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Preface

TCC 2007, the Fourth Theory of Cryptography Conference, was held in Am-
sterdam, The Netherlands, from February 21 to 24, 2007, at Trippenhuis, the
headquarters of the Royal Dutch Academy of Arts and Sciences (KNAW). TCC
2007 was sponsored by the International Association for Cryptologic Research
(IACR) and was organized in cooperation with the Cryptology and Information
Security Group at CWI, Amsterdam; the Mathematical Institute, Leiden Uni-
versity; and DIAMANT, the Dutch national mathematics cluster for discrete
interactive and algorithmic algebra and number theory. The General Chair of
the conference was Ronald Cramer.

The conference received 118 submissions, of which the Program Commit-
tee selected 31 for presentation at the conference. These proceedings consist of
revised versions of those 31 papers. The revisions were not reviewed, and the au-
thors bear full responsibility for the contents of their papers. The Best Student
Paper Award was given to Saurabh Panjwani for his paper “Tackling Adaptive
Corruptions in Multicast Encryption Protocols.”

The conference program also included a tutorial on “Quantum Cryptogra-
phy”, given by Renato Renner, and a special event on “The Assumptions for
Cryptography”, consisting of a few short talks and a panel discussion. In addi-
tion, the Program Committee decided to augment the traditional rump session
to include short informal presentations of not only new results, but also open
problems and future research directions.

One of the things that has made my job as Program Chair a pleasure is the
wonderful dedication our community has to the success of TCC. I am grateful
to the many people who have contributed to the organization and content of the
conference. First and foremost, this includes the authors of all submitted papers,
whose research efforts are the raison d’etre for TCC. I am also indebted to my
extremely dedicated Program Committee. They were faced with a larger than
expected workload due to a jump in the number of submissions, yet they carried
out the review process with extraordinary thoroughness and care for the high
standards and integrity of TCC. I also thank the many external reviewers who
assisted the Program Committee in its work.

I thank the Steering Committee of TCC for entrusting me with this respon-
sibility, and its Chair, Oded Goldreich, for being available as a source of wisdom
throughout the process. I also benefited from the experience and advice of the
past TCC chairs, Moni Naor, Joe Kilian, Tal Rabin, and Shai Halevi. I am es-
pecially indebted to Shai, who wrote a wonderful software package that I used
for handling the submissions, the PC discussions, and these proceedings and
provided rapid-response customization and technical support throughout.

I am very grateful to Ronald Cramer, TCC 2007 General Chair; his Co-chairs,
Serge Fehr, Dennis Hofheinz, and Eike Kiltz; and Wilmy van Ojik, the CWI
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Conference Organizer, for all the work they have put into hosting the conference
and managing its logistics. Thanks also to Microsoft for a generous donation that
supported the conference in various ways, including stipends to help students
attend.

My work as Program Chair was supported in part by grants from the
National Science Foundation (CNS-0430336) and office of Naval Research
(N00014-04-1-0478).

I appreciate the assistance provided by the Springer LNCS editorial staff,
including Alfred Hofmann, Frank Holzwarth, and Anna Kramer, in assembling
these proceedings. Finally, I thank Carol Harlow for the administrative help she
provided here at Harvard.

TCC 2007 would not have been possible without the efforts of all the people I
have mentioned here, as well as the many that I have surely forgotten (to whom
I apologize).

December 2006 Salil Vadhan



TCC 2007
The 4th Theory of Cryptography Conference

KNAW Trippenhuis, Amsterdam, The Netherlands
February 21–24, 2007

Sponsored by The International Association for Cryptologic Research
Organized in cooperation with Centrum voor Wiskunde en Informatica (CWI)

and Mathematisch Instituut, Universiteit Leiden
With financial support from Microsoft Corporation

General Chair
Ronald Cramer, CWI Amsterdam and Leiden University

Program Committee
Mihir Bellare University of California, San Diego
Ran Canetti IBM T.J. Watson Research Center
Ivan Damg̊ard University of Aarhus
Cynthia Dwork Microsoft Research
Serge Fehr CWI Amsterdam
Yuval Ishai The Technion
Jonathan Katz University of Maryland
Rafael Pass MIT and Cornell University
Oded Regev Tel Aviv University
Omer Reingold Weizmann Institute of Science
Ronen Shaltiel University of Haifa
Victor Shoup New York University
Yael Tauman Kalai MIT and Weizmann Institute of Science
Salil Vadhan (Chair) Harvard University
Bogdan Warinschi INRIA-Lorraine

TCC Steering Committee
Mihir Bellare University of California, San Diego
Ivan Damg̊ard University of Aarhus
Oded Goldreich (Chair) Weizmann Institute of Science
Shafi Goldwasser MIT and Weizmann Institute of Science
Johan H̊astad Royal Institute of Technology
Russell Impagliazzo University of California, San Diego
Ueli Maurer ETH Zürich
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Does Privacy Require True Randomness?

Carl Bosley and Yevgeniy Dodis�

New York University
{bosley,dodis}@cs.nyu.edu

Abstract. Most cryptographic primitives require randomness (for ex-
ample, to generate their secret keys). Usually, one assumes that perfect
randomness is available, but, conceivably, such primitives might be built
under weaker, more realistic assumptions. This is known to be true for
many authentication applications, when entropy alone is typically suf-
ficient. In contrast, all known techniques for achieving privacy seem to
fundamentally require (nearly) perfect randomness. We ask the question
whether this is just a coincidence, or, perhaps, privacy inherently requires
true randomness?

We completely resolve this question for the case of (information-
theoretic) private-key encryption, where parties wish to encrypt a b-bit
value using a shared secret key sampled from some imperfect source of
randomness S . Our main result shows that if such n-bit source S al-
lows for a secure encryption of b bits, where b > log n, then one can
deterministically extract nearly b almost perfect random bits from S .
Further, the restriction that b > log n is nearly tight: there exist sources
S allowing one to perfectly encrypt (log n − loglog n) bits, but not to
deterministically extract even a single slightly unbiased bit.

Hence, to a large extent, true randomness is inherent for encryption:
either the key length must be exponential in the message length b, or one
can deterministically extract nearly b almost unbiased random bits from
the key. In particular, the one-time pad scheme is essentially “universal”.

Our technique also extends to related computational primitives which
are perfectly-binding, such as perfectly-binding commitment and compu-
tationally secure private- or public-key encryption, showing the necessity
to efficiently extract almost b pseudorandom bits.

1 Introduction

Randomness is important in many areas of computer science. It is especially
indispensable in cryptography: secret keys must be random, and many cryp-
tographic tasks, such as public-key encryption, secret sharing or commitment,
require randomness for every use. Typically, one assumes that all parties have
access to a perfect random source, but this assumption is at least debatable, and
the question of what kind of imperfect random sources can be used for various
applications has attracted a lot of attention.

Extraction. The easiest such class of sources consists of extractable sources for
which one can deterministically extract nearly perfect randomness, and then use
� Supported by NSF Grants #0515121, #0133806, #0311095.

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 1–20, 2007.
c© International Association for Cryptologic Research 2007



2 C. Bosley and Y. Dodis

it in any application. Although various examples of such non-trivial sources are
known (see [TV00, KRVZ06] and the references therein), most natural sources,
such as the so called entropy sources1 [SV86, CG88, Zuc96], are easily seen to
be non-extractable. One can then ask the natural question of whether perfect
randomness is indeed inherent for the considered application, or perhaps one can
do with weaker, more realistic assumptions. Clearly, the answer depends on the
application.

Positive Results. For one such application domain, a series of celebrated
results [VV85, SV86, CG88, Zuc96, ACRT99] showed that entropy sources are
sufficient for simulating probabilistic polynomial-time algorithms — namely,
problems which do not inherently need randomness, but which could poten-
tially be sped up using randomization. Thus, extremely weak imperfect sources
can still be tolerated for this application domain. This result was later extended
to interactive protocols by Dodis et al. [DOPS04].

Moving to cryptographic applications, entropy sources are typically sufficient
for authentication applications, since entropy is enough to ensure unpredictabil-
ity. For example, in the non-interactive (i.e., one-message) setting Maurer and
Wolf [MW97] show that, for a sufficiently high entropy rate (specifically, more
than 1/2), entropy sources are indeed sufficient for unconditional one-time au-
thentication (while Dodis and Spencer [DS02] showed that smaller rate entropy
sources are not sufficient to authenticate even a single bit). Moreover, in the in-
teractive setting, Renner and Wolf [RW03] show information-theoretic authenti-
cation protocols capable of tolerating any constant-fraction entropy rate. Finally,
Dodis et al. [DOPS04] consider the existence of computationally secure digital
signature (and thus also message authentication) schemes, and, under (necessar-
ily) strong, but plausible computational assumptions, once again showed that
entropy sources are enough to build such signature schemes. From a different
angle, [DS02] also show that for all entropy levels (in particular, below 1/2)
there exist “severely non-extractable” imperfect sources which are nevertheless
sufficient for non-trivial non-interactive authentication. Thus, good sources for
authentication certainly do not require perfect randomness.

Randomness for Privacy? The situation is much less clear for privacy ap-
plications, whose security definitions include some kind of indistinguishability.
Of those, the most basic and fundamental is the question of (private-key) en-
cryption, whose definition requires that the encryptions of any two messages are
indistinguishable. (Indeed, this will be the subject of this work.)

With one exception (discussed shortly), all known results indicate that true
randomness might be inherent for privacy applications, such as encryption. First,
starting with Shannon’s one-time scheme [Sha49], all existing methods for build-
ing secure encryptions schemes, as well as other privacy primitives, crucially

1 Informally, entropy sources guarantee that every distribution in the family has a
non-trivial amount of entropy (and possibly more restrictions), but do not assume
independence between different symbols of the source. Thus, they are the most gen-
eral sources one would wish to tolerate, since cryptography clearly requires entropy.
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depend on perfect randomness somewhere in their design. And this is true even
in the computational setting. For example, the Goldreich-Levin [GL89] reduc-
tion from unpredictability to indistinguishability, as well the the entire theory of
pseudorandomness, crucially use a random seed to obtain the desired construc-
tions. Second, attempts to build secure encryption schemes (and other privacy
primitives) based on known “non-extractable” sources, such as various entropy
sources, provably failed, indicating that such sources are indeed insufficient for
privacy. For example, McInnes and Pinkas [MP90] showed that unconditionally
secure symmetric encryption cannot be based on entropy sources, even if one is
restricted to encrypting a single bit. This result was subsequently strengthened
by Dodis et al. [DOPS04], who showed that entropy sources are not sufficient
even for computationally secure encryption (as well as essentially any other task
involving “privacy”, such as commitment, zero-knowledge and others).

The only reassuring result in the other direction is the work of Dodis and
Spencer [DS02], who considered the setting of symmetric encryption, where the
shared secret key comes from an imperfect random source, instead of being truly
random. In this setting, they constructed a particular non-extractable imperfect
source, nevertheless allowing one to perfectly encrypt a single bit. By itself, this
result is not surprising. For example, a uniform distribution on {0, 1, 2} allows
one to encrypt a bit (by addition modulo 3), but not to extract a bit, which
is obvious. Indeed, the actual contribution of [DS02] was not to show that the
separation between one bit encryption and extraction exists — as we just saw,
this is trivial — but to show that a very strong separation still holds even if one
additionally requires all the distributions in the imperfect source to have high
entropy (in fact, very close to n). In practice, however, we typically care about
encrypting considerably more than a single bit. In such cases, it is certainly
unreasonable to expect that, say, encryption of b bits will necessarily imply
extraction of exactly b bits (which was indeed disproved by [DS02] for b = 1). One
would actually expect that an implication, if true, would lose at least a few bits
(perhaps depending on the statistical distance ε from the uniform distribution
that we want our extraction to achieve).

In particular, the results of [DS02] leave open the following extreme possibil-
ities: (a) perhaps any source encrypting already two bits must be extractable;
or (b) perhaps there exists an n-bit source allowing one to perfectly encrypt
almost n bits, and yet not to extract even a single bit. Clearly, possibility (a)
would strongly indicate that true randomness is inherent for encryption, while
possibility (b) that it is not. As we will see shortly, both (a) and (b) happen to
be false, but our point is that the results of [DS02] regarding one-bit encryption
and extraction do not answer what we feel is the more appropriate question:

Assume an imperfect source allows for a secure private-key encryption of b bits.
Does this necessarily imply one can deterministically extract at least one

(and, hopefully, close to b) nearly perfect bits from this source?

Our Result. We resolve the above question. Our main result shows that if
an n-bit source S allows for a secure (and even slightly biased) encryption of
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b bits, where b > log n, then one can deterministically extract almost b nearly
perfect random bits from S ; see Theorem 1(a) for the precise bound. Moreover,
the restriction that b > log n is essentially tight: there exist imperfect sources
allowing one to perfectly encrypt b ≈ log n− loglog n bits, from which one cannot
deterministically extract even a single slightly unbiased (let alone random!) bit;
see Theorem 1(b).2 Hence, to a large extent, true randomness is inherent for
(information-theoretic) private-key encryption:

Either the key length n must be exponential in the message length b, or
One can deterministically extract almost b nearly random bits from the key.

In particular, in the case when b is large enough, so that it is infeasible to
sample more than 2b (imperfect) bits for one’s secret key, our result implies the
following. In order to build a secure b-bit encryption scheme, one must come up
with a source of randomness from which one can already deterministically extract
almost b nearly random bits! Notice, since such extracted bits can then be used
as a one-time pad, we get that any b-bit encryption scheme can in principle be
converted to a “one-time-pad-like” scheme capable of encrypting nearly b bits!
In this sense, our results show that, for the purpose of information-theoretically
encrypting a “non-trivial” number of bits, the one-time pad scheme is essentially
“universal”.

Extensions. Our result can be extended in several ways.
First, the basic extractor we construct is inefficient, even if the encryption

scheme is efficient (i.e., runs in time polynomial in n). However, using the tech-
nique of Trevisan and Vadhan [TV00] (see also [DSS01, Dod00]), we can obtain
the following marginally weaker result which maintains efficiency: if a source S
enables an efficient encryption of b > log n bits, then there exists an efficient
deterministic extractor allowing one to extract roughly (b− logn) nearly perfect
bits from S . Despite the small loss of log n bits, we still get the same pes-
simistic conclusion: unless the key is exponential in the message length, efficient
encryption implies efficient extraction of nearly the same number of bits.

Second, our technique extends to computationally secure privacy primitives
which are perfectly (or statistically) binding, which includes perfectly-binding
commitment (which, therefore, must be computationally hiding) and compu-
tationally secure private- or public-key encryption. Specifically, let λ be the
security parameter, n = poly(λ) be the number of random bits coming from
the imperfect source S , and assume that S is good enough to efficiently (i.e.,
in time polynomial in λ) implement the required computationally secure (but
perfectly-binding) primitive on b = ω(log λ) bits. Then we show that there ex-
ists an efficient extractor capable of extracting b(1 − o(1)) pseudorandom bits
from S . Of course, at this point one can also apply a pseudorandom genera-
tor, whose existence is typically implied by the existence of the corresponding

2 This result is a non-trivial extension of the separation of [DS02] from 1-bit to
(roughly) (log n)-bit encryption. Indeed, without the entropy constraints, our proof
is considerably more involved than that of [DS02]. See also Section 4.5.
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computational primitive, to stretch the extracted (pseudo)randomness further
by any polynomial amount. Also, since every individual pseudorandom bit must
actually be statistically random (otherwise, the distinguisher succeeds by simply
outputting this bit), we still get that any of the above computationally secure
primitives on b = ω(log λ) bits requires at least some nearly perfect randomness.

To summarize, non-trivial computationally secure primitives which are per-
fectly binding require some efficiently extractable true randomness.

Organization. We define the needed notation in Section 2, which also allows
us to formally state our main result (Theorem 1). In Section 3 we prove that
encryption of b > log n bits using an n-bit key implies extraction of roughly
b random bits, and mention the “computational” extensions of this result. In
Section 4, which is the main technical section, we show that encryption of up to
(log n − loglog n) bits does not necessarily imply extraction of even a single bit.
Finally, in Section 5 we conclude and state some open problems.

2 Notation and Definitions

We use calligraphic letters, like X , to denote finite sets. The corresponding large
letter X is then used to denote a random variable over X , while the lowercase
letter x denotes a particular element from X . UX denotes the uniform distri-
bution over X . A source S over X is a set of distributions over X . We write
X ∈ S to state that S contains a distribution X .

The statistical distance SD(X1, X2) between two random variables X1, X2 is

SD(X1, X2) =
1
2

∑

x∈X

∣∣ Pr[X1 = x] − Pr[X2 = x]
∣∣ (1)

= max
T ⊆X

(Pr[X1 ∈ T ] − Pr[X2 ∈ T ]) (2)

If SD(X1, X2) ≤ ε, this means that no (even computationally unbounded) dis-
tinguisher D can tell apart a sample from X1 from a sample from X2 with an
advantage greater than ε.

Definition 1. A random variable R over R is ε-fair if SD(R, UR) ≤ ε. Given
a source S over some set K, a function Ext : K → R is an (S , ε)-extractor if
for all K ∈ S , Ext(K) is ε-fair:

SD(Ext(K), UR) ≤ ε (3)

If such Ext exists for S , we say that S is (R, ε)-extractable. ♦

Definition 2. An encryption scheme E over message space M, key space K and
ciphertext space C is a pair of algorithms Enc : K×M → C and Dec : K×C → M,
which for all keys k ∈ K and messages m ∈ M satisfies Dec(k, Enc(k, m)) = m.

Given a source S over K, we say that the encryption scheme E is (S , δ)-
secure if for all messages m1, m2 ∈ M and all distributions K ∈ S we have

SD(Enc(K, m1), Enc(K, m2)) ≤ δ (4)
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If S admits some (S , δ)-secure encryption E over M, we say that S is (M, δ)-
encryptable. When δ = 0, we say that E is perfect on S , and S is perfectly
encryptable (on M). ♦
Throughout we will use the following capital letters to denote the cardinalities
of various sets: key set cardinality |K| = N , message set cardinality |M| =
B, ciphertext set cardinality |C| = S, and extraction space cardinality |R| =
L. Although our results are general, for historical reasons it is customary to
translate the results into “bit-notation”. To accommodate these conventions, we
let b = log B, � = log L, n = log N (here and elsewhere, all the logarithms
are base 2), and will use the terms “b-bit encryption”, “�-bit extraction” or “n-
bit key” with the obvious meanings attached. Moreover, we will slightly abuse
the terminology and say that a source S is (1) n-bit if it is over a set K and
|K| = N ; (2) (�, ε)-extractable if it is (R, ε)-extractable and |R| = L, and (2)
(b, δ)-encryptable if it is (M, δ)-encryptable and |M| = B. Clearly, when b, � or
n are integers, this terminology is consistent with our intuitive understanding.

With this in mind, our main result can be restated as follows:

Theorem 1. Secure encryption of b bits with an n-bit key requires nearly perfect
randomness (in fact, almost b random bits!) if and only if b is greater than log n.
More precisely,

(a) ∀ε > 0, if S is (b, δ)-encryptable, and b > log n + 2 log
( 1

ε

)
, then S is

(b−2 log
( 1

ε

)
, ε+δ)-extractable. Further, if the encryption scheme is efficient

(i.e., polynomial in n), then there exists an efficient extractor outputting
(b− log n−2 log

( 1
ε

)
−2) bits within statistical distance (ε+δ) from uniform.

Thus, encryption of b > log n bits implies extraction of almost b nearly perfect
bits.

(b) For any b ≤ log n − loglog n − 2,3 there exists a source S which is (b, 0)-
encryptable, but not (1, ε)-extractable, where ε = 1

2 − 2(2b− n

2b ) ≥ 1
2 − 1

16n2 .
Thus, even perfect encryption of nearly log n bits does not imply extraction
of even a single slightly unbiased bit.

3 Encryption ⇒ Extraction if b > log n

In this section we prove the implication given in Theorem 1(a), which shows that
encryption of b bits implies extraction of nearly b bits. Assume E = (Enc, Dec)
is (S , δ)-secure over message space M, ciphertext space C and key space K. For
convenience, let us identify the message space M with {1, . . . , B}. Also, let � (to
be specified later) denote the number of bits we wish to extract, L = 2�, and R
be an arbitrary set of cardinality L.

We start constructing the needed extractor Ext : K → R by showing that it
is sufficient to construct a good extractor Ext′ : C → R for an auxiliary source
S ′, defined by

S ′ = {Enc(k, UM) | k ∈ K}
3 The formula also holds for b = log n − loglog n − 1, but yields a slightly smaller

ε = 1
2 − 1

4 log n
.
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Lemma 1. If S ′ is (�, ε)-extractable and E is (S , δ)-secure, then S is (�, ε+δ)-
extractable. In fact, if Ext′ is the assumed extractor for S ′, then the following
extractor Ext is the claimed extractor for S :

Ext(k) = Ext′(Enc(k, 1)) (5)

Proof. Take any distribution K ∈ S , and let pk = Pr[K = k]. Also, let Ext′

be the assumed (S ′, ε)-extractor. Thus, SD(Ext′(Enc(k, UM)), UR) ≤ ε for all
k ∈ K. Then, using definition of Ext in Equation (5), we have

SD(Ext(K), UR) = SD(Ext′(Enc(K, 1)), UR)
≤ SD(Enc(K, 1), Enc(K, UM)) + SD(Ext′(Enc(K, UM)), UR)

≤ δ +
∑

k

pk · SD(Ext′(Enc(k, UM)), UR)

≤ δ +
∑

k

pk · ε = δ + ε

The first inequality follows from the triangle inequality on statistical distance.
The second — from the δ-security of the encryption (stating that encryption of
1 is δ-close to the encryption of a random message UM) and the convexity of
statistical distance (when expanding K as the convex combination of “point”
distributions). Finally, the last inequality follows from the fact that Ext′ is an
ε-fair extractor for S ′.

The point of this reduction (which is the only place in our argument using
the δ-security of E) is to reduce the task of constructing an extractor for our
(potentially infinite) source S to an extractor for a source S ′ containing “only”
N distributions. Moreover, every distribution Dk

def= Enc(k, UM) in S ′ contains
b bits of entropy. Indeed, for any k ∈ K and m1 	= m2, we have Enc(k, m1) 	=
Enc(k, m2), since otherwise one would not be able to recover the message from
the ciphertext.4 Thus, each Dk is a uniform distribution on some B-element
subset of the ciphertext space C: we call such distributions b-flat. It turns out
that this is the only thing we need to know to ensure the existence of a good
extractor for S ′!

