are randomly modified.
d. In order to avoid stopping the algorithm, we have two possible solutions: first,
enrich the bank of questions and problems; second, release the questions from
exams given prior to a certain date selected by the administrator to be used
when generating new exams; in this way, the algorithm used to generate exams
can be revived automatically.
e. The exam generation time can exceed the duration of the exam itself if the
following conditions are satisfied simultaneously:
i) a large number of students are taking exams and the criterion of avoid colli-
sions is too strong (there is a high sensitivity for collisions);
ii) a large number of students request new exams and the request rate (i.e. num-
ber of new exams to be generated in one hour) remains constant or increases.
If these conditions are satisfied then the number of collisions when generat-
ing new questions can be very large, leading to an unusual increase in exam
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generation time, and therefore blocking the process of generating exams.
f. Depending on hardware configuration and power, one must take into consider-
ation a limitation for exams concurrency. At the beginning, when all the course
software (administration, modules and exams) will be installed on one computer,
the rational concurrency limit can be set to 25.

The true values of the terms ”rich”, ”high sensitivity”, or ”large” can only be
determined by an appropriate Monte Carlo simulation handled by this algorithm:

MC-EXAM-GENERATION

START

DISPLAY WITH THEIR NATURAL NAMES:

nr_of_ready_to_use_exams, nr_of_exams_in_statistics,

last_limit_date, last_crowding_rate, last_nr_of_histories,

last_acceleration_of_crowding_rate, last_nr_of_cycles

ACCEPT AND VALIDATE:

limit_date (last_limit_date < limit_date < current_date),

crowding_rate (integer, > 0), nr_of_histories (integer, > 99),

acceleration_of_crowding_rate (integer, > 0), nr_of_cycles (integer, > 0)

FOR last_limit_date, 1, limit_date

REMOVE FROM GENERATED-EXAMS-Q&P-BASE

Questions AND Problems WITH date = limit_date

IN STATISTICS-EXAMS-Q&P-BASE

nr_of_exams_in_statistics = nr_of_exams_in_statistics +1

ENDFOR

FOR k = 1, 1, nr_of_cycles

nr_of_exams_to_be_generated = crowding_rate +

(k-1)*acceleration_of_crowding_rate

DISPLAY "Simulation number" k

"at crowding rate = " nr_of_exams_to_be_generated

DISPLAY current_date AND time FROM SYSTEM

cycle_exam_generation_time = 0, generated_exams_per_cycle = 0

FOR l = 1, 1, nr_of_histories

FOR m = 1, 1, nr_of_exams_to_be_generated

IF GENERATED-EXAMS-Q&P-BASE IS FULL THEN

DISPLAY "GENERATED-EXAMS_Q&P-BASE IS FULL"

GO TO FINAL

ENDIF

GET current_time FROM SYSTEM INTO initial_exam_generation_time

GENERATE exam FROM Q&P-BASE

VERIFY WITH GENERATED-EXAMS_Q&P-BASE

IF exam IS NOT IN GENERATED-EXAMS_Q&P-BASE THEN

MOVE exam IN GENERATED-EXAMS-Q&P-BASE

generated_exams_per_cycle = generated_exams_per_cycle + 1

GET current_time FROM SYSTEM INTO final_exam_generation_time

exam_generation_time = final_exam_generation_time -

initial_exam_generation_time

IF exam_generation_time * crowding_rate >= 60 THEN

DISPLAY

"The generation is impossible at this rate" crowding_rate



On the Exams of a Multi-Attribute Decision Making Electronic Course 179

GO TO FINAL

ENDIF

cycle_exam_generation_time = cycle_exam_generation_time +

exam_generation_time

ENDIF

ENDFOR

ENDFOR

exam_generation_mean_time = cycle_exam_generation_time /

generated_exams_per_cycle

nr_of_ready_to_use_exams = nr_of_ready_to_use_exams +

generated_exams_per_cycle

DISPLAY current_date AND time FROM SYSTEM / "Cycle number" k /

"Number of generated exams" generated_exams_per_cycle

"Exam generation mean time" exam_generation_mean_time

ENDFOR

STORE UP-TO-DATE data AND DISPLAY them WITH their NATURAL NAMES:

nr_of_exams_in_statistics, nr_of_ready_to_use_exams,

last_limit_date FROM limit_date,

last_crowding_rate FROM nr_of_exams_to_be_generated,

last_acceleration_of_crowding_rate FROM acceleration_of_crowding_rate,

last_nr_of_histories FROM nr_of_histories,

last_nr_of_cycles FROM nr_of_cycles

USING cycles, numbers of generated exams, exam generation mean time

GIVE a graphical image of generation process evolution

FINAL

concurrency_power=25

GET current date AND time FROM SYSTEM INTO exams_initial_time

FOR i =1, 1, concurrency_power

exam_current_time (i) = exams_initial_time

ENDFOR

FOR n = 1, 1, nr_of_ready_to_use_exams

i = INDEX OF ELEMENT exam_current_time (i)

WHICH IS MIN(exam_current_time (1:concurrency_power))

CALL EXITSTUD GIVING exam_duration

exam_current_time (i) = exam_current_time (i) + 2*exam_duration

ENDFOR

DISPLAY "Generated exams are enough till" exam_current_time (i)

"at full concurrency power and the exams sustaining only in the active

period of the day"

STOP

In this way one can determine the size of the reserve of exams and the mean
exam generation time in the conditions described above, and one can decide
whether or not it is necessary to enrich the bank of questions and problems.

3 Conclusions

The MADM electronic course presented in this paper is an active project whose
goal is to allow easy and efficient access to everyone in the world to the MADM
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methods. The course incorporates the fundamental MADM techniques, which
are presented in an attractive and easy to assimilate format. Designed to fully
take advantage of the advanced features of the OPTCHOICE software, this
electronic course has the potential to meet the learning needs of diverse groups
of individuals. One of the critical components of any electronic course is the
capability of administering exams tailored for this new form of learning. Because
at the course’s graduation a certificate recognized by the Romanian Education
and Research Ministry is awarded, the course exams must take place in optimal
conditions. An algorithm based on a Monte Carlo method is used to solve certain
problems that occur when many students take exams at the same time. This
algorithm is capable of generating new and equitable exams for all the students
so that duplications of questions or problems are avoided and, at the same time,
it is a support for taking decision in administering the whole system. Multiple
simulations have been run and the conclusion is that the algorithm is efficient
and may be used with confidence.
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Abstract. We consider boundary-value problems for elliptic equations
with constant coefficients and apply Monte Carlo methods to solving
these equations. To take into account boundary conditions involving so-
lution’s normal derivative, we apply the new mean-value relation written
down at boundary point. This integral relation is exact and provides a
possibility to get rid of the bias caused by usually used finite-difference
approximation. We consider Neumann and mixed boundary-value prob-
lems, and also the problem with continuity boundary conditions, which
involve fluxes. Randomization of the mean-value relation makes it pos-
sible to continue simulating walk-on-spheres trajectory after it hits the
boundary. We prove the convergence of the algorithm and determine its
rate. In conclusion, we present the results of some model computations.

1 Introduction

Different stochastic algorithms can be applied for treating numerically boundary-
value problems. For elliptic equations, the most efficient and commonly used
Monte Carlo methods are the walk-on-spheres (WOS) algorithm [1,2,3], and the
random walk on the boundary algorithm [4]. The WOS algorithm provides the
tool for efficient simulation of exit points of the diffusion process to the domain’s
boundary. Averaging of known values at these points provides an estimate for
the solution. This algorithm works well for the Dirichlet boundary conditions.
Common way of treating flux conditions is to simulate reflection from the bound-
ary in accordance with the finite-difference approximation of normal derivative
[5,6,7,8]. Such approach introduces bias into the estimate.

Application of walk on the boundary algorithms makes it possible to solve
not only Dirichlet, but also Neumann and third boundary-value problems. The
same approach can also be used to solving problems with continuity boundary
conditions [9,10]. However, this class of algorithms has its limitations.

Recently, we proposed new approach to constructing Monte Carlo algorithms
for solving elliptic boundary-value problems with flux conditions. This approach
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is based on the mean-value relation written for the value of solution at boundary
point. It provides a possibility to get rid of the bias when treating algorithmically
boundary conditions that involve normal derivative.

2 Formulation of the Problem and Walk-on-Spheres
Algorithm

Consider the linearized Poisson-Boltzmann (Helmholtz) equation

Δu − κ2u = 0 , κ = const ≥ 0 (1)

in a bounded domain G ⊂ R
m, and mixed boundary-value problem for it:

α(y)
∂u

∂n
(y) + β(y)u(y) = g(y) , y ∈ Γ = ∂G . (2)

Here, α = 1, β = 0 on Γ0, and vice versa: α = 0, β = 1 on Γ1 = Γ \ Γ0. We
suppose the boundary to be piece-wise smooth and the parameters of the problem
to guarantee that the unique solution exists [11]. To simplify the inference and
formulas involved, in the rest of the paper we consider only the three-dimensional
Euclidean space. It is clear, however, that the integral formula derived stays valid
for an arbitrary m ≥ 2.

To find the solution at a fixed point, x0, we use the walk-on-spheres algorithm.
Let x ∈ G. We define d(x) as the distance from this point to the boundary Γ .
Next we consider the ball B(x, d(x)) and write down the integral Green’s formula
for solution, u, and the Green’s function for this ball, Φκ,d:

u(x) =
∫

S(x,d(x))

∂Φκ,d

∂n
u ds . (3)

Here Φκ,d(x, y) = − 1
4π

sinh(κ(d − |y − x|))
|y − x| sinh(κd)

, and S(x, d(x)) denotes the sphere

of radius d(x) centered at the point x.
Randomization of (3) leads to the estimate based on simulation of the walk-

on-spheres Markov chain. The chain is defined by the recursive relation: xi+1 =
xi + d(xi) ωi, where {ω0, ω1, . . .} is a sequence of independent isotropic unit
vectors.

From (3) we have u(xi) = E(q(κ, d(xi))u(xi+1)|xi), and we treat the factor,

q(κ, d(xi)) =
κd

sinh(κd)
, as the survival probability. For κ = 0 (or if we use

the weight estimate [3]), WOS with probability one converges to the boundary.
Let xk be the first point of the Markov chain that hit Γε, the ε-strip near
the boundary, and denote by x∗

k ∈ Γ the point nearest to xk. Then, u(x0) =
E(u(xk)χ), where χ = 0, if the trajectory was terminated inside the domain,
χ = 1, if Markov chain reached Γε, and χ =

∏
q(κ, d(xi)), if we use the weight

estimate.
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For x∗
k ∈ Γ1, we have

u(xk) = g(x∗
k) + φ1(xk, x∗

k) , (4)

where φ1(xk, x∗
k) is O(ε) for elliptic x∗

k.
For x∗

k ∈ Γ0, the boundary conditions give

u(xk) = u(x∗
k) − g(x∗

k)d(xk) + φ0(xk, x∗
k) , (5)

where φ0(xk, x∗
k) = O(ε2) as ε → 0.

To be sure that the nearest point on the boundary, x∗
k, is elliptic, we use the

walk-in-subdomains technique [12].
Note that for x∗

k ∈ Γ0 the value of u(x∗
k) is not known. To estimate it, we will

use the integral formula derived in the next section.

3 Mean-Value Relation at a Point on the Boundary

For an elliptic point on the boundary, x ∈ Γ0, consider the ball B(x, a) and the
Green’s function Φκ,a for this ball taken at its center. For every y �= x, we have
ΔyΦκ,a − κ2Φκ,a = 0.

Denote by Bi(x, a) = B(x, a)
⋂

G the interior part of the ball that lies in-
side the domain, and let Si(x, a) be the interior part of its surface. We apply
the Green’s formula to the pair of functions, u and Φκ,a, in Bi(x, a) \ B(x, ε),
excluding small neighborhood of the point. Both functions satisfy the Poisson-
Boltzmann equation in this domain, Φκ,a = 0 on S(x, a), and we suppose that
everywhere on Γ

⋂
B(x, a), u satisfies the Neumann boundary conditions. Next

we take into account smoothness of u and that for elliptic points the surface area
of Si(x, ε) is 2πε2(1 + O(ε)) when ε → 0. As a consequence, we obtain in the
limit the following integral formula:

u(x) =
∫

∂Bi(x,a)\{x}
2

∂Φκ,a

∂n
u ds

−
∫

Γ
⋂

B(x,a)\{x}
2 Φκ,a g ds . (6)

Clearly, this formula stays valid when κ = 0. In this case the Green’s function

is Φ0,a(x, y) = − 1
4π

(
1

|y − x| − 1
a

)
.

For convenience, we explicitly isolate singularities in the kernels of integral
operators and rewrite (6) in the following form:

u(x) =
∫

∂Bi(x,a)\{x}

1
2π

cosϕyx

|y − x|2 Wκ,a u(y) ds(y)

+
∫

Γ
⋂

B(x,a)\{x}

1
2π|y − x|

(
1 − |y − x|

a

)
W 1

κ,ag(y) ds(y) . (7)
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Here, cosϕyx is the angle between the external (with respect to Bi(x, a)) normal
vector at a point, y, and vector, y − x. The weight function,

Wκ,a(|y − x|) =
sinh(κ(a − |y − x|)) + κ|y − x| cosh(κ(a − |y − x|))

sinh(κa)
,

is smooth, and Wκ,a = q(κ, a) =
κa

sinh(κa)
on the surface of auxiliary sphere,

S(x, a). Clearly, everywhere in B(x, a)\ {x}, this weight function is positive and
its value is less than one. For κ = 0 it equals one identically.

The second weight function, W 1
κ,a =

sinh(κ(a − |y − x|))
a − |y − x|

a

sinh(κa)
, is also

smooth. It is less than or equal to one, and W 1
κ,a ≥ κa

sinh(κa)
. Obviously, for

κ = 0 it equals one identically.

4 Construction of the Algorithm and Its Convergence

Suppose first that the part of the domain’s boundary with Neumann conditions,
Γ0, is convex. In this case, the kernel of the integral operator in (7) is sub-
stochastic, which means that it is non-negative and its integral is less than or
equal to one. Therefore, we can use this kernel as the transition density. The

term
1
2π

cosϕxi+1x∗
i

|xi+1 − x∗
i |2

corresponds to isotropic distribution of xi+1 ∈ ∂Bi(x∗
i , a)

in solid angle with its vertex at x∗
i . The weight, Wκ,a(|xi+1 − x∗

i |), is treated as
the survival probability on this transition. (Note that for the plane boundary,
with probability one xi+1 is distributed isotropically on the half-sphere Si(x∗

i , a),
and survival probability equals q(κ, a).)

The described construction of Markov chain corresponds to so-called direct
simulation of integral equation [2]. This means that the resulting estimate for
the solution’s value at a point, x = x0 ∈ G, is

ξ[u](x) =
N∑

i=0

ξ[F ](xi) . (8)

Here, N is the random length of Markov chain, and ξ[F ] are estimates for the
right-hand side of the integral equation. This function is defined by (4), (5), (7),
which gives

F (x) = 0 , when x ∈ G \ Γ ε ;

=
∫

Γ
⋂

B(x∗,a)\{x∗}

1
2π|y − x∗|

(
1 − |y − x∗|

a

)
W 1

κ,a g(y) ds(y)

− g(x∗) d(x) + φ0(x, x∗) , when x ∈ Γ ε and x∗ ∈ Γ0 ;
= g(x∗) + φ1(x, x∗) , when x ∈ Γ ε and x∗ ∈ Γ1 . (9)

For Markov chains based on direct simulation, the finiteness of mean number
of steps, EN < ∞, is equivalent to convergence of Neumann series for the corre-
spondent integral operator, which kernel coincides with the transition density of
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this Markov chain. Besides that, the kernel of integral operator that defines the
second moment of the estimate is also equal to this density [2]. This means that
for exactly known free term, F , the estimate (8) is unbiased and has finite vari-
ance. The same is true if estimates, ξ[F ](xi), are unbiased and have uniformly in
xi bounded second moments. It is clear that we can easily choose such density
that estimate for the integral in (9) will have the requested properties.

To prove that the mean number of steps is finite, we consider the auxiliary
boundary-value problem:

Δp0 = 0 , p0|Γ1 = 0 ,
∂p0

∂n
|Γ0 = 1 . (10)

From (9) it follows that for this problem F (xi) =
a

2

(
1 + O

( a

2R

))
as a/R → 0

in such a way that a/R > c0ε
1/2 for some constant c0. Here, R is the smallest

curvature radius at the elliptic point, x∗
i ∈ Γ0. Consider the estimate (8) for

p0. Note that the mean-value relation (7) is valid only when Γ
⋂

B(x∗
i , a) ⊂ Γ0.

From here it follows that radii of auxiliary spheres, ai, can be arbitrary small.
Nevertheless, it can be easily shown that the probability of reflected diffusion
coming to Γ1 and thus being terminated remains to be separated from zero.
Therefore, the mean number of reflections near the line that separates Γ0 and
Γ1 is bounded by some constant, c∗. Next we fix some value, a∗, and divide the
set of all reflections into two classes: in the first one we put reflections with radii,
ai, which are greater than a∗, and the second class includes the reflections with
ai < a∗. Let N0,1 and N0,2 be, respectively, mean numbers of reflections in the
correspondent classes. Then we have p0 > N0,1a

∗c1 for some constant c1 < 1,
and, hence, the overall number of reflections, N0 = N0,1 + N0,2 is less than
Ca = p0/(a∗c1)+c∗. From here it follows that the overall mean number of steps of
the described version of the walk-on-spheres algorithm is of the same order as for
the case of the Dirichlet boundary conditions, which means EN < const| log(ε)|.

In the previous reasoning we supposed error functions φ0 and φ1 to be known
exactly. This presupposition provided us with a possibility of proving that the
estimate (8) is unbiased. To obtain a functioning estimate we are forced to get
rid of these unknowns. The resulting bias in the estimate is φ1 + N0φ0, which is
O(ε) when ε → 0. This means that we proved the following proposition.

Proposition 1. The new version of the walk-on-spheres algorithm provides the
estimate, ξ[u](x), for the mixed boundary-value problem (1), (2). Variance of
this estimate is bounded, and its bias is O(ε), where ε is the width of the strip
near the boundary of the domain. For the required accuracy of solution, δ = ε,
computational cost of the algorithm is O(log(δ) δ−2).

For κ > 0 and for pure Neumann boundary-value problem, the algorithm has
the same properties. �	

Note that with the finite-difference approximation for the solution’s normal
derivative, every hit of the ε-strip near the boundary, Γ0, introduces O(ε + h2)
bias into the estimate (h is the step value in approximation) [7,6]. Mean number
of reflections in this case is O(h−1). It means that if ε ∼ h2, then the resulting
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bias is O(h), and the overall mean number of steps is O(log(h) h−1). Thus, for
the required accuracy δ, we have to take ε ∼ δ2 and h ∼ δ. The computational
cost of this algorithm is O(log(δ) δ−3).

So, as we see, the approach we described here makes it possible to substantially
improve the efficiency of the walk-on-spheres algorithm when applied to solving
mixed and Neumann boundary-value problems.

The algorithm described above works for convex Γ0. If it is not the case, the
kernel of the integral operator in (7) can be negative, and direct simulation is not
possible. This also means that changing the kernel of the integral operator to its
modulus can lead to non-convergent Neumann series, and, thus, to nonoperable
Monte Carlo estimates.

To solve this problem, we propose using simple approximation to the integral
relation. Consider the tangent plane at the point, x∗

i ∈ Γ0, and choose the next
point of Markov chain isotropically on the half-sphere, S−(x∗

i , a), which lies
inside the domain. It can be easily shown that for small a/R such algorithm
introduces an O(a/2R)3 error. Therefore, the resulting bias is O(a/2R)2, and
the computational cost of such biased algorithm is O(log(δ) δ−5/2).

5 Other Boundary-Value Problems and Applications

The approach proposed in this paper works also for other boundary-value prob-
lems with flux conditions on the boundary. Consider, in particular, the problem
of finding the electrostatic potential in a system of two dielectrics, Gi and Ge,
with different permittivities, εi and εe, respectively. Both solution and flux are
required to be continuous on the surface between two bodies:

ui(y) = ue(y) , εi
∂ui

∂n
(y) = εe

∂ue

∂n
(y) , y ∈ Γ , (11)

where ui is defined in Gi and ue is defined in Ge, Γ = Gi

⋂
Ge. For elliptic point,

x ∈ Γ , and no charges present in its vicinity, we consider the ball, B(x, a), and
apply the Green’s formula separately in two domains: to the pair of functions, ui

and Φ0,a, in (Gi

⋂
B(x, a))\B(x, ε), and to the pair of functions, ue and Φ0,a, in

(Ge

⋂
B(x, a)) \ B(x, ε). Taking into account boundary conditions (11) we have

in the limit as ε → 0:

u(x) =
εe

εe + εi

∫
Se(x,a)

1
2πa2

ue ds

+
εi

εe + εi

∫
Si(x,a)

1
2πa2

ui ds

− εe − εi

εe + εi

∫
Γ

⋂
B(x,a)\{x}

1
2π

cosϕyx

|y − x|2 u dy . (12)

Here, Si(x, a) = S(x, a)
⋂

Gi and Se(x, a) = S(x, a)
⋂

Ge. Randomization of
this integral relation provides a possibility to apply our revised version of the
walk-on-spheres algorithm to this class of problems.



Random Walks for Solving Boundary-Value Problems with Flux Conditions 187

It is essential to note that solving such electrostatic problems is an extremely
important task for molecular biophysics. In this case, compact Gi can be con-
sidered as a molecule (e.g. protein) immersed into aqueous solution.

Another problem coming from molecular physics is the problem of computing
diffusive and reactive properties of a molecule. If one part of the molecule’s
surface is reactive and the other part is reflective, then the problem can be
reduced to calculating a functional of the solution to mixed boundary-value
problem considered in this paper.

6 Results of Computations

To show the efficiency of the proposed walk-on-spheres algorithm in use, we
consider the model problem of solving (10) in the unit cube. We consider the
Neumann conditions to be given only on one side, whereas on all other sides of
the cube the solution equals zero.

We took the center of the cube as the initial point of the walk-on-spheres
Markov chain. The computed mean number of reflections in our new algorithm
does not depend on ε when ε → 0 and tends to the constant value, which
equals approximately 0.365. The mean value of radius of auxiliary sphere is
0.21. The results in Table 1 clearly show that the mean number of steps in the
whole trajectory linearly depend on log(ε). This means that, asymptotically,
number of steps in this algorithm is of the same order as in the case of or-
dinary walk-on-spheres algorithm applied to solving Dirichlet boundary-value
problem.

For comparison, the same model problem was solved using the walk-on-spheres
algorithm in combination with the finite-difference approximation of the nor-
mal derivative. For this method, mean number of reflections linearly depends
on h−1 = ε−1/2, and mean number of steps in the whole trajectory obeys
power law and can be approximated by O(h−1.059) dependence when
h → 0.

Table 1. Mean number of steps in the walk-on-spheres trajectory

ε Our algorithm With FD Mean number of
approximation reflections with FD

10−2 10.99 12.82 0.49
10−3 20.97 33.98 1.31
10−4 31.06 94.28 3.92
10−5 41.39 292.61 11.93
10−6 51.52 1028.60 38.45
10−7 61.76 3614.34 120.86
10−8 71.96 13223.18 385.67
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Abstract. We examine performance enhancement of p-channel SiGe de-
vices using our particle-based device simulator that takes into account
self-consistently the bandstructure and the quantum mechanical space-
quantization and mobility enhancement effects. We find surface rough-
ness to be the dominant factor for the bad performance of p-channel SiGe
devices when compared to conventional bulk p-MOSFETs at high bias
conditions. At low and moderate bias conditions, when surface-roughness
does not dominate the carrier transport, we observe performance en-
hancement in the operation of p-channel SiGe MOSFETs versus their
conventional Si counterparts.

Keywords: p-channel MOSFETs, bandstructure effects, quantum con-
finement, strain, performance enhancement.

1 Introduction

For the past several decades now, electron transport in Si inversion layers has
remained the favorite area of active research in semiconductors in the experi-
mental as well as the theoretical field. On the other hand, while there have been
several experimental efforts to understand hole transport in inversion layers and
quantum wells, similar significant theoretical studies on hole transport have been
few and far between. These studies can be categorized in many different ways
but they can be classified broadly into those dealing with:

1 Bulk (3D) transport. This basically deals with transport in Si or SiGe ma-
terial systems that are under strain or relaxed. These studies investigated
drift velocity, bulk (3D) mobility, and phenomena such as velocity overshoot,
impact ionization etc.

2 Transport of confined (2D) carriers for example in inversion layers or quan-
tum wells. This can be further subdivided into
(i) Low field Mobility Calculations; (ii) MOSFET Device Simulations.

The starting point for any transport calculation is the underlying band-structure
providing the energy dispersion for that system. In the past all these band-structure
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calculations served as the basis for transport calculations either in category 1 or
2 defined earlier. Early work performed in this area concentrated on hole trans-
port in bulk. Earlier band-structure calculations based on self-consistent or em-
pirical pseudopotential approaches of strained Si and SiGe alloys produced little
information, if any, on transport parameters such as effective masses and the dif-
ferent energy splitting near the symmetry points. Nonetheless there are certain
exceptions where effective masses were studied and furthermore, in this regard,
the work of Krishnamurthy et al. [1] must be mentioned as one of the early works
on the effect of band-structure, although not comprehensive, on carrier mobility.
Other more involved and comprehensive calculations are by Hinckley and Singh
[2],[3], [4]. The main drawback of these calculations was that they relied on scat-
tered and inconsistent data then available on band-structures and deformation
potential parameters. In addition to these sophisticated calculations, there existed
other more simple approaches [5].[6] which relied heavily on crude approximations
for the band-structure and the simple scattering models. Manku et al. [7] used the
effective mass approximation to calculate the hole drift mobility in strained and
unstrained SiGe alloys. Yamada and Ferry [8] employed a simple two band-model
with an energy dependent effective masses to define the dispersions for the heavy
and light hole bands and ignored warping as well as the contribution of the split off
band. Using non-local pseudopotentials, Fischetti and Laux [9] unified the band-
structure and mobility calculations for SiGe alloys. This study also helped reduce
the uncertainty in available empirical data in particular effective masses and en-
ergy splittings near band extrema needed to fit mobility curves. Results from this
work also included valence band parameters extracted from pseudopotential cal-
culations. Deformation potentials that control the phonon scattering were also ex-
tracted. In addition to these conventional approaches, Watling, Asenov and Barker
from the Glasgow group proposed a geometro-analytical model [10] for the valence
band in strained and relaxed SiGe which shows good agreement with a six band
model for the valence band. This method allows for the extraction of an effective
mass tensor for the warped valence bands. This method has been used successfully
by Watling and Barker [11] to fit simulated drift velocities and mobilities to exper-
iment. This prescription is essentially 3D in nature and the Glasgow group further
proposed the use of quantum potentials to model transport in inversion layers or
quantum wells.

Now we shift our focus of attention to hole transport calculations for con-
fined carriers. Just as calculation of the band-structure to model transport is
imperative for the bulk case, accurate calculation of the subband structure is
essential for confined carriers in the 2D case. For the case of Si, the small split
off separation between the two fold degenerate heavy-light hole bands and the
split-off band means that at the very least six bands must be considered. This
is typically done within the framework first suggested by Dresselhaus, Luttinger
and Kohn; the exception being recent calculations by Nakatsuji et al. [12] who
used self-consistent pseudopotentials. Most of the theoretical studies that have
been conducted have mostly focused on evaluating the low field mobility of holes
in Si inversion layers, the enhancement thereof in strained Si by Nakatsuji [12]
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Oberhuber and Vogl [13], Fischetti et al. [14] or modeling hole transport in
Si/SiGe/Si quantum wells [15].

Even as it is generally acknowledged that accurate hole mobility calculation in
inversion layers is painfully expensive and daunting, it should be mentioned that
even now, there are, to the best of our knowledge, no device simulators that can
model hole carrier transport in p-channel Si MOSFETs, by properly addressing
both the issues of hole band-structure and quantum confinement effects. The only
approaches that are self-consistent employ a full band Monte Carlo approach
but even they fall short by neglecting quantum effects on carrier transport. The
importance of accurate subband structure calculation in 2D simulations cannot
be overemphasized. In the aforementioned approaches, the density of states and
subband mixing has been neglected at the cost of including band-structure effects
accurately within a 3D framework for a 2D problem. The purpose of this work
is to remedy this situation by presenting a new approach to modeling p-channel
devices using a 2D Monte Carlo transport kernel that is coupled self-consistently
to a 2D Poisson equation solver and to a six-band band-structure module. The
need for full band solvers for hole transport is especially true in case of strained
layer MOSFETs- buried channel strained SiGe p-MOSFETs (this work) and
surface channel strained Si, for instance, which will be investigated in the future.

2 Monte Carlo Device Simulator Description

Having calculated the hole band-structure in the contacts (3D) and the subband
structure (2D) in the active device region, i.e. under the gate, self-consistently
with the 2D Poisson equation, the quantum mechanical hole density in the chan-
nel is then calculated by weighing the sheet density of each subband with the
probability density corresponding to that subband along the device depth and
then summing over all subbands of each of the six bands. The initialization
of carriers in real space is based on the local 3D carrier density for holes in
the reservoirs and the self-consistent quantum-mechanical hole density in the
channel region. In the channel region the carriers are assigned to subbands in a
probabilistic manner so that it reflects the contribution to the hole sheet density
from the different subbands. The kinetic energy of the particles is initialized by
assuming a Boltzmann distribution and their wave-vectors are then assigned by
randomly choosing the azimuth and polar (in case of 3D) angles on the constant
energy surface.

Now, in order to deal with inhomogeneous transport at high longitudinal
fields, a transport kernel that handles the transport of holes through the device is
needed. In our approach, we use an Ensemble Monte Carlo (EMC) particle based
simulator that handles the transport of holes. After the carriers are initialized, a
bias is applied on the drain contact and the Monte Carlo algorithm takes over the
hole transport, performing the drift and scattering of carriers. As the simulation
time evolves in steps of 0.1 fs, and the carriers drift under the influence of the
electric field, the confining potential changes along the channel from the source
end to the drain end, and this in turn, changes the hole subband structure in
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the channel region. As a result, the hole subband structure and subsequently the
scattering rates must be updated frequently during the simulation to reflect the
changed subband structure.

2.1 2D↔3D Transitions

In our method, we have assumed the holes to be quasi-3D-like particles in the
source and drain regions. This frequently gives rise to situations where the par-
ticle energy and momentum are not conserved across the boundaries and one
needs appropriate models to treat these transitions properly. While the carrier
energy and momentum can be conserved in a 2D→3D transition, the same is not
true for a 3D→2D transition. When converting a bulk (3D) Monte Carlo parti-
cle into a low-dimensionality (2D) particle occupying a subband in the inversion
layer, the difference between the carrier energy e3D and the in-plane kinetic en-
ergy e2D gives the subband energy eνn. The carrier subband is then determined
by choosing a subband with the minimum error in subband energy and eνn, the
calculated energy. In the opposite case of converting a 2D-particle into a bulk
carrier, the 3D carrier energy is given by e3D = e2D + eνn. By scanning the
polar angle θ from the tabulated values of the 3D K-vector and preserving the
in plane azimuth φ, the K3D vector which minimizes the error in the magni-
tude of the in-plane K2D vector is chosen as the 3D carrier momentum of the
bulk particle.

2.2 Band-Structure

Figure 1 shows the valence band-structure of strained SiGe on relaxed Si for Ge
concentrations increased in steps of 5%. The uppermost bold lines correspond
to the HH, LH and SO bands in Si while the lowermost bold lines correspond
to that of Ge. This figure shows the effect of strain and alloying. It is seen that
strain has two-fold effect:

1 It lifts the degeneracy of the HH and LH band at the gamma point. Fur-
ther, as strain increases, it also causes the SO band to move further away
from the HH minima at the gamma point. The bands too are sharper
than in the case of relaxed SiGe and it can be inferred that the density
of states in the strained case would be lower than in the case of relaxed
SiGe.

2 Transport properties at moderate electric fields would be determined mostly
by inter-band scattering events involving transitions between the HH and
LH bands because of the large energy difference between the split off and
the HH and LH bands.

The density of states for 2D confined carriers in the channel for the case of
the triangular test potential is shown in Figure 2; the left panel for Si inversion
layer, while the right panel is indicative of the same for strained SiGe inversion
layer.
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Fig. 1. Valence band-structure of strained SiGe for different Ge concentrations

Fig. 2. Density of states for 2D carriers for the case of a triangular test potential: Left
Panel: Si, right panel: strained SiGe

1 Considering the left panel,

a The deviation of the 2D density of states obtained by a full band calcu-
lation from a regular step-like profile expected out of an effective-mass
type approximation is clearly seen in the case of the light hole and split
off bands.

b Furthermore, subband crossings are seen in the case of light hole and
split off subbands, where these subbands cross into higher lying heavy
hole subbands, resulting in spikes in the density of states.

2 For the case of the right panel,
a The heavy and light hole subbands have a clear density of states with

no subband crossings.
b The split off band actually follows the heavy hole subband density of

states, where there is a subband crossing from split off subband into the
heavy hole subband. The crossover then changes shape and the density
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of states consequently drops and settles down to a constant value at
higher energies.

3 Simulation Results for the Current Enhancement

The drain current enhancement ratio of the strained SiGe MOSFET over the
conventional Si MOSFET as a function of the applied drain bias for different
gate voltages is shown in Figure 3. It is seen that:

1 The peak enhancement comes at low values of drain bias, in the low-field
transport regime. As the drain voltage and hence the electric field increases,
the current enhancement ratio drops: meaning that the performance of the
Si p-channel MOSFET device is comparable to that of the strained SiGe
MOSFET. Put differently, the performance of the strained SiGe MOSFET
worsens as the drain bias increases, performing just as badly as the conven-
tional Si device.

2 As the gate voltage increases, the current enhancement drops. This can be
explained in the following manner: Increasing the gate voltage increases the
surface electric field, pulling the carriers closer to the Si-SiO2 interface and
thereby causing the carriers to experience greater surface roughness scatter-
ing. At still higher values of the gate voltage, the carriers spill over from the
quantum well into the Si cap region and the device performance degrades
even further.

3 Thus it is seen that the SiGe MOSFET clearly performs better than the con-
ventional Si MOSFET at low values of applied drain bias (low field regime)
and moderate values of the gate voltage. This is the regime in which the hole
mobility enhancement is predicted for device structures using a strained SiGe
layer as the active layer for carrier transport.

Fig. 3. Drain current enhancement of the strained SiGe over the conventional Si
MOSFET
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4 Conclusions

In summary, this work has presented a novel way of incorporating band-structure
and quantum effects on hole transport in p-channel MOSFETs. In this approach,
a full band Monte Carlo technique has been employed to investigate hole trans-
port and the effect of valence band-structure on transport probed using a six
band k.p model giving an accurate picture of the coupling between the heavy-
hole, light-hole and the split-off bands. Further, within the scope of this ap-
proach, for lack of an accurate and computationally feasible and a reasonably
fast method to incorporate open boundary conditions to model the contacts,
carriers in the source and drain regions are treated as quasi-3D like particles
with the band-structure information obtained by solving for the eigenstates of
the more compact six band k.p Hamiltonian proposed initially by Dresselhaus,
Kip and Kittel. The effect of carrier spatial confinement in the channel (along
the depth direction) due to the confining potential under the gate is included
by self-consistently coupling the Poisson, the discretized six band k.p solver and
the Monte Carlo transport kernel in the device simulator. All relevant scattering
mechanisms were included in the model: acoustic and optical phonon scatter-
ing (within the isotropic approximation), surface roughness scattering as well as
Coulomb scattering. For the case of the strained SiGe MOSFET, alloy scatter-
ing was included in the transport model. Self-consistent device simulations of
a 25 nm gate length conventional Si p-channel MOSFET were performed and
the performance compared against similar self-consistent results of device sim-
ulations of a 25 nm gate length strained SiGe p-channel MOSFET. The results
showed that the drive current performance of the strained SiGe MOSFET and
the conventional Si MOSFET were comparable at the same normalized gate
voltages (VG − VT ) at moderate and high values of drain bias. In fact the drive
current enhancement ratio ID(SiGe)/ ID(Si) is lower than 1.0 at high values of VD

0.8-1.0V, meaning that the expectation of performance enhancement expected
out of the strained SiGe MOSFET is misplaced.On the other hand, the perfor-
mance of the strained SiGe MOSFET is found to be better at moderate values of
drain bias in what is known as the low-field regime. This is the region in which
low-field mobility enhancement is expected out of using a strained active region
of carrier transport. To conclude, transistor scaling in the decanano regime has
reduced the performance gap between conventional Si MOSFETs and strained
layer heterojunction devices.

References

1. S. Krishnamurthy, A. Sher, and A.-B. Chen, Phys. Rev. B, vol. 33, pp. 1026,
(1986).

2. K. Takeda, A. Taguchi, and M. Sakata, J. Phys. C, vol. 16, pp. 2237, (1983).
3. J. M. Hinckley and J. Singh, J. Appl. Phys., vol. 76, pp. 4192, (1994).
4. D. K. Nayak and S. K. Chun, Appl. Phys. Lett., vol. 64, pp. 2514, (1994).
5. A Abramo et al., Semicond. Sci. Technol., vol. 7B, pp. 597, (1992).
6. F. M. Bufler et al., J. Vac. Sci. Technol. B, vol. 16, pp. 1667, (1998).



196 D. Vasileska, S. Krishnan, and M. Fischetti

7. T. Manku et al., IEEE Trans. Electron Devices, vol. 40, pp. 1990, (1993).
8. T. Yamada and D. K. Ferry, Solid State Electron., vol. 38, pp. 881, (1995).
9. M.V. Fischetti and S.E. Laux, J. Appl. Phys., vol. 80, pp. 2234, (1996).

10. J. R. Watling, A. Asenov and J. R. Barker, Proceedings of IWCE 98, IEEE Cat.
NO. 98EX116, pp. 96, (2004).

11. J.R. Barker, J.R. Watling, Micoelectronic Engineering, vol. 47, pp. 369, (1999).
12. H. Nakatsuji, Y. Kamakura, and K. Taniguchi, IEDM Tech. Dig., pp. 727, (2002).
13. R. Oberhuber, G. Zandler, and P. Vogl, Phys. Rev. B, vol. 58, pp. 9941, (1998).
14. M. V. Fischetti et al., J. Appl. Phys., vol. 94, pp. 1079, (2003).
15. Z. Ikonic, P. Harrison, and R. W. Kelsall, Phys. Rev. B, vol 64, pp. 245311 (2001).



A Monte Carlo Model of Piezoelectric

Scattering in GaN

S. Vitanov, M. Nedjalkov, and V. Palankovski

Advanced Materials and Device Analysis Group, Inst. for Microelectronics, TU Wien,
Gusshausstrasse 27-29, A-1040 Vienna, Austria

Abstract. A non-parabolic piezoelectric model of electron-phonon in-
teraction in Gallium Nitride is discussed. The Monte Carlo aspects of
the model, needed for the simulation tools which provide the character-
istics of GaN-based devices are analyzed in details. The piezo-scattering
rate is derived by using quantum-mechanical considerations. The an-
gular dependence is avoided by a proper spherical averaging and the
non-parabolicity of the bands is accounted for. For the selection of the
after-scattering state we deploy the rejection technique. The model is
implemented in a simulation software. We employ a calibrated exper-
imentally verified set of input material parameters to obtain valuable
data for the transport characteristics of GaN. The simulation results are
in good agreement with experimental data available for different physical
conditions.

1 Introduction

Gallium Nitride (GaN) based devices demonstrate impressive power capabilities
in radio-frequency range which recently became of interest for applications in
state-of-the-art mobile communication technology, e.g. base stations amplifiers.
The physical model of GaN, needed for the Monte Carlo (MC) simulation tools
to describe the electronic and optical behavior of this material, is subject of an
active research and development [1], [2], [3]. The model provides information
about the band structure (analytical or full-band), the scattering mechanisms
(caused by impurities, acoustic and optical phonons) and other microscopic char-
acteristics which govern the carrier transport in the semiconductor.

There are two types of GaN crystal lattice structures: wurtzite or zink blende.
Due to the the lack of inversion symmetry, elastic strain gives rise to macroscopic
electric fields. These fields cause additional coupling between the acoustic waves
and the free carriers, known as piezoelectric scattering. Nitrides are character-
ized by the largest piezoelectric constants among the III-V semiconductors so
that this scattering must be taken into account in the MC simulations. The
papers related to this subject stress on the simulation results and merely for-
mulate the out-scattering rate of the utilized piezo-model. The next section of
this work focuses on the MC aspects and peculiarities of a non-parabolic piezo-
scattering model. The simulation results obtained by the proposed MC approach
are discussed in the last section.
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2 The Model

According the Golden rule the probability for scattering from electron state
k to state k′ by phonons with wave vector q in branch j is determined with
the help of the matrix element |〈k′, n̂′

q,j|He−p|n̂q,j,k〉|2δ(E − E′). Standard
notations are used, where He−p is the interaction Hamiltonian |n̂,k〉 denotes
the electron-phonon state, n̂ and n̂′, and E and E′, refer to the initial and fi-
nal phonon number and energies respectively. Phonons are described by waves
s = e exp(iq.r − ωqt) where r is the position, ωq the energy and e the unit
vector of the polarization1. The basic piezo-interaction energy is proportional
to the integral of the electric displacement D(r) associated with the electron,
multiplied by the lattice polarization P(r). The screening is accounted via the
Thomas-Fermi model, which introduces in D the reciprocal Debye screening
length q0. The polarization is proportional to the strain S caused by the prop-
agating acoustic waves: Pi =

∑
ik eikSk/εr where, in reduced notations i, k run

from 1 to 6, eik denote the piezo coefficients, and εr is the dielectric constant.
For zinc blende crystals e14 = e25 = e36 and all other components are zero. For
wurtzite only e15 = e24, e31 = e32 and e33 are non-zero. The matrix element of
He−p gives rise to conservation rules for the phonon numbers: n′ = n ± 1 and
the electron wave vector k′ = k ±q. The Bloch assumption [4] allows to replace
the phonon degrees of freedom with their mean equilibrium number nq given
by the Bose-Einstein distribution. The factor H ′(ekl, e, α, β, γ, q0, q) summarizes
the complicated dependence of the matrix element on the polarization e and
direction cosines α, β, γ of the direction of propagation of q with respect to the
crystal axes. A simplification is certainly desirable and is achieved by a spherical
averaging. The averaged scattering rate W can be written explicitly as:

W = Wa + We =
∑
±

2π

h̄
|F (q)|2(nq +

1
2

∓ 1
2
)δ (ε(k ± q) ∓ ε(k) ∓ h̄ωq) (1)

where Wa corresponds to absorption (k′ = k+q) and We to emission (k′ = k−q)
of a phonon with wave vector q. The averaged isotropic coupling constant depends
on q as |F (q)|2 = Cf(q), f(q) = q3

(q2+q2
0)2

. The constant C will be introduced later.
We consider a three valley (Γ , U, and L) spherical non-parabolic energy dis-

persion model with m the effective electron mass for the corresponding valley:

h̄2k2

2m
= ε(k)(1 + αε(k)) = γ(k); k =

1
h̄

√
2mγ; v(k) =

h̄k
m(1 + 2αε(k))

2.1 Absorption

The absorption out-scattering rate λa =
∫

Wadk′ is calculated by using spherical
coordinates (q, θ, φ), where the z axis is chosen along k so that θ becomes the angle
between k and q:

1 In an isotropic media there are one longitudinal, L, (e||q) and two transverse, T ,
e ⊥ q branches. In crystals L and T exist for special directions only.
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λa =
V 2πC

(2π)3h̄

∫ 2π

0

dφ

∫ 1

−1

d cos θ

∫ ∞

0

dqq2f(q)nqδ(ε(k, q, θ) + ε(k) − h̄ωq)

where V
(2π)3 is the density of states in the q space. The acoustic phonon energy

h̄ωq = h̄vsq introduces the sound velocity vs which is anisotropic. The following
consideration can be applied if a particular direction of q is considered, or if a
spherical average is taken for vs. The argument of the delta function becomes
zero if

cos θ =
2vs

v(k)
− q

2k
(1 − 4αεs); εs =

mv2
s

2
which, furthermore, gives rise to the following condition for q1 ≤ q ≤ q2:

(i) if vs

v < 1 then −1 ≤ cos θ ≤ vs

v and q1 = 0, q2 = 2k(vs/v+1)
1−4αεs

;

(ii) else −1 ≤ cosθ ≤ 1 and q1 = 2k(vs/v−1)
1−4αεs

, q2 = 2k(vs/v+1)
1−4αεs

.

By using the equipartition approximation: nq = kT/h̄ωq = kT/h̄vsq and intro-
ducing the dimensionless variable x = q/q0 (xi = qi/q0), the scattering rate is
obtained:

λa =
e2K2

av

√
mkT

8πε0εrh̄
2
√

2γ(k)
(1 + 2αε(k))

︸ ︷︷ ︸
C1(k)

I1(x1, x2) +
e2vsK

2
av

√
m2αkTq0

8πε0εrh̄
√

2γ(k)︸ ︷︷ ︸
C2(k)

I2(x1, x2)

where e is the electric charge and the integrals I1 and I2 are evaluated as follows:

I1 =
∫ x2

x1

dx
x3

(x2 + 1)2
=

∫ x2

x1

J1(x)dx; I2 =
∫ x2

x1

dx
x4

(x2 + 1)2
=

∫ x2

x1

J2(x)dx

The coefficients C1(k) and C2(k) in front of the integrals are expressed in terms
of the dimensionless quantity K2

av. For zinc blende and wurtzite structures we
have respectively

K2
av =

e2
14

ε0εr

(
12

35cL
+

16
35cT

)
K2

av =
e2

L

cLε0εr
+

e2
T

cT ε0εr
.

The longitudinal and transverse elastic constants cL and cT can be obtained from
the elastic coefficients c11, c12, and c44 or from the longitudinal and transverse
sound velocities vsL and vsT, if known.

cL = 0.6 · c11 + 0.4 · c12 + 0.8 · c44; vsL =
√

cL/ρ

cT = 0.2 · c11 − 0.2 · c12 + 0.6 · c44; vsT =
√

cT/ρ

The piezo coefficients e15, e31, and e33 are used to calculate the corresponding
e2
L and e2

T, which are necessary to obtain the coupling coefficient Kav taking into
account the wurtzite structure.

e2
L =

e2
33

7
+

4e33(e31 + 2e15)
35

+
8(e31 + 2e15)2

105
;

e2
T =

16e2
15

35
+

16e15(e33 − e31 − e15)
105

+
2(e33 − e31 − e15)2

35
.
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Selection of the after-scattering state. Since cos θ is uniquely determined
by the value of q, the main task is to derive algorithm for selection of q. The
angle φ is then selected randomly. φ, cos θ and q determine q, and the after-
scattering state is given by k′ = k + q. The probabilities P1 and P2 = 1 − P1

for the after scattering state to be selected by the corresponding terms which
comprise λe are

λa = C1I1 + C2I2; P1 =
C1I1

C1I1 + C2I2
; P2 =

C2I2

C1I1 + C2I2

Furthermore, to select q by either term we have to solve the equality Ii(xr, x1) =
rIi(x2, x1); where r is a random number and q is determined from q = xrq0.
Neither of these equations can be solved for xr in a simple way. The problem
can be overcome by application of a rejection technique: The value of xr is
generated by using a function ξi(x) greater than the corresponding integrand
Ji. Then, depending on the non equality ξi(xr)r′ < Ji(xr), where r′ is a second
random number, the value of xr is accepted or rejected.

For the first case we choose ξ1(x) = x
x2+2 , ξ1(x) > J1(x)∀x (Fig. 1). This

choice gives the following expression for xr:

x2
r = (x2

2 + 2)r(x2
1 + 2)1−r − 2

In the second case we choose ξ2(x) = x√
x2+4

, ξ2(x) > J2(x)∀x (Fig. 2) so that:

x2
r =

(
r
√

x2
2 + 4 + (1 − r)

√
x2

1 + 4
)2

− 4

 0
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 0.3

 0.4

 0  2  4  6  8  10

Fig. 1. The function ξ1 (solid line) as com-
pared to J1 (dots)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

Fig. 2. The function ξ2 (solid line) as com-
pared to J2 (dots)

2.2 Emission

The necessary condition for emission is the initial electron energy to be greater
than the phonon energy: ε(k) > h̄ωq. The out-scattering rate is calculated in the
same way as in the case of absorption. In particular the delta function gives rise
to the relation:

cos θ =
2vs

v(k)
+

q

2k
(1 − 4αεs); (2)
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giving rise to the condition q1 ≤ q ≤ q3, where
(i) if vs

v < 1 then vs

v ≤ cos θ ≤ 1 and q1 = 0, q3 = 2k(1−vs/v)
1−4αεs

;
(ii) else there is no solution.

Thus, the out-scattering rate is evaluated as:

λe = C1(k)I1(0, x3) − C2(k)I2(0, x3)

Selectionof the after-scattering state. We utilize the condition C1I1(0, x3) >
λe to develop a rejection technique. Since ξ1 is a majorant function for J1, the value
of xr is obtained according to:

x2
r = (x2

3 + 2)r21−r − 2

A second random number r′ is used to accept or reject xr in the inequality:

C1(k)ξ1(xr)r′ < C1(k)J1(xr) − C2(k)J2(xr)

The functions ξ1 and ξ2 are compared on Figs. 1 and 2 with the corresponding
counterparts J1 and J2. In both cases the difference is negligible for x = q/q0 > 3.
At room temperatures the average electron wave vector q is of order of 107 [1/cm],
while q0 is usually an order of magnitude smaller. Hence the region of significant
rejection, below x = 3, is relatively rarely visited during the simulations.

3 Simulation Results

In order to establish a rigorous MC simulation, parameters from various publica-
tions have been collected and analyzed [5]. Table 1 provides a summary of bulk
material parameters for GaN, necessary for analytical band-structure MC sim-
ulations, such as energies of lowest conduction bands, effective electron masses,
non-parabolicity factors, and model parameters for the acoustic deformation po-
tential (ADP) scattering, inter-valley scattering (iv), and polar optical phonon
scattering (LO). ε∞ and εs are the optical and static dielectric constants, ρ is
the mass density.

Table 2 summarizes the values for GaN of the elastic constants c11, c12, and c44

together with the piezo coefficients e15, e31, and e33 adopted in our MC simulation.
From them, the corresponding cL, cT, vsl, vst, e2

L, e2
T, and Kav are obtained.

Using the established setup of models and model parameters, we obtained MC
simulation results for different physical conditions (doping, temperature, field,
etc.) for bulk GaN. Fig. 3 shows the low-field electron mobility in hexagonal

Table 1. Summary of material parameters of wurtzite GaN for Monte Carlo simulation

Bandgap energy Electron mass Non-parabolicity Scattering models
Γ1 U Γ3 mΓ1 mU mΓ3 αΓ1 αU αΓ3 ADP hfiv hfLO ρ εs ε∞

[eV] [eV] [eV] [m0] [m0] [m0] [1/eV] [1/eV] [1/eV] [eV] [meV] [meV] [g/cm3] [-] [-]
3.39 5.29 5.59 0.21 0.25 0.40 0.189 0.065 0.029 8.3 91.0 92.0 6.07 8.9 5.35
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Table 2. Summary of elastic constants of GaN and the resulting longitudinal and
transverse elastic constants and sound velocities

c11 c12 c44 cL cT vsl vst e15 e31 e33 e2
L e2

T Kav

[GPa] [GPa] [GPa] [GPa] [GPa] [m/s] [m/s] [C/m2] [C/m2] [C/m2] [C2/m4] [C2/m4] [-]
373 141 94 355 103 7641 4110 -0.30 -0.36 1.0 0.106 0.452 0.137

GaN as a function of free carrier concentration. Two MC simulation curves are
included to demonstrate the effect of the piezo-scattering model and its impact
on the low-field mobility. Our MC simulation is in fairly good agreement with ex-
perimental data from collections or single point measurements from [6,7,8,9,10].
The electron mobilities, selected for comparisons in this work, consider bulk
material and are measured using the Hall effect. The discrepancy between our
simulation results and the measured data might be attributed to dislocation
scattering which is not considered in our work. This mechanism is considered to
be a source of mobility degradation for GaN samples.

Fig. 4 shows the corresponding scattering rates as a function of the doping
concentration in hexagonal GaN. Note, that the piezoelectric scattering is the
dominant mobility limitation factor at low concentrations even at room temper-
ature, beside the commonly accepted importance at low temperatures.
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Fig. 3. Low-field electron mobility as a
function of carrier concentration in GaN.
Comparison of the MC simulation results
and experimental data.
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Fig. 4. Scattering rates utilized in our
simulation model for wurtzite GaN as a
function of carrier concentration at room
temperature

Fig. 5 shows the low-field electron mobility as a function of lattice temperature
in GaN at 1017 cm−3 concentration. The experimental data are from [10,11,12].
Note, that mobility increases over the years because of the improved material
quality (reduced dislocation density).

Fig. 6 provides the electron drift velocity versus the electric field. We compare
our MC results with other simulations [3,13,14,15,16], and with the available
experimental data [17,18]. The low field data points are in qualitatively good
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Fig. 5. Low-field electron mobility as a
function of lattice temperature in GaN at
carrier concentration of 1017 cm−3

0 100 200 300 400 500
Electric field [kV/cm]

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

E
le

ct
ro

n 
dr

if
t v

el
oc

ity
 [

10
7  c

m
/s

]

Exp. Wraback 2000
Exp. Barker 2002
MC Kolnik 1995
MC Bhapkar 1997
MC Albrecht1998
MC Farahmand 2001
MC Yamakawa 2004
This work (w/o piezo)
This work (with piezo)

Fig. 6. Drift velocity vs. electric field in
wurztite GaN: Comparison of MC simu-
lation results and experimental data

agreement, at higher fields experimental values are significantly lower. Both
experiments [17,18] of electron velocities in bulk GaN, employ pulsed voltage
sources. The discrepancy in the MC results comes from differently chosen sets
of parameter values and considerations of scattering mechanisms.

Our MC results prove that the piezoscattering mechanism has less influence
at higher electric fields than other scattering mechanisms, such as polar optical
scattering.

4 Conclusion

A non-parabolic piezoelectric model of electron-phonon interaction is derived.
It is applied to materials with hexagonal crystal structure in a Monte Carlo
simulator. The importance of the piezoelectric effect is illustrated by simulation
results for different physical conditions.
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Abstract. In this article we propose optimal and quasi optimal solutions
to the problem of searching for the maximum lighting point inside a poly-
gon P of n vertices. This problem is solved by using three different tech-
niques: random search, simulated annealing and gradient. Our comparative
study shows that simulated annealing is very competitive in this applica-
tion. To accomplish the study, a new polygon generator has been imple-
mented, which greatly helps in the general validation of our claims on the
illumination problem as a new class of optimization task.

1 Introduction

Illumination and visibility problems have been always an interesting topic of study
in Mathematics and Computer Science, and especially in the area of Computa-
tional Geometry. To summarize the problem, we can state that, given a set D in
�2, two points x, y ∈ D are visible in D (or x illuminates y) if the segment xy is
completely contained in D. A classic problem is the Art Gallery Problem proposed
by V. Klee in 1973: How many guards are needed to see every point in the interior
of an art gallery? In 1975, Chvátal showed that �n

3 � guards are always sufficient
and occasionally necessary to guard a simple polygon with n vertices.

For example, �n
3 � lights are always sufficient to illuminate any polygon with

n vertices, but in many polygons this number of light sources is too large. Thus,
it makes sense to outline the following algorithmic problem: given a polygon P
calculate the minimum number of light sources that illuminate P. This problem
and many variants about guarding are NP-hard [10,12].
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The search for algorithms which obtain approximate solutions to these pro-
blems is reduced to [8]. In 2000 Eidenbenz [5] showed some results about approxi-
mability and inapproximability of these problems. In this article, which is a part
of the doctoral dissertation of Canales [3], we present heuristic algorithms to
find optimal and nearly-optimal solutions for the maximum lighting point-light
in the interior of a polygon P . Our analysis includes three techniques: Simu-
lated Annealing (SA), Random Search (RS ) and Gradient method (GRAD).
Formally the problem can be stated in the following form:
search of the maximum interior illumination point to a polygon
MaxA-p-Pv1(P ):
INPUT: A polygon P of n vertices.
GOAL: Find an interior point in P to locate a light source so that the area
illuminated by such light is maximal.

In Sections 2, 3 and 4 we present the methods SA, RS and GRAD, respectively.
In Section 5 we discuss the experimental analysis over a set of polygons generated
with the random generator RPG. In Section 6 we compare the three proposed
techniques and finalize with some conclusions and future work.

2 Solving MaxA-p-Pv1(P) with Simulated Annealing (SA)

Simulated Annealing (SA) is an algorithm using local search to progress from
a partial solution to another one of a higher quality [7]. The inconvenience of
a local minimization algorithm is that it can be trapped in a local minimum
and thus never converge to the global minimum. To overcome this drawback, SA
introduces a variable of control T (temperature) which permits, with a certain
probability, to temporary explore worse areas of the search space. This proba-
bility is designated acceptance function, and usually it is evaluated according to
the function e(

−δ
T ), δ being the increase or deterioration of the objective function

O(x). If x ∈ S is the initial configuration , T the temperature in each iteration
with T0 > 0 the initial temperature and N(T ) the number of iterations for each
temperature, the general plan of the simulated annealing is the following:

[01] do
[02] {do
[03] {Generate solution y ∈ Neighborhood(x) ⊂ S;
[04] Evaluate δ ← O(x) − O(y);
[05] if (δ < 0) y ← x
[06] else

[07] if ((δ ≥ 0) ∧ (U(0, 1) < e(−δ
T ))) y ← x;

[08] n ← n + 1;
[09] }while (n ≤ N(T ));
[10] T ← 0.99 · T ; //decrease of the temperature
[11] }while (not stop);

The next section explains how SA has been customized to deal with MaxA-
p-Pv1(P ).
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2.1 Applying SA to the Problem

The input of the problem is the n vertices, (in positive sense), of the polygon P
and the output is the coordinates (x, y) of a point interior to P .
Set S of configurations: The set of configurations or feasible solutions of
our problem will be all the points that are found in the interior of the poly-
gon P . Thus, we will consider that the set of configurations is infinite and
that each element (each point), comes determined by its coordinates (x, y).
S = {p1 = (x1, y1), p2 = (x2, y2), ..., pn = (xn, yn), ...}.

Objective function O: The objective function O : S → � will assign a real
value to each element of the configuration S. In our case for each pi ∈ S the
objective function will produce a value which represents the area illuminated by
a light-point located precisely in the point pi, i.e., it will compute the area of the
visibility polygon of the point pi, V (P, pi) : O(pi) = Area V (P, pi).

Neighborhood of each configuration: As indicated in the general behavior
of SA, for each point pi = (xi, yi) will find out a new point p′i = (x′

i, y
′
i) to analyze.

In our algorithm, the point p′i is calculated by adding to each coordinate of pi a
random real value with normal distribution N(0, 1).

Initial configuration: A initial point p0 inner to P , will be considered as the
first solution to analyze, created with uniform distribution U(0, 1) for its two
coordinates independently.

2.2 Annealing Strategies

The results of the SA depend to a large extent on the conditions of temperature
for each problem. That is, the initial temperature T0 and the annealing plan of
such temperature in each iteration are important.
Initial temperature: In this article we have used three criteria to define the
initial temperature T0: (a) an initial temperature according to T0 = O(S0), where
S0 represents the initial configuration; (b) initial temperature depending of the
number of vertices of the polygon P : T0 = f(n), concretely f(n) = n; and (c) a
constant initial temperature: T0 = 100.0.
Decrease of the temperature in each iteration: Numerous studies demon-
strate that SA can show a slow convergence [7]. Thereafter, Szu and Hartley
[11] proposed a fast version (FSA), using the function T (k) = T0

1+k k = 1, 2, ...,
which was improved later by Ingber [9] (V FSA), where the function T (k) = T0

ek ,
k = 1, 2, ..., was proposed. In Section 5 we evaluate both, FSA and V FSA. All
the obtained results have been compared with a base annealing recommended by
Dowsland [4]: T (k) = αT (k−1), where α represents the cooling factor 0 ≤ α ≤ 1.

Number of iterations for each temperatureN(T ): In our algorithm the
number of iterations for each temperature value is N(T ) = 1/T .

Stop criterion: In theory, the corresponding temperature for a “cold sys-
tem” should be Tf = 0. However, much before zero the probability e−δ/T is
so smallthat no worse solution is ever accepted. Therefore, the stop condition in
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(a) (b)

Fig. 1. Solving MaxA-p-Pv1(P ) with SA using, T0 = 100, T (k) = T0
1+k

, Tf = 0.005

and N(T ) = 1
T

our algorithm will be Tf ≤ 0.005. We present in Figure 1 an example of execution
of our SA for a polygon P with 25 vertices.

3 Solving MaxA-p-Pv1(P) with Random Search (RS)

In this section we propose what could be consided the simplest algorithm. The
idea of the algorithm is to perform a random search on the inner points of the
polygon P . For this, a set N = {p1, ..., pm} of m inner points of the polygon P
is generated, and a sequential search of the point pi ∈ N is computed to fulfill:
Area(V (P, pi)) ≥ Area(V (P, pj)) ∀j = i i, j ∈ {1, ..., m}, with V (P, pi) being
the visibility polygon of the point pi in P . Evidently, the size of the point set N
must be related to the number of vertices of the polygon, in such a form that
for polygons with greater number of vertices will produce a larger value of m.
We have considered a set size m = 50 n. A pseudocode of RS follows:

Algorithm. RS-MaxA-p-Pv1(P )
INPUT: A polygon P of n vertices, {v1, ..., vn}
OUTPUT: A light source of maximum illumination in P .

[01] area ← 0;
[02] N ← Generate_Set(P, 50n);
[03] for (pi ∈ N)
[04] {Calculate the visibility polygon V (P, pi);
[05] if (area < Area(V (P, pi))
[06] area ← Area(V (P, pi));
[07] p ← pi;
[08] }
[09] return p;

We present in Figure 2 (a) an example of execution of this algorithm on a
polygon P with 25 vertices (generated by our generator RPG). We can see some
differences between Figure 1(b) and Figure 2 (a), with respect to the uniformity
of the points analyzed and the solution obtained.
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(a) (b)

Fig. 2. (a) RS (m = 1250). (b) GRAD (v = 16, β = 0.001).

4 Solving MaxA-p-Pv1(P) with Gradient Method(GRAD)

We present in this section the third technique designed to solve the problem
MaxA-p-Pv1(P ). The fundamental idea consists of considering that every inner
point p to a polygon P of n vertices, not being a local maximum, can be displaced
according to a “positive gradient” of illuminated area. Thus, given a point p we
consider a set {p1, ..., pv} of v neighboring points of p, at a distance β, such that
the vectors defined by them ppi, will sequentially form a positive angle 2π/v.

We propose a function Generate-Candidate which determines the best po-
tential neighboring v. Evidently, this heuristic will frequently produce conver-
gence to a local maximum. To avoid this undesired situation we initially set a
light source in all the vertices of the polygon P , causing that each one of them
converges to a local maximum. The pseudocode of GRAD follows.

Algorithm. GRAD-MaxA-p-Pv1(P )
INPUT: A polygon P of n vertices, {v1, ..., vn}
OUTPUT: A light source of maximum illumination in P.

[01] changes ← 1;
[02] max ← 1;
[04] q ← v; /*We make a copy of the vertices of P*/
[05] while(changes = 0)
[06] {changes ← 0;
[07] for (qi)
[08] {ci ← Generate_Candidate qi;
[09] area ← Area(V (P, ci)); /*Move each qi*/
[10] if(area > Area(V (P, qi))
[11] {qi ← ci;
[12] changes ←changes+1;
[13] if(area > Area(V (P, qmax))
[14] max ← i; }}}
[15] return qmax; /*Return the maximum illumination point*/
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We show in Figure 2 (b) an example of a GRAD execution.

5 Computational Experiments

The results exposed in Figures 1 and 2 are single examples for a concrete poly-
gon. We present in this section the results of a study accomplished on a wide
set of polygons with different number of vertices. All the algorithms have been
implemented in C++. All the experiments have been accomplished on a Pentium
IV 2.5 Ghz, with RAM of 512 KB. The Table 1 summarizes the algorithms and
parameters used in the experiments.

Table 1. Parameters of the algorithms

Problem Algorithm Parameters

Simulated Annealing − SA Case 1-9, (see Table 2)
MaxA-p-Pv1(P ) Random Search − RS m = 50n

Gradient − GRAD v = 16 β = 0.001

5.1 Results with SA

Let us start analyzing the influence of the initial temperature T0 and its annealing
plan. In this sense we have studied nine possible combinations. These combina-
tions produce nine cases that we will compare using our random polygons gene-
rator RPG, a set of 50 polygons of 50, 100, 150 and 200 vertices. We report
on the final illuminated area, the employed time, and the number of iterations
performed by the algorithms. The cases are shown in Table 2.

Table 2. Cases studied for SA

Case Parameters

1 T0 = C(S0) Tk = T0
1+k

(FSA)

2 T0 = C(S0) Tk = T0
ek (V FSA)

3 T0 = C(S0) Tk = α Tk−1 (α = 0.9)

4 T0 = n Tk = T0
1+k

(FSA)

5 T0 = n Tk = T0
ek (V FSA)

6 T0 = n Tk = α Tk−1 (α = 0.9)

7 T0 = 100.0 Tk = T0
1+k

(FSA)

8 T0 = 100.0 Tk = T0
ek (V FSA)

9 T0 = 100.0 Tk = α Tk−1 (α = 0.9)

The general conclusions that we can deduce from this study with for SA are
the following ones:

– A slow decrement of the temperature decreases improves the solution, though
the time of response of the algorithm is large.
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– The best solutions are procured taking an initial temperature depending on
the number of vertices n of the polygon P , though for polygons with a small
number of vertices (n ≤ 200) a constant initial temperature produces better
results.

– The best results with respect to the percentage of illuminated area are ob-
tained in Case 4: T0 = n Tk = T0

1+k (FSA). This will be selected for the
forthcoming comparisons of SA with RS and GRAD in the next sections.

5.2 Results with RS

We present in Figure 3 (b) the results obtained with RS, where we observe
that RS improves each one of the analyzed variables over SA: percentage of
illuminated area, execution time, and number of iterations. If we reduce the
final temperature in SA from x down to 0.005, Tf < 0.005, the results obtained
by SA then are superior to those obtained through RS, although the response
time of SA is always much larger.

5.3 Results with GRAD

The method converges faster if we use a smaller number of initial points, i.e.,
if we let some free vertices in P . However the number of local maxima can be
enlarged to O(n).

In Figure 3 (b) we show the data obtained for SA, RS and GRAD, that relate
the number of vertices of P with the middle, (in sets of 50 polygons), percentage
of illuminated area. We conclude that GRAD obtains the best results for all the
analyzed problem instances.

6 Analysis and Conclusions

For the conclusions, let us begin with the statistical confidence of our results. For
this, we have performed T hypothesis contrast, (using the mathematical software
MatLab), with a meaning level of the 95%, for all instances with respect to the
final illumination area found by the algorithms. From this statistical analysis we
can deduce that RS and GRAD do not produce significantly different results,
though in mean we observe that GRAD gives better solution in percentage of
illuminated area. The rest of heuristics generate significantly different results.

6.1 Performance of the Algorithms as the Dimension of the
Problem Grows Up

To better understand the scalability features of the three algorithms we show
here the mean curve of growth for each technique heuristic with polygons of
100 vertices. For this, each heuristic has been applied to 50 polygons with 100
vertices, obtaining the growth curve for each polygon and calculating finally the
mean of all them in each iteration. In Figure 3 (a) we plot the resulting curves.
Thus, we can draw the following conclusions:
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– With respect to the percentage of illuminated area by the solution
point, GRAD provides better results in all the tests. RS shows good results
in percentage of illuminated area. Though sensibly better with respect of
SA, it is very similar to the results provided by GRAD.

– With respect to the fast convergence of the heuristics, we can observe
in Figure 3 (a), that the best method is RS, followed by GRAD and SA.

– With respect to the ratio iterations/time, (see Figure 3 (b)). In this
sense the best method is SA, followed by RS, and the GRAD. This means
that SA is the lightest algorithm from a computational point of view.

(a) (b)

Fig. 3. (a) Comparison in scalability (b) Relation Iterations/T ime

6.2 Future Work

A future work will analyze some more parameters which influence on the heurist-
ics. Also an important restriction that can be imposed to the illumination is
the limitation in the scope. An interesting study for future investigations is the
behavior of these methods when the lighting is constrained to cover only nearby
points. It would be interesting to accomplish a similar study taking the concept
of t−good illumination analyzed in [3].
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Abstract. In this article we solve the radio network design problem
(RND). This NP-hard combinatorial problem consist of determining a
set of locations for placing radio antennae in a geographical area in order
to offer high radio coverage using the smallest number of antennae. This
problem is originally found in mobile telecommunications (such as mobile
telephony), and is also relevant in the rising area of sensor networks. In
this work we propose an evolutionary algorithm called CHC as the state
of the art technique for solving RND problems and determine its expected
performance for different instances of the RND problem.

1 Introduction

An important symbol of our present information society are telecommunications.
With a rapidly growing number of user services, telecommunications is a field in
which many open research lines are challenging the research community. Many
of the problems found in this area can be formulated as optimization tasks. Some
examples are assigning frequencies to cells in mobile communication systems [1],
building multicast routing trees for alternate path computation in large net-
works [2], developing error correcting codes for the transmission of messages [3],
and designing the telecommunication network [4,5]. The problem tackled in this
paper belongs to this last broad class of network design tasks. When a geograph-
ically dispersed set of terminals needs to be covered by transmission antennae a
key issue is to minimize the number and locations of these antennae and cover a
large area at the same time. This is the central idea of the radio network design
problem (RND).

In order to solve RND, metaheuristic techniques are used to overcome the
large dimension and complexity of the problem, often unaffordable for exact
algorithms. In the associated literature the problem has been solved with genetic
algorithms [6,7]. In this article, our goal is to improve existing results and propose
a state-of-the-art optimization method to solve the RND problem. In particular,
we will compare the CHC algorithm against three other techniques: a simulated
annealing (SA), a steady state genetic algorithm (ssGA), and a generational
genetic algorithm (genGA). Another objective of this work is to extend the
basic formulation of the problem to include more realistic kinds of antenna.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 214–222, 2007.
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In summary, the contribution of this paper consists of: the application of a
an algorithm not previously used, CHC, that improves all the results in the
literature, the optimization of the algorithm parameters, the analysis of the
scaling properties of the RND problem, and the extension of the basic problem
to include more than one type of antenna.

The paper is organized as follows. In the next section we define and char-
acterize the radio network design problem. Section 3 briefly describes the CHC
algorithm. Section 4 provides the results of the tests performed either to compare
algorithms or to analyze different types of antenna. Finally, some concluding
remarks and future research lines are drawn in Section 5.

2 The Radio Network Design Problem

The radio coverage problem amounts to covering an area with a set of antennae.
The part of an area that is covered by an antenna is called a cell. In the following
we will assume that the cells and the area considered are discretized, that is,
they can be described as a finite collection of geographical locations (taken from
a geo-referenced grid).

Let us consider the set L of all potentially covered locations and the set M
of all potential antenna locations. Let G be the graph, (M ∪ L, E), where E is a
set of edges such that each antenna location is linked to the locations it covers,
and let the vector x be a solution to the problem, where xi with i ∈ [1, |M |]
indicates whether an antenna is being used or not at the ith available location.

Throughout this work we will consider different versions of the RND problem,
which will differ in the type of antennae that might be placed in each location.
There are simple versions using antennae that have no parameters, and more
complex versions where antennae have parameters (i.e. azimuth) that determine
the area they cover. In the last case, any solution x must also indicate which
values the parameters of the antennae have for each antenna used.

Searching for the minimum subset of antennae that covers a maximum surface
of an area comes to searching for a subset M ′ ⊆ M such that |M ′| is minimum
and such that |Neighbors(M ′, E)| is maximum, where

Neighbors(M ′, E) = {u ∈ L | ∃v ∈ M ′, (u, v) ∈ E}. (1)

The problem we consider recalls the Unicost Set Covering Problem (USCP)
that is known to be NP-hard. An objective function to combine the two goals
has been proposed in [6]:

f(x) =
Coverage(x)α

Nb. of antennae(x)
, Coverage(x) =

100 · Neighbors(M ′, E)
Neighbors(M, E)

, (2)

where the parameter α can be tuned to favor the cover rate factor with respect
to the number of antennae. Just like Calégari et al. did [6], we will use α = 2,
and a 287 × 287 point grid representing an open-air flat area.
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Squared cell Omnidirectional cell Directive cell

Fig. 1. Terrain coverages with different types of antenna

Three different antenna types will be used in this work: a square shaped cell
antenna that covers a 41 × 41 point cell as used in [6,7], an omnidirectional an-
tenna that covers a 22 point radius circular cell (new contribution here), and a
directive antenna that covers one sixth of the omnidirectional cell (new contri-
bution here). When directive antennae are employed, three of them are placed
in the location site. Fig. 1 illustrates the terrain coverages obtained with the
different kinds of antenna.

3 The CHC Algorithm

The algorithm we propose for solving the RND problem is Eshelman’s CHC,
a kind of Evolutionary Algorithm (EA) surprisingly not used in many studies
despite it has unique operations usually leading to very efficient and accurate
results [8]. Like all EAs, it works with a set of solutions (population) at any time.
The algorithm works iteratively, producing new solutions at each iteration, some
of which will be placed into the population instead of others that were previously
included. The pseudocode for this algorithm is shown in Fig. 2.

The algorithm CHC works with a population of individuals (solutions) that we
will refer to as Pa. In every step, a new set of solutions is produced by selecting
pairs of solutions from the population (the parents) and recombining them. This
selection is made in such a way that individuals that are too similar can not mate
each other, and recombination is made using a special procedure known as HUX.
This procedure copies first the common information for both parents into both off-
spring, then translates half the diverging information from each parent to each of
the offspring. This is done in order to preserve the maximum amount of diversity
in the population, as no new diversity is introduced during the iteration (there is
no mutation operator). The next population is formed by selecting the best indi-
viduals among the old population and the new set of solutions (elitist criterion).

As a result of this, at some point of the execution population convergence is
achieved, so the normal behavior of the algorithm should be to stall on it. A spe-
cial mechanism is used to generate new diversity when this happens: the restart
mechanism. When restarting, all of the solutions except the very best ones are
significantly modified (cataclysmically). This way, the best results of the previous
phase of evolution are maintained and the algorithm can proceed again.
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t:=0;
Initialize(Pa,convergence count);
while not ending condition(t,Pa) do

Parents := Selection parents(Pa);
Offspring := HUX(Parents);
Evaluate(Offspring);
Pn := Elitist selection(Offspring,Pa);
if not modified(Pa,Pn) then

convergence count := convergence count-1;
if (convergence count == 0) then

Pn := Restart(Pa);
Initialize(convergence count);

end if
end if
t := t+1;
Pa := Pn;

end while

Fig. 2. Pseudocode for CHC

4 Experiments

In this section we briefly present the results of performing an assorted set of
experiments to solve the different RND problems using CHC. First we solve
RND problems where antennae have no parameters. In this part, CHC will be
faced against three other algorithms: SA, ssGA, and genGA, and the results
will be compared to the best results of the literature [7] (dssGA8). Afterwards,
we tackle the problem using antennae with parameters that shape the coverage
cell. Only CHC will be employed in this part. Its behavior when facing different
problem types will be studied here.

For each experiment, we will analyze the number of evaluations required to
solve the problem if the execution is performed until an optimal solution is found
(whenever possible). We perform 50 independent runs of each experiment. A
statistical analysis is driven to validate the results obtained during the tests.
The values of the parameters employed for CHC are shown in Table 1. When
a range of values is shown instead of a single value, it means either that the
parameter is tuned (population size) or that the value is selected to be adequate
for each problem instance (maximum evaluations).

Table 1. Parameters of the CHC algorithm

Maximum evaluations 2,500,000−50,000,000
Crossover probability 0.8
Restarting mutation probability(%) 35
Size of population 50−10,000
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4.1 RND with Squared and Circular Cell Antennae

In squared and circular cell antennae instances a solution is encoded with a
bit string, where each bit relates to an available location site and determines
whether an antenna is placed there (1) or not (0). Let L be the problem size
(the number of available location sites), the size of the solution space for these
instances is 2L. For each instance the optimal solution is known beforehand.

The scalability of the problem is also studied by solving instances of sizes
ranging from 149 to 349 available locations. Every time an algorithm is applied
to solve an instance, we perform a parameter tuning in order to obtain the best
possible performance from that algorithm. For the CHC algorithm the parameter
tuned is the population size.

The results of the experiments are shown in Table 2 for square shaped cell
antennae and Table 3 for omnidirectional antennae. All the algorithms were able
to solve the problem with a very high hit ratio (percentage of executions where
the optimal solution is found), with a few exceptions (highlighted in italics),
therefore only the number of evaluations is shown. The best results obtained are
highlighted in boldface. A Student t-test shows that all differences between CHC
and the rest of algorithms are statistically significant with 95% of confidence.

Table 2. Comparison of the number of evaluations required by the different algorithms
in RND with square shaped coverage antennae

Algorithm
Size

149 199 249 299 349

CHC 30,319 78,624 148,595 228,851 380,183
SA 86,761 196,961 334,087 637,954 810,755

ssGA 239,305 519,518 978,573 1,872,463 3,460,110
genGA 141,946 410,531 987,074 1,891,768 3,611,802

dssGA8 [7] 785,893 1,467,050 2,480,883 2,997,987 4,710,304

Table 3. Comparison of the number of evaluations required by the different algorithms
in RND with omnidirectional antennae

Algorithm
Size

149 199 249 299 349

CHC 45,163 344,343 817,038 2,055,358 3,532,316
SA 83,175 262,282 913,642 2,945,626 6,136,288

ssGA 365,186 1,322,388 2,878,931 9,369,809 9,556,983
gGA 206,581 1,151,825 3,353,641 8,080,804 19,990,340

CHC proves to be the best technique among the four: it gets the lowest
solving costs for all instances. In the first case (square shaped coverage) it im-
proves the second best technique, SA, by costing less than 50%. In the second
case (omnidirectional), the cost reduction regarding the second best technique
(SA) is comprised between 10% and 40% (in the 199-size instance SA has a
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lower solving cost, but gets a low hit ratio). In both cases the increase of the
number of evaluations is clearly superlineal, however, numeric approximations
have returned subexponential models.

If we compare the two variants of RND (differing on the kind of antenna em-
ployed), we observe that the one using omnidirectional antennae seems to be more
difficult to solve, since for the same instance size the required number of evalu-
ations is higher. Furthermore, the problem becomes less tractable when its size
grows, and the gap between efforts for solving the two kinds of problem increases.

In summary, CHC is better suited for solving RND than SA or any of the
GAs. It is the best for the basic instance and allows a better scalability than
the other two. The change of the antenna cell shape modifies the complexity
of the optimization problem, but does not change the fact that the best results
are obtained with the CHC algorithm. Therefore, from this point we will only
employ CHC to solve the new instances of RND.

4.2 Complex RND Variants

Two variants of the RND are solved in this section: RND using directive antennae
and RND using all kinds of antenna. When directive antennae are used, either
three of them or none are placed in each available location. When three of them
are placed, they are subject to one of the following restrictions: all antennae of
the same location site must point in consecutive directions (case 1) or in different
directions (case 2). When all kinds of antenna are employed, the restriction over
the directive antennae is the second one (case 2).

The number of available locations of the instances considered is limited in
both cases to only 149 as a base line for future research. For practical means,
we will use the binary equivalent length (minimum length of a binary string
that can store all the possible values of the solution space) as the instance size
measure. Table 4 shows CHC’s performance for all the problem instances solved
in this work.

Fig. 3 illustrates the cost and size of all the different problem instances solved
in this work: those using squared cells (unlabelled squared points), those using
circular cells (unlabelled circular points), the ones using directional antennae
under the first restriction (RND-3) and the second restriction (RND-4), and the
variant using all antenna kinds (RND-5). Minimal mean square error approxi-
mations for the problems using squared cells and circular cells are also shown.

The problem variant using directive antennae seems to have a cost-size re-
lation comprised between those of the variants using squared cell antennae and
omnidirectional antennae. However, problem instances using only directive an-
tennae do not have one single optimal solution (as the previous variants do), but
a set of optimal solutions instead: 652 and 2052 for the instances under the first
and the second restriction respectively. Therefore the complexity reduction of
this RND variant regarding the omnidirectional antennae variant might be due
to the existence of many optimal solutions.

The variant of the problem using all antenna kinds simultaneously seems
to have a cost-size relation lower than any of the other variants: for a
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Table 4. Comparison of CHC’s best performances for all the problem instances

Problem Binary Fitness Optimal Running Hit
Instance Size Evaluations Population Time(sec) Rate(%)

149 149 30,319 400 25.59 100
199 199 78,624 1,200 76.66 100

Square 249 249 148,595 1,400 146.21 100
299 299 228,851 1,800 237.38 100
349 349 380,183 2,800 427.81 100

149 149 45,163 700 43.71 100
199 199 344,343 2,800 374.01 100

Omnidirectional 249 249 817,038 4,000 870.82 100
299 299 2,055,358 8,000 2437.51 100
349 349 3,532,316 10,000 4009.85 100

Directive
case 1 419 2,383,757 4,000 4186.38 96
case 2 655 4,736,637 8,000 9827.60 88

All antennae 675 829,333 10,000 1284.05 100
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Fig. 3. Comparison of the evaluations performed by CHC for several problem instances

binary length of 675 (93% higher than the 349 squared coverage instance) its
solving cost is only 829, 333 (118% higher). This would approximately corre-
spond to a lineal growth, yet the measured growth has been estimated to be
superlineal.

Therefore, the studied RND problems can be classified into two main different
categories depending on their cost-size relation: a low complexity kind (x3 law),
and a high complexity kind (x4 law). The geometry of the cell shape seems to
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be the decisive factor: both directive and omnidirectional antennae share the
circular geometry so the two belong to the high complexity kind. The square
shaped cells problem variant belongs to the low complexity kind. The variant of
the problem where all antenna kinds are used simultaneously takes advantage
of the possibility of using both geometries and achieves a complexity lower than
any of the other variants.

5 Conclusions

We have established CHC as the best technique so far for solving the RND
problem. This has been proven empirically by comparison with SA, ssGA, and
genGA in two different scenarios: use of square shaped cell antennae and use of
omnidirectional antennae. The cost of solving the problem has been estimated to
grow in a subexponential manner as the size of the problem increases. The nature
of that increase is mainly determined by the geometrical features of the antennae,
being x3 for square shaped cell and x4 for circular shaped cell antennae. When
directive antennae are placed, the fact of having many optimal solutions results
in a cost reduction with respect to the RND using omnidirectional antennae.
When several antennae are offered, the algorithm takes advantage of it and is
able to solve the problem at a lower cost.
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5. Créput, J., Koukam, A., Lissajoux, T., Caminada, A.: Automatic mesh genera-
tion for mobile network dimensioning using evolutionary approach. IEEE Trans.
Evolutionary Computation 9(1) (2005) 18–30

6. Calégari, P., Guidec, F., Kuonen, P., Kobler, D.: Parallel island-based genetic al-
gorithm for radio network design. Journal of Parallel and Distributed Computing
(47) (1997) 86–90

7. Alba, E., Chicano, F.: On the behavior of parallel genetic algorithms for optimal
placement of antennae in telecommunications. International Journal of Foundations
of Computer Science 16(2) (2005) 343–359

8. Eshelman, L.J.: The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. In: Foundations of Ge-
netic Algorithms, Morgan Kaufmann (1991) 265–283



Sparse Array Optimization by Using the

Simulated Annealing Algorithm�

Vera Behar and Milen Nikolov

Institute for Parallel Processing, Bulgarian Academy of Sciences
“Acad. G. Bonchev” Str., bl. 25-A, 1113 Sofia, Bulgaria

behar@bas.bg, milenik@bas.bg

Abstract. Sparse synthetic transmit aperture (STA) imaging systems
are a good alternative to the conventional phased array systems. Unfor-
tunately, the sparse STA imaging systems suffer from some limitations,
which can be overcome with a proper design. In order to do so, a simu-
lated annealing algorithm, combined with an effective approach can used
for optimization of a sparse STA ultrasound imaging system. In this pa-
per, three two-stage algorithms for optimization of both the positions of
the transmit sub-apertures and the weights of the receive elements are
considered and studied. The first stage of the optimization employs a sim-
ulated annealing algorithm that optimizes the locations of the transmit
sub-aperture centers for a set of weighting functions. Three optimization
criteria used at this stage of optimization are studied and compared.
The first two criteria are conventional. The third criterion, proposed in
this paper, combines the first two criteria. At the second stage of opti-
mization, an appropriate weighting function for the receive elements is
selected.

The sparse STA system under study employs a 64-element array,
where all elements are used in receive and six sub-apertures are used
in transmit. Compared to a conventional phased array imaging system,
this system acquires images of better quality 21 times faster than an
equivalent phased array system.

1 Introduction

In conventional synthetic transmit aperture (STA) imaging systems only one
transducer element is excited in transmit, while all the transducer elements re-
ceive the signals, reflected from the tissue. Each transducer element is fired
consequently one after the other, and the signals received by each transducer
element are recorded in the computer memory [1]. When the signals, received
from each transmit/receive pair have been recorded, the synthetic beamforming
is done by the appropriate algorithm. A disadvantage of STA imaging systems is
the huge amount of the RF-data that must be stored in the computer memory
and performed by the processor in order to reconstruct an image. For N -element
� This work is financially supported by the Bulgarian Foundation for Scientific
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array, N RF-recordings are needed to form a conventional phased array image,
while (N x N) RF-recordings are required to synthesize a STA image. The
amount of data, used in the STA imaging, can be reduced to some extent, if
only a small number of transducer elements (M) are used as transmitters, where
M < N [2]. This is equivalent to using of a sparse array in transmit.

A disadvantage of a sparse STA imaging system is the low signal-to-noise
ratio (SNR), that is caused by the use of a small number of transmit elements.
A well-known approach to improve the SNR is to use temporal encoding, whereby
linear frequency modulated (LFM) or phase shift key modulated (PSKM) signals
excite the transducer elements [3]. As an alternative to temporal encoding, the
spatial encoding can be used for improving the SNR, whereby all M transducer
elements are fired simultaneously in each transmission [4]. Another approach is
to use more than one elements in each transmission (L), in order to create a
spherical wave and, as a consequence, to improve the SNR proportionally to the
number of elements used in the transmit sub-aperture [5].

The relation between the effective aperture function and the corresponding
beam pattern of the imaging system can be used as a tool for analysis and for
optimization of a sparse STA imaging system. In STA imaging the transmit
aperture function depends on the number of transmit elements and their loca-
tions within the array. The receive aperture function depends on the length of a
physical array and the weight coefficients applied to the array elements. Hence it
appears that the shape of the effective aperture function of a system and, as con-
sequence, the shape of the two-way beam pattern can be optimized depending
on the element positions in transmit and the element weights in receive.

In this paper three two-stage algorithms for optimization of a sparse STA
imaging system are studied. The first two of them are conventional. The third,
proposed in the paper, combines the first two algorithms. These algorithms op-
timize both the positions of the transmit sub-aperture centers and the weights
of the receive elements. At the first stage the simulated annealing algorithm op-
timizes the positions of the transmit sub-aperture centers for a set of weighting
functions. At the second stage, an appropriate weighting function for the receive
elements is selected.

2 Sparse STA Imaging

Consider a sparse STA imaging system that employs an array transducer with
N elements. In each transmission, a group of L elements (transmit sub-aperture)
are fired simultaneously to get higher transmit power. The spherical wave created
by each transmit sub-aperture propagates in the whole region of interest and the
echo signals received at N transducer elements are recorded and stored in the
computer memory. The process of data acquisition continues until all M transmit
sub-apertures are fired sequentially one by one as it is illustrated in Fig.1.

The back scattered echoes received after each transmission carry information
from all directions, and a whole image can be formed by applying different delays
on the received signals (partial beamforming). Since the image is focused only
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in receive, it has a low resolution. The low resolution images, although focused
at the same points, have different phases due to the different locations of the
transmit sub-apertures. The dynamic focusing in transmit is summing all low-
resolution images. A high-resolution image is created as follows:

IHigh(r, θ) =
M∑

m=1

N∑
n=1

ansm,n(τm,n(r, θ)), (1)

where an is weighting coefficient applied to the receive element n, sm,n is the
echo signal received at the receive element n after transmission m and τm,n is
the two-way propagation time from the location of the transmitter’s group m to
the current focal point (r, θ) and back to the receive element n.

3 Description of the Optimization Problem

The image quality parameters, the lateral resolution and the contrast, are deter-
mined by the main lobe beam width (W ) and the side lobe peak (SL) of the
beam pattern of an imaging system. The two-way beam pattern of a sparse STA
system that employs a transducer with N elements is evaluated as the Fourier
Transform of the effective aperture function eSTA, defined as:

eSTA =
M∑

m=1

am ⊗ B, am = [0, 0, . . . , im, . . . , 0], im = 1, (2)

where am is the full transmit aperture during the m-th firing, im is the position of
a transmit sub-aperture center within a full transmit aperture, B is the weighting
function applied to the receiver elements, and ⊗ is the convolution operator.

Since the positions of the transmit sub-apertures in a sparse array and the
weighting applied to each receiver element impact the two-way beam pattern
of a sparse STA system, the optimization of a sparse STA imaging system can
be formulated as an optimization problem of both the location of the transmit
sub-apertures within the sparse array, (i1, i2, , iM ), and the weights assigned to
the elements of the full array during receive (B).

In this paper, it is suggested to divide the process of optimization into two
stages:

– At the first stage, a set of the optimal positions of transmit sub-aperture
centers (i1, i2, . . . , iM )K are found, for a set of known weighting functions
{Bk}, k = 1, 2, . . . , K. Such a set of weighting functions may include several
well-known window-functions (Hamming, Hann, Kaiser, Chebyshev and etc).
At this stage, the optimization criterion can be written as follows:

Given M, N and {B}k, choose (i1, i2, . . . , iM )K to
minimize the cost C(I, BK), where I = (i1, i2, . . . , iM ) .

(3)

The following cost functions C(I, BK) are usually used:

C1(IK , BK) = min W (I, BK) , (4)
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C2(IK , BK) = min SL(I, BK) . (5)

We propose using of the following cost function, which is a combination of
the cost functions C1 and C2

C3(IK , BK) = min W (I, BK) subject to SL < Q , (6)

where Q is the threshold of acceptable level of the side lobe peak.
– At the second stage, the final layout of transmit sub-apertures is chosen,

which is a layout that corresponds to the most appropriate weighting func-
tion B = (b1, b2, . . . , bN ). This choice is a compromise between the minimal
width of the main lobe and the acceptable level of the peak of the side lobes.
Mathematically, it can be written as follows:

Given M, N, {B}k and {i1, i2, . . . , iM}K , choose
(b1, b2, . . . , bN) to minimize W subject to SL < Q ,

(7)

where {i1, i2, . . . , iM}K are the selected positions of transmit elements, as
found at the first stage of the optimization.

4 The Simulated Annealing Algorithm

One way of selecting the positions {i1, i2, . . . , iM}K is by using the simulated
annealing algorithm suggested by Kirkpatrick et al. [6]. The simulated annealing
algorithm realizes an iterative procedure that is determined by simulation of the
arrays with variable positions of a transmit sub-aperture center. In order to
maximize the lateral resolution of a system, it is assumed that the transmit sub-
aperture 1 and the transmit sub-aperture M are always located at the two outer
elements of the physical array; their positions are not changed and are assigned
numbers 1 and N . The positions of the other transmit sub-apertures are shifted
randomly, where a shift in position to the left or to the right has equal probability
(of 0.5). Once the process is initiated, with a random initial layout of transmit
sub-aperture centers I0 = (i01, i

0
2, . . . , i

0
M ), a neighbor layout I1 = (i11, i

1
2, . . . , i

1
M )

is generated, and the algorithm accepts or rejects this layout according to a
certain criterion. The corresponding simulated annealing algorithm is composed
of two loops Fig.2:

The acceptance is described in terms of probability p(T ) that depends on the
cost function C(I, BK). For the three cost functions defined by (4), (5) and (6),
the expression for the acceptance probability p(T ) takes the form:

p1(T ) =
{

1, if ΔW ≤ 0
exp(−ΔW/Tk), otherwise , p2(T ) =

{
1, if ΔSL ≤ 0
exp(−ΔSL/Tk), otherwise

p3(T ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if ΔW < 0 & ΔSL < 0
exp(−ΔW/Tk), if ΔW > 0 & ΔSL < 0
exp(−ΔSL/Tk), if ΔW < 0 & ΔSL > 0
exp(−ΔW/Tk − ΔSL/Tk), if ΔW > 0 & ΔSL > 0

(8)
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Fig. 1. Synthetic aperture data acquisition Fig. 2. The simulated annealing algorithm

where ΔW is the difference of the width of the main lobe, ΔSL is the difference of
the height of the peak of the side lobe between the current locations of transmit
sub-apertures and the best one obtained at preceding steps (or Q for C3). Tk

is the current value of the “temperature”, where the current “temperature” is
evaluated as Tk = 0.95Tk−1, and the algorithm proceeds until the number of
iterations reaches the final value.

5 Simulation Results

5.1 Sparse Array Optimization

A physical array utilized in computer simulations is of 64 elements with a half
wavelength spacing, where 64 active elements are used in the receive mode, and
only six sub-apertures are used during six transmissions. The properties of the
sparse STA system are optimized using the two-stage algorithm described in
Section 3. First, the optimal positions of transmit sub-apertures are found for
four weighting functions. For comparison, the optimization is done for the three
optimization criterion. For each weighting function, the positions of transmit
sub-apertures are shifted until optimal performance is obtained, as described
earlier, using the simulated annealing algorithm presented in Fig.2. In order to
obtain a beam pattern with a sharper main lobe, the optimization criteria C1

and C3 were formulated as the minimal width of the mainlobe at -20dB below
the maximum.

The positions of transmit sub-apertures that were found to optimize the per-
formance of the system, according the optimization criterion, together with the
achieved widths of the main lobe (at -20 dB) and the levels of the peaks of the
sidelobe, are presented in Table 1.

Both optimized functions, the effective aperture function and the correspond-
ing two-way beam pattern, are plotted for each optimization criterion, for
C1 - Fig.3, for C2 - Fig.4 and for C3 - Fig.5. The two optimized functions
plotted in Fig.3, 4 and 5, are obtained for the Hamming weighting function
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Table 1. Numerical results obtained by employing the three-criterion optimization

Optimization Transmitter Receiver SLB Beamwidth
criterion Layout Apodization [dB] [-20dB][◦]

1, 18, 27, 35, 49, 64 – -33.4 2.14
1, 5, 8, 11, 16, 64 Hamming -57.3 4.99

SLB[dB]=min 1, 2, 7, 9, 10, 64 Chebyshev -58.2 5.18
1, 15, 18, 20, 23, 64 Blackman-Harris -111.8 6.60

1, 3, 5, 6, 19, 64 Nattall-Harris -103.3 7.37

1, 2, 3, 62, 63, 64 – -28.3 1.28
1, 11, 29, 38, 40, 64 Hamming -30.6 2.21

Beamwidth[−20dB] = min 1, 11, 29, 38, 40, 64 Chebyshev -29.6 2.22
1, 20, 24, 41, 45, 64 Blackman-Harris -29.06 2.30
1, 17, 30, 35, 48, 64 Nattall-Harris -24.92 2.32

1, 2, 3, 62, 63, 64 – -28.3 1.28
Beamwidth[−20dB] = min 1, 20, 24, 41, 45, 64 Hamming -50.05 2.24
subject to SLB[dB] ≤ C 1, 20, 24, 42, 44, 64 Chebyshev -51.03 2.32

1, 18, 28, 41, 46, 64 Blackman-Harris -101.06 2.90
1, 19, 25, 39, 49, 64 Nattall-Harris -99.3 2.88

For comparison:
64-element phased array: Transmit - no, Receive - Hamming -85 4.04

(marked as bold in Table 1). It can be seen that the weighting applied to re-
ceiver elements reduces the peaks of the side lobes from -33 dB to -111 dB,
when the first optimization criterion C1 is used to optimize the locations of the
transmit sub-apertures within a physical array. But it is done by Blackman-
Harris weighting at the cost of widening the main lobe of the beam pattern from
2◦ to 7◦.

The minimal main lobe widths are provided by using of the optimization
criterion C2 (no weighting). Unfortunately, the level of the peaks of the side lobes
is rather high and not acceptable (-28dB). The compromise solution is obtained
by using of the third optimization criterion C3 that provides the minimal width
of the main lobe at -20dB below the maximum, where the condition that the
maximal level of the side lobe peak is below -50 dB. In that case, the beam
width is 2.2◦ and the peak of the side lobes equals -50dB. It is done by Hamming
weighting in receive.

For comparison, both parameters, the beam width and the side lobe peak,
evaluated for an equivalent phased array system, are presented in Table 1. Both
functions, the effective aperture function and the corresponding beam pattern,
are plotted for the conventional phased array system in Fig.6. Since the dynamic
range of a computer monitor is limited to about 50 dB, the comparison analysis
shows that the sparse array used with the Hamming weighting and the locations
of the transmit sub-aperture centers set at positions 1, 20, 24, 41, 45 and 64
within a physical array has a narrower beam width (2.2◦) compared with the
equivalent phased array system (4◦).
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Fig. 3. The optimized effective aperture
function and two-way array pattern (C1)
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Fig. 4. The optimized effective aperture
function and two-way array pattern (C2)
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Fig. 5. The optimized effective aperture
function and two-way array pattern (C3)

0 20 40 60 80 100 120 140
0

10

20

30
EFFECTIVE APERTURE FUNCTION ( PHASED ARRAY )

−40 −20 0 20 40
−100

−50

0

[d
B

]

[degree]

PHASED ARRAY BEAM PATTERN

Fig. 6. The phased array effective aperture
function and two-way array pattern

5.2 Comparison Analysis

Signal-to-Noise Ratio. According to [2], the signal amplitude of a conventional
phased array system is linearly proportional to the number of transmit elements
(N), i.e., Signal ∼ N , while the noise is inversely proportional to the square
root of the number of receive elements (N), i.e., Noise ∼ 1/(

√
N). Therefore,

the SNR of a phased array system (that uses the same number of transmit and
receive elements) can be expressed as SNRPA ∼ N ·

√
N . The number of signals

added together during beamforming is determined as a product of the number
of transmit sub-apertures (M) and the number of receive elements (N). Taking
into account that each transmit sub-aperture includes L array elements, the SNR
is proportional to the product of the number of simultaneously excited transmit
elements (L), the square root of the number of transmit elements (M), and the
square root of the number of receive elements (N): SNRSTA ∼ L ·

√
M · N .

When compared to a phased array system, the relative SNR of a STA system
with M transmit sub-apertures can be written as SNRSTA/SNRPA ∼ L·

√
M/N ,

which for N = 64, M = 6 and using decibels becomes: (SNRSTA/SNRPA)dB ∼
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(LdB − 10.3dB). If each transmit sub-aperture consists of 5 array elements, i.e,
L = 5, then (SNRSTA/SNRPA)dB ∼ −3.3dB. Therefore, the SNR of a sparse
STA imaging system is within -6 dB of an equivalent phased array system only
if the number of elements in a transmit sub-aperture is at least 5.
Acquisition time. In conventional phased array systems, the time duration
of image acquisition (TPA) is linearly proportional to the number of scan lines
(Nline) and the time required to acquire the echoes from one direction of view
(T0), i.e. it is TPA = Nline · T0. In order to reduce this time duration, either
Nline, or T0 should be reduced. However, the STA imaging system performs
differently, and better: the acquisition time of an image is linearly proportional
to the number of emissions (M), i.e. it is TSTA = M ·T0. Compared to the phased
array system, the relative time of acquisition of an image in the STA system
is TSTA/TPA = M/Nline. For 64-element array Nline > 127, and, therefore
TSTA/TPA < 1/21 for M = 6. It means that the image formation of the STA
system is 21 times faster than the one by the conventional phased array system.

6 Conclusions

The sparse STA imaging systems suffer from some disadvantages. It is shown here
that with a proper design, these disadvantages can be overcome and the sparse
STA imaging system can perform extremely well for specific applications. For this
aim, an effective aperture approach is used for optimization of the sparse STA
imaging system, which exploits sub-apertures in transmit. Two-stage algorithms
are proposed for optimizing both the locations of transmit sub-aperture centers
within the array transducer and the weights of the receive element.

The sparse STA system under study employs a 64-element array, where all
elements are used in receive and six sub-apertures are used in transmit. Each
transmit sub-aperture includes at least five transducer elements in order to create
a spherical radiation wave. The analysis shows that a sparse STA system with
6 transmit sub-apertures obtains images of better quality and acquires data 21
times faster than a conventional phased array system.
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Abstract. In this paper, we consider a combined blending and distribu-
tion planning problem faced by a company that manages wheat supply
chain. The distribution network consists of loading ports, and customers.
Products are loaded on bulk vessels of various capacity levels for delivery
to overseas customers. The purpose of this model is simultaneous plan-
ning of the assignment of an appropriate type and number of vessels to
each customer order, the planning of quantities blended at ports, loaded
from ports, and transported from loading ports to customers. We develop
a mixed integer programming (MIP) model and provide a heuristic solu-
tion procedure for this distribution planning problem. An iterative fixing
variable heuristic algorithm is used to assure that acceptable solutions
are obtained quickly. The effectiveness of the proposed heuristic algo-
rithm is evaluated by computational experiment.

1 Introduction

Distribution network management is an area that remains critical to overall
logistics and supply chain success. Proper planning of distribution network may
give significant improvements in economic performance, which may be crucial
for survival in an increasingly competitive market [6].

This research was motivated by a blending and shipment planning problem
faced by a company that manages wheat distribution planning and theoretical
research on the transportation planning within the supply chain management
(SCM). This is an important problem involving high transportation costs, and
even modest improvements in the performance may give significant savings. The
problem concerns the assignment of an appropriate type and number of vessel
to each customer order and the planning of the quantities transported from
loading ports to customers. The planning is about making sure that the given
demand is satisfied at the lowest possible cost. The large combinatorial size of
this medium-term shipment planning problem necessitates the use of solution
algorithms that do not assure an optimal solution. Hence, we have developed
a heuristic algorithm in order to obtain an acceptable solution in a reasonable
time.
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Despite the fact that the majority of the challenging and important problems
that arise in SCM, there has been relatively little effort devoted to the area of
the use of maritime transportation with a focus on the whole supply chain [2,5].
Few studies that include decisions concerning maritime transportation can be
found in [4,10,11,12].

The outline of the paper is as follows: The next section provides a description
of the problem. Then in Section 3, the mathematical model for the problem
is formulated. Section 4 describes the solution method and Section 5 presents
computational results using data from a real-life case study. Finally, Section 6
presents some concluding remarks and suggests directions for future research.

2 Problem Description

Having given an overview of the problem and related literature, we now define
precisely the problem that we address in this paper, its requirements and assump-
tions. The supply chain network considered in the model consists of loading ports,
and customers. The planning horizon, in keeping with the midterm nature of the
model, ranges from 1 month to 3 months. Original products are directly supplied
to the loading ports. Different original products are blended at ports prior to out-
loading. Products are then loaded on bulk vessels of various capacity levels for
delivery to overseas customers. It is assumed that a vessel can pick up products
from at most two loading ports (1 or 2 loading ports) in a voyage. A vessel
is discharged in a single destination port, where the customer is located. The
size of each vessel type varies. Each vessel is hired for delivering one shipment of
products to one customer, and is not allowed to discharge cargo at loading ports.
It is assumed that there is unlimited number of vessels of each type available.
The demand for both original and blended products exists at a set of customer
locations. It is assumed that customers demand for a product and the shipment
of that product must take place in the same period.

The model determines the quantities transported between sites, and assigns
a set of vessel types to a set of routes that have to be satisfied demand at
minimal cost while satisfying all operational requirements. In order to solve the
complicated problems, the formulation of the problem is of vital importance. A
huge amount of product is transported and so the savings generated by careful
planning of transportation can be significant. The reader is referred to reference
[3] for the detailed discussion on the problem and the model.

3 Model Formulation

Before presenting a MIP for the blending and shipment planning problem de-
scribed in section 2, we first introduce the notation that will be used throughout
the paper. Using this notation, a mathematical programming model can be for-
mulated to solve the problem studied in this paper. Table 1 defines the notation
for the shipment planning model.
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Table 1. Notations

Notation Remark
Index Sets
J set of original products {1, 2, . . . , J}
I set of blended products {1, 2, . . . , I}
K set of ports {1, 2, . . . K}
L set of customers {1, 2, . . . , L}
V set of vessel types {1, 2, . . . , V }
T set of time periods {1, 2, . . . , T}
Input Pa-
rameters
Dilt demand for product i by customer l, in time period t.
Supplyjk the amount of original products j supplied to port k.
BCapk maximum blending capacity at port k (MT)
LCapk maximum loading capacity at port k (MT)
FCapv maximum vessel capacity for each type v (MT)
DCappkv draft capacity for vessel type v at port k (MT)
DCapclv draft capacity for vessel type v at destination port l, where customers are located

(MT)
TCostkqlv total transportation cost for route from port k to q to customer l on vessel type v

($/Vessel)
LCostk loading cost at port k ($/MT)
BCostk Blending cost at port k ($/MT)
MinBlndij minimum ratio of original product j in blended product i
MaxBlndij maximum ratio of original product j in blended product i
Decision
Variables
xp

ikqlvt the amount of product i loaded at port p (either k or q) on vessel type v on route
k − q − l, in time period t.

nkqvlt the number of vessels of type v on route k − q − l, in time period t.
wijkt the amount of original product j used to make blended product i at port k, in

time period t.
bikt The amount of product i blended at port k, in time period t.
Ijkt the amount of remaining stocks of original product j, at port k, at the end of

period t.
IBikt the amount of remaining stocks of blended product i, at port k, at the end of

period t.

The MIP formulation of our model is as follows:
Minimize∑

i,k,t

BCostkbikt +
∑

p∈{k,q}

∑
i,k,q,l,v,t

LCostpxp
ikqlvt +

∑
k,q,l,v,t

TCostkqlvnkqlvt (1)

subject to ∑
j

wijkt = bikt ∀i, j, k, t , (2)

wijkt − MaxBlndijbikt ≤ 0 ∀i, j, k, t ,

wijkt − MinBlndijbikt ≥ 0 ∀i, j, k, t ,
(3)

∑
i

bikt ≤ BCapk ∀k, t , (4)

Supplyjk = Ijk0 ∀j, k , (5)

∑
q,l,v

xk
ikqlvt +

∑
q,l,v

xk
iqklvt +

∑
i∈I

wijkt −Ij,k,t−1+Ij,k,t = 0 ∀i, j ∈ J, ∀k, t , (6)
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IBik0 = 0 ∀i, k , (7)

∑
q,l,v

xk
ikqlvt +

∑
q,l,v

xk
iqklvt − IBi,k,t−1 + IBi,k,t − bikt = 0 ∀i, k, t , (8)

∑
i∈{I,J}

∑
q,l,v

xk
ikqlvt +

∑
i∈{I,J}

∑
q,l,v

xk
iqklvt ≤ LCapk ∀k, t , (9)

∑
i∈{I,J}

xk
ikqlvt − DCapkvnkqlvt ≤ 0 ∀k, q, l, v, t , (10)

∑
i∈{I,J}

xk
ikqlvt +

∑
i∈{I,J}

xq
ikqlvt − DCapqvnkqlvt ≤ 0 ∀k, q, l, v, t , (11)

∑
p∈{k,q}

∑
i∈{I,J}

∑
k,q

xp
ikqlvt −

∑
k,q

DCaplvnkqlvt ≤ 0 ∀l, v, t , (12)

∑
i∈{I,J}

∑
p∈{k,q}

xp
ikqlvt − FCapvnkqlvt ≤ 0 ∀k, q, l, v, t , (13)

∑
p∈{k,q}

∑
k,q,v

= Dilt ∀i, l, t . (14)

In the above formulation, the objective function of the problem seeks to mini-
mize the total cost comprised of the blending, loading, and marine transportation
costs. Constraint sets (2) and (3) are required to meet the blended product spec-
ifications. Constraints (4) ensure that the amount of blended products must be
smaller than the blending capacity at each port. Constraints (5) guarantee that
the initial amount of original product at each port is equal to the inventory for
that original product at each port, at the end of the time period zero. Constraint
sets (6) and (8) assure the availability of the original and blended products at
each port, and in each time period, respectively. Constraints (7) ensure that
there is no initial amount of blended products at ports at the end of time period
0. Constraints in set (9) assure that the amount of products that are loaded from
the ports can not exceed the loading capacity for each port, and in each time pe-
riod. Constraints (10), (11) and (12) assure the draft capacity for the first, second
loading port and destination port and vessel type, respectively. Constraints (13)
enforce the vessel capacity restriction. Finally, demand constraints are imposed
by equations (14).

4 An Iterative Fixing Variable Heuristic Algorithm

In this section a solution procedure is developed that employs heuristic rules in
conjunction with branch and bound methods. The size of the problem instance
increases as with an increase in the number of ports, number of customers,
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vessel types, and products. Hence it is impractical to obtain exact solution for
the model in a reasonable computation time. For large-sized test problems, we
encountered out-of-memory difficulties before reaching any solution that was
within 1% optimality. We have thus developed a heuristic algorithm to obtain
near optimal solution in short computation time. Decomposition algorithms and
heuristic algorithms are also of considerable computational interest, since they
offer a possibility of avoiding the large amount of time needed to solve large
models to be structured.

The out of memory difficulties associated with solving the model primarily
stems from the large number of integer variables. This motivates the development
of a heuristic procedure that generates a solution in an iterative fashion, in which
each iteration involves a modified version of the model, where the integrality of
only a subset of the integer variables is enforced. This heuristic operated by
finding that integer variable n with the largest fractional value and then setting
this to nearest integer. The problem was then resolved, and the process repeated.
Data derived from an industrial operation was used to assemble a suit of ten
problems of different sizes. The characteristics of the various test problems are
provided in Table 2. We have generated these problems to test the model and
efficiency of the solution procedures.

Table 2. The multi-period blending and shipping problems tested

Problem
No

Number
of prod-
ucts
(j + i)

Number
of ports
(k)

Number
of cus-
tomers
(l)

Number
of vessel
type (v)

Number
of viable
routes
(k−q− l)

Number
of vari-
ables

Number
of con-
straints

1 4 + 2 4 2 2 26 324 385
2 4 + 2 4 3 2 39 486 539
3 4 + 2 4 2 3 22 492 570
4 5 + 2 5 2 3 36 598 585
5 5 + 2 5 3 3 54 1006 1015
6 5 + 2 5 3 4 54 1243 1304
7 6 + 2 6 3 4 72 1604 1705
8 6 + 2 6 4 4 96 1725 1878
9 6 + 2 6 5 4 114 1504 1720
10 6 + 2 7 5 5 160 3085 3148

We have tested two approaches to solve the problem. The first approach is
to use the integer programming solver CPLEX 8.0 [8] directly, and the second
approach is to use the fixing variable heuristic. Below, we present the heuristic
solution procedure that is designed to find good quality feasible solutions in
practice.

The main steps of the heuristic algorithm can be described as follows:

1. Solve linear relaxation of the problem.
2. If there are no variables with fractional values in the solution, then stop.
3. Select a fractional variable according to the following criterion:

i. Select the largest fractional variable with the earliest time period and
minimum transportation cost.
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4. Set the value of the selected fractional variable to nearest integer value. And,
go to step 1.

This sequential procedure is repeated until all relaxed “n” values have been
obtained integer values. The proposed heuristic does not guarantee feasible so-
lutions to any set of data. Infeasibilities might occur, because the demand is
not satisfied or certain capacity constraints are violated. To ensure feasibility,
the smallest-sized vessel type is assigned to the route and time period with very
small fractional values.

This procedure can be interpreted as a depth first search in a restricted branch
and bound scheme for integer programming. A similar heuristic approach can be
found in the papers by Barnhart et al. [1], Gunnarson et al. [7], Liu and Sherali
[10], in which variable fixing heuristic is suggested for solving different industrial
problems.

The proposed sequential fixing heuristic procedure is implemented with OPL
Script [9] linked to the solver CPLEX [8] on a notebook with a Pentium IV 1.4
GHz processor having 1 GB of RAM. No additional parameter settings are used
in CPLEX. The MIP problems were solved with a 1% optimality tolerance (the
relative difference between the best known bound and the best known integer
solution at which the search for better integer solutions stops).

5 Computational Results

In this section we present the results and analysis of the computational exper-
iments for a real life shipment planning problem. The test cases we have used
covers a period of three months. To validate the efficiency of the presented heuris-
tic, a series of computational experiments were carried out. During each loop of
the heuristic, integer restrictions on n variables are enforced. Table 3 compares
the heuristic with the mathematical model on different test problems with re-
spect to objective value, computation time, and the number of iterations. The
error rate of the heuristic to the optimal solution, that is computed by 100*(to-
tal cost obtained by CPLEX MIP solver- total cost obtained by the heuristic)/
total cost obtained by CPLEX MIP solver, remained relatively low, ranging 4∼
4.9 for the small-sized problems, 9.8∼11.7 for the medium/large-sized problems.

This heuristic enables us to retain the quality of the solution obtained by di-
rect solution of the problem to the extend possible and to handle larger problem
instances that are intractable for the direct approach. The computational exper-
iments described in this section were designed to evaluate the performance of
the heuristic algorithm with respect to a series of test problems. Several aspects
of the heuristic algorithm are worth discussing. The following facts may be sum-
marized based on computational results. Computational results on small-sized
problems indicate that the heuristic performed well in terms of both optimally
approximation and computation time. For instance, for problem 5 the heuristic
executes 16 loops and consumes 2454 simplex iterations and 7,13 CPU (s) to
solve the problem, while the CPLEX-MIP package enumerates 591067 branch
and bound nodes and performs 6967882 simplex iterations over 1281,45 CPU s.
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Table 3. Comparison of solutions and computational effort for the OPL-CPLEX MIP
package and the heuristic procedure, respectively
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1 2180 10878 1,49 11686733,04 28 1512 3,36 12161931,07 0,04
2 7323 55576 8,55 20994649,18 22 1980 3,96 22301567,64 0,05
3 365 1989 1,02 14306372,57 20 2150 3,8 14875136,22 0,04
4 58621 799550 125,56 20332456,46 38 3762 9,12 21244818,15 0,048
5 591067 6967882 1281,45 19901871,32 16 2454 7,13 20870631,99 0,049
6 154360 3783814 1288,13 18412671,32 28 4807 19,54 20207614,99 0,098
7 662780 11291917 2431,45 19770008,59 22 6810 22,28 21898936,66 0,108
8 624383 11258152 2730,93 23196357,83 47 11410 60,04 25764271,15 0,117
9 677544 11000400 3882,20 26148451,54 17 4848 14,61 28689682,36 0,098
10 1184959 12766068 8308,20 out-of-memory 81 19750 230,93 27157640,70 -

The error rate is 4.9% for this test problem. The error rates would be higher
on larger problems. However, the magnitude may be acceptable when we want
to obtain a good solution quickly for complex planning problems that can not
be easily solved in an optimal way. Conclusions about heuristics performance
are drawn by testing the algorithm on a wide collection of problem instances.
Although the results are not very close to optimality for larger problems, our
problem is a hard constrained real life problem.

While obtaining optimal solutions is desirable, deriving high quality solution
quickly is essential for any practical application. As can be seen from the foregoing
discussion, this section outlined the application of this heuristic procedure on a
real life case along with presentation of the effectiveness of the heuristic algorithm.

6 Conclusion

In this paper, we developed a MILP model and a fixing variable based heuristic
algorithm for the real shipment planning problem. An iterative variable fixing
heuristic designed to quickly find an integer solution and to enhance the solv-
ability of the proposed model. This heuristic operated by finding that integer
value with the largest fractional value and then setting this to the nearest in-
teger effectively fixing the number of vessels for some period. The problem was
then resolved and the process repeated. This heuristic is similar in spirit to
the constraint branching heuristic developed by Barnhart [1]. Computational
results indicate that the heuristic procedure requires for far fewer total simplex
iterations. The heuristic approach and CPLEX provide comparable solutions. A
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few words are now in order regarding recommendations for future work. Modifi-
cation of the heuristic algorithm would be needed to provide better performance
(reduce the computation time), improve bounds for the algorithm, and reduce
further the error rate of the heuristic procedure to be able to obtain the opti-
mal solution. It appears that more sophisticated techniques, e.g. decomposition
techniques could be used to circumvent the memory problem encountered with
the branch and bound algorithm and solve very large instances of the shipping
problem.
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Abstract. This paper introduces several approaches based on ant
colony optimization for efficient scheduling the surveying activities of
designing satellite surveying networks. These proposed approaches use a
set of agents called ants that cooperate to iteratively construct potential
observation schedules. Within the context of satellite surveying, a posi-
tioning network can be defined as a set of points which are coordinated
by placing receivers on these point to determine sessions between them.
The problem is to search for the best order in which these sessions can be
observed to give the best possible schedule. The same problem arise in
Mobile Phone Surveying networks. Several case studies have been used
to experimentally assess the performance of the proposed approaches in
terms of solution quality and computational effort.

1 Introduction

The continuing research on naturally occurring social systems offers the prospect
of creating artificial systems that generate practical solutions to many Combi-
natorial Optimization Problems (COPs). Metaheuristic techniques have evolved
rapidly in an attempt to find good solutions to these problems within a de-
sired time frame [6]. They attempt to solve complex optimization problems by
incorporating processes which are observed at work in real life [2,3]. For exam-
ple, in the case of ants, using their simple individual interactions mediated by
pheromone, they can collectively determine the shortest route from their nest to
a food source without using visual cues [1]. When applied to satellite surveying,
these techniques can assist surveyors in creating a better observation schedule
for designing the whole positioning network.

The purpose of surveying is to determine the locations of points on the earth.
Measuring tapes or chains require that the survey crew physically pass through
all the intervening terrain to measure the distance between two points. Survey-
ing methods have undergone a revolutionary change over that last few years
with the deployment of the satellite navigation systems. The most widely known
space systems are: the American Global Positioning System (GPS), the Russian
GLObal Navigation Satellite System (GLONASS), and the forthcoming Euro-
pean Satellite Navigation System (GALILEO). In this paper, it is the use of GPS
to establish surveying networks that is being investigated. GPS satellites contin-
uously transmit electrical signals to the earth while orbiting the earth. A receiver,
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with unknown position on the earth, has to detect and convert the signals trans-
mitted from all of the satellites into useful measurements. These measurements
would allow a user to compute a three-dimensional coordinates position for the
location of the receiver. To maximize the benefit of using this technique, sev-
eral procedures based on Ant Colony Optimization, have been developed and
implemented to find an efficient schedule to improve the performance and ex-
plore the search space more effectively [8]. In this paper we implement an Ant
Colony Optimization (ACO) algorithm applied to GPS surveying networks and
the general case of the problem is addressed by presenting several case studies
and the obtained numerical results. Our aim is to suggest various local search
procedures, to combine them with ACO technique and to check which one is the
best for this problem.

The rest of this paper is organized as follows. The general framework for GPS
surveying network problem as a combinatorial optimization problem is described
in Section 2. Then, the search strategy of the ACO is explained in Section 3.
Various local search procedures are described in Section 4. The ACO algorithm
coupled with local search procedures, applied to GPS surveying networks, is
outlined and the general case of the problem is addressed by presenting several
case studies and the obtained numerical results in Section 5. The paper ends
with a summary of the conclusions and directions for future research.

2 Formulating the GPS Surveying Network Problem

A GPS network is distinctly different from a classical survey network in that
no inter-visibility between stations is required. In GPS surveying, after defining
the locations of the points for an area to be surveyed, GPS receivers will be
used to map this area by creating a network of these coordinated points. These
points, control stations within the context of surveying, are fixed on the ground
and located by an experienced surveyor according to the nature of the land
and the requirements of the survey [5]. At least two receivers are required to
simultaneously observe GPS satellites, for a fixed period of time, where each
receiver is mounted on each station. The immediate outcome of the observation
is a session between these two stations. After completing the first stage of sessions
observation and defining the locations of the surveyed stations, the receivers are
moved to other stations for similar tasks till the whole network is completely
observed according to an observation schedule. The total cost of carrying out the
above survey, which is computed upon the criteria to be minimized, represents
the cost of moving receivers between stations. The problem is to search for the
best order, with respect to the time, in which these sessions can be observed to
give the cheapest schedule V, i.e.:

Minimize : C(V ) =
∑
p∈R

C(Sp)

where: C(V ) is the total cost of a feasible schedule V (N, R, U);
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Sp is the route of the receiver p in a schedule;
N is the set of stations N = 1, . . . , n;
R is the set of receivers R = 1, . . . , r;
U is the set of sessions U = 1, . . . , u.

3 Ant Colony Optimization

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to
follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto-catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithm uses a colony of artificial ants that behave as cooperative
agents in a mathematics space were they are allowed to search and reinforce
pathways (solutions) in order to find the optimal ones. The problem is repre-
sented by graph and the ants walk on the graph to construct solutions. After
initialization of the pheromone trails, ants construct feasible solutions, starting
from random nodes, then the pheromone trails are updated. At each step ants
compute a set of feasible moves and select the best one (according to some proba-
bilistic rules) to carry out the rest of the tour. The transition probability is based
on the heuristic information and pheromone trail level of the move. The higher
value of the pheromone and the heuristic information, the more profitable is to
select this move and resume the search. In the beginning, the initial pheromone
level is set to a small positive constant value τ0 and then ants update this value
after completing the construction stage. ACO algorithms adopt different crite-
ria to update the pheromone level. In our implementation we use Ant Colony
System (ACS) [4] approach.

In ACS the pheromone updating consists of two stages: local update stage
and global update stage.

3.1 Local Update Stage

While ants build their solution, at the same time they locally update the
pheromone level of the visited paths by applying the local update rule as follows:

τij ← (1 − ρ)τij + ρτ0 (1)

Where τij is an amount of the pheromone on the arc (i, j) of the graph of the
problem, ρ is a persistence of the trail and term (1 − ρ) can be interpreted as
trail evaporation.

The aim of the local updating rule is to make better use of the pheromone
information by dynamically changing the desirability of edges. Using this rule,
ants will search in a wide neighborhood of the best previous solution. As shown
in the formula, the pheromone level on the paths is highly related to the value
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of evaporation parameter ρ. The pheromone level will be reduced and this will
reduce the chance that the other ants will select the same solution and conse-
quently the search will be more diversified.

3.2 Global Updating Stage

When all ants have completed their solution, the pheromone level is updated
by applying the global updating rule only on the paths that belong to the best
solution since the beginning of the trial as follows:

τij ← (1 − ρ)τij + Δτij (2)

where Δτij =

⎧⎨
⎩

1/Cgb if (i, j) ∈ best solution

0 otherwise
,

Cgb is the cost of the best solution from the beginning. This global updating
rule is intended to provide a greater amount of pheromone on the paths of
the best solution, thus intensify the search around this solution. The transition
probability to select the next node is given as:

probk
ij(t) =

⎧⎪⎨
⎪⎩

τα
ijηβ

ij∑
s∈allowedk(t) τα

isηβ
is

if j ∈ allowedk(t)

0 otherwise

(3)

where τij is the intensity measure of the pheromone deposited by each ant on the
path (i, j), α the intensity control parameter, ηij is the visibility measure of the
quality of the path (i, j). This visibility is determined by ηij = 1/lij , where lij
is the cost of move from session i to session j. β is the visibility parameter and
allowedk(t) is the set of remaining feasible sessions. Thus the higher the value
of τij and ηij , the more profitable it is to include item j in the partial solution.

4 Local Search Strategy

The Local Search (LS) method (move-by-move method) perturbs a given solution
to generate different neighborhoods using a move generation mechanism. LS
attempts to improve an initial solution by a series of local improving changes. A
move-generation is a transition from a solution S to another one S′ ∈ V (S) in
one step. These solutions are selected and accepted according to some pre-defined
criteria. The returned solution S′ may not be optimal, but it is the best solution
in its local neighborhood V (S). A local optimal solution is a solution with the
local minimal possible cost value. Knowledge of a solution space is the essential
key to more efficient search strategies. These strategies are designed to use this
prior knowledge and to overcome the complexity of an exhaustive search by
organizing searches across the alternatives offered by a particular representation
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Fig. 1. The sequential local search structure (a)

Fig. 2. Local search structure (b1) with 1-exchange of edges

of the solution. The main purpose of LS implementation is to speed up and
improve the solutions constructed by the ACO.

In this paper, various local search structures that satisfy the requirements of
the GPS network, have been developed and implemented to search the schedule
space more effectively. The problem is represented by graph. The nodes corre-
spond to the sessions and the edges represents the distance. A solution is a path
in a graph (chain of nodes) which contains all nodes.

The first procedure [8,9], shown in a Figure 1, is based on the sequential
session-interchange, the potential pair-swaps are examined in the order {1, 2},
{1, 3}, . . . , {1, u}, {2, 3}, {2, 4}, {u−1, u} (For comparison reasons this sequential
local search procedure is called structure a).

In the second procedure as shown graphically in Figure 2, A and B are chains
of nodes (solution slices), while {0, i} and {i + 1, u} are the first and the last
nodes of the chains A and B respectively. In this procedure, only one exchange
has been performed of new edge (u − 1, 0) each iteration and this can be done
by selecting one edge (i, i + 1) to be removed (For comparison reasons this local
search procedure is called structure b1).

In the third procedure as shown graphically in Figure 3, A, B and C are chains
of nodes (part of the solution), while {0, i}, {i + 1, j}, and {j + 1, u − 1} are the
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Fig. 3. Local search structure (b2) with 2-exchange of edges

first and the last nodes of the chains A, B and C respectively. In the case of a
2-exchange, there are several possibilities to build a new solution where the edges
(i, i+1) and (j, j+1) are selected to be removed in one iteration (For comparison
reasons this local search procedure is called structure b2). The possibilities for
new edges are (j, 0) and (i, j + 1), (i, j + 1) and (u − 1, i + 1), (u − 1, i + 1) and
(j, 0) where 0 ≤ i < j ≤ u − 1. In both procedures u is the number of sessions
in the observed network.

5 Experimental Results

This section reports on the computational experience of the ACS coupled with
various local search procedures using real GPS networks. The first network is a
GPS network for Malta and consists of 38 sessions [8]. The initial schedule with
a cost of 1405 minutes was composed. The second network is a GPS network
for the Seychelles and consists of 71 sessions [9]. The initial schedule with a cost
of 994 minutes was composed. The performance of the developed metaheuristic
techniques were evaluated with respect to the schedule quality and computa-
tional effort using the following measure:

RRC = [(CINT − C(V ))/CINT ] ∗ 100

Where:
RRC is the Relative Reduction of the Cost;
CINT is the Cost of the Initial Schedule VINT obtained randomly.
Ca is the Cost of the metaheuristic schedule obtained by procedure a.
Cb1 is the Cost of the metaheuristic schedule obtained by procedure b1.
Cb2 is the Cost of the metaheuristic schedule obtained by procedure b2.
TS is the Cost of the metaheuristic schedule in [8,9] obtained by tabu search.
SA is the Cost of the metaheuristic schedule in [8,9] obtained by simulated

annealing.
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Table 1. Comparison of local search techniques applied to different types of GPS
networks

Data Malta RRC Seychelles RRC
network network

U 38 71

CINT 1405 0 994 0

Ca 880 37.37 859 13.58

Cb1 685 51.24 807 18.81

Cb2 850 39.50 871 12.37

TS 1075 23.5 933 6.14

SA 1375 2.14 969 2.52

The following parameter settings is used: ρ = 0.4, α = β = 1. The initial
amount of the pheromone was set to a fixed value τ0 = 0.0005 on all edges, while
the number of iterations was set to 200. The reported results are average results
over 20 runs. The developed technique has been coded in C++ and implemented
on a Pentium 3 with 900MHz speed and 512 MB RAM.

The Table 1 shows the advantage of ACO techniques using various local search
procedures. ACO technique using local search procedure (b1) produced the best
results. With respect to the Malta network with size of 38 sessions, the RRC of
the metaheuristic schedule produced by the ACO technique is 37.37% using local
search procedure (a), compared to RRC of 51.24% using local search procedure
(b1), RRC of 39.50% using local search procedure (b2). In the Seychelles network
with size of 71 sessions, the RRC of the metaheuristic schedule produced by the
ACO is 13.58% using local search procedure (a), compared to RRC of 18.81%
using local search procedure (b1), RRC of 12.37% using local search procedure
(b2). In this comparison, local search procedure (b1) gives better results than the
other local search procedures for the both GPS networks. ACO is a constructive
method and the selected set of neighbors has not so important role in achieving
good results. Having better results using the procedure (b1) is due its features:
more economic and less perturbs the pheromone. All ACO algorithm outperforms
TS and SA.

6 Concluding Remarks and Future Work

In this paper, two local search procedures have been developed and compared
with local search procedure from [8] and [9] (structure a). The comparison of the
performance of the ACO with these procedures applied to different types and
sizes of GPS networks is reported. The obtained results are encouraging and the
ability of the developed techniques to generate rapidly high-quality solutions for
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observing GPS networks can be seen. For the future work, the developed local
search procedures in this paper will be coupled with other metaheuristics to
search for further improvement and provide a practical comparison, based on
the success of the developed ACO algorithm for constructing optimal solutions
for large GPS positioning networks which form the basic framework for geomatic
information that support all the environmental activities in the countries.
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Abstract. This paper presents a solution methodology to tackle a new
realistic vehicle routing problem that incorporates heterogeneous fleet,
multiple commodities and multiple vehicle compartments. The objec-
tive is to find minimum cost routes for a fleet of heterogeneous vehicles
without violating capacity, loading and time window constraints. The
solution methodology hybridizes in a reactive fashion systematic diversi-
fication mechanisms of Greedy Randomized Adaptive Search Procedures
with Variable Neighborhood Search for intensification local search. Com-
putational results reported justify the applicability of the methodology.

1 Introduction

The goal of this paper is to develop a solution method that addresses a realistic
Vehicle Routing Problem (VRP) which, according to our knowledge, has not
appeared in literature before. The problem can be stated as follows: a heteroge-
neous fixed fleet of depot returning vehicles with multiple storage compartments,
transport different commodities to a set of customers of known demand within
an interval during which delivery has to take place. Each customer is serviced
only once by exactly one vehicle. The objective is to design a minimum cost fleet
mix using the available fleet composition following routes of minimum distance,
such that vehicle capacity, loading and time window constraints are satisfied.

The underlying mathematical problem can be accurately described as follows:
Let G = (V, A) be a complete graph, where V = {0, 1, ..., n + 1} is the node set,
A = {(i, j) : 0 ≤ i, j ≤ n, i �= j} is the arc set and the depot is represented
by nodes 0 and n + 1. All feasible vehicle routes correspond to paths in G that
start from 0 and end at n + 1. A set K of available heterogeneous vehicles,
equipped with |M | compartments of known capacity Ck

m (m= 1,2,. . . ,|M | and
k = 1,2,. . . ,|K|). Each customer i is associated with a known demand, dq

i , of a
predefined commodity q (q = 1,2,. . . ,|Q|). Furthermore, each customer poses a
time window [ai, bi] that models the earliest and latest time that the service of
i can take place. The service of each customer must start within the associated
time window, while the vehicle must stop at the customer’s location for si. In
case of early arrival at the location of i, the vehicle is allowed to wait until ai.
� Correspondence: Evelpidon 47A, 11362, Athens, Greece.
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There is a nonnegative travel cost ck
ij , a travel time tkij and a distance hk

ij as-
sociated with each arc (i, j) of set A, with respect to the vehicle k ∈ K. Further-
more, a cost yk is relevant to the activation of vehicle k ∈ K. The total number
of customers is n, i.e., n = |V | - 2. Indices i, j and u refer to customers and take
values between 1 and n. A time window is also associated with nodes 0 and n+1,
i.e., [a0, b0]=[an+1, bn+1]=[E, L], where E and L represent the earliest possible
departure from the depot and the latest possible return. Feasible solutions exist
only if a0 = E ≤ mini∈V \{0} bi − t0i and bn+1 = L ≥ mini∈V \{0} ai + si + ti0.
Additionally, let flow binary variables xk

ij model the sequence in which vehicles
visit customers (xk

ij equals 1 if i precedes j visited by vehicle k; 0 otherwise),
and wik specify the arrival time at i when serviced by vehicle k. Finally, binary
variables fk

mq couple vehicle k’s compartment m with a commodity q.
Each route must satisfy fixed fleet, loading and time window constraints.

Fixed fleet constraint state that
∑

k∈K

∑
j∈N xk

0j ≤ |K|. The latter bounds the
number of vehicles that can be deployed. Time window constraints state that
ai

∑
j∈Δ+(i) xk

ij ≤ wik ≤ bi

∑
j∈Δ+(i) xk

ij for all k ∈ K and i ∈ N , where Δ+(i)
denotes the set of nodes j such that arc (i, j) ∈ A. Loading poses the following
condition: although all compartments can hold all commodities, during one route
each compartment m must hold a single commodity q. The latter implies that a
route r is feasible only if

∑
i∈r dq

i (
∑

j∈r xk
ij) =

∑
m∈M fk

mqC
k
m and

∑
q∈Q fk

mq≤1
for all q ∈ Q.

The objective is to determine the fleet of vehicles such that fixed costs and
travel costs are minimized, or similarly to determine the optimal fleet composi-
tion with minimum overall distribution costs within the fixed fleet restrictions.
This combined objective reflects the trade off between fixed vehicle activa-
tion cost and variable distribution cost. Given the above-defined variables and
parameters, the objective function of the problem can be formulated
as follows:

min
∑
k∈K

∑
(i,j)∈A

ck
ijx

k
ij +

∑
k∈K

yk

∑
j∈N

xk
0j . (1)

In the literature, problems where vehicles are equipped with two or more com-
partments are known as Multiple Compartment VRP. The use of multiple com-
partments is relevant when vehicles transport several commodities which must
remain separate. The latter complicates matters since the loading (packing) of
commodities with different volume into a finite number of compartments (bins)
of different capacity, using the least number of compartments or maximizing
the total free available capacity of a vehicle, is not always straightforward [1].
Other routing problem related to the one studied in this research are the VRP
with Time Windows (VRPTW) [2], the Fleet Size and Mix VRP [3] and the
Heterogeneous Fixed Fleet VRP [4]. Finally, interested readers may refer to
[5] for the latest application of metaheuristics on combinatorial optimization
problems.
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2 Solution Methodology

A hybrid metaheuristic which employs Greedy Randomized Adaptive Search
Procedures (GRASP)[6] for diversification and Variable Neighborhood Search
(VNS)[7] for intensification local search, is proposed in this work. GRASP is an
iterative multi-start method which combines greedy heuristics, randomization
and local search. The GRASP greedy randomization mechanism is character-
ized by a dynamic constructive heuristic and randomization. Initially, a solution
is constructed iteratively by adding a new element to the partial incomplete so-
lution. All elements are ordered in a list, called restricted candidate list (RCL)
composed of the λ highest quality elements, with respect to an adaptive greedy
function. The probabilistic component is determined by randomly choosing one
of the best element in the list, but not necessary the top of the list. Subsequently,
the feasible solution found at each iteration is subject to local search. The over-
all procedure is repeated until some termination conditions are met. Given that
GRASP constructions inject a degree of diversification to the search process,
the improvement phase may consist of a VNS that is tuned for intensification
local search. Recent developments propose such hybrids where construction is
followed by sophisticated local search and post optimization procedures [5].