Lemma 2. Assume S ′ = {Dk | k ∈ K} is any collection of b-flat distributions
of cardinality N over some space C, where b > loglog N + 2 log

( 1
ε

)
. Then S ′ is

(b − 2 log
( 1

ε

)
, ε)-extractable.

Proof. Let � = b−2 log
( 1

ε

)
, so that L = ε2B. We show that a completely random

function f : C → R gives a required deterministic extractor Ext′ with non-zero
(in fact, overwhelming!) probability, implying that the claimed Ext′ exists. Take

4 This is the only place where we use the existence of the decryption algorithm. This is
why our result will later extend to any perfectly (or statistically) binding primitive.
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any fixed k ∈ K and any fixed subset T ⊆ R. Let p
def= |T |/|R| be the density of

T . For any fixed f , define the quantity

Δf (k, T ) def= Pr[f(Dk) ∈ T ] − Pr[UR ∈ T ] (6)

and let us estimate Prf [Δf (k, T ) > ε] as follows. First, it is clear that Pr[UR ∈
T ] = p. Second, assume Dk is a uniform distribution over some set {c1, . . . , cB} ⊆
C, and let Xm denote an indicator random variable which is 1 if and only if
f(cm) ∈ T . Clearly, if f is random, we have Prf [Xm = 1] = p. Also, letting
X̂ = 1

B ·
∑

m Xm be the average of B independent indicator variables Xm, for
any fixed f we get Pr[f(Dk) ∈ T ] = 1

B ·
∑

m Xm = X̂ . Thus, recalling the
definition of Δf (k, T ) from Equation (6), using E[X̂ ] = p = Pr[UR ∈ T ], and
applying the standard additive Chernoff bound to X̂ , we get

Pr
f

[ Δf (k, T ) > ε ] = Pr
f

[ X̂ − p > ε ] ≤ e−2ε2B

We now take a union bound over all T ⊆ R and all k ∈ K. Recalling definition
of Δf (k, T ) (Equation (6)), using b > loglog N + 2 log

( 1
ε

)
(so N < 2ε2B) and

� = b − 2 log
( 1

ε

)
(so 2L = 2ε2B), we conclude that

Pr
f

[ ∃ k, T s.t. Pr[f(Dk) ∈ T ]−Pr[UR ∈ T ] > ε ] ≤ N ·2L·e−2ε2B = 2−Ω(ε2B) � 1

Thus, there exists a specific f such that Pr[f(Dk) ∈ T ]−Pr[UR ∈ T ] ≤ ε, for all
subsets T and keys k. Using the definition of statistical distance (Equation (2)),
this means that SD(f(Dk), UR) ≤ ε for all k ∈ K, completing the proof.

The first assertion of Theorem 1(a) follows immediately by combining Lemma 1
and Lemma 2. In the following subsections we mention the extensions to efficient
extraction and other computational primitives which are perfectly-binding.

3.1 Efficient Encryption Implies Efficient Extraction

Using Lemma 1 (and, in particular, Equation (5)), we see that when the encryp-
tion algorithm Enc is efficient (i.e., runs in time polynomial in n), to construct
an efficient extractor Ext for S it suffices to construct an efficient extractor
Ext′ for the source S ′ consisting of N efficiently samplable b-flat distributions
Dk = Enc(k, UM), where k ∈ K. Unfortunately, the extractor Ext′ that we built
for S ′ via Lemma 2 was generally inefficient. Luckily, we can build an efficient
extractor for S ′ using the technique of Trevisan and Vadhan [TV00], which was
later explored in more detail by [Dod00].

The idea is to sample the function f (which will define Ext′) at random from
any family Ft of t-wise independent functions from C to R. Recall, such families
have the property that for any distinct c1 . . . ct ∈ C, the values f(c1) . . . f(ct)
are random and independent from each other, if f is chosen at random from Ft.
Also, one can construct t-wise independent function families where each f can
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be evaluated in time polynomial in t and s, where s is the length of an element
of C. Since the encryption scheme is efficient, s is polynomial in n. Thus, as long
as t is polynomial in n, every member f ∈ Ft will be efficiently computable. As
was shown by [TV00, Dod00], setting t = O(n) is already enough: the following
Lemma (essentially from [Dod00]) is proven for self-containment and because it
uses a slightly different parameter setting.

Lemma 3 ([Dod00]). Assume � ≤ b − log n − 2 log
( 1

ε

)
− 2, and f is chosen

at random from a family of 2n-wise independent functions from C to R, where
|R| = L = 2�. Then for any collection S ′ = {Dk | k ∈ K} of b-flat distributions
of cardinality 2n over C, Prf [ f is not an (S ′, ε)-extractor ] < 2−n.

Proof. The first attempt to prove this result would be to use the same proof
template as in Lemma 2. Namely, to prove that for any subset T ⊆ R and any
b-flat distribution Dk ∈ S ′, Prf [f(Dk) ∈ T ] is unlikely to be different from
its expectation Pr[UR ∈ T ] by more then ε. Unfortunately, with “only” a t-
wise independent function f , the tail bound we would get for this undesirable
event is not strong enough to take the union bound over all subsets T (unless
t is exponential in b, which was the case when a truly random f was chosen in
Lemma 2). Instead, we will only consider “singleton” sets T = {r}, for r ∈ R,
but will prove a stronger bound on Δf (k, {r}) def= (Prf [f(Dk) = r] − 1

L ) when
� ≤ b−2 log

( 1
ε

)
−log n−2. This stronger bound will enable us to use Equation (1)

(rather than Equation (2)) when bounding the statistical distance, and then take
a union bound over “only” L singleton sets {r} instead of 2L subsets T . Details
follow.

We fix any k ∈ K, r ∈ R, and estimate Prf [ |Δf (k, {r})| > 2ε
L ]. We do

it similarly to Lemma 2. Assume Dk is a uniform distribution over some set
{c1, . . . , cB} ⊆ C, and let Xm denote an indicator random variable which is 1 if
and only if f(cm) = r. Since f is 2n-wise independent, so are the variables {Xm}:
any 2n of them are random and independent from each other. Let X =

∑
m Xm.

Then Prf [Xm = 1] = Prf [f(cm) = r)] = 1
L , and E[X ] = B

L . Also,

Δf (k, {r}) =
1
B

·
∑

m

Pr[f(cm) = r] − 1
L

=
1
B

· (X − E[X ]) (7)

Next, we use the tail bound for the sum X of t-wise independent random vari-
ables from [Dod00] (Theorem 5, page 48). It says that if t ≥ 8 is an even integer

and ε < 1
2 , then Pr(|X − E[X ]| ≥ 2ε · E[X ]) ≤

(
t

4ε2E[X]

)t/2
. In our case, t = 2n,

E[X ] = B
L , and we get by Equation (7)

Pr
f

[
|Δf (k, {r})| >

2ε

L

]
= Pr

f
[ |X − E[X ]| > 2ε · E[X ] ] ≤

(
2nL

4ε2B

)n

≤ 2−3n

where the last inequality used � ≤ b−2 log
( 1

ε

)
− logn−2. Taking now the union

bound over all k ∈ K and r ∈ R, we get that with probability at least (1 − 2−n)
over the choice of f , we have |Δf (k, {r})| ≤ 2ε

L for all k ∈ K and r ∈ R. In other
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words, for any k ∈ K, f(Dk) hits every element r ∈ R with probability between
(1±2ε)/L. Using the definition of statistical distance in Equation (1), this implies
that with probability at least (1− 2−n) over the choice of f , SD(f(Dk), UR) ≤ ε
for all k ∈ K, which completes the proof.

The above lemma immediately gives a constructive probabilistic method for show-
ing the existence of an efficient deterministic extractor claimed by the second
part of Theorem 1(a). Namely, combining Lemma 1 and Lemma 3 we get a
concrete family of efficient functions most of which are guaranteed to be good
deterministic extractors for S . However, to actually fix a concrete extractor, one
must either directly look at the source S in question, or choose the extractor
obliviously by sampling it (using good randomness) from our family once and
for all, or rely on non-uniformity. Alternatively, in case the length s of the ci-
phertext c is only slightly larger than the length b of the plaintext m, we can
use an explicit deterministic extractor of Trevisan and Vadhan [TV00] for the
efficiently samplable source S ′. Assuming some strong complexity assumptions
(see [TV00]), this would give us an explicit way to deterministically extract Ω(b)
bits, provided s < (1 + γ)b for a small enough constant γ.

3.2 Other Perfectly-Binding Computational Primitives

We now extend our results above to handle computationally secure privacy prim-
itives which are perfectly binding, which includes perfectly-binding commitment
(which, therefore, must be computationally hiding) and computationally secure
private- or public-key encryption.

Let λ be the security parameter, n = poly(λ) be the number of random bits
coming from the imperfect source S , and assume that S is good enough to
efficiently (i.e., in time polynomial in λ) implement the required computation-
ally secure (but perfectly-binding) primitive P on b = ω(log λ) bits. Trying to
unify all the above examples into one template, this means that there exists a
polynomial-time algorithm Enc, which takes input m ∈ M and “randomness”
k ∈ K, and outputs a perfectly-binding “commitment” c to m. Here k denotes all
the randomness needed to evaluate Enc once. For example, for secret- or public-
key encryption, k includes the randomness used to sample the secret and/or
public key, and, if required, the local randomness used to encrypt the message.
On the other hand, for commitment, k includes the randomness used to set-up
the global commitment parameters, as well as the randomness used to commit
to the messages.

We assume that c is perfectly-binding in the following sense: for any ran-
domness k and any m1 	= m2, we have Enc(k, m1) 	= Enc(k, m2). Notice, we
do not require any efficient “decryption” algorithm recovering m from c and k
(which we have in the case of encryption, but not commitment). Clearly, this
includes the perfectly-binding encryption and commitment applications above.
In fact, it even includes some primitives which are traditionally not consid-
ered perfectly-binding. For example, Pedersen’s commitment [Ped91] computes
Enc((r, g, h, p), m) = grhm mod p, where k = (r, g, h, p) includes a prime p, two
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generators g and h of some large-enough subgroup G of Z
∗
p of prime order q,

and local randomness r ∈ Zq used to mask the message m ∈ Zq. Traditionally,
this commitment scheme is considered perfectly-hiding (in the setting of ideal
randomness), since for any m, the value Enc((r, . . .), m) is uniformly distributed
for a random r. However, it is perfectly-binding according to our definition, since
for any fixed value of r, the value of m is (inefficiently but) uniquely determined
given c (and g, h, p). Thus, our notion of perfect binding is a weaker restriction
than what might originally appear.

Also, in terms of computational security of P w.r.t. a source of randomness S ,
we require that for any distribution K ∈ S and any m ∈ M, no efficient attacker
A can distinguish Enc(K, m) from Enc(K, UM) with non-negligible probability
(in λ). Finally, we say that an efficient algorithm Ext extracts � pseudorandom
bits from some source S , if for any K ∈ S and any efficient attacker A, A
has at most a negligible in λ chance of telling apart a sample of Ext(K) from
a sample of U�. Needless to say, any ε-fair “statistical” extractor satisfies this
definition as long as ε is negligible in λ.

With these clarifications in mind, we can generalize Lemma 1 and Lemma 3
as follows. Lemma 1 trivially extends to show that if some efficient Ext′ extracts
b′ pseudorandom bits from the source S ′

def= {Enc(k, UM)}, then Ext(k) def=
Ext′(Enc(k, 1)) also extracts b′ pseudorandom bits from S . This is the only place
using the computational security of P , the rest of the proofs stays information-
theoretic. As for Lemma 3, it stays the same, but we use it with any value ε
which is negligible in λ, but still such that log

( 1
ε

)
= o(b). This is possible since

we assumed that b = ω(log λ). Then Lemma 3 implies the existence of an efficient
extractor Ext′ for S ′ (since n = poly(λ), so that one can efficiently evaluate a
2n-wise independent function) which extracts b − 2 log

( 1
ε

)
− log n − O(1) =

b − o(b) − O(log λ) = b(1 − o(1)) bits of negligible statistical distance ε from the
uniform distribution, implying that these b(1−o(1)) bits are also pseudorandom.

To summarize, for any perfectly-binding primitive P on b = ω(log λ) bits, we
get the possibility of efficiently extracting b(1 − o(1)) pseudorandom bits.

4 Encryption �⇒ Extraction if b < log n − loglog n

In this section we prove the non-implication given in Theorem 1(b), which shows
that even perfect encryption of up to (logn − loglog n) bits does not necessarily
imply extraction of even a single bit. For that we need to define a specific b-bit
encryption scheme E = (Enc, Dec) and a source S , such that S is perfect on E ,
but “non-extractable”. The proof will proceed in several stages.

4.1 Defining Good Encryption E
As the first observation, we claim that we only need to define the encryption
scheme E , and then let the source S = S (E) be the set of all key distributions
K making E perfect:

S (E) = {K | ∀ m1, m2 ∈ M, c ∈ C ⇒ Pr[Enc(K, m1) = c] = Pr[Enc(K, m2) = c]}
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Indeed, S (E) is the largest source which is (b, 0)-encryptable by means of E , so
it is the hardest one to extract even a single bit from. We call distributions in
S (E) perfect (for E).

Although we are not required to do so, let us intuitively motivate our choice
of E before actually defining it. For that it is very helpful to view our key space
K in terms of the encryption scheme E as follows. Given any E = (Enc, Dec),
we identify each key k ∈ K with an ordered B-tuple of ciphertexts (c1, . . . , cB),
where Enc(k, m) = cm. Notice, some B-tuples might not correspond to valid
keys. For example, this is the case when ci = cj for some i 	= j, since then
encryptions of i and j are the same under this key. Intuitively, however, the
larger is the set of valid B-tuples of ciphertexts, the more variety we have in
the set of perfect distributions S (E), and the harder it would be to extract
from S (E). This suggests that every B-tuple (c1, . . . , cB) of ciphertexts should
correspond to a potential key, except for the necessary constraint that all the
cm’s must be distinct to enable unique decryption.

A bit more formally, we assume that N can be written as N = S(S−1) . . . (S−
B + 1) for some integer S.5 Then we define the set C = {1, . . . S} to be the set
of ciphertexts, M = {1, . . . , B} be the set of plaintexts, and view the key set K
as the set of distinct B-tuples over C:

K = {k = (c1, . . . cB) | ∀ i 	= j ⇒ ci 	= cj}

We then define Enc((c1 . . . cB), m) = cm, while Dec((c1, . . . , cB), c) to be the
(necessarily unique) m such that cm = c, and arbitrarily if no such m exists.
Notice, N < SB, so that S > N1/B, which is strictly greater than B when
b < log n − loglog n. Thus, S contains enough ciphertexts to allow for B distinct
encryptions.

4.2 Excluding 0-Monochromatic Distributions

Let us now take an arbitrary bit extractor Ext : K → {0, 1} and argue that
it is not very good on the set of perfect distributions S (E). We say that a
distribution K is 0-monochromatic if Pr[Ext(K) = 0] = 1. Clearly, if the set
of perfect distributions S (E) contains a 0-monochromatic distribution K, then
SD(Ext(K), U1) = 1

2 (here and below, U1 is the uniform distribution of {0, 1}),
and we would be done. Thus, for the remainder of the proof we assume that
S (E) does not contain a 0-monochromatic distribution. The heart of the proof
then will consist of designing a perfect encryption distribution K such that

Pr[Ext(K) = 0] ≤ B2

S
(8)

Once this is done, recalling that S > N1/B = 2n/2b

we immediately get

SD(Ext(K), U1) =
∣∣∣∣
1
2

− Pr[Ext(K) = 0]
∣∣∣∣ ≥ 1

2
− 2(2b− n

2b )

5 If not, take largest S such that N ≥ S(S −1) . . . (S −B +1), and work on the subset
of N ′ = S(S − 1) . . . (S − B + 1) keys, but this will not change our bounds.
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as claimed by Theorem 1(b). Thus, we concentrate on building a perfect distri-
bution K satisfying Equation (8). For that, in the following subsections we will
(1) characterize perfect distributions using linear algebra; (2) use this charac-
terization to understand the implication of the lack of 0-monochromatic perfect
distributions; and, finally, (3) use this implication to construct the required per-
fect distribution K.

4.3 Characterizing Perfect Distributions

Let K be any distribution on K. Given a key k = (c1 . . . cB), let pk = p(c1...cB) =
Pr[K = (c1 . . . cB)] and p be the N -dimensional column vector whose k-th com-
ponent is equal to pk. Notice, being a probability vector, we know that

∑
pk = 1

and p ≥ 0 (which is a shorthand for pk ≥ 0 for all k). Conversely, any such p
defines a unique distribution K.

Assume now that K is a perfect encryption distribution for E . This adds sev-
eral more constraints on p. Specifically, a necessary and sufficient condition for a
perfect encryption distribution is to require that for all c ∈ C and all m > 1, we
have

Pr[c1 = c | (c1 . . . cB) ← K] = Pr[cm = c | (c1 . . . cB) ← K] (9)

We can translate this into a linear equation by noticing that the left probability is
equal to

∑
{(c1...cB):c1=c} p(c1...cB), while the second — to∑

{(c1...cB):cm=c} p(c1...cB). Thus, Equation (9) can be rewritten as

∑

{(c1...cB):c1=c}
p(c1...cB) −

∑

{(c1...cB):cm=c}
p(c1...cB) = 0 (10)

We can then rewrite all these constraints on p into a more compact notation by
defining a constraint matrix V = {vi,j}, which has (1 + (B − 1)S) rows (corre-
sponding to the constraints) and N columns (corresponding to keys). The first
row of V will consist of all 1’s: v1,k = 1 for all k ∈ K. This will later correspond
to the fact that

∑
pk = 1. To define the rest of V , which would correspond to

(B − 1)S constraints from Equation (10), we first make our notation more sug-
gestive. We index the N columns of V by tuples (c1, . . . cB), and the remaining
(B − 1)S rows of V by tuples (m, c), where m ∈ {2, . . . B} and c ∈ {1 . . . S}.
Then, we define

v(m,c),(c1,...,cB) =

⎧
⎨

⎩

1, c = c1,
−1, c = cm,
0, otherwise.

(11)

Now, Equation (10) simply becomes
∑

k v(m,c),k · pk = 0. Finally, we define a
(1 + (B − 1)S)-column vector e by e1 = 1 and ei = 0 for i > 1. Combining all
this notation, we finally get

Lemma 4. An N -dimensional real vector p defines a perfect distribution K for
E if and only if V p = e and p ≥ 0.
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4.4 Using the Lack of 0-Monochromatic Distributions

Next, we use Lemma 4 to understand our assumption that no perfect distribution
K is 0-monochromatic with respect to Ext. Before that, we remind the reader of
a well known Farkas Lemma (e.g., see [Str80]):

Farkas Lemma. For any matrix A and column vector e, the linear system
Ax = e has no solution x ≥ 0 if and only if there exists a row vector y s.t.
yA ≥ 0 and ye < 0.

Now, let Z = {k | Ext(k) = 0} be the set of “0-keys” under Ext, and let A
denote (1 + (B − 1)S) × |Z|-matrix equal to the constraint matrix V restricted
its |Z| columns in Z. Take any real vector p such that pk = 0 for all k 	∈ Z. By
Lemma 4, p corresponds to a (necessarily 0-monochromatic) perfect distribution
K if and only if V p = e and p ≥ 0. But since pk = 0 for all k 	∈ Z, the above
conditions are equivalent to saying that the |Z|-dimensional restriction x = p|

Z

of p to its coordinates in Z satisfies Ax = e and x ≥ 0. Conversely, any x
satisfying the above constraints defines a 0-monochromatic perfect distribution
p by letting p|

Z
= x and pk = 0 for k 	∈ Z.

Thus, Ext defines no 0-monochromatic perfect distributions if and only if
the constraints Ax = e and x ≥ 0 are unsatisfiable. But this is exactly the
precondition to the Farkas’ Lemma above! Using the Farkas Lemma on our A
and e, we get the existence of the (1 + (B − 1)S)-dimensional row vector y such
that yA ≥ 0 and ye < 0. Just like we did for the rows of V , we denote the first
element of y by y1, and use the notation y(m,c) to denote the remaining elements
of y. We now translate the constraints yA ≥ 0 and ye < 0 using our specific
choices of A and e.

Notice, since e1 = 1 and ei = 0 for i > 1, it means that ye = y1, so the
constraint that ye < 0 is equivalent to y1 < 0. Next, recalling that A is just
the restriction of V to its columns in Z, and that the first row of V is the all-1
vector, we get that yA ≥ 0 is equivalent to saying that for all (c1, . . . , cB) ∈ Z
we have

y1 +
∑

m>1

∑

c

y(m,c) · v(m,c),(c1,...,cB) ≥ 0 (12)

Notice, since y1 < 0, this equation implies that the double sum above is strictly
greater than 0. Thus, recalling the definition of v(m,c),(c1,...,cB) given in Equa-
tion (11), we conclude that for all k = (c1, . . . , cB), such that Ext(k) = 0, we
have ∑

m>1

(
y(m,c1) − y(m,cm)

)
> 0 (13)

The last equation finally allows us to derive the implication we need:

Theorem 2. Assume Ext defines no 0-monochromatic perfect distributions.
Then there exist real numbers

{
y(m,c) | m ∈ {2 . . . B} , c ∈ {1 . . . S}

}
such that

the following holds. If a key k = (c1, . . . , cB) is such that

y(m,c1) − y(m,cm) ≤ 0 for all m > 1, (14)

then Ext(k) = 1.



Does Privacy Require True Randomness? 15

Proof. Summing Equation (14) for all m > 1 we get a contradiction to Equa-
tion (13), which means that Ext(k) 	= 0; i.e., Ext(k) = 1.

4.5 Developing Intuition: Special Case b = 1

To get some intuition, we take a momentary detour and consider the special
case b = 1, therefore reproving the result of [DS02]. Theorem 2 tells us that if
Ext cannot be fixed to 0, there exists real numbers y1 . . . yS such that yi ≤ yj

implies that the key k = (i, j) gets mapped to 1 by Ext. Thus, by rearrang-
ing the y’s in the non-decreasing order y1 ≤ y2 ≤ . . . ≤ yS , we get that
Ext((i, j)) = 1 for any i < j. In particular, the uniform distribution on S keys
{(1, 2), (2, 3), . . . , (S − 1, S), (S, 1)} is easily seen to define a perfect encryption
distribution K (as both Enc(K, 1) and Enc(K, 2) sample a uniformly random
ciphertext) at most one of whose components — the key (S, 1) — could con-
ceivably get mapped to 0 by Ext. Thus, Pr[Ext(K) = 0] ≤ 1/S, showing (even
stronger) Equation (8) and thus completing this special case.