Common to most metaheuristic is that the balance between diversification and
intensification determines their effectiveness. This implies quick identification
of regions with high quality solutions. The repetitive sampling mechanism of
GRASP, it is controlled by the size of RCL. In our implementation RCL is
cardinality based; thus, it comprises λ elements with the best incremental costs.
Obviously, cases where λ = 1 corresponds to pure greedy construction, while
λ � 1 is equivalent to random construction. Let ṡ and s̈ denote two solutions
produced by two sequential construction phase iterations. A possible approach
to measure quantitatively their diversity is to measure their dissimilarity Ds̈

ṡ.
The latter can be defined as the number of different arcs between ṡ and s̈, i.e.:

Ds̈
ṡ =

∑
(i,j)∈A

ξij , (2)

where the binary variable ξij is equal to 1 if (i, j) is an arc of both ṡ and s̈;
0 otherwise. The larger the λ the larger the distance Ds̈

ṡ, and thus the better
the sampling of the solution space. On the other hand, while λ tends to increase
from 1, the worse is the quality of the solutions produced, and thus, the more the
computational effort needed by the local search phase to improve the incumbent
solution’s quality. Thus, appropriate choice of the λ value is critical.

Given these definitions, a probabilistic learning mechanism is proposed, as an
extension of the basic memoryless GRASP procedure, called Reactive GRASP
[8], in which the size of RCL is self tuned, capturing both trends discussed
above. Let a non fixed size λ take values, at each iteration, from a discrete set
such that Λ = {λ1, λ2, . . . , λν}. The probabilities associated with the choice of
each value are initially equal to Bτ = 1/|Λ|, where τ = 1, 2, . . . , ν. Moreover,
let ṡ and s̈ be two sequential incumbent solutions, Aτ be the average objec-
tive function value and Dτ the average dissimilarity of all solutions found using
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λ = λτ . All probabilities are reevaluated once, by taking Bτ = βτ/
∑ν

υ=1 βυ,
where βτ = Aτ/s̈ + Ds̈

ṡ/Dτ for τ = 1, 2, . . . , ν. The first component, Aτ/s̈, ex-
presses the ratio between the overall average values found so far, Aτ , and the
value of the current solution s̈ using λτ . Obviously, Aτ/s̈ will increase when
better (on average) solution values are found. Similarly, the larger the distance
between ṡ and s̈ against the average distance Dτ , the larger their ratio. There-
fore, the value of βτ will be larger for values of λτ leading to the best valued
and most diversified solutions (on average). Larger values of βτ correspond to
more suitable values of λ. Thus, the probabilities of these more appropriate val-
ues will then increase when they are reevaluated. The above reactive approach
of reducing progressively the set Λ, improves significantly robustness and solu-
tion quality, due to greater diversification and less reliance on parameter tuning.
Below, the proposed solution framework is provided as pseudocode. The termi-
nation condition bounds the allowed computational time to an upper limit.

Reactive GRASP-VNS
Λ←InitializeSet(|N |/10), index←1
For all elements λi∈Λ Do Initialize (Di,Ai,Bi)
While termination conditions not met do λ←λindex, s←∅

While solution not complete do
RCLλindex

← Build Restricted Candidate List(s)
x ← Select Element At Random(RCLλindex

)
s ← s∪{x}, Update Greedy Function(s)

End while
VNS(s), UpdateBestSolution(s,elite), Reevaluate(Dindex,Aindex,Bindex)
If index = |Λ| AND |Λ| > 1 Do

Remove λi with the smallest Bi from set Λ, index←0
Else index←index+1

Endwhile

2.1 Construction Heuristic

The proposed construction phase adopts the generic parallel construction frame-
work presented in [9] enhanced with additional customer selection criteria. Let
πij,u denote the insertion cost of an unassigned customer u when inserted be-
tween i and j in a partial solution Ω. For every feasible insertion position of u
into a route ρ, the minimum insertion cost πρ,u = mini,j∈ρ πij,u is found. Sim-
ilarly, the overall minimum insertion cost πρ∗,u corresponds to the minρ∈Ω πρ,u

and denotes the best feasible insertion position at route ρ∗ of u. Subsequently,
a penalty cost, Πu is calculated for every unassigned customer. This penalty
can be viewed as a measure of the cost that would have to be paid later if the
corresponding customer is not assigned to its current best position.

Πu =
∑
ρ∈Ω

(πρ,u − πρ∗,u) . (3)

Large Πu values indicate that u should be considered first to avoid paying later
a relatively high cost, while the insertion of customers with small penalty values
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can be delayed. Thus, for customers that cannot be feasibly inserted into a route,
the insertion cost must be set to a large value lv, in order to force Πu to large
values as well. In [9] lv was set to infinity. Alternatively, we propose an intuitively
intelligent approach that adaptively tunes the values of lv. In particular, lv is set
equal to the difference between the overall maximum and minimum insertion cost
of all unassigned customers u for the existing set of routes. Thereafter, whenever
a customer u cannot be feasibly inserted into a route ρ, the current penalty Πu

is incremented by maxu∈V {maxρ∈Ω{πρ,u}} − minu∈V {minρ∈Ω{πρ,u}}. Finally,
cost πij,u is defined as a weighted combined result from several sub-metrics, i.e.:

πij,u = ϑ1π
1
ij,u + ϑ2π

2
ij,u + ϑ3π

3
ij,u + ϑ4π

4
ij,k , (4)

where ϑ1,ϑ2,ϑ3 and ϑ4 are nonnegative weights such that ϑ1 +ϑ2 +ϑ3 +ϑ4 = 1.
Component π1

ij,u measures the distance increase caused by the insertion of u
[10]:

π1
ij,u = tiu + tuj − tij . (5)

Component π2
ij,u measures the time delay related to the vehicle arrival at j [10]:

π2
ij,u = (wuk + su + tuj) − (wik + si + tij) . (6)

Component π3
ij,u maps large loads into small costs. Let QCk

i,q denote the available
capacity of commodity q which a vehicle k can hold when it arrives at i. Then:

π3
ij,u = min

i∈ρ∪{u}
QCk

i,q − dq
u . (7)

Finally, π4
ij,u accounts vehicle utilization. Let, FCk

u denote the total capacity of
unutilized compartments. These unutilized compartments can accommodate all
commodities, contrary to utilized compartments which can accommodate only
the commodity already carried at the residual space left RCk

ρ , if any. Thus:

π4r
ij,u = RCk

ρ∩{u} − RCk
ρ∪{u} , (8)

where RCρ
k is defined as RCρ

k =
∑

q∈Q

(
mini∈ρ QCk

i,q − mini∈ρ FCk
i

)
. Finally,

in cases where infeasible vehicles are employed to service unassigned customers,
the route elimination procedure proposed in [2] is applied to restore feasibility.

2.2 Multi Compartment-Commodity Loading Heuristic

Let r denote a route performed by a vehicle k of a partial solution Ω, serving
a set of customers Ξ ⊆ V/{0, n + 1}. Let Dq denote the aggregate quantity
of a particular commodity q of all customers i ∈ Ξ such that Dq=

∑
i∈Ξ dq

i .
The proposed loading heuristic, in a semi parallel construction fashion, assigns
quantities and couples compartments with particular commodities based on two
criteria, for commodity and compartment selection. In particular, the objective
at each iteration is to load first the commodity q that maximizes FCk

r , while the
associate compartments assigned are those that minimize RCk

r .
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Initially, all compartments m of vehicle k are considered empty and Dq is cal-
culated for all q. Next, each unloaded Dq is sequentially loaded temporarily into
compartments and the associated FCk

r is determined in the following manner:
First the empty unutilized m′ with maximum available capacity is identified. If
m′ can accommodate only part of Dq (Dq ≥ Ck

m′), m′ is marked temporarily as
utilized, the residual left is set to 0 and Dq is reduced by Ck

m′ units. Otherwise,
if m′ can hold all Dq (Dq < Ck

m′), m′′ that minimizes RCk
r is selected, it is

marked temporarily as utilized and Dq is set to 0. This procedure is repeated
until Dq equals 0. Consequently, the FCk

r obtained is stored, all temporarily
marked compartments are re-initialized and the overall procedure is repeated
for all unloaded Dq. Next, the Dq̂ of q̂ that maximizes FCk

r is loaded and the
associated compartments are permanently marked as utilized. The latter proce-
dure iterates until all commodities are loaded.

2.3 Variable Neighborhood Search

Variable Neighborhood Search (VNS) explicitly applies a strategy based on dy-
namically changing neighborhood structures [7]. Herein, the variant called Vari-
able Neighborhood Descent (VND) is utilized. At the initialization step, a set
of γ neighborhood structures with increasing cardinality (|N1|<|N2|. . .|Nγmax |)
is defined. Given an initial solution, the neighborhood index is initialized and
the algorithm performs an exploration of the solution space for each respective
neighborhood structure. At each iteration a best improvement local search is
applied until a local minimum is found. If f(s′)<f(s), s is replaced by s′ and the
algorithm continues. Otherwise, γ is incremented (moving phase). The process of
changing neighborhoods with increasing cardinality, in case of no improvements,
corresponds to diversification of the search close to the incumbent solution, since
the neighborhood structure defines the topology of the search landscape.

Variable Neighborhood Descent
Select a set of neighborhood structures Nγ , γ=1,2,. . .,γmax

s ← InitialSolution()
While no improvement can be obtained do k ← 1

While γ≤γmax do
s′←FindBestNeighborhood(s′ ∈ Nγ(s))
if (f(s′)<f(s)) then s ← s′, γ ← 1
else γ ← γ+1

Endwhile
VehicleReassignment()

Endwhile

A vehicle reassignment mechanism is embedded within the VND scheme. The
main objective is to improve the vehicle’s capacity utilization through reciprocal
exchange of the vehicles deployed between two routes. Moreover, such an ap-
proach allows the efficient exploration of the solution space since the sequence
of customers served by vehicles are maintained intact. Finally, the definition of
rich neighborhood structures increases the possibilities of finding higher quality
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local optimum solutions. In particular, the neighborhoods used are defined as a
blend of well known local search moves, such as 2-Opt, 0-1 Relocate, Cross, 1-1
Interchange and Or-Opt.

3 Computational Results

For the evaluation of the proposed solution method, various experiments were
conducted. All computational results reported herein are based on the bench-
mark data sets of [11]. These data sets proposed for the Fleet Size and Mix
VRPTW. However, since we are not aware of benchmarks instances for the
problem considered in this paper, we assumed the best fleet mix obtained in [11]
to be the given fixed fleet. The latter approach was also followed in [12] and [13]
for the Heterogeneous Fixed Fleet VRP. Moreover, based on the characteristics of
the fleet mix of [11], new benchmark data sets generated. These data sets, along
with the characteristics and specifications of the vehicle fleet (fleet composition,
fixed costs, capacity per compartment etc.) are available online at
(http://www.msl.aueb.gr/management_science/MCCHFFVRPTW/nbdc.html).

Initially, the single commodity case was examined, i.e., the relaxed, in terms
of loading constraints, instance of the problem. The resulting problem is a Het-
erogeneous Fixed Fleet VRPTW and can be directly compared to the solutions
produced by the heuristics with improvement (LS) proposed in [11]. Table 1 il-
lustrates the performance of LS and the proposed reactive GRASP-VNS which
produced substantially better distribution costs (DC1).

Table 1. Computational results for the multi commodity/compartment problem

Instance Fleet Mix LS [11] Reactive GRASP-VNS
DC1 DC1 DC2 DC3

R101a A1B11C11D1 5061,00 4492,20 4682,31 -
R102a A1B4C14D2 5013,00 4375,91 4553,42 4656,34
R103a B7C15 4772,00 4213,08 4293,31 4464,57
R104a B9C14 4455,00 4131,93 4311,33 4342,45

RC101a A7B7C7 5687,00 5371,34 5583,45 5843,87
RC102a A5B6C8 5649,00 5199,56 5534,75 5547,13
RC103a A11B2C8 5419,00 5111,23 5365,42 5389,94
RC104a A2B13C3D1 5189,00 5102,97 5493,61 5612,57

Furthermore, in order to consider loading constraints, two cases were exam-
ined with 2 (DC2) and 3 (DC3) commodities (see Table 1) using the same fleet
mix as the given fixed fleet. In almost all cases the proposed method produced
feasible solutions. However, contrary to the results obtained without loading con-
straints (DC1), the distribution costs increased accordingly, since the problem
become more constrained. The latter intensifies for problem instances with 3
commodities. Indeed, for the problem instance R101, with tight time windows,
no feasible solution could be obtained for the given fixed fleet.
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4 Conclusions

This paper presented a robust and effective solution method to tackle a new
realistic VRP which incorporated customers’ time windows, heterogeneous fixed
fleet of vehicles and multiple commodities and compartments. The proposed
methodology hybridized the diversification mechanisms of GRASP with VNS for
intensification local search, in a reactive fashion utilizing a probabilistic learning
mechanism for the strategic sampling of the search space. Computational results
justified the applicability of the methodology. In terms of further research, ad-
ditional memory structures that exploit to a larger extent information gathered
during the search, is a worth pursuing research direction.

Acknowledgements. This work is supported by the General Secretariat for
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References

1. Scholl, A., Klein, R., Jürgens, C.: BISON: a fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Comp. & Opns. Res. 24(1997)
627–645

2. Bräysy, O.: A Reactive Variable Neighborhood Search for the Vehicle Routing
Problem with Time Windows. INFORMS J. Comp. 15(2003) 347–368

3. Golden, B., Assad, A., Levy, L., Gheysens, F.: The fleet size and mix vehicle routing
problem. Comp. & Opns. Res. 11(1984) 49–66

4. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A list based threshold accept-
ing metaheuristic for the heterogeneous fixed fleet vehicle routing problem. J. Opl.
Res. Soc. 54(2003) 65–71

5. Gendreau, M., Potvin, J-Y.: Metaheuristics in Combinatorial Optimization, Anns.
Opns. Res. 140(2005) 189–213

6. Feo, T., and Resende, M.: Greedy randomized adaptive search procedures. J. Glb.
Opt. 6(1995) 109–154

7. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions, Eur. J. Opl. Res. 130(2002) 449–467

8. Prais, M., Rideiro, C.C.: Parameter variation in GRASP procedures. Investigación
Operativa 9(2000) 1–20

9. Kontoravdis, G.,Bard, J.F.: A GRASP for the vehicle routing problem with time
windows. ORSA J. Comp. 7(1995) 10–23

10. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Opns. Res. 35(1987) 254–265

11. Liu, F.H., Shen, S.Y.,: The Fleet Size and Mix Routing Problem with Time Win-
dows. J. Opl Res. Soc. 50(1999) 721–732

12. Taillard, E.D.,: A heuristic column generation method for the heterogeneous fleet
VRP. RAIRO 33(1999) 1–14

13. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A threshold accepting meta-
heuristic for the heterogeneous fixed fleet vehicle routing problem. Eur. J. Opl.
Res. 152(2004) 148–158.



Multipopulation Genetic Algorithms: A Tool for

Parameter Optimization of Cultivation
Processes Models

Olympia Roeva

CBE “Prof. Ivan Daskalov” - BAS,
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

olympia@clbme.bas.bg

Abstract. This paper endeavors to show that genetic algorithms, name-
ly Multipopulation genetic algorithms (MpGA), are of great utility in
cases where complex cultivation process models have to be identified
and, therefore, rational choices have to be made. A system of five ordi-
nary differential equations is proposed to model biomass growth, glucose
utilization and acetate formation. Parameter optimization is carried out
using experimental data set from an E. coli cultivation. Several conven-
tional algorithms for parameter identification (Gauss-Newton, Simplex
Search and Steepest Descent) are compared to the MpGA. A general
comment on this study is that traditional optimization methods are gen-
erally not universal and the most successful optimization algorithms on
any particular domain, especially for the parameter optimization consid-
ered here. They have been fairly successful at solving problems of type
which exhibit bad behavior like multimodal or nondifferentiable for more
conventional based techniques.

1 Introduction

A major deficiency in computational approaches to design and optimization of
bioprocess systems is the lack of applicable methods. Cultivation processes are
complex highly nonlinear dynamic systems and their modeling and optimiza-
tion is a complicated and rather time consuming task. The important part of
model building is the choice of a certain optimization procedure for parameter
estimation, so with a given set of experimental data to calibrate the model in
order to reproduce the experimental results in the best possible way. This math-
ematical problem, so-called inverse problem, is a big challenge for the traditional
optimization methods. Various meta-heuristics are used as an alternative to sur-
mount the parameter estimation difficulties. Simulated annealing, tabu search,
evolutionary algorithms like genetic algorithms (GAs) and evolution strategies,
ant colony optimization, estimation of distribution algorithms, scatter search,
path relinking, the greedy randomized adaptive search procedure, multi-start
and iterated local search, guided local search, and variable neighborhood search
are - among others - often listed as examples of classical meta-heuristics, and
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they have individual historical backgrounds and follow different paradigms and
philosophies [4,5,7,10].

The genetic algorithms are widespread optimization technique and they find
applications in a large domain of problems. GAs are successfully applied in
the areas of engineering, control, neural networks, signal processing and pat-
tern recognition, molecular docking, parameter fitting, manufacturing, cluster-
ing, scheduling, robotics and machine learning [8,12,13]. A genetic algorithm
requires only information concerning the quality of the solution produced by
each parameter set (objective function value information). This characteristic
differs from the optimization methods that require derivative information or,
worse yet, complete knowledge of the problem structure and parameters. Since
GAs do not require such problem-specific information, they are more flexible
than the most search methods. A single population genetic algorithm is power-
ful and performs well on a broad class of problems. However, better results can
be obtained by introducing many populations, so-called Multipopulation genetic
algorithm (MpGA) [1,8,11]. The MpGA models the evolution of a species in a
way more similar to the nature than the single population genetic algorithm.

In this paper a Multipopulation genetic algorithm for the identification of fed-
batch cultivation of E. coli is proposed. The main purpose is to investigate if the
MpGA can provide more efficient and reliable results for considered parameter
identification problem. The input-output measurement data are used to estimate
the model parameters such that a certain objective function is minimized. The
results of three conventional search methods, namely Gauss-Newton (GN), Sim-
plex Search (SS) and Steepest Descent (SD), as a ”competing” set of algorithm
candidates, are presented for comparison with the MpGA.

The paper is organized as follows: theoretical background of Multipopulation
genetic algorithms and the algorithm parameters and operators used here are
described in Section 2. Parameter identification problem concerning considered
cultivation process is formulated in Section 3. The results and discussion are
presented in Section 4. Conclusion remarks are done in Section 5.

2 Multipopulation Genetic Algorithm

Multipopulation genetic algorithm works on a coding of the parameter space.
The coding is an essential part of the GAs design procedure and results in for-
mation of strings composed of characters belonging to a finite alphabet. Having
decided on the coding to be used (real-value encoding here), initial sets sub-
populations (subpop = 5) are created at random. Each subpopulation contains
a certain number of individuals (nind = 100). An objective function (usually
referred to as fitness function in GAs terminology) serves as a measure of good-
ness of a string and is a functional of the function that will be optimized. In
the next step individuals represented by their fitness function are ranked. Chro-
mosomes from a population are selected according to their fitness: the better
fitness, the bigger chance to be selected. Thus solutions from one population are
taken and used to form a new population. This is motivated by the hope, that
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the new population will be better than the old one. A certain function perform-
ing selection (roulette-wheel selection here) concordant with the generation gap
(ggap = 0.97) is used. Roulette-wheel selection is the simplest selection scheme,
also called stochastic sampling with replacement. In the next step a set of op-
erators is applied to the initial populations to generate successive generations.
The selected individuals are then recombined (extended intermediate recomb-
ination) in order to form new offspring (children) crossing over the parents with
a crossover probability (xovr = 0.7). Then, mutation (breeder mutation) takes
place with mutation rate (mutr = 0.05). For the new individuals of the subpop-
ulations the objective function values are calculated. Fitness-based reinsertion is
used with given insertion rate (insr = 0.2). The new offspring is inserted in the
population. The new generated population is used for a further run of the algo-
rithm. The subpopulations evolve independently from each other for a certain
number of generations - isolation time (miggen = 20). After the isolation time
a number of individuals is distributed between the subpopulations (migration).
The migration rate (migr = 0.2), the selection function of the individuals for
migration and the scheme of migration determine how much genetic diversity
can occur in the subpopulations and the exchange of information between sub-
populations. The selection of the individuals for migration is fitness-based. The
best fit of each subpopulation is selected for migration. Here, the individuals
migrate based on neighborhood migration topology. Migration is made only be-
tween nearest neighbors. For each subpopulation, the possible immigrants are
determined, according to the selection method, from adjacent subpopulations
and a final selection made from this pool of individuals. This ensures that in-
dividuals will not migrate from a subpopulation to the same subpopulation.
Fitness-based migration selects individuals according to their fitness level and
replaces individuals in a subpopulation uniformly at random.

Natural evolution of the subpopulations continues until a predetermined num-
ber of generations (maxgen = 150) is reached.

Some adjustments of the genetic parameters, according to the regarded prob-
lem, have to be done to improve the optimization capability and the decision
speed. The primary choice of genetic operators and parameters depends on the
problem, as well as on the chosen encoding. An inappropriate choice of opera-
tors and parameters in the evolutionary process makes the GAs susceptible to
premature convergence.

3 Model Parameter Identification of a Fed-Batch
Cultivation of Escherichia coli

The cultivation condition of the fed-batch cultivation of E. coli and the exper-
imental data have been published previously [6] as a result of teamwork of the
DFG Project between CBE ”Prof. I. Daskalov” - BAS and University of Han-
nover, Germany. The mathematical formulation of the nonlinear dynamic model
of E. coli cultivation is described according to the mass balance as follows:
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dX
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= μmax

S

kS + S
X − F

V
X , (1)

dS
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= − 1
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S

kS + S
X +

F

V
(Sin − S) , (2)

dA
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=

1
YA/X

μmax
S

kS + S
X − F

V
A , (3)

dV

dt
= F , (4)

where: X is biomass concentration, [g/l]; S - substrate concentration, [g/l]; A -
acetate concentration, [g/l]; F - feeding rate, [l/h]; V - bioreactor volume, [l]; Sin

- substrate concentration in the feeding solution, [g/l]; μmax - maximum value
of the specific growth rate, [1/h]; kS - saturation constant, [g/l]; YS/X and YA/X

- yield coefficients.
As it shown, the model consisted of a set of four differential equations (Eqs.

(1) - (4)) thus represented three dependent state variables, x = [X, S, A], and
four parameters, p = [μmax, kS , YS/X , YA/X ]. Parameter estimation problem
of nonlinear dynamic system is stated as the minimization of a distance mea-
sure J between experimental and model predicted values of the considered state
variables:

J = JX + JS + JA → min, (5)

where: JX =
∑N

i=1[Xexp(i) − Xmod(i)]2; JS =
∑N

i=1[Sexp(i) − Smod(i)]2; JA =∑N
i=1[Aexp(i)−Amod(i)]2; N is the number of data for each state variable; Xexp,

Sexp and Aexp represent the known experimental data; Xmod, Smod and Amod

are model predictions with a given set of the 4 parameters.

4 Results and Discussion

Based on off-line measurements of biomass and acetate concentrations and on-
line measurements of glucose concentration a parameter identification using
MpGA, GN, SS and SD methods is performed. For fair comparison the Matlab
implementation is considered for all methods. For the implementation of Simplex
Search method, the Matlab 5.3 Optimization Toolbox function ”fmins” is used.
The function ”fmins” uses the Nelder-Mead simplex (direct search) method. The
Gauss-Newton optimization function used here is the ”leastsq” function. For the
Steepest Descent method the function ”fminu” is used. Multipopulation genetic
algorithm using Genetic Algorithm Toolbox [2] is applied. All the computations
are performed using a PC/Pentium IV (3 GHz) platform running Windows XP.

The results from the identification are presented in Table 1. The best results
are marked in bold. The estimates of the yield of glucose per biomass using
considered search methods are in the interval YS/X = [0.33 0.67]. Levisauskas et
al. have reported similar results [9]. For yield of acetate per biomass SD method
and MpGA are achieved the values of YA/X = 0.021 g/l and YA/X = 0.014 g/l.
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Table 1. Search parameters utilized in the different algorithms

Search parameter SS GN SD MpGA

μmax 0.52 0.47 0.39 0.53

kS 0.028 0.014 0.02 0.029

YS/X 0.49 0.67 0.33 0.49

YA/X 0.0048 0.0072 0.021 0.014
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Fig. 1. Time profiles of the biomass concentrations. Experimental data are presented
with (∗) and models predicted data with: parameter set 1 (SS) - (�), parameter set 2
(GN) - (�), parameter set 3 (SD) - (�) and parameter set 4 (MpGA) - (◦).

Analogous results are reported from Contiero et al. [3]. According to Zelic et al.
[14] the values of the parameters μmax and kS are in admissible boundaries too.

The model predictions of the state variables, based on four sets of search pa-
rameters are compared to the experimental data points of the E. coli cultivation
in Figures 1, 2 and 3.

As it can be seen from the simulation results the MpGA and the SS method
have achieved almost equal results about description of biomass and substrate
variation (Figures 1 and 2). However, the SS could not find appropriate solution
for acetate (Figure 3). The results also reveal an interesting fact. The SD gives
a satisfactory result for the acetate fit. Unfortunately, this method failed in the
modeling of biomass and substrate. The presented graphical results show that
only MpGA copes with the present problem. It is worth to note the very good
correlation between the experimental and predicted data.

In most cases, graphical comparisons clearly show the existence or absence of
systematic deviations between model predictions and measurements. It is evident
that a quantitative measure of the differences between calculated and measured
values is an important criterion for the adequacy of a model. Detailed results
for values of considered criteria (objective function value, number of iterations,
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Fig. 2. Time profiles of the substrate concentrations. Experimental data are presented
with (∗) and models predicted data with: parameter set 1 (SS) - (�), parameter set 2
(GN) - (�), parameter set 3 (SD) - (�) and parameter set 4 (MpGA) - (◦).
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Fig. 3. Time profiles of the acetate concentrations. Experimental data are presented
with (∗) and models predicted data with: parameter set 1 (SS) - (�), parameter set 2
(GN) - (�), parameter set 3 (SD) - (�) and parameter set 4 (MpGA) - (◦).

number of floating point operations and CPU time) are given in Table 2 with
the solution vectors shown in Table 1. The best result (J = 5.2529) is obtained
using the MpGA after total computation time of 16.83 min. This shows that
the proposed parameters of MpGA, especially population size, crossover and
mutation rates, are correctly chosen. The second best search method is the SS
method, which converged to a value of J = 5.9167. This result is 13% worst than
the result obtained using MpGA. Concerning biomass and glucose prediction
once again it could be seen that the SS has achieved very good results, close
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Table 2. Results of the search methods

Criterion SS GN SD MpGA

JX 4.7100 1.5393e+003 3.2032e+003 4.0911

JS 1.2017 824.8283 86.2690 1.1616

JA 0.0051 0.0016 3.3479e-004 2.9073e-004

J 5.9167 2.3633e+003 3.2895e+003 5.2529

iterations 248 766 523 150

CPU time (sec) 0.8091e+003 2.6196e+003 2.08871e+003 1.0098e+003

floating point
operations 1.6848e+009 5.2321e+009 7.1736e+009 2.8813e+009

to MpGA results, but the difference in JA functions between the mentioned
methods is very big (in an order) (see Table 2).

Table 2 shows that none of the other algorithms tested (GN and SD), could
reach the vicinity of the above mentioned solutions. This is a clear sign of the
very challenging nature of these problems. Due to the nonlinear and constrained
nature of the system dynamics, the parameter estimation problems are very
often multimodal (nonconvex). Therefore, if this inverse problem is solved via
standard local methods, such as the standard Gauss-Newton method, it is very
likely that the solution found will be of local nature.

5 Conclusion

The use of Multipopulation genetic algorithms in the parameter identification
of nonlinear dynamical systems has been investigated in this paper. Since the
correct solution of the inverse problems plays a key role in the development of
dynamic models, the MpGA are used to estimate the unknown model parame-
ters from E. coli fed-batch cultivation. The identification problem is formulated
as an optimization problem. The mathematical model is presented by a system
of five ordinary differential equations, describing biomass growth, glucose uti-
lization and acetate formation. The estimates of Gauss-Newton, Simplex Search
and Steepest Descent methods are presented too. The concurrent nature implies
that GAs are much more likely to locate a global peak than the traditional tech-
niques. The conventional search methods work extremely well provided a good
starting point is known. In the problem considered here the proper initial values
of parameters are unknown. The performance of the genetic algorithms is much
less sensitive to the initial conditions. In fact, GAs make hundreds, or even thou-
sands, of initial guesses. Simulation results reveal that accurate and consistent
results can be obtained using Multipopulation genetic algorithms. The genetic
algorithms property makes them suitable and more applicable for parameter
estimation of cultivation models.
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Abstract. The paper presents a method for designing 2-D linear-phase
FIR filters with an equiripple magnitude response. The filter design prob-
lem is transformed into an equivalent nonlinear optimization problem. In
order to improve the speed of convergence, a two-step solution procedure
of the considered problem is proposed. In the first step, a genetic algo-
rithm is applied. The final point from the genetic algorithm is used as the
starting point for a local optimization method. The proposed technique
is applied to the design of 2-D FIR linear-phase filters with different
symmetries. Design examples are included.

1 Introduction

Two-dimensional (2-D) digital filtering is one of the most important processing
techniques in 2-D digital signal processing. An important class of 2-D digital
filters are finite impulse response (FIR) filters. FIR filters can be made to have
linear phase and they are free from stability problems. 2-D linear-phase FIR
filters have important applications in image processing where the phase of 2-D
signals usually needs to be preserved.

Several techniques have been developed for designing 2-D linear-phase FIR
filters that approximate desired magnitude specifications using different error
criteria [1]-[6]. This paper attempts to demonstrate that a genetic algorithm
(GA) [7] can be used as a tool for the design of 2-D linear-phase FIR filters ac-
cording to the equiripple error criterion. GAs are probabilistic search techniques
based on the mechanics of natural genetics and natural selection. They have
strong robustness and general utility. Therefore, GAs are often used for solving
difficult nonlinear optimization problems and multi-objective optimizations.

In the paper, a new approach for the design of 2-D linear-phase FIR filters ac-
cording to the equiripple error criterion is proposed. The filter coefficients vector
is defined and an objective function is introduced. Then, the 2-D filter design
problem is transformed into an equivalent nonlinear minimization problem. The
solution of the considered problem is achieved using a two-step procedure. In the
first step, the GA is applied. The final point from the GA is used as the starting
point for a local optimization method. Using a local optimization method, when

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 263–270, 2007.
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the solution is close to the optiumum, results in improving the speed of conver-
gence. The proposed approach is used for designing 2-D FIR filters that have
centro-symmetric, circularly symmetric and octagonally symmetric magnitude
responses. Numerical examples demonstrating the performance of the proposed
method are given.

2 Formulation of the Design Problem

The frequency response of a 2-D FIR filter can be expressed as [1]

H(ejω1 , ejω2) =
M−1∑
m=0

N−1∑
n=0

h(m, n)e−j(nω1+mω2), (1)

where h(m, n) is the rectangularly sampled impulse response of the filter, M
and N represent the lengths of the filter, and ω1 and ω2 are the horizontal and
vertical frequencies, respectively.

A 2-D FIR filter can be designed to possess linear-phase which makes it at-
tractive in some applications such as e.g., image processing. It can be shown
that if h(m, n) is real and meets the constraint [3]

h(m, n) = h(M − 1 − m, N − 1 − n) (2)

then the phase response of the filter is linear and the zero-phase frequency re-
sponse H(ω1, ω2) is centro-symmetric, i.e., H(ω1, ω2) = H(−ω1, −ω2). In such
a case, the filter is called centro-symmetric filter and its frequency response can
be expressed in the form [3]

H(ejω1 , ejω2) = H(ω1, ω2)e−j( M−1
2 ω1+ N−1

2 ω2) (3)

where the real function H(ω1, ω2) is the zero-phase frequency response and it
represents the magnitude response A of the filter (A = |H(ω1, ω2)|). The complex
exponential part denotes the linear-phase characteristic of the filter.

The 2-D FIR filter design problem is to find an impulse response h(m, n), such
that the zero-phase frequency response of the filter is the best approximation of
the desired zero-phase frequency response Hd(ω1, ω2) in a given sense.

The impulse response h(m, n) of a centro-symmetric filter has twofold sym-
metry, so only approximately half of the points in it are independent. The region
of support of h(m, n) consists of three mutually exclusive regions: the origin
(0, 0), R+ and R−. The regions R+ and R− are flipped with respect to the
origin. As a result, the zero-phase frequency response can be expressed as [1]

H(ω1, ω2) = h(0, 0) +
∑ ∑

(m,n)∈R+

2h(m, n) cos(mω1 + nω2). (4)

Zero-phase frequency responses can posses also other types of symmetries. The
presence of these symmetries can be used to reduce the number of independent
filter coefficients that must be estimated in the design.
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A 2-D zero-phase frequency response H(ω1, ω2) possesses quadrantal sym-
metry if it satisfies the following condition [1]:

H(ω1, ω2) = H(−ω1, ω2) = H(ω1, −ω2) = H(−ω1, −ω2). (5)

If, in addition, H(ω1, ω2) satisfies

H(ω1, ω2) = H(ω2, ω1) (6)

then it has octagonal symmetry.
Let the considered filter be a quadrantally symmetric filter. The zero-phase

frequency response of this filter can be written in the form [4]

H(ω1, ω2) =
L1∑

m=0

L2∑
n=0

a(m, n) cos(mω1) cos(nω2), (7)

where a(m, n) are free filter coefficients which can be expressed in terms of
the impulse response h(m, n) [1], and L1 and L2 are the numbers of free filter
coefficients (M = 2L1+1, N = 2L2 +1). Note that in this case the number of in-
dependent filter coefficients is reduced about four times in comparison with (1).

Let Y be a vector of filter coefficients. In case of a centro-symmetric filter,
Y = [y1, y2, ..., yL+1]�, where

y1 = h(0, 0), (8)

yi = h(m, n), i = 1, 2, ..., (L + 1); m, n ∈ R+. (9)

In case of a quadrantally symmetric filter, Y = [y1, y2, ..., y(L1+1)(L2+1)]�,
where

yi = a(m, n), i = 1, 2, ..., (L1+1)(L2+1); m = 0, 1, ..., L1; n = 0, 1, ..., L2. (10)

Assume that the continuous (ω1, ω2) - plane is discretized by using a K1 ×K2

rectangular grid (ω1k, ω2l), k = 0, 1, ..., K1 − 1, k = 0, 1, ..., K2 − 1. The desired
zero-phase frequency response Hd(ω1k, ω2l) of the 2-D filter is:

Hd(ω1k, ω2l) =
{

1 for (ω1k, ω2l) in the passband P ,
0 for (ω1k, ω2l) in the stopband S. (11)

Let H(ω1, ω2,Y) denote the zero-phase frequency response of the filter obtain-
ed by putting into equation (4) or (7), respectively, the coefficients given by
vector Y. In the passband P and in the stopband S the approximation is to be
equiripple. The error function E(ω1k, ω2l,Y) is:

E(ω1k, ω2l,Y) = H(ω1k, ω2l,Y) − Hd(ω1k, ω2l), ω1, ω2 ∈ P ∪ S. (12)

The filter design problem can be formulated as follows: For a given zero-
phase frequency response Hd(ω1k, ω2l) defined on a rectangular grid K1 × K2,
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and prescribed values N and M find a vector Y for which the error function
E(ω1k, ω2l,Y) is equiripple.

As in case of 2-D FIR filters the equiripple solution may not be unique [1],
the following condition on the maximum allowable approximation error δ > 0 in
the passband can be additionally imposed:

∀ω1k, ω2l ∈ P |H(ω1k, ω2l,Y) − Hd(ω1k, ω2l)| ≤ δ. (13)

Adding the above condition results in obtaining the magnitude ripple equal
or smaller than δ.

The advantage of employing the symmetry constraints is the reduction of the
number of independent filter coefficients to be calculated. Besides, in the case
of a centro-symmetric filter, we only need to consider the error function in the
half of the (ω1, ω2)- plane. In the case of a quadrantally symmetric filter, it is
necessary to consider the error function only in the first quadrant of the (ω1, ω2)-
plane. In the case of octagonally symmetric filter, the calculations need only to
be done in a 45o sector of the frequency plane.

3 Transformation of the Problem

In this section, we convert the considered filter design problem into an equivalent
optimization problem. In order to do this, we introduce an objective function
X(Y) possessing the property that it has a minimum equal to zero when the error
function E(ω1k, ω2l,Y) is equiripple in the passband and in the stopband. The
error function E(ω1k, ω2l,Y) is equiripple when the absolute values ΔEi(Y), i =
1, 2, ..., J , of all the local extrema of the function E(ω1k, ω2l,Y) in the passband
and in the stopband, as well as the maximum values ΔEJ+1(Y) and ΔEJ+2(Y)
of E(ω1k, ω2l,Y) at the passband and stopband edges are equal, i.e.,

ΔEi(Y) = ΔEk(Y), k, i = 1, 2, ..., J + 2. (14)

We asume that the objective function X(ΔE1, ΔE2, . . . , ΔEJ+2) is defined as
follows:

X1(ΔE1, ΔE2, ..., ΔEJ+2) =
J+2∑
i=1

(ΔEi − R)2, (15)

where

R =
1

J + 2

J+2∑
k=1

ΔEk. (16)

is the arithmetic mean of all ΔEk, k = 1, 2, ..., J + 2.
Note that the function X defined above is a non-negative function of ΔE1,

ΔE2,. . . , ΔEJ+2, and it is equal to zero if and only if ΔE1 = . . . = ΔEJ+2. As
ΔE1, ΔE2, ..., ΔEJ+2 are functions of the vector Y, the function X can be used
as an objective function in the considered optimization problem.

The equivalent optimization problem can be stated as follows: For given filter
specifications, find a vector Y such that the function X(Y) is minimized.
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4 Two-Step Solution Procedure

In order to apply a local minimization method to solve the optimization problem
formulated in the previous section, a starting point sufficiently close to the solu-
tion is necessary. In case of 2-D FIR filters, the equiripple solution may not be
unique [1]. Global methods, such as GAs, are largely independent of the initial
conditions. Besides, GAs are particularly effective when the goal is to find an
approximate global minimum in case of high-dimensional, difficult optimization
problems and objective functions that can have many local minima. That is why
GAs are well suited for solving the considered optimization problem.

GAs are stochastic search and optimization techniques based on the mecha-
nism of natural selection where stronger individuals would likely be the winners
in a competing environment. The detailed description of a simple GA can be
found in [7]. GAs operate on fixed length strings (chromosomes) representing
possible solutions of a given optimisation problem. To start implementing a
GA, an initial population is considered. Successive generations are produced
by manipulating the solutions in the current populations. Each solutions has a
fitness (an objective function) that measures its competence. New solutions are
formed using crossover and mutation operations. According to the fitness value,
a new generation is formed by selecting the better chromosomes from the parents
and offspring, and rejecting other so as to keep the population size constant. The
algorithm converges to the best chromosome, which represents the solution of
the considered optimization problem.

In order to solve the optimization problem formulated in the previous section,
a two-step procedure is proposed, i.e., a hybridization of the GA and a local
optimization method. Such hybridization is described by Golberg [7]. It is useful
in our case because GAs are slow in convergence, especially when the solution
is close to the optiumum. In order to improve the speed of convergence, after a
specified number of generations in the GA has been reached, a local optimization
method, i.e., the Davidon, Fletcher, and Powell (DFP) method is applied to solve
the considered problem. The final point from the GA is used as the starting
point for the DFP method. The DFP method is a quasi-Newton method which
approximates the inverse Hessian matrix [8].

Numerical calculations have shown that it is possible to achieve better con-
vergence if, instead of the minimization problem formulated in the previous
section, we apply the GA to the following least square approximation problem

E2(Y) =
∑ ∑

(ω1k,ω2l)∈P∪S

[H(ω1k, ω2l,Y) − Hd(ω1k, ω2l)]2. (17)

Then, the solution of this problem is used as a starting point for solving the
problem of minimizing X(Y) using the DFP method. The local extrema of the
error function E(ω1k, ω2l,Y) are determined by searching the grid.

As crossover and mutation operations are basic operations in the GA, the
choice of the probability of crossover, the probability of mutation as well as the
choice of the population size are very important. Their settings are dependent
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on the form of objective function. In the developed program, the population size
is 30, the probability of crossover is 0.8, and the probability of mutation is 0.01.

5 Design Examples

In this section, design examples are presented to illustrate the performance of
the proposed technique. In all examples, the desired magnitude response is 1 in
the passband P , 0 in the stopband S and varies linearly in the transition band
Tr. A square grid of 101×101 points is used for discretizing the (ω1, ω2) - plane.

As a first example, we consider the design of a quadrantally symmetric di-
amond shaped filter. The passband of the filter is situated between the points
(0, 0.7π), (0.7π, 0), (0, −0.7π) and (−0.7π, 0) on the (ω1k, ω2l)-plane. The filter
is designed with M = N = 11. The width of the transition band is 0.20π. The
resulting magnitude response A of the filter is shown in Fig. 1. The obtained
ripple is δ = 0.099 both in the passband and in the stopband.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

xy

A
=

ab
s(

H
)

Fig. 1. Magnitude response of the diamond shaped filter designed in the first example
(x = ω1/π, y = ω2/π)

In the second example, a centro-symmetric rotated elliptically symmetric filter
is designed. The passband of the filter is an elliptic region with a rotation angle
of 30o. The major and minor axes of the passband edge are 0.45π and 0.225π,
respectively. The major and minor axes of the stopband edge are 0.65π and
0.375π. The filter is designed with M = N = 19. The resulting magnitude
response A of the filter is shown in Fig. 2. The obtained ripple is δ = 0.037 both
in the passband and in the stopband.

In order to compare the results with the results obtained in previous works,
we design a circularly symmetric filter with the same specifications as in case of
the design methods presented in [4] and in [2]. The passband of the filter is a



Design of Equiripple 2-D Linear-Phase FIR Digital Filters Using GA 269

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

xy

A
=

ab
s(

H
)

Fig. 2. Magnitude response of the rotated elliptically symmetric filter designed in the
second example
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Fig. 3. Magnitude response of the circularly symmetric filter with M = N = 15

circular region centered at (0, 0) with a radius rp. The stopband corresponds to
the region outside the circle with a radius rs. As in [4], we design a lowpass filter
with rp = 0.4π and rs = 0.6π for M = N = 7 and M = N = 9. The obtained
ripples are equal 0.1193 and 0.1173, respectively. In case of the method presented
in [4], the ripples are 0.1251 and 0.1165. As can be observed, the results obtained
using both methods are approximately the same.

To compare the proposed method with the method described in [2], we design
a lowpass filter with rp = 0.425π and rs = 0.575π for M = N = 11 and
M = N = 15. In the case of the proposed method, the resulting ripples are
0.0720 and 0.0387, respectively. In [2], the maximum ripple δp in the passband
is not the same as the maximum ripple δs in the stopband. For M = N =
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11 - δp = 0.1247 and δs = 0.1591. For M = N = 15 - δp = 0.0822 and δs =
0.1115. Note that in case of the proposed method, in both designs the obtained
ripples are considerable smaller. It may be the result of using the GA which is a
global optimization method. As a representative design, the magnitude response
of the filter with M = N = 15 is shown in Fig. 3.

6 Conclusions

We have attempted to show that the GA can be used as a tool in the design of
2-D linear-phase FIR filters according to the equiripple error criterion. A tech-
nique for the design of 2-D linear-phase FIR filters according to the equiripple
error criterion has also been proposed. The technique is simple to implement be-
cause standard GA and local optimization procedures can be used to solve the
considered minimization problem. It is also flexible as additional linear and/or
nonlinear constraints can be incorporated into the optimization problem. The
proposed technique can be parallelized because the original problem can be par-
titioned into independent parts that can be distributed to different processors
for solution. Furthermore, the extension of the proposed method to the design
of 2-D IIR filters may be possible.
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Abstract. A simple algorithm for the computation of eigenvalues of
real or complex square matrices is proposed. This algorithm is based
on an additive decomposition of the matrix. A sufficient condition for
convergence is proved. It is also shown that this method has many prop-
erties of the QR algorithm : it is invariant for the Hessenberg form, shifts
are possible in the case of a null element on the diagonal. Some other
interesting experimental properties are shown. Numerical experiments
are given showing that most of the time the behavior of this method is
not much different from that of the QR method, but sometimes it gives
better results, particularly in the case of a bad conditioned real matrix
having real eigenvalues.

Keywords: Linear algebra, eigenvalues computation, CESTAC method.

1 Introduction

In this paper the additive reduction (AR) algorithm for computation of the
eigenvalues of a real or complex matrix is recalled. The main properties of this
algorithm are shown, and numerical experiments allow us to compare it with
the classical QR algorithm. The paper is organized as follows. First, the AR
algorithm is described. Then it is shown that it is invariant for the Hessenberg
form, and a sufficient condition for convergence in terms of this form is proved.
Finally, some numerical experiments are given, showing that the method is very
efficient and often even more than the QR method, particularly in the case
of multiple eigenvalues or for computation of roots of polynomials using the
companion matrix.

2 The Additive Reduction (AR) Algorithm

2.1 Definition of the Algorithm

Let us consider a real or complex square matrix A with dimension n. One wishes
to compute its eigenvalues. The algorithm, formerly proposed in [1] and called
additive reduction algorithm (AR) is the following.
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1. Split the matrix A into a sum of two triangular matrices L and U such that
L is the lower triangular part of A including the diagonal and U is the strict
upper triangular part of A. So A = L + U .

2. Set A0 = A = L0 + U0

3. Suppose that Lk−1 is invertible for k > 0, and compute

Ak = L−1
k−1 Ak−1 Lk−1 = Lk−1 + L−1

k−1 Uk−1 Lk−1. (1)

4. Split Ak = Lk + Uk.
5. Perform iterations until reaching the tolerance prescribed or the maximum

number of iterations specified.

It is clear that the eigenvalues are invariant in all the computed matrices.
Thus, if the method converges to a lower triangular matrix, then the eigenvalues
are found on the main diagonal of the limit matrix.

2.2 Invariance of the Algorithm for the Hessenberg Form

Let us recall that a matrix A = (ai,j) has a lower Hessenberg form if and only
if ai,j = 0 for j ≥ i + 2 . Any matrix is similar to a Hessenberg matrix which
can be obtained in finite time by the algorithms of Givens or Householder. Both
algorithm are close to each other and require O(n3) operations. Classically, the
LR and QR algorithm, being invariant for the Hessenberg form, start with a
transformation of the intial matrix into this form. Let us see now that this is
also possible for the AR algorithm.

Proposition 1. If at iteration k the matrix Ak has a Hessenberg form, then
this property also prevails at iteration k + 1 of the AR algorithm.

Proof. The proof is a simple straightforward calculation. Suppose that a matrix
A has a lower Hessenberg form, that is aij = 0 for j ≥ i + 2, then from the
definition of the AR algorithm, the next iterate is

B = L−1A L = L + L−1U L. (2)

Set V = UL, then vi,j =
n∑

k=max{i+1,j}
ai,k ak,j . But, since ai,k = 0 for k ≥ i + 2,

we have vi,j = ai,i+1ai+1,j , if j ≤ i+1, and vi,j = 0 for j ≥ i+2. Hence V = UL
has a Hessenberg form. It is easy to check that the product of a lower diagonal
matrix L−1 with a lower Hessenberg matrix V gives a lower Hessenberg matrix.
Thus Z = L−1UL is a lower Hessenberg matrix, and so is B = L + Z. �

3 Convergence of the Additive Reduction Method

Finding a necessary and sufficient condition for the convergence of the AR algo-
rithm is still an open problem. However, a sufficient condition for convergence
in the case of a lower Hessenberg matrix can be easily shown.
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Proposition 2. Let A = (ai,j) be a lower complex Hessenberg matrix. Assume
that the following properties are fulfilled:

1) All the eigenvalues λ1, λ2, ..., λn of A are distinct in moduli.
2) At each iteration k the matrix Ak is such that

|a(k)
1,1 | > |a(k)

2,2| > · · · > |a(k)
n,n|,

i.e., the muduli of its diagonal elements form a strictly decreasing sequence.
3) The maximum ratio r = maxn−1

i=1 |a(k)
i+1,i+1|/|a(k)

i,i | is bounded by a constant
C < 1, independent of k.

Then the additive reduction method is convergent.

Here the matrix A is supposed to be complex, the operations involve complex
numbers and the notation |x| denotes the modulus of the complex number x.

Proof. Proposition 2 follows from a theorem due to Bauer and Fike [4]. As
a consequence of this theorem, if A is diagonalisable, i.e., A = P−1ΛP with
Λ = diag

(
{λi}n

i=1

)
, then for each eigenvalue μ of L = A − U there exists an

eigenvalue λ of A such that:

|λ − μ| < ‖P‖.‖P−1‖.‖U‖.

Thus, it suffices to prove that under the three precedent hypotheses the norm
‖Uk‖ of the matrix Uk tends to zero. This will prove that the eigenvalues of L
tend to the eigenvalues of A, as all they are of different muduli.

Using notation and the formulae from Proposition 1, it is clear that Uk is the
strictly triangular superior part of the matrix Z. Thus, for i = 1, ..., n − 1,

u
(k)
i,i+1 = u

(k−1)
i,i+1 a

(k−1)
i+1,i+1/a

(k−1)
i,i

u
(k)
i,j = 0 for j ≥ i + 2.

Here, the superscript (k) denotes the number of the iteration. From assumption
3) we obtain

|u(k)
i,i+1| ≤ C |u(k−1)

i,i+1 | with C < 1,

and thus
|u(k)

i,i+1| ≤ Ck |u(0)
i,i+1| with C < 1.

Let us now choose the classical norm ‖U‖ = max1≤i≤n

∑n
j=1 |ui,j|. In the present

case ‖Ak‖ is a lower Hessenberg matrix, Uk has only its first over diagonal
different from zero, that is, u

(k)
i,j = 0 for i < j − 1 and for i ≥ j. The same

property is also true for Uk+1. We have

‖Uk‖ = max
1≤i≤n−1

|u(k)
i,i+1| ≤ C max

1≤i≤n−1
|u(k−1)

i,i+1 | = ‖Uk−1‖,

and consequently
‖Uk‖ ≤ Ck ‖U0‖ with C < 1. (3)

This proves Proposition 2. �



274 R. Alt

Remark 1. If A is a real matrix with different real eigenvalues, then all the com-
putations are done with real numbers and formula (3) shows that convergence
still occurs as the main over diagonal of the lower Hessenberg iterates tends to
zero. Thus this method cannot, in theory, lead to erroneous complex conjugate
eigenvalues.

Remark 2. In the case of a matrix A with eigenvalues having different moduli,
all the numerical experiments that have been done have shown that in most
cases, even if at the beginning the elements of the main diagonal of A are not
ordered in decreasing order of their moduli, this property becomes true at some
iteration and stays true during all remaining iterations.

Remark 3. As was already mentioned, a necessary and sufficient condition for
convergence is not known, although the numerical experiments have shown that
the method may converge even in the case of multiple eigenvalues.

Remark 4. From the definition of the algorithm, it is clear that its complexity
per iteration is O(n3), as each iteration requires solution of a triangular linear
system. Thus, the complexity of AR is of the same order as the one of QR.

4 Case of a Null Element on the Main Diagonal

The detection of the fact that at some iteration Lk is not invertible is here very
easy, as Lk is lower triangular.

In this case, in the same way that it is done in the classical QR or LU
methods, the algorithm can be continued by adding an arbitrary constant to
all the elements of the diagonal of Ak. This shift is then subtracted from the
computed values at the end of the process.

5 Deflations of Columns and Termination of Iterations

As was said above, the eigenvalues are obtained on the main diagonal of a lower
triangular matrix, which is the limit of the process. We already mentioned that,
in most cases, on this diagonal the eigenvalues appear experimentally to be in
decreasing order, i.e., the smallest one is in the last line and last column. Thus
the iterations can be stopped using at least two criteria.

– Criterion 1: The elements of the diagonal of the matrix Ak become stable to
some extent, i.e.,

max
1≤n

|a(k)
i,i − a

(k−1)
i,i | ≤ ε. (4)

– Criterion 2: The elements of the upper triangular part Uk of Ak are stochastic
zeroes, i.e. only correspond to round-off errors.

Let us recall here that a stochastic zero is a real or a floating point number
which contains an error greater than itself. In other words, it has no significant
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digit. In the theory of stochastic arithmetic ([8], [9], [2], [3], [7]), any stochastic
number is represented as (m, σ), where m is the mean value and σ is the standard
deviation of a Gaussian distribution, i.e., m represents the value and σ is the
error on m. A stochastic zero is such that σ ≥ m. The corresponding notion in the
theory of interval arithmetic is an interval containing zero. Remember also that
the number of significant digits of the result of any floating point computation
and hence detection of a stochastic zero can be obtained using the CESTAC
method ([8], [9]).

The experiments show another feature of the method: in the case of a complex
matrix A and computations using complex numbers or of a real matrix having
real eigenvalues, during the iterations the matrices Uk and hence the matrices
Ak have their columns tending to zero column after column, starting from the
last. This means that column n tends to zero, then column n − 1 and so on to
column 1.

In the case of a given real matrix A and computations done using only real
numbers, there may exist complex conjugate roots. But it also happens that
the columns corresponding to real roots tend to zero in the same order from
the last one as in the complex case and that the columns corresponding to two
complex conjugate roots, say λj and λj+1 tend to zero except the four values
aj,j , aj,j+1, aj+1,j , aj+1,j+1. The characteristic polynomial of this 2 × 2 block
sub-matrix provides the two complex eigenvalues. This property is exactly the
same as in QR or LR algorithms.

This experimental property can be exploited to increase the speed of conver-
gence of the algorithm in the following manner: once the last column (resp, the
last two columns) of the matrix Uk is (are) considered sufficiently small in norm,
or that each of its (resp. their) components is equal to a stochastic zero, then the
corresponding eigenvalue is obtained and it is possible to reduce the size of the
current matrix Ak by suppressing the last (resp. last two) line(s) and column(s).
This process can be re-done each time when a real or two complex conjugate
eigenvalues are obtained until the dimension of the final matrix becomes 1 or 2.
The speed of convergence of the algorithm is thus highly increased. Moreover,
this property also experimentally diminishes the propagation of round-off errors
and increases the accuracy of the results.

6 Numerical Experiments

Several numerical experiments have been done for small size matrices (n ≤ 100).
Many of them are taken from ([6], [5], [10]). Three of them are reported here
to show the efficiency of the AR method. The results are compared with those
provided by the classical QR algorithm [11]. The QR program is taken from [12],
it provides the maximum possible accuracy. Since the original program does not
give the number of necessary iterations to reach the solution, a counter has been
added in order to compare the speed of convergence of the two methods. Only a
very naive programming has been done for the AR method, in particular, there is
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no preconditioning. The termination criterion is on the stability of the diagonal
of the iterates, i.e., criterion 1 with formula (4).

Example 1: The Fibonacci matrix

A1 =

⎛
⎜⎜⎜⎜⎝

3 5 8 13 21
5 8 13 21 34
8 13 21 34 55
13 21 34 55 89
21 34 55 89 144

⎞
⎟⎟⎟⎟⎠

The obtained results are given in Table 1. These results show that the two algo-
rithms are equivalent concerning the number of iterations, but the AR algorithm
produces only real eigenvalues, which is closer to the real situation, as the initial
matrix is symmetric.

Table 1. Eigenvalues of the Fibonacci matrix

index AR ε = 10−5 Nb.iter = 5 QR Nb.iter = 4

1 0.2311038 103 0.2311038 103

2 −0.1038494 100 −0.1038494 100

3 −0.2687906 10−14 −0.3158887 10−14

4 −0.5342609 10−16 −0.1528318 10−28 + i 0.1209090 10−21

5 −0.16677753 10−28 −0.1528318 10−28 − i 0.1209090 10−21

Example 2. ([10])

A2 =

⎛
⎜⎜⎝

10 1 4 0
1 10 5 −1
4 5 10 7
0 −1 7 9

⎞
⎟⎟⎠

The computed eigenvalues are shown in Table 2.

Table 2. Eigenvalues of matrix A2 computed with AR and QR methods

index AR ε = 10−5, Nb. iter = 56 QR Nb. iter = 3

1 0.1912248 102 0.1912248 102

2 0.1088245 102 0.5342609 10−3

3 0.8994541 101 0.1088282 102

4 0.5342609 10−3 0.8994170 101

One can see that the results obtained with the two methods AR and QR
are very close to each other, except that the first one provides the eigenvalues
in decreasing order. For the AR algorithm with termination criterion 1 and
ε = 10−5, the convergence speed is noticeably slower compared to that of QR.
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Example 3. A matrix with double eigenvalues (Rutishauser [10])

A3 =

⎛
⎜⎜⎝

6 4 4 1
1 6 4 4
4 1 6 4
1 4 4 4

⎞
⎟⎟⎠

The exact eigenvalues are 15, 5, 2, 2. Both methods give the exact values.
Again, the eigenvalues provided by the QR algorithm are obtained in the order
5, 2, 15, 2, whereas with the AR algorithm they are obtained in decreasing
order. For the AR algorithm the iterations are stopped with criterion 1 and
ε = 10−7. The number of iterations is 20. For QR the number of iterations is 4,
so QR is faster again.

Example 4. A real matrix with real opposite eigenvalues.

A4 =

⎛
⎜⎜⎝

1.5 1 −2 1
1 0.5 −3 −2

−2 −3 −0.5 −1
1 −2 −1 −1.5

⎞
⎟⎟⎠

The eigenvalues of A4 are −1.5, +1.5, −4.5, +4.5. They are exactly computed
by both AR and QR algorithms, with 19 iterations for AR and 4 iterations
for QR. As in the preceding examples, AR performs slightly slower than QR.
However, it must be reminded that the program for AR is a very simple and
naive one, particularly concerning the termination criterion, while the program
for QR is rather sophisticated.

7 Conclusion

In this paper we have shown that the eigenvalues of a real or complex square
matrix can be computed with a method called additive reduction method, which
is different from the classical methods. A sufficient condition for convergence has
been proved, and it has been also proved that is has the same properties as the
QR or LU algorithms. In particular, it is invariant for the Hessenberg form and
has the same order of complexity per iteration as QR. Some other experimental
properties is also given: the eigenvalues are obtained in decreasing order on
the main diagonal of a lower triangular matrix, and consequently the algorithm
provides them the last one (i.e. the smallest) first. Many numerical experiments
have shown that the method is often as good as the classical general methods
for eigenvalues, and in some cases even better, particularly for a real matrix
with real eigenvalues. Some of these experiments are reported here. It is clear
that, in many cases, this method is not really competitive with QR, but it shows
that the eigenvalue problem can be also solved by a different approach from the
classical one. Many questions are still open, for example, find a necessary and
sufficient condition for convergence, explain why in most cases the eigenvalues
are obtained the smallest first.
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1 Introduction

Hausdorff continuous (H-continuous) functions appear naturally in many areas of
mathematics such as Approximation Theory [11], Real Analysis [1], [8], Interval
Analysis, [2], etc. From numerical point of view it is significant that the solu-
tions of large classes of nonlinear partial differential equations can be assimilated
through H-continuous functions [7]. In particular, discontinuous viscosity solu-
tions are better represented through Hausdorff continuous functions [6]. Hence
the need to develop numerical procedures for computations with H-continuous
functions. It was shown recently, that the operations addition and multiplication
by scalars of the usual continuous functions on Ω ⊆ R

n can be extended to H-
continuous functions in such a way that the set H(Ω) of all Hausdorff continuous
functions is a linear space [4]. In fact H(Ω) is the largest linear space involving
interval functions. Furthermore, multiplication can also be extended [5], so that
H(Ω) is a commutative algebra. Approximation of H(Ω) by a subspace were
discussed in [3]. In the present paper we consider numerical computations with H-
continuous functions using ultra-arithmetical approach [9], namely, by construct-
ing a functoid of H-continuous functions. For simplicity we consider Ω ⊆ R. In
the next section we recall the definition of the algebraic operations on H(Ω). The
concept of functoid is defined in Section 3. In Section 4 we construct a functoid
comprising a finite dimensional subspace of H(Ω) with a Fourier base extended
by a set of H-continuous functions. Application of the functoid to the numerical
solution of the wave equation is discussed in Section 5.

2 The Algebra of H-Continuous Functions

The real line is denoted by R and the set of all finite real intervals by
IR = {[a, a] : a, a ∈ R, a ≤ a}. Given an interval a = [a, a] ∈ IR, w(a) = a − a
is the width of a. An interval a is called proper interval, if w(a) > 0 and point
interval, if w(a) = 0. Identifying a ∈ R with the point interval [a, a] ∈ IR, we
consider R as a subset of IR. Let Ω ⊆ R be open. We recall [11] that an interval
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function f : Ω → IR is S-continuous if its graph is a closed subset of Ω × R.
An interval function f : Ω → IR is Hausdorff continuous (H-continuous) if it is
an S-continuous function which is minimal with respect to inclusion, that is, if
ϕ : Ω → IR is an S-continuous function and ϕ ⊆ f , then ϕ = f . Here inclusion is
understood point-wise. We denote by H(Ω) the set of H-continuous functions on
Ω. The following theorem states an essential property of the continuous functions
which is preserved by the H-continuity [1].

Theorem 1. Let f, g ∈ H(Ω). If there exists a dense subset D of Ω such that
f(x) = g(x), x ∈ D, then f(x) = g(x), x ∈ Ω.

H-continuous functions are also similar to usual continuous real functions in that
they assume point values on a residual subset of Ω. More precisely, it is shown
in [1] that for every f ∈ H(Ω) the set Wf = {x ∈ Ω : w(f(x)) > 0} is of first
Baire category and f is continuous on Ω \ Wf . Since a finite or countable union
of sets of first Baire category is also a set of first Baire category we have:

Theorem 2. Let F be a finite or countable set of H-continuous functions. Then
the set DF = {x ∈ Ω : w(f(x)) = 0, f ∈ F} = Ω \

⋃
f∈F Wf is dense in Ω and

all functions f ∈ F are continuous on DF .

For every S-continuous function g we denote by [g] the set of H-continuous
functions contained in g, that is,

[g] = {f ∈ H(Ω) : f ⊆ g}.

Identifying {f} with f we have [f ] = f whenever f is H-continuous. The S-
continuous functions g such that the set [g] is a singleton, that is, it contains
only one function, play an important role in the sequel. In analogy with the
H-continuous functions, which are minimal S-continuous functions, we call these
functions quasi-minimal. The following characterization of the quasi-minimal
S-continuous functions is an easy consequence of Theorem 1.

Theorem 3. If the function f is S-continuous on Ω and assumes point values
on a dense subset of Ω, then f is a quasi-minimal S-continuous function.

The familiar operations of addition, multiplication by scalars and multiplication
on the set of real intervals are defined for [a, a], [b, b] ∈ I R and α ∈ R as follows:

[a, a] + [b, b]={a + b : a∈ [a, a], b∈ [b, b]}=[a + b, a + b],
α · [a, a]={αa : a∈ [a, a]}=[min{αa, αa}, max{αa, αa}],
[a, a]×[b, b]={ab :a∈ [a, a], b∈ [b, b]}=[min{ab, ab, ab, ab}, max{ab, ab, ab, ab}].

Point-wise operations for interval functions are defined in the usual way:

(f + g)(x) = f(x) + g(x), (α · f)(x) = α · f(x), (f × g)(x) = f(x) × g(x). (1)

It is easy to see that the set of S-continuous functions is closed under the
above point-wise operations while the set of H-continuous functions is not, see
[2], [4]. Hence the significance of the following theorem.
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Theorem 4. For any f, g ∈ H(Ω) and α ∈ R the functions f + g, α · f and
f × g are quasi-minimal S-continuous functions.

Proof. Denote by Dfg the subset of Ω where both f and g assume point values.
Then f + g assumes point values on Dfg. According to Theorem 2 the set Dfg

is dense in Ω, which in terms of Theorem 3 implies that f + g is quasi-minimal.
The quasi-minimality of α · f and f × g is proved in a similar way. �
We define the algebraic operations on H(Ω) using Theorem 4. We denote these
operations respectively by ⊕, � and ⊗ so that distinction from the pointwise
operations can be made.

Definition 1. Let f, g ∈ H(Ω) and α ∈ R. Then

f ⊕ g = [f + g], α � f = [α · f ], f ⊗ g = [f × g]. (2)

Theorem 5. The set H(Ω) is a commutative algebra with respect to the opera-
tions ⊕, � and ⊗ given in (2).

The proof will be omitted; it involves standard techniques and is partially discuss-
ed in [5].

3 The Concept of Ultra-Arithmetical Functoid

Functoid is a structure resulting from the ultra-arithmetical approach to the
solution of problems in functional spaces. The aim of ultra-arithmetic is the
development of structures, data types and operations corresponding to func-
tions for direct digital implementation. On a digital computer equipped with
ultra-arithmetic, problems associated with functions are solvable, just as now
we solve algebraic problems [9]. Ultra-arithmetic is developed in analogy with
the development of computer arithmetic.

Let M be a space of functions and let M be a finite dimensional subspace
spanned by ΦN = {ϕk}N

k=0. Every function f ∈ M is approximated by τN (f) ∈
M . The mapping τN is called rounding (in analogy with the rounding of numbers)
and the space M is called a screen of M. Every rounding must satisfy the
requirement (invariance of rounding on the screen): τN (f) = f for every f ∈ M .
A function f =

∑N
i=0 αiϕi ∈ M can be represented by its coefficient vector

ν(f) = (α0, α1, . . . , αN ). Therefore the approximation of the functions in M is
realized through the mappings M τN−→ M

ν←→ KN+1, where K is the scalar
field of M (i.e. K = R or K = C). Since ν is a bijection we can identify M and
KN+1 and consider only the rounding τN .

In M we consider the operations addition (+), multiplication by scalars (.),
multiplication of functions (×) and integration (

∫
) defined in the conventional

way. By the semimorphism principle τN induces corresponding operations in M :

f � g = τN (f � g) , � ∈ {+, ., ×};∫
f = τN

(∫
f

)
.

The structure (M, + , . , × ,

∫
) is called an (ultra-arithmetical) functoid [10].
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4 A Functoid in H(Ω)

To simplify matters we consider the space of all bounded H-continuous functions
on Ω = (−1, 1). Furthermore, since we shall often use a shift of the argument,
we assume that all functions are produced periodically (period 2) over R and
denote the space under consideration by Hper(−1, 1). All algebraic operations on
Hper(−1, 1) are considered in terms of Definition 1. For simplicity we denote them
as the operations for reals. Namely, addition is ”+“ and a space is interpreted
as multiplication, where the context shows whether this is a multiplication by
scalars or product of functions. In particular, note that indicating the argument
of a function in a formula does not mean point-wise operation. Denote by s1 the
H-continuous function given by

s1(x) =

{
x, if x ∈ (−1, 1),

[−1, 1], if x = ±1;

and produced periodically over the real line. Since the integrals of s1 and s1 are
equal over any interval the integral of s1 is a usual real function. We construct
iteratively the sequence of periodic splines s1, s2, s3, ... using

sj+1 =
∫

sj(x)dx + c,

∫ 1

−1

sj+1(x)dx = sj+2(1) − sj+2(−1) = 0.

Theorem 6. Let f ∈ Hper(−1, 1) be given. Assume that there exists a finite set
Λ = {λ1, λ2, ..., λm} ⊂ (−1, 1] such that f assumes real values and is p times
differentiable on (−1, 1] \ Λ with the p-th derivative in L2(−1, 1). Then f has a
unique representation in the form

f(x) = a0 +
m∑

l=1

p∑
j=1

ajlsj(x + 1 − λl) +
∞∑

k=−∞
k �=0

bkeikπx, (3)

where
∞∑

k=−∞
k �=0

bkeikπx is p times differentiable with its p-th derivative in L2(−1, 1).

Furthermore, the coefficients are given by:

a0 =
1
2

∫ 1

−1

f(x)dx,

ajl =
1
2

(
dj−1f

dxj−1
(λl − 0) − dj−1f

dxj−1
(λl + 0)

)
, j = 1, . . . , p, l = 1, . . . , m,

bk =
1

2(ikπ)p

∫ 1

−1

dpf(x)
dxp

e−ikπxdx , k = ±1, ±2, . . .
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The proof uses standard techniques and will be omitted.

The function f is approximated by

ρNp(f ; x) = a0 +
m∑

l=1

p∑
j=1

ajlsj(x + 1 − λl) +
N∑

k=−N
k �=0

bkeikπx, (4)

with a rounding error

|f(x) − ρNp(f ; x)| =

∣∣∣∣∣∣
∑

|k|>N

bkeikπx

∣∣∣∣∣∣ ≤
∑

|k|>N

|bk|

≤

⎛
⎝ ∑

|k|>N

(kπ)2p|bk|2
⎞
⎠

1
2
⎛
⎝ ∑

|k|>N

1
(kπ)2p

⎞
⎠

1
2

(5)

≤

⎛
⎜⎝1

2

∫ 1

−1

(
dpf(x)

dxp

)2

dx−
(

m∑
l=1

apl

)2

−
N∑

k=−N
k �=0

(kπ)2p|bk|2

⎞
⎟⎠

1
2(

2
(2p−1)π2pN2p−1

) 1
2

= o

(
1

Np− 1
2

)
.

Motivated by the above we consider a screen in Hper(−1, 1) comprising the
subspace M spanned by the basis

{s0(x)} ∪ {sj(x + 1 − λl) : j = 0, 1, .., p, l = 1, ..m} ∪ {eikπx : k = 0, ±1, ..., ±N},

where p, m, N ∈ N and {λ1, λ2, ..., λm} ⊂ (−1, 1] are parameters with arbitrary
but fixed values. Here s0 is the function which is the constant 1 on R. Defining a
rounding from Hper(−1, 1) to M is still an open problem. However, for functions
of the type described in Theorem 6 the rounding is defined through ρNp. Further-
more, to define a functoid we only need to know how to round the functions
resulting from operations in M . For this purpose the rounding ρNp is sufficient.
Naturally, since M is a subspace, it is closed under the operations addition and
multiplication by scalars. Furthermore, to define multiplication of functions and
integration we only need to define these operations on the elements of the basis.
The products of the functions in the basis are given by

sq1(x + 1 − λl1)sq2(x + 1 − λl2)

=
q1+q2∑
j=q1

(
j − 1
q1 − 1

)
sq1+q2−j(1 + λl1 − λl2)sj(x + 1 − λl1) (6)

+
q1+q2∑
j=q2

(
j − 1
q2 − 1

)
sq1+q2−j(1 − λl1 + λl2)sj(x + 1 − λl2),

eik1πxeik2πx = ei(k1+k2)πx, (7)
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sq(x + 1 − λl)einπx

=
p∑

j=q

(−1)nei(λl−1)π

(
j − 1
q − 1

)
(inπ)j−qsj(x + 1 − λl) +

∞∑
k=−∞

k �=0

βkeikπx, (8)

where the coefficients βk in (8) are given by

βk =
(−1)k−n−1np−q

kp(iπ)q

q−1∑
r=0

(
p

r

)(
n

k − n

)q−r

, if k �= 0, n,

βn =
(

p

q

)
(inπ)−q.

For the respective integrals we have
∫

sj(x)dx = sj+1(x) , j = 1, ..., p, (9)
∫

eikπxdx =
1

ikπ
eikπx , k = 0, ±1, ..., ±N. (10)

Obviously, in formulas (6)–(9) we obtain splines sj with j > p and exponents
eikπx with |k| > N , which need to be rounded. Using that

sj(x + 1 − λl) =
∞∑

k=−∞
k �=0

(−1)k−1ei(1−λl)π

(ikπ)j
eikπ ,

the rounding of integrals and products of functions in Hper(−1, 1) calculated via
(6)–(9) is reduced to rounding a Fourier series which is done by truncation. Note
that at any time we truncate a Fourier series of a function which is at least p times
differentiable with its p-th derivative in L2(−1, 1). Hence the uniform norm of
the error is o

(
1

Np− 1
2

)
. This in particular implies that although the approximated

functions are discontinuous at certain points undesirable effects such as the Gibbs
phenomenon do not occur. Furthermore, the rate of approximation with respect
to the uniform norm is the same as for p times differentiable functions. It should
be also noted that the integration of s0, when it arises in practical problems,
should be handled with special care as

∫
s0(x)dx = s1(x) holds only on (−1, 1).

5 Application to the Wave Equation

We consider the wave equation in the form

utt(x, t) − uxx(x, t) = ρ(t)u(x, t) + φ(x, t)
u(x, 0) = g1(x), ut(x, 0) = g2(x)

with periodic boundary conditions at x = −1 and x = 1, assuming that g1, g2, φ
or some of their space derivatives may be discontinuous but the functions can be
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represented as a spline-Fourier series (3) of the space variable. An approximation
to the solution is sought in the form

u(x, t) = a0(t) +
m∑

l=1

p∑
j=1

∑
δ∈{−1,0,1}

aljδ(t)sj(x+δt+1−αl)

+
N∑

k=−N
k �=0

bk(t)eikπx (11)

wherein αl, l = 1, . . . , m, are points in (−1, 1] where the data functions or some
of their first p−1 derivatives may be discontinuous.

The following Newton-type iterative procedure is applied

u(r+1) = (1 − λ)u(r) + λ
(
g +

1
2

∫ ∫

G(x,t)

ρu(r)
)
,

where G(x, t) is the triangle with vertices (x, t), (x − t, 0), (x + t, 0) and

g(x, t) =
1
2

(
g1(x + t) + g1(x − t) +

∫ x+t

x−t

g2(θ)dθ +
∫ ∫

G(x,t)

φ(y, θ)dydθ

)
.

The essential part of each iteration is the evaluation of the integral. This can be
done successfully using the arithmetic in the functoid discussed in the preceding
section. We also have to choose some form of representation of the coefficients
amj(t), bk(t). Here we carry out the computations representing those coefficients
as polynomials of t. The following formulas are used:

∫ ∫
G(x,t)

θq

q!
sj(y)dydθ = sj+q+2(x+t)+(−1)qsj+q+2(x−t)−2

q∑
l=0

l−even

tq−l

(q−l)!
sj+l+2(x),

∫ ∫
G(x,t)

θq

q!
sj(y+θ)dydθ =

q+1∑
l=0

(
−1

2

)l
tq+1−l

(q+1−l)!
sj+l+1(x+t)−

(
−1

2

)q+1

sj+q+2(x−t),

∫ ∫
G(x,t)

θq

q!
sj(y−θ)dydθ =

(
1
2

)q+1

sj+q+2(x+t) −
q+1∑
l=0

(
1
2

)l
tq+1−l

(q+1−l)!
sj+l+1(x−t),

∫ ∫
G(x,t)

θq

q!
eikπydydθ=

1
(ikπ)q+2

(
eikπ(x+t)+(−1)qeikπ(x−t)−2

q∑
l=0

l−even

tq−l

(ikπ)q−l(q−l)!
eikπx

)

= 2
∞∑
l=0

l−even

(ikπ)l tq+l+2

(q+l+2)!
eikπx.
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The splines sj for j > p as well as the infinite series in the last formula above
are approximated by a partial sum of the resp. Fourier series using the rounding
ρNp. As was shown in Section 4, the truncation error is o

(
1

Np− 1
2

)
. The main

advantage of the method is that it produces highly accurate results for relatively
small values of p and N for non-smooth data functions. Numerical experiments
using p = 5 and N = 5 produce 4–5 correct decimal digits of the solution.

6 Conclusion

In this work we propose a new methodology for numerical computations with H-
continuous functions. We propose a method based on the fact that H-continuous
functions form a linear space when addition is defined in a suitable way. Our
method makes use of the ultra-arithmetic approach for the construction of a
relevant functoid. The method has been tested numerically for the solution of the
wave equation for non-smooth boundary conditions. Highly accurate results have
been achieved for rather small number of base functions, i. e. small dimensions
of the underlying linear space. No Gibbs phenomenon occur.
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Abstract. An optimal control problem is considered, for systems gov-
erned by a nonlinear elliptic partial differential equation, with control
and state constraints. Since this problem may have no classical solu-
tions, it is also formulated in the relaxed form. The classical problem is
discretized by using a finite element method, where the controls are ap-
proximated by elementwise constant, linear, or multilinear, controls. Our
first result is that strong accumulation points in L2 of sequences of admis-
sible and extremal discrete controls are admissible and weakly extremal
classical for the continuous classical problem, and that relaxed accumula-
tion points of sequences of admissible and extremal discrete controls are
admissible and weakly extremal relaxed for the continuous relaxed prob-
lem. We then propose a penalized gradient projection method, applied
to the discrete problem, and a corresponding discretization-optimization
method, applied to the continuous classical problem, that progressively
refines the discretization during the iterations, thus reducing computing
time and memory. We prove that accumulation points of sequences gen-
erated by the first method are admissible and extremal for the discrete
problem, and that strong classical (resp. relaxed) accumulation points of
sequences of discrete controls generated by the second method are ad-
missible and weakly extremal classical (resp. relaxed) for the continuous
classical (resp. relaxed) problem. Finally, numerical examples are given.

1 The Continuous Optimal Control Problems

Let Ω be a bounded domain in R
d, with Lipschitz boundary Γ . Consider the

nonlinear elliptic state equation
Ay + f(x, y(x), w(x)) = 0 in Ω, y(x) = 0 on Γ ,

where A is the formal second order elliptic differential operator

Ay := −
d∑

j=1

d∑
i=1

(∂/∂xi)[aij(x)∂y/∂xj ].

The state equation will be interpreted in the following weak form
y ∈ V := H1

0 (Ω) and a(y, v) +
∫

Ω
f(x, y(x), w(x))v(x)dx = 0, ∀v ∈ V,

where a(·, ·) is the usual bilinear form on V × V associated with A

a(y, v) :=
d∑

i,j=1

∫
Ω

aij(x)(∂y/∂xi)(∂v/∂xj)dx.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 287–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Define the set of classical controls
W := {w : Ω → U | w measurable} ⊂ L∞(Ω; Rν) ⊂ L2(Ω; Rν),

where U is a compact subset of R
ν , and the functionals

Gm(w) :=
∫

Ω
gm(x, y(x), w(x))dx, m = 0, ..., q.

The continuous classical optimal control problem P is to minimize G0(w)
subject to the constraints w ∈ W , Gm(w) = 0, m = 1, ..., p, Gm(w) � 0,
m = p + 1, ..., q.

Next, define the set of relaxed controls (see [13,11])
R :={r : Ω →M1(U) | r weakly measurable}⊂L∞

w (Ω, M(U))≡ L1(Ω, C(U))∗,
where M(U) (resp. M1(U)) is the set of Radon (resp. probability) measures
on U . The set R is endowed with the relative weak star topology, and R is
convex, metrizable and compact. If each classical control w(·) is identified with
its associated Dirac relaxed control r(·) := δw(·), then W may also be regarded
as a subset of R, and W is thus dense in R. For a given φ ∈ L1(Ω; C(U)) ≡
B(Ω̄, U ; R), where B(Ω̄, U ; R) denotes the set of Caratheodory functions in the
sense of Warga [13], and r ∈ R, we shall write for simplicity

φ(x, r(x)) :=
∫

U φ(x, u)r(x)(du).
The continuous relaxed optimal control Problem P̄ is then defined by replacing

w by r (with the above notation) and W by R in the continuous classical problem.
We suppose that the coefficients aij satisfy the ellipticity condition

d∑
i,j=1

aij(x)zizj � α0

d∑
i=1

z2
i , ∀zi, zj ∈ R, x ∈ Ω,

with α0 > 0, aij ∈ L∞(Ω), and that the functions f, fy, fu (resp gm, gmy, gmu)
are defined on Ω × R×U ′ (resp. on Ω × R×U ′), with U ′ ⊃ U open, measurable
for fixed y, u, continuous for fixed x, and satisfy in Ω × R × U

|f(x, y, u)| � c1(1 + |y|ρ−1), 0 � fy(x, y, u) � c2(1 + |y|ρ−2),
|fu(x, y, u)| � c3(1 + |y|ρ−1),
|gm(x, y, u)| � c4(1 + |y|ρ), |gmy(x, y, u)| � c5(1 + |y|ρ−1),
|gmu(x, y, u)| � c6(1 + |y|

ρ
2 ),

with ci � 0, 2 � ρ < +∞ if d = 1 or 2, 2 � ρ < 2d
d−2 if d � 3.

For every r ∈ R, the state equation has a unique solution y := yr ∈ V (see [2]).
The results of this section can be proved by using the techniques of [13,7]. The
weak relaxed minimum principle in Theorem 2 is shown similarly to Theorem
2.2 in [9].

Theorem 1. If the relaxed problem is feasible, then it has a solution.

Lemma 1. Dropping the index m in the functionals, the directional derivative
of G defined on R (resp. W , with U convex), is given by

DG(r, r̄ − r) = lim
α→0+

{[G(r + α(r̄ − r)) − G(r)]/α}
=

∫
Ω

H(x, y(x), z(x), r′(x) − r(x))dx, for r, r̄ ∈ R,
(resp. DG(w, w̄ − w) = lim

α→0+
{[G(w + α(w̄ − w)) − G(w)]/α}

=
∫

Ω Hu(x, y(x), z(x), w(x))(w̄(x) − w(x))dx, for w, w̄ ∈ W ),
where the Hamiltonian is defined by

H(x, y, z, u) := −z f(x, y, u) + g(x, y, u),
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and the adjoint state z := zr ∈ V (resp. z := zw) satisfies the linear adjoint
equation

a(v, z) + (fy(y, r)z, v) = (gy(y, r), v),
(resp. a(v, z) + (fy(y, w)z, v) = (gy(y, w), v) ),
∀v ∈ V,with y := yr (resp. y := yw).

Theorem 2. (Optimality Conditions) If r ∈ R (resp. w ∈ W , with U con-
vex) is optimal for Problem P̄ or P (resp. Problem P ), then r (resp. w) is
strongly extremal relaxed (resp. weakly extremal classical), i.e. there exist multi-

pliers λm ∈ R, m = 0, ..., q, with λ0 � 0, λm � 0, m = p+1, ..., q,
q∑

m=0
|λm| = 1,

such that
(1)

q∑
m=0

λmDGm(r, r̄ − r) � 0, ∀r̄ ∈ R,

(2) λmGm(r) = 0, m = p + 1, ..., q (relaxed transversality conditions),
(resp.

(3)
q∑

m=0
λmDGm(w, w̄ − w) � 0, ∀w̄ ∈ W ,

(4) λmGm(w) = 0, m = p+1, ..., q (classical transversality conditions)).
The condition (1) is equivalent to the strong relaxed pointwise minimum principle
(5) H(x, y(x), z(x), r(x)) = min

u∈U
H(x, y(x), z(x), u), a.e. in Ω,

where the complete Hamiltonian Hand adjoint z are defined with g :=
q∑

m=0
λmgm.

If U is convex, then (5) implies the weak relaxed pointwise minimum principle
(6) Hu(x, y, z, r(x))r(x) = min

φ
Hu(x, y, z, r(x))φ(x, r(x)), a.e. in Ω,

where the minimum is taken over the set B(Ω̄, U ; U) of Caratheodory functions
in the sense of Warga [13], and (6) implies the global weak relaxed condition
(7)

∫
Ω

Hu(x, y, z, r(x))[φ(x, r(x)) − r(x)]dx � 0, ∀φ ∈ B(Ω̄, U ; U).
A control r satisfying (7) and (2) is called weakly extremal relaxed. The condition
(3) is equivalent to the weak classical pointwise minimum principle
(8) Hu(x, y(x), z(x), w(x))w(x) = min

u∈U
Hu(x, y(x), z(x), w(x))u, a.e. in Ω.

2 Discretizations and Behavior in the Limit

We suppose in what follows that Ω is a polyhedron (for simplicity), and that U
is convex. For each integer n � 0, let {En

i }Nn

i=1 be an admissible regular partition
of Ω̄ into elements (e.g. d-simplices), with hn = maxi[diam(En

i )] → 0 as n → ∞.
Let V n ⊂ V be the subspace of functions that are continuous on Ω̄ and linear
(for d-simplices), or multilinear, on each element En

i . The set of discrete controls
Wn ⊂ W is defined as the subset of (not necessarily continuous) controls wn

that are (optionally) constant, linear, or multilinear, on each element En
i , and

(optionally) such that ‖∇wn‖∞ � L. For wn ∈ Wn, the corresponding discrete
state yn := yn

wn ∈ V n is the solution of the discrete state equation
a(yn, vn) + (f(yn, wn), vn) = 0, ∀vn ∈ V n.



290 I. Chryssoverghi

For every wn ∈ Wn, the discrete state equation (a nonlinear system) has a
unique solution yn ∈ V n (see [10]), and can be solved by iterative methods. The
discrete functionals, defined on Wn, are given by

Gn
m(wn) =

∫
Ω

gm(x, yn, wn)dx, m = 0, ..., q.
The discrete control constraint is wn ∈ Wn and the discrete state constraints are

Gn
m(wn) = εn

m, m = 1, ..., p, Gn
m(wn) � εn

m, εn
m � 0, m = p + 1, ..., q,

where the feasibility perturbations εn
m are chosen numbers converging to zero,

to be defined later. The discrete optimal control Problem Pn is to minimize
Gn

0 (wn) subject to wn ∈ Wn and to the above state constraints.

Theorem 3. The operator wn �→ yn, from Wn to V n, and the functionals wn �→
Gn

m(wn), on Wn, are continuous. For every n, if Problem Pn is feasible, then it
has a solution.

Lemma 2. Dropping the index m, the directional derivative of Gn is given by
DGn(wn, w̄n − wn) =

∫
Ω

Hu(x, yn, zn, wn)(w̄n − wn)dx, for wn, w̄n ∈ Wn,
where the discrete adjoint state zn := zn

wn ∈ V n satisfies the discrete adjoint
equation

a(zn, vn) + (znfy(yn, wn), vn) = (gy(yn, wn), vn) ∀vn ∈ V n, with yn := yn
wn.

Moreover, the operator wn �→ zn, from Wn to V n, and the functional (wn, w̄n) �→
DGn(wn, w̄n − wn), on Wn × Wn, are continuous.

Theorem 4. (Discrete Optimality Conditions) If wn ∈ Wn is optimal for Prob-
lem Pn, then wn is weakly discrete extremal classical (or discrete extremal), i.e.

there exist λn
m ∈R, m=0, ..., q, with λn

0 �0, λn
m �0, m=p+1, ..., q,

q∑
m=0

|λn
m| = 1,

such that
(9)

q∑
m=0

λn
mDGn

m(wn, w̄n − wn)=
∫

Ω Hn(yn, zn, w̄n − wn)dx�0, ∀w̄n ∈Wn,

(10) λn
m(Gm(wn) − εn

m) = 0, m = p + 1, ..., q,

where Hn and zn are defined with g :=
q∑

m=0
λn

mgm. The condition (9) is equiva-

lent to the strong discrete classical elementwise minimum principle
(11)

∫
En

i
Hn

u (yn, zn, wn)wndx = min
u∈U

∫
En

i
Hn

u (yn, zn, wn)udx, i = 1, ..., Nn.

Proposition 1. (Control Approximation) For every r ∈ R (resp. w ∈ W ),
there exists a sequence (wn ∈ Wn), regarded as a sequence in R (resp. W ), that
converges to r in R (resp. w in L2 strongly).

Lemma 3. (Consistency) (i) If the sequence (wn ∈ Wn) converges to r ∈ R in
R (resp. w ∈ W in L2 strongly), then yn → yr (resp. yn → yw) in V strongly,
Gn(wn) → G(r) (resp. Gn(wn) → G(w)), and zn → zr (resp. zn → zw) in
Lρ(Ω) strongly and in V strongly.
(ii) If the sequences (wn ∈ Wn) and (w̄n ∈ Wn) converge to w and w̄, respec-
tively, in W , then DGn(wn, w̄n − wn) → DG(w, w̄ − w).

In what follows, we suppose that the considered Problem P or P̄ is feasible. We
now examine the behavior in the limit of extremal discrete controls. We shall



Mixed Discretization-Optimization Methods 291

construct sequences of perturbations (εn
m) that converge to zero and such that

the discrete problem Pn is feasible for every n. Let w̄n ∈ Wn be any solution of
the following auxiliary problem without state constraints

cn := min
wn∈W n

{
p∑

m=1
[Gn

m(wn)]2 +
q∑

m=p+1
[max(0, Gn

m(wn))]2},

and set
εn

m := Gn
m(w̄n), m = 1, ..., p, εn

m := max(0, Gn
m(w̄n)), m = p + 1, ..., q.

It can be easily shown that cn → 0, hence εn
m → 0 (see [9]). Then clearly Pn

is feasible for every n, for these εn
m. We suppose in what follows that the εn

m are
chosen as in the above minimum feasibility procedure. The following theorem
can be proved by using convergence arguments similar to those of Theorem 6 in
Section 3.

Theorem 5. For each n, let wn be admissible and extremal for Problem Pn.
(i) In the definition of Wn, we suppose that ‖∇vn‖∞ � L, ∀vn ∈ Wn. Every
accumulation point of (wn) in R is admissible and weakly extremal relaxed for
Problem P̄ .
(ii) Every strong accumulation point, if it exists, of the sequence (wn) in L2(Ω)
is admissible and weakly extremal classical for Problem P .

3 Mixed Discretization-Optimization Methods

Let (M l
m), m = 1, ..., q, be positive increasing sequences such that M l

m → ∞ as
l → ∞, and define the penalized discrete functionals

Gnl(wn) := Gn
0 (wn)+ 1

2{
p∑

m=1
M l

m[Gn
m(wn)]2+

q∑
m=p+1

M l
m[max(0, Gn

m(wn))]2}.

Let γ � 0, b, c ∈ (0, 1), and let (βl), (ζk) be positive sequences, with (βl)
decreasing and converging to zero, and ζk � 1. The algorithm described below
contains two options. In the case of the progressively refining version, we suppose
that each element En+1

i′ is a subset of some En
i , in which case Wn ⊂ Wn+1.

Algorithm (Discrete Penalized Gradient Projection Methods)
Step 1. Set k := 0, l := 1, choose a value of n and an initial control wn1

0 ∈ Wn.
Step 2. Find vnl

k ∈ Wn such that
ek := DGnl(wnl

k , vnl
k − wnl

k ) + (γ/2)
∥∥vnl

k − wnl
k

∥∥2

= min
v̄n∈W n

[DGnl(wnl
k , v̄n − wnl

k ) + (γ/2)
∥∥v̄n − wnl

k

∥∥2],

and set dk := DGnl(wnl
k , vnl

k − wnl
k ).

Step 3. If |dk| > βl, go to Step 4. Else, set wnl := wnl
k , vnl := vnl

k , dl := dk,
el := ek.
Version A: Set wn,l+1

k := wnl
k . Version B: Set wn+1,l+1

k := wnl
k , n := n + 1.

In both versions, set l := l + 1, and go to Step 2.
Step 4. (Modified Armijo Step Search) Find the lowest integer value s ∈ Z, say
s̄, such that α(s) = csζk ∈ (0, 1] and α(s) satisfies

Gnl(wnl
k + α(s)(vnl

k − wnl
k )) − Gnl(wnl

k ) � α(s)bdk,
and then set αk := α(s̄).
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Step 5. Set wnl
k+1 := wnl

k + αk(vnl
k − wnl

k ), k := k + 1, and go to Step 2.

This Algorithm contains two versions:

Version A: n is a constant integer chosen in Step 1, i.e. a fixed discretization
is chosen, and the Gn

m, m = 1, ..., q, are replaced by the perturbed ones G̃n
m =

Gn
m − εn

m.
Version B: This is a progressively refining method, i.e. n → ∞, in which case
we can take n = 1 in Step 1, hence n = l in the Algorithm.

Version B has the advantage of reducing computing time and memory, and also
of avoiding the computation of minimum feasibility perturbations εn

m (see Section
2). It is justified by the fact that finer discretizations become progressively more
essential as the iterate gets closer to an extremal control.

With wnl as defined in Step 3, define the sequences of multipliers
λnl

m := M l
mGn

m(wnl), m = 1, ..., p, λnl
m := M l

m max(0, Gn
m(wnl)), m = p+1, ..., q.

Theorem 6. (i) In the definition of Wn, we suppose that ‖∇vn‖∞ � L, for
every vn ∈ Wn. In Version B, let (wnl) be a subsequence, regarded as a sequence
in R, of the sequence generated by the Algorithm in Step 3 that converges to
some r in R, as l → ∞ (hence n → ∞). If the sequences (λnl

m) are bounded, then
r is admissible and weakly extremal relaxed for Problem P̄ .
(ii) In Version B, let (wnl) be a subsequence of the sequence generated by the
Algorithm in Step 3 that converges to some w ∈ W in L2 strongly, as l → ∞
(hence n → ∞). If the sequences (λnl

m) are bounded, then w is admissible and
weakly extremal classical for Problem P .
(iii) In Version A, let (wnl) (n fixed) be a subsequence of the sequence generated
by the Algorithm in Step 3 that converges to some wn ∈ Wn as l → ∞. If the
sequences (λnl

m) are bounded, then wn is admissible and extremal for Problem Pn.

Proof. It can first be shown by contradiction, similarly to Theorem 5.1 in [9],
that l → ∞ in the Algorithm, hence dl → 0, el → 0, in Step 3, and n → ∞ in
Version B.
(i) Let (wnl) be a subsequence (same notation) of the sequence generated in Step
3, that converges to some r ∈ R as l, n → ∞. Suppose that the sequences (λnl

m)
are bounded and (up to subsequences) that λnl

m → λm. By Lemma 3, we have
0 = lim

l→∞
λnl

m

Ml
m

= lim
l→∞

Gn
m(wnl) = Gm(r), m = 1, ..., p,

0 = lim
l→∞

λnl
m

Ml
m

= lim
l→∞

[max(0, Gn
m(wnl))] = max(0, Gm(r)), m = p + 1, ..., q,

which show that r is admissible. Now, by Steps 2 and 3 we have, for every
ṽn ∈ Wn

(12)
∫

Ω
Hnl

u (x, ynl, znl, wnl)(ṽn − wnl)dx + (γ/2)
∫
Ω

∣∣ṽn − wnl
∣∣2 dx � dl,

where Hnl, znl are defined with g :=
q∑

m=0
λnl

mgm. Define the elementwise constant

vector functions w̃n(x) := wn(x̃n(x)) , where x̃n(x) is the barycenter of En
i , in

each
o

En
i . Clearly, x̃n → x uniformly on Ω, and by our assumption on Wn

and the mean value theorem, ‖w̃n − wn‖∞ � Lhn → 0. For every function
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φ ∈ C(Ω̄ × U ; U), we can then replace ṽn by φ(x̃n, w̃n) in (12). Using the above
convergences, Lemma 3, and Proposition 2.1 in [5], we can pass to the limit in
(12) and obtain∫

Ω
Hu(x, y, z, r(x))[φ(x, r(x))−r(x)]dx+(γ/2)

∫
Ω

[φ(x, r(x))−r(x)]2dx�0,

for every φ ∈ B(Ω̄, U ; U), where H and z are defined with g :=
q∑

m=0
λmgm,

and this inequality holds also, by density, for every Caratheodory function φ ∈
B(Ω̄ × U ; U). Replacing φ by u + μ(φ − u), with μ ∈ (0, 1], dividing by μ, and
then taking the limit as μ → 0+, we obtain the same inequality, but without
the quadratic term. By the construction of the λnl

m , we clearly have in the limit

λ0 = 1, λm � 0, m = p+1, ..., q,
q∑

m=0
|λm| �= 0. On the other hand, if Gm(w) < 0,

for some index m ∈ {p + 1, ..., q}, then for large l we have Gnl
m(wnl) < 0 and

λl
m = 0, hence λm = 0, i.e. the transversality conditions hold. Therefore, r is

also weakly extremal relaxed.
(ii) The proof follows the arguments of (i), with simpler involved convergences.
(iii) The admissibility of wn is proved as in (i). Passing here to the limit in the
inequality resulting from Step 2, as l → ∞, for n fixed, and using Lemma 3, we
get

q∑
m=0

λmDG̃n
m(wn, v′n − wn) =

q∑
m=0

λmDGn
m(wn, v′n − wn) � 0, ∀v′n ∈ Wn,

and the discrete transversality conditions

λn
mG̃n

m(wn) = λn
m[Gn

m(wn) − εn
m] = 0, m = p + 1, ..., q,

with multipliers λn
m as in the discrete optimality conditions.

When applied to problems whose solutions are classical controls, the above clas-
sical (possibly penalized) gradient projection methods are often efficient (see
examples below), if not as efficient as e.g., SQP methods (see [12]). They can be
applied to a broad class of problems and often converge to admissible controls
satisfying the classical discrete, or continuous, optimality conditions. Moreover,
the progressively refining version increases the efficiency of the method. But when
directly applied to nonconvex problems without classical solutions and such that
the solutions of the relaxed form are non-classical relaxed controls, these meth-
ods may yield very slow convergence, due to highly oscillating involved controls.
If the constraint set U is convex, one can then reformulate the relaxed problem
in the equivalent Gamkrelidze relaxed form, using convex combinations of Dirac
controls involving a finite, usually small, number of classical controls. The above
methods can then be applied to this extended classical control problem, with
much better results (for details on this approach, see [9]). When U is not con-
vex, one can use methods generating relaxed controls for solving (in the relaxed
form) such highly nonconvex problems (see [8]). For various approximation and
optimization methods applied to distributed optimal control problems, see e.g.
[1,3,4,6,7,8,9,12], and the references therein.
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4 Numerical Examples

Example 1. Let Ω := (0, 1)2. Define the reference controls and state
ū(x) := x1x2, v̄(x) := 1 − x1x2, ȳ(x) := 8x1x2(1 − x1)(1 − x2),

and consider the following optimal control problem, with state equation
−Δy + y |y| /2 + (1 + u − ū))y
−ȳ |ȳ| /2 − ȳ − 16[x1(1 − x1) + x2(1 − x2)] − (v − v̄) = 0 in Ω, y(x) = 0 on Γ ,

control constraints (u(x), v(x)) ∈ U := [0, 1]2, x ∈ Ω, and cost functional
G0(u, v) := 0.5

∫
Ω

[(y − ȳ)2 + (u − ū)2 + (v − v̄)2]dx.
Clearly, the optimal controls are ū, v̄, the optimal state is ȳ, and the optimal
cost is zero. The gradient projection method, without penalties, was applied
to this problem using triangular elements (half squares of edge size h = 1/80)
and trianglewise linear discrete controls, with γ = 0.5, and Armijo parameters
b = c = 0.5. After 15 iterations, we obtained the results:
Gn

0 (un
k , vn

k ) = 2.963 · 10−4, dk = −7.786 · 10−12, ηk = 3.052 · 10−5, εk =
4.878 · 10−5,
where ηk (resp. εk) is the discrete max-error for the controls (resp. states) at the
vertices of the triangles (resp. midpoints of the triangle edges).

Example 2. With the same data and parameters as in Example 1, but with
U := [0, 0.7] × [0.3, 1] and the additional state constraint

G1(u, v) :=
∫

Ω (y − 0.22)dx = 0,
the penalized gradient projection method yieldes after 63 iterations in k the
results:

Gn
0 (unl

k , vnl
k ) = 2.468309525 · 10−3, Gn

1 (unl
k , vnl

k ) = 6.303 · 10−6, dk =
−5.909 · 10−6.

Finally, the progressively refining method was also applied to the above prob-
lems, with successive step sizes h = 1/20, 1/40, 1/80, in three equal periods,
and yielded results of similar accuracy, but required here less than half the
computing time.
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Abstract. The stability characteristics of a nonlinear model of a conti-
nuously stirred tank bioreactor with cell recycle are studied. Assuming
that some practically important model parameters are uncertain, existen-
ce of bifurcations of equilibrium points is shown. The dynamic behaviour
of the system near bifurcation points is also demonstrated. Numerical
simulations in the computer algebra system Maple are presented.

1 Introduction

In dynamical systems the object of bifurcation theory is to study the changes
that vector fields undergo as parameters change. Bifurcations may occur at non-
hyperbolic equilibrium points (steady states). An equilibrium point is called
hyperbolic, if none of the eigenvalues of the Jacobian at that point has zero
real part; otherwise the equilibrium point is called nonhyperbolic [10]. Local
stability/instability of a hyperbolic equilibrium point (y0, λ0), depending on a
bifurcation parameter λ, is determined by examining the eigenvalues of the Ja-
cobian J(y0, λ0). Since hyperbolic steady states are structurally stable, varying
λ slightly around λ0 does not change the stability type of (y0, λ0). For nonhyper-
bolic equilibrium points (y0, λ0), small changes of λ around λ0 and y around y0

may lead to new phase portraits of the dynamic system [5], [10].
We shall apply the bifurcation theory to the equilibrium points of a nonlinear

model of a bioreactor with cell recycle. Thereby, we consider the simplest way
in which an equilibrium point can be nonhyperbolic, namely when the Jacobian
at that point has a single zero eigenvalue. In this case the orbit structure near
the equilibrium point is determined by one differential equation. In particular,
the steady states are solutions of one nonlinear algebraic equation. To find the
equilibrium points, we use a Newton type method with result verification [2],
[3], that produces rigorous bounds (intervals) for the exact solution, see also [8].

Using appropriate scaling of the model, we keep several practically important
parameters, one of which is chosen as a bifurcation parameter. Moreover, we
assume that two of the model parameters are unknown but bounded within

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 296–303, 2007.
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given intervals. Under these assumptions, we show that hysteresis, pitchfork and
transcritical bifurcations at equilibrium points may occur.

In Section 2 we shortly present the model of the continuously stirred tank
bioreactor with cell recycle. The bifurcation and stability characteristics of the
steady states with respect to the model parameters are studied in Section 3.
The dynamic behaviour of the system near bifurcation points is demonstrated
numerically in Section 4. The numerical computations and graphical visualiza-
tions are carried out in Maple.

2 The Model of the Activated Sludge Process

The activated sludge wastewater treatment process is carried out in a system,
which consists of an aeration tank and a secondary settler. It is assumed that
the hydraulic characteristics of the aeration tank are those of a continuously
stirred tank bioreactor with cell recycle. A large variety of mathematical models
are known [4], that incorporate the basic biotransformation processes of the
wastewater treatment plant [6]. There are also models that take account of the
specific engineering design of the system [9]. Here we consider a simplified model
of the activated sludge process, assuming that the purge fraction containing the
biomass is operated from the settler, and not directly from the bioreactor [1]. The
model is described by the following two nonlinear ordinary differential equations

dX

dt
= μ(S) ·X + rDXr − (1 + r)DX (1)

dS

dt
= −Kμ(S) ·X + D(Sin − S), (2)

where the state variables X = X(t) and S = S(t) are biomass (activated sludge)
and substrate (biological oxygen demand) concentration, D is dilution rate, Sin

is influent substrate concentration, Xr is recycle biomass concentration, μ(S)
is the specific growth rate of the biomass, r is sludge recycle ratio, K is yield
coefficient. Taking different model functions μ(S) leads to different models of

the bioreactor. Here we consider the Haldane law μ(S) =
μmS

Ks + S + S2

Ki

, where

μm and Ks are kinetic parameters, Ki is inhibition constant.
The coefficients Ks and Ki have the meaning of substrate concentrations:

Ks exhibits the affinity of the biomass to the substrate, Ki is related to the
decrease of the specific growth rate because of excessive substrate concentration.
Therefore, Ki is always greater than the constant Ks [7].

The scaling

s =
S

Ks
, x =

K

Ks
X, u =

D

μm
, sin =

Sin

Ks
,

α =
Ks

Ki
, xr =

K

Ks
Xr, t = μmt
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transforms (1)–(2) into the dimensionless model

dx

dt
≡ ẋ = μ(s) · x + ruxr − (1 + r)ux (3)

ds

dt
≡ ṡ = −μ(s) · x + u(sin − s), (4)

with
μ(s) =

s

1 + s + αs2
.

In optimal operation of the wastewater treatment plant the recycle biomass
concentration xr varies slightly between tight bounds. By this technological rea-
son we have assumed xr to be a model parameter, which varies in given interval
[xr] = [x−

r , x+
r ] ≥ 0. The last inequality means that we do not exclude the possi-

bility xr to become zero; this situation corresponds to feed interrupt of the recy-
cle activated sludge into the bioreactor due to technological problems. We also
assume sin to be uncertain, but located in a known interval [sin] = [s−in, s+

in] > 0.
The following conditions are also satisfied due to physical evidence: 0 < s ≤ sin,
x ≥ 0, u > 0, 0 < r < 1, 0 < α < 1.

3 Stability and Bifurcations of the Equilibrium Points

In what follows we consider u as a bifurcation parameter. Let sin ∈ [sin] and
xr ∈ [xr ] be arbitrary parameter values. The steady states s = s(u), x = x(u)
are solutions of the system

μ(s) · x + ruxr − (1 + r)ux = 0 (5)
−μ(s) · x + u(sin − s) = 0. (6)

Adding (6) to (5), then expressing x from the new equation, x =
sin + rxr − s

1 + r
and substituting in (6) yields the algebraic equation for s

G(s, u) ≡ −s3 + As2 −Bs + C = 0, (7)

where

A =
1

(1 + r)αu
+ sin −

1
α

, B =
sin + rxr

(1 + r)αu
+

1− sin

α
, C =

sin

α
.

Suppose that (s0, u0), s0 = s(u0), satisfies

G(s0, u0) = 0 (equilibrium point condition) (8)
G′

s(s0, u0) = 0 (zero eigenvalue condition). (9)

It is straightforward to see that the Jacobian of (3)–(4) has a single zero eigen-
value at (s0, x0), x0 = (sin + rxr − s0)/(1 + r), with the other eigenvalue having
a nonzero real part. Then the orbit structure near (s0, x0, u0) is determined by
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the associated center manifold equation ṡ = G(s, u) [10]. The question we ask is
what is the nature of the nonhyperbolic equilibrium point for u close to u0.

Hysteresis bifurcations. In order that the vector field ṡ = G(s, u) undergoes a
hysteresis bifurcation at (s0, u0) it is necessary to have (8), (9) and G′′

ss(s0, u0) =
0, G′

u(s0, u0) �= 0, G′′
su(s0, u0) �= 0, G′′′

sss(s0, u0) �= 0; then in a sufficiently small
neighborhood of s0 there exists a smooth function p, such that G(s, p(s)) = 0
and p′(s0) = p′′(s0) = 0, p′′′(s0) �= 0 ([1], [5]).

The conditions (8), (9) and G′′
ss(s0, u0) = 0 mean that s0 should be a triple

root of G(s, u) = 0. Using the elementary symmetric functions (Vieta formulae)
we obtain the relations 3s0 = A, 3s2

0 = B, s3
0 = C; the latter imply

s0 = sin
1/3α−1/3, u0 =

sin + rxr

(1 + r)(3s
2/3
in α1/3 + sin − 1)

, (10)

if and only if the parameters (sin, xr , α, r) satisfy

xr = fα,r(sin), fα,r(sin) =
1
r
·

((
αs2

in

)1/3 − 1
)3

3 (α2sin)1/3 − αsin + 1
, αs2

in ≥ 1. (11)

Let (11) hold true. It is straightforward to see that

G′
u(s0, u0) �= 0 ⇐⇒ s0 �= sin + rxr ⇐⇒ rxr(1− αsin) �= αs2

in − 1. (12)

If αsin = 1, the last inequality in (12) is obviously fulfilled, since α < 1. Let
αsin �= 1. Then

G′
u(s0, u0) �= 0 ⇐⇒ xr �=

αs2
in − 1

r(1 − αsin)
⇐⇒ αs2

in − 1
r(1 − αsin)

�= fα,r(sin). (13)

When αs2
in = 1, then xr = 0 follows from (11), but this is an obvious contradict-

ion to (13). Therefore G′
u(s0, u0) �= 0 if (sin, xr, α, r) satisfy (11) with fα,r(sin) >

0. Further, G′′
su(s0, u0) �= 0 ⇐⇒ s0 �= 1

2 (sin + rxr) and similar considerations
as above show that this inequality is also fulfilled when (sin, xr, α, r) satisfy (11)
with αs2

in �= 1. Finally, G′′′
sss(s0, u0) �= 0 is obviously fulfilled.

Assume now that α and r are fixed, but xr and sin vary in the intervals [xr] =
[x−

r , x+
r ] and [sin] = [s−in, s+

in] respectively. Denote by [f ] = [f−, f+] the range of
fα,r(sin) on [sin], that is [f ] = {fα,r(sin) : sin ∈ [sin]}. Set Γ = [xr ]

⋂
[f ]. The

following cases are possible: (a) Γ = [xr], that is [xr] ⊆ [f ]; (b) Γ = [f ], that
is [f ] ⊆ [xr ]; (c) Γ = [f−, x+

r ], that is x−
r < f− < x+

r < f+; (d) Γ = [x−
r , f+],

that is f− < x−
r < f+ < x+

r ; (e) Γ = ∅, that is x+
r < f− or f+ < x−

r . We shall
consider in detail the first case (a); the other possibilities are treated similarly.

Let Γ = [xr], that is, f− ≤ x−
r < x+

r ≤ f+. Since fα,r(sin) is continuous and
monotone increasing, there exist points s̃−in, s̃+

in ∈ [sin] such that x−
r = fα,r(s̃−in),

x+
r = fα,r(s̃+

in). Then for any xr ∈ [xr] there exists sin ∈ [s̃−in, s̃+
in] = [s̃in]

with xr = fα,r(sin), and vice versa. According to (11), hysteresis bifurcations
occur only for these parameter values. Fig. 1(a) presents the graph of fα,r(sin)
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Fig. 1. (a) Parameter regions for hysteresis bifurcation; (b) Bifurcation diagrams on
KLMN ; (c) Bifurcation diagrams on AKND; (d) Bifurcation diagrams on LBCM
(thin lines – unstable curve branches; thick lines – stable curve branches)

(denoted by f); the rectangle ABCD visualizes the interval vector ([sin], [xr]),
that is A = (s−in, x−

r ), B = (s+
in, x−

r ), C = (s+
in, x+

r ), D = (s−in, x+
r ); KLMN

corresponds to ([s̃in], [xr ]) with K = (s̃−in, x−
r ), L = (s̃+

in, x−
r ), M = (s̃+

in, x+
r ),

N = (s̃−in, x+
r ); the curve KM presents the set of parameter values, for which

the hysteresis bifurcations occur (that is, a triple root of G(s, u) = 0 exists).
When xr �= fα,r(sin), then G′′

ss = 0 is no more valid. It is straightforward to see
that for any pair of parameter values (sin, xr) ∈ ([sin], [xr]) with xr < fα,r(sin)
there exist bifurcation values u3 and u4 such that G(si, ui) = 0, G′

s(si, ui) = 0,
i = 3, 4, i. e. s3 = s(u3) and s4 = s(u4) are double roots of (7); on Fig. 1(a)
these parameter regions are marked by ’2’. When (sin, xr) ∈ ([sin], [xr ]) are such
that xr > fα,r(sin), equation (7) has a unique real solution s(u) for any u > 0;
on Fig. 1(a) these parameter regions are marked by ’1’.

Fig. 1(b) presents bifurcation diagrams for (sin, xr) ∈ ([s̃in], [xr ]), i. e. on
the parameter domain KLMN . The curve, containing the point H1 resp. H2

corresponds to parameter values (s̃+
in, x+

r ) = M resp. (s̃−in, x−
r ) = K. The curve

connecting H1, H2 presents the set of all hysteresis points when xr = fα,r(sin),
sin ∈ [s̃−in, s̃+

in], that is for points (sin, xr) on the curve KM . The curve containing
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H3 and H4 is computed for parameter values (s̃+
in, x−

r ) = L; the points H3 =
(u3, s3) and H4 = (u4, s4) visualize the double roots of (7), and they build the
unstable curve branch H3H4. The lowest curve corresponds to (s̃−in, x+

r ) = N
and presents a steady state solution s(u) with no bifurcation points.

Fig. 1(c) visualizes solution curves for sin ∈ [s−in, s̃−in] and xr ∈ [xr ], i. e. on
AKND; on this parameter region, the hysteresis bifurcation point H2 disap-
pears. On Fig. 1(d), bifurcation diagrams for sin ∈ [s̃+

in, s+
in], xr ∈ [xr] (i. e. on

LBCM) are shown; the hysteresis point H1 splits up into two bifurcation points
(double roots of (7)), denoted by boxes.

All bifurcation points Hi (i = 1, 2, 3, 4) are computed for particular parameter
values (see Section 4) using the verification Newton type algorithm [2].

If we return to the model of the bioreactor, the latter should be operated
for parameter values (sin, xr, α, r) satisfying xr ≥ fα,r(sin), i. e. on the param-
eter domain denoted by ’1’ on Fig. 1(a) and on the curve KM ; there, for all
(practically admissible) values of the controllable input u the steady states s(u)
are stable and the system is predictable. Since sin and xr are not fixed, but
vary in intervals, it may happen that they change and move to the region with
xr < fα,r(sin) (denoted by ’2’ on Fig. 1(a)). This will cause changes in the
stability characteristics of the bioreactor. An example for the dynamics of the
model near the bifurcation point H4 is given in the next section, see Fig. 2(b).

Pitchfork and transcritical bifurcations. For the vector field ṡ = G(s, u) to un-
dergo a pitchfork bifurcation at (s0, u0), it is necessary to have (8), (9) and
G′′

ss(s0, u0) = 0, G′
u(s0, u0) = 0, G′′

su(s0, u0) �= 0, G′′′
sss(s0, u0) �= 0; then in a

sufficiently small neighborhood of s0 there exist exactly two smooth functions
p1(s) and p2(s) such that G(s, pi(s)) = 0, pi(s0) = u0, p′i(s0) = 0 and p′′i (s0) �= 0
(i = 1, 2). Under the above conditions, if G′′

ss(s0, u0) �= 0, then the vector field
ṡ = G(s, u) is said to undergo a transcritical bifurcation at (s0, u0); the functions
pi(s) satisfy G(s, pi(s)) = 0, pi(s0) = u0, p′i(s0) �= 0, i = 1, 2 [10].

From the previous considerations it follows that pitchfork bifurcation occurs
if (13) holds with equality, that is if αs2

in = 1 and therefore xr = 0 is valid.
For xr = 0 the equation (7) takes the form

(sin − s) g(s, u) = 0, g(s, u) = s2 +
(

1
α
− 1

(1 + r)αu

)
s +

1
α

. (14)

The equation g(s, u) = 0 has a double root for u = u′ = ((1 + r)(2
√

α + 1))−1.
When αs2

in = 1, this double root is equal to sin at u0 =
sin

(1 + r)(2 + sin)
= u′;

therefore (sin, u0) is the pitchfork bifurcation point. If αs2
in �= 1, then G′′

ss = 0

is no more valid. In this case g(s, u) = 0 has a root s(u′′) = sin for u′′ =
μ(sin)
1 + r

.

Hence, (sin, u′′) is a transcritical bifurcation point.
Assume now that sin is enclosed by an interval [sin] > 0 such that α[sin]2 =

α[(s−in)2, (s+
in)2] � 1. There exists a unique ŝin ∈ [sin] with αŝ2

in = 1. Then

(ŝin, û0) with û0 =
ŝin

(1 + r)(2 + ŝin)
is the unique pitchfork bifurcation. For
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Fig. 2. (a) Pitchfork and transcritical bifurcation diagram (thin lines – unstable curve
branches; thick lines – stable curve branches); (b) Dynamic behaviour near the bifur-
cation point H4; (c), (d) Dynamic behaviour near the transcritical point T2

all parameter values sin ∈ [sin] \ {ŝin} the points (sin, u′′) are transcritical
bifurcations. In the case when α[sin]2 �� 1, no pitchfork but only transcritical
bifurcations are present. Fig. 2(a) presents the bifurcation diagram of the equi-
librium solutions s versus u. The point P0 = (û0, ŝin) is the pitchfork bifurcation;
T1 = (u1, s

−
in), u1 = μ(s−in)/(1 + r) and T2 = (u2, s

+
in), u2 = μ(s+

in)/(1 + r) are
(only two from the set of all) transcritical bifurcations.

4 Dynamic Behaviour Near Bifurcation Points

We shall demonstrate numerically the changes in the orbit structure as the bi-
furcation parameter passes through the bifurcation values. Let α = 0.5 and
r = 0.2.

First we take sin ∈ [5.2, 7.6], xr ∈ [25, 35] and obtain [f ] = [7.88, 48.29]. This
is the case (a) of the hysteresis bifurcation, with s̃−in = 6.7, s̃+

in = 7.16. For
the bifurcation point H4 = (u4, s4) from Fig. 1(b) we have u4 ∈ [0.655, 0.656],
s4 ∈ [1.93, 1.94]. In ṡ = G(s, u) let us substitute u by the value 0.7, which is
slightly larger than u4; with s(0) = 1.7 close to s4, Fig. 2(b) presents the solution
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s(t). As one can see, the phase curve s(t) “jumps” and stabilizes to a steady state
on the upper stable curve branch, emanating from the bifurcation point H3.

To demonstrate the dynamics near the pitchfork and the transcritical bifur-
cations (see Fig. 2(a)), we take xr = 0 and sin ∈ [0.4, 4]. For P0 = (û0, ŝin) it
is obvious that if we start with initial value s(0) close to ŝin and take u slightly
larger than û0, then s(t) will tend to ŝin. This result is not visualized due to place
limitations. For the point T2 = (u2, s

+
in) we have u2 ∈ [0.256, 0.257]. Fig. 2(c),(d)

present two different portraits of the solution s(t) for u = 0.26 slightly larger
than u2, first with a starting value s(0) = 3.5 and second with s(0) = 3.9. In
the first case s(t) stabilizes to a steady state on the stable curve branch T1P0,
in the second case s(t) approaches s+

in. The reason is that the direction field of
ṡ = (sin − s(t))g(s(t), u) is determined by the sign of g(s, u). More precisely,
g(s, u) < 0 if (s, u) lies in the region to the left of the curve T1P0T2 and thus
s(t) decreases (Fig. 2(c)); if (s, u) lies in the region to the right of T1P0T2 then
g(s, u) > 0 and hence s(t) increases (Fig. 2(d)). Another situation that may
occur is due to the fact that sin is not fixed, but varies in [sin]. It may happen
that sin suddenly changes and becomes equal to s(t0) at some time t0 > 0, lead-
ing in this way to wash-out state s(t) = sin for all t > t0. No wash-out states
occur if u < u1 = μ(s−in)/(1 + r), sin = s−in and s(0) < s−in; then the phase curve
s(t) approaches the stable curve branch emanating to the left of the point T1.
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Abstract. In the paper we study discrete approximations of singularly
perturbed system in a finite dimensional space. When the right-hand
side is almost upper semicontinuous with convex compact values and
one-sided Lipschitz we show that the distance between the solution set

of the original and the solution set of the discrete system is O
(
h

1
2

)
.

1 Introduction

We study Euler discrete approximations of two time scale system having the
form: (

ẋ
εẏ

)
∈ F (t, x(t), y(t)),

x(0) = x0

y(0) = y0,
(1)

where F : I × R
n × R

m ⇒ R
n × R

m is bounded on the bounded sets with
nonempty convex and compact values.

There is a large number of papers devoted to the existence of the limit of the
solution set Z(ε) of (1) when ε → 0+. We mention only [3,6,9,10,13] and the
references therein.

The multifunction F (t, ·, ·) is said to be One-Sided Lipschitz (OSL) if there
exist positive constants A, B, C, μ such that for every x1, x2 ∈ R

n, every
y1, y2 ∈ R

m and every (f1, g1) ∈ F (t, x1, y1) there exists (f2, g2) ∈ F (t, x2, y2)
such that

〈x1 − x2, f1 − f2〉 ≤ A|x1 − x2|2 + B|y1 − y2|2,
〈y1 − y2, g1 − g2〉 ≤ C|x1 − x2|2 − μ|y1 − y2|2.

This condition is introduced in [2]. It is used in the approximation of diff-
erential inclusions and in singular perturbation theory in [3,6,11,12,14,16].

We refer to [4,8,12,14] and the references therein for discretization of diff-
erential inclusions.

Denote by Bn the unit ball in R
n. We refer to [1] for all the concepts used

here, but not explicitly presented.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 304–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Discrete Approximations of Singularly Perturbed Systems 305

The multifunction F (·, ·) defined on I × K is said to be almost USC, when
for every ε > 0 there exists a compact Iε ⊂ I with meas(Iε) > 1 − ε (here meas
is Lebesgue measure), such that F is USC on Iε × K.

Further we assume that F is:
A1. Almost USC with nonempty convex compact values (of course if F is

autonomous it is USC).
A2. F is bounded on the bounded sets.
A3. F is OSL.
We show that under the above assumptions A1, A2, A3, one has accuracy

O

(√
h

ε

)
of the Euler Approximation Schema EAS.

If we assume also that F (·, ·) is locally Lipschitz (and of course does not

depend on t), then the accuracy of EAS is O

(
h

ε

)
.

We note the recent paper of Grammel [11], where the system (1) is studied,
when its ”slow component” is single valued, i.e. F (x, y) = {f(x, y)×G(x, y)}. He
assumes that f(·, ·) and G(·, ·) are Lipschitz and, moreover, there exist constants
0 < α < β for every x, y1, y2 and every v1 ∈ G(x, y1) there exists v2 ∈ G(x, y2)
such that:

〈v1 − v2, y2 − y1〉 ≤ −α |y2 − y1|2 , |v1 − v2| ≤ β |y2 − y1| .

Grammel obtains ([11, Theorem 4]) O

(
h

ε

)
of (EAS ).

2 Discrete Approximations

In this section we study discrete approximations of the initial value problem (1)
in case of one and two time scale discretization.

Lemma 1. Under A1, A2, A3 there exist constants M and N such that
|x(t)| + |y(t)| ≤ M and |F (t, x(t) + Bn, y(t) + Bm)| ≤ N for every ε > 0 and for
every solution (x(·), y(·)) of

(
ẋ
εẏ

)
∈ co F (t, x(t) + Bn, y(t) + Bm),

x(0) = x′ ∈ x0 + Bn

y(0) = y′ ∈ y0 + Bm.

The proof can be found in [5] and it is omitted.
We are going to prove the following lemma of Filippov–Pliss type (compare

with Lemma 5 of [3], where particular case is considered).

Lemma 2. (Lemma of Plis) Under A1, A2, A3 there exists a constant P
such that:

For every solution (u, v) of the system:
(

u̇
εv̇

)
∈ F (t, u(t) + δBn, v(t) + δBm), u(0) = u0

v(0) = v0,
(2)
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there exists a solution (x, y) of (1) such that denoting: |x(t) − u(t)|2 = r(t) and
|y(t) − v(t)|2 = s(t), one has:

ṙ(t) ≤ 2Ar + 2Bs + Pδ, r(0) = |x0 − u0|2

εṡ(t) ≤ 2Cr − 2μs + Pδ, s(0) = |y0 − v0|2.

Proof. It is easy to see that there exist measurable functions |α(t)| ≤ δ and
|β(t)| ≤ δ such that:

(
u̇
εv̇

)
∈ F (t, u(t) + α(t), v(t) + β(t)),

u(0) = u0

v(0) = v0.

We define the multifunction:

G(t, x, y) = {(f, g) ∈ F (t, x, y) :
〈u(t) + α(t) − x, u̇(t) − f〉 ≤ A|u(t) + α(t) − x|2 + B|v(t) + β(t) − y|2,
ε〈v(t) + β(t) − y, v̇(t) − g〉 ≤ C|u(t) + α(t) − x|2 − μ|v(t) + β(t) − y|2}.

It is easy to see that G(·, ·, ·) is almost USC with nonempty convex, compact
values.

Let (x(·), y(·)) be a solution of:
(

ẋ
εẏ

)
∈ G(t, x(t), y(t)),

x(0) = x0

y(0) = y0.

Using standard calculations one can show that:

d

dt
|x(t) − u(t)|2 ≤ 2A|x(t) − u(t)|2 + 2B|y(t) − v(t)|2 + Pδ,

ε
d

dt
|y(t) − v(t)|2 ≤ 2C

d

dt
|x(t) − u(t)|2 − 2μ|y(t) − v(t)|2 + Pδ.

The proof is therefore complete. �	

Given a subdivision ΔK def= {0 = t0 < t1 < . . . < tK = 1}, where ti = ih and

h =
1
K

. Consider the Euler scheme:

(f(t), g(t)) ∈ F (t, xi, yi), xi = x(ti), yi = y(ti),

x(t) = xi +
∫ t

ti

f(s) ds, t ∈ [ti, ti+1],

εy(t) = εyi +
∫ t

ti

g(s) ds. (3)

Denote by Sol(DI) the solution set of (1) and by Sol(AI) the solution set of (3).
We prove the following theorem:
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Theorem 1. Under A1, A2, A3 the following estimation holds true:

DH (Sol(DI), Sol(AI)) ≤ O

(√
h

ε

)
, (4)

where DH(·, ·) is the Hausdorff distance.

Proof. Let (x(·), y(·)) ∈ Sol(AI). Due to Lemma 1, x(·) is N–Lipschitz and

y(·) is
N

ε
–Lipshitz. Therefore, |xi − x(t)| ≤ Nh and |yi − y(t)| ≤ Nh

ε
. Hence

(x(·), y(·)) is a solution of (2) with δ replaced by
Nh

ε
. It follows from Lemma 2

that dist ((x(·), y(·)), Sol(DI)) ≤ O

(√
h

ε

)
.

Let (x̃(·), ỹ(·)) ∈ Sol(DI). We will find the corresponding solution (x, y) suc-
cessively on the intervals [ti, ti+1] for i = 1, 2, . . . , K. Suppose that we have found

a solution (x, y) of (3) such that |x(t)− x̃(t)|+ |y(t)− ỹ(t)| ≤ O

(√
h

ε

)
on [0, ti].

On [ti, ti+1] we take selections(
f(t)
εg(t)

)
∈ F (t, xi, yi),

xi = x(ti)
yi = y(ti),

such that

〈x̃(t) − xi, ˙̃x(t) − f(t)〉 ≤ A|x̃(t) − xi|2 + B|ỹ(t) − yi|2 (5)
ε〈ỹ(t) − yi, ˙̃y(t) − g(t)〉 ≤ C|x̃(t) − xi|2 − μ|ỹ(t) − yi|2.

We define x(·) and y(·) on [ti, ti+1] as in (3). Consequently ẋ(t) = f(t), εẏ(t) =
g(t).

After some technical calculations we derive:

〈x̃(t) − x(t), ˙̃x(t) − ẋ(t)〉 ≤ A|x̃(t) − x(t)|2 + B|ỹ(t) − y(t)|2 +
Ph

ε

ε〈ỹ(t) − y(t), ˙̃y(t) − ẏ(t)〉 ≤ C|x̃(t) − x(t)|2 − μ|ỹ(t) − y(t)|2 +
Ph

ε
,

(6)

where P > 0 is a constant. We let |x(t) − x̃(t)|2 = r(t) and |y(t) − ỹ(t)|2 = s(t).
Consequently,

ṙ(t) ≤ 2Ar + 2Bs +
Ph

ε
, r(0) = 0

εṡ(t) ≤ 2Cr − 2μs +
Ph

ε
, s(0) = 0.

Due to the second inequality, we have that either ṡ(t) < 0 (that is, s(·) decreases,

since r(·) and s(·) are continuous), or s(t) ≤ Cr

μ
+

Ph

εμ
. Hence,

ṙ(t) ≤
(

2A +
2BC

μ

)
r +

Ph

ε

(
1 +

2B

μ

)
.
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Now it is standard to prove that r(t) ≤ O

(
h

ε

)
and s(t) ≤ O

(
h

ε

)
. One can

continue in the same way to extend x(·) and y(·) on the whole interval I such

that |x(t) − x̃(t)| ≤ O

(√
h

ε

)
and |y(t) − ỹ(t)| ≤ O

(√
h

ε

)
. �	

Now we consider the problem (1), when F does not depend on t, i.e. the au-
tonomous case:

(
ẋ
εẏ

)
∈ F (x(t), y(t)), x(0) = x0

y(0) = y0.
(7)

The discrete approximation scheme will be changed to:

(α, β) ∈ F (xi, yi), xi = x(ti), yi = y(ti), (8)
x(t) = xi + (t − ti)α, εy(t) = εyi + (t − ti)β, t ∈ [ti, ti+1].

Notice that in (3) (f(·), g(·)) may be non-constant on [ti, ti+1]. The solution set
of (8) will be denoted by Sol(Au).

Corollary 1. If F is USC with convex compact values and if F is OSL, then

DH(Sol(DI), Sol(Au)) ≤ O

(√
h

ε

)
.

Proof. We know from Theorem 1 that DH(Sol(DI), Sol(AI)) ≤ O

(√
h

ε

)
. Let

(x, y) be a solution of (3). It is easy to see that there exists a solution (x̂, ŷ) of
(8) such that x(ti) = x̂(ti) and y(ti) = ŷ(ti). This implies that |x(t)− x̂(t)| ≤ Nh

and |y(t) − ŷ(t)| ≤ Nh

ε
. The latter completes the proof. �	

Now we study discrete approximation when, however, there are two subdivisions:
For slow variables x – ΔK def

= {0 = t0 < t1 < . . . < tK = 1}, where ti = ih

and h =
1
K

.

For fast variables y – ΔKε
def
= {0 = t0 < t0,1 < . . . < t0,kε = t1 < t1,1 < . . . <

t1,kε = t2 < . . . < tK,kε = tK = 1}, where kε = −
[
−1

ε

]
.

The discretization scheme becomes:

(f j, gj) ∈ F (xi, yi,j), xi,j = x(ti,j), yi,j = y(ti,j), (9)
x(t) = xi,j + (t − ti,j)f j , εy(t) = εyi,j + (t − ti,j)gj , t ∈ [ti,j , ti,j+1],

with a solution set Sol(Dis). Notice that (9) is different from (3) with step

h =
1

kεK
only that in the first row of (9) we take one value of x–xi on [ti, ti+1].

The following theorem is then valid:
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Theorem 2. Under the assumptions of Theorem 1 the next inequality holds:

DH(Sol(DI), Sol(Dis)) ≤ O
(√

h
)

. (10)

Proof. The proof is very similar of the proof of Theorem 1 and it will be only
sketched.

First we find approximate solutions (u(·), v(·)) using the following scheme:
On [ti,j , ti,j+1] we take measurable:

(f j(t), gj(t)) ∈ F (ui, vi,j), ui,j = u(ti,j), vi,j = v(ti,j),

u(t) = ui +
∫ t

ti

f(s) ds, t ∈ [ti,j , ti,j+1],

εv(t) = εvi,j +
∫ t

ti,j

g(s) ds. (11)

Notice that for the step is not greater than hε. Hence the discrete solution
(u, v) satisfies:

(
u̇
εv̇

)
∈ F (t, u(t) + NhBn, v(t) + NhBm),

u(0) = u0

v(0) = v0,

and Lemma 2 applies.
If (x, y) is a solution of (1), we choose f(t), g(t) such that

〈x(t) − ui, ẋ(t) − f(t)〉 ≤ A|x(t) − ui|2 + B|y(t) − vi,j |2

ε〈y(t) − vi,j , ẏ(t) − g(t)〉 ≤ C|x(t) − ui|2 − μ|y(t) − vi,j |2.

Dealing as in the proof of Theorem 1 we derive |x(t) − u(t)| ≤ O(
√

h) and
|y(t)−v(t)| ≤ O(

√
h). Hence we have proved that the Hausdorff distance between

the solution set Sol(11) of (11) and Sol(DI) is not greater than O
(√

h
)
.

Now we use the same proof as the proof of Corollary 1 to see that
DH (Sol(dtsc), Sol(11)) ≤ O(h). �	

3 Concluding Remarks

It is easy to see that there are many interesting questions, which were not studied
in the paper. A reason (not the only one) is the length restriction. Below we
present some notions for problems not discussed here, some of them will be
subjects of other our papers.

Note 1. Assume that F (·, ·) is locally Lipschitz and replace the OSL condition
by the stronger one:

There exist positive constants A, B, C, μ such that:
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For every (x, y), (x1, y1) ∈ R
n × R

m and every (f, g) ∈ F (x, y) there exists
(f1, g1) ∈ F (x1, y1) which satisfy:

〈x1 − x, f1 − f〉 ≤ A|x1 − x|2 + B|y1 − y||x − x1|, (12)
ε〈y1 − y, g1 − g〉 ≤ C|x1 − x||y1 − y| − μ|y1 − y|2.

Theorem 3. Under the assumptions of Theorem 1 (with OSL condition replaced
by (12)) the next inequality holds:

DH(Sol(DI), Sol(dtsc)) ≤ O (h) . (13)

The proof is omitted. It is very similar to the proof of Theorem 1, however,
one should follow the method presented in [4] and the variant of Filippov–Pliss
lemma given there.

Note 2. As it is shown in [7] when F is autonomous under our conditions there
exists a constant L > 0 such that for every ε > 0 there exists a solution (xε, yε)
such that xε is L–Lipschitz on I and yε is L–Lipschitz on [

√
ε, 1]. Therefore it

would be interesting to present a scheme with Euler approximation of such a
solution.

Note 3. When F (x, y) = G(x, y, u) × H(x, y, u), it is proved in [3,6] that the
solution set Z(ε) has a limit Z(0). The fast solution set converges to some set of
Young measures, which are limit occupational measures of appropriate differen-
tial inclusion. It is interesting to investigate approximation of such measures.

Note 4. In [15] Mordukhovich obtains necessary optimality conditions of Euler–
Lagrange form using discrete approximations. It would be interesting to prove
similar result in the case of singularly perturbed systems.
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Abstract. Generalized intervals (intervals whose bounds are not con-
strained to be increasingly ordered) extend classical intervals providing
better algebraic properties. In particular, the generalized interval arith-
metic is a group for addition and for multiplication of zero free inter-
vals. These properties allow one constructing a LU decomposition of a
generalized interval matrix A: the two computed generalized interval
matrices L and U satisfy A = LU with equality instead of the weaker
inclusion obtained in the context of classical intervals. Some potential
applications of this generalized interval LU decomposition are
investigated.

1 Introduction

The LU decomposition of a square real matrix A consists of computing two
matrices L and U being respectively lower and upper triangular and satisfying
A = LU . Such a decomposition eases the solution of many problems such as
solving linear equations, inverting matrices, etc..

The Gauss elimination algorithm allows constructing LU decompositions. It
has been generalized to interval matrices (see e.g. [1]). The interval Gauss elim-
ination is widely used in order to construct an outer approximation of united
solution sets, i.e.

{
x ∈ R

n |
(
∃A ∈ A

)(
∃b ∈ b

)(
Ax = b

)}
, where boldface letters

mean interval matrices and vectors. In the study of the interval Gauss elimina-
tion, an interval LU decomposition has been introduced (cf. [1]). This interval LU
decomposition does not satisfy A = LU but only the weaker relation A ⊆ LU,
which is well suited for outer approximation of united solution sets.

Generalized intervals are intervals whose bounds are not constrained to be
increasingly ordered (e.g. [−1, 1] is a proper interval while [1, −1] is an improper
interval). They have been introduced in [2,3] in order to improve the mathe-
matical structure of intervals. The generalized interval arithmetic (also called
Kaucher arithmetic) is a group for addition and for multiplication of zero free
generalized intervals. Thanks to the framework of generalized intervals, a new
LU decomposition of a generalized interval matrix A is introduced. It satisfies
A = LU.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 312–319, 2007.
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The paper is organized as follows: Section 2 gives an overview of generalized
intervals and their arithmetic. Section 3 presents the generalized interval LU
decomposition, and Section 4 shows how it can be used to compute approx-
imations of linear AE-solution sets.

2 Generalized Intervals

Generalized intervals are intervals whose bounds are not constrained to be or-
dered, for example [−1, 1] and [1, −1] are generalized intervals. They have been
introduced in [2,3] so as to improve the algebraic structure of intervals, while
maintaining the inclusion monotonicity. The set of generalized intervals is de-
noted by KR and is divided into three subsets:

– The set of proper intervals with bounds ordered increasingly. These proper
intervals are identified with classical intervals. The set of proper intervals is
denoted IR := {[a, b] | a ≤ b}. Strictly proper intervals satisfy a < b.

– The set of improper intervals with bounds ordered decreasingly. It is denoted
by IR := {[a, b] | a ≥ b}. Strictly proper intervals satisfy a > b.

– The set of degenerated intervals {[a, b] | a = b} = IR ∩ IR. Degenerated
intervals are identified to reals.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two
generalized intervals [a, b] and [b, a]. It will be convenient to switch from one
to the other keeping the underlying set of reals unchanged. To this purpose,
the following three operations are introduced: the dual operation is defined by
dual [a, b] = [b, a]; the proper projection is defined by pro [a, b] = [min{a, b}, max
{a, b}]; the improper projection is defined by imp [a, b] = [max{a, b}, min{a, b}].

The generalized intervals are partially ordered by an inclusion which extends
the inclusion of classical intervals. Given two generalized intervals x = [x,x] and
y = [y,y], the inclusion is defined by x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y. For example,
[−1, 1] ⊆ [−1.1, 1.1] (this matches the set inclusion), [1.1, −1.1] ⊆ [1, −1] (the
inclusion between the underlying sets of real is reversed for improper intervals)
and [2, 0.9] ⊆ [−1, 1]. As degenerated intervals are identified to reals, if x is
proper then x ∈ x ⇐⇒ x ⊆ x. On the other hand, if x is strictly improper then
for all x ∈ R the inclusion x ⊆ x is false.

The generalized interval arithmetic (also called Kaucher arithmetic) extends
the classical interval arithmetic. Its definition can be found in [4,5]. When only
proper intervals are involved, this arithmetic coincides with the interval arith-
metic: x ◦ y = {x ◦ y ∈ R | x ∈ x, y ∈ y}. When proper and improper inter-
vals are involved, some new expressions are used. For example, [a, b] + [c, d] =
[a+c, b+d] and if a, b, c, d ≥ 0 then [a, b]× [c, d] = [a×c, b×d]. The following use-
ful property provides some bounds on the proper projection of the results of the
generalized interval arithmetic. Let us consider x,y ∈ KR and ◦ ∈ {+, −, ×, /}.
If (pro x) ◦ (pro y) is defined then x ◦ y is defined and it satisfies

pro (x ◦ y) ⊆ (pro x) ◦ (pro y). (1)
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Generalized interval arithmetic has better algebraic properties than the classical
interval arithmetic: the addition in KR is a group. The opposite of an interval
x is − dual x, i.e.,

x + (− dual x) = x − dual x = [0, 0]. (2)

The multiplication in KR restricted to generalized intervals whose proper pro-
jection does not contain 0 is also a group. The inverse of such a generalized
interval x is 1/(dual x), i.e.,

x × (1/ dual x) = x/(dual x) = [1, 1]. (3)

Although addition and multiplication in KR are associative, they are not dis-
tributive. The addition and multiplication in KR are linked by the following
distributivity laws (see [6,7,5]). Whatever are x,y, z ∈ KR,

– conditional distributivity:

x × y + (imp x) × z ⊆ x × (y + z) ⊆ x × y + (pro x) × z. (4)

The three following particular cases will be of practical interest in this paper.

– subdistributivity: if x ∈ IR then x × (y + z) ⊆ x × y + x × z;
– superdistributivity: if x ∈ IR then x × (y + z) ⊇ x × y + x × z;
– distributivity: if x ∈ R then x × (y + z) = x × y + x × z.

Another useful property of the Kaucher arithmetic is its monotonicity with re-
spect to the inclusion: whatever are ◦ ∈ {+, ×, −, ÷} and x,y,x′,y′ ∈ KR,

x ⊆ x′ ∧ y ⊆ y′ =⇒ (x ◦ y) ⊆ (x′ ◦ y′). (5)

The next example illustrates the way these properties will be used in the sequel.

Example 1. Consider the expression x + uv ⊆ y. Subtracting dual (uv) =
(dual u)(dual v) to each side preserves the inclusion: x + uv − dual (uv) ⊆
y − (dual u)(dual v). As − dual (uv) is the opposite of uv, the following inclu-
sion is eventually proved to hold: x ⊆ y − (dual u)(dual v).

Finally, generalized interval vectors x ∈ KR
n and generalized interval matrices

A ∈ KR
n×n together with their additions and multiplications are defined simi-

larly to their real and classical interval counterparts.

3 Generalized Interval LU Decomposition

A Gauss elimination algorithm for generalized interval matrices is first presented.
It will be used to construct the generalized interval LU decomposition. Consider
a generalized interval matrix A = (Aij). In order to obtain a generalized interval
LU decomposition, the Gauss elimination algorithm is applied in the following
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way: if 0 /∈ pro A11, for i ∈ [2..n] multiply the first row by Ai1/(dual A11). As
A11/(dual A11) = 1 the following row is obtained:

(
Ai1 , A12Ai1

dual A11
, · · · , A1nAi1

dual A11

)
. (6)

The second step consists in subtracting the dual of the previously computed row
to the ith row of the matrix A. As Ai1 − dual Ai1 = 0 one obtains

(
0 , Ai2 − (dual A12)(dual Ai1)

A11
, · · · , Ain − (dual A1n)(dual Ai1)

A11

)
. (7)

Once this transformation is applied for each i ∈ [2..n], the following interval
matrix A is obtained:

A :=

⎛
⎜⎜⎜⎝

A11 A12 · · · A1n

0 A′
22 · · · A′

2n
...

...
. . .

...
0 A′

n2 · · · A′
nn

⎞
⎟⎟⎟⎠ , where A′

ij := Aij −
(dual A1j)(dual Ai1)

A11
. (8)

As in the context of real numbers and classical intervals, this leads to a LU
decomposition of the generalized interval matrix A. This LU decomposition can
be formulated in the following way:

Lii = 1 and Lij = 0 for i < j, (9)

Lij =
(
Aij −

∑
k<j

dual (LikUkj)
)
/(dual Uii) for j < i, (10)

Uij = 0 for i > j, (11)

Uij = Aij −
∑
k<i

dual (LikUkj) for i ≤ j. (12)

The previous expressions allow constructing a generalized interval LU de-
composition of A: the recursive construction is started by the first row of U
which is trivially computed using (12). It is equal to the first row of A. Then,
provided that 0 /∈ pro Uii, the ith column of L using (10) and the ith row of U
is constructed using (12). This process is recursively repeated for i + 1.

Proposition 1. Let A ∈ KR
n×n be a generalized interval matrix. Provided that

the generalized interval matrices L and U defined by (9-12) can be constructed,
they satisfy A = LU.

Proof. Consider i, j ∈ [1..n] such that i ≤ j. Then by equation (12)

Uij = Aij −
∑
k<i

dual (LikUkj). (13)
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Adding
∑

k<i LikUkj to each side of the equality, Uij +
∑

k<i LikUkj = Aij .
As Ljj = 1 and Lik = 0 for i < k,

∑
k∈[1..n] LikUkj = Aij . Considering the

equation (10), we argue similarly in the case i, j ∈ [1..n], with i > j. �
Two examples of LU decomposition are now presented.

Example 2. Consider the interval matrix

A =

⎛
⎝ [9, 11] [−1, 1] [−1, 1]

[−11, 11] [8, 12] [−2, 2]
[−11, 11] [−12, 12] [7, 13]

⎞
⎠ . (14)

The computations of the generalized interval LU decomposition are detailed: the
first row of U is the first row of A. Now, using (10) and (12),

L21 = A21/(dual U11) = [−11, 11]/[11, 9] = [−1, 1], (15)
L31 = A31/(dual U11) = [−11, 11]/[11, 9] = [−1, 1], (16)
U22 = A22 − dual (L21U12) = [9, 11], (17)
U23 = A23 − dual (L21U13) = [−1, 1], (18)
L32 =

(
A32 − dual (L31U12)

)
/(dual U22) = [−1, 1], (19)

U33 = A33 − dual (L31U13) − dual (L32U23) = [9, 11]. (20)

Therefore, we obtain following interval matrices:

L =

⎛
⎝ 1 0 0

[−1, 1] 1 0
[−1, 1] [−1, 1] 1

⎞
⎠ and U =

⎛
⎝[9, 11] [−1, 1] [−1, 1]

0 [9, 11] [−1, 1]
0 0 [9, 11]

⎞
⎠ . (21)

These interval matrices satisfy A = LU.

Example 3. Consider the interval matrix

A =

⎛
⎝[2, 3] 1 0

1 [2, 3] 1
0 1 [2, 3]

⎞
⎠ . (22)

The following interval matrices correspond to the generalized interval LU de-
composition of A:

L =

⎛
⎝ 1 0 0

[0.5, 1
3 ] 1 0

0 [ 23 , 0.375] 1

⎞
⎠ and U =

⎛
⎝[2, 3] 1 0

0 [1.5, 8
3 ] 1

0 0 [43 , 2.625]

⎞
⎠ . (23)

These interval matrices satisfy A = LU. Notice that L is not proper anymore.

As a direct consequence of the property (1), given a generalized interval matrix
A ∈ KR

n×n, if (pro A) has a classical interval LU decomposition (as defined in
[1]) then A has a generalized interval LU decomposition.
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4 Approximation of Linear AE-Solution Set

We define linear AE-solution sets using a different convention than the one pro-
posed in [5]. The justification of this new convention is out of the scope of this
paper (cf. [8]). Let A ∈ KR

n×n be a generalized interval matrix, and b ∈ KR
n

be a generalized interval vector. Define A∀,A∃ ∈ IR
n×n and b∀,b∃ ∈ IR

n by

A∃
ij :=

{
Aij if Aij ∈ IR,
0 otherwise. A∀

ij :=
{

pro Aij if Aij ∈ IR,
0 otherwise.

b∃
i :=

{
bi if bi ∈ IR,
0 otherwise. b∀

i :=
{

pro bi if bi ∈ IR,
0 otherwise.

So A = A∃+(dual A∀) and b = b∃+(dual b∀). Then, the linear AE-solution
set Σ(A,b) is the following subset of R

n:
(
∀A∀ ∈ A∀)(∀b∀ ∈ b∀)(∃A∃ ∈ A∃)(∃b∃ ∈ b∃) (A∀ + A∃)x = (b∀ + b∃). (24)

We can exhibit the following two special cases: if A and b are proper, then
Σ(A,b) = {x ∈ R

n|∃A ∈ A, ∃b ∈ b, Ax = b}, which is called a united solution
set. While, if A is improper and b is proper, then Σ(A,b) = {x ∈ R

n|∀A ∈
pro A, ∃b ∈ b, Ax = b}, which is called a tolerable solution set. Shary has discov-
ered a very useful characterization of linear AE-solution sets (cf. [5, Theorem 5.1,
p. 375]). Let us reproduce his proof with our new conventions. (24) can be writ-
ten

(
∀A∀ ∈ A∀)(∀b∀ ∈ b∀)(∃A∃ ∈ A∃)(∃b∃ ∈ b∃) A∀x−b∀ = b∃ −A∃x. Now as

every quantified parameter has only one occurrence in the expression, interval
arithmetic leads to the exact range and we obtain the following equivalent condi-
tion: A∀x−b∀ ⊆ b∃−A∃x. Now, using the group property of the Kaucher arith-
metic, the previous condition is equivalent to A∀x+dual (A∃x) ⊆ b∃ +dual b∀.
Finally, notice that dual (A∃x) = (dual A∃)x and use the distributivity w.r.t. x
to obtain

x ∈ Σ(A,b) ⇐⇒ (dual A)x ⊆ b. (25)

This characterization only differs from [5, Theorem 5.1, p. 375] by the new con-
ventions we use. It can be used in order to obtain generalized interval operators
that help to approximate linear AE-solution sets. In particular, outer approx-
imations can be done using the generalized interval Gauss-Seidel iteration intro-
duced in [9,5]. The generalized interval LU decomposition is now used to build
inner and outer approximations of linear AE-solution sets Σ(A,b).

Theorem 1. Let A ∈ KR
n×n, b ∈ KR

n. Let L and U be the generalized interval
LU decomposition of A. Then define the generalized interval vectors x,x′,y,y′ ∈
KR

n such that for all i ∈ [1..n]

yi = bi −
∑
j<i

Lij(dual yj) and xi =
(
yi −

∑
j>i

Uij(dual xj)
)
/Uii.

y′
i = bi −

∑
j<i

Lijy′
j and x′

i =
(
y′

i −
∑
j>i

Uijx′
j

)
/Uii,
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Both following properties hold:

(i) If L is proper and x is proper then x ⊆ Σ(A,b).
(ii) Suppose that U and L are improper. If x′ is proper then Σ(A,b) ⊆ x′.

Otherwise, Σ(A,b) = ∅.
Proof. As a direct consequence of the construction of the LU decomposition, if
A = LU then (dual A) = (dual L)(dual U).

(i) By definition of y and x we have (dual L)y = b and (dual U)x = y.
Therefore we obtain (dual L)

(
(dual U)x

)
= b. As L is supposed to be proper,

(dual L) is improper. Consider any x ∈ x. A componentwise application of the
super-distributivity shows

(
(dual L)(dual U)

)
x ⊆ (dual L)

(
(dual U)x

)
. That

is (dual A)x ⊆ b and finally x ∈ Σ(A,b) thanks to (25).
(ii) Assume x ∈ Σ(A,b). Using (25) we obtain

(
(dual L)(dual U)

)
x ⊆ b.

As both (dual L) and (dual U) are proper, b has to be proper. Also, the
subdistributivity law proves (dual L)

(
(dual U)x

)
⊆
(
(dual L)(dual U)

)
x, so

(dual L)
(
(dual U)x

)
⊆ b. As (dual U) is proper, u := (dual U)x is proper too.

Claim: u ⊆ y′. We shall prove it by induction. The first line of (dual L)u ⊆ b
yields u1 ⊆ b1 while b1 = y′

1 by definition of y′. Now fix i ∈ {2, . . . , n −
1} and suppose j < i ⇒ uj ⊆ y′

j . The ith line of (dual L)u ⊆ b yields
ui +

∑
j<i(dual Lij)uj ⊆ bi. Therefore ui ⊆ bi −

∑
j<i Lij(dual uj) ⊆ bi −∑

j<i Lijuj , the second inclusion being a consequence of inclusion monotonicity
(dual uj ⊆ uj because uj is proper). Finally, using the induction hypothesis and
inclusion monotonicity, we obtain ui ⊆ bi −

∑
j<i Lijy′

j which is equal to y′
i by

definition. So far, we have proved (dual U)x ⊆ y′. Using induction in a similar
way as previously, on can prove x ⊆ x′. As a consequence, if x′ is proper then
Σ(A,b) ⊆ x′. Otherwise Σ(A,b) = ∅. �
Due to the conditions required for the LU decomposition in Theorem 1, outer
approximation is likely to succeed when A is improper, i.e. when a tolerable so-
lution set is under consideration. While, inner approximation is likely to succeed
when A is proper, i.e. when a united solution set is under consideration. Un-
der these conditions, experimentations have shown that the generalized interval
LU decomposition applied to diagonally dominant matrices centered around the
identity satisfies the conditions of Theorem 1. However, the generalized interval
Gauss-Seidel operator and the direct resolution of the equation (dual A)x = b
seem to provide close but better results for this class of matrices. It still remains
that in presence of several solution sets sharing the same interval matrix, the
generalized interval LU decomposition needs to be computed only once, thereby
sparing computation time.

In some situations, the generalized interval LU decomposition can provide a
much sharper outer approximation than the generalized interval Gauss-Seidel
(GIGS) operator. This is illustrated in the next example.

Example 4. Consider the tridiagonal matrix A and vector b defined by

A =

⎛
⎝a a 0

a a a
0 a a

⎞
⎠ and b =

⎛
⎝ [0, 10]

[−10, 0]
[−5, 5]

⎞
⎠
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with a = [1.1, 0.9] and the tolerable solution set Σ(A,b). Both the GIGS and
the generalized interval LU decomposition have a bad behavior on this ex-
ample. However, exchanging raws 2 and 3 leads to better behavior. Starting
from the initial box (±1000, ±1000, ±1000)� the GIGS operator gives raise to
([−18.4091, 27.5], [−22.5, 22.5], [−27.5, 18.4091])�. The generalized interval LU
decomposition raises the following outer approximation:

([−12.8099, 11.157], [−9.12847, 19.5718], [−13.6364, 4.54545])�,

which is much sharper than the one computed by the GIGS operator.

It must be noted that changing slightly the uncertainties in the interval matrix
of the previous example leads to a matrix L which is not proper any more. While
this good result is promising, some additional developments will be necessary to
deal with more general situations.

5 Conclusion

An interval LU decomposition has been proposed in the framework of general-
ized intervals. Thanks to the group structure of the generalized interval arith-
metic, this new generalized interval LU decomposition satisfies A = LU. In
addition to the theoretical interest of such a generalized interval LU decomposi-
tion, we proved that it can be used to construct some approximations of linear
AE-solution sets. On some examples, these approximations may be much more
accurate than the one computed by the generalized interval Gauss-Seidel opera-
tor. However, some stringent conditions about the proper/improper qualities of
L and U restrict the application of the decomposition. Some work still have to
be conducted to generalize these particular application cases.
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Abstract. This paper is concerned with the relationship between the
sum of roots with positive real parts (SORPRP) of an even polynomial
and the polynomial spectral factor of the even polynomial. The SORPRP
and its relationship to Gröbner bases are firstly reviewed. Then it is
shown that the system of equations satisfied by the coefficients of the
polynomial spectral factor is directly related to a Gröbner basis. It is
then demonstrated by means of an H2 optimal control problem that the
above fact can be used to facilitate guaranteed accuracy computation.

1 Introduction

In various fields of science and engineering, there is an increasing interest in the
use of symbolic computation [1] and guaranteed accuracy computation [2] that
have been developed in the computer science field. The systems and control area
is no exception [3,4,5], and a number of approaches which make use of, e.g.,
interval methods and computer algebra systems have been proposed. Regarding
computer algebra systems, not only the capability of symbolic manipulation but
also the recent development of algebraic methods are employed [6,7,8].

The aim of this paper is to show another example of the use of an algebraic
method for a control problem, which facilitates the execution of guaranteed ac-
curacy computation. An intriguing connection is revealed between the sum of
roots with positive real parts (SORPRP) of an even polynomial and polynomial
spectral factorization, an important mathematical tool in control and signal
processing. That is, the coefficients of the spectral factor can be expressed as
polynomials in the SORPRP of a certain polynomial and, furthermore, another
polynomial that defines the SORPRP can be obtained. It is then demonstrated
that the proven fact can be utilized to solve a control problem and to express
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quantities to be sought as polynomials in the SORPRP, thus enabling guaranteed
accuracy computation. The paper is organized as follows. Section 2 reviews the
SORPRP of an even polynomial and defines polynomials having the SORPRP
as one of their roots. In Section 3, the formulation of the polynomial spectral
factorization problem is stated, and the connection between the SORPRP and
the coefficients of the spectral factor is shown by means of the theory of Gröbner
bases. Section 4 then applies the result to a particular H2 optimal control prob-
lem. Some concluding remarks are made in Section 5.

2 Sum of Roots with Positive Real Parts of an Even
Polynomial

We consider an even polynomial f(x) of degree 2m in Q[x] with non-zero constant
term. For any root α of f(x), −α is also a root of f(x). Assume that there are no
roots on the imaginary axis. Then, there are m roots, say α1, . . . , αm, which have
positive real parts, and also m roots, say αm+1, . . . , α2m, which have negative
real parts and αm+i = −αi for 1 ≤ i ≤ m. Thus, we can write

f(x) = a2mx2m + a2m−2x
2m−2 + · · · + a2x

2 + a0 (1)

= a2m

∏2m

i=1
(x − αi) = a2m

∏m

i=1
(x2 − α2

i ) ,

where a2k ∈ Q for 0 ≤ k ≤ m, a2m �= 0 and a0 �= 0.
Our first target is to compute σ := α1 + . . . + αm, which is the sum of all

roots with positive real parts, without computing individual αi’s. For simplicity,
we call σ the SORPRP of f . It is apparent that the real part of σ is positive.
Moreover, since, for each non-real root of f(x), its complex conjugate has the
same real part, we have the following.

Lemma 1 ([9]). The quantity σ is real and positive.

Now we define polynomials which have σ as one of their roots.

Definition 1. Let P =
{

(ε1, . . . , εm) | εi ∈ {1, −1}
}

and C be the set consist-
ing of all distinct linear sums ε1α1 + · · · + εmαm, (ε1, . . . , εm) ∈ P. Then, the
characteristic polynomial Sf (z) of the SORPRP is defined as

Sf (z) :=
∏

(ε1,...,εm)∈P

(
z − (ε1α1 + · · · + εmαm)

)
.

Also, the minimal polynomial S̄f of the SORPRR is defined as the square-free
part of Sf :

S̄f (z) :=
∏

C∈C
(z − C) .

Some comments on the properties of Sf (z) and S̄f (z) are in order. Considering
the action of the Galois group of Q(α1, . . . , α2m) on {α1, . . . , α2m}, we can see
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that Sf (z) and S̄f (z) belong to Q[z]. The degree of Sf (z) is always 2m, which is
understood from the cardinality of P . As there are cases where ε1α1+ · · ·+εmαm

and ε′1α1 + · · · + ε′mαm coincide for distinct (ε1, · · · , εm) and (ε′1, · · · , ε′m), the
square-free part S̄f (z) can be smaller than Sf (z). Finally, it is obvious that the
SORPRP σ of f(x) coincides with the maximal real root of Sf (z) (and of S̄f (z)).

3 Polynomial Spectral Factorization and SORPRP

We first review polynomial spectral factorization of an even polynomial used in
control and signal processing.

Definition 2. Given f(x) as in (1), we call the following decomposition the
spectral factorization of f :

a2mf(x) = g(x)ḡ(x) (2)

where

g(x) = bmxm + bm−1x
m−1 + · · · + b1x + b0 = a2m

∏m

i=1
(x + αi) ,

ḡ(x) = bmxm − bm−1x
m−1 + · · · + (−1)mb0 = a2m

∏m

i=1
(x − αi) ,

Re αi > 0 , bm = a2m .

In this section, we investigate the relationship between the coefficients of the
spectral factor g(x) and the SORPRP of f(x) based on Gröbner basis theory [10]
and then show how to compute Sf (z). Comparing the coefficients in (2), we get
a system of equations, which has a useful property.

Lemma 2. Consider each bi, 0 ≤ i < m, as a variable. Then, polynomial spec-
tral factorization gives the following system of equations:

(−1)b2
m−1+2bmbm−2 − a2ma2(m−1) = 0 ,

(−1)2b2
m−2−2bm−1bm−3 − 2a2mbm−4 − a2ma2(m−1) = 0 ,

...

(−1)kb2
m−k+2

∑
1≤i≤2k−1,i�=k

(−1)ibm−ibm−2k+i

+ 2a2mbm−2k − a2ma2(m−k) = 0 for 2k ≤ m ,

...

(−1)kb2
m−k+2

∑
2k−m≤i≤m,i�=k

(−1)ibm−ibm−2k+i

− a2ma2(m−k) = 0 for 2k > m ,

...

(−1)m−1b2
1+(−1)m−22b2b0 − a2ma2 = 0 ,

(−1)mb2
0−a2ma0 = 0 .
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With respect to the graded reverse lexicographic order bm−1 � · · · � b0, the
set G of polynomials on the left hand sides in the above system forms the reduced
Gröbner basis of the ideal generated by itself.

For the definition of the graded reverse lexicographic order, readers are referred
to [10, Chapter 2, §2].

We call the ideal 〈G〉 the ideal of spectral factorization. Then, as σ is associated
with the variable bm−1 (i.e., bm−1 = a2mσ), we have the following.

Lemma 3. The ideal of spectral factorization is 0 dimensional and the number
of its zeros with multiplicities counted is 2m. Also, the minimal polynomial Nf

of bm−1 modulo 〈G〉 is a factor of Sf (bm−1/a2m) and has S̄f (bm−1/a2m) as its
factor.

Thus, we can compute Nf by using the Gröbner basis G. If the ideal 〈G〉 is a
radical ideal [10, Chapter 4, §2], then Nf coincides with S̄f (bm−1/a2m).

In particular, if the cardinality of C is 2m, that is, when we have distinct
ε1α1 + · · ·+εmαm for distinct (ε1, . . . , εm) ∈ P , the ideal of spectral factorization
has another type of basis with respect to the lexicographic ordering, the so called
shape basis in the following form:

{
Ŝf (bm−1), bm−2 − ĥm−2(bm−1), . . . , b0 − ĥ0(bm−1)

}
, (3)

where ĥi is a polynomial of degree strictly less than 2m. Hence it turns out that
all coefficients bi can be described as polynomials in bm−1. Since bm−1 = a2mσ,
(3) means that each coefficient of the spectral factor is described as a polynomial
in σ:

Sf (σ) = 0 , bm−1 = a2mσ , bm−2 = hm−2(σ) , . . . , b0 = h0(σ) ,

where Sf (σ) := Ŝf (a2mσ) and hi(σ) := ĥi(a2mσ). In general, we can efficiently
compute a shape basis from the set G of polynomials by the basis-conversion
(change-of-order) technique [10, Appendix D, §2].

Remark 1 (Parametric polynomial case). We can deal with a parametric polyno-
mial f(x,p) ∈ Q[x,p] in a similar manner, under the assumption that, for any
admissible p, the leading coefficient of f does not vanish and, further, f does not
have roots on the imaginary axis. Readers are referred to [11] for an exposition
of an algorithm dealing with the parametric case.

4 Application to H2 Optimal Control Problem

In this section, the developed result is demonstrated on a control problem in
order to show that the result can facilitate guaranteed accuracy computation.
The normalized H2 optimal control problem is considered here and it is shown
that the quantities to be computed can be expressed as polynomials in the
SORPRP of an even polynomial derived from the input data. The problem is
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K(s)

P (s)� � �
�

��� �

d1

d2

y1

y2

Fig. 1. Standard feedback configuration

formulated as follows. In the feedback configuration depicted in Fig. 1, given the
n-th order, strictly proper transfer function P (s) of a single-input-single-output
linear, time-invariant plant, the task is to design a controller (denoted by its
transfer function K(s)), which stabilizes the closed-loop system and minimizes
the H2-norm of the transfer function matrix Twz(s) from w = (d1 d2)� to z =
(y1 y2)�, i.e.,

Twz(s) =
1

1 − PK

(
P PK

PK K

)
.

That is, the value of the optimal performance level

J� := min
K stabilizing

∥∥Twz(P, K)
∥∥2

2

and the controller Kopt(s) that achieves J� are sought. Remember that the H2-
norm of a system G(s) is defined as

∥∥G(s)
∥∥

2
:=
( 1

2π

∫ ∞

−∞
tr {G∗(jω)G(jω)} dω

) 1
2

and that the square of the H2-norm of a system is equal to the energy of the
system output when an impulse signal is applied to the input. So the H2-norm
indicates how promptly the system attenuates disturbance.

Now it is shown with the aid of a numerical example that, when P (s) is given
in Q(s), J� and the coefficients of Kopt can be expressed as polynomials in the
SORPRP by making use of the result developed in the preceding sections. As a
numerical example, the following system is used:

P (s) =
s − 7

s(s − 1)
=:

PN (s)
PD(s)

,

where PN , PD are coprime polynomials and PD is monic. If the plant is n-th
order, the degree of PD is n and that of PN is strictly smaller than n; in this
particular numerical example, the plant is second order, i.e., n = 2. Firstly, the
spectral factor MD(s) of the even polynomial

PN (−s)PN (s) + PD(−s)PD(s) (4)
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is found. In particular, the coefficients mi of MD(s) := s2 + m1s + m0 are
expressed as polynomials in the SORPRP σ of (4). For this numerical example,
the even polynomial to be factored is

s4 − 2s2 + 49 .

Equating the coefficients of the above polynomial and MD(s)MD(−s), a set of
polynomial equations in mi is obtained, which immediately yields a Gröbner
basis. Computing the shape basis,

Sf (σ) = σ4 − 4σ2 − 192 = 0 , (5)

m1 = σ , m0 =
σ2

2
− 1

are derived.
Next, in order to find the optimal controller, polynomials VN (s), UN(s) of

degrees n and at most n − 1, respectively, are found that satisfy

PD(s)VN (s) − PN (s)UN (s) = {MD(s)}2 .

From the coprimeness of PN and PD, there is only one pair of VN and UN sat-
isfying the requirements. The coefficients of such VN , UN can be obtained by
solving a set of linear equations, and these coefficients can be expressed as poly-
nomials in σ. Then the optimal controller is given as Kopt(s) = UN (s)/VN (s).
In the case of the numerical example, the approach yields

Kopt(s) =

(
1
6σ3 + 1

3σ2 + 1
)
s + 7

s2 + (2σ + 1)s + 1
6σ3 + 7

3σ2 + 2σ
.

It is emphasized here that all the coefficients of Kopt are found as polynomials
in σ.

Now, J� is to be computed. It can be derived that

Twz(P, Kopt) = − 1
M2

D

(
PNVN PNUN

PNUN PDUN

)
=:
(

T11 T12

T12 T22

)
.

Based on the fact that
∥∥Twz(P, Kopt)

∥∥2

2
=
∥∥T11

∥∥2

2
+ 2
∥∥T12

∥∥2

2
+
∥∥T22

∥∥2

2
,
∥∥T11

∥∥2

2
etc. are computed separately. Write

T11(s) = −PN (s)VN (s)
MD(s)2

=
b2n−1s

2n−1 + b2n−2s
2n−2 + · · · + b0

s2n + a2n−1s2n−1 + a2n−2s2n−2 + · · · + a0
,

where ai and bj are determined from the coefficients of M2
D and−PNVN , respecti-

vely (which further implies that ai, bj can be written as polynomials in σ).
Then, the H2-norm of T11 can be calculated as follows. Write T11 in state-space
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description and in, e.g., the observer canonical form:

T11(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a2n−1 1 0 · · · 0 b2n−1

−a2n−2 0 1 · · · 0 b2n−2

...
...

. . .
...

...
−a1 0 0 · · · 1 b1

−a0 0 0 · · · 0 b0

1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=:
[

A B
C 0

]
.

By using the solution Lo of the Lyapunov equation

A∗Lo + LoA + C∗C = 0 , (6)

∥∥T11

∥∥2

2
can be computed as

∥∥T11

∥∥2

2
= tr {B∗LoB}. Since the elements of A and

C are polynomials in σ and the Lyapunov equation is equivalent to a set of linear
equations, the elements of Lo can be expressed as rational functions in σ. By
way of (5), the inverses of the denominators can be found in Q[σ] and thus the
rational functions can be converted to polynomials in σ. Therefore, it is seen that∥∥T11

∥∥2

2
can be expressed as a polynomial in σ (whose degree is strictly smaller

than that of Sf ). For the numerical example under consideration, the solution
Lo of (6) can be expressed as

Lo =

⎡
⎢⎢⎣

�1 0 −�2 0
0 �2 0 −�3

−�2 0 �3 0
0 −�3 0 �4

⎤
⎥⎥⎦ ,

where �i are the solution of
⎡
⎢⎢⎣

−2σ σ3 − 2σ 0 0
1 2 − 2σ2 49 0
0 2σ −σ3 + 2σ 0
0 −1 2σ2 − 2 −49

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�1

�2

�3

�4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
− 1

2
0
0
0

⎤
⎥⎥⎦ . (7)

As has been stated, �i can be obtained as polynomials in σ:

⎡
⎢⎢⎢⎣

�1

�2

�3

�4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

73
36864σ3 − 85

9216σ

− 1
36864σ3 + 13

9216σ
25

1806336σ3 − 37
451584σ

− 97
88510464σ3 + 1837

22127616σ

⎤
⎥⎥⎥⎦ . (8)

(In the case of high order systems, solving the Lyapunov equation (6) symboli-
cally can be problematic in terms of computation time. However, the approach
taken here is preferable in that it solves a set of linear equations in fewer vari-
ables and the elements of the matrix to be inverted is polynomials in only one
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variable, see (7).) The result (8) yields
∥∥T11

∥∥2

2
= 65

768σ3 + 5
8σ2 + 859

192σ+8. Repeat-

ing the same calculation for
∥∥T12

∥∥2

2
and

∥∥T22

∥∥2

2
, the optimal performance J� is

obtained:

J� :=
∥∥Twz(P, Kopt)

∥∥2

2
=

2
9
σ3 +

10
9

σ2 +
26
3

σ +
64
3

. (9)

In this particular numerical example, it can be confirmed that σ = 4 is the
true (exact) solution and, using this value, the true Kopt and J� can be recov-
ered. However, it is in general impossible to find the exact root of Sf and thus
impossible to compute Kopt and J� exactly. Nevertheless, σ is a real root of
a polynomial and, therefore, can be computed with guaranteed accuracy [12].
Since the quantities to be computed in the H2 optimal control problem are ex-
pressed as polynomials in σ, they can be found with guaranteed accuracy by
means of interval arithmetic [4].

5 Conclusion

This paper has seen an interesting connection between the SORPRP of an even
polynomial and the coefficients of the spectral factor of the even polynomial. A
Gröbner basis is directly obtained from a system of equations that the coeffi-
cients of the spectral factor must satisfy. It is demonstrated on the normalized
H2 optimal control problem that this fact can be employed to express the opti-
mal performance level and the controller that achieves it as polynomials in the
SORPRP. It is planned to investigate the feasibility of this approach to the case
of a plant with real parameters, and it is expected that the approach can be
extended so that it can carry out the sensitivity analysis of the optimal cost and
the optimal controller to the parameters.
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Abstract. The relation between a class of high-order control variations
and the asymptotic stabilizability of a smooth control system is briefly
discussed. Assuming that there exist high-order control variations ”point-
ing” to a closed set at every point of some its neighborhood, an approach
for constructing stabilizing feedback controls is proposed. Two illustra-
tive examples are also presented.

1 High-Order Variations and Asymptotic Stabilizability

The traditional approach towards proving sufficient controllability conditions has
been to construct ”control variations”. If one can construct control variations in
all possible directions, then the reachable set ought to be a full neighborhood of
the starting point. For example, let us consider the following control system:

ẋ(t) = f0(x(t)) +
m∑

i=1

ui(t)fi(x(t)), ui(t) ∈ [−1, 1], (1)

where fi, i = 0, . . . , m, are smooth vector fields defined on a neigbourhood of
the point x0 ∈ R

n with f0(x0) = 0. Let u(·) = (u1(·), . . . , um(·)) be an in-
tegrable function defined on the interval [0, T ], whose components take values
from [−1, 1]. An absolutely continuous function x(·) with x(0) = x0 and sat-
isfying (1) for almost every t from [0, T ] is called admissible trajectory of (1)
defined on [0, T ], starting from the point x0 and corresponding to the control
u(·). By R(x, T ) we denote all points of R

n reachable from the point x by means
of admissible trajectories of (1) defined on [0, T ] and starting from the point x.

To introduce the set E+(x0) of high-order control variations to the reachable
set of the control system (1) at the point x0, we need the following notation:
Exp(Zt)x0 denotes the value of the solution of the equation

ẋ(τ) = Zt(x(τ)), x(0) = x0,

at time τ = 1, where {Zt : t ∈ R+} is a given family of smooth vector fields,
defined on R

n and depending continuously on t ≥ 0.

Definition 1. It is said that the smooth vector field g is a high-order control
variation to the reachable set of the control system (1) at the point x0, if there
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exist a positive real T , a neighbourhood Ω of x0, two families of smooth vector
fields at and bt parameterized by t ≥ 0, and a continuous function p : R+ → R+

such that for each x ∈ Ω and each t ∈ [0, T ]

Exp (tg + at + bt) (x) ∈ R(x, p(t)),

where

‖at(x)‖ ≤ M tθ ‖x − x0‖, ‖bt(x)‖ ≤ N tσ, p(t) < P tλ,

for some positive constants M , N , P , θ, σ > 1 and λ. We denote by E+(x0) the
set of all high-order control variations to the reachable set of the control system
(1) at the point x0.

Remark 1. Different definitions of high-order control variations can be found in
[4], [6], [7], [9], [11], [12] etc. All these definitions use the notion of a Lie bracket.
Let f and g be smooth vector fields defined on Rn. Then the Lie bracket [f, g]
is defined as

[f, g](x) :=
∂g

∂x
(x)f(x) − ∂f

∂x
(x)g(x).

It should be mentioned that the notion of Lie brackets is extended to the non-
smooth case in [4].

The following lemmas provide constructions of elements of the set E+(x0):

Lemma 1. The set E+(x0) is a convex cone.

Lemma 2. The vector fields fi, ± [fi, fj ], [fi, [fi, f0]], i, j = 1, . . . , m, are ele-
ments of the set E+(x0).

Lemma 3. Let ±g ∈ E+(x0). Then ±[g, f0] ∈ E+(x0).

The following lemma shows how the set E+(x0) is related to the small-time local
controllability (STLC):

Lemma 4. Let g1, . . . , gk ∈ E+(x0) and

0 ∈ int co {gi(x0) : i = 1, . . . , k},

where “int” and “co” mean the interior and the convex hull, respectively. Then
the control system (1) is STLC.

Remark 2. The proofs of slightly different versions of these lemmas can be found
in [6], [7], [9], [11]. These proofs are based mainly on the so-called Campbell-
Baker-Hausdorff formula. On the other hand, the proofs of the sufficient STLC
condition in [1] and [10] show that under suitable assumptions all elements of
the Lie algebra generated by the vector fields f0, f1, . . . , fm belong to the set
E+(x0). For different applications of the control theory, it is very important to
realize them explicitly by using admissible controls.
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It has been shown by Brockett (cf. [2]) that, contrary to the case of linear systems,
many small-time locally controllable nonlinear system can not be stabilized by
means of stationary continuous feedback law. To get around this problem, we use
some ideas of Hermes presented in [5]: Let us assume that there exist a positive
number ρ0 > 0 and elements g1, . . . , gk ∈ E+(x0) such that

0 ∈ int co
{
gi(x) : i = 1, . . . , k

}
for each point x ∈ Bρ0(x0), (2)

where Bρ0(x0) denotes the closed ball centered at x0 with radius ρ0.
Without loss of generality, we may think that there exist a positive real T ,

some families of smooth vector fields ai
t and bi

t parameterized by t ≥ 0, and
continuous functions pi : R+ → R+, i = 1, . . . , k, such that for each x ∈ Bρ0(x0)
and each t ∈ [0, T ]

Exp
(
tgi + ai

t + bi
t

)
(x) ∈ R(x, pi(t)),

where

‖at(x)‖ ≤ M tθ ‖x − x0‖, ‖bt(x)‖ ≤ N tσ, p(t) < P tλ,

for some positive constants M , N , P , θ, σ > 1 and λ. Moreover, we assume that
T > 0 and ρ0 > 0 are so small that for each ti ∈ [0, T ], i = 1, . . . , k, and for each
x ∈ Bρ0(x0) the following inclusion holds true

Exp
(
t1g

1 + a1
t1 + b1

t1

)
· · · Exp

(
tkgk + ak

tk
+ bk

tk

)
(x) ∈ R

(
x,

k∑
i=1

pi (ti)

)
.

Let us fix ρ1 ∈ (0, ρ0) so small that
ρ1

ρ0
≤ T . Let x be an arbitrary point of

the ball Bρ1(x0) with x �= x0. Then the vector ρ0
x0 − x

‖x0 − x‖ belongs to Bρ0(x0).

According to (2), this vector can be presented as a convex combination of gi(x),
i = 1, . . . , k. Let

ρ0
x0 − x

‖x0 − x‖ =
k∑

i=1

αi(x)gi(x) with αi(x) ≥ 0 and
k∑

i=1

αi(x) = 1.

Then

x0 − x =
k∑

i=1

βi(x)gi(x) with βi(x) ≥ 0 and
k∑

i=1

βi(x) =
‖x0 − x‖

ρ0
. (3)

We set β(x) := max {βi(x) : i = 1, . . . , k}. Our choice of ρ1 and (3) imply that
β(x) ≤ T for each x ∈ Bρ1(x0). We set

Ξ(x) := Exp
(
β1(x)g1 + a1

β1(x) + b1
β1(x)

)
· · · Exp

(
βk(x)gk + ak

βk(x) + bk
βk(x)

)
(x),
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and obtain that

Ξ(x) ∈ R (x, Tx) , with Tx =
k∑

i=1

pi (βi(x)) .

Applying the Campbell-Baker-Hausdorff formula, we can present Ξ(x) as fol-
lows:

Ξ(x) = x +
k∑

i=1

βi(x)gi(x) + A(x) + B(x)

with ‖A(x)‖ ≤ A (β(x))α ‖x − x0‖ and ‖B(x)‖ ≤ B (β(x))1+β for some
positive constants A, B, α and β. Let us choose ρ ∈ (0, ρ1) so small that

A

(
ρ

ρ0

)α

+ B

(
ρβ

ρ1+β
0

)
<

1
2
.

From the last inequality and from (3), we obtain that Ξ(x) − x0 = A(x) + B(x)
for each point x ∈ Bρ(x0) and

‖Ξ(x) − x0‖ ≤ A (β(x))α ‖x − x0‖ + B (β(x))1+β

≤
(

A

(
ρ

ρ0

)α

+ B
ρβ

ρ1+β
0

)
‖x − x0‖ <

1
2
‖x − x0‖.

(4)

The last inequality motivates a computational procedure: Staring from arbit-
rary point x1 ∈ Bρ(x0), we set x2 := Ξ(x1). The estimate (4) implies that

‖x2 − x0‖ ≤ 1
2
‖x1 − x0‖ ≤ ρ. So, we can set x3 := Ξ(x1) to obtain that

‖x3 − x0‖ ≤ 1
2
‖x2 − x0‖ ≤ 1

22
‖x1 − x0‖ ≤ ρ.

Continuing in the same manner, we obtain a sequence {xi}∞i=1 whose elements

belong to Bρ(x0) and ‖xi − x0‖ ≤ 1
2i−1

‖x1 − x0‖ for i = 1, 2, 3, . . . So, this
sequence is convergent to x0. In this sense, this procedure can be applied to
generate a stabilizing feedback control. In the next section we present a similar
procedure to construct stabilizing controls with respect to a closed set.

2 Stabilizing Feedback Controls with Respect to a Set

Let S be an arbitrary closed subset of R
n. Let δ0 > 0 and Sδ0 be the closed

neighbourhood of the set S consisting of all points x such that distS(x) ≤ δ0

(here distS (x) denotes the distance between the point x and the set S). If x is
an arbitrary point of R

n, we set

πS(x) := {y ∈ S : ‖x − y‖ = distS(x)} .
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Let y belong to the boundary ∂S of the set S. A vector ξ ∈ R
n is called a

proximal normal to S at y provided that there exists r > 0 so that the point
y + rξ has closest point y in S. The set of all proximal normals at a point y is a
cone denoted by Np

S(y) (for more details cf. [3]).
We consider the following control system in Sδ0 :

ẋ(t) = f(x(t), u(t)), (5)

where x(t) is the state and u(t) ∈ U ⊂ R
m is the control. By R(x, t) we denote

all points of R
n reachable from the point x by means of admissible trajectories

of (5) defined on [0, T ] and starting from the point x. First, we define a notion
of high-order control variations for the control system (5) with respect to the
closed set S:

Definition 2. We denote by E+(S) the set of all Lipschitz continuous functions
A : Sδ0 → R

n such that for each of them there exist a positive real T , two
continuous functions a : Sδ0 × [0, T ] → R

n and b : Sδ0 × [0, T ] → R
n, and a

non-decreasing continuous function p : [0, T ] → R with p(0) = 0 such that for
each x ∈ Sδ0 and each t ∈ [0, T ]

x + tA(x) + a(t, x) + b(t, x) ∈ R(x, p(t))

with
‖a(t, x)‖ ≤ M tθ distS(x), ‖b(t, x)‖ ≤ N tσ, p(t) < P tλ,

for some positive constants M , N , P , θ, σ > 1 and λ.

Remark 3. A generalization of Lemmas 1 ÷ 4 as well some other assertions that
are useful for constructing high-order control variations for the control system
(5) with respect to the closed set S are proved in [7].

Let V be a subset of elements of E+(S). The set V is said to be regular when: 1)
all elements of V are Lipschitz continuous functions defined on a neighbourhood
of the set S with the same Lipschitz constant; 2) all functions related to the
elements of E+(S) (according to Definition 2) are uniformly bounded on this
neighbourhood. In our further consideration we shall use only regular subsets
of the set E+(S). This assumption is technical and guarantees the existence of
suitable trajectories of the considered control system (5) defined on some fixed
interval [0, T ]. This is especially important for the case of unbounded set S.

The proof of the main result of [8] implies the following

Theorem 1. Suppose that S is a nonempty closed subset of R
n, V is a regular

subset of E+(S) and μ > 0. Let us assume that whenever x ∈ Sδ0 \ S, y ∈ π(x)
and ξ ∈ Np

S(y) there exists A ∈ V for which

< ξ, A(y) > ≤ −μ.‖ξ‖. (6)

Then there exist real numbers q ∈ (0, 1) and δ > 0 such that for each point
x ∈ Sδ there exist tx > 0 and an admissible control function ux : [0, tx] → U
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such that the solution z(·, x, ux) of (5) starting from x and corresponding to the
control ux is well defined on [0, tx] and satisfies the inequality

distS(z(tx, x, ux)) ≤ q.distS(x).

The proof of Theorem 1 is constructive. It allows us to calculate explicitly a
sequence x1, x2, . . . , of points belongsing to Sδ that converges to a point from
the set S. In this sense, Theorem 1 may be applied to generate a stabilizing
feedback control with respect to S.

3 Illustrative Examples

In this section we present two illustrative examples. All computations are per-
formed using the computer algebra system Maple V.

Example 1.

Let us consider the following three-dimensional control system:

ẋ1 = u cos (x3), x1(0) = 0, u ∈ [−1, 1],
ẋ2 = sin (x1), x2(0) = 0,
ẋ3 = sin (x2), x3(0) = 0,

We set x = (x1, x2, x3), X(x) = (0, sin (x1), sin (x2)), Y = (cos (x3), 0, 0).
The vectors Y (x), [Y, X ](x) and [X, [Y, X ]](x) are linearly independent at every
point x ∈ Bρ0(0) whenever ρ0 > 0 is sufficiently small. Moreover, Lemma 2 and
Lemma 3 imply that ±Y and ±[Y, X ] and ±[X, [Y, X ]] belong to the set E+(0).
This allows us to stabilize this control system in a neighborhood of the origin.
For simulations, at each step, starting from the point x = (x1, x2, x3) we move
time tx using a suitable control ux depending on x. The calculated end-point is
staring point for the next calculation. For the sample run, the computations end
after 26 steps.

Example 2.

Let S = {(x, y) ∈ R2| 0 ≤ x ≤ 1, −1
2

≤ y ≤ 0} and let us consider the
following control system

ẋ = u, u ∈ [−1, 1],
ẏ = y + 1 − x + v, v ∈ [−1, 1].

The origin is a boundary point of S and the vector n = (0, 1) is a proximal normal
to S at the origin. It can be checked that the scalar products of the vector n
and all admissible velocities at points of the form z = (0, y), with y ≥ 0, are
not negative. So, in order to move towards the set S, we need to use high-order
control variations. For example, let T ∈ [0, 1], t ∈ (0, T/2] and z = (0, y)� with
y > 0. We set vt(s) = −1 for every s ∈ [0, t] and

ut(s) =
{

1, if s ∈ [0, t]
−1, if s ∈ [t, 2t].
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Table 1. Simulation results for Example 1. At each step, starting from the point
x = (x1, x2, x3) we move along a suitable chosen trajectory time tx. The calculated
end-point is a starting point for the next iteration.

step x1 x2 x3 tx

1 0.8 -0.4 0.2 1.9488

2 7.7881.10−2 3.2591.10−1 8.5059.10−1 2.6059

. . . . . . . . . . . . . . .

25 2.2867.10−5 4.0206.10−4 4.7193.10−2 0.8471

26 1.3531.10−5 2.3338.10−4 3.2613.10−2 0.7662

Table 2. Simulation results for Example 2 with four different starting points z0 =
(x0, y0). Each end-point z1 = (x1, y1) is reached from the corresponding starting point
z0 in time tz0 .

x0 y0 tz0 x1 y1

1.5 0.5 1.284211638 1.0 −2.949259209.10−5

−0.2 0.5 5.371304140 3.0087043967.10−14 −1.891439399.10−4

0.8 0.5 7.166944604 0.800000000000000154 −2.454711917.10−5

0.1 0.5 2.057154154 0.099999999999999976 −3.737032781.10−5

It can be directly checked that the trajectory zt(·) = (xt(·), yt(·)) starting from
z and corresponding to the controls ut(·) and vt(·) is defined on [0, 2t] and

zt(2t) = z + a(t, z) − t2A(z) + O(t3, z), (7)
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where A(z) = (0, −1), a(t, z) = (0, (e2t−1)y) and O(t3, z) = (0, 2et−e2t−1+t2).
Taking into account that dS1(z) = y, we obtain that

|a(t, z)| ≤ M.t.dS1(z), |O(t3, z)| ≤ N.t3 (8)

for suitably chosen positive numbers M and N . These estimates and (7) imply
that A belongs to the set E+(S). Since the origin is the unique metric projection
of the point z on S and 〈n, A(0)〉 = −1 = −‖n‖, the condition (6) also holds
true. Similarly, one can check that all the assumptions of Theorem 1 hold true.

4 Conclusion

Starting from states close to a set S we want to steer S and to stay always close
to S. Unfortunately, open-loop controls are very sensitive to disturbances and
can lead to very bad practical results. To avoid errors due to different distur-
bances, one can try to find a stabilizing feedback control law. To get around
the problem of impossibility to stabilize nonlinear systems by a continuous au-
tonomous feedback, we use some ideas of Hermes presented in [5] to define a
suitable class of high-order control variations and to use them for constructing
stabilizing feedback controls.
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Abstract. In image analysis and pattern recognition fuzzy sets play the
role of a good model for segmentation and classifications tasks when the
regions and the classes cannot be strictly defined. Fuzzy morphology has
been shown to be a very eficient tool in processing and segmentation of
grey-scale images. In this work we show that using interval modelling we
can apply efficiently fuzzy morphological operations to colour images. In
this case intervals help us to avoid the problem of lack of total ordering in
multidimensional Euclidean spaces, in particular in the three dimensional
RGB colour space.

1 Mathematical Morphology – Preliminaries

Generally speaking, the word morphology refers to the study of forms and struc-
tures. In image processing, morphology is the name of a specific methodology for
analysing the geometric structure. It provides a systematic approach to analyse
the geometric characteristics of signals and images, and has been applied widely
to many applications such as edge detection, object segmentation, noise suppres-
sion, esp. in the case of salt-and-pepper noise [11]. Beginning in the mid-60’s
and especially in the mid-70’s, it became much more closely affiliated with the
work of Georges Matheron and Jean Serra from Ecole Normale Superieure des
Mines de Paris who studied the properties of the porous media with respect
to their geometrical structure [11]. At first, the morphological operations have
been applied to binary images, which can be naturally interpreted as sets. So, let
us assume that our objects belong to a linear space M . Considering two subsets
of M , namely A and B the following operations are introduced:

– Minkowski addition of A and B, A ⊕ B is defined as A ⊕ B =
⋃

b∈B (A +
b) = { a+ b | a ∈ A , b ∈ B}, and Minkowski difference of A by B, A� B is
defined as A�B =

⋂
b∈B (A−b) = {x ∈ M |B +x ⊆ A}. For the properties

of these operations see [4] .
– Opening of A by B is defined as A ◦ B = (A � B) ⊕ B, while closing of A

by B is defined as A • B = (A ⊕ B) � B.

The operation δA(X) = A ⊕ X = X ⊕ A is referred to as dilation of the set X
by the structuring element A and εA(X) = X � A - erosion of the set X by the

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 337–344, 2007.
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structuring element A. Openings and closings are generally used as filters for
denoising of binary images.

Later, morphological operations have been defined for grey-scale images. Any
grey-scale image can be represented mathematically as a function on a given
domain, or as a topographic surface over the same 2D domain such that the
height of the point is equal to the pixel value. Thus grey-scale morphological
operations can be defined naturally by binary operations on the closed subgraph
of the functions which lead to the following formulas [11,4]:

(δg(f))(x) = sup
x∈M

(f(x−h)+ g(h)), (εg(f))(x) = inf
x∈M

(f(x+h)− g(h)), (1)

where f and g are functions mapping the linear space M to the compactified
real line R̄ = R ∪ {∞, −∞}, supposing that s + t = −∞ if s = −∞ or t = −∞,
and s − t = ∞ if s = ∞ or t = −∞.

Later Serra [12] and Heijmans [4] have shown that the operations of math-
ematical morphology can be formulated on any complete lattice, so there exists
a well developed algebra that can be employed for representing abstract mor-
phological operations by analog with the binary and grey-scale ones.

A set L with a partial ordering “≤” is called a complete lattice if every
subset H ⊆ L has a supremum

∨
H ∈ L (least upper bound) and infimum

(greatest lower bound)
∧

H ∈ L. An operator ϕ : L 
→ M, where L and M
are complete lattices, is called dilation if it distributes over arbitrary suprema:
ϕ(

∨
i∈I Xi) =

∨
i∈I ϕ(Xi), and erosion if it distributes over arbitrary infima.

Erosions and dilations are increasing operations [4]. An operator ψ ∈ L∗ is called
a closing if it is increasing, idempotent (ψ2 = ψ) and extensive (ψ(X) ≥ X).
An operator ψ ∈ L∗ is called an opening if it is increasing, idempotent and anti-
extensive (ψ(X) ≤ X) [4]. A pair of operators (ε, δ), is called an adjunction, if
for every two elements X, Y ∈ L it follows that δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ).
In [4] it is proved that if (ε, δ) is an adjunction, then ε is erosion and δ is
dilation. If (ε, δ) is an adjunction, then the composition εδ is a closing, and δε
is an opening. In the case of binary operations the lattice L under consideration
contains as elements the subsets of a linear space M. The couple of binary
operations with the same structuring element (εA, δA), as well as the grey-scale
operations couple (εg, δg), are examples of adjunctions.

2 Fuzzy Morphological Operations

Fuzzy mathematical morphology has been developed to soften the classical bi-
nary morphology so as to make the operators less sensitive to image imprecision.
It can also be viewed simply as an alternative grey-scale morphological theory
with a very significant advantage: In practical applications the result of the op-
erations cannot jump over the predefined pixel range, for example [0..255], as it
can happen using the operations defined by equation (1).

Consider now the set E called the universal set. A fuzzy subset A of the
universal set E can be considered as a function μA : E 
→ [0, 1], called the
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membership function of A. μA(x) is referred to as the degree of membership of
the point x to the set A. The ordinary subsets of E, sometimes called ’crisp
sets’, can be considered as a particular case of a fuzzy set with membership
function taking only the values 0 and 1. This definition leads to two possible
interpretations:

– in image representation the value of the membership function μA(x) at a
point x may be interpreted as the grey level value associated with that point of
the image plane,

– in pattern recognition, the value 0 ≤ μA(x) ≤ 1 indicates the probability
that the point x is in the foreground of an image.

The usual set-theoretical operations can be defined naturally on fuzzy sets:
Union and intersection of a collection of fuzzy sets is defined as supremum, resp.
infimum of their membership functions. Also, we say that A ⊆ B if μA(x) ≤
μB(x) for all x ∈ E. The complement of A is the set Ac with membership
function μAc(x) = 1 − μA(x) for all x ∈ E. Further, for simplicity we will write
A(x) instead of μA(x). If the universal set E is linear, like the n-dimensional
Euclidean vector space Rn or the space of integer vectors with length n, then
any geometrical transformation (like scaling, translation, rotation) of a fuzzy set
can be defined simply by transforming its α−cuts [7].

We say that the function c(x, y) : [0, 1] × [0, 1] 
→ [0, 1] is conjunctor if c is
increasing in the both arguments, c(0, 1) = c(1, 0) = 0, and c(1, 1) = 1.

We say that the function i(x, y) : [0, 1] × [0, 1] 
→ [0, 1] is implicator if i is
increasing in y and decreasing in x, i(0, 0) = i(1, 1) = 1, and i(1, 0) = 0.

We say that the conjucnctor - implication pair is adjoint if c(b, y) ≤ x is true
if and only if y ≤ i(b, x). The notion of conjucnctor - implication adjunction has
its origin in fuzzy logic in solving if-then-else and modus ponens clauses. For fixed
b function f(x) = i(b, x) is an erosion, and its adjoint dilation is g(y) = c(b, y).

Then having an adjoint conjunctor - implicator pair, as proposed in [5], we
can define an adjoint pair of fuzzy erosion and dilation:

δB(A)(x) = sup
y

c(B(x − y), A(y)),

εB(A)(x) = inf
y

i(B(y − x), A(y)).

Heijmans [5] has proposed a number of following conjunctor - implicator pairs
to construct morphological operations. Here we give examples of two of them:

c(b, y) = min(b, y), i(b, x) =
{

x, x < b,
1, x ≥ b .

These operations are known as operations of Gödel-Brouwer.

c(b, y) = max(0, b + y − 1), i(b, x) = min(1, x − b + 1).

These operations are suggested by Lukasiewicz.
Most often the first conjunctor - implicator pair is used. The respective

dilation has the form
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(δB(A))(x) = supb min(A(b), B(x− b)). In this case we can denote δA(B) =
δB(A) = A ⊕ B, because this operation can be obtained also directly from the
binary Minkowski addition using the extension principle.

Note that in these cases the conjunctor is symmetric, i.e. it is a t-norm [7],
and therefore we have δA(B) = δB(A) as in the binary morphology.

3 Morphological Operations for Colour Images

We saw that the basic morphological operations are expressed as products of the
suprema and the infima of the lattice under study. When we deal with colour
images, we work in fact in a multidimensional space (usually R3 or Z3), where
a natural ordering of the elements cannot be achieved. Therefore we try to intro-
duce some heuristics and to compromise with the accuracy at acceptable level
to guarantee the lattice properties and therefore to ensure idempotent opening
and closing filtering.

An useful implementation of a basic subjective colour model is the HSV (hue,
saturation, value) cone [10] and its slight modification HLS [2]. It is based
on such intuitive colour characteristics as tint, shade and tone (or family (hue),
purity (saturation) and intensity (value/luminance)). The coordinate system is
cylindrical, and the colours are defined inside a cone for the case of HSV and
a double cone in the case of HLS. The hue value H runs from 0 to 2π coun-
terclockwise from red. The saturation S is the degree of strength or purity and
varies from 0 to 1. The saturation shows how much white is added to the colour,
so S=1 makes the purest colour (no white). Brightness (value) V also ranges
from 0 to 1, where 0 is the black. If S=0 the hue is undefined, and therefore the
colour is achromatic, namely a shade of grey. However, when we use the HSV
or HLS model, the main obstacle is the fact that the hue is measured as an
angle, and it is not defined for the levels of grey. In [2] a circular ’ordering’ of
the hue modulo 2π is defined, however this ordering does not lead to a complete
lattice. Therefore in this case the obtained operators provide good results for
some segmentation tasks, but the usage of openings and closings for denoising
and filtering is risky. In general, there are no clear mathematical reasons for
hue ordering. However, from psychophysiological point of view one may order
the colours in the following way - red, magenta, blue, yellow, cyan, green, based
on the way humans perceive the hue of the colour. Red is considered to be the
smallest, since it stimulates the eye less than the other colours. Contrary, green
mostly stimulates the eye [6]. In the last approach the ’ordered’ colour hues can
be represented approximately by 6 triangular fuzzy numbers representing the
major colours in the sequence mentioned above.

In [3] an interesting approach for creating colour morphology is presented
based on L*a*b* (CIELAB) colour space representation (the two models are
related by the fact that H = arctan

(
b∗
a∗

)
). There the authors divide this

space into equipotential surfaces. Unfortunately, the best order for the colour
vectors in the same equipotential surface is not obvious. In order to obtain a
complete ordering of the colour vectors, they make use of the lexicographical
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order. Therefore in this case we have idempotent closing and opening filters.
However, the transformation from RGB to L*a*b* is non-linear and time con-
suming. Moreover, there exists no unique inverse transform. The inverse trans-
form depends on the way we characterize the white point. If one knows the
illumination conditions used when acquiring the image, then the specification of
the white point is simple. However, if the illumination conditions are unknown,
a heuristic hypothesis should be made.

An alternative approach is to use the YCrCb colour model [10]. To obtain
the parameters Y, Cr and Cb we use a simple linear combination of R,G, B
values. Note that Y represents the lightness , and should not be mistaken with
the yellow colour in the RGB model notation. The parameter Cr encodes the
red-cyan sensation, with value ≈ 0 for the cyan colour and ≈ 1 for the red. The
parameter Cb encodes the yellow-blue sensation with ≈ 0 indicating yellow and
≈ 1 indicating blue. Without lack of generality we can assume that R,G and B
values are represented as points in an unit cube, namely 0 ≤ R, G, B ≤ 1. The
YCrCb colour space is also a unit cube with transformation formulas:

Y = 0.299 R + 0.577 G + 0.114 B, (2)
Cr = 0.5 R − 0.411 G − 0.081 B + 0.5, (3)
Cb = 0.5 B − 0.169 R − 0.325 G + 0.5 . (4)

Henceforth it is clear that the transformation between RGB and YCrCb mod-
els is linear and easy to compute.

When we use the HSV model usually we give priority to the value (V), since
if anyone looks at the V-map of a colour image, he can usually distinguish the
different objects on the image as looking on a black -and- white TV. Much better
grey-scale representation of a colour image is produced by its Y - map. Consider
the Shannon entropy for a fuzzy set represented grey-scale image X with size
M × N pixels:

E(X) = − 1
MN

M∑
i=1

N∑
j=1

X(i, j) lnX(i, j).

This function is known as a measure of information content and is widely used in
coding, statistics as well as in fuzzy set theory and image processing (finding op-
timal filters). Although it is not strictly mathematically proven, the experiments
taken over 20 different colour images show that the entropy value for the Y-map
is greater than the entropy value for the V-map. For instance, for the image on
Figure 1 the respective values are 0.2920 for HSV and 0.3092 for YCrCb. So
the higher information content is one of the reasons to prefer the YCrCb model.

In general, in colour image processing less priority is usually given to the
chrominance maps - V,S in HSV model, or Cr, Cb in YCrCb. When working
with HSV model, the next priority is given to the hue, because it contains mostly
the colour information. The least priority is given to the saturation because it is
correlated with the other two components and its role as a parameter in image
processing tasks is sometimes criticized – one can refer for instance to the work
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[2]. This is another reason to prefer the YCrCb model, where the components
Cr and Cb have equal weights.

Let us divide the interval [0, 1] into N equal pieces Ii =
(

i−1
N , i

N

]
. (0 ∈ I1).

Let us also suppose that for a pixel x Cb(x) ∈ Ij and 1−Cr(x) ∈ Ii. Note that
we use the negation of Cr to obtain an ordering closer to the one presented in
[6]. In Table 1 one can see a N × N table with a zigzag path going through its
cells.

Table 1. Zigzag tracing of the CrCb parameter space

1 4 5 . . .

2 3 6 . . .

9 8 7 . . .

10 . . . . . . . . .

. . . . . . . . . . . .

Thus we code approximately with accuracy 1/N the Cr and Cb values by the
number of the step at which we visit the respective cell. Let us consider the cell
(i, j) and let n = max(i, j) and m = min(i, j). Then for the number of the step
we can easily prove by induction that

T (i, j) =
{

n2 − m + 1 , n − even and n = i, or n − odd and n = j
n2 − 2n + m + 1 , otherwise.

Further on, for simplicity, for any pixel x we will denote the respective integer
number from the table by T (x). Then if given a colour image X , we define the
transformation

(χ(X))(x) =
N2[(N2 − 1)Y (x)] + T (x) − 1

N4 − 1
,

which is a real number between 0 and 1. Then it is clear that having χ(X),
we can find Y (x) with accuracy 1/N2 and Cr(X) and Cb(x) with 1/N simply
by taking the quotient and the reminder of the division of [χ(X)(N4 − 1)] by
N2. Here [t] means the integer part of t. The last transformation we denote by
χ−1. Then it is obvious that χ−1(χ(X)) gives an approximation of the original
colour image X , while for any grey-scale image χ(χ−1(Y )) = Y.

Then we could order the colour images, namely say that A ≺ B if χ(A) ≤
χ(B). In this case, if A ≺ B and B ≺ A doesn’t mean that A = B, but means
that they are close and lie in the same equivalence class. Thus we present a
more precise approximate order than the one described in [6]. Also, now we
can give correct definition of colour fuzzy morphology, i.e. when given an adjoint
conjunctor - implicator pair we can define dilation-erosion adjunction as:

δB(X)(x) = χ−1
[∨

y

c(B(x − y), (χ(X))(y))
]
, (5)

εB(X)(x) = χ−1
[∧

y

i(B(y − x), (χ(X))(y))
]
. (6)
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Here B can be any fuzzy structuring element, i.e. an image which pixel values
are real numbers between 0 and 1.

To compute easily χ−1, we represent the function T (i, j) by a N2 × 2 table in
which the number of the row s means the current step of the zigzag line, while
its columns hold the numbers of the intervals i and j such that T (i, j) = s. In
the example shown in the next section we use value N = 16. Thus combining the
upper erosions and dilations we are able to construct idempotent morphological
filtering operations (opening and closing) which do not produce colours in the
output image that are not present in the input image.

4 Experiments and Further Research

In this work a new approach for construction of morphological filters for colour
images is presented. It is based on interval approximation of the colour space.
Thus we meet the requirements for image quality and we control the colour
accuracy. The same approximation can be applied also in fuzzy algorithms for
image enhancement and binarization.

In figure 1 one can see a colour picture of a lizard statue in Barcelona (size
540 × 360 pixels). Next its dilation, erosion, closing and opening by 5 × 5 flat
square structuring element are presented. Note that a structuring element is
called flat if it takes values only 0 and 1 on its domain. Analogical experiment
has been made with the same image and the same structuring element in [3]
and anyone can compare visulally the results. The down right subfigure shows
the result of closing operation based on the CIELAB model using equipotential
surfaces. Note that for flat structuring elements the choice of the t-norm -
implicator pair is not essential, which follows easily from the properties of fuzzy
t-norms and the uniqueness of the adjoint erosion [9]. The second applcation
of the opening (closing) operation on the opened (closed) image does not affect
it due to the idempotence of thus generated opening and closing filters. Thus
in our case we check experimentally our theoretical result for the opening and
closing idempotence.

Fig. 1. From top to bottom and left to right: original, dilation, erosion; opening, closing
and closing through L*a*b*
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Operations with non-flat structuring elements are rarely used in image filter-
ing, because it is not clear a priori how an incremental operation will affect the
colours. Further experiments with non-flat operators will be made to show the
efficiency of our approach in texture analysis by fractal dimension estimation
or granulometry [13]. Our method can be applied also for contour extraction
by morphological gradient and top-hat transform [4] or to study approximate
connectivity [9] and convexity [8] on colour images.
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Abstract. The paper proposes an approach for self-verified solving of
linear systems involving rational dependencies between interval parame-
ters. A general inclusion method is combined with an interval arithmetic
technique providing inner and outer bounds for the range of monotone
rational functions. The arithmetic on proper and improper intervals is
used as an intermediate computational tool for eliminating the depend-
ency problem in range computation and for obtaining inner estimations
by outwardly rounded interval arithmetic. Supporting software tools with
result verification, developed in the environment of CAS Mathematica,
are reported.

1 Introduction

Consider a linear algebraic system

A(p) · x = b(p), (1a)

where the elements of the n × n matrix A(p) and the vector b(p) are, in general,
nonlinear functions of k parameters varying within given intervals

aij(p) = aij(p1, . . . , pk), bi(p) = bi(p1, . . . , pk), i, j = 1, . . . , n (1b)
p ∈ [p] = ([p1], . . . , [pk])�. (1c)

The set of solutions to (1a–1c), called parametric solution set, is

Σp = Σ (A(p), b(p), [p]) := {x ∈ R
n | A(p) · x = b(p) for some p ∈ [p]} . (2)

Σp is bounded if A(p) is nonsingular for every p ∈ [p]. For a nonempty bounded
set Σ ⊆ R

n, define interval hull by � Σ := [inf Σ, supΣ]. Since it is quite
expensive to obtain Σp or � Σp, we seek an interval vector [y] for which it is
guaranteed that [y] ⊇ � Σp ⊇ Σp.

In this paper we combine the inclusion theory, developed by S. Rump in [8],
with methods for sharp range estimation of continuous and monotone rational
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functions, in order to compute inner and outer bounds for � Σp(A(p), b(p), [p])
whenever the elements of A(p), b(p) are rational functions of the parameters p.
By now there are no other general-purpose self-validating methods for solving
linear systems involving nonlinearly dependent interval parameters. For some
other approaches see the literature cited in [5]. Section 2 contains some basic
properties of the arithmetic on proper and improper intervals which is used in
this work as an intermediate computational tool for eliminating the dependency
problem in range computation and for obtaining inner estimations by outwardly
rounded interval arithmetic. Section 3 presents the inclusion theory in real and
floating-point arithmetic as well as the implementation algorithm. Section 4
demonstrates the proposed approach on a numerical example and reports some
implemented software tools. The behavior of the presented general-purpose para-
metric fixed-point iteration method applied to linear systems involving nonlinear
dependencies is explored in [5], [6]. Therein the methodology and software tools
discussed in this paper are applied to practical problems from structural engi-
neering and the results obtained by various methods are compared.

Notations. R
n, Rn×m denote the set of real vectors with n components and the

set of real n × m matrices, respectively. By normal (proper) interval we mean a
real compact interval [a] = [a−, a+] := {a ∈ R | a− ≤ a ≤ a+}. By IR

n, IRn×m

we denote interval n-vectors and interval n × m matrices. The end-point func-
tionals (·)−, (·)+ and the function mid([a−, a+]) := (a− + a+)/2 are applied to
interval vectors and matrices componentwise. I denotes the identity matrix. For
interval quantities, the operations between them are always interval operations.
We assume the reader is familiar with conventional interval arithmetic [3].

2 The Arithmetic on Proper and Improper Intervals

The set of proper intervals IR is extended in [2] by the set {[a−, a+] | a−, a+ ∈
R, a− ≥ a+} of improper intervals obtaining thus the set I

∗
R = {[a−, a+] |

a−, a+ ∈ R} of all ordered couples of real numbers called here generalized in-
tervals. The conventional arithmetic and lattice operations, order relations and
other functions are isomorphically extended onto the whole set I

∗
R [2]. Modal

interval analysis [1] imposes a logical-semantic background on generalized inter-
vals (considered there as modal intervals) and allows giving a logical meaning
to the interval results. The conventional interval arithmetic can be obtained as
a projection of the generalized interval arithmetic on IR.

An element-to-element symmetry between proper and improper intervals is
expressed by the “Dual” operator Dual([a]) := [a+, a−] for [a] = [a−, a+] ∈ I

∗
R.

Dual is applied componentwise to vectors and matrices. For [a], [b] ∈ I
∗
R

Dual(Dual([a])) = [a], Dual([a] ◦ [b]) = Dual([a]) ◦ Dual([b]), ◦ ∈ {+, −, ×, /}.

The generalized interval arithmetic structure possesses group properties with
respect to addition and multiplication operations.

Let F ⊂ R be the set of floating-point numbers and IF, I∗F be the correspond-
ing sets of floating-point intervals. Denote by 	, 
 : R −→ F the directed
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roundings toward −∞, resp. +∞ specified by the IEEE floating-point standard.
Outward (♦) and inward (©) roundings ♦, © : I

∗
R −→ I

∗
F are defined as

♦([a]) := [	(a−), 
(a+)] ⊇ [a], ©[a] := [
(a−), 	(a+)] ⊆ [a]. (3)

If ◦ ∈ {+, −, ×, /} is an arithmetic operation in I
∗
R and [a], [b] ∈ I

∗
F, the

corresponding computer operations ♦◦ ,©◦ : I
∗
F × I

∗
F −→ I

∗
F are defined by

[a] ©◦ [b] := ©([a] ◦ [b]) ⊆ [a] ◦ [b] ⊆ ♦([a] ◦ [b]) =: [a] ♦◦ [b]. (4)

The following additional properties (cf. [1]) show that inner numerical approx-
imations can be obtained at no additional cost only by outward directed rounding
and the Dual operator in I

∗
F. For [a], [b] ∈ I

∗
F, ◦ ∈ {+, −, ×, /}

© ([a]) = Dual(♦(Dual[a])); [a] ©◦ [b] = Dual(Dual[a] ♦◦ Dual[b]). (5)

For more details on the theory, implementation and applications of generalized
interval arithmetic consult [1], [2], [4].

Let f : Df ⊆ R
n −→ R be a real-valued rational function continuous in

a domain [x] ∈ IR
n, [x] ⊆ Df . Denote the range of f over [x] by rf ([x]) =

{f(x) | x ∈ [x]}. Since f is continuous, rf ([x]) is interval. In [1] the estimations
of functional ranges are connected to an enhanced interpretation of quantified
propositions which has many promising applications but is out of the scope of this
work. Here, generalized interval arithmetic is used for range computation over a
domain of proper intervals. Let the interval function Rf ([x]) : I

∗
R

n −→ I
∗
R be

defined by the expression of f where real variables are replaced by generalized
intervals and real operations are replaced by operations between generalized
intervals. For [x] ∈ IR

n, Rf ([x]) is the classical interval extension of f .
A real function f(x, y) : R

1+m −→ R is x-uniformly monotonic for x on a
domain ([x], [y]) if it is monotonic for x on [x], and it keeps the same monotonicity
for all y ∈ [y]. A real function f is x-totally monotonic for a multi-incident
variable x ∈ R if f is uniformly monotonic for this variable and for each one of
its incidences (considering each incidence as an independent variable).

Theorem 1. (special case of [1, Thm 5.2]) Let f : R
n −→ R be a real-valued

rational function continuous in a given interval vector [x] ∈ IR
n, and multi-

incident on its variables. Let Rf ([x]) be defined on [x] and let there exist splitting
x = (xn, xt) such that f be totally monotonic for the components of xt. Let [xt∗]
be the enlarged vector of [xt], such that each incidence of every component of xt
is included in [xt∗] as independent component, but transformed into its dual if
the corresponding incidence-point has a monotonicity type opposite to the global
one of the corresponding xt-component. Then

rf ([x]) ⊆ Rf ([xn], [xt∗])) ⊆ Rf ([x]).

In case a function f is totally monotonic in all its variables, we have a sharp
range estimation, specified in more details by the following theorem. For a set
of indices I = {i1, . . . , in}, the vector (xi1 , . . . , xin)� will be denoted by xI .
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Theorem 2. Let f : R
n −→ R be a rational function continuous in a given

interval vector [x] ∈ IR
n, multi-incident on its variables and totally monotonic

on all variables. Define two sets of indices P = {i1, . . . , iq}, N = {i1, . . . , ir}
such that P ∩ N = ∅, P ∪ N = {1, . . . , n}, and f be ≤-isotone for xi : i ∈ P,
f be ≤-antitone for xi : i ∈ N . Let for each variable xi, 1 � i � n, there exist
splitting x′

i = (x′
i1, . . . , x

′
ik), x′′

i = (x′′
i1, . . . , x

′′
im) of the incidences of xi. Let

f∗(x′
P , x′′

P , x′
N , x′′

N ) correspond to the expression of f with explicit reference to
the incidences of every variable, f∗ be continuous on [x′

P ] × [x′′
P ] × [x′

N ] × [x′′
N ],

and Rf∗([x′
P ], [x′′

P ], [x′
N ], [x′′

N ]) be defined. If f∗(x′
P , x′′

P , x′
N , x′′

N ) is ≤-isotone for
the components of x′

P , x′
N and ≤-antitone for the components of x′′

P , x′′
N , then

rf ([x]) = Rf∗ ([x′
P ], Dual([x′′

P ]), Dual([x′
N ]), [x′′

N ]) ⊆ Rf ([x]). (6)

From now on, referring to Theorems 1, 2 we shall use the following notations.
For a function f : Df ⊆ R

n −→ R, which is specified by an expression f(x), the
corresponding expression f∗(xI , Dual(xJ )) is called dual-transformed expression
where I, J are index sets involving the indexes of the incidences for all the
variables x such that J contains the indexes of those variable instances which are
dual-transformed according to the application of Theorems 1, 2, and I contains
the indexes of not dual-transformed variable instances.

The inclusion properties (3), (4) allow a rigorous implementation of Theorems
1, 2 on the computer providing inner and outer inclusions of the true range

©Rf∗ (©[xI ], Dual(©[xJ ])) ⊆ rf ([x]) ⊆ ♦Rf∗ (♦[xI ], Dual(♦[xJ ])) . (7)

Hereafter an arithmetic expression preceded by a rounding symbol (©, ♦) implies
that all operations are performed in floating-point in the specified rounding
mode. By applying (5) it is possible to obtain inner inclusion only by outwardly
rounded operations. Thus, the left inclusion relation in (7) becomes

© Rf∗ (©[xI ], Dual(©[xJ ])) = Dual (♦Rf∗ (♦(Dual[xI ]), (8)
Dual(♦(Dual[xJ ])) )) ⊆ rf ([x]).

3 Inclusion Theorems

The inclusion theorems for the solution set of a parametric linear system present
a direct consequence from the theory for nonparametric problems developed by
S. Rump and discussed in many works (cf. [8] and the literature cited therein).
The next theorem is a general formulation of the enclosure method for parametric
linear systems.

Theorem 3. Consider the parametric linear system defined by (1a–1c). Let R ∈
R

n×n, [y] ∈ IR
n, x̃ ∈ R

n be given and define [z] ∈ IR
n, [C] ∈ IR

n×n by

[z] := �{R (b(p) − A(p)x̃) | p ∈ [p]}, [C] := �{I − R · A(p) | p ∈ [p]}.
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Define [v] ∈ IR
n by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] := {[z] + [C] · [u]}i, u := (v1, ..., vi−1, yi, ..., yn)�.

If [v] � [y], then R and every matrix A(p) with p ∈ [p] are regular, and for
every p ∈ [p] the unique solution x̂ = A−1(p)b(p) of (1a–1c) satisfies x̂ ∈ x̃+ [v].
With [d] := [C] · [v] ∈ IR

n the following inner estimation of � Σp holds true[
x̃ + [z]− + [d]+, x̃ + [z]+ + [d]−

]
⊆ [inf(Σp), sup(Σp)] .

The affine-linear dependencies between the parameters in A(p), b(p) allow an
explicit representation of the ranges of z(p), C(p) by interval expressions, as done
in [8] for z(p). In case of arbitrary nonlinear dependencies, computing [z] and
[C] in Theorem 3 requires sharp range enclosure for nonlinear functions. This
is a key problem and there exists a huge amount of methods and techniques
devoted to this problem, no one being universal. Here we restrict ourselves to
linear systems where the elements of A(p) and b(p) are rational functions of
the uncertain parameters (in this case the elements of z(p) and C(p) are also
rational functions of p) and apply Theorems 2, 1 for enclosing the ranges of zi(p),
Cij(p). It may seem quite restrictive to require that the elements of z(p), C(p) be
monotone functions of the parameters on some interval domains. However, [5],
[6] demonstrate that there are realistic practical problems which can be solved
successfully by this approach.

The second part of Theorem 3, establishes how to compute a componentwise
inner estimation of the parametric solution set. An interval vector [x] ∈ IR

n is
called componentwise inner approximation for some set Σ ∈ R

n if

inf
σ∈Σ

σi ≤ x−
i and x+

i ≤ sup
σ∈Σ

σi, for every 1 ≤ i ≤ n.

An inner inclusion [x] ⊆ �Σ is important for estimating the quality of the
computed outer enclosure, that is how much such an enclosure overestimates the
exact hull of the solution set. In order to have a guaranteed inner inclusion all the
computations should be done in computer arithmetic with directed roundings.

Basic goals of self-validating methods are to deliver rigorous results by com-
putations in finite precision arithmetic, including the proof of existence (and
possibly uniqueness) of a solution. To achieve this goal the inclusion theorems
should be verifiable on computers. With the definitions of rounded floating-point
interval arithmetic and due to its inclusion properties the following holds true.

Theorem 4. Consider the parametric linear system defined by (1a–1c) with p ∈
[p] ∈ IF

k. Let R ∈ F
n×n, [y] ∈ IF

n, x̃ ∈ F
n be given. Define

z(p) := R (b(p) − A(p)x̃) , C(p) := I − R · A(p).

and suppose that the elements of z(p), C(p) are real-valued rational functions.
With the assumptions of Theorems 1, 2 and the notations thereafter, define [z] ∈
IF

n, [C] ∈ IF
n×n by

[zi] = ♦z∗i ([pIi ], Dual[pJi ])
[Cij ] = ♦C∗

ij([pIij ], Dual[pJij ]), i, j = 1, . . . , n.
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Define [v] ∈ IF
n by means of the following Einzelschrittverfahren

1 ≤ i ≤ n : [vi] := {♦([z] + [C] · [u])}i, u := (v1, ..., vi−1, yi, ..., yn)�.

If [v] � [y], then R and every matrix A(p) with p ∈ [p] are regular, and for every
p ∈ [p] the unique solution x̂ = A−1(p)b(p) of (1a–1c) satisfies x̂ ∈ ♦(x̃ + [v]).
With [d] := ♦([C] · [v]) ∈ IF

n the following inner estimation of � Σp holds true
[



(
x̃ + (©[z])− + [d]+

)
, 	(x̃ + (©[z])+ + [d]−)

]
⊆ [inf(Σp), sup(Σp)] .

In the implementation of the above Theorem we choose R ≈ A−1(pm) and
x̃ ≈ A−1(pm) · b(pm), where pm = mid([p]).

The inclusions of the residual vector [z] and the iteration matrix [C] should be
sharp. Suppose that rangeExpr(f(p),[p]) is a function which verifies the con-
ditions of Theorem 1 and yields the corresponding dual-transformed expression
f∗(pI , DualpJ ) for a rational function f(p) continuous on [p]. The evaluation of
this expression in rounded generalized interval arithmetic gives a corresponding
inner/outer inclusion of the true range of f(p), as presented in (7), (8).

When aiming to compute a self-verified enclosure of the solution to a linear
system by the above inclusion method, an iteration scheme, usually called fixed-
point iteration, is proven to be very useful [7]. To force [v] � [y], the concept of
ε-inflation is performed by the function blow([a], ε).

Algorithm. Guaranteed Inner and Outer Inclusions of the Solution Set Hull for
Linear System Whose Input Data are Rational Functions of Interval Parameters.

1. Initialization. p̌ := mid ([p]); Ǎ := A(p̌); b̌ := b(p̌);
Compute R ≈ Ǎ−1; x̃ = R · b̌.

2. Enclosures.
2.1 Compute the analytic expressions

z(p) := R (b(p) − A(p) · x̃); C(p) := I − R · A(p);
2.2 Apply algebraic simplification to z(p) and C(p) in order to reduce the

number of incidences of the variables.
2.3 Obtain the corresponding dual-transformed expressions. For i, j = 1..n

z∗i (pIi , Dual(pJi)) = rangeExpr(zi(p), [p])
C∗

ij(pIij , Dual(pJij )) = rangeExpr(Cij(p), [p]);
2.4 For i, j = 1, . . . , n

[z]i = ♦z∗i ([pIi ], Dual[pJi ]); [C]ij = ♦C∗
ij([pIij ], Dual[pJij ]);

3. Verification.

[x] := [z];
repeat

[y] := [x] := blow([x], ε)
for i = 1 to n do [xi] := ♦([zi] + [Ci] · [x])

until [x] � [y] or max iteration exceeded

If [x] � [y] then � Σp ⊆ ♦(x̃ + [x]); else the algorithm fails.
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4. Inner Estimation of the Outer Enclosure. (If [x] � [y])

[y] = Dual (♦ (x̃ + ♦z∗(Dual[pI ], [pJ ]) + [C] · [x]));
for i = 1 to n, If [yi] �∈ IR then [yi] = ∅;
[y] ⊆ � Σp ⊆ ♦(x̃ + [x]).

4 Mathematica Software, Numerical Example

The above algorithm and the function rangeExpr(f(p),[p]) are implemented
in the environment of Mathematica (cf. [5]). In order to provide a broad access to
the available parametric solvers, a web interface is developed and can be found
at http://cose.math.bas.bg/webComputing/.

Consider a linear system with

A(p) =
(

−(p1 + p2)/p4 p5

p2p4 p3/p5

)
, b(p) =

(
1
1

)
,

where p1, p3 ∈ [0.96, 1.04], p2 ∈ [1.92, 2.08], p4, p5 ∈ [0.48, 0.52]. In the
initialization step we have

p̌ = (1, 2, 1, 0.5, 0.5)�; R =
(

−0.16 0.04
0.08 0.48

)
; x̃ = (−0.12, 0.56)�.

After an algebraic simplification, the residual vector is

z(p) =
(

−0.12 + 0.0192(p1 + p2)/p4 + 0.0048p2p4 − 0.0224p3/p5 + 0.0896p5

0.56 − 0.0096(p1 + p2)/p4 + 0.0576p2p4 − 0.2688p3/p5 − 0.0448p5

)
.

The function rangeExpr proves the total monotonicity of both components with
respect to all the parameters. For the first component function we have one
incidence of p3 and the same monotonicity for all the incidences of p2 and p5,
so that there will be no dual-transformation for these parameters. The first
component function is globally ≤-antitone with respect to p4 while ≤-isotone for
the first p4 incidence and ≤-antitone w.r.t. the second p4 incidence. Analogously,
the second component function is globally ≤-isotone with respect to p2, p5 and
has different monotonicity w.r.t their incidences. Thus, the rangeExpr function
yields the following dual-transformed expressions for z∗(p, Dual)( −0.12 + 0.0192(p1 + p2)/p4 + 0.0048p2Dual(p4) − 0.0224p3/p5 + 0.0896p5

0.56 − 0.0096(p1 + Dual(p2))/p4 + 0.0576p2p4 − 0.2688p3/p5 − 0.0448Dual(p5)

)
.

The evaluation of the above z∗(p, Dual) in generalized interval arithmetic gives
the following enclosure with outwardly rounded arithmetic (for simplicity the
results are presented with 6 digits accuracy)

[z] = ([−0.0143946, 0.0148305], [−0.0500198, 0.0466349])�.

The interval evaluation of z(p) overestimates the evaluation of z∗(p, Dual) by
2.5%, resp. 9.1% for the vector components. The evaluation of C∗(p, Dual) in
generalized interval arithmetic gives the following enclosure

[C] =
(

[−0.079936, 0.0739102] [−0.00986667, 0.00935385]
[−0.0514757, 0.0509653] [−0.0784, 0.0722462]

)
.
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The verification iteration converges in one iteration, yielding

([−0.132555, −0.107016], [0.515136, 0.601717])� ⊆ � Σp ⊆
([−0.136242, −0.103329], [0.505062, 0.611791])�.

The overestimation of the exact solution set hull is 11.19%, 9.51% for the
components.

5 Conclusion

Here we proposed an approach for self-verified solving of linear systems involving
rational dependencies between interval parameters. The applied technique for
sharp range enclosure, based on generalized interval arithmetic, is by no means
obligatory. Combining the iteration method with more sophisticated tools for
range enclosure will certainly expand its scope of application to systems involving
more complicated dependencies. The implemented software tools are the only, by
now, that provide a broad access to the presented methodology. A more detailed
presentation, exploration of the behavior of the presented approach, as well as
its application to some practical examples can be found in [5], [6].
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Abstract. In this paper we consider the problem of finding the solution
of a differential game in relation with choosing an optimal tax policy rule.
The paper extends the existing literature in two directions. First, instead
of treating the tax base as given, in our formulation it is a control variable
for the government. Secondly, we impose a phase constraint of mixed
type for the considered problem of taxation. We present new conditions
under which the solution of the differential game is found explicitly. The
obtained optimal tax policy is time-consistent.

1 Introduction

The issue of time-consistency of optimal policy is central in modern economic
theory. Since the influential work by Kydland and Prescott [4] economists have
attempted different approaches to resolve the inconsistency problem. One pos-
sible strategy is to consider the interaction between the policy-maker and the
agent in a dynamic game setup. Cohen and Michel [1], for example, by inspecting
different types of equilibria found that a time-consistent outcome corresponds to
a feedback Nash equilibrium, while the open-loop Stackelberg equilibrium corre-
sponds to a time-inconsistent policy. It turns out, however, that in some cases the
open-loop Stackelberg equilibrium may produce time-consistent results. Using a
simple model of an income tax, Xie [6] demonstrates that one of the bound-
ary conditions that had been previously assumed in the economic literature is
not necessary for optimality. Karp and Ho Lee [3] generalized Xie’s findings by
considering an arbitrary function of capital as a tax base.

This paper extends the results in [3] and [6] in two directions. First, instead
of solving the optimization problem of the government with respect to the tax
rate by treating the tax base as given, in our formulation the tax rule is a control
variable for the government. In other words, we seek a function of capital which
is optimal for the government and at the same time it agrees with the problem
of the consumer. We obtain new conditions under which the solution is found
explicitly and the optimal tax policy is time-consistent. Secondly, since in many
applications it may be reasonable to constrain the state variable to be non-
decreasing, we examine how the solution changes when constraints of mixed
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type are present. In the particular example of taxation, the justification of the
constraint could be that for both the government and the consumer it may be
undesirable to allow capital to be eventually eaten up.

In the next section we prove a proposition which gives the general solution
of the differential game and after that we apply this proposition to specific
examples.

2 General Solution

There are two players – the government and the representative consumer1. These
two players solve two dynamic optimization problems which are interrelated.

The government decides about the rule by which to tax the consumer. This
rule must be consistent with the behaviour of the representative agent. In other
words, the government will seek a function which agrees with the problem of the
consumer and at the same time it maximizes government’s utility. The utility
of the government in our model depends both on the amount of collected taxes
and on the consumption of the representative agent.

The representative agent chooses the optimal path of his or her consumption
by taking into account the tax set by the government. Formally, the consumer
maximizes

∫ ∞

0

e−ρtU(c(t))dt (1)

with respect to c(t) and subject to

k̇(t) = f(k(t)) − b∗(t) − c(t) , (2)

k̇(t) ≥ 0, k(0) = k0,

where b∗(t) denotes the solution of the government’s problem. The government
solves

∫ ∞

0

e−ρt[U(c∗(t)) + V (b(t))]dt → max (3)

with respect to b(t) and subject to

k̇(t) = f(k(t)) − b(t) − c∗(t) , (4)

k̇(t) ≥ 0, k(0) = k0,

where c∗(t) is the optimal consumption of the consumer. The solution of the
game is a pair of functions (c∗, b∗) which maximize the utilities of the consumer
1 Think of an economy populated by a large number of identical individuals. Although

the influence of each consumer is negligible, the fact that consumers know that they
are identical allows them to form their decisions as if they had strategic power.
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and the government, respectively, and when substituted in (2) and (4) lead to
the same capital accumulation dynamics2.

Here the continuously differentiable function f(k) is the production function
with the standard properties that f(k) > 0, f ′(k) > 0 and f ′′(k) < 0 for k > 0.
The utility functions U(c) and V (b) are concave and continuously differentiable,
and the time preference parameter ρ is strictly positive. We also require that
c(t) ≥ 0 and k(t) ≥ 0 in order for the problem to be meaningful.

The problems of the consumer and the government as stated above are ex-
amples of optimal control problems. In Proposition 1 below we make use of the
sufficiency results obtained by Seierstad and Sydsaeter in [5]. More precisely, we
use a combination of Theorem 6 and Theorem 10 and replace their transversality
condition with limt→∞ e−ρtπ(t)k(t) = 0 since both the state variable k and the
co-state variable π take non-negative values.

Proposition 1. Assume that the following condition holds true for some con-
stant α:

(f(k) − b̄(k))U ′(c̄(k)) = α , (5)

where b̄(k) is the solution of the following differential equation

U ′
(

ρ(f(k) − b̄(k))
f ′(k) − b̄′(k)

)
=

α

f(k) − b̄(k)
(6)

with the initial condition b̄(0) = 0 and

c̄(k) = ρ
f(k) − b̄(k)
f ′(k) − b̄′(k)

. (7)

Let f(k) − b̄(k) and f(k) − c̄(k) be concave functions of k. For f(k) − b̄(k)
we also require that it is positive for positive k and that its first derivative is
positive. Further, let F (k) = f(k) − b̄(k) − c̄(k) be Lipschitz continuous.
(A) If f(k0) − b̄(k0) − c̄(k0) ≥ 0 and

V ′′(b̄(k)) =
V ′(b̄(k))[ρ − f ′(k) + c̄′(k)] − U ′(c̄(k))c̄′(k)

b̄′(k)(f(k) − b̄(k) − c̄(k))
, (8)

for each k ≥ k0, then the solution of the differential game is given by (c∗(k),
b∗(k)) with

b∗(k) = b̄(k) ,

c∗(k) = c̄(k) ,

whenever the corresponding transversality condition for the government’s
problem holds true.

2 The solution corresponds to a stationary Markovian Nash equilibrium [2].
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(B) If f(k0)−b̄(k0)−c̄(k0) < 0, then the solution of the differential game is given
by the pair of constants (c∗, b∗), where the admissible c∗ and b∗ are determined
from the following relations:

c∗ = f(k0) − b∗, (9)

U ′(f(k0) − b∗) = V ′(b∗) . (10)

Remark 1. The transversality condition for the problem of the government re-
quires that limt→∞ e−ρtλ(t)k(t) = 0. There are two possibilities: (i) F (k) > 0 for
each k and (ii) there exists some k̄ ≥ k0 such that F (k̄) = 0. In the second case
the transversality condition clearly holds since capital is bounded and because of
(19) the costate variable is also bounded. Regarding the first case, where capital
is a strictly increasing function, let us assume that there exist some constants P
and Q such that

kU ′(c∗(k))c∗′(k) ≥ P , (11)

f(k) − b∗(k) − c∗(k)
k

+ ρ − f ′(k) + c∗′(k) ≤ Q (12)

for all sufficiently large k. Define z(t) = k(t)λ(t). Then ż(t) ≤ Qz(t)− P , and so

z(t) ≤ P

Q
+ eQt

(
k0V

′(b∗(k0)) − P

Q

)
.

Hence, the transversality condition will be satisfied whenever Q < ρ .

Proof. A) Let k(t) be the solution of (2). Since the differential equation (2) has
an unique solution, if F (k0) > 0, then F (k(t)) > 0 for each t ≥ 0. Otherwise,
there necessarily must be a point, say k′ �= k0, at which the right-hand side
becomes equal to zero, meaning that k′ is a stationary point. However, this
contradicts the uniqueness of the solution. Similarly, F (k0) = 0 implies that
F (k(t)) = 0 for each t ≥ 0.

Define the current value Hamiltonian for the consumer’s problem by

HF (k, c, π) = U(c) + π(f(k) − b∗(k) − c) ,

and the current value Lagrangian by

LF (k, c, π, q) = H(k, c, π) + q(f(k) − b∗(k) − c) .

The assumption F (k0) ≥ 0 ensures that the constraint does not become ac-
tive and therefore, the complementary slackness condition holds with q(t) = 0.
Hence, the Lagrangian reduces to the Hamiltonian and the sufficient optimality
conditions for the consumer’s problem are

π(t) = U ′(c∗(k(t))). (13)
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π̇(t) = ρπ(t) − π(t)f ′(k(t)) + π(t)b∗′(k(t)) (14)

and the transversality condition limt→∞ e−ρtπ(t)k(t) = 0.
Let the function π be determined by (13). Then we can write (5) as

(f(k(t)) − b∗(k(t)))π(t) = α . (15)

By taking the time derivative of both sides in expression (15) we obtain

π̇(t)(f(k(t)) − b∗(k(t))) + π(t)(f ′(k(t)) − b∗′(k(t)))k̇(t) = 0 (16)

Substituting k̇(t) with the right-hand side of differential equation (2) with c
as in (7) and solving for π̇ gives

π̇(t) = π(t)ρ − π(t)(f ′(k(t)) − b∗′(k(t))) , (17)

which is exactly (14).
The properties of the production and utility functions and the assumption

about f(k) − b∗(k) ensure the concavity of the Hamiltonian and the constraint.
To finish the proof, it remains to verify the transversality condition. By letting

g(k) = f(k) − b∗(k) and y(t) =
k(t)

g(k(t))
, it follows that

ẏ(t) =
g(k(t))k̇(t) − g′(k(t))k(t)k̇(t)

g(k(t))2
=

(
1 − c∗(k(t))

g(k(t))

) (
1 − g′(k(t))k(t)

g(k(t))

)
.

Since g(k)−c∗(k) ≥ 0, g(k) > 0 and c∗(k) ≥ 0, we obtain that 0 ≤ 1− c∗(k)
g(k)

≤ 1.

Because of g(0) = 0 and the concavity of g(k), it follows that 1−g′(k)k
g(k)

≥ 0. Since

g(·) and g′(·) take positive values for positive k, we have that 1 − g′(k)k
g(k)

< 1.

All these inequalities imply that 0 ≤ ẏ(t) ≤ 1, and hence 0 < y(t) ≤ y0 + t. The
last two inequalities and (15) imply that

lim
t→∞

e−ρtπ(t)k(t) = lim
t→∞

e−ρtα
k(t)

g(k(t))
= lim

t→∞
αy(t)e−ρt = 0 .

Thus the transversality condition also holds true.
This completes the proof for the consumer’s problem. Next we need to estab-

lish that whenever relationship (8) is satisfied, the tax rule b∗ is optimal for the
government.

The current value of Hamiltonian for the government’s problem is

HL(k, b, λ) = U(c∗(k)) + V (b) + λ(f(k) − b − c∗(k)) . (18)

In order for b∗(k) to be the optimal control for the government, the following
must be satisfied (assuming the transversality condition holds true):
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λ(t) = V ′(b∗(k(t))), (19)

and

λ̇(t) = ρλ(t) − U ′(c∗(k(t)))c∗′(k(t)) − λ(t)f ′(k(t)) + λ(t)c∗′(k(t)) . (20)

Differentiating the expression in (19) with respect to t gives

λ̇(t) = V ′′(b∗(k(t)))b∗′(k(t))k̇(t).

By substituting V ′′(b∗(k)) from (8) above and by replacing k̇ with the right-
hand side of the differential equation (4) we obtain exactly (20).

The same arguments as in the consumer’s problem establish the concavity of
the Hamiltonian and the constraint functions.

B) If F (k0) < 0, then the previous solution is no longer feasible. Again we
begin with the consumer’s problem and we show that for

π(t) =
g′(k0)U ′(g(k0))

ρ
= π̄ (21)

and

q(t) =
U ′(g(k0))[ρ − g′(k0)]

ρ
= q̄, (22)

where π̄ and q̄ are constants, the optimal consumption given by c∗ = f(k0)−b∗ =
g(k0) solves the problem of the consumer as stated in the proposition.

The Lagrangian of the consumer is:

LF (k, c, π, q) = U(c) + π(f(k) − b∗ − c) + q(f(k) − b∗ − c) .

Note that for c = c∗ the differential equation (2) becomes k̇(t) = 0, hence
k(t) = k0. One can now directly check that with the above choice of c∗, π̄
and q̄ all the sufficiency conditions stated in [5] are satisfied: The condition
∂L(k, c∗, π, q)

∂c
= 0 follows from the equalities

U ′(c∗) = U ′(g(k0)) =
g′(k0)U ′(g(k0))

ρ
+

U ′(g(k0))[ρ − g′(k0)]
ρ

= π̄ + q̄.

Since

π̇(t) = 0 = ρ
g′(k0)U ′(g(k0))

ρ
− U ′(g(k0))g′(k0) = ρπ̄ − (π̄ + q̄)g′(k0),

the so defined π satisfies the costate equation. The Hamiltonian and the con-
straint are concave and since both π and k are constant at the optimum, the
transversality condition also holds true. Finally, consider the problem of the gov-
ernment when c∗ = g(k0). Like in the case of the consumer it is straightforward
to show that for

λ(t) =
U ′(c∗)f ′(k0)

ρ
= λ̄ , (23)
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and

φ(t) = V ′(f(k0) − c∗) − U ′(c∗)f ′(k0)
ρ

= φ̄ , (24)

with λ and φ being the co-state variable and the Lagrangian multiplier, respect-
ively, the optimal tax rule b∗ solves the problem of the government. The line of
reasoning is the same as before and we skip the details of the proof.

Note, however, that at b = b∗ the Lagrangian of the government reduces to

LL(k, b∗, λ, φ) = U(f(k0) − b∗) + V (b∗).

Since in this case b∗ is determined by the equality

U ′(f(k0) − b∗) = V ′(b∗), (25)

we obtain that the derivative of the Lagrangian with respect to the control
variable at b∗ should be equal to zero. This completes the proof. �

3 Examples

Example 1 (cf. [6]). Let f(k) = Ak, U(c) = ln(c) and V (b) = ln(b).

(A) Assume that the parameters of the model are such that A ≥ 3ρ

2
. We will

show that the solution to the differential game is (c∗(k) = ρk, b∗(k) = ρk
2 ) for

α =
A

ρ
− 1

2
.

Clearly the optimal consumption c∗ satisfies equation (7) and the tax rule b∗

solves differential equation (6), which for this example takes the form

b∗′(k) = A − αρ , with initial condition b∗(0) = 0.

Equation (8) holds and the transversality condition is satisfied since the left-
hand side of (12) is equal to

ρ

2
< ρ. Substituting the optimal controls in the

differential equation for capital and solving it we obtain k(t) = k0e
(A− 3ρ

2 )t. Since

by assumption A ≥ 3ρ

2
, capital is non-decreasing.

(B) Next, we proceed with the case when A <
3ρ

2
. Clearly, the previous

solution is no longer feasible since it implies that capital will eventually go to
zero. Thus, we need to apply part (B) of Proposition 1, which establishes that
optimal consumption should be c∗ = f(k0) − b∗.

With logarithmic utility functions condition (10) leads to b∗ =
Ak0

2
, and for

optimal consumption we get c∗ = Ak0 − b∗ =
Ak0

2
.

Example 2. Now consider an example where the production function is non-
linear. Let U(c) = 2

√
c, V (b) = 2

√
2b and f(k) = k + α

√
2ρk. To simplify the
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calculations, we have chosen this value for ρ, though it seems unrealistic. Similar
to Example 1, one may check that the pair (c∗(k) = 2k, b∗(k) = k) solves the
game. Equation (6) in this case becomes

b∗′(k) = 1 +
α
√

2
2
√

k
− α

k +
√

2k − b∗(k)
,

and b∗ = k is a solution of the above differential equation. Also, it is easy to see
that c∗ = 2k satisfies (7) and that (8) also holds. Since capital is bounded, the
transversality condition is guaranteed. Note that in the non-linear example the
behaviour of the state variable is different from the linear case. The differential
equation for capital is

k̇(t) = α
√

2k − 2k .

This equation has two equilibrium points: 1) kz = 0 and 2) ke = α2/2. If k0 <
α2/2, capital grows initially and converges to the equilibrium value ke = α2/2.
For example, for α = 10, capital converges to ke = 50. If we change the initial
condition so that k0 > 50 and keep the previous value of α, then capital will
be decreasing and this means that part B) of the proposition has to be applied.
The solution will change as follows:

b∗(k) =
2k0 + 10

√
2k0

3
,

c∗(k) =
k0 + 20

√
2k0

3
.
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Approximating the Solution Set Hull of
Parametric Linear Systems
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Abstract. Systems of parametric interval equations are encountered in
many practical applications. Several methods for solving such systems
have been developed during last years. Most of them produce both outer
and inner interval solutions, but the amount of overestimation, resp.
underestimation is not exactly known. If a solution of a parametric sys-
tem is monotonic and continuous on each interval parameter, then the
method of combination of endpoints of parameter intervals computes
its interval hull. Recently, a few polynomial methods computing the in-
terval hull were developed. They can be applied if some monotonicity
and continouity conditions are fulfilled. To get the most accurate inner
approximation of the solution set hull for problems with any bounded
solution set, an evolutionary optimization method is applied.

1 Introduction

The behavior of the loaded truss structure or analog linear circuit can be de-
scribed by a system of parameter-dependent linear equations [2,5,6,7,16,17]. As-
suming some model parameters are unknown and lie in given intervals will lead
to a parametric system of linear interval equations. Several methods for solv-
ing such systems have been developed during last years [5,6,10,12,15,16]. Most
of them compute both outer and inner interval approximations of the solution
set hull, but the amount of overestimation, resp. underestimation is not exactly
known. It can be estimated by a comparison of inner and outer approximations
of the solution set hull [12,15].

If a solution of the parametric system is monotonic and continuous on each
parameter interval, then the method of combination of endpoints of parameter
intervals (CEPI in brief) [2,14] computes interval hull of the parametric solution
set, that is the tightest interval vector containing this set. Unfortunately, because
the complexity of the CEPI method – 2k real systems have to be solved, where
k is the number of interval parameters – increases at an exponential rate as
a factor of the number of parameters, it can be applied to problems with small
number of parameters. Recently, a few polynomial methods computing interval
hull were developed [14]. They can be applied if the solution of the parametric
system is continous and monotonic on each interval parameter. In [13] Popova

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 361–368, 2007.
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shows, that when some sufficient conditions are fulfilled, the interval hull (or
some bounds) of the parametric solution set can be easily computed.

To get the best inner approximation of the solution set hull for problems with
bounded (non-monotonic and non-continous) solution set, and a lot of inter-
val parameters, an evolutionary optimization method (EOM in brief) is applied
in Section 3. In Section 4 some numerical examples are presented and used to
evaluate the results of the EOM method. They include two examples of para-
metric systems with non-monotonic solution set, and two test examples of truss
structures. The computations performed show that the EOM method produces
a high-quality approximation of the interval hull of a parametric solution set.

2 Preliminaries

Let ��, ��n, ��n×n denote the set of real compact intervals, interval vectors,
and interval square matrices, respectively [9]. Italic faces will denote real quanti-
ties, while bold italic faces will denote their interval counterparts.

Consider linear algebraic system

A(p)x = b(p) (1)

with coefficients being functions that are linear in parameters

aij(p) = ωij0 +
k∑

ν=1

ωijν · pν , bj(p) = ω0j0 +
k∑

ν=1

ω0jν · pν , (2)

(i, j = 1, . . . , n); where p = {p1, . . . , pk}� ∈ �
k is a vector of parameters,

ω ∈ (�k+1)((n+1)×n) is a matrix of real (k + 1)-dimensional vectors.
Assuming some model parameters are unknown and lie in given intervals

pi � pi (i = 1, . . . , k) would give a family of systems (1) which is usually
written in a symbolic compact form

A(p)x = b(p), (3)

and is called parametric interval linear system.
Parametric solution set of the system (3) is defined [4,15] as

S(p) = {x | A(p)x = b(p), p ∈ p} . (4)

If the solution set is bounded, then its interval hull exists and is defined as

�S(p) = [inf S(p), sup S(p)] =
⋂

{y ∈ ��
n | S(p) ⊆ y} . (5)

In order to guarantee that the solution set is bounded, the matrix A(p) must be
regular, i.e. A(p) must be regular for all p ∈ p.

A vector x = [x, x] ∈ ��
n is called inner approximation of S ⊆ �

n if

inf
s∈S

si � xi and sup
s∈S

si � xi, i = 1, . . . , n,

resp. outer approximation of S ⊆ �
n if

inf
s∈S

si � xi and sup
s∈S

si � xi, i = 1, . . . , n.
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3 Evolutionary Optimization

The problem of computing optimal inner approximation of the solution set hull
of the parametric linear system (3) can be written as a problem of solving 2n
constrained optimization problems: for i = 1, . . . , n,

min
{
f(p) =

(
A(p)−1b(p)

)
i

| p ∈ p
}

(6)

and
max

{
f(p) =

(
A(p)−1b(p)

)
i

| p ∈ p
}

, (7)

where p ∈ ��
k is a vector of interval parameters.

Theorem 1. Let A(p) be regular, p ∈ ��
k, and xi

min, xi
max denote the global

solutions of the i-th minimization (6), resp. maximization (7) problems. Then
the interval vector x = [xmin, xmax] =

([
xi

min, xi
max

])n
i=1

= �S(p).

Proof. ⊆: xi
min, xi

max ∈ S(p)i, hence
[
xi

min, xi
max

]
⊆ �S(p)i. ⊇: take any x ∈

S(p), then x = A(p)−1b(p) for some p ∈ p. Since for each p ∈ p xi
min �

(A(p)−1b(p))i � xi
max, then S(p)i ⊆

[
xi

min, xi
max

]
and hence

�S(p)i ⊆
[
xi

min, xi
max

]
. �

The optimization problems (6) and (7) will be solved using an evolutionary ap-
proach [3,8,11]. As a result of the minimization (maximization) problem one will
obtain a value greater of equal (less or equal) to the actual minimum (maximum).
The final result will be the inner approximation of the solution set hull.

3.1 Evolutionary Algorithm Description

Optimization is performed using the evolutionary algorithm shown in Fig. 1.
Each evolutionary algorithm requires some input parameters. These are: popu-
lation size (popsize), crossover rate (cr), mutation rate (mr), number of genera-
tions (ng). All of them have great influence on the result of the optimization, but
the choice of the best values is still a matter of trial. Suggestions for parameter
values can be found in the literature [1,8,11].

For t = 0, . . . ng, the population P (t) =
{

pt
1, . . . , pt

ng

}
consists of individu-

als characterized by k-dimensional vectors of real numbers pt
i = {pt

i1, . . . , p
t
ik}T

with pt
ij ∈ pj , i = 1, . . . , popsize, j = 1, . . . , k. The elements p0

ik of the initial
population P (0) are generated randomly based on the uniform distribution.

The two following genetic operators are employed [8]:

- non-uniform mutation - this one-argument operator vouch for the system
adaptation ability. If the element pj of the individual p is chosen for mutation,
then p′ =

{
p1, . . . , p′j , . . . , pk

}� with

p′j =

{
pj +

(
pj − pj

)
r (1 − t/ng)

b
, if q < 0.5

pj +
(
pj − p

j

)
r (1 − t/ng)

b
, if q � 0.5,
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where r, q are random numbers from [0, 1], t is a number of generation, ng is
a number of generations, and b is a parameter of the system describing the
level of heterogeneity; the probability that mutation factor is close to zero
increases as t increases from 0 to ng;

- arithmetic crossover - this two-argument operator is defined as linear combi-
nation of two vectors. If the parents p1 and p2 are chosen for crossover, then
the offsprings are

p1′ = rp1 + (1 − r)p2, p2′ = (1 − r)p1 + rp2,

where r is a random number from [0, 1]; arithmetic crossover guarantees that
the elements of the vectors p1′ and p2′ lie in parameter intervals.

Let P ′(t) denote the population after the crossover process, and P ′′(t) - the
population after the mutation process. The best (wrt fitness function), (7))
popsize individuals, from the combined population P (t) ∪ P ′′(t), form a new
population P (t + 1).

Initialize parameters
t := 0
Initialize population P (t) of popsize size
while t < ng do

P ′(t) ←− Crossover−with−cr−rate(P (t))
P ′′(t) ←− Mutate−with−mr−rate(P ′(t))
Evaluate the fitness f(P ′′(t))
P (t + 1) ←− Select−popsize(P (t) ∪ P ′′(t))
t:=t+1

end while

Fig. 1. Pseudo-code of an evolutionary algorithm

4 Numerical Examples

In this section the results of the EOM are presented. Two small parametric linear
systems with non-monotonic solution set and two exemplary truss structures are
included to evaluate the performance of the EOM method. Several variants of the
input parameter values have been examined. The best results have been obtained
for the following values: population size popsize = 10 (exs. 1, 2), popsize = 16
(exs. 3, 4), crossover rate cr = 0.1, mutation rate mr = 0.9, b = 96, number of
generations ng = 80 (exs. 1, 2), ng = 100 (exs. 3, 4).

Example 1
Assume the two-dimensional parametric linear system is of the form:

[
p1 1 + p2

−2 3p1 − 1

]
·
[
x1

x2

]
=
[
2p1

0

]
, p1 = [0, 1],p2 = [0, 1]. (8)
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The numerical results are presented in Table 1. Column 2 contains the mid-
point solution, columns 3 - the result of the EOM method, column 4 - the
interval hull (IH). In case of two-dimensional system the interval hull can be
easily computed. From (8) one gets two equations p1x1 + (1 + p2)x2 = 2p1 and
−2x1 + (3p1 − 1)x2 = 0. Eliminating p1 from these equations gives the equation
2x2 + 3(1 + p2)y2 + xy − 4x − 2y = 0 which, with p2 ∈ [0, 1], define the pencil
of ellipses. The intersection of the pencil with the united solution set gives the
parametric solution set.

Table 1. Numerical results for Example 1

x0 EOM IH

x1 0.1538 [−0.087, 1] [−0.087, 1]

x2 0.6154 [0, 1.026] [0, 1.026]

Example 2
The three-dimensional parametric linear system is of the form:

⎡
⎣ p1 p2 + 1 −p3

p2 + 1 −3 p1

2 − p3 4p2 + 1 1

⎤
⎦ ·

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 2p1

p3 − 1
−1

⎤
⎦ , (9)

where p1 ∈ p1 = [0, 1], p2 ∈ p2 = [0, 1], p3 ∈ p3 = [0, 1].
The numerical results of the EOM method, the direct method (DM) [17], and

the Monte Carlo method (MC) (100000 samples), are presented in Table 2.

Table 2. Numerical results for Example 2

x0 MC EOM DM

x1 0.286 [−0.866, 2.641] [−1, 2.667] [−2.184, 4.685]

x2 0.048 [−0.65, 0.328] [−0.667, 0.333] [−0.84, 1.337]

x3 −1.571 [−5.592, 0.679] [−5.667, 1] [−11.163, 2.663]

Example 3. (25-bars plane truss structure)
Consider the truss structure shown in Fig. 2. Young’s modulus
E= 2.1 × 1011 [Pa], cross-section area C= 0.004 [m2]. Assume the stiffness of
all bars is uncertain by ±5%. This gives 25 interval parameters. The vector of
displacements d is a solution of the parametric system K(p)d = q(p), where
K(p) is parameter-dependent stiffness matrix, q(p) is parameter-dependent vec-
tor of forces. Numerical results are presented in table 3. Column 2 contains
the midpoint solution (d0), columns 3, 4 - the result, resp. the relative error
(rerr = (d − d)/(2 · d0)) of the Monte Carlo method (100000 samples), columns
5, 6 - the result, resp. the relative error of the EOM method, columns 7, 8 - the
result, resp. the relative error of the DM method.
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Fig. 2. 25-bar plane truss structure

Table 3. Numerical results for example 3

d0 [×10−5] MC [×10−5] rerr[%] EOM [×10−5] rerr[%] DM [×10−5] rerr[%]

dx
2 62.2 [60.26, 64.34] 3.27 [59.12, 65.57] 5.19 [56.47, 67.9] 9.2

dy
2 −74.32 [−76.95, −71.95] 3.37 [−78.33, −70.66] 5.16 [−79.99, −68.63] 7.64

dx
3 50.83 [49.16, 52.69] 3.46 [48.33, 53.57] 5.16 [47.27, 54.37] 6.98

dy
3 −85.68 [−88.6, −83.05] 3.24 [−90.33, −81.45] 5.18 [−92.86, −78.49] 8.39

dx
4 66.66 [64.66, 68.96] 3.22 [63.34, 70.31] 5.23 [61.01, 72.3] 8.47

dy
4 −82.83 [−85.6, −80.31] 3.19 [−87.33, −78.73] 5.19 [−89.45, −76.18] 8.01

dx
5 63.81 [61.85, 65.98] 3.23 [60.62, 67.31] 5.24 [58.56, 69.04] 8.21

dy
5 −102.7 [−106.03, −99.81] 3.03 [−108.17, −97.74] 5.08 [−111.82, −93.56] 8.89

dx
6 55.12 [53.28, 57.15] 3.51 [52.41, 58.08] 5.15 [51.41, 58.8] 6.7

dy
6 −103.18 [−106.5, −100.29] 3.01 [−108.65, −98.21] 5.06 [−112.53, −93.81] 9.07

dx
7 59.52 [57.59, 61.56] 3.33 [56.53, 62.79] 5.26 [54.57, 64.46] 8.31

dy
7 −108.93 [−112.32, −105.9] 2.95 [−114.66, −103.74] 5.01 [−119.04, −98.8] 9.29

dx
8 59.88 [57.88, 62.1] 3.52 [56.95, 63.1] 5.14 [56.03, 63.71] 6.41

dy
8 −108.45 [−111.85, −105.41] 2.97 [−114.18, −103.26] 5.03 [−118.57, −98.32] 9.33

dx
9 54.76 [53.01, 56.89] 3.54 [51.99, 57.78] 5.28 [50.05, 59.45] 8.58

dy
9 −101.98 [−105.03, −99.10] 2.90 [−107.42, −97.06] 5.08 [−111.56, −92.41] 9.39

dx
10 64.16 [62.11, 66.53] 3.44 [61.03, 67.61] 5.13 [60.14, 68.17] 6.28

dy
10 −100.56 [−103.63, −97.69] 2.95 [−105.96, −95.64] 5.13 [−109.91, −91.19] 9.31

dx
11 50.47 [48.64, 52.45] 3.77 [47.81, 53.38] 5.52 [45.89, 55.04] 9.06

dy
11 −82.83 [−85.62, −80.19] 3.27 [−87.36, −78.69] 5.23 [−90.46, −75.21] 9.21

dx
12 67.02 [64.9, 69.4] 3.35 [63.75, 70.62] 5.12 [62.73, 71.3] 6.39

dy
12 −84.25 [−87.06, −81.69] 3.18 [−88.87, −80.05] 5.23 [−92.33, −76.18] 9.58

dx
13 56.01 [54, 58.28] 3.82 [53.13, 59.16] 5.38 [51.43, 60.58] 8.17

dy
13 −73.25 [−75.8, −70.86] 3.37 [−77.23, −69.62] 5.20 [−80.18, −66.3] 9.47

dx
14 117.13 [113.57, 121.14] 3.23 [111.55, 123.29] 5.01 [110.18, 124.07] 5.93

Example 4. (Baltimore bridge 1820)
Every bar of the bridge (Fig. 3) has Young’s modulus E= 2.1 × 1011 [Pa], cross-
section area C= 0.004 [m2]. Assuming the stiffness of all bars is uncertain by ±5%
will give 45 interval parameters. The computational time of the EOM method
increased about 7 times. Most coordinates of the vector solution, produced by the
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Fig. 3. Baltimore bridge 1820

EOM method, were exactly equal to the interval hull. The remaining coordinates
differed only slightly from the exact hull solution. The result of the EOM method
is not included because of the limit for the number of pages.

5 Conclusions

The problem of solving parametric linear systems has been considered in Sec-
tion 2. In Section 3 the evolutionary optimization method EOM for approxi-
mating from below the solution set hull of parametric linear systems has been
described. Computations performed in Section 4 show that the EOM is a pow-
erful tool for solving such systems. The EOM method produced a very accurate
approximation of the interval hull of all parametric solution sets considered. It is
simple and quite efficient. The main advantage of the EOM method is that it can
be applied to any parametric linear system with bounded solution set. The EOM
method can be used to solve problems with a lot of interval parameters. However,
since the accuracy of the EOM method is not exactly known it should be used in
conjunctions with methods that compute inner and outer approximations. The
comparison of the EOM method with existing methods solving parametric linear
systems will be a subject of future work.
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Abstract. Various approximate formulae for calculation of the normal
probability integral

P (x) =
1√
2π

x∫

0

e−t2/2dt, x ≥ 0,

are given. Our formulae provide a good approximation to P (x) over the
entire range 0 < x < ∞, hence they can be used in practice instead
of the usual numerical tables. Error bounds based on the Peano kernel
technique are proved.

Keywords: Normal probability, error function, quadrature formulae,
Peano kernels.

1 Introduction

For a random variable X with standard normal distribution, the probability that
0 < X < x is given by

P (x) =
1√
2π

x∫

0

e−t2/2dt.

The integral in P (x) is probably the best-known example of an integral that
cannot be evaluated through the Leibnitz-Newton rule. An alien to P (x) is the
error function

erf(x) =
2√
π

x∫

0

e−t2dt = 2P (
√

2x). (1)

The standard statistics textbooks incorporate four- or five-place tables with com-
puted values of P (x). Most mathematical handbooks (see, e.g., [1,4,5]) provide a
detailed information about P (x) and erf(x). We quote two series representations
of erf(x) (formulae (7.1.5) and (7.1.6) in [1]), which, in view of (1), have their
obvious counterparts for P (x):

erf(x) =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n + 1)
, (2)

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 369–377, 2007.
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erf(x) =
2√
π

e−x2
∞∑

n=0

2nx2n+1

(2n + 1)!!
. (3)

The series in (2) and (3) are fast converging, and can be used for effective
calculation of erf(x). It is desirable, however, to have a closed-type approximate
formula for erf(x) (or for P (x)), supplied with a good uniform (i.e., independent
of x) error bound. Any formula of this kind may be viewed as a coding of
the information about the function erf(x) (or P (x)), and can be used for a
quick recovery of the function value at any point x, 0 < x < ∞. Some rational
approximate formulae for erf(x), with error bound ranging between 5×10−4 and
1.5 × 10−7, are given in [1].

In this paper, we present some new approximate formulae for P (x). The key
step to their derivation is the representation

P 2(x) =
1
2π

x∫

0

x∫

0

e−(t2+u2)/2du dt =
1
π

x∫

0

t∫

0

e−(t2+u2)/2du dt.

Passage to polar coordinates yields

P 2(x) =
1
π

∫ π/4

0

∫ x sec ϕ

0

e−r2/2rdr dϕ =
1
4

− 1
π

π/4∫

0

e−(x sec ϕ)2/2dϕ , (4)

hence the evaluation of P (x) is reduced to the calculation of the last integral.
The integrand

g(ϕ) := e
− x2

2 cos2 ϕ , (5)

possesses the property that

g(k)(ϕ) = g(ϕ)pk(t), (6)

where pk is an algebraic polynomial in variable t = tan ϕ, defined recurrently by

p0(t) ≡ 1, pk+1(t) = (t2 + 1)[p′k(t) − a2tpk(t)], k = 0, 1, . . . (7)

This representation reveals that quadrature formulae involving one or two in-
terior nodes and multiple nodes at the endpoints would be an appropriate tool
for the evaluation of

∫ π/4

0
g(ϕ)dϕ. Such quadrature formulae, along with some

error bounds based on the Peano kernel technique, are given in Section 3. The
resulting approximate formulae for P (x) are presented in the next section. In
Section 4 we establish some estimates for the sup-norm of g(4) and g(6). These
estimates are used in Section 5 for the derivation of theoretical bounds for the
error of our formulae. Although the obtained error bounds well overestimate the
real error magnitude, they are of some value as they apply to the whole interval
(0, ∞) and do not rely on comparison with any tabulated values of P (x).
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2 Approximate Formulae for P (x)

Our approximate formulae are denoted by Fi(x), i = 1, . . . , 13, and are listed
below.

F1(x) =
1
2

[
1 − 1

2

(
e−x2/2 +

(
1 +

πx2

12

)
e−x2

)]1/2

,

F2(x) =
1
2

[
1 − 1

4

(
e−x2/2 + 2e−(2−

√
2)x2

+
(
1 +

πx2

24

)
e−x2

)]1/2

,

F3(x) =
1
2

[
1 − 1

6

(
e−x2/2 + 2e−2(2−

√
3)x2

+ 2e−2x2/3 +
(
1 +

πx2

36

)
e−x2

)]1/2

,

F4(x) =
1
2

[
1 − 1

6

(
e−x2/2 + 4e−(2−

√
2)x2

+ e−x2
)]1/2

,

F5(x) =
1
2

[
1 − 1

30

(
7e−x2/2 + 16e−(2−

√
2)x2

+
(
7 +

πx2

4
)
e−x2

)]1/2

,

F6(x) =
1
2

[
1 − 1

2

(
e−x2/2 +

(
1 +

πx2

12
− π3(x6 − 6x4 + 5x2)

2880

)
e−x2

)]1/2

,

F7(x) =
1
2

[
1 − 1

4

(
e−x2/2 + 2e−(2−

√
2)x2

+
(
1 +

πx2

24
− π3(x6 − 6x4 + 5x2)

23040

)
e−x2

)]1/2

,

F8(x) =
1
2

[
1 − 1

6

(
e−x2/2 + 2e−2(2−

√
3)x2

+ 2e−2x2/3

+
(
1 +

πx2

36
− π3(x6 − 6x4 + 5x2)

77760

)
e−x2

)]1/2

,

F9(x) =
1
2

[
1 − 1

70

((
19 − π2x2

192

)
e−x2/2 + 32e−(2−

√
2)x2

+
(
19 + πx2 +

π2(x4 − 2x2)
48

)
e−x2

)]1/2

,

F10(x) =
1
2

[
1 − 1

630

((
187 − 3π2x2

32

)
e−x2/2 + 256e−(2−

√
2)x2

+
(
187 +

47πx2

4
+

3π2(x4 − 2x2)
8

+
π3(x6 − 6x4 + 5x2)

192

)
e−x2

)]1/2

,

F11(x) =
1
2

[
1 − 1

8

(
e−x2/2 + 3e−2(2−

√
3)x2

+ 3e−2x2/3 + e−x2
)]1/2

,

F12(x) =
1
2

[
1 − 1

80

(
13e−x2/2 + 27e−2(2−

√
3)x2

+ 27e−2x2/3

+
(
13 +

πx2

12

)
e−x2

)]1/2

,

F13(x) =
1
2

[
1 − 1

2240

((
391 − π2x2

24

)
e−x2/2 + 729e−2(2−

√
3)x2

+ 729e−2x2/3

+
(
391 + 13πx2 +

π2(x4 − 2x2)
6

)
e−x2

)]1/2

.

Many other approximations to P (x) can be obtained through the scheme descri-
bed in the next section and use of appropriate quadrature formulae.
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3 Quadrature Formulae

We start this section with recalling some basic facts about quadratures (for more
details, see, e.g., [3]). A quadrature formula Q for approximate calculation of

I[f ] =

b∫

a

f(x) dx

is called any linear functional Q of the form

Q[f ] =
n∑

i=1

νi−1∑
j=0

aijf
(j)(xi),

where {xi}n
i=1 are the nodes of Q, the natural numbers {νi}n

i=1 define their
multiplicities, and {aij} are the coefficients of Q. Usually it is assumed (and we
assume here, too) that a ≤ x1 < x2 < · · · < xn ≤ b.

A quadrature formula Q is said to have algebraic degree of precision m (in
short, ADP (Q) = m), if its remainder R[Q; f ],

R[Q; f ] := I[f ] − Q[f ]

vanishes whenever f is an algebraic polynomial of degree not exceeding m, and
R[Q; f ] �= 0 if deg(f) = m + 1.

If ADP (Q) = m ≥ 0 and max
i

{νi} = ν, then for every r ∈ N, ν ≤ r ≤ m + 1,
the r-th Peano kernel of Q is defined by

Kr[Q; t] := R
[
Q;

(· − t)r−1
+

(r − 1)!

]
, a ≤ t ≤ b,

where x+ = max{x, 0}. If f (r) is integrable on [a, b], then the remainder R[Q; f ]
admits the representation

R[Q; f ] =

b∫

a

Kr[Q; t]f (r)(t) dt.

In particular, if f ∈ Cr[a, b] and maxx∈[a,b] |f (r)(x)| =: Mr[f ], then

|R[Q; f ]| ≤ Mr[f ]

b∫

a

|Kr[Q; t]| dt. (8)

Let Q(n) be the compound quadrature formula, obtained by applying Q to the n
subintervals [ai, ai+1] (i = 0, . . . , n−1), where ai = a+ i(b−a)/n, and summing
the results. Then we have

|R[Q(n); f ]| ≤ Mr[f ]
nr

b∫

a

|Kr[Q; t]| dt. (9)
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We list below the quadrature formulae we used for the derivation of the approxi-
mate formulae {Fi(x)}, along with the error bounds obtained through (8) and
(9), which will be needed. Two classical Newton-Cotes quadrature formulae
stand at the beginning of our list: the Simpson formula and the ”3/8”-rule.

Q1[f ] =
b − a

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
, |R[Q1; f ]| ≤ (b − a)5

2880
M4[f ],

Q2[f ] =
b − a

8

[
f(a) + 3f

(2a + b

3

)
+ 3f

(a + 2b

3

)
+ f(b)

]
,

|R[Q2; f ]| ≤ (b − a)5

6480
M4[f ].

The next two quadrature formulae are partial sums in the Euler-MacLaurin
summation formula.

Q3[f ] =
b − a

2
[f(a) + f(b)] +

(b − a)2

12
[f ′(a) − f ′(b)],

|R[Q3; f ]| ≤ (b − a)5

720
M4[f ],

Q4[f ] =
b − a

2
[f(a)+f(b)] +

(b − a)2

12
[f ′(a) − f ′(b)]− (b − a)4

720
[f ′′′(a)−f ′′′(b)],

|R[Q4; f ]| ≤ 8.16 × 10−4(b − a)5M4[f ].

The remaining quadrature formulae in our list are of interpolatory type with
equidistant abscissae and multiple end-point nodes. We mention that quadrature
formula Q5 has been already used by Bagby [2] to obtain formula F5(x).

Q5[f ] =
b − a

30

[
7f(a) + 16f

(a + b

2

)
+ 7f(b)

]
+

(b − a)2

60
[f ′(a) − f ′(b)],

|R[Q5; f ]| ≤ (b − a)5

14580
M4[f ],

Q6[f ] =
b − a

70

[
19f(a) + 32f

(a + b

2

)
+ 19f(b)

]
+

(b − a)2

35
[f ′(a) − f ′(b)]

+
(b − a)3

840
[f ′′(a) + f ′′(b)],

|R[Q6 ; f ]| ≤ 2.38 × 10−7(b − a)7M6[f ],

Q7[f ] =
b − a

630

[
187f(a) + 256f

(a + b

2

)
+ 187f(b)

]

+
47(b − a)2

1260
[f ′(a) − f ′(b)] +

(b − a)3

420
[f ′′(a) + f ′′(b)]

+
(b − a)4

15120
[f ′′′(a) − f ′′′(b)],

|R[Q7 ; f ]| ≤ 8.55 × 10−8(b − a)7M6[f ],



374 V. Gushev and G. Nikolov

Q8[f ] =
b − a

80

[
13f(a) + 27f

(2a + b

3

)
+ 27f

(a + 2b

3

)
+ 13f(b)

]

+
(b − a)2

120
[f ′(a) − f ′(b)],

|R[Q8 ; f ]| =
(b − a)5

73728
M4[f ],

Q9[f ] =
b − a

2240

[
391f(a) + 729f

(2a + b

3

)
+ 729f

(a + 2b

3

)
+ 391f(b)

]

+
13(b − a)2

1120
[f ′(a) − f ′(b)] +

(b − a)3

3360
[f ′′(a) + f ′′(b)],

|R[Q9 ; f ]| ≤ 2.77 × 10−8(b − a)7M6[f ].

We point out that the error estimates for quadrature formulae Q4, Q6, Q7 and
Q9 are obtained numerically, as there is no explicit expression for the zeros of
the corresponding Peano kernels. Although some of quadratures above possess
Peano kernels of higher order, our error estimates are obtained only through
their fourth or sixth Peano kernels. The reason is that for k > 6 the expression
for g(k) is too cumbersome, and it is difficult to find good estimates for Mk[g].

Our approximate formulae {Fi(x)}13
i=1 for the normal probability integral P (x)

are obtained from (4), where the integral

π/4∫

0

g(ϕ) dϕ, g(ϕ) = e
− x2

2 cos2 ϕ ,

is replaced by some of the quadrature formulae above (with a = 0 and b = π/4).
The correspondence between {Fi} and {Qj} is shown in Table 1.

Table 1. The correspondence between {Fi} and {Qj}

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Q3 Q3(2) Q3(3) Q1 Q5 Q4 Q4(2) Q4(3) Q6 Q7 Q2 Q8 Q9

4 Estimates for Mk[g]

As we are going to apply the error estimates for the quadrature formulae in the
previous section, we need estimates for the magnitude of the derivatives of g. To
this end, we substitute

c := x2 (c ≥ 0), u := t2 + 1 =
1

cos2 ϕ
(1 ≤ u ≤ 2).

By using formulae (5), (6) and (7), we obtain for k = 2, 4, 6 the representation

g(k)(ϕ) = e−cu/2hk(c, u), where hk(c, u) =
k∑

i=1

(−1)kdik(u)(cu)k.
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The coefficients {dik(u)} are polynomials in u, and each of them is monotonically
increasing for u ∈ [1, 2]. We describe below the way we estimate g(k).

4.1 The Case k = 4

The coefficients {di4(u)} are: d44(u) = (u − 1)2, d34(u) = 6(3u2 − 5u + 2),
d24(u) = 75u2 − 100u + 28 and d14(u) = 60u2 − 60u + 8. We divide the interval
[1, 2] into 40 subintervals [uj, uj+1], with uj = 1 + j/40 (j = 0, . . . , 39). Making
use of the monotonicity of coefficients {di4(u)}, we obtain the inequality

M4[g]

≤ max
0≤j≤39

{
max
τ≥0

{e−τ/2[d44(uj+1)τ4 − d34(uj)τ3 + d24(uj+1)τ2 − d14(uj)τ ]},

− min
τ≥0

{e−τ/2[d44(uj)τ4 − d34(uj+1)τ3 + d24(uj)τ2 − d14(uj+1)τ ]}
}

.

From τ = x2u ≤ 2x2 we also obtain

M4[g] ≤ 2x2

× max
0≤j≤39

{
max
τ≥0

{e−τ/2[d44(uj+1)τ3 − d34(uj)τ2 + d24(uj+1)τ − d14(uj)]},

− min
τ≥0

{e−τ/2[d44(uj)τ3 − d34(uj+1)τ2 + d24(uj)τ − d14(uj+1)]}
}
.

The examination of the univariate functions in the right-hand sides of the above
inequalities yields the estimates

M4[g] ≤ 54.3 and M4[g] ≤ 256x2.

4.2 The Case k = 6

The coefficients {di6(u)}6
i=1 in this case are

d66(u) = (u − 1)3, d56(u) = 15(u − 1)2(3u − 2),

d46 = 5(u − 1)(129u2 − 172u + 52), d36(u) = 15(231u3 − 462u2 + 280u − 48,

d26 = 4(1575u3 − 2625u2 + 1204u− 124, d16(u) = 8(315u3 − 420u2 + 126u− 4).

We divide the interval [1, 2] into two hundred subintervals of equal length and
apply the same idea as in the previous case to reduce the estimation of M6[g] to
examination of univariate functions. The resulting estimates are

M6[g] ≤ 4183 and M6[g] ≤ 17408x2.