Interestingly, Dodis and Spencer [DS02] used a simpler “graph-theoretic”
method to show the existence of exactly the same perfect distribution K as
above. They viewed ciphertexts as vertices of the complete directed graph G
on S vertices, and keys k = (c1, c2) (where c1 	= c2) — as directed edges con-
necting c1 = Enc(k, 1) to c2 = Enc(k, 2). With this notation, it is easy to see
that a uniform distribution on any cycle in this graph defines a perfect encryp-
tion distribution. Now, considering first 2-cycles {(c1, c2), (c2, c1)}, the fact that
none of them is 0-monochromatic implies that at least one of Ext((c1, c2)) = 1 or
Ext((c2, c1)) = 1 is true, for any c1 	= c2. Taking one such edge from every 2-cycle
yields what is called a tournament graph, every one of whose edges extracts to
1. Now, a well known (and simple to prove) result in graph theory states that
every tournament graph has a Hamiltonian path. In other words, there exists
an ordering of ciphertexts c1 . . . cS such that every edge (ci, cj) belongs to the
1-monochromatic tournament subgraph whenever i < j; i.e., Ext((ci, cj)) = 1
if i < j. Completing this Hamiltonian path to a Hamiltonian cycle (by adding
the edge (cS , c1)) yields the same kind of perfect distribution K we built earlier
using Theorem 2.

Unfortunately, it seems hard to extend this graph-theoretic argument to “hy-
pergraphs” corresponding to b > 1. Instead, we chose to rely on linear algebra
(i.e., Theorem 2) to get a better handle on the problem. Still, our proof below
for general b > 1 is quite more involved than the proof above for b = 1.

4.6 Building Non-extractable Yet Perfect K

Returning to the general case, we build a special perfect distribution K which
contains many keys satisfying Equation (14), meaning that Ext(K) is very biased
towards 1. We will construct such K having a very special form below.

Definition 3. Assume π1, . . . , πd : C → C are d permutations over the ciphertext
space C = {1 . . . S}. We say that π1, . . . , πd are d-valid if for every c ∈ C, and
distinct i, j ∈ {1 . . . d}, we have πi(c) 	= πj(c). ♦
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The reason for this terminology is the following. Given any B-valid π1, . . . , πB ,
where recall that B = |M|, we can define S valid keys k1, . . . , kS ∈ K by kc =
(π1(c), . . . , πB(c)), where the B-validity constraint precisely ensures that all the
B ciphertexts inside kc are distinct, so that kc is a legal key in K. Now, we
denote by K(π1,...,πB) the uniform distribution over these S keys k1, . . . , kS .

Lemma 5. If π1, . . . , πB are B-valid permutations, then K(π1,...,πB) is a perfect
encryption distribution.

Proof. For any message m, Enc(K(π1,...,πB), m) is equivalent to outputting
πm(UC), where UC is the uniform distribution over C. Since each πm is a per-
mutation over C, this is equivalent to UC . Thus, encryption of every message m
yields a truly random ciphertext c ∈ C, which means that K(π1,...,πB) is perfect.

Choosing Good Permutations. We will construct our perfect distribution
K = K(π1,...,πB) by carefully choosing a B-valid family (π1, . . . , πB) such that
Ext(K) is very biased towards 1. We start by choosing π1 to be the identity
permutation π1(c) = c (for all c), and proceed by defining π2 . . . πB iteratively.
After defining each πd, we will maintain the following invariants which clearly
hold for the base case d = 1:

(i) π1, . . . , πd are d-valid.
(ii) There exists a large set Td of “good” ciphertexts (where, initially, T1 = C)

of size qd > S − d2, which satisfies the following equation for all c ∈ Td and
1 < m ≤ d:6

y(m,c) − y(m,πm(c)) ≤ 0 (15)

Now, assuming inductively that we have defined π1 = id, π2, . . . , πd which satisfy
properties (i) and (ii) above, we will construct πd+1 still satisfying (i) and (ii).

This inductive step is somewhat technical, and we will come back to it in
the next subsections. But first, assuming it is true, we show that we can easily
finish our proof. Indeed, we apply the induction for B − 1 iterations and get B
permutations π1, . . . , πB satisfying properties (i) and (ii) above. Then, property
(i) and Lemma 5 imply that K(π1,...,πB) is a perfect encryption distribution. On
the other hand, property (ii) and the definition of kc = {c, π2(c), . . . , πB(c)}
imply that any key kc ∈ TB satisfies Equation (14). Thus, by Theorem 2 we get
that Ext(kc) = 1 for every c ∈ TB. Since, |TB| > S −B2, we get that at most B2

out of S keys kc extract to 0. Thus, since K(π1,...,πB) is uniform over its S keys,
we get

Pr[Ext(K(π1,...,πB)) = 0] ≤ B2

S

which shows Equation (8) and completes our proof (modulo the inductive step).

6 To get some intuition, we will see shortly that “good” ciphertexts c will lead to keys
kc satisfying Equation (14), so that Ext(kc) = 1 by Theorem 2.
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4.7 Preparing for Induction: Detour to Matchings

Before doing the inductive step, we recall some basic facts about bipartite graphs,
which we will need soon. A (balanced) bipartite graph G is given by two vertex
sets L and R of cardinality S and an edge set E = E(G) ⊆ L × R. A matching
P in G is a subset of node-disjoint edges of E. P is perfect if |P | = S. In this
case every i ∈ L is matched to a unique j ∈ R and vice versa.

We say that a subset L′ ⊆ L is matchable (in G) if there exists a matching
P containing L′ as the set of its endpoints in L. In this case we also say that
L′ is matchable with R′, where R′ ⊆ R is the set of P ’s endpoints in R. (Put
differently, L′ is matchable with R′ precisely when the subgraph induced by L′

and R′ contains a perfect matching.) The famous Hall’s marriage theorem gives
a necessary and sufficient condition for L′ to be matchable.

Hall’s Marriage Theorem. L′ is matchable if and only if every subset A of
L′ contains at least |A| neighbors in R. Notationally, if N (A) denotes the set of
elements in R containing an edge to A, then L′ is matchable iff |N (A)| ≥ |A|,
for all A ⊆ L′.

We will only use the following two special cases of Hall’s theorem.

Corollary 1. Assume every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥
S − d. Then, for any L′ ⊂ L and R′ ⊂ R of cardinality 2d, we have that L′ is
matchable with R′.

Proof. Let us consider the 2d×2d bipartite subgraph G′ of G induced by L′ and
R′. Clearly, that every vertex v ∈ L′ ∪ R′ has degree at least d in G′, since each
such v is not connected to at most d opposite vertices in the entire G, let alone G′.
We claim that L′ meets the conditions of the Hall’s theorem in G′. Consider any
non-empty A ⊆ L′. If |A| ≤ d, then any vertex v in A had degG′(v) ≥ d ≥ |A|
neighbors, so |N (A) ≥ |A|. If d < |A| ≤ 2d, let us assume for the sake of
contradiction that |N (A)| < |A|. Consider now any vertex v ∈ R\N (A). Such v
exists as |N (A)| < |A| ≤ 2d = |R′|. Then no element in A can be connected to
v, since v 	∈ N (A). Thus, the degree of v can be at most 2d − |A| < d, which is
a contradiction.

Corollary 2. Assume L contains a subset L′ = {c1, . . . , c�} such that
degG(ci) ≥ i, for 1 ≤ i ≤ �. Then L′ is matchable in G. In particular, G
contains a matching of size at least �.

Proof. We show that L′ satisfies the conditions of Hall’s theorem. Assume A =
{ci1 , . . . , cia}, where 1 ≤ i1 < i2 < . . . < ia ≤ �. Notice, this means ij ≥ j
for all j. Then the neighbors of A at least include the neighbors of ia, so that
|N (A)| ≥ degG(cia) ≥ ia ≥ a = |A|.

4.8 Mapping Induction into a Matching Problem

We return to our induction. Recall, we are given permutations π1 = id, π2, . . . , πd

satisfying properties (i) and (ii), and need to construct πd+1 also satisfying
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properties (i) and (ii). We translate this task into some graph matching problem,
starting with the property (i) first.

For every c ∈ C, we define the “forbidden” set Fc = {c, π2(c), . . . , πd(c)}.
Then, the (d + 1)-validity constraint (i) is equivalent to requiring πd+1(c) 	∈ Fc

for all c ∈ C. Next we define a bipartite “constraint graph” G on two copies L
and R of C containing all the non-forbidden edges: (c, c′) ∈ E(G) if and only if
c′ 	∈ Fc. We observe two facts about G. First,

Lemma 6. Every vertex v ∈ L∪R has degree at least S−d: degG(v) ≥ S−d. In
particular, by Corollary 1 every two 2d-element subsets of L and R are matchable
with each other in G.

Proof. The claim is obvious for v ∈ L as |Fv| = c. It is also true for v ∈ R,
since any value v ∈ R is forbidden by exactly d (necessarily distinct) elements
v, π−1

2 (v), . . . , π−1
d (v).

Second, any perfect matching P of G uniquely defines a permutation π on S
elements such that P = {(c, π(c))}c∈L. Since, by definition, π(c) 	∈ Fc, it is clear
that this π will always satisfy constraint (i). Thus, we only need to find a perfect
matching P for G which will define a permutation πd+1 satisfying condition (ii).

Notice, our inductive assumption implies the existence of a subset Td of L
(recall, L is just a copy of C) of size qd > S − d2 such that Equation (15) is
satisfied for all c ∈ Td and 1 < m ≤ d. Irrespective of the permutation πd+1 we
will construct later, we will restrict Td+1 to be a subset of Td. This means that
Equation (15) will already hold for all c ∈ Td+1 and 1 < m ≤ d. Thus, we will
only need to ensure this equation for m = d + 1; i.e., that for all c ∈ Td+1

y(d+1,c) − y(d+1,πd+1(c)) ≤ 0 (16)

This constraint motivates us to define a subgraph G′ of our constraint graph
G as follows. As edge (c, c′) ∈ E(G′) if and only if (c, c′) ∈ E(G) (i.e., c′ 	∈ Fc)
and y(d+1,c) − y(d+1,c′) ≤ 0. In other words, we only leave edges (c, c′) which will
satisfy Equation (16) if we were to define πd+1(c) = c′. The key property of G′

turns out to be

Lemma 7. G′ contains a matching P ′ of size at least S − d.

Proof. We will use Corollary 2. Let us sort the vertices v1 . . . vS of L and R in
the order of non-decreasing y(d+1,·) values; i.e.

y(d+1,v1) ≤ y(d+1,v2) ≤ . . . ≤ y(d+1,vS)

Then, the edge (vi, vj) satisfies y(d+1,vi) − y(d+1,vj) ≤ 0 whenever i ≤ j. Thus,
such (vi, vj) belongs to G′ if and only if it also belongs to the larger constraint
graph G; i.e., vj 	∈ Fvi . But since each vi has at most d forbidden edges in G,
and | {j | j ≥ i} | = S − i + 1, we have that degG′(vi) ≥ (S − i + 1) − d. In par-
ticular, degG′(vS−d) ≥ 1, . . . , degG′(v1) ≥ S − d. By Corollary 2, {vS−d, . . . , v1}
is matchable in G′, completing the proof.
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4.9 Finishing the Proof

Finally, we can collect all the pieces together and define a good matching P in G
(corresponding to πd+1). With an eye on satisfying property (ii), we start with
a large (but not yet perfect) matching P ′ of G′ of size at least S −d, guaranteed
by Lemma 7. Ideally, we would like to extend P ′ to some perfect matching in
the full graph G, by somehow matching the vertices currently unmatched by P ′.
Unfortunately, we do not know how to argue that such extension is possible,
since there are at most d vertices unmatched, and we can only match arbitrary
sets of size at least 2d by Lemma 6. So we simply take an arbitrary sub-matching
P ′′ of P ′ of size S − 2d, just throwing away any |P ′| − (S − 2d) edges of P ′.

Notice, P ′′ is also a matching of G which has exactly 2d unmatched vertices
on both sides. By Lemma 6, we know that we can always match these missing
vertices, and get a perfect matching P of the entire G. We finally claim that
this perfect matching P defines a permutation πd+1 on C satisfying properties
(i) and (ii).

Property (i) is immediate since P is a perfect matching of G. As for property
(ii), let L′ denote the S − 2d endpoints of P ′′ in L. Now, every c ∈ L′ satisfies
Equation (16), since this is how the graph G′ was defined and (c, πd+1(c)) ∈
P ′′ ⊆ E(G′). Thus, we can inductively define Td+1 = Td ∩ L′ and have Td+1
satisfy property (ii). We only need to argue that Td+1 is large enough, but this
is easy. Since L′ misses only 2d ciphertexts, we get by induction that

|Td+1| ≥ |Td| − 2d > S − d2 − 2d > S − (d + 1)2

completing the induction and the whole proof.

5 Conclusions and Open Problems

We study the question of whether true randomness is inherent for achieving
privacy, and show a largely positive answer for the case of information-theoretic
private-key encryption, as well as computationally secure perfectly-binding prim-
itives. The most interesting question is to study other privacy primitives (either
information-theoretic or computational) not immediately covered by our tech-
nique. For example, what about 2-out-2 secret sharing (which is strictly implied
by private-key encryption [DPP06]) or computationally binding commitment
schemes? Do they still require true randomness?

More generally, we hope that our result and techniques will stimulate further
interest in understanding the extent to which cryptographic primitives can be
based on imperfect randomness.
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Abstract. We prove a computational soundness theorem for symmetric-
key encryption protocols that can be used to analyze security against
adaptively corrupting adversaries (that is, adversaries who corrupt pro-
tocol participants during protocol execution). Our soundness theorem
shows that if the encryption scheme used in the protocol is semantically
secure, and encryption cycles are absent, then security against adaptive
corruptions is achievable via a reduction factor of O(n · (2n)l), with n
and l being (respectively) the size and depth of the key graph gener-
ated during any protocol execution. Since, in most protocols of practical
interest, the depth of key graphs (measured as the longest chain of ci-
phertexts of the form Ek1(k2), Ek2(k3), Ek3(k4), · · · ) is much smaller than
their size (the total number of keys), this gives us a powerful tool to
argue about the adaptive security of such protocols, without resorting to
non-standard techniques (like non-committing encryption).

We apply our soundness theorem to the security analysis of
multicast encryption protocols and show that a variant of the Logical
Key Hierarchy (LKH) protocol is adaptively secure (its security being
quasi-polynomially related to the security of the underlying encryption
scheme).

Keywords: Adaptive Corruptions, Encryption, Multicast, Selective
Decryption.

1 Introduction

Imagine a large group of users engaged in a private virtual conversation over the
Internet. The group is monitored by a group manager who ensures that at all
points in time, users share a common secret key which is used for secure commu-
nication within the group (e.g., for encrypting all data that is exchanged between
group members). Over time, the composition of the group changes—users can
leave and/or join it at various (a priori unknown) instants—and, accordingly,
the manager sends “update” messages to the group which enable all and only
current participants to acquire the common secret. At some calamitous hour, a
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large number of user terminals get hijacked (e.g., an Internet worm infects half
the Windows users in the group) and all information possessed by these users
gets compromised. Clearly, this results in the compromise of group data that
was exchanged while these ill-fated participants were part of the group. The
question is—can one be sure that the data for other instants (that is, instants
when affected participants were all outside the group) is still secure?

Answering such a question in the affirmative, even for simple security proto-
cols (based on conventional, symmetric-key encryption alone) is often beset with
tough challenges. The possibility of user corruptions occurring during protocol
execution, and in a manner that is adaptively controlled by the attacker, increases
the threat to a protocol’s security and makes the task of proving protocols secure
an unnerving task. It is known that, in general, protocols proven secure against
non-adaptive attacks may actually turn insecure once an adversary is allowed to
corrupt participants adaptively. (See [5] for a simple separation result for proto-
cols based on secret sharing.) The situation is especially annoying for protocols
that make use of encryption—adversaries can spy on ciphertexts exchanged be-
tween two honest parties, and later, at will, corrupt one of the parties, acquire
its internal state, and use such information to “open” all ciphertexts which were
previously sent or received by that party. While trying to prove security of such a
protocol, one must argue that all “unopened” ciphertexts (those that cannot be
decrypted trivially using the compromised keys) leak essentially no information
to the adversary (that is, appear as good as encryptions of random bitstrings).
The heart of the problem lies in the fact that one does not a priori know which
ciphertexts are going to be opened by the adversary since these decisions are
made only as the protocol proceeds. Besides, every ciphertext is a binding com-
mitment to the plaintext it hides—one cannot hope to “fool” the adversary by
sending encryptions of random bitstrings every time and then, when he corrupts
a party, somehow convince him that the ciphertexts he saw earlier on (and which
he can now open) were, in fact, encryptions of real data.

Previous Approaches. In the past, security analysis of encryption-based mul-
tiparty protocols against adaptive adversaries has largely been conducted using
three approaches. The first (and the simplest) involves bypassing adaptive se-
curity altogether—if you cannot prove a protocol adaptively secure, then so be
it. (That is, rest your minds with non-adaptive security.) The second approach
attempts to solve the problem, but by studying it in the “erasure” model [3], in
which all honest parties are assumed to delete their past state the moment they
enter a new state configuration (wherein keys are generated afresh). Proving
adaptive security of protocols in such a model is easy because adversaries are
trivially disallowed from opening previously-sent ciphertexts—the correspond-
ing decryption keys are assumed to have been erased from the system! However,
the model itself is quite unrealistic: an honest party could simply forget to erase
its previous states, or else, internally deviate from the rules of the game (that
is, store all keys and behave in an “honest-but-curious” manner). Besides, some
cryptographic protocols, for the sake of efficiency, require users to store keys
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received in the past and such protocols (an example will be discussed in this
paper) would need to be re-designed in order to comply with the model.

The third approach, and perhaps the most compelling one, to adaptive se-
curity has been to develop non-standard notions of security of an encryption
scheme. This corresponds to a line of research initiated by Canetti et al. [5], who
introduced a cryptographic primitive, called non-committing encryption, specif-
ically to address the problem of adaptive corruptions in multiparty protocols.
Non-committing encryption schemes have the unusual property that ciphertexts
created using them need not behave as binding commitments on the correspond-
ing plaintexts (hence the name “non-committing”). That is, it is possible that an
encryption of ‘0’ collide with an encryption of ‘1’ (or, more generally, encryption
of real data be the same as encryption of a random bitstring). However, such
collisions occur with only negligible probability—the chances of encrypting ‘0’
and obtaining a ciphertext which can later be opened as ‘1’ are very small. At
the same time, these schemes allow to sample “ambiguous” ciphertexts (those
that can be opened as either ‘0’ or ‘1’) efficiently and to convince an adversary of
such a ciphertext being an encryption of ‘0’ or of ‘1’, as the situation demands.
Encryption protocols implemented with non-committing encryption can be eas-
ily proven to achieve adaptive security—in the security proof, one just simulates
the real protocol by transmitting ambiguous ciphertexts and upon corruption
of a party, convinces the adversary that the ciphertexts he saw earlier were in-
deed the encryptions of the revealed data. Non-committing encryption schemes,
though interesting in their own right, have their share of limitations—they are
typically too inefficient for practical applications, and require bounding (a priori)
the number of message bits that can be encrypted using any single key (usually,
the number of bits that can be encrypted with a key cannot be more than the
size of the key itself, which is highly prohibitive for real applications)1.

Our Contribution. In this paper, we show that it is possible to argue about
the adaptive security of a large class of encryption protocols, without requiring
erasures and without resorting to primitives like non-committing encryption,
while simultaneously achieving efficiency that meets practical requirements. We
focus on protocols built generically from symmetric-key encryption (no other
primitives are involved) and where every ciphertext is created by encrypting a
key or a data element, with a single other key (no nesting of the encryption op-
eration). We show that for a large variety of such protocols if keys are generated
independently of each other, then protocols can be proven adaptively secure,
even under the assumption that the encryption scheme is semantically secure,
with very reasonable assurances on the strength of the protocol against adaptive
corruptions.

Our main contribution is a general computational soundness theorem for en-
cryption protocols which works as follows. Consider an abstract game played

1 As shown by Nielsen [16], any non-committing encryption scheme that has a non-
interactive encryption procedure must use a decryption key that is at least as long
as the total number of bits to be decrypted.
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between an adversary and a challenger, both being given access to a seman-
tically secure symmetric-key encryption algorithm E . Initially, the challenger
generates n independent keys k1, k2, · · · , kn and keeps them secret from the
adversary. During the game, the adversary gradually and adaptively builds a
directed graph G over n nodes labeled 1 through n. He arbitrarily introduces
edges into the graph and for each such edge i → j he asks the challenger to
provide an encryption of the key kj under the key ki, that is, Eki(kj). (Thus,
creation of the edge i → j in G depicts the fact that given ki, the adversary
can recover kj , via the decryption operation corresponding to E .) The adversary
can also (again adaptively) decide to “corrupt” some nodes in the graph—from
time to time, he instructs the challenger to reveal the key associated with the
ith node in G (for any arbitrary i) and the challenger must answer with ki in
such a situation. We refer to G as the key graph generated by the adversary and
the nodes in G that correspond to the revealed keys are called corrupt nodes.
Note that any node i′ in G that is reachable from a corrupt node i is also effec-
tively corrupt; the adversary can recover the corresponding key using successive
decryptions along the path from i to i′. The question is—can we prove that, at
the end of the game, keys corresponding to nodes that are not reachable from
any of the corrupt nodes, are still pseudorandom?

This simple game (formalized further in Section 2) provides an effective ab-
straction for many of the challenges a security analyst can expect to face when
proving protocols secure against adaptive corruptions. The power to corrupt
nodes in an adaptive fashion models the ability of attackers to compromise keys
of users during the execution of the protocol. The power to decide the structure
of all ciphertexts abstracts the fact that the execution flow of the protocol is
indeterminable at design time and can potentially be influenced by the adver-
sary during run-time. (A slight variant of the game would be one in which the
adversary can also acquire ciphertexts formed by encrypting arbitrary messages
of his choice. We will discuss this variant further in Section 2.) Note that we
allow the creation of ciphertexts even after nodes have been corrupted (that
is, the compromise of a key at some point in the protocol should not hamper
security of ciphertexts created using future uncompromised keys). Likewise, the
security of keys transmitted in the past must be preserved even if other keys are
compromised in the future.