Although we do not use estimation with the second order Peano kernel, for the
sake of completeness we quote the estimates for M2[g], obtained in the same way
as above (by dividing [1, 2] into ten subintervals of equal length):

M2[g] ≤ 1.93 and M2[g] ≤ 8x2.
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5 Error Estimates

To obtain error bounds independent on x, we exploit the two kind of estimates
for Mk[g] from the previous section. A general observation we shall use is that
P (x)/x and Fi(x)/x, i = 1, . . . , 13, are decreasing functions of x for x ≥ 0. The
verification is straightforward and therefore is omitted. Below we demonstrate
the way we prove our error estimates on two of our approximate formulae .

Consider formula F1(x). We have

|P (x) − F1(x)| =
|R[Q3; g]|

π(P (x) + F1(x))
≤ π4 × M4[g]

45 × 720 × (P (x) + F1(x))
.

We distinguish between two cases. If 0 < x < 0.461, then we apply the estimate
M4[g] ≤ 256x2 to obtain

|P (x) − F1(x)| ≤ π4 × 256 × 0.4612

45 × 720 × (P (0.461) + F1(0.461))
< 2.04 × 10−2.

If x ≥ 0.461, then we make use of the estimate M4[g] ≤ 54.3 to obtain

|P (x) − F1(x)| ≤ π4 × 54.3
45 × 720 × (P (0.461) + F1(0.461))

< 2.03 × 10−2.

Thus, we obtained the estimate |P (x) − F1(x)| < 2.04 × 10−2, valid for every
x ≥ 0. The observed maximum of |P (x) − F1(x)| is approximately 1.82 × 10−3,
i.e., we have overestimated the sharp error bound about 11 times.

Our second error estimate is for formula F13(x). We have

|P (x) − F13(x)| =
|R[Q9; g]|

π(P (x) + F13(x))
≤ π6 × 2.77 × 10−8M6[g]

47 × (P (x) + F13(x))
.

1 2 3 4

-2·10-7

2·10-7

4·10-7

Fig. 1. Graphs of P (x) − F10(x) (thin line) and P (x) − F13(x) (thick line)
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Table 2. Error estimates and observed maximal error of {Fi}

Formula F1 F2 F3 F4 F5

Error bound 2.04 × 10−2 1.27 × 10−3 2.5 × 10−4 5.06 × 10−3 1.0 × 10−3

max |P (x) − Fi(x)| 1.82 × 10−3 1.4 × 10−4 2.9 × 10−5 4.2 × 10−4 3.04 × 10−5

Formula F6 F7 F8 F9 F10

Error bound 1.2 × 10−2 7.44 × 10−4 1.47 × 10−4 1.56 × 10−4 5.59 × 10−5

max |P (x) − Fi(x)| 7.11 × 10−4 1.63 × 10−5 1.59 × 10−6 3.24 × 10−6 4.26 × 10−7

Formula F11 F12 F13 (F10 + 5F13)/6 —

Error bound 2.25 × 10−3 1.98 × 10−4 1.81 × 10−5 — —

max |P (x) − Fi(x)| 1.95 × 10−4 7.33 × 10−6 8.97 × 10−8 9.1 × 10−9 —

If 0 < x < 0.49, then

|P (x) − F13(x)| ≤ π6 × 2.77 × 10−8 × 17408 × 0.492

47 × (P (0.49) + F13(0.49))
< 1.81 × 10−5.

The same estimate holds true in the case x ≥ 0.49, since

|P (x) − F13(x)| ≤ π6 × 2.77 × 10−8 × 4183
47 × (P (0.49) + F13(0.49))

< 1.81 × 10−5.

The observed maximum of |P (x)−F13(x)| does not exceed 8.97×10−8, therefore
the overestimation factor is about 200.

The error bounds for the remaining approximate formulae are obtained in the
same way. These bounds, as well as the observed maximal errors are given in Table
2. Notice that all the formulae {Fi(x)}13

i=1 tend to the right value of P (x) as x → 0
or x → ∞. Figure 1 depicts the actual error of formulae F10 and F13. It is seen that
for most values of x the two errors are of opposite sign. This implies the empirical
formula F14(x) = (F10(x)+ 5F13(x))/6, with observed maximal error 9.1 × 10−9.
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Abstract. The integral equations studied here play very important role
in the theory of parabolic initial-boundary value problems (heat con-
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iterative-collocation method for solving these equations. We propose an
iterative method with corrections based on the interpolation polynomial
of spatial variable of the Lagrange type with given collocation points.
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is proved and an error estimate is established. The presented theory is
illustrated by numerical examples and a comparison is made with other
methods.

Keywords: integral equations in space-time, iterative-collocation
method, interpolating polynomial, correction function.

AMS Subject Classification: 65R20.

A mathematical model in the heat-conduction theory is reduced to the following
integral equations in space-time [4]

u(x, t) = f(x, t) +
∫ t

0

∫
M

k(x, t, y, s)u(y, s)dyds . (1)

We shall consider that integral equation in the space-time domain, where f is a
given function in domain D = M×[0, T ] (M - a compact subset of m-dimensional
Euclidean space) and u is unknown function in D. The given kernel k is defined
in domain Ω = {(x, t, y, s) : x, y ∈ M, 0 ≤ s ≤ t ≤ T }. Numerical methods for
these equations were presented in papers [1-5]. In this paper we propose a new
numerical method for equation

u = f + Ku , (2)

where

(Ku)(x, t) =
∫ t

0

∫ b

a

k(x, t, y, s)u(y, s)dyds . (3)

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 378–385, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1 Iterative-Collocation Method with a System of Volterra
Equations

From a numerical point of view, the method of successive approximations is of
limited use. We can introduce some correction c to obtain the following method

uk = f + K(uk−1 + c) ,

where c can be defined in various ways.
The method presented here is restricted to the following integral equation

u(x, t) = f(x, t) +
∫ t

0

∫ b

a

k(x, t, y, s)u(y, s)dyds , (4)

where the given functions f and k are defined in domains D = [a, b] × [0, T ] and
Ω = {(x, t, y, s) : a ≤ x, y ≤ b, 0 ≤ s ≤ t ≤ T }, respectively.

We seek for approximate solution of equation (4) of the form

un
k (x, t)f(x, t) +

∫ t

0

∫ b

a

k(x, t, y, s)[un
k−1(y, s) + pn

k (y, s)]dyds, k = 1, 2, . . . (5)

where

pn
k (y, t) =

n∑
j=0

ajk(t)ϕj(x), (6)

un
0 is any function defined on [a, b]× [0, T ], and ϕj are some basis functions. The

unknown coefficients ajk must satisfy the following conditions:

pn
k (xj , t) = Δnuk(xj , t), k = 1, 2, . . . (7)

and

Δnuk(xj , t) = un
k (xj , t) − un

k−1(xj , t), j = 0, 1, . . . , n ,

where xj are collocation points such that

ϕi(xj) =
{

1 , i = j
0 , i �= j.

The basis functions ϕi can be defined as Lagrange fundamental polynomials

li(x)
(x − x0) . . . (x − xi−1)(x − xi+1) . . . (x − xn)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
, i = 0, 1, . . . , n .

From (6) and (7) we get

pn
k (xj , t) = ajk(t) . (8)
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Then

pn
k (x, t) =

n∑
j=0

pn
k (xj , t)ϕj(x)

is a collocation polynomial of the Lagrange type with respect to variable x for
almost every t ∈ [0, T ]. From (6), (7) and (4) we get

ajk(t)gjk(t) +
∫ t

0

∫ b

a

k(xj , t, y, s)pn
k (y, s)dyds, (9)

where

gjk(t)
∫ t

0

∫ b

a

k(xj , t, y, s)[un
k−1(y, s) − un

k−2(y, s) − pn
k−1(y, s)]dyds.

With the notation

cij(t, s) =
∫ b

a

k(xj , t, y, s)ϕi(y)dy (10)

we obtain the system of linear integral equations of Volterra type of the second
kind

ajk(t)gjk(t) +
n∑

i=0

∫ t

0

cij(t, s)aij(s)ds (11)

with unknown functions a0k, a1k, . . . , ank and given g0k, g1k, . . . , gnk and cij

(i, j = 0, 1, . . . , n). We introduce also notations

Vk(y, s) = u(y, s) − un
k−1(y, s) − pn

k (y, s), k = 1, 2, . . . ,

kn(x, t, y, s) =
n∑

j=0

k(xj , t, y, s)ϕj(x) ,

where the points xj (j = 0, 1, . . . , n) are the roots of the (n + 1)-th orthogonal
polynomial. Let R be the space of the Riemann integrable functions on D with
a norm

‖u‖R = sup
(x,t)∈D

{|u(x, t)|}

and let L2
w be the L2-space associated with a bounded positive weight function

w(x), equipped with norms

‖u‖L2
w

=
( T∫

0

b∫

a

|u(x, t)|2w(x)dxdt
)1/2

and ‖u‖L2 =
( T∫

0

b∫

a

|u(x, t)|2dxdt
)1/2

.
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Remark [4]. The integral equation (4) has a unique solution for g ∈ R(D) and
k ∈ C(Ω). It is of the form

u(x, t) = g(x, t) +
∫ t

0

∫ b

a

r(x, t, y, s)g(y, s)dyds ,

where r(x, t, y, s) =
∞∑

n=1

k(n)(x, t, y, s), and the iterated kernels are defined by

k(1)(x, t, y, s) = k(x, t, y, s) ,

k(n)(x, t, y, s) =
∫ t

0

∫ b

a

k(x, t, z, w)k(n−1)(z, w, y, s)dzdw for n = 2, 3, . . .

Lemma 1 ([6]). If u(x) ∈ R[a, b], then

‖pnu − u‖ =

[∫ b

a

|pnu(x) − u(x)|2w(x)dx

] 1
2

→ 0 as n → ∞ ,

where

pnu(x) =
n∑

i=0

u(xj)ϕi(x)

is the Lagrange interpolating polynomial with knots xi (i = 0, 1, 2, . . . , n) being
the zeros of some orthogonal polynomials with respect to the weight-function w(x)
in [a, b], and ϕi(x) are Lagrange’s basis functions.

Theorem 1. Let the following assumptions be satisfied:

a) The points xi (i = 0, 1, 2, . . . , n) are zeros of an orthogonal polynomial on
[a, b] with respect to the weight-function w(x);

b) Δuk is a Riemann integrable function in D.

Then

‖pn
k − Δuk‖L2

w
→ 0 as n → ∞ ,

where

pn
k (x, t) =

n∑
i=0

Δuk(xi, t)li(x)

is the Lagrange interpolating polynomial with respect to variable x built on the
knots xi and the basis functions li(x) (i = 0, 1, 2, . . . , n).

Proof. By Lemma 1 we obtain

‖pn
k(·, t) − Δuk(·, t)‖ → 0 as n → ∞ for almost every t ∈ [0, T ] .
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Introducing the notation

‖pn
k(·, t) − Δuk(·, t)‖2 = W 2

k,n(t) ,

we get

W 2
k,n(t) =

∫ b

a

|pn
k (x, t) − Δuk(x, t)|2w(x)dx → 0 as n → ∞ .

Then (see [7])

∫ T

0

W 2
k,n(t)dt =

∫ T

0

∫ b

a

|pn
k (x, t) − Δuk(x, t)|2w(x)dxdt → 0 ,

and

‖Wk,n‖2
L2 = ‖pn

k − Δuk‖2
L2

w
→ 0 as n → ∞ .

Hence

‖pn
k −Δuk‖2

L2
w

→ 0 as n → ∞ . �

Theorem 2. If u ∈ R(D) and

C = sup
(x,t)∈D

∫ t

0

∫ b

a

|k(x, t, y, s)|2
w(y)

dysds < ∞ ,

then
qn =

KnM

1 − MKn
−→ 0 as n → ∞ ,

where M = 1 + N ,

N =
∫ T

0

∫ b

a

∫ t

0

∫ b

a

|r(x, t, y, s)|2
w(y)

w(x)dydsdxdt ,

Kn =
∫ T

0

∫ b

a

∫ t

0

∫ b

a

|kn(x, t, y, s) − k(x, t, y, s)|2
w(y)

w(x)dydsdxdt,

and the sequence {un
k} defined by formula (5) tends to the unique solution of

equation (4). Moreover, the following estimates hold true:
a)

‖un
k − u‖R ≤ Cqk−1

n ‖V1‖L2
w

,

b)
‖un

k − u‖L2
w

≤ qk−1
n L‖V1‖L2

w
,

where

L =
∫ T

0

∫ b

a

∫ t

0

∫ b

a

|k(x, t, y, s)|2
w(y)

w(x)dydsdxdt .
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Proof. From the presented method we get

pn
k (x, t) =

∫ t

0

∫ b

a

kn(x, t, y, s)
[
un

k−1(y, s) − un
k−2(y, s)

+ pn
k (y, s) − pn

k−1(y, s)
]
dyds .

After some calculations we find that Vk satisfies the Volterra-Fredholm integral
equation

Vk(x, t) = gk(x, t) +
∫ t

0

∫ b

a

k(x, t, y, s) · Vk(y, s)dyds ,

where gk is defined by the formula:

gk(x, t) =
∫ t

0

∫ b

a

[kn(x, t, y, s) − k(x, t, y, s)] [Vk(y, s) − Vk−1(y, s)] dyds .

According to the remark above, the solution of the last equation we can written
in the form

Vk(x, t) = gk(x, t) +
∫ t

0

∫ b

a

r(x, t, y, s) · gk(y, s)dyds ,

where r is a resolvent kernel of k.
Then

‖Vk‖L2
w

≤ ‖gk‖L2
w
(1 + N) .

Hence

‖gk‖L2
w

≤ (‖Vk‖L2
w

+ ‖Vk−1‖L2
w
)Kn ,

and

‖Vk‖L2
w

≤ qn‖Vk−1‖L2
w

.

By induction we obtain

‖Vk‖L2
w

≤ qk−1
n ‖V1‖L2

w

and hence, the error estimates. The convergence of the method follows from
Theorem 1, since Kn → 0 and qn → 0 as n → ∞. �

2 Numerical Experiments

The corrections pn
k can be determined from the system of Volterra integral equa-

tions (11), solvable by quadrature formulas. The tables below contain the relative
errors δ at points tj and xi:

δ =
∣∣∣∣u

n
k (xi, tj) − u(xi, tj)

u(xi, tj)

∣∣∣∣ .
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Here, n + 1 means the number of basis functions and k is the a number of
iterations.
Example 1

u(x, t)e−tx2 − 2
3
t3x2 +

∫ t

0

∫ 1

−1

x2t2esu(y, s)dyds

n = 5, k = 3
t x

±1 ±0.4 ±0.2
0.1 −0.14751 · 10−12 −0.14751 · 10−12 −0.14751 · 10−12

0.2 −0.14581 · 10−9 −0.14581 · 10−9 −0.14581 · 10−9

0.3 −0.12935 · 10−7 −0.129357 · 10−7 −0.129357 · 10−7

0.4 −0.401118 · 10−6 −0.401118 · 10−6 −0.401118 · 10−6

0.5 −0.677362 · 10−5 −0.67736 · 10−5 −0.677362 · 10−5

0.6 −0.000076935 −0.000076935 −0.000076935
0.7 −0.00066408 −0.00066408 −0.00066408
0.8 −0.004724257 −0.004724257 −0.004724257
0.9 −0.029458851 −0.029458851 −0.029458851
1 −0.1700621 −0.1700621 −0.1700621

n = 5, k = 5
t x

±1 ±0.4 ±0.2
0.1 −0.40061 · 10−19 −0.40061 · 10−19 −0.40061 · 10−19

0.2 −0.77735 · 10−15 −0.77735 · 10−15 −0.77735 · 10−15

0.3 −0.4406 · 10−12 −0.4406 · 10−12 −0.4406 · 10−12

0.4 −0.56572 · 10−10 −0.56572 · 10−10 −0.56572 · 10−10

0.5 −0.31376 · 108 −0.31376 · 10−8 −0.31376 · 10−8

0.6 −0.10109 · 10−6 −0.101099 · 10−6 −0.101099 · 10−6

0.7 −0.22403 · 10−5 −0.22403 · 10−5 −0.22403 · 10−5

0.8 −0.00003824 −0.00003824 −0.00003824
0.9 −0.00055116 −0.00055116 −0.00055116
1 −0.00731353 −0.00731353 −0.00731353

n = 5, k = 8
t x

±1 ±0.4 ±0.2
0.1 −0.44206 · 10−29 −0.30699 · 10−29 −0.27629 · 10−29

0.2 −0.66183 · 10−23 −0.66183 · 10−23 −0.66183 · 10−23

0.3 −0.56654 · 10−19 −0.56654 · 10−19 −0.56654 · 10−19

0.4 −0.54062 · 10−16 −0.54062 · 10−16 −0.54062 · 10−16

0.5 −0.14921 · 10−13 −0.14921 · 10−13 −0.14921 · 10−13

0.6 −0.17824 · 10−11 −0.17824 · 10−11 −0.17824 · 10−11

0.7 −0.107139 · 10−9 −0.107139 · 10−9 −0.107139 · 10−9

0.8 −0.24428 · 10−8 −0.24428 · 10−8 −0.24428 · 10−8

0.9 0.15146 · 10−6 0.15146 · 10−6 0.15146 · 10−6

1 0.0000212474 0.0000212474 0.0000212474
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In this example the presented method gives higher accuracy than Galerkin
method and Galerkin-Fourier method (see [2, 3]).

Example 2

u(x, t)x sin(t)+
1
3
x2t2e2 cos(t)− 1

3
x2t2e2 sin(t)− 1

3
x2t2+

1∫

−1

t∫

0

x2yt2esu(y, s)dyds

n = 5, k = 3

t x
±1 ±0.4 ±0.2

0.1 −0.00001168 −0.00007011 −0.00002337
0.2 −0.00004918 −0.00002951 −0.00009837
0.3 −0.00011649 −0.00002329 −0.00002329
0.4 −0.00021800 −0.00013082 −0.00004360
0.5 −0.00035848 −0.00021509 −0.00007169
0.6 −0.00054295 −0.00032577 −0.00010859
0.7 −0.00077656 −0.00046593 −0.00015531
0.8 −0.00106430 −0.00063858 −0.00021286
0.9 −0.00141010 −0.00084606 −0.00028202
1 −0.00180881 −0.00108529 −0.00036176

Increasing n and k gives better results.
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Abstract. Denote by πn the set of all real algebraic polynomials of

degree at most n, and let Un := {e−x2
p(x) : p ∈ πn}, Vn := {e−xp(x) :

p ∈ πn}. It was proved in [9] that Mk(Un) := sup{‖u(k)‖IR/‖u‖IR : u ∈
Un, u �≡ 0} = ‖u(k)

∗,n‖IR, ∀n, k ∈ IN, and Mk(Vn) := sup{‖v(k)‖IR+/‖v‖IR+:

v ∈ Vn, v �≡ 0} = ‖v(k)
∗,n‖IR+ , where ‖ ·‖IR (‖ ·‖IR+) is the supremum norm

on IR (IR+ := [0,∞)) and u∗,n (v∗,n) is the Chebyshev polynomial from
Un (Vn). We prove here the convergence of an algorithm for the numerical
construction of the oscillating weighted polynomial from Un (Vn), which
takes preassigned values at its extremal points. As an application, we
obtain numerical values for the Markov factors Mk(Un) and Mk(Vn) for
1 ≤ n ≤ 10 and 1 ≤ k ≤ 5.

1 Introduction

Denote by πn the set of all real algebraic polynomials of degree not exceeding n,
and by ‖·‖I the supremum norm in a given interval I ⊆ IR, ‖f‖I := supx∈I |f(x)|.

Markov-type inequalities on IR have the form

‖(μp)′‖ ≤ Cn(μ)‖μp‖, ∀p ∈ πn,

where μ is a weight function and ‖·‖ is a norm. In connection with the research in
the field of the weighted approximation by polynomials, Markov-type inequalities
have been proved for various weights and norms. See [2], [3], [6], [10], and the
references therein.

In the case of supremum norm, exact Markov-type inequalities for the weight
functions μ(x) = e−x2

on IR and μ(x) = e−x on IR+ := [0, ∞), were proved in
[7] and [4] respectively.

Recently, the above-mentioned results were extended in [9] to derivatives of
arbitrary order. Let Un := {e−x2

p(x) : p ∈ πn} and Vn := {e−xp(x) : p ∈ πn}.We

� The research was supported by the Bulgarian Ministry of Education and Science
under Contract MM-1402/2004.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 386–393, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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use the notation u∗,n (v∗,n) for the Chebyshev polynomial from Un (Vn). It is
known that u∗,n is the unique polynomial from Un, which has norm equal to one
and there exist n + 1 points t∗0 < · · · < t∗n such that u∗,n(t∗k) = (−1)n−k. It was
proved in [9] that

‖u(k)‖IR ≤ ‖u
(k)
∗,n‖IR‖u‖IR, ∀n, k ∈ IN, ∀u ∈ Un, (1)

and
‖v(k)‖IR+ ≤ ‖v

(k)
∗,n‖IR+‖v‖IR+ , ∀n, k ∈ IN, ∀v ∈ Vn. (2)

Moreover, the equality in (1) ((2)) is attained if and only if u = cu∗,n (v =
cv∗,n). The inequalities (1) and (2) can be considered as characterizations of the
Markov factors

Mk(Un) := sup
{

‖u(k)‖IR

‖u‖IR
: u ∈ Un, u �≡ 0

}
,

and

Mk(Vn) := sup

{
‖v(k)‖IR+

‖v‖IR+

: v ∈ Vn, v �≡ 0

}
,

in terms of the corresponding weighted Chebyshev polynomial, namely

Mk(Un) = ‖u
(k)
∗,n‖IR, Mk(Vn) = ‖v

(k)
∗,n‖IR+ . (3)

In contrast with some other situations (e.g., the classical Markov inequality),
the explicit expressions for u∗,n and v∗,n as well as the exact values of Mk(Un)
and Mk(Vn) are not known. Therefore, it is of interest to have a numerical
method for finding the above extremal polynomials and quantities.

We consider a more general problem. It was proved in [8] (cf. [11], [5], [1])
that given a vector h = (h0, . . . , hn) with positive components, there exist a
unique u(x) = u(h; x) ∈ Un and a unique set of points t(h) = {tk(h)}n

k=0,
t0(h) < · · · < tn(h), such that

u(tk(h)) = (−1)n−khk, k = 0, . . . , n,

(4)
u′(tk(h)) = 0, k = 0, . . . , n.

Clearly, u∗,n(x) = u(1l; x), where 1l = (1, 1, . . . , 1) ∈ IRn+1.
For a numerical solution of the nonlinear system (4), we use an algorithm,

proposed by Prof. Ranko Bojanic (for the case of algebraic polynomials). We
prove in Sect. 2 a theorem, which shows that the method is globally convergent
and the rate of convergence is quadratic. In the proof we use some ideas from
[12], where the above algorithm was studied in the case of algebraic polynomi-
als and for the smoothest interpolation problem. We apply the algorithm to find
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numerically u∗,n and v∗,n for 1 ≤ n ≤ 10. Then, using (3) we compute Mk(Un)
and Mk(Vn) for 1 ≤ n ≤ 10 and 1 ≤ k ≤ 5. The results are given in Sect. 3.

2 An Algorithm for Interpolation at Extremal Points

We first introduce some additional notations. Let

Tn := {t = (t0, . . . , tn) ∈ IRn+1 : − ∞ < t0 < · · · < tn < ∞}.

Given t ∈ Tn and y = (y0, . . . , yn) ∈ IRn+1, we denote by u(t,y; x) the unique
polynomial from Un, which satisfies the interpolation conditions

u(t,y; tk) = (−1)n−kyk, k = 0, . . . , n. (5)

We denote by ‖f‖ := max0≤k≤n |fk| the max norm of a vector f = (f0, . . . , fn)
∈ IRn+1.

The following algorithm can be used for the numerical construction of the
polynomial u(h; x) from (4).

Algorithm 1

1. Choose an arbitrary t(0) ∈ Tn and set u0(x) := u(t(0),h; x).
2. For m = 0, 1, . . ., do:

(a) Find the zeros s
(m)
0 < · · · < s

(m)
n of u′

m(x) and set s(m) :=(s(m)
0 , . . . , s

(m)
n );

(b) Set t(m+1) := s(m) and um+1(x) := u(t(m+1),h; x).

In the next theorem we study the properties of the sequence {t(m)} generated
by the algorithm.

Theorem 1. The sequence {t(m)} converges to the set t(h) of the extremal
points of u(h; x) for every t(0) ∈ Tn. There exists a constant C such that

‖t(m+1) − t(h)‖ ≤ C ‖t(m) − t(h)‖2, m = 0, 1, . . . ,

for any sufficiently good initial approximation t(0).

Proof. Let um(x) = e−x2
pm(x), m = 0, 1, . . ., where

pm(x) = pm(t(m),h; x) = Amxn + · · · ∈ πn.

It follows from the definition of um that Am > 0 for every m ≥ 0. We claim that

Am ≥ Am+1 for every m ≥ 0. (6)

To prove this, we first remind the usual notation f [x0, . . . , xn] for the divided
difference of the function f at the points x0, . . . , xn. Let us set ω(x) := (x −
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s
(m)
0 ) · · · (x−s

(m)
n ). Using the fact that (−1)n−kum(s(m)

k ) ≥ hk, k = 0, . . . , n, we
get

Am = pm[s(m)
0 , . . . , s(m)

n ] =
n∑

k=0

pm(s(m)
k )

ω′(s(m)
k )

=
n∑

k=0

(−1)n−kpm(s(m)
k )

|ω′(s(m)
k )|

≥
n∑

k=0

(−1)n−kpm+1(s
(m)
k )

|ω′(s(m)
k )|

= pm+1[s
(m)
0 , . . . , s(m)

n ] = Am+1,

which finishes the proof of (6).
The inequalities (6) imply that {Am} is a bounded (in fact, a convergent)

sequence. Our next goal is to prove that {t(m)} is a bounded sequence, too.
Assume the contrary. Then τm := max{|t(m)

0 |, |t(m)
n |} is an unbounded sequence.

Without loss of generality we can suppose that τm → ∞ as m → ∞. We have

Am = pm[t(m)
0 , . . . , t(m)

n ] =
n∑

k=0

hke(t
(m)
k )2

|ω′
m(t(m)

k )|
,

where ωm(x) := (x − t
(m)
0 ) · · · (x − t

(m)
n ).

Let hs := min0≤k≤n hk. Since

|ω′
m(t(m)

k )| ≤ (t(m)
n − t

(m)
0 )n ≤ (2τm)n,

we obtain

Am ≥ hs

(2τm)n

n∑
k=0

e(t
(m)
k )2 ≥ hs

2n

eτ2
m

τn
m

→ ∞ as m → ∞,

which is a contradiction with the boundedness of {Am}.
Next we consider an arbitrary convergent subsequence of {t(m)}. For the sake

of simplicity, we denote it again by {t(m)}. Let t� := limm→∞ t(m). Note that
t� ∈ Tn, i.e. |t�i − t�i−1| > 0, i = 1, . . . , n. Indeed, it follows by induction from
the interpolation conditions (5) that for any fixed k < n the divided differences
γ

(m)
i,k := pm[t(m)

i , . . . , t
(m)
i+k], i = 0, . . . , n − k, change sign alternatively. There

exists a constant d = d(t(0),h), such that ‖t(m)‖ ≤ d, for every m = 0, 1, . . .
Then we have

|γ(m)
i,k | =

|γ(m)
i+1,k−1 − γ

(m)
i,k−1|

t
(m)
i+k − t

(m)
i

≥ 1
2d

(|γ(m)
i+1,k−1| + |γ(m)

i,k−1|)

≥ 1
2d

max{|γ(m)
i+1,k−1|, |γ

(m)
i,k−1|}.

Hence,

Am ≥ 1
(2d)n−1

max
0≤i≤n−1

|γ(m)
i,1 |.
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Thus, if we suppose that |t(m)
j+1 − t

(m)
j | → 0 for some j, then

Am ≥ 1
(2d)n−1

hj+1e
(t

(m)
j+1)2 + hje

(t
(m)
j )2

t
(m)
j+1 − t

(m)
j

≥ 1
(2d)n−1

hj+1 + hj

t
(m)
j+1 − t

(m)
j

→ ∞,

a contradiction.
Let u�(x) := u(t�,h; x). By Cramer’s rule, the coefficients of the interpolating

polynomial u(t,h; x) are continuous functions of t in a neighbourhood of t�. This
implies that for each j ≥ 0 we have uniformly on IR

u(j)(t,h; x) → u
(j)
� (x) as t → t�. (7)

In particular, u′
m(x) → u′

�(x) and since the zeros {s
(m)
i }n

i=0 of u′
m and {s�

i }n
i=0

of u′
� are simple, we conclude that s(m) → s� := (s�

0, . . . , s
�
n), i.e. t(m+1) → s�.

The uniqueness of the limit gives t� = s�. So, we have

u�(t�k) = (−1)n−khk, k = 0, . . . , n,

and
u′

�(t
�
k) = 0, k = 0, . . . , n.

The uniqueness of the solution of the problem (4) implies t� = t(h) and u� =
u(h; ·). The convergence of the algorithm is proved.

Next we shall prove that the method converges quadratically. It follows from
(4),(5) and (7) that there exist an ε0 = ε0(h) > 0 and constants Ci = Ci(h, ε0) >
0, i = 1, 2, 3, with the following properties:

(i) For every t ∈ B(t(h), ε0) := {t ∈ IRn+1 : ‖t − t(h)‖ ≤ ε0} we have
sign u(h; tk) = (−1)n−k, k = 0, . . . , n.

(ii) |u(h; tk) − u(h; tk(h))| ≤ C1‖t − t(h)‖2, k = 0, . . . , n, provided t ∈
B(t(h), ε0).

(iii) If t ∈ B(t(h), ε0) then

|sk − tk(h)| ≤ C2‖u′(t,h; ·) − u′(h; ·)‖IR, k = 0, . . . , n,

where s0 < · · · < sn are the zeros of u′(t,h; x).
(iv) The estimates

‖u(j)(t,y1; ·) − u(j)(t,y2; ·)‖IR ≤ C3‖y1 − y2‖, j = 0, 1,

hold true, provided t ∈ B(t(h), ε0) and y1,y2 ∈ IRn+1.
Now, we are ready to determine the rate of convergence of the sequence {t(m)},

generated by the algorithm. Let us suppose that t ∈ B(t(h), ε0). It follows from
(i) that u(h; x) can be represented in the form

u(h; x) = u(t,y; x),

where y = (y0, . . . , yn), with yk := |u(h; tk)|, k = 0, . . . , n. Using (iv) and (ii),
we get

‖u(j)(t,h; ·) − u(j)(h; ·)‖IR ≤ C3‖h − y‖ ≤ C1C3‖t − t(h)‖2, j = 0, 1.
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Then (iii) implies |sk − tk(h)| ≤ C‖t− t(h)‖2, k = 0, . . . , n, with C := C1C2C3.
The last inequality shows that if ‖t(m) − t(h)‖ = ε ≤ ε0, then ‖t(m+1) − t(h)‖ ≤
Cε2. The theorem is proved. �

Next we discuss briefly the case of the weight μ(x) = e−x on IR+. According to
[8], if the vector h = (h0, h1, . . . , hn) satisfies hk > 0, k = 0, . . . , n, then there
exists a unique v(x) = v(h; x) ∈ Vn along with n + 1 points 0 =: t0(h) < · · · <
tn(h) such that

v(tk(h)) = (−1)n−khk, k = 0, . . . , n,

and
v′(tk(h)) = 0, k = 1, . . . , n.

The above algorithm can easily be modified to find v(h; x). The global convergen-
ce and the quadratic convergence rate of the method remain valid and can be
proved in a similar way.

Remark 1. Let us denote by M the class of all weight functions μ such that:
μ ∈ C1(IR), μ(x) > 0 for all x ∈ IR, μ(x)xn → 0 as |x| → ∞, n = 0, 1, 2, . . ., and
μ′/μ is decreasing on IR. Given a weight μ ∈ M, we set

Un(μ) := {u : u = μp, p ∈ πn}.

According to [7, Lemma 2], if a polynomial u ∈ Un(μ) has n simple real zeros,
then there are exactly n + 1 distinct real numbers where u′ vanishes. By Rolle’s
theorem, the n + 1 zeros of u′ are the points of local extrema of u. Using the
method of Fitzgerald and Schumaker [5], it can be proved that if μ ∈ M then
the interpolation problem (4) has a unique solution u(μ,h; x) in Un(μ).

Furthermore, we define the class

M1 := {μ ∈ M : μ ∈ C2(IR), μ′(x)xn → 0 as |x| → ∞, n = 0, 1, 2, . . .}.

Algorithm 1 can be used to find u(μ,h; x), provided μ ∈ M1. Theorem 1 is valid
also in this more general situation.

Similar results can be obtained for a class of weights on IR+, namely M2,
which consists of all functions μ such that: μ ∈ C2(IR+), μ(x) > 0 for all x ∈ IR+,
μ(k)(x)xn → 0 as x → ∞ for k = 0, 1 and n = 0, 1, 2, . . ., μ′(0) ≤ 0, and μ′/μ is
decreasing on IR+.

3 Numerical Computation of the Markov Factors

In order to compute Mk(Un), we proceed as follows:

1. We compute u∗,n = u(1l; ·) by Algorithm 1. As a termination criterion we
use ‖t(m+1) − t(m)‖ ≤ 10−10.

2. We compute u
(k)
∗,n, u

(k+1)
∗,n , and the zeros x

(k+1)
1 < · · · < x

(k+1)
n+k+1 of u

(k+1)
∗,n .

3. We have
Mk(Un) = ‖u

(k)
∗,n‖IR = max

1≤i≤n+k+1
{|u(k)

∗,n(x(k+1)
i )|}.
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The quantities Mk(Vn) are computed similarly.
The following two tables contain the numerical values of Mk(Un) and Mk(Vn)

for 1 ≤ n ≤ 10 and 1 ≤ k ≤ 5.

Table 1. Markov factors Mk(Un)

k = 1 k = 2 k = 3 k = 4 k = 5

n = 1 2,33164 4,55086 13,9899 38,1386 139,899
n = 2 2,87650 9,18224 26,3720 98,1869 335,455
n = 3 3,61041 12,4016 48,0742 173,370 744,859
n = 4 4,04882 16,9372 67,7545 301,889 1273,81
n = 5 4,56796 20,4303 96,1517 435,455 2162,81
n = 6 4,94261 24,8119 121,721 631,048 3164,86
n = 7 5,36362 28,4415 155,027 826,118 4646,97
n = 8 5,69551 32,7326 185,544 1087,03 6233,64
n = 9 6,05825 36,4421 222,999 1344,78 8397,91
n = 10 6,35913 40,6765 257,832 1670,29 10662,5

Table 2. Markov factors Mk(Vn)

k = 1 k = 2 k = 3 k = 4 k = 5

n = 1 4,59112 8,18224 11,7734 15,3645 18,9556
n = 2 8,46860 25,1574 51,0663 86,1955 130,545
n = 3 12,4060 52,5873 143,204 305,916 562,383
n = 4 16,3663 90,5857 313,511 823,798 1808,90
n = 5 20,3383 139,191 587,455 1847,27 4760,30
n = 6 24,3170 198,420 990,544 3642,05 10832,0
n = 7 28,3001 268,283 1548,31 6532,24 22094,6
n = 8 32,2863 348,788 2286,31 10900,3 41402,9
n = 9 36,2746 439,938 3230,08 17187,2 72526,8
n = 10 40,2646 541,737 4405,20 25892,2 120280
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3. Borwein P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts
in Mathematics vol. 161. Springer-Verlag, New York Berlin Heidelberg (1995)

4. Carley, H., Li, X., Mohapatra, R. N.: A sharp inequality of Markov type for poly-
nomials associated with Laguerre weight. J. Approx. Theory 113 (2001) 221–228

5. Fitzgerald, C. H., Schumaker, L. L.: A differential equation approach to interpola-
tion at extremal points. J. Analyse Math. 22 (1969) 117–134



Numerical Computation of the Markov Factors 393

6. Levin, E., Lubinsky, D. S.: Orthogonal Polynomials for Exponential Weights. CMS
Books in Mathematics vol. 4. Springer-Verlag, New York Berlin Heidelberg (2001)

7. Li, X., Mohapatra, R. N., Rodriguez, R. S.: On Markov’s inequality on IR for the
Hermite weight. J. Approx. Theory 75 (1993) 267–273

8. Milev, L.: Weighted polynomial inequalities on infinite intervals. East J. Approx.
5 (1999) 449–465

9. Milev, L., Naidenov, N.: Exact Markov inequalities for the Hermite and Laguerre
weights. J. Approx. Theory 138 (2006) 87–96
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Abstract. In this paper we investigate connection between semi-integer
orthogonal polynomials and Szegő’s class of polynomials, orthogonal on
the unit circle. We find a representation of the semi-integer orthogonal
polynomials in terms of Szegő’s polynomials orthogonal on the unit circle
for certain class of weight functions.

1 Introduction

Let us denote by Tn+1/2 the linear span of trigonometric functions

cosx/2, sinx/2, cos(1 + 1/2)x, sin(1 + 1/2)x, . . . , cos(n + 1/2)x, sin(n + 1/2)x.

The elements of Tn+1/2 are called trigonometric polynomials of semi-integer
degree. For the convenience sake we define T−1/2 = {0}. Clearly, Tn+1/2 is a
linear space of dimension 2n + 2. We introduce inner product by

(f, g) =
∫ π

−π

f(x)g(x)w(x)dx, f, g ∈ Tn+1/2, (1)

where w is a non-negative weight function on (−π, π], which equals zero only on
a set of Lebesgue measure zero.

Next, we define the following set

T
a,b
n+1/2 = a cos(n + 1/2)x + b sin(n + 1/2)x + Tn−1/2,

where a, b ∈ R are fixed with the property |a| + |b| > 0. The case a = b = 0 is
not interesting since in that case T

0,0
n+1/2 = Tn−1/2. Given the inner product (1),

we can pose a question of finding An ∈ T
a,b
n+1/2, such that

∫ π

−π

An(x)t(x)w(x)dt = 0, t ∈ Tn−1/2.

It turns out that this problem has a unique solution.
� The authors were supported in part by the Serbian Ministry of Science and Envi-

ronmental Protection (Project: Orthogonal Systems and Applications, grant num-
ber #144004) and the Swiss National Science Foundation (SCOPES Joint Research
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Lemma 1. There exist a unique An ∈ T
a,b
n+1/2, such that

∫ π

−π

An(x)t(x)w(x)dx = 0, t ∈ Tn−1/2.

Proof. Any polynomial t ∈ T
a,b
n+1/2 can be represented as

t(x) = a cos(n+1/2)x+b sin(n+1/2)x+
n−1∑
k=0

[ak cos(k+1/2)x+bk sin(k+1/2)x].

In order to be orthogonal to Tn−1/2, its coefficients have to satisfy the following
system of linear equations

n−1∑
k=0

[
ak(cos(k + 1/2)x, cos(� + 1/2)x) + bk(sin(k + 1/2)x, cos(� + 1/2)x)

]

= −(a cos(n + 1/2)x + b sin(n + 1/2)x, cos(� + 1/2)x),
n−1∑
k=0

[
ak(cos(k + 1/2)x, sin(� + 1/2)x) + bk(sin(k + 1/2)x, sin(� + 1/2)x)

]

= −(a cos(n + 1/2)x + b sin(n + 1/2)x, sin(� + 1/2)x),

for � = 0, . . . , n − 1. The solution of this system is unique since its matrix is a
Gram matrix formed by linearly independent vectors (see [2, p. 224]). �

From now on, we denote by An ∈ T
a,b
n+1/2 the trigonometric polynomial orthogo-

nal to Tn−1/2. When we want to emphasize the dependence on a and b, we write
Aa,b

n for An ∈ T
a,b
n+1/2. From the proof of Lemma 1 it is clear that we have

Aa,b
n (x) = aA1,0

n + bA0,1
n . (2)

In [1], we used notation AC
n = A1,0

n and AS
n = A0,1

n for obvious reasons.
Consider the following quadrature rule

∫ π

−π

w(x)t(x)dx =
2n∑

k=0

wkp(xk), t ∈ T2n,

where Tn denotes linear span of trigonometric functions 1, cosx, sin x, . . .,cosnx,
sin nx. In [4] and [1] it is proved that such quadrature rule exists, it has positive
weights wk, k = 0, . . . , 2n, and its nodes xk, k = 0, . . . , 2n, are zeros of the
polynomial An ∈ T

a,b
n+1/2, orthogonal to Tn−1/2, where a, b ∈ R, |a| + |b| > 0, are

arbitrary.
We note that a basis of T

a,b
n+1/2 is the set

{Aa,b
k , A−b,a

k | k = 0, . . . , n − 1 , |a| + |b| > 0, a, b ∈ R} ∪ {Aa,b
n }.
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This is obvious since

cos(k + 1/2)x + t(x) =
a

a2 + b2
Aa,b

k − b

a2 + b2
A−b,a

k ,

sin(k + 1/2)x + t(x) =
b

a2 + b2
Aa,b

k +
a

a2 + b2
A−b,a

k ,

where t ∈ Tk−1/2, k = 0, . . . , n.
In [1], it is proved that the sequences of polynomials AC

n and AS
n satisfy the

following five-term recurrence relations

AC
n = (2 cosx − α1

n)AC
n−1 − α2

nAC
n−2 − β1

nAS
n−1 − β2

nAS
n−2, (3)

AS
n = (2 cosx − δ1

n)AS
n−1 − δ2

nAS
n−2 − γ1

nAC
n−1 − γ2

nAC
n−2.

Using relations (2), we can prove easily the following Lemma.

Lemma 2. Polynomials Aa,b
n and A−b,a

n satisfy the following five term recur-
rence relations

Aa,b
n = (2 cosx − α̃1

n)Aa,b
n−1 − α̃2

nAa,b
n−2 − β̃1

nA−b,a
n−1 − β̃2

nA−b,a
n−2 ,

A−b,a
n = (2 cosx − δ̃1

n)A−b,a
n−1 − δ̃2

nA−b,a
n−2 − γ̃1

nAa,b
n−1 − γ̃2

nAa,b
n−2,

where

α̃1
n =

a2α1
n + ab(β1

n + γ1
n) + b2δ1

n

a2 + b2
, α̃2

n =
a2α2

n + ab(β2
n + γ2

n) + b2δ2
n

a2 + b2

β̃1
n =

a2β1
n − ab(α1

n − δ1
n) − b2γ1

n

a2 + b2
, β̃2

n =
a2β2

n − ab(α2
n − δ2

n) − b2γ2
n

a2 + b2

δ̃1
n =

b2α1
n − ab(β1

n + γ1
n) + a2δ1

n

a2 + b2
, δ̃2

n =
b2α2

n − ab(β2
n + γ2

n) + a2δ2
n

a2 + b2
,

γ̃1
n =

a2γ1
n − ab(α1

n − δ1
n) − b2β1

n

a2 + b2
, γ̃2

n =
a2γ2

n − ab(α2
n − δ2

n) − b2β2
n

a2 + b2

Proof. Just use connection

AC
n =

aAa,b
n − bA−b,a

n

a2 + b2
, AS

n =
bAa,b

n + aA−b,a
n

a2 + b2
,

in (3), and solve linear system for Aa,b
n and A−b,a

n . �

2 Connection to the Szegő Polynomials

In the rest of this paper we shall need the following lemma which gives a factoriza-
tion of the positive trigonometric polynomials. Recall that Tn is linear space
spanned by the set of trigonometric functions cos kx, sin kx, k = 0, . . . , n. By
Pn, n ∈ N0, we denote the set of all algebraic polynomials of degree at most n.
The next lemma (in a slightly different formulation) can be found in [3, p. 4].
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Lemma 3. Let tn ∈ Tn, n ∈ N, be a trigonometric polynomial of exact degree
n, which is strictly positive on the interval (−π, π]. Then there exist a unique
(up to a multiplicative constant of modulus one) algebraic polynomial Hn ∈ Pn

of exact degree n, such that

tn(x) = e−inxHn(eix)H∗
n(eix), where H∗

n(z) = znHn(1/z), (4)

and all the zeros of Hn are of modulus smaller then one.

Proof. Let

tn(x) =
n∑

k=0

(
ak cos kx + bk sin kx

)
, |an| + |bn| > 0,

then we can expand

tn(x) = e−inxTn(eix) = e−inx
n∑

k=0

(ak − ibk

2
ei(n+k)x +

ak + ibk

2
ei(n−k)x

)
,

where Tn is an algebraic polynomial of exact degree n.
For the polynomial Tn we have

T ∗
n(z) = z2nTn(1/z) = z2n

n∑
k=0

(ak + ibk

2
1

zn+k
+

ak − ibk

2
1

zn−k

)
= Tn(z).

As a consequence we have that if Tn(z) = 0, then also Tn(1/z) = 0. Note that
Tn(0) = (an + ibn)/2 �= 0. Hence, Tn has n zeros of modulus smaller then one
and n zeros of modulus bigger then one. Notice that Tn can not have a zero eix,
x ∈ R, since in that case tn(x) = e−inxTn(eix) = 0, which is impossible according
to the assumptions of the theorem.

Denote by zk, k = 1, . . . , n, the zeros of Tn of modulus smaller then one, then
we have

Tn(z) =
an − ibn

2

n∏
k=0

(z − zk)(z − 1/zk).

To ensure that Hn is of exact degree n with all its zeros lying inside the unit
circle, we set

Hn(z) = A

n∏
k=1

(z − zk),

with some A ∈ C. Then

H∗
n(z) = znA

n∏
k=1

(1/z − zk) = A

n∏
k=1

(−zk)
n∏

k=1

(z − 1/zk),

and obviously

Hn(z)H∗
n(z) = |A|2

n∏
k=1

(−zk)
n∏

k=1

(z − zk)(z − 1/zk).
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In order to get the desired representation, there must hold

|A|2 =
an − ibn

2
∏n

k=1(−zk)
. (5)

Hence, it remains to prove that the quantity on the right is positive. We have

tn(x) = e−inxTn(eix) =
an − ibn

2

n∏
k=1

(eix − zk)(1 − e−ix/zk)

=
an − ibn

2
∏n

k=1(−zk)

n∏
k=1

|eix − zk|2,

hence it is positive. Since we imposed only condition on the modulus of A, we
are free to choose its argument. �
Now, we are ready to prove the following theorem.

Theorem 1. Let t� ∈ T�, � ∈ N0, be a trigonometric polynomial of exact degree
�, strictly positive on (−π, π]. Then, for n ≥ �, the polynomial Aa,b

n ∈ T
a,b
n+1/2,

orthogonal with respect to the weight function w(x) = 1/t�(x), is given by

Aa,b
n (x) =

a − ib
2

ei(n−�+1/2)xh�(eix) +
a + ib

2
e−i(n−�+1/2)xh�(eix),

where h� is the monic version of the polynomial H� from Lemma 3. The coeffi-
cients in five term recurrence terms are given by

α̃1
n = β̃1

n = γ̃1
n = δ̃1

n = 0, n ≥ � + 1,

β̃2
n = γ̃2

n = 0, α̃2
n = δ̃2

n = 1, n ≥ � + 2.

Proof. To prove orthogonality of Aa,b
n to Tn−1/2, it suffices to establish its or-

thogonality to the set ei(k+1/2)x, k = n − 1, . . . , 0, . . . , −n. With c = (a − ib)/2,
we have

∫ π

−π

ei(k+1/2)xAa,b
n (x)

t�(x)
dx = −i

∮
C

zk−1(czn−�+1h�(z) + cz−n+�h�(z−1))
H�(z)H�(z−1)

dz

= − ic
A

∮
C

zn+k

H∗
� (z)

dz − ic
A

∮
C

z−n+k+�−1

H�(z)
dz = 0, z = eix,

where C denotes the unit circle, and A is the leading coefficient in H�. The first
integral equals zero, due to the fact that, for k = n−1, . . . , 0, . . . , −n the integrand
does not have singularities inside the unit circle. The second integral equals zero
since for k = n−1, . . . , 0, . . . , −n the integrand does not have singularities outside
the unit circle and it is of order at least z−2 as z tends to infinity.

Using similar methods as in [1], it can be proved that the coefficients in the
five term recurrence relations are given uniquely as the solutions of the following
systems of linear equations
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Ja,b
n−1,n−j = α̃j

nIa,b
n−j + β̃j

nIn−j , Jn−1,n−j = α̃j
nIn−j + β̃j

nI−b,a
n−j ,

Jn−j,n−1 = γ̃j
nIa,b

n−j + δ̃j
nIn−j , J−b,a

n−1,n−j = γ̃j
nIn−j + δ̃j

nI−b,a
n−j ,

for j = 1, 2, and n > 1, where

Ja,b
n,n = (2 cosxAa,b

n , Aa,b
n ), Ja,b

n,n−1 = Ia,b
n , Ia,b

n−j = (Aa,b
n−j , A

a,b
n−j) = ||Aa,b

n−j ||2,
In−j = (Aa,b

n−j , A
−b,a
n−j ), Jn,n = (2 cosxAa,b

n , A−b,a
n ), Jn,n−1 = Jn−1,n = In.

Next we calculate the norm of the polynomial Aa,b
k . We have

||Aa,b
n ||2 = Ia,b

n =
∫ π

−π

(Aa,b
n (x))2

tn(x)
dx = − ic2

A

∮
C

z2n−�h�(z)
H∗

� (z)
dz − 2

i|c|2
|A|2

∮
C

dz

z

− ic2

A

∮
C

z−2(n−�)−2h�(z−1)
H�(z)

dz =
4π|c|2
|A|2 = π

a2 + b2

|A|2 ,

where the first and the third integrals are equal to zero since their integrands
are analytic inside and outside the unit circle, respectively, with integrand in the
third integral being of order at least z−2 at infinity.

For the integral Ja,b
n,n, we have

Ja,b
n,n=

∫ π

−π

2 cosx(Aa,b
n (x))2

t�(x)
dx =− ic2

A

∮
C

(z + z−1)z2n−�h�(z)
H∗

� (z)
− i|c|2

|A|2
∮

z2 + 1
z2

dz

− ic2

A

∮
(z + z−1)z−2(n−�)−2h�(z−1)

H�(z)
dz = 0,

using the same argumentation as in calculating the previous integral. Next, de-
noting d = −(b + ia)/2, we have

In =
∫ π

−π

Aa,b
n (x)A−b,a

n (x)
t�(x)

dx = − icd
A

∮
C

z2n−�h�(z)
H∗

� (z)
dz − i(cd + cd)

|A|2
∮

C

dz

z

− icd
A

∮
C

z−2(n−�)−2h�(z−1)
H�(z)

dz = 0,

where the first and the third integrals are zero by the same arguments as above,
and for the second one we have

cd + cd == −ab − ab − i(a2 + b2) + ab − ab + i(a2 + b2)
4

= 0.

Finally, we have

Jn,n =
∫ π

−π

2 cosxAa,b
n (x)A−b,a

n (x)
t�(x)

dx = − icd
A

∮
C

(z + z−1)z2n−�h�(z)
H∗

� (z)
dz

− i(cd + cd)
|A|2

∮
z2 + 1

z2
dz − icd

A

∮
C

z−2(n−�)−2h�(z−1)
H�(z)

dz = 0.
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Using the systems of linear equations for the five term recurrence coefficients,
we get

Ja,b
n−1,n−1 = 0 = α̃1

nIa,b
n−1 + β̃1

nIn−1 = α̃1
n||Aa,b

n−1||2,
Jn−1,n−1 = 0 = α̃1

nIn−1 + β̃1
nI−b,a

n−1,n−1 = β̃1
n||A−b,a

n−1 ||2,

Ja,b
n−1,n−2 = Ia,b

n−1 = ||Aa,b
n−1||2 = α̃2

nIa,b
n−2 + β̃2

nIn−2 = α̃2
n||Aa,b

n−2||2,
Jn−1,n−2 = In−1 = 0 = α̃2

nIn−2 + β̃2
nI−b,a

n−2 = β̃2
n||A−b,a

n−2 ||2,
Jn−1,n−1 = 0 = γ̃1

nIa,b
n−1 + δ̃1

nIn−1 = γ̃1
n||Aa,b

n−1||2,
J−b,a

n−1,n−1 = 0 = γ̃1
nIn−1 + δ̃1

nI−b,a
n−1 = δ̃1

n||A−b,a
n ||2,

Jn−2,n−1 = In−1 = 0 = γ̃2
nIa,b

n−2 + δ̃2
nIn−2 = γ̃2

n||Aa,b
n−2||2,

J−b,a
n−2,n−1 = I−b,a

n−1 = ||A−b,a
n−1 ||2 = γ̃2

nIn−2 + δ̃2
nI−b,a

n−2 = δ̃2
n||A−b,a

n−2 ||2.

Since the norms of the polynomials Aa,b
n and A−b,a

n are the same, and different
from zero, we get what is stated. �
As we can see, we established a connection with Szegő’s polynomials. Recall that
Szegő’s polynomials (see [3, p. 287]) are defined to be orthogonal on the unit
circle with respect to the inner product

(p, q) =
1
2π

∫ π

−π

p(eix)q(eix)w(x)dx, p, q ∈ P.

In [3, p. 289], it can be found that for the special type of weights w(x) = 1/t�(x),
t� ∈ T�, where t� is strictly positive on (−π, π], Szegő monic polynomials can be
expressed as

φn(eix) = ei(n−�)xh�(eix), n ≥ �.

Hence, we have established the following Theorem.

Theorem 2. The trigonometric polynomial Aa,b
n ∈ T

a,b
n+1/2, n ≥ �, orthogonal

with respect to the strictly positive weight function w(x) = 1/t�(x), t� ∈ Tn, can
be represented as

Aa,b
n (x) =

a − ib
2

eix/2φn(eix) +
a + ib

2
e−ix/2φn(eix), n ≥ �,

where φn is the respective Szegő polynomial orthogonal on the unit circle.
Moreover, the norm of the polynomial Aa,b

n , n ≥ �, is given by

||Aa,b
n ||2 = π(a2 + b2) exp

(
− 1

2π

∫ π

−π

log t�(x)dx

)
.

Proof. We need to prove only the statement about the norm. In [3, p. 300-304],
it is proven that the norm of the monic Szegő polynomial is given by

||φn||2 = exp
(

− 1
2π

∫ π

−π

log t�(x)dx

)
.

According to the proof of Theorem 1, we have

||Aa,b
n ||2 = π(a2 +b2)||φn||2. �
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2 Department of Mathematics and Informatics, Faculty of Science,
University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia

Abstract. Turetzkii [Uchenye Zapiski, Vypusk 1 (149) (1959), 31–55,
(English translation in East J. Approx. 11 (2005) 337–359)] considered
quadrature rules of interpolatory type with simple nodes, with maximal
trigonometric degree of exactness. For that purpose Turetzkii made use
of orthogonal trigonometric polynomials of semi–integer degree.

Ghizzeti and Ossicini [Quadrature Formulae, Academie-Verlag, Berlin,
1970], and Dryanov [Numer. Math. 67 (1994), 441–464], considered quad-
rature rules of interpolatory type with multiple nodes with maximal
trigonometric degree of exactness. Inspired by their results, we study here
s–orthogonal trigonometric polynomials of semi–integer degree. In partic-
ular, we consider the case of an even weight function.

1 Introduction

In [8], Turetzkii considered quadrature rules of interpolatory type of the form

∫ 2π

0

f(x)w(x)dx ≈

2n∑
ν=0

wνf(xν),

where w is a weight function, integrable and non-negative on the interval [0, 2π),
vanishing there only on a set of a measure zero. The maximal trigonometric
degree of exactness of such quadrature formulae is 2n, in which case they are
called Gaussian quadratures. In [6], a simple generalization for these rules dealing
with the translations of the interval (0, 2π) was given. In the sequel we shall work
with the interval (−π, π).

Let the weight function w be integrable and non-negative on the interval
(−π, π), vanishing there only on a set of a measure zero. The nodes of the

� The authors were supported in part by the Serbian Ministry of Science and Envi-
ronmental Protection (Project: Orthogonal Systems and Applications, grant num-
ber #144004) and the Swiss National Science Foundation (SCOPES Joint Research
Project No. IB7320–111079 “New Methods for Quadrature”).

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 402–409, 2007.
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Gaussian quadrature formulae are the zeros from [−π, π) of the trigonometric
polynomial of semi–integer degree n + 1/2, which is of the form

n∑
ν=0

(
cν cos

(
ν +

1
2

)
x + dν sin

(
ν +

1
2

)
x

)
, cν , dν ∈ R, |cn| + |dn| �= 0, (1)

being orthogonal on (−π, π) with respect to the weight function w to every
trigonometric polynomial of semi–integer degree less than or equal to n − 1/2.
Such a trigonometric polynomial with given leading coefficients cn and dn, is
uniquely determined (see [8, §3]) and it has exactly 2n + 1 distinct simple zeros
in [−π, π) (see [8] and [6]).

We denote by T
1/2
n the set of all trigonometric polynomials of semi–integer

degree at most n+1/2, i.e., the linear span of the set cos(ν+1/2)x, sin(ν+1/2)x,
ν = 0, 1, . . . , n, and by Tn the set of all trigonometric polynomials of degree at
most n.

In [6] two choices of leading coefficients for orthogonal trigonometric polyno-
mials of semi–integer degree were considered: cn = 1, dn = 0 and cn = 0, dn = 1,
and five–term recurrence relations for such orthogonal trigonometric polynomials
were found. Also, a numerical method for constructing such quadratures based
on the five–term recurrence relations was presented.

Obviously,

An+1/2(x) = A

2n∏
k=0

sin
x − xk

2
, A = const �= 0, (2)

is a trigonometric polynomial of semi–integer degree n + 1/2. Conversely, every
trigonometric polynomial of semi–integer degree n + 1/2 of the form (1) can be
represented in the form (2) (see [8, Lemma 1]), with

A = (−1)n22ni(cn − idn)ei/2
∑2n

ν=0 xν , (3)

where x0, x1, . . . , x2n are zeros of the trigonometric polynomial (1) that lie in
the strip 0 ≤ Re x < 2π.

Quadrature formulae of interpolatory type of the form

∫ π

−π

f(x)dx =
2n∑

ν=0

2s∑
j=0

Aj,νf (j)(xν) + R(f), (4)

where s is a non-negative integer, were considered in [4]. Dryanov [2] generalized
quadrature rules (4) in such a way that the nodes have different multiplicities.
The trigonometric degree of exactness of a quadrature formula of the form (4)
is (2n + 1)(s + 1) − 1, i.e., R(f) = 0 for all f ∈ T(2n+1)(s+1)−1, if the nodes
x0, x1, . . . , x2n are chosen such that (see [4,2])
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∫ π

−π

(
2n∏

ν=0

sin
x − xν

2

)2s+1

cos
(

� +
1
2

)
xdx = 0, � = 0, 1, . . . , n − 1,

∫ π

−π

(
2n∏

ν=0

sin
x − xν

2

)2s+1

sin
(

� +
1
2

)
xdx = 0, � = 0, 1, . . . , n − 1.

Obviuosly, for s = 0, the maximal trigonometric degree of exactness is 2n.
The product

∏2n
ν=0 sin(x−xν)/2 is a trigonometric polynomial of semi–integer

degree n+1/2, so that the nodes x0, x1, . . . , x2n of the quadrature rule (4) must
coincide with zeros of a trigonometric polynomial of semi–integer degree n+1/2
such that its (2s+1)-st power is orthogonal on (−π, π) with respect to the weight
function w(x) = 1 to every trigonometric polynomial from T

1/2
n−1. Ghizzeti and

Ossicini [4] proved that such a polynomial is of type

c cos(n + 1/2)x + d sin(n + 1/2)x.

In the sequel we consider trigonometric polynomials of semi–integer degree
satisfying s−orthogonality conditions on (−π, π) with respect to an admissible
weight function w. A special attention is directed to the case of even weight
function w. Also, we give some remarks when w(x) = 1.

2 S−Orthogonal Trigonometric Polynomials

Let w be a given weight function on (−π, π), s ∈ N0, and let {cn} and {dn},
n = 0, 1, . . ., be two given sequences of numbers such that (cn, dn) �= (0, 0) for
all n ∈ N0.

We want to construct the sequence {As,n+1/2(x)}n∈N0 , where As,n+1/2(x) is a
trigonometric polynomial of semi–integer degree n+1/2 with leading coefficients
cn and dn, i.e., As,n+1/2(x) = cn cos(n + 1/2)x + dn sin(n + 1/2)x + · · · , such
that ∫ π

−π

(As,n+1/2(x))2s+1As,m+1/2(x)w(x) dx = 0, if m < n,

or, equivalently,
∫ π

−π

(As,n+1/2(x))2s+1Πn−1/2(x)w(x) dx = 0, (5)

for arbitrary Πn−1/2(x) ∈ T
1/2
n−1.

We call such trigonometric polynomials as s−orthogonal trigonometric poly-
nomials with respect to the weight function w on (−π, π).

Theorem 1. There exists a unique sequence {As,n+1/2(x)}n∈N0 of trigonomet-
ric polynomials of semi–integer degree with given leading coefficients, s−ortho-
gonal on (−π, π) with respect to the weight function w.
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Proof. In order to prove the existence and uniqueness of As,n+1/2(x), we need
some well–known facts about the best approximation (see [1, p. 58–60]).

Let X be a Banach space with real or complex scalars and Y be a closed
linear subspace of X . For each f ∈ X , the error of approximation E(f) of f
by elements from Y is E(f) = infg∈Y ‖f − g‖. If this infimum is attained for
some g = g0, then g0 is called a best approximation to f from Y . For each finite
dimensional subspace Xn of X and each f ∈ X , there is a best approximation
to f from Xn. If X is a strictly convex space (characterized by the property
f1 �= f2, ‖f1‖ = ‖f2‖ = 1, α1, α2 > 0, α1 + α2 = 1 ⇒ ‖α1f1 + α2f2‖ < 1), then
each f ∈ X has at most one element of best approximation in each closed linear
subspace Y ⊂ X .

We set X = L2s+2[−π, π],

u = w(x)1/(2s+2)(cn cos(n + 1/2)x + dn sin(n + 1/2)x) ∈ L2s+2[−π, π],

and fix the following 2n linearly independent elements in L2s+2[−π, π],

uj = w(x)1/(2s+2) cos(j + 1/2)x, vj = w(x)1/(2s+2) sin(j + 1/2)x,

where j = 0, 1, . . . , n − 1. Let Y = span{u0, v0, u1, v1, . . . , un−1, vn−1}. Here, Y
is a finite dimensional subspace of X , so for each vector of X there exists a best
approximation from Y , i.e., there exist 2n constants αj , βj , j = 0, 1, . . . , n − 1,
such that the error

∥∥∥u −
n−1∑
j=0

(αjuj + βjvj)
∥∥∥ =

( ∫ π

−π

(
cn cos(n + 1/2)x + dn sin(n + 1/2)x

−
n−1∑
j=0

(
αj cos(j + 1/2)x + βj sin(j + 1/2)x

))2s+2

w(x) dx

)1/(2s+2)

,

is minimal, i.e., for every n and for every choice of (cn, dn) �= (0, 0), there exists
a trigonometric polynomial of semi–integer degree n + 1/2

As,n+1/2(x) = cn cos(n + 1/2)x + dn sin(n + 1/2)x

−
n−1∑
j=0

(
αj cos(j + 1/2)x + βj sin(j + 1/2)x

)
,

such that ∫ π

−π

(As,n+1/2(x))2s+2w(x) dx

is minimal. Since the space L2s+2[−π, π] is strictly convex, it follows that the
problem of best approximation has the unique solution and the polynomial is
unique.

There follows that for each of the following 2n functions

FC
j (λ) =

∫ π

−π

(
As,n+1/2(x) + λ cos(j + 1/2)x

)2s+2
w(x) dx, j = 0, 1, . . . , n − 1,

FS
j (λ) =

∫ π

−π

(
As,n+1/2(x) + λ sin(j + 1/2)x

)2s+2
w(x) dx, j = 0, 1, . . . , n − 1,
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its derivative must be equal zero for λ = 0. Thus, we get∫ π

−π

(As,n+1/2(x))2s+1 sin(j + 1/2)xw(x) dx = 0, j = 0, 1, . . . , n − 1, (6)
∫ π

−π

(As,n+1/2(x))2s+1 cos(j + 1/2)xw(x) dx = 0, j = 0, 1, . . . , n − 1, (7)

which means that the polynomial As,n+1/2(x) satisfies (5). �	
Theorem 2. The trigonometric polynomial As,n+1/2(x), which is s-orthogonal
on (−π, π) with respect to the weight function w, has exactly 2n+1 simple zeros
in [−π, π).

Proof. The trigonometric polynomial As,n+1/2(x) has on [−π, π) at least one
zero of odd multiplicity. If we assume the contrary, for n ≥ 1 we obtain the
following contradiction to (5)∫ π

−π

(As,n+1/2(x))2s+1 cos
x

2
w(x) dx �= 0,

since As,n+1/2(x) cos x/2 does not change its sign on [−π, π).
Let us suppose that the number of zeros of As,n+1/2(x) in [−π, π) of odd

multiplicities is 2m − 1, for m ≤ n. Denote those zeros by y1, . . . , y2m−1 and set

Π(x) =
2m−1∏
k=1

sin
x − yk

2
.

Since Π(x) ∈ T
1/2
n−1, there should hold

∫ π

−π
(As,n+1/2(x))2s+1Π(x)w(x) dx = 0,

but this is impossible, since the integrand does not change its sign on [−π, π).
If we assume that the number of zeros of As,n+1/2(x) in [−π, π) of odd mul-

tiplicities is 2m, for m ≤ n − 1, denoting those zeros by y1, . . . , y2m and setting

Π(x) = cos
x

2

2m∏
k=1

sin
x − yk

2
,

we obtain again a contradiction. The number of zeros of As,n+1/2(x) in [−π, π)
of odd multiplicities cannot be equal to 2n, because As,n+1/2(x) has 2n+1 zeros.

Therefore, the trigonometric polynomial As,n+1/2 must have 2n + 1 zeros of
odd multiplicities, i.e., it has 2n + 1 simple zeros on [−π, π). �	
Similarly as in proof of Theorem 1 one can prove that for any positive integer
n there exists a unique trigonometric polynomial of semi–integer degree n + 1/2
of the form AC

s,n+1/2(x) =
∑n

ν=0 c
(n)
ν cos(ν +1/2)x, involving only cos functions,

with a given leading coefficient c
(n)
n , such that its (2s+1)-st power is orthogonal

to cos(k + 1/2)x, for k = 0, 1, . . . , n − 1, with respect to weight w on (−π, π).
Also, for every positive integer n there exists a unique trigonometric polynomial
of semi–integer degree n + 1/2, involving only sin functions, i.e., of the form
AS

s,n+1/2(x) =
∑n

ν=0 d
(n)
ν sin(ν + 1/2)x, with a given leading coefficient d

(n)
n ,

such that its (2s + 1)-st power is orthogonal to sin(k + 1/2)x, k = 0, 1, . . . , n − 1
with respect to w on (−π, π).
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2.1 Even Weight Functions

Now, we consider the case of an even weight function w, i.e., when w(−x) = w(x),
x ∈ (−π, π). Such weight functions are interesting, because the problem of the
symmetric weights can be reduced to algebraic polynomials.

We start with the following simple lemma.

Lemma 1. If the weight function w is even, then for all non-negative integers
n, the s-orthogonal trigonometric polynomial A1,0

s,n+1/2 with leading coefficients

cn = 1 and dn = 0 coincides with AC
s,n+1/2 with leading coefficient c

(n)
n = 1. Also,

the s-orthogonal trigonometric polynomial A0,1
s,n+1/2 with leading coefficients cn =

0 and dn = 1 coincides with AS
s,n+1/2 with leading coefficient d

(n)
n = 1.

Proof. Since AC
s,n+1/2 is an even function, as well as w, we easily obtain that

AC
s,n+1/2 is orthogonal to sin(k + 1/2)x for k = 0, 1, . . . , n − 1 with respect to w

on the symmetric interval (−π, π). Thus, AC
s,n+1/2 satisfies s-orthogonality con-

dition (5). In addition, AC
s,n+1/2 is a trigonometric polynomial of semi–integer

degree n + 1/2 with leading coefficients cn = 1 and dn = 0. According to the
uniqueness of such trigonometric polynomials we conclude that A1,0

s,n+1/2 coin-
cides with AC

s,n+1/2.
The assertion for AS

s,n+1/2 can be obtained similarly. �	
Theorem 3. The zeros of the trigonometric polynomial As,n+1/2 with leading
coefficients cn = 1 and dn = 0, s-orthogonal on (−π, π) with respect to an even
weight function w, are given by

x0 = −π, x2n+1−ν = −xν = arccos τν , ν = 1, . . . , n,

where τν , ν = 1, . . . , n, are the zeros of the algebraic polynomial Cn, s-orthogonal
on (−1, 1) with respect to the weight function

√
(1 + x)2s+1/(1 − x)w(arccosx).

Proof. According to Lemma 1, the trigonometric polynomial As,n+1/2, n =
0, 1, . . ., is an even function of the following form

As,n+1/2(x) =
n∑

ν=0

c(n)
ν cos(ν + 1/2)x, c(n)

n = 1.

Obviously As,n+1/2(−π) = 0, i.e., x0 = −π. Since As,n+1/2(−x) = As,n+1/2(x),
the remaining zeros are located symmetrically in (−π, π). From the s-orthogona-
lity conditions for As,n+1/2, we have
∫ π

0

(As,n+1/2(x))2s+1As,k+1/2(x)w(x)dx = 0, n ∈ N, k = 0, 1, . . . , n − 1. (8)

Substituting x := arccosx, after some elementary transformations (see [6]), we
obtain

As,k+1/2(arccosx) =

√
1 + x

2
Ck(x), Ck(x) =

k∑
ν=0

c(k)
ν (Tν(x)− (1−x)Uν−1(x)),
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where Tν and Uν , ν ∈ N0 are the Chebyshev polynomials of the first and the
second kind, respectively. From (8) we obtain

1∫

−1

(Cn(x))2s+1Ck(x)

√
(1 + x)2s+1

1 − x
w(arccosx)dx = 0, n ∈ N, k = 0, 1, . . . , n−1.

According to the well-known fact that the s-orthogonal algebraic polynomial Cn

has n simple zeros in (−1, 1) (see [5] and [3]), we get what is stated. �	

Analogously the following result can be proved.

Theorem 4. The zeros of the trigonometric polynomial As,n+1/2 with leading
coefficients cn = 0 and dn = 1, s-orthogonal on (−π, π) with respect to an even
weight function w, are given by

x0 = 0, x2n+1−ν = −xν = arccos τν , ν = 1, . . . , n,

where τν , ν = 1, . . . , n, are the zeros of the algebraic polynomial Sn, s-orthogonal
on (−1, 1) with respect to the weight function

√
(1 − x)2s+1/(1 + x)w(arccosx).

Weight function w(x) = 1. For this special case we give some remarks. Let
A1,0

s,n+1/2 and A0,1
s,n+1/2 be the s-orthogonal trigonometric polynomials with lead-

ing coefficients cn = 1, dn = 0 and cn = 0, dn = 1, respectively. From Theorems 3
and 4, we have

A1,0
s,n+1/2(arccosx) =

√
1 + x

2
Cn(x), A0,1

s,n+1/2(arccosx) =

√
1 − x

2
Sn(x),

where Cn(x) and Sn(x) are the s-orthogonal algebraic polynomials on (−1, 1)
with respect to the weight functions

w3(t) = (1 + t)1/2+s(1 − t)−1/2 and w4(t) = (1 − t)1/2+s(1 + t)−1/2,

respectively. It is shown (see [7]) that the Chebyshev polynomials of the third
kind Vn, and of the fourth kind Wn, defined by

Vn(x) =
cos(n + 1

2 )θ
cos θ

2

, Wn(x) =
sin(n + 1

2 )θ
sin θ

2

, x = cos θ,

are the s-orthogonal polynomials with respect to the weight functions w3 and w4,
respectively. Hence, we get explicit expressions for the trigonometric polynomials
A1,0

s,n+1/2 and A0,1
s,n+1/2 as follows

A1,0
s,n+1/2(x) = cos

(
n +

1
2

)
x, A0,1

s,n+1/2(x) = sin
(

n +
1
2

)
x.

Now, it is easy to see that the zeros of A1,0
s,n+1/2 from [−π, π) are given by

x0 = −π, x2n+1−ν = −xν =
2ν + 1
2n + 1

π, ν = 0, 1, . . . , n − 1,
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and of A0,1
s,n+1/2 by

x0 = 0, x2n+1−ν = −xν =
2ν

2n + 1
π, ν = 1, . . . , n.
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Abstract. Let IRd be the Euclidean space with the usual norm |.|2, Pd
n

be the set of all polynomials over IRd of degree n, and K ⊂ IRd be a
convex body. An algorithm for calculation of the Bernstein-Szegő factor:

BS(K) := sup
x∈int(K)

P∈Pd
n,n∈IN

�
|gradP (x)|2w(K)

�
1 − α2(K,x)

n
�

||P ||2C(K) − P 2(x)

�

is considered, where w(K) is the width of K and α(K,x) is the general-
ized Minkowsky functional. It is known that BS(K) ∈ [2, 2

√
2]. On the

basis of computer experiments, we show that the existing in the literature
hypothesis, that BS(K)= 2 for any convex body K ⊂ IRd, fails to hold.

1 Introduction

In 1991, Y. Sarantopoulos ([4]) obtained a fine multivariate extension of the
classical Bernstein -Szegő inequality for algebraic polynomials of degree n:

|P ′
n(x)| ≤

n
√
||Pn||2C[−1,1] − P 2

n(x)
√

1− x2
, x ∈ (−1, 1).

To formulate his result, let X be a normed vector space with norm |.|X and
Pn(X) – the set of all polynomials of degree n over X (see [3] for a precise
definition). Let K ⊂ X be a centrally symmetric convex body (bounded closed
convex set with nonempty interior). Without loss of generality we may assume
that 0 is the center of K. Then the Minkowski functional with respect to K,
|x|K := inf{λ > 0 : x ∈ λK}, is also a norm over X . Next, for any v ∈ X let
τ(K,v) := sup{λ : ∃y, z ∈ K such that z = y + λv} be the maximal chord of
K in direction v and let w(K) := inf{τ(K,v) : |v|X = 1} be the width of K.
Then, for every x ∈ int(K) and Pn ∈ Pn(X), we have

(1) |gradPn(x)|X∗ ≤
2n

√
||Pn||2C(K) − P 2

n(x)

w(K)
√

1− |x|2K
,

where gradPn(x) is the linear operator from X∗ for which 〈gradPn(x),y〉, y ∈ X ,

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 410–418, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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is the directional derivative of Pn at x in direction y. Moreover, the constant 2
in the inequality (1) is the best possible.

Next, for any convex body K ⊂ X and x ∈ int(K) the generalized Minkowski
functional α(K,x) can be defined by α(K,x) :=

√
1− γ2(K,x), where γ(K,x) :=

inf
{

2
√

|x−a|x |x−b|x
|b−a|x : a,b ∈ ∂K and x ∈ [a,b]

}
measures the distance between

x and ∂K. (See [3] for more details about the different measures of a convex
body.) With these notations we have the following result of Kroó and Révész [1]:

(2) |gradPn(x)|X∗ ≤
Cn

√
||Pn||2C(K) − P 2

n(x)

w(K)
√

1− α2(K,x)
,

where C = 2
√

2, x ∈ int(K), K is an arbitrary convex body and Pn ∈ Pn(X).
We see that the constant in (2) differs from that in (1) by a factor

√
2. Révész

and Sarantopoulos raised the following

Conjecture: The best possible constant in (2) is C = 2 (as in the case of
centrally symmetric bodies).

The initial motivation of the present study was to check out this conjecture
numerically. It turns out that the conjecture fails to hold. Although the question
was answered, the used algorithm is of interest itself. It can be useful for other
extremal problems for polynomials under uniform restrictions.

2 The Algorithm and Its Realization

Let C∗ be the best possible (the smallest) constant in (2). For every specific
X, K and x the best constant in (2) is different and we denote it by C(X, K,x).
Clearly C∗ = supX,K,x C(X, K,x). Of course, we are not able to find numerically
C(X, K,x) for any X and K. We restrict ourselves to the case X = IR2 normed
by |x| =

√
x2 + y2, x = (x, y), and K = Δ – the standard triangle ΔOAB with

vertices O = (0, 0), A = (1, 0), B = (0, 1). (In a certain sense, see [3], the simplex
is the least centrally symmetric convex body.) We have, e.g. [2], that w(Δ) = 1√

2

and 1−α2(Δ,x) = 4 min{x(1−x), y(1−y), (x+y)(1−x−y)}. Which expression
in the min is active depends on that in which triangle: ΔOMB, ΔOMA or
ΔAMB, is located x, where M = (1

3 , 1
3 ) is the centroid of Δ (see Picture 1).

Next, if ||.|| := ||.||C(Δ) and P2
n := P(IR2), from [2] we know that the constant

CΔ := sup

{
|gradPn(x)|w(Δ)

√
1− α2(Δ,x)

n
√
||Pn||2C(Δ) − P 2

n(x)
: x ∈ int(Δ), Pn ∈ P2

n, n ∈ IN

}

belongs to the interval [2,
√

3 +
√

5],
√

3 +
√

5 = 2.2882 . . . Actually, in our
algorithm we fix n and x and vary only Pn ∈ P2

n. In view of the estimations in
[2], the best choice for the point x is on the medians MA or MB. Without loss
of generality we set ||Pn|| = 1. Then, for any fixed x ∈int(Δ) and n ∈ IN we
denote
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Gn(P ) :=

√
(P ′

x)2 + (P ′
y)2

√
4 min{x(1 − x), y(1− y), (x + y)(1 − x− y)}

n
√

2
√

1− P 2(x)

and CΔ
n (x) := max

{
Gn(P ) : P ∈ P2

n, ||P || = 1
}
. Clearly, CΔ

n (x) ≤ CΔ ≤ C∗.
Let f◦ := f/||f ||. The algorithm for maximization of Gn(P ◦) is as follows.

First we take some initial P with ||P || = 1. Then in a ball with center P and
radius r we look for a better polynomial (P + dP )◦, ||dP || = r. The direction of
the variation dP we take arbitrarily but in a certain subspace of P2

n, described
below. Actually we try with the both polynomials P ± dP .

Let N =
(
n+2

2

)
be the dimension of P2

n and dP ∗ be the direction of maximal
increase of Gn(P ). One can estimate that arbitrary choice of dP decreases the
speed of the algorithm O(

√
N) times (in mean), comparing it with the best choice

dP ∗. However, the computation of dP ∗ requires N times more calculations.
If we maximize a smooth function (say Gn(P )) and 〈dP, dP ∗〉 	= 0, then for a

sufficiently small r, in one of the directions ±dP we will gain an increase of Gn.
Then, there is no need of special treatment and we can use any standard maximiz-
ing procedure. But we consider G(P/||P ||) and ||P +t.dP ||C(Δ) is only one-sidedly
differentiable function. So, the uniform restriction requires a special approach. We
shall restrict dP to vary in the following set of admissible directions:

W :=
{
w ∈ P2

n : w vanishes at the critical points of P
}
,

where the set of critical points of P is Ep := {t ∈ Δ : |P (t)| = ||P || = 1}.
Recall the univariate case: If P, w ∈ P1

n are such that w(ti) = 0, i = 1, ..., d,
where {ti}d1 are the critical points of P on the interval [a, b], then ||P + εw||C[a,b]

increases by o(ε) instead of O(ε) for arbitrary w.
Thus we smoothed our problem, but also we restricted the possible variations

dP . Let us see what kind of restriction is this. Approximately, for a sufficiently
small ||dP ||, the number of critical points can only increase and the points move
slightly. In view of the univariate analog we expect that the extremal polynomial
has ”many” alternation points. So, restricting ourselves to the set of ”highly alter-
nating” polynomials, we hope that we will not miss the extremal polynomial. (But,
in the algorithm there is a possibility to escape from an unappropriate restriction,
excluding a critical point.) The conditions dP (ti) = 0 for all critical points {ti}
of P form a linear system of equations for the coefficients of dP . If d is the number
of the critical points of P and the system is regular, then dim(W ) = N − d.

The algorithm is realized on the system MATHEMATICA. The program
works in interactive regime as the operator can perform a series of commands
(calculations) from a given list.

◦ The main procedure ’A’ generates an admissible dP ∈ W with ||dP || = r and
tries to find a better polynomial (P±dP )◦. If it succeeds, then P := (P±dP )◦.
If not, it tries again with other dP , up to 30 times. This is one step. Next we can
start procedure A again as meanwhile we can change the parameters r and d.
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◦ The procedure ’Ar’ tries to improve P using the previous direction dP .
◦ The main ”ruling parameters” are r and d. The procedure ’D’ doubles r

while ’H’ halves it. ’D1’ - increases d by 1, while ’Dm1’ decreases it. Note
that

– if two or more repetitions of Ar improve P , then it is better to increase r;
– the parameter d can be controlled by the graph of P (x, y).

◦ When procedure A does not lead to improvement of P anymore, we can start
a justifying procedure ’Just’. The purpose of this procedure is the following.
Since all calculations are approximate, then at the critical points Ep = {ti}d1
we have |P (ti)| ≈ 1, not exactly (with one exception). That is why we try
to improve P , excluding consecutively the points ti from Ep, and using
a procedure similar to A, but with r adapted according to 1 − |P (ti)|, see
Picture 2 (which shows the univariate analog). However, it is possible |P (ti)|
to decrease. This means that the point ti must be excluded from Ep.

O A

B

M

Picture 1.

a b

1

−1

P

Picture 2.

O A

B
maxn+1

Picture 3.

3 Counterexamples to the Conjecture C∗ = 2

Example 1: (see Picture 4a)
P = 1.00000− 7.9866x + 7.97362x2 − 4.78417y + 13.0868xy + 2.86128y2,
n = 2, x = (0.92, 0.04), G2(P ) = 2.0053.
Example 2: (see Picture 4b)
P = 0.99999 − 17.8567x + 47.2389x2 − 31.2420x3 − 3.78921y + 67.7998xy −
83.45657x2y − 3.77587y2 − 38.3024xy2 + 7.56249y3,
n = 3, x = (0.88, 0.06), G3(P ) = 2.0150.
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Note that the estimate in [2] is maximal when x→ A or B. However, in our case
the maximum is attained at an inner point of MA and CΔ

2 (x)→ 2 for x→ A.

4 Problems That Arise at the Time of Programming

1) Calculation of the norm of a polynomial Pt(x, y), Pt = P ± dP
It is important to calculate the norm of Pt highly accurate, having in mind that
the denominator in Gn(P ) can be arbitrarily close to zero. On the other hand
this calculation is one of the most time-consuming parts of the programm. A
formal approach to this problem is: a) Solve numerically the system of equations
P ′

x = P ′
y = 0 for the interior extrema. b) Investigate |Pt| on the three line

segments OA, AB, BO. However I preferred a more direct approach: A numerical
optimization of |Pt|. The corresponding procedure ’NormP’ is built on two levels
- global and local. We divide Δ by a square net of points {xk}, see Picture 3,
and for those of them for which |Pt(xk)| > 0.95M , where M = maxj<k |Pt(xj)|,
we start a justifying procedure ’Norm1[x,y]’ which makes one or several steps
by the steepest ascend method. Meanwhile I use also the critical points of the
polynomial P . A related problem is to find limits for the ratio of the discrete and
continuous norms ||P ||C(K̂)/||P ||C(K), where K̂ = {(ih, jh) ∈ K : i, j ∈ ZZ}.

2) Determination of the set of critical points
By definition it is Ep = {t ∈ Δ : |P (t)| = ||P || = 1}. But, our polynomial P is
only an approximation to the extremal one, so that we have |P (t)| ≈ 1, t ∈ Ep.
Moreover, in the bivariate case the equality |P (t)| = ||P || is possible to hold
over a whole line from which we need only finite number of points to construct
dP : dP (tk) = 0, k = 1, ..., d. So, we come to the question which points to
accept for critical ones. One of the first ideas was to take these d points of a
square net over Δ for which the difference δk = 1 − |P (tk)| is the smallest.
However, it can happen that too many points concentrate around that one for
which δk is minimal. Hence, we come to the following problem: For a given
discrete set of points, say K̂1 := {t ∈ K̂ : |P (t)| > 0.95}, how to choose a
subset of d elements which are ”the most scattered”. Such points can be for
example the Fekete points or those connected with the Chebyshev constants
for the set. It is interesting to find a criterion for ”the most scattered” points
which allows their fast calculation. My final decision was to search for the points
Ep = {ti(xi, yi)}d1 ⊂ K̂1 such that

d∑
k=1

(1 + ε− |P (tk)|)
(

d∑
j �=k

1
(xj − xk)2 + (yj − yk)2

+ 0.1

)
→ min, ε→ 0,

as the minimization is approximate one without spending much time on it. Next,
if necessary, the points can be justified by the steepest ascend method.

3) Verification of the result
Some examples for n = 2, x = (0.96, 0.02) show that the function Gn(P ◦) may
have several (essentially different) local maxima. So, how to check if a maximum
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we obtain is the global one? Also, when do we have to stop searching for better
polynomials P , and how far is the result from a local maximum?
To these questions I can only point out some heuristical arguments: We shall con-
sider |grad P (x)| instead of the normalized gradient Gn(P ), since both quanti-
ties are asymptotically equivalent as n → ∞, up to multiplication by a factor
independent of P , (w(K)

√
1− α2(K,x)/n). At least, so is the case in the Bern-

stein-Szegő inequality. Then, when P runs over the ball ||P ||C(Δ) ≤ 1, the linear
operator gradP (x) runs over some convex and centrally symmetric set S in IR2,
see Picture 5. If gradP 0(x) = ON is a local maximum of |gradP (x)|, then N
gives a local maximum of the distance |OM | : M ∈ ∂S. (This follows from the
convexity.) So, the boundary ∂S is divided into parts around every local maxi-
mum, such that if grad P (x) belongs to this part, then the algorithm ”directs”
P to the corresponding local maximum. We will call this part the support of
the local maximum. It is clear that a very small local maximum can not have a
big support. Let us estimate the summary support of the ”big” local maxima.
Precisely, with r = d(S)/2 and ε ∈ (0, 1) we will estimate the quantity

Q :=
1
|∂S|

∑
α

{
|supp(Pα)| : Pα is a local max. with |gradP (x)| ≥ r(1 − ε)

}
.

Let P ∗ be a global maximum of gradP (x), see Picture 6, and let P 0 be the
first local maximum, clockwise from P ∗ with |gradP 0(x)| < r(1 − ε) (assuming
it exists). Let M be the initial point of the supp(P 0). Clearly, |OM | < r(1 − ε)
and there is a supporting line β to S at M such that β ⊥ OM . Consider now
the point T such that V T is the tangent from V toward the inner circumference.
ΔOTV is a rectangular triangle. Then necessarily M is outside ΔOTV , because
otherwise the supporting line β would separate the points O and V from S. Next,
it is easily seen that |V̂ M | ≥ |V M | ≥ |V T |. Also, |∂S| ≤ 2πr. Then, in view of
−V ∈ S and the analogous construction symmetrical to OV we can write

Q ≥ 4|V T |
2πr

=
2
π

√
2ε− ε2 ∼ 2

√
2

π

√
ε as ε→ 0.

Assume that probability to hit a given local maximum is proportional to its
support. Then, in order to get a value of |grad P (x)|, which is ”ε - close” to the
global maximum, it suffices to make O( 1√

ε
) independent starts of the algorithm.

S:

M

N
Nsupp

Picture 5.

O

V

N
M

T

r1−e

S
P

P

∗

0

Picture 6.
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About the second question: Since the quantity G(P/||P ||) is one-sidedly differ-
entiable with respect to P in any direction, then some estimations of |G′

n(P )|
and |G′′

n(P )| can help to estimate how close is it to a local extremum. (Also, I
expect a geometric convergence rate, as in the steepest ascend method.)

5 The Programm

(* The programm maximizes the normalized gradient of the polynomials of 2 variables in a point
(x0, y0) of the triangle T with vertices {(0, 0), (0, 1), (1, 0)} under the restriction ||P ||C(T ) ≤ 1. *)

(n=3;Mon=Sum[x^i*y^j,{i,0,n},{j,0,n-i}];nm=Length[Mon];Ep={};O1=0.1;h=0.000001;)

(*n-degree; Mon-array of the monomials; O1,h-little numbers.*)

(Norm1[x0_,y0_]:=(x1=x0;y1=y0;Do[(M1=Abs[Pt/.{x->x1,y->y1}];gx=(Abs[Pt/.{x->x1+h,y->y1}]-M1)
/h;gy=(Abs[Pt/.{x->x1,y->y1+h}]-M1)/h;ngrad=Sqrt[gx^2+gy^2];gxr=ro*gx/ngrad;gyr=ro*gy/
ngrad;x2=x1+gxr;y2=y1+gyr;dder=ro*ngrad;boun=False;If[y2<0,(y2=0;x2=x1+Sign[gx]*ro;x2=
Min[Max[x2,0],1];boun=True)];If[x2<0,(x2=0;y2=y1+Sign[gy]*ro;y2=Min[Max[y2,0],1];boun=
True)];If[x2+y2>1,(y2=(1-x1+y1)/2+Sign[gy-gx]*ro*0.71;y2=Min[Max[y2,0],1];x2=1-y2;boun=
True)];If[boun,(gxr=x2-x1;gyr=y2-y1;dder=gx*gxr+gy*gyr)];M2=Abs[Pt/.{x->x2,y->y2}];a=M2
-M1-dder;If[M2-M1<-a,(tp=-dder/(2a);x2=x1+tp*gxr;y2=y1+tp*gyr;M2=M1+dder*tp/2)];x1=x2;
y1=y2;),{stn1}];M2);

NormP:=(M=Max[(ro=1/N[Sqrt[2]*maxn*stn1];Norm1[x0,y0]),Table[Norm1[Ep[[k,1]],Ep[[k,2]]],
{k,d}]];For[i=0,i<=maxn,i++,For[j=0,j<=maxn-i,j++,If[Abs[Pt/.{x->i/maxn,y->j/maxn}]>
lev1*M,M=Max[M,Norm1[i/maxn,j/maxn]]] ]]; ); )

(* NormP - calculates M = the norm of the polynomial Pt over T. maxn - the size of the net of
points in T. Norm1 - the norm of Pt in a neighborhood of (x0, y0) in T with radius ro, also returns
(x1, y1) - the point where the norm attains. stn1 - the number of steps for Norm1. *)

G[P_]:=(Sqrt[4Min[x0(1-x0),y0(1-y0),(x0+y0)(1-x0-y0)]]/Sqrt[2]*Sqrt[(D[P,x]/.{x->x0,y->y0}
)^2+(D[P,y]/.{x->x0,y->y0})^2]/(n*Sqrt[1-(P/.{x->x0,y->y0})^2]))

(* The normalized gradient of P at (x0, y0). It is supposed that ||P || = 1. *)

(Ep0:=(Pt=P;Do[(x2=Ep[[k,1]];y2=Ep[[k,2]];If[(Ep[[k,4]]<maxn^2),Norm1[x2,y2]];Ep[[k]]={x2,y2,
Abs[P/.{x->x2,y->y2}],0}),{k,d}];For[k=1,k<=d,k++,Ep[[k,4]]=Sum[If[(k1==k),O1,(z=(Ep[[k,1]]
-Ep[[k1,1]])^2+(Ep[[k,2]]-Ep[[k1,2]])^2;If[z<h,(Ep[[k,3]]=0;1/h),1/z])],{k1,d}] ]);

Epc:=(ro=0.5/(maxn*stn1);Ep0;For[i=0,i<=maxn,i++,For[j=0,j<=maxn-i,j++,(bul=True;x2=i/maxn;
y2=j/maxn;p=Abs[P/.{x->x2,y->y2}];If[(p>lev1)&&(i(maxn-i)+j(maxn-j)>0),Pt=P;p=Norm1[x2,y2]];
Sk0=O1+Sum[(z=(Ep[[k,1]]-x2)^2+(Ep[[k,2]]-y2)^2;If[z<h,(z=h;bul=False)];1/z),{k,d}];If[bul,
(For[k=1,k<=d,k++,(l=Ep[[k]];R=(lev4-p)*(Sk0-1/((l[[1]]-x2)^2+(l[[2]]-y2)^2))-(lev4-l[[3]])
*l[[4]];If[R<0,(Ep[[k]]={x2,y2,p,0};Ep0;Break[])])] )] )]] ) )

(* Ep(Extremal points) -{{xk, yk, δk, .}, ...}, d of number approximate critical points with coordi-
nates (xk, yk). δk = 1−|P (xk, yk)| and the fourth numbers in Ep depend on the location of (xk, yk)
with respect to the other points. Epc(Extremal points correction): It is supposed that ||P || = 1 and
d ≥ 1. First in Ep0 are recalculated the thirds and fourths data of Ep, because the polynomial P, or
the number d can be new. Next, the point (x2, y2) traverses the net and we look for a replacement
(x2, y2) → (xk, yk), which improves the configuration of Ep in the sense to minimize the expression:

k(lev4 − |P (xk, yk)|) O1 + i�=k 1/((xk − xi)2 + (yk − yi)2) ,

(e.g. lev4 = 1.001). O1 is added for the case d = 1. *)

(A:=(If[d>0,(Epc;CPc=NullSpace[Table[(Mon[[i]]/.{x->Ep[[k1,1]],y->Ep[[k1,2]]}),{k1,d},{i,nm}]]
;)];Do[(If[d>0,Cpc=Sum[(2Random[]-1)*CPc[[j]],{j,Length[CPc]}]/nm;,Cpc=Table[(2Random[]-1),
{i,nm}]];pc=Sum[Cpc[[i]]*Mon[[i]],{i,nm}];Pt=P+r*pc;NormP;Pt1=Pt/M;G1=N[G[Pt1]];Pt=P-r*pc;
NormP;Pt2=Pt/M;G2=N[G[Pt2]];sgn=0;rep=G1+G2-3G0+Max[G1,G2];If[G1>G0,(P=Expand[Pt1];G0=G1;
sgn=1)];If[G2>G0,(P=Expand[Pt2];G0=G2;sgn=-1)];If[sgn!=0,(Print[G0," for ",k," it.",
If[rep>0," repeat?",""]];Break[])]),{k,30}]);

Ar:=(Pt=P+sgn*r*pc;NormP;Pt=Pt/M;G1=N[G[Pt]];If[G1>G0,(P=Expand[Pt];G0=G1;
Print[G0," repeated"])]);

B:=(r=2*r);H:=(r=r/2);
D1:=(Ep=Append[Ep,{Random[],0,0,0}];d=d+1);Dm1:=(Ep=Delete[Ep,-1];d=d-1);)

(* A - searches for a better polynomial than P in a ball with a radius r. Cpc(Coefficients of correcting
polynomial pc). For d > 0, CPc is a table with rows the coefficients of the admissible correcting
polynomials, i.e. which vanish at the points Ep. Ar - searches for a better polynomial in the previous
direction. B, H - change r. D1, Dm1 - change d *)
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Just:=(ro=1./(3maxn*stn1);Ep0;Print[Table[Ep[[k,3]],{k,d}]];Tb=Table[(Mon[[i]]/.{x->Ep[[k,1]],
y->Ep[[k,2]]}),{k,d},{i,nm}];For[k=1,k<=d,k++,(CPc=NullSpace[Delete[Tb, k]];Do[(Cpc=Sum[
(2Random[]-1)*CPc[[j]],{j,Length[CPc]}]/nm;pc=Sum[Cpc[[j]]*Mon[[j]],{j,nm}];r1=((1-Abs[P])/
pc)/.{x->Ep[[k,1]],y->Ep[[k, 2]]};Pt=P+r1*pc;NormP;Pt1=Pt/M;G1=N[G[Pt1]];Pt=P-r1*pc;NormP;
Pt2=Pt/M;G2=N[G[Pt2]];If[G1>G0,(P=Expand[Pt1];G0=G1;Break[])];If[G2>G0,(P=Expand[Pt2];G0=G2;
Break[])]),{i,3}])];Ep0;Print[Table[Abs[P/.{x->Ep[[k,1]],y->Ep[[k,2]]}],{k, d}]]; )

(* Just - Justify the extremal points *)

(x0=0.8;y0=0.1;d=0;r=0.5;maxn=10;stn1=1;lev1=0.95;lev4=1.001;Pt=Sum[(2Random[]-1)*Mon[[j]],
{j,nm}];NormP;P=(Pt/M);G0=(G[P]//N))

(* General parameters (x0, y0), maxn, ... and initial values of d, r. Also, the first approximation. *)

To start using the programm we must active the above definitions. As we
see they concerns the case n = 3 and (x0, y0) = (0.8, 0.1). So, in order to use
other parameters, we have to fill them in the corresponding places. Except n,
the other parameters can be changed later also, but then, we have to recalcu-
late G0, which contains the current maximal gradient (see the change of maxn
below).

An example of using the program:
g g

Input Output Comment
In[8]:=A 0.419273 for 1 it. repeat? the value of G(P )
In[9]:=Ar – no result
In[10]:=A 0.481999 for 1 it. repeat?
In[11]:=Ar – no result
In[12]:=A 0.510531 for 8 it.
In[13]:=D1 1 the value of d
In[14]:=A 0.517901 for 1 it. repeat?

... ...
In[18]:=Ar 0.537307 repeated
In[19]:=B 1 the value of r
In[20]:=A 0.555567 for 1 it. repeat?
In[21]:=Ar – no result
Plot3D[If[x+y<=1,P,0],{x,0,1},{y,0,1}, graph
PlotRange->{-1,1},PlotPoints->50]

In[23]:=D1 2 the value of d
In[24]:=A 0.56953 for 1 it. repeat?
In[30]:=Ar 0.647994 repeated
In[31]:=B 4
In[32]:=A 0.684358 for 1 it. repeat?
In[83]:=A 1.54598 for 8 it.
In[84]:=Plot3D[...] graph
In[85]:=D1;A 1.54701 for 16 it.
In[86]:=Just {0.99.., 0.96.., 1.0001, ., .} The values of |P | at the points

{0.99.., 0.99.., 0.9998, ., .} of Ep, before and after Just.
In[90]:=maxn=15;Pt=P;NormP; 1.0001 shows an error in ||P ||.

P=Pt/M;G0=G[P];M 1. From In[90] to In[115] we had
In[96]:=A – almost no increase of G0. We
In[100]:=Dm1 5 succeed to continue after an
In[108]:=H 16 increasing of the precision of
In[109]:=A 1.58188 for 7 it. repeat? calculation of ||P ||, decreasing

etc. etc. d and double halving r.
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Abstract. The aim of this article is to obtain a quadrature formula
for functions in several variables and to analyze the algorithmic and
computational aspects of this formula. The known information about
the integrand is {λi(f)}n

i=1, where λi are linearly independent linear
functionals. We find a form of the coefficients of the quadrature formula
which can be easy used in numerical calculations. The main algorithm we
use in order to obtain the coefficients and the remainder of the quadrature
formula is based on the Gauss elimination by segments method. We
obtain an expression for the exactness degree of the quadrature formula.
Finally, we analyze some computational aspects of the algorithm in the
particular case of the Lagrange conditions.

1 Introduction

Let A0 be the set of analytic functions at the origin and F = {f | f : D ⊂
Rd → R} ⊂ A0. Let Λ = {λi : F → R | i = 1, . . . n} be a set of linearly inde-
pendent linear functionals, and f ∈ F an arbitrary function. If we consider an
interpolation formula: f = LΛf + RΛf, where LΛ is an interpolation operator,
RΛ is the corresponding remainder operator and Λ are the interpolation condi-
tions, than we can obtain a quadrature formula by integrating this formula on
the domain D. We are interested in finding a general quadrature formula of the
following form:

I(f) =
∫

D

f(x)dx =
n∑

i=1

Ai · λi(f) + Rn(f), (1)

where Ai ∈ R are the quadrature formula’s coefficients, {λi}ni=1 are the used
functionals and Rn(f) is the quadrature formula’s remainder. In order to ob-
tain this formula, we start from a multivariate polynomial interpolation scheme,
introduced by C. de Boor and A. Ron in [1] and called ”least interpolation”.
The least interpolation scheme is given by a pair (Λ, HΛ ↓). The interpola-
tion polynomial space, HΛ ↓ is defined as HΛ ↓= span{g ↓ | g ∈ HΛ}, where
HΛ = span{λν ; λ ∈ Λ}, λν is the generating function of the functional λ, i.e.,

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 419–426, 2007.
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λν(x) =
∑

α∈Nd

Dαλν(0)
α!

xα =
∑

α∈Nd

λ(mα)
α!

xα, (2)

and α = (α1, . . . , αd) ∈ Nd, α! = α1! · . . . · αd! and mα(x) = xα.
The notations and elements we will operate with, will be presented next.

For an analytic function g we denote by g ↓ the least term of g, that is, the
homogeneous polynomial of minimal degree in the power series of g. LΛ(f) is
the unique polynomial from HΛ↓, which matches f on Λ, that is

λ(f) = λ(LΛ(f)) (3)

In order to define least-interpolation, in [1] it is defined the pair between an
analytic function and a polynomial,

〈f, p〉 = (p(D)f)(0) =
∑

|α|≤deg(p)

Dαp(0)Dαf(0)
α!

, (4)

with p(D) being the differential operator with constant coefficients associated to
p. If p =

∑
|α|≤deg(p)

cα(·)α, then p(D) =
∑

|α|≤deg(p)

cαDα. The pair (4) is a veritable

inner product on polynomial spaces.
The action of a functional λ on a function f is 〈λν , f〉 = λ(f).

If H is a space of functions analytic at the origin, we can find (see [1]) a basis
(gi)i=1,...,dim(H) of H such that 〈gi, gj↓〉 = 0, ∀i 	= j. The set (gi↓)i=1,...,dim(H),
is a basis of H↓. If (pi)i=1,...,dim(H) is a known basis of H , we start with g1 = p1

and repeat the following two steps for i = 2, . . . , dim(H):

Step 1: gj ← pj −
j−1∑
k=1

gk
〈pj , gk↓〉
〈gk, gk↓〉

.

Step 2: For each i < j having the property that deg gj↓> deg gi↓, we recalculate

gi ← gi − gj
〈gi, gj↓〉
〈gj, gj↓〉

.

If the functionals λi, i = 1, . . . , n are linearly independent, then dim(HΛ) = n
and the set (λν

i )n
i=1 forms a basis for HΛ. We express the functions gj from the

previous algorithm in this basis:

gj(x) =
n∑

i=1

cj,i λν
i (x) (5)

Theorem 1. With cj,i as given in (5), the fundamental polynomials in the least
interpolation scheme are

ϕi =
n∑

j=1

cj,igj↓
〈gj , gj↓〉

. (6)
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Proof. Let us consider the line matrices

G = [gi]ni=1, Λν = [λν
i ]ni=1, Φ = [ϕi]ni=1, M =

[
gj↓

〈gj, gj↓〉

]n

j=1

,

and let C = [ci,j ]ni,j=1, C−1 = [c̃i,j ]ni,j=1. Let us denote G · (C−1)� = (ui)n
i=1 and

M · C = (vj)n
j=1. A formal calculus gives G = Λν · C�, Φ = M · C, and

〈Λν , Φ〉 =〈G(C�)−1, M · C〉 = 〈G(C−1)�, M · C〉 = 〈ui, vj〉

=

〈
n∑

k=1

gkc̃i,k,

n∑
l=1

gl↓
〈gl, gl↓〉

cl,j

〉
=

n∑
k=1

c̃i,k · ck,j = δi,j .

Hence, λi(ϕj) = δi,j for every i, j ∈ {1, . . . , n}. Moreover, ϕi ∈ HΛ↓. �

Theorem 2. The coefficients Ai of quadrature formula (1) are given by

Ai =
∫

D

ϕi(x)dx =
n∑

j=1

cj,i

〈gj , gj↓〉
·
∫

D

gj↓ (x)dx (7)

Proof. We use the fundamental polynomials and express

LΛ(f) =
n∑

i=1

ϕi · λi(f)

Integrating this formula on D and using (6), we obtain (7). �
Formula (7) is only of theoretical importance. We look for an algorithm which
allows us to calculate numerically these coefficients.

2 Algorithmic Aspects. Main Results

From Theorem 2 we observe that, in order to calculate the coefficients Ai, we
need to find the fundamentals polynomials ϕi or the basis (gi ↓)n

i=1, together
with the coefficients ci,j and the products 〈gj , gj ↓〉. We shall use the Gauss
elimination by segments algorithm, presented in [4] and [5], in order to obtain the
fundamental polynomials required in formula (7). This algorithm is used in [4] for
obtaining the coefficients of the interpolating polynomial LΛ, for Λ = {δθi | i =
1, . . . , n, θi ∈ Θ ⊂ R2, θi 	= θj}. The main advantage of this method is that
it is not necessary to know apriori the degree of the interpolating polynomial.
We present briefly this method, for the case of an arbitrary set of interpolation
conditions Λ.

The interpolation problem (3) can be reformulated in algebraic setting, by the
system: V ·C = F, with V = [λi(xα)]; F = [λi(f)]; C = [cα] the coefficients of the
interpolation polynomial LΛ, i ∈ {1, . . . , n}; α ∈ Nd. We make a segmentation
of the matrix V in the form V = [V0, V1, . . .]. The segment Vj has rj columns,
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with rj being the dimension of the subspace of homogeneous polynomials of
degree j in d variables, rj = dim(Π0

j ). The columns in the segments of the
matrix V are indexed using a multiindex α ∈ Nd. The segment Vj corresponds
to the multiindex α with |α| = α1 + . . . + αd = j. In every segment, we take the
inverse lexicographical order for this multiindex. Inside any segment it is defined
a proper inner product. We denote by 〈·, ·〉j the inner product associated to
the segment j. Any element of the segment Vj is a vector with rj components.
Using elementary operations on the segment Vj we make a factorization of this
segment in the form Vj = [Ujj Rjj 0]�, Rjj is a diagonal block whose lines are
orthogonal vectors with respect the inner product 〈·, ·〉j . Except for the trivial
case, there are many factorizations of the segmented matrix, but the blocks Rjj

depend only of the matrix V and of the chosen segmentation. In our case, the

inner product used for the factorization of the matrix Vj is 〈a, b〉j =
∑
|α|=j

aα · bα

α!
;

a = (aα), b = (bα), α ∈ Nd, a, b ∈ Rrj . We obtain the following factorization:
V = L · U ·G = L · R, where L is an invertible matrix, U is a upper triangular
and invertible matrix and G is a matrix segmented in the same way as V .

We suppose that at the step j, we are in the segment kj . We denote by Ri,kj

the vector with the elements of R situated in the segment kj on the line i. The
following operations are carried out:

1. We look for a pivot line. The pivot line maximizes the inner product
〈Ri,kj , Rj,kj 〉kj , for i > j − 1. If this scalar product is zero for every i > j,
there are no pivot lines in the segment kj . If necessary, the pivot line is
brought on the position j.

2. We calculate Ui,j =
〈Ri,kj , Rj,kj 〉kj

〈Rj,kj , Rj,kj 〉kj

, i ≤ j.

3. We carry out orthogonalization procedure for vectors Ri,kj and Rj,kj for

i > j, i.e., calculate Li,j =
〈Ri,kj , Rj,kj 〉kj

〈Rj,kj , Rj,kj 〉kj

, Ri,kj = Ri,kj −Li,j ·Rj,kj , i > j.

This step represents the ”elimination” in Gauss elimination by segments
method.

4. We go to step j + 1, by searching for a new pivot line in the segment Rkj .
When a pivot line does not exist anymore in the segment Rkj , and j ≤ n,
we pass to the next segment.

The number km = max
j∈{1,...,n}

(kj) represents the number of the segments ran

through in the elimination process and in the same time it represents thee max-
imal degree of the polynomials from the interpolation space HΛ↓.

In [4] it is proved that

gj =
∑

α∈Nd

(·)α

α!
Gj,α; j ∈ {1, . . . , n}, (8)

gj↓=
∑

|α|=kj

(·)α

α!
Gj,α; j ∈ {1, . . . , n}, (9)
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〈gi, gj↓〉 =
δi,j

Uj,j
. (10)

Using the previous notation we prove one of the main theorems of this section.

Theorem 3. Let
B = diag(U) · (L · U)−1. (11)

Then, with gj↓ as in (9), the fundamental polynomials ϕk, k ∈ {1, . . . , n} are
given by

ϕk =
n∑

j=1

gj↓ ·Bj,k. (12)

Proof. We shall prove that the polynomials qk =
n∑

j=1

gj↓ ·Bj,k satisfy the

equality λi(qk) = δi,k, i.e., qk = ϕk. Using (2) and the definition of the ma-
trix V , we obtain V = [Dαλν

i (0)]. Hence L · U · G = [Dαλν
i (0)]. Taking into

account (8), we see that λν
i =

n∑
j=1

(L · U)i,j · gj . Therefore,

λi(qk) =〈λν
i , qk〉 =

n∑
j=1

(L · U)i,j · Bj,k〈gj , gj↓〉

=
n∑

j=1

(L · U)i,j · (L · U)−1
j,k =δi,k. �

Theorem 4. With the notations from Theorem 3, and from Gauss elimination
by segments method, the coefficients of the quadrature formula (1) are given by

Ak =
n∑

j=1

Bj,k

∑
|α|=kj

Gj,α

α!
· Iα, (13)

with
Iα =

∫

D

xα dx. (14)

In order to evaluate the remainder in the quadrature formula (1) we need the
following proposition, obtained by a generalization of the results from [2].

Proposition 1. The remainder of the least interpolation formula, based on the
functionals Λ, is given by

(R(f))(x) =

〈
ex(t)−

n∑
j=1

gj(t)
〈ex, gj↓〉
〈gj , gj↓〉

, f(t)

〉
, (15)

with ex(t) = ex·t, x, t ∈ R
d.
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Proof. The proof uses the fact that the operator

L∗
Λ(f) =

n∑
j=1

gj
〈f, gj↓〉
〈gj , gj↓〉

(16)

is the dual of the operator LΛ with respect to the inner product (4), that is,
〈L∗

Λ(f), p〉 = 〈f, LΛ(p)〉, ∀p ∈ HΛ↓.
Theorem 5. For the remainder of the least interpolation formula, the following
estimate holds true:

‖RΛ(f)‖ ≤ sup
x∈D

(|f(x)|) +
n∑

j=1

Mj ·
supx∈D |gj↓ (x)|
〈gj , gj↓〉

, (17)

where Mj =
n∑

i=1

|cj,i| · |λi(f)| and cj,i are given in (5).

Proof. From (15), taking into account that 〈ex, f〉 = f(x) we obtain

(RΛ(f))(x) = f(x)−
n∑

j=1

〈gj , f〉 ·
gj↓

〈gj , gj↓〉
,

‖(RΛ(f))‖ ≤ sup
x∈D
|f(x)|+

n∑
j=1

supx∈D |gj↓ (x)|
〈gj , gj↓〉

· |〈gj , f〉|.

Finally, from (5) we have 〈gj , f〉 =
〈 n∑

i=1

cj,i · λν
i , f

〉
=

n∑
i=1

cj,i · λi(f). �

We are interested in analysing formula (17) from a computational point of view.
The Gauss elimination by segments algorithm gives us both the basis (gj↓)n

i=1

and the inner products 〈gj , gj ↓〉. We study the possibility to obtain the coef-
ficients cj,i from (5) using the outputs of this algorithm. Let C = [ci,j ]ni,j=1

and C−1 = [c̃i,j ]ni,j=1. The generating functions are λν
i =

n∑
j=1

c̃i,j · gj. Let mα =

xα, α ∈ Nd, be the first n monomials taken in inverse lexicographical order. Then

λi(mα) = 〈λν
i , mα〉 =

n∑
j=1

c̃i,j ·Dαgj(0). From (8) we can write Dαgj(0) = Gj,α.

Therefore, the coefficients c̃i,j are given by the system
n∑

j=1

c̃i,j ·Gj,α = λi(mα)

which can be solved using the classical Gauss elimination method. Thus, by
inversion of the matrix C−1 we obtain the coefficients ci,j .

Proposition 2. Using the Gauss elimination by segments method, the coeffi-
cients cj,i from (5) are

cj,i = Bj,i · Uj,j . (18)

Proof. We use (9) and (10) in (7), and then compare the result with (13). �
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Theorem 6. Using the notation from this section, an estimate of the remainder
of quadrature formula (1) is

‖Rn(f)‖ ≤ S(D) · sup
x∈D
|f(x)|+

n∑
j=1

Mj

〈gj, gj↓〉
·

∑
|α|=kj

Gj,α

α!
· Iα,

where Iα are the moments from (14) and S(D) =
∫

D

dx.

Proof. We integrate inequality (17) over D, and take into account (9). Let us
mention that kj is in fact the degree of the polynomial gj↓. �

3 The Exactness Degree of the Quadrature Formula

Definition 1. The quadrature formula (1) is said to have exactness degree r ∈
N, if R(p) = 0 for every p ∈ Πk, k ≤ r, and there exists a polynomial p of degree
r + 1, such that R(p) 	= 0.

Let λ 	∈ Λ be an arbitrary functional. We define

εν
Λ,λ = (1 − L∗

Λ)(λν), (19)

with L∗
Λ given in (16) and let r = deg(εν

Λ,λ↓).
In [6] we proved that if HΛ↓	= Πd

m, then for every polynomial p ∈ Πk, k < r,
λ(p−LΛ(p)) = 0, and r is the largest integer with this property. Here we prove
even more, namely, that

deg(εν
Λ,λ↓) = min{deg(p)|p ∈ Πd; λ(p) 	= 0; p ∈ ker(Λ)}. (20)

Theorem 7. The degree of exactness of the formula (1) is equal to m, if there
is an integer m ∈ N such that HΛ↓= Πd

m, and is equal to r − 1 in the other
cases, with r defined by

r = deg(εν
Λ,δx
↓),

or, equivalently,

r = min{ deg(p) | p(x) 	= 0, ∀p ∈ ker(Λ); δx 	∈ Λ}
Proof. We use (19) and (20) with λ = δx, x ∈ D, δx 	∈ Λ. �
We observe that a possibility for obtaining exactness degree equal to m in the
general quadrature formula (1) is to use sets of functionals for which HΛ↓= Πd

m.
Such a set of functionals is given in [7] and supplies us with the following result.

Proposition 3. The quadrature formula (1) has exactness degree m, if the con-
ditions Λ = ΛΘ are given by

ΛΘ =
{

λj,θk
|λj,θk

(f) = f [j](θk), θk ∈ Θ ⊂ R2
}

, j ∈ {0, . . . , m}, k ∈ {0, . . . j},

where f [k] =
∑
|α|=k

Dαf(0)(·)α

α!
.
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4 Lagrange Case

In this section we analyze the particular quadrature formula obtained from (1)
using a set of Lagrange functionals

Λ = {δθi |θi 	= θj , ∀i 	= j, i = 1, . . . , n, θi ∈ R
d}.

We are looking for computational details in Gauss elimination by segments al-
gorithm. The starting point in this algorithm is the matrix V = [λi(xα)]. We
are looking for possibilities to construct recursively this matrix, segment after
segment, starting with the segment number 0, which is a column vector with all
elements equal to one. In the Lagrange case we can obtain the segment Vk+1 of
the segmented matrix V , from the segment Vk. The segment Vk will have rk =
dim(Π0

k ) elements. Let Vk,i = (ak,α1 , . . . , ak,αrk
) be the line i of the segments Vk,

with αi ∈ Nd, |αi| = k, ordered in inverse lexicographical order. The elements of
the line i of the next segment Vk+1,i are obtained in the following way.

The first element ak,(k,0,...,0) generates d elements:

ak+1,(k+1,0,...,0) = ak,(k,0,...,0) · θi,1

ak+1,(k,1,0,...,0) = ak,(k,0,...,0) · θi,2

. . .
ak+1,(k,0,...,0,1) = ak,(k,0,...,0) · θi,d

with θi = (θi,1, . . . , θi,d).
The element ak,(k−1,1,0,...,0), will generate d− 1 elements:
ak+1,(k−1,2,0,...,0) = ak,(k−1,1,0,...,0) · θi,2

ak+1,(k−1,1,1,0,...,0) = ak,(k−1,1,0,...,0) · θi,3

. . .
ak+1,(k−1,1,0,...,0,1) = ak,(k−1,1,0,...,0) · θi,d,
and so on.
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Abstract. The dependence of the linear stability of two-time-level semi-
implicit schemes on choice of the reference temperature profile is studied.
Analysis is made for large time steps, keeping general form of such model
parameters as the number of vertical levels, their distribution, and the
values of the viscosity coefficients. The obtained results reveal more re-
strictive conditions on the reference temperature profile than those for
three-time-level schemes. Nevertheless, general conclusions are consistent
with the previous analysis: instability generated by inappropriate choice
of the temperature profile is absolute and the scheme stability can be
recovered by setting the reference temperature to be warmer than the
actual one.

1 Introduction

The complexity and nonlinearity of processes of atmospheric dynamics have
direct effect on the choice of the numerical methods used for computation of ap-
proximated solutions of the respective mathematical models. Explicit schemes
are rarely employed because of excessive restriction on time step reflecting pres-
ence of the fast acoustic and gravity waves. On the other hand, fully implicit
schemes are not used due to complexity of nonlinear systems arising at each time
step. Therefore, the most popular numerical approach is semi-implicit method,
which allows large time steps and reduces the implicit part of the scheme to
solution of linear systems [7, 11, 14].

Since early applications of the semi-implicit method in the multi-level atmo-
spheric models the phenomenon of absolute instability discovered by Burridge
[4] attracted attention of the researches [5, 12, 13]. The essence of the prob-
lem consists of appearance of instability in the part of equations responsible for
fast gravity waves, which are approximated implicitly. It was shown that this
behavior is caused by explicit treatment of the deviations from the reference
vertical temperature profile. It is essential to keep the explicit approximation of
these deviations to maintain rather simple structure of the implicit equations
at each time step. Various numerical experiments and theoretical analysis were

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 427–434, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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performed to clarify how to avoid this instability. It was discovered numerically
in [4] that instability does not appear if one choose the temperature of the refer-
ence profile warmer than the actual one. This result was later confirmed in some
particular cases of analytical models [2, 5, 12].

The main attention in these studies was paid to three-time level models be-
cause they were more popular in atmospheric modeling until the 90’s. In the
late 80’s it was shown that two-time-level schemes can support rather simple
design of the three-time-level models and still assure more accurate solutions
as applied to shallow water equations [9, 15]. Therefore, since the 90’s different
atmospheric centers start to adopt two-time-level baroclinic schemes and some
tests were employed to reveal that a similar condition of a warmer reference
temperature guarantees absolute stability of the gravity waves [6, 8, 10, 16].
However, the problem has not been solved analytically neither for three-time
level nor for two-time-level schemes. In this study we derive analytical condi-
tions of the absence and presence of absolute instability for the case related to
large time steps. We apply the techniques presented in [2] for study of two-time-
level models and the obtained results reveal slightly more restrictive conditions
on the reference temperature profile than those obtained in [2].

2 Semi-implicit Two-Time-Level Scheme and
Characteristic Equation

Using the pressure vertical coordinate p, Cartesian horizontal coordinates x and
y, and the time coordinate t, the momentum, continuity and thermodynamic
equations of the hydrostatic atmosphere linearized about a state of rest can be
written as follows [7]:

(
∂t − α∇2

)
D = −∇2Φ, ω = −

p∫

pup

Ddp, (1)

(
∂t − β∇2

)
Φ = R

plw∫

p

γ̂ωd (lnp) + RT̂ (plw)ω (plw) . (2)

Here D = ux+vy is the horizontal divergence, u, v are the horizontal components
and ω = dp/dt is the vertical component of velocity, Φ = gz is geopotential, g
is the gravitational acceleration, z is the height of the pressure surface, T is the
temperature, Γd = g/cp is the adiabatic lapse rate, γ̂ = RT̂ (Γd − Γ̂ )/gp and
Γ̂ = (gp/RT̂ )T̂p = −T̂z is the vertical lapse rate of the reference temperature
profile T̂ , R is the gas constant, cp is the specific heat at constant pressure, α
and β are the viscosity coefficients (simulating turbulence effects or numerical
dissipation), ∇2 = ∂xx + ∂yy is the horizontal Laplace operator, and pup, plw are
upper and lower pressure boundaries, respectively.

Introducing the most popular Lorenz staggered vertical grid [1], which divides
the considered atmosphere in K vertical layers with boundaries pk+1/2

pup = p1/2 < p3/2 < ... < pk−1/2 < pk+1/2 < ... < pK−1/2 < pK+1/2 = plw
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and with inner levels pk, satisfying the natural inequalities

pk−1/2 < pk < pk+1/2, k = 1, ..., K,

we can discretize equations (1), (2) as follows:

(∂t − α∇2)Dk = −∇2Φk, ωk+1/2 = −
k∑

i=1

Di(pi+1/2 − pi−1/2), (3)

(∂t−β∇2)Φk =R

[
K∑

i=k+1

(γ̂ω)i−1/2 ln
pi

pi−1
+ (γ̂ω)K+1/2 ln

pK+1/2

pK

]
+R(T̂ω)K+1/2,

(4)
where k = 1, ..., K and summation is defined to be zero if the lower limit of the
summation index exceeds the upper limit. Using the vector functions

D = (D1, ..., DK)T , Φ = (Φ1, ..., ΦK)T , ω = (ω3/2, ..., ωK+1/2)T ,

we can rewrite (3), (4) in the form
(
∂t − α∇2

)
D = −∇2Φ, ω = −BD, (∂t − β∇2)Φ = Âω. (5)

Here Â and B are the K×K upper and lower triangular matrices with the entries

aj,k = âk, j ≤ k; aj,k = 0, j > k;

âk =Rγ̂k+1/2 ln
pk+1

pk
, k = 1, ..., K−1; âK =Rγ̂K+1/2 ln

pK+1/2

pK
+RT̂K+1/2; (6)

bj,k = bk, j ≥ k; bj,k = 0, j < k; bk = pk+1/2 − pk−1/2, k = 1, ..., K. (7)

Note that âk depend on reference temperature profile and therefore matrix Â
can be considered as the value of matrix function A(T ) at T = T̂ : Â = A(T̂ ).

Substituting D for ω, we reduce the system (5) to a simpler form

(∂t − α∇2)D = −∇2Φ, (∂t − β∇2)Φ = −ĈD, (8)

where Ĉ = ÂB is the vertical structure matrix, which depends on reference tem-
perature profile and vertical discretization. It can be shown that Ĉ is oscillatory
matrix and, therefore, all its eigenvalues are real and positive [3]. This is essential
property of the matrix Ĉ used in the following analysis of linear stability.

To keep the essence of semi-implicit time-differencing in atmospheric models,
we represent the actual reference temperature profile T̂ (p) in the form T̂ = T̄ + T̃ ,
where T̄ is basic profile and T̃ is its deviation. The only term of the system (8)
that depends on T̂ is the matrix Ĉ on the right hand side of the second equation.
Therefore, we represent Ĉ=C̄+C̃, where C̄=C(T̄ )=A(T̄ )B =ĀB is the basic
matrix and C̃ is the deviation matrix. Matrix Ĉ will be called full or actual
matrix. In this paper we will consider only the cases when actual and basic
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temperature reference profiles are statically stable, that is, Γ̂ < Γd and Γ̄ < Γd.
Otherwise, the primitive differential problem is not well posed. These conditions
imply nonnegativity of matrices Â and Ā, and, consequently, Ĉ and C̄.

According to semi-implicit time discretization the basic matrix term is ap-
proximated implicitly and the deviation one is extrapolated explicitly:

Dn+1 − Dn

τ
− α∇2 Dn+1 + Dn

2
= −∇2 Φn+1 + Φn

2
, (9)

Φn+1 − Φn

τ
−β∇2 Φn+1 + Φn

2
= −C̄

Dn+1 + Dn

2
−(Ĉ−C̄)

3Dn − Dn−1

2
. (10)

Here, τ is the time step and superscripts n − 1, n, and n + 1 denote the values
at the ”old” (n− 1)τ , ”current” nτ and ”new” (n+1)τ time levels, respectively.

Applying the von Neumann method of stability analysis we consider particular
solution in the wave form(

D
Φ

)n

(x, y) =
(

W
H

)
μn exp(imxx + imyy),

where K-order vectors W,H describe the vertical structure of the amplitudes
of the individual wave with the wave numbers (mx, my) and μ is the amplifica-
tion factor describing the behavior of the amplitudes with respect to time. For
stability of the numerical scheme the amplification factors should lie in the unit
disk for any pair of the wave numbers. Substituting this representation in (9),
(10), we obtain the linear algebraic system for the vectors W,H:

μ − 1
τ

W + αm2 μ + 1
2

W = m2 μ + 1
2

H, (11)

μ2 − μ

τ
H + βm2 μ2 + μ

2
H = −C̄

μ2 + μ

2
W − (Ĉ − C̄)

3μ − 1
2

W, (12)

where m2 = m2
x + m2

y ≥ 0. The system (11), (12) has non-trivial solution iff its
determinant is equal to zero:

det{
[
(μ2 + μ)C̄ + (3μ − 1)(Ĉ − C̄)

]
τ2m2(μ + 1)

+
[
2(μ − 1) + ταm2(μ + 1)

] [
2(μ − 1) + τβm2(μ + 1)

]
μI} = 0. (13)

Note that the same kind of the characteristic equation will be obtained if
any commonly used space discretization is applied to (9), (10). Therefore, semi-
discrete system (9), (10) keeps all properties of the completely discrete
approximations.

3 Some Analytical Solutions and Numerical Tests

If there are no deviations from basic temperature, that is, Ĉ = C̄, then equation
(13) has K-fold zero root. Since that root satisfies stability condition, we can
suppose that μ �= 0 to rewrite (13) in the form

det{C̄ − λI} = 0,
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where

λ = − [2(μ − 1) + ταm2(μ + 1)][2(μ − 1) + τβm2(μ + 1)]
τ2m2(μ + 1)2

(14)

are the positive eigenvalues of the matrix C̄ ranging from 0 to 105 under usual
temperature conditions [3]. The last relation can be considered as the second
order equation for μ including positive parameter λ. In this case, it is simple
to show that all amplification factors μ lie in the unit disk. Therefore, we ob-
tain well-known result that Crank-Nicholson approximation of the system (8) is
absolutely stable.

Let us consider the important case of large values of the time step τ . Evalu-
ating the limit in (13) as τ approaches infinity, we obtain

det{[(μ2 +μ)C̄+(3μ−1)(Ĉ− C̄)]m2(μ+1)+αβm4(μ+1)(μ2 +μ)I} = 0. (15)

First, we note that μ = −1 is K-fold root, which does not violate the stability
of the scheme. Therefore (15) can be simplified to the form:

det{[(μ2 + μ)C̄ + (3μ − 1)(Ĉ − C̄)] + αβm2(μ2 + μ)I} = 0. (16)

Since (16) is still too hard for exact analysis, we consider the case αβ = 0. Then
(16) assumes the form

det[(μ2 + μ)C̄ + (3μ − 1)(Ĉ − C̄)] = 0.

Due to definition of the matrices C̄ and Ĉ we have

det[(μ2 + μ)Ā + (3μ − 1)(Â − Ā)] detB = 0.

Since detB �= 0 and the matrices Ā and Â are upper triangular, the last equation
transforms to

K∏
k=1

[(μ2 + μ)āk + (3μ − 1)(âk − āk)] = 0. (17)

The solutions of (17) are

μk± =
1
2

[
2 − 3dk ±

√
9d2

k − 8dk

]
, dk =

âk

āk
> 0 , k = 1, ..., K.

If 9d2
k − 8dk ≤ 0, that is, dk ≤ 8/9, then

|μk±|2 = 1 − dk < 1.

If dk > 8/9, then |μk−| > |μk+| and solution of inequality |μk−| ≤ 1 shows that
the last is true iff dk ≤ 1. Joining two considered evaluations, we obtain that the
scheme is stable for the large time steps iff

0 < âk ≤ āk , k = 1, ..., K. (18)
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Due to (6), the last inequality can be rewritten as follows

T̂k+1/2(Γd − Γ̂k+1/2) ≤ T̄k+1/2(Γd − Γ̄k+1/2) , k = 1, ..., K − 1; (19)

[T̂ (Γd−Γ̂ +ξ)]K+1/2 ≤ [T̄ (Γd−Γ̄ +ξ)]K+1/2, ξK+1/2 =
g

R

(
1

pK+1/2
ln

pK+1/2

pK

)−1

.

(20)
If actual and basic temperature profiles have constant lapse rates Γ̂ and Γ̄ , then

T̂k+1/2 = T̂K+1/2

(
pk+1/2

pK+1/2

)RΓ̂ /g

, T̄k+1/2 = T̄K+1/2

(
pk+1/2

pK+1/2

)RΓ̄ /g

, k = 1, ..., K−1

and conditions (19) take the form

(
pk+1/2

pK+1/2

)R(Γ̂−Γ̄ )/g

≤
T̄K+1/2(Γd − Γ̄ )

T̂K+1/2(Γd − Γ̂ )
, k = 1, ..., K − 1. (21)

If we assume that (21) should be satisfied for arbitrary vertical grid, then it
is equivalent to condition

Γ̄ ≤ Γ̂ . (22)

In fact, if (22) is broken, then the function in the left hand side of (21) has the
negative exponent and, therefore, there exist such small values of pk+1/2 that
the exponential function will be greater than the constant in the right hand side
of (21). Note that (22) is not necessary condition for fixed vertical discretization
with pup > 0, because for the fixed smallest pressure value p1/2 = pup one can
find such lapse rates Γ̄ and Γ̂ that (22) is not satisfied, but (21) holds.

It worth to note that obtained stability conditions (18) are two times more
restrictive for basic temperature profile than those for three-time-level scheme
[2]. However, the resulting condition (22), which assures stability for arbitrary
distribution of the vertical levels under constant lapse rates is the same. The
difference between conditions for two- and three-time-level models can be shown
numerically for specific vertical grids when condition (22) is broken. One of
these cases is presented in Fig.1 and 2. The modulus of amplification factor is
drawn as function of time step for three- and two-time-level models (Fig.1 and 2,
respectively). The same vertical discretization characteristics were used for both
experiments, namely: vertical grid composed of two levels, basic temperature
profile defined by surface temperature T̄5/2 = 273K and constant lapse rate
Γ̄ = 0.006K/m, and actual temperature profile defined by surface temperature
T̂5/2 = 273K and constant lapse rate Γ̂ = 0.005K/m. Four different curves in
each graph correspond to different values of the viscosity coefficients: α = β = 0
- solid curve, α = β = 1 - dashed curve, α = β = 10 - dot-dashed curve, and
α = β = 100 - dotted curve. Evidently, condition (22) is violated, however three-
time level scheme is absolutely stability, while two-time-level scheme becomes
unstable. The used implicit viscosity can recover stability of the two-time-level
scheme at least for small time steps if sufficiently great viscosity coefficients are
applied (α = β ≥ 10).
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Fig. 1. Amplification factor as function of time step for three-time-level scheme
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Fig. 2. Amplification factor as function of time step for two-time-level scheme
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Studying the areas of violation of condition (22) we have fixed all the above
parameters, except for the values of Γ̂ . It was found that three-time-level scheme
becomes unstable only for Γ̂ ≤ 0.003K/m and two-time-level scheme is unstable
practically for all values Γ̂ < Γ̄ (we have tested the values of Γ̂ in the interval
[0.005K/m, 0.006K/m] with step ΔΓ̂ = 0.0005K/m and the only value of ab-
solute stability was Γ̂ = 0.006K/m). Similar experiments were carried out for
thirty-level vertical grid and similar results were obtained.
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Abstract. In this study we apply the singular value decomposition
(SVD) technique of the so-called ‘observability’ matrix to analyse the in-
formation content of observations in 4D-Var assimilation procedures. Us-
ing a simple one-dimensional transport equation, the relationship
between the optimal state estimate and the right singular vectors of
the observability matrix is examined. It is shown the importance of the
value of the variance ratio, between the variances of the background and
the observational errors, in maximizing the information that can be ex-
tracted from the observations by using Tikhonov regularization theory.
Numerical results are presented.

1 Introduction

One of the popular methods used to examine the information content in dynami-
cal systems is the singular value decomposition (SVD). In this paper we describe
a technique which uses the SVD of the so-called ‘observability’ matrix in 4D-Var
assimilation procedures ([7], [8]), and then apply it to a simple one-dimensional
transport model. We examine the critical features in this assimilation process,
assuming for simplicity the linearity of the model and of the observation operator,
and the prior (background) error and observational errors are considered to be
uncorrelated with fixed variance.

The 4D-Var data assimilation scheme is used here for a system governed by
the following discrete linear equations ([1], [2], [9], [10]):

ck+1 = M(tk+1, tk)ck , cobs
k = Hkck + δk , (1)

for k = 0, . . . , N − 1. Here M(tk+1, tk) denotes the system matrix describing the
evolution of the states from tk to time tk+1, cobs

k ∈ IRpk represents a vector of
pk observations at time tk, and Hk ∈ IRn×pk is the observation operator that
generally includes transformations and grid interpolations. The observational
errors δk ∈ IRpk are assumed to be unbiased, serially uncorrelated, Gaussian
random vectors with covariance matrices Rk ∈ IRpk×pk .
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A prior estimate, or ‘background estimate’, cb
0 of the initial state c0 is assumed

to be known and the initial random errors (c0 − cb
0) are assumed to be Gaussian

with covariance matrix B0 ∈ IRn×n.
The aim of the data asimilation is to minimize the square error between the

model predictions and the observed system states, weighted by the inverse of the
covariance matrices, over the assimilation interval. The initial state c0 is treated
as the required control variable in the optimization process. Thus, the objective
function associated with the data assimilation for (1) is expressed by

J =
1
2
(c0 − cb

0)
T B−1

0 (c0 − cb
0) +

1
2
(Hc0 − cobs)T R−1(Hc0 − cobs) , (2)

where
H = [HT

0 , (H1M(t1, t0))T , . . . , (HN−1M(tN−1, t0))T ]T , (3)

(cobs)T = [(cobs
0 )T , (cobs

1 )T , . . . , (cobs
N−1)

T ] , (4)

and R is a block diagonal matrix with diagonal blocks equal to Rj correspond-
ing to the observation operators Hj . The matrix H is known as the observability
matrix ([7]). The solution to the optimization problem is then given explicitly by

c0 = cb
0 +

(
B−1

0 + HT R−1H
)−1

HT R−1d , where d = cobs − Hcb
0 . (5)

2 Definition of the Model

Our model under investigation is a pure one-dimensional transport equation
defined by the following partial differential equation ([10]):

∂c
∂t

= −V ∂c
∂x

, x ∈ [0, 2π], t ∈ [0, T ], c(x, 0) = f(x) . (6)

The initial condition f and function V are chosen to be f(x) = sin(x) and
V(x) = 6x(2π − x)/(4π2). Then the exact (analytical) solution of (6) is given
by cexact(x, t) = sin(2πx/(x +(2π − x) exp(3t/π))). Details about the numerical
aspects and implementation of an data assimilation algorithm for this model are
presented in [10].

3 Singular Value Decomposition, Filter Factors and
Regularization Methods

Assume that the correlation matrices in (2) are diagonal matrices given by B0 =
σ2

b I and R = σ2
oI, with I denoting the identity matrix of appropriate order.

Here σ2
b and σ2

o represent the variances for the background and observational
errors, respectively. We now define the singular value decomposition (SVD) of
the observability matrix H given by (3) to be

H = UΛVT , (7)
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where Λ = diag{λj}. The scalars λj are the singular values of H, and the left and
right singular vectors vj and uj are given by the columns of V and U, respectively.
Applying the SDV in (5) enables us to obtain the optimal analysis as

c0 = cb
0 +

∑
j

λ2
j

μ2 + λ2
j

uT
j d
λj

vj , (8)

where μ2 = σ2
o/σ2

b . The increments made to the prior estimate cb
0 by the assimi-

lation procedure are thus expressed by a linear combination of the right singular
vectors of H, weighted by the two factors

fj =
λ2

j

μ2 + λ2
j

, cj =
uT

j d
λj

. (9)

If there is no background (prior) estimate constraining the solution, so that
μ2 = 0, then the ‘filter factor’ fj = 1, for all j (see Figure 1), and the weight
cj given to each singular vector in the increment is proportional to the angle
between the ‘innovation’ vector d and the corresponding left singular vector uj .
Large values of cj indicate that the corresponding singular vector has a significant
contribution to the correct reconstruction of the system state. If a background
(prior) estimate is given, so that μ2 > 0, then the weighting on each singular
vector is reduced by the corresponding filter factor fj. For noisy observations
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Fig. 2. Results of the SVD applied to the observability matrix H, corresponding to
each singular vector index

(μ2 � λ2
j), the contribution to the analysis from the singular vector is damped

and the observational information is strongly filtered (Figure 1).
The left and right singular vectors corresponding to our numerical example de-

scribed in the next section are shown in the plots of Figure 2. We notice that for
noisy observations, the weights cj are seen to grow as the singular values decay. If
the corresponding singular vectors are not sufficiently filtered, then the estimated
states may be very inaccurate due to the noise. This filtering is a vital aspect of
the assimilation process, as both background and observations contain errors.

Several techniques for determining μ2 are given in the literature. Good choices
for μ2 can be made by using Tikhonov regularization theory ([5]). We first re-
formulate the objective function (2) for the variational asimilation problem by
making a change of variables. We let CB and CR be such that B0 = σ2

bCB ,
R = σ2

oCR, and define ξ = C
−1/2
B (c0 − cb

0), H̃ = C−1/2
R HC

1/2
B and d̃ = C−1/2

R d.
As we already mentioned before, for simplicity in our numerical approach, we
set CB and CR to be identity matrices. For the linear model (1), minimizing the
objective function (2) is then equivalent to minimizing the function

J̃ = μ2‖ξ‖2
2 + ‖H̃ξ − d̃‖2

2 , (10)

where ‖ · ‖2 denotes 2-norm.
A simple (although computationally still expensive) method is the L-Curve

technique illustrated in Figure 3. For more precise computation, the Generalized
Cross Validation (GCV) technique provides an algorithm for determining the
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Fig. 3. L-curve based on Tikhonov theory, with the detection of the corner at the value
0.0077095

point of maximum curvature ([3]). Generalized cross-validation offers a way to
estimate appropriate values of parameters such as the truncation parameter k
in truncated singular value decomposition.

4 Numerical Results and Interpretation

This section presents numerical results in data assimilation applying SVD theory
and gives some interpretations. Figure 4 contains the plots of the exact and
computed states of the model (6), together with the initial condition. By means
of a perturbed initial condition (plot C) we generated the observed state, cobs.
We set in our numerical approach T = 1, and used 9 discretization points in
space and 24 points in time interval [0, 1].

The choice of the specified value of the variance ratio μ2 is crucial to en-
able the extraction of the maximum information available in the observations.
Figure 5 indicates that the assimilation accuracy of the initial condition c0

strongly depends on the appropriate choice of μ2. This plot presents numeri-
cal results by using a finer mesh: 19 discretization points in space and 60 time
points.

For the Tikhonov regularization, we seek to obtain a curve that would have a
flat portion where a good value of the regularization parameter μ2 can be located.
Figure 3 contains the results of using L-curve method to obtain the value of the
regularization parameter μ2 ([6]). This value was detected at μ2 = 7.7095 ·10−3.
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Fig. 4. Profiles for the model state: exact, computed and observed (plot A, B and D,
respectively). Plot C contains the initial condition for the exact and perturbed solution.
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Table 1. Regularization data for H̃ = C
−1/2
R HC

1/2
B matrix

Point Variance ratio: Solution Norm : Relative Error: Difference
i μ2

i ||ξμ2
i
|| ‖ξμ2

i
− ξexact‖/‖ξexact‖ ‖ξμ2

i
‖ − ‖ξμ2

i−1
‖

1 7.78265e+0 7.76665e–1 5.02071e–1 –

25 4.46679e+0 1.17087e+0 2.49336e–1 1.36635e–2

50 2.50505e+0 1.41224e+0 9.45874e–2 6.29749e–3

75 1.40487e+0 1.51016e+0 3.18119e–2 2.27156e–3

100 7.87876e–1 1.54382e+0 1.02283e–2 7.47413e–4

125 4.41854e–1 1.55472e+0 3.23970e–3 2.38483e–4

150 2.47799e–1 1.55818e+0 1.02120e–3 7.53488e–5

175 1.38970e–1 1.55928e+0 3.21408e–4 2.37323e–5

200 7.79365e–2 1.55962e+0 1.01110e–4 7.46754e–6

225 4.37081e–2 1.55973e+0 3.18028e–5 2.34899e–6

250 2.45122e–2 1.55976e+0 1.00027e–5 7.38825e–7

275 1.37468e–2 1.55977e+0 3.14602e–6 2.32375e–7

300 7.70946e–3 1.55978e+0 9.89474e–7 7.30858e–8

The data contained in Table 1 were performed using a mesh grid of 300
points. The mesh grid is constructed using the method employed in the Matlab
code lcurve.m of Hansen ([4]). The method can be described as follows. Let
μ1 = λmax(H̃) and μl be positive but smaller than max{λmin(H̃), λmax(H̃) · ε},
where ε is the machine roundoff unit, λmax(H̃) and λmin(H̃) are the largest and
smallest singular values of A. We want to fill l−2 numbers μ2, . . . , μl−1 betweeen
λ1 and λl . Let νi = ln(1/μi), i = 1, 2, . . . , l . Since lnx is an increasing function
of x, we have ν1 < ν2 < · · · < νl . Let h = (νl − ν1)/(l − 1) = ln(μ1/μl)l−1. Put
νi = ν1 + (i − 1)h, i = 1, . . . , l . Then νi’s form a uniform mesh grid. Converting
νi back to μi, we obtain a mesh grid for μ: μ1 > μ2 > · · · > μl , with μi =
μ1 (μl/μ1)

(i−1)/(l−1), i = 1, 2, . . . , l .
Table 1 gives some of the 300 data points along with some other quantities.

Here, the fourth column lists, ‖ξμ2
i
− ξexact‖/‖ξexact‖, and the fifth column lists

‖ξμ2
i
‖ − ‖ξμ2

i−1
‖. Notice that (‖ξμ2

i
‖ − ‖ξμ2

i−1
‖)/h gives an approximate slope of

the curve in Figure 3 at νi. It can be observed that the smallest difference and
therefore the minimum slope over the mesh grid occures at index i = 300, at
which μ2

300 ≈ 7.70946 × 10−3 . It can be seen that the relative error reaches its
minimum value 9.89474 × 10−7. For this problem, we may regard μ2

300 as the
optimal value of the regularization parameter for this choice of the μ2 grid.

5 Conclusions

An analysis of the 4D-Var assimilation procedure using a singular value decompo-
sition (SVD) technique was presented, and the results of the numerical experi-
ments were interpreted in terms of the singular values and singular vectors of the
‘observability’ matrix of the studied system. We showed that the filtering effect of
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the background state is controlled by a ‘regularization’ parameter defined as the
variance ratio between the observation and background error variances. We also
established that a good choice of the regularization parameter can significantly
improve the reconstruction of the states in unobserved regions. Applicable tech-
niques and results for selecting a good choice of this parameter, based on Tikhonov
regularization theory and generalized cross-validation ([7], [8]) are also described.
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New Operator Splitting Methods and Their

Analysis

István Faragó

Eötvös Loránd University, Pázmány P. s. 1/c, 1117 Budapest, Hungary

Abstract. In this paper we give a short overview of some traditional op-
erator splitting methods. Then we introduce two new methods, namely
the additive splitting and the iterated splitting. We analyze these meth-
ods and compare them to the traditional ones.

1 Introduction

Operator splitting is a powerful method for the numerical investigation of
complex (physical) time-dependent models, where the stationary (elliptic) part
consists of a sum of several simpler operators (processes). As an example, we
can recall the phenomenon of the air-pollution process [5] and the Maxwell equa-
tions [4]. These tasks are very complicated because it is described by a system
of nonlinear partial differential equations. Therefore, the analytical solution is
impossible to find, moreover, the numerical modelling with direct discretization
is also hopeless from a practical point of view.

Operator splitting is a widely used technique for solving such
complex problems. The basic idea is to split the original problem into a se-
quence of smaller (“simpler”) problems. The general scheme of this approach
can be formulated as follows:

1. We select a small positive time step (τ), and divide the whole time interval
into subintervals of length τ ;

2. On each subinterval we consecutively solve the time-dependent problems,
each of which involves only one physical process;

3. We pass to the next time sub-interval.

We mention that the different problems are connected via the initial conditions.
In our investigation we will assume that there are only two operators, i.e. we

will demonstrate our methods on the Cauchy problem of the form

dw(t)
dt

= (A + B)w(t), t ∈ (0, T ]

w(0) = w0.

⎫⎪⎬
⎪⎭ (1)

We assume that the operators are bounded linear operators, and hence the
exact solution is w(t) = exp(t(A + B))w(0).

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 443–450, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Traditional Operator Splitting Methods

In this section we describe the different known operator splitting methods which
have been widely used in different applications. For more details, see [1], [3].

2.1 Sequential Splitting

The sequential splitting, which is historically the first one, has a simple algorithm:
first we solve the Cauchy problem with the first operator and the original initial
condition, and next the Cauchy problem corresponding to the second operator,
using the solution of the first problem at the end-point of the time-subinterval
as initial condition. This means that the algorithm is the following:

dwn
1

dt
(t) = Awn

1 (t), (n − 1)τ < t ≤ nτ,

wn
1 ((n − 1)τ) = wN

sp((n − 1)τ),

(2)

and
dwn

2

dt
(t) = Bwn

2 (t), (n − 1)τ < t ≤ nτ,

wn
2 ((n − 1)τ) = wn

1 (nτ),

(3)

for n = 1, 2, . . .N . Then the split solution at the mesh-points t = nτ is defined as

wN
sp(nτ) = wn

2 (nτ).

Here wN
sp(0) = w0 is given from the initial condition.

2.2 Strang–Marchuk Splitting

The next operator splitting, which is called Strang–Marchuk splitting, has a more
complicated algorithm. The basic idea is that we divide the split time-subinterval
into two parts. Then, as in the sequential splitting, successively we solve the
problems:

1. on the first half with the operator A;
2. on the whole interval with the operator B;
3. on the second half again with the operator A.

The different tasks are again connected with the initial conditions. The method
has the following computational algorithm:

dwn
1

dt
(t) = Awn

1 (t), (n − 1)τ < t ≤ (n − 0.5)τ,

wn
1 ((n − 1)τ) = wN

sp((n − 1)τ),

(4)
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dwn
2

dt
(t) = Bwn

2 (t), (n − 1)τ < t ≤ nτ,

wn
2 ((n − 1)τ) = wn

1 ((n − 0.5)τ),

(5)

dwn
3

dt
(t) = Awn

3 (t), (n − 0.5)τ < t ≤ nτ,

wn
3 ((n − 0.5)τ) = wn

2 (nτ).

(6)

Then the split solution at the mesh-points is defined as

wN
sp(nτ) = wn

3 (nτ).

Here n = 1, 2, . . .N , and wN
sp(0) = w0.

2.3 Symmetrically Weighted Sequential Splitting

Let us notice that the sequential splitting is not symmetric w.r.t. the ordering
of the operators. The third operator splitting, called symmetrically weighted
sequential splitting, is a combination of two sequential splittings with different
ordering. This makes the splitting symmetric and, as we will see later, more
accurate. The method has the following computational algorithm:

dun
1 (t)
dt

= Aun
1 (t), (n − 1) < t ≤ nτ,

un
1 ((n − 1)τ) = wN

sp((n − 1)τ);

(7)

dun
2 (t)
dt

= Bun
2 (t), (n − 1) < t ≤ nτ,

un
2 ((n − 1)τ) = un

1 (nτ);

(8)

and
dvn

1 (t)
dt

= Bvn
1 (t), (n − 1) < t ≤ nτ,

vn
1 ((n − 1)τ) = wN

sp((n − 1)τ);

(9)

dvn
2 (t)
dt

= Avn
2 (t), (n − 1) < t ≤ nτ,

vn
2 ((n − 1)τ) = vn

1 (nτ).

(10)

The split solution at the mesh-points is defined as

wN
sp(nτ) :=

un
2 (nτ) + vn

2 (nτ)
2

(11)

for n = 1, 2, . . .N , where wN
sp(0) = w0.
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2.4 Some Remarks on the Operator Splitting Methods

The operator splitting methods have several specific properties. Some of them
are listed below.

a. Operator splitting methods can be viewed as time-discretization methods,
which define exponential approximations to the exact solution at the mesh-
points t = nτ. Hence, as for any arbitrary time-discretization method, we can
introduce the notion of the discretization error, called local splitting error.
It is defined as

Errsp(τ) = w(τ) − wN
sp(τ).

b. When τ tends to zero, the local splitting error should tend to zero, too. Its
order defines the so-called order of the splitting, namely, when Errsp(τ) =
O(τp+1) then the splitting is called a p-th order splitting. One can prove
that for the traditional splittings we have:
1. the sequential splitting is of first order;
2. the Strang–Marchuk splitting is of second order;
3. the symmetrically weighted sequential splitting is of second order.

Hence, the highest accuracy which can be achieved by these splittings is
equal to two.

c. Between two mesh-points the above defined traditional splitting methods are
not consistent, i.e., we obtain approximations to the exact solution only at
the mesh-points. In order to show this, let us analyze the sequential splitting.
(The proof for the other splittings is similar.) Using the formulas (14) and
(15) on the time interval [0, τ ] we obtain

wn
2 (t) = exp(tB) exp(τA)w0. (12)

Hence, for the local splitting error at any time t ∈ [0, τ ] we get

w(t) − wn
2 (t) = (t − τ)Aw0 + O(t2). (13)

This shows that we have consistency only for t = τ.

3 New Operator Splittings

The property c. of the traditional splittings, mentioned in Section 2.4, implies
the following disadvantage. When we apply some numerical method to the sub-
problems with time discretization step-size Δt, which is much less than τ , we
cannot use the intermediate numerical results as an approximation to the original
solution, because these methods are not consistent on the split time-subinterval.
According to property b., a further problem of the traditional splitting methods
is that (in lack of commutativity of the operators) we cannot achieve high-order
(i.e., of order more than two) accuracy. This order barrier may cause serious
restriction during the applications.

These problems gave the motivation to create some newoperator splitting meth-
odswith improvedproperties. In what followswedefine twonew splitting methods.
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3.1 Additive Splitting

This method is based on a simple idea: we solve the different sub-problems by
using the same initial function. We obtain the split solution by the use of these
results and the initial condition. The algorithm is the following:

dwn
1

dt
(t) = Awn

1 (t), (n − 1)τ < t ≤ nτ,

wn
1 ((n − 1)τ) = wN

sp((n − 1)τ),

(14)

and
dwn

2

dt
(t) = Bwn

2 (t), (n − 1)τ < t ≤ nτ,

wn
2 ((n − 1)τ) = wN

sp((n − 1)τ).

(15)

Then the split solution at the mesh-points is defined as

wN
sp(nτ) = wn

1 (nτ) + wn
2 (nτ) − wN

sp((n − 1)τ).

Here n = 1, 2, . . .N , where wN
sp(0) = w0.

One can see the main advantage of this method at first sight: it can be par-
allelized on the operator level in a natural way (like the symmetrically weighted
sequential splitting).

The local splitting error (for bounded operators) can be investigated directly.

Theorem 1. The additive splitting is a first order accurate splitting method.

Proof. The solution of the additive splitting at t = τ is defined as

wN
sp(τ) = [exp(Aτ) + exp(Bτ) − I]w0, (16)

where I denotes the identity operator. Hence, we get

wN
sp(τ) =

(
I + Aτ +

1
2
A2τ2 + I + Bτ +

1
2
B2τ2 − I

)
w0 + O(τ3) =

=
(
I + (A + B)τ + 1

2 (A2 + B2)τ2
)
w0 + O(τ3).

(17)

Comparing this expression with the similar Taylor expansion of the exact solu-
tion, we get the local splitting error

Errsp(τ) =
1
2
(
(AB + BA)τ2

)
w0 + O(τ3), (18)

which proves the statement.

The following statement shows that the additive splitting approximates the exact
solution not only at the mesh-points.
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Corollary 1. The additive splitting approximates the exact solution on the
whole split time interval [0, τ ].

Proof. The exact solution of the additive splitting at t ∈ [0, τ ] is

wN
sp(t) = [exp(At) + exp(Bt) − I]w0. (19)

Hence, at any point of the time interval we have

Errsp(t) =
1
2
(
(AB + BA)t2

)
w0 + O(t3), (20)

which proves the statement.

3.2 Iterated Splitting

The method was introduced in [2]. This splitting method can be implemented
as the continuous variant of the well-known ADI method. In this sense, it is
the iterative improvement of the split result on some fixed split time interval
[nτ, (n + 1)τ ], and its algorithm reads as follows:

dwn
i (t)
dt

= Awn
i (t) + Bwn

i−1(t), with wn
i (tn) = wN

sp(nτ) (21)

dwn
i+1

dt
= Awn

i (t) + Bwn
i+1(t), with wn

i+1(t
n) = wN

sp(nτ) (22)

for i = 1, 3, 5, . . . , 2m− 1, where wn
0 is a fixed starting function for the iteration.

(The index i denotes the number of the iteration on the fixed n-th time sub-
interval.) Then the split solution at the mesh-points is defined as

wN
sp((n + 1)τ) = wn

2m((n + 1)τ).

This method can be considered as an operator splitting method because we
decompose the original problem into a sequence of two simpler sub-problems,
in which the first sub-problem should be solved for the first operator, while the
second sub-problem for the second operator. This splitting is formally similar
to the sequential splitting, but here each split sub-problem contains the other
operator as well with some previously defined approximate solution.

Theorem 2. Assume that on the time interval [0, τ ] the starting function w0
0(t)

for the iterated splitting satisfies the condition

w0
0(0) = w0. (23)

Then the iterated splitting is consistent.

Proof. For i = 1 the exact solution of (21) is

w0
1(t) = exp(tA)w0 +

∫ t

0

exp((t − s)A)Bw0
0(s)ds, t ∈ [0, τ ]. (24)
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Using the obvious relation

w0
0(s) = w0

0(0) + O(s) = w0 + O(s), (25)

for the second term on the right side of (24) we have

∫ t

0

exp((t − s)A)Bw0
0(s)ds =

∫ t

0

[ ∞∑
n=0

1
n!

(t − s)nAn

]
B(w0 + O(s))ds =

=
∫ t

0 Bw0ds + O(t2) = tBw0 + O(t2).

(26)

On the other hand,

exp(tA)w0 = (I + tA)w0 + O(t2). (27)

Hence, putting the relations (26) and (27) into (24), we get

w0
1(t) = (I + tA + tB)w0 + O(t2), (28)

which proves the consistency.

Corollary 2. Under the condition (23) the iterated splitting is consistent al-
ready after the first iteration. Moreover, it is consistent on the whole split time
interval [0, τ ]. We can also observe that condition (23) is not only a sufficient,
but also a necessary condition of the consistency in the first iterated step. Clearly,
the simplest and most practical choice is

w0
0(t) = w0, t ∈ [0, τ ]. (29)

Next we examine the order of the local splitting error when we apply the second
step of the method, i.e., we solve (22) for i = 1, using w0

0(t) from (21).

Theorem 3. On the time interval [0, τ ] one complete step (21) –(22), under the
condition (24) results in a second order accuracy of the iterated splitting method.

Proof. Clearly, the exact solution of the problem (22) can be written as

w0
2(t) = exp(tB)w0 +

∫ t

0

exp((t − s)B)Aw0
1(s)ds. (30)

Now, using the expression (28) for w0
1(s), we get

exp((t − s)B)Aw0
1(s) = [I − (t − s)B] (A + A2s + ABs)w0 + O(s2)) =

= (A + (t − s)BA + sA2 + sAB)w0 + O(s2)).
(31)

Hence, integrating on [0, t], we get
∫ t

0

exp((t − s)B)Aw0
1(s)ds =

[
At +

1
2
t2(BA + A2 + AB)

]
w0 + O(t3). (32)
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Using the Taylor series for exp tB and (32), we obtain the statement:

w0
2(t)=(I + tB+

1
2
t2B2)w0 + (At +

1
2
t2BA +

1
2
t2A2 +

1
2
t2AB)w0 + O(t3)) =

[
I + t(A + B) + 1

2 t2(A + B)2
]
w0 + O(t3).

(33)

By mathematical induction, continuing the process, the Reader can prove

Theorem 4. Assume that on the time interval [0, τ ] we execute the iteration
(21)–(22), where the initial guess is chosen according to the condition (24).
Then each iterative step increases the order of the local splitting error by one.

4 Conclusions and Closing Remarks

We have introduced new consistent splittings, namely, the additive splitting and
the iterated splitting. The main benefit of the first splitting is its algorithmic
simplicity, more precisely its natural parallelization on the operator level. The
main benefit of the iterated splitting is its high accuracy. However, these methods
have some drawbacks, too. We list some of them.

1. Stability of the additive splitting is a crucial problem and to prove it seems to
be very difficult. In practice, we have obtained a stable (and hence
convergent) solution only for small time steps.

2. The additive splitting has always first order accuracy, even for commuting
operators. Hence, it is not accurate enough for many practical applications.

3. The iterated splitting cannot be parallelized on the operator level.
4. The iterated splitting requires numerical integration in each iterative step,

which can spoil the theoretical order of the method. Therefore, the number
of the iteration should coincide with the order of the applied numerical inte-
gration method. (However, we emphasize that the values at the intermediate
integration points give consistent approximations.)
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Abstract. TM5 is a global chemistry Transport Model. It allows two-
way nested zooming which leads to possibility to run the model on rel-
atively very fine space grid (1◦ × 1◦) over selected regions (Europe is
most often used in up to now experiments but North America, Africa
and Asia can be treated separately or in combinations). The boundary
conditions for the zoomed subdomains are provided consistently from
the global model. The TM5 model is a good tool for studying some ef-
fects due to the grid refinement on global atmospheric chemistry issues
(intercontinental transport of air pollutants, etc.).

The huge increase in the number of the multi-processor platforms and
their differences leads to a need of different approaches in order to meet
the requirements for the optimality of the computer runs. The paper is
devoted to an implementation of a parallel version of the TM5 model on
a cluster of SUN Workstations and to the developing of a new parallel al-
gorithm. It is based on the decomposition, in some sense, of the compu-
tational domain supposing that the zoomed regions are more than one.
If it is assumed that the number of zoomed regions is N and the number
of the processors available is p. The processors are divided in N/p groups
and each group is responsible for the whole computational domain and one
of the zoomed regions. Some communications are needed in order to im-
pose the inner boundary conditions. The new algorithm has better parallel
feathers than the old one which is used in the inner level.

Some results concerning the CPU time, speed up and efficiency can
be found.

Keywords: air pollution modelling, global models, parallel computing.

Subject classifications: 65Y05.

1 Introduction

TM5 is a three dimensional global chemistry Transport Model. It allows two-way
nested zooming ([2]) which leads to possibility to run the model on relatively very
fine space grid (1◦ × 1◦) (longitude × latitude) over selected regions. Up to now
Europe is most often used in the experiments done (see Fig. 1), but North Amer-
ica, South America, Africa and Asia can be treated separately or in combinations
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Fig. 1. Global computational domain and zooming over Europe

with the same resolution. The coarsest space resolution is (6◦ × 4◦). In order to
allow the smooth transition between both discretizations (3◦ × 2◦) grid has been
added (see Fig. 1). The boundary conditions for the zoomed subdomains are pro-
vided consistently from the global model. The model consists of 25 vertical layers
(see Fig. 2): five layers in the boundary layer, ten layers in the free troposphere
and ten layers in the stratosphere. There is no zooming in the vertical direction
and all regions use the same vertical layer structure (hybrid sigma-pressure co-
ordinate system). TM5 is an offline model which uses preprocessed meteorologi-
cal fields from ECMWF (European Center for Medium-Range Weather Forecast),
Reading, UK. The model is a good tool for studying some effects due to the grid
refinement on global atmospheric chemistry issues (intercontinental transport of
air pollutants, interhemisphere exchange, effects of the grid refinement on the bud-
gets of the chemically active compounds, etc. ([2]).

The first of this row TM models was developed in 1988 (see [1]). Like in its
predecessor, the TM3 model, the symmetrical operating splitting is used in TM5
model. The following subproblems are solved separately:
– transport;
– emissions;
– depositions and chemistry.
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Fig. 2. The vertical structure of TM5 model

The splitting combining with tailored implicit schemes ([6]) leads to avoiding
the small time steps due to the stiff problems in chemistry and the vertical
mixing operators. Unfortunately, the symmetrical splitting can not always be
presented in a zooming algorithm. It can be seen that in the subdomains with
mesh refinement the algorithm is only partly symmetrical (see e.g. [2], p. 421,
Tabl. 1). The advection numerical scheme is based on the slope scheme ([4]) and
is mass-conserving. The convection parameterization is based on the algorithm
developed by Tiedke which can be found in [5].

TM5 model is coded in Fortran 90. The model has implemented and tested on
different high-performance computer platforms (IBM p690+, SGI Origin 3800,
MAC OSX, etc.). The Message Passing Interface (MPI) is used as a communica-
tion tool. The parallel version of the model is run parallel over tracers as well as
over vertical layers. The first one leads to good speedup in transport while the
second leads to good speedup in chemistry ([3]). During a single run, each pro-
cessor is responsible for one or more tracers during the transport phase, and the
same processor is responsible for one or more vertical layers during the chemical
part of the model. Between these two main parts of the numerical algorithm big
amount of data are swapped between processors. The last one is the bottleneck
of the parallel version of TM5 model.



454 K. Georgiev

Each time step for the three regions (European focused model) proceeds ac-
cording to the following diagram ([3]):

t −→ −→ −→ −→ −→ −→ −→ −→ −→ t + ΔT/2
6 × 4 xyz − − − − − − − − − − − − − − − − − − − − − − − − − v̂sĉ

3 × 2 ↓↓↓ xyz − − − − − − − − − vsĉ cŝv zyx − − − − − − − −− ⇑
1 × 1 ↓↓↓ xyz vsĉ cŝv zyx ↑ ↓↓↓ ĉŝv zyx xyz vsĉ ⇑

t + ΔT/2 −→ −→ −→ −→ −→ −→ −→ −→ t + ΔT
6 × 4 cŝv xyz − − − − − − − − − − − − − − − − − − − − − − − −
3 × 2 ⇓ xyz vsĉ − − − − − − − − cŝv zyx − − − − − − − −− ↑
1 × 1 ⇓ cŝv̂ zyx xyz vsĉ ⇑ ⇓ xyz vsĉ cŝv zyx ↑

where

– x - advection step in x direction;
– y - advection step in y direction;
– z - vertical exchange;
– ↑ - update parent without a swap of data;
– ⇑ - update parent with a swap parent to levels;
– ↓↓↓ - write boundary conditions before the advection step (no swap needed);
– ⇓ - write boundary conditions before the advection step (a swap child to

tracer needed);
– ĉ - chemistry step with a swap to levels;
– ŝ - sources treatment with a swap to tracer.

The huge increase in the number of the multi-processor platforms and their
differences leads to a need of different approaches in order to meet the require-
ments for the optimality of the specific computer runs.

2 An Implementation of a Parallel Version of the TM5
Model on a Cluster of SUN Workstations

As was mentioned above different parallel version of the TM5 model were imple-
mented on a number of parallel computers but not on a SUN clusters. The SUN
cluster which was used for the implementation of one parallel version of the TM5
model is located at Joint Research Center (JRS), Ispra, Italy. It consists of three
nodes and each node consists of four processors. So, the total number of the
processors available for the specific run is 12. SUN HPC ClusterTools software
which requires Solaris operating environment is used. For the communications
between processors Sun MPI, which is a highly optimized version of the Message
Passing Interface (MPI) communication library, is preferred. Among the high-
lights of Sun MPI is the full F77, C and C++ support, and only basis F90
support. The Sun Parallel File System provides high-performance file input/out-
put multiprocessor applications running in a cluster-based, distributed memory
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environment. It is optimized for large files and complex data structures and
therefore it is applicable in solving large and huge scientific problems.

Many successive runs were done in order to obtain more relevant output results
for the parallel performance of the model on the SUN platform. The averaged
results are summarized in the next table where

– the computing times (Tp) which are measured in seconds,
– the speedups which are defined as the computing time on p processors divided

by the computing time on one processor (Sp =
Tp

T2
) and

– the parallel efficiency (Ep =
Sp

p
)

are presented.

Table 1. TM5 on SUN cluster - some performance results

No. of processors CPU time (in sec) Speedup Efficiency

1 25 200 – –

2 13 500 1.87 0.93

4 8 820 2.86 0.71

9 7 380 3.41 0.38

It is well seen from the output results that effective runs from the point of
view of the parallel computations with TM5 model can be done up to four
processors, i. e. inside one node of the SUN cluster. According to us there are
two main reasons for that. First reason is that the communications between the
processors are so much that there is no good balance between computations
and communications when the number of the processors grows. The second one,
but may be more important, is that in fact, the existing SUN cluster is a hybrid
computer architecture. The cluster is distributed memory computer architecture
(communications between nodes) while each node is a shared memory. Moreover,
communications inside the nodes are much faster that these between the nodes.
These explain the relatively good speedups and parallel efficiency, when the
number of the processors used is two or four, and the jump to the very bad
parallel characteristics, when the number of the used processor is nine.

3 Some Preliminary Notes on the New Parallel Version
of the TM5 Algorithm

The new parallel version of the TM5 model is based on the existing TM5 parallel
code. In some sense it can be considered as a domain decomposition approach
to the existing already algorithm. The motivation for that more and more often
the TM5 model is used with more than one zooming area. The aim is not to
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change the original TM5 source code too much. As was mentioned in the be-
ginning of this report the parallel version of the TM5 model is run parallel over
the tracers as well as over the vertical layers when multiprocessors computer
systems are used. So, the current status of the model is determined by so called
active communicator (see [3]). Let us mentioned, for seek of completeness, that
the communicator is a MPI concept that denotes a group of processors which
are sharing information. In the existing TM5 parallel version in addition to the
main MPI communicator (MPI COMM WORLD – contains all available for
the single run processors and is always active) are added two more communi-
cators. The first one, COM TRAC, is the communicator which contains all
computer processors which are assigned to handle tracers (advection - diffusion
part, etc.). The second one, COM LEV, is the communicator which contains
all computer processors which are assigned to handle levels (chemical part of
the algorithm). Now, we will add one more communicator - COMM AREA.
This new communicator contains all computer processors which are assigned
to handle the corresponding zooming area. The simple explanation of this idea
(when the number of zooming areas is two) is given bellow but it is important
to mention that when the is only one zooming area the new parallel algorithm is
working like the existing one and COMM AREA contains all available com-
puter processors for the corresponding run.

Let us first assume that the number of the zooming areas is Nzoom and the num-
ber of the available processors (PE’s) is p. Then the PE’s are divided into Nzoom

groups, and each group is supposed to be responsible for the whole computational
domain and one zooming area based in some sense on the TM5 parallel code.

For seek of or simplicity from now on we will assume that the zooming ar-
eas in the algorithm are two, and they are Europe (eur) and North America
(nam). Moreover, we will suppose that a four processors parallel computer will
be used for making computations. Using MPI COMM RANK the proces-
sors will get ranks (myid): 0, 1, 2 and 3. The processors are divided into two
groups. The first group consists of processors with ranks 0 and 1, and it is
responsible for the global domain (glb) with a zoom over Europe. The rest of
processors with ranks 2 and 3 belong to the second group, which is responsi-
ble for the global domain with a zoom over North America. On the base of
this separation of the PE’s new communicators (COMM AREA) are defined.
Each processor has in fact two ranks (myid; myid area) – first one is correspond-
ing to MPI COMM WORLD (myid) and the second one is corresponding to
the particular group communicator COMM AREA (myid area). In our case
PE1(0; 0), PE2(1; 1), PE3(2; 0), PE4(3; 1). Let us mention that we will use
the following note PE*(myid; myid area). As there are two kinds of communi-
cations - global and local (into the groups) there are two root processors for
each group in the new parallel algorithm. The global root is as a rule PE1
(myid=0;). The group roots are the first processors in the line. So, for the first
group root area= (0; 0) and for the second group root area=(2; 0). The two ex-
isting in TM5 code communicators - COM TRAC and COM LEV now are
based NOT on MPI COMM WORLD communicator but on the specific for
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the group COMM AREA communicator and they have their own root pro-
cessors – root t and root k.

4 Conclusions

A parallel version of the global chemistry Transport model TM5 was installed
and checked on a SUN cluster. The test experiments show that when the ”clas-
sical” (with one zoom region) version is performed the runs are successful. The
speedup and the parallel efficiency are very good when up to four processors are
used for a single run. The test experiments with the new parallel algorithm and
its computer implementation are not finished yet. The first computer tests show
that the new communicator work well and erectly distributes the input/output
data and the corresponding computations between the available processors. Some
problems concerning the reading of the input data are found. These problems
not concerns the algorithm but the spacial storage of the input data.
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Abstract. In the numerical solutions of partial differential equations,
the preservation of the qualitative properties of the original problem is
a more and more important requirement. For 1D parabolic equations,
one of this properties is the so-called sign-stability: the number of sign-
changes of the solution cannot increase in time. This property is investi-
gated for the finite difference solutions, and a sufficient condition is given
to guarantee the numerical sign-stability. We prove sufficient conditions
for the sign-stability and sign-unstability of tridiagonal matrices.
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1 Introduction

Let us consider the initial boundary value problem

∂v

∂t
− ∂

∂x

(
κ

∂v

∂x

)
+ γv = 0, (x, t) ∈ (0, 1) × (0, ∞), (1)

v(x, 0) = v0(x), x ∈ (0, 1), (2)

v(0, t) = v(1, t) = 0, t ≥ 0, (3)

where the continuous function γ : [0, 1] → IR possesses the property 0 < γmin ≤
γ(x) ≤ γmax; the function κ : [0, 1] → IR fulfills the property 0 < κmin ≤ κ(x) ≤
κmax and has continuous first derivatives. A function v : [0, 1] × IR+

0 → IR is
called the solution of problem (1)-(3) if it is sufficiently smooth and satisfies
equalities (1)-(3).

Equation (1) is a heat conduction equation with linear source function. The
variables x and t play the role of the spatial and the time coordinates, respec-
tively. Operator splitting technique is generally applied for the solution of air-
pollution models. The original problem is split into subproblems, then these
� The author of the paper was supported by the National Scientific Research Found
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subproblems are solved cyclically, where the solution of one of the subproblems
will be the input of another one ([12,13]). Equation (1) can be considered also
as one of the subproblems of air-pollution models.

The heat conduction process and the heat conduction equation have a number
of characteristic qualitative properties, such as the nonnegativity preservation,
maximum-minimum principle, maximum norm contractivity, etc. It is a natural
requirement that the numerical equivalents of these properties must be valid for
the numerical solution of problem (1)-(3) too (e.g. [2,3,6]).

In the thirties, Sturm ([10]) and Pólya ([8]) showed for the case γ = 0, κ = 1
that the number of the sign-changes of the functions x �→ v(x, t) (x ∈ [0, 1])
does not grow in t. This property is called sign-stability. It was shown in [5] that
the finite difference method with the uniform spatial step-size h and with the θ
time-discretization method with the time-step τ is sign-stable for problems with
γ = 0, κ = 1 if the relation

τ

h2
≤ 1

4(1 − θ)
(4)

is satisfied. If θ = 1, then there is no upper bound for the quotient τ/h2. In
[7], we showed that condition (4) is the necessary and sufficient condition of
the uniform (independent of h) sign-stability. We extended the result also for
finite element solutions. In [11], a sufficient condition of the sign-stability is given
for the explicit finite difference solution of a semilinear parabolic problem. The
proof is based on a six-page-long linear algebraic consideration about the sign-
stability of positive tridiagonal matrices. In this paper, we shorten this proof
essentially. We formulate the linear algebraic and numerical equivalents of the
sign-stability and give sufficient conditions that guarantee the sign-stability for
the finite difference numerical solutions of problem (1)-(3). We do not suppose
the uniformity of the spatial mesh.

In the next section, the sign-stability is defined for matrices, and its sufficient
condition is given for special tridiagonal matrices. These results are applied for
the finite difference solution of (1)-(3) in Section 3.

2 Sign-Stability of Tridiagonal Matrices

Let n be a fixed natural number. In order to simplify the notations, we introduce
the sets N = {1, . . . , n}, Ji = {i − 1, i, i + 1} (i = 2, . . . , n − 1), J1 = {1, 2} and
Jn = {n − 1, n}. The elements of a matrix A ∈ IRn×n are denoted by ai,j or
(A)i,j . Moreover, we extend this notation: if one of the indices does not belong
to N , then ai,j is defined to be zero.

For a given vector x = [x1, . . . , xn]� ∈ IRn, let us denote the number of sign-
changes in the sequence x1, x2, . . . , xn, where we leave out the occurrent zero
values, by S(x). If x is the zero vector, then we set S(x) = −1. Naturally, the
trivial relations −1 ≤ S(x) ≤ n − 1 and S(x) = S(−x) hold.

Definition 1. A matrix A ∈ IRn×n is said to be sign-stable (resp. sign-unstable)
if the condition S(Ax) ≤ S(x) (resp. S(Ax) ≥ S(x)) is fulfilled for all vectors
x ∈ IRn.
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Clearly, the inverse of a regular sign-stable matrix is sign-unstable, and vice
versa. Moreover, the product of sign-stable matrices are sign-stable and the
same is true also for sign-unstable matrices. It is known that totally nonnegative
matrices (all minors are nonnegative) or minordefinite matrices (no two minors
with same order that have different sign) are sign-stable ([4,9]).

Theorem 1. Let A ∈ IRn×n be a tridiagonal matrix with the properties
(P1) ai,j > 0 if i ∈ N and j ∈ Ji,
(P2) ai,i ≥ ai,i−1 + ai,i+1 if i ∈ N (weak row-diagonal dominance).

Then the matrix A is sign-stable.

Proof. The proof is based on the LU-decomposition of A. It will be shown that
both L and U are sign-stable. This trivially implies the statement of the theorem.

It can be seen easily that, under the assumptions (P1) and (P2), the LU-
decomposition of A can be performed with the Gauss-elimination process with-
out pivoting. The matrix U has the properties:

(U0) U is an upper triangular matrix,
(U1) the main and the upper diagonal of U are positive,
(U2) all the other elements are zero.

We notice that the relation ui,i ≥ ui,i+1 (i ∈ N) is also valid but this fact will not
be used in the remainder of the proof. For the matrix L, the following properties
are valid:

(L0) L is a lower triangular matrix,
(L1) the main and the lower diagonal of L are positive,
(L2) all the other elements are zero.

We prove that the matrices U having the structure (U0) − (U2) are sign-stable.
The proof is based on the principle of induction. One can verify easily that U
is sign-stable for n = 2. Let us assume that the statement is true for k × k
matrices, and let us consider a (k + 1) × (k + 1) matrix U. We have to show
that S(y) ≤ S(x) with y = Ux for all vectors x ∈ IRk+1. Applying the standard
MATLAB notations we introduce the matrix Ũ = U(1 : k, 1 : k) and the vectors
x̃ = x(1 : k), ỹ = y(1 : k). Thus, let x ∈ IRk+1 be an arbitrary fixed vector. We
consider three different cases keeping in mind the induction hypothesis.

Case A. If xk+1 = 0, then we have S(y) = S(ỹ) = S(Ũx̃) ≤ S(x̃) = S(x).
Case B. If xk+1 > 0, then we distinguish three different cases again.
Case B1. If xk = 0, then either xk−1 = xk−2 = . . . = x1 = 0 (in this

case S(y) ≤ S(x) is trivial) or there exists an index 1 ≤ i ≤ k − 1 such that
xi �= 0 and xi+1 = . . . = xk = 0. If xi > 0, then we obtain the relations
S(y) = S(ỹ) = S(Ũx̃) ≤ S(x̃) = S(x). If xi < 0, then we have S(y) = S(ỹ) =
S(Ũx̃) + 1 ≤ S(x̃) + 1 = S(x).

Case B2. If xk > 0, then the following estimations are valid. S(y) = S(ỹ) =
S(Ũx̃) ≤ S(x̃) = S(x).

Case B3. If xk < 0, then we have to distinguish three different cases.
Case B3a. If yk > 0, then the relation S(y) = S(ỹ) ≤ S(Ũx̃)+1 ≤ S(x̃)+1 =

S(x) is valid.
Case B3b. If yk < 0, then we have S(y) = S(ỹ)+1 = S(Ũx̃)+1 ≤ S(x̃)+1 =

S(x).
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Case B3c. If yk = 0, then we have S(y) ≤ S(ỹ)+1 ≤ S(Ũx̃)+1 ≤ S(x̃)+1 =
S(x).

Case C. If xk+1 < 0, then multiplying the vector x by -1 we obtain Case B.
Thus, based on the induction principle, the sign-stability is valid for matrices

U with the properties (U0)−(U2). The sign-stability of L can be proved similarly
considering the cases x1 = 0, x1 > 0 and x1 < 0. This completes the proof.

Remark 1. In the above theorem, we proved the sign-stability directly. An
alternative could be that we show the total nonnegativity of A based on the
fact that a tridiagonal matrix A ∈ IRn×n is totally nonnegative if and only
if ai,i+1, ai+1,i ≥ 0 (i = 1, . . . , n − 1) and each main-minor of the matrix is
nonnegative ([4]).

Theorem 2. Let A ∈ IRn×n be a tridiagonal matrix with the properties
(Q1) ai,i > 0
(Q2) ai,j < 0 if i ∈ N and j ∈ Ji, j �= i,
(Q3) ai,i ≥ |ai,i−1| + |ai,i+1| if i ∈ N (weak row-diagonal dominance).

Then the matrix A is sign-unstable.

Proof. The proof is based on the LU-decomposition of A. It will be shown that
both L and U are sign-unstable. This trivially implies the statement of the
theorem.

It can be seen easily that, under the assumptions (Q1) − (Q3), the LU-
decomposition of A can be performed with the Gauss-elimination process with-
out pivoting. The matrix U has the following properties:

(U0�) U is an upper triangular matrix,
(U1�) the main diagonal is positive, the upper diagonal is negative,
(U2�) all the other elements are zero.

We notice that the relation ui,i ≥ |ui,i+1| (i ∈ N) is also valid but this fact
will not be used in the remainder of the proof. For the matrix L, the following
properties are true

(L0�) L is a lower triangular matrix,
(L1�) the main diagonal is positive, the lower diagonal is negative,
(L2�) all the other elements are zero.

We prove that the matrices U having the structure (U0�) − (U2�) are sign-
unstable. The proof is based on the principle of induction. One can verify easily
that U is sign-unstable for n = 2. Let us assume that the statement is true for
k × k matrices, and let us consider a (k + 1) × (k + 1) matrix U. We have to
show that S(y) ≥ S(x) with y = Ux for all vectors x ∈ IRk+1. We introduce the
matrix Ũ = U(1 : k, 1 : k) and the vectors x̃ = x(1 : k), ỹ = y(1 : k). Thus, let
x ∈ IRk+1 be an arbitrary fixed vector. We consider three different cases keeping
in mind the induction hypothesis.

Case A. If xk+1 = 0, then we have S(y) = S(ỹ) = S(Ũx̃) ≥ S(x̃) = S(x).
Case B. If xk+1 > 0, then we distinguish three different cases again.
Case B1. If xk = 0, then either xk−1 = xk−2 = . . . = x1 = 0 (in this

case S(y) ≥ S(x) is trivial) or there exists an index 1 ≤ i ≤ k − 1 such that
xi �= 0 and xi+1 = . . . = xk = 0. If xi > 0, then we obtain the relations
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S(y) = S(ỹ)+ 1 = S(Ũx̃)+ 2 ≥ S(x̃)+ 2 = S(x) +2 ≥ S(x). If xi < 0, then we
have S(y) = S(ỹ) + 1 = S(Ũx̃) + 1 ≥ S(x̃) + 1 = S(x).

Case B2. If xk < 0, then the following estimations are valid. S(y) = S(ỹ)+1 =
S(Ũx̃) + 1 ≥ S(x̃) + 1 = S(x).

Case B3. If xk > 0, then we have to distinguish three different cases.
Case B3a. If yk > 0, then the relation S(y) = S(ỹ) = S(Ũx̃) ≥ S(x̃) = S(x)

is valid.
Case B3b. If yk < 0, then we have S(y) = S(ỹ) + 1 ≥ S(Ũx̃) ≥ S(x̃) = S(x).
Case B3c. If yk = 0, then we have S(y) ≥ S(Ũx̃) ≥ S(x̃) = S(x).
Case C. If xk+1 < 0, then multiplying the vector x by -1 we obtain Case B.
Thus, based on the induction principle, the sign-unstability is valid for all

matrices U having the properties (U0�)-(U2�). The sign-unstability of L can be
proved similarly considering the cases x1 = 0, x1 > 0 and x1 < 0. This completes
the proof.

3 Sign-Stability of the Finite Difference Methods

In order to obtain a finite difference spatial approximation, we define a spatial
mesh Ωh with the grid points 0 = x0 < x1 < . . . < xn < xn+1 = 1, dividing
the interval [0, 1] into n+1 subintervals. Denoting the semi-discretization of the
solution v of (1)-(3) at a grid point xi by vi(t), we approximate (1) at the point
xi (i ∈ N) as

dvi(t)
dt

− vixx(t) + γivi(t) = 0, (5)

where

vixx(t) =
2

hi+1 + hi−1

(
κi+1/2

vi+1(t) − vi(t)
hi+1

− κi−1/2
vi(t) − vi−1(t)

hi−1

)
. (6)

The distance between the points xi+1 and xi is denoted by hi+1. The value
κi+1/2 denotes the approximate value of κ on the segment [xi, xi+1] (typically
the midpoint value), γi denotes the approximate value of γ at the point xi

(typically γi = γ(xi)). Applying equation (5) for i ∈ N , we arrive at a Cauchy
problem for the system of ordinary differential equations

dv(t)
dt

+ Kv(t) = 0, v(0) = [v0(x1), . . . , v0(xn)]�, (7)

where v(t) = [v1(t), . . . , vn(t)]� and K is a sparse n×n matrix with the elements

ki,i−1 =
−2κi−1/2

hi−1(hi−1 + hi+1)
, ki,i+1 =

−2κi+1/2

hi+1(hi−1 + hi+1)
, (8)

ki,i = γi +
2κi+1/2

hi+1(hi−1 + hi+1)
+

2κi−1/2

hi−1(hi−1 + hi+1)
, i ∈ N.

In order to get a fully discrete numerical scheme, we choose a time-step τ and
denote the approximation to v(jτ) by vj (j = 0, 1, . . .). To discretize (7) in time,
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we apply the θ-method (θ ∈ [0, 1] is a given parameter) and obtain the system
of linear algebraic equations

vj+1 − vj

τ
+ θKvj+1 + (1 − θ)Kvj = 0 (9)

(j = 0, 1, . . .). The choice θ = 0 results in an explicit method (explicit Euler
method), the case θ = 1 gives the implicit Euler method and the case θ = 1/2
is the Crank-Nicolson method. Iteration (9) can be rewritten with the notations
A1 = I + θτK, A2 = I − (1 − θ)τK and A = A−1

1 A2 (I ∈ IRn×n is the unit
matrix) as

vj+1 = Avj . (10)

The matrix A1 is regular, namely it is a nonsingular M -matrix ([1]), which has
nonnegative inverse.

Naturally presents itself the following definition.

Definition 2. We say that the finite difference method for problem (1)-(3) is
sign-stable on a fixed mesh Ωh,τ if the matrix A ∈ IRn×n in (10) is a sign-stable
matrix.

Theorem 3. If the condition

τ ≤ 1
(1 − θ)(γmax + 4κmax/h2

min)
(11)

is satisfied, then the finite difference method for problem (1)-(3) is sign-stable
on a fixed mesh Ωh,τ . If θ = 1, then there is no upper bound for the time-step.
Here hmin denotes the minimal step-size in the spatial discretization.

Proof. It is enough to show that the matrix A1 is sign-unstable and A2 is sign-
stable. The sign-unstability of A1 follows from the form (8) of the elements of
the matrix K and Theorem 2. The matrix A2 is a tridiagonal matrix. If θ = 1,
then A2 = I and the unit matrix is trivially sign-stable. Thus the iteration
matrix A is sign-stable without any restriction. If θ �= 1, then it is sufficient
to show that the conditions (P1)-(P2) are valid under the condition (11). The
upper and lower diagonals of A2 are positive. We show the weak row-diagonal
dominance, which clearly yields that the diagonal is also positive. This implies
the sign-stability of A2 based on Theorem 1. Thus, we have

(A2)i,i − (A2)i,i−1 − (A2)i−1,i = 1 − (1 − θ)τ(γi − 2(ki−1,i + ki,i+1)) ≥ (12)

≥ 1 − γi − 2(ki−1,i + ki,i+1)
γmax + 4κmax/h2

min

≥ 0 (i ∈ N),

where we make use of the relations |ki−1,i| ≤ κmax/h2
min, |ki,i+1| ≤ κmax/h2

min.
This completes the proof.

Remark 2. For uniform spatial meshes and for problems with γ = 0 and κ = 1,
condition (11) gives condition (4). For fixed number of spatial grid points, the
uniform mesh produces the largest possible time-step.
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Remark 3. We stress that Theorem 3 gives only a sufficient condition for the
sign-stability. For a fixed spatial mesh, we can choose greater value for τ than
the value given by equation (11). For instance, let us consider the explicit Euler
method on the uniform spatial mesh with h = 1/4 for a problem with γ = 0 and
κ = 1. In this case the iteration matrix A has the form

A = tridiag [16τ, 1 − 32τ, 16τ ].

It can be checked easily that this matrix is sign-stable if and only if τ ≤ 1/48,
which is a less restrictive condition than τ ≤ 1/64 obtained from condition (11).

Remark 4. The simple example discussed in the previous remark shows also that
the sign-stability is a stricter condition than the preservation of the nonnegativity
of the initial function. Let us choose the time-step to be τ = 5/192. Then A is
a nonnegative matrix, namely A = tridiag [5/12, 1/6, 5/12], but it is not sign-
stable: for the vector x = [1/2, 1, −1]�, for which S(x) = 1,
Ax = [1/12, −1/24, 1/4]� with S(Ax) = 2.

Remark 5. The two important linear algebraic results of Theorem 1 and Theo-
rem 2 can be applied in the numerical solutions of semilinear parabolic problems
and for problems with time-dependent coefficients too.

Remark 6. Guaranteeing the sign-stability for the first spatial derivative of the
solution we can give conditions under which the number of the peaks of the
temperature function will decrease. Under these conditions the Crank-Nicolson
method does not produce spurious oscillations.
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Abstract. The extended EUROS model has been used to calculate con-
centrations of PM10 and PM2.5 for Europe for the years 2002 and 2010
using a recent emission scenario. The obtained results for Belgium show
decreases in PM-concentrations between 5 and 26% in this period, de-
pending on the location. The contribution of anthropogenic sources in
Flanders to annual averaged PM10 concentrations amounts to 17% in
2002 and 15% in 2010 on average. The most important contribution to
PM10 concentrations originates from agricultural activities in Flanders,
whereas the sector ”traffic” is the dominant source for anthropogenic
PM2.5 in Flanders.

Keywords: Air quality modelling, aerosols, fine particulate matter,
PM2.5, PM10, emission scenarios, abatement strategies.

1 Introduction

Within the framework of the CAFE (Clean Air For Europe) initiative, the air
quality standards for 2010 and beyond are discussed, with the aim to reduce
exposure of people to high concentrations of inhalable particles in the air. These
particles are associated with strong adverse health effects ([6,2]). In order to sup-
port related air quality policy on PM10 and PM2.5 in Belgium, the integrated
air quality modelling system EUROS has been extended to model fine partic-
ulate matter (PM). Currently, modelling of mass and chemical composition of
aerosols in two size fractions (PM2.5 and PM10−2.5) is possible. The chemical
composition is expressed in terms of 7 components: ammonium, nitrate, sulphate,
elementary carbon, primary inorganic compounds, primary organic compounds
and secondary organic compounds (SOA). A validation of the model for PM10

was performed for various episodes in 2002 and 2003 ([1]). EUROS was originally
developed at RIVM in the Netherlands and is now, coupled with a state-of-the-
art user interface, an operational tool for policy support at the Interregional Cell
for the Environment (IRCEL) in Brussels.

The extended version of the EUROS model was applied for 2002 and 2010 in
order to assess current and future changes in aerosol concentrations and compo-
sitions over Belgium and Europe. The resulting impacts were evaluated for the
three regions in Belgium, namely Flanders, the Walloon region and Brussels.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 466–474, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The individual contributions of the various emission sectors were evaluated and
compared for 2002 and 2010.

Section 2 describes the EUROS model in more detail. It is explained how the
model was extended with an advanced module dealing with the complex forma-
tion of aerosols. The reference sector emissions for 2002 as used in the model
are presented and the selection of the emission scenarios for 2010 is discussed.
The results are shown and discussed in section 3, focusing on the differences in
PM10 and PM2.5 concentrations between 2002 and 2010 and on the impact of
the individual sector contributions. Conclusions with respect to policy support
in Belgium are presented in section 4.

2 Methodology

2.1 The EUROS Model

The base grid of the Eulerian grid model EUROS covers nearly whole Eu-
rope with a resolution of 60 × 60km. Since EUROS allows local grid refine-
ment, a subgrid of approximately 700 × 500km covering Belgium and the
surrounding regions with a resolution of 15 × 15km was used to perform the
simulations in more detail. As far as the meteorology is concerned, the model
uses three-dimensional input datasets derived from the ECMWF meteorolog-
ical reanalysed datasets. The vertical structure of the atmosphere is repre-
sented in EUROS by four layers: ground layer, mixing layer, reservoir layer and
top layer.

A detailed emission module describes the emission of six pollutant categories
(NOx, NMV OC, SO2, NH3 and two size fractions of particles (< 2.5μm; 2.5 −
10μm)) for 7 different emission sectors (traffic, residential heating, refineries,
solvent use, combustion, industry and agriculture). Both point sources and area
sources are included. Emission data are obtained from EMEP/CORINAIR ([8])
for the base grid and additional data from the emission inventory for Flanders
([9]). Table 1 shows the Belgian emissions for 2002.

Table 1. Belgian emissions (in Mg) for the year 2002 according to EMEP, Expert
emissions W-05emis02-V5 (2005-03-10)

EUROS-sector NH3 NMV OC NOx SO2 PM2.5 PM10−2.5

1 combustion 95 2035 47428 52131 1381 2570

2 residential 360 5134 22175 22947 4770 1884

3 refineries 0 14944 0 0 108 1308

4 industry 3439 37846 66085 74406 15154 15630

5 solvent use 0 72146 0 0 0 0

6 traffic 1370 96814 164286 8491 11054 2219

7 agriculture 73737 1082 25 26 1533 6389

Total 79000 230000 300000 158000 34000 30000
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2.2 Modelling PM10 and PM2.5

The aerosol modelling is based on the Caltech Atmospheric Chemistry Mecha-
nism (CACM, [3]) and the Model of Aerosol Dynamics, Reaction, Ionization and
Dissolution (MADRID 2, [10]). CACM is the first gas phase chemical mechanism
describing the formation of precursors of secondary organic aerosols (SOA) in
the atmosphere by a mechanistic approach. Hence it offers possibilities e.g. to
distinguish between different contributions to total SOA, such as SOA originat-
ing from anthropogenic and from biogenic VOC-emissions. The actual aerosol
module, MADRID 2, contains various algorithms originating from other state-
of-the-art aerosol models showing good performance. Additionally, MADRID 2
contains also some newly developed modules such as the equilibrium module for
secondary organic aerosols (AEC-SOA-module, [7]) which treats hydrophilic and
hydrophobic organic precursor components separately. Dynamic processes (e.g.
mass transfer and nucleation) are included in MADRID 2 as well.

A first step in the extension of EUROS towards aerosol modelling was the
implementation of CACM. It comprises 361 reactions among 122 components.
Apart from the ozone chemistry it also contains the reactions of various gener-
ations of organic compounds. These reactions can generate semi-volatile reac-
tion products which can equilibrate into the solid phase. 42 of these condens-
able products are treated in CACM. 31 products originate from anthropogenic
NMVOC-emissions and 11 products originate from biogenic NMVOC-emissions,
e.g. monoterpenes. Various routines of EUROS (e.g. NMVOC-split, background
concentrations) were adjusted to CACM.

In MADRID 2 thermodynamic equilibrium calculations are carried out via
ISORROPIA ([5]) for inorganic compounds and via the AEC-SOA-module for
organic compounds. Mass transfer between gas phase and solid phase can be
taken into account via different approaches. In this work, the CIT hybrid ap-
proach (Meng et al., 1998) was used in which a full equilibrium is assumed but
the condensing mass is distributed according to a growth law depending on par-
ticle size. As only two size fractions were simulated (PM2.5 and PM10−2.5), both
coagulation and condensational growth of particles were omitted because they
lead only to little exchange between the two size fractions in comparison to the
gas/particle mass transfer. Nucleation of new particles was treated by calculat-
ing the relative rates of new particle formation and condensation onto existing
particles. Deposition of particles was calculated following a resistance approach.

2.3 Emission Scenarios

For 2010, the Current Legislation emission scenario or CAFE-baseline scenario
(CAFE 2010 CLE) was implemented. This scenario was provided by the EMEP
Centre for Integrated Assessment Modelling (CIAM) at the International Insti-
tute for Applied Systems Analysis (IIASA) in Laxenburg, Austria. A spatially
distributed version was supplied by EMEP on a 50 × 50 km grid through their
website (www.emep.int). Table 2 shows the Belgian emissions for 2010 associated
with the CAFE 2010 CLE-scenario.
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Table 2. Belgian emissions (in Mg) for the year 2010 as provided by EMEP/CAFE
(CAFE 2010 CLE)

EUROS-sector NH3 NMV OC NOx SO2 PM2.5 PM10−2.5

1 combustion 157 1370 23834 18279 432 165

2 residential 290 4072 23649 10141 2690 367

3 refineries 0 9720 0 0 4 30

4 industry 3504 37771 66987 66113 16284 11356

5 solvent use 0 60781 0 0 0 0

6 traffic 1064 35540 117696 3949 6864 2171

7 agriculture 74372 1137 28 31 1953 5802

Total 79387 150390 232194 98513 28227 19891

3 Results and Discussion

3.1 Changes in PM10 and PM2.5 Concentrations Between 2002 and
2010

Figure 1 shows the PM10 concentrations for 2002 and 2010 as modeled by EU-
ROS. Table 3 shows the relative changes or reductions obtained in the three
Belgian regions and in Belgium itself. One can observe that in the southern part
of Belgium (Wallonia) stronger reductions are obtained than in the northern part
of Belgium (Flanders), especially for PM10. This difference is mainly caused by
the primary PM emission reductions in the neighboring countries: the current
legislation (CLE) scenario predicts much stronger reductions for 2010 in France
than in the Netherlands. This can also be observed in Figure 2, where the rel-
ative change in concentrations between 2002 and 2010 are shown for PM10 and
PM2.5. The PM10-concentrations in the Netherlands show a smaller reduction
percentage (light blue color) than its surrounding countries (dark blue and pink
color). It is clear that this situation has an immediate impact on the distribution
of PM concentrations in Belgium.

Computation results show that the contributions from anthropogenic sources in
Flanders are responsible for 17,1% of the annual averaged PM10 concentrations
in Flanders in 2002. In 2010 this contribution drops to 15,2%. For PM2.5 these
contributions are 13,9% in 2002 and 11,9% in 2010 respectively. Table 4 shows the

Table 3. Relative difference of PM10- and PM2.5-concentrations between 2002 and
2010 in the Belgian regions

max. change [%] min. change [%] avg. change [%]

Location PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Flanders -21.9 -20.7 -4.8 -8.0 -11.6 -14.8
Walonia -26.4 -24.0 -9.2 -12.5 -12.8 -14.9
Brussels -12.8 -16.5 -11.9 -15.1 -12.3 -15.8
Belgium -26.4 -24.0 -4.8 -8.0 -12.3 -14.9
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(a) (b)

Fig. 1. Annual averaged PM10 concentrations in 2002 in (a) and 2010 in (b)

(a) (b)

Fig. 2. Relative change (%)between 2002 and 2010 for the annual averaged PM10-
concentrationsin (a) and the annual averaged PM2.5-concentrations in (b)

Table 4. Reductions [%] in PM10- and PM2.5-concentrations obtained by setting all
anthropogenic emissions in Flanders to zero in 2010

max. change [%] min. change [%] avg. change [%]

Location PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Flanders -22.3 -25.3 -2.4 -1.5 -15.2 -11.9
Walonia -18.0 -15.8 -1.0 -1.1 -2.6 -14.9
Brussels -19.8 -20.6 -11.0 -12.1 -15.4 -15.8
Belgium -22.3 -25.3 -1.0 -1.1 -8.2 -14.9
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minimal, maximum and average reductions obtained in 2010 in all three regions
and Belgium when all anthropogenic emissions in Flanders are set to zero.

3.2 Changes in Sector Contributions Between 2002 and 2010

Table 5 shows the results of the calculation of the individual sector contribu-
tions for 2002 and 2010. The sectors industry, refineries and solvent use were
treated as one sector. By subsequently setting all emissions to zero in each of
the sectors, their impact on the PM10 and PM2.5 concentrations was computed.
Figure 3 again clearly shows that more than 80% of the concentrations observed
in Flanders are due to non-anthropogenic sources in Flanders or sources outside
Flanders, i.e. sources that can not be controlled by regional policy measures.
With respect to the anthropogenic sources in Flanders (contributing less than
20%), ”agriculture” is the dominant source for PM10, whereas ”traffic” is the
dominant source for PM2.5.

Table 5. Relative contributions [%] of the anthropogenic sources per sector to PM10-
and PM2.5-concentrations obtained by setting all anthropogenic emissions in one sector
in Flanders to zero

Anthropogenic contributions PM10(%) PM2.5(%) PM10(%) PM2.5(%)
from sectors in Flanders 2002 2002 2010 2010

Combustion 0.7 1.1 0.3 0.5
Residential 2.4 3.7 1.4 2.4
Refineries & industry & solvent 0.9 1.2 0.8 1.2
Trafic 4.0 5.9 3.7 5.6
Agriculture 7.5 0.5 7.6 1.0
Total 15.5 12.4 13.8 10.7

Note also that the contribution of the sector ”agriculture” to the PM10 con-
centrations is rather high. This is possibly an overestimation due to the high
emission factors that are currently used in Flanders. On the other hand, the
contribution of the sector ”industry” is possibly underestimated. Recent find-
ings have demonstrated the importance of industrial PM emissions of diffusive
nature. So far these sources of PM have not been included in the emission in-
ventory, thus their impact is not taken into account.

3.3 Non-linear Sector Contributions

Sector contributions that consist only of primary emissions of particulate matter
show a linear reduction in concentrations when diminishing the emissions. In that
case the particulate matter acts as a tracer: the dust particles are transported and
dispersed in ambient air, but do not take part in any chemical reaction. However,
this is different in the case of formation of secondary aerosols. Because of the
non-linear processes that take place when secondary aerosols are formed (nitrate,
sulphate, ammonium and SOA) a small reduction in a gaseous compound (e.g.
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Fig. 3. Contribution of anthropogenic emissions in Flanders and ”other” emissions to
PM10-concentrations and PM2.5-concentrations in Flanders in 2002

SO2) does not necessarily lead to the same amount of reduction of the secondary
compound (e.g. sulfate).

Another ”non-linear” aspect is the formation of aerosols by contributions from
two compounds that are delivered by two individual sectors. This means that
emissions from both sectors are effectively necessary for the formation of the sec-
ondary compound. An example is the formation of ammonium-nitrate through
emission contributions from the sectors traffic and agriculture. On one hand, a
lot of NOx is emitted by traffic. On the other hand, ammonia is mostly emitted
through agricultural activities (see also Table 1). When the two sector contri-
butions are considered separately, hardly any formation of secondary aerosols is
observed. When both emission sources are combined, the NOx and NH3 will
react (after transformation in the atmosphere) and ammoniumnitrate is formed,
being one of the most common reaction products in the secondary formed aerosol.
Based on this effect, it may be assumed that in the computed sector contribu-
tions, the amount of secondary formed aerosol may be underestimated for some
of the sectors.

In order to estimate this possible underestimation and the effects of non-linear
phenomena, the contributions of all 5 sectors were added up and compared with
the case where all emissions in Flanders have been removed at once. From Table
5 one can see that in 2010 the sum of the individual sector contributions adds up
to 13,8% for PM10 and 10,7% for PM2.5. From Table 4 we learn that the average
reduction obtained in 2010 by setting all sector emission in Flanders to zero is
15,2% and 11,9% respectively. Thus the effect of ”non-linear” contributions is
estimated to be an additional 1,4% for PM10 and 1,2% for PM2.5, representing
an increase of 10% - 11%.

A further possible contribution to non-linear effects is related to the spatial
distribution of the emissions and concentrations. From Tables 3 and 4 it can be
observed that the maximum impact of emission reductions can be much larger
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than the average impact. Especially the sectors ”combustion” and ”refineries,
industry and solvent use” show relatively small average contributions (as seen
in Table 5), although locally these contributions can rise to 10% or more. This
might locally lead to enhanced formation of secondary aerosols.

Finally we want to make some remarks regarding the assumptions made and
caveats observed in this study. First of all the emission factor used to estimate
the emissions for the sector ”agriculture” is very uncertain. At the moment this
emission factor is in revision. A new (and possibly lower) estimate is expected to
have a serious impact on the results, as can be deducted from Figure 3 and Table
5. Secondly, as reported before, diffusive emission sources (e.g. fugitive emissions
stemming from handling and storing activities) are not taken into account, al-
though recently they are gaining more importance in abatement strategies with
the aim to comply with the limit values for particulate matter (EU directive
1999/30/EU). A final remark concerns the emission scenario that was selected
to evaluate the situation in 2010. When carrying out this study, the CLE sce-
nario was still in discussion in the context of CAFE and can therefore not be
considered as the definite choice.

4 Conclusions

We applied the extended version of the EUROS model to evaluate the impact of
emission reductions on the concentrations of PM10 and PM2.5 in Flanders and
Belgium for 2010. Individual sector contributions were assessed and the current
and future changes in aerosol concentrations and compositions over Belgium and
Europe were addressed. Contributions from anthropogenic sources in Flanders are
found to be responsible for 17,1% of the annual averaged PM10 concentrations in
Flanders in 2002. In 2010 this contribution drops to 15,2%. For PM2.5 these contri-
butions are 13,9% in 2002 and 11,9% in 2010 respectively. Non-linear effects can
not be neglected and were found to be in the order of 10%. The results demon-
strate the severe limitations with respect to impact of national policy measures
for relatively small countries such as Belgium. It emphasizes the need for better
compliance with international agreements on transboundary air pollution.
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Abstract. Large-scale environmental models are powerful tools, de-
signed to meet the increasing demand in various environmental studies.
The atmosphere is the most dynamic component of the environment,
where the pollutants and other chemical species actively interact with
each other, and can quickly be moved in a very long distance. Therefore
the advanced modeling is usually done in a large computational domain.
Moreover, all relevant physical, chemical and photochemical processes
should be taken into account, which heavily depend on the meteorolog-
ical conditions. All this makes the air pollution modeling a huge and
rather difficult computational task, requiring a large amount of compu-
tational power. The most powerful supercomputers have been used for
the development and test runs of such a model, the Danish Eulerin Model
(DEM). Distributed parallel computing via MPI is one of the most ef-
ficient techniques in achieving good performance and getting results in
real time. The quickly advancing GRID computing technology is another
powerful tool that can be used to reach higher level of performance of
such a huge model. Both techniques and their inherent problems are dis-
cussed in this paper. Results of numerical experiments are presented and
analysed and some conclusions are drown, based on the experiments.

1 Introduction

The problem for air pollution modelling has been studied for years [8,9,15]. An
air pollution model is generally described by a system of partial differential
equations for calculating the concentrations of a number of chemical species
(pollutants and other components of the air that interact with the pollutants)
in a large 3-D domain (part of the atmosphere above the studied geographical
region). The main physical and chemical processes (horizontal and vertical wind,
diffusion, chemical reactions, emissions and deposition) should be adequately
represented in the system.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 475–482, 2007.
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The Danish Eulerian Model (DEM) [1,10,14,15] is mathematically represented
by the following system of partial differential equations:

∂cs
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where

– cs – the concentrations of the chemical species;
– u, v, w – the wind components along the coordinate axes;
– Kx, Ky, Kz – diffusion coefficients;
– Es – the emissions;
– k1s, k2s – dry / wet deposition coefficients;
– Qs(c1, c2, . . . cq) – non-linear functions describing the chemical reactions

between species under consideration [4] .

2 Splitting into Submodels

The above rather complex system (1) is split into three subsystems (submod-
els), according to the major physical and chemical processes as well as the nu-
merical methods applied in their solution. These are the horizontal advection

and diffusion (2); chemistry, emissions and deposition (3); and the vertical

exchange (4) submodels (see below).
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The discretization of the spatial derivatives in the right-hand-sides of the
sub-models (2) – (4) results in forming three systems of ordinary differential
equations. More details about the numerical methods, used in the submodels,
can be found in [1,6,7,15].

3 Parallelization Strategy

The MPI standard library routines are used to parallelize this model. The MPI
(Message Passing Interface, [5]) was initially developed as a standard communi-
cation library for distributed memory computers. Later, proving to be efficient,
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portable and easy to use, it became one of the most popular parallelization tools
for application programming. Now it can be used on much wider class of parallel
systems, including shared-memory computers and clustered systems (each node
of the cluster being a separate shared-memory machine). Thus it provides high
level of portability of the code.

Our MPI parallelization is based on the space domain partitioning [12,13].
The space domain is divided into several sub-domains (the number of the sub-
domains being equal to the number of MPI tasks). Each MPI task works on
its own sub-domain. On each time step there is no data dependency between
the MPI tasks on both the chemistry and the vertical exchange stages. This
is not so with the advection-diffusion stage. Spatial grid partitioning between
the MPI tasks requires overlapping of the inner boundaries and exchange of
certain boundary values on the neighboring subgrids for proper treatment of the
boundary conditions. The subdomains are usually too large to fit into the fast
cache memory of the target processor. In order to achieve good data locality,
the smaller (low-level tasks are grouped in chunks where appropriate for more
efficient cache utilization. A parameter CHUNKSIZE is provided in the code,
which should be tuned with respect to the cache size of the target machine. More
detailed description of the main computational stages and the parallelization
strategy can be found in [1,10,12,13,15]

4 Performance and Scalability of the Parallel Code

Results of parallel execution of the 2D MPI version of DEM for one month on
the SUN HPC system at DTU are presented in Table 1. The target system Sun-
Fire E25K consists of 72 UltraSPARC-IV dual-core CPU-s (1350 MHz), i.e. 144
CPU in total. This is the largest SMP server available for Scientific Comput-
ing in Denmark. The MPI parallel code scales very well as can be seen from the

Table 1. Results of parallel execution of the 2-D version of DEM for one month on a
cluster of SunFire E25k computers at DTU. The time for waiting on the queue is given
in the second column. The total user time and the times of the main computational
stages in seconds, as well as the corresponding (speed-up) (given next in brackets),
are shown in the last 3 columns.

The 2-D DEM on a SunFire E25k machine, CHUNKSIZE=32

PE’s Wait time Run time User time Advection Chemistry
[sec.] [sec.] time [sec.] (speed-up)

1 13 1800 1798 307 1374
2 3 904 902 (1.99) 155 (1.98) 702 (1.96)
4 158 456 454 (3.96) 78 (3.94) 346 (3.97)
8 9740 249 247 (7.28) 41 (7.49) 178 (7.72)

12 9634 182 181 (9.93) 31 (9.90) 120 (11.45)
16 9451 161 152 (11.82) 24 (12.79) 91 (15.10)
24 9184 116 107 (16.80) 17 (18.06) 60 (22.90)
32 10943 93 87 (20.67) 14 (21.93) 46 (29.87)
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speed-ups in Table 1. The system, although not heavily loaded, has a lot of users
and request of more processors can cause queueing of the job for several hours.
This time is given in the second column of the table.

5 Running DEM on Various GRID Cites

As one can see from the above results, DEM can be run efficiently on various
supercomputers. Moreover, the MPI code scales rather well on various paral-
lel machines with up to 32 PE-s. If the job is not run on a dedicated queue,
however, one should take into account the time, which the job spends wait-
ing in a queue. For relatively short jobs (as, for example, 2-D DEM for one
month period) this time can be much longer than the execution time of the
job. Moreover, the parallel queues requireing more than 8 PE-s, the waiting
time increases quickly with increasing the number of required processors, so the
time saved due to the speed-up is entirely ”eaten” by the time for waiting in
a queue.

On the other hand, there is a vast amount of low-cost computer resources,
distriuted all over the world, with free computational power. Some of them are
even faster compared to a single processor of the SunFire supercomputer from
the previous section, as seen from Table 2. Thanks to the novel GRID technology
(based on the power of Internet), this scattered free resources can be used as a
powerful computing system. If a similar job is submitted to various GRID cites,
it has a good chance to be executed with almost no delay in the queue. The
execution time, however, will vary with respect to the speed of the particular
machine. The results of such experiment are given in 2.

The sequential 2-D version of DEM has been submitted to all cites open to
the Earth Science Research group (ESR) of the EGEE grid project through
an appropriate queue (resource). Almost the half of them (14 out of 31) started
running within 5 min. from the submition, 4 – within 1 hour from the submition,
and 13 – more than an hour from the submition; 6 of the cites aborted or failed
to execute the job, the rest 25 runs were successful. Comparing the results in
both tables, one can see that most of the GRID cites finished the job in shorter
time than the parallel supercomputer on 8 or more PE’s if the queueing time
is also taken into account, in spite of the much shorter running times on the
supercomputer. This happens, because the parallel supercomputers are often
bisy and the job has to wait on a long queue, especially if a large number of
processors is required.

The possibility of some of the GRID cites to run parallel jobs (MPI jobs in
particular) has not been used yet. This is a task for the near future. By using
this possibility we can expect to decrease significantly the run time of the job (in
dependence with the degree of parallelism). The waiting time, however, will prob-
ably increase due to the larger resourse requirements, which in general require
more time to be satisfied. This is a common rule, valid for any multiprocessor
system.
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Table 2. Results from running the 2-D version of DEM with 96× 96 grid for 1 month
on the available GRID cites. The address of the cites is given in the first column, the
waiting time (while the job is in state ”scheduled”) is given in the second column,
the time for execution (wall clock) – in the third column. The same test problem,
with the same parameters, as in the previous section, is used in this experiment. The
performance of most cites (20 out of 31) seems to be similar or better than those of a
single PE of the SunFire E25k supercomputer, used in the previous section experiment.

GRID cite Wait time Run time User time Advection Chemistry
[web address] [sec.] [sec.] [sec.] [sec.] [sec.]

atlasce01.na.infn.it 41652 937 935 186 718
cclcgceli01.in2p3.fr 725 5706 2815 916 1750
ce.epcc.ed.ac.uk 78939 aborted
ce.grid.tuke.sk 60 1763 1751 279 1408
ce.hep.ntua.gr 136 1741 1736 256 1426
ce.phy.bg.ac.yu 44569 2169 2163 515 1530
ce.ui.savba.sk 51 1509 1506 221 1238
ce001.grid.bas.bg 37111 1701 1697 257 1386
ce01.ariagni.hellasgrid.gr 68 1461 1460 226 1185
ce01.isabella.grnet.gr 152 2161 2155 421 1629
ce01.kallisto.hellasgrid.gr 21520 1466 1465 226 1189
ce01.marie.hellasgrid.gr 59 1451 1448 224 1177
ce02.marie.hellasgrid.gr 28279 1518 1516 239 1225
ce1.egee.fr.cgg.com 11088 failed
ce2.egee.unile.it 253 failed
grid012.ct.infn.it 136 3569 3001 663 2189
grid10.lal.in2p3.fr 15343 1165 1161 223 900
grid8.wdcb.ru 2369 aborted
gridba2.ba.infn.it 53571 1977 1972 427 1440
gridgate.cs.tcd.ie 139 1947 1761 338 1332
griditce01.na.infn.it 1434 1952 1944 369 1477
helmsley.dur.scotgrid.ac.uk 50268 2396 2394 457 1813
hudson.datagrid.jussieu.fr 188 2641 2608 510 1958
lcgce01.gridpp.rl.ac.uk 216 1637 1613 325 1204
mu6.matrix.sara.nl 153 1526 1522 296 1148
polgrid1.in2p3.fr 34031 1546 1544 232 1263
prod-ce-01.pd.infn.it 665 1596 1591 240 1301
scaicl0.scai.fraunhofer.de 77881 aborted
spaci01.na.infn.it 224 failed
tbn20.nikhef.nl 66 1519 1518 225 1245
testbed001.grid.ici.ro 41631 2091 2083 349 1674

6 Applications

DEM has many applications in various environmental studies, forestry and wild
life protection, human health preservation, agricultural economics, global climate
changes study, etc. . Some of them are illustrated by the plots below, based on
some of the output results of the model.
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The levels of AOT40 for crops and forests respectively are given in the first
two plots for year 2004. This special characteristics are used to evaluate the
negative effect of the high ozone concentrations on the vegetation of plants (see
[2,3,11,16,17] for more detail). The next two plots are related to the effect of the
high ozone levels on the human health.

7 Conclusions and Plans for Future Work

– TheDanishEulerianModel is a complicated large-scale air pollutionmodel. Its
numerical treatment requires significant computational power, provided either
by a high-performance supercomputer or the emerging GRID technology.
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– By using splitting of the original PDE system and applying special paralleli-
zation techniques to each of the submodels we have created efficient, scalable
and highly portable parallel implementation of DEM. Important results from
various application areas can be obtained within a reasonable time.

– The powerful GRID technology allows us to achieve similar or better time re-
sults on distributed low-cost resources of the GRID, on the price of somehow
lower reliability. This is in comparison with relatively bisy supercomputers
and ordinary (not high-priority) queues.

– The portability of the parallel code, achieved by using only MPI standard
library, is essential also for its parallel GRID implementation. This is one of
our tasks for future work. Our preliminary expectations are for decreasing
sigificantly the run time and increasig the waiting time for free PE-s, but
in general best results for moderate degree of parallelism (4 or 8 PE-s).
Targeting the fastest result, the optimal trade-off would be obtainened by
experiments.
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1 Introduction

Several industrial hot spots exist in Bulgaria and detail study of every one is
worth to be done, but often incidents with high pollution levels over usually
relatively clean populated areas cause big political concern. Stara Zagora is one
of the biggest towns in Bulgaria (300 000 inhabitants) located in the middle of
the country. In the summer of 2004, two high level SO2 pollution events hap-
pened causing big public complains and even political and judicial consequences.
Analogous events happened in 2005, too. All this requires appropriate measures
to be taken by local authorities, first of all a suitable monitoring and forecasting
system to be set. For the moment such system does not exist; only ambient air
concentrations are measured in several points. This is not sufficient neither to
predict nor even to explain the cases. As far as the mathematical modeling is
alternative and supplementing tool according to the EU Framework Directive on
Air Quality (96/62/ES) and its daughter directives (see, [5,6,7,16]), an attempt
to simulate one of these events was done applying one of the most comprehensive
and up-to-science modeling tools, mainly the US EPA Model-3 system.

2 Description of the Pollution Episode

Four days, one after another, very high SO2 concentrations were observed in the
afternoon hours over Stara Zagora, leading to appearance of mist. The concen-
trations were over the alert threshold of 350 μg/m3. Keeping in mind that the
pollution covered an area of several squared kilometers, it is easy to estimate
that tones of sulphur were released over the town. As far as all this happened in
summertime and the domestic heating can not be the reason for such pollution,
it was supposed that a possible source can be the three thermal power plants
(TPPs) disposed at 40 km southeast of the town.

”Maritza-Iztok” TPPs were built in early 70s around a big lignite coal field
exploited by open-pit mining. The coals have high sulphur content so these TPPs
are the main sulphur polluters not only in Bulgaria but in all south-east Europe.
The parameters of these plants are given in Table 1, where TPP Maritza–Iztok
1, 2 and 3 are denoted with MI-1, MI-2 and MI-3. The anual SOx emission, is

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 483–491, 2007.
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Table 1. Emission parameters of ”Maritza-Iztok” TPPs

Stack SOx anual
TPP Latitude Longitude Nr Height Diame- Tempera- Flow emission %

(m) ter (m) ture (C◦) (Nm3/h (Mg)

MI-1 25.91 42.16 1 150 6 192 2116000 60139 6

MI-2 26.08 42.23 1 325 12 192 5400000 310714 50

MI-2 26.08 42.23 2 325 10 178 2900000 173572 50

MI-3 26.01 42.14 1 325 12 192 5150000 156938 16

Total emitted 701363 72
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Fig. 1. (a) Configuration of polluters and receivers in the region of Stara Zagora; (b)
Measured SO2 concentrations during the episod

about 700 000 tones, i.e. about 2000 tones daily. In the last column of Table 1,
the percentage from the total Bulgarian SOx emission is displayed.

The configuration of Stara Zagora and ”Maritza-Iztok” TPPs is given in Fig.
1 (a), the position of the measuring stations shown as well. In the town itself gas
analyzers are operating continuously. Another DOAS installation is operating
in Mogila village. Other two sampling points are operating in Radnevo and
Galabovo – small towns near TPPs.

In Fig. 1 (b), the measured SO2 concentrations are displayed. The straight
line shows the alert threshold for SO2 (350 μg/m3 = 0.131ppm). In the sampling
points, only observed data above and near these values are shown. It is clearly
seen that during all period, on a background of low SO2 concentration (under 10
ppb) a sharp rises in concentration appear in the afternoon hours. Three possible
mechanisms can explain this behavior, provided it is due to the TPPs:

a. In a stable PBL during night and morning hours the plume from high stacks
is keeping high SO2 concentrations aloft some tens of kilometers from the
sources. If a steady flow exists from southeast such concentrations will exist
over the town. The development of convective turbulence in the afternoon
hours would drag this pollution to the ground (fumigation). In the evening,
the stratification gets stable and pollution does not influence the surface
(see, [9,12] and their reference).
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b. Meandering of the plume and changes of wind direction.
c. Combination of both mechanisms.

It is quite interesting that, in spite of availability of such powerful SOx pol-
luters in the vicinity of the town, the pollution episodes are quite rare - several
times a year. The reason can be that the synoptic situations favorable for such
episodes are rare.

During the period 8-11 July 2005, a high pressure system is centered to the
southwest of British Isles at the beginning and moves over the Great Britain
at the end of the period, covering the most part of the continent. A depression
initially centered over southern France moves eastward and remains blocked in
the Balkan region. The pressure field is smooth, relatively low and blocked by
the strong highs. The airflow over Bulgaria is southwestern, strong at upper
levels (500 hPa), weakening and more southerly at lower levels (700, 850 hPa),
and changing to westerly at surface. This means that slow and unstable winds
prevailed over the region during the episode.

3 US EPA Model-3 System

A big number of models and model systems with different level of complexity
were developed in the last twenty years. Many of them can be found in the Model
Documentation System of European Environmental Agency or in the respective
site of US EPA.

The forthcoming accession of Bulgaria to EU sets necessity of operating a
contemporary air quality modeling tool. The choice and implementation of such
a tool to different regional and local tasks were the aim of the EC 5thFP project
BULAIR (http://www.meteo.bg/bulair) of Bulgarian National Institute of Me-
teorology and Hydrology (NIMH). The first task of the team was to make an
extensive review of the existing models and to choose suitable one/ones. It was
done by reviewing papers presenting at the last meetings of the two of the most
important events in the field of air pollution modeling. It occurs that the Model-
3 system of US EPA is one of the best modeling tools that continues to be
developed intensively. This software is free downloadable and can be run on con-
temporary PCs. It is a modeling tool of large flexibility with a range of options
and possibilities to be used for different applications/purposes on range of differ-
ent regions (nesting). In the frame of BULAIR several tasks of regional ([13,14]
and local scale ([15]) was solved making use of this system. The system consists
of three parts:

• MM5 – the 5th generation PSU/NCAR Meso-meteorological Model ([4,8]
used as meteorological pre-processor;

• SMOKE – the Sparse Matrix Operator Kernel Emissions Modeling System
([3]) used as emission pre–processor, and

• CMAQ – the Community Multiscale Air Quality System ([1,2] – the
Chemical Transport Model.
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4 Computational Domains

For this local task meteorological data set from NCEP Global Analysis Data for
2005 is exploited (http://dss.ucar.edu/datasets/ds083.2/). As far as the space
resolution of this data is 1◦ × 1◦ nesting is applied for downscaling to 1 km step
for a domain around Stara Zagora (see Fig.2).

Fig. 2. Computational domains

The MM5 program TERRAIN is used to define five domains with 81, 27,
9, 3 and 1 km resolution (37 × 37, 55 × 55, 46 × 55, 37 × 37 and 55 × 55
grids, respectively). These domains (referred as D1 ÷ D5) are chosen in such a
way that D5 is centered in the middle of the distance between TPPs and Stara
Zagora. Lambert conformal projection with true latitudes at 30 and 60◦N and
central point coordinates 42.30N and 25.85E are chosen. Meanwhile, TERRAIN
specified topographic, vegetative, and soil type data to all grid points.

5 MM5 Simulations

CMAQ needs two kinds of input information - meteorology and emissions. MM5 is
used here to provide CMAQ with meteorological fields. As a hole, MM5 solves the
non-hydrostatic system of dynamic weather equations in σ–coordinate system:
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where u, v and w are the wind components, p is the pressure, T – temperature,
ρ – air dencity, f – Coriolis parameter, Q – diabatic heating, D – molecular
resistances.

Following the CMAQ guidelines MM5 is run on the two rough grids (D1 and
D2) simultaneously with ”two-way nesting” mode on first. Then, after extracting
initial and boundary conditions from the resulting fields MM5 is run on the finer
D3 −D5 grids as completely separate simulations with ”one-way nesting” mode
on. Four-dimensional data assimilation ([17]) is applied to the external domain
D1 nudging towards the NCEP data. Specifically, this nudging is performed
every 6 hours for the three-dimensional analysis fields aloft.

A 23-level vertical structure is chosen. The first 1 kilometer of the atmosphere,
the so called Atmospheric/Planetary Boundary Layer (ABL/PBL), where the
dispersion of pollutants occurs, is resolved by 8 levels that seem to be a good
presentation.

The MM5 system provides optionally a number of different PBL and other pa-
rameterization schemes. The choice of appropriate scheme is usually made by vali-
dation. For the purpose, air temperature, humidity, wind data are needed in space
and time. In the region of Stara Zagora no validation data are available. The lack
of observational data makes any choice of parameterization schemes quite arbi-
trary, that must be taken into account when analyzing MM5 and CMAQ results.
Here, one of the most comprehensive PBL scheme, MRF, is applied.

The MM5 simulations started at 12:00 of July 7, 2005, and continue up to
00:00 of July 12, 2005. The first 12 hours were added as to avoid the spin-
up effects. The model results are demonstrated in Fig. 3, where the wind and
temperature fields at different levels in the PBL are shown. At level σ=0.995 (≈
36 m) the wind direction at Stara Zagora is southerly while at ”Maritza-Iztok”
TPPs it is northerly. The behavior of meteorological parameters in the other
days is similar.

The main impression from the analysis is that calm and non-oriented winds
prevail during the period. There is a very fast change of wind directions in the
different points from the region and at different levels. All this breaks the first
hypothetical mechanism able to explain the observed concentration behavior.

Fig. 3. MM5-modeled temperature and wind fields in PBL for 08 July 2005 12:00



488 M. Prodanova et al.

6 Emission Input to CMAQ

Taking into account the behavior of measured SO2 concentrations, shown in Fig
1 (b), it is decided to neglect all diffuse SOx sources in the region that create the
background concentration, and to consider the three TPPs as the only sources
of SOx provided the emissions in the region are several orders of magnitude less
the TPPs ones. This also permits to run CMAQ only over the two inner domains
(D4 and D5).

The emission input files for CMAQ were constructed by using SMOKE
model. Its purpose is to convert the emission inventory data to the resolution
needed by the air quality model. Emission inventories are typically available
with annual values for each powerful source and/or for big areas (municipality,
region, country). The CTMs however, require emissions data on an hourly basis,
for each model grid cell and model layer, and for each model species. So, emis-
sion processing involves transforming the emission inventory through temporal
allocation, chemical speciation, and spatial allocation, in order to achieve the
model’s input requirements.

In this case, the role of SMOKE is to produce detailed space/time distribu-
tion of the emissions from elevated point sources (the SMOKE module ELEV-
POINT), based on the data in Table 1. Some ambient air characteristics (wind
speed and temperature) are necessary as well, provided by the MM5 calculations.

7 CMAQ Simulations

CMAQ as well as the others CTMs solves the diffusion equation:
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where ci is the concentration of i-th pollutant, varying in space (x, y, z) and
time (t); u, v, w are wind components, Kx, Ky, Kz - diffusion coefficients; Ri -
net rate of production of pollutant i by chemical reactions, Si - its emission rate,
Di and Wi - its changes due to dry and wet removal processes.

The consideration regarding the measured SO2 concentration behavior allows
using zero initial and boundary conditions. They have to be set for the 3-km do-
main only. By nesting CMAQ produce such conditions for the finer 1-km domain.
CMAQ is run from 8 to 11 July 2005 day by day, having the final moment concen-
tration fields of the previous day as initial condition for the next day.

A big number of simulations are made during the execution of this task.
Several times MM5 is re-run trying to improve the results. The new sets of
meteorological data demand new SMOKE calculations. From its side, SMOKE
was run many times to achieve the right parameter setting. And every time,
dispersion calculation and visualization of results were done again. In the very
beginning of the exercise a relatively rough 6-layer vertical structure of CMAQ
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Fig. 4. Examples of simulated SO2 concentrations; D5 grid

was set. Further it was improved setting up 14 levels, 8 of which in PBL. From
the numerous chemical mechanism’s options of CMAQ gaseous Carbon Bound
IV (CB-4) chemical mechanism was chosen for these calculations.

8 CMAQ Model Results and Discussion

The CMAQ calculated concentration fields for different hours of each day of the
period were visualized and analyzed. In Fig. 4, graphs for two afternoon hours
are shown. The analysis of the results shows that, in spite of the numerous
runs, the calculated concentrations do not match the measurements. It must
be mentioned, however, that pollution spots near Stara Zagora can be observed
every afternoon, but they hardly cover it.

From physical point of view, the calculated SO2 concentration fields have
a reasonable behavior. In night hours, in relatively stable PBL, the pollution
released from elevated sources (gases with high temperature and release velocity)
keeps aloft and the domain is not polluted at the surface. In the day hours
the fast development of turbulent mixing drains the pollution to the surface at
distances not far from the stacks forming well expressed plumes with very high
concentrations. This is quite reasonable for summer time and is discussed by
many authors ([12,9,10,11] and others).

This behavior of the calculated fields shows that the second physical hypoth-
esis discussed above is possibly in force, here. A suitable direction of the wind
from TPPs to the town of Stara Zagora is observed each afternoon. These flows
form pollution spots in different places around the town, but not over it. In
some cases, deviation of the wind direction by several degrees or change of the
wind speed by several m/s could form spots over the town in the right periods.
Small changes in the PBL height and turbulent mixing could lead to the same
results. Here, all difficulties faced when trying to model local scale phenom-
ena in complex conditions emerge. According to the author’s opinion, the main
shortcomings come from the MM5 simulations. In spite of being up-to-science
modeling tool, MM5 is a model of the reality and as every model has its limi-
tations. The reality can be and often is much more complicated than any model,
which is the case, here. Several reasons for the ill-simulation can be identified:
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• The region of Stara Zagora is under a shallow low pressure area, the so called
nongradient baric field. It is characterized by weak and unstable winds. The
lack of synoptic forcing makes every PBL parameterizations very uncertain,

• As far as the PBL schemes present stationary state, its achievement needs
some time after the governing parameters has been changed. When the wind
characteristics change rapidly there is not enough time for full adaptation.

• Finally, it is quite possible that the used vertical resolution of MM5 is not
enough to reproduce accurately the complex character of the local ABL.

The applied MM5/CMAQ model system is quite complex and needs validation
for each stage of simulation. As no data are available for the vertical structure of
the atmosphere and the surface data are not sufficient, the choice of parameteri-
zation schemes is based on literature recommendations. The MRF-scheme is
known to predict correctly the PBL height and surface temperature and the
surface wind in most of the cases (but evidently not in our case).

9 Conclusion

In general, we conclude that the modeling exercise was reasonable. At this stage
it could not explain quantitatively this particular SO2 episode in the summer of
2005. For further development validation data for the meteorological model are
necessary. In a state of no validation data, numerical experiments can continue
in several directions:

• Increase of the number of MM5 and CMAQ vertical levels, especially in PBL.
• Different PBL parameterization schemes must be used.
• Use of other input meteorological data sets - ECMWF, ALADIN and HRM

data sets.
• Application of additional emission scenarios, as made in [12].
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Abstract. The variational data assimilation methods can successfully
be used in different fields of science and engineering. An attempt to
utilize available sets of observations in the efforts to improve (i) the
models used to study different phenomena and/or (ii) the model results
is systematically carried out when data assimilation methods are used.

The main idea, on which the variational data assimilation methods are
based, is pretty general. A functional is formed by using a weighted inner
product of differences of model results and measurements. The value of
this functional is to be minimized. Forward and backward computations
are carried out by using the model under consideration and its adjoint
equations (both the model and its adjoint are defined by systems of
differential equations). The major difficulty is caused by the huge increase
of both the computational load (normally by a factor more than 100) and
the storage needed. This is why it might be appropriate to apply some
splitting procedure in the efforts to reduce the computational work.

Five test-examples have been created. Different numerical aspects of
the data assimilation methods and the interplay between the major com-
putational parts of any data assimilation method (numerical algorithms
for solving differential equations, splitting procedures and optimization
algorithms) have been studied by using these tests. The presentation will
include results from testing carried out in the study.

1 Basic Ideas

Assume that observations are available at time-points tp , p ∈ {0, 1, 2, . . . , P} .
These observations can be taken into account in an attempt to improve in some
sense the results obtained by a given model. This can be done by minimizing
the value of the following functional (see, for example, Lewis and Derber [7]):

J{c̄0} =
1
2

P∑
p=0

< W (tp) (c̄p − c̄obs
p ) , c̄p − c̄obs

p >, (1)

where (a) the functional J{c̄0} is depending on the initial value c̄0 of the vector
of the concentrations at time t0 (because the model results c̄p depend on c̄0),
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(b) W (tp) is a matrix containing some weights (it will be assumed here that
W (tp) is the identity matrix, but some weights have to be used in all practical
problems) and (c) <, > is an inner product in an appropriately defined Hilbert
space (it will be assumed in this paper that the usual vector space is used, i.e.
it is assumed that c̄ ∈ Rs where s is the number of chemical species which are
involved in the model).

An optimization algorithm has to be used in order to minimize the functional
J{c̄0}. Most of the optimization algorithms are based on the application of the
gradient of J{c̄0} . The adjoint equation of the model under consideration has
to be derived and used in the calculation of the gradient of the functional J{c̄0}.
Most of the scientific and engineering models are described mathematically by
systems of differential equations. Therefore the adjoint equations are also de-
scribed by systems of differential equations. This short analysis shows clearly
that a data assimilation method is a very complicated numerical procedure. The
time and storage requirements are the major difficulty. Such a procedure consists
of (i) a good optimization algorithm and (ii) good numerical algorithms for solv-
ing differential equations. In order to reduce the time and storage requirements
it is also necessary (iii) to apply some good splitting technique.

2 Need for a Good Set of Test-Examples

The final aim is to apply the data assimilation technique to large-scale air pol-
lution models for studying the transport of harmful air pollutants over Europe
([11]). However, the ideas discussed in this paper are very general and can suc-
cessfully be applied in connection of many other models which lead (after some
kind of semi-discretization) to stiff systems of ordinary differential equations
(ODEs).

Before applying a data assimilation method to a given model it is necessary
to check carefully (a) the correctness of its modules and (b) the efficiency of the
numerical algorithms applied in the different modules. This can successfully be
done only if good test-examples are available.

The chemical part of an environmental model is normally the most time con-
suming part (and the most difficult one because it introduces stiffness in the
model). This is why it is especially important to test carefully the correctness
and the efficiency of the chemical part.

The chemical part of an environmental model can be represented as a stiff
system of ODEs:

dc̄

dt
= f(t, c̄), c̄ ∈ Rs, (2)

where vector c̄ contains s components and function f is in general nonlin-
ear. Five test-examples were devised. We start with a very simple linear system.
Then the complexity is gradually increased. The second test-example is a non-
linear but autonomous system. The third test-example is a non-linear and non-
autonomous system with a Jacobian matrix which does not depend explicitly on
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t . The fourth test-example is a non-linear and non-autonomous system with a Ja-
cobian matrix which depends explicitly on t . The last test-example is a chemical
scheme with 56 chemical species, which is really used in many environmental mod-
els. It is described by a non-linear and non-autonomous system of ODEs. Both the
right-hand-side function and the Jacobian matrix depend on t . It is not possible
to express the dependence on t analytically, because some chemical rates de-
pend on some quantities (as, for example, the temperature) which are dependent
on the time variable. Analytical solution is not available, but a reference solution
has been calculated with a time-stepsize �t = 10−5 . The values of this solution
were saved at the end of every period of 15 min. The so-found reference solution
is used to check the accuracy achieved in different runs.

The first four examples are taken from the book of Lambert ([5]), while the
fifth example is similar to to the schemes used in the EMEP models (see Simpson
et al., [9], Zlatev, [11]).

3 Calculating the Gradient of the Functional

It is convenient to explain the basic ideas that are used when the gradient of
the functional J{c̄0} is calculated by the following very simple example. Assume
that observations are available only at five time-points: t0, t1, t2, t3 and t4. The
gradient of the functional can be calculated in the following way. Assume that
some tool, model, by which the values of the unknown vectors c̄(t0), c̄(t1), c̄(t2),
c̄(t3) and c̄(t4) can be calculated, is available. The tool model can, for example,
be some air pollution model, but in some simpler cases model can simply be
some ordinary solver for systems of PDEs or ODEs. Under this assumption, the
calculations have to be performed, for this particular example with P = 4,
in five steps.

– Step 1. Use the model to calculate c̄1 (performing integration, in a forward
mode, from time-point t0 to time-point t1). Calculate the adjoint variable
q̄1 = c̄1 − c̄obs

1 . Form the adjoint equation (corresponding to the model
used in the forward mode; adjoint equations will be discussed in Section
5). Perform backward integration (by applying the adjoint equation) from
time-point t1 to time-point t0 to calculate the vector q̄1

0 , where the lower
index shows that q̄1

0 is calculated at time-point t0 , while the upper index
shows that q̄1

0 is obtained by using q̄1 = c̄1 − c̄obs
1 as an initial vector in the

backward integration.
– Step 2 to Step 4. Perform the same type of calculations, as those in Step

1 to obtain q̄2
0 , q̄3

0 and q̄4
0 . More precisely, the following operations are to be

carried out for p = 2, 3, 4:
(a) use the forward mode to proceed from time-point tp−1 to time-point tp,
(b) form the adjoint variable q̄p = c̄p − c̄obs

p ,
(c) use the adjoint equation in a backward mode from time-point tp to

time-point t0 to calculate c̄p
0.
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– Step 5. The sum of the vectors q̄1
0 , q̄2

0 , q̄3
0 , q̄4

0 obtained in Step 1 to Step
4 and vector q̄0

0 = q̄0 = c̄0 − c̄obs
0 gives an approximation to the required

gradient of the functional J{c̄0}.

It is clear that the above procedure can easily be extended for any number P
of time-points at which observations are available.

The gradient of the functional J{c̄0} is calculated by performing one forward
step from time-point t0 to time-point tP and P backward steps from time-points
tp, p = 1, 2, . . . , P , to time-point t0. This explains the main idea, on which the
data assimilation algorithms are based, in a very clear way, but it is expensive
when P is large. In fact, the computational work can be reduced, performing
only once the backward calculations (see, for example, [1] or [7]).

4 Solving the System of ODEs

Six numerical methods for solving stiff systems of ODEs have been used in the
experiments. The methods selected by us are listed below:

– the Backward Euler Method,
– the Implicit Mid-point Rule,
– a Second-order Modified Diagonally Implicit Runge-Kutta Method,
– a Fifth-order Three-stage Fully Implicit Runge-Kutta Method,
– a Second-order Two-stage Rosenbrock Method,
– the Trapezoidal Rule.

The Implicit Mid-point Rule and the Trapezoidal Rule are A-stable methods.
All the other methods are L-stable. More details about the numerical methods
used in this paper can be found in [3], [4], [5] and [10].

5 Solving the Adjoint Equations

It is necessary to distinguish between linear models and non-linear models when
the adjoint equations are formed and treated numerically. Assume that the model
is linear and, furthermore, that the model is written in the following general form:

∂c̄

∂t
= Ac̄. (3)

Denote by q the adjoint variable. Then the adjoint equation can be written as

∂q̄

∂t
= −A∗q̄, (4)

where A∗ is the conjugate operator of A . If the problem is discretized by
using some numerical method, then operator A will be represented by a matrix
which is normally also denoted by A . If the adjoint equation is discretized, then
the transposed matrix AT will appear in the discretized version of (4).
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Consider now a non-linear model:

∂c̄

∂t
= B(c̄). (5)

The adjoint equation of the model presented in (5) can be written as

∂q̄

∂t
= − [B′(c̄)]∗ q̄, (6)

where B′(c̄) is obtained by differentiation of B . In the discrete case, we will
have the transposed matrix of the Jacobian of B in (6).

It is seen that the adjoint equations are always linear; compare (4) and (6).
However, the right-hand-side in the linear case does not depend on the model
variable c̄ . In the non-linear case this is no more true. The right-hand-side of
(6) depends on c̄ . This fact has serious implications: the values of c̄ calculated
when the model is treated are to be saved and used when the adjoint equation
is handled.

If the chemical scheme (2) is considered, then (6) can be rewritten as

dq̄

dt
= −

(
∂f(t, c̄)

∂c̄

)T

q̄. (7)

It is clear now that the numerical methods from the previous section can easily
be adapted for the adjoint equation (7) of the chemical scheme (2). For exam-
ple, the application of the Backward Euler Method in connection with adjoint
equation (7) leads to the following formula for the backward computations:

q̄n = q̄n+1 − �t

[
−∂f(tn, c̄n)

∂c̄n

]T

q̄n. (8)

The fact that the adjoint equation is used in the backward mode is taken into
account when (8) is derived.

6 Application of Splitting Procedures

The application of data assimilation algorithms leads to very time-consuming
problems (the computer time may be increased by a factor up to 100 and even
more). Therefore splitting, which is commonly used during the treatment of
large-scale environmental models, is even more needed when these are used to-
gether with data assimilation techniques. The test-examples, which are listed in
Section 2, were treated both without splitting and with by four splitting proce-
dures: (i) sequential splitting, (ii) symmetric splitting, (iii) weighted
sequential splitting and (iv) weighted symmetric splitting.

The splitting of each of the first four test-examples is not very critical. Let us
consider as an example the splitting applied in connection with the second test-
example. The operator on the right-hand-side of this example is f1 = y2, f2 =
y2(y2 − 1)/y1 (where y1 and y2 are the components of vector c̄ ). It is split
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into two operators: (a) f
(1)
1 = 0, f

(1)
2 = −y

(1)
2 /y

(1)
1 and (b) f

(2)
1 = y

(2)
2 , f

(2)
2 =

(y(2)
2 )2/y

(2)
1 . The sum of these two operators is, component-wise, equal to the

original operator in the right-hand-side of the second test-example (i.e. f
(1)
1 +

f
(2)
1 = f1 and f

(1)
2 + f

(2)
2 = f2 ).

It is not very obvious how to split the fifth test-example. We grouped in the
first sub-model the species which react with ozone. The remaining species formed
the second sub-model.

At each time-step during the forward mode the splitting was carried out as
usual (see, for example, [11]). At each time-step during the backward mode the
splitting operators are applied in reverse order (compared with the order applied
in the corresponding forward time-step).

7 Minimizing the Functional

The problem of minimizing the functional (1) is in fact an unconstrained op-
timization problem. Therefore, the subroutine E04DGF from the NAG Library,
which performs unconstrained optimization, has been used in the beginning.
However, we realized quickly that it is better to impose some constraints. There
are often physical reasons for this (in the chemical scheme, for example, the con-
centrations of the chemical species should be kept non-negative). Therefore, the
next choice was subroutine E04KDF also from the NAG Library. This is a rather
flexible subroutine. It requires simple bounds for the variables of the functional.
It is quite reasonable to assume that such bounds could always be derived in
real-life problems (by using the physical properties of the studied processes).

The problem with subroutine E04KDF is not the determination of the bounds
for the variables, but rather the necessity to scale the model, which is very often
a rather difficult task. Unfortunately, such a requirement is, to our knowledge,
common for all optimization algorithms.

8 Numerical Results

The ability of the data assimilation algorithms to improve the initial values of the
solution was tested numerically. This is important for forecasting high pollution
levels. However, the data assimilation algorithms can also be used for many other
purposes (see, for example, [1], [2], [6], [8]).

A perturbation parameter α was introduced. The values of the initial solution
were always perturbed by using ten different values of α (introducing relative
errors of 5%, 10%, ..., 50% in the initial values). Data assimilation is used to
improve the initial values. The improved initial values are then used to calculate
the solution over an increased time-interval. The analytical solution (the refer-
ence solution for the fifth test-example) is used to evaluate the relative error,
component-wise, at the end of each time-step (each period of 15 min. for the
fifth test-example). The max-norm of the vector or relative errors found over
the whole time-interval is taken and used in the comparisons of the results from
the different runs.
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Each test-example has been run with the six numerical methods and the five
splittings (including here also the case where no splitting is used). Furthermore,
for the first four test-examples we start with a time-stepsize �t = 0.25 and
carry out successively 18 additional runs (every time reducing the time-stepsize
by a factor of two). For the fifth test-example we start with a time-stepsize
�t = 150 and carry out successively 10 additional runs (reducing again the
time-stepsize by a factor of two every time when a new run is started).

The results from the runs show that (i) reducing the time-stepsize leads to a
reduction of the error according to the order of the combined method (numerical
method + splitting procedure), (ii) if the time-stepsize is sufficiently small then
the error obtained with the data assimilation method is practically the same as
the error obtained by using exact initial values without data assimilation (which
means that the results are optimal in some sense), (iii) the numerical methods
that are only A-stable (the Implicit Mid-Point Rule and the Trapezoidal Rule;
see [3] and [5]) have difficulties for large time-stepsizes when the stiff chemical
scheme is to be handle and (iv) if no splitting is used, then it might be more
efficient in some cases to use high-order methods (the Fifth-order Three stage
Fully Implicit Runge-Kutta Method performed better, for all five test-examples,
than the other methods when no splitting was used).

It should be mentioned here that the stability problems, which were mentioned
in (iii), disappear when splitting procedures are used. Since the chemical scheme
is a rather general and sufficiently large problem, this fact indicates that the
splitting procedures have some stabilizing effect when stiff systems of ODEs are
to be handled.

Some results obtained in the efforts to improve the initial value and the accu-
racy of the ozone component in the chemical scheme with 56 species are given
in Table 1. The notation used can be explained as follows: (a) ERROR 0 P is
giving the relative error in the perturbed initial condition, (b) ERROR 0 I is
giving the relative error in the improved initial condition, (c) ERROR F P is
giving the global relative error obtained by using the perturbed initial condi-
tion, (d) ERROR F I is giving the global relative error obtained by using the
improved initial condition.

Table 1. Numerical results obtained when the chemical schemes with 56 compounds
is run. The Backward Euler Method is used without splitting. The initial value of the
ozone concentration is perturbed by a factor α = 0.5.

Steps ERROR 0 P ERROR F P ERROR 0 I ERROR F I

1008 0.47 0.48 2.0E-03 2.4E-03

2016 0.49 0.50 1.0E-03 1.2E-03

4032 0.47 0.47 5.0E-04 6.1E-04

8064 0.48 0.48 2.5E-04 3.2E-04

16128 0.46 0.48 1.3E-04 1.7E-04

32256 0.49 0.50 6.3E-05 8.8E-05
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It is seen that reducing the stepsize (i.e. multiplying the number of time-steps
by a factor of two) leads to a reduction of both the initial guess and the global
error by a factor of two. This is precisely the expected behaviour (because the
Backward Euler Method is of order one).

9 Conclusions

The results from several thousand runs indicate that the data assimilation mod-
ules are able to improve the initial values of the solution if (a) the numerical
methods used are sufficiently accurate and (b) the initial perturbations are not
very large.

On the other hand, the results indicate also that both the computing time
and the storage needed are increased by a factor which is very often greater
than 100. Therefore, it is necessary (i) to continue the search for faster but still
sufficiently accurate numerical algorithms, (ii) to apply faster computers, (iii) to
exploit efficiently the cache memory and (iv) to parallelize the codes.
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Abstract. The aim of this study is to propose a procedure for coupling
of finite element (FE) and infinite large element (ILE). This FE/ILE
method is applied to the second-order self-adjoint eigenvalue problems
in the plane. We propose a conforming method for approximation of
eigenpairs in unbounded domains. Finally, some numerical results are
presented.

1 Introduction

Our study is motivated by the great diversity of concepts concerning infinite
element approximations. For example, infinite large elements are successfully
applied to the approximation of the Helmholz equation [1, 2], parabolic problems
[4] and others [3, 5].

In a recent work [6] Han, Zhou and Zheng studied a coupling FE/ILE method
applied to the second order eigenvalue problems which is nonconforming. So, our
main aim is to propose a new conforming method for connection and coupling of
finite and infinite large elements. The considerations are restricted to piecewise
bilinear approximations on a bounded domain and we construct corresponding
infinite large elements in order to approximate the solution on the unbounded
domain. It means that the domain Ω is divided by two disjoint parts: finite
subdomain ΩF and infinite one - ΩI .

In order to avoid some technical details, let Ω be the exterior of a rectangle:

Ω = {(x, y) : |x| > r1 > 0 ∨ |y| > r2 > 0} .

Let the positive numbers R1 and R2 be large enough and such that Ri >
ri, i = 1, 2. The unbounded subdomain ΩI is defined by:

ΩI = {(x, y) : |x| > R1 ∨ |y| > R2} .

Then ΩF = Ω \ ΩI .
A second order eigenvalue problem can be deduced from the corresponding

parabolic problem on the unbounded domain Ω×(0, T ). Many application prob-
lems can be modeled by parabolic equations in unbounded domains, such as the
heat transfer problem, fluid dynamics problems (see [5, 7]) and recently various
option pricing problems in the financial mathematics.
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Consider the following two-dimensional heat equation:

ρ(x, y).
∂W

∂t
= ΔW, (x, y, t) ∈ Ω × (0, T ), (1)

where ρ(x, y) > 0 is continuous in R2 and W (x, y, t) is bounded in Ω.
Besides the equation (1) we introduce the following conditions:

W|Γ = 0, 0 < t ≤ T,

W|t=0 = W0(x, y).
(2)

Here Γ is the boundary of R2 \ Ω and W0(x, y) is a given function with
compact support.

Following the classical steps of the separation of variables method, we look
for a solution of (1)-(2) in the form

W (x, y, t) = e−λt.u(x, y),

where (λ, u(x, y)) is to be determined. Substituting the last relation into the
problem (1)-(2), we arrive at the following eigenvalue problem: Find the number
λ and the function u(x, y) �= 0 such that

−Δu = λρu, in Ω,

u = 0, on Γ.
(3)

We are interested in the case when the eigenvalues λ are real and u(x, y)
are real-valued eigenfunctions. This depends on some properties of ρ(x, y) which
will be presented below. Since Ω is unbounded an additional requirement for the
eigenfunctions is: ∫

Ω

(∇u)2 dx +
∫

Ω

ρ.u2 dx < +∞. (4)

Here and throughout the following, we use dx instead of dx dy. We also denote
r =

√
x2 + y2.

The following two properties concerning ρ(x, y) are supposed [6]:

0 < γ(R) ≤ min
1≤r≤R

ρ(x, y), (5)

ρ(x, y) ≤ ρ0(r), 1 ≤ r < +∞, (6)

where γ(R) and ρ0(r) are given functions.
Let us define the space

L2,ρ(Ω) =
{

v :
∫

Ω

ρ.v2 dx < ∞
}

.

This space has a natural inner product

b(u, v) =
∫

Ω

ρuv dx
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and the corresponding norm is defined as follows:

‖u‖0,ρ,Ω =
√

b(u, u).

It is obvious that L2,ρ(Ω) is a Hilbert space. Next we use the Sobolev space
H1(Ω) and

H1
0 (Ω) =

{
u ∈ H1(Ω) : u = 0 on Γ

}
.

Let
a(u, v) =

∫
Ω

∇u · ∇v dx,

then we introduce the space

H1,ρ
0 (Ω) = H1

0 (Ω) ∩ L2,ρ(Ω).

The induced norm is defined by

‖u‖1,ρ,Ω = (a(u, u) + b(u, u))1/2
.

The bilinear form a(u, v) is bounded and coercive in H1,ρ
0 (Ω), namely there

is a positive constant α, such that

|a(u, v)| ≤ ‖u‖1,ρ,Ω.‖v‖1,ρ,Ω, ∀u, v ∈ H1,ρ
0 (Ω),

a(u, u) ≥ α‖u‖2
1,ρ,Ω, ∀u ∈ H1,ρ

0 (Ω).

The variational formulation of eigenvalue problem (3)-(4) can be written in
the following form: Find λ ∈ C and u ∈ H1,ρ

0 (Ω), u �= 0 such that

a(u, v) = λb(u, v), ∀v ∈ H1,ρ
0 (Ω). (7)

Lemma 1. (see [6], Theorem 2.1) If ρ(x, y) satisfies (5) and (6), then the eigen-
values of problem (7) form an increasing sequence of positive numbers tending
to +∞. The corresponding eigenfunctions {um}∞m=1 form an orthogonal basis of
L2,ρ(Ω).

2 A Numerical Approximation of the Eigenvalue Problem

We are interested in the numerical approximation of the eigenpairs by finite/
infinite large element method. Our coupling approach differs from those pre-
sented in [6] because a conformity between any finite element and the corre-
sponding infinite large element is assured. Moreover, the approximation by ILEs
in the ”radial” direction does not need the using of polar coordinates.

First, we cover the domain ΩF by bilinear finite elements. Toward this end,
for each h, 0 < h ≤ 1 we let τh be a triangulation of ΩF by rectangles K
of diameter which does not exceed h. Next, we also cover ΩI by infinite large
convex quadrilaterals KI (see Figure 1). So, the intervals (−ri, ri), i = 1, 2 are
divided into 2n parts and the intervals (−Ri, ri) and (ri, Ri), i = 1, 2 - by k
parts. In this way, the number of finite elements covering ΩF is 4(2kn + k2).
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Fig. 1. FE/ILE element partition

Remark 1. In general, the family {τh} is quasi-uniform, i.e. there is a constant
γ > 0 such that

h

hK
≤ γ ∀K ∈ τh, ∀h,

where hK is the diameter of K. It is easy to construct an uniform mesh partition
(hK = h, ∀K ∈ τh) by choosing appropriate values of Ri, i = 1, 2. Figure 1
illustrates the case Ri = 2ri, i = 1, 2.

Remark 2. The presented methodology is also applicable to the case where poly-
nomials of higher degree are used. Further analysis on these and related subjects
will be provided in forthcoming contributions.

It should be noted that each ILE KI has exactly one adjacent FE with common
side. The ILEs covering the domain ΩI form a family τh,I related to τh. The num-
ber of infinite large elements in the case under consideration is 8(k+n). The par-
titions τh and τh,I are affine families. It means that for each K ∈ τh (KI ∈ τh,I)
there is an invertible affine map which transforms the reference finite element
(reference infinite large element) into the corresponding one.

According to our consideration, in Figure 2 two types of reference infinite large
elements are shown, which yield two types of reference element composition. Any
element composition consists of an infinite large element and its adjacent finite
element.

There are 8(k + n − 1) element compositions of type (a) and 4 element com-
positions of type (b). We shall present the basis functions for both cases. It is
reasonable that they will depend on the type of the finite elements we choose.

On the Lagrangian bilinear reference FE the shape functions are determined
by the values at the nodes p1(1, 1), p2(0, 1), p3(0, 0) and p4(1, 0).
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Fig. 2. Reference element compositions

Let K̂I = {(x, y) ∈ [0, 1] × [1, ∞)} be a reference ILE of type (a). We introduce
the following functional space, defined on K̂I (see, also Remark 3 and Remark 4):

VK̂I
=

⎧⎨
⎩a0 +

1∑
i=0

2∑
j=1

aij
xi

yj
: a0, aij ∈ R, i = 0, 1; j = 1, 2

⎫⎬
⎭ .

For any ILE KI ∈ τh,I we determine the corresponding space VKI by using an
invertible affine transformation. Then the shape functions are chosen to belong
to VKI .

Let us consider the ILE of type (a) (see Figure 2). Choosing a number a

large enough, such that a > 1, we use the nodes q
(a)
1 (1, 1) ≡ p1, q

(a)
2 (0, 1) ≡

p2, q
(a)
3 (0, a) and q

(a)
4 (1, a) as well as the node q5 at infinity. In the partition

τh,I the node at infinity is shared by all infinite large elements. The value of
the shape function at the public node is understood in the asymptotical sense.
Denoting the corresponding basic functions by {ψ

(a)
j (x, y)}5

j=1, where ψ
(a)
j (qi) =

δij , i, j = 1, . . . , 5, we define ((x, y) ∈ [0, 1] × [1, +∞)):

ψ
(a)
1 (x, y) =

x(a − y)
(a − 1)y2

, ψ
(a)
2 (x, y) =

(1 − x)(a − y)
(a − 1)y2

,

ψ
(a)
3 (x, y) =

a2(1 − x)(y − 1)
(a − 1)y2

, ψ
(a)
4 (x, y) =

a2x(y − 1)
(a − 1)y2

,

and ψ5(x, y) = − (y − 1)(a − y)
y2

at the public node.

Remark 3. Using the same idea, one may easily construct a reference ILE of
type (a) in the x−direction, i.e. for (x, y) ∈ [1, +∞) × [0, 1].

For the reference infinite large element of type (b) (see Figure 2, ILE2) the
degrees of freedom are the values of any approximating function at the nodes
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q
(b)
1 (1, 1) ≡ p1, q

(b)
2 (0, 1) ≡ p2, q

(b)
3 (0, a) and q

(b)
4 (a, a) as well as the node q5 at

infinity. Just as previously, a is an arbitrary positive number such that a > 1. For
1 ≤ y < ∞, 0 ≤ x ≤ y we define the system of basis functions {ψ

(b)
j (x, y)}5

j=1,

ψ
(b)
j (qi) = δij , i, j = 1, . . . , 5 in the following way:

ψ
(b)
1 (x, y) =

x(a − y)
(a − 1)y3

, ψ
(b)
2 (x, y) =

(y − x)(a − y)
(a − 1)y3

,

ψ
(b)
3 (x, y) =

a2(y − x)(y − 1)
(a − 1)y3

, ψ
(b)
4 (x, y) =

a2x(y − 1)
(a − 1)y3

,

and ψ5(x, y) = − (y − 1)(a − y)
y2

at the public node.

Remark 4. Let us note that the reference infinite large elements in both cases
(a) and (b) are equivalent in some sense. It is easily seen, substituting X = x

y in
the case (b).

Once the basic functions of the space VK̂I
are established, the following lemma

can be proved:

Lemma 2. The basic functions ψ
(a)
i , ψ

(b)
i , i = 1, . . . , 4 and ψ5 are bounded.

Proof. First we prove the boundedness of the functions ψ
(a)
i , i = 1, 2. Let y ≥ 1

and 0 ≤ x ≤ 1. Since a > 1, then

0 ≤ |a − y|
(a − 1)y

≤ 1.

On the other hand the nonnegative terms x
y and 1−x

y are majorated by 1.
Hence

|ψ(a)
i (x, y)| ≤ 1 for i = 1, 2. (8)

For the functions ψ
(a)
i , i = 3, 4 we use also that 0 ≤ y − 1

y2
≤ 1

4
. Then

|ψ(a)
i (x, y)| ≤ a2

4(a − 1)
for i = 3, 4. (9)

In view of Remark 4, substituting X =
x

y
in ψ

(b)
i , i = 1, . . . , 4, from (8) and

(9) we also obtain, that

|ψ(b)
i (x, y)| ≤ 1 for i = 1, 2.

|ψ(b)
i (x, y)| ≤ a2

4(a − 1)
for i = 3, 4.

Finally we consider

ψ5(y) = 1 − a + 1
y

+
a

y2
, y ∈ [1, +∞).



506 A.B. Andreev and M.R. Racheva

Obviously ψ5(1) = 0 and limy→∞ ψ5(y) = 1. Taking into account that ψ5(y)

has a unique extremum at the point
2a

a + 1
> 1, one obtains:

|ψ5(y)| ≤ max
{

1,
(a − 1)2

4a

}
.

Remark 5. The last inequalities are important from algorithmic point of view.
They show that one has to fix the parameter a such that a  1 when eigenpairs
are calculated in a unbounded domain.

With the partitions τh and τh,I we associate the following functional space:

Vh =
{
vh : vh|K ∈ Q1(K), ∀K ∈ τh; vh|KI

∈ VKI , ∀KI ∈ τh,I ; vh|Γ = 0
}

,

where Q1 is a bilinear polynomial space.
From the definition of the basic functions ψ

(a)
i (x, y) and ψ

(b)
i (x, y), i = 1, . . . , 4

it is easy to verify the following assertion:

Theorem 1. The functions from the space Vh are continuous, i.e.

Vh ⊂ C0(Ω).

According to this theorem, the presented FE/ILE method is conforming.
We introduce an approximate eigenvalue problem, corresponding to (7) : Find

λ ∈ R, uh ∈ Vh such that

a(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh.

3 Numerical Results

Consider the problem (3) with

Ω = {(x, y) : |x| >
√

2/2, |y| >
√

2/2}

and ρ(x, y) =
x2 + 2y2

(x2 + y2)2.1
.

Table 1.

ILEs λ1 λ2 λ3

16 0.018272 0.413172 1.010226

32 0.018090 0.411435 1.007044

64 0.017811 0.410968 1.005803
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Thus ri =
√

2/2, i = 1, 2. The numerical results illustrate the case when
Ri = 2ri, i = 1, 2.

The interval (−
√

2/2,
√

2/2) is divided into 2n parts, so the partition consists
of 12n2 finite elements and 16n infinite large elements (Figure 1).In Table 1 we
present numerical results, calculated with a = 3.
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Abstract. We propose the damped inexact Newton method, coupled
with inner iterations, to solve the finite element discretization of a class
of nonlinear elliptic systems. The linearized equations are solved by a
preconditioned conjugate gradient (PCG) method. Both the inner and
the outer iterations have mesh independent superlinear convergence.

Keywords: conjugate gradient method, preconditioning, superlinear
convergence, damped inexact Newton method, mesh independence, nu-
merical experiments.

1 Introduction

We propose an inner-outer (damped inexact Newton plus PCG) iteration for the
finite element discretization of a class of nonlinear elliptic systems. Our aim is
to show mesh independent superlinear convergence of the overall iteration. The
linearized equations are solved by a preconditioned conjugate gradient method.
It is known that the Newton method has quadratic convergence when the exact
solution of the linearized equation is given. Instead of this, one may solve the
linearized equation in an inexact way, mainly with applying an iteration method,
in this paper we consider a preconditioned conjugate gradient method. This
way we lose the quadratic convergence of the outer Newton iterations, but we
may ensure superlinear convergence as we control the inaccuracy of the inner
iteration.

2 The PDE System

We consider the class of semilinear PDE-systems described below, which has the
short form {

−Δu(x) + f(x, u(x)) = g(x)
u
∣∣
∂Ω

= 0, (1)

where u = (u1, u2, . . . , us)T , g = (g1, g2, . . . , gs)T . In this paper all operators,
like Δ, ∇,

∣∣
∂Ω

, are meant coordinatewise.
We impose the assumptions

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 508–515, 2007.
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[P1 ] ∂Ω ⊂ R
d (d = 2 or 3) is piecewise C2 and Ω is locally convex at the

corners;
[P2 ] gi ∈ L2(Ω) (i = 1, 2, . . . , s);
[P3 ] f : Ω×R

s → R
s, for a.e. x ∈ Ω f(x, ξ) has a potential ψ : Ω×R

s → R, i.e.
f = ∂ξψ and it is differentiable w.r.t. ξ, and in these points the Jacobians
are symmetric positive semidefinite;

[P4 ] for a.e. x ∈ Ω the Jacobians ∂ξf(x, ξ) are uniformly bounded in ξ by a
symmetric matrix M(x), where the eigenvalues μj(x) of M(x) are bounded,
0 ≤ μj(x) ≤ c1, with some constant c1 > 0;

[P4’ ] the eigenvalues λ
(f)
j (x, ξ) (j = 1, . . . , s) of the Jacobians ∂ξf(x, ξ) are

bounded as follows

0 ≤ λ
(f)
j (x, ξ) ≤ c2 + c3

s∑
j=1

|ξ|p−2,

for some constants c2, c3 > 0 and p ≥ 2;
[P5 ] the derivative of f is Lipschitz continuous, that is there exists a constant

C that ‖∂ξf(x, ξ1) − ∂ξf(x, ξ2)‖2 ≤ C‖ξ1 − ξ2‖2 for a.e. x ∈ Ω;
[P5’ ] the derivative of f is locally Lipschitz continuous, that is there exists a

function C : (0, ∞) → (0, ∞) that ‖∂ξf(x, ξ1) − ∂ξf(x, ξ2)‖2 ≤ C(r)‖ξ1 −
ξ2‖2 for a.e. x ∈ Ω if ‖ξ1‖, ‖ξ2‖ ≤ r.

The weak formulation of problem (1) is: find a function u ∈ H = (H, 〈·, ·, 〉) =
(H1

0 (Ω))s that satisfies
∫

Ω

(∇u · ∇v + f(x, u) · v) =
∫

Ω

g · v, v ∈ (H1
0 (Ω))s. (2)

Here again the operator ∇ is meant coordinatewise.

Remark 1. H = (H1
0 (Ω))s coincides with the energy space of the unbounded

operator S : D(S) ⊂ (L2(Ω))s → (L2(Ω))s, the coordinatewise Laplacian. That
is H is the completion of the space (D(S), 〈·, ·〉S) where 〈u, v〉S =

∫
Ω

Su · v =∫
Ω ∇u · ∇v is the energy scalar product.

In the following 〈·, ·〉 will always denote the above mentioned scalar product, and
‖ · ‖ will denote the induced norm.

The weak formulation of problem (1) has also its (equivalent) variational form:
find a function u ∈ H that minimizes the functional φ : H → R

φ(u) :=
∫

Ω

(
1
2
|∇u|2 + ψ(x, u) − g · u

)
. (3)

By assumption [P3] ψ is a convex function, and therefore φ is also convex. By (3)
we have that φ is also coercive, therefore the functional φ has a unique minimum
(see e.g. [8]), and hence equation (2) has a unique weak solution.
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3 Abstract Form

Equation (2) may be considered as an equation on the space H
F (u) = b, (4)

where F (u) and b are the Riesz representation vectors defined by the left and
right-hand sides of (2) respectively.

Proposition 1. From assumptions [P1-P5] we have that

1. F : H :→ H is differentiable in the Gateaux sense;
2. F is regular, and ‖F ′(u)h‖ ≥ ‖h‖ independently of u, h;
3. F has the form F = I + N , where I is the identity operator on H, N is also

differentiable and for all u ∈ H, N ′(u) is a compact self-adjoint operator,
further it is Hilbert-Schmidt;

4. the operators N ′(u) are uniformly majorized, that is there exists a com-
pact positive self-adjoint Hilbert-Schmidt operator such that for all u ∈ H,
N ′(u) ≤ K in the sense 〈N ′(u)h, h〉 ≤ 〈Kh, h〉, ∀h ∈ H;

5. if we have [P4’] instead of [P4] we only have the operators N ′(u) are locally
uniformly majorized, that is for all r > 0 there exists a compact positive
self-adjoint Hilbert-Schmidt operator such that N ′(u) ≤ K(r) in the sense
〈N ′(u)h, h〉 ≤ 〈K(r)h, h〉, ∀h ∈ H, for all ‖u‖ ≤ r;

6. N ′ is Lipschitz continous with Lipschitz constant L;
7. if [P5’] holds only instead of [P5] then N ′ is only locally Lipschitz continous,

with a function L : (0, ∞) → (0, ∞).

Remark 2. From 1) and 2) of Proposition 1 we have that F is a homeomorphism,
see in e.g. [8], therefore equation (2) has a unique solution.

Now we may state a convergence theorem of the DIN method.

Theorem 1. [5] Let F be the operator defined above, then the following damped
inexact Newton method converges. Let u0 ∈ H be arbitrary and let us define the
sequence (un) ⊂ H recursively as

un+1 = un + τnpn (n ∈ N), where
‖F ′(un)pn + (F (un) − b)‖ ≤ δn‖F (un) − b‖, with 0 < δn ≤ δ0 < 1 and (5)

τn = min
{

1,
1 − δn

(1 + δn)2
1

L‖F (un) − b‖

}
.

Then the sequence (un) converges to the exact solution u∗ of equation (4)

‖un − u∗‖ ≤ ‖F (un) − b‖ → 0 monotonically.

Further, if δn ≡ δ0 then we have linear convergence, if δn ≤ const · ‖F (un) −
b‖γ (0 < γ ≤ 1) then the convergence is locally of order 1 + γ, that is the
convergence is linear for n0 steps, until ‖F (un) − b‖ ≤ ε, where ε is at most
(1 − δn) 1

2L , and further on ‖un − u∗‖ ≤ d1q
(1+γ)n−n0 holds.

Remark 3. The formula (5) gives a bound for the error of the approximate
solution of the linearized equation
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F ′(un)pn = −(F (un) − b). (6)

4 FEM Discretization

4.1 Discretization of the PDE System

We consider the finite element discretization of the PDE system above. That is
we have a finite element subspace Vh ⊂ H with Vh = (Vh)s = span (wi

h)m
i=1,

where Vh is a finite element subspace in H1
0 (Ω). Then we seek the element

uh ∈ Vh that satisfies
∫

Ω

(∇uh · ∇vh + f(x, uh) · vh) =
∫

Ω

g · vh, for all vh ∈ Vh. (7)

This equation could also be understood as an equation on the Hilbert-space Vh

(endowed with the inherited inner product 〈·, ·〉)

Fh(u) = bh, (8)

where Fh(u) and bh are the Riesz representation vectors defined by the left and
right-hand sides of (7) respectively.

Proposition 2. Fh(u) is the projection of F (u) onto the subspace Vh. It inherits
all the analogous properties of F mentioned in Proposition 1.

Corollary 1. By Remark 2 we have that (7) also has a unique solution.

Thus we are lead to the problem: find the coefficients c = (cj)m
j=1 such that

uh =
∑

cjw
j
h satisfies

∫
Ω

(
∇uh · ∇wj

h + f(x, uh) · wj
h

)
=

∫
Ω

g · wj
h, for j = 1, . . . , m.

This gives rise to a nonlinear algebraic system of the following form:

c + Nh(c) = b. (9)

4.2 Discretization of the Linearized Equation

From the above formulas we have that the linearization of Fh is

〈F ′
h(u)p, v〉 =

∫
Ω

(
∇p · ∇v + ∂uf(x, u)p · v

)
=

〈
p, v + S−1Quv

〉
, (10)

for all p, v ∈ Vh. We may define the stiffness and mass matrices respectively as

Sh =
[
〈wi

h, wj
h〉

]m

i,j=1
,Dh(u) =

[
〈S−1Quwi

h, wj
h〉

]m

i,j=1
=

[
〈Quwi

h, wj
h〉(L2)s

]m

i,j=1
.

(11)
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Remark 4. It is apparent that Sh is the s-tuple of the discrete Laplacian −Δh,
and if uh =

∑
ciw

i
h and vh =

∑
diw

i
h then 〈uh, vh〉 = Shc · d.

From equations (6) and (10) we have that the Newton linearization of (8) leads
us to the linear problem: find the element p

h
∈ Vh that satisfies

∫
Ω

(
∇p

h
· ∇v + ∂uf(x, u)p

h
· v

)
= −

∫
Ω

(
∇u · ∇v + f(x, u)v − g · v

)
, (12)

for all v ∈ Vh. We have the following linear equation, with p
h

=
∑

j pjw
j
h and

p = (pj)m
j=1:

(I + Sh
−1Dh(u))p = f , (13)

where f = Sh
−1 (γ1, . . . , γm)T with

γj = −
∫

Ω

(
∇u · ∇wj

h + f(x, u)wj
h − g · wj

h

)

4.3 Inner CG for the Discretized Equation

In this paper we suggest a preconditioned conjugate gradient method in order
to get an inexact solution of (12). By Proposition 1 F is a compact perturbation
of the identity. It is then well-known that the CG method applied to (6) has
superlinear convergence [7,4,2]. Moreover we have a discretization independent
estimate on the convergence:

Theorem 2 ([4,1]). The CG applied to the equation (13) yields the following
convergence estimate with the notation ek = pk − p:

‖ek‖Sh+Dh(u)

‖eo‖Sh+Dh(u)
≤

(
3

∣∣∥∥Sh
−1Dh(u)

∥∥∣∣2
2k

)k/2

,

if k ∈ N is even and k ≥ 2
3

∣∣∥∥Sh
−1Dh(u)

∥∥∣∣2. This estimate is independent of the
subspace Vh used in Galerkin discretization.

We can combine condition (5) with Theorem 2, thus in the nth outer iteration
we need to take kn inner iterations in order to achieve the required estimate (5).
This means that for n ≥ 0 kn shall satisfy

‖F ′
h(un)pkn

n + (Fh(un) − bh)‖
‖Fh(un) − bh‖ ≤ δn,

that is with p0
n = 0 we have the estimate on kn

(
3 |‖K‖|2

2kn

)kn/2

≤ δn.
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5 The Algorithm

The DIN algorithm applied to the problem (9) is then

1. we calculate the matrix Δh (since Sh is the s-tuple of it) and calculate b by
some fast Poisson solver as a preconditioner, and set the initial guess c0 = 0;
after n outer iterations

2. we calculate the residual rn = cn + Nh(cn) − b, and its norm ‖rn‖Sh
;

3. we make some inner PCG steps with a stopping criterion ε = δn and calculate
pn:
(a) we calculate the mass matrix D(uh) as in (11), and set initial value

p0
n = 0;

(b) we calculate the residual e0
n = p0

n + D(uh)p0
n − f , and its norm ‖e0

n‖Sh
,

and define q0
n = e0

n;
after k iterations:

(c) if ‖ek
n‖Sh

≤ ε then we set pn = pk
n and terminate the inner PCG;

(d) we calculate the constant αk and then modify pk
n and ek

n as

αk =
Shek

n · qk
n

(Sh + D(uh)) ek
n · qk

n

, and

pk+1
n = pk

n − αkqk
n, ek+1

n = ek
n − αk(qk

n + Sh
−1D(uh)qk

n) respectively;

(e) we calculate the constant βk and then modify qk
n as

βk =
(Sh + D(uh)) ek+1

n · qk
n

(Sh + D(uh)) ek
n · qk

n

, qk+1
n = ek+1

n − βkqk
n;

(f) we calculate the residual ek+1
n = pk+1

n + D(uh)pk+1
n − f , and its norm

‖ek+1
n ‖Sh

, and step to (c);
4. we calculate the damping parameter τn and let

cn+1 = cn + τnpn,

and step to 2.