A naive first step to proving security in the game we just described would be
to guess, a priori, the set of nodes that the adversary is going to corrupt during
the execution and for every edge issuing from such a node, reply with a real
ciphertext while for the other edges reply with encryptions of random bitstrings.
Any security reduction seeded with such an idea would give us a reduction factor
that is exponential in n (that is, we would end up proving a statement like “if
the encryption scheme is ε-secure then security in the game is guaranteed with
probability 2nε”). Such a reduction would be completely impractical; in most
applications, n would be of the order of the number of protocol participants,
which can be extremely large.
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In this paper, we prove security in this game using a significantly different
approach, and one that is of much better practical value. We show that if the
key graph G generated by the adversary is acyclic2 and if its depth (defined as
the length of the longest path in G) is upper bounded by a parameter l, then
security in our game can be proven via a reduction factor of O(n · (2n)l). Here,
by “security in our game” we mean that keys that (a) cannot be trivially recov-
ered by the adversary (that is, are not reachable from corrupt nodes in G) and
(b) are not used to encrypt other keys3, remain pseudorandom at the end of it.
That is, we prove that the security of a semantically secure encryption scheme
can degrade in the face of adaptive attacks (as those captured by our game) by
a factor of at most O(n · (2n)l) but not by worse.

An Application. So what is this reduction good for? At first glance, it would
appear that it is much worse than the naive solution—l could potentially be of the
order of n and n·(2n)n is obviously no more consoling than 2n. Well, for arbitrary
key graphs, this is indeed the case. However, in practice, key graphs are much
smaller (in fact, orders of magnitude smaller) in depth than in total size. For
example, the key graphs generated in the execution of most broadcast encryption
protocols (those falling under the subset-cover framework introduced by Naor et
al. [15]) have depth 1 and their depth remains fixed for arbitrarily long runs of
the protocol. All encryption-based group key distribution protocols (designed for
secure multicast over the Internet, and also called multicast encryption protocols)
generate key graphs that have depth at most logarithmic in the total number
of users in the system (again, the depth remains fixed for arbitrarily long runs
of the protocol, once the total space of users has been ascertained). In general,
in all encryption protocols, the depth of key graphs created in any execution is
likely to be related to the number of decryptions performed by users in order
to be able to recover certain keys while their total size to the number of users
themselves; it is reasonable to expect that protocol designers, for the purpose of
efficiency, would strive to keep the former smaller than the latter.

We exemplify the power of our soundness result by applying it to the security
analysis of the Logical Key Hierarchy (LKH) protocol [17]. LKH is a protocol
originally developed for secure communication in multicast groups on the Inter-
net (applications of the form we discussed in the first paragraph) and has since
then attracted a lot of interest from both cryptographers and researchers in the
networking community. Surprisingly, even though the protocol gets mentioned
in a lot of papers on cryptography, there has been little effort from within our
community towards analyzing its security (adaptive or otherwise) rigorously or
to make any claims to the contrary.

The original LKH protocol has a security flaw in it [12]. Although this flaw is
quite easy to spot, we are not aware of any work (prior to ours) that

2 Acyclicity of key graphs is an almost-inescapable criterion required in security proofs
of protocols based on encryption. We will discuss this issue further in Section 2.

3 This is a necessary criterion if our goal is to guarantee pseudorandomness of these
keys.
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rectifies this flaw in a provably secure manner. (In [12], a fix is suggested but not
proven secure.) In Section 3 of this paper, we present a variant of LKH which
is not only as efficient as the original protocol, but also enjoys strong guaran-
tees of security against adaptive adversaries. In particular, we use our soundness
theorem to show that the security of the improved protocol is related to the
semantic security of the underlying encryption scheme via a reduction factor
that is quasi-polynomial in the number of protocol participants. Concretely, our
reduction factor is of the order of ñlog(n)+2, where n is the number of users in
the protocol and ñ = O(n).

This reduction factor, though not strictly polynomial in n, is still quite rea-
sonable from a practical perspective. For example, in a system with 128 users,
one is guaranteed that an execution of our protocol provides at least 65 bits of
adaptive security when implemented with 128-bit AES in counter mode (for a
run with upto 64 key updates)4. Our result practically eliminates the need for
using expensive techniques like non-committing encryption to build adaptively
secure multicast encryption protocols, and it does this while matching the effi-
ciency of existing schemes.

Relation with Selective Decryption. The abstract game used in our
soundness theorem is reminiscent of the well-studied (though largely unresolved)
problem of selective decryption. In this problem (like in ours), an adversary in-
teracts with a challenger who initially generates a set of plaintexts m1, · · · , mn

and a corresponding set of keys k1, · · · , kn. (We stress here that the plaintexts
are not chosen by the adversary, but generated by the challenger using some
fixed distribution.) The adversary first wants to see the encryptions of all the
plaintexts, {Eki(mi)}n

i=1, and later “open” some of them adaptively; that is, he
queries an arbitrary set I ⊆ [n] and the challenger replies with {ki}i∈I . The
question now is to show that plaintexts corresponding to all unopened cipher-
texts are still “safe”, in the sense that the adversary cannot learn any more
information about them than what he could learn from the revealed plaintexts.
In our soundness theorem, we are essentially generalizing this game to a setting
in which the adversary can ask for not only single ciphertexts but chains of ci-
phertexts of the form Ek1(k2), Ek2(k3), Ek3(k4), · · · and he is also allowed to open
such chains adaptively (as above). Plus, we allow the adversary to interleave his
“encrypt” and “open” queries arbitrarily. (Indeed, the fact that ciphertexts can
be asked for in an adaptive manner, possibly depending upon past corruptions,
is responsible for much of the complication in our proof.) It is for this reason
that we refer to our game (detailed in Section 2) as the generalized selective
decryption (GSD) game.

Does this paper solve the selective decryption problem? Not really. A cru-
cial ingredient of that problem is the distribution from which the plaintexts
m1, · · · , mn are drawn by the challenger. It has been shown [8] that if this dis-
tribution is such that each plaintext can be generated independently of the others

4 These numbers are computed assuming the protocol is implemented using a binary
hierarchy of keys; for non-binary hierarchies, the security guarantee is actually better.
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then the unopened ciphertexts indeed remain secure and the adversary learns
essentially no partial information about the plaintexts they hide from his inter-
action with the challenger. In the GSD game, too, we require all keys, even those
which are not used for further encryption, to be generated independently of each
other, and this “independence property” is crucial in our proof5. Our soundness
theorem essentially builds up on this positive result for selective decryption and
extends it to the more general scenario of arbitrarily (and adaptively) generated
key graphs. The question of solving selective decryption without the indepen-
dence assumption on plaintexts still remains open.

We remark that independence of all keys is not just a simplifying assumption
in our theorem; it is almost a requirement for the security of the protocols we
are interested in analyzing. A multicast encryption protocol that uses related
group keys across key updates may not guarantee good security at all.

Related Work. The notion of computational soundness theorems was intro-
duced by Abadi and Rogaway [1], and has since then found applications in the
security analysis of various cryptographic tasks, including key exchange [7,6],
mutual authentication [13,6], XML security [2] and multicast key distribution
[11,12]. Although most of the literature on computational soundness theorems
deals with protocols that make use of encryption as the fundamental primitive,
to the best of our knowledge, none of these works prove soundness in the pres-
ence of adaptively corrupting adversaries. Recently, Gupta and Shmatikov [10]
developed a symbolic logic that allows reasoning about a weak variant of adap-
tive security for the case of key exchange protocols; however, the protocols they
analyze, do not make use of encryption (and instead use Diffie-Hellman expo-
nentiation coupled with signatures).

The soundness result of this paper is of a very different flavor than those in
previous works in the area. The protocol model we use is relatively simpler—
in the protocols we consider, every message generated during an execution is
either a key or an encryption of a key under a key or else, a sequence of val-
ues with one of these types6. Symbolic analysis of such protocols can be ef-
fectively conducted using graph-theoretic terminology: keys can be interpreted
as nodes, ciphertexts as edges, and Dolev-Yao attacks on protocols can be ex-
pressed in terms of reachability from adversarial nodes (corresponding to cor-
rupted keys). As such, all discussions on symbolic analysis in this paper take
place within a graph-theoretic framework (as illustrated by the GSD game).
This simplifies our presentation considerably and brings us quickly to the crux
of the matter.

5 Jumping ahead, we remark that even in the variant in which the adversary can
acquire encryptions of arbitrary messages of his choice, we need only keys to be
independent of each other, and not the messages.

6 We remark that extending our result to protocols that use nested encryption is also
possible, but the soundness theorem and the corresponding proof become much more
complex. We avoid nested encryption largely for the sake of simplicity (and partly
because most existing multicast encryption protocols don’t use nesting).
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Lastly, a few words comparing the result of this paper with our previous work,
joint with Micciancio [11,12], on the computationally sound analysis of encryp-
tion protocols are in order. Although both our works address adaptive attacks on
encryption protocols, the adversarial model used in the current work is stronger:
we not only allow the adversary to adaptively modify the execution flow of the
protocol (as in our past work) but also to corrupt participants in an adaptive
manner. Tackling the latter type of attacks is significantly more non-trivial, and
forms the central theme of this paper. Another difference is that our previ-
ous soundness results applied only to protocols that satisfied certain syntactic
conditions besides acyclicity of key graphs. Informally, these conditions require
protocols to use every key in two phases—a distribution phase in which keys
are used as plaintexts, followed by a deployment phase in which the distributed
keys are used for encrypting other keys or messages. Key distribution is not
allowed to succeed key deployment. Our new result, while incorporating adap-
tive corruptions, also does away with this restriction. The downside, however,
is that this result provides security guarantees in a manner that is dependent
on the depth of protocol key graphs, and it is not meaningful for protocols that
could potentially generate key graphs with arbitrary depth. We believe that im-
proving the result of this paper to overcome this limitation is non-trivial, but
a worthy direction for future research; in particular, obtaining an analogous re-
sult with a reduction factor smaller than Θ(nl) would be quite remarkable, and
could lead to even newer techniques to address adaptive corruptions in security
protocols.

2 The Main Result

Fix a symmetric-key encryption scheme Π = (E , D)7. We use the standard no-
tion of indistinguishability against chosen plaintext attacks (Ind-CPA) for en-
cryption schemes as defined by Bellare et al. [4]. Specifically, let OΠ

k,b denote
a left-or-right oracle for Π which first generates a key k uniformly at random
from {0, 1}η (η being the security parameter) and subsequently, responds to
every query of the form (m0, m1) ∈ {0, 1}∗ × {0, 1}∗ (such that |m0| = |m1|)
with Ek(mb)—the encryption of mb under key k. For any adversary (that is, any
arbitrary probabilistic Turing machine) A, let AO

Π
k,b denote the random vari-

able corresponding to the output of A when interacting with such an oracle.

Definition 1. Let t ∈ IN+ and 0 < ε < 1. An encryption scheme Π is called
(t, ε)-Ind-CPA secure if for every adversary A running in time t: |P[AO

Π
k,b = 1|b =

0] − P[AO
Π
k,b = 1 | b = 1]| ≤ ε

7 In this paper, we consider encryption schemes where key generation is defined by
picking a uniformly random bitstring from the set {0, 1}η with η being the secu-
rity parameter. Thus, the key generation algorithm is implicit in the definition of
encryption schemes. We also assume that the encryption scheme allows to encrypt
arbitrary bitstrings; so, keys themselves can always be used as plaintexts.
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The GSD game. Consider the following game, which we call the generalized se-
lective decryption (GSD) game, played between an adversary A and a challenger
B. Both parties are given blackbox access to the algorithms E and D. In the
beginning, A specifies an integer n, and the challenger generates a set of keys,
k1, k2, · · · , kn, each key being sampled independently and uniformly at random
from the set {0, 1}η (where η is the security parameter). B also generates a chal-
lenge bit b (uniformly at random from {0, 1}), which A is required to guess in
the end. It stores the generated values for the rest of the game, and uses them
to answer all of A’s queries.

A can make three types of queries to B:

1. encrypt: At any point, A can make a query of the form encrypt(i, j), in
response to which B creates a ciphertext c ← Eki(kj) (using fresh coins for
the encryption operation each time) and returns c to A.

2. corrupt: A can also ask for the value of any key initially generated by B; it
does this by issuing a query of the form corrupt(i), in response to which it
receives ki.

3. challenge: Finally, A can issue a query of the form challenge(i). The
response for such a query is decided based on the bit b: if b = 0, B returns
the key ki to A, whereas if b = 1, it generates a value ri uniformly at random
from {0, 1}η, and sends ri to A8.

Multiple queries of each type can be made, interleavingly and adaptively. We
stress here that A can make more than one challenge queries in the game and
it can choose to interleave its challenge queries with the other two types of
queries. (This is a slight generalization of the setting described in the intro-
duction.) Giving the adversary the power to make multiple challenge queries
models the requirement that keys linked with challenge nodes be “jointly” pseu-
dorandom (as opposed to individual keys being pseudorandom by themselves).
Allowing it to interleave challenge’s with other queries means that such keys
are required to retain their pseudorandomness even after more corruptions or
ciphertext transmissions have occurred.

We think of the queries of A as creating a directed graph over n nodes (labeled
1, 2, · · · , n), edge by edge, and in an adaptive fashion. Each query encrypt(i, j)
corresponds to creating an edge from i to j, denoted i → j, in this graph. For
any adversary A, the graph created by its queries in this manner is called the
key graph generated by A and is denoted G(A). A node i in G(A) for which A
issues a query corrupt(i) is called a corrupt node while one for which A issues
a query challenge(i) is referred to as a challenge node. The set of all corrupt
nodes is denoted V corr(A) and that of all challenge nodes is denoted V chal(A).
Note that G(A), V corr(A) and V chal(A) are all random variables depending on the
coins used by both A and B.

8 If A issues multiple challenge queries with argument i and if b equals 1, B must
return the same value ri everytime.
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Legitimate Adversaries. There is a trivial way in which any adversary can
win in the GSD game—by corrupting a node i in G(A) and making a query
challenge(j) for any j that is reachable from i, A can easily guess the challenge
bit b. The interesting case to consider is, thus, one in which A is constrained not
to issue queries of this form, that is, where A is restricted to make queries in a
manner such that no challenge node is reachable from a corrupt node in G(A).

Our intuition suggests that if the encryption scheme is secure (in the Ind-CPA
sense), then the chances of such an adversary being able to decipher b correctly
are no better than half. However, translating this intuition into a proof is far
from easy. For one, it is not even possible to do this without further restrictions
on the adversary’s queries: if a key kj is used to encrypt other keys (that is, there
exists an edge issuing from j in G(A)), then kj cannot be guaranteed to remain
pseudorandom, even if j is not reachable from the corrupt nodes. In other words,
we can hope to prove pseudorandomness of keys associated with challenge nodes
only as long as these nodes have no outgoing edge in G(A). Secondly, arguing
about the security of encryption schemes in the presence of key cycles is a gruel-
ingly hard problem; in particular, it is currently not known whether an arbitrary
Ind-CPA-secure encryption scheme can be proved to retain its security in a sit-
uation where ciphertexts of the form Ek1(k2), Ek2(k3), · · · , Ekt−1(kt), Ekt(k1), for
some t > 1, are created using it. Standard techniques do not allow to prove
such statements and counterexamples are not known either. Given this state of
affairs, our only hope to prove security in the GSD game is to forbid the creation
of key cycles altogether. The following definition formalizes all our requirements
from the adversary:

Definition 2. An adversary A is called legitimate if in any execution of A in
the GSD game, the values of G(A), V corr(A) and V chal(A) are such that:

1. For any i ∈ V corr(A) and any j ∈ V chal(A), j is unreachable from i in G(A).
2. G(A) is a DAG and every node in V chal(A) is a sink in this DAG.

The Result. Let A be any legitimate adversary playing the GSD game. We say
that A is an (n, e, l)-adversary if in any execution in the game, the number of
nodes and edges in the key graph generated by A are bounded from above by n
and e respectively and the depth of the graph (the length of the longest path in
it) is at most l. We denote the random variable corresponding to the output of
A in the game by ABΠ

b .

Definition 3. Let t, n, e, l ∈ IN+ and 0 < ε < 1. An encryption scheme Π is
called (t, ε, n, e, l)-GSD secure if for every legitimate (n, e, l)-adversary A running
in time t: |P[ABΠ

b = 1 | b = 0] − P[ABΠ
b = 1 | b = 1]| ≤ ε

Here, probabilities are taken over the random choices made by both A and B
(including the randomness used by B in creating ciphertexts). The following is
the main result of this paper:
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Theorem 4. Let t, n, e, l ∈ IN+ and 0 < ε < 1. If an encryption scheme Π is
(t, ε)-Ind-CPA secure, then it is (t′, ε′, n, e, l)-GSD secure for quantities t′ and ε′

defined as:
ε′ = ε · 3n

2
· (n + 1) · (2n + 1)l−1

t′ = t − (O(n) · tGenKey + e · tEncrypt)

where tGenKey (resp. tEncrypt) denotes the time taken to perform key generation
(resp. encryption) in Π.

Overview of the Proof. The starting point of the proof of our theorem
is the positive result on the selective decryption problem (more precisely, the
selective decommitment problem) due to Dwork et al. [8]. Consider first the
GSD game for the case l = 1. The graph G(A) in this case is a directed bipartite
graph mapping a set of sources to a set of sinks. (In the problem studied in [8],
the map from sources to sinks is one-to-one. In our case, it could be many-
to-many; plus, it could be adaptively generated based on previous corruptions.)
How can we argue about security in this case? Intuitively, an attacker’s ability to
differentiate between real and random values for all nodes in V chal(A) translates
into its ability to differentiate between the two values for some node (say the jth
one) in V chal(A); that is, such an adversary can effectively differentiate between
two worlds, one in which the reply to each of the first j − 1 queries of the form
challenge(i) is ri (and for the rest, it is ki), and the other in which the reply
to each of the first j queries of this form is ri (and that for the rest is ki).

Let us call these worlds Worldj(0) and Worldj(1) respectively. Let us assume
that the argument specified in A’s jth challenge query is known a priori (it can
be guessed with success probability 1/n) and equals ij. Let I(ij) denote the set
of nodes is for which there exists an edge is → ij in G(A). Now consider this
modified version of the game: While generating keys in the beginning of the game,
B also generates a random key k̃ij , independently of all other keys. It replies
to the adversary’s queries in one of two worlds again, but now the worlds are
defined as follows. Each query of the form encrypt(is, ij) is replied to with the
real ciphertext Ekis

(kij ) in the first world, World′j(0), but with a fake one, namely
Ekis

(k̃ij ), in the other one, World′j(1). All other encrypt queries are replied to
with real ciphertexts in both worlds. For the challenge queries the replies always
have the same distribution—ri for the first j − 1 challenge queries and ki for
the rest. (In particular, the reply for challenge(ij) is always kij .) It is easy to
see that the distribution on the challenger’s replies in World′j(0) is exactly the
same as in Worldj(0). The key observation to make here is that the distribution
on the replies in World′j(1) is also the same as that in Worldj(1)! This is true
because the keys kij , k̃ij and rij are generated by the challenger independently of
each other, and so, replying to encrypt(is, ij) with Ekis

(kij ) and challenge(ij)
with rij (as done in Worldj(1)) produces the same distribution as replying to
the former with Ekis

(k̃ij ) and the latter with kij (as done in World′j(1)). Thus,
our adversary can differentiate between Worldj(0) and Worldj(1) with the same
probability as it can differentiate between World′j(0) and World′j(1).
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Why are the two worlds World′j(0) and World′j(1) indistinguishable? Because
the encryption scheme is Ind-CPA-secure. If the adversary can distinguish
between two sets of ciphertexts {Ekis

(kij )}is∈I(ij) (the real ones) and
{Ekis

(k̃ij )}is∈I(ij) (the fake ones) then it must be able to tell the difference
between Ekis

(kij ) and Ekis
(k̃ij ) for some node is ∈ I(ij). (A standard hybrid

argument applies here.) This goes against the Ind-CPA-security of Π.
Going beyond l = 1. In the general setting, a node is, pointing at any node

ij ∈ V chal(A) need not be a source—there could be other edges incident upon
each such is and extending the above argument to this general setting requires
more work. In order to be able to make a statement like “the ciphertext Ekis

(kij )
is indistinguishable from Ekis

(k̃ij )”, one must first argue that every ciphertext
of the form Eki′

s
(kis) (where i′s → is is an edge in G(A)) looks the same as one

of the form Eki′
s
(k̃is) (a fake ciphertext). But every such ki′

s
could, in turn, be

encrypted under other keys (that is, the node i′s could have other edges incident
on it). There could be a lot of nodes (O(n), in general) from which ij is reachable
in G(A) and at some point or the other, we would need to argue that replying
with real ciphertexts created under each of these nodes is the same as replying
with fake ones. Worse still, we do not a priori know the set of nodes from which
ij can be reached in G(A) since the graph is created adaptively; so we must make
guesses in the process.

It is easy to come up with an argument where the amount of guesswork
involved is exponential in n (simply guess the entire set of nodes from which there
is a path to ij). In our proof, however, we take a radically different approach.
We first define a sequence of hybrid distributions on the replies given to A such
that in each of the distributions, the replies corresponding to some of the edges
in the key graph are fake, and these “faked” edges are such that their end-points
lie on a single path ending in ij. (Henceforth, we will refer to every edge for
which the corresponding reply is fake, as a faked edge.) The extreme hybrid
distributions are defined as in the two worlds World′j(0) and World′j(1) for l = 1:
in one extreme, the replies corresponding to all edges are real, and in the other
extreme, the replies corresponding to all edges incident on ij are fake (while the
rest of the replies are still real). Intermediate to these extremes, however, are
several distributions in which edges other than those incident on ij are faked.
For any two adjacent distributions in the sequence of distributions, the following
properties are always satisfied:

(a) The distributions differ in the reply corresponding to a single edge is → it;
the reply is real in one distribution while fake in the other.

(b) In both distributions, for every ir ∈ I(is), the edge ir → is is faked.
(c) There exists a path from it to ij in the key graph and in both distributions,

“some” of the edges incident upon this path are faked, the faked edges being
the same in both distributions.

(d) No other edge in the key graph is faked in either of the distributions.