6 Numerical Experiments

We made experiments on some test-problems below:

· the domain was Ω̄ = [0, 1] × [0, 1],
· we used Courant elements for the FEM discretization using uniform mesh

with width h = 1/N where N is the number of subintervals on the interval
[0, 1] × {0},

· the coordinates of the exact solutions were chosen among the functions of
the form u(x, y) = C · x(1 − x)y(1 − y) and u(x, y) = C · sin πx sin πy,

· we had the function f as the potential of the functional ϕ(ξ) = ‖ξ‖4,
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· the stopping criterion was ‖Fh(un) − bh‖ ≤ 10−5,
· we used adaptive damping parameters τn,
· the code was written in Matlab.

Proposition 3. The above test-problems satisfy assumptions [P1], [P2], [P3],
[P4’], [P5’].

The cases [P1]-[P3] are obvious. By some elementary calculations we have that
[P4’] is satisfied with c1 = 0, c2 = 12, p = 4 and [P5’] is satisfied with C(r) = 24r.

Denoting rn = Fh(un) − bh, ninn equals the number of inner iterations, we
had the following results:

We observe mesh independence for both the outer and inner iterations.

Remark 5. The relaxing parameters τn defined in (5) did result linear conver-
gence before the superlinear phase, but then the convergence quotient were so
close to 1, that it would needed too much computer time to get to the superlinear
phase. That is why we used some adaptive relaxing parameters.

Table 1. Results for s = 2 and s = 6

N = 25 N = 55 N = 85

n ‖rn‖ ninn ‖rn‖ ninn ‖rn‖ ninn

1 2.4747 1 2.4804 1 2.4812 1

2 1.8506 1 1.8547 1 1.8553 1

3 1.1298 1 1.1319 1 1.1323 1

4 0.4614 1 0.46195 1 0.46203 1

5 6.2785 · 10−2 2 6.2886 · 10−2 2 6.2902 · 10−2 2

6 2.85 · 10−4 3 2.9349 · 10−4 3 2.9479 · 10−4 3

N = 25 N = 35 N = 45

n ‖rn‖ ninn ‖rn‖ ninn ‖rn‖ ninn

1 22.294 1 22.327 1 22.341 1

2 12.422 1 12.400 1 12.390 1

3 6.9112 1 6.9049 1 6.9023 1

4 2.7724 1 2.7730 1 2.7732 1

5 1.1069 2 1.1173 2 1.1217 2

6 1.3284 · 10−1 3 1.3589 · 10−1 3 1.3723 · 10−1 3

7 2.4111 · 10−3 5 2.4928 · 10−3 5 2.5437 · 10−3 5

8 8.9220 · 10−6 8 5.4236 · 10−6 8 3.6845 · 10−6 8

Table 2. Results for s = 8

N total number of inner PCG iterations computer time (in sec) the final error ‖u − u
h
‖

15 39 2.6034 · 102 1.4628 · 10−1

25 28 7.6434 · 102 4.4973 · 10−2

35 35 2.3816 · 103 2.2530 · 10−2

45 23 4.7176 · 103 1.3578 · 10−2
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700506 Iaşi, Romania

napreut@net89mail.dntis.ro
2 University of Medicine and Pharmacy “Gr. T. Popa”,

Department of Mathematics and Informatics,
700115 Iaşi, Romania
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Abstract. Numerical approximation for the solution of a second order
evolution equation is proposed. An internal scheme of approximation
is used. The equation is associated with a maximal monotone operator
in a real Hilbert space together with bilocal boundary conditions. A
numerical example is investigated.

1 Introduction

Let H be a real Hilbert space endowed with the scalar product (·, ·) and the
associated norm ‖ · ‖ and let V be a reflexive Banach space whose norm is
denoted by | · |. Suppose that V ⊆ H with a continuous injection, i.e. ∃ c0 > 0
such that ‖x‖ ≤ c0|x|, ∀x ∈ V and V is dense in H .

Consider a nonlinear operator A from H to H with the properties below:
(i) A : D(A) = V ⊆ H → H is univoque and hemicontinuous from its domain

D(A) = V to H , that is ∀x, y ∈ V ,

lim
t→0

A(x + ty) = Ax in the weak topology of H ;

(ii) ‖Ax‖ ≤ c‖x‖, ∀x ∈ D(A) = V , where c > 0 is a constant;
(iii) ∃α > 0 such that

(Ax −Ay, x− y) ≥ α‖x− y‖2, ∀x, y ∈ D(A) = V.

Then the operator A is maximal monotone in H . Consider now the bilocal
problem {

u′′(t) = Au(t), a. e. 0 < t < T ,
u(0) = a, u(T ) = b,

(1)

where a, b ∈ D(A) = V . Then problem (1) has a unique solution
u ∈ W 2,2(0, T ; H) (see for example [4] and [5]).

We give a numerical approximation of the solution u of this problem by an
internal scheme of approximation. A similar approximation is described in [6]
for first order differential equations.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 516–524, 2007.
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Section 2 presents discretizations both for the spaces and the operator A.
Some boundedness properties and the main approximation result are collected
in the third section. An example is given in Section 4.

2 The Internal Scheme of Approximation

In order to construct an internal approximation of (1), we associate the following
items with the parameter h tending to zero (see [3], [6]):

(a) a finite dimensional linear space Vh, for example Vh = IRn(h), with n(h)
finite;

(b) a linear continuous injective mapping ph : Vh → V (prolongation);
(c) a linear continuous mapping rh : H → Vh (restriction).
Here h is regarded as the step of discretization in space. Assume that:
(iv) ∀x ∈ V , phrhx→ x in V as h→ 0 and ‖phrh‖L(H,V ) ≤ c1.
We introduce the scalar product (·, ·)h in Vh given by

(uh, vh)h = (phuh, phvh), ∀uh, vh ∈ Vh (2)

and the associated norm ‖.‖h, ‖uh‖h = ‖phuh‖, ∀uh ∈ Vh. We also endow Vh

with the norm |uh|h = |phuh|, ∀uh ∈ Vh. Obviously, ‖uh‖h ≤ c0|uh|h, ∀uh ∈ Vh

and since Vh is finite dimensional, there exists a positive constant c(h) such that
|uh|h ≤ c(h)‖uh‖h, ∀uh ∈ Vh.

We now define an internal approximation Ah of A, namely

Ah : Vh → Vh, (Ahuh, vh)h = (Aphuh, phvh). (3)

It is easy to verify that the nonlinear operator Ah is bounded (‖Ahuh‖h ≤
c‖uh‖h), strongly monotone on Vh, and hemicontinuous on Vh : ∀uh, vh ∈ Vh,
lim
t→0

Ah(uh + tvh) = Ahuh in the weak topology of Vh.

Let N be a positive integer which will tend to +∞ and let k = T/(N + 1) be
the step of discretization in time. For fixed h and k, consider the problem{ 1

k2 (u(r+1)
hk − 2u

(r)
hk + u

(r−1)
hk ) = Ahu

(r)
hk , r = 1, N ,

u
(0)
hk = u0

h = rha, u
(N+1)
hk = uT

h = rhb .
(4)

Since Ah : Vh → Vh is monotone, hemicontinuous, univoque and everywhere
defined, then it is maximal monotone in Vh. Hence, problem (4) has a unique
solution (u(r)

hk )r=1,N , with u
(r)
hk ∈ Vh, r = 1, N (see [1] and [2]).

One associates the functions uh : [0, T ]→ Vh, zh : (0, T ]→ Vh,

uh(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0
h(= rha), t = 0 ,[
(k − t)u(0)

hk + tu
(1)
hk

]
/k, 0 < t ≤ k ,

. . .[
(rk − t)u(r−1)

hk + (t− (r − 1)k)u(r)
hk

]
/k, (r − 1)k < t ≤ rk ,

. . .[
((N + 1)k − t)u(N)

hk + (t−Nk)u(N+1)
hk

]
/k, Nk < t ≤ (N + 1)k ,

(5)
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zh(t) = u
(r)
hk , (r − 1)k < t ≤ rk, r = 1, N + 1 . (6)

We are going to prove that phuh → u in L2(0, T ; H), phu′
h → u′ in C([0, T ] ; H)

and Aphzh ⇀ Au in L2(0, T ; H).

3 The Main Result

First we notice that, in view of (iv), we have

phuh(0) = phrha→ a, phuh(T ) = phrhb→ b as h→ 0. (7)

Some boundedness properties are collected in the following lemma.

Lemma 1. Under the above notations, phu
(r)
hk is bounded in H, for every r =

0, N + 1, phu′
h(0), phu′

h(T ) and
N+1∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk ‖2 are bounded in H,

phuh, phzh and Aphzh are bounded in L∞(0, T ; H) with respect to h, k.

Proof. Multiplying (4) by u
(r)
hk in Vh and using (2), one obtains

(phu
(r+1)
hk , phu

(r)
hk )− 2‖phu

(r)
hk ‖

2 + (phu
(r−1)
hk , phu

(r)
hk ) = k2(Aphu

(r)
hk , phu

(r)
hk ).

Then the monotonicity of A and A0 = 0 (which follows from (ii)) imply that

‖phu
(r)
hk ‖ ≤

1
2
‖phu

(r+1)
hk ‖+

1
2
‖phu

(r−1)
hk ‖, r = 1, N .

Therefore,

‖phu
(r)
hk ‖ ≤ max(‖phrha‖, ‖phrhb‖) ≤M, ∀h, k, ∀ r = 0, N + 1 . (8)

The same multiplication of (4) by u
(r)
hk in Vh, followed by a summation from

r = 1 to r = N, prove via the monotonicity of A that

N∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk ‖2 ≤ −‖phu

(N+1)
hk − phu

(N)
hk ‖2

+(phu
(N+1)
hk − phu

(N)
hk , phu

(N+1)
hk )

−(phu
(1)
hk − phu

(0)
hk , phu

(0)
hk )

and thus (8) yields

N+1∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk ‖2 ≤M1, ∀h, k . (9)

Next, for (r − 1)k < t ≤ rk, with r = 1, N + 1 , we estimate

‖phuh(t)‖ ≤ rk − t

k
‖phu

(r−1)
hk ‖+

t− (r − 1)k
k

‖phu
(r)
hk ‖ ≤M,
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for all h, k. Hence ‖phzh(t)‖ = ‖phu
(r)
hk ‖ ≤M, and by (ii) we have ‖Aphzh(t)‖ ≤

c‖phzh(t)‖ ≤ M2, ∀h, k. These inequalities lead to the boundedness of phuh,
phzh and Aphzh in L∞(0, T ; H).

A simple computation shows that
⎧⎪⎪⎨
⎪⎪⎩

u′
h(0) = 1

T

[
rhb− rha−

N+1∑
m=1

m−1∑
r=1

(u(r+1)
hk − 2u

(r)
hk + u

(r−1)
hk )

]
,

u′
h(T ) = 1

T

[
rhb− rha +

N+1∑
m=1

N∑
r=m

(u(r+1)
hk − 2u

(r)
hk + u

(r−1)
hk )

]
.

Applying ph and using (9), one arrives at the boundedness of phu′
h(0) and

phu′
h(T ) in H . The lemma is proved.

Now we state the approximation result.

Theorem 1. Under the above hypotheses, if u is the solution of problem (1) and
uh, zh are given by (5) and (6) respectively, then

phuh → u in L2(0, T ; H), phuh ⇀ u weakly star in L∞(0, T ; H), (10)

phu′
h → u′ in C([0, T ]; H), Aphzh ⇀ Au in L2(0, T ; H). (11)

Proof. By Lemma 1 we can choose subsequences denoted again phuh and phzh

such that, for h, k → 0,

phuh ⇀ ξ weakly star in L∞(0, T ; H), (12)

phzh ⇀ η weakly star in L∞(0, T ; H), (13)

Aphzh ⇀ κ weakly star in L∞(0, T ; H). (14)

We prove that ξ = η. Indeed, by (5) and (6) it follows that, ∀ y ∈ H ,

∫ T

0
(phzh(t)− phuh(t), y) dt =

N+1∑
r=1

∫ rk

(r−1)k

(
rk − t

k
(phu

(r)
hk − phu

(r−1)
hk ), y) dt

=
k

2

N+1∑
r=1

(phu
(r)
hk − phu

(r−1)
hk , y) .

Therefore, for every y ∈ H ,
∫ T

0 (phzh(t)− phuh(t), y) dt =
k

2
(phrhb− phrha, y).

Using (12), (13), and (7), we find that ξ = η.
We show now that phu′

h is strongly convergent in C([0, T ] ; H). In order to
prove this, subtract (4) for h and l, and multiply their difference by phu

(r)
hk−plu

(r)
lk

in H . Summing up from r = 1 to r = N and using (5), one obtains

N∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk − plu

(r)
lk + plu

(r−1)
lk ‖2 + αk2

N∑
r=1
‖phu

(r)
hk − plu

(r)
lk ‖2

≤ (ph(u(N+1)
hk − u

(N)
hk )− pl(u

(N+1)
lk − u

(N)
lk ), phu

(N)
hk − plu

(N)
lk )
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− (ph(u(1)
hk − u

(0)
hk )− pl(u

(1)
lk − u

(0)
lk ), phu

(0)
hk − plu

(0)
lk ). (15)

Remark that

k2
N∑

r=1
‖phu

(r)
hk−plu

(r)
lk ‖

2 = k

∫ T

0

‖phzh(s)−plzl(s)‖2ds−k2‖phrhb−plrlb‖2. (16)

It is easy to show that (5) leads to
⎧⎪⎨
⎪⎩

u′
h(0) = 1

k
(u(1)

hk − u
(0)
hk ), u′

h(T ) = 1
k

(u(N+1)
hk − u

(N)
hk )

u′
h(t) = 1

k
(u(r)

hk − u
(r−1)
hk ), (r − 1)k < t < rk.

(17)

Thus, we deduce that

N∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk − plu

(r)
lk + plu

(r−1)
lk ‖2

= k2
N+1∑
r=1
‖phu′

h(t)− plu
′
l(t)‖2 − k2‖phu′

h(T )− plu
′
l(T )‖2. (18)

Introducing (16), (17), and (18) into (15), one arrives at

k2
N+1∑
r=1
‖phu′

h(t)− plu
′
l(t)‖2 + αk

∫ T

0

‖phzh(s)− plzl(s)‖2 ds

≤ αk2‖phrhb− plrlb‖2 + k(phu′
h(T )− plu

′
l(T ), phrhb− plrlb)

−k(phu′
h(0)− plu

′
l(0), phrha− plrla).

Therefore, using (N + 1)k = T, we obtain

T ‖phu′
h(t)− plu

′
l(t)‖2 + α

∫ T

0

‖phzh(s)− plzl(s)‖2 ds ≤ αk‖phrhb− plrlb‖2

+(phu′
h(T )− plu

′
l(T ), phrhb− plrlb)− (phu′

h(0)− plu
′
l(0), phrha− plrla).

Lemma 1, together with (7) lead to the convergences

phu′
h → ξ′ in C([0, T ] ; H), phzh → ξ in L2(0, T ; H) as h, k → 0. (19)

In addition,
phuh → ξ in L2(0, T ; H) as h, k→ 0. (20)

Indeed, since
∫ T

0

‖phzh(t)− phuh(t)‖2 dt =
N+1∑
r=1

∫ rk

(r−1)k

‖rk − t

k
(phu

(r)
hk − phu

(r−1)
hk )‖2 dt,

a simple computation leads to
∫ T

0

‖phzh(t)− phuh(t)‖2 dt =
k

3

N+1∑
r=1
‖phu

(r)
hk − phu

(r−1)
hk ‖2 .
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Hence, with the aid of Lemma 1 and (19), we obtain (20).
We notice that (14), (19) and the fact that A is demiclosed imply that κ = Aξ.

Therefore
Aphzh ⇀ Aξ in L2(0, T ; H). (21)

Let us prove that ξ coincides with the solution u of problem (1). To this end,
consider m ∈ {0, . . . , N} a fixed integer, and t ∈ (mk, (m + 1)k], x ∈ H given
elements. One multiplies (4) in Vh by rhx ∈ Vh and sums up from 1 to m. We
arrive at

(phu
(m+1)
hk − phu

(m)
hk , phrhx)− (phu

(1)
hk − phu

(0)
hk , phrhx)

= k2
m∑

r=1

(Aphu
(r)
hk , phrhx). (22)

Denote by Ml and Mr, the left-hand side and the right-hand side of this equality,
respectively. Using (17) and (6) we find that

Ml = k(phu′
h(t)− phu′

h(0), phrhx),

Mr = k
m∑

r=1

∫ rk

(r−1)k

(Aphzh(s), phrhx) ds = k

∫ mk

0

(Aphzh(s), phrhx) ds.

Going back to (22), one obtains

(phu′
h(t), phrhx) = (phu′

h(0), phrhx) +
∫ mk

0

(Aphzh(s), phrhx) ds, (23)

for all h, k. Denoting by d, the weak limit of phu′
h(0) (when h, k → 0) and using

(21), observe that the right-hand side of (23) tends to

g(t) = (d, x) +
∫ t

0

(Aξ(s), x) ds. (24)

For each continuous function ϕ : [0, T ] → IR, we derive via the Lebesgue
Theorem that

∫ t

0

(phu′
h(s), phrhx)ϕ(s) ds→

∫ t

0

g(s)ϕ(s) ds.

Since phrhxϕ(t) → xϕ(t) in L1(0, T ; H), we deduce from (19) that g(t) =
(ξ′(t), x), a.e. t ∈ [0, T ] . By (24) it follows that

(ξ′(t)− d, x) =
∫ t

0

(Aξ(s), x) ds,

which leads to ξ′′(t) = Aξ(t), a.e. t ∈ [0, T ]. Thus, ξ is a solution of problem (1).
Since the solution of (1) is unique, we find that ξ = u.

Now (10), (11) follow from (12), (19), (20) and (21). The proof is complete.
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4 Computational Issue

We set Ω = (0, 1), T = 1 and consider the following linear bilocal problem: Find
u(x, t), (x, t) ∈ Q = (0, 1)× (0, 1), the solution of the equation

∂2u

∂t2
= Au , (25)

where the operator A is defined as A = −Δ = − ∂2

∂x2 , with bilocal conditions:

u(x, 0) = sin(πx), u(x, 1) = eπ sin(πx), x ∈ Ω and homogeneous boundary
condition: u(x, t) = 0, (x, t) ∈ {0, 1} × (0, 1) .

The analytical solution for (25) is u(x, t) = eπt sin(πx). We apply the suc-
cessive over-relaxation (SOR) method to solve numerically the equation (25).
Denoting β = h

k
and ui,j = u(ih, jk), then using finite differences, the SOR

method for (25) is defined by

ui,j = (1− ω)ui,j +
ω

2(1 + β2)
(ui,j−1 + ui,j+1) +

ωβ2

2(1 + β2)
(ui−1,j + ui+1,j) .

Here ω represents the sensitivity of the successive over-relaxation factor and it
must be inside the interval (1, 2). The idea is to choose a value for ω that will
accelerate the rate of convergence of the iterates to the solution.
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Table 1. Norms of the numerical solution evaluated for different values of ω

SOR factor ω No. iter. ‖u‖1 ‖u‖2 ‖u‖∞
1.00 247 0.1033 0.0931 0.1442
1.05 227 0.1149 0.1005 0.1513
1.10 209 0.1271 0.1085 0.1587
1.15 191 0.1344 0.1134 0.1640
1.20 175 0.1436 0.1197 0.1708
1.25 160 0.1523 0.1257 0.1771
1.30 146 0.1607 0.1317 0.1832
1.35 132 0.1663 0.1357 0.1874
1.40 120 0.1756 0.1423 0.1939
1.45 107 0.1798 0.1453 0.1972
1.50 95 0.1854 0.1494 0.2012
1.55 84 0.1928 0.1547 0.2063
1.60 72 0.1968 0.1576 0.2093
1.65 61 0.2043 0.1630 0.2144
1.70 48 0.2109 0.1677 0.2194
1.75 42 0.2196 0.1743 0.2253
1.80 51 0.2241 0.1768 0.2265
1.85 68 0.2201 0.1735 0.2233
1.90 100 0.2203 0.1742 0.2229
1.95 199 0.2189 0.1733 0.2233
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Table 1 contains computed values of the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ cor-
responding to the numerical solution u when applying the SOR method. The
table also contains the number of iterations when the extrapolation SOR factor
ω is varying from 1 to 1.95 with an increment of 0.05. Thus, we remark that an
optimal value of ω is 1.75, when the iterative algorithm converges using only 42
iterations.

The first two subplots in the upper part of Figure 1 illustrate the analytical
and approximate solution. The plots appear as indistinguishable because of the
very small relative error (the bottom subplot to the left part). The subplot in
Figure 1 placed below to the right, clearly indicates the optimal value for ω
assuring the best rate of convergence. Finally, Figure 2 presents the behaviour
of different norms of the computed solution u with respect to the factor ω.
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Abstract. In recent years, the algorithms that extract information for
target’s behavior through mathematical transformation of the signals
reflected from a target, find ever-widening practical application. In this
paper, a new two-stage algorithm for target detection and target’s radial
velocity estimation that exploits the Hough transform is proposed. The
effectiveness of the proposed algorithm is formulated in terms of both
quality parameters - the probability of detection and the accuracy of ve-
locity estimation. The quality parameters are estimated using the Monte
Carlo simulation approach.

1 Introduction

Recently, mathematical methods for extraction of useful data about the behav-
ior of observed targets by mathematical transformation of received signals are
being widely used for design of new highly effective algorithms for processing
radar data. Modern methods for target detection and trajectory parameters es-
timation, which use mathematical transformation of received signals, allow new
highly effective algorithms for radar signal processing to be designed. As a re-
sult, extremely precise estimates of moving target parameters can be obtained in
conditions of very dynamic radar environment. An approach for linear trajectory
target detection by means of Hough transformed coordinates, obtained for few
sequential scans of the observation area is considered in papers [1]. According
to this approach, the method for target detection uses a limited set of prelim-
inary chosen patterns of a linear target trajectory. The set of target distance
measurements is transformed to the pattern space (parameter space) by means
of the Hough transform. The association of measurements to a special pattern
is done by estimation of the data extracted from the target signals connected to
this pattern. Thus the trajectory parameters of the targets, moving in the obser-
vation area, are determined through parameters of the corresponding pattern.
� This work is supported by IIT - 010059/2004 and Bulgarian NF “SR” with Grants
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Different new results for statistical analysis of several algorithms, which use the
Carlson’s approach for target detection in the environment with and without
pulse jamming, are obtained in [2,3,4,5,6]. All these papers consider only the
detection performance without estimating the target velocity.

In this paper, a new two-stage algorithm for simultaneous target detection
and its radial velocity estimation is proposed and tested. At the first stage, the
target is detected using the Hough detector. At the second stage, the target ra-
dial velocity is found using the estimate of the Hough space parameter, which is
found at the former stage. The effectiveness of the algorithm for the combined
“detection-estimation” algorithm is formulated in terms of both quality param-
eters - the probability of detection and the accuracy of velocity estimation. The
quality parameters of the detection algorithm are evaluated by means of Monte
Carlo simulations.

2 Target Detection and Velocity Estimation

Consider radar that provides range, azimuth and elevation as a function of time.
Time is sampled by the scan period, but resolution cells sample range, azimuth
and elevation. The trajectory of a target that moves in the same “azimuth-
elevation” resolution cell, is a straight line specified by several points (r, t) in the
range-time data space (r-t space), as it is shown in Fig. 1. Besides, in the (r-t)
space, the target trajectory can be specified through the other parameters - the
angle θ of its perpendicular from the data space origin and the distance ρ from
the origin to the line along the perpendicular.

The Hough transform maps all points (r, t) of the (r-t) space into curves in
the (ρ − θ) parameter space (Hough parameter space) as follows:

ρ = r cos θ + t sin θ, (1)

where r and t are point coordinates in the (r-t) space, ρ and θ are parameters
that specify a straight line in the Hough parameter space.

The mapping of a line into the Hough parameter space can be considered as
stepping through θ from 0◦ to 180◦ and calculating the corresponding ρ. The
parameter space showing several sinusoids corresponding to different points in
the (r-t) space is shown in Fig.2. The trigonometric manipulations of (1) leads
to the other form of the Hough transform:

ρ =
√

r2 + t2 sin(θ + arctan
r

t
). (2)

The mapping by (2) results in a sinusoid with an amplitude and phase depen-
dent on coordinates in the (r-t) space of a point that is mapped. The maximum
value for |ρ| is equal to the length of the diagonal across the (r-t) data space.
Equation (1) is the simpler version that is actually used for mapping.

Each (ρ, θ) point in the Hough parameter space corresponds to a single straight
line in the (r-t) data space. Any one of the sinusoidal curves in the Hough
parameter space corresponds to the set of all possible lines in the data space
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Fig. 1. Range-Time Space Fig. 2. Hough Parameter Space

through the corresponding data point. If a straight line exists in the (r-t) space,
this line is represented in the Hough parameter space as a point of intersection
of all the mapped sinusoids. The slope of the target trajectory presented in Fig.1
is determined by the radial velocity of the target:

V =
(j2 − j1)δR
(i2 − i1)tsc

= tan θ
δR

tsc
, (3)

where (i1δR, j1tsc) and (i2δR, j2tsc) are coordinates of two points in the (r-t)
space that belong to the target trajectory, δR is the range resolution cell and tsc

is the scan period. According to equations (1, 2, 3), the structure of the Hough
detector/estimator can be given by Fig.3.

Signal Detection

in the (r-t) space

Hough

Transform

Trajectory

Detection in the

Hough space

Is a target

detected?

Velocity

Estimation

Yes
No target

Target trajectory

Velocity

Fig. 3. The structure of Hough detector/estimator

In the (r-t) space, a low primary threshold is set, and any range-time cell
with a value exceeding this threshold is mapped into the (ρ − θ) parameter
space using (1). The parameter space is sampled in ρ and θ dimensions. When
a primary threshold crossing in any (r, t) cell is mapped into the parameter
space, its signal power is added into (ρ, θ) cells that intersect the corresponding
sinusoidal curve in the parameter space. In this way, in the Hough parameter
space the accumulator point at the intersection of several sinusoids will reach a
high value. A secondary threshold applied to each point in the (ρ − θ) parame-
ter space can be use to declare detection of a target trajectory. The point (ρ̂, θ̂)
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where the secondary threshold is exceeded specifies the detected trajectory of
a target. According to (3), the estimate of radial velocity of a target can be
evaluated as:

V̂ =
δR

tsc
tan θ̂. (4)

3 Simulation Algorithm

The effectiveness of target detection and velocity estimation provided by the
algorithm proposed can be expressed in terms of two quality parameters - the
detection probability characteristics and the accuracy of velocity estimation. In
order to evaluate statistically these quality parameters, a simulation algorithm
for testing of the new detector/estimator is developed:

1. At the first step the (r-t) space is quantized. To do this, the following data are
needed - the range resolution cell (δR), the scan time (tsc) and the number
of scans (Nsc). The quantized (r-t) space is of size [N ×M ], where N = Nsc,
M = Rk−Rn

δR , Rk and Rn are the limits of the observation space.
2. At the second step the hypothesis matrix (IndTr) is formed as follows:

{
IndTr(i, j) = 1, j = V tsci/δR,
IndTr(i, j) = 0, j �= V tsci/δR.

(5)

The number of nonzero elements Ktarget in the hypothesis matrix IndTr
equals the number of all target positions in the (r-t) space:

Ktarget =
N∑

i=1

N∑
j=1

IndTr(i, j)/IndTr(i, j) �= 0 (6)

3. At the third step the process of target detection in each cell of the (r-t) space
is simulated. The detection is carried out by a CA CFAR algorithm [6]. As a
result, the following matrix whose each element indicates whether the target
is detected or not in the corresponding cell of the (r-t) space, is formed:

Detq(i, j) =
{

1, target is detected,
0, target is not detected,

(7)

where q is the simulation cycle number.
4. At the fourth step, the (ρ − θ) parameter space is quantized. It is a matrix

of size [K × L]. The parameters K and L are determined by the number of
discrete values of the θ parameter, which is sampled in the interval (θ1, θ2)
with sampling step Δθ, and the size of the (r-t) space.

K = 2
√

N2 + M2; L = (θ2 − θ1)/Δθ. (8)

5. At the fifth step all the nonzero elements of the matrix Detq are performed
using the Hough transform. In such a way, the (r-t) space is mapped into
the (ρ − θ) parameter space. The resulting matrix is {Htq}K,L.
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6. At the next sixth step a target trajectory is detected. This is done by compar-
ing the value of each element of the parameter space, i.e. of matrix {Htq}K,L,
with the fixed threshold TM . It means that the decision rule “TM out of Nsc”
is applied to each element in the parameter space. According to this criterion,
the linear target trajectory specified as a point (ρ̂, θ̂) in the Hough parameter
space is detected if and only if the value Ht(ρ̂, θ̂) exceeds the threshold TM .

DetHoq(i, j) =
{

1, Htq(i, j) > TM ,
0, otherwise.

(9)

7. The seventh step is performed in case when a target trajectory is detected at
the former step. At this step the target radial velocity is estimated as follows:

V̂ =
δR

tsc
tan(θ̂), (10)

where θ̂ is the Hough parameter, where the target trajectory is detected.
8. In order to estimate both the probability characteristics and the accuracy of

the velocity estimation, steps 1-7 are repeated Nq times.
The false alarm probability in the (r-t) space is estimated as:

ˆPfa =
1

(NM − Ktarget)Nq

N∑
i=1

M∑
j=1

Nq∑
l=1

{Detq(i, j)/IndTr(i, j) �= 1}. (11)

The target detection probability in the (r-t) space is estimated as:

P̂d =
1

Ktarget + Nq

N∑
i=1

M∑
j=1

Nq∑
l=1

{Detq(i, j)/IndTr(i, j) = 1}. (12)

The false alarm probability in the (ρ − θ) space is estimated as:

P̂FA =
1

KLNq

K∑
i=1

L∑
j=1

{DetHoq(i, j)/i �= I, j �= J}. (13)

The probability of trajectory detection in the (ρ − θ) space is estimated as:

P̂D = maxI,J

Nq∑
l=1

DetHoq(i, j). (14)

4 Simulation Results

In this section we apply the simulation algorithm described above to typical surveil-
lance radar. The goal is to analyze statistically the algorithm for target detection
and velocity estimation. In order to obtain the statistical estimates of the basic
quality parameters (probability characteristics and accuracy of velocity estima-
tion), the following data were used in the simulations: scan period - tsc = 6s;
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number of scans - Nsc = 20; range resolution cell - δR = 150m and 1500m; size
of the (r-t) space - 128 × 20 elements; interval for variation of the θ parameter -
θ1 = 0◦, θ2 = 180◦; probability of signal detection in the (r-t) space - PD = 0, 9;
probability of false alarm per cell in the range-time space - Pfa = 0.0001; decision
rule for trajectory detection in the Hough parameter space - TM/Nq = 7/9 and
TM/Nq = 7/20; target velocity - Vtarget = 333m/s; the average signal-to-noise
ratio - SNR=37dB; number of simulation cycles - 1000.

According to (10), the theoretical accuracy of the velocity estimation (ΔV )
can be expressed as:

ΔVi = Vi+1 − Vi =
δR

tsc
(tan(θi+1) − tan(θi)), (15)

where θi+1 = iΔθ, θi = (i − 1)Δθ, i = 1, 2, . . . , L.
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Therefore, the accuracy of estimation is mainly determined by the sampling
rate of the parameter θ and also depends on the sampling interval of the (r-t)
space. It means that for given δR and tsc, the sampling interval Δθ should be
chosen so as to meet the requirements for accuracy of the velocity estimation.

The theoretical accuracy that can be reached depending on the sampling in-
terval of the parameter θ is presented in Fig. 4 and Fig.5 - for the range resolution
cell of 1500m and 150m, respectively. The theoretical accuracy of velocity esti-
mation as a function of the target velocity to be estimated is presented for six
different variants of Δθ.

The averaged velocity estimates, obtained in simulations for a target velocity
are shown in Fig. 6. The velocity estimates are plotted as a function of the
sampling interval Δθ. For comparison, the averaged velocity estimate is plotted
for two values of the range resolution cell - 150m and 1500m. The absolute errors
of velocity estimation, calculated for two values of the range resolution cell are
shown in Fig. 7. They are also plotted as a function of the sampling interval Δθ.

The numerical results that correspond to the graphical results are summarized
in Table 1 and Table 2. The velocity estimates calculated for a target moving
in straight line with velocity of 333m/s are presented for six sampling interval
of the parameter θ. In addition, Table 1 and Table 2 contain the estimates of
both probability characteristics, the probability of signal detection in the (r-t)
space (Pd) and the probability of trajectory detection in the Hough parameter
space (PD).

For this example the (r-t) space contains 128 range resolution cells. It means
that the general number of points specifying the target trajectory in the (r-t)
space can be calculated as:

Nq =
{ 128δR

Vtargettsc
, if 128δR

Vtargettsc
< 20,

20, otherwise.
(16)

If tsc = 6s and Vtarget = 333m/s, then Nq = 9 - for δR = 150m and Nq = 20
- for δR = 1500m.

Therefore, the decision rule applied to trajectory detection in the Hough pa-
rameter space is “7 out of 9” - in case of the range resolution cell of 150m, and
“7 out of 20” - in case of the range resolution cell of 1500m. For that reason
the probability of trajectory detection presented in Table 2 is greater than that
presented in Table 1.

Table 1. Velocity and probability estimates for value δR = 150m

Δθ◦ Real velocity - Vreal Vave ΔV Pd PD

Real parameter - θ◦real [m/s] [m/s]

0.1 333.1697 0.1697 0.932 0.956
0.25 Vreal = 333m/s 333.2808 0.2808 0.909 0.940
0.5 330.9933 2.0067 0.912 0.935
1.0 357.2151 24.2151 0.916 0.474
2.0 θ◦real = 85.7066◦ 357.5167 24.5167 0.914 0.485
4.0 397.3636 64.3636 0.912 0.006
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Table 2. Velocity and probability estimates for value δR = 1500m

Δθ◦ Real velocity - Vreal Vave ΔV Pd PD

Real parameter - θ◦real [m/s] [m/s]

0.1 335.844 2.844 0.912 1
0.25 Vreal = 333m/s 335.7617 2.7617 0.915 1
0.5 336.7357 3.7357 0.918 1
1.0 333.3181 0.3181 0.917 1
2.0 θ◦real = 53.1026◦ 329.5216 3.4784 0.919 1
4.0 318.832 14.168 0.920 1

5 Conclusions

A new algorithm for detection and velocity estimation of a target moving in
straight line in the same azimuth towards or downwards the radar is presented
and evaluated in the paper. In order to test and study the new algorithm, the
simulation algorithm based on the Monte Carlo approach is developed. The
graphical and numerical result show that the quality parameters strongly depend
on discretization not only of the (r-t) space but of the Hough parameter space as
well. It is also shown that the discretization of both spaces (r-t and Hough) should
be optimized in order to meet the requirements for both quality parameters - the
probability of target trajectory detection and the accuracy of velocity estimation.
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Abstract. Various heterogeneous materials with multiple scales and
multiple phases in the microstructure have been produced in the recent
years. We consider a mechanical failure due to the initiation and prop-
agation of cracks in places of high pore density in the microstructures.
A multi–scale method based on the asymptotic homogenization theory
together with the mesh superposition method (s-version of FEM) is pre-
sented for modeling of cracks. The homogenization approach is used on
the global domain excluding the vicinity of the crack where the period-
icity of the microstructures is lost and this approach fails. The multiple
scale method relies on efficient combination of both macroscopic and mi-
croscopic models. The mesh superposition method uses two independent
(global and local) finite element meshes and the concept of superpos-
ing the local mesh onto the global continuous mesh in such a way that
both meshes not necessarily coincide. The homogenized material model
is considered on the global mesh while the crack is analyzed in the lo-
cal domain (patch) which allows to have an arbitrary geometry with
respect to the underlying global finite elements. Numerical experiments
for biomorphic cellular ceramics with porous microstructures produced
from natural wood are presented.

1 Global–Local Approach for Heterogeneous Materials

Consider a domain Ω ⊂ Rd, d = 2, 3, occupied by a heterogeneous material
with microstructures of periodically distributed constituents. Suppose that the
boundary of Ω, denoted by Γ , consists of a prescribed displacement boundary
ΓD (meas ΓD > 0) and a prescribed traction boundary ΓT , such that Γ =
ΓD ∪ ΓT , ΓD ∩ ΓT = ∅, as shown in Figure 1.

Assume that the periodic cells in the macrostructure are infinitely many but
infinitely small and repeated periodically through the medium. The unit mi-
crostructure consists of different material constituents and a pore. Both the
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Fig. 1. Crack in the macroscopic homogenized material model

macroscopic and microscopic scales are well separated, i.e., the size of the mi-
crostructure in the heterogeneous material is much smaller than those of the
macroscopic component. The asymptotic homogenization theory [1,2] is applied
to find the effective (homogenized) properties of the material and to derive the
homogenized macroscopic model. Details are given in the next Section. The
main idea for the homogenization of a heterogeneous material with a periodical
distribution of microstructures is illustrated in Figure 1.

We allow the domain Ω to contain discontinuities and consider the crack
problem with a crack ΓC , see Figure 1. The crack is a multiscale effect which
typically appears in regions with microstructures of increasing porosity. The
periodicity fails for those microstructures cut by the crack. Therefore, a new
finite element analysis has to incorporate microstructural information about the
nucleation and growth of micropores. We rely on the mesh superposition method
(known as s-version of FEM), first developed in [7,8]. The method is based on a
finite element approximation by using two independent meshes: the global mesh
for the whole domain (also called in the literature a background mesh) and a
local mesh in the critical region near the crack (also called a patch mesh). The
local mesh is arbitrarily superimposed onto the global mesh without taking care
of the matching between nodes in both meshes.

Consider the following governing equations in the domain Ω

− ∇ · σ = b in Ω (1)
u = g on ΓD (2)

σ · n = t on ΓT , (3)

where σ is the second order symmetric stress tensor, b is the body force, g is the
prescribed displacement on ΓD, t is the prescribed traction on ΓT , and n is the
unit normal to the boundary ΓT . A traction–free surface σ · n = 0 is assumed
on the crack ΓC . In case of small strains and displacements, the second order
strain tensor e is given by
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e = e(u) =
(
∇u + (∇u)T

)
/2, (4)

where ∇u is the gradient operator. If a linear elasticity is assumed, the consti-
tutive relation is presented by the linearized Hooke law σ = E: e, where E is
the fourth–order elasticity tensor which depends on the material constants like
Young’s modulus and Poisson’s ratio.

The weak form of the governing equation (1) reads: Find u ∈ U , such that
∫

Ω

e(v): σ(u) dΩ =
∫

Ω

b · v dΩ +
∫

ΓT

t · v dΓ, ∀ v ∈ U0, (5)

where the set of admissible displacement fields is defined by

U = {v | v ∈ V, v = g on ΓD, v discontinuous on ΓC} (6)

and the test function space is defined by

U0 = {v | v ∈ V, v = 0 on ΓD, v discontinuous on ΓC}. (7)

The space V is related to the regularity of the solution in Ω and allows for
discontinuous functions across the crack. At each point x ∈ Ω we consider a
finite element discretization of (5) with a basis taken from the test function
space U0 and nodal shape functions N(x) constructed by the Galerkin method.

We denote the local critical region onto which the local mesh is superimposed
by ΩL, ΩL ⊂ Ω, a subset of Ω, containing the crack. Let ΩG = Ω \ ΩL be
the rest of the domain excluding discontinuities. The domains Ω and ΩL are
discretized independently by separate sets of finite elements ΩG

e and ΩL
e , such

that
⋃

ΩG
e = Ω and

⋃
ΩL

e = ΩL. Here, the superscript G relates to the global
(underlying) mesh and L to the local (superimposed) mesh. Γ GL is the boundary
between the two meshes excluding external boundaries, i.e., Γ ∩ Γ GL = ∅.

Let uG be the global displacement field defined in Ω and uL be the local dis-
placement field defined in the local region ΩL. Note that the superimposed field
uL is in general discontinuous due to a discontinuity across the crack faces. The
total displacement field u is constructed by superposition of both displacement
fields on the separate meshes and can be written as follows

u =

{
uG on ΩG, Γ GL

uG + uL on ΩL.
(8)

To insure displacement compatibility between the global and local meshes, we
assume homogeneous boundary conditions on the boundary of the patch, i.e.,
uL = 0 on Γ GL. Denote by BG and BL the discretized gradient operators (also
called strain–displacement matrices) for the global and local meshes, respectively.
Then, the strain can be expressed as follows

e =

{
eG = BGuG on ΩG

eL = BGuG + BLuL on ΩL.
(9)
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Based on the Hooke law we get the following constitutive relations

σ = E: e =

{
σG = EG: (BGuG) on ΩG

σL = EL: (BGuG + BLuL) on ΩL,
(10)

where EG and EL are the elasticity tensors corresponding to the different con-
stitutive laws. By using shape functions NG(x) on the global mesh and shape
functions NL(x) on the local mesh, one can get from the standard weak form
(5) the following two equations

∫
ΩG

BG(x): σG(u) dΩ =
∫

ΩG

NG(x) · b dΩ +
∫

Γ G
T

NG(x) · t dΓ, (11)

∫
ΩL

BL(x): σL(u) dΩ =
∫

ΩL

NL(x) · b dΩ +
∫

Γ L
T

NL(x) · t dΓ, (12)

where Γ G
T = ΓT ∩ ΩG and Γ L

T = ΓT ∩ ΩL. Substituting (8)–(10) in equations
(11)–(12), we obtain the following discrete system

[
KG KGL

(KGL)T KL

]{
uG

uL

}
=

{
fG

fL

}
, (13)

where KG and KL are the stiffness matrices corresponding to the global and lo-
cal meshes, respectively, and KGL is the matrix corresponding to the interaction
between the two meshes, namely

KG =
∫

ΩG

(BG(x))T EG BG(x) dΩ +
∫

ΩL

(BG(x))T EL BG(x) dΩ, (14)

KGL =
∫

ΩL

(BG(x))T EL BL(x) dΩ, KL =
∫

ΩL

(BL(x))T EL BL(x) dΩ. (15)

The force vectors fG and fL are computed from the right–hand sides of (11)
and (12), respectively. Note that NG(x) are the shape functions corresponding
to finite elements in the global mesh on which continuous displacement field uG

is considered. Furthermore, NL(x) are the discontinuous shape functions of the
elements chosen on the local domain to model the crack. The elements of the
global and local meshes should not coincide. The cracked mesh is superimposed
on the continuous mesh in ΩL by using the s-method. The main difficulty of
this method is the numerical integration based on Gauss quadratures when solv-
ing the system (13). An attractive approach is recently proposed in [10] where
only the near–tip crack fields are modeled on a superimposed patch (overlaid
mesh) and the rest of the crack is treated within the framework of the eXtended
Finite Element Method (Xfem ) by introducing additional discontinuous en-
richment functions for the elements completely cut by the crack, see [11]. The
latter method is also used in our numerical experiments and briefly explained in
Section 3.
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2 Multi–scale Method

In this section, we describe the multi–scale method based on the asymptotic
homogenization theory together with the mesh superposition method. For more
details we refer the reader to [16]. The homogenization approach is used on
the global domain excluding the vicinity of the crack where the periodicity of
the microstructures is lost and this approach is not applicable. The crack is
considered in the local domain (patch). Two independent (global and local)
meshes are generated in the global and local domains, respectively. The patch
is allowed to have an arbitrary geometry with respect to the underlying global
finite elements. The total displacement field (8) is approximated by adding global
(underlying) and local (superimposed) fields and hence, it is discontinuous across
the crack.

A double–scale asymptotic expansion for the displacement field and a ho-
mogenization procedure by taking a zero limit of the scale ratio are applied
to come up with computationally feasible macromodels [1,2]. The homogenized
macroscopic problem is involved in the governing equation (1). Furthermore, in-
troducing global and local meshes, the global displacement field uG is expressed
by the homogenized displacement, the leading term in the asymptotic expan-
sion form (see, e.g., [9]). The homogenized elasticity problem is transformed to
solving the system (13) with a symmetric and usually, sparse, stiffness matrix
coupling the integrands on the global and local meshes. Note that the elasticity
tensor EG in the expression (14) is replaced now by the homogenized elasticity
tensor EH with components computed as follows

EH
ijkl =

1
|Y |

∫
Y

(
Eijkl(y) − Eijpq(y)

∂ξkl
p

∂yq

)
dY, (16)

where Eijkl are the elasticity coefficients corresponding to the different mate-
rial layers in the microstructure. The periodic functions ξkl (also referred to
as characteristic displacements) satisfy the following elasticity equation in the
microscopic unit cell

∫
Y

Eijpq(y)
∂ξkl

p

∂yq

∂φi

∂yj
dY =

∫
Y

Eijkl(y)
∂φi

∂yj
dY, (17)

where φ ∈ H1(Y ) is an arbitrary Y −periodic variational function. The multi–
scale procedure is realized by the following Multi–Scale Algorithm (MSA)

Step 1. Select a unit microstructure Y in the heterogeneous material.
Step 2. Solve (17) to find the characteristic displacement fields ξkl.
Step 3. Compute the homogenized coefficients (16) and set EG = EH .
Step 4. Generate a global mesh in Ω on the macroscopic homogenized model.
Step 5. Introduce a local (discontinuous) mesh near the crack ΓC .
Step 6. Solve (13) to determine the displacements uG and uL.
Step 7. Substitute uG and uL in (9) and (10) to find the strains and stresses.
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3 Crack Modeling with Partition of Unity Enrichment

The extended finite element method [3,11,15] allows treating crack problems
without meshing the discontinuity surface. This is possible through enrichment
of the standard polynomial finite element space with special functions: discon-
tinuous, to account for the displacement jump, and crack–tip fields to reduce
the mesh density required for accurate fracture parameter computations. The
method is now becoming quite mature, and has already been applied to indus-
trial fracture mechanics problems [5].

Some elements are split by the crack and others contain the crack tips. Nodes
whose support is cut by a crack are in set Ncr, while nodes whose support
contains one tip are in the set Ntip, as in Figure 2.

Fig. 2. Selection of enriched nodes. Circled nodes (set of nodes Ncr) are enriched with
the step function whereas the squared nodes (set of nodes Ntip) are enriched with the
crack tip functions: a) on structured mesh; b) on unstructured mesh.

The Xfem approximation reads

uh(x) =
∑
I∈N

NI(x)uI +
∑

J∈Ncr

ÑJ(x)(H(x) − H(xJ ))aJ

+
∑

K∈Ntip

ÑK(x)
4∑

α=1

(Bα(x) − Bα(xK))bαK , (18)

where NI(x) and ÑJ(x) are finite element shape functions, while uI, aJ and bαK

are the displacement and enrichment nodal variables, respectively. Note that the
shape functions ÑJ(x) associated with the enrichment can differ from the shape
functions NI(x) used for the standard part of the displacement approximation.
H(x) is the modified Heaviside function which takes on the value +1 above
the crack and -1 below the crack and Bα(x) is a basis that spans the near tip
asymptotic field:

B ≡ [B1, B2, B3, B4] =
[√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
cos θ,

√
r cos

θ

2
cos θ

]
(19)

From the enriched approximation (18), Bubnov–Galerkin procedure gives dis-
crete equations of the form Kd = f . Numerical integration for split elements is
done here by partitioning the elements into sub–triangles. Interested readers can
refer to [4,13] for details.
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4 Numerical Experiments

The fracture mechanics computations in this section are performed using the
Xfem library OpenXfem++ [6]1. Our numerical examples concern biomorphic
silicon carbide (SiC) cellular ceramics with porous microstructures produced
from natural wood. The open porous system of tracheidal cells which provide
the transportation path for water and minerals in the living plants is accessible
for infiltration of various liquid or gaseous metals (see, e.g., [14] for the produc-
tion process). Numerical experiments for the homogenized coefficients in a 2-D
material workpiece are given in [9].

Consider a stationary microstructure with a geometrically simple tracheidal
periodicity cell Y = [0, 1]2 consisting of an outer layer of carbon (C), interior
layer of silicon carbide (SiC), and a centered pore channel (P, no material), see
Figure 3a). One can also deal with the so–called pure SiC ceramics when enough
silicon is infiltrated in the pore channel until the complete reaction between the
carbon and silicon, see Figure 3b). The Young modulus E (in GPa) and the
Poisson ratio ν of our two materials are, respectively, E = 10, ν = 0.22 for
carbon and E = 410, ν = 0.14 for SiC.

Carbon
SiC

Pore

SiC

Pore

Fig. 3. a) Unit cell Y = P ∪ SiC ∪ C; b) Pure SiC ceramics: Y = P ∪ SiC

As a first attempt we consider a crack in the macroscopic homogenized model.
All computations are performed assuming the theory of Linear Elastic Fracture
Mechanics. In Table 1 we report the evaluated data for the homogenized Young
modulus EH(in GPa) and the homogenized Poisson ratio νH . In case of SiC
ceramics the coefficients are computed for equal widths of the SiC and carbon
layers, see Table 1a). The density of the SiC layer and the density of the carbon
layer are denoted, respectively, by μSiC and μcarbon. Note that the porosity is
determined by: meas(Y ) − μSiC − μcarbon. In case of pure SiC ceramics, see
Table 1b), the porosity is given by: meas(Y ) − μSiC .

In all problems, the energy release rate G = 1
E′ (K2

I + K2
II) with E′ =

EH/
(
1 − (νH)2

)
is computed for both crack tips. The stress intensity factors

(SIFs), KI and KII , for mode I and II, respectively, are determined using the
domain form of the interaction integrals [12]. We are interested in the effect of
porosity on the energy release rate. Consider a center crack in an infinite plate
under remote, unit, uniaxial tension. The geometry of the plate is (2x6), the
1 Available on request.
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Table 1. Homogenized E and ν: a) SiC ceramics; b) Pure SiC ceramics

porosity μSiC μcarbon EH(GPa) νH

0.81 0.0925 0.0925 89.42 0.035

0.64 0.17 0.19 66.52 0.069

0.36 0.28 0.36 43.47 0.142

0.25 0.3125 0.4375 37.29 0.145

0.16 0.33 0.51 31.31 0.137

0.09 0.3325 0.5775 25.99 0.140

0.04 0.32 0.64 21.69 0.153

0.01 0.2925 0.6975 18.56 0.168

porosity μSiC EH(GPa) νH

0.9025 0.0975 216.10 0.016

0.7225 0.2775 231.94 0.040

0.5625 0.4375 248.93 0.062

0.4225 0.5775 267.94 0.083

0.3025 0.6975 289.27 0.104

0.2025 0.7975 314.16 0.124

0.1225 0.8775 342.27 0.138

0.0025 0.9975 409.14 0.139

crack length is 0.25, and the mesh, completely regular and non–conforming to
the crack, contains 2701 four–noded quadrilateral elements. The radius of the
circular interaction integral domain is twice the size of the element containing
the tip. Note that in this case, the exact SIFs are actually known analytically.
The computed SIFs are within one percent of the exact values. The evolution
of the energy release rate G as a function of porosity is given in Figure 4b)
and shows that, as expected, the energy release rate increases with increasing
porosity, i.e. as the pure SiC ceramics become more rigid.
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Fig. 4. Porosity versus the energy release rate G: a) SiC ceramics; b) Pure SiC ceramics

The same problem was solved for a layered SiC ceramics, and results are
reported in Figure 4a). We note that the behavior is somewhat more complex
in this case, where we observe a decreasing energy release rate for porosities
comprised between 0.15 and 0.25.
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11. Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth
without remeshing. Int. J. Numer. Methods Eng., 46 (1) (1999) 131–150.

12. Moran, B., Shih, C.F.: Crack tip and associated domain integrals from momentum
and energy balance. Eng. Fract. Mech., 27 (1987) 615–641.

13. Nguyen V.P.: An object oriented approach to the X-FEM with applications to
fracture mechanics. Master’s thesis, EMMC–Hochiminh University of Technology,
Vietnam, November (2005).

14. Ota T., Takahashi M., Hibi T., Ozawa M., Suzuki S., Hikichi Y., Suzuki H.:
Biomimetic process for producing SiC wood. J. Amer. Ceram. Soc., 78 (1995)
3409–3411.

15. Sukumar N., Prévost J.-H.: Modeling quasi–static crack growth with the extended
finite element method. Part I: Computer implementation. Int. J. Solids Struct., 40
(2003) 7513–7537.

16. Takano N., Zako M., Okuno Y.: Multi–scale finite element analysis of porous ma-
terials and components by asymptotic homogenization theory and enhanced mesh
superposition method. Modelling Simul. Mater. Sci. Eng., 11 (2003) 137–156.



Round-Trip Operator Technique Applied for

Optical Resonators with Dispersion Elements

Nikolay N. Elkin, Anatoly P. Napartovich,
Dmitry V. Vysotsky, and Vera N. Troshchieva

State Science Center Troitsk Institute for Innovation and Fusion Research
(TRINITI), 142190, Troitsk Moscow Region, Russia

elkin@triniti.ru

Abstract. The round-trip operator technique is widely used for disper-
sionless optical resonators beginning from pioneering studies of Fox and
Li. The resonator modes are determined as eigenfunctions of the round-
trip operator and may be calculated by means of numerical linear algebra.
Corresponding complex eigenvalues determine the wavelength shifts rel-
ative to reference value and threshold gains. Dispersion elements, for ex-
ample, Bragg mirrors in a vertical cavity surface emitting laser (VCSEL)
cause a dependence of the propagation operator on the wavelength and
threshold gain. We can determine the round-trip operator in this case
also, but the unknown values of the wavelength and threshold gain enter
into the operator in a complicated manner. Trial-and-error method for
determination of the wavelength shifts and the threshold gains is possi-
ble but it is rather time consuming method. The proposed approximate
numerical method for calculation of resonator modes is based on the
solution of linear eigenvalue problem for the round-trip operator with
reference wavelength and zero attenuation. The wavelength shifts and
threshold gains can be calculated by simple formulae using the eigenval-
ues obtained and the computed effective length of the resonator. Calcu-
lations for a cylindrical antiresonant-reflecting optical waveguide (AR-
ROW) VCSEL are performed for verification of the model.

1 Introduction

The traditional approach for numerical modeling of optical resonators [1] is based
on the assumption that the wave refraction and gain don’t depend on the wave-
length. The same property is assumed relatively to the reflectivity of mirrors.
This approach is not valid for dispersion optical resonators because light round-
trip may depend on the wavelength and attenuation in a complicated manner.

The three-mirror resonator as the simplest example of a dispersion resonator
has been studied in [2]. Third mirror is placed outside the usually two-mirror
resonator. Feedback field reflected from the third mirror returns to the two-
mirror resonator with some phase ψ depending on the exact position of the third
mirror. This phase is different for various lateral modes and we cannot calculate
the mode spectrum for fixed position of the third mirror solving an eigenvalue

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 542–549, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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problem for a round-trip operator. But we can calculate the mode spectrum for
fixed ψ . Each of the calculated modes corresponds to certain position of the
third mirror. Varying ψ in the range −π ≤ ψ < π and calculating the mode
spectrum for all ψ we may reconstruct the set of modes for fixed position of the
third mirror.

Our paper has for an object to demonstrate the applicability of the round-trip
operator technique with some correction in the cases when dispersion effects are
considerable. The modified algorithm for determination of the exact wavelength
and attenuation uses the previously computed effective length of the resonator.

2 Round-Trip Operator Technique for Dispersionless
Optical Resonator

We start from Maxwell equations and assume that the polarization effects can
be neglected. Laser modes have a time dependence of the form E(r, ϕ, z, t) =
U(r, ϕ, z) exp(−iΩt), Ω = ω0 + Δω − iδ, where ω0 is the reference frequency,
Δω = ω−ω0 is the frequency shift and δ is the attenuation factor. We use cylin-
drical coordinates for convenience, but the use of Cartesian coordinates is possi-
ble also. The reference frequency ω0 , in other words, the frequency guess must be
chosen close to the working frequency of a laser. The reference wavenumber and
reference wavelength are defined by standard relations: ω0 = k0c , k0 = 2π/λ0 .

Introducing new variables gt = 2δ/c, Δk = Δω/c, β = gt+i2Δk, and neglect-
ing small quantities of higher order we have obtained the Helmholtz equation

∂2U

∂z2
+Δ⊥U +(k2

0n
2 − ik0g)U− ik0n

2βU = 0, Δ⊥U =
1

r

∂

∂r

�
r
∂U

∂r

�
+

1

r2
∂2U

∂ϕ2
, (1)

containing complex eigenvalue β. Here n and g are the index and the gain
respectively.

Following [3], we formulate the problem statement as an eigenvalue problem
for the round-trip operator and describe numerical methods for its solution.
Let us consider optical resonator formed by two mirrors placed at z = 0 and
z = L and loaded with an active medium. Typically, transverse sizes of mir-
rors are much less than L. The intracavity wave field can be represented as
a sum of two counter-propagating waves U(r, ϕ, z) = E+(r, ϕ, z) exp(ik0z) +
E−(r, ϕ, z) exp(−ik0z). The envelopes E±(r, ϕ, z) satisfy the parabolic equa-
tions: ±2ik0∂E±/∂z + Δ⊥E± − ik0[g + ik0(n2 − 1)]E± − ik0βE± = 0. The
propagating wave field is to be specified at any transverse plane, for example,
u(r, ϕ) = E+(r, ϕ, L) as a start field for the round trip. The round-trip operator
is a composition of four operators: P(g, n, β) = P+(g, n, β)R1P−(g, n, β)R2.

The first one is reflection from the second mirror: E−(r, ϕ, L) = R2u(r, ϕ).
The field distribution E−(r, ϕ, L) is the initial field for a Cauchy problem for the
parabolic equation in the interval L > z > 0 . The solution to this problem at
z = 0 is by definition E−(r, ϕ, 0) = P−(g, n, β)E−(r, ϕ, L). The next operator
describes reflection from the first mirror: E+(r, ϕ, 0) = R1E−(r, ϕ, 0). The result
of reflection E+(r, ϕ, 0) is the initial field for a Cauchy problem for the parabolic
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equation in the interval 0 < z < L . The solution to this problem at z = L is by
definition E+(r, ϕ, L) = P+(g, n, β)E+(r, ϕ, 0). After round trip the same field
u(r, ϕ) should be reproduced. Note, that traditionally the round-trip operator
is defined at β = 0. Further, we call P(g, n, β �= 0) as the modified round-trip
operator. Taking into account round-trip condition we have the non-standard
eigenvalue problem

P(g, n, β)u = u (2)

because the eigenvalue β appears in the operator. It is important that for
dispersionless resonators R1,2 don’t depend on β and as a sequence we have
the following expression for the modified round-trip operator [3]: P(g, n, β) =
P(g, n, 0) exp (βL) . Consequently, we have the standard formulation of an eigen-
value problem

P(g, n, 0)u = γu, (3)

where γ = exp (−βL). It is precisely this problem that was solved for dispersion-
less resonators beginning from works of Fox and Li. There exist two versions of
problem (3). If we neglect the saturation of an active medium we have a linear
eigenvalue problem, because gain and index distributions are fixed functions of
the spatial variables. P(g, n, 0) is a linear non-hermitian operator in this case,
and γ is a complex eigenvalue. After appropriate discretization, the problem
can be reduced to a linear algebraic eigenvalue problem for a non-hermitian full
matrix of high dimension. Krylov subspace methods (e.g. Arnoldi algorithm)
are valid for numerical solution of the algebraic eigenvalue problem in such a
situation. The second version is a search of steady-state oscillating mode with
medium saturation. Gain and index distributions depend on wave field distri-
bution U(r, ϕ, z) according to the model of an active medium and have to be
determined self-consistently. We have an eigenvalue problem for the non-linear
operator (3) in this case. The supplementary condition |γ| = 1 is required for the
non-linear problem (3), because δ = 0 (Re(β) = 0) for steady-state oscillations.

Summarizing, the round-trip operators P(g, n, β) and P(g, n, 0) can be syn-
thesized starting from an arbitrary transverse plane between the mirrors in any
direction, the eigenvalues do not depend on the start position. The threshold gain
gt and the wavenumber shift Δk are determined by the formulas gt = − ln(|γ|)/L,
Δk = − (arg(γ) + 2πl) /(2L), where −π ≤ arg(γ) < π, the integer l is the num-
ber of the longitudinal mode.

3 Numerical Model of the ARROW-Type VCSEL

The ARROW-type VCSEL scheme [4] is presented in Fig.1. 1-wave cavity, con-
taining the active layer (black strip) and the high- and low-index ring reflectors
formed by thin GaAs-InGaP spacers are located between p− and n− distributed
Bragg reflectors (DBR). The metal contact plate with the output window is fixed
on the top Bragg reflector. The laser operates at a wavelength of λ0 = 0.98 μm,
so the reference wavenumber k0 = 2π/λ0 = 64114 cm−1.

The boundary condition at the interface between adjoining layers and the
boundary condition at the lateral boundaries must be defined. We can specify
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the condition of continuity for the wave field U and its normal derivative at the
interfaces. It is not an easy task to define correctly the boundary condition at the
lateral boundaries but the absorbing boundary condition [5] is more adequate
to experimental implementation.

The index and absorption distributions are cellwise constant functions of spa-
tial variables for all layers except the active layer. The non-linear 2D diffusion
equation [6] must be solved for carrier density in order to find gain and index
at the active layer. It is significant that two-dimensional distributions of n and
g at the active layer are controlled at a fixed pump by the two-dimensional
distribution I = |U |2 of light intensity in the active layer.

Helmholtz equation was solved using combination of bi-directional beam prop-
agation method and a matrix approach for spectral components within plane
layers structure [9]. Taking into account the circular symmetry we shall substi-
tute U = Um(r, z) exp(imϕ) into (1) and eliminate the angular dependence. As
a result we have equation for m−th angular harmonic

∂2Um

∂z2
+

1
r

∂

∂r

(
r
∂Um

∂r

)
− m2

r2
Um + (k2

0n
2 − ik0g)Um − ik0n

2βUm = 0, (4)

To construct the numerical algorithm we use representation of the wave field
Um(r, z) in terms of m−th order Hankel transform over r. Introducing appro-
priate numerical meshes {rl, l = 0, 1, . . . , Nr} , {κn, n = 0, 1, . . . , Nr} for the
radius r and for the transverse wave number κ and going on to discrete ap-
proximation of the Hankel transform we may define ψnm(z) = Hm{Um(rl, z)},
where n is the number of radial harmonic and Hm is the discrete m−th order
Hankel transform operator. The Fast Hankel transform algorithm [7] was used
to evaluate the Hankel transform and its inversion H−1

m .
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Fig. 1. Scheme of the ARROW-type VCSEL (Cross-Section View)
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Let us choose the origin of z−axis at the plane of the GaAs-InGaP spacers. Let
N be the number of layers between the spacers and the metal contact. Assume
that M is the number of layers between the substrate and the spacers including
the active layer. Thus, we can introduce the array {zj, j = −M, . . . , N} of
coordinates of the interfaces between the layers so as z = 0 to be the GaAs-
InGaP spacer position and the interval zj−1 < z < zj to determine the position
of the j-th layer (j = −M + 1, . . . , N) .

As a result of Hankel transform, the wave equation (4) in the j-th layer can be
expressed in a form: d2ψn/dz2 + q2

jnψn = 0, q2
jn = k2

0n
2
j − ik0gj − ik0n

2
jβ−κ2

n,

where the index m is omitted. We define qjn =
√

k2
0n

2
j − ik0gj − ik0n2

jβ − κ2
n

under the condition Re(qjn) ≥ 0 . The general solution to the last equation
has the form: ψn(z) = Cjn exp(iqjnz) + Djn exp(−iqjnz), zj−1 < z < zj .
The coefficients Cjn and Djn for different layers are coupled by simple algebraic
relations following from the well-known T−matrix formalism. Earlier [9], we have
applied T−matrix formalism for VCSELs with the square index-step lattice.

Let k is the number of layers between the active layer and the GaAs-InGaP
spacer. The order number of the active layer will be (−k) in our numeration. We
simulate the active layer as a uniform layer containing a non-uniform phase screen
with gain and phase incursion according to diffusion equation (see [6], [9]).

Applying the operator H−1 to ψn(z) we can represent the wave field in the j-
th layer as a sum of upward propagating wave U+

j (rl, z) = H−1 (Cjn exp(iqjnz))
and downward propagating wave U−

j (rl, z) = H−1 (Djn exp(−iqjnz)) . Similarly
to the case of a dispersionless optical resonator, the modified round-trip oper-
ator was built up in order to determine the oscillating modes and their losses.
We specify as the start field u(rl) = U+

−k(rl, z−k), that is the upward propa-
gating wave at the upper boundary of the active layer. The required round-
trip operator P(g, n, β) may be represented as a composition of four operators.
The first one is evaluation of the wave U−

−k(rl, z−k) by means of u(rl) after
reflection from the top DBR. The second operator evaluates transmitting of
wave through the phase screen considering non-uniformity of the active layer:
U−
−k(rl, z−k) → W−

−k(rl, z−k) . The third operator is evaluation of the wave
W+

−k(rl, z−k) by means of W−
−k(rl, z−k) after reflection from the bottom DBR.

Lastly, the fourth operator W+
−k(rl, z−k)→ U+

−k(rl, z−k) has the same structure
as the second one and evaluates the transmitting of the wave through the active
layer.

Applying the round-trip condition we have the non-standard eigenvalue
problem (2) for non-linear operator. We consider also the corresponding lin-
ear eigenvalue problem when the active layer characteristics are fixed and not
recalculated.

Details about the numerical algorithm for the round-trip operator can be
found in [9].

Trial-and-error method for determination of β is possible but it is rather
time consuming especially for the linear eigenvalue problem because the complex
parameter β contains two real parameters.
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We can formally define another eigenvalue problem of the form (3). Linear and
non-linear problems are formulated similarly. It is reasonable to expect that the
oscillating mode fields being found from (2) and (3) differ slightly if dispersion
effects are not great. But we cannot apply directly the formula γ = exp (−βL) for
resonator with dispersion elements. Moreover, we cannot determine the distance
L between the mirrors because the Bragg mirror is a distributed system. Strictly
speaking, the eigenvalue γ depends on β in a complicated way.

Nevertheless, we attempt to develop an effective method for calculation of β
assuming that it is possible to approximate the dependence of γ on β by the for-
mula γ ∼= exp (−βLe), where Le is some effective length to be determined. This
guess is based on the fact that the vertical direction of propagation predominates
in our case.

If our hypothesis is true we have reasons to calculate γ by solving the eigen-
value problem (3) in order to determine the wavelength shift Δk and the thresh-
old gain gt. The analytic estimations for Le ([8], [9]) are known but for more
precise determination of the effective length we have to solve at least once a ba-
sic eigenvalue problem (2) using trial-and-error method jointly with the problem
(3) in order to determine Le by the equation γ = exp (−βLe).

4 Results and Discussion

Calculations were performed for core diameter d = 8 μm (see Fig. 1) which has
the same value as the diameter of the output window. Low-index reflector width
was w = 2.65 μm , high-index reflector width s was a variable parameter. The
phase advance gained on the spacers was taken equal to 0.677.

Layer number (−k) of the start layer of round-trip is assigned as the number
of the active layer in the described above algorithm. But in contrast to the case
of dispersionless resonator the eigenvalue γ may depend on the start position.
Varying the start position, we have performed calculations for passive cavity
when the active layer has uniform distribution of the index and zero gain. Setting
the value s = 1.25 μm we have calculated the dependence of the eigenvalue γ of
the 1-st axially symmetric mode (m = 0) on the start position l relatively to the
active layer. The results are shown in Table 1. The number l = 0 corresponds
to the active layer. The value 1 − |γ| is a measure of the attenuation. For a
dispersionless resonator this value is proportional to the threshold gain gt in
first order of approximation. The eigenvalue phase arg(γ) is proportional to the
wavenumber shift Δk for a dispersionless resonator. It follows from Table 1 that
values 1 − |γ| and arg(γ) vary twice over a number layer range from −7 to 7.
We have to set a layer number for the round-trip start to determine an effective
length Le. It seems most appropriate the active layer (l = 0) to be a start position
for the round-trip operator. This layer is placed at the center of the cavity and
the values 1 − |γ| and arg(γ) reach minimum when we start from the active
layer. The number of mesh nodes is Nr = 1024 for all of the presented results.
To estimate the error of discretization we have performed some calculations using
Nr = 2048. For all this the relative change of 1 − |γ| did not exceed the value
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Table 1. Eigenvalue module and phase vs start position, s = 1.25μm

l -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

(1 − |γ|) × 105 973 832 711 611 524 469 468 465 468 473 529 617 718 837 975

arg(γ) × 103 151 129 111 95 81 73 72 72 72 73 81 95 111 129 151

3×10−3 and the relative change of arg(γ) did not exceed the value 2×10−4 what
seems to be quite satisfactorily. To check the correctness of our calculations the
eigenvalue β = gt + i2Δk was calculated by the trial-and-error method for the
problem (2) for every start layer of the round-trip. The relative variation of gt

does not exceed 3 × 10−3 when the number of a start layer varies from −7 to
7. The relative variation of Δk does not exceed 2 × 10−4 in these conditions.
As expected, the eigenvalue β does not depend on the start layer within the
accuracy of the calculations.

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0
2
4
6
8

10
12
14
16
18

g
t, c

m
-1

s, microns

Fig. 2. Threshold gain (gt) vs high-
index reflector width (s)

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

-140

-120

-100

-80

-60

-40

-20

0

d
el

ta
k,

 c
m

-1

s, microns

Fig. 3. Wavenumber shift (Δk) vs
high-index reflector width

Two formulae for an effective length determination can be written according
to the complex equation γ = exp (−βLe): L1 = ln |γ|/gt, L2 = − arg(γ)/(2Δk).
Here, the eigenvalue γ has to be determined as a solution of the linear eigenvalue
problem (3), and a pair (gt, δk) is determined as a solution of (2) by trial-and-
error method. For the first axially symmetric mode (m = 0) we have obtained
L1 = 4.09 μm and L2 = 4.18 μm using the formulae cited above. Similar calcu-
lations for the first mode with angular index m = 1 result in L1 = 4.14 μm and
L2 = 4.14 μm. Calculations for the second axially symmetric mode (m = 0) give
the values L1 = 4.26 μm and L2 = 4.42 μm.

At last, operating mode was calculated including medium saturation of the
active layer according to the model [9]. Because of |γ| = 1 for the operating
mode, only L2 can be determined after simultaneous solution of problems (3)
and (2). These calculations give L2 = 4.18 μm.

Let us note, that the effective length depends very weakly on the way of cal-
culations. We have determined the effective length Le = 4.1 μm for the following
calculations.
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The calculations were performed when the high-index reflector width s was
varied from 0.9 μm to 1.6 μm. The attenuation factor and the wavenumber shift
depending on s are presented in Figs. 2 and 3, respectively. Solid lines correspond
to values gt and Δk calculated by trial-and-error method for problem (2), dashed
lines were obtained by eigenvalue calculations from the problem (3) by using the
approximate formulae gt

∼= − ln |γ|/Le, Δk ∼= − arg(γ)/(2Le).
We can see that the proposed approximate method possesses quite a good

accuracy. Application of this method takes in dozens of times less calculations
than the use of trial-and-error method. Singular points in Figs. 2 and 3 are
results of the change of mode with the highest Q−factor.

5 Conclusion

The traditional well-known round-trip operator technique may be successfully
applied after some modification to optical resonators with complicated configu-
ration, containing dispersion elements. We believe that the proposed approach
to the problem of modeling dispersion resonators has much more wide range of
applicability than the specific type of resonator described above.
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Abstract. The paper presents Large Eddy Simulations of plane channel
flow at a friction Reynolds number of 180 and 395 with a block-structured
Finite Volume method. Local grid refinement near the solid wall is em-
ployed in order to reduce the computational cost of such simulations or
other simulations of wall-bounded flows. Different subgrid-scale models
are employed and different expressions for the length scale in these mod-
els are investigated. It turns out that the numerical discretization has an
non-negligible impact on the computed fluctuations.

1 Motivation

The classical approach of large eddy simulation (LES) to turbulence modelling
is to fix a computational grid and then to compute all motions of features larger
than the step size of the grid h. The impact of features smaller than the step size
on the resolved flow is accounted for by a so-called subgrid-scale (SGS) model.
The SGS model contains a parameter Δ which is generally set to a multiple
of h, so that Δ reduces proportionally when the grid is refined. This approach
is, from a principal point of view, well accepted and validated if h is constant
in space. For most practical applications, however, a non-constant step size is
employed in order to optimize the resolution capacity of a grid with a fixed
number of points. With a structured code the step size can vary smoothly in
all coordinate directions but may lead to over-refinement in some parts of the
domain. A remedy is local grid refinement in an unstructured or block-structured
manner. A typical approach for Finite Volume Methods is to locally subdivide
cells in regions of refinement. This yields jumps in the step size which impact on
the numerical error as well as on the modelling error in a way which is difficult
to control.

In the present study we consider local, block-structured grid refinement in
both directions perpendicular to the mean flow, which we term ”tangential re-
finement”. Such a strategy is interesting for wall-resolving LES, as demonstrated
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in [6]: It allows to resolve the near-wall structures which are finer than the tur-
bulence in the outer flow while using a coarser grid for the latter so that the
total number of grid points can be reduced substantially compared to a fully
structured grid. An introduction to LES of near-wall flows and LES in general
is, e.g., given in [3].

2 Numerical Method, Configuration and Subgrid-Scale
Models

As a test bench we consider plane channel flow at a nominal Reynolds number
of Reτ = Uτ δ/ν = 180 and 395, where Uτ is the mean friction velocity and δ the
half-distance between the two plates. Periodic boundary conditions were used
in x and z with period length Lx = 2π and Lz = π, respectively, and no-slip
conditions were applied at the walls. The runs were conducted by fixing the
bulk Reynolds number to Reb = Ubδ/ν = 2817 and 6875, respectively, through
instantaneous adjustment of a forcing term. The usual coordinate system is em-
ployed here with x in streamwise, y in wall-normal and z in transverse direction,
respectively. The computations were performed with a block-structured Finite
Volume method for the incompressible Navier-Stokes Equations. The discretiza-
tion scheme is second order central for both, convection and diffiusion terms.
The code LESOCC2 in its most recent form [5] allows to change the size of the
computational cells at block boundaries by integer factors.
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Fig. 1. Computational grid. Left: Block structure of the grid in the entire domain.
Right Zoom of the grid around the interface between coarse and fine grid. The grey
scale represents a snapshot of the instantaneous values u′′ = u−〈u〉. The dots identify
cell centers of the computational grid and the line connections between these (not the
finite volume discretization).

The same grid containing 1.22 Mio. cells was used for both Reynolds num-
bers. Its block structure is displayed in Fig. 1a. In the present runs, refinement
was applied in the near-wall blocks with a factor of 2 in both, Δx and Δz as
illustrated in Fig. 1b. The dots in this figure represent the cell centers and the
lines correspond to the connection between the cell centers (they do not identify
the boundaries of the finite volumes used in the discretization). The refinement



552 J. Fröhlich et al.

interface is located at a distance of 0.25δ from the wall. The near-wall part
contains 31 internal cells in y−direction with geometric stretching of 4% from
Δy = 0.004 at the wall to Δy = 0.013. Beyond the interface in the outer blocks,
16 cells are used until the center of the channel. In the outer blocks Δy = 0.02
at the interface with stretching of 15% near the interface and linear decay of the
stretching with y to Δy = 0.07 at the center. In the near-wall region the cells
have a size of Δx = 0.0491, Δz = 0.0245 in x− and z−direction, respectively,
and twice this size in the outer blocks. As the grid for both Reynolds numbers
is the same, the step sizes of the grid and the position of the interface change
when expressed in wall units. The respective values are provided in Tab. 1. Ob-
serve that y+

1 is the wall distance of the center of the wall-adjacent cell with
y+
1 = Δ+

y,1/2. For comparison, Run 395-6 was performed with refining the outer
blocks as well yielding uniform Δx and Δz in the entire domain.

The subgrid-scale (SGS) models employed are the following ones. The stan-
dard Smagorinsky model [9] was used with a constant of Cs = 0.1 (SM01) and
van Driest damping near the wall [8]. The dynamic Smagorinsky model (DSM)
[4] was employed with a test filter of size 2Δx and 2Δz in wall-parallel planes,
two-dimensional averaging, and clipping of the eddy viscosity to positive values.
The dynamic mixed model (DMM) [10] was used with the same parameters for
the dynamic procedure. For three-dimensional non-cubic cells, a unique cell size
h must be specified. Here, we used

h = (Δx Δy Δz)
1/3

, (1)

which is one of the most commonly employed formulas. The parameter Δ used
as a length scale parameter in all the models mentioned above was in general
set to Δ = h. Two runs with a modified determination of Δ were carried out as
well (Run 395-4 and Run 395-5) and will be discussed below.

For all runs the averaging was performed in wall-parallel planes and time
starting after 40 dimensionless time units δ/Ub and was performed for at least
500δ/Ub. Average values are denoted by 〈·〉 and corresponding fluctuations by a
double prime.

3 Results

A global assessment of the result of each run is possible by the mean friction
velocity Uτ =

√
〈τw〉/ρ reported in Table 1. The rightmost column contains

the relative error with respect to the DNS value in percent, Erel = 100(Uτ −
Uτ,DNS)/Uτ,DNS). The reference values Uτ,DNS = 0.06389 and 0.05745 [1] have
been used for for Reτ = 180 and Reτ = 395, respectively. Uτ is underpredicted
with SM01 and DSM, stronger with the latter, while being overpredicted with
DMM.

For the lower Reynolds number Reτ = 180 all models exhibit an error below
3% in Erel while the error is about twice as large for each model with Reτ = 395.
The best match with the DNS value is obtained with the DSM , for the lower
and with the DMM for the higher Reynolds number.
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Table 1. Overview over the runs discussed

Run Reb Δ+
x , y+

1 , Δ+
z refinement SGS model Uτ Erel

180-1 2817 8.8, 0.36, 4.4 y+ < 45 DSM 0.06199 -2.98
180-2 2817 8.8, 0.36, 4.4 y+ < 45 DMM 0.06511 1.91
180-3 2817 8.8, 0.36, 4.4 y+ < 45 SM01 0.06276 -1.76

395-1 6875 19.4, 0.79, 9.7 y+ < 99 DSM 0.05366 -6.59
395-2 6875 19.4, 0.79, 9.7 y+ < 99 DMM 0.05938 3.36
395-3 6875 19.4, 0.79, 9.7 y+ < 99 SM01 0.05527 -3.80

395-4 6875 19.4, 0.79, 9.7 y+ < 99 SM01-double 0.05321 -7.39
395-5 6875 19.4, 0.79, 9.7 y+ < 99 SM01-smooth 0.05569 -3.06

395-6 6875 19.4, 0.79, 9.7 all blocks SM01-fine 0.05603 -2.47

For lack of space we show plots only for the higher Reynolds number. Similar
conclusions as drawn below hold for Reτ = 180, although the results are gen-
erally better in this case since the resolution is better. In the following figures,
the average velocity 〈u〉+ is reported in the left column and the non-vanishing
Reynolds stresses in the right column. Symbols represent values at grid points,
thus visualizing the refinement. For normalization the computed value of Uτ

from the same run was used. The fluctuations reported are the resolved ones
only. Comparison is performed with the DNS data of [7], labeled “MKM” in the
figures.

Fig. 2 shows results obtained with different SGS models and no further ad-
justment to the jump in grid step size h. The profile of 〈u〉+ is predicted without
any kink or jump at the refinement interface. The DMM yields a very good pre-
diction of this quantity up to the interface but slightly too low values beyond.
With the SM01 and the DSM, the shape of the profile is well predicted, but
above the DNS curve. Note, however, that this type of semi-logarithmic profile
is quite sensitive to the value of Uτ used for normalization.

The fluctuations show the presence of the refinement by a small kink in the
normal stresses. The level of the curves is such that v−and w−fluctuations tend
to be below the DNS values while the u−fluctuations tend to be larger. In the
current plots, the value of Uτ used for normalization impacts on the height and
the horizontal coordinate. Although the DMM yields the best result for Uτ ,
the best fit with the DNS curves is obtained with SM01. In all cases 〈u′′u′′〉
and 〈w′′w′′〉 exhibit similar jumps at the interface. These would naturally be
attributed to the different resolution capacities of the finer and the coarser grid.
Further investigation, however, shows that this is not the case. For Run 395-3
with the SM, e.g., the unresolved contributions to the fluctuations have been
determined using [2]

〈u′′
i u′′

j 〉 = 〈u′′
i u′′

j 〉 + 〈τSM
ij 〉 +

1
3
〈τmod

kk 〉δij (2)

1
3
〈τmod

kk 〉 =
2
3

〈νt〉2
(CsΔ)2

C2
s

C2
1

, C1 = 0.094 . (3)
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Fig. 2. Results for Reτ = 395 obtained with the three subgrid models SM01, DSM
and DMM. Left: dimensionless average velocity 〈u〉+ (curves with SM01 and DSM
extend beyond the upper limit of the plotted range). Right: resolved turbulent stresses
〈u′′u′′〉+, 〈v′′v′′〉+, 〈w′′w′′〉+ and −〈u′′v′′〉+.
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Here, 〈u′′
i u′′

j 〉 are the fluctuations resolved by the LES, τSM
ij the (traceless)

Smagorinsky SGS term, and 〈τmod
kk 〉 the separately modelled trace of the SGS

fluctuations. For technical reasons CsΔ was replaced by CsΔfD(y+) as used in
the computation with fD the van Driest damping function from [8]. With the
current grid, all unresolved fluctuations remain below 3% of the resolved ones
beyond the region influenced by the damping. They indeed exhibit a small jump
with slightly larger values in the outer blocks, but their magnitude is too small
to modify the total fluctuations appreciably.
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Fig. 3. Length scale l = CsΔfD used for SGS modelling with the SM in different
cases. – – – – : original grid without modification (Run 395-3), ———– : grid with
refinement of outer block as well (Run 395-6), � : multiplication of l with 41/3 in the
near-wall block. × : smooth transition of l from the fine to the coarse grid.

The jump in length scale from the near-wall to the outer blocks is visualized
in Fig. 3. The quantity depicted is the length scale l = CsΔfD used in the SGS
model. The jump in l leads to the question of whether it impacts on the result of
the simulation, in particular the determination of the Reynolds stresses. For this
reason, Run 395-4 was conducted with l multiplied by 41/3 in the near-wall blocks
which compensates for the refinement and yields a pre-factor equal to the one ob-
tained without the refinement near the wall, Δ = (2Δx Δy 2Δz)

1/3. The resolved
flow should then be smoother with the discretization still on the finer grid, so that
the ratio between numerical and modelling error is improved, here, however, by
increasing the modelling error. Indeed, the result (SM01-double in Fig. 4) is less
satisfactory than without this change showing that the resolution capacity of the
grid is more important than to avoid the jump in the SGS modelling.

Another modification was to introduce a smooth transition in l from the coarse
to the fine grid by a corresponding smooth multiplier in Run 395-5. Here, indeed,
the result is improved a little (SM01-smooth in Fig. 4). The curves fit better and
Uτ is slightly closer to the DNS value.

As a reference case, Run 395-6 was conducted with the outer blocks refined
as well. As expected, it shows the best result but at higher computational cost.
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Fig. 4. Results for Reτ = 395 obtained with the SM01 SGS–model with different mod-
ifications of the ratio Δ/h, as defined in the text. Left: dimensionless average velocity
〈u〉+. Right: resolved turbulent stresses 〈u′′u′′〉+, 〈v′′v′′〉+, 〈w′′w′′〉+ and −〈u′′v′′〉+.
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4 Conclusions

Several computations with different SGS models and different length scales were
performed in the presence of tangential refinement by a factor 2 in both direc-
tions. Small jumps at the refinement interface persist even with a smooth choice
of the length scale in the SGS model. We hence conclude that in the present
setting with Δ = h the numerical scheme impacts on the computed fluctuations
and in fact is a major source for the jump observed in these quantities. (This
might be different with Δ = 2h but does not warrant improved results as shown
by Run 395-4.) On the other hand, the choice of the SGS model does have an
influence as reflected by the different values of Uτ obtained when altering the
model. With a tangentially refined grid the best result among the runs performed
was obtained with the SM and a smooth transition in length scale from the fine
to the coarse grid. Further computations on coarser grids are under way to in-
vestigate the impact of tangential refinement in situations where the SGS model
has a larger impact on the momentum balance.
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Abstract. The sequential algorithm for target detection in impulse en-
vironment by K-stage processing in polar Hough (PH) space is inves-
tigated. This algorithm permits the search radar to minimize the time
of target detection, because the sequential detector used minimizes the
number of the necessary radar antenna scans, while the conventional de-
tector uses a fix scan number. The aim of our study is to minimize the
detection time by minimizing the number of radar scans, when the detec-
tor’s parameters and characteristics are fixed. The average estimates of
the minimal number of scans are obtained using the Monte Carlo simu-
lation approach when the detector’s parameters are fixed. The proposed
algorithm is simulated in MATLAB environment. The efficiency factor of
the investigated detector for radar signal detection and track determina-
tion in conditions of binomial distributed impulse interference is obtained
by using Monte-Carlo approach. The prepositional detector, compared
to the conventional detector, accelerates the detection procedure several
times.

1 Introduction

The standard Hough transform and the related Radon transform have received
much attention in the recent years. Using them makes possible the transforma-
tion of two-dimensional images with lines into a domain of possible line param-
eters, where each image line corresponds to a peak, positioned at the respective
line parameters. For these reasons, many line detection applications appeared
within the image processing, computer vision, and seismic research areas. The
use of the standard Hough transform (SHT) for target detection and track deter-
mination in white Gaussian noise is introduced by Carlson in [1]. An approach
for constant false alarm rate (CFAR) detection by means of SHT for track and
target detection in conditions of non-homogeneous background is considered by
Behar in [2,3,4]. The Hough detection scheme includes a CFAR signal detector in
� This work is supported by IIT - 010059/2004, MPS Ltd. - Grant No IF-02-85/2005
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the area of observation, HT of the target distance measurements from the obser-
vation area into the parameter space, binary integration of data in the parameter
space and linear trajectory detection. These CFAR Hough detectors have been
studied in cases when the target flies in one azimuth and the speed is constant.
As continuation of this research work, the use of a polar Hough (PH) transform
is proposed in [5], which is also suitable for search radar. This transform is anal-
ogous to the standard Hough transform, where the input parameters are target
range and azimuth obtained from the search radar. The technique used combines
data from previous search scans into one large multi-dimensional polar data map.
This transform is very comfortable for use in radar detection and track deter-
mination, when the target changes its speed and flies at different azimuths. The
principle possibility of minimizing the time of radar signal (target) detection by
using sequential analysis in conditions of constant false alarm probability and
detection probability, is discussed in [6,7]. The advantage of the sequential detec-
tor, if compared to the conventional detector, is in reducing of the radar energy
at the radar target detection. An important step in the development of an effi-
cient approach for optimization and analysis of truncated sequential procedures
is made by Sosulin in [6], within the study of K-stage procedures of statistical
hypotheses test. Possible applications of such procedures, as well as optimization
methods for various binary detection problems and multi-alternative detection
problems are investigated in [6,8,9]. These papers illustrate the universality and
efficiency of the developed approach to solutions of various truncated sequential
detection problems and reveal the possibility to design K-stage signal detectors
that significantly surpass in efficiency wide-spread detectors with fixed sample
size. The effectiveness of the multi-channel processing is defined through Monte
Carlo computer simulation. The performances of some sequential CFAR detec-
tors are proposed and evaluated in [7,10]. The observations are passed through a
dead-zone limited. Numerical results show a significant reduction of the average
number of observations needed to achieve the same false alarm and detection
probability as compared to a fixed-sample-size CFAR detector using the same
kind of test statistic. in this paper In this paper we propose a sequential algo-
rithm for target detection in polar Hough space. The radar efficiency factor of
a sequential detector is defined as a ratio between the fixed sample number in
the conventional Hough procedure and the average sample number in the K-
stage polar Hough procedure. The radar efficiency factor of a K-stage detector
in conditions of binomial distributed impulse interference is achieved by using
Monte-Carlo simulation. We assume that the noise in the test cell is Rayleigh
envelope distributed and the target returns are fluctuating according to Swelling
II model, as in [3,4,11]. The efficiency of the researched detector increases with
the growth of the signal-to-noise ratio but it decreases with the decrease of the
false alarm probability and the increase of the detection threshold M . The pro-
posed algorithm may also be applied in other popular CFAR processors using
standard or polar Hough transform. The acceleration of the proposed detector is
several times higher than that of a conventional detector with constant detection
threshold. The research is performed in MATLAB environment.
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2 Signal Model

We assume that the target in the test cell is fluctuating according to Swerling
II model. We further assume that the total background environment includes
the binomial distribution of impulse interference-plus-noise situation, which may
appear at the output of the receiver with the probability 2e(1 − e), interference-
plus-noise situation with the probability e2 and the noise only situation with
the probability (1 − e)2, where e = 1 − (1 − tcF )1/2, F is the average repetition
frequency of impulse interference and tc is the length of impulse transmission.
The probability density function (pdf) of this signal is given by [12] and used in
[9,11]:

f(x) = f1 + f2 + f3; (1)

f1 = (1−e)2

λ(1+S) exp −x
λ(1+S) ,

f2 = 2e(1−e)
λ(1+S+I) exp −x

λ(1+S+I) ,

f3 = e2

λ(1+S+2I) exp −x
λ(1+S+2I) ,

where λ is the average power of the receiver noise, I is the average interference-
to-noise ratio (INR) of impulse interference, S is the average signal-to-noise ratio
(SNR). This equation is used for simulation of the input signal model and the
interference of the sell average (CA) CFAR processor.

3 Detection Acceleration in Hough Parameter Space by
Sequential K - Stage Detector

The efficiency of the sequential K-stage detector, which works in Hough param-
eter space, is investigated. This algorithm includes a CA CFAR processor, which
works in the radar area of observation, polar Hough transform of the target dis-
tance measurements into the parameter space, binary integration of data and
sequential detection of linear trajectory in the parameter space. The algorithm
for search radar detection and track with the Hough transform, proposed by
Carlson, Evans and Wilson in [1], is improved in our paper. According to the
Carlson’s approach, only the targets moving radially in the direction of radar (in
the same azimuth) are considered. In this case, the target trajectory consists of
points with coordinates (range, time) specified in the Cartesian coordinate sys-
tem ”range-time” (range-time data space). The distance in range between points
is a function of the radar scans time. Unlike the Carlson approach, in our study
the linear target trajectory is specified in the range-azimuth space and consists
of points with coordinates (range, azimuth) obtained for each scan time. There-
fore, the position of each point of the target trajectory in the coordinate system
”range-azimuth” is an indirect time-varying function.

In order to keep the false alarm constant in conditions of impulse interference,
we replace the fixed detection threshold in range-time space with a CA CFAR
processor. For determination of the non-radial trajectory, we replace the stan-
dard transform with polar Hough transform [5]. For detection acceleration we
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replace the fixed detection threshold in Hough parameter space with a sequential
K-stage detector [6,7,8,9].

1. Cell Average CFAR processor
The CA CFAR processor is a detector, which in the process of target detection

maintains the false alarm rate constant. Target detection is declared if the signal
value x0 exceeds a preliminary determined adaptive threshold HD. The threshold
HD = V T is a multiplication of the noise level in the reference window V and
the scale factor T . Averaging the outputs xi of the reference cells, surrounding

the test cell, forms the estimate V =
N∑

i=1

xi [11].

2. Polar Hough transform
The output data after every radar scan form the polar data space (range-

azimuth). There are two approaches for Hough transformation of data - standard
and polar Hough transform (SHT and PHT). The SHT is more suitable for image
transformation, while the PHT is very convenient for use in radar because the
output parameters of the radar (range and azimuth) are input parameters of
the transform. One trajectory is formed in a polar data map (range-azimuth)
after Ns radar scans. The point’s coordinates in (r − azimuth) space form the
polar parameter space. The PHT maps points (targets) from the observation
space (polar data map) into curves in polar Hough parameter space, termed i.e.
(rho − theta) space, by:

rho = r cos (azimuth − theta), 0 < (azimuth − theta) ≤ π; (2)

where r and azimuth are the target range and azimuth, theta is the angle and rho
is the smallest distance to the origin of polar coordinate system. The mapping
can be viewed as stepping through theta from 0 to 180 and calculating the
corresponding rho. The result of transformation is a sinusoid with magnitude
unites. Each of the points in polar Hough parameter space corresponds to one line
in polar data space with parameters rho and theta. A single rho− theta point in
the parameter space corresponds to a single straight line in the r−azimuth data
space with the same rho and theta values. Each cell from the polar parameter
space is intersected by a limited set of sinusoids obtained by PHT. Every sinusoid
corresponds to a set of possible lines through the point. If a line exists in the
polar data space, by means of PHT it is represented as a point of intersection
of sinusoids defined by PHT. The polar data space is divided into cells, whose
coordinates are equal to range resolution cell number - in range and to the
scan number in the history - in time. The parameters rho and theta have linear
trajectory in polar Hough parameter space and could be transformed back to
polar data space showing the current distance to the target. If the number of
binary integration (BI) of data in polar Hough parameter space (of intersections
in any of the cells in the parameter space) exceeds the detection threshold,
target detection and linear trajectory detection are indicated. Target and linear
trajectory detection are carried out for all cells of the polar Hough parameter
space.
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3. Sequential K-stage detector
In our previous work we investigated different CFAR Hough processors for

detection in pulse environment, where we have used fixed value of binary inte-
gration procedure in Hough space [2,3,4]. For minimization of the detection time
we proposed a sequential detector to be used. The polar data space (range −
azimuth) after every radar scan is transformed by PHT according to (2) in the
parameter space. In each cell of the Hough parameter space two operations are
performed - binary integration and comparison with the sequential detection
threshold. The sequential detector compares the test statistic (binary integra-
tion of intersection of sinusoids in polar Hough space) with the threshold M.
The test for target detection is as follows. At the k−th observation one of the
following three variants is chosen:

if k < M and k < Ns then St =
k∑

j=1

Φj , (3)

where St is the test statistic, Φj is 1 or 0 respectively if there is or not a sinusoid
in a given cell from polar Hough space in the j scan;

if St > M and k < Ns then say H1 (4)

if St < M and k = Ns then say H0 (5)

where H1 is hypothesis of target presence and H0 is hypothesis of target absence.

4. Estimation the efficiency of the sequential K-stage detector
The efficiency of the K-stage CA CFAR PH detector is estimated toward the

conventional CFAR PH detector with a full number of stages. The efficiency
factor of the sequential procedure has the following form:

μ =
Ns

k̄
(6)

where Ns is the full number of radar scans in the BI procedure, k̄ is the average
sample number in the K-stage procedure.

4 Experiment Description

The input of the CA CFAR processor is simulated by using equation (1). The
test cell includes signal, noise and impulse interference while the cells of the ref-
erence window include noise and impulse interference only (S = 0). The number
of cells in the reference window of the CFAR processor is chosen to be N = 16.
The average power of the receiver noise is λ = 1 , the probability for the ap-
pearance of impulse interference is 0.5 and the average interference-to-noise ratio
(INR) is I = 30dB (for Fig.4 and Fig.5). For given parameters of both signal
and interference, after setting the scale factor of the CFAR detector using the
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Monte Carlo simulation approach, we study the efficiency of the Hough detector
in relation to the thresholding parameters of the K-stage detector. When the
input parameters of both signal and interference are updated, the scale factor
of the CFAR detector is additionally adjusted in order to maintain the con-
stant false alarm rate at the output of the Hough detector. The output of the

Simulation of

the CFAR

processor

input signal

by using

equation (1)

CA CFAR

detection

algorithm

�

�

�

�

�

0

0

D

x

x
H

(range -

azimuth )

space after

each

scan

Polar

coordinate

system

Polar Hough

transform

with input

parameters

(range and

azimuth)

Binary

integration of

intersection

of sinusoids

in (rho-theta)

parameter

space

Sequential

detector

Detection

procedure

stops when

the detection

threshold is

exceeded.

Fig. 1. Block diagram of the experiment

CA CFAR processor is 1 or 0 if target signal is detect or not. This information
fills the range-azimuth space and it is the input for the polar Hough transform.
The sinusoids obtained from the transform are integrated in Hough parameter
space after each antenna scan of the radar. In each cell of the Hough parameter
space two operations are performed - a binary integration and comparison with
the sequential detection threshold. The sequential detector compares the binary
integration of the intersection of sinusoids in polar Hough space with the de-
tection threshold of the K-stage detector. When this threshold is exceeded then
the detection procedure is stopped. The efficiency of the researched detector is
estimated toward the conventional CFAR PH detector with a full number of
stages. We use Monte Carlo approach to obtain statistical stability estimation
for the efficiency of the algorithm. The number of runs is 10000.

5 Numerical Results

We investigate the influence of the effectiveness of the K-stage procedure in con-
ditions of noise and impulse interference. The experimental results are obtained
for the following parameters: average power of the receiver noise λ = 1; probabil-
ity for the appearance of impulse interference 0.5; average interference-to-noise
ratio (INR) I = 30dB; number of cells in the CFAR processor reference window
N = 16, false alarm probability of the researched Hough detector Pfa = 10−5,
the number of radar scans Ns = 20; detection threshold in Hough parameter
space M = 5, 7, 10, 15, 18.

The effectiveness of the K-stage detector as a function of the SNR and for
different binary rules M/Ns is shown on Fig.2. The effectiveness increases with
the growth of the signal-to-noise ratio but decreases with the increasing of the
detection threshold M . When the SNR is constant (S = 5, 10dB) and the false
alarm probability decreases, then the effectiveness of this algorithm decreases as
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well. In order to keep the detection probability PD = 0.5(PD = 0.9) constant,
the signal-to-noise ratio must be increased when the false alarm probability de-
creases. In this case, the effectiveness is equal for the different values of Pfa.
The experimental results presented on Fig.2 and Fig.3 are obtained in condi-
tions of noise. The experimental results presented on Fig.4 and Fig.5 reveal
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that the probability for the appearance of impulse interference influences the ef-
fectiveness of the proposed algorithm. The effectiveness of the K-stage detector
increases with the decrease of the detection threshold M and with the growth
of the signal-to-noise ratio (Fig.4). The results given on Fig.4 are obtained for
the probability of the appearance of impulse interference 0.5 and Pfa = 10−5.
When the probability for the appearance of impulse interference increases, the
false alarm is constant and the SNR is 50dB, then the effectiveness is constant
(Fig.5).
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6 Conclusions

The detection acceleration of a sequential polar Hough detector in conditions
of impulse interference is investigated. The developed algorithm includes a CA
CFAR detector, polar Hough transform, binary integration and sequential detec-
tion in parameter space. The efficiency of the researched detector increases when
the signal-to-noise ratio grows; the detection threshold M decreases, and the false
alarm probability increases. The results are achieved by using Monte-Carlo sim-
ulation. The suggested algorithm may also be applied in other popular CFAR
processors using standard or polar Hough transform. The acceleration achieved
by using the proposed detector is several times higher than that achieved by
using a conventional detector with constant detection threshold.

References

1. Carlson B., E. Evans and S. Wilson, ”Search Radar Detection and Track with the
Hough Transform”, IEEE Trans., vol. AES - 30.1.1994, Part I, pp. 102-108; Part
II, pp. 109-115; Part III, pp. 116-124.

2. Behar V., Chr. Kabakchiev and L. Doukovska, ”Target Trajectory Detection in
Monopulse Radar by Hough Transform”, Compt. Rend. Acad. Bulg. Sci., vol. 53,
8, 2000, pp. 45-48.

3. Behar V., B. Vassileva, Chr. Kabakchiev, ”Adaptive Hough Detector with Binary
Integration in Pulse Jamming”, Proc.ECCTD’97, Budapest, 1997, pp. 885 - 889.

4. Behar V. and Chr. Kabakchiev, ”Hough Detector with Adaptive Non-coherent In-
tegration for Target Detection in Pulse Jamming”, Proc. ISSSTA’98, South Africa,
1998, pp. 1003 - 1008.

5. Garvanov, I. and Chr. Kabakchiev, ”Radar Detection and Track Determination
with a Transform Analogous to the Hough Transform”, Proc. of the International
Radar Symposium - IRS 2006, Krakow, Poland, 2006.

6. Sosulin Y. ”K-stage Radar CFAR Detection”, Proc. of IEEE International Radar
Conference -2000, 375-380, 2000.

7. Tantaratana S., ”Sequential CFAR Detectors Using a Dead-Zone Limiter”, IEEE
Trans. Communic., vol. 38, 9, 1375-1383, 1990.

8. Sosulin Y., K. Gavrilov ”K-stage Signal Detection”, Journal of Communications
Technology and Electronics, vol. 43, 7, pp. 835-850, 1998, (in Russian).

9. Garvanov, I. and Chr. Kabakchiev, ”K-stage CFAR Detection in Binomial Distri-
bution Pulse Jamming”, Proc. of the International Radar Symposium - IRS 2003,
Dresden, Germany, pp. 369-375, 2003.

10. Lazarov, A., Ch. Minchev, ”ISAR Image Reconstruction Technique with Stepped
Frequency Modulation and Multiple Receivers”, Proc. DASC’05, Washington, CD-
14E2-115, 2005.

11. Garvanov, I., ”CFAR BI Detector in Binomial Distribution Pulse Jamming”,
Comptes Rendus de l’Academie Bulgare des Sciences, vol. 56, 10, pp. 37-44, 2003.

12. Akimov, P., Evstratov, F., Zaharov, S.: Radio Signal Detection, Moscow, Radio
and Communication, pp. 195-203, 1989, (in Russian).



A Method for Calculating Active Feedback

System to Control Vertical Position of Plasma in
a Tokamak

Nizami Gasilov

Baskent University, Faculty of Engineering, Baglica kampusu, 06530 Ankara, Turkey

Abstract. In designing tokamaks, the maintenance of vertical stabil-
ity of plasma is one of the most important problems. For this purpose
systems of passive and active feedbacks are applied. The role of pas-
sive system consisting of a vacuum vessel and passive stabilizer plates is
to suppress fast MHD (magnetohydrodynamic) instabilities. The active
feedback system is applied to control slow motions of plasma. The objec-
tive of this paper is to investigate three successive problems the solution
of which will allow to determine the possibility to control plasma motions.
The first problem is the vertical stability problem under the assumption
of ideal conductivity of plasma and passive stabilizing elements. The
problem is solved analytically and on the basis of the obtained solution
a criterion of MHD-stability is formulated.

The second problem is the vertical stability when finite conductivity
of stabilizing elements is taken into account. The dispersion equation
relative to instability growth rate is obtained and analyzed. For practical
values of the parameters it is shown that there is a unique root with
positive real part, which presents the growth rate of only unstable mode.

The third problem is connected with the control of plasma vertical
position with application of active feedback system. The problem of cal-
culation of feedback control parameters is formulated as an optimization
problem and its approximate solving method is suggested.

1 Introduction

The problems of stability and controllability of plasma vertical motions are of
special importance for tokamaks with divertor. Necessary condition for the con-
trollability is the stability of plasma column under the assumption of ideal con-
ductivity of passive stabilizing elements. If under this assumption the stability
does not take place, the plasma deviates from equilibrium position on Alfven
time scales (∼10−6 sec). The last circumstance makes constructing an effective
feedback control system impossible. The problem of plasma vertical stability is
well studied [1-7]. However, simple stability criteria are necessary. Therefore one
of the purposes of the paper is the analytical solution of the problem, on the
basis of which it is possible to formulate a simple enough stability criterion.

The instability growth time determines the restrictions on response time and
power of active feedbacks. Analytical investigation of vertical instability problem
in the case of finite conductive stabilizers is the second purpose of the paper.
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The passive system, even if it is constructed successfully, can suppress only fast
instabilities. Control of slow instabilities, development time of which is propor-
tional to the characteristic decay time of the eddy currents in passive conductors
(∼10−3 sec), can be ensured using an active feedback system. In designing an
active system, the problem of calculation of feedback control parameters arises,
research of which is the third purpose of this paper.

2 General Set of Equations

The rigid-shift model will be applied to investigate plasma vertical stability. The
model assumes that the entire plasma column moves in vertical direction as a
solid body. The equilibrium distribution of the current in plasma is taken into
account. But it is supposed that this distribution (therefore, the plasma total
current Ip), and also the shape of plasma remain unchanged as plasma moves.
Thus, it is supposed that only the eddy currents, induced in the passive structure
by the plasma motion, are changing. The vacuum vessel and passive stabilizer
plates are modeled as sets of elementary toroidal coils.

Mathematically, the model is described by plasma motion equation and cir-
cuit equations, and is represented by a system of linear differential equations.
Unknowns are vertical displacement of plasma and eddy currents in passive con-
ductors. The details of the model used are explained in papers [8, 9].

We first consider the situation without active feedback. Let ξ̃(t) be a small
vertical displacement of the plasma column from a reference equilibrium position.
Then under the assumptions made the equation of plasma motion is as follows:

M
d2ξ̃

dt2
= w0ξ̃(t) +

N∑
j=1

wj Ĩj(t) . (1)

Here M is the mass of plasma, w0ξ̃ represents the reverting Lorentz force on
moving plasma due to the external field gradient, N is the number of passive
stabilizing coils, Ĩj(t) is the eddy current in j-th passive coil and wj Ĩj represents
the returning force on the plasma due to this eddy current.

The currents in passive coils are described by Kirchhoff’s equations:

N∑
j=1

Lij
dĨj

dt
+ RiĨi(t) = −Φi

dξ̃

dt
= −Ip

dLip

dξ̃

dξ̃

dt
, i = 1, . . . , N, (2)

where Ri is ohmic resistance of i-th coil, Lii and Lij are self and mutual induc-
tances of the coils, Lip(ξ̃) is the mutual inductance between i-th coil and plasma
(The value of Lip is calculated by taking the non-homogeneous distribution of
plasma current into consideration). It can be shown that, under the assumptions
made, the relation wi = Φi holds.

Let’s represent solutions of the problem (1) - (2) in exponential form:

ξ̃(t) = ξ eγt, Ĩj(t) = Ij eγt, j = 1, · · · , N. (3)
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Then the set of equations (1) - (2) is reduced to an algebraic eigenvalue problem:

γ

{
N∑

j=1

LijIj+wiξ

}
= −RiIi , i = 1, ... , N ,

γ2Mξ =
N∑

j=1

wjIj + w0ξ .

(4)

If we designate
I = (I1, . . . , IN )T ,
w = (w1, . . . , wN )T ,

L =

⎡
⎣L11 · · · L1N

· · · · · · · · ·
LN1 · · · LNN

⎤
⎦, R =

⎡
⎢⎣

R1 · · · 0

· · · . . . · · ·
0 · · · RN

⎤
⎥⎦

then the problem (4) can be rewritten in the form:

RI + γ LI = −γ wξ ,
γ2Mξ = (w, I) + w0ξ .

(5)

In particular, it can be found from (5), that w0 = Mγ2
0 , where γ0 is Alfven growth

rate in absence of stabilizing elements. Note, that R (matrix of resistances) is
a diagonal matrix and L (matrix of inductances) is a symmetric one. In further
considerations we suppose that the following natural conditions are satisfied:

R ≥ 0, L > 0, w0 = Mγ2
0 > 0, w �= 0. (6)

3 Stability in the Approach of Ideal Conductivity of
Stabilizing Elements

To control plasma displacements is possible, only if plasma is stable under the
assumption of ideal conductivity of passive stabilizing elements. In this case
R = 0. For γ = 0 the plasma is stable, therefore this case is not interesting for
us and in the following part we investigate the case γ �= 0. Then, if we express I
from the first equation of the system (5) and put it in the second equation, we
obtain next formula for the growth rate γ in the ideal case:

γ2
ideal =

w0

M
− 1

M
(L−1w, w) . (7)

The ideal conductors stabilize plasma, if γ2
ideal < 0. Then the below criterion of

MHD-stability, or necessary condition of stabilization, follows from (7):

(L−1w, w) > w0 (8)

4 Stability When Finite Conductivity of Stabilizing
Elements Is Taken into Account

In this case R > 0. We suppose that the other conditions (6) are satisfied also.
For system (5) we investigate all solutions with Reγ ≥ 0 (unstable modes). In
this case it is not difficult to obtain from (5) the following equation for γ:

Mγ2 = Mγ2
0 − γ

(
(R + γL)−1 w, w

)
. (9)
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It can be noted at once that γ = 0 is not a root of the equation.
At first we consider positive real roots of the equation (9). We rewrite (9) as

f(γ) = Mγ2 + γ
(
(R + γL)−1 w, w

)
− Mγ2

0 = 0 .

f(γ) is a continuous function at γ ≥ 0, and f(0) = −Mγ2
0 < 0, f(+∞) = +∞.

Consequently the equation (9) has at least one positive root. As f ′(γ) = 2Mγ +(
(R + γL)−1

R (R + γL)−1 w, w
)

> 0, this positive root is unique.
Now we study the question whether (9) has complex roots with non-negative

real part. Let γ = α + iβ (β �= 0). Then 1
γ = x + iy = α

α2+β2 + i
(
− β

α2+β2

)
.

Using the formula (A + iB)−1 = (A + BA−1B)−1 − i(AB−1A + B)−1 the
following system of equations with respect to α and β can be obtained from (9):

γ2
0 + β2 − α2 = 1

M

((
L + xR + y2R(L + xR)−1R

)−1
w,w

)
,

α = − 1
2M(α2+β2)

((
(L + xR)R−1(L + xR) + y2R

)−1
w,w

)
.

From the second equation of the system it follows that α < 0. Consequently,
under the conditions accepted the equation (9) can not have a complex root
with non-negative real part.

The results mentioned above can be summarized in the following theorem.
Theorem . If M > 0, w0 = Mγ2

0 > 0, w �= 0, and matrices R > 0 and L > 0
are symmetric real matrices, then the problem (5) has a unique positive real
eigenvalue γ (unstable mode). Other eigenvalues are either negative real roots,
or complex roots with negative real part (stable modes).

In the general case, it is difficult to obtain a formula for positive eigenvalue
mentioned in the theorem. But, if the MHD-stability criterion (8) takes place,
then ignoring second and higher powers of γ, and using the relation (R+γ L)−1 ≈
R−1−γR−1LR−1, from (9) one can obtain the following approximate estimation
for growth rate of slow instability: γ ≈ Mγ2

0
(R−1w, w) .

5 Stabilization by Applying Active Feedbacks

We consider active feedback systems consisting of resistive toroidal coils. We
suppose that each time moment given the displacement of plasma (ξ̃(t)), and its
velocity (ξ̃′(t)) can be measured. According to these values, feedbacks produce
a voltage Ui(ξ̃(t), ξ̃′(t)) in the i-th active coil. We assume that control coils
are of two kinds: coils reacting to displacement and coils reacting to velocity of
displacement. We suppose that the feedbacks allow generating voltage in the first
case equal to aiξ̃(t), and in the second case equal to biξ̃

′(t). Note that, in general,
a single coil can be of both kinds at the same time. Then Ui = aiξ̃(t) + biξ̃

′(t).
Thus, we have the following equation for the i-th active coil instead of (2):

N∑
j=1

Lij
dĨj

dt
+ RiĨi(t) = −Φi

dξ̃

dt
− aiξ̃(t) − bi

dξ̃

dt
. (10)
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Note that (10) is valid for all coils: both for active and for passive, if it is accepted
that ai = 0 and bi = 0 for passive coils.

We consider that positions of active coils are given. Then the problem of
selection of active system leads to the determination of control parameters ai and
bi, ensuring stabilization of plasma vertical motion. If we represent solutions in
the form (3), the problem (1), (10) is reduced to the following algebraic problem:

(R + γ L)I = −γ (w + b)ξ − aξ ,
γ2Mξ = (w, I) + w0ξ ,

(11)

where a = (a1, ... , aN )T , b = (b1, ... , bN)T . If we express I from the first
equation of the system (11) and put it in the second equation, we obtain:

γ2M − w0 + γ((R + γ L)−1(w + b), w) + ((R + γ L)−1a, w) = 0 .

Using the formula (A + B)−1 = A−1 − (A + B)−1BA−1 we have:

ϕ(γ) =
[
(R−1w,a) − w0

]
+
[
γ2M + γ((R + γL)−1w,w + b − LR−1a)

]
= 0.

(12)
The root γ of the equation ϕ (γ) = 0 with the greatest real part determines the
most unstable mode. Note that γ is a function of a and b: γ = γ(a, b).

Under the assumptions made the function ϕ (γ) is continuous at γ ≥ 0 and it
is not difficult to see that ϕ (+∞) = +∞. Therefore, for the equation ϕ (γ) = 0
to have no positive root, the fulfillment of the following condition is necessary:

ϕ (0) = (R−1w, a) − w0 ≥ 0. (13)

We will call (13) as the necessary condition for vertical position control.

6 Problem of Selection of Active Feedback System

If the coordinates of active coils have been defined, the problem of selection
of the feedback system consists of the following: Find control vectors a and b
ensuring stabilization of plasma vertical motion and requiring minimal power.

Let’s calculate total power necessary for realization of active feedbacks. The
function Ui = aiξ̃(t) + biξ̃

′(t), expressing feedback, has a meaning of voltage.
According to the formula P = U2/R, for total power requirement we have:

P (a, b) =
∑ a2

i + b2
i γ

2(a, b)
Ri

ξ2
m,

where ξm is the parameter of the problem and expresses the maximum amplitude
of displacements, for which the system is designed. Hereinafter summation is
performed on active coils, though it can be accepted also as summation on all
coils with allowance for ai = 0 and bi = 0 for passive coils.

The problem about selection of an active feedback system, in the general form,
can be formulated as an optimization problem: Find values of parameters a and
b satisfying the constraint γ(a, b) ≤ 0 and minimizing function P (a, b).
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In general case, it is difficult to find analytical expression for roots of (12). Let’s
find an approximate estimation for γ. If the necessary condition of stabilization
is satisfied, i.e. if the plasma is stable in the ideal approach, 2nd and higher
powers of γ can be neglected. Then from (12) using relation (R + γ L)−1 ≈
R−1 − γR−1LR−1 an approximate estimation for the growth rate is obtained:

γ = − (a, R−1w) − w0

(R−1w, w) + (b, R−1w) − (a, R−1LR−1w)
. (14)

Let’s note that w0 and s = (R−1w, w) > 0 are determined by input data and
consequently they can be considered as known parameters. For the active system
to stabilize plasma, condition γ(a, b) ≤ 0 must be satisfied. According to the
necessary condition (13), the numerator of fraction in (14) must be non-negative.
Therefore for stability it is necessary for the denominator to be positive. Thus,
the parameters a and b must satisfy the restrictions

(a, R−1w) ≥ w0; (b, R−1w) > (a, R−1LR−1w) − s.

In order to prevent errors, concerned with the determination of input data, the
fulfillment of these conditions with some reserves ε1 and ε2 (ε2 > ε1) will be
required. I.e. it will be required that in (14) the numerator be not less than ε1,
and the denominator be not less than ε2. Then the new restrictions are:

(a, R−1w) ≥ w0 + ε1 =
∧
w0,

(b, R−1w) ≥ (a, R−1LR−1w) − (s − ε2) = (a, R−1LR−1w)− ∨
s .

In scalar products involving vector a, actually only those components of vec-
tors the numbers of which coincide with numbers of active coils of 1st kind
are used. Therefore it is convenient to use the corresponding projections of
vectors. Let’s designate the subspace spanned on basis vectors the numbers
of which correspond to the active coils of 1st kind as A. Let’s denote u =
projAR−1w and v = projAR−1LR−1w. Then we have: (a, R−1w) = (a, u)
and (a, R−1LR−1w) = (a, v).

Similar things can be done also for b. We designate the corresponding sub-
space as B. If we denote p = projBR−1w, then (b, R−1w) = (b, p).

Let’s note that the vectors u, v and p are represented by input data of the
problem and consequently we can consider them as known parameters.

Using the new notations, we can reformulate the problem of selection of active
feedbacks: Find values of parameters a and b, satisfying the restrictions

(a, u) ≥∧
w0,

(b, p) ≥ (a, v)− ∨
s .

(15)

and minimizing the function

P (a, b) = P1(a) + P2(a, b) =
∥∥∥√R−1 a

∥∥∥2

ξ2
m + γ2

∥∥∥√R−1 b
∥∥∥2

ξ2
m, (16)

where γ = − (a , u)−w0
s+(b , p)−(a , v) . Above mentioned w0,

∧
w0, s,

∨
s, u, v, p, ξm and R

are given parameters.



572 N. Gasilov

We carry out the selection of a feedback system in two stages, sequentially
solving two optimization problems. Actually it means a certain separation of
roles between coils of 1st and 2nd kinds. At the first stage by using 1st kind coils
we minimize first addend P1 in (16) under first restriction of (15). At the second
stage we use 2nd kind coils to satisfy second restriction and minimize P2.

The first problem: Find a value of a, satisfying restriction (a , u) =
∧
w0 and

minimizing the function P1(a) = ξ2
m

∑ a2
i

Ri
.

Using Lagrange multipliers it can be seen that the solution of this problem is

the vector a∗ with coordinates a∗
i =

∧
w0∑
Riu2

i
Riui. Thus P1(a∗) = ξ2

m

∧
w

2

0∑
Riu2

i
.

If the vector a∗ also meets condition
∨
s −(a∗, v) ≥ 0, the pair of vectors a∗

and b = 0 satisfies both restrictions of the general problem (15) - (16) and, as
it can be easily checked, it is an optimal solution.

If a∗ satisfies the condition
∨
s −(a∗, v) < 0, the vector b can be selected by

solving the problem formulated below. Let’s designate D = (a∗, v) − s > −ε2.
Note that D is easily calculated by input parameters and can be considered as
a given parameter also. Let’s note that (a∗, u) − w0 = ε1. Then γ(a∗, b) =
− ε1

(b , p)−D .
The second problem: Find a value of b, satisfying restriction (b , p) = D +E

(where E ≥ ε2 is a parameter of the problem) and minimizing the function
P2(b) = ξ2

m

∑ b2i
Ri

γ2, where γ = − ε1
E .

This problem is similar to the first one and its solution is the vector b∗ with
coordinates b∗i = D+E∑

Rip2
i
Ripi. Note that b∗ depends on the parameter E. It can

be seen that P2(b∗) = ξ2
m

(
1 + D

E

)2 ε2
1∑

Rip2
i
. Therefore, an increase in E results

in a decrease in the required power. However an increase in E also results in an
increase in the absolute values of b∗i . The feedbacks are represented by products
biξ̃

′(t), second factor (ξ̃′(t)) of which is determined through measurements, so
with some error. Therefore, the sharp increase in b∗i can also lead to increase
in the error of the right hand side of equation (10). As a result, the work of
feedbacks can be disturbed. Therefore, in the selection of an optional value of E
it is necessary to make a decision taking into consideration the power requirement
and levels of measurement errors.

The pair of vectors a∗ and b∗ satisfies both restrictions of the general problem
(15) - (16), thus, condition γ(a, b) ≤ 0. Therefore, the active feedback system
with parameters a∗ and b∗ provides stabilization of vertical motion. Let’s note
that this solution may not be optimum for the general problem. On the other
hand, such feedback control means simple separation of roles between coils of
1st and 2nd kinds, which is preferable for technical realization.

7 Conclusions

Three problems arising in the study of stabilization of plasma vertical motions in
a tokamak were considered. The results can be expressed in the following form.
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On the basis of the rigid shift model of plasma the vertical stability problem
was analyzed. The problem was solved analytically under assumption of ideal
conductivity of plasma and passive stabilizing elements. A MHD stability crite-
rion was obtained, which was expressed in compact form. A system of passive
conductors must satisfy this criterion, which is necessary for operating the active
feedback system effectively.

The second problem is the vertical stability problem when finite conductivity
of stabilizing elements is taken into account. For practical values of the parame-
ters it was shown that stability problem has unique unstable mode with positive
real growth rate, other modes are stable.

The question about control of plasma vertical motions with application of
an active feedback system was studied. The problem on calculation of active
feedbacks control parameters was formulated as an optimization problem and a
method of its approximate solution was proposed.
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Parabolic Equation
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Abstract. A numerical algorithm for an inverse problem of simultane-
ously determining unknown coefficients in a linear parabolic equation
subject to the specifications of the solution at internal points along with
the usual initial and boundary conditions is proposed. The approach
based on TTF (Trace Type Functional) formulation of the problem is
used. To avoid instability in this approach the Tikhonov regularization
method is applied. Some numerical examples using the proposed algo-
rithm are presented.

1 Introduction

In this paper we consider an inverse problem of simultaneously finding unknown
coefficients p(t), q(t) and function u(x, t) that satisfy the equation

ut = uxx + q(t)ux + p(t)u + f(x, t), x ∈ (0, 1), t ∈ (0, T ] (1)

with the initial-boundary conditions

u(x, 0) = ϕ(x), x ∈ (0, 1), (2)

u(0, t) = g1(t), u(1, t) = g2(t), t ∈ (0, T ] (3)

and the additional specifications

u(x∗, t) = e1(t), u(x∗∗, t) = e2(t), x∗, x∗∗ ∈ (0, 1), t ∈ (0, T ], (4)

where f(x, t), ϕ(x), g1(t), g2(t), e1(t) and e2(t) are given input functions.
If u represents the concentration then equation (1) models the transport,

dispersion and decay of a chemical solute (a tracer) with concentration u moving
through a porous medium (an aquifer), q(t) is the average velocity (the drift
velocity), p(t) represents the magnitude of the decay [1]. If u is a temperature
then the problem (1)-(4) can be considered as a control problem of finding the
control p = p(t) and q = q(t) such that the internal constraints (4) are satisfied.
Similar inverse problems have been studied in [2-7].

Looking at the problem (1)-(4) we see that if the functions p(t), q(t) and
u(x, t) solve the inverse problem, then it follows that

e
′
1(t) = uxx|x=x∗ + q(t)ux|x=x∗ + p(t)u|x=x∗ + f(x∗, t),

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 574–581, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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e
′
2(t) = uxx|x=x∗∗ + q(t)ux|x=x∗∗ + p(t)u|x=x∗∗ + f(x∗∗, t).

Thus unknowns q(t) and p(t) are solutions of the following system of two
linear algebraic equations

[
ux|x=x∗ u|x=x∗
ux|x=x∗∗ u|x=x∗∗

] [
q(t)
p(t)

]
=
[

E1(t)
E2(t)

]
, (5)

where E1(t) = e
′
1(t)− uxx|x=x∗ − f(x∗, t), E2(t) = e

′
2(t)− uxx|x=x∗∗ − f(x∗∗, t).

For further purposes we represent the system (5) in matrix form

Az = b.

From (5) we can define q(t) and p(t) provided that the determinant of the system
does not vanish. Eliminating these unknown functions from the inverse problem
we can obtain a reformulated initial-boundary value problem in which coeffi-
cients are functionals of the unknown solution. Such approach is called as TTF
(Trace Type Functional) formulation of a problem [5]. However the reformulated
problem becomes more unstable. The instability is reflected in the fact that the
terms uxx|x=x∗ and uxx|x=x∗∗ in this case make the coefficients extremely sensi-
tive to variations in the solution which is recursively dependent on itself through
these second order derivatives on fixed points. The aim of this paper is to study
the possibility of using the Tikhonov regularization method to avoid the insta-
bility in this approach. The proposed algorithm will be explained in details in
the next section.

2 Numerical Algorithm

The system (1)-(4) can be approximated by finite difference method. Let τ =
Δt > 0 and h = Δx > 0 be step-lengths in time and space coordinate, 0 = t0 <
t1 < ... < tM = T and 0 = x0 < x1 < ... < xN = 1, where tj = jτ, xi = ih,
denote partitions of the [0, T ] and [0, 1], respectively. Let also uj

i , qj and pj

be approximations to u(xi, tj), q(tj) and p(tj) respectively. Then implicit finite
difference scheme for (1)-(4) can be written as follows:

uj
i − uj−1

i

τ
=

uj
i+1 − 2uj

i + uj
i−1

h2
+ qj uj

i+1 − uj
i−1

2h
+ pjuj

i + fij , (6)

u0
i = ϕ(xi), (7)

uj
0 = g1(tj), uj

N = g2(tj), (8)

uj
i∗ = e1(tj), uj

i∗∗ = e2(tj), (9)

where fij = f(xi, tj), j = 1, M, i = 1, N − 1 .
We apply the following algorithm to solve system (6)-(9).
At the initial time step u0

i = ϕ(xi). To find initial values q0 and p0 we solve
the finite difference approximation of (5) at t = 0.
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Let at (j − 1)-th time step we have calculated uj−1
i , qj−1 and pj−1. Then at

j-th time step to calculate uj
i , qj and pj we solve the system (6), (8)-(9) applying

the following iterative procedure.
We denote the value of uj

i at s-th iteration step as uj,s
i .

At the initial step of iterations (s = 0) we put: uj,0
i = uj−1

i .
At each (s + 1)-th iteration step we firstly determine qj,s and pj,s. If s = 0

then we put qj,0 = qj−1 and pj,0 = pj−1. If s ≥ 1 then we solve the finite
difference approximation of the system (5)
⎡
⎣ uj,s

i∗+1−uj,s
i∗−1

2h uj,s
i∗

uj,s
i∗∗+1−uj,s

i∗∗−1
2h uj,s

i∗∗

⎤
⎦
[
qj,s

pj,s

]
=

⎡
⎣ ej

1−ej−1
1

τ − uj,s
i∗+1−2uj,s

i∗ +uj,s
i∗−1

h2 − fi∗j

ej
2−ej−1

2
τ − uj,s

i∗∗+1−2uj,s
i∗∗+uj,s

i∗∗−1
h2 − fi∗∗j

⎤
⎦ (10)

Then we put the values of qj,s and pj,s into equation (6) and obtain next
system which consists of the equations
[

1
h2
− qj,s

2h

]
uj,s+1

i−1 −
[

2
h2

+
1
τ
− pj,s

]
uj,s+1

i +
[

1
h2

+
qj,s

2h

]
uj,s+1

i+1 = −fij−
uj−1

i

τ
(11)

and boundary conditions

uj,s+1
0 = g1(tj), uj,s+1

N = g2(tj), (12)

where i = 1, N − 1, j = 1, M .
We solve the system (11)-(12) by the TDMA (Three Diagonal Matrix Al-

gorithm) method and determine uj,s+1
i . If the difference of the values on two

successive iteration steps is small enough we stop iterations and we obtain uj
i on

j-th time step. Note that by appropriate choice of τ at each time step we can
achieve that the main diagonal of the three-diagonal system (11) be dominant.

The coefficients of the system (10) depend on the solution u and ux, and
the right hand side depends on uxx. Since qj and pj are a solution of (10) these
quantities are calculated with some errors. Therefore qj and pj are very sensitive
to errors, especially if the determinant of the system is close to zero. To avoid
this difficulty we apply the Tikhonov regularization method [8]. Let’s shortly
describe it for the linear algebraic system in general form:

Az = b (13)
Note that A is not necessarily a square matrix, in general case, when Tikhonov
regularization is considered. Generally, the system (13) may have no solution in
classical sense. However, we can speak about the normal solution relative to some
given vector z0 (Note that z0 expresses guessed solution and is determined from
physical considerations). The normal solution for any linear system exists and is
unique [8]. The problem of finding the normal solution is ill-posed, i.e. arbitrarily
small changes in the input data (i.e. b) can cause arbitrarily large changes in
the solution. The Tikhonov regularization method is applied for finding normal
solution which is stable relative to small perturbations of the right-hand side of
the system (experimental data). It is supposed that instead of true data we know
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their approximate values, i.e. instead of vector b we have a vector b such that∥∥b− b
∥∥ ≤ δ, where δ is the error of the measurements. The problem is to find

for each value of δ an approximate solution zδ which convergence to the exact
normal solution z∗ as δ → 0. In Tikhonov regularization method zδ is defined
from the minimization of the Lagrange functional

∥∥Az − b
∥∥2

+ α ‖z − z0‖2 , (14)

where α > 0 is regularization parameter. The value of α is determined from
condition

∥∥Azδ − b
∥∥ = δ̂, where δ̂ = minz

∥∥Az − b
∥∥+ 2δ.

Minimization problem (14) is equivalent to solving of the Euler equation
(
AT A + αI

)
z = AT b + αz0.

Note that as a vector z0 we take the solution at the preceding time step when
we apply Tikhonov regularization method for solving the linear algebraic system
(10) in our presented numerical algorithm.

Numerical experiments have been performed to test the effectiveness of the
proposed algorithm, results of which are discussed in the following section.

3 Numerical Examples

In this section we present some results of our numerical calculations using the
algorithm described in the previous section to solve the following examples.

Example 1. If we take a solution u(x, t), coefficients q(t), p(t) and points x∗, x∗∗
as u(x, t) = t sin x+kx2 (where k is a constant parameter), q(t) = (t−2)2, p(t) =
5 + 2t− t2, x∗ = 0.4, x∗∗ = 0.6 then substituting in (1)-(4), it can be seen that
the input functions are as follows f(x, t) = (t3−2t2−4t+1) sinx−t(t−2)2 cos x+
k
[
x2(t2 − 2t− 5)− 2x(t− 2)2 − 2

]
, ϕ(x) = u(x, 0) = kx2, g1(t) = u(0, t) = 0,

g2(t) = u(1, t) = t sin 1 + k, e1(t) = t sin 0.4 + 0.16k and e2(t) = t sin 0.6 + 0.36k.
In calculations we take a grid with size M×N = 100×200, T = 4 and k = 10−5.

In this example the matrix A is well-conditioned on all grid nodes, and we can
use any classical method (without regularization) for solving (10). As seen from
the Fig. 1a, in this case there are no visual differences between the numerical
and exact solutions.

The next task have been performed to test the sensitivity of the algorithm to
the errors. Artificial random errors were introduced into the additional specifi-
cation data by defining functions ẽ1(t) = e1(t)(1 + dε

1(t)) and ẽ2(t) = e2(t)(1 +
dε
2(t)). Here dε

1(t) and dε
2(t) are random functions of t uniformly distributed on

(−ε, ε). These functions represent the level of relative errors in the corresponding
piece of data. In Fig. 1b we present results for ε = 0.005. It can be seen from
the figure that the algorithm is stable with respect to random errors if matrix
A remains well-conditioned during the calculation process.

Example 2. In this example we consider a situation when matrix A becomes ill-
conditioned at some grid points during the calculation process. For this purpose,
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Fig. 1. The exact and calculated values of p(t) and q(t) when A is well-conditioned
matrix at all grid points. a) Additional specifications e1(t) and e2(t) are given exactly;
b) Artificial random errors added to e1(t) and e2(t).

we use solution function as u(x, t) = sin(2πt) sin x + kx2. Coefficients q(t), p(t)
and the internal points x∗, x∗∗ are the same as in the previous example: q(t) =
(t − 2)2, p(t) = 5 + 2t − t2, x∗ = 0.4, x∗∗ = 0.6. The corresponding input
functions are:
f(x, t) = 2π cos(2πt) sin x + sin(2πt)

[
(t2 − 2t− 4) sin x− (t− 2)2 cos x

]
+

k
[
x2(t2 − 2t− 5)− 2x(t− 2)2 − 2

]
, ϕ(x) = kx2, g1(t) = 0, g2(t) = sin(2πt)

sin 1 + k, e1(t) = sin(2πt) sin 0.4 + 0.16k, e2(t) = sin(2πt) sin 0.6 + 0.36k.
In the calculations we take k = 5 · 10−3 and grid with M ×N = 200× 300.

In Fig. 2a we present results of calculations when a classical method to solve
(10) is used . As seen from the figure, at the grid points where the matrix A
becomes ill-conditioned, the differences between the calculated values and the
exact solution are large, i.e. there is no approximation at these points. In Fig. 2b
the results of calculations by using Tikhonov regularization method for solving
(10) are presented. Since the condition number of the matrix A depends on its
determinant, it could be reasonable to choose δ depending on det A. We take

δ = δ(det A) =

⎧⎪⎨
⎪⎩

δ̃, if |det A| > 10−2,

(1− 2 ln |det A|)δ̃, if 10−5 ≤ |det A| ≤ 10−2,

(1 − 2 ln 10−5)δ̃, if |det A| < 10−5.

In calculations we put δ̃ = 0.001. As seen from Fig. 2b, there is sufficiently
good agreement between the exact and the approximate values.
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Fig. 2. The exact and calculated values of p(t) and q(t) when A is ill-conditioned
matrix at some grid points. Results of calculations a) using classical methods; b) using
Tikhonov regularization method to solve (10).

Thus, the following procedure can be recommended for solving system (10).
During the calculations the matrix A of this system should be investigated. If
A is well-conditioned matrix then the system can be solved by usual methods
(as Gauss-Jordan elimination). If A is singular or ill-conditioned matrix then
Tikhonov regularization method can be applied.

Example 3. Here we examine a modification of the proposed algorithm for
problem of simultaneously determining of three unknowns in parabolic equation.
Namely, we consider the problem (1)-(4) where the source function depends on
the time variable only (i.e. f = f(t)) and must be determined. For this, in addi-
tion to the two measurements (4) we consider the third additional specification
u(x∗∗∗, t) = e3(t).

For calculations we take a solution u(x, t), coefficients q(t), p(t), function
f(t), points x∗, x∗∗, x∗∗∗ and value of T as: u(x, t) = et3−t

[
e2x − 2e2x

]
+ sin t,

q(t) = −2, p(t) = 3t2−1, f(t) = cos t− (3t2−1) sin t−4et3−t+2, x∗ = 0.4, x∗∗ =
0.5, x∗∗∗ = 0.6 and T = 2. Then substituting in (1)-(4), it can be seen that the
input functions are as follows ϕ(x) = e2x − 2e2x, g1(t) = et3−t + sin t, g2(t) =
−e2et3−t + sin t, e1(t) = et3−t

[
e0.8 − 0.8e2

]
+ sin t, e2(t) = et3−t

[
e− e2

]
+ sin t

and e3(t) = et3−t
[
e1.2 − 1.2e2

]
+ sin t. In calculations we take a grid with size

M × N = 100 × 100. The results of calculations are shown in Fig. 3 and it is
seen from this figure that there is sufficiently good agreement between calculated
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Fig. 3. The exact and calculated values of q(t), p(t) and f(t) when A is well-conditioned
matrix at all grid points

and exact solutions. Thus, proposed numerical algorithm can be applied also for
simultaneously determining of three unknowns in parabolic equation.