Properties (a) and (b) are meant to ensure that any two adjacent hybrids can
be simulated using a single left-or-right encryption oracle (and so, A’s capability
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to distinguish between them would imply that the encryption scheme is not
Ind-CPA-secure); properties (c) and (d) enable the simulation to be carried out
by guessing a path (that goes from is to it to ij) as opposed to guessing all the
nodes from which ij is reachable. (This partly explains why our reduction factor
is exponential in the depth, rather than the size, of the key graph.) In order
to simultaneously achieve all these properties, we order the hybrid distributions
such that (i) when the reply for any edge is → it is changed (from real to fake or
vice versa) in moving from one hybrid to another, all edges of the form ir → is
have already been faked in previous hybrids; and (ii) after changing the reply for
is → it, there is a sequence of hybrids in which the replies for all edges ir → is
are, step by step, changed back from fake to real. This is done in order to satisfy
property (d) above (particularly, to make sure that it is satisfied when the replies
for edges issuing from it are changed in a subsequent hybrid).

Thus, if we scan the sequence of hybrid distributions from one extreme to
the other, we observe both “real-to-fake” and “fake-to-real” transitions in the
replies given to A, taking place in an oscillating manner. The oscillations have a
recursive structure—for every oscillation in replies (transition from real to fake
and back to real) for an edge is → it, there are two oscillations (transition from
real to fake to real to fake to real) for every edge ir → is incident upon is.
Simulating these hybrid distributions (using a left-or-right oracle) and subse-
quently, proving that the simulation works correctly is the most challenging part
of the proof. After developing an appropriate simulation strategy, we prove its
correctness using an inductive argument—assuming that, for some l′ ≤ l, the
simulation behaves correctly whenever is is at depth smaller than l′ in the key
graph, we show that the simulation is correct also when is is at depth smaller
than l′ + 1; this simplifies our analysis considerably. Details of the entire proof
are given in the full version of the paper.

Other Variants. A natural variant of the GSD game would be one in which
the adversary is allowed to acquire encryptions of messages of its choice (besides
receiving encryptions of keys, as in the original game). Consider the following
modified version of the game: A issues encrypt and corrupt queries, as be-
fore, but instead of making challenge queries, it makes queries of the form
encrypt msg(i, m0, m1) (such that m0, m1 ∈ {0, 1}∗ and |m0| = |m1|). In return
for each such query, the challenger sends it the ciphertext Eki(mb). A legitimate
adversary in this modified game would be one whose key graph is always a DAG
and for whom every query encrypt msg(i, m0, m1) is such that i is unreach-
able from the corrupt nodes in the DAG. We remark that a result analogous to
Theorem 4 can also be proven for this modified game, and with only a slight
modification to the proof of that theorem. Specifically, we can show that if Π is
(t, ε)-Ind-CPA secure, then for any t′-time (n, e, l) adversary A (t′ as defined in
Theorem 4),

|P[ABΠ
b = 1 | b = 0] − P[ABΠ

b = 1 | b = 1]| ≤ ε · 3n

2
· (2n + 1)l
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A different variant of our game would be one in which A is provided encryp-
tions of messages, but these messages are sampled by the challenger using some
fixed distribution known to A. In this variant, the messages themselves can be
thought of as nodes (more specifically, sinks) in the key graph, whose values
are hidden from A but whose probability distribution is defined differently from
that of the keys. The goal now would be to argue that from A’s perspective,
all “unopened” messages (that is, messages that are not reachable from cor-
rupt nodes in the key graph) appear as good as fresh samples from the same
message space. If we assume that messages are sampled independently of each
other, then security in this variant can also be proven, and with almost the same
reduction factor as in Theorem 4. (Specifically, the reduction factor would be
(3/2) · M(n + 1)(2n + 1)l, where M is an upper bound on the total number of
messages that are encrypted.) However, in the absence of this assumption, it
becomes considerably more challenging to prove the same claim. The techniques
developed in this paper do not allow us to argue about security in such a setting,
not even in the case where the key graph has depth 0 (only messages, and not
keys, are used as plaintexts)9.

3 The Application

In this section, we illustrate how our result from Section 2 applies to the security
analysis of multicast encryption protocols.

Multicast Encryption. A group of n users, labeled U1, · · · , Un, share a broad-
cast channel and wish to use it for secure communication with each other. At
any point in time t, only a subset of users, labeled St, are “logged in” to the
network, that is, are authorized to receive information sent on the channel. We
would like to ensure that for all t, only the users in St (called group members)
be able to decipher the broadcasts. We assume the existence of a central group
manager C who shares a unique long-lived key kUi with each user Ui

10 and
runs a key distribution program, KD, in order to accomplish the said task. The
manager (or, equivalently, the program KD) receives user login and logout re-
quests and for the request at time t, sends out a set of rekey messages, Mt, on
the channel. These rekey messages carry information about a key k[t] (the group
key for t), and are such that only the group members can decipher them (and,

9 Here, by “argue about security” we mean the following: Consider an adversary A who
makes only encrypt and corrupt queries in the above variant of the GSD game. At
the end of the game, provide A with one out of two sets of values: in one world, reveal
the real values of all unopened messages; in the other, provide an equal number of
messages, sampled from the same probability space conditioned on the values of the
opened messages. Now show that A cannot tell the two worlds apart. This problem is
essentially the same as the selective decryption problem where plaintexts are allowed
to be mutually dependent. We don’t know of a solution to this problem yet.

10 In practice, such long-lived keys could be established during the first login request
made by users using, say, public-key based approaches.
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subsequently, recover k[t]). The key k[t] can then be used to carry out all group-
specific security tasks until the next login/logout request arrives, which, we
assume, happens at time t + 1. For example, it can be used for ensuring privacy
of all data sent between time t and t + 1 and/or guaranteeing “group authen-
ticity” of data (that is, enabling members to verify that the sender of the data
is a group member at time t, and not an outsider). To ensure security of any
such task, it is important to guarantee that k[t] appears pseudorandom to users
not in St (the non-members) for all instants t, even when such users can collude
with each other and share all their information. The problem is to design the
program KD in a manner such that this guarantee is achieved.

Fiat and Naor [9] were the first to define this problem formally and they in-
troduced it under the title of broadcast encryption—a formulation in which all
users are assumed to be stateless and group members are required to be able
to recover k[t], given only Mt and their long-lived keys. Subsequent work (for
example, [14,17]) lifted the problem to the more general setting of stateful users,
and studied it in the context of ensuring privacy in multicast groups on the In-
ternet (hence the name multicast encryption). LKH is a protocol that relies on
the statefulness assumption.

The Protocol. A trivial approach to multicast key distribution would be to
have the center generate a new, purely random key k[t] for every group mem-
bership change, and to let Mt (the rekey messages for time t) be the set of
ciphertexts obtained by encrypting k[t] individually under the long-lived keys of
every user in St, that is, the set {EkUi

(k[t])}Ui∈St . This, however, is an unscal-
able solution since it involves a linear communication overhead per membership
change, which is prohibitive for most applications that use multicast.

The LKH protocol betters the above trivial approach by distributing to users,
in addition to the group key, a set of auxiliary keys, with each auxiliary key being
given to some subset of the current group members. All keys in the system
are organized in the form of a hierarchy—the group key is associated with the
root node in the hierarchy, the long-lived keys of users with the leaves, and the
auxiliary keys with internal nodes. At each point in time t, a user Ui ∈ St knows
all keys on the path from the leaf node corresponding to kUi to the root node
(which corresponds to k[t]). The protocol maintains this property as an invariant
across membership changes.

Rekey Messages. For simplicity, we illustrate the protocol using an example
where n = 8 and the hierarchy is binary. We assume that all parties (includ-
ing the center) have blackbox access to a symmetric-key encryption scheme
Π = (E , D) with key space {0, 1}η for some fixed security parameter η. In our
description, we use the terms “keys” and “nodes” interchangeably (the relation
between them is obvious in the current context) and depict transmission of a
ciphertext Ek1(k2) with an edge k1 → k2 in the figures.

Suppose that initially (t = 0), the set of group members S0 = {U1, U2, U3,
U6, U7} as shown in Figure 1(a). The center’s key distribution program KD
generates the initial group key k[0] = kε (the root node) and all auxiliary keys
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Fig. 1. LKH and rLKH: Figure 1(a) shows how key distribution to the initial set
of users S0 is performed while figure 1(b) demonstrates the rekeying process for user
logout (both these procedures are the same in LKH and rLKH). Figure 1(c) shows
how rekeying for user login works in LKH and fig. 1(d) illustrates the same for rLKH.

(internal nodes) which are supposed to be given to users in S0. For example,
since k00 and k0 lie on the path from kU1 to k[0], these keys must be generated
afresh and sent securely to U1. KD transmits the keys to the designated users by
sending the ciphertexts shown by dark edges in the figure. So, for example, user
U1 can obtain all the keys it is supposed to know (k00, k0, kε) by decrypting, in
order, the ciphertexts EkU1

(k00), Ek00(k0) and Ek0(kε).
Now suppose that at time t = 1, user U1 logs out of the group. That is,

S1 = {U2, U3, U6, U7}. The program KD should re-generate the group key kε,
and the auxiliary keys which were known to U1 at t = 0 (k00 and k0) and dis-
tribute the new values in a manner such that U1 cannot recover them but other
users who are required to do so (according to the protocol invariant) still can.
Specifically, it generates new keys k1

00, k
1
0 and k1

ε =: k[1] (independently and
uniformly at random) and sends out the ciphertexts shown in figure 1(b). Thus,
every rekey operation for a user logout requires sending logarithmically many
(specifically, 2 log2(n) − 1) ciphertexts; in our example, this number is 5.

The Flaw and the Fix. The flaw in the original LKH protocol lies in the way
it implements rekeying for user login operations. Suppose U8 sends a login
request at time t = 2. The center must now re-generate keys k11, k1, kε and
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send them securely to all the designated users (including U8). The protocol does
this by transmitting the ciphertexts shown in figure 1(c). (k2

11, k
2
1 , k

2
ε denote the

newly generated keys.)
Note that the group key at t = 1, k[1] = k1

ε , is used to encrypt the group key
at t = 2, k2

ε . This is a problem since our initial goal was to guarantee pseudo-
randomness of all group keys but deploying k[1] in this manner clearly fails that
purpose. In principle, if k[1] is used in keying other applications (for example, in
a message authentication scheme) at t = 1, and is also used for rekeying in the
manner shown, then the protocol could be completely subverted (both k[1] and
k[2] fully recovered) even by a passive eavesdropper on the channel. Of course,
this does not mean that the protocol is broken for any secure implementation of
the encryption scheme; but for some, it is.

We propose to fix the LKH protocol by changing the rekeying procedure for user
logins as shown in Figure 1(d). (We remark that this fix is different from the one
suggested in [12].) Notice that the communication cost incurred is the same as in
the original protocol (2 log2(n) ciphertexts for a user space of size n). Notice also
that the structure of the rekey messages is now similar to that of the messages sent
upon a user logout request (figure 1(b)). We refer to this modified version of LKH
as “rLKH” (the r stands for “repaired”). The protocol can be easily generalized
to work with arbitrary hierarchies; in particular, when the key hierarchy is a d-
ary tree (so its height equals �logd(n)�), the communication complexity (number
of ciphertexts transmitted) of rekeying would be d�logd(n)� for user logins and
d�logd(n)� − 1 for user logouts. An implementation of rLKH with n users and a
d-ary hierarchy is referred to as the (n, d)-instance of the protocol.

One could conceive other ways of fixing the user login process of LKH (pos-
sibly as secure and as efficient as the one we propose). We prefer this fix for two
reasons: (a) the key hierarchy in rLKH has the nice property that at all instants,
every auxiliary key (and even the group key) is transmitted to the legitimate
recipients by encrypting it under its two children only (and no other keys). This
property could potentially simplify implementation of the protocol in practice;
(b) more importantly, our fix ensures that the depth of the key graph generated
in any execution of the protocol is independent of the number of protocol rounds;
this property is useful in arguing about the protocol’s adaptive security.

Adaptive Security. Let KD be an n-user multicast key distribution program.
We define adaptive security of KD using the following game (which we call the
MKD game) played between an adversary A and a challenger B. Initially, B
generates the long-lived keys of all users kU1 , · · · , kUn (randomly, independently
from the underlying key space) and also generates a random challenge bit b. A
specifies the initial set of group members, S0, in response to which KD is invoked
and the initial key distribution messages, M0, returned to A. Subsequently, A
issues multiple queries to B, each query being either:
1. a rekey query—at any instant t, A can issue a query of the form

rekey(command, Ui) where command is either login or logout. In response,
B runs KD based on the membership change command specified and returns
the set of rekey messages Mt to A; OR
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2. a corrupt query—A can also issue queries of the form corrupt(Uj), in return
for which B sends it the key kUj ; OR

3. a challenge query—finally, A can issue a challenge query at any instant t;
in response, it is given the key k[t] if b = 0, or a fresh key r[t] (sampled
independently and uniformly at random from {0, 1}η) if b = 1.

All queries can be issued interleavingly and adaptively. Let U corr(A) be the set
of all users corrupted by A during the game. Let T chal(A) be the set of instants
t at which A issues a challenge query. We say that A is legitimate if in every
execution of A in the MKD game, for all t ∈ T chal(A), St ∩ U corr(A) = ∅. Let
ABKD

b denote the random variable corresponding to the output of A in the game,
conditioned on the event that B selects b as the challenge bit.

Definition 5. Let t, r ∈ IN+ and 0 < ε < 1. A multicast key distribution
program KD is (t, r, ε)-secure against adaptive adversaries if for every legitimate
adversary A that runs in time t, and makes r rekey queries: |P[ABKD

b = 1 | b =
0] − P[ABKD

b = 1 | b = 1]| ≤ ε.

On the lines of the above definition, one can also define the problem of multicast
encryption (or, for that matter, any security task based on multicast key distri-
bution). For example, consider a multicast encryption protocol ME constructed
using a key distribution program KD and an encryption scheme Π = (E , D) as fol-
lows: the protocol distributes rekey messages for every group membership change
just as KD but besides this, it also encrypts arbitrary messages—upon receiving
a message m to encrypt at time t, the protocol outputs Ek[t](m). Security of such
a scheme can be defined using a game similar to the MKD game, but with one
change—every time the adversary issues a challenge query, it also specifies two
messages (m0, m1) (m0, m1 ∈ {0, 1}∗, |m0| = |m1|) and the challenger replies
with Ek[t](mb) (k[t] being the current group key). It is possible to show that if
KD is (t, r, ε)-secure against adaptive adversaries, and Π is (t, ε′)-Ind-CPA secure,
then ME is (O(t), r, 2ε + ε′)-secure against adaptive adversaries.

In general, the problems of multicast key distribution and multicast encryp-
tion are equivalent to each other but studying the key distribution problem is
more natural since it allows to generically build protocols for any security task
(not necessarily multicast encryption) that can be accomplished using shared
group keys. For this reason, we have focussed our attention on the key distribu-
tion problem alone, and discuss the security of rLKH in the same context.

Theorem 6. Let n, d, t, r′ ∈ IN+ such that 1 < d ≤ n. Let 0 < ε < 1. The (n, d)-
instance of rLKH, when implemented using a (t, ε)-Ind-CPA secure encryption
scheme Π, is (t′, r′, ε′)-secure against adaptive adversaries for

ε′ = ε · 3
2
(ñ · (ñ + 1) · (2ñ + 1)�logd(n)�−1)

t′ = t − (O(ñ) · tGenKey + (r′d�logd(n)�) · tEncrypt)

Here, ñ = max{n, d�logd(n)�−1 + r′} and tGenKey (resp. tEncrypt) is the time taken
to perform key generation (resp. encryption) in Π.
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The proof of this theorem follows almost immediately from our soundness result
of Section 2, given that (a) the key graph generated by any execution of rLKH
is acyclic; (b) all group keys correspond to sinks in the protocol key graph; (c)
the depth of the graph remains �logd(n)� throughout; and (d) for any r′-round
execution of the protocol, and for all t ≤ r′, the group key k[t] can be reached
from a long-lived key kUi if and only if Ui ∈ St. (The last part can be proven
using a straightforward inductive argument, with the induction being performed
on r′.) The reduction factor given in the theorem is slightly better than what one
gets using a direct invocation of Theorem 4: this is achieved using the fact that
in any r′-round execution of the rLKH protocol, (a) a key at depth i in the key
graph (that is, at distance i from some source) is encrypted only by keys at depth
i − 1 and (b) there are at most d�logd(n)�−1 + r′ keys at any depth in the graph
(and at most n sources in it). Note that our reduction factor is exponential in
�logd(n)� which is independent of the number of rounds the protocol is executed
for. That is, the adaptive security of rLKH degrades polynomially (and not
exponentially) with the number of rounds in the protocol execution.

Changing the hierarchy structure in rLKH involves a natural trade-off be-
tween efficiency and security: If we increase the arity d of the hierarchy (and
correspondingly, reduce the height), the communication efficiency of the proto-
col suffers, but we get a better guarantee on its adaptive security. The extreme
case is the n-ary hierarchy that has a linear rekeying communication complexity
but provides adaptive security via a reduction factor of only O(ñ2). (Note that
this is exactly the trivial approach to key distribution we discussed earlier on.)
Whether or not one can further improve this trade-off between efficiency and
security across different instances of rLKH, and, in particular, prove its adap-
tive security via a reduction factor smaller than the one given in Theorem 6,
assuming only the semantic security of Π, is a question left open by this work.
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Abstract. Algorithmic progress and future technology threaten today’s
cryptographic protocols. Long-term secure protocols should not even in
future reveal more information to a—then possibly unlimited—adversary.

In this work we initiate the study of protocols which are long-term
secure and universally composable. We show that the usual set-up as-
sumptions used for UC protocols (e.g., a common reference string) are not
sufficient to achieve long-term secure and composable protocols for com-
mitments or general zero knowledge arguments. Surprisingly, nontrivial
zero knowledge protocols are possible based on a coin tossing function-
ality: We give a long-term secure composable zero knowledge protocol
proving the knowledge of the factorisation of a Blum integer.

Furthermore we give practical alternatives (e.g., signature cards) to
the usual setup-assumptions and show that these allow to implement the
important primitives commitment and zero-knowledge argument.

Keywords: Universal Composability, long-term security, zero-
knowledge, commitment.

1 Introduction

Computers and algorithms improve over time and so does the power of an adver-
sary in cryptographic protocols. The VENONA project is an example where NSA
and GCHQ stored Russian ciphertexts over years until they could eventually be
cryptanalysed. Official key length recommendations, e.g. by the Federal Office
for Information Security (BSI) in Germany, usually do not exceed six years and
future technology like quantum computers could render even paranoid choices
for the key length obsolete.

Everlasting security from assumptions which have to hold only during the
protocol execution would be an ideal solution to this problem. In this work
we combine the notions of universal composability and long-term security. For
the first time we investigate protocols which are long-term secure and exhibit
a composition theorem which allows a modular design of such protocols. In
particular, we investigate commitment protocols and zero knowledge schemes
which are composable and robust against future improvements of the adversary’s
computing technology.

� Most of the work was done while the second author was at the IAKS, Universität
Karlsruhe (TH).
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To capture the threat of an adversary with increasing power we introduce
the security notion of long-term universal composability (long-term-UC) with
the intuition that the adversary becomes unlimited at some point of time after
termination of the protocol. The protocols do not run after this point of time,
but all information stored from past executions should not reveal any additional
information to the then unlimited adversary. A surprising consequence of our
work is that unconditionally hiding universally composable commitments [11]
are not necessarily long-term-UC.

Long-term-UC is preserved under composition, i.e., idealised building blocks
can be replaced by long-term-UC protocols while preserving the long-term secu-
rity of the complete application. The security notion of long-term-UC lies strictly
between information theoretical security, where the adversary is unlimited from
the start, and computational security, where for a concrete security parame-
ter the computational power of the adversary must be limited for all times to
come.

The idea of everlasting security has been considered with respect to memory
bounded adversaries. Key exchange protocols and protocols for oblivious transfer
have been developed in the bounded storage model [5,4]. These protocols can be
broken by an adversary with more memory than assumed, however they cannot
be broken in retrospect even by an unlimited adversary. A scheme using distrib-
uted servers of randomness (virtual satellites) to achieve everlasting security has
been implemented [22]. In this scheme the access of the adversary to the commu-
nication of the parties is limited during the key exchange. It was shown by [12]
that in the bounded-storage model composability cannot be taken for granted.
They gave a key-exchange protocol that is secure in the bounded-storage model
even if the initial key leaks after protocol termination, and then showed that if
the initial key was generated by a computationally secure key exchange protocol,
the resulting protocol is insecure. However, theirs was a purely negative result in
that they did not give any criteria under which composition would be possible.

Long-term security has been investigated in quantum cryptography. It is gen-
erally accepted (even though not formally proven) that an only computationally
secure authentication of a quantum key exchange yields a long-term secure key.
Bit commitment and oblivious transfer quantum protocols which become uncon-
ditionally secure, but rely on temporary computational assumptions have been
searched, but are now known to be impossible1 (see, e.g. [3]).

Zero knowledge proofs where the verifier cannot (ever) break the protocol
and the prover can only on-line break the protocol where given in [2]. In [20]
protocols achieving long-term security were stated, however, only secure function
evaluation with constant input size was considered.

Another related topic is that of forward security, where it is demanded
that past session keys remain computationally secure even if a long-term se-
cret is given to the adversary. This notion is related to but less strict than
long-term-UC as the session keys will not remain secure forever.

1 Unless additional assumptions are made, such as bounded quantum storage or the
availability of a piece of trusted hardware.
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With exception of [12], previous work on long-term security did not take
the problem of composability into account. When composability is required the
situation changes drastically. E.g., an unconditionally hiding UC commitment
is not long-term-UC and a straightforward adaption of e.g., the protocol of [2]
using an unconditionally hiding UC commitment does not yield long-term-UC
zero knowledge arguments.

In this work we thoroughly investigate under which assumptions long-term-UC
commitments and long-term-UC zero knowledge arguments exist. We prove that
a common reference string or a coin toss functionality are not sufficient for real-
ising long-term-UC commitments. To be more general we define a functionality
F to be only temporarily secret for a party P if, roughly speaking, every secret
known to P and F can in principle (but not necessarily efficiently) be computed
from the communication of F with all the other parties. Coin tossing and a
common reference string are only temporarily secret for all parties and we show
that long-term-UC commitments are impossible given any functionality which is
only temporarily secret for the committer.

In contrast to this impossibility of commitments there exist nontrivial lan-
guages for which zero knowledge protocols are possible even with an only tem-
porarily secret functionality. More concrete we give a zero knowledge proof
of knowledge of the factorisation of a Blum integer using a helping coin toss
functionality. This is astonishing as such a proof is not possible using a com-
mon reference string instead of a coin toss (unless factoring of Blum integers
is easy for nonuniform machines). More generally we prove that no nonuni-
formly nontrivial language has a zero knowledge argument with the help of
any functionality which works “offline” in the sense that it needs, like a com-
mon reference string, only be invoked before the start of the protocol and
which is only temporarily secret for both parties. For example, most PKI are
of this form and hence do not allow any nontrivial long-term-UC zero knowledge
protocols.

Further we give two helping functionalities which are motivated from (tem-
porarily) tamper proof hardware which allow to implement an unlimited num-
ber of long-term-UC commitments and zero knowledge arguments for all in
NP. One of these functionalities resembles a trusted device which is compu-
tationally indistinguishable from a random oracle and the other a smart card
which can generate digital signatures, but from which the secret key cannot be
extracted. Note however that in contrast to the classical (i.e., not long-term
secure) UC definition, commitments and ZK are not sufficient to implement any
functionality.

1.1 Preliminaries

Notation. We call a function f negligible, if for any polynomial p and sufficiently
large k, f(k) ≤ 1/p(k). We call f overwhelming, when 1 − f is negligible.
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A PPT-algorithm (probabilistic polynomial time) is a uniform probabilistic
algorithm that runs in polynomial-time in the length of its inputs.

We call a relation R on {0, 1}∗×{0, 1}∗ poly-balanced if there is a polynomial
p, s.t. |w| ≤ p(|x|) for all x, w with xRw. We call R an NP-relation if it is
poly-balanced and deciding (x, w) ∈ R is in P. We call R an MA-relation if it is
poly-balanced and deciding (x, w) ∈ R is in BPP. The language LR associated
with R is LR := {x ∈ {0, 1}∗ : ∃w : xRw}. We usually call x the statement
and w with xRw the witness for x. We call a MA-relation R (uniformly) trivial
if there is a PPT-algorithm that upon input x ∈ LR outputs a witness for x
with overwhelming probability. We call R nonuniformly deterministically trivial
there is a nonuniform deterministic polynomial-time algorithm that upon input
x ∈ LR outputs a witness for x.

An integer n > 0 is called a Blum-integer, if n = pq for two primes p, q with
p ≡ q ≡ 3 mod 4.

Cryptographic tools. In [21], it is shown that assuming the existence of a one-
way permutation, an unconditionally hiding commitment scheme exists. This
scheme has the additional properties that the unveil-phase consists of only one
message, and that given the message, the committed value v, and the transcript
of the interaction in the commit phase, there is a deterministic polynomial-time
algorithm that checks whether the verifier accepts the value v.

Using that commitment-scheme in the zero-knowledge proof-system for graph-
3-colourability from [16], we get a statistically witness indistinguishable argu-
ment of knowledge for any NP-relation given any one-way permutation.2 Using a
statistically witness indistinguishable argument of knowledge for any NP-relation
and a unconditionally hiding commitment scheme, we can easily construct a sta-
tistically witness indistinguishable argument of knowledge for any MA-relation
using any one-way permutation.3

2 Modelling Long-Term UC

We now present our modelling of universally composable long-term security
(short long-term UC). We build on the Universal Composability framework [7].
In that modelling, a computationally limited entity called the environment has
to distinguish between an execution of the protocol (with some adversary) and
an execution of an ideal functionality (with some simulator). To define long-term

2 The resulting scheme is of course also zero-knowledge, but we do not need that
property here.

3 Let B be a PPT-algorithm s.t. B(w, x) = 1 with overwhelming probability for xRw
and with negligible probability otherwise. Such an algorithm exists for any MA-
relation R. To prove a statement x ∈ LR, the prover first commits to the witness
w, then commits to randomness r′. The verifier sends to the prover randomness r′′.
Then the prover proves using a statistically witness indistinguishable argument of
knowledge that he knows a witness, s.t. B(w, x) = 1 with random-tape r := r′ ⊕ r′′.
Since the latter statement is in NP, this can be done given a one-way permutation.
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security, we have to add the requirement that even if some entity gets unlimited
computational power after the execution of the protocol, security is maintained.
In the Universal Composability framework, this is quite easily done: We simply
require that after the execution of the protocol (which is still performed against
computationally limited adversaries) even an unlimited entity could not distin-
guish between an execution of the real protocol or of the functionality, i.e., we
require that the output of the environment is statistically indistinguishable.4

Definition 1 (Long-term UC). Let EXECπ,A,Z(k, z) denote the output of Z
in an execution of the protocol π with adversary A and environment Z, where
k is the security parameter and z the auxiliary input of the environment Z.
EXECF ,A,Z(k, z) is defined analogously.5

A protocol π long-term-UC realises a functionality F , if for any polynomial-
time adversary A there exists a polynomial-time simulator S, s.t. for any
polynomial-time environment6 Z the families of random variables
{EXECπ,A,Z(k, z)}k∈�,z∈{0,1}poly(k) and {EXECF ,S,Z(k, z)}k∈�,z∈{0,1}poly(k) are
statistically indistinguishable.

Note that the Universal Composition Theorem from [7] applies with a virtually
unmodified proof.

Conventions. In all our results we assume that secure channels are given for
free (i.e., we are in the secure-channel network-model).7 Further, security al-
ways denotes security with respect to static adversaries, i.e. parties are not cor-
rupted during the protocol execution. However, we believe that our results can
be adapted to adaptive adversaries.

We consider the case without an honest majority, since given an honest ma-
jority we could use information-theoretically secure protocols.

2.1 On the Minimality of the Security Notion

At this point one might wonder whether this definition is possibly stricter than
necessary, especially in view of the various impossibility results presented below.
However, if one is willing to accept stand-alone security (i.e., simulation-based
security without an environment, see e.g. [15]), with the extra requirement that
the outputs of the parties and the adversary/simulator are statistically indistin-
guishable in real and ideal model (long-term stand-alone security), as a minimal
4 Note that we can w.l.o.g. assume that the output of the environment contains the

whole view of that environment.
5 See [7] for details.
6 Not limited to environments with single bit output.
7 This much simplifies the presentation. Since all our results concern the two-party

case, it is easy to adapt our results to authenticated channels, if one adapts the def-
initions of the functionalities accordingly (e.g., the commitment functionality would
then send the value of an unveil to the adversary as well as to the adversary). How-
ever, we cannot expect to use a key exchange protocol to make the authenticated
channels secure, since such an approach would not be long-term secure.
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security notion, we can argue as follows: If we want this minimal security and
composability simultaneously, the proof from [18]8 states that the minimal se-
curity notion satisfying these two requirements is a security notion similar to
Definition 1, with the only difference that the simulator is allowed to depend
on the environment (specialised-simulator long-term UC). Since all our impos-
sibility results also apply for this weaker notion (we never use the fact that the
simulator does not depend on the environment), we see that we cannot find an
essentially more lenient security notion than Definition 1 if we accept long-term
stand-alone security as a minimal security notion.

2.2 Functionalities

In this section, we define some commonly used functionalities that we will inves-
tigate in the course of this paper.

We assume the following conventions in specifying functionalities:

We always assume that the adversary is informed of every invocation of the
functionality, and the functionality only delivers its output when the adversary
has triggered that delivery. So a phrase like “upon input x from P1, F sends y to
P2”should be understood as“upon input y from P1, F sends (i-th input from P1)
to the adversary, and upon a message (deliver i) from the adversary, F sends y
to P2”. For better readability, we use the shorter formulation.

Most of the functionalities defined here are parametrised by a function m
giving the length of their input and outputs. We will often omit explicitly stating
this m if it is clear from the context.

When a functionality receives an invalid input from some party, it simply
forwards that input to the adversary.

The first functionality used in this paper is the common reference string
(CRS). Intuitively, the CRS denotes a random string that has been chosen by
some trusted party or by some natural process, and that is known to all parties
prior to the start of the protocol.

Definition 2 (Common Reference String (CRS)). Let Dk (k ∈ �) be an
efficiently samplable distribution on {0, 1}∗. At its first activation the functional-
ity FDCRS chooses a value r according to the distribution Dk (k being the security
parameter). Upon any input from Pi, send r to the adversary and to Pi (in
particular, all parties Pi get the same r).

If Dk is the uniform distribution on {0, 1}m(k) for any k, we speak of a uniform
CRS of length m. We then write Fm

CRS instead of FDk

CRS.

The second functionality is the coin toss. At a first glance, the coin toss looks
very similar to the CRS, since also the coin toss consists of a random string that
is given to both parties involved (and to the adversary). However, the coin toss
guarantees that no party can learn the coin toss before both parties agree to toss

8 With minor modifications: simply replace computational indistinguishability by sta-
tistical indistinguishability.
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the coin.9 As we will see below, a coin toss is more powerful than a CRS in the
context of long-term UC.10

Definition 3 (Coin Toss (CT)). When both P1 and P2 have given some
input, the functionality Fm

CT chooses a uniformly distributed r ∈ {0, 1}m(k) and
sends r to the adversary, to P1, and to P2.

The next functionality models the setup assumption, that there is a trusted (pre-
distributed) public key infrastructure, which provides each party with a secret
key and attests the corresponding public key to any interested party.

Definition 4 (Public Key Infrastructure (PKI)). Let G be a
PPT-algorithm that upon input 1k outputs two string sk and pk.11 When FG

PKI
runs with parties P1, . . . , Pn, upon its first activation it chooses independent key
pairs (sk i, pk i) ← G(1k) for i = 1, . . . , n and sends (pk1, . . . , pkn) to the adver-
sary. When receiving any input from Pi, send (sk i, pk1, . . . , pkn) to Pi.

The next two functionalities are well-known cryptographic building blocks that
find application in the construction of many protocols.

Definition 5 (Commitment (COM)). Let C and R be two parties. The func-
tionality FC→R,m

COM behaves as follows: Upon (the first) input x ∈ {0, 1}m(k) from
C send (committed) to R. Upon input (unveil) from C send x to R.

We call C the sender and R the recipient.

Definition 6 (Zero-Knowledge (ZK)). Let R be a MA-relation, and let P

and V be two parties. The functionality FR,P→V,m
ZK behaves as follows: Upon the

first input of (x, w) from P satisfying xRw and |x| ≤ m(k), send x to V .12

We call P the prover and V the verifier.

3 Commitment

In this section we will examine the possibility of long-term-UC realising com-
mitments. It will turn out, that commitment cannot be long-term-UC realised
using CRS or coin-toss, nor with an arbitrary PKI. In particular unconditionally
9 This can be illustrated by the following example: Alice and Bob want to know which

of them pays the bill. So Alice and Bob agree: “We toss a coin, if the outcome is 1,
Bob pays, otherwise Alice pays.” Of course, if they were to use a CRS instead of a
coin toss they could not use this simple protocol, because the outcome of the CRS
is known before the start of the protocol.

10 Although, in contrast, a UC secure (without long-term) coin toss can be realised
using a CRS under reasonable complexity assumptions, see [9].

11 I.e., G is a key generation algorithm.
12 The resulting functionality FZK is not polynomial-time if R is not an NP-relation.

However, in that case FZK can be replaced by an efficient implementation that uses
a BPP-algorithm for checking xRw and errs only with negligible probability. The
resulting functionality is then indistinguishable from FZK.
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hiding UC commitments, which are possible with a CRS [11], are not necessar-
ily long-term UC.13 Note that the incompleteness of the CRS stands in stark
contrast to the situation of (non-long-term) UC. In [10] it was shown that given
a CRS, any functionality has a UC secure realisation. Furthermore, in [1] it
was shown that the same holds for a PKI.14 However, given a ZK functionality,
commitments can be realised even with respect to long-term UC.

To state the impossibility results in a more general fashion, we first need the
following definition:

Definition 7 (Only temporarily secret). We say a functionality F is only
temporarily secret (OTS) for party P , if the following holds in any protocol:
Let trans denote the transcript of all communication between F and the other
machines (including the adversary). Let trans \ P denote the transcript of all
communication between F and all machines except P . Then there is a determin-
istic function f (not necessarily efficiently computable) s.t. with overwhelming
probability we have trans = f(k, trans \ P ).

The intuition behind this definition is that if F is only temporarily secret (OTS)
for P , then any secrets that P and F share may eventually become public. The
following lemma gives some examples:

Lemma 1. Coin toss (FCT) and CRS (FDCRS with any D) are OTS for all par-
ties. Commitment (FCOM) and ZK (FZK) are OTS for the recipient/verifier. If
G is a key generation algorithm, s.t. the secret key depends deterministically on
the public key (e.g., RSA, ElGamal15), the PKI FG

PKI is OTS for all parties.

Proof. In the case of coin toss and CRS the adversary learns the random value
r when if some party learns it, so all communication can be deduced from the
communication with the adversary. In case of Commitment and ZK the commu-
nication with the recipient/verifier can be deduced from the communication with
the sender. (In these cases, the function f is even efficiently computable.) All
secret keys chosen by FG

PKI can be calculated from the public keys pk1, . . . , pkn

sent to the adversary. ��

Using this definition, we can prove that using a CRS, coin-toss or other func-
tionalities that are OTS for the sender, one cannot long-term-UC realise a
commitment:

Theorem 1 (Impossibility of commitment with OTS functionalities).
Let F be a functionality that is OTS for party C. Then there is no nontrivial
13 The intuitive reason being that the simulator may choose a value for the CRS which is

only computationally indistinguishable from the uniform distribution without loosing
the unconditional hiding property.

14 Their definition Fkrk of a PKI is somewhat different to ours. However, their proof
directly carries over to FPKI.

15 Under the condition, that in the secret key, group elements are always given using
a unique representative (e.g., the secret exponent e in RSA is chosen smaller than
ϕ(n)).
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protocol that long-term-UC realises commitment with sender C (FC→R
COM ) in the

F-hybrid model.

If one is willing to assume NP 	⊆ P/poly, this theorem is an immediate con-
sequence of Lemma 4 stating that FSAT,C→R

ZK (ZK for SAT with the sender C

being the prover) is possible from FC→R
COM , and Corollary 2 stating that FSAT,C→R

ZK
cannot be realised using F (both shown in Section 4). However, in the full ver-
sion [19] we give a direct proof (similar in spirit to that of Theorem 2) for this
theorem that does not depend on NP 	⊆ P/poly.

An interesting corollary from this theorem is that long-term-UC commitments
cannot be turned around, i.e. using one (or many) long-term-UC commitments
from A to B, one cannot long-term-UC realise a commitment from B to A.

Corollary 1 (Commitments cannot be turned around). There is no non-
trivial protocol long-term-UC realising FA→B

COM using any number of instances of
FB→A

COM .

Proof. Immediate from Lemma 1 and Theorem 1. ��

In contrast to the impossibility results above, it is possible to get long-term-UC
secure commitments using a ZK functionality:

Lemma 2 (Commitment from ZK). Assume that a one-way permutation
exists. Then there is a nontrivial protocol π that long-term-UC realises FC→R

COM
(commitment with sender C) and that uses two instances of FSAT,C→R

ZK (ZK for
SAT with the sender C being the prover).

The protocol π looks as follows:

– To commit to v, the sender C first commits to v using an unconditionally
hiding commitment scheme.

– Then C proves (using the first instance of FZK) that he knows v and match-
ing unveil information u.16

– To unveil, the sender C sends v to the recipient and proves (using the
second instance of FZK) that he knows matching unveil information u.

The long-term-UC security of this protocol stems from the following two facts.
Equivocability: the simulator can unveil to any value v′ since he controls the sec-
ond instance of FZK. Extractability: Since the sender cannot (efficiently) com-
pute different unveil informations u and u′, the message v given to the first
instance of FZK must be the same as that used in the unveil phase. Since the
simulator controls the first instance of FZK, he learns that message v during the
commit phase.

The actual proof is given in the full version [19].

16 I.e., unveil information that would convince the verifier.
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4 Zero-Knowledge

In the present section we examine to what extend long-term-UC secure
zero-knowledge proofs can be implemented using various functionalities. Besides
several impossibility results, we also have a quite surprising possibility result
(Theorem 3).

4.1 Using OTS Functionalities

First, analogous to our investigations concerning commitments in Section 3, we
are now going to examine whether long-term-UC secure ZK can be realised using
functionalities that are OTS for one of the parties.

Whether long-term-UC realising ZK for some relation R is possible strongly
depends on the relation R under consideration. The following definition specifies
a class of relations which is going to play an important role in our results:

Definition 8 (Essentially unique witnesses). A MA-relation R has essen-
tially unique witnesses if there is a PPT-algorithm UR (the witness unifier), that
has the following properties:
– If w is a witness for x, UR(1k, x, w) outputs a witness for x with overwhelm-

ing probability, formally: for sequences wk, xk with xkRwk the probability
P (xkRUR(1k, xk, wk)) is overwhelming in k.

– If w is a witness for x, the output of UR(1k, x, w) is almost independent
of w, formally: for sequences w1

k, w2
k, xk with xkRw1

k and xkRw2
k, the fam-

ilies of random variables UR(1k, xk, w1
k) and UR(1k, xk, w2

k) are statistically
indistinguishable.

A possible way to interpret the witness unifier is as a statistically witness indis-
tinguishable proof, that simply sends a witness in the clear.

It is most likely that relations without essentially unique witnesses exist:

Lemma 3. If one-way-functions (secure against uniform adversaries) exist, or
if NP 	⊆ P/poly, then SAT does not have essentially unique witnesses.

The proof is given in the full version [19].
We are now ready to present the first impossibility result concerning long-

term-UC secure ZK:

Theorem 2 (Impossibility of ZK with OTS functionalities). Let R be
a MA-relation without essentially unique witnesses. Let F be a functionality
that is OTS for party P . Then there is no nontrivial protocol that long-term-UC
realises ZK for the relation R with prover P (FR,P→V

ZK ) in the F-hybrid model.

The rough idea of the proof is as follows: Clearly, if π was to be long-term-UC
secure, the interaction between prover P and verifier V must be (almost) statis-
tically independent from the witness V received from the environment. Further,
a simulator that is able to simulate convincingly in case of a corrupted prover
must be able to extract a witness w̃ from the communication with that prover,
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which is (almost) statistically independent from the witness w. So in particular,
w̃ is (almost) statistically independent from w. Therefore, combining the prover
and the simulator into one algorithm, we get an algorithm that given one witness
w returns another almost independent one, in other words, a witness unifier in
the sense of Definition 8. Therefore R must have essentially unique witnesses,
which gives the desired contradiction.

The proof is given in the full version [19].
Note that we cannot expect an analogous result in the case that F is OTS for

the verifier V , since commitments are OTS for the recipient and Lemma 4 show
that FR,P→V

ZK can be long-term-UC implemented using commitments with the
verifier V as recipient.

Combining the results in this section, we get the impossibility of long-term-UC
secure ZK for SAT:

Corollary 2. Let F be a functionality that is OTS for party P . If one-way-
functions (secure against uniform adversaries) exist, or if NP 	⊆ P/poly, there
is no nontrivial long-term-UC secure protocol for ZK with prover P for SAT in
the F-hybrid model.

Proof. Immediate from Lemma 3 and Theorem 2. ��

At this point one might ask why our impossibility result needs the restriction to
relations without essentially unique witnesses. Would not the following argumen-
tation show that given a, say, coin-toss, there is no long-term-UC ZK protocol π
for any nontrivial relation: The simulator is able to extract a witness w from the
interaction with the prover. Therefore w must information-theoretically already
be “contained” in the interaction. On the other hand, in an interaction between
simulator and verifier, the witness w cannot be “contained” in the interaction,
since the simulator does not know w. However, since the interaction in both
cases must be statistically indistinguishable from the interaction in the uncor-
rupted case, that latter both “contains” and does not “contain” w, which gives
a contradiction. Surprisingly, this intuition is not sound as shows the following
possibility result:

Theorem 3 (ZK for Blum-Integers using coin toss). Assume that a
one-way permutation exists. Let nR(p, q) if n = pq, p, q prime and p ≡ q ≡
3 mod 4. There is a nontrivial protocol using two instances of FCT that long-
term-UC realises FR

ZK in the coin toss hybrid model.

To construct such a protocol, we have to achieve two seemingly contradictory
goals simultaneously. If the prover or verifier is corrupted, the simulator may
choose the value r the coin-toss functionality returns. First, since the simulator
should be able to extract a witness (p, q) (i.e., a factorisation of n in this case)
in case of the corrupted prover, the simulator should be able to choose r having
a trapdoor X s.t. it is possible to extract (p, q) under knowledge of that trap-
door. However, in the case of long-term-UC the value r should be statistically
indistinguishable from uniform randomness. So the trapdoor should be present
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(but possibly unknown) even if r is chosen randomly. Further, if the verifier is
corrupted, the simulator should be able to simulate the proof without knowing
a witness. However, since also in this case r is almost uniformly distributed,
the trapdoor X is also present. So by finding that trapdoor X we could ex-
tract a witness from the proof although the simulator never used that witness
in constructing the proof. This can only be realised, if finding the witness can
be reduced to finding the trapdoor.

In the case of factoring n, an example for such a trapdoor is the knowledge of
random square roots modulo n. Given an oracle that finds square roots modulo
n, we can factor n. So if the trapdoor X consists of the square roots of r (when
we consider r as a sequence of integers modulo n) finding the trapdoor is as
hard as factoring n, so there is no contradiction in the fact that by finding the
trapdoor we can extract a witness (p, q) from an interaction that was produced
without knowledge of (p, q).

This leads us to the following simplified version of our protocol:

– The prover sends n to the verifier.
– Prover and verifier invoke the coin-toss. The result r of that coin-toss is

considered as a sequence r1, . . . , rk of integers modulo n.
– For each i, the prover chooses a random si with s2

i = ri. It sets si := ⊥ if
ri does not have a square root.17

– The prover sends s1, . . . , sk to the verifier.
– The verifier checks, whether s2

i = ri for all si 	= ⊥, and whether at least 1
5

of all si 	= ⊥.