4 Conclusions

An inverse problem of simultaneously determining unknown coefficients in a lin-
ear parabolic equation subject to specifications of the solution at internal points
along with the usual initial and boundary conditions is considered. An algo-
rithm based on the TTF (Trace Type Functional) formulation of the problem
is applied to solve problem numerically. One of stages of the algorithm consists
of solving a linear algebraic system which can be ill-posed. To avoid instabil-
ities the Tikhonov regularization method is used. Several test examples were
investigated to study different situations with well and ill-conditioned matrices.
The results of calculations show that in the case when the matrix of linear sys-
tem is well-conditioned during the calculation process, usual methods such as
Gauss-Jordan elimination can be used. In the case when the matrix becomes
singular or ill-conditioned, using Tikhonov regularization gives sufficiently good
approximation to the exact solution. Numerical experiments show effectiveness
of the presented algorithm for determining a good approximation of the unknown
coefficients.
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Abstract. In this work, we design an efficient algorithm for color im-
age compression using a model for the rate-distortion connection. This
model allows the derivation of an optimal color components transform,
which can be used to transform the RGB primaries or matrices into a
new color space more suitable for compression. Sub-optimal solutions are
also proposed and examined. The model can also be used to derive opti-
mal bits allocation for the transformed subbands. An iterative algorithm
for the calculation of optimal quantization steps is introduced using the
subband rates (entropies). We show that the rates can be approximated
based on a probabilistic model for subband transform coefficients to re-
duce the algorithm’s complexity. This is demonstrated for the Discrete
Cosine Transform (DCT) as the operator for the subband transform and
the Laplacian distribution assumption for its coefficients. The distor-
tion measure considered is the MSE (Mean Square Error) with possible
generalization to WMSE (Weighted MSE). Experimental results of com-
pressed images are presented and discussed for two versions of the new
compression algorithm.

1 Introduction

Image compression has become a common mathematical procedure, where a
matrix representing an image is replaced by data of lower bit-rate capacity.
No information is lost in the so-called lossless algorithms, however, it is the
lossy cases that have become the more acceptable procedure. Although perfect
reconstruction is not possible in such cases, the loss of information, or distortion,
can be of limited effect on the viewer, making the error negligible in the sense of
visual perception. The main tool for evaluating the compression is a bit-rate vs.
distortion curve. Such a curve predicts the distortion of coders for a given rate in
bits per sample for color images, based on 3 matrices each: Red, Green and Blue
(RGB). In this work we present a model for the rate - distortion dependency of
subband transform coders. First the subband transform coders are presented in
Section 2 and then the rate-distortion connection is derived in Section 3. Section

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 582–589, 2007.
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4 concentrates on minimization of the compression distortion based on the model
and Section 5 introduces a compression algorithm based on the results of this
optimization problem. Finally, conclusions are given in Section 6.

2 Subband Transform Coders

Subband transforms are vastly used for signal and image compression. Two ex-
amples are JPEG [9] and JPEG 2000 [6], [8]. The most familiar representation
of subband transforms is perhaps the filter bank scheme, displayed in Figure 1
for 1D (one dimensional) signals and a dyadic filter bank. The input signal x[n]
is decomposed by passing through a set of m analysis filters hb[n](b ∈ [0, B − 1])
and down-sampling by a factor m. The signal can be then reconstructed by up-
sampling the transform subbands yb[n] by a factor m and filtering them through
a synthesis filter-bank of m filters gb[n]. Mathematically, the decomposition is
according to:

yb[n] =
∑

l

hb[l] x[mn − l] = (x ∗ hb)[mn], (1)

and the reconstruction is by:

x[n] =
m−1∑
b=0

∑
i

gb[n − mi]yb[i]. (2)

A subband transform encoder is composed of a subband transform operator
applied to the input signal x, then coding the subband coefficients. Usually this
coding consists of quantization followed by some lossless algorithm, based on en-
tropy coding. The decoder reconstructs the signal according to the subband co-
efficients after inverse quantization introducing a distortion in the reconstructed
signal relative to the original one. The benefit is less bits needed for the storage
or transmission of the encoded signal. The generalization of subband transform
coding to 2D is straightforward, when the subband transform is separable (e.g.
in JPEG [9] and JPEG2000 [6]). Also the generalization to multi-scale subband
transform coders (e.g. JPEG2000 [6]) is straightforward by applying the subband
transform iteratively to the low frequencies subband.

Fig. 1. Dyadic (m=2) filter-bank decomposition: analysis and synthesis
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2.1 Vector Space Representation of Subband Transforms

Equation (1) can be rewritten in the form of the vector product of Cn:

yb[n] =
∑

l

hb[l] x[mn − l] =
∑

l

hb[−l] x[mn + l]

=
∑

l

hb[mn − l] x[l] =
∑

l

α∗
b [l − mn] x[l] =< x, α

(n)
b >,

(3)

where αb[k] = h∗
b [−k] are sequences derived from the subband analysis filters

and α
(n)
b is the sequence αb[k] delayed by mn samples in vector form. Thus (3)

suggests that the transform coefficients yb[n] can be regarded as the result of an
inner product of the input vector x and the analysis vectors α

(n)
b . In a similar

way (2), describing the filter bank synthesis operation, becomes:

x[k] =
m−1∑
b=0

∑
i

gb[k − mi]yb[i] =
m−1∑
b=0

∑
i

yb[i]s
(i)
b [k], (4)

with s
(i)
b [k] denoting the sequences sb[k] = gb[k] delayed by mi samples (s(i)

b [k] =
gb[k − mi]). Thus in vector form:

x =
m−1∑
b=0

∑
i

yb[i]s
(i)
b , (5)

where s(i)
b are the synthesis vectors.

3 Rate-Distortion of Subband Transform Coders

The rate-distortion performance of a scalar quantizer with independently coded
samples for a stochastic source x with variance σ2

x can be modelled for a large
enough rate as [2], [8]:

d(R) = ε2σ2
x2−2R, (6)

where d() is the MSE (Mean Square Error) distortion, R is the rate in bits per
sample and ε2 is a constant dependent on the distribution of x. If low image
rates are considered, other models may be used [5]. The scheme that performs
scalar quantization with independent coding of the source samples is the known
PCM (Pulse Code Modulation). An example of such a system is a uniform scalar
quantizer with an entropy coded output.

Consider an encoder that first transforms an N -sample source signal x into a
set of subbands then each subband coefficients yb[i] are coded independently by
the PCM scheme. The decoder reconstructs the signal x̂ from the dequantized

transform coefficients ŷb[i]. According to (5): x =
B−1∑
b=0

∑
i

yb[i]s
(i)
b and
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x̂ =
B−1∑
b=0

∑
i

ŷb[i]s
(i)
b , where B is the number of subbands. Thus the MSE of the

coder for the signal x can be expressed as [8]:

dx = E

[
1
N

∑
k

(x[k] − x̂[k])2
]

=
B−1∑
b=0

ηbGbσ
2
bε22−2Rb , (7)

where ηb denotes the ratio between the number of coefficients in subband b and

the total number of samples in the source N, Gb =
∥∥∥s(i)

b

∥∥∥2

is the energy gain,

σ2
b is the variance of subband b and Rb is the rate allocated to it. Equation (7)

is valid for orthonormal as well as non-orthonormal transforms.

3.1 Extension of the Rate-Distortion to a Color Image

Denote each pixel in a color image in the RGB domain by a 3x1 vector
x = [R G B]T . We first apply a color component transform (CCT) to the im-
age, denoted by a matrix M to obtain at each pixel a new vector of 3 components
C1, C2, C3, denoted x̃ = [C1 C2 C3]T , related to x by x̃ = Mx. Then each com-
ponent in the new color space is subband transform coded. The average MSE be-
tween the original and the reconstructed images in the RGB domain is [1]:

MSE =
1
3

3∑
i=1

B−1∑
b=0

ηbGbσ
2
biε

2
i e−aRbi

(
(MMT )−1

)
ii

, (8)

where Rbi stands for the rate allocated for the subband b of color component i
and σ2

bi is this subband’s variance. a � 2ln2.
Note that (8) can be extended to WMSE by introducing subband visual

weights Wbi:

WMSE =
1
3

3∑
i=1

B−1∑
b=0

ηbWbiGbσ
2
biε

2
i e

−aRbi . (9)

Here the WMSE is measured in the C1C2C3 and not in the RGB domain.

4 Minimization of the MSE

We would like to minimize the MSE expression of (8) with a constraint [7] on
the total image rate:

∑3
i=1 αi

∑B−1
b=0 ηbRbi = R and constraints on the subband

rates: Rbi ≥ 0. αi are optional down-sampling factors (αi = 1 means no down-
sampling). This optimization problem can be solved analytically for the rates:

R∗
bi =

1
a
ln

⎡
⎢⎢⎢⎢⎢⎣

ε2
i Gbσ2

bi((MMT )−1)
ii

αi

∏3
k=1

(
((MMT )−1)

kk
ε2

kGMAk

αk

) αkξk
3�

j=1
αjξj

⎤
⎥⎥⎥⎥⎥⎦

+
R

3∑
j=1

αjξj

, (10)
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for non-zero rates [1]. If we define the set of non-zero rate subbands as Acti �
{b ∈ [0, B − 1]|Rbi > 0}, then ξi and GMAi in (10) are:

ξi �
∑

b∈Acti

ηb, GMAi �
∏

b∈Acti

(Gbσ
2
bi)

ηb
ξi . (11)

Finding the sets Acti can be done iteratively according to the following scheme:

1. Assume that all the subbands are active and calculate the rates.
2. While some Rbi < 0

– Set Acti = {b ∈ [0, B − 1]|Rbi > 0}
– Calculate new rates.

The optimal CCT matrix M is not derived here analytically, however, it can be
calculated by numerical methods of minimizing the target function [1]:

f(M) =
3∏

k=1

(
(MMT )−1

)
kk

B−1∏
b=0

(σ2
bk)ηb . (12)

An approximate solution can also be proposed, solving the gradient equations

∇mi
log(f(M)) = −2mi + 2

B−1∑
b=0

ηb
Λbmi

mi
T Λbmi

= 0 (13)

for an orthogonal matrix M. Here, Λb is the covariance matrix of subband b
in the RGB domain (Yb = [ybR ybG ybB]T is a vector of R,G,B transform
coefficients):

Λb � E
[(

Yb − μYb

) (
Yb − μYb

)T ]
μYb

� E [Yb] . (14)

This solution, named the GKLT (Generalized Karhunen-Loeve Transform) can
be found by the following numerical algorithm:

1. Take a random 3x1 vector v. Given the B subband covariance matrices Λb,
calculate the

∑B−1
b=0 ηb

Λb

vT Λbv
matrix.

2. Find the eigen values λi and eigen vectors of this matrix.
3. For the ith eigen vector vi, i ∈ {1, 2, 3} do:

while(|λi − 1| ≥ ε )

(a) Calculate the
∑B−1

b=0 ηb
Λb

vi
T Λbvi

matrix.
(b) Find its eigen values and eigen vectors decomposition.
(c) Take the ith eigen vector and eigen value as the new vi and λi.

Here the ε parameter is the threshold, defining how close vi will get to solving
(13). When the algorithm converges, the GKLT is the matrix with vi as its rows.
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4.1 An Image-Independent Sub-optimal Solution

The one-dimensional DCT (Discrete Cosine Transform) matrix⎛
⎝0.5774 0.5774 0.5774

0.7071 0.0000 −0.7071
0.4082 −0.8165 0.4082

⎞
⎠ was applied to images as CCT and found to have

the best performance compared to other CCTs in [3]. It turns out that the DCT
is also a good choice for a sub-optimal transform based on our rate-distortion
model. Table 1 presents the values of the target function of (12) for several
known transforms, such as the RGB to YUV transform and KLT (Karhunen-
Loeve Transform) for a test image. It can be seen that the DCT is very close to
the optimal transform although GKLT is closer. Unlike the GKLT, however, the
DCT is image independent.

Table 1. Values of the target function for various CCTs. Identity is the RGB to RGB
transform and Opt. is the optimal transform.

Identity RGB to YUV DCT KLT GKLT Opt.

6.836e4 153.344 113.240 1.860e3 110.195 109.809

5 Color Image Compression Algorithm

Based on the results of the previous sections the following coding scheme can be
used based on the DCT subband transform:

1. Apply the DCT as a CCT to the RGB color components of a given image
to obtain new color components C1, C2, C3.

2. Apply the two-dimensional block DCT to each color component Ci.

3. Quantize each subband of each color component independently using uniform
scalar quantizers. The quantization step sizes are chosen to achieve optimal
subband rates R∗

bi. The algorithm for the optimal steps calculation follows:

(a) Set some initial quantization steps Δbi and calculate the rates Rbi.
(b) Update the quantization steps according to: Δnew

bi = Δbi2−(R∗
bi−Rbi)

until the optimal rates R∗
bi are sufficiently close, i.e., E (|R∗

bi − Rbi|) < ε for
some small constant ε.

4. Apply lossless coding to the quantized DCT coefficients. Use JPEG’s post-
quantization coding [9].

5.1 Using Laplacian Distribution for DCT Coefficients

The compression algorithm can be improved both from the complexity and per-
formance points of view if we model the probability distribution of the DCT
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subband coefficients as Laplacian [4]. Then the subband rates (entropies) Rbi

can be approximately calculated as follows, where kbi � e0.5μbiΔbi − e−0.5μbiΔbi :

Rbi = −
(
1 − e−0.5μbiΔbi

)
log2

(
1 − e−0.5μbiΔbi

)
− e−0.5μbiΔbi

· (log2 kbi − 1) +
μbiΔbi

kbi
log2(e).

(15)

Here μbi is the Laplacian distribution parameter for the subband b of color
component i that can be calculated as μbi =

√
2

σ2
bi

. Thus we do not need to

calculate the histograms of the subbands but only their variances σ2
bi.

5.2 Results

The algorithm has been implemented and tested on several images. In addi-
tion to the popular quality measure of the PSNR (Peak signal to Noise Ratio):
PSNR = 10log10

(
2552

MSE

)
, we define the PSPNR (Peak Signal to Perceptible

Noise Ratio) as: PSPNR = 10 log10
2552

WMSE , where WMSE for each color com-
ponent is calculated according to (9) and as proposed in [8]. The results for
several test images are presented in Table 2. It can be seen that the new algo-
rithm outperforms JPEG for the images tested with a gain of 1.234dB PSNR
and 1.484dB PSPNR on average. The gain is even greater when using estimated
rates according to (15).

Table 2. PSNR and PSPNR results for the new algorithm (New Alg.) and its improved
version according to (15) denoted (Est.) compared to JPEG at the same compression
ratio (CR)

PSNR PSPNR

Image New Alg.
New Alg.
(Est.)

JPEG New Alg.
New Alg.
(Est.)

JPEG CR

Lena 29.765 30.011 29.785 38.671 39.038 37.132 45.07

Peppers 29.770 29.971 28.640 37.489 37.818 35.440 33.77

Baboon 28.056 30.024 26.370 37.859 38.273 36.023 16.92

Cat 29.172 30.019 28.736 39.603 40.066 38.733 21.97

Sails 29.923 29.990 28.377 39.012 39.018 37.004 14.61

Monarch 29.721 29.975 28.665 37.871 38.221 36.690 27.08

Goldhill 29.928 29.999 27.919 40.499 40.519 39.594 13.23

Mean 29.476 29.998 28.243 38.715 38.993 37.231

6 Conclusions

In this work we have introduced a new algorithm for color image compression
based on a theoretical model for the rate-distortion connection of subband trans-
form coders. The distortion measures considered are MSE and WMSE. The
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rate-distortion model transforms the problem of selecting a CCT and subband
rates into an optimization problem that can be solved analytically for the rates
and by numerical optimization methods for the CCT. This optimization process
is rather complex, however. An approximate solution for the CCT has been thus
proposed, found by numerical methods with lower complexity, namely the GKLT.
An additional image-independent transform has been proposed - the DCT. Both
transforms have been shown to be close to the optimal transform. The results for
the CCT and subband rates have been utilized in the new compression scheme
based on the DCT subband transform. In particular, an iterative algorithm for
the design of quantization steps has been introduced. The compression scheme
can be made even more effective considering both complexity and compression
quality (higher PSNR and PSPNR for the same image rate) using knowledge of
the probability distribution of the subband transform coefficients. This has been
demonstrated assuming Laplacian distribution of the DCT subband coefficients
and modifying the compression algorithm accordingly, so that the subband rates
are calculated without the use of histograms. Experimental results of compressed
images have been presented and discussed. Our conclusion is that by numeri-
cal methods, presently available compression systems such as JPEG could be
improved in the sense of lower reconstruction error for the same bit-rate.
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Abstract. A local refinement algorithm for computer simulation of flow
through oil filters is presented. The mathematical model is based on lam-
inar incompressible Navier-Stokes-Brinkman equations for flow in pure
liquid and in porous zones. A finite volume method based discretization
on cell-centered, collocated, locally refined grids is used. Special atten-
tion is paid to the conservation of the mass on the interface between the
coarse and the fine grid. A projection method, SIMPLEC, is used to de-
couple momentum and continuity equations. The corresponding software
is implemented in a flexible way for arbitrary 3D geometries, approxi-
mated by an union of parallelepipeds with different sizes. Results from
numerical experiments show that the solver could be successfully used
for simulation of coupled flow in plain and in porous media.

Keywords: oil filter, numerical simulation, coupled flow in plain and
porous media, Navier-Stokes, Brinkman, local refinement.

1 Introduction

This paper describes a numerical algorithm for computer simulation of flow
through oil filters. The purpose of oil filters is to filter out small dirty particles
from the oil. An oil filter consists of a filter box with inlet for dirty oil and outlet
for cleaned oil (see Fig. 1). The inlet and outlet are separated by a filtering
porous medium. The optimal shape design for filter boxes, achieving optimal
pressure drop – flow rate ratio, etc., require detailed knowledge about the flow
field through the filters. The numerical algorithm, developed here, provides an
efficient way to obtain accurate information about the velocity and pressure
distributions by 3D computer simulation of the fully coupled flow in fluid and
porous media regions inside the filter box. The local refinement, implemented in
the algorithm, ensures detailed resolution of flow peculiarities.

The paper is organized as follows. Section 2 concerns the mathematical model.
The discretization of the governing equations is presented in the third section
and the last section contains results from numerical experiments.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 590–598, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. A schematic drawing of a vertical cross-section of the filter

2 Mathematical Model

Laminar incompressible isothermal Navier-Stokes equations (see, e.g. [1]) are
used to model the flow in the pure liquid zones Ωf

−μ � u + (ρu, ∇)u + ∇p = fNS ,

∇ · u = 0 ,

where �u = (�u1, . . . � uN)T , (u, ∇)u = ((u, ∇u1), . . . (u, ∇uN ))T , u =
(u1, . . . , uN)T , (N = 2, 3) is the velocity vector, p – the pressure, μ – the vis-
cosity and ρ – the density. The oil filters are designed to be used for various
temperatures and flow rates and although Stokes equations may be used to
model the flow for low temperatures (i.e., for high viscosities) and slow flows,
Navier-Stokes equations describe more adequately the flow in the liquid zones.

Brinkman extension to Darcy model [2,3] is used to model the flow through
the filtering (porous) medium (Ωp)

−∇ · (μeff∇u) + μK−1u = fB − ∇p ,

∇ · u = 0 .

Here K is the permeability tensor, μeff is some effective viscosity. The Darcy
model needs to be extended by Brinkman term in order to describe more ad-
equately the flow in the case of high porosity. Usually, the porosity of filtering
media is more than 90%. As it can be seen, Brinkman model is a Stokes type PDE
system. Viscous terms, appearing in the momentum equations, allow for proper
setting of some kinds of boundary conditions (for example, no-slip conditions on
solid walls).

Interface conditions between plain and porous media are subject of exten-
sive research carried out by physicists, engineers and mathematicians. Here we
use continuous velocity – continuous stress tensor interface conditions (see, for
example [4] and references therein)

u|Sp − u|Sf
= 0, n · (μeff∇u − pI) |Sp − n · (μ∇u − pI) |Sf

= 0 ,

where I is the identity matrix, Sp and Sf means the same interface S seen from
porous and fluid parts, respectively.
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In our numerical algorithm we use a unique system of equations in the whole
domain. The coefficients of the equations vary so that our reformulated problem
reduces to the time-dependent Navier-Stokes equations in the liquid zones, and to
Brinkman-like model in the porous media. For more details about this approach
see, for example, [4,5]. Thus, the Navier-Stokes-Brinkman-type system in the
whole domain is

ρ
∂u
∂t

− ∇ ·
(
μ̃∇u

)
+ (ρu, ∇)u︸ ︷︷ ︸

Navier-Stokes

+

Darcy law︷ ︸︸ ︷
μK̃−1u + ∇p = f̃︸ ︷︷ ︸ ,

∇ · u = 0 ,

where

μ̃ =
{

μ in Ωf ,
μeff in Ωp,

f̃ =
{

fNS in Ωf ,
fB in Ωp,

K̃−1 =
{

0 in Ωf ,
K−1 in Ωp.

Note, we seek a steady state solution of the above system.

3 Numerical Algorithm

3.1 Discretization on a Single (Not Locally Refined) Grid

The governing equations are discretized by the Finite Volume Method (FVM)
on a cell-centered nonuniform Cartesian grid (3D or 2D). We suppose that each
computational volume is completely filled with only one substance – fluid or
porous medium. Our single grid algorithm is close to the algorithm, developed
in [5], where FVM on a staggered nonuniform Cartesian grid is used. But here
we considere collocated arrangements of all the velocity components and the
pressure on a cell-centered grid. The main steps in the single grid algorithm are
as follows.

Discretization of the momentum equations. Let us integrate the i-th mo-
mentum equation (i = 1, 2, . . . , N) over the computational volume V

−
∫

∂V

(μ̃∇ui − ρui u − pei) · n +
∫

V

(ρ
∂ui

∂t
+ μkiu − f i) = 0 ,

where ei is the i-th unit vector in IRN , ki is the i-th row of K−1. Then we may
obtain the discretized equation for ui in V , using

– Harmonic averaging of μ̃ on the fluid-porous walls;
– Linearization of the momentum equation via Picard method, i.e., the coeffi-

cients in the convective terms are taken from the previous iteration;
– Central difference, first order upwind or deferred correction scheme (see, for

example, [6]) for the convective terms;
– p is taken from the previous iteration;
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– ∂ui

∂t is discretized using backward differences;
– The diagonal part of the permeability tensor is treated implicitly, while the

off-diagonal terms are taken from the previous iteration and added to the
right-hand side.

The boundary conditions are specified and discretized in the classical way.
Then we solve the corresponding systems of linear equations using ILU pre-
conditioned BiCGStab method and obtain the new pseudo-velocities u∗i, i =
1, 2, . . . , N). In order to obtain a new value for the pressure, as well as to correct
the pseudo-velocities, we use

Decoupling via a Projection Method. The projection method used here
can be derived as a fractional time step discretization, or equivalently, as an
iterative method for decoupling the momentum and continuity equations. In the
first case it is known as Chorin projection method (see, e.g., [1,7]), in the second
case it is known as SIMPLE-C (see, e.g., [1,6]). The algorithm consists from a
prediction step, where a prediction to the velocity (u∗) is computed using the
momentum equations, and from a correction step, where a pressure correction
equation is solved in order to correct the pressure and the predicted velocity.
The fractional time step discretization on a staggered grid (as well as SIMPLE-
C algorithm, see [1,6,7]) leads to a special connection between the velocity and
pressure corrections (u′, p′) at each time step (at each iteration). For example,
at the east wall of V (i.e., the right wall of V in the x1 direction) we consider

u′1
e = (p′ − p′E)/c1

e , (1)

where u′1
e is the desired correction for u∗1 on the east wall of V , p′ and p′E are the

desired corrections for p in the centers of V and its east neighbor VE , respectively,
c1
e > 0 is a coefficient, depending on the coefficients in the discretization of the

first momentum equation (for more details see, e.g. [1,7,6]). The same relation
is used on collocated grids, subject to an additional interpolation procedure (see
the above references). A specifics in our case is that we deal with discontinuous
coefficients and therefore we use harmonic averaging.

In order to obtain the steady-state solution we perform time steps until the
time derivative of u becomes less than a given tolerance and the original dis-
cretization (for u) of the continuity equation is satisfied with the same tolerance.

3.2 Local Refinement Algorithm

The initial computations in the algorithm are performed on a single coarse grid,
but we also include in the grid some non-computational solid volumes, which are
close to the solid boundaries and may become filled with fluid or porous medium
during the local refinement process.

After obtaining an initial guess, the grid is refined in regions, where more
accurate solution has to be sought. Usually the porous media is not well rep-
resented on the coarsest grid, thus the porous region and several cells around
it are usually refined. Additional refinement may be performed near the inlet



594 O. Iliev and D. Vasileva

and the outlet, near the walls of the filter box, and in regions prescribed by the
user. In this way a composite grid is obtained, with fine and coarse parts. The
discretization has to be performed on the composite grid, as the solution in the
refined part strongly influences the solution in the coarse part. Several stages
of refinement may be performed, i.e., after obtaining the new solution on the
composite grid, some regions may be chosen for further refinement. An initial
guess in the new refined volumes is obtained using linear interpolation from the
coarser grid.

Let us consider an interface wall between the coarse and the fine grid in the
two-dimensional case. Let, for example, this wall be the east wall of the coarse
volume V , and west wall for the fine grid volumes V1 and V2 (see Fig. 2). The
fine grid volumes V1 and V2 are irregular, i.e., they have interface walls with the
remaining coarser part of the grid. Then the missing neighbors on the fine grid are
added as auxiliary volumes (as V1,W and V2,W in Fig. 2) and the discretization in
V1 and V2 is performed in the usual way. The discretization on the coarser part of
the grid may be performed in a similar way, defining the fathers of the irregular
refined volumes as auxiliary ones for the coarse grid part (as VE in Fig. 2). As
the auxiliary volumes produce additional unknowns in the corresponding linear
systems for the momentums and the pressure-correction, additional equations
are added in the systems. They represent the connections between the values of
u or p in the coarse volumes and their children volumes. It is supposed that the
value of u or p in a coarse grid auxiliary volume may be obtained as a mean
value of the same variable values in the children’s volumes

ui(VE) = (ui(V1) + ui(V2) + ui(V1,E) + ui(V2,E))/4, i = 1, 2,

p(VE) = (p(V1) + p(V2) + p(V1,E) + p(V2,E))/4,

where V1,E and V2,E are the east neighbors of V1 and V2. The value in a fine
grid auxiliary volume may be obtained by linear interpolation from the coarse
grid (including the auxiliary volumes)

ui(V1,W ) = (9ui(V ) + 3ui(VE) + 3ui(VS) + ui(VES))/16, i = 1, 2,

p(V1,W ) = (9p(V ) + 3p(VE) + 3p(VS) + p(VES))/16,

where VS and VES are the south neighbors of V and VE , respectively. Near the
boundaries the geometric factors in the interpolation are changed in accordance
with the corresponding distances. Note, we discretize on all grids simultaneously,
and the auxiliary volumes are used only in order to simplify the discretization
formulas near the coarse-fine interface. They also allow non-neighboring levels of
refinement to be treated in the standard way. But a disadvantage of this approach
is that we loose the mass (and momentum) conservation on the fine/coarse grid
interface. Further we will call this type of discretization non-conservative.

An approach to achieve a mass conservative discretization for the Navier-
Stokes equations on locally refined grids is proposed for example in [8]. Here we
follow a similar, but a bit simpler strategy.
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�
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�
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Fig. 2. An example of a coarse-fine interface, the centers of the auxiliary volumes are
marked with ”•”

In order to ensure mass conservation on the interface between V and V1 ∪V2,
the following relation should be satisfied

u∗1
e (V ) + u′1

e(V ) = 0.5
(
u∗1

w (V1) + u′1
w(V1) + u∗1

w (V2) + u′1
w(V2)

)
.

Having in mind (1), we obtain a relation between p′(V ) and p′(VE)

p′(V ) − p′(VE) = C1 (p′(V1,W ) − p′(V1)) + C2 (p′(V2,W ) − p′(V2)) + RHS ,

where C1 > 0, C2 > 0 and RHS are known. That is why here the discretization
should be modified - instead of using the unknowns p′(V ) and p′(VE), we have
to use p′(V1), p′(V2), p′(V1,W ), and p′(V2,W ). But if linear interpolation is used
for p′(V1,W ) and p′(V2,W ), the resulting matrix of the linear system will not
be positive definite. In [8] some off-diagonal terms are taken from the previous
iteration and moved to the right-hand side, but this turned to be not efficient
for our problem, as here pressure corrections may be very high and fast varying.
That is why we preferred to use constant interpolation for p′(V1,W ) and p′(V2,W ),
i.e., we suppose that

p′(V1,W ) = p′(V2,W ) = p′(V )

and thus increase the coefficient before p′(V ), instead of including p′(V1,W ) and
p′(V2,W ) in the linear system equation for p′(V ). This approach has poor approx-
imation properties, but the pressure-correction equation is used only to predict
new corrections, and the stopping criteria are based on the original discretiza-
tion. Let us also note, that a similar constant interpolation is considered in [9]
for elliptic problems and O(h1/2) rate of convergence is proved in energy norm.
The scheme there is based on auxiliary points like A1 and A2 (see Fig. 2) instead
of the centers of V1,W and V2,W . We also tested this choice of auxiliary points
and the numerical results were very similar. More accurate nonsymmetric and
symmetric approximations are also proposed and studied in [9], but we have not
implemented them yet.

4 Numerical Results

In this paper we present only 2D experiments, which test the performance of the
local refinement algorithm. Results from 3D experiments with real filters and a
comparison with experimental data may be found in [10].
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Our test example uses initial data (density, viscosity, permeability, inflow rate,
etc.), close to these of a real oil filter. First we will consider the globally refined
solution in the filter geometry, shown in Fig. 1. We started with a very coarse
grid, where the porous media has very bad representation. After solving (with
tolerance 0.001) the problem on the coarsest grid, we refine it globally, solve
on the refined grid and repeat this procedure 4 times, i.e., we perform a mesh-
sequencing (MS) algorithm on 5 grids. Some results are shown in Table 1, where:
stage denotes the corresponding stage in the MS algorithm, i.e., the number of
the grid, with 0 for the coarsest grid; PI denotes the mean pressure, numeri-
cally obtained on the inlet (PO = 0 is prescribed on the outlet); QI is the flow
rate on the inlet and QO is the flow rate on the outlet; CVs is the number of
computational volumes (including the auxiliary ones); LinIt is the number of
linear iterations, performed in order to solve all linear systems, obtained after
the discretization. Thus, the amount of computational work performed on each
stage may be estimated by the multiplication of CVs×LinIt. As seen, QI = QO,
i.e., the MS algorithm is fully mass conservative. The mean inlet pressure on the
coarsest grid differs essentially from these, obtained on finer grids, as the porous
media is very bad represented on this grid.

Table 1. MS solution

stage PI QI QO CVs LinIt

0 8.13e+0 2.67e+4 2.67e+4 184 1532
1 2.47e+3 2.67e+4 2.67e+4 734 2576
2 3.21e+3 2.67e+4 2.67e+4 2919 4117
3 3.58e+3 2.67e+4 2.67e+4 11669 8369
4 3.78e+3 2.67e+4 2.67e+4 46583 12922

The pressure distribution on the finest grid is presented in Fig. 3. As seen, the
pressure changes significantly in the porous media region.

The next experiment uses the local refinement (LR) solver, starting on the same
coarsest grid and refining on each further stage only the porous media and 2 CVs
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Fig. 3. Global refinement, the pressure distribution on the last stage
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Table 2. LR solution, non-conservative discretization

stage PI QI QO CVs LinIt

1 2.49e+3 2.67e+4 2.67e+4 682 1874
2 3.21e+3 2.67e+4 2.68e+4 1837 2014
3 3.54e+3 2.67e+4 2.66e+4 5114 1966
4 3.72e+3 2.67e+4 2.66e+4 14057 2509

around it. First, the non-conservative discretization is applied on the fine/coarse
interface and the corresponding results are shown in Table 2. As seen, the values
of PI and QO are almost the same, as for the MS algorithm, but the amount of the
computational work is much less. Note, not only the number of CVs, but also the
number of linear iterations is much less (especially on the fine grids). A possible
explanation of the last observation is that the corresponding linear systems have
less unknowns as well as that some peculiarities outside the refined region are not
resolved in details on the remaining coarse part of the grid. But we also have to
note, that if the stopping criterion is much stronger, i.e., much more SIMPLEC
iterations are performed, the mass conservation is not so good and PI continues
to change, i.e., each additional iteration slightly ”spoils” the solution.

The pressure distribution, obtained on the last composite grid, is presented
in Fig. 4. As seen, the filter geometry is represented very roughly.

500

1000

1500

2000

2500

3000

3500

Fig. 4. Local refinement near the porous media, the pressure distribution on the last
stage

Further we apply the mass conservative discretization on the coarse-fine grid
interface. The corresponding results are shown in Table 3. As seen, PI is the
same, as for the MS algorithm, QI − QO = 0, i.e., the mass is really conserved.
The amount of computational work is much less, than for MS, but significantly
more, compared with the non-conservative discretization.

At the end, we performed local refinement not only in and around the porous
media, but also near the walls (2 CVs), the inlet and the outlet (fixed regions).
The flow characteristics PI and QO are almost the same, as for the previous local
refinement cases. The non-conservative discretization provides faster convergence
than the conservative one, and both are much faster than MS.
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Table 3. LR solution, conservative discretization

stage PI QI QO CVs LinIt

1 2.47e+3 2.67e+4 2.67e+4 682 2171
2 3.21e+3 2.67e+4 2.67e+4 1837 3780
3 3.58e+3 2.67e+4 2.67e+4 5114 6176
4 3.78e+3 2.67e+4 2.67e+4 14057 8628

5 Conclusions

The numerical experiments, presented here and in [10], show that the solver
could be successfully used for simulation of coupled flow in plain and porous
media. The local refinement ensures significant acceleration of the computations
and saving of memory, preserving the accuracy of the globally refined solution. It
seems that for practical purposes the non-conservative approach provides faster
and reliable way to obtain the locally refined solution, compared with the con-
servative approach. But one has to keep in mind that the mass conservation
must be controlled, i.e., the non-conservative approach is reliable till the mass
is really conserved.
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Abstract. We analyze the solution of the system of coupled algebraic
Riccati equations of the optimal control problem of jump linear system.
We prove that the Lyapunov iterations converge to a positive semidefinite
stabilizing solution under mild conditions.

1 Solution the Coupled Riccati Equations

We consider the solution of the coupled algebraic Riccati equations of the optimal
control problem for jump linear systems. This investigation can be considered
as an extension of the iterative methods and its properties studied in [1,2,3]
Many authors have investigated this problem and they have analyzed different
methods for its iterative solution. Val, Geromel and Costa [5] have considered
a special model which leads to finding of a positive semidefinite solution of the
following coupled algebraic Riccati equations:

A�
k Xk + Xk Ak + C�

k Ck +
N∑

j=1

λkj Xj

− (C�
k Dk + XkBk) (D�

k Dk)−1 (D�
k Ck + B�

k Xk) = 0 , k = 1, . . . , N,

(1)

where Rk = D�
k Dk (k = 1, . . . , N) are positive definite matrices, the numbers

λij are nonnegative for i �= j, and λii = −
∑

j �=i λij .
The system (1) can be re-written in the following equivalent form:

Ā�
k Xk + Xk Āk +

N∑
j=1

λkj Xj + C̄�
k C̄k

− XkBk (D�
k Dk)−1 B�

k Xk = 0 , k = 1, . . . , N,

(2)

with Āk = Ak − Bk(D�
k Dk)−1D�

k Ck and C̄k = (I − Dk(D�
k Dk)−1D�

k )Ck for
k = 1, . . . , N .
� This work was partially supported by the Sofia University under the research project

12/2006.
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For any Hermitian matrices X, Y , we write X > Y or X ≥ Y if X − Y is
positive definite or X − Y is positive semidefinite. A matrix A is said to be
c-stable if all eigenvalues of A lie in the open left half plane and A is said to be
almost c-stable if all eigenvalues of A lie in the closed left half plane.

Very important for applications is to find a positive semidefinite solution
X = (X1, . . . , XN) of (2) with the property that Āk − Bk (DT

k Dk)−1 BT
k Xk is a

c-stable matrix. Such solution X is called a stabilizing one. Some assumptions
are known (e.g., [1, Assumption 1] in order to exists a unique positive semidefi-
nite stabilizing solution of (2). Here we are interested in a positive semidefinite
stabilizing solution of (1). We shall show that a positive semidefinite stabilizing
solution of (1) can be found with the same iterative methods under some mild
initial conditions.

We denote the matrices X = (X1, . . . , XN ) and Xk‖Y = (X1, . . . , Xk−1, Y,
Xk+1, . . . , XN ). Let us define the functions

Rk(X) =Â�
k Xk + XkÂk + C�

k Ck + Ek(X)

− (C�
k Dk + XkBk) (D�

k Dk)−1 (D�
k Ck + B�

k Xk) ,
(3)

where Âk = Ak + 0.5λkk and Ek(X) =
N∑

j=1,j �=k

λkj Xj . The system (1) is equiva-

lent to the system of Riccati equations Rk(X) = 0 for k = 1, . . . , N . We consider
two iterative methods for solving the last system. The methods are well known
in the literature. The monotonicity and boundedness of the matrix sequences
defined by the corresponding iterations have been proved in [5]. However, these
properties are proved assuming mean square stabilizable properties for the ma-
trix coefficient in (1) (see [5, Proposition 2.2]). These assumptions guarantee
the existence and uniqueness of a positive semidefinite mean square stabilizing
solution of [5].

We begin with several properties of Rk(X). We use the notation Ek(X) =

Ek1(X) + Ek2(X) with Ek1(X) =
k−1∑
j=1

λkj Xj and Ek2(X) =
N∑

j=k+1

λkj Xj . In our

analysis we also need some well known properties of the solution of the standard
Lyapunov equation (see ([4]).

We define matrices Fk = −R−1
k (B�

k Xk + D�
k Ck) , Ãk = Âk + BkFk and C̃k =

Ck + DkFk. If we take any symmetric matrix Z instead of Xk in Fk, then we
shall write FZ , ÃZ and C̃Z .

We quote without proof the following lemma.

Lemma 1. Let Y and Z be symmetric matrices. The functions Rk(X) (k =
1, . . . , N) satisfy the following properties:

Rk(X) = (Ãk)� Xk + Xk (Ãk) + Ek(X) + (C̃k)� (C̃k), (4)

Rk(Xk‖Y ) = (ÃZ)� Y + Y (ÃZ) + Ek(X) + (C̃Z)� (C̃Z) (5)

−(FZ − FY )� Rk (FZ − FY ),
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Rk(Xk‖Y ) − Rk(Xk‖Z) = (ÃZ)� (Y − Z) + (Y − Z) (ÃZ)� (6)

−(FZ − FY )� Rk (FZ − FY ).

Using expression (4) and notations F
(i−1)
k = −R−1

k

(
B�

k X
(i−1)
k + D�

k Ck

)
,

Ã
(i−1)
k = Âk + BkF

(i−1)
k and C̃

(i−1)
k = Ck + DkF

(i−1)
k , we derive a recurrence

equation whose solution is the unknown matrix X
(i)
k :

(
Ã

(i−1)
k

)�
X

(i)
k + X

(i)
k Ã

(i−1)
k + Ek(X(i−1)) + (C̃(i−1)

k )� C̃
(i−1)
k = 0 , (7)

for k = 1, . . . , N , and the initial matrices X
(0)
k are properly chosen. We call this

iteration the Lyapunov method. A natural generalization of the last iteration is
the following

(
Ã

(i−1)
k

)�
X

(i)
k + X

(i)
k

(
Ã

(i−1)
k

)
+ Ek1(X(i)) + Ek2(X(i−1))

+
(
C̃

(i−1)
k

)�
C̃

(i−1)
k = 0 for k = 1, . . . , N .

(8)

We call the last iterative formula the accelerated Lyapunov method. These two
iterations we use for numerical solution of the coupled algebraic Riccati equations
(1). We show that the positive semidefinite stabilizing solution of (1) can be
found by iterations (7) and (8) under some mild assumptions. We also compare
the rate of convergence numerically.

2 The Main Theorem

We prove several properties of a sequence of Lyapunov algebraic equations (8)
whose solutions form monotone decreasing matrix sequences bounded from be-
low. The limits of these sequences provide a stabilizing solution to the coupled
Riccati equations (1). The main result of this paper is the following theorem.

Theorem 1. Assume that there are symmetric matrices X̂ = (X̂1, . . . , X̂N) and
X(0) = (X(0)

1 , . . . , X
(0)
N ) such that Rk (X̂) ≥ 0; X(0) ≥ X̂; Rk (X(0)) ≤ 0 and

Ã
(0)
k is c-stable for k = 1, . . . , N . Then for the matrix sequences {X

(i)
1 }∞i=1, . . .,

{X
(i)
N }∞i=1 defined by (8), the following properties hold:

(i) We have X(i) ≥ X(i+1) , X(i) ≥ X̂ and Rk(X(i)) ≤ Ek1(X(i) − X(i+1)),
where i = 0, 1, 2, . . .;

(ii) Âk + BkF
(i)
k is c-stable for k = 1, . . . , N and i = 0, 1, 2, . . .;

(iii) The sequences {X
(i)
1 }, . . . , {X

(i)
N } converge to the solution X̃ of the equa-

tions Rk(X) = 0, and X̃ ≥ X̂. The matrices Âk +BkF̃k (k = 1, . . . , N) are
almost c-stable, where F̃k = −R−1

k (B�
k X̃k + D�

k Ck).

Proof. Let i = 0. According to the theorem conditions, we have X(0) ≥ X̂, Ã
(0)
k

is c-stable and Rk(X(0)) ≤ 0 for k = 1, . . . , N . We shall prove the inequality
X(0) ≥ X(1). From iteration (8) for i = 1 we get a matrix Lyapunov equation
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with the c-stable matrix coefficient Ã
(0)
k for each k. Thus, X

(1)
k is the unique

solution of this equation.
It is easy to derive the equations

(
Ã

(0)
k

)� (
X

(1)
k − X

(0)
k

)
+
(
X

(1)
k − X

(0)
k

) (
Ã

(0)
k

)
= −Rk(X(0)) − Ek1

(
X(1) − X(0)

) (9)

for k = 1, 2, . . . , N . In the last equation for k = 1 the right-hand side −R1(X(0))
is positive semidefinite and its solution X

(1)
1 − X

(0)
1 is negative semidefinite,

which means X
(0)
1 ≥ X

(1)
1 . In a similar way, for k = 2, . . . , N , the right-hand

side of (9) is positive semidefinite and the matrix Ã
(0)
2 = Â2 +B2F

(0)
2 is c-stable.

Thus X
(0)
k ≥ X

(1)
k for all values of k.

Now, assume that there exists a natural number i = r − 1 and the matrix
sequences {X

(i)
1 }r

0, . . . , {X
(i)
N }r

0 are computed and properties (i) and (ii) are ful-
filled, i.e., for k = 1, . . . , N and s = 0, . . . , r − 1 we have X

(s)
k ≥ X

(s+1)
k , X

(s)
k ≥

X̂k, Rk(X(s)) ≤ Ek1(X(s) −X(s+1)) and Ã
(s)
k are c-stable. We shall show that for

k = 1, . . . , N the following statements are fulfilled: X
(s+1)
k ≥ X̂k, Âk + BkF

(s+1)
k

are c-stable; we shall show how to compute each X
(s+2)
k , and that the in-

equalities X
(s+1)
k ≥ X

(s+2)
k hold true. Finally, we shall prove the inequalities

Rk(X(s+1)) ≤ Ek1(X(s+1) − X(s+2)).
We start with the proof of inequalities X

(s+1)
k ≥ X̂k (k = 1, . . . , N). Using

formula (3) for Rk (X̂), the representation F̂k = −R−1
k (B�

k X̂k +D�
k Ck), and the

equality

−(C̃(r−1)
k )�C̃

(r−1)
k − F̂�

k Rk F̂k − (F (r−1)
k )T B�

k X̂k − X̂k BkF
(r−1)
k

=
(
F

(r−1)
k − F̂k

)�
Rk

(
F

(r−1)
k − F̂k

)
− C�

k Ck,

we find that the matrix X
(r)
k −X̂k is a solution of the following Lyapunov equation

(
Ã

(r−1)
k

)� (
X

(r)
k − X̂k

)
+
(
X

(r)
k − X̂k

) (
Ã

(r−1)
k

)
= −Rk (X̂) − Ek1(X(r) − X̂) − Ek2(X(r−1) − X̂)

−
(
F

(r−1)
k − F̂k

)�
Rk

(
F

(r−1)
k − F̂k

)
.

(10)

Thus, the right-hand side of (10) is negative semidefinite for k = 1. Hence
X

(r)
1 − X̂1 ≥ 0. For the remaining values of k the right-hand side of (10) is

negative semidefinite, too. Hence, X
(r)
k − X̂k ≥ 0 for k = 3, . . . , N .

Now we prove that all matrices Ã
(r)
k = Âk + BkF

(r)
k are c-stable. The matrix

X
(r)
k is a solution to (8). In expression (5) we put Y = X

(r)
k and Z = X

(r−1)
k .

For Rk(X̂‖X
(r)
k ) we get

Rk

(
X̂‖X

(r)
k

)
= −Ek1(X(r−1) − X(r))

−(F (r−1)
k − F

(r)
k )� Rk (F (r−1)

k − F
(r)
k ) ≤ 0 .
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On the other hand, we take Y = X̂k and Z = X
(r)
k in (6). Thus

Rk

(
X̂
)

= −(Ã(r)
k )� (X(r)

k − X̂k) − (X(r)
k − X̂k) Ã

(r)
k

Rk

(
X̂‖X

(r)
k

)
− (F (r)

k − F̂k)� Rk (F (r)
k − F̂k) .

Together with the last equality we derive

0 ≤ Rk

(
X̂
)

= −Ek1(X(r−1) − X(r)) − (Ã(r)
k )� (X(r)

k − X̂k)
−(F (r−1)

k − F
(r)
k )� Rk (F (r−1)

k − F
(r)
k )

−(X(r)
k − X̂k) Ã

(r)
k − (F (r)

k − F̂k)� Rk (F (r)
k − F̂k),

whence it follows that

(Ã(r)
k )� (X(r)

k − X̂k) + (X(r)
k − X̂k) Ã

(r)
k ≤ −(F (r−1)

k −F
(r)
k )� Rk (F (r−1)

k −F
(r)
k ).

Let us assume that there is a number k so that Ã
(r)
k = Âk + BkF

(r)
k is not

c-stable. Thus there exists an eigenvalue λ of Âk + BkF
(r)
k with nonnegative

real part, Re(λ) ≥ 0 and a nonzero eigenvector x with (Âk + BkF
(r)
k ) x = λx.

Through the last inequality we get

0 ≤ 2Re(λ)x�(X(r)
k − X̂k

)
x

≤ −x� (F (r−1)
k − F

(r)
k

)�
Rk

(
F

(r−1)
k − F

(r)
k

)
x ≤ 0.

Hence F
(r−1)
k x = F

(r)
k x . Since

(
Âk + BkF

(r−1)
k

)
x =

(
Âk + BkF

(r)
k

)
x = λx,

λ must be an eigenvalue of Âk +BkF
(r−1)
k , which contradicts to the c-stability of

this matrix. Our assumption false, hence Âk+BkF
(r)
k is c-stable for k = 1, . . . , N .

Further, we compute X
(r+1)
k and prove that X

(r)
k ≥ X

(r+1)
k for k = 1, . . .N .

Set i = r + 1 in iteration (8). Since Âk + BkF
(r)
k is c-stable, X

(r+1)
k is the

unique solution to (8) for all k = 1, . . . , N .
Using (8), after some matrix calculations we obtain

(
Ã

(r)
k

)� (
X

(r)
k − X

(r+1)
k

)
+
(
X

(r)
k − X

(r+1)
k

)
Ã

(r)
k

=
(
Ã

(r)
k

)�
X

(r)
k + X

(r)
k Ã

(r)
k −

(
Ã

(r)
k

)�
X

(r+1)
k − X

(r+1)
k Ã

(r)
k

(8)
=
(
Ã

(r)
k ± BkF

(r−1)
k

)�
X

(r)
k + X

(r)
k

(
Ã

(r)
k ± BkF

(r−1)
k

)
+ Ek1 (X(r+1)) + Ek2 (X(r)) +

(
C̃

(r)
k

)� (
C̃

(r)
k

)
= −Ek1 (X(r) − X(r+1)) − Ek2 (X(r−1) − X(r))

−
(
F

(r−1)
k − F

(r)
k

)�
Rk

(
F

(r−1)
k − F

(r)
k

)
.
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We obtain the following Lyapunov equation for
(
X

(r)
k − X

(r+1)
k

)
:

(
Ã

(r)
k

)� (
X

(r)
k − X

(r+1)
k

)
+
(
X

(r)
k − X

(r+1)
k

)
Ã

(r)
k

= −Ek1 (X(r) − X(r+1)) − Ek2 (X(r−1) − X(r))

−
(
F

(r−1)
k − F

(r)
k

)�
Rk

(
F

(r−1)
k − F

(r)
k

)
.

(11)

Let k = 1. The right-hand side in (11) is a negative semidefinite matrix.
Hence the solution X

(r)
1 − X

(r+1)
1 is a positive semidefinite one. Consider (11)

for k = 2. We know that X
(r)
1 − X

(r+1)
1 ≥ 0. After analogous considerations we

get X
(r)
2 − X

(r+1)
2 ≥ 0. In a similar way it is proved that X

(r)
k − X

(r+1)
k ≥ 0 for

k = 3, . . . , N .
We continue with the proof of the inequalities Rk(X(r)) ≤ Ek1 (X(r) −X(r+1))

for k = 1, . . . , N .
Combining Rk(X(r)) expressed by (4) with iteration (8), we derive

(
Ã

(r)
k

)� (
X

(r)
k − X

(r+1)
k

)
+
(
X

(r)
k − X

(r+1)
k

)
Ã

(r)
k

= Rk

(
X(r)

)
+ Ek1 (X(r+1) − X(r)).

(12)

For k = 1 the right-hand side in (12) is R1

(
X(r)

)
, and since Âk + BkF

(r)
k is

c-stable and X
(r)
1 − X

(r+1)
1 ≥ 0, we have R1

(
X(r)

)
≤ 0. Analogously, for k = 2

the right-hand side in (12) is R2

(
X(r)

)
+ E21 (X(r+1) − X(r)). It is a negative

semidefinite matrix, which means that

R2

(
X(r)

)
≤ E21

(
X(r) − X(r+1)

)
.

In a similar way we prove the inequalities

Rk

(
X(r)

)
≤ Ek1

(
X(r) − X(r+1)

)
, k = 3, . . . , N.

The induction process for proving (i) and (ii) is now complete.
The matrix sequences {X

(i)
1 }∞0 , . . . , {X

(i)
N }∞0 converge and the limit matrices

X̃1, . . . , X̃N form a solution to Rk(X) = 0. Moreover, X̃k ≥ X̂k for k = 1, . . . , N .
Since all the matrices Âk + BkF

(i)
k (k = 1, . . . , N , i = 1, 2 . . .) are c-stable, the

corresponding ”limit” matrices Âk + BkF̃k are almost c-stable. �
In a similar way analogous properties for the matrix sequence defined by (7) can
be proved.

Corollary 1. Under the assumptions of Theorem 1, the matrix sequence defined
by (7) possesses the same properties (ii) and (iii), while the property (i) becomes

(i) X(i) ≥ X(i+1), X(i) ≥ X̂ and Rk(X(i)) ≤ 0 for i = 0, 1, 2, . . .

3 Numerical Experiments

We carried out experiments for numerical solving of a special kind of system of
stochastic Riccati equations (1) with the introduced iterations: the Lyapunov it-
eration (7) and the accelerated Lyapunov iteration (8), for different initial points.
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Solutions of iterations (7) and (8) can be found in terms of the solutions of
N algebraic Lyapunov equations at each step. For this purpose the MATLAB
procedure lyap is applied and the flops are N 27

2 n3 per one iteration.
Our experiments are executed in MATLAB on a 900GHz PENTIUM compu-

ter. We denote: tol- a small positive real number denoting the accuracy of com-
putation; Errors = maxk=1,...,N

∥∥∥Rk (X(s)
1 , . . . , X

(s)
N )
∥∥∥; It- number of iterations

for which the inequality ErrorIt ≤ tol holds. The last inequality is used as a
practical stopping criterion. The next example is introduced in [5].

Example 1. The coefficient matrices are

A1 =

⎡
⎣−2.5 0.3 0.8

1 −3 0.2
0 0.5 −2

⎤
⎦ , A2 =

⎡
⎣−2.5 1.2 0.3

−0.5 5 −1
0.25 1.2 5

⎤
⎦ , A3 =

⎡
⎣ 2 1.5 −0.4

2.2 3 0.7
1.1 0.9 −2

⎤
⎦ ,

B1 = diag[0.707; 1; 1];
B2 = diag[0.707; 1; 0.707];
B3 = diag[0.707; 1; 1] ,

C1 =
[

diag(5 ; 1 ; 3.31)
03

]
,

C2 =
[
diag(6.08 ; 8.36 ; 5.83)

03

]
, C3 =

[
diag(3.16 ; 4 ; 4.58)

03

]
,

Π =

⎡
⎣−3 0.5 2.5

1 −2 1
0.7 0.3 −1

⎤
⎦ , and Di =

[
O3

I3

]
, i = 1, 2, 3,

where O3 denotes the zero 3 × 3 matrix and I3 is the unit 3 × 3 matrix. With
tol := 10−12 we have tested iterations (7) and (8) with initial matrices X

(0)
1 =

2I3, X
(0)
2 = 4I3, X

(0)
3 = 7I3 for solving (1). Lyapunov’s method requires 17

iterations and achieves the accuracy Error17 = 5.4162 × 10−13 for computing a
positive semidefinite stabilizing solution. Accelerated Lyapunov’s method needs
13 iterations and Error13 = 5.4254 × 10−13. We carried out 100 runs with
iterations (7) and (8). The time for executing of these iterations are 10.85 and
8.68 seconds, respectively.

Example 2. Let N = 6. For k = 1, 2, 3 the coefficient matrices from the previous
example are used. The remaining coefficient matrices are defined as follows:

A4 =

⎛
⎝ 2.7 0.03 1.8

0.54 3 0.93
0.39 0.89 2.3

⎞
⎠ , A5 =

⎛
⎝−0.69 −1.3 −1.4

−1 −0.67 −0.76
−0.4 −0.04 −0.66

⎞
⎠ , A6 =

⎛
⎝ 2 0.91 2.0

2.1 1.1 0.9
1.3 0.58 2.1

⎞
⎠ ,

B4 = diag(0.151 ; 0.854 ; 0.822) ,
B5 = diag(0.645 ; 0.289 ; 0.309) ,
B6 = diag(0.838 ; 0.546 ; 0.795) ,

C4 =
(

diag(0.988 ; 0.334 ; 0.76)
03

)

C5 =
(

diag(0.530 ; 0.783 ; 0.794)
03

)
, C6 =

(
diag(0.059 ; 0.305 ; 0.971)

03

)
,
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Π =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 0.5 0.5 0 1 1
1 −2 0 1 0 0

0.1 0.2 −1 0.5 0.1 0.1
0 1 1 −3 0.5 0.5
1 0 0 1 −2 0

0.5 0.1 0.1 0.1 0.2 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, and Di =
(

O3

I3

)
, i = 4, 5, 6 .

For tol := 10−12 we have computed a positive semidefinite stabilizing solution
of (1) by using (7) and (8) with initial matrices X

(0)
1 = 0, X

(0)
2 = 4I, X

(0)
3 =

7I, X
(0)
4 = 56I, X

(0)
5 = 3I, X

(0)
6 = 9I. Lyapunov’s method (7) needs 36 iterations

and achieves the accuracy Error36 = 5.5992 × 10−13. Accelerated Lyapunov’s
method (8) requires 24 iterations to achieve the accuracy Error24 = 8.1640 ×
10−13. We have carried out 100 runs with iterations (7) and (8). The time for
executing of these iterations are 41.24 and 28.79 seconds, respectively.

For iterations (8) and (7) the properties of Theorem 1 and Corollary 1 are
fulfilled. The numerical experiments indicate that the accelerated iteration (8)
is faster than the iteration (7), however we do not have a theoretical proof for
this fact.
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Abstract. We study numerical approximations of weak solutions of hy-
perbolic problems with discontinuous coefficients and nonlinear source
terms in the equation. By a semidiscretization of a Dirichlet problem in
the space variable we obtain a system of ordinary differential equations
(SODEs), which is expected to be an approximation of the original prob-
lem. We show at conditions similar to those for the hyperbolic problem,
that the solution of the SODEs blows up. Under certain assumptions, we
also prove that the numerical blow-up time converges to the real blow-
up time when the mesh size goes to zero. Numerical experiments are
analyzed.

1 Introduction

This paper is concerned with numerical approximations of weak blow-up solu-
tions of the semilinear hyperbolic equation

∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f (u) , in QT = Ω × (0, T ), Ω = (0, 1), (1)

0 < a0 ≤ a (x) ≤ a1, x ∈ Ω. (2)

We consider weak solutions of (1), (2) i.e. we do not require u to possess contin-
uous derivatives but we suppose that u is continuous function. Therefore, if it is
assumed that a(x) has a jump in a point ξ, 0 < ξ < 1, then

[u]x=ξ ≡ u(ξ + 0, t)− u(ξ − 0, t) = 0,

[
a(x)

∂u

∂x

]
x=ξ

= 0. (3)

We investigate two phenomena: blow up of the solutions and convergence rate
of the finite difference and finite element approximations of such solutions, both
depending on the smoothness of the input data, [1,6].

We say that the solution u(x, t) of (1) blows up in a finite time Tb < +∞
if: lim ‖|u(·, t)|‖ = +∞, as t→ Tb−0 with respect to appropriately chosen norm
‖| · |‖. Among numerous works on blow-up for hyperbolic equations, see [5,10]
and references there, we select only the paper [10], where weak solutions are

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 607–614, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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studied. It is shown that the solutions of equation (1) blow-up if the source term
satisfies the growth condition (6) and the initial values

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), x ∈ Ω (4)

are large enough (12).
In the present paper we are interested in numerical approximations of (1)-(5).

The paper is organized as follows. In the next section we present a result for blow-
up in (1)-(5). Then, in Section 3 we give an analysis for convergence and blow-up of
the numerical solution. In the last section the numerical experiments are discussed.
We refer to [1,3,4,8,9,11,2,7] for numerical blow-up results in parabolic problems.

2 Blow Up in the Continuous Problem

Our attention is concentrated on the zero Dirichlet problem for equation (1):

u(0, t) = 0, u(1, t) = 0. (5)

But all the results can be easily extended to the cases of Neumann’s and Robin’s
boundary conditions.

We make the following assumption on the nonlinear source term:
Let F (s) be any indefinite integral of f(s) (F ′(s) = f(s)). There is a number

s1 such that F (s)− 1/2λs2 is non-decreasing on (s1,∞) and, for every ε > 0
∫ ∞

s1

[
F (s)− 1

2
λs2 − (F (s1)− 1

2
λs2

1) + ε

]−1/2

ds <∞. (6)

Here λ > 0 (with corresponding spectral function ψ1(x), which is also positive)
is the first eigenvalue of the spectral problem

d

dx

(
a (x)

dψ

dx

)
+ λψ = 0, x ∈ Ω− ∪Ω+, Ω− = (0, ξ), Ω+ = (ξ, 1), (7)

[ψ]x=ξ = 0,

[
a(x)

dψ

dx

]
x=ξ

= 0, (8)

ψ (0) = ψ (1) = 0,

∫ 1

0

ψ2 (x) dx = 1. (9)

For the initial functions u0, v0 we assume u0 ∈ W 1
2 (0, 1), v0 ∈ L2(0, 1).

We say u ∈ C((0, T ) , W 1
2 (Ω))

⋂
C1((0, T ), L2(Ω)) is a weak solution to

problem (1)-(5) if

1∫
0

φ (x, t) ∂u
∂t (x, t) dx =

1∫
0

φ (x, 0) v0 (x) dx +
t∫
0

1∫
0

∂φ
∂τ (x, τ) ∂u

∂τ (x, τ) dxdτ

−
t∫
0

1∫
0

a (x) ∂φ
∂x

∂u
∂xdxdτ +

t∫
0

1∫
0

φ (x, τ) f (u (x, τ)) dxdτ

(10)

for all φ ∈W 1
2 ((Ω) × (0, T )).
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Also, ψ ∈W 1
2 (Ω) is a weak solution of (7)-(9) if

∫ 1

0

a (x)
dψ

dx

∂v

∂x
dx = λ

∫ 1

0

ψvdx ∀ v ∈W 1
2 (Ω) and

∫ 1

0

ψ2(x)dx = 1. (11)

Theorem 1. (Levine [10]) Let u be a weak solution to problem (1)-(5) and let
f be convex and satisfies (6). If

G0 =
∫ 1

0

ψ (x) u0 (x) dx > s1, G1 =
∫ 1

0

ψ(x)v0(x)dx > 0, (12)

where ψ is a positive solution of (7)-(9) for some real λ, and if 1 ≤ p <∞, then

lim
t→Tb−0

(∫ 1

0

|u (x, t)|p dx

)1/p

= +∞, lim sup
t→Tb−0

(
max

x∈[0,1]
|u (x, t)|

)
= +∞, (13)

hold for some Tb <∞, where

Tb ≤
1
2

√
2

∫ ∞

G0

[
F (s)− 1

2
λs2 − (F (s1)− 1

2
λs2

1) +
1
2
G2

1

]−1/2

ds. (14)

In fact, it is proved in [10] that G (t) =
∫ 1

0 ψ1 (x) u (x, t) dx→∞ as t→ Tb <∞.
Further we will use the estimate

Tb − t ≤ 1
2

√
2
∫ ∞

G(t)

[
F (s)− 1

2
λ2 − (F (s1)− 1

2
λs2

1) +
1
2
G2

1

]−1/2

ds. (15)

3 Analysis for Blow-Up and Convergence of the
Numerical Solution

We solve (1)-(5) or, in weak formulation, (10), by the difference method of lines.
This means that we use semidiscretization in space, and consider time to be
continuous. Given a positive integer N , N ≥ 3, let h = 1

N−1 . Then

Ωh = {xi : xi = ih, i = 1, . . . , N} is an uniform mesh on Ω = [0, 1].

Integrating equation (1) with respect to the time variable and approximating
the space derivative in the usual way by finite differences, we obtain

dUi

dt
(t) = v0 (xi) +

∫ t

0

D+
x

(
ãD−

x Ui(τ)
)
dτ +

∫ t

0

f (Ui(τ)) dτ, xi ∈ Ωh, (16)

Ui(0) = u0(xi), U1(t) = UN (t) = 0,

where, ã(x) = a(x−h/2) or ã(x) = [a(x)+a(x−h)]/2 , D±
x Ui = ±(Ui±1−Ui)/h.

The system (16) is a weak formulation of the following SODEs

d2Ui

dt2
=

ãiUi−1 − (ãi + ãi+1) Ui + ãi+1Ui+1

h2
+ f(Ui), i = 2, ..., N − 1,

U1(t) = UN(t) = 0, Ui(0) = u0(xi),
dUi

dt
(0) = v0(xi), (17)
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which is supposed to hold almost everywhere (a.e.) on [0, T = Tb−τ ], 0 < τ < T .
Further, in the analysis of (16), (respectively (17)) we assume that

a(x), u0(x) ∈ L∞(Ω) ∩W 1
2 (Ω−) ∩W 1

2 (Ω+), (18)

which with ‖f‖L2(QT ) <∞, implies

u ∈ H(QT ) ≡ C((0, T ), W 1
2 (Ω)) ∩ C1((0, T ), L2(Ω)) ∩ C((0, T ), W 2

2 (Ω−))
∩C1((0, T ), W 1

2 (Ω−)) ∩ C((0, T ), W 2
2 (Ω+)) ∩ C1((0, T ), W 1

2 (Ω+)).

Let Vh be the standard piecewise linear finite element space in Ω and {ϕi},
1 ≤ i ≤ N be the usual Lagrange basis of Vh. In view of (10), the scheme (17) is
equivalent to

∫ 1

0

(v(uh)′′)Idx +
∫ 1

0

avxuhxdx =
∫ 1

0

(vf(uh))Idx,

∫ 1

0

(vuh(0))Idx =
∫ 1

0

(vu0)Idx,

∫ 1

0

(v(uh)′)Idx =
∫ 1

0

(vv0)Idx,

a.e. on [0, T1], T1 < Tb, ∀ v ∈ Vh,

where uh is the FEM solution, (·)′ and (·)x denote the time and space derivatives,
while the superindex I denotes linear Lagrange interpolation. Starting from this
formulation we prove the following theorem.

Theorem 2. Let u be the solution of a problem like (1)-(5) with f replaced by a
globally Lipschitz function g and U (t) is its semidiscrete approximation obtained
by semidiscretization of identity (10) (with f replaced by g). If u ∈ H(QT1) for
some T1 > 0 then

‖u− U‖L∞((0,T1), L2(Ωh)) ≤ Ch2,

where C is a constant depending on ‖u‖H(QT1).

As a corollary of this theorem one can prove the convergence result.

Theorem 3. Let u be a regular solution of (1)-(5) (u ∈ H(QTb−τ )) and uh− its
numerical approximation. Then there exists a constant C depending on
‖u‖H(QTb−τ ) such that

‖u− uh‖L∞(Ω×(0,Tb−τ)) ≤ Ch3/2 .

Theorem 4. Let u ∈ H(QT ) and the assumptions of Theorem 1 are fulfilled.
Then, for sufficiently small h, the solution of (16) (the weak solution of (17))
blows up in a finite time Th and

Th ≤
√

2
2

∞∫

G0h

[
F (s)− F (s1) +

λh(s2
1 − s2) + G2

1h

2

]− 1
2

ds,

G0h = h

N−1∑
i=1

ψh (xi) u0 (xi) , G1h = h

N−1∑
i=1

ψh (xi) v0 (xi) ,
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where ψh is a positive eigenfunction (for some real number λh) of the discrete
problem corresponding to (7)-(9).

The discrete analogues of (13) hold :

lim
t→Th−0

‖U(t)‖Lp(Ωh) = +∞, (1 ≤ p <∞), lim
t→Th−0

‖U(t)‖L∞(Ωh) = +∞.

In fact we prove that Gh(t) = h
N−1∑
i=1

ψh(xi)Ui(t)→∞ as t→ Th <∞,

Th − t ≤ 1
2

√
2
∫ ∞

Gh(t)

[
F (s)− 1

2
λ2

h − (F (s1)− 1
2
λhs2

1) +
1
2
G2

1

]−1/2

ds (19)

It follows from (15), (19) that the exact and the approximate solutions blow up
at close times if G (t) and Gh (t) are large enough. Therefore, if G (t) and Gh (t)
are close while u is regular, the solutions will blow up at close times. So, all what
we need so as to find accurately the blow up time is the numerical method to
provide a good approximation to the exact solution up to large enough values
of u.

Theorem 5. Let Tb and Th are the blow up times for problems (1)-(5) and
(16) respectively, f is convex and satisfies (6), a(x) and u0 satisfy (18). Then
Th → Tb when h→ 0.

4 Computational Results

In the test example we take a(x) to be a piecewise constant: a(x) = a− for x < ξ
and a(x) = a+ for x > ξ, f(u) = 2(ᾱ2 − a±(β±)2(nx −m)2)u3 + a±β±nu2, ′−′

for x < ξ and ′+′ for x > ξ, where a±, β±, ᾱ, C±, m, n (m ≤ n- integers) are
positive and

a+β+ = a−β−, Υ := n
2 ξ2 −mξ + 1,

C− + β−Υ = C+ + β+Υ,

{
m ≤ ξn, a− < a+,
ξn ≤ m ≤ n, a+ < a−.

The exact solution is

u(x, t) =
{

(C− − (ᾱt− β−(n
2 x2 −mx + 1)))−1, x ≤ ξ,

(C+ − (ᾱt− β+(n
2 x2 −mx + 1)))−1, x ≥ ξ.

It is easy to check that this is a weak solution of problem (1)-(5) in the sense
of (10). Now, the initial and boundary conditions can be calculated. The point
(x, t), x ∈ [0, 1], t > 0 is called a blow-up point of the solution of problem (1)-(5),
if there exists a sequence (xn, tn), xn ∈ (0, 1), tn > 0 such that u(xn, tn)→ ∞,
when xn → x, tn → t, tn < t as n→∞. In this sense, the blow-up point of the
exact solution is (m

n , Tb),

Tb(xi=
m
n ) =

1
ᾱ

{
C− + β− 2n−m2

2n , a− < a+,

C+ + β+ 2n−m2

2n , a+ < a−.
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The numerical solution is computed, using full discretization. For control of
the time (tn) and space mesh step size we use CFL condition and the energy
conservation law

E(t) =
∫ 1

0

[
1
2

(
∂u

∂t

)2

+
a(x)

2

(
∂u

∂x

)2

− F (u)

]
dx, F (u) =

∫ u

0

f(s)ds.

In the Examples 1,2 we take: a− = 1, a+ = 100, β− = 100, β+ = 1, ξ =
0.5, C− = 2, ᾱ = 100.

Example 1. (ξ �= m
n ) In this example we take m = 1, n = 4. Thus Tb = 0.895.

The solution is computed on nonuniform mesh in time and uniform mesh in
space variable. In Table 1, at time T and mesh with N nodes in space, we
present: the absolute error AEN (far away from Tb) and the relative error REN

(for time close to Tb) in max norm; the convergence rates CRA = log2
AEN

AE2N
and

CRR = log2
REN

RE2N
; the error in ξ. The max error is accumulated at or near to the

blow-up point. Computations of the solution of problem (1)-(5) with different
input data show that the blow-up set is in the subintervals (0, ξ) or (ξ, 1), where
the value of a(x) is smaller. Therefore, as in the general case we don’t know
the exact blow-up set, it is reasonable to refine the mesh (not only in time, but
also in space) in the whole region, where the solution could blow-up. In our test
example, having in mind that m

n ∈ (0, ξ), we use a fine mesh (hf = ξ
Nf−1 ) on the

left of ξ and a coarse mesh (hc = 1−ξ
Nc−1 ) on the right. The results (in max norm)

are shown in Table 2. When using a fine-coarse mesh the accuracy increases, but
the convergence rate and the error in ξ become slightly worse. We may start to
refine the mesh (in space) after some time (for example t=0.85 in our case) or
when the solution reaches some value. The results are similar to those in Table
2, but the computational costs are smaller.

On Figure 1a we show the graphs of the numerical solution for two different time
levels.

Example 2. (ξ ≡ m
n ) Now m = 1, n = 2 and Tb = 0.77. First we compute the

solution using uniform mesh in space and nonuniform in time. The results are
shown in Table 3 (analogue of Table 1). The computations show that the max
error is near to the point ξ = m

n , in the interval (0, ξ) when t is far from Tb

Table 1. Absolute error, relative error, convergence rate, error in ξ

T=0.85 T=0.89456
N AEN CRA Error in ξ REN CRR Error in ξ

81 6.630663e-4 5.488736e-7

161 1.546649e-4 2.1000 5.418928e-7 2.335503e-1 8.821944e-7

321 3.489349e-5 2.1481 4.683305e-7 4.792738e-2 2.2848 6.314458e-7

641 7.546011e-6 2.2092 2.832547e-7 1.093085e-2 2.1324 4.045037e-7

1281 1.692541e-6 2.1565 1.536091e-7 2.515741e-3 2.1194 2.542696e-7

2561 3.898101e-7 2.1183 7.988330e-8 5.861511e-4 2.1016 1.401393e0-7
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Table 2. Absolute error or relative error for different meshes

Total nodes 161 161 161 161 121 101 91
in [0, 1]

mesh hf = 1
160

hf = 1
200

hf = 1
240

hf = 1
280

hf = 1
160

hf = 1
160

hf = 1
160

T sizes hc = 1
160

hc = 1
120

hc = 1
80

hc = 1
40

hc = 1
80

hc = 1
40

hc = 1
20

0.85 AEN 1.5466e-4 5.5743e-5 3.6666e-5 8.9097e-5 8.2676e-5 7.7945e-5 1.7043e-4

0.89456 REN 2.3355e-1 1.1296e-1 5.0354e-2 3.5125e-2 1.8613e-1 1.4757e-1 1.9634e-1

Table 3. Absolute error, relative error, convergence rate, error in ξ

T=0.75 T=0.7698
N AEN CRA Error in ξ REN CRR REN in ξ

81 2.108088e-3 2.001901e-3

161 4.727657e-4 2.1567 4.472315e-4 3.826691e-1 3.826691e-1

321 1.070448e-4 2.1429 1.008209e-4 7.312934e-2 2.3876 7.312934e-2

641 2.741007e-5 1.9654 2.583608e-5 1.721622e-2 2.0867 1.721440e-2

1281 6.688616e-6 2.0349 6.298093e-6 4.235472e-3 2.0232 4.234052e-3

2561 1.682220e-6 1.9913 1.584382e-6 1.053781e-3 2.0069 1.053357e-3

5121 4.192929e-7 2.0043 3.948557e-7 2.630462e-4 2.0022 2.629149e-4
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and in the interval (ξ, 1), when t approaches Tb. Therefore we must refine the
mesh also in x direction, around the point ξ ≡ m

n . Let for example, in intervals
[0, 0.45], [0.55, 1] the mesh is coarse (Nc = 21) and in [0.45, 0.55] the mesh is fine
(Nf = 81). Thus the total number of nodes in [0, 1] is 121. In this experiment
we have significant decrease of the relative error (in max norm) - it is 3.9e− 2
at time T = 0.7698.

The numerical solution for two different time levels is plotted on Figure 1b.
It is found by using decreasing time step and coarse-fine mesh in space.
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5 Conclusion

Depending on the initial data (especially on f(u)), the solution of problem (1)-
(5) may blow up in finite time. Even in this case the approximation, presented
above, is very effective. The discrete energy of the scheme is conserved with a
good precision. Computations with decreasing time step and fine-coarse mesh
improve the results.
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Abstract. We study the numerical solution of a model two-dimensional
problem, where the nonlinear reaction takes place only at some interface
curves, due to the present of catalyst. A finite difference algorithm, based
on a monotone iterative method and the immersed interface method
(IIM), is proposed and analyzed. Our method is efficient with respect
to flexibility in dealing with the geometry of the interface curve. The
numerical results indicate first order of accuracy.

1 Introduction

We consider the following problem

−Δu(P ) = f(P ), P ≡ (x, y) ∈ Ω\Γ, Ω = (0, 1)2 (1)
u(P ) = 0, P ∈ ∂Ω (2)

[u(P )]Γ = u+(P )− u−(P ) = 0, (3)[
∂u

∂n
(P )

]
Γ

= F (P, u(P )). (4)

Here Γ ⊂ Ω is a smooth curve which splits the domain Ω into two separate
regions Ω+, Ω−: Ω = Ω− ∪ Ω+ ∪ Γ and n(x) is the normal at P ∈ Γ . The
notation [u(P )]Γ stands for the jump of u(P ) across the interface Γ in the
following sense: for any point P on the interface Γ ,

[u(P )]Γ = lim
Q→P,Q∈Ω+

u(Q)− lim
R→P,R∈Ω−

u(R).

The problem describes chemical reaction-diffusion processes in which, due to
the effect of catalyst, the reaction takes place only at some local sites. This
causes the chemical concentration to be continuous, but the gradient of the
concentration to have a jump at these local sites (≡ interface Γ ). The magnitude
of the jump typically depends on the concentration [1,15].

Elliptic and parabolic problems with discontinuous coefficients and different
type of concentrated sources (called often interface problems) arise naturally
when modeling processes in heat and mass transfer, diffusion in composite media,

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 615–622, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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flows in porous media, etc. Various methods have been developed for interface
problems [12,18]. The IIM developed by LeVeque and Li [10,12] solves elliptic
equations with jump relations on the interface Γ (point in 1D, curve in 2D and
surface in 3D problems),

[u] = U(P ), [v] = V (P ), P ∈ Γ,

where u is the solution, v - the flow and U(·), V (·) are known functions, defined
on the interface. It has been successfully implemented for 1D and 2D linear and
nonlinear elliptic and parabolic equations [2,10,11,12,13].

1D and 2D parabolic problems, respectively with point and line interfaces of
the form (3), (4) were solved numerically by Vulkov and Kandilarov [4,8,17], for
elliptic equations by Jovanovic, Kandilarov and Vulkov [3] and for 2D ones with
curvylinear interface by Kandilarov and Vulkov [5,6,9].

The essence of the IIM consists of using uniform or adaptive Cartesian grids
and introducing non-zero correction terms in the starting difference approxima-
tion near the interfaces. The role of the jump conditions is very important.

In this paper we present an iterative algorithm for numerical solution of prob-
lem (1)-(4) which consists in two parts. First, we use an analog of the upper and
lower solutions method developed for semilinear elliptic and parabolic problems
[13,14] to linearize the problem (1)-(4). Second, we solve numerically by the IIM
developed in [9] each linear “upper” and “lower” problem.

The paper is organized as follows. In Section 2, we use the monotone iterative
method to show the existence and uniqueness of the solution to the nonlinear
problem (1)-(4). In Section 3 we explain the computational algorithm and state
a convergence theorem. In Section 4, we consider 1D and 2D numerical examples
and compare our approximate solutions to the corresponding exact ones.

2 Monotone Iterative Method

Further, we shall assume that

−∂F

∂u
(P, u(P )) ≥ 0, (P, u(P )) ∈ Ω × (−∞,∞). (5)

If F (P, u(P )) is sufficiently smooth, then under suitable continuity and com-
patibility conditions on the data, a unique solution u(P ) of (1)-(4) exists. This
can be proved by the method of upper and lower solutions and the associated
monotone iterations, as for the traditional semilinear elliptic equations [13,14].

We say that ũ(P ) is an upper solution if it satisfies the inequalities:

−Δũ ≥ f(P ) in Ω\Γ, ũ(P ) ≥ 0 on ∂Ω.

[ũ(P )] = 0,

[
∂ũ(P )

∂n

]
≤ −F (P, u(P )), P ∈ Γ.

Similarly, û(P ) is called a lower solution if it satisfies the inverse inequalities.
The pair ũ(P ), û(P ) is said to be ordered if ũ(P ) ≥ û(P ). For a given pair of
ordered upper and lower solutions ũ, û we set
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D(ũ, û){u ∈ C(Ω) : û ≤ u ≤ ũ}.

Let γ(P ), P ∈ Γ be any nonnegative function satisfying

γ(P ) ≥ max{−∂F

∂u
(P, u(P )) : û(P ) ≤ u(P ) ≤ ũ(P ), P ∈ Ω}.

Then for any initial guess u(0)(P ) we can construct a sequence {u(m)} from the
linear iteration process:

−	u(m) = f(P ) in Ω\Γ,

u(m)(P ) = 0 on ∂Ω, (6)[
u(m)

]
Γ

= 0,

[
∂u(m)

∂n

]
Γ

= γ(P )u(m) − γ(P )u(m−1) + F (P, u(m−1)), P ∈ ∂Γ.

It is obvious that the sequence {u(m)} is well defined for each m = 1, 2, . . . .
Denote the sequence by {u(m)} if u(0) = ũ is an upper solution, and by {u(m)}
if u(0) = û is an lower solution, and refer to them as maximal and minimal
sequences, respectively. The following theorem gives the monotone convergence
of these sequences.

Theorem 1. Let F (P, u) be a C1 - function in D(ũ, û), and let ũ, û be a pair of
ordered upper and lower solutions of (1)-(4). Then the maximal sequence {u(m)}
converges to a maximal solution u = u(P ) of (1)-(4) and the minimal sequence
{u(m)} converges to a minimal solution u = u(P ). Moreover

û ≤ u(m) ≤ u(m+1) ≤ u ≤ u ≤ u(m+1) ≤ u(m) ≤ ũ on Ω

and if Fu ≤ 0 in D, then u = u = u∗ is the unique solution of (1)-(4) in D.

3 The Numerical Method

Let us introduce on Ω the uniform mesh ωh = ωh1 × ωh2 [16], where

ωh1 = {xi = ih1, i = 0, 1, ..., N1, h1 = 1/N1},
ωh2 = {yj = jh2, j = 0, 1, ..., N2, h2 = 1/N2}.

Let ωh and ∂ωh be the sets of mesh points of Ω and ∂Ω respectively. Then the
difference scheme corresponding to the problem (6) can be written in the form

ΔhU
(m)
i,j ≡

U
(m)
i+1,j − 2U

(m)
ij + U

(m)
i−1,j

h2
1

+ D
(m,m−1)
x,ij

+
U

(m)
i,j+1 − 2U

(m)
ij + U

(m)
i,j−1

h2
2

+ D
(m,m−1)
y,ij = −fij , (xi, yj) ∈ ωh (7)

U
(m)
i,j = 0, (xi, yj) ∈ ∂ωh,
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where U
(m)
ij ≈ u(m)(xi, yj) and fij = f(xi, yj). Here D

(m,m−1)
x,ij = Dxl,ij + Dxr,ij

and D
(m,m−1)
y,ij = Dyt,ij + Dyb,ij are additional terms chosen in order to improve

the local truncation error (LTE), see [9]. By l, r, t, b, we show the intersection
of the interface curve, respectively, with the left, right, top and bottom arm of
the standard 5-point stencil for the discrete elliptic operator at (xi, yj).

Let us introduce the level set function φ(x, y) for the curve Γ , such that
φ(x, y) = 0 when (x, y) ∈ Γ , φ(x, y) < 0 for (x, y) ∈ Ω− and φ(x, y) > 0 for
(x, y) ∈ Ω+. The outward normal n(n1, n2) of the curve Γ is directed from
Ω− to Ω+. We shall call the node (xi, yj) regular, if φ(xi, yj), φ(xi−1, yj),
φ(xi+1, yj), φ(xi, yj+1) and φ(xi, yj−1) are together positive (negative), i.e. the
curve Γ doesn’t intersect the stencil. The rest of nodes we call irregular.

At the regular nodes the corrections Dn+1
x and Dn+1

y are equal to zero. Further
at the discretization we need to know the jumps of the derivatives [ux], [uy], [uxx]
and [uyy], which we find from the conjugation conditions for [u] and [∂u/∂n].
For this goal we use the idea of Z. Li from [10]. We introduce local coordinate
system at each intersection point of the interface curve with the standard 5-point
stencil, for example (ξl, yj) of the left arm:

ξ = (x− ξl) cos θl + (y − yj) sin θl, η = −(x− ξl) sin θl + (y − yj) cos θl.

Here θl is the angle between the axis Ox and the normal vector n = (cos θl, sin θl)
at the node (ξl, yj). In the small neighborhood of this point the interface curve
is situated near to the tangent with direction vector η = (− sin θl, cos θl). Then
Γ can be locally parameterized by ξ = χ(η) and η = η. Note that χ(0) = 0 and
for a smooth curve χ′(0) = 0.

If we use the iterative process (6), then for construction of D
(m,m−1)
x,ij , D

(m,m−1)
y,ij

we take the jumps in the form (more detailed derivation of the jumps can be found
in [9]):

[ux] =
(
γu(m) + g(u(m−1))

)
cos θl, [uy] =

(
γu(m) + g(u(m−1))

)
sin θl,

[uxx] = −2
(
γu(m) + g(u(m−1))

)
η

cos θl sin θl

+ χ′′
(
γu(m) + g(u(m−1))

)
(cos2 θl − sin2 θl) + [f ] cos2 θl,

[uyy] = 2
(
γu(m) + g(u(m−1))

)
η

cos θl sin θl

− χ′′
(
γu(m) + g(u(m−1))

)
(cos2 θl − sin2 θl) + [f ] sin2 θl.

where (.)η is the derivative in tangential direction, [f ] is the jump of the right
hand side, χ′′ is the curvature of Γ at the intersection point and

g(u(m−1)) = −γ(P )u(m−1) + F (P, u(m−1)(P )), P = (ξl, yj) ∈ Γ.

For approximation of u(m−1) and u(m) at P (ξl, yj) we use Lagrange interpolation
with linear polynomials of two variables defined at three points of the stencil.
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Using either U
(0)
i,j = ũ(xi, yj) or U

(0)
i,j = û(xi, yj) as initial iteration in (7), we

obtain the sequences {U (m)

i,j } and {U (m)
i,j } respectively. The following convergence

result holds.

Theorem 2. Let (5) be fulfilled. Then the sequences {U (m)

i,j }, {U
(m)
i,j } converge

monotonically in maximum norm to the continuous solution u(x, y) of the prob-
lem (1)-(4) when h1 + h2 → 0.

4 Numerical Experiments

Example 1. Let us consider the following 1-D problem with discontinuous
coefficients:

βuxx − u = 0, x ∈ (0, ξ) ∪ (ξ, 1),
[u]ξ = 0, [βux]ξ = − exp(−u(ξ)),

where

β(x) =
{

β1 = α2
1, 0 ≤ x ≤ ξ,

β2 = α2
2, ξ < x ≤ 1.

The exact solution is

u(x) =
{

Asinh(x/α1)/sinh(ξ/α1), 0 ≤ x ≤ ξ,
Asinh((1− x)/α2)/sinh((1− ξ)/α2), ξ ≤ x ≤ 1,

where A is a solution of the equation

A (α2 coth((1− ξ)/α2) + α1 coth(ξ/α1)) = exp(−A).

To find the numerical solution we use the following iterative procedure:

βU (m)
xx − U (m) = 0, x ∈ (0, ξ) ∪ (ξ, 1),[

U (m)
]

ξ
= 0,

[
βU (m)

x

]
ξ

= γU (m) − (exp(−U (m−1)(ξ)) + γU (m−1)).

We solve this linearized problem using IIM, described in [7]. In Table 1 a mesh-
refinement analysis is given for different choices of β1, β2, and mesh parameter
N . The tolerance is 10−9 and the parameter γ = 1. The difference between the
exact solution and the computed solution in maximum norm is

‖EN‖∞ = max
1≤i≤N

|u(xi)− Ui)|.

The rate of convergence p is calculated by the formula

p =
∣∣∣∣ log(‖EN1‖∞/‖EN2‖∞)

log(N2/N1)

∣∣∣∣ .

The results confirm second order of convergence, when the interface point coin-
cides with a grid one, and first order in the other cases. The number of iterations
varies from 7 to 10.
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Table 1. Numerical test for Example 1 with γ = 1, ξ = 0.5 and βi = α2
i

N α1 = 0.1, α2 = 1 α1 = α2 = 1 N α1 = 0.1, α2 = 1 α1 = α2 = 1
‖E‖∞ ‖E‖∞ ‖E‖∞ ‖E‖∞

15 3.5914e-03 2.7191e-04 16 1.6104e-03 1.0041e-04

31 1.2536e-03 1.2233e-04 32 4.1372e-04 2.5114e-05

63 5.2502e-04 5.7809e-05 64 1.0487e-04 6.2793e-06

127 2.5203e-04 2.8057e-05 128 2.6565e-05 1.5699e-06

255 1.2461e-04 1.3816e-05 256 6.5723e-06 3.8642e-07

p 1.02 1.02 p 2.02 2.02

Table 2. Mesh refinement analysis for Example 2, where Γ is a circle with a = b = 0.505
or an ellipse with a = 0.7505, b = 0.2505

a = b = 0.505 a = 0.7505, b = 0.2505

N1 N2 ‖E‖∞ m ‖E‖∞ m

10 10 6.4712e-02 49 1.9833e-01 51

20 20 3.3241e-02 55 1.1028e-01 59

40 40 1.7847e-02 63 5.9011e-02 65

80 80 9.2173e-03 94 3.2189e-02 93

160 160 5.0291e-03 123 1.7049e-02 119

p 0.92 0.89

Example 2. On the region Ω = (−1, 1)2 \ Γ = Ω− ∪ Ω+, where Γ : x2/a2 +
y2/b2 = 1 and Ω± = x2/a2 + y2/b2 − 1 ≷ 0, we consider the equation

uxx + uyy = f(x, y),

with exact solution

u(x, y) =

{
J0(r), (x, y) ∈ Ω−,

J0(r)
(

1 + k
(

x2

a2 + y2

b2 − 1
))

, (x, y) ∈ Ω+.

The boundary condition and the function f(x, y) are found from the exact solu-
tion. The solution is continuous, but the jump of the normal derivative on the
interface is [

∂u

∂n

]
= K(x, y) exp(−u(x, y)),

where K(x, y) = 2kJ0(r) exp(J0(r))
√

x2/a4 + y2/b4, r =
√

x2 + y2. We choose
k = 0.1 and two interfaces: circle with a = b = 0.505 and ellipse with a = 0.7505,
b = 0.2505. The mesh refinement analysis is presented in Table 2, when the
tolerance is 10−3. The number of iterations varies from 25 to 120 depending
on the initial solution and increases with N. The results show first order of
accuracy of the method. In Fig. 1a the error and in Fig. 1b the numerical solution
are plotted, when N1 = N2 = 40 and a = 0.7505, b = 0.2505. To check the
monotonicity of the method, we also control the values of the computed solution
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Fig. 1. a) The error and b) the numerical solution for Example 2, when a = 0.7505, b =
0.2505, N1 = N2 = 40, and k = 0.1
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Fig. 2. a) The values at point (6, 20) and b) the values at point (20, 16) for Example
2, when a = 0.7505, b = 0.2505, N1 = N2 = 40, k = 0.1, γ = 50

at the vertexes of the ellipse during the iterations. In Fig. 2a the values of U6,20

and in Fig. 2b the values of U20,16 are plotted. The values of the parameters are:
N1 = N2 = 40, a = 0.7505, b = 0.2505, k = 0.1, γ = 50. As initial data for the
iteration processes we choose 0.5×exact solution and 1.5×exact solution.

5 Conclusions

A finite difference method based on the monotone iterative method and the IIM
for a diffusion equations with nonlinear own singular sources is developed. The
method leads to a sequence which converges monotonically from above or below
to the unique solution of the problem. The numerical results indicate first order
of accuracy for problems with arbitrary interfaces.
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Abstract. We investigate an elliptic problem with a boundary condi-
tion given by a sum of normal derivative and an elliptic operator in
tangential variables (also known as ”Venttsel” boundary condition). The
differential problem is discretized by a specific finite difference method.
Error estimates of the numerical method in the discrete Sobolev space
W 1

2 are obtained. The rate of convergence in this space is optimal, i.e. it
is m − 1 for solutions from W m

2 , 1 < m < 2.5.

1 Introduction

The problems for elliptic equations with classical boundary conditions, namely
Dirichlet, Neumann, Robin and mixed type, have been studied for many years.
In 1959 A. Venttsel introduced [10] a new class of boundary conditions for elliptic
equations. The boundary condition in this case is given by an elliptic equation
of second order with principle term being an elliptic operator in tangential vari-
ables. A simple example of such boundary value problem is the following one:

−Δu(r) = f(r), r ∈ Ω,

α∂2u
∂τ2 (r) −βu(r) − ∂u

∂n (r) = g(r), r ∈ ∂Ω.
(1)

Here Ω is a bounded domain in �2 with sufficiently smooth boundary ∂Ω,
n is the outward normal to ∂Ω, τ is the tangential direction to ∂Ω, α and β
are constants. The specific boundary condition in (1) is referred as ’Venttsel’
boundary condition.

Elliptic problems with Venttsel type boundary conditions appear in numerous
problems in the water waves theory ([5], [9]), in engineering problems of oil wells
([3]), in financial mathematics. In the heat transfer, problem (1) describes the
diffusion process in bounded domain combining boundary reflection and diffusion
along a surface. This situation arises [2] when the boundary is covered with a
thin layer of a material having high permeability.

The specific nature of the problem (1) is determined by the fact, that the
boundary condition contains both second order tangential derivative and normal
derivative. Thus the boundary equation in (1) is not an autonomous equation
on ∂Ω. Moreover one cannot use directly the general theory of elliptic problems
to get a-priori estimates.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 623–627, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In [5] P. Korman mentioned that the problem is ill-posed in some sense for
α ≤ 0 and β = 0. However, if α > 0 and β > 0, then a periodic problem with
Venttsel type boundary condition has a unique solution in a suitable Sobolev
spaces [6] so that the problem is well-posed. We assume in this paper that α > 0
and β > 0.

The unique solvability of the linear problem (1) is established in Hőlder spaces
C2,ε(Ω) by Luo and Trudinger in [7]. In [1] Apushkinskaya and Nazarov have
considered quasilinear elliptic problems with quasilinear Venttsel type bounda-
ry conditions and have proved the existence of solutions in the Sobolev spaces
W 2

q (Ω) ∩ W 2
q−1(∂Ω) for q > 2. A survey of results on nonlinear elliptic and

parabolic Venttsel problem can be found in [2].
In this paper we propose a numerical method for solving elliptic problems with

Venttsel type boundary conditions in rectangular domains. In Section 2 we give
some preliminaries. In Section 3 we study a finite difference method for solution
of the problem (1). We prove, that if the solution to the differential problem
belongs to Wm

2 (Ω) ∩ Wm
2 (Γ1) , 1 < m ≤ 3, then the error of the method in W 1

2

mesh-norm is O(|h|m−1) for 1 < m < 2.5 and O(|h|1.5) for 2.5 < m ≤ 3.

2 Preliminaries

Let (x, y) be the coordinates of a point r ∈ �2. Consider the unit square Ω =
{(x, y) : 0 < x < 1, 0 < y < 1} with bottom part of its boundary Γ1 = {(x, y) :
0 < x < 1, y = 0}.

We use the notations Wm
2 (Ω) and | · |W m

2 (Ω) for the Sobolev space of functions
[4] and for the semi-norm in this space.

We introduce a uniform mesh ωh in Ω with mesh sizes h = (h1, h2), hi =
N−1

i , Ni ∈ N, i = 1, 2 and set ωh = Ω
⋂

ωh, γh = ωh \ ωh , γ1
h = γh

⋂
Γ1,

γ2
h = {r ∈ γh : x = 0}.

For functions from W 1
2 (Ω) we define the square of the averaging Steklov’s

operator in x- direction T1 as

T1v(r) =
∫ 1

−1

(1 − |s|)v(x + sh1, y)ds, r ∈ ωh

and the operator T ∗
2 as follows:

T ∗
2 v(r) = 2

∫ 1

0

(1 − s)v(x, sh2)ds, r ∈ γ1
h.

The notations of the following operators on discrete functions are taken from
[8]. The first finite difference in y direction and the second finite difference in x
direction are defined by

vy(x, y) = (v(x, y + h2) − v(x, y)) h−1
2 ,

Λ1u(x, y) = (u(x + h1, y) − 2u(x, y) + u(x − h1, y)) /h2
1.
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By analogy with Λ1 and T1 we define operators Λ2 and T2 in y - direction.
In the set of mesh functions, defined on ωh, we consider different scalar products:

[u, v)(1)h =
∑

r∈ωh∪γ2
h

h1h2u(r)v(r), [u, v)(2)h =
∑

r∈ωh∪γ1
h

h1h2u(r)v(r),

(u, v)h =
∑
r∈ωh

h1h2u(r)v(r) + 0.5
∑
r∈γ1

h

h1h2u(r)v(r).

We denote by Hh the set of discrete functions, defined on ωh, which vanish on
γh \ γ1

h, with scalar product (u, v)h.
We shall write C for all positive constants, which are independent on the

unknown functions and the mesh sizes.

3 Finite Difference Method

We consider the following boundary value problem with Venttsel boundary con-
dition on the bottom edge Γ1 of Ω and Dirichlet boundary condition on the
other three edges of Ω:

−Δu(r) = f(r), r ∈ Ω,

u(r) = 0, r ∈ ∂Ω \ Γ1,

α∂2u
∂x2 (r) −βu(r) + ∂u

∂y (r) = g(r), r ∈ Γ1.

(2)

We assume α > 0 and β > 0.
In the next lemma we summarize some properties of the solution to the

problem (2).

Lemma 1. Let f ∈ L2(Ω), g ∈ L2(Γ1). Then there exists a unique solution
u ∈ W 2

2 (Ω)
⋂

W 2
2 (Γ1) to the problem (2) and the following a-priori estimates

are valid:

|u|W 1
2 (Ω) + |u|L2(Γ1) +

∣∣∣∣∂u

∂x

∣∣∣∣
L2(Γ1)

≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Γ1)

)
,

|u|W 2
2 (Ω) +

∣∣∣∣∂u

∂y

∣∣∣∣
L2(Γ1)

+
∣∣∣∣∂

2u

∂x2

∣∣∣∣
L2(Γ1)

≤ C
(
‖f‖L2(Ω) + ‖g‖L2(Γ1)

)
.

A similar statement for the periodic case is proved in [6].
Using the Laplace equation and the Venttsel boundary condition in (2) we derive
the following equation on Γ1 for every solution u of (2):

T ∗
2 Λ1u + 2

h2
αΛ1u + 2

h2
(T1uy − βT1u) − T1T

∗
2 f + 2

h2
T1g. (3)

We shall use (3) in the discretization of (2).
We approximate the problem (2) with the finite difference scheme

Ahv ≡ A1v(r) + A2v(r) = ϕ(r), r ∈ ωh ∪ γ1
h,

v(r) = 0, r ∈ γh \ γ1
h,

(4)
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where

A1(v)(r) = −
{

Λ1v(r), r ∈ ωh,
( 2

h2
α + 1)Λ1v(r), r ∈ γ1

h,

A2(v)(r) = −
{

Λ2v(r), r ∈ ωh,
2
h2

(vy − βv)(r), r ∈ γ1
h,

ϕ(r)
{

T1T2f(r), r ∈ ωh,
T1T

∗
2 f(r) − 2

h2
T1g(r), r ∈ γ1

h.

Lemma 2. For all u, v ∈ Hh the discrete operator Ah satisfies the identity

(Ahu, v)h = [ux, vx)(1)h + [uy, vy)(2)h + β
∑
r∈γ1

h

h1u(r)v(r)

+ (α + 0.5h2)
∑

r∈γ1
h

�
(0,0)

h1ux(r)vx(r).

Ah is self-adjoint and positive definite operator on Hh.

The proof of this assertion follows by partial summation and uses the assump-
tions α > 0 and β > 0. As an immediate consequence of the Lemma 2 it follows,
that there exists a unique solution to the difference scheme (4).

To investigate the error of the method, we define the error function z = u−v,
where u is the solution of (2) and v is the solution of (4). Then the error function
z will be a solution to the problem

Ahz = −ψ(r), r ∈ ωh ∪ γ1
h,

v(r) = 0, r ∈ γh \ γ1
h.

(5)

where ψ is given by ψ = ϕ − Ahu.
Using the properties of the averaging operators T1, T2 and the equality (3),

we represent the function ψ in the form

ψ(r) = Λ1η1 + Λ2η2, r ∈ ωh; ψ(r) = Λ1η1 − A2η2, r ∈ γ1
h;

η1 = T2u − u, r ∈ ωh; η1 = T ∗
2 u − u, r ∈ γ1

h; η2 = T1u − u, r ∈ ωh ∪ γ1
h.

(6)

Then the following statement holds:

Lemma 3. The finite difference scheme (5) with the right-hand side (6) is stable
and its solution z satisfies the following inequality:

[zx, zx)(1)h + [zy, zy)(2)h +
∑

r∈γ1
h

�
(0,0)

h1z
2
x(r) +

∑
r∈γ1

h

h1z
2(r) (7)

≤ C

⎛
⎝[η1x, η1x)(1)h + [η2y, η2y)(2)h +

∑
r∈γ1

h

�
(0,0)

h1η
2
1x(r) +

∑
r∈γ1

h

h1η
2
2y(r)

⎞
⎠ .
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The right-hand side terms in (7) can be estimated using the well-known Bramble-
Hilbert lemma [4]. In this way we prove convergence of the finite difference scheme.

Theorem 1. Let u ∈ Wm
2 (Ω) ∩ Wm

2 (Γ1), 1 < m ≤ 3, be the solution of (2), v
be the solution of (4) and z = u − v be the error. Then there exists a positive
constant C such that⎧⎨

⎩[zx, zx)(1)h + [zy, zy)(2)h +
∑

r∈γ1
h

�
(0,0)

h1z
2
x(r) +

∑
r∈γ1

h

h1z
2(r)

⎫⎬
⎭

1
2

≤ C|h|m−1Mm(h) ‖u‖W m
2 (Ω)

�
W m

2 (Γ1),

where

Mm(h) =

⎧⎨
⎩

1, 1 < m < 2.5;
| ln h|, m = 2.5;
h2.5−m, 2.5 < m ≤ 3.

The above estimate of the rate of convergence is consistent with the smoothness
of the exact solution in the case 1 < m < 2.5.

In the case 2.5 ≤ m ≤ 3 there is a loss of the order of convergence. Note that
in the last case the rate of convergence is the same as for the elliptic problem
with Robin boundary conditions [8]. A better estimate can be obtained for the
scheme with another approximation of the right-hand side similar to the one
from [8, p.162].
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Abstract. The Probabilistic Data Association Filter (PDAF) with In-
teracting Multiple Model (IMM) approach is applied for contour deter-
mination in ultrasound images. The contour of interest is assumed to be
a target trajectory which is tracked using IMMPDA filtering. The tar-
get movement is assumed to be along a circle and controlled by equally
spaced radii from an arbitrary seed point inside the assumed contour.
The generalized scores of the candidate points along current radius are
determined on the base of two components - the Gaussian probability
density function, associated with the assignment of the current point
to the trajectory and the edge magnitude. A method for modeling com-
plex contours with known true positions and method for error evaluation
are proposed. These methods are used to generate Field II images and
to estimate errors of contour determination using IMMPDA algorithm
incorporating edge magnitude.

1 Introduction

In recent years many algorithms have been developed for tracking targets in clut-
ter. One of the most successful approach used in these algorithms is Probabilistic
Data Association (PDA). Instead of one measurement the PDA approach uses all
of the validated measurements with different weights (probabilities) [4,7] and
improves the algorithm robustness in clutter. Another approach - Interacting
Multiple Model (IMM) proved to be suitable for tracking maneuvering targets
[4,2]. The combination of the two approaches (IMMPDA) is effectively applied
not only for target tracking but also in different areas as robotics, navigation,
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biomedical imaging and many others. It is also successfully applied in [1] for
cavity boundary extraction from ultrasound images. A new approach based on
IMMPDA and incorporating edge magnitude is described by the authors. The
results are validated through comparison with manual segmentations performed
by an expert.

The goal of this work is to develop a method for modeling complex contours
with known true positions of the contour points, to generate Field II images with
these contours and to estimate errors of contour determination using similar
IMMPDA algorithm incorporating edge magnitude.

2 Problem Formulation

The common property in medical images is that the cysts and other lesions
more often have convex forms. This property allows the following assumption
- the contour of interest to be star-shaped i.e. all contour points could be seen
from the appropriately selected seed point inside the assumed contour. In this
paper we solve contour determination problem of the low quality ultrasound
images with unavoidable speckle noise applying the PDA and IMM approaches
for low observable maneuvering target tracking in presence of false alarms. The
contour will be treated as target trajectory and the points of the contour will be
defined on equally spaced radii from the selected seed point inside the assumed
contour.

The state vector of the system x, describing the target dynamic evolves in
time according to

x(k + 1) = F (k)x(k) + ν(k), with measurement vector, given by
z(k + 1) = H(k)x(k) + w(k), where F is the system transition matrix, H is

the measurement matrix, ν(k) and w(k) are zero-mean mutually independent
white Gaussian noise sequences with known covariance matrices Q(k) and R(k),
respectively, k is index of the time. For more details see [3,7].

2.1 Probabilistic Data Association Approach

The Probabilistic Data Association approach considers all points which are near
to the predicted point as belonging with some probability to the track (the
contour of interest). The area of the valid points, called gate is defined by the
following criteria based on Mahalanobis distance:

d2
j (k) = ν

′
j (k) S−1νj (k)≤γ, (1)

where νj (k) = ẑ (k) − zj (k) is the difference between the distances of the pre-
dicted point and the jth validated point, S is the innovation covariance matrix,
γ is a threshold constant defined from the table of the chi-square distribution
[3] p.84.

The weighting probabilities, defining the influence of each point in the gate
to the final decision are evaluated using both kinematic data and incorporated
edge magnitude for each of the candidate point. We recall that candidate points
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at time k are defined to be on the radius from the seed point with angle θk. The
images are gray level with intensity from 1 to 256. For calculation of the edge
magnitude for point j on radius θk the filter, proposed in [1] is used: Fe(j,θk) =
1
3

{
I(j+2,θk)+I(j+1,θk)+I(j,θk)−I(j−1,θk)−I(j−2,θk)−I(j−3,θk)

}
× (255 − I(j,θk))2.

Then the association probability βj when j �= 0 is the probability for point j to
belong to the contour, and β0 - the probability none of the validated points to
belong to the contour. They are calculated as:

βj (k) =
Fe2(j,θk)ej(k)

b(k) +
mk�

i=1

eiFe2(i,θk)

; j = 1, 2, . . . ,mk; β0(k) =
b(k)

b(k) +
mk�

i=1

ei(k)Fe2(i,θk)

, (2)

where ej(k) = 1√
2π |S|

exp
[
− 1

2ν
′
j(k)S−1νj(k)

]
, b(k) =

√
π
2γ mk

1−PDPG

PD
,

mk is the number of the points satisfying (1), PD is detection probability and PG

is factor that accounts for restricting the normal density to the validation gate.
Then combined innovation can be evaluated as [4]:

ν (k) =
mk∑
j=1

βj (k) νj (k) (3)

and the updated state vector x̂(k|k) and state covariance matrix P (k|k) are:

x̂ (k|k) = x̂ (k|k − 1) + W (k) ν (k) , (4)

P (k|k) = β0P (k|k − 1) + [1 − β0]P c(k|k) + P̃ (k) , (5)

where W (k) = P (k|k − 1)H(k)′S(k)−1 is the gain matrix,
S(k) = H(k)P (k|k − 1)H(k)′ + R(k), and using Joseph’s form for P c :

P c = [I − W (k)H(k)]P (k|k − 1)[I − W (k)H(k)]
′

+ W (k)R(k)W (k)
′
, (6)

P̃ (k) = W (k)
[ mk∑

j=1

βj(k)νj(k)νj(k)
′ − ν(k)ν(k)

′
]
W (k)

′
. (7)

The notation (k|k − 1) means that the corresponding value is predicted for time
k on the base of the information for time (k − 1).

2.2 Interacting Multiple Models Approach

To provide more precise tracking of abrupt contour changes the Interacting Mul-
tiple Models approach [2,4] with two nested models of the tracking system is
applied. The difference between the two models is only in the values of the
process noise variance. The filtering of the state vectors for the two models is
performed in parallel based on initial combined state vector x̂0j and state co-
variance matrix P 0j .

The combining probabilities are:

μi|j(k − 1|k − 1) =
1
c̄j

pijμi(k − 1) i, j = 1, 2, · · · , r , (8)



Contour Determination in Ultrasound Medical Images Using IMM PDAF 631

where r is the number of models, pij are the Markovian switching probabilities,
μi(k − 1) is the probability model i to be true for the time k − 1 and the
normalizing coefficient c̄j is

c̄j =
r∑

i=1

pijμi(k − 1) j = 1, 2, · · · , r . (9)

Then combined state vectors and state covariance matrices for each model j,
where j = 1, 2, · · · , r are:

x̂0j(k − 1|k − 1) =
r∑

i=1

x̂i(k − 1|k − 1)μi|j(k − 1|k − 1) (10)

P 0j(k−1|k−1) =
r∑

i=1

μi|j(k−1|k−1)
{
P i(k − 1|k − 1) +

[
x̂i − x̂0j

] [
x̂i − x̂0j

]′}

(11)
The updated model probabilities are:

μj(k) =
1
c
Λj(k)

r∑
i=1

pijμi(k−1), where Λj(k) =
(Fe(j,θk))2 exp−

1
2 d2

j(k)

2
√

2π |S(k)|
, (12)

c is the normalizing coefficient. As a result the estimation of target state vector
for output only (not used in recursive procedure) is:

x̂(k|k) =
r∑

j=1

x̂j(k|k)μj(k) (13)

3 Algorithm Description

The system dynamic is forced by equally spaced radii. The schematic presenta-
tion of this formulation is shown in Fig.1, where two consecutive radii Rk and
Rk+1 are presented. The estimated point is on the radius Rk and the corre-
sponding predicted point is on the radius Rk+1. The candidate points around
the predicted point with their Gaussian pdf associated with the assignment of
the corresponding point to the trajectory of the contour are also presented.

An insight into the image processing during current radius is presented in
Fig.2. It can be seen the abrupt change of the pixel intensities along the radius
and the corresponding maximum value of edge magnitude. This maximum is
in the region of the validated pixels, satisfying condition (1) using Mahalanobis
distance. In this case the decision is noted with symbol ∗ on the axis for the
points of the current radius.

The state vector x =
[
D Ḋ

]′
, where D is the distance from the seed point

to the current point and Ḋ = dD
dθ . The increment of the angle is Δθ = 2π/Nr,

Nr is the number of the radii that corresponds to the evaluated contour points.
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Fig. 1. Scheme of the algorithm Fig. 2. An Insight to the Processing

Measurement vector is Z, Z(1) = (D), measurement vector dimension nz = 1.

System transition matrix F =
(1 Δθ

0 1

)
. The measurement matrix is: H = [1 0].

We assume the following Markovian transition probabilities p =
(0.95 0.05

0.05 0.95

)
.

The measurement noise matrix R is: R =
(
σ2

D

)
. Process noise matrix Q for

model l is Ql = σ2
ν l

(
Δθ4

4
Δθ3

2
Δθ3

2 Δθ2

)

For degree of freedom nz = 1 and allowable probability to miss true measure-
ment 0.01 the gate threshold is γ = 6.63.

Initiating
The contour is initiated by finding the point with maximum of edge magnitude
(xmaxF , yc) on the radius, started from the seed point (xc, yc) along the positive
direction of axes x. This point becomes the first point of the contour to be
tracked. The state vector X is initialized X = [D Ḋ]

′
= [(xmaxF − xc) 0]

′
, and

the predicted state vector is X(k + 1) = F X(k). The state vector covariance

matrix is P =

(
σ2

D
σ2

D

Δθ
σ2

D

Δθ
2σ2

D

Δθ2

)
.The predicted point is Z(1) = X(1). The predicted

state vector covariance matrix is P (k+1) = F P (k) F
′

and innovation covariance
matrix is S(k) = H P (k) H ′ + R. The angle θ = 0, Δθ = 2 π/Nr.

Using the organization of the computations, proposed in [8] the algorithm
can be outlined as follows:

The algorithm outline

- Initiating: θ = 0, Δθ = 2π/Nr, and matrix preparation as described above.
- Radius loop: θ = θ + Δθ until θ = 2π :

* Define validated points, satisfying condition (1) and their edge
magnitudes;

* Find weighting probabilities (2), calculate combined innovation (3) and
the matrix, defined by the sum used in the eq. (7);

* Updating part of Kalman filtering, including equations (4) and (5);
* IMM part including equations from (8) to (13);
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* Predicting part of Kalman filtering including standard Kalman filter
equations:
X = FX ; P = FPF ′ + Q; Z(1) = X(1); S = HPH ′ + R.

NB: In this case because of the matrix specifics (for example measurement vector is
just a number, and its transpose is the same) the calculations could be simplified.

4 Modeling

Modeling test contours. Three shapes of contours are used to test the al-
gorithm performance - circle, ellipse and Cassini oval. The aim is to examine
different slopes of the curves and curves, which shape not coincide with the
assumed circle shape. Simulation program FieldII and the example with cyst
phantom [6] are used for the experiments. In modeling function the generated
random points are tested if they are inside of the modeled contour.

* Circle. In case of a circle the condition for the random input point (xi, yi)
to be inside the circle with given center (xc, yc) and radius r is trivial:

inside = (r2 ≥ ((xi − xc)2 + (yi − yc)2)).

* Ellipse. The second modeled contour is ellipse with center point (xc, yc), semi-
axes ax and ay and rotation angle αr. For the ellipse we use a function which
evaluates if the input random point (xi, yi) is inside the ellipse. We assume that
the input point belongs to the family of the concentric ellipses with the same ratio
of semi-axes and is on the radius defined by angle θ. At first the polar coordinates
of this random point with regard to the center point are calculated and after
inverse rotation the following coordinates of a corresponding non rotated ellipse
are obtained:

xp = xi − xc, yp = yi − yc.
xir = xp cos(−αr) − yp sin(−αr); yir = xp sin(−αr) + yp cos(−αr). (14)

The angle θ, corresponding to these coordinates and to the parameters of the
ellipse is evaluated as: Δx = xir

ax
; Δy = yir

ay
; θ = tan

(
Δy
Δx

)
. This angle

defines the radius, which is the geometric place of the points of the concentric
ellipses. The point of the given ellipse located on that radius is:

x = ax cos(θ); y = ay sin(θ).
The condition the input point to be inside the ellipse is:

inside = ((abs(xir) ≤ abs(x) )& (abs(yir) ≤ abs(y))). (15)

* Oval Cassini. The third modeled contour is the oval Cassini [5] with param-
eters a and c ( a ≥ c). The evaluation of the property inside of an input random
point (xi, yi) with respect to this contour at the beginning is similar to that of
the ellipse. The polar coordinates and inverse rotation calculating is the same
as for the ellipse (14). The angle, corresponding to the point is θ = tan

(
yir

xir

)
.

The point (x, y) of the oval Cassini, corresponding to this angle is evaluated as
follows:
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φ = 2 θ; D =
√

a4 − c4 sin(φ)2; Ro =
√

c2cos(φ) + D;
x = Ro cos(θ); y = Ro sin(θ).

The condition if the input point is inside the oval Cassini is the same as for
the ellipse (15).

Error evaluation
The error evaluation for the modeled shapes is according to the following con-
siderations. The seed point inside the assumed contour in the program is selected
manually, using the mouse, or automatically by the program. In both cases this
seed point is aimed to be near the ideal modeled center but in the general case
does not coincide with it. As a result the evaluated contour points are located
irregularly along the estimated contour curve. For that reason we treat them in
similar way as input random points in modeling and evaluating function inside.
But in the case of error evaluation instead of condition estimation we take the
difference between the estimated by the tracking algorithm point (treated it as
random point ) and the evaluated true position (circle, ellipse or oval point),
corresponding to that angle. The evaluated errors are transformed from pixel to
world coordinates and are presented in world coordinates.

5 Results

The algorithm performance is evaluated by generating images using Field II.
Knowing the true positions of the lesion areas (cysts-black or tumors-white) the
differences between true positions and estimated by the algorithm are evaluated
and presented.

Using Field II and new functions for test inside a new cyst phantom is gen-
erated with more complicated contours and with known true positions for the
contour points. In figure 3 the result contours for modeled ellipse and oval Cassini
are illustrated. In figure 4 the errors - absolute differences between estimated and
true positions along coordinate axes x and y are presented. It can be seen that
the errors along x are greater than along the y, because of the specific of the
speckle noise which in x direction is more sensible. In figure 5 the IMM proba-
bilities for each estimated point (for each radius) are presented. When the errors
are small, the probabilities of the models are in steady state and the first precise
model is with bigger probability.

Fig. 3. Results - contour determination for ellipse and for oval Cassini
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Fig. 4. Errors for ellipse (left) and for oval Cassini (right)

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Model probabilities for ellipse

radii

M
od

el
 P

ro
ba

bi
lit

ie
s

model 1
model 2

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Model probabilities for oval Cassini

radii

M
od

el
 P

ro
ba

bi
lit

ie
s

model 1
model 2

Fig. 5. IMM probabilities for ellipse (left) and for oval Cassini (right)

50 100 150 200 250
0

1

2

3

4

5

6

radii

Er
ro

rs
 [m

m
]

X
XafterSmoothing
Y
YafterSmoothing

Fig. 6. A smoothed image (left) and the errors of the contour before and after smooth-
ing (right)

The contour tracking sometimes goes to wrong directions because of the
speckle noise. In such cases the preliminary smoothing improved contour track-
ing. In figure 6 in the left the smoothed image of an ellipse is shown, and the
comparison of the errors before and after smoothing are shown in the right.

6 Conclusion

A new method for modeling complex contours with known true positions and
evaluation of the errors is proposed. The method is used for error evaluation of
contour determination in images generated by Field II simulation program. The
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contour determination is performed by developed IMMPDA tracking algorithm
with incorporated edge magnitude. The results are presented and analysed.
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Abstract. The textile fibers and yarns are usually modeled as one di-
mensional continuum of beams or as a system of particles, connected
by springs. The governing equation of motion of such systems has many
solutions, which switch in between depending on the available energy of
the system. Effective modeling of problems with bifurcations like these,
applicable for more general geometries is rarely reported. In the present
work we demonstrate, that using a system of particles and an appropri-
ate change of variables, a successful time step integration either by the
Leap-Frog or the Verlet algorithms is possible.

1 Introduction

The textile yarns and fibers are the most significant representative of the one di-
mensional (1D) continuum. Almost everywhere at the textile processes there are
places, where this continuum moves around the 3D space freely, with only one or
without any constrains. Examples are the air-jet spinning and weaving, air trans-
port of fibers, etc., where the fibers, resp. yarns are moved by the forces of spe-
cially oriented fluid flow. Another example is the yarn unwinding, where the yarn
builds large loop, called “balloon”. Most authors threat the unwinding of the yarn
from bobbin as a boundary value problem. There are several works in the area of
modeling of the yarn balloon, mainly in its stable stationary motion during ring
spinning [1], [2], [3] and yarn unwinding [4]. The differences between the stationary
and transient equations are well described in [5] and the transient solution of the
balloon equation was presented in [6] . All these works are based on the solution
of the system of partial differential equations with the use of finite differences or
relaxation technique and shooting method for boundary value problems. But it is
� Alexander von Humboldt research fellow, on leave from Department of Textiles,

Technical University of Sofia, Bulgaria.
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more natural the yarn unwinding to be modeled as initial value problem, because
the one end of the yarn is not fixed. In addition, these methods can not be used for
more general types of yarn dynamic problems and most of them have numerical
difficulties when passing bifurcation points.

Another technique - presentation of the 1D continuum as a mass-spring system
is used in [7], [8] and discussed in [9]. Basically the idea is the same as the
one in the molecular dynamic and it is used more and more for different kinds
of “particle based” models [10]. These models allow implementations for more
general geometrical conditions, which is important for industrial applications.
In the current work we present a model of the unwinding process, where the
yarn is presented as a mass-spring system. Both the Leap-Frog and the Verlet
algorithms are used for integration.

2 Formulation of the Problem

In this work the textile yarns as 1D continuum are presented. Most commonly
used in this case is the Lagrangian description of the equation of motion. The
independent curvilinear coordinate s is along the yarn axis (Fig. 1a) and it is
moving together with the yarn. In the general case of yarn with linear mass
density ρ, yarn cross section A, and bending rigidity B, the governing equation
of motion is subjected to the Newton law:

ρA
∂2r
∂t2

=
∂

∂s

(
T

∂r
∂s

)
−B

∂4r
∂s4

+ ρAg + q, (1)

where t is the time, g the earth acceleration, T is the yarn tension and q is the
resulting vector of the external forces (excluding the earth acceleration). The
extensibility condition is given by

∂r
∂s
· ∂r
∂s

= (1 + ε)2 (2)

where ε is the elongation of the yarn and the dot stands for scalar product. The
material properties under tension can be presented as a sum of a linear elastic
term and one more general nonlinear term:

T = AEε + f

(
ε,

∂ε

∂t

)
. (3)

For given boundary and initial conditions, the yarn coordinates r and yarn ten-
sion T can be obtained by solving the system (1)–(3) at each time step Δt. If
we assume ε = 0 then the force and the elongation can be eliminated and the
equations can be solved in the case of inelastic yarns. In this form the above
system, however, has a disadvantage – if we want to model some local effects as
the influence of yarn guide elements or the contact between the yarn and other
machine elements, we should divide the yarn into several parts. Then, system
(1)–(3) and appropriate boundary conditions have to be constituted for each
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part separately and simultaneously to be solved together in all yarn parts. To
avoid this shortcoming we use discrete implementation of the problem.

Eq. (1) does not contain the air-drag force and thus, we can assume, that current
model represents the yarn motion in vacuum. If the air-drag force is included, it
will appear in right-hand side of eq. (1) as Fair = −p |Vn|Vn where Vn is the air
velocity normal to the yarn axis, and the quantity p contains the drag coefficient
for a moving circular cylinder in a viscous turbulent flow. In several practical cases
(spinning and unwinding balloons) the air resistance force is less then the other
forces and can be neglected, i.e., Fair � ρA∂2r

∂t2 . There are areas, for instance, air
transport of fibers, air-jet spinning and air-jet weft insertion, where the air-drag
force is moving the fibers or yarns. In these cases Fair � ∂

∂s(T ∂r
∂s )−B ∂4r

∂s4 +ρAg+
q. They need additional treatment in order to ensure numerical stability during
the integration and can be object of separate work.

Fig. 1. One dimensional continuum (textile yarn): a) original formulation of the prob-
lem; b) discretized model; c) linear segment between two particles for description of
the material behavior and calculation the tension forces; d) force equilibrium in the
particle

3 Discrete Model

We can obtain the discrete model presenting the derivatives with regard to curvi-
linear coordinate s as discrete functions. This has also own mechanical repre-
sentation (see Fig.1b). Let us divide the yarn into yarn segments with initial
equal length L and concentrate all the forces upon particle Pi between the seg-
ments. Then each particle has mass mi = Lρ and the resulting (nodal) force Fi

is applied there.
The equation of motion of i-th particle is given by the second Newton law as:

mi
d2ri

dt2
= Fi (4)
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where ri ≡ (xi, yi, zi)T is the coordinate vector of the current i-th particle. The
resulting force Fi upon i-th particle is calculated as a vector sum of the forces
acting by neighbor segments Fi,i−1

ei and Fi,i+1
ei (Fig. 1d):

Fi = Ti,i−1 + Ti,i+1 + Qi, (5)

where i = 1 ÷ N is the particle number, Ti,j are the internal forces in the
segments i-j, and Qi are the external forces for the particle. Here T > 0, as
the yarns can transmit only tension, in this case the initial partial differential
equation (PDE) (1) is hyperbolic. If the tension becomes nonpositive, i.e., T ≤ 0,
then PDE type changes and the mechanical instability causes a singularity of
the equation of motion. In the case of extensible yarns, the extensibility equation
is defined at the segment level by the distance between two particles

εi,i+1 =
|PiPi+1| − L

L
(6)

and the material properties are defined in discrete form by eq. (3):

Ti,i+1 = AEεi,i+1 + f

(
εi,i+1,

∂εi,i+1

∂t

)
. (7)

The first term in eqs. (3) and (7) represents the linear elastic behavior of the
yarn, where E is the initial elasticity module and A – the area of the yarn cross
section. Their product AE is determined from the stress-strain diagram of tensile
testing machine and has the meaning of the spring constant. Most polymers
usually have nonlinear behavior under tension affect. The nonlinearity caused by
the damping of yarns is represented through damping force AD

∂εi,i+1
∂t , where D is

the damping resistance. For more general nonlinear “force-elongation” relations,
additional terms in eq. (7) should be implemented. In most practical applications
parabolic functions of both ε and ∂εi,i+1

∂t satisfy the required accuracy.
Eqs. (4)–(7) and respective boundary conditions at the one end (see below)

are considered as a system of 3 × N ordinary differential equations (ODE) for
all N particles in 3D space. Theoretically this can be solved by using various
numerical methods for ODE, but usually many authors report serious problems
of convergence and accuracy [9].

To avoid such kind of problems, we introduce dimensionless variables. Let ρ be
the linear density of the yarn, R – the unwinding radius (see Fig.2), V – the yarn
velocity, T – the time for unwinding of the yarn in one winding (e.g., with length
2 π R), L – the distance between the particles, as we assume an equal distance
between each two neighboring particles j, j +1. We introduce dimensionless time
t̄ = t

T where T = 2πR
V = 2π

ω and ω is the angular velocity of the unwinding point.
This dimensionless time differs from those in [6] with 2 π in order to have exact
physical sense - i.e., time increment Δt̄ = 1 to correspond to unwinding of one
winding. Dimensionless coordinates r̄ = r

R and force F̄ = F
ρV 2 = F

ρω2R2 are
according to [6]. Here usually the variable ξ = V

R·ω is introduced, as for ring,
rotor and centrifugal spinning ξ �= 1. In our case of axial unwinding or all other
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Fig. 2. Initial geometry of the problem

cases, where the bobbin with the yarn is not rotating, one sets ξ = 1. The relation
of the initial distance between particles L and the unwinding radius r can be
noted as λ = R

L . By substituting these relations, we obtain the dimensionless
equation of motion:

d2r̄
dt̄2

= 4 π2 ξ λ F̄. (8)

The dimensionless velocity can be derived as v̄ = v T
R = v 2 π

V and the acting
tension force between particles is obtained from eq. (7) in the case of linear
elastic material as T̄i,i+1 = AE

ρ V 2 εi,i+1.
Since the yarn is pulled up with constant velocity at the first particle i = 1,

we set our boundary conditions:

v̄1,x = 0 v̄1,y = 0 v̄1,z = 2 π = const. (9)

The initial coordinates are calculated from approximate solution of the station-
ary rotating yarn with special program and the configuration is shown on Fig. 2.
Currently we start the iterations with zero initial velocities of all particles, except
the first one, where (9) are applied.

4 Numerical Scheme and Method of Solution

Equation (8) is an ODE but we have in mind, that force F̄ is calculated by
spacial derivatives. As it is not explicitly presented in the equations and appears
through calculation of the elongation (5) and (6), we have to look for numerical
methods for PDE, (not for ODE). Several time-evolutions problems are success-
fully integrated by either the Leap-frog scheme [10], [11], [12] or Verlet algorithm
[13]. We implemented both of these schemes for our problem:

– Leap-Frog algorithm (velocities for time of a half step)

r̄j = r̄j−1 + v̄j− 1
2 Δt̄ v̄j+ 1

2 = v̄j− 1
2 + āj Δt̄ ;

– Verlet algorithm [13] (explicit central difference for discretization of the time
derivatives):

r̄j+1 = r̄j + v̄j Δt̄ + 1
2 ā

j (Δt̄)2 v̄j+1 = v̄j + 1
2

(
āj+1 + āj

)
Δt̄

where the superscripts denote the number of the time step. Superscript j cor-
responds to time t̄ = jΔt̄. The particle indices i are omitted for simplicity. The
accelerations āj = d2r̄j

dt̄2 are calculated according to eq. (8).
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For the explicit integration methods the stability limit is defined in terms of
maximal time-step Δt depending on the highest frequency of the system ωmax.
This step for linear elastic rod or for mass-spring systems is identical (see [11],
[12]). For the terms of the 1D continuum:

Δtstable =
L

c
c =

√
E

ρm
ρm =

ρ

A
⇒ Δtstable = L

√
ρ

E A
.

More accurate estimate of the maximal time step, which takes into account that
1D continuum is moving in 3D space [14] is the well known Courant-Friedrichs-
Lewy stability criterion for 3D problems Δt ≤ L√

3|V | .

5 Some Results and Discussion

We calculated the maximal time step size as Δt̄max = 0.00315, but during the
numerical tests the solution is stable for Δt̄max < 0.02. We used Δt̄ = 0.1Δt̄max

in order to ensure enough accuracy of the results. The tension forces in the
segment between the first and the second particle, computed for time steps
Δt = 0.004 and Δt = 0.002 are presented on Fig.3 (left). The relative error

δF̄ j =

∣∣∣∣∣
F̄ j

Δt̄=0.004 − F̄ 2j
Δt̄=0.002

F̄ 2j
Δt̄=0.002

∣∣∣∣∣
of these forces is presented on the same figure (right). For the stationary parts
of the motion it does not exceed 2% and increases up to 20% when time t̄ > 2.5.
For these times the free yarn length is quite large and an additional reduction
of the time step has to be performed, if the relative accuracy needs to remain in

Fig. 3. Tension force between the first and second particle of the yarn during the first 4
unwinding cycles, calculated with two time-steps (left) and relative error in [%] (right)
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Fig. 4. Mean potential (left) and kinetic (right) energy per moving particle of the
system

certain limits. The above problem occurs, because the higher order loop balloon
forms gain more oscillations and required small integration steps in order the
correct yarn position to be followed. The biggest error during the first time
steps is a result of the transient process, which is running at the beginning and
which is caused by zero initial velocity of the yarn. After this region follows very
smooth region with almost constant yarn tension. It is well-known [6] that the
equation of motion of yarn has more than one solution and switches between
them in the bifurcation points. From mechanical point of view, the solutions can
be considered as a “single-loop balloon”, “one-and-a half loop balloon”, “double-
loop balloon”, etc. In this way when t̄ = 0÷1 the single-loop balloon is realized.
At the next time step, the free yarn length increases and hence more energy
is needed to stabilize the single balloon. But the system does not have enough
energy and switches itself into double-loop balloon. The last one corresponds to
the switching between the different solutions of equation. This qualitative jump
can be seen on Fig.4 (left) for time t̄ = 1÷2. On Fig.3 (left) the above mentioned
phenomenon is not recognizable because the selected particle is quite away of
the region of motion changes. When time t̄ > 2 there is again an additional
switch into a triple-loop balloon, after that the yarn force begins to oscillate by
jumping to another solution of higher order. Certain yarn geometries are plotted
on Fig.5, and the detailed analysis of the evolution of the solution shows, that
all bifurcation jumps are simulated properly. Therefore the presented model can
be applied successfully for resolving such problems, which can not be said for
other models published till now.

Let us denote that the energy (Fig.4) is computed as a mean energy of the
system per moving particle but not as full energy of the whole system. The last
is due to the yarn length, which increases linearly in the time for the problem
under consideration and hence the investigation of full energy is not appropriate
for obtaining useful information about the system. All presented results are
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Fig. 5. Yarn geometry during the unwinding for time steps j = 400; 600; 800. Δt̄ =
0.002, ρA = 0.120 g/m, V = 1240 m/min.

derived with the calculations with Leap-Frog algorithm. Let us denote the same
results obtained by the Verlet algorithm though non-presented here, differ in the
calculated force with no more than 0.5%.

6 Conclusions

Computational model for simulations of the yarn motion, which uses successfully
the Leap-Frog and Verlet algorithms for treating Cauchy problems is presented.
It is applied for the case of textile yarn unwinding without air resistance. The
algorithm simulates the stable states of the yarn motion, as well as transient
process if bifurcation occurs. The continuum is discretized in particles connected
with segments. This approach allows the algorithm to be directly applied for
solving wide range of similar problems.
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Abstract. The paper deals with a numerical approach for the dynamic
soil-pile interaction, considered as an inequality problem of structural
engineering. So, the unilateral contact conditions due to tensionless and
elastoplastic softening/fracturing behavior of the soil as well as due to
gapping caused by earthquake excitations are taken into account. More-
over, second-order geometric effects for the pile behavior due to preex-
isting compressive loads and environmental soil effects causing instabi-
lization are taken also into account. The numerical approach is based
on a double discretization and on mathematical programming. First, in
space the finite element method (FEM) is used for the simulation of
the pipeline and the unilateral contact interface, in combination with
the boundary element method (BEM) for the soil simulation. Next, with
the aid of Laplace transform, the problem conditions are transformed to
convolutional ones involving as unknowns the unilateral quantities only.
So the number of unknowns is significantly reduced. Then a marching-
time approach is applied and finally a nonconvex linear complementarity
problem is solved in each time-step.

1 Introduction

Dynamic soil-pile interaction can be considered [1] as one of the so-called inequal-
ity problems of structural engineering [2], [3]. As well known [2], the governing
conditions of these problems are equalities as well as inequalities. Indeed, for
the case of the general dynamic soil-structure interaction, see e.g. [4], [10], [12] –
[14] the interaction stresses in the transmitting interface between the structure
and the soil are of compressive type only. Moreover, due to in general nonlinear,
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elastoplastic, tensionless, fracturing etc. soil behavior, gaps can be created be-
tween the soil and the structure. Thus, during e.g. strong earthquakes, separation
and uplift phenomena have often appeared, as the praxis has shown.

The mathematical treatment of the so formulated inequality problems can
be obtained by the variational or hemivariational inequality approach [2], [3].
Numerical approaches for some dynamic inequality problems of structural engi-
neering have been also presented, see e.g. [1] – [5].

The present paper deals with a numerical treatment for the inequality dy-
namic problem of soil-pile interaction where second-order geometric effects for
the pile behavior due to preexisting compressive loads are taken also into ac-
count. In the problem formulation, the above considerations about gapping as
well as soil elastoplastic/softening behavior are taken into account. The proposed
numerical method is based on a double discretization and on methods of nonlin-
ear programming. So, in space the finite element method (FEM) coupled with
the boundary element method (BEM), and in time a step-by-step method for the
treatment of convolutional conditions are used. At each time-step a non-convex
linear complementarity problem is solved with reduced number of unknowns.
Finally, the presented procedure is applied to an example problem of dynamic
pile-soil interaction, and some concluding remarks useful for the Civil Engineer-
ing praxis are discussed.

2 Method of Analysis

2.1 Coupling of FEM and BEM

A spatial discretization is applied for the soil-pile system by coupling the FEM
and BEM in the wellknown way, see e.g. Brebbia et al. [6]. For simplicity, the
pile is first considered as linearly elastic, and discretized into usual beam/frame
finite elements. Each pile node is considered as connected to the soil on both
sides through two unilateral constraints (interface soil-elements). Every such
interface element consists of an elastoplastic-softening spring and a dashpot,
connected in parallel (Figure 1), and appears a compressive force r(t) at the
time-moments t only when the pile node comes in contact with the soil. Let v(t)
denote the relative retirement displacement between the soil-element end and
the pile-node, and g(t) the existing gap. Then the unilateral contact behavior of
the soil-pile interaction is expressed in the compact form of the following linear
complementarity conditions:

v ≥ 0, r ≥ 0, r.v = 0. (1)

The soil-element compressive force is in convolutional form [4]

r = S(t) ∗ y(t), (2a)
y = w − (g + v), (2b)

or in form used in Foundation Analysis [11]

r = cs(∂y/∂t) + p(y). (3)
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Here cs is the soil damping coefficient, w = w(t) the pile node lateral displace-
ment, y = y(t) the shortening deformation of the soil-element, and p(y) the
spring force. By ∗ the convolution operation is denoted. S(t) is the dynamic
stiffness coefficient for the soil and it can be computed by the BEM [4]. Func-
tion p(y) is mathematically defined by the following, in general nonconvex and
nonmonotone constitutive relation

p(y) ∈ ΘP (y), (4)

where Θ is Clarke’s generalized gradient and P (.) is the symbol of superpo-
tential nonconvex functions [2]. So, (4) expresses in general the elastoplastic-
softening soil behavior, where unloading-reloading, gapping, environmental de-
grading, fracturing etc. effects are included.

For the herein numerical treatment, p(y) is piece-wise linearized in terms of
non-negative multipliers as in plasticity [7], [8]. So the problem conditions for
the assembled soil pipeline system are written in matrix form according to the
finite element method:

M ü(t) + C u̇(t) + (K + G)u(t)f (t) + AT r(t) (5)

y = AT u − ug − g − B z, (6)

r = S ∗ y, (or r = E y), (7)

ω = BT r − H z − k, ω ≤ 0, z ≥ 0, zT . ω = 0, (8)

u(t = 0) = u0, u̇(t = 0) = u̇0, g(t = 0) = g
0
. (9)

Here (3) is the dynamic equilibrium condition, (4) – (6) include the unilateral and
the piece wise linearized constitutive relations and (7) are the initial conditions.
As usual, M , C and K are the mass, damping and stiffness matrix, respectively;
G is the geometric stiffness matrix depending linearly on pre-existing stress state
[8], [15], [16]; u, f are the displacement and the force vectors, respectively; ug(t)
is the vector of (possible) seismic ground displacement; A, B are kinematic
transformation matrices; z, k are the nonnegative multiplier and the unilateral
capacity vectors; and E, H are the elasticity and unilateral interaction square
matrices, symmetric and positive definite the former, positive semidefinite the
latter for the elastoplastic soil case. In the case of soil softening, some diagonal
entries of H are nonpositive [7]. For the case of nonlinear pile behavior, either
the linear terms C u̇ and K u can be replaced by the nonlinear matrix functions
C(u̇) and K(u) , or the local nonlinearities (e.g. elastoplasticity) are included in
appropriate internal unilateral constraints [7] - [9].