This protocol is not yet a long-term-UC realisation of FR
ZK, since it fails if n

is not a Blum-integer, but it will demonstrate the main point. So why is this
protocol long-term-UC secure if we guarantee that n is a Blum-integer? First,
we see that if prover and verifier are both honest, the verifier will always accept.
This is due to the fact that for a Blum-integer n, a random residue is a square
with probability at least 1

4 .
Now we consider the case that the verifier is corrupted. In this case, the sim-

ulator has to produce coin-toss values r1, . . . , rn that are indistinguishable from
the uniform distribution, and a proof that is statistically indistinguishable from
the proof given by the prover. In other words, the simulator needs to simul-
taneously produce (almost) uniformly distributed r1, . . . , rn, and for each ri a
random square root si modulo n if such si exists. Fortunately, if n is a Blum-
integer, there is an efficient algorithm Q for choosing such ri and si. So the
simulator can successfully simulate by simply choosing the ri and si using Q.
Note that for this, it is vital that the simulator knows n before having to send
the coin-toss result r1, . . . , rn to the environment. This is why we let the prover
send n to the verifier before they invoke the coin-toss. In particular, we could not
use a CRS here, because then the simulator might have to choose the ri before
the environment sends n to the prover.

17 This is feasible given the factorisation of n.
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Now for the case that the prover is corrupted. In this case, the simulator
needs to interact with the environment incorporating the prover and to extract
the witness (p, q) if the prover’s proof would convince the honest verifier. To do
this, the simulator again chooses the coin-toss r1, . . . , rn using the algorithm Q
and therefore knows random square roots s̃i of all ri that are quadratic residues.
Now the environment sends si to the simulator. The uncorrupted verifier would
only accept if at least k/5 of these si satisfy s2

i = ri. Therefore after receiving the
si from the environment, the simulator knows k/5 independently chosen pairs
(si, s̃i) of square roots of ri. For each such pair the probability of si 	≡ s̃i mod n is
1
2 (we ignore the finer detail of non-invertible ri at this point), and in this case we
get a factor of n by evaluating gcd(si ± s̃i, n). This happens with overwhelming
probability, so the simulator is successful in extracting a factor and therefore the
witness (p, q).

However, the protocol as described so far has a major flaw: If n is not a Blum-
integer, the above security proof does not work. So we must ensure that n is in
fact a Blum-integer. If the verifier is corrupted, the simulator gets n from the
functionality FR

ZK which ensures (by definition of R) that n is a Blum-integer. So
in this case there is no problem. However, if the prover is corrupted, the simulator
will have to choose the coin-toss r1, . . . , rn. If n is not a Blum-integer, he might
learn this later on (since he learns (p, q) in case of a successful proof), but then it
might already be too late, because the simulator sends the ri to the environment
before the end of the proof (the algorithm Q does not guarantee r1, . . . , rn to
be (almost) uniformly distributed if n is not a Blum-integer). To overcome this
difficulty, we add an additional step to the beginning of the protocol. Before
the coin-toss is invoked, the prover proves that n is indeed a Blum-integer. If
the prover succeeds in this proof, the simulator can use the algorithm Q with-
out danger, otherwise the simulator may abort (since the verifier would have
done so, too). However, this introduces the additional difficulty that in case of
a corrupted verifier, the simulator has to perform that proof, too, and without
knowledge of the witness. To achieve this, we make use of the FLS-technique [13]:
Prover and verifier first invoke another instance of the coin-toss functionality (in
this case, a CRS would be sufficient, too) and then the prover proves using a
statistically witness indistinguishable argument of knowledge to the verifier that
either n is a Blum-integer or that he knows a the preimage of the coin-toss t
under a one-way permutation f . Then the simulator can simulate this proof by
simply choosing t = f(u) for uniform u. Since f(u) is uniformly distributed,
this is indistinguishable from what an honest prover knowing the witness would
produce. After having successfully performed this first step, prover and verifier
proceed with the protocol as described above.

The actual proof for Theorem 3 is given in the full version [19].
Furthermore, given a commitment, long-term-UC secure ZK for any NP-

relation is (unsurprisingly) possible:

Lemma 4 (ZK from commitment). Let R be a NP-relation. Then there is a
long-term-UC secure protocol π for ZK with relation R (i.e., FR,P→V

ZK ) using a
polynomial number of commitments from prover P to verifier V (i.e., FP→V

COM ).
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Proof. [9] gives a UC secure protocol that realises FR,P→V
ZK using FP→V

COM where
R is the relation for the Hamilton cycle problem. Their result even holds uncon-
ditionally (i.e., even when the environment is unlimited during the execution of
the protocol) and therefore in particular with respect to long-term UC. Since
the Hamilton cycle problem is NP-complete, the lemma follows. ��

Note that we cannot expect a similar result using commitments from verifier to
prover, since FCOM is OTS for the recipient and thus Theorem 2 applies.

4.2 Using Offline Functionalities

In the preceding section, we saw that using a coin toss, long-term-UC secure
ZK for the factorisation of Blum-integer can be realised. It is therefore a natural
question to ask whether something similar is also possible using a CRS, which
can be seen as the offline variant of a coin-toss. Unfortunately, the answer is no.
To state this result in greater generality, let us first formalise what we mean by
an offline functionality.

Definition 9 (Offline functionalities). We call a functionality F offline, if
it has the following form: When F runs with parties P1, . . . , Pn, upon its first
activation, it chooses values (c, cP1 , . . . , cPn) according to a fixed distribution and
sends c to the adversary. When receiving any input from Pi, send cPi to Pi.

Lemma 5. CRS and PKI are offline functionalities.

Proof. For FCRS, set c := ci := r (cf. Definition 2), and for FPKI, set c :=
(pk1, . . . , pkn) and ci := (sk i, pk1, . . . , pkn) (cf. Definition 4). ��

The following result shows that a CRS as well as a PKI where the secret key
is information-theoretically determined by the public key (cf. Lemma 1) cannot
be used for long-term-UC secure ZK for any relation R unless that relation is
trivial for nonuniform algorithms anyway.

Theorem 4 (Impossibility of ZK with OTS offline functionalities). Let
R be a nonuniformly deterministically nontrivial MA-relation.18 Let F be an
offline functionality that is OTS for party P and for party V . Then there is no
nontrivial protocol that long-term-UC realises ZK for relation R with prover P
and verifier V (i.e., FR,P→V

ZK ) in the F-hybrid model.

To understand the proof idea, assume that F is a CRS. Assume that there is
a protocol π for FR

ZK. Then there is a simulator S1 that is able to choose the
CRS r1 and calculate a corresponding trapdoor T1, s.t. he can simulate the
prover and convince the verifier using this trapdoor (without knowledge of a
witness). Furthermore, there is another simulator S2 that is able to choose the
CRS r2 and calculate a corresponding trapdoor T2, s.t. he can simulate the
18 I.e., there is no nonuniform deterministic polynomial-time algorithm that finds wit-

nesses for R.
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verifier and — if the verifier accepts — extract a witness w. Since both r1 and r2
are statistically indistinguishable from an honestly chosen CRS, it follows that
an honestly chosen CRS always already “contains” such trapdoors T1 and T2
(however, given a CRS it can be infeasible to find these trapdoors). Therefore,
if we provide S1 and S2 with a CRS and with trapdoors T1 and T2, S1 will be
able to produce a convincing proof (due to trapdoor T1), and S2 will be able to
extract a witness from this convincing proof. Since S1 and S2 are polynomial-
time, and CRS and trapdoors can be given as an auxiliary input, it follows that a
nonuniform polynomial-time algorithm can find witnesses for R in contradiction
to the nontriviality of R. Functionalities other than a CRS are handled almost
identically, see the full proof.

The full proof is given in the full version [19].
A natural question arising in this context is whether this impossibility result

can be made stronger. In particular, one might ask whether such an impossibility
result already holds if F is OTS for P or for V . Further one might ask, whether
the theorem can be strengthened to state impossibility of ZK for uniformly non-
trivial relations. These questions are discussed in the full version.

Lemma 1 tells us that at least for some commonly used encryption schemes,
FG

PKI is OTS for all parties (here and in the following G denotes the key gener-
ation algorithm) and therefore cannot be used for long-term-UC realising com-
mitment or zero-knowledge19. However, in general this is not the case. As we
show in the full version, there exist special public key schemes for which a PKI
can be used for constructing ZK and commitment protocols.

5 Other Setup-Assumptions

As the preceding sections have shown, trying to design long-term-UC secure
protocols using a CRS, coin toss or PKI is a futile endeavour. Therefore, in
the following sections we will investigate alternative setup-assumptions that are
more fruitful in the context of long-term-UC.

5.1 Trusted Devices Implementing a Random Oracle

A very powerful assumption in the context of universally composable security
is the random oracle. It may therefore seem worthwhile to investigate whether
a random oracle can be used to realise long-term-UC secure commitment and
ZK. However, a closer look shows that in the context of long-term-UC security
the random oracle is a very unrealistic assumption due to the following fact:
Real-life implementations of the random oracle have to be done via some effi-
ciently computable function (e.g., using trusted hardware that calculates some
pseudorandom function with a secret seed). In the context of long-term-UC, this
function could be “broken” by an unlimited adversary after protocol execution.
In contrast, a random oracle functionality ensures, that even for an unlimited

19 Except for nonuniformly trivial relations, see Theorem 4.
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adversary, the function looks completely random. Therefore, we advocate that
in the context of long-term-UC, instead of a random oracle one should use a
functionality that evaluates a pseudorandom function with a secret seed (repre-
senting e.g. a (temporarily) trusted device).

We now give a definition of such a functionality FTPF. Note however, that
all possibility results given in this section also hold (with identical proofs) when
using a random oracle instead of FTPF.

Definition 10 (Trusted pseudorandom function (TPF)). Let fs be an ef-
ficiently computable family of deterministic functions fs : {0, 1}l(|s|) → {0, 1}l(|s|)

with polynomially bounded l.
Then, the functionality trusted pseudorandom function (TPF) Ff

TPF is de-
fined as follows: Upon its first activation, it chooses a uniformly random s ∈
{0, 1}k. When receiving a message x ∈ {0, 1}l(k) from a party P or the adver-
sary, it sends fs(x) to P or the adversary, respectively.

At this point, one should note that the UC definition (and therefore our variant,
too) implicitly assumes that when using a TPF, that TPF is accessed only by
the protocol (and the adversary), but that it cannot be directly accessed by the
environment. This in particular rules out that different protocols share a single
TPF. A more detailed analysis of the consequences of this assumption can be
found in [17,8]. However, we show that using a single TPF we can perform an
arbitrary number of zero knowledge arguments or commitments, so that at least
we do not need a large number of TPFs when constructing a larger protocol that
performs many ZK arguments or commitments.

Theorem 5 (ZK from TPF). Assume that a one-way permutation exists. Let
fs be a pseudorandom function (as in [14]), and R an NP-relation. Then there
is a nontrivial protocol π using one instance of Ff

TPF that long-term-UC realises
unlimited number of instances of FR

ZK (i.e., ZK for the relation R).

We give the proof idea here. First a commitment scheme is constructed which is
computationally binding, unconditionally hiding and extractable (however, this
commitment is not necessarily UC). The extractable commitment is constructed
from a given commitment which is unconditionally hiding. To commit to a value
v one first commits to v, fs(v). Then one commits to u, fs(u) where u is the
unveil information for the first commitment. As the function fs(.) can only be
evaluated by using the functionality FTPF a simulator can extract the committed
value v from the calls which are placed to FTPF.

Using this extractable commitment we modify the zero knowledge protocol for
graph-3-colourability of [16]. Instead of letting the prover commit to a colouring
and then let the verifier choose a random edge e for which the colours are unveiled
and checked we let the verifier commit to e before the prover commits to the
colouring.

In this protocol the simulator can, if the prover is corrupted, extract a wit-
ness from the commitments of the simulated real adversary or the protocol will
fail and is then easily simulated. In case of a corrupted verifier the simulator



Long-Term Security and Universal Composability 57

can extract the edge which will later be investigated before committing to the
colouring. So the simulator can easily commit to a fake colouring and still pass
the test at the edge in question.

In both cases the communication between the parties, the adversary and the
environment are statistically indistinguishable in the real protocol and in this
simulation and we achieve a long-term-UC zero knowledge argument for graph-
3-colouring and hence for all NP-statements. The complete proof can be found
in the full version [19].

According to Lemma 2 one commitment can be obtained from two invocations
of a zero knowledge scheme and we can hence conclude:

Corollary 3 (Commitments from TPF). Assume that a one-way permu-
tation exists. Let fs be a pseudorandom function. Then there is a nontrivial
protocol π using one instance of Ff

TPF that long-term-UC realises an unlimited
number of instances of FCOM (i.e., commitments).

Proof. Immediate from Lemma 2 and Theorem 5. ��

5.2 Signature Cards

One disadvantage of the TPF-assumption from the foregoing section is that
trusted hardware implementing a pseudorandom function are unlikely to be
available for practical use.20 However, another kind of trusted device is already
available commercially today: the signature card. A signature card is a tam-
perproof device with an built-in secret key. Upon request, this card signs an
arbitrary document, but never reveals the secret key. The corresponding pub-
lic key can be obtained from some certification authority. These properties are
required e.g. from the German signature law [23].

These properties are captured by the following ideal functionality (based
on [17]):

Definition 11 (Signature Card (SC)). Let S = (KeyGen ,Sign ,Verify) be
a signature scheme. Let H be a party. Then the functionality FH,S

SC (signature
card for scheme S with holder H) behaves as follows: Upon the first activation,
FH,S

SC chooses a public/secret key pair (pk , sk) using the key generation algorithm
KeyGen(1k). Upon a message (pk ) from a party P or the adversary, send pk to
that party or the adversary, resp. Upon a message (sign , m) from the holder H ,
produce a signature σ for m using the secret key sk and send σ to H.21

As was the case with TPFs, our definition implicitly assumes that the envi-
ronment has no direct access to the signature card. See the discussion after

20 Not because of technical difficulties, but simply and plainly due to the forces of
supply and demand.

21 The definition from [17] additionally provides the possibility of locking the card
(called seize and release there). These however are not needed in our protocols, so
we omit them.
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Definition 10. However, in [17] techniques where introduced that allow to share
a single signature card in different protocols. It would be interesting to explore
whether their approach can also be applied to our scenario.

It was shown in [17] that signature cards are powerful assumptions in the
context of universal composability. Using an adaption of their technique, we can
show that these signature cards are also very useful for long-term-UC security:

Theorem 6 (ZK from a signature card). Assume that a one-way permuta-
tion exists. Let S be an EF-CMA secure signature scheme. Let R be any MA-
relation. Then there is a nontrivial protocol π that long-term-UC realises an
unbounded number of instances of FR,P→V

ZK (i.e., ZK for the relation R with
prover P ) using a single instance of FS,P

SC (i.e., a signature card for S with P
as the holder).

The idea of the proof is as follows: To prove the existence of a witness w for
some statement x, the prover P signs x using his signature card (resulting in a
signature σ) and then performs a statistically witness indistinguishable argument
of knowledge that one of the following holds: (i) he knows a w and a σ, so that
xRw and σ is a valid signature for w, or (ii) he knows a secret key sk ′ matching
the public key pk provided by the signature card functionality.

Consider the case of a corrupted prover. Since S is EF-CMA secure, it is
infeasible to get a secret key sk ′ matching the public key pk chosen by the
signature card (since the signature card allows only black-box access to the
signing algorithm). So the prover has to show the knowledge of a signature σ of
the witness w. The only way to obtain such a signature σ is to sign the witness
w using the signature card. Since in the ideal model, the signature card FSC is
simulated by the simulator, the simulator learns that witness w. So the simulator
is able to extract w while honestly simulating verifier and FSC.

In case the verifier is corrupted, the simulator knows the secret key sk match-
ing the public key pk . So the simulator can prove (ii) instead of (i). Since the
proof system we use is statistically witness indistinguishable, the resulting inter-
action is statistically indistinguishable.

The full proof is given in the full version [19].

Corollary 4 (Commitments from a signature card). Assume that a one-
way permutation exists. Let S be an EF-CMA secure signature scheme. Then
there is a nontrivial protocol π that long-term-UC realises an unbounded number
of instances of FC→R

COM (i.e., commitment with sender C) using a single instance
of FS,P

SC (i.e., a signature card for S with P as the holder).

Proof. This is an immediate consequence of Theorem 6 and Lemma 2. ��

6 Conclusions

We have examined the notion of long-term UC which allows to combine the ad-
vantages of long-term security (i.e., security that allow for unlimited adversaries
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after protocol end) and Universal Composability. We saw that the usual set-up
assumptions used for UC protocols (e.g., CRS) are not sufficient any more in
the case of long-term UC. However, we could show that there are other practi-
cal alternatives to these setup-assumptions (e.g., signature cards) that allow to
implement the important primitives commitments and zero-knowledge proofs.

Further research in this directions might include the following:

– Which protocol tasks can or cannot be long-term-UC realised using commit-
ments and zero-knowledge proofs.

– What other setup-assumptions might be useful in the context of long-term
UC. In particular, under which assumptions can OT (and therefore any func-
tionality) be realised?

– Our investigations were in the secure-channels communication-model. If only
authenticated channels are present, the important issue of key exchange oc-
curs. What setup-assumptions are necessary to implement the latter?

– The protocols presented here were not optimised for efficiency. To what ex-
tend can efficient protocols be found for the tasks discussed in this work?

– In [17] techniques were presented that allow to share a single signature card
between different protocols. Can these techniques be applied to our setting,
too?

– Much work on unconditional and long-term security has been done in the
field of quantum cryptography. How does long-term UC behave in the pres-
ence of quantum communication. Can some of the impossibility results given
in this work be avoided? In particular, quantum communication could solve
the problem of key exchange mentioned above.

Acknowledgements. We thank the anonymous referees for many helpful
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4. Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a
memory-bounded receiver. In 34th Annual ACM Symposium on Theory of Com-
puting, Proceedings of STOC 2002, pages 493–502. ACM Press, 2002.

5. Christian Cachin and Ueli Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology,
Proceedings of CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science,
pages 292–306. Springer-Verlag, 1997.



60 J. Müller-Quade and D. Unruh

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42th Annual Symposium on Foundations of Computer Science, Pro-
ceedings of FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive, December 2005. Full and revised version of [6].

8. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. These proceedings.

9. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO ’01, volume 2139
of Lecture Notes in Computer Science, pages 19–40. Springer-Verlag, 2001.

10. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th Annual ACM Sym-
posium on Theory of Computing, Proceedings of STOC 2002, pages 494–503. ACM
Press, 2002. Extended abstract.

11. Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion factor. In Moti
Yung, editor, Advances in Cryptology, Proceedings of CRYPTO ’02, volume 2442
of Lecture Notes in Computer Science, pages 581–596. Springer-Verlag, 2002.

12. Stefan Dziembowski and Ueli Maurer. On generating the initial key in the bounded-
storage model. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology, Proceedings of EUROCRYPT ’04, volume 3027 of Lecture Notes in
Computer Science, pages 126–137. Springer-Verlag, 2004.

13. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

14. Oded Goldreich. Foundations of Cryptography – Volume 1 (Basic Tools). Cam-
bridge University Press, August 2001.

15. Oded Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).
Cambridge University Press, May 2004.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM, 38(3):690–728, 1991.

17. Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally com-
posable zero-knowledge arguments and commitments from signature cards. In
Proceedings of the 5th Central European Conference on Cryptology, MoraviaCrypt
’05, 2005.

18. Yehuda Lindell. General composition and universal composability in secure multi-
party computation. In 44th Annual Symposium on Foundations of Computer Sci-
ence, Proceedings of FOCS 2003, pages 394–403. IEEE Computer Society, 2003.

19. Jörn Müller-Quade and Dominique Unruh. Long-term security and universal com-
posability, 2006. Full version of this paper, IACR ePrint 2006/422.

20. Jörn Müller-Quade. Temporary assumptions—quantum and classical. In The
2005 IEEE Information Theory Workshop On Theory and Practice in Information-
Theoretic Security, 2005. abstract.

21. Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Perfect
zero-knowledge arguments for NP using any one-way permutation. Journal of
Cryptology, 11(2):87–108, March 1998.

22. Michael O. Rabin. Hyper-encryption by virtual satellite. Science Center Research
Lecture Series, December 2003.

23. Gesetz über Rahmenbedingungen für elektronische Signaturen. Bundesgesetzblatt
I 2001, 876, May 2001.



Universally Composable Security with Global
Setup

Ran Canetti1, Yevgeniy Dodis2, Rafael Pass3, and Shabsi Walfish2

1 IBM Research
canetti@csail.mit.edu
2 New York University

{dodis,walfish}@cs.nyu.edu
3 Cornell University

rafael@cs.cornell.edu

Abstract. Cryptographic protocols are often designed and analyzed un-
der some trusted set-up assumptions, namely in settings where the par-
ticipants have access to global information that is trusted to have some
basic security properties. However, current modeling of security in the
presence of such set-up falls short of providing the expected security guar-
antees. A quintessential example of this phenomenon is the deniability
concern: there exist natural protocols that meet the strongest known
composable security notions, and are still vulnerable to bad interactions
with rogue protocols that use the same set-up.

We extend the notion of universally composable (UC) security in a way
that re-establishes its original intuitive guarantee even for protocols that
use globally available set-up. The new formulation prevents bad interac-
tions even with adaptively chosen protocols that use the same set-up. In
particular, it guarantees deniability. While for protocols that use no set-
up the proposed requirements are the same as in traditional UC security,
for protocols that use global set-up the proposed requirements are sig-
nificantly stronger. In fact, realizing Zero Knowledge or commitment be-
comes provably impossible, even in the Common Reference String model.
Still, we propose reasonable alternative set-up assumptions and protocols
that allow realizing practically any cryptographic task under standard
hardness assumptions even against adaptive corruptions.

1 Introduction

The trusted party paradigm is a fundamental methodology for defining security of
cryptographic protocols. The basic idea (which originates in [24]) is to say that
a protocol securely realizes a given computational task if running the protocol
amounts to “emulating” an ideal process where all parties secretly hand their
inputs to an imaginary “trusted party” who locally computes the desired outputs
and hands them back to the parties. One potential advantage of this paradigm is
its strong “built in composability” property: The fact that a protocol π emulates
a certain trusted party F can be naturally interpreted as implying that any
system that includes calls to protocol π should, in principle, behave the same if
the calls to π were replaced by ideal calls to the trusted party F .