Thus the so-formulated problem is to find (u, r, g, z) satisfying (1) – (9) when
(f, ug, u0, u̇0, g0

) are given.
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2.2 Time Discretization. The Convolutional LCP

Assuming that the unilateral quantities z and T include all local nonlinearities
and unilateral behavior, the procedure of Liolios [9] can be used. So, applying
the Laplace transform to (3) – (7), except (8)4, and after suitable elimination of
unknowns and back transforming to time domain, we arrive eventually at

ω(t) = D(t) ∗ z(t) + d(t). (10)

Thus, at every time-moment the problem of rels. (8)2,3,4 and (10) is to be solved.
This problem is called here Convolutional Linear Complementarity Problem
(CLCP), it has a reduced number of unknowns and it is solved by time dis-
cretization [4]. So, for the time moment tnn�t, where �t is the time step, we
arrive eventually at a non-convex linear complementarity problem [6]:

ωn = D zn + dn, zn ≥ 0, ωn ≤ 0, zT ωn = 0. (11)

Alternatively, the above inequality problem of rels. (1) - (9) can be solved in
time by direct time integration methods as in Liolios [1]. So, some algebraic ma-
nipulations and a suitable elimination of unknowns lead to the same discretized
LCP (11).

Solving problem (11) by available computer codes of nonlinear mathematical
programming [2], [3], [7], we compute which of the unilateral constraints are
active and which not in each time-step �t. Due to soil softening, matrix D
is not strictly positive definite in general. But as numerical experiments have
shown, in most civil engineering applications of soil-pile interaction this matrix
is P-copositive. Thus the existence of a solution is assured [6] - [8].

3 Numerical Example

The example problem of Liolios [1] is reconsidered here for comparison reasons.
The steel IPB300 H-pile depicted in Figure 1(a) has a length L = 12m and is
fully embedded into a clay deposit. The pile has a stiffness EI = 52857KN.m2,
is fixed at the bottom and free at the top. The effects of the over structural
framing are approximated by a lumped mass 2KN.m−1.sec2 and a rotational
inertia 2KN.m.sec2. The pile is subjected to a vertical constant top force of
120KN and to a dynamic horizontal top force with the time history shown in
Figure 2(a). The elastoplastic-softening soil behavior according to eq. (2b) is
shown in Figure 2(b) – (diagram p-y [11])- where branch OA has the exponential
form p(x, y)pu.[1 − exp(−100y)], with pu = 375[1 − 0.5exp(−0.55x)], and for the
branch AB holds p(x, y) = 0.75pp.(−3ξ2 + 2ξ3) + pp, with ξ = (y − 0.02)/0.06.
For unloading-reloading paths the inclination is 100pu. Some response results
from the ones obtained by applying the herein presented numerical procedure
are indicatively reported. So the maximum values of the pile horizontal displace-
ments and the final gaps along the pipeline due to permanent soil deformations
are shown in Figures 1(b) and 1(c), respectively. These results are in good
agreement with those of Liolios [1].
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(a) (b) (c)

Fig. 1. The numerical example: (a) The soil-pile system model, (b) Maximum horizon-
tal pile displacements, (c) Final soil-pile gaps

(a) (b)

Fig. 2. The numerical example: (a) Dynamic loading diagram, (b) Diagram p-y of the
soil behavior

4 Concluding Remarks

As the above indicative results of the numerical example show, unilateral contact
effects due to tensionless soil capacity and to gapping may be significant and have
to be taken into account for the dynamic soil-pile interaction. These effects can
be numerically estimated by the herein presented procedure, which is realizable
on computers by using existent codes of coupling the FEM and BEM as well
as optimization algorithms. Thus, the presented approach can be useful in the
praxis for the earthquake resistant construction, design and control of piles.
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Abstract. The effect of soil-structure interaction (SSI) is an important
consideration and cannot be neglected in the seismic design of structures
on soft soil. Various methods have been developed to consider SSI effects
and are currently being used. However, most of the approaches including
a general finite element method cannot appropriately consider the prop-
erties and characteristics of the sites with complicated soil profiles. To
overcome these difficulties, this paper presents soil-structure interaction
analysis method, which can consider precisely complicated soil profiles by
adopting an unaligned mesh generation approach. This approach has the
advantages of rapid generation of structured internal meshes and leads
to regular and precise stiffness matrix. The applicability of the proposed
method is validated through several numerical examples and the influ-
ence of various properties and characteristics of soil sites on the response
is investigated.

1 Introduction

Over the last few decades, many building structures have been damaged from
devastating earthquakes and the concept of seismic resistant design have become
worldwide popular. In the seismic resistant design, the soil-structure interaction
(SSI) is one of the important considerations for structures on soft soil since the
geometry and the properties of the supporting soil exert large influence on their
behavior. Various methods have been developed to consider soil-structure inter-
action effects and are currently being used in the field of earthquake engineering
[1], [2], [3]. Most of these methods utilize simplified soil profiles such as horizon-
tally layered soil to avoid the complexity in the modeling of soil. However, these
simplified approaches cannot consider accurately complicated soil profile and re-
duce the reliability of the analysis results. Therefore, a new approach to consider
appropriately complicated soil profiles is needed for precise SSI analysis.

One of the viable approaches is the finite element method. However, a gen-
eral finite element approach can be nearly unpractical for soil sites exhibiting
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complex geometry and material discontinuity since an element is endowed only
with one material property and finite element boundaries coincide with mate-
rial interfaces. Furthermore, even in case the line of material discontinuity can
be matched with the element boundary, the shape of an element may lose its
convexity and lead to ill-conditioned stiffness matrix. To overcome these diffi-
culties, this paper presents a SSI analysis method, which can consider precisely
complicated soil profiles.

2 Soil-Structure Interaction Analysis Method
Considering Complicated Soil Profiles

In a structure subjected to ground excitations on soft soil, the structure interacts
with the surrounding soil and the SSI exerts large influence on the dynamic
behavior. Therefore, in this study a precise SSI analysis method is developed
by adopting an unaligned mesh generation approach [4] and by using a direct
method with a modified Lysmer transmitting/absorbing boundary [5].

2.1 Numerical Integration of a Finite Element with Discontinuity

In a general finite element analysis, the interface between materials is used as
an element boundary so as to avoid material discontinuity within an element.
However, the modeling is difficult when the interface between materials is com-
plicated - the shape of the element might lose its convexity and might result in
ill-conditioned stiffness matrix [6]. To overcome these shortcomings, this study
adopts an unaligned mesh generation approach which calculates accurately the
stiffness matrix of an element with material discontinuity [4].

The application of an unaligned mesh generation approach leads to uniform
structured finite elements. The numerical integration for an element consisting
of a unique material is trivial, but the integration for an element composed of
two materials is more delicate. The main concept to perform precise numerical
integration for an element with material discontinuity is to use enough num-
ber of Gauss quadrature points. Fig.1 shows the concept of an unaligned mesh
generation approach.

The error bound in the integration of a discontinuous function is expressed by
the largest quadrature weight wi and the maximum distance ξi − ξi+1 between
two neighboring Gauss points [4].

Fig. 1. Finite element with material discontinuity
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Error bound ≤ max|wi| · max|ξi − ξi+1| ≈ 5.07N−1.82 (1)

where N is the number of Gauss points. The same method can be applied to
calculate the stiffness matrix of the finite element. The error bounds in three
dimensions are estimated from 0.040 in case of 3 × 3 × 3 to 0.0004 in case of
7 × 7 × 7 Gauss points by equation (1). This shows that the stiffness matrix
of an element with discontinuity is calculated with enough precision using an
adequate number of quadrature points.

2.2 Soil-Structure Interaction Analysis Method Using the Proposed
Integration Method

The methods for SSI analysis are mainly classified as direct methods and sub-
structure methods according to the way they include the soil in their analysis.
This paper adopts a direct method since it is widely used because of its simplicity
and accuracy [7], [8]. The soil and the structure are modeled as shown in Fig. 2.

Fig. 2. Model for soil-structure interaction analysis

The treatment of seismic input and boundary conditions is also important
because those affect significantly the dynamic response. The boundary conditions
of the soil media are modeled using a modified Lysmer transmitting/absorbing
boundary such that the domain beyond the soil media of interest is replaced
with a set of viscous dampers, which are proportional to the wave velocity of
soil [5]. At each node on the boundary, the tangential and the normal dampers
absorb the energy of the S-wave and the P-wave, respectively.

3 Analysis of Soil-Structure Interaction Considering
Complicated Soil Profiles

The applicability of the proposed method is validated and the influence of var-
ious properties and characteristics of the soil sites on the dynamic response is
investigated through numerical examples.

3.1 Structure and Soil Profile

The soil-structure interaction analysis was conducted on 6-story structure built
on soft soils. The structure was modeled as illustrated in Fig. 2 with the prop-
erties summarized in Table 1. The damping ratio of the structure is assumed to



Analysis of SSI Considering Complicated Soil Profile 655

Table 1. Properties of a structure model

Floor Level(m) Stiffness(kN/m) Mass(kg)

7 22.5 - 1050000
6 19 7820000 1050000
5 15.5 8540000 1150000
4 12 9020000 1150000
3 8.5 9890000 1150000
2 4.5 10200000 1150000
1 0 7280000 1390000
B1 -3.5 ∞ 1750000

(b) case mp (c) case pm (d) case pp(a) case mm

Fig. 3. Four types of soil profile models

be 0.03. Analysis is performed on five different soil profiles (nn, mm, mp, pm,
pp) and three soil types (I, II, III). Soil profile model nn stands for conventional
soil with horizontal flat layers. The other four soil profiles correspond to realistic
three-layered soft soils with uneven soil profiles (Fig. 3). The soil media with
dimensions of 100m×100m×40m is divided into 20×8×12 uniform structured
finite elements. The material properties of each soil type and layer are listed
in Table 2. The number of Gauss points used for element with discontinuity is
7×7×7 and that for element without discontinuity is 3×3×3, which increase the
accuracy and the efficiency of the calculation. The artificial earthquake ground
acceleration is used as input motion with peak acceleration of 0.2g at the bedrock
(Fig. 4).

To validate the proposed method, analysis of free field motion for soil profile
case nn was performed. One mesh is structured to have discontinuity within an
element and the other mesh is aligned with the line of material discontinuity. The
response spectra on the ground surface for both cases are in good agreement.

3.2 Influence of Properties and Characteristics of Soil

The analysis for the given soil profiles and soil types was performed by the
proposed method. Fig. 5 shows the response spectra at the ground surface for
model without structure. The differences between cases are distinct in response
spectra in contrast to those in the acceleration history such that only spectrum
results are presented. The soil type I is stiffer than type II and III such that
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Table 2. Properties of the soil types and layers

Soil Type Layer S-wave Density Poisson’s Damping
(m) velocity(m/s) (kg/m3) ratio ratio

I Top(0-13.33) 600 1900 0.35 0.10
I Middle(-26.67) 900 2000 0.30 0.04
I Bottom(-40.00) 1200 2100 0.25 0.02
II Top(0-13.33) 400 1800 0.35 0.10
II Middle(-26.67) 800 1900 0.30 0.04
II Bottom(-40.00) 1000 2000 0.25 0.02
III Top(0-13.33) 350 1800 0.35 0.10
III Middle(-26.67) 650 1900 0.30 0.04
III Bottom(-40.00) 1000 2000 0.25 0.02
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Fig. 4. Input ground acceleration

the variation of the response due to the soil profile is relatively small in soil
type I. The amplified frequency range in each soil type is changed due to the
soil profile. Table 3 presents peak ground accelerations (PGA) in time histories.
The variation of PGA due to the soil profile is about 15%, 12% in soil type II
and III, but 5% in soil type I. This result shows that the properties and the
characteristics of soil exert large influence on the response in soft soil and the
precise description of soil layers is important in the analysis.

Fig. 6 presents the response spectra of the structure at the ground level. The
spectral acceleration of the structure at the ground level varies according to soil
type and the soil profile in Fig 6. The peak value of spectral acceleration occurs
at 8.03Hz, 7.92 Hz, and 2.75Hz for the soils I, II, III respectively, which shows
that the softer soil is, the lower the frequencies of the dominant modes in the
response spectra are. This phenomenon is due to the fact that the frequency
of the governing structural mode coupled with soil and amount of amplification
vary according to the properties and the characteristics of the soil. The maximum
spectral acceleration occurs in case mm (2.88g at 8.03Hz) for soil type I, in case
pp (4.08g at 7.92Hz) for soil type II, in case mm (4.33g at 2.75Hz) for soil type
III. The minimum peak value occurs in case pp (2.60g at 8.03Hz) for soil type I,
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Fig. 5. Spectral accelerations at the ground surface without structure for three soil
types

Table 3. Max. accelerations at the ground surface without structure

Case mm mp nn pm pp

Soil Type I 0.359g 0.349g 0.349g 0.349g 0.342g
Soil Type II 0.422g 0.417g 0.366g 0.385g 0.372g
Soil Type III 0.397g 0.396g 0.356g 0.390g 0.381g

(a) Type I (c) Type III(b) Type II
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Fig. 6. Spectral accelerations at the ground surface with structure for three soil types

in case mm (3.11g at 7.92Hz) for soil type II, in case pp (3.93g at 2.75Hz) for soil
type III. These results show that the variation of the peak value changes up to
31% due to the soil profile and the precise description of soil layers is important
in the analysis of soil-structure interaction.

Fig. 7 presents the response spectra of the structure at the top of the structure.
The variations due to the soil profile are overall smaller than those at the ground
level because the frequency of the structural mode differs from the frequency
range of amplified soil response. The maximum spectral acceleration occurs in
case mm at 3.21Hz for soil type I, in case pm at 3.09Hz for soil type II, in case
nn at 2.75Hz for soil type III. The frequency of maximum spectral acceleration
decreases as the soil becomes soft.
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(a) type I (b) type II (c) type III

0

10

20

30

0 5 10 15 20
Frequency, Hz

Sp
ec

tra
l a

cc
le

ra
tio

n,
 g mm mp nn

pm pp

0

10

20

30

0 5 10 15 20
Frequency, Hz

Sp
ec

tra
l a

cc
le

ra
tio

n,
 g mm mp nn

pm pp

0

10

20

30

0 5 10 15 20
Frequency, Hz

Sp
ec

tra
l a

cc
le

ra
tio

n,
 g mm mp nn

pm pp

Fig. 7. Spectral accelerations at the top of the structure for three soil types

4 Conclusion

In a building structure subjected to ground excitations on soft soil, the struc-
ture interacts with the surrounding soil and the soil-structure interaction ex-
erts larger influence on the behavior. Therefore, a precise SSI analysis method,
which can consider various soil conditions, is necessary. This paper presents an
efficient and reliable method for SSI analysis by adopting an unaligned mesh
generation approach and using a direct method with modified Lysmer trans-
mitting/absorbing boundary. Contrary to a general finite element method, in
which an element is endowed only with one material, in the proposed method
the soil media is modeled to uniform structured finite elements with discon-
tinuity such that the method has the advantages of rapid mesh generation
of complicated soil media and it leads to regular and precise stiffness
matrix.

The applicability and the reliability of the proposed method are validated
through numerical examples and it is verified that the properties and character-
istics of the supporting soil including soil profile should be accurately considered
in the analysis. The influence of various properties and characteristics of the soil
on the response is investigated. The softer soil is, the lower the frequencies of the
dominant modes in the response are. The variation of the peak value changes
largely due to the soil profile and soil properties. In case that the frequency of the
dominant structural mode is close to frequency range of dominant soil response,
the dynamic behavior may be amplified significantly.
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Abstract. A new class of regional pole assignment problems for linear
control systems is considered, in which each closed-loop system pole is
placed in a desired separate region of the complex plane. A numerically
stable method for regional pole assignment is proposed, in which the
design freedom is parameterized directly by specific eigenvector (or prin-
cipal vector) elements and pole location variables that can be chosen
arbitrarily. Combined with an appropriate optimization procedure, the
proposed method can be used to solve a wide range of optimization
problems with pole location constraints, arising in the multi-input control
systems design (H2/H∞ optimization with pole assignment, robust pole
assignment, pole assignment with maximum stability radius, etc.).

1 Introduction

Pole assignment is one of the main approaches in the design of state regulators,
observers and dynamic compensators for linear control systems. In the multi-
input case, the freedom in the pole assignment makes possible to achieve some
more design purposes. For instance, several pole assignment algorithms have
been proposed which minimize the sensitivity of the closed-loop system poles
relative to unstructured and structured perturbations, see [1] – [4].

Along with the standard pole assignment, a regional pole assignment is also
used, in which the closed-loop system poles are placed in a specified region of
the complex plane, rather than at specified locations [5,6]. The regional pole
assignment is applied in various design problems, such as the H∞ control with
pole placement constraints [7], robust regional pole placement [8], etc.

In this paper a new class of pole assignment problems is considered, in which
each closed-loop system pole is placed in a specified separate region. A method
for regional pole assignment is proposed, in which the design freedom is param-
eterized directly by specific eigenvector (or principal vector) elements and pole
location variables that can be chosen arbitrarily. The method is numerically sta-
ble and provides substantially more flexibility in design. Combined with an ap-
propriate optimization procedure, the proposed method can solve a wide range of
optimization problems with pole location constraints, arising in the multi-input
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control systems design (H2/H∞ optimization with pole assignment, robust pole
assignment, pole assignment with maximum stability radius, etc.) [9].

The following notations are used later on: F denotes the field of real (F = R)
or complex (F = C) numbers; Fm×n – the space of m × n matrices A = [aij ]
over F ; AT – the transposed matrix A; AH – the complex conjugate transpose
of A; spect(A) – the spectrum (i.e. the set of eigenvalues counted according to
algebraic multiplicity) of the matrix A; ‖A‖ – the norm of the matrix A (we use
the spectral norm ‖A‖2 = σmax(A) – the maximum singular value of A, and the
Frobenius norm ‖A‖F = (

∑
|aij |2)1/2); In – the unit n× n matrix.

2 Problem Statement

Consider the linear controllable system

ẋ(t) = Ax(t) + B1w(t) + B2u(t) (1)

z(t) = Cx(t) + Du(t),

where x(t) ∈ Fn, w(t) ∈ F l, u(t) ∈ Fm and z(t) ∈ F q are the state, distur-
bance, control and performance vectors, respectively, and A ∈ Fn×n, B1 ∈ Fn×l,
B2 ∈ Fn×m, C ∈ Fq×n, D ∈ Fq×m (we assume that F = R or F = C). Let
(m1, . . . , mp) be the set of conjugate Kronecker indexes of the pair (A, B2):

m1 = m = rank(B2), mi = rank(Pi)− rank(Pi−1); i = 2, . . . , p,

where p is the controllability index of (A, B2) and

Pi = [B2 AB2 . . . Ai−1B2] ∈ Rn×im.

Applying the state feedback u(t) = −Kx(t), where K ∈ Fm×n, we obtain the
closed-loop system

ẋ(t) = Aclx(t) + Bclw(t), z(t) = Cclx(t), (2)

where Acl = A−B2K, Bcl = B1, Ccl = C −DK.
Let L = {Λ1, . . . , Λn} ⊂ C be the prescribed pole region set of (2), where

Λi(λi0, ri) = {λ ∈ C : (�(λ) − �(λi0))2 + (�(λ) − �(λi0))2 ≤ r2
i }, i ∈ 1, n , are

the prescribed pole regions and λi0 and ri0 ≥ 0 are the regions centers and radii.
Then for each pole set � = {λ1, . . . , λn} ⊂ L, λi ∈ Λi, there exists a matrix
K ∈ Fm×n such that

spect(A−B2K) = �. (3)

The set of matrices K ⊂ Fm×n with the property (3) is n(m − 1)-dimensional
algebraic variety of complicated structure so that its direct parametrization by
the free elements of K is a difficult problem except for some low-dimensional
cases. A more convenient, although redundant, parametrization of the set K
may be done in the following way [9].

For a given � denote by V� the set of all nonsingular matrices V ∈ Fn×n such
that

spect(V −1(A−B2K)V ) = � (4)
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for K ∈ K. Similarly, let KV ⊂ Fm×n be the set of all K ∈ Fm×n such that (4)
holds for some V . Note that V may have as its columns not only eigenvectors
but generalized eigenvectors of A−B2K as well.

The set V� of all attainable transformation matrices V is an mn-dimensional
algebraic variety but the set KV itself is only n(m − 1)-dimensional because of
the exististence of n non trivial relations given by (3).

The problem for finding K for � ⊂ L and V ∈ Vλ is said to be the region
set pole assignment problem for the system (1). In the next section we present a
numerically stable solution of this problem, which utilizes a parametrization of
the set KV by elements of the eigenvectors and generalized eigenvectors of the
matrix A−B2K, and a parametrization of the set L by pole location variables.

The freedom in L and KV can be used to optimize some performance index
specifying the behavior of the closed-loop system. This makes possible to solve a
number of important control systems design problems, e.g. pole assignment with
H2 and/or H∞ optimization, robust pole assignment, design of dynamic output
compensators, etc [9].

3 Main Result

In this section we first present a computational method which preassigns the
closed-loop system poles at a given location � ∈ L and utilizes in full the freedom
in the Schur vectors of the closed-loop system matrix. The method presented is a
further extension of the numerically stable pole assignment algorithm described
in [10].

The first stage of the method is a reduction of the pair (A, B2) into orthogonal
canonical form [10]

(A0, B0
2) = (UT AU, UT B2),

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 · · · A1,p−1 A1p

A21 A22 A23 · · · A2,p−1 A2p

0 A32 A33 · · · A3,p−1 A3p

...
...

. . .
...

...
0 0 0 · · · Ap,p−1 App

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B0

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B10

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the matrices

B10 ∈ Rm1×m, Ai,i−1 ∈ Rmi×mi−1 , i = 2, . . . , p

are of full row rank, and U is an orthogonal n× n matrix.
This reduction may be done by using singular value decomposition or, more

efficiently, using QR decomposition with column pivoting. As it is shown in [11]
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the corresponding algorithm is numerically stable, the computed pair (A0, B0
2)

being exact for slightly perturbed data (A + ΔA, B2 + ΔB2).
The second stage of the method is to determine the gain matrix. Since the

reduced closed-loop system matrix A0−B0
2K

0, K0 = KU, is in block-Hessenberg
form, it is possible to find an eigenvector v0 of this matrix knowing only A0 and
λ0 ∈ �. In fact, from the equation

(A0 −B0
2K0)v0 = λ0v0,

where v0 = [v1 . . . vp]T, vi ∈ Fmi , it follows

Ai,i−1vi−1 = viλ
0 −

p∑
k=i

Aikvk; i = p, . . . , 2, (5)

so that by setting vp it is possible to compute recursively vp−1, . . . , v1. The
elements of vp are free (except that at least one must be non-zero so that
vp 	= 0) and different choices of these elements will lead to different
solutions K0.

Apart from the freedom in vp , there is an additional freedom in the solution
of equation (5) if mi < mi−1. This freedom may be used by QR or singular value
decomposition of Ai,i−1 when solving (5).

Suppose now a sequence of plane rotations in the corresponding planes is
chosen so as to annul successively all elements of v0 except the first one moving
from bottom to the top. As a result we obtain

QH(A0 −B0
2K0)Qv1 = v1λ0 (6)

v1 = QHv0 = [ v10 0 . . . 0 ]T, v10 	= 0,

where Q is the product of plane rotations implemented and the (n−1)× (n−1)
block in the lower right corner of QHA0Q is again in block-Hessenberg form.
This block has the same structure as A0 except that the index mp has decreased
with 1.

From (6) one gets a linear equation for the first column of K0Q and the
pole λ0 is deflated from the problem. It is possible to proceed in the same way
at the next step working with a subsystem of order n − 1. Thus each pole is
prescribed independently which allows to assign multiple poles. In this way, by
setting the free elements of the subsystem eigenvectors, it is possible to ob-
tain at each step a specific solution for the corresponding column of the gain
matrix.

The determination of the gain matrix K corresponding to specified eigen-
vector and gain matrix elements is done by the following algorithm which makes
use of the matrices A0, B0

2 of the orthogonal canonical form as well as the
transformation matrix U :
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1 Set k = 0, Q = U

2 k ← k + 1
3 If p = 1 go to 9
4 Set vp

5 For i = p, p− 1, . . . , 1
5.1 If i > 1 compute vi−1 from (5) specifying the free elements
5.2 Determine a product Qi of plane rotations transforming vi

5.3 A0 ← QH
i A0Qi

5.4 If i = 1, B0
2 ← QH

i B0
2

5.5 Q← QQi

6 Determine the k-th columns of K0 and the upper triangular form
of QH(A−B2K)Q specifying the free elements

7 mp ← mp − 1
8 If mp = 0, p← p− 1

Go to 2
9 Determine the rest (from k-th to n-th) columns of K0 and the upper

triangular form of QH(A0 −B0
2K0)Q specifying the free elements

10 K = K0QH

In case of real systems the above algorithm is derived as a real arithmetic
procedure for both real and complex desired poles.

The numerical properties of the algorithm presented are very favorable. It can
be shown that it is backwardly stable, i.e. the computed gain matrix is exact
for matrices A + ΔA, B2 + ΔB2, where ‖ΔA‖, ‖ΔB2‖ are small relative to
‖A‖, ‖B2‖, resp.

Consider finally the parametrization of the prescribed pole region set L =
{Λ1, . . . , Λn} ⊂ C . The complex pole regions can be parameterized as

Λi(λi0, ri) = {λ ∈ C : λ = λi0 +
1− exp(−αi)
1 + exp(−αi)

× ri exp
(

j
1− exp(−βi)
1 + exp(−βi)

π

2

)
; αi, βi ∈ R},

where j =
√
−1. In case of real systems the prescribed pole region set L and the

assigned spectra � ⊂ L must be self-conjugate, i.e. if L contains the complex
region Λi , it must also contain the conjugate region

Λ̄i( λ̄i0, ri) = {λ ∈ C : λ = λ̄i0 +
1− exp(−αi)
1 + exp(−αi)

× ri exp
(
−j

1− exp(−βi)
1 + exp(−βi)

π

2

)
; αi, βi ∈ R},

and if λi ∈ Λi belongs to �, then λ̄i ∈ Λ̄i must also belong to �. Thus both
Λi(λi0, ri) and Λ̄i( λ̄i0, ri) are parameterized by αi, βi.
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As a particular case, the real pole regions can be parameterized as

Λk(λk0, rk) ={λ ∈ R : λ = λk0 +
1− e−γk

1 + e−γk
rk, γk ∈ R}.

Changing iteratively the region set parametrization variables and the free
eigenvector elements by some optimization technique, the extremum of the cor-
responding system performance index can be found. For this purpose it is con-
venient to use direct search methods [12] which make use of the performance
index values only and do not attempt to estimate derivatives.

4 Applications to Control Systems Optimization

Consider the application of the regional pole assignment to the solution of the
following important optimization problems arising in the design of linear control
systems.

– Pole assignment with H2 optimization

In this case the optimization problem consists of finding the matrix K which
assigns the poles of the closed-loop system in the desired region set and
minimizing at the same time the 2-norm of the closed-loop transfer function

H(s) = Ccl(sIn −Acl)−1Bcl

from w to z.

One has that

‖H‖22 = trace[CclPcC
T
cl ] = trace[BT

clPoBcl],

where the matrices Po, Pc are solutions of the Lyapunov matrix equations

AclPc + PcA
T
cl + BclB

T
cl = 0

AT
clPo + PoAcl + CT

clCcl = 0.

These equations may be solved in a numerically stable way by the Bartels-
Stewart algorithm [13].

– Pole assignment with H∞ optimization

The aim of this design technique is to ensure the desired dynamics of the
closed loop system by placing the closed-loop system poles in the desired
region set and minimizing at the same time the H∞ norm of the closed-loop
transfer matrix from w to z in order to achieve disturbance attenuation. As
it is known [14] the latter will provide also robust stability of the closed-loop
system under the presence of unstructured perturbations. The computation
of the H∞ norm can be done by the algorithms from [15,16].
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– Robust pole assignment

The freedom in the pole region set and in the eigenstructure of the closed-
loop system matrix Acl can be used to minimize the condition number
cond2(V ) or condF (V ) of the eigenvector matrix V of the matrix Acl, which
leads to minimization of the overall sensitivity of the closed-loop poles. This
objective function was proposed in [1] and it works only if the spectra � ⊂ L
allow a full collection of linearly independent eigenvectors of Acl. Instead of
minimizing condF (V ) it is preferable to minimize ‖V ‖2F + ‖V −1‖2F as pro-
posed in [2].

Sometimes it may be desirable to minimize the p-norm

‖c‖p =

(
n∑

i=1

|ci|p
)1/p

, p ≥ 1

of the vector c = (c1, . . . , cn)T whose elements

ci =
1

|vH
i wi|

; Aclvi = λivi, AH
cl wi = λiwi; ‖vi‖ = ‖wi‖ = 1

are the individual condition numbers of the eigenvalues λi. This approach
may also be used only if the spectra � ⊂ L allow a full collection of eigenvec-
tors of V (i.e. if there are non-defective attainable closed-loop system ma-
trices F with spect(F ) = �). For this purpose it is appropriate to implement
the eigenvalue condition estimators from LAPACK [17].

– Pole assignment with maximum stability radius

Minimum sensitivity of the poles does not guarantee that the closed-loop sys-
tem will remain stable under perturbations in the system matrices of given
size. That is why instead of minimization of pole sensitivity one may prefer
to maximize the stability radius of the matrix Acl, i.e. to maximize the ab-
solute or relative distance from Acl to the set of matrices having eigenvalues
with real zero parts. If this distance is greater than a quantity Δ then the
closed-loop system will remain stable for all parametric perturbations whose
size is less than Δ. The computation of the complex stability radius may be
done by the algorithm proposed in [18].

– Pole assignment with minimum gain matrix norm

In some cases for a given pole region set it is desirable to obtain a gain matrix
whose elements have magnitudes as small as possible. This may be done, for
instance, by minimization of the Frobenius norm ‖K‖F (or its square ‖K‖2F )
of the gain matrix K. It is important to note that the objective function for
this problem is convex and has an unique minimum.

All these optimization problems are relevant to the design of dynamic com-
pensators as well.
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It should be stressed that it is also possible to implement the regional pole as-
signment method along with other objective functions (for instance, the depart-
ure from normality of the matrix Acl) or to combine some of the objective
functions presented above (for instance, a pole assignment with mixed H2/H∞
optimization).

The method proposed may be also applied to the design of discrete-time linear
control systems.
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Abstract. We analyze a general concept of limiters for a high order
DG scheme written for a 1-D problem. The limiters, which are local
and do not require extended stencils, are incorporated into the solution
reconstruction in order to meet the requirement of monotonicity and
avoid spurious solution overshoots. A limiter β will be defined based on
the solution jumps at grid interfaces. It will be shown that β should be
0 < β < 1 for a monotone approximate solution.

1 Introduction

Recently a number of new discretization methods have been developed to numeri-
cally solve modern problems of science and engineering. One of them is a Discon-
tinuous Galerkin (DG) discretization scheme [3], which affords optimal orders
of convergence for smooth problems by using high order approximating spaces.
However, the capability of high order DG schemes to resolve solution disconti-
nuities is still an open question. It has been observed many times (e.g. see
[2,5,6,7]) that a high order DG discretization may result in oscillations in the
vicinity of a shock discontinuity. The study carried out in [8] has shown that high
order DG approximations do not provide a monotone solution near the shock
even for the simplest linear advection problem.

Since the solution oscillations may have a disastrous impact on the conver-
gence of the approximate solution, a limiting procedure which allows one to
obtain a monotone solution near discontinuities should be addressed. A num-
ber of authors have contributed to the issue of limiters for the DG scheme in
recent years [1,2,7,10]. The examples of limiters implemented in a semi-discrete
DG scheme are given in [3]. The approach suggested in [6] is similar to that in
ENO schemes and takes data from neighboring grid cells to construct a local
solution limiter on a given cell. The discussion of using a limiting algorithm for
multi-dimensional problems can be found in [5].

In the present paper we develop an approach to define a limiter on a compact
discretization stencil for high order DG schemes. We analyze one-dimensional
problems where the definition of a new limiter is straightforward for a high or-
der DG discretization. The limiter β, which is local and does not require extended

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 668–676, 2007.
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stencils, is based on the solution jumps at grid interfaces. It will be proved that
the values 0 < β < 1 provide a monotone approximate solution over a compu-
tational grid. One important feature of the suggested approach is that we also
incorporate the evaluation of flux approximation into the limiting procedure, as
upwind flux approximation in a high order DG scheme presents another difficulty
when steady state solutions are considered.

2 The Definition of a Discontinuous Galerkin Scheme

Our concept of limiters in high order DG schemes can be best illustrated by
consideration of an ordinary differential equation written for a function u(x) as

Fx(x, u) = S(x), x ∈ Ω = [a, b]. (1)

The function F (x, u(x)) is considered as a flux function for a steady state prob-
lem (1). The equation above should be augmented with a boundary condition
that will be further provided for a given problem under consideration.

We use a discontinuous Galerkin method to obtain a numerical solution to

the problem. Let us introduce the element partition G of the region, G =
N⋃

i=1

ei,

ei = [xi, xi+1], 1 ≤ i ≤ N , where xi is a nodal coordinate, and hi = xi+1 − xi

is a grid step size. We seek an approximation uh(x) to the solution u(x) such
that uh(x) is a piecewise polynomial function over Ω. The approximate solution
uh(x) is expanded on each grid cell as

uh(x) =
K∑

k=0

ukφk(x), x ∈ ei = [xi, xi+1], (2)

where the test functions are φk(x) = ((x− xi)/hi)
k
, x ∈ ei, k = 0, 1, . . . , K.

Multiplying the equation (1) by the test function φk(x) and integrating over
the cell [xi, xi+1] results in the following weak formulation of the problem,

F (xi+1, u(xi+1))φk(xi+1)− F (xi, u(xi))φk(xi)−
xi+1∫

xi

F (x, u)(dφk(x)/dx)dx =

xi+1∫

xi

S(x)φk(x)dx, k = 0, 1, . . . , K
(3)

where the function u(x) should be further replaced by the approximate
solution uh(x).

Since uh(x) is discontinuous at the cell interfaces, the above equations consi-
dered for the solution uh(x) require a numerical flux F̃ (x, uh) consistent with
the continuous flux F (x, u) to be defined. Suppose that the flux F̃ (x, uh) that
generally depends on the two values of the approximate solution at any grid
interface xi is chosen for a given problem (see [4] for the discussion of numerical
fluxes). Then the DG discretization scheme reads
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F̃ (uh(xi+1))φk(xi+1)− F̃ (uh(xi))φk(xi)−
xi+1∫

xi

F (x, uh(x))(dφk(x)/dx)dx =

xi+1∫

xi

S(x)φk(x)dx, k = 0, 1, . . . , K.
(4)

Although very efficient for smooth problems, a high order DG discretization
is not always appropriate when discontinuous functions are concerned. It has
been shown in [8] that being applied to a discontinuous problem the DG scheme
(4) may generate solution overshoots that do not depend on the grid step size.
Below we address the issue of limiters required to eliminate spurious solution
oscillations in a high order DG scheme.

3 Limiters for a High Order DG Scheme

Let U(x) be the exact solution to the boundary-value problem for the equation
(1) and three points Pi = (xi, U(xi)), P = (x̂, U(x̂)), and Pi+1 = (xi+1, U(xi+1))
be chosen at the curve U(x) (see Fig. 1a). Let the distance xi+1 − xi = h > 0,
and we denote (x̂− xi)/(xi+1 − xi) = s0, s0 ∈ (0, 1). We define the parameter θ
as follows

θ = (U(x̂)− U(xi))/(U(xi+1)− U(xi)), U(xi+1) �= U(xi), (5)

Let us fix s0 and move the points P and Pi+1 along the curve U(x). The param-
eter θ is then considered as a function of the distance h.

The behavior of θ(h) depends on the solution U(x). Let U(x) be a monotone
function shown in Fig. 1a. For the monotone solution, the following conditions
hold

1. |U(x̂)− U(xi)| < |U(xi+1)− U(xi)|, if x̂− xi < xi+1 − xi,
2. sgn(U(x̂)− U(xi)) = sgn(U(xi+1)− U(xi)).

Hence, θ(h) > 0, and θ(h) is a bounded function over the domain of definition.
We now estimate the value of θ for h → 0. The solution is assumed to be

a smooth function over the interval [xi, xi+1]. We denote the k − th derivative
d(k)U(x)/dxk taken at the point xi as Dk. The Taylor series expansion of the
solution U(x) near the point xi yields U(x̂) ≈ U(xi) + D1s0h, and

1/(U(xi+1)− U(xi)) ≈ 1/(D1h + (1/2)D2h
2) = 1/(D1h(1 + (D2/2D1)h)) ≈

1/(D1h(1− (D2/2D1)h)), D1 �= 0.

Substituting the expansion above into (5), we obtain

θ ≈ (D1s0h(1− (D2/2D1)h))/D1h = s0(1 −O(h)). (6)

For the sake of simplicity, let us further consider xi = 0, so that xi+1 = h.
There are three extreme cases of a monotone smooth function U(x) that define
the behavior of θ(h):
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Fig. 1. A monotone solution U(x). (a) Geometric interpretation of the function θ(h) in
the (x,U(x)) - plane. (b) The function θ(h) for a monotone solution U(x): (I) a linear
function U(x), (II) a concave function U(x), (III) a convex function U(x).

1. U(x) is a linear function. The definition of θ yields θ(h) = const = s0. The
function θ(h) is presented by curve (I) in Fig. 1b.

2. U(x) is a concave function, which has a vertical asymptote at the point
x = h∗: U(x) → ∞, as x → h∗. Since |U(h) − U(0)| → ∞, and |U(s0h) −
U(0)| → ΔU �=∞, as x→ h∗, we have θ(h)→ 0, as h→ h∗. If we consider
a set of smooth concave functions, then h∗ →∞, and we arrive at θ(h)→ 0,
as h → ∞. The function θ(h) for a concave U(x) is shown as curve (II) in
Fig. 1b.

3. U(x) is a convex function, which has a horizontal asymptote: U(x)→ U0, as
x→∞. Since U(h)−U(0)→ U0 −U(0), and U(s0h)− U(0)→ U0 −U(0),
as x→∞, we have θ(h)→ 1, as h→ ∞. The function θ(h) generated by a
convex U(x) is shown as curve (III) in Fig. 1b.

Hence, for a monotone smooth function U(x), the parameter θ is bounded by
0 < θ ≤ 1, where θ = 1 for U(x) ≡ const by convention.

We now consider a non-monotone solution U(x) shown in Fig. 2a. Let Pext =
(xext, U(xext)) be an extremum point. For small h < xext, the solution U(x) is a
monotone function and we refer to the analysis above, as the function θ(h) will
depend entirely on the derivative d2U(x)/dx2. For h > xext, the function θ(h) is
an increasing function which takes the value θ(h0) = 1 at the point h = h0, where
U(h) = U(s0h) (see Fig. 2a). The function θ(h) has a singular point h = hd,
defined by the condition U(hd) = U(xi). Since xi = 0 and U(h)− U(0) changes
the sign at the point x = hd, the asymptotic behavior of θ(h) is θ(h) → +∞
as h → hd − 0, and θ(h) → −∞, as h → hd + 0. Finally, θ(h) → 0 (or another
constant), as h→∞, provided there are no other extremum points. The function
θ(h) for a non-monotone solution is shown in Fig. 2b.

The above consideration reveals how a limiting procedure can be defined for
an approximate solution in a high order DG scheme. Let x̂ be an arbitrary point
in the cell [xi, xi+1]. Suppose that the approximate solution uh(x) coincides
with the exact solution U(x) everywhere except for the point x̂, so that a local
extremum appears at x̂ (see Fig. 3a). Since for a monotone function the condition
0 < θ ≤ 1 always holds, we now compare the approximate solution variation
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Fig. 2. A non-monotone solution U(x). (a) Geometric interpretation of the function
θ(h) in the (x,U(x)) - plane. (b) The function θ(h) for a non-monotone solution: (I)
θ(h) is not bounded near the extremum point, (II) A limiting procedure cuts off θ(h)
near the solution extremum.

(uh(x̂)− uh(xi)) with the exact solution variation (U(xi+1)−U(xi)). The value
θi < 0 or θi > 1 of the parameter

θi = (uh(x̂)− uh(xi))/(U(xi+1)− U(xi)) (7)

indicates that a local extremum is present in the cell ei. The limiting procedure
for a non-monotone function is shown in Fig. 2b in the (h, θ)-plane.

4 The Flux Control in the Limiting Procedure

The limiter (7) is not viable, unless an accurate estimate of the exact solution
has been given at the points xi and xi+1. Hence, our next purpose is to obtain a
reliable solution estimate to be used in the limiter θi. Moreover, we also want the
evaluation of flux approximation to be incorporated into the limiting procedure,
as upwind flux approximation in a high order DG scheme presents another diffi-
culty when steady state solutions are considered. It has been recently shown in
[9] that a high order DG scheme is not able to recognize flux extrema that may
lead to an underdetermined system of algebraic equations obtained as a result
of the discretization. Solving that system of equation will inevitably result in an
oscillating numerical solution, so that a flux control procedure should be devel-
oped to avoid a divergent solution (see [9] for a further discussion of spurious
oscillations arising as a result of incorrect flux approximation).

Our approach to the flux control in the DG scheme (4) is based on the defini-
tion of ”frame” and ”phantom” points on a grid cell. Let P = (xi, uh(xi)) be a
point in the (x, u) - plane, where xi ∈ G. Each pair (xi, uh(xi)) generates the flux
F (xi, uh(xi)). We will refer to the point P as a ”frame” point and denote it as
PF , if P is involved into the definition of the numerical flux, i.e. F̃ (xi, uh)F (P ).
Otherwise, we will refer to the point P as a ”phantom” point and will use the
notation PP for it. A solution estimate we use is based on the assumption that
a discrete conservation law
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F̃ (xi+1, uh)− F̃ (xi, uh) =

xi+1∫

xi

S(x)φk(x)dx, (8)

is consistent with the equation (1), that is uF (xF )→ U(xF ), h→ 0. In other
words, we assume that local extrema which do not vanish on fine grids may only
appear at ”phantom” points. The above requirement is to guarantee that the
correct flux approximation is used in the problem.

Based on the assumption above, we suggest the following approximation to
the function (7)

βi = δui/Δu, (9)

where δui = uh(xi+1) − uh(xi) for approximate solution uh(x) defined at the
interval ei. The exact solution variation ΔU = U(xi+1)−U(xi) on the cell ei is
replaced in limiter βi with the approximate solution variation Δu = uhF (xi+1)−
uhF (xi) at the ”frame” points.

In order to incorporate the limiter (9) into the DG scheme, the ”frame” points
should be defined for a given grid cell. Consider an upwind flux approximation
that requires one value of the approximate solution at each grid interface for
a monotone solution function. Let the ”frame” points for the upwind flux be
defined as PF1 = (xi, ui−1 + δui−1), and PF 2 = (xi+1, ui + δui) on the cell ei.
The solution variation is

Δu = ui+δui−ui−1−δui−1 = ui+δui−(ui−[u]i) = δui+[u]i, βi =
δui

δui + [u]i
,

where [u]i = uh(xi + 0)− uh(xi − 0) = ui − (ui−1 + δui−1) is a solution jump at
the interface xi.

If the ”frame” points are defined as PF1 = (xi, ui), and PF2 = (xi+1, ui+1),
the solution variation will be

Δu = ui+1 − ui = (ui + δui) + [u]i+1 − ui = δui + [u]i+1, βi =
δui

δui + [u]i+1
,

where the jump [u]i+1uh(xi+1+0)−uh(xi+1−0) = ui+1−(ui+δui) is considered
at the interface xi+1. Generally, the limiter βi can be written as

βi = 1− [u]P
δui + [u]P

, (10)

so that βi depends always on the solution jump [u]P calculated at the cell inter-
face where a ”phantom” point presents.

The limiting procedure is illustrated in Fig. 3b for a piecewise linear (K = 1)
DG discretization. The ”phantom” point ui+δui is shown as a white dot, the frame
points are shown as black dots. The location (I) of the ”phantom” point yields
a monotone approximate solution, while the locations (II) and (III) result in a
nonphysical local extremum. The limiter (10) detects both cases of the solution
overshoot, as βi < 0 for the location (II) and βi > 1 for the location (III).
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Fig. 3. Limiters for a piecewise linear approximate solution. (a) The limiter detects
a solution overshoot at the interior point of the domain. (b) The limiter detects a
solution overshoot at the cell interface. The ”phantom” point (I) yields a monotone
approximate solution. The ”phantom” point (II) yields an overshoot which is indicated
by βi < 0. The ”phantom” point (III) yields an overshoot which is indicated by βi > 1.

We first illustrate the use of limiters by a simple numerical test discussed
earlier in [8]. Consider the following linear boundary-value problem

ux = S(x), u(0) = U0, x ∈ Ω = [0, 2], (11)

so that flux function F (x, u) ≡ u. Let a discontinuous solution U(x) to the
equation (11) be given by

U(x) =

⎧⎨
⎩

1.−
√

0.5− x 0 ≤ x < 0.5,
1 0.5 < x ≤ 1,

tanh(200(x− 1.5)) 1 < x ≤ 2.
(12)

Given the solution (12), the source function S(x) is reconstructed from the equa-
tion (11). The boundary condition is u(0) = U(0).

For the advection equation the upwind numerical flux is F̃ (ui, ui+1) = ui, and
we have [u]P = [u]i on any grid cell. The approximate solution obtained as a
result of the DG discretization with a piecewise linear solution reconstruction is
shown in Fig. 4a. The number of grid nodes is N = 32.

The DG scheme (4) employed in the problem generates oscillations near the
shock. Those oscillations do not vanish on fine grids, so that the limiting is
required to eliminate them. Thus, we compute the limiter (10) on each grid cell.
In case that β < 0 or β > 1 ( a solution overshoot) the solution interpolation
between two ”frame” points is used to obtain a monotone approximate solution.

After the limiting procedure is applied, the new solution reconstruction is
shown in Fig. 4b. It can be seen from the figure that the new solution has no
overshoots over the domain.

We now consider the inviscid Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0. (13)
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Fig. 4. The advection test problem (1) with a shock discontinuity. (a) Oscillations in
the vicinity of the shock for the DG K = 1 solution. The number of grid nodes N = 32.
(b) The solution on the same grid after the limiting procedure.

This is a well known example of a nonlinear hyperbolic equation with a quadratic
flux function F (u) = u2/2. We solve the equation (13) in the domain x ∈ [0, 1]
due to a periodic boundary condition. The initial condition has been chosen as
a sine wave function

u(x, 0) = u0(x) = 0.25 + 0.5 sin(π(2x− 1)). (14)

The exact solution is smooth for any time t < 1/π, while the solution becomes
discontinuous at later times.

We are interested in the numerical solution to the problem (13), (14). A
high order DG discretization is implemented, and we apply the Godunov flux
F̃G(ul, ur) in order to discretize the function F (u). The flux approximation is
defined as

F̃G(ul, ur) =

⎧⎨
⎩

min
ul≤u≤ur

F (u), if ul ≤ ur,

max
ul≤u≤ur

F (u), otherwise,

for the left state ul and right state ur at a given grid interface.
For numerical solution of the conservation law (13), a DG discretization in

space is combined with an implicit time integration scheme. Let us notice that
while the limiting procedure for the explicit Runge-Kutta integration has been
introduced in the work [2] and further investigated in [5] and other works, limiters
for implicit integration schemes have not been intensively discussed in literature.
Thus we use a backward Euler time integration scheme in our problem to see
how a suggested limiting algorithm will work for time dependent problems.

An approximate solution at t = 0.47 is shown in Fig. 5a for a piecewise
linear DG discretization on a uniform grid of 128 cells. It can be seen from the
figure that the approximate solution oscillates near the shock and we need to
apply the limiting procedure (10) at each time step to obtain a non-oscillating
solution. A new approximate solution is shown in Fig. 5b. The limiters eliminate
spurious oscillations while remaining the solution piecewise linear in the vicinity
of the shock. However, further numerical validation of the limiting procedure for
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Fig. 5. The numerical solution to the inviscid Burgers’ equation (13). (a) The approx-
imate DG K = 1 solution to the problem (13), (14) oscillates near the shock soon after
the shock formation ( time t = 0.47). The number of grid nodes N = 128. (b) The
solution on the same grid after the limiting procedure.

nonlinear equations is required to confirm that the suggested algorithm keeps the
order of approximation in a high order DG discretization scheme. That should
be considered as a topic for future work.
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Abstract. The sinuous instability of a viscous jet flowing down an in-
viscid fluid is studied. On the basis of the 3D Navier-Sokes equations for
the jet the full dispersion equation of the small disturbances is derived.
Numerical results are shown, illustrating both the effect of viscosity and
ambient density.

1 Introduction

As shown by Rayleigh [1] an isolated liquid jet is unstable to axisymmetrical dis-
turbances only. However when the liquid jet interacts by surrounding immiscible
fluid a sinusoidal mode of instability appears, that deflects the jet axis from its
rectilinear form. It should be mentioned that from a theoretical point of view the
sinuous instability is less analyzed. The first linear analysis of the instability of
a nonviscous jet was performed by Weber [2]. Similar solution was proposed by
Debye and Daen [3]. Both analyses are based on the Euler equations of motion
written in cylindrical coordinates. Using the latter Martinon [4] studied higher
non-symmetrical modes of instability. If the viscosity of the jet is to be taken
into account the full 3D Navier-Stokes equations should be applied. In [5] the
sinuous instability of a viscous jet was studied by using the so-called ”quasi-one-
dimensional equations” derived for thin jet as a reduced form of Navier-Stokes
equations.

The aim of the present paper is to derive a dispersion equation for the sinu-
soidal disturbances propagating along a viscous jet, flowing down into another
inviscid fluid. An asymptotic analysis of this equation is performed for small
wave numbers as well as for low viscosity jets. Numerical results are shown,
illustrating both the effect of viscosity and ambient density.

2 Statement of the Problem

Consider a steady axially symmetric liquid jet of density γ and viscosity μ flowing
down an inviscid immiscible fluid of density γ1. The steady jet flow (referred

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 677–684, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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further as undisturbed) is assumed to have constant radius a0 and uniform axial
velocity W with respect to a cylindrical coordinate system Oρϕz, whose Oz axis
lies on the jet axis, directed downstream. The corresponding velocity of the outer
fluid is denoted by W1.

Equations of Motion. In cylindrical coordinates the equations of motion for
a non-axisymmetrical jet could be written in the following form:

∂v

∂t
+ v · ∇v + X = − 1

γ
∇p +

1
γ

(∇Π + Y ) , (2.1)

where t denotes the time, v(v, w, u) - the radial, transversal and axial component
of the velocity, respectively, p - the pressure and Π(pρ, pϕ, pz) - the well known
tensor of the viscous stresses, ∇ = ρ0 ∂

∂ρ +ϕ0ρ−1 ∂
∂ϕ +k ∂

∂z - the gradient operator
with ρ0, ϕ0, k as coordinate vectors. The additional symbols X and Y are
defined as

Xρ = −ρ−1w2, Xϕ = ρ−1vw, Xz = 0 , (2.2)

Yρ = ρ−1 (pρρ − pϕϕ) , Yϕ = 2ρ−1pρϕ, Yz = ρ−1pρz . (2.3)

The external forces are neglected. The corresponding continuity equation has
the form

∇ · v + ρ−1v = 0 . (2.4)

Interface Geometry. The interface (jet surface) equation is written into a form
allowing non-axisymmetrical disturbances

r = Rs = a(ϕ, z, t)ρ0 , (2.5)

where a denotes the cross-section radius. Let N, tϕ and tz ≡ ψ be the outside
normal and the tangential vectors to the interface along the corresponding co-
ordinate lines.

Further on for convenience a new tangential vector φ will be used φ = ψ ×N
assuring that the trihedron (φ, ψ, N) is orthonormal.

Interface Boundary Conditions. When written in a scalar form the force
balance at the interface is reduced to three boundary conditions for the normal
and two tangential stresses:

[[−p + (Π · N ) · N ]]N = − σ

Rm
, [[(Π · N) · φ]]N = 0, [[(Π · N) · ψ]]N = 0 ,

(2.6)
where σ denotes the surface tension coefficient, while Rm - the mean curvature
radius of the interface. Note that in the above equations the symbol [[A]]N
denotes the (potential) discontinuity of an arbitrary parameter A at the interface
in the direction of the outside normal

[[A]]N = A∗
2 − A∗

1, A∗ ≡ A(ρ = a) . (2.7)



Numerical Analysis of the Sinuous Instability of a Viscous Capillary Jet 679

Due to the immiscibility between the jet and surrounding fluid the zero-mass
flux condition should be satisfied at both sides of the interface:

a
∂a

∂t
= av∗ − ∂a

∂ϕ
w∗ − a

∂a

∂z
u∗ . (2.8)

3 Linearized Equations of Motion and Boundary
Conditions for the Disturbances

As mentioned above our stability analysis concerns a steady jet of a radius a0 and
axial velocity W independent on both the radial and axial coordinates. Further
on we will study the evolution of small disturbances (denoted by superscript
tilde) imposed on the steady flow:

v = ṽ, w = w̃, u = W + ũ, p = P + p̃, a = a0 + ã , (3.1)

where P denotes the constant undisturbed pressure.
Substituting the above expressions into eqs. (2.1) and (2.4) and neglecting

the products of the disturbed terms results into linearized equations of motion
of the following form:

B(ṽ) = − 1
γ

∂p̃

∂ρ
+

μ

γ

[
�ṽ − ρ−2

(
ṽ + 2

∂w̃

∂ϕ

)]
,

B(w̃) = − 1
γ

ρ−1 ∂p̃

∂ϕ
+

μ

γ

[
�w̃ − ρ−2

(
w̃ − 2

∂ṽ

∂ϕ

)]
,

B(ũ) = − 1
γ

∂p̃

∂z
+

μ

γ
�ũ, B ≡ ∂

∂t
+ W

∂

∂z
, (3.2)

and
ρ−1 ∂

∂ρ
(ρṽ) + ρ−1 ∂w̃

∂ϕ
+

∂ũ

∂z
= 0 , (3.3)

where μ denotes the viscosity, � is Laplace operator in cylindrical coordinates.
Similarly the boundary conditions (2.6) and (2.8) appear in the following

linearized form:

p̃∗ − p̃∗1 − 2μ

(
∂ṽ

∂ρ

)∗
= − σ

a0

(
ã

a0
+

1
a0

∂2ã

∂ϕ2
+ a0

∂2ã

∂z2

)
, (3.4)

(
∂w̃

∂ρ

)∗
+a−1

0

[(
∂ṽ

∂ϕ

)∗
− w̃∗

]
= 0,

(
∂ũ

∂ρ

)∗
+

(
∂ṽ

∂z

)∗
= 0, B(ã) = ṽ∗, (3.5)

where A∗ here and below on is used for the value A(ρ = a0).

4 Equations for the Amplitudes of the Disturbances

In the context of the linear theory of instability we will search a solution of the
eqs. (3.2) - (3.3) and the corresponding boundary conditions (3.4) - (3.5) in the
form of separate modes

ṽ = v̄eiξ, w̃ = w̄eiξ, ũ = ūeiξ, p̃ = p̄eiξ, ã = āeiξ, (4.1)
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where the corresponding amplitudes (except ā=const) are assumed unknown func-
tions of the radial coordinate ρ. The new independent variable ξ is defined as

ξ = ω̄t − kz + nϕ, (4.2)

where k is a given wave number, n - a number of the asymmetric mode, when
n > 0, while ω̄ = ω̄r + iω̄i denotes the unknown complex angular frequency of
the disturbances. Here and below on only the first asymmetrical (sinuous) mode
will be analyzed, hence n = 1.

Substituting eqs. (4.1) into equations of motion of the jet (3.2) and continuity
equation (3.3) results in the following system of ordinary differential equations:

ic∗v̄ = − 1
γ

p̄′ +
μ

γ

[
L1v̄ − ρ−2 (v̄ + 2iw̄)

]
,

ic∗w̄ = − i

γ
ρ−1p̄ +

μ

γ

[
L1w̄ + ρ−2 (2iv̄ − w̄)

]
, ic∗ū =

ik

γ
p̄ +

μ

γ
L1ū (4.3)

and
v̄′ + ρ−1 (v̄ + iw̄) − ikū = 0, (4.4)

where the superscript prime denotes a differentiation in respect to ρ and the
ordinary differential operator L1 is defined as

L1 ≡ d2

dρ2
+ ρ−1 d

dρ
−

(
k2 + ρ−2

)
(4.5)

Additionally for convenience the following new unknown parameter is
introduced

c∗ ≡ ω̄ − kW (4.6)

When the disturbances in the surrounding fluid are concerned the continuity
equation remains unchanged, while the equations of motion are easily obtained
taking into account in eqs. (4.3) that the fluid is nonviscous (μ = 0):

ic1∗v̄1 = − 1
γ1

p̄1
′, ic1∗w̄1 = − i

γ1
ρ−1p̄1, ic1∗ū1 =

ik

γ1
, (4.7)

where now
c1∗ = ω̄ − kW1 . (4.8)

In fact the above equations relate the velocity amplitudes v̄1, w̄1 and ū1

to the pressure amplitude p̄1 in the surrounding fluid. When the continuity
equation is used to eliminate these amplitudes we simply obtain an equation for
the surrounding pressure:

L1p̄1 = 0 , (4.9)

which corresponds to an irrotational flow in the surrounding fluid. In the next
section we will use the fact that eq. (4.9) is easily transformed to a modified
Bessel equation.
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5 Analytical Solution for the Amplitudes. Dispersion
Equation

As mentioned above the solution of eq. (4.9) could be written as

p̄1 = A1K1(ζ), ζ = kρ , (5.1)

where A1 is an integration constant, K1 is a modified Bessel function of a first
order and a second kind.

The solution of eqs. (4.3) - (4.4) can be splitted into an irrotational (nonvis-
cous) and viscous part, respectively

v̄ = v̄ir + v̄v, w̄ = w̄ir + w̄v, ū = ūir + ūv . (5.2)

Similar to the surrounding flow the irrotational part of the jet flow satisfies
pressure equation (4.9) in which the subscript ”1” should be omitted. Therefore
the irrotational velocity modes can again be expressed by the jet pressure:

p̄ = AI1(kρ) , (5.3)

The equations for the viscous velocity amplitudes are similar to eqs. (4.3) pro-
viding that the pressure terms are neglected:

ic∗v̄v =
μ

γ

[
L1v̄v − ρ−2 (v̄v + 2iw̄v)

]
,

ic∗w̄v =
μ

γ

[
L1w̄v + ρ−2 (2iv̄v − w̄v)

]
, ic∗ūv =

μ

γ
L1ūv . (5.4)

It should be mentioned that the above system is self consistent: assuming
that the velocity amplitudes in the left side of eqs. (5.4) satisfy the continuity
equation (4.4) the same is true for the corresponding right sides. As seen the last
of equations (5.4) is separated from the remaining equations and can be solved
independently. By introducing a modified wave number k1

k2
1 = k2 + i

γc∗
μ

, (5.5)

the equation for ūv is transformed to a form similar to eq. (4.9), if the wave
number k is replaced by k1

L1,1ūv = 0, Ln,1 ≡ d2

dρ2
+ ρ−1 d

dρ
−

(
k2
1 + nρ−2

)
. (5.6)

Therefore
ūv = BI1(k1ρ) . (5.7)

By introducing new unknowns v± = v̄v ± w̄v the first two of eqs. (4.4) can be
splitted into two independent modified Bessel equations of type (5.6) with left
hand sides L2,1v+ and L0,1v−, respectively. As a result we obtain

v̄v = CI2(k1ρ) + DI0(k1ρ), w̄v = CI2(k1ρ) − DI0(k1ρ) . (5.8)
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Substituting into the continuity equation the following relationship is derived
for the constants of integration

B = −i
k1

k
(C + D) . (5.9)

Dispersion Equation. By using eq. (5.9) and the interface boundary condi-
tions (3.4) - (3.5), the remaining integration constants A, A1, C, D, can be
determined as functions of the (arbitrary) amplitude ā. After rather tedious,
but straightforward calculations the dispersion equation can be written in the
following dimensionless form:

ĉ2
∗

I1

qI ′1

(
1 +

�1

� Î2 +
�2

� Î0

)
− 2iRe−1ĉ∗

qI ′′1
I ′1

(
1 +

�1

� Î2 +
�2

� Î0

)

+2iRe−1ĉ∗q1

(
�1

� Î ′2 +
�2

� Î1

)
= We−1q2 + ĉ2

1∗γ̂1
K1

qK ′
1

. (5.10)

where Re = γa0W/μ and We = γa0W
2/σ are the Reynolds and Weber number,

respectively, γ̂1 = γ1/γ - the density ratio and

ĉ∗ = ω, ĉ1∗ = ω + q . (5.11)

with ω = a0ω̄/W -the dimensionless complex angular frequency, q = a0k and
q1 = a0k1 - the dimensionless wave and modified wave number, respectively.
Note that the argument ζ = q in the above Bessel functions is omitted and
denoted by superscript ” ∧ ” when the argument equals ζ1 = q1.

When writing eqs. (5.11) it is assumed that the reference coordinate system
Oρϕz is moving with the undisturbed jet flow, while the surrounding fluid is
flowing uniformly with a velocity −W parallel to the undisturbed jet axis Oz.
The symbols �, �1, �2 denote second order determinants as follows:

� = a22a33 − a23a32, �1 = 2
(
ba22 − q2a32

)
, �2 = 2

(
q2a32 − ba23

)
,

a22 ≡q2
1 Î

′
1 + q2Î2, a23 ≡q2

1 Î
′
1 + q2Î0, a32 ≡q1Î

′
2 − 2Î2, a33 ≡−q1Î1, b≡ I1

qI ′1
− 1.

The unknown in eq. (5.10) is the complex frequency ω = ωr + iωi, where
the imaginary part ωi stands for the growth rate of the disturbances and ωr/q
- for the speed of the propagation of the disturbances. The sinuous instability
takes place (in our notations) when the growth rate is negative: ωi < 0. In
the general case the dispersion equation can be solved only numerically. Some
possible simplifications will be analyzed in the next section.

6 Reduced Forms of the Dispersion Equation

Nonviscous Jet. For μ = 0 the dispersion equation is reduced to the form
obtained by Debye and Daen [3] and by Martinon [4]:

ωr =
γ̂1qb11

1 − γ̂1b11
, ω2

i = − q2

1 − γ̂1b11

(
γ̂1b11

1 − γ̂1b11
+ We−1 qI ′1

I1

)
, b11 ≡ I ′1K1

I1K ′
1

.

(6.1)
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Small Wave Numbers. Another reduced form of the dispersion equation can
be derived if the Bessel functions are substituted by the leading terms in their
asymptotic series for small arguments. Then

x2 + 2x(α − iβM1) + α − δ = 0, x = ω/q, M1 = 2q , (6.2)

where the new combinations of dimensionless parameters are defined as:

α ≡ γ̂1

1 + γ̂1
, β ≡ 1

(1 + γ̂1) Re
, δ ≡ 1

(1 + γ̂1) We
. (6.3)

By solving the quadratic equation (6.2) we get:

−ωi =
(√

s − βM1

)
q, ωi = −α

(
1 − βM1√

s

)
, s ≡ α − α2 − δ . (6.4)

Low Viscosity Jets

ω2(b+1)−(ω+q)2
γ̂1K1

qK ′
1

−We−1q2 =2iRe−1ωM(q), M(q)=
qI ′′1
I ′1

−(b+1)
(
b − q2

)
.

(6.5)

7 Numerical Results for the Reduced Forms of the
Dispersion Equation

The numerical results in Figs. 1 and 2 illustrate the dispersion curves based on
eqs. (6.1) and (6.5). The results in Fig. 1a) correspond to the case of water jet into
air, when We = 1000 and γ1 ≈ 0.001. In this figure the sinuous mode for the jet
assumed nonviscous is compared to the symmetrical mode (n = 0) as known after
Rayleigh [1]. The effect of the air viscosity (Re = 1000) on the sinuous mode is
shown in Fig. 2a). The effect of the increased ambient density γ1 = 0.01 is shown in
Figs. 1b) and 2b) in the conditions similar to that of Figs. 1a) and 2a), respectively.
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Fig. 1. a) Comparison of the growth rates of the symmetrical (n = 0) and sinuous
mode (n = 1) for water jet in air; b) Effect of the ambient density on the growth rates
of the symmetrical, sinuous and higher asymmetrical modes
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Fig. 2. a) Effect of the air viscosity on the growth rates of the sinuous mode; b)
Combined effect of the viscosity and ambient density on the growth rate of the sinuous
mode

8 Conclusion

The sinuous instability of a capillary jet appears at high Weber numbers (high
injection velocities). It is mainly controlled by the density ratio of the fluids.
Both the capillary and viscous forces have a stabilizing effect.
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Abstract. Order adaptive algorithm for real time holography appli-
cations is presented in this paper. The algorithm is based on Master-
Worker parallel computation paradigm. Definite integrals required for
visualization of fringes are computed using a novel order adaptive
quadrature rule with an external detector defining the order of inte-
gration in real time mode. The proposed integration technique can be
effectively applied in hybrid numerical-experimental techniques for anal-
ysis of micro-mechanical components.

Keywords: Order adaptability, real time integration, holography.

1 Introduction

Holographic interferometry [1] is a powerful experimental technique for analysis
of structural vibrations, especially if the amplitudes of those vibrations are in the
range of micrometers. Recent advancements in optical measurement technology
[2] and development of hybrid numerical-experimental techniques [3] require ap-
plication of computational algorithms not only for post-processing applications
like interpretation of experimental patterns of fringes, but embedding real time
algorithms into the measurement process itself [4].

Computation and plotting of patterns of time average holographic fringes in
virtual numerical environments involves such tasks as modelling of the optical
measurement setup, geometrical and physical characteristics of the investigated
structure and the dynamic response of the analysed system [5]. Calculation of
intensity of illumination at any point on the hologram plane requires compu-
tation of definite integrals over the exposure time. If the analysed structures
perform harmonic oscillations that do not impose any complications – there ex-
ist even analytical relationships between the intensity of illumination, amplitude
of oscillation, laser wavelength, etc. [1]. But if the oscillations of the investigated
structures are non-harmonic (what is common when structures are nonlinear)
and the formation of patterns of fringes is implemented in real time mode, the
calculation of definite integrals becomes rather problematic. The object of this
paper is to propose an order adaptive algorithm which could be effectively ap-
plicable for calculation of definite integrals in different real time applications.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 685–692, 2007.
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2 Integration Rule Without Limitation for the Number
of Nodes

Higher order Newton-Cotes quadrature formulas [6] require that the number of
nodes must be a divisible numeral. For example the second order Newton-Cotes
rule already requires that the number of nodes must be odd. Such conditions
mean that a significant number of nodes at the end of an experimental time series
must be deleted and the integration interval artificially shortened for higher order
Newton-Cotes rule, if the number of nodes is not known at the beginning of the
experiment. Therefore there exists a definite need for a high order integration
rule with a constant time step without any requirement for the number of time
steps. Such quadrature formula is proposed in [7]:

t0+(k−1)h∫

t0

f (t) dt =

(
m∑

i=1

aifi +
k−2m∑
i=1

fm+i +
m∑

i=1

am−i+1fk−m+i

)
h, (1)

where ai are the weights and fi are the discrete values of sampled function
f at time moments t0 + (i − 1) · h, i = 1, . . . , k. It has been proved that this
integration rule is exact when the integrated function is a polynomial of the m-th
order, if only m is odd [7]. The numerical values of the weights ai are presented
in the Table 1 at different values of m. The parameter p in this table denotes
the maximum order of exactly integrated polynomials; l is the order of the error
term expressed in the form O(hl).

Table 1. Nodal weights of the integration rule

m 2 3 4 5 6 7

a1 0.5 0.37500000 0.33333333 0.32986111 0.31875000 0.30422454
a2 1 1.1666667 1.2916667 1.3208333 1.3763889 1.4603836
a3 0.95833333 0.83333333 0.76666667 0.65555556 0.45346396
a4 1.0416667 1.1013889 1.2125000 1.4714286
a5 0.98125000 0.92569444 0.73939319
a6 1.0111111 1.0824735
a7 0.98863261

p 1 3 3 5 5 7

l 2 4 4 6 6 8

It can be noted that finite element method was used for the derivation of the
proposed quadrature rule which can be interpreted as a new variant of Gregory
type formulas [6]. Unfortunately, the proposed quadrature rule (also Gregory
type rules) can be used only when the order is predefined before the experi-
ment and does not change over the integration process. This paper proposes
a multi-processor parallel algorithm with full order adaptability in real time
calculation mode.
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3 The Basic Real Time Integration Rule

Let’s suppose that function f is sampled starting from t0 at equally spaced time
steps; the length of a time step is h. Due to the real time process the number
of nodes is not predefined before the experiment and process continues until the
end of the sampling. Let’s suppose that the terminal moment of the sampling
occurs at t0 + 7h (8 function values fi, i = 1, . . . , 8 are produced during the
sampling process). Order of the integration rule is predetermined to be m = 3.

1. The first sum on the right side of eq. (1) is computed:

Sum1 = a1f1 + a2f2 + a3f3, (2)

where a1 = 0.375, a2 = 1.1666667, a3 = 0.95833333 (Table 1).
2. Starting from the fourth node, the following sum is computed until the end

of the time series:

Sum2 = f4 + f5 + f6 + f7 + f8. (3)

3. When the sampling is terminated, reverse computation of the third sum of
eq. (1) is done:

Sum3 = (a3 − 1) f6 + (a2 − 1) f7 + (a1 − 1) f8. (4)

4. Finally, the definite integral
t0+7h∫

t0

f (t) dt is calculated according to eq. (1):

I = (Sum1 + Sum2 + Sum3) h. (5)

The process can terminate at any time step, if only k ≥ 2m, but the last three
values of the sampled function must be saved at every time moment in order to
calculate Sum3.

Now we will generalize the presented example for m−th order integration
rule, if only the minimum number of nodes is 2m. The algorithm is based on
Master-Worker paradigm [8]. Schematic graphical representation in Fig. 1 helps
to interpret the computation process.

Several notations used in Fig. 1 can be explained in more detail. Order of the
integration rule m is predefined before the experiment. Calculation of Sum1 is
performed by Master processor (grey right arrow in signal diagram; block n in
time diagram and node n in flow chart diagram). After m terms are included
into Sum1, the Master processor continues summation of nodal values of the
integrand until the sampling process is terminated (white right arrow in signal
diagram; block n(1) in time diagram and node n(1) in flow chart diagram). When
the sampling is over, Worker processor performs reverse calculation of Sum3

(grey left arrow in signal diagram; block n̄ in time diagram and node n̄ in flow
chart diagram).

It can be noted that the last m values of the sampled function must be
remembered at every time node in order to calculate Sum3.



688 M. Ragulskis and L. Saunoriene

Fig. 1. Schematic representation of the basic model: (a) signal diagram; (b) time dia-
gram; (c) flow chart diagram

4 Order Adaptive Algorithm for Real Time Applications

The presented basic real time integration rule copes well with integrands which
can be approximated by a polynomial of a definite order in the domain of inte-
gration. But if the variation of the integrand is fast in some regions and slow in
another regions, then order adaptability should be used to increase the accuracy
of a definite integral. One can suggest to select very large m at the beginning of
the experiment, but then we may face the risk that k < 2m.

We assume that there exists a detector which measures the values of the
integrand and recommends the order of integration rule at any time moment in
the domain of integration. Let’s assume that the present order is m1 and the
detector recommends order m2. Then two different situations may occur. If the
number of sampled nodes since m1 was declared is higher than or equal to 2m1,
the transition to order m2 can be performed fluently. The Master processor
starts calculating Sum1 for order m2, while Worker processor takes care for
reverse calculation of Sum3 for terminated m1.

But if the number of sampled nodes since m1 was declared is less than 2m1,
the Worker processor cannot start reverse calculation of Sum3 without damaging
Sum1. Therefore a much more complex transition to order m2 takes place in this
situation. If m2 is higher than m1 the Worker processor must return to the point
where order m1 was declared and must recalculate Sum1 with order m2. But
the simplicity is misleading – the Master processor has already summated Sum1

with order m1 to the total sum! Therefore the Worker processor must evaluate
different weighting coefficients for orders m1 and m2. Moreover, the length of
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the queue where the last function values are stored must be already not mi, but
2mi (here mi is the current order).

If m2 is lower than m1, but the number of sampled nodes since m1 was
declared is less than 2m1, the integration with order m1 must be continued until
the number of nodes is equal to 2m1, and only after that the order m2 can be
accepted.

Finally, we may comment what would happen if the sampling process is ter-
minated and the number of sampled nodes since mi was declared is lower than
2mi. Unfortunately, there will be no any possible techniques to preserve order mi

(time step is constant and reverse sampling with smaller time step is impossible
in real time mode). The only solution is to select maximum possible order for
the available number of time steps (floored half of the number of time steps).

We will illustrate the described situations with the following example (Fig. 2
and Fig. 3).

One Master processor and two Worker processors are necessary for full real time
mode. Algorithm control, integrand sampling and summation of sums Sum1 and
Sum2 is performed by Master processor. The Worker processors run only when the
order is changed. Worker processors send back the results to the Master processor.

As an extreme situation we describe the transition from order m3 to order m4

(Fig. 2) where the second Worker processor is necessary for real time integration.
Master processor starts calculating Sum1 (with weights corresponding to order
m3) as soon as the order m3 is declared. The number of discrete time nodes

Fig. 2. Real time integration, general case: (a) signal diagram; (b) time diagram
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Fig. 3. Real time integration, general case: flow chart diagram

necessary for this procedure is m3. As soon as Sum1 is finished, Master proces-
sor starts summing non-weighted discrete function values. This process continues
until order m4 is declared. But the order detector has sensed a burst in the digital
time series, so m4 is much higher than m3. In this particular situation we have
that m4 is even greater than k3 (Fig. 2). Thus, the Worker processor must recal-
culate both the old Sum1 and the rest non-weighted part (n3 and n

(1)
3 in time

diagram). Moreover, at the same time Sum3 for order m2 must be accomplished
(n̄2 in time diagram). Thus Worker-2 processor is unavoidable for real time com-
putation (n̄2 and n̄3 overlap in time diagram). The mathematical formulas for
processes n̄2 and n̄3 (consisting from two parts) can be described explicitly in
the text of the general algorithm which we omit due to the restrictions for the
size of the manuscript.

5 Application of Real Time Integration Technique for
Visualization of Holographic Interferograms

Computational visualization of holographic interferograms in virtual numerical
environments is an important component of hybrid numerical – experimental
techniques. These techniques are of crucial importance when the analysed sys-
tems perform non-harmonic motions what is a typical situation when micro-
mechanical systems are considered [9].

Whenever a pattern of time average holographic fringes is considered, the
intensity of illumination at the hologram plane is described by the following
relationship [1]:

I (x, y) = lim
T→∞

1
T 2

∣∣∣∣∣∣
T∫

0

exp
(

j
2π

λ
ζ (x, y, t)

)
dt

∣∣∣∣∣∣

2

, (6)

where I is the intensity of illumination; T – exposure time; j – imaginary unit;
λ – laser wave length; ζ – dynamic displacement at point (x, y) at time moment
t. Usually the function ζ (x, y, t) is decomposed to a product of time function and
coordinate function describing the modal shape. It is clear that accurate compu-
tation of definite integral in eq. (6) for finite exposure times is associated with
the accuracy of pattern of fringes in the numerically reconstructed hologram.

Dynamic displacements of cantilevered micromechanical bar are presented in
Fig. 4(a). Scanning laser is measuring the displacements at the marked nodes
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Fig. 4. Dynamic displacements of cantilevered micromechanical bar: (a) finite element
shapes at different time moments; (b), (c), (d) and (e) – nodal orders of integration at
different time moments

Fig. 5. Numerically reconstructed pattern of fringes

at discrete time moments. Intensity of illumination in the hologram plane is
calculated at every node, so definite integrals are calculated at every node. The
system is checking the magnitude of dynamic displacement at every node and
generates the recommended order of integration which is based on the absolute
value of discrete displacement at appropriate node. Figures 4(b), 4(c), 4(d) and
4(e) present the recommended orders of integration at different time moments;
where m1 = 3, m2 = 5, m3 = 7, m4 = 9.

Figure 5 presents the produced time average holographic pattern of fringes.

6 Concluding Remarks

The presented procedure for real time calculation of definite integrals can be
effectively applied in hybrid numerical-experimental techniques where time ave-
rage intensities of illumination are reconstructed in virtual computational
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environment. Implementation of the proposed integration rule enables full real
time computations with minimal data queue lengths and effective management
of integration order.
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Abstract. In the contribution, we introduce an application of finite el-
ement model of the piezoelectric resonator. The model is based on the
physical description of piezoelectric materials, using linear piezoelectric
state equations. Weak formulation and discretization of the problem lead
to a large and sparse linear algebraic system, which results in a ge-
neralized eigenvalue problem. Resonant frequencies, the most important
parameters of the resonator, are subsequently found by solving this alge-
braic problem. Depending on the discretization parameters, this problem
may become large.

Typically, we are not interested in all eigenvalues (resonant frequen-
cies). For determination of several of them it seems therefore appro-
priate to consider the Krylov subspace methods (namely the implic-
itly restarted Arnoldi method implemented in the ARPACK library).
For coarser meshes, we compute the complete spectra and we find the
frequencies of dominant oscillation modes (the selection is made accord-
ing to their electromechanical coupling coefficients). Then we focus on the
part of the spectra near to the chosen dominant frequency and repeat
the computation for refined meshes. From the results, we can also find
out intervals between the dominant resonant frequencies (which is other
important parameter describing the behavior of the resonator).

The model was tested on the problem of thickness-shear vibration
of the in–plane parallel quartz resonator. The results, compared with
the measurement, will be given in the contribution.

1 Physical Description

We briefly sketch the physical properties of the piezoelectric materials. For more
detailed description (including more references), see e.g. [4].

A crystal made of piezoelectric material represents a structure, in which the
deformation and the electric field depend on each other. A deformation (im-
paction) of the crystal induces an electric charge on the crystal’s surface. On the
other hand, subjecting a crystal to electric field causes its deformation. In the
linear theory of piezoelectricity, derived by Tiersten in [5], this process is de-
scribed by two constitutive equations - the generalized Hook’s law (1) and
the equation of the direct piezoelectric effect (2),

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 693–700, 2007.
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Tij = cijkl Skl − dkij Ek, i, j = 1, 2, 3, (1)

Dk = dkij Sij + εkj Ej, k = 1, 2, 3. (2)

Here, as in the other similar terms throughout the paper, we use the Einstein’s
additive rule. The Hook’s law (1) describes relation between the symmetric
stress tensor T, the symmetric strain tensor S and the vector of the in-
tensity of the electric field E,

Sij =
1
2

[
∂ũi

∂xj
+

∂ũj

∂xi

]
, i, j = 1, 2, 3, Ek = − ∂ϕ̃

∂xk
, k = 1, 2, 3,

where ũ = (ũ1, ũ2, ũ3)T is the displacement vector and ϕ̃ is the electric po-
tential. The equation of the direct piezoelectric effect (2) describes dependence
between the vector of the electric displacement D, the strain and the in-
tensity of the electric field. Quantities cijkl , dkij and εij represent symmetric
material tensors, playing role of material constants. Additionally, tensors cijkl

and εij are positive definite.

1.1 Oscillation of the Piezoelectric Continuum

Consider a resonator made of piezoelectric material with density �, character-
ized by material tensors. We denote the volume of the resonator as Ω and its
boundary as Γ . Behavior of the piezoelectric continuum is governed, in some
time interval (0, T), by two differential equations: Newton’s law of motion (3)
and the quasi-static approximation of Maxwell’s equation (4) (see, e.g., [3]),

�
∂2ũi

∂t2
=

∂Tij

∂xj
i = 1, 2, 3, x ∈ Ω, t ∈ (0, T), (3)

∇ · D =
∂Dj

∂xj
= 0. (4)

Replacement of T, resp. D in (3) and (4) with the expressions (1), resp. (2),
gives

�
∂2ũi

∂t2
∂

∂xj

[
cijkl

1
2

(
∂ũk

∂xl
+

∂ũl

∂xk

)
+ dkij

∂ϕ̃

∂xk

]
i = 1, 2, 3, (5)

0 =
∂

∂xk

[
dkij

1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− εkj

∂ϕ̃

∂xj

]
. (6)

The initial conditions, the Dirichlet boundary conditions and the Neumann
boundary conditions are added:

ũi(·, 0) = ui, x ∈ Ω, (7)
ũi = 0, i = 1, 2, 3, x ∈ Γu,

Tijnj = fi, i = 1, 2, 3, x ∈ Γf ,

ϕ̃(·, 0) = ϕ,

ϕ̃ = ϕD, x ∈ Γϕ

Dknk = q, x ∈ Γq,
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where
Γu ∪ Γf = Γ, Γu ∩ Γf = ∅, Γϕ ∪ Γq = Γ, Γϕ ∩ Γq = ∅.

The right-hand side fi represents the mechanical excitation by the external me-
chanical forces, q denotes the electrical excitation by imposing the surface charge
(in the case of free oscillations, they are both zero). Equations (5)-(6) define
the problem of harmonic oscillation of the piezoelectric continuum under given
conditions (7).

2 Numerical Solution

2.1 Weak Formulation and Discretization

We derive the weak formulation in the standard way, using the Green formula
and the boundary conditions. We discretize the problem in spatial variables,
using the tetrahedron finite elements with linear base functions. The process of
weak formulation and discretization is explained in more details, e.g., in [4]. The
system of ordinary differential equations for nodal values of the displacement
and the potential results. It has a block structure,

MÜ + KU + PTΦ = F, (8)
PU − EΦ = Q. (9)

After introducing the Dirichlet boundary conditions (see Fig. 1), sub-matrices
M, K and E are symmetric and positive definite.

Fig. 1. Introduction of the Dirichlet boundary conditions

2.2 Generalized Eigenvalue Problem

The core of the behavior of the oscillating piezoelectric continuum lies in its
free oscillation. Free oscillations (and computed eigenfrequencies) tell, when the
system, under external excitation, can get to resonance. For free harmonic oscil-
lation, the system (8) can be transformed to
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(
K − ω2M PT

P −E

) (
U
Φ

)(
0
0

)
, (10)

where ω is the circular frequency of oscillation. Eigenfrequencies can be com-
puted by solving the generalized eigenvalue problem

AX = λBX (11)

with

A =
(

K PT

P −E

)
, B =

(
M 0
0 0

)
, X =

(
U
Φ

)
, λ = ω2,

where A is symmetric and B is symmetric and positive semi-definite matrix.
Resonant frequency f can be computed from the relation ω = 2πf . Computed
eigenvectors (namely their component U) describe the modes of oscillations.
For solving the generalized eigenvalue problem (11), we use implicitly restarted
Arnoldi method implemented in ARPACK library [6] (in FORTRAN language).
Inner steps in the method make use of direct solver from SKYPACK library

Table 1. Comparison between measured and computed dominant resonant frequencies
(in the shear vibrational mode)

Resonance frequency (kHz) Measured Computed

basic (f1) 4000 3696.785

harmonic 1.017 f1 1.014 f1

1.03 f1 1.04 f1

GMSH

1. Geometry of resonator

2. Setting boundary conditions

3. Building mesh

GMSH

manually

1. Computation of global matrices

2. Introduction of boundary conditions

3. Solving the eigenvalue problem

c++ code

Arpack c++ code&

*.msh file boundary_conditions.dta file

freq.dta file

coupling_coefficient.dta file

*.pos file

GMSH

c++ code1. Selection of dominant modes

2. Vizualization of selected modes

Fig. 2. Scheme of computer implementation of the model and its stages
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Fig. 4. Graph of the electromechanical coupling coefficients

[8] for solving the symmetric indefinite linear systems. The whole method is
suitable for solving partial eigenvalue problem (computing of several eigenvalues
with high precision) with possibility of the shift and it allows to deal with the
sparsity of the matrices. Using of the shift enables to obtain the eigenvalues from
the desired part of the spectrum and with good accuracy (if we compute only
few eigenvalues from the desired area).

3 Practical Problem – Oscillation of the In–Plane Parallel
Quartz Resonator

The model was applied on the problem of oscillation of the in–plane parallel
quartz resonator AT35◦11′30′′ (Fig. 3) in shear vibration mode in x–direction.
The dimensional parameters for the resonator are

R = 7 mm, r = 3.5 mm, h = 0.3355 mm.

These resonators are manufactured and their behavior is well–known. The objec-
tive was to find the dominant resonant frequency and its harmonic frequencies.
The comparison between the computed results and the measurements is shown in
Table 1. Figure 5 shows the visualization of the computed oscillation modes.
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Fig. 5. The dominant oscillation modes, lying near to 4 MHz
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3.1 Computer Implementation

The realization of the model consists of three parts: preprocessing, processing and
postprocessing (Fig. 2). In pre- and postprocessing parts, we use the free soft-
ware GMSH [7] for mesh generation and visualization of the results. For build-
ing the global matrices, we developed our own code, written in C++ language.
For solving the generalized eigenvalue problem, we use the ARPACK [6] imple-
mentation of the implicitly shifted Arnoldi method (all parts are debugged under
Windovs XP).

The preprocessing part consists of building the geometry (according to the en-
gineering assignments) and the mesh of the resonator (using GMSH), see Fig. 3.
The processing part computes the global matrices and the consecutive eigen-
value problem (using text file with parameters – accuracy, number of computed
eigenvalues, shift, etc.). It gives several output files, which are used in the post-
processing. Computed eigenvalues and eigenvectors define the oscillation modes,
which are sorted according to their electromechanical coupling coefficients. The
electromechanical coupling coefficient k is defined by the relation [2]

k2 =
E2

m

EstEd
,

where
Em =

1
2

(
UT PΦ

)

is the mutual energy,

Est =
1
2

(
UT KU

)

is the elastic energy and

Ed =
1
2

(
ΦT EΦ

)

is the dielectric energy. The higher the value of k the better the possibility
of excitation of the oscillation mode. Figure 4 shows the graph of the coefficients
k for a part of the spectra from 0 MHz up to about 5 MHz and the selection
of the modes with the highest coefficients k.

4 Conclusion

The presented mathematical model gives suitable results for the testing prob-
lems. It uses methods of numerical linear algebra for solving the partial genera-
lized eigenvalue problem with possibility of shift mode, which allows to compute
eigenfrequencies in the neighborhood of the desired value. The restarted Arnoldi
methods looks pretty effective for this problem. It is suitable for solving larger
problems originated by the discretization of more complicated shapes of res-
onators. The difference between the calculated and the measured results can
be caused by several reasons – mainly in the mathematical formulation, in the
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use of the simple, linear piezoelectric state equations; in the process of numer-
ical solution, it is the case of rounding errors during the computation (both
in discretization and solving the eigenvalue problem of large dimension). The
difference between the basic frequencies is rather large (around 9%, which can
be caused by the reasons mentioned above), but the relative ratio between the
basic frequency and its harmonic frequencies is computed with much small error
(about 1%) and after calibration, the model can bring reasonable results.

Nowadays, the next step to do is computation of the graphs of dependance
of certain resonance frequency on the geometrical characteristic of the resonator
and also the distance of carrier resonance frequency from the spurious frequen-
cies. It still remains as a hard task to improve the postprocessing part of the
program for classification of the computed oscillation modes - mainly according
to the graphs of amplitudes in several sections of the resonator volume.
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Abstract. This paper propose a method for identification of complex
engineering systems using wavelet transform. This transform is chosen
because it can provide a well localization both in time and in frequency.
The method is applied to an electrohydraulic system that drives a shak-
ing table. The identification is made using real signals obtained from
experimental tests.

Keywords: systems identification, wavelet transform, Morlet wavelet,
complex systems.

1 Introduction

The analysis and the interpretation of signals, obtained from experimental tests
by measuring physical quantities with different types of sensors, are important.
The extraction of significant information about the phenomenon from an experi-
ment, that simulates the system behavior during its functioning, can be made by
using various methods. One of this methods is the identification of the system.
This method permits to obtain an experimental model of the dynamical system.
The classical approach for systems identification [3], [14] takes into consideration
only the time domain or the frequency domain, but not both. This approach may
cause losses of important information about the system behavior. An analysis
both in time and in frequency can be more accurate and it is possible by using
the wavelet transform [2], [6], [7], [11].

Because of their properties, the wavelets were used for system identification.
In [8], the authors propose a method for system identification using wavelets
networks and three methods for regressor selection. A new class of wavelet net-
work was proposed in [1]. The Morlet wavelet [6], [7] is also used in dynamical
system identification because one of its parameters is inversely proportional to
the Fourier frequency [10], [13].

In vibration tests, as in seismic engineering, it is important to know at what
frequency some phenomena appear. The wavelet transform allows the signal
filtering with narrow band filters. In particular, a time-history signal can be
extracted for certain frequencies. This paper propose an identification algorithm
based on this observation.

T. Boyanov et al. (Eds.): NMA 2006, LNCS 4310, pp. 701–708, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Wavelet Transform

The wavelet transform is a linear transform, which realizes the projection of
a signal, x(t), which is a time-series, on a two-dimensional space. The two di-
mensions of the projection space are the scale (or dilatation, associated with
the frequency dimension) and the shift (or translation, associated with the time
dimension).

The projection of the signal x(t) is possible by means of some fundamental
functions [9] using the equation:

Tx(a, b) =< x(t), ψa,b(t) > . (1)

In equation (1) ψa,b(t) is a fundamental function that generates a functions basis,
< ·, · > means the inner product, a and b are the two dimensions of the plane.
The fundamental function choice is the researcher option, but one must take into
consideration the purpose of the signal analysis.

The functions basis is generated by functions with some properties, see [2],
[8], [11], through dilatations and translations. The functions basis (noted with
W) is defined as follows:

W =

{
ψa,b(t) | ψa,b : R→ C, ψa,b(t) =

1√
|a|

ψ

(
t− b

a

)
, a, b ∈ IR, a �= 0.

}
(2)

Each function from this basis depends on two parameters: a, which is dilatation
parameter, and b, the translation parameter. The translations (or time shifts)
of the original wavelet (also called mother wavelet) permit the extraction of the
signal properties in time domain. The frequencies content of the signal can be
obtained using dilatations of the mother wavelet.

The mother wavelet must satisfy the following conditions:∫ ∞

−∞
|ψ(t)|2dt <∞, (3)

cψ = 2π

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞, (4)

where Ψ(ω) is the Fourier transform of the function ψ(t).
The original signal can be reconstructed by the formula (5)

x(t) =
1
cψ

∫ ∞

−∞

∫ ∞

−∞
Tx(a, b)ψa,b(t)

dadb

a2
. (5)

Equation (1) denotes the direct wavelet transform, equation (5) denotes the
inverse wavelet transform regarding the mother wavelet ψ(t). As the projection is
made on a continuous plane, this transform is the continuous wavelet transform.

In order to develop a numerical algorithm, the both directions of the projection
plane must be discretized. The discretization is made on a logarithmic scale. The
two parameters are discretized accordingly to the following equations:

a = am
0 , (6)
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b = nb0a
m
0 , (7)

where m, n ∈ ZZ and a0 > 0. The choice of the shift parameter (b) depending on
the scale parameter a is necessary because the support of the wavelet depends
directly on a. The m is the discretization parameter of the scale (frequency)
axis and n is the discretization parameter of the shift (time) axis. With these
relations for a and b, the functions of the wavelets basis are defined as follows:
in time domain:

ψm,n(t) =
1√
am
0

ψ(a−m
0 t− nb0), (8)

in frequency domain:

Ψm,n(ω) =
√

am
0 Ψ(am

0 ω)ejωnb0 . (9)

The discrete wavelet transform is defined, in this case, as follows:

Tx(m, n) =< x(t), ψm,n(t) >=
∫ ∞

−∞
x(t)ψm,n(t)dt, (10)

where ψm,n(t) is the complex conjugate value of ψm,n(t). The reconstruction of
the signal x(t) is made by means of the equation:

x(t) = kψ

∑
m

∑
n

Tx(m, n)ψm,n(t), (11)

where kψ is a constant value for normalization.
The function ψm,n(t) provides sampling points on the scale (frequency) - shift

(time) plane. The most common choice of a0 is:

a0 = 21/v, (12)

where v is an integer value and it defines the voices of a signal. The number
of voices represents the number of intervals that correspond to an octave (an
octave is, as in music, a frequency domain that has the upper bound twice as
lower bound).

3 Morlet Wavelet

The trigonometric functions (sin and cos) form a function basis for the Fourier
transform. This basis is used to analyse the behaviour of the signals in frequency
domain because they are well localized in frequency. But, these functions are
not well localized in time. In 1946, D. Gabor introduced the Short Time Fourier
Transform [4] trying to localize in time the Fourier transform. Due to the Heisen-
berg uncertainty principle the resolution of this transform is not very good [4].
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The basis functions with compact support both in time and in frequency are
ideal candidates for the analysis of the signal in time-frequency domain. The
wavelet transform uses such a functions basis. J. Morlet [6], [7] has introduced
the fundamental function ψ(t) : R → C, defined as

ψ(t) = (ejω0t − e−ω2
0/2)e−t2/2. (13)

In frequency domain, the Morlet wavelet is a shifted Gaussian adjusted so that it
has a zero value for the zero frequency. It is represented by the Fourier transform
of the function in equation (13):

Ψ(ω) = e−(ω−ω0)
2/2 − e−ω2/2e−ω2

0/2. (14)

This function is known as Morlet wavelet and it is well localized both in time
and in frequency, so it can be used for a time-frequency analysis.

Often [11], ω0 is chosen so that the first two maxima of the wavelet in time
domain have a ratio of approximately 1/2, that is:

ω0 = (2/ ln 2)1/2 = 5.3364... (15)

In this paper, the value of ω0 was chosen to be equal to 2π for a good correlation
between the wavelet transform and the frequency content of the signal. For this
value, the second terms in equations (13) and (14) are so small that they can
be neglected. As a result, the Morlet wavelet can be considered as a modulated
Gaussian function.

The scaling parameter for this wavelet is connected with the Fourier frequency
f expressed in [Hz] or ω expressed in [rad] accordingly to the following relation:

a =
f0

f
=

ω0

ω
. (16)

4 Wavelet Based Identification

System identification is necessary in order to extract information about complex
systems. There are many methods [3], [14] to do a system identification, but
they work either in time domain or in frequency domain. The key idea of this
algorithm is the fact that the wavelet transform realizes a time-frequency analysis
and the signal can be decomposed in a such a way that for each frequency, we
have a time-series and for each time moment we have instantaneous frequency
spectrum.

For identification, the dynamical system schematic form presented in Fig.1(a)
will be considered. Here x(t) is the system input signal and y(t) is the system
output signal. Accordingly to equation (11) these two signals can be decom-
posed, using wavelet transform, in m signals, each of them corresponding to an
established frequency. If in equation (11) the following notation is considered:

xm(t) = kψ

∑
n

Tx(m, n)ψm,n(t) (17)
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Fig. 1. Schematic representation of a system

then the equations for the input and the output signals of the system are:

x(t) =
∑
m

xm(t) (18)

and
y(t) =

∑
m

ym(t). (19)

Each xm(t) and ym(t) is the input, respectively the output signal of a subsystem
of the dynamical system considered, whose schematic form is represented in
Fig.1(b).

This way, the identification of a complex system can be reduced to the identi-
fication of m systems, each for one frequency considered. The frequencies taken
into consideration for the identification are established after a frequency analysis
of the system (i.e. a Fourier analysis).

For each of the m subsystems, a classical identification parametric method can
be applied [3], [14] (e.g. least square type method: prediction error minimization).

The numerical algorithm proposed for system identification is:

Step 1. Determine the Fourier spectrum of the input and output signals. This
is necessary for establishing the frequency domain and the frequency values
used in the identification. Let us denote with fi the lower bound of the
frequency domain and with fs the upper bound of the frequency domain.

Step 2. Determine the values of the dilatation parameter m and of the trans-
lation parameter n for the discrete wavelet transform.

Establishing the number of voices. This is the number of intervals into
which an octave is divided. This number is denoted with v. It is chosen
taking into consideration how fine the wavelet analysis should be.

Determining the values of the parameter m. These are the points on
the frequency axis where the wavelet transform will be calculated. Taking
into account equations (6), (12) and (16), the starting value of m, denoted
by mi, is

mi = v log2

f0

fi
(20)
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and the ending value is

ms = v log2

f0

fs
. (21)

This way a logarithmic discretization for the parameter a is replaced
by a linear discretization of the parameter m. For a better correspon-
dence between an actual value frequency and the parameter m, in this
algorithm the value of f0 is chosen to be 1 Hz (omega0 = 6.28 rad).

Determining the values of the parameter n. b0 is chosen to be equal
to the discretization interval of the signal, denoted by dt. If N is the
number of samples of each signal, then the starting value for n, denoted
by ni, is

ni = −
(

N

2

)
(22)

and the ending value for n, ns, is

ns =
(

3N

2

)
. (23)

Step 3. For each value of the parameters m and n, the Morlet wavelet ψm,n(t)
is calculated (equation (8)).

Step 4. The input and output signals for each of the m subsystems are calcu-
lated using wavelet transform (equations (17), (18), (19)).

Step 5. A classical identification method is applied for each subsystem (e.g. the
least squares method).

Step 6. Results validation.

5 Numerical Results

The numerical algorithm described in the previous section was used for identi-
fication of an electrohydraulic system that drives a shaking table. The shaking
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Fig. 2. Signals used in identification
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Fig. 3. Wavelet transform coefficients for input signal - real part
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Fig. 4. Results of an identification process

tables are used to simulate earthquakes and to test building structures behavior
during earthquakes. The output signal of such a system simulates the earth-
quake and the input signal is called the program signal. Fig. 2(a) presents the
experimental input signal used to test the algorithm and in Fig. 2(b) is the cor-
responding output signal. The sampling interval for these signals (dt) is 0.004s.

In the identification process real experimental signals are used. For this reason,
the first half of the signals is used for identification and the second half is used for
results validation. In Fig. 3 the wavelet coefficients are presented. A comparison
between the original signal and the restored signal is presented in Fig. 4(a); the
error is presented in Fig. 4(b).

6 Conclusions

The paper presents a new method for complex systems identification. This method
considers the dynamical system as a sum of many subsystems, one subsystem for
each frequency of interest. The method proposes modeling technique able to high-
light the influence of some frequencies concerning the system behavior.
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The paper presents some facts about the wavelet transform and describes a
numerical algorithm able to identify a system using this mathematical tools.

This algorithm was implemented using MATLAB and it permits some devel-
opments that can be a basis for a distributed algorithm for system identification.

The algorithm was used for modeling an electrohydraulic system that drives
a shaking table.
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Tehnica, Bucureşti, 1987 (in Romanian).



Simulation of Turbulent Thermal Convection
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Abstract. To simulate turbulent Rayleigh–Bénard convection in cylin-
drical domains an explicit/semi-implicit finite volume method with
fourth order approximations in space was developed. Using this method
and cylindrical staggered grids of about 11 million nodes clustered in
vicinity of the boundary we performed simulations of turbulent Rayleigh–
Bénard convection in wide cylindrical containers of the aspect ratios
Γ = 5 and 10 and the Rayleigh number from 105 to 108. In the present
paper the method, its numerical stability and mesh generation algorithm
are discussed.

1 Turbulent Rayleigh–Bénard Convection

The thermally driven turbulent fluid motion between a lower heated horizontal
plate and an upper cooled plate, i.e. Rayleigh–Bénard convection (RBC), is one
of the classical problems in fluid dynamics. The Rayleigh number Ra, which is in-
versely proportional to the squared diffusion coefficients ν = Γ−3/2Ra−1/2Pr1/2

and κ = Γ−3/2Ra−1/2Pr−1/2 in the Navier–Stokes (1) and energy (2) equations,

ut + u · ∇u + ∇p = νΔu + Tz, (1)
Tt + u · ∇T = κΔT, (2)

together with the Prandtl number Pr and the aspect ratio Γ (the ratio between
the linear sizes of the container in the horizontal and vertical directions) are
the governing parameters in turbulent RBC. Here u the velocity vector, T the
temperature, ut and Tt their time derivatives and p the pressure. The system (1),
(2) is closured by the continuity equation ∇ · u = 0. The temperature T varies
between +0.5 at the bottom plate and −0.5 at the top plate. On the adiabatic
lateral wall ∂T/∂r = 0 and on all solid walls n · ∇p = 0 (n is the normal vector)
and the velocity field u vanishes due to impermeability and no-slip conditions.
Note that in cylindrical coordinates (z, ϕ, r) for a vector a = (az, aϕ, ar) one has

∇a ≡ grad a =
(

∂a
∂z , 1

r
∂a
∂ϕ , ∂a

∂r

)
, ∇ · a ≡ div a = ∂az

∂z + 1
r

(
∂aϕ

∂ϕ + ar

)
+ ∂ar

∂r and

Δa ≡ ∇ · ∇a = ∂2a
∂z2 + 1

r
∂a
∂r + 1

r2
∂2a
∂ϕ2 + ∂2a

∂r2 .
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To simulate turbulent RBC in cylindrical domains an explicit/semi-implicit
finite volume method with fourth order approximations in space was developed.
Using this method and cylindrical staggered grids of 110×512×192 nodes in the
vertical, azimuthal and radial directions, respectively, we performed simulations
for the cases Γ = 5 and 10 and Ra from 105 to 108. The considered cases are
closely related to many astrophysical, geophysical and meteorological problems,
in which Ra varies from 105 to 1020 and the aspect ratio is large.

In the present paper the numerical method, its von Neumann stability and
mesh generation algorithm are discussed. For physical results on turbulent ther-
mal convection, obtained from the simulation data, we refer to Shishkina &
Wagner [1].

2 Finite Volume Method for Navier–Stokes Equations in
Cylindrical Domains

Further we describe the finite volume scheme for the system (1), (2) in cylindrical
coordinates by the example of the Navier–Stokes equation (1). For the energy
equation (2) the scheme is written analogously.

Consider a finite volume V = V (zi, ϕj , rk) with the center (zi, ϕj , rk) and
the cell surfaces A±

z = Az(zi ± Δzi

2 , ϕj , rk), A±
ϕ = Aϕ(zi, ϕj ± Δϕj

2 , rk), A±
r =

Ar(zi, ϕj , rk ± Δrk

2 ), where Δzi, Δϕj , Δrk are the sizes of V in the directions z,
ϕ, r, respectively. Each V and its cell surfaces are associated with the coordinates
of their own centers. The values β±

uα and uα denote the velocity component
uα averaged over the A±

β -surface and over V , respectively, and βuα denotes
averaging of uα over a surface Aβ = 0.5(A+

β + A−
β ). Using the notations ΔV =

rkΔrkΔziΔϕj , ΔAz = rkΔrkΔϕj , ΔAϕ = ΔrkΔzi, ΔAr = rkΔziΔϕj and
integrating (1) over V we get the following finite volume scheme

∂uα

∂t
+

∑
β=z,ϕ,r

(Kαβ − Dαβ) + Pα − Cα + Tα = 0,
∑
α

(Fα+ − Fα−) = 0, (3)

where α = z, ϕ, r, Fα± = ΔA±
α

α±uα denotes the momentum flux,

Kαβ = 1
ΔV

(
Fβ+

β+
uα − Fβ− β−

uα

)
the convective term,

Dαβ = ν
ΔV

(
ΔA+

β
β+

sαβ − ΔA−
β

β−
sαβ

)
the diffusive term,

Pα = 1
ΔV

(
ΔA+

α
α+

p − ΔA−
α

α−
p
)

the pressure term,

Tα = δz
αT the temperature term, δz

α the Kronecker symbol,
Cϕ = ΔϕjΔAϕ

ΔV (−ϕuϕ
ϕur + ν ϕsϕr), Cr = ΔϕjΔAϕ

ΔV

(
(ϕuϕ)2 + ϕp − ν ϕsϕϕ

)
and Cz = 0 the curvature terms and the surface averaged deformation tensor
βsαβ equals
⎡
⎢⎣

2 ∂
∂z

zuz
1
r

∂
∂ϕ

ϕuz + ∂
∂z

ϕuϕ
∂
∂r

ruz + ∂
∂z

rur

1
r

∂
∂ϕ

ϕuz + ∂
∂z

ϕuϕ
2
r

(
∂

∂ϕ
ϕuϕ + ϕur

)
r ∂

∂r (ruϕ/r) + 1
r

∂
∂ϕ

rur

∂
∂r

ruz + ∂
∂z

rur r ∂
∂r (ruϕ/r) + 1

r
∂

∂ϕ
rur 2 ∂

∂r
rur

⎤
⎥⎦ .
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3 Explicit Scheme

The explicit time discretization of the equation (3) can be written as follows

un+1
α − un−1

α

2Δt
+

∑
β=z,ϕ,r

(
Kn,n

αβ − Dn−1,n−1
αβ

)
+ Pn

α − Cn
α + T n

α = 0, (4)

where Kn,m
αβ = 1

ΔV

(
ΔA+

β
β+

un
α

β+
um

β − ΔA−
β

β−
un

α
β−

um
β

)
,

Dn,m
αβ = ν

ΔV

(
ΔA+

β
β+

sn,m
αβ − ΔA−

β
β−

sn,m
αβ

)
,

Pn
α = 1

ΔV

(
ΔA+

α
α+

pn − ΔA−
α

α−
pn
)

, T n
α = δz

α T n,

Cn
z = 0, Cn

ϕ = ΔϕjΔAϕ

ΔV

(
−ϕun

ϕ
ϕun

r + ν ϕsn
ϕr

)
,

Cn
r = ΔϕjΔAϕ

ΔV

((
ϕun

ϕ

)2 + ϕpn − ν ϕsn
ϕϕ

)
, and βsn,m

αβ equals

⎡
⎢⎣

2 ∂
∂z

zun
z

1
r

∂
∂ϕ

ϕum
z + ∂

∂z
ϕun

ϕ
∂
∂r

run
z + ∂

∂z
run

r

1
r

∂
∂ϕ

ϕum
z + ∂

∂z
ϕun

ϕ
1
r

(
∂

∂ϕ
ϕun

ϕ + ϕum
ϕ

)
+ 2

r
ϕun

r r ∂
∂r

(
run

ϕ/r
)

+ 1
r

∂
∂ϕ

rum
r

∂
∂r

run
z + ∂

∂z
run

r r ∂
∂r

(
run

ϕ/r
)

+ 1
r

∂
∂ϕ

rum
r 2 ∂

∂r
run

r

⎤
⎥⎦,

Δt is the time step, n is the number of the time step.
The solution of (4) is obtained in three steps using the projection approach

by Chorin [2]. First, an approximate velocity field u∗ = (u∗
z, u

∗
ϕ, u∗

r) is computed
from the equations (5) obtained from (4) by neglecting the pressure term,

u∗
α − un−1

α

2Δt
+

∑
β=z,ϕ,r

(
Kn,n

αβ − Dn−1,n−1
αβ

)
− Cn

α + T n
α = 0, α = z, ϕ, r. (5)

Then the Poisson equation for an auxiliary function φn is solved:

Δφn = ∇ · u∗ ≡ 1
ΔV

∑
β=z,ϕ,r

(
ΔA+

β
β+

u∗
β+ − ΔA−

β
β−

u∗
β−

)
. (6)

On the solid walls u∗
α = 0, α = z, ϕ, r, and n · ∇φn = 0 (n is the normal vector).

The function φn and the velocity field u∗ are periodic in the ϕ-direction. The
solution is obtained applying the Fourier transform in the ϕ-direction and further
any 2D-Poisson solver. Finally, the velocity field is updated as follows

un+1 = u∗ − ∇φn. (7)

The correctness of the scheme can be checked as follows. From (4), (5) and
Pn

α = ∂pn/∂xα, α = z, ϕ, r, we get

un+1
α = u∗

α − 2Δt ∂pn/∂xα. (8)

Applying (∇·) to this equation and assuming ∇·un+1 = 0 due to the continuity,
from (8) and (6) we get 2ΔtΔpn = ∇·u∗ = Δφn. Therefore ∇pn = ∇φn/(2Δt),
which together with (8) gives (7).
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4 Semi-implicit Scheme

Only in a thin subdomain around the cylinder axis the explicit treatment of the
viscous term Dn−1,n−1

αβ and the convective term Kn,n
αβ in the azimuthal direction

β = ϕ leads to an extremely small time step Δt in the scheme (4) due to the
numerical stability. In this subdomain we apply the following implicit (in the
ϕ-direction) scheme

un+1
α − un−1

α

2Δt
+
∑

β=z,r

(
Kn,n

αβ − Dn−1,n−1
αβ

)
+ Kn+1,n

αϕ − Dn−1,n+1
αϕ

+Pn
α − Cn

α + T n
α = 0, α = z, ϕ, r,

to accelerate the simulations. These equations are solved similarly to (4). First,
an approximate velocity field u∗ is computed from the equation without the
pressure term using any fast solver for band matrices. The Poisson equation (6)
and the equation to update the velocity field (7) remain unchanged, but the

pressure is calculated by pn =
(

1
2Δt + un

ϕ
∂

∂ϕ +
∂un

ϕ

∂ϕ − ν ∂2

∂ϕ2

)
φn.

5 High-Order Discretization

In this section we consider a way to construct high-order schemes to compute
the Aβ-surface averaged value βuα and its partial derivatives ∂

∂β
βuα for each

velocity component uα by the example of a fourth order scheme.
Let β be one of the coordinates (z, ϕ or r) and V (βi) a finite volume bounded

by the surfaces Aβ(βi ± Δβi

2 ), where Δβi is the size of V (βi) in the direction
β. The values uα(βi) and βuα(βi + Δβi

2 ) denote the uα-component averaged
over V (βi) and over Aβ(βi + Δβi

2 ), respectively. Any approximation scheme to
compute βuα(βi + Δβi

2 ) and ∂
∂β

βuα(βi+ Δβi

2 ) involves a certain number of values
uα(βi±k), k ∈ N . Everywhere except in the near wall regions we consider central
approximation schemes.

5.1 Central Discretization in the Directions β = z and β = ϕ

To find the coefficients ξj and ηj , j = 1, 2, 3, 4, of the central fourth order
approximation schemes

βuα(βi +
Δβi

2
) =

4∑
j=1

ξjuα(βi−2+j),
∂

∂β
βuα(βi +

Δβi

2
) =

4∑
j=1

ηjuα(βi−2+j),

we assume that the Aβ(β)-averaged component uα equals some polynomial of
β,

βuα(β) =
4∑

k=1

ζkβk−1,
∂

∂β
βuα(β) =

4∑
k=1

(k − 1)ζkβk−2, (9)
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with coefficients ζk, k = 1, 2, 3, 4. From this the V (βj)-averaged components uα

can be computed as follows

uα(βl) =
1

Δβl

∫ βl+
Δβl
2

βl−
Δβl
2

4∑
k=1

ζkβk−1dβ.

Substituting the values uα(βl) for l = i − 1, i, i + 1, i + 2 in this equality we get
a system of linear equations for the coefficients ζk, k = 1, 2, 3, 4,

4∑
k=1

(Aβ)jkζk = uα(βi−2+j), j = 1, ..., 4, (10)

(Aβ)jk =
1
k

k−1∑
m=0

(
βi−2+j +

Δβi−2+j

2

)m(
βi−2+j − Δβi−2+j

2

)k−m−1

.

For the matrix Oβ = A−1
β from (9) and (10) it follows

βuα(βi +
Δβi

2
) =

4∑
j=1

uα(βi−2+j)
4∑

k=1

(Oβ)kj

(
βi +

Δβi

2

)k−1

,

∂

∂β
βuα(βi +

Δβi

2
) =

4∑
j=1

uα(βi−2+j)
4∑

k=1

(k − 1)(Oβ)kj

(
βi +

Δβi

2

)k−2

.

In the equidistant case, Δβi = Δ, we get the following approximation scheme
to compute the values βuα(βi + Δβi

2 ) and ∂
∂β

βuα(βi + Δβi

2 )

βuα(βi +
Δ

2
) =

1
12

[−uα(βi−1) + 7uα(βi) + 7uα(βi+1) − uα(βi+2)], (11)

∂βuα(βi + Δ
2 )

∂β
=

1
12Δ

[uα(βi−1) − 15uα(βi) + 15uα(βi+1) − uα(βi+2)]. (12)

5.2 Discretization in the Direction β = r

For the approximation of the values ruα(r) and ∂
∂r

ruα(r) we assume that ruα(r)
equals some polynomial of r,

ruα(r) =
4∑

k=1

ζkrk−1,
∂

∂r
ruα(r) =

4∑
k=1

(k − 1)ζkrk−2. (13)

Therefore the values uα(rl) for l = i − 1, ..., i + 2 equal

uα(rl) ≡ 2
(

(rl + Δrl/2)2 − (rl − Δrl/2)2
)−1

∫ rl+
Δrl
2

rl−
Δrl
2

r · ruα(r)dr

= 2
(

(rl + Δrl/2)2 − (rl − Δrl/2)2
)−1 4∑

k=1

ζk
rk+1

k + 1

∣∣∣∣
rl+

Δrl
2

rl−
Δrl
2

.
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Substitution of the values uα(rl) for l = i − 1, ..., i + 2 in this equality gives the
following linear system of equations for the coefficients ζk, k = 1, 2, 3, 4,

4∑
k=1

(Ar)jkζk = uα(ri−2+j), j = 1, ..., 4, (14)

where the coefficients (Ar)jk, j = 1, ..., 4, k = 1, ..., 4, of the matrix Ar equal

(Ar)jk =
2

(k + 1)ri−2+j

k∑
m=0

(
ri−2+j +

Δri−2+j

2

)m(
ri−2+j − Δri−2+j

2

)k−m

,

ri−2+j − Δri−2+j

2
�= 0,

(Ar)jk =
2

k + 1

(
ri−2+j +

Δri−2+j

2

)k−1

, ri−2+j − Δri−2+j

2
= 0.

From this, (13), (14) and Or = A−1
r we get the following formulae

ruα(r) =
4∑

j=1

uα(ri−2+j)
4∑

k=1

(Or)kj rk−1,

∂

∂r
ruα(r) =

4∑
j=1

uα(ri−2+j)
4∑

k=1

(k − 1)(Or)kj rk−2,

to approximate the values ruα(r) and ∂
∂r

ruα(r) for any r ∈ [ri−1, ri+2] and, in
particular, near the solid wall.

6 The von Neumann Stability of the Explicit Scheme

The Leapfrog-Euler scheme (5) remains one of the most popular explicit schemes
in turbulent flow simulations, since the scheme does not suffer from false diffu-
sion and is applicable to convection-diffusion problems with large Peclet number
Peα = cα/dα, α = z, ϕ, r, where cα = UαΔt

Δxα
the Courant number, dα = νΔt

Δx2
α

the diffusion number, Uα the component of the velocity field, which in the von
Neumann stability analysis is supposed to be constant, Δxα = Δα for α = r, z
and Δxϕ = rΔϕ.

First a sufficient condition for the stability of the Leapfrog-Euler scheme uti-
lizing the second order differences in space was suggested by Schumann [3] in a
form of a restriction to the time step Δt. Further the sufficiency of this condi-
tion for the stability was proven by Chan [4] (for the 1D-case) and Wesseling
[5] (for the 3D-case). A sufficient condition for the von Neumann stability of the
Leapfrog-Euler scheme of any even order on equidistant meshes was derived by
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Shishkina & Wagner [6]. This can be resumed as follows. For the Leapfrog-Euler
scheme that uses central approximation schemes of the order 2m, m ∈ N ,

βuα(βi +
Δ

2
) =

m∑
j=1

aj [uα(βi+j) + uα(βi−j+1)], (15)

∂

∂β
βuα(βi +

Δ

2
) =

m∑
j=1

bj

Δxα
[uα(βi+j) − uα(βi−j+1)], α = z, ϕ, r,

the following condition is sufficient for the von Neumann stability of the solution

2
3∑

α=1

⎧⎨
⎩dαb1 +

m∑
j=1

(2 − δ1
j )
√

c2
αa2

j + d2
αb2

j

⎫⎬
⎭ ≤ 1, (16)

where aj, bj, j = 1, ..., m, are the coefficients of the approximation scheme (15)
and δα

β is the Kronecker symbol. In particular, for the Leapfrog-Euler scheme
(11), (12) of the fourth order in space the sufficient condition (16) can be written
as follows

1
6

3∑
α=1

(
15dα +

√
225d2

α + 49c2
α + 2

√
d2

α + c2
α

)
≤ 1.

We substitute cα = UαΔt
Δxα

and dα = νΔt
Δx2

α
in this inequality and get the estimation

of the critical time step, which guarantees the stability of the calculations

Δtcrit
exp <

(
3
2

3∑
α=1

Uα

Δxα
+

16ν

3

3∑
α=1

1
Δx2

α

)−1

,

7 Mesh Generation Algorithm

In turbulent thermal convection the diffusion coefficients in (1) are very small.
In particular, in the considered case Ra = 108, Pr = 0.7, Γ = 10 we have
ν ≈ 2.6 × 10−6 and κ ≈ 3.8 × 10−6. Therefore the solutions of (1) – both the
temperature and the velocity fields – have very thin boundary layers near the
horizontal walls. To resolve them some special fine enough meshes must be used
in the vicinity of the walls.

Our mesh generation algorithm is based on grid equidistribution approach
(see, for example, [7]) and consists of three steps. In the first step a rough
solution of the system (1), (2) is found on a mesh, which is equidistant in the
vertical z-direction. Averaging the temperature in time and also in the ϕ- and
r-directions gives the temperature profile, i.e. a one-dimensional function T̂ (z).

In the second step we find the points {zk}, k = 1, ..., Nz, which equidistribute
the monitor function

M(z) =

√
1 +

(
T̂ ′(z)

)2

,
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where T̂ ′(z) - is the derivative of T̂ (z). Then the mesh is checked: each cell must
be smaller than the Kolmogorov scale h(Ra) = πΓ−1Pr1/2(Nu − 1)−1/4Ra−1/4

[8] to resolve all turbulent scales. Here

Nu = Γ 1/2Ra1/2Pr1/2 〈uzT 〉t,S − Γ−1

〈
∂T

∂z

〉
t,S

is the Nusselt number and 〈·〉t,S denotes averaging in time and also over any
horizontal cross-section S. If the constructed mesh is too coarse, the number of
nodes Nz is increased and the second step is repeated.

In the third step the hyperbolic tangent algorithm by Thompson [9] is used
to make the mesh smoother. This algorithm provides a smooth distribution of
the nodes on the interval [0; 1], using the following incoming data: the number
of the nodes and the sizes of the first and the last subintervals.

Applying this algorithm we constructed the solution-adapted meshes, which
made it possible to resolve the thermal boundary layers in 3D turbulent RBC.
For example, 39.2% of the nodes of the adaptive mesh obtained for the case
Ra = 105, Γ = 10, lie in the thermal boundary layers, while in the equidistant
mesh this number equals 24.9%. The constructed meshes are also smooth, since
the neighbor intervals differ in size by not more than 7%.
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Abstract. The goal of the paper is to review and compare two of the
most popular methods for modeling the dendritic solidification in 2D,
that tracks the interface between phases implicitly, e.g. the phase-field
method and the level set method. We apply these methods to simulate
the dendritic crystallization of a pure melt. Numerical experiments for
different anisotropic strengths are presented. The two methods compare
favorably and the obtained tip velocities and tip shapes are in good
agreement with the microscopic solvability theory.

Keywords: phase-field method, level set method, dendritic solidifica-
tion, finite difference methods.

1 Introduction

Various numerical approaches have been proposed to solve the difficult moving
boundary problem that governs the dendritic growth. Broadly speaking two ap-
proaches for tracking the moving interface between solid and liquid phases can
be distinguished - explicit tracking of the interface and implicit tracking of the
interface. The most popular methods that use the explicit approach are bound-
ary integral method, front tracking method and immersed interface method.
Boundary integral methods are based upon numerical solving an integral equa-
tion on the moving boundary. One drawback of boundary integral method is
that the necessary parametrization of the boundary makes it hard to extend to
higher dimensions. In [1], Juric and Tryggvason presented a numerical method
that incorporates front tracking method with the ideas of immersed interface
method. Although their method was successful in modeling many physical fea-
tures of dendritic solidification, special care had to be taken for topological
changes such as merging or breaking. The main disadvantages of all the meth-
ods, that use the explicit approach, are that topological changes are difficult to
be handled and these methods are usually not easily extended to higher dimen-
sions. Implicit representations such as phase-field or level set methods avoid this
difficulties by representing the boundary as a level set of a continuous function.
Thus the topological changes are easily handled and extension to higher dimen-
sions is straightforward. Moreover, one can easily model additional physics, e.g.
material strain, flow past dendrites or dendritic interaction.
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The format of the paper is as follows. In Section 2 we give short description of
the sharp interface model of solidification. In Section 3 and 4 we present phase-
field and level set models of solidification. Some of the results obtained by using
these methods are shown in Section 5.

2 Sharp Interface Model of Solidification

For equal and constant in both phases material parameters the sharp interface
model of solidification is given by the following system:

∂ u

∂ t
= D∇2u , (1)

Vn = D(∂n u|+ − ∂n u|−) , (2)

ui = −d(n)κ− β(n)Vn , (3)

where:

– u = (T − Tm)/(L/cp) is the dimensionless temperature, T and Tm are the
temperature and the melting temperature respectively, L is the latent heat
of fusion and cp is the specific heat at constant pressure;

– D is the thermal diffusivity;
– n is the outer normal to the solid subdomain;
– Vn is the normal velocity of the interface;
– ∂n u|+, ∂n u|− are the normal derivatives of the temperature at the interface

for the solid (+) and liquid (-) phases;
– κ is the local curvature, β(n) is the kinetic coefficient;
– d(n) = γ(n)Tmcp/L2 is the capillary length and γ(n) is the surface tension.

The equation (1) describes the diffusion of the heat inside the bulk solid and
liquid phases. Equation (2) gives an expression for the interface velocity, pro-
portional to the discontinuity in the normal derivative of the temperature across
the interface. It is needed for conservation of energy and corresponds to release
and/or absorption of latent heat. Finally the Gibbs-Thomson condition(3) mod-
els the change of melting temperature according to kinetic and capillary effects.

3 Phase-Field Model of Solidification

In the phase-field formulation of solidification problems the sharp interface model
of solidification is replaced by a pair of non-linear reaction-diffusion type equa-
tions. The interface between phases is considered as a diffuse region with small
but numerically resolvable thickness and it is given implicitly by the so-called
phase-field, i.e., the level set of a scalar function φ of space and time, called
phase-field function. It varies smoothly from -1 in the liquid to +1 in the solid
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phase. An evolution equation for the phase-field function is solved and the solid-
liquid interface is defined by the level set φ = 0. It must be noted that there
are many ways to prescribe a smoothing and dynamics of the sharp interface
model, so that there is no unique phase-field model. We construct the numerical
method on the basis of the phase-field model used in [2], [3] and given by the
following system of non-linear equations:

∂ u

∂ t
= D�u +

1
2

∂ φ

∂ t
, (4)

τ
∂φ

∂ t
=∇(W 2∇φ)+∂x[|∇φ|2W∂φxW ]+∂y[|∇φ|2W∂φyW ]+φ(1−φ2)−λu(1−φ2)2

(5)
for the dimensionless temperature u(x, y, t) and for the phase-field function
φ(x, y, t), (x, y) ∈ Ω, 0 < t ≤ tk. Here:

– λ is a dimensionless parameter that controls the coupling between u and φ;
– W = δ As, As = (1 − 3ε) + 4ε

φ4
x+φ4

y

|∇φ|4 and ε is the anisotropy strength;
– δ is the characteristic length;
– τ = τ0A

2
s and τ0 is the characteristic time.

The numerical method we have used to solve the phase-field model of solidifica-
tion is described in details in [4], [5].

The phase-field method was the first method successfully applied to 3D den-
dritic growth. The main advantages of the phase-field method are: interfacial
geometric quantities such as curvature and the outward normal vector do not
have to be computed since they are incorporated in the model; because of the im-
plicit representation of the boundary no need to care about topological changes;
sidebranching can be obtained by including thermal noise; interaction between
several dendrites can be easily simulated. The disadvantages of the phase-field
method are: it gives only an approximate representation of the front location;
the phase-field model requires an asymptotic expansion analysis to be performed
with a small parameter proportional to the interface width, W . It is important
to note that the grid size is proportional to W and only in the limit as W → 0
does the phase-field method converge to the sharp interface model. In that sense,
the phase-field method is only a first order accurate approximation to the sharp
interface model. In fact it was shown rigorously that if the grid size is not pro-
portional to W , the numerical results are generally incorrect.

4 Level Set Model of Solidification

Level set method is a numerical technique introduced by Osher and Sethian [6]
to track the motion of interfaces. This method is conceptually similar to the
phase-field method in that the interface is represented as a zero contour of the
level-set function φ. The movement of the interface is tracked implicitly through
an advection equation for φ. Unlike the phase-field method, there is no arbitrary
interface width introduced in the level set method, the sharp interface equations
can be solved directly and thus no asymptotics are required.
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4.1 Level Set Formulation

Consider a closed moving interface Γ (t). Let Ω(t) be the region that Γ (t) en-
closes. We associate with Ω(t) a level set function φ(x, t) that satisfies:

⎧⎨
⎩

φ(x, t) < 0, in Ω(t)
φ(x, t) = 0, on Γ (t)
φ(x, t) > 0, in Rn \Ω(t).

(6)

The motion of the interface is determined by a velocity field F . Thus we obtain
the following advection equation for the level set function:

∂ φ

∂ t
+ F .∇φ = 0. (7)

Projecting velocity F normal to the interface, equation (7) becomes:

∂ φ

∂ t
+ Fn|∇φ| = 0. (8)

The outward normal vector n and the curvature κ are defined by:

n =
∇φ

|∇φ| , κ = ∇.n. (9)

Solving equation (8) for one time step results in moving the contours of φ along
the direction normal to the interface according to the normal velocity Fn. F is
constructed to be an extension of the interface velocity Vn, such that Fn = Vn

for points on the interface. The velocity extension can be done in different ways:
ghost fluid method, local level set method , but we use a PDE based method [8]
- every quantity q defined on the interface Γ (t) can be extended by finding the
steady state solution of the following equation:

∂ q

∂ t
+ sgn(φ)

∇φ

|∇φ|∇q = 0. (10)

To ensure that the level set function is a smoothly varying function, well
suited for accurate computations, it is convenient to initialize φ to be a signed
distance function with |∇φ| = 1. Unfortunately, the level set function can quickly
cease to be a signed distance function especially for curvature driven flows. Thus
reinitialization of the level set function have to be performed after each time step.
Reinitialization algorithm maintain the signed distance property by solving to
steady state the equation

∂ φ

∂ t
+ sgn(φ0)(|∇φ| − 1) = 0 (11)

where
sgn(φ0) =

φ0√
φ2

0 + (Δx)2
(12)
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Thus the level set method for solidification is given by the following system of
equations:

∂ φ

∂ t
+ Fn|∇φ| = 0, (13)

∂ Fn

∂ t
+ sgn(φ0)

∇φ

|∇φ|∇Fn = 0, (14)

∂ φ

∂ t
+ sgn(φ0)(|∇φ| − 1) = 0, (15)

∂ u

∂ t
= D∇2u , (16)

Vn = D(∂n u|+ − ∂n u|−) , (17)

ui = −d(n)κ− β(n)Vn . (18)

4.2 Numerical Method

To solve the equation of motion (13) for the level set function and the reini-
tialization equation (15) we use the method of lines approach - we make finite
difference discretization in space and solve the resulting ODE system in time.
Let us denote: Δ+φk = φk+1 − φk, Δ−φk = φk − φk−1. We use the following
fifth order WENO approximations [7] of the first derivatives on the right and
left biased stencils respectively:

∂φ
∂x

+ ≈ 1
12 (−Δ+φi−2,j

Δx + 7Δ+φi−1,j

Δx + 7Δ+φi,j

Δx − Δ+φi+1,j

Δx )+

+ΦWENO(Δ−Δ+φi+2,j

Δx ,
Δ−Δ+φi+1,j

Δx ,
Δ−Δ+φi,j

Δx ,
Δ−Δ+φi−1,j

Δx ),

∂φ
∂x

− ≈ 1
12 (−Δ+φi−2,j

Δx + 7Δ+φi−1,j

Δx + 7Δ+φi,j

Δx − Δ+φi+1,j

Δx )−

−ΦWENO(Δ−Δ+φi−2,j

Δx ,
Δ−Δ+φi−1,j

Δx ,
Δ−Δ+φi,j

Δx ,
Δ−Δ+φi+1,j

Δx ).

ΦWENO(a, b, c, d) = 1
3ω0(a− 2b + c) + 1

6 (ω2 − 1
2 )(b − 2c + d)

The weights ω0, ω2 are defined as: ω0 = v0
v0+v1+v2

, ω2 = v2
v0+v1+v2

, v0 =
1

(ε+β0)2
, v1 = 6

(ε+β1)2
, v2 = 3

(ε+β2)2
, with smoothness measurements: β0 =

13(a− b)2 + 3(a− 3b)2, β1 = 13(b− c)2 + 3(b + c)2, β2 = 13(c− d)2 + 3(3c− d)2

and ε is a parameter that prevents division by zero.
To finish the space discretization we use the Roe flux with entropy fix [7] for

the equation of motion for the level set function (13) and the Godunov flux for
the reinitialization equation (15) [8].

To solve the resulting ODE systems in time we use the following third order
three stage Strong Stability Preserving Runge-Kutta method [9]:

u(1) = un + τL(un) (19)
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u(2) =
3
4
un +

1
4
u(1) +

1
4
τL(u(1)) (20)

un+1 =
1
3
un +

2
3
u(2) +

2
3
τL(u(2)) (21)

To solve the velocity extension equation (14) we use again the method of
lines approach. For space discretization we use Upwind scheme and for time
discretization we use explicit Euler method. The above method reads:

F k+1
n,i,j = F k

n,i,j −Δt((sgn(φi,j)nx,i,j)+
F k

i,j−F k
i−1,j

Δx + (sgn(φi,j)nx,i,j)−
F k

i+1,j−F k
i,j

Δx

+(sgn(φi,j)ny,i,j)+
F k

i,j − F k
i,j−1

Δy
+ (sgn(φi,j)ny,i,j)−

F k
i,j+1 − F k

i,j

Δy
) (22)

It is possible to use WENO scheme for the space discretization of velocity exten-
sion equation, but since the approximation of jump condition on the interface is
first order accurate, we think that the simple Upwind scheme is a better choice.

To compute components of the outward normal (nx, ny) we use central
differences.

The spatial discretization of the temperature field equation (16) away from
the interface is standard. This discretization is not valid if the interface Γ cuts
the stencil. For example, suppose that the interface location, xI , falls in between
xi and xi+1. Then when discretizing at xi we define a ghost value uG

i+1:

uG
i+1,j =

2uI,j + (2α2 − 2)ui,j + (−α2 + 1)ui−1,j

α2 + α
(23)

Here α = (xI,j − xi,j)/Δx. The discretization in y-direction is made by analogy.
For discretization in time we use a second order explicit modification of the

Runge-Kutta method [10] with extended region of stability and automatic choice
of the time step.

4.3 Algorithm Outline

The algorithm of the level set method can be outlined as follows:

1. Initialize u and φ.
2. Compute the extended normal velocity Fn, by solving equation (14) for 5

time steps.
3. Solve equation (8) for the level set function for one time step.
4. Reinitialize φ to be the exact signed distance function by solving equation

(15) for 5 time steps.
5. Solve equation (1) for the temperature, taking into account the temperature

at the interface, given by Gibbs-Thomson equation (3).
6. Repeat steps 2 through 5 to get the next values of φ and u.
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We must note that the main difference between the described level set method
and the level set method, used in the literature [8], [11], [12], [13], is that we
use an explicit time discretization for the temperature field equation. It is also
possible to use other numerical schemes for spatial discretization of the Level set
equation (13) and reinitilization equation (15) - third order ENO scheme, third
order WENO scheme, etc.. or to use Local Lax-Friedrichs flux or Global Lax-
Friedrichs flux for the level set equation, but we found that previously described
method gives better results.

5 Numerical Experiments

In the first set of experiments we compare the shapes and the tip velocities,
obtained by the phase-field and the level set method for two different anisotropy
strengths. The computational domain is: Ω = {(x, y) : 0 ≤ x ≤ 640, 0 ≤ y ≤
640}, the seed is placed in the center of the domain, its radius is r = 4, the
undercooling is u0 = −0.55, the dimensionless grid spacing is h = 0.4.

Fig. 1 shows the dendritic shapes for two different values of the anisotropy
strength ε, the capillary length d0 and the thermal diffusivity D. As seen,
the shapes almost coincide within the plotting resolution. Fig. 2 shows the
dimensionless tip velocities obtained by the phase-field method and by
the level set method and predicted by the microscopic solvability theory. We
found that the results of the phase-field method and the level set method com-
pare favorably and are in good agreement with the microscopic solvability
theory.

In the second set of experiments we examine the effect of grid spacing. The
computational domain is as above, the radius is r = 4, the undercooling is
u0 = −0.55, the anisotropy strength is ε = 0.05, the capillary length is d0 = 0.139
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Fig. 1. Evolution of spherical seed for ε = 0.05, d0 = 0.139, D = 4 (left) and
ε = 0.03, d0 = 0.185, D = 3 (right), t = 350
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Fig. 2. Dimensionless velocity for ε = 0.05, d0 = 0.139, D = 4 (left) and ε = 0.03,
d0 = 0.185, D = 3 (right)

and the thermal diffusivity is D = 4. In the table below we present the tip
velocities obtained for three different grid spacings - h is the grid spacing, m
is the number of mesh points inside the solid-liquid interface for the phase-field
method, column PhF shows the velocities obtained by the phase-field method,
column LS shows the velocities obtained by the level set method and column
MST shows the velocity predicted by the microscopic solvability theory:

h m PhF LS MST
0.2 20− 24 0.01735 0.01731 0.01700
0.4 10− 12 0.01740 0.01737 0.01700
0.8 5− 6 0.01900 0.01770 0.01700

It can be seen from the table that the phase-field method behaves well when
m ≥ 10 (cases h = 0.2, h = 0.4), otherwise it fails to predict the correct velocity.
In contrast the level set method behaves well in all of these cases.

Finally, we present the number of operations, used in space discretization for
one grid point. For the phase-field method we have 172 arithmetic operations
per mesh point and only 1 ”if” statement. For the level set method, taking
into account that for one global time step we make 5 inner time steps for the
velocity extension equation (14) and for the reinitialization equation (15), we
have approximately 2100 arithmetic operations per mesh point, more then 15
evaluations of square root function and more then 15 ”if” statements. From this
point of view the advantage of the phase-field method is obvious.

6 Conclusion

In conclusion, the level set method should be considered as a viable alternative to
the phase-field method for solving solidification problems. The level set method
can handle discontinuous material properties easily, which is currently very diffi-
cult with the phase-field approach. On the other hand simulating sidebranching
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and dendritic interaction is much easier with the phase-field method. Other ad-
vantages of the phase-field method are the computational speed and the fact
that solving reaction-diffusion equations is numerically more stable process than
solving advection equations.
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Hernández, Gregorio 205
Hinterberger, Christof 550
Hoppe, Ronald H.W. 533
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