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 61–85, 2007.
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Several formalizations of the above intuitive idea exist, e.g. [23,27,3,9,20,
31,10,30]. These formalizations vary in their rigor, expressibility, generality and
restrictiveness, as well as security and composability guarantees. However, one
point which no existing formalism seems to handle in a fully satisfactory way is
the security requirements in the presence of “global trusted setup assumptions”,
such as a public-key infrastructure (PKI) or a common reference string (CRS),
where all parties are assumed to have access to some global information that is
trusted to have certain properties. Indeed, as pointed out in [28], the intuitive
guarantee that “running π has the same effect as having access to the trusted
party” no longer holds.

As a first indication of this fact, consider the “deniability” concern, namely,
allowing party A to interact with party B in a way that prevents B from later
“convincing” a third party C that the interaction took place. Indeed, if A and B
interact via an idealized “trusted party” that communicates only with A and B
then deniability is guaranteed in a perfect, idealized way. Thus, intuitively, if A
and B interact via a protocol that emulates the trusted party, then deniability
should hold just the same. When the protocol in question uses no global setup,
this intuition works, in the sense that emulating a trusted party (in most existing
formalisms) automatically implies deniability. However, when global setup is
used, this is no longer the case: There are protocols that emulate such a trusted
party but do not guarantee deniability.

For instance, consider the case of Zero-Knowledge protocols, i.e. protocols
that emulate the trusted party for the “Zero-Knowledge functionality”: Zero-
Knowledge protocols in the plain model are inherently deniable, but most Zero-
Knowledge protocols in the CRS model are completely undeniable whenever the
reference string is public knowledge (see [28]). Similarly, most authentication pro-
tocols (i.e., most protocols that emulate the trusted party that provides ideally
authenticated communication) that use public key infrastructure are not deni-
able, in spite of the fact that ideal authenticated communication via a trusted
party is deniable.

One might think that this “lack of deniability” arises only when the com-
posability guarantees provided by the security model are weak. However, even
very strong notions of composability do not automatically suffice to ensure de-
niability in the presence of global setup. For example, consider the Universal
Composability (UC) security model of [10], which aims to achieve the following,
very strong composability guarantee:

A UC-secure protocol π implementing a trusted party F does not affect
any other protocols more than F does — even when protocols running
concurrently with π are maliciously constructed.

When F is the Zero-Knowledge functionality, this property would seem to guar-
antee that deniability will hold even when the protocol π is used in an arbitrary
manner. Yet, even UC-secure ZK protocols that use a CRS are not deniable
whenever the reference string is globally available. This demonstrates that the
UC notion, in its present formulation, does not protect a secure protocol π from
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a protocol π′ that was maliciously designed to interact badly with π, in the case
where π′ can use the same setup as π.

Deniability is not the only concern that remains un-captured in the present
formulation of security in the CRS model. For instance, even UC-secure Zero-
Knowledge proofs in the CRS model may not be “adaptively sound” (see [22]),
so perhaps a malicious prover can succeed in proving false statements after see-
ing the CRS, as demonstrated in [1]. As another example, the protocol in [15]
for realizing the single-instance commitment functionality becomes malleable as
soon as two instances use the same reference string (indeed, to avoid this weak-
ness a more involved protocol was developed, where multiple commitments can
explicitly use the same reference string in a specific way). Note that here, a
UC-secure protocol can even affect the security of another UC-secure protocol
if both protocols make reference to the same setup.

This situation is disturbing, especially in light of the fact that some form of
setup is often essential for cryptographic solutions. For instance, most traditional
two-party tasks cannot be UC-realized with no setup [15,10,16], and authenti-
cated communication is impossible without some sort of setup [12]. Furthermore,
providing a globally available setup that can be used throughout the system is
by far the most realistic and convenient way to provide setup.

A new formalism. This work addresses the question of how to formalize the
trusted-party definitional paradigm in a way that preserves its intuitive appeal
even for those protocols that use globally available setup. Specifically, our first
contribution is to generalize the UC framework to deal with global setup, so as
to explicitly guarantee that the original meaning of “emulating a trusted party”
is preserved, even when the analyzed protocol is using the same setup as other
protocols that may be maliciously and adaptively designed to interact badly with
it. In particular, the new formalism called simply generalized UC (GUC) security
guarantees deniability and non-malleability even in the presence of global setup.
Informally,

A GUC-Secure protocol π implementing a trusted party F using some
global setup does not affect any other protocols more than F does — even
when protocols running concurrently with π are maliciously constructed,
and even when all protocols use the same global setup.

In a nutshell, the new modeling proceeds as follows. Recall that the UC frame-
work models setup as a “trusted subroutine” of the protocol that uses the setup.
This implicitly means that the setup is local to the protocol instance using it,
and cannot be safely used by any other protocol instance. That modeling, while
mathematically sound, certainly does not capture the real-world phenomenon
of setup that is set in advance and publicly known throughout the system. The
UC with joint state theorem (“JUC Theorem”) of [18] allows several instances of
specifically-designed protocols to use the same setup, but it too does not capture
the case of public setup that can be used by arbitrary different protocols at the
same time.
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To adequately capture global setup our new formalism models the setup as
an additional (trusted) entity that interacts not only with the parties running
the protocol, but also with other parties (or, in other words, with the external
environment). This in particular means that the setup entity exists not only as
part of the protocol execution, but also in the ideal process, where the protocol is
replaced by the trusted party. For instance, while in the current UC framework
the CRS model is captured as a trusted setup entity that gives the reference
string only to the adversary and the parties running the actual protocol instance,
here the reference string is globally available, i.e. the trusted setup entity also
gives the reference string directly to other parties and the external environment.
Technically, the effect of this modeling is that now the simulator (namely, the
adversary in the ideal process) cannot choose the reference string or know related
trapdoor information.

In a way, proofs of security in the new modeling, even with setup, are reminis-
cent of the proofs of security without setup, in the sense that the only freedom
enjoyed by the simulator is to control the local random choices of the uncorrupted
parties. For this reason we often informally say that GUC-secure protocols that
use only globally available setup are “fully simulatable”. We also remark that
this modeling is in line with the “non-programmable CRS model” in [28].

One might thus suspect that achieving GUC-security “collapses” down to UC-
security without any setup (and its severe limitations). Indeed, as a first result
we extend the argument of [15] to show that no two-party protocol can GUC-
realize the ideal commitment functionality Fcom (namely, emulate the trusted
party that runs the code of Fcom according to the new notion), even in the CRS
model, or in fact with any global setup that simply provides public information.
On the one hand this result is reassuring, since it means that those deniable
and malleable protocols that are secure in the (old) CRS model can no longer
be secure according to the new notion. On the other hand, this result brings
forth the question of whether there exist protocols for commitment (or other
interesting primitives) that meet the new notion under any reasonable setup
assumption. Indeed, the analyses of all existing UC-secure commitment protocols
seem to use in an essential way the fact that the simulator has control over the
value of the setup information.

New setup and constructions. Perhaps surprisingly, we answer the realiz-
ability question in the affirmative, in a strong sense. Recall that our impossibility
result shows that a GUC protocol for the commitment functionality must rely
on a setup that provides the parties with some private information. We consider
two alternative setup models which provide such private information in a min-
imal way, and show how to GUC-realize practically any ideal functionality in
any one of the two models.

The first setup model is reminiscent of the “key registration with knowledge
(KRK)” setup from [5], where each party registers a public key with some trusted
authority in a way that guarantees that the party can access the corresponding
secret key. However, in contrast to [5] where the scope of a registered key is
only a single protocol instance (or, alternatively, several instances of specifically
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designed protocols), here the registration is done once per party throughout
the lifetime of the system, and the public key can be used in all instances of all
the protocols that the party might run. In particular, it is directly accessible by
the external environment.

We first observe that one of the [5] protocols for realizing Fcom in the KRK
model can be shown to satisfy the new notion, even with the global KRK setup,
as long as the adversary is limited to non-adaptive party corruptions. (As demon-
strated in [17], realizing Fcom suffices for realizing any “well-formed” multi-party
functionality.) However, when adaptive party corruptions are allowed, and the
adversary can observe the past internal data of corrupted parties, this protocol
becomes insecure. In fact, the problem seems inherent, since the adversary is
now able to eventually see all the secret keys in the system, even those of parties
that were uncorrupted when the computation took place.

Still, we devise a new protocol that realizes Fcom in the KRK model even
in the presence of adaptive party corruptions, and without any need for data
erasures. The high level idea is to use the [15] commitment scheme with a new
CRS that is chosen by the parties per commitment. The protocol for choosing
the CRS will make use of the public keys held by the parties, in a way that
allows the overall simulation to go through even when the same public keys
are used in multiple instances of the CRS-generation protocol. Interestingly, our
construction does not realize a CRS that is “strong” enough for the original
analysis to go through. Instead, we provide a “weaker” CRS, and provide a
significantly more elaborate analysis. The protocol is similar in spirit to the
coin-tossing protocol of [19], in that it allows the generated random string to
have different properties depending on which parties are corrupted. Even so,
their protocol is not adaptively secure in our model.

Augmented CRS. Next we formulate a new setup assumption, called “aug-
mented CRS (ACRS)” and demonstrate how to GUC-realize Fcom in the ACRS
model, in the presence of adaptive adversaries. As the name suggests, ACRS is
reminiscent of the CRS setup, but is somewhat augmented so as to circumvent
the impossibility result for plain CRS. That is, as in the CRS setup, all par-
ties have access to a short reference string that is taken from a pre-determined
distribution. In addition, the ACRS setup allows corrupted parties to obtain
“personalized” secret keys that are derived from the reference string, their pub-
lic identities, and some “global secret” that’s related to the public string and
remains unknown. It is stressed that only corrupted parties may obtain their
secret keys. This means that the protocol may not include instructions that re-
quire knowledge of the secret keys and, therefore, the protocol interface tn the
ACRS setup is identical to that of the CRS setup.

The main tool in our protocol for realizing Fcom in the ACRS model is a
new identity-based trapdoor commitment (IBTC) protocol. IBTC protocols are
constructed in [2,32], in the Random Oracle model. In the full version of this
paper [13], we provide a construction of IBTC in the standard model (assuming
only one-way functions), using the Σ-protocol based commitment technique of
Feige [21], where the committer runs the simulator of the Σ-protocol.
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Realizing the setup assumptions. “Real world implementations” of the
ACRS and KRK setups can involve a trusted entity (say, a “post office”) that
only publicizes the public value. The trusted entity will also agree to provide the
secret keys to the corresponding parties upon request, with the understanding
that once a party gets hold of its key then it alone is responsible to safeguard
it and use it appropriately (much as in the case of standard PKI). In light of
the impossibility of a completely non-interactive setup (CRS), this seems to be
a minimal “interactiveness” requirement from the trusted entity.

Another unique feature of our commitment protocol is that it guarantees
security even if the “global secret” is compromised, as long as this happens after
the commitment phase is completed. In other words, in order to compromise
the overall security, the trusted party has to be actively malicious during the
commitment phase. This point further reduces the trust in the real-world entity
that provides the setup.

Despite the fact that the trusted entity need not be constantly available, and
need not remain trustworthy in the long term, it may still seem difficult to
provide such an interactive entity in many real-world settings. Although it is
impossible to achieve true GUC security with a mere CRS, we observe that the
protocols analyzed here do satisfy some notion of security even if the setup en-
tity remains non-interactive (i.e. when our ACRS setup functionality is instead
collapsed to a standard CRS setup). In fact, although we do not formally prove a
separation, protocols proven secure in the ACRS model seem intuitively more se-
cure than those of [15,17] even when used in the CRS model! Essentially, in order
to simulate information that could be obtained via a real attack on the protocols
of [15,17], knowledge of a “global trapdoor” is required. This knowledge enables
the simulator to break the security of all parties (including their privacy). On
the other hand, simulating the information obtained by real attacks on proto-
cols that are proven secure in the ACRS model merely requires some specific
“identity-based trapdoors”. These specific trapdoors used by the simulate allow
it to break only the security of corrupt parties who deviate from the protocol.
Of course, when using a CRS setup in “real life” none of these trapdoors are
available to anyone, so one cannot actually simulate information obtained by an
attacker. Nevertheless, it seems that the actual advantage gained by an attack
which could have been simulated using the more minimal resources required by
protocol simulators in the ACRS model (i.e. the ability to violate the security
only of corrupt parties, as opposed to all parties) is intuitively smaller.

A New Composition Theorem. We present two formulations of GUC se-
curity: one formulation is more general and more “intuitively adequate”, while
the other is simpler and easier to work with. In particular, while the general no-
tion directly considers a multi-instance system, the simpler formulation (called
EUC) is closer to the original UC notion that considers only a single protocol
instance in isolation. We then demonstrate that the two formulations are equiv-
alent. As may be expected, the proof of equivalence incorporates much of the
argumentation involved in the proof of the universal composition theorem. We
also demonstrate that GUC security is preserved under universal composition.
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Related work. Relaxed variants of UC security are studied in [30,8]. These
variants allow reproducing the general feasibility results without setup assump-
tions other than authenticated communication. However, these results provide
significantly weaker security properties than UC-security. In particular, they do
not guarantee security in the presence of arbitrary other protocols, which is the
focus of this work.

Alternatives to the CRS setup are studied in [5]. As mentioned above, the
KRK setup used here is based on the one there, and the protocol for GUC-
realizing Fcom for non-adaptive corruptions is taken from there. Furthermore, [5]
informally discuss the deniability properties of their protocol. However, that work
does not address the general concern of guaranteeing security in the presence
of global setup. In particular, it adopts the original UC modeling of setup as a
construct that is internal to each protocol instance.

In a concurrent work, Hofheinz et. al [25] consider a notion of security reminis-
cent of EUC, with similar motivation to the motivation here. They also formulate
a new setup assumption and show how to realize any functionality given that
setup. However, their setup assumption is considerably more involved than ours,
since it requires the trusted entity to interact with the protocol in an on-line,
input-dependent manner. Also, they do not consider adaptive corruptions.

Future work. This work develops the foundations necessary for analyzing
security and composability of protocols that use globally available setup. It also
re-establishes the feasibility results for general computation in this setting. Still,
there are several unexplored research questions here.

One important concern is that of guaranteeing authenticated communication
in the presence of global PKI setup. As mentioned above, this is another example
where the existing notions do not provide the expected security properties (e.g.,
they do not guarantee deniability, whereas the trusted party solution is expressly
deniable). We conjecture that GUC authentication protocols (namely, protocols
that GUC-realize ideally authentic communication channels) that use a global
PKI setup can be constructed by combining the techniques of [26,15]. However,
we leave full exploration of this problem out of scope for this work.

The notions of key exchange and secure sessions in the presence of global PKI
setup need to be re-visited in a similar way. How can universal composability
(and, in particular, deniability) be guaranteed for such protocols? Also, how
can existing protocols (that are not deniable) be proven secure with globally
available setup?

2 Generalized UC Security

In this section we will provide a high-level overview of our new Generalized UC
(GUC) framework, as well as a useful simplification of GUC called the External-
ized UC (EUC) framework. We begin with a brief review of the concepts behind
the original UC framework of [10] (henceforth referred to as “Basic UC”) before
proceeding to outline our new security frameworks. To keep our discussion at
a high level of generality, we will focus on the notion of protocol “emulation”,
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wherein the objective of a protocol π is to emulate another protocol φ. Here,
typically, π is an implementation (such as the actual “real world” protocol) and
φ is a specification (where the “ideal functionality” F that we wish to imple-
ment is computed directly by a trusted entity). Throughout our discussion, all
entities and protocols we consider are “efficient” (i.e. polynomial time bounded
Interactive Turing Machines, in the sense detailed in [11]).

The Basic UC Framework. At a very high level, the intuition behind secu-
rity in the basic UC framework is that any adversary A attacking a protocol π
should learn no more information than could have been obtained via the use of
a simulator S attacking protocol φ. Furthermore, we would like this guarantee
to be maintained even if φ were to be used a subroutine of (i.e. composed with)
arbitrary other protocols that may be running concurrently in the networked
environment, and we plan to substitute π for φ in all instances. Thus, we may
set forth a challenge experiment to distinguish between actual attacks on pro-
tocol π, and simulated attacks on protocol φ (referring to these protocols as the
“challenge protocols”). As part of this challenge scenario, we will allow adversar-
ial attacks to be orchestrated and monitored by a distinguishing environment Z
that is also empowered to control the inputs supplied to the parties running the
challenge protocol, as well as to observe the parties’ outputs at all stages of the
protocol execution. One may imagine that this environment represents all other
activity in the system, including the actions of other protocol sessions that may
influence inputs to the challenge protocol (and which may, in turn, be influenced
by the behavior of the challenge protocol). Ultimately, at the conclusion of the
challenge, the environment Z will be tasked to distinguish between adversarial
attacks perpetrated by A on the challenge protocol π, and attack simulations
conducted by S with protocol φ as the challenge protocol instead. If no environ-
ment can successfully distinguish these two possible scenarios, then protocol π
is said to “UC emulate” the protocol φ.

Specifying the precise capabilities of the distinguishing environment Z is cru-
cial to the meaning of this security notion. We must allow Z to choose the
challenge protocol inputs and observe its outputs (which models the influence of
the environment on the users of the protocol, and vice versa). We must also grant
Z the ability to interact with the attacker (which will be either the adversary,
or a simulation). As demonstrated in [10], granting precisely these capabilities
to Z (even if we allow it to invoke only a single session of the challenge proto-
col) is sufficient to achieve the strong guarantees of composition theorem, which
states that any arbitrary instances of the φ that may be running in the network
can be safely substituted with a protocol π that UC emulates φ. Thus, even if
we constrain the distinguisher Z to interactions only with the adversary and
a single session of the challenge protocol (without allowing Z to invoke other
protocols at all), we can already achieve the strong security guarantees we intu-
itively desired. Notably, although the challenge protocol may invoke subroutines
of its own, it was not necessary to grant Z any capability to interact with such
subroutines.
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Fig. 1. The Basic UC Experiment in the G-hybrid model. A simulator S attacks a single
session of protocol φ running with an ideal subroutine G, whereas an arbitrary “real”
adversary A attacks a session of π running with an ideal subroutine G. The dashed
box encloses protocols where S or A control the network communications, whereas
the solid lines represent a direct Input/Output relationship. (In a typical scenario,
φ would be the ideal protocol for a desired functionality F , whereas π would be a
practical protocol realizing F , with G modeling some “setup” functionality required by
π. Observe that the environment can never interact directly with G, and thus, in this
particular scenario, G is never invoked at all in the ideal world since we are typically
interested in the case where ideal protocol for F does not make use of G.)

In order to conceptually modularize the design of protocols, the notion of
“hybrid models” is often introduced into the basic UC framework. A protocol π
is said to be realized “in the G-hybrid model” if π invokes the ideal functionality
G as a subroutine (perhaps multiple times). (As we will soon see below, the
notion of hybrid models greatly simplifies the discussion of UC secure protocols
that require “setup”.) A high-level conceptual view of UC protocol emulation in
a hybrid model is shown in Figure 1.

Limitations of Basic UC. Buried inside the intuition behind the basic UC
framework is the critical notion that the environment Z is capable of utilizing
its input/output interface to the challenge protocol to mimic the behavior of
other (arbitrary) protocol sessions that may be running in a computer network.
Indeed, as per the result of [10] mentioned in our discussion above, this would
seem to be the case when considering challenge protocols that are essentially
“self-contained”. Such self-contained protocols, which do not make use of any
“subroutines” (such as ideal functionalities) belonging to other protocol sessions,
are called subroutine respecting protocols – and the basic UC framework models
these protocols directly. On the other hand, special considerations would arise
if the challenge protocol utilizes (or transmits) information that is also shared
by other network protocol sessions. An example of such information would be
the use of a global setup, such as a public “common reference string” (CRS)
that is reused from one protocol session to the next, or a standard Public Key
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Infrastructure (PKI). Such shared state is not directly modeled by the basic
UC framework discussed above. In fact, the composition theorem of [10] only
holds when considering instances of subroutine respecting protocols (which do
not share state information). Unfortunately, it is impossible to produce UC se-
cure realizations of most useful functionalities without resorting to some setup.
However, to comply with the requirements of the UC framework, the setup would
have to be done on a per-instance basis. This does not faithfully represent the
common realization, where the same setup is shared by all instances. There-
fore, previous works handled such “shared state” protocol design situations via
a special proof technique, known as the JUC Theorem [18].

Yet, even the JUC Theorem does not accurately model truly global shared
state information. JUC Theorem only allows for the construction of protocols
that share state amongst themselves. That is, an a-priori fixed set of protocols
can be proven secure if they share state information only with each other. No
security guarantee is provided in the event that the shared state information is
also used by other protocols which the original protocols were not specifically
designed to interact with. Of course, malicious entities may take advantage of this
by introducing new protocols that use the shared state information if the shared
state is publicly available. In particular, protocols sharing global state (i.e. using
global setups) which are modeled in this fashion may not resist adaptive chosen
protocol attacks, and can suffer from a lack of deniability, as we previously
mentioned regarding the protocols of [15], [17], and as is discussed in further
detail in Section 3.2.

The Generalized UC Framework. To summarize the preceding discussion,
the environment Z in the basic UC experiment is unable to invoke protocols that
share state in any way with the challenge protocol. This limitation is unrealistic
in the case of global setup, when protocols share state information with each
other (and indeed, it was shown to be impossible to realize UC-secure protocols
without resort to such tactics [15,10,16]). To overcome this limitation, we pro-
pose the Generalized UC (GUC) framework. The GUC challenge experiment is
similar to the basic UC experiment, only with an unconstrained environment. In
particular, we will allow Z to actually invoke and interact with arbitrary proto-
cols, and even multiple sessions of its challenge protocol (which may be useful
to Z in its efforts to distinguish between the two possible challenge protocols).
Some of the protocol sessions invoked by Z may share state information with
challenge protocol sessions, and indeed, they can provide Z with information
about the challenge protocol that it could not have obtained otherwise. The
only remaining limitation on Z is that we prevent it from directly observing
or influencing the network communications of the challenge protocol sessions,
but this is naturally the job of the adversary (which Z directs). Thus, the GUC
experiment allows a very powerful distinguishing environment capable of truly
capturing the behavior of arbitrary protocol interactions in the network, even if
protocols can share state information with arbitrary other protocols. Of course,
protocols that are GUC secure are also composable (this fact follows almost
trivially from a greatly simplified version of the composition theorem proof of
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[11], the simplifications being due to the ability of the unconstrained environ-
ment to directly invoke other protocol sessions rather than needing to “simulate”
them internally).

The Externalized UC Framework. Unfortunately, since the setting of GUC
is so complex, it becomes extremely difficult to prove security of protocols in our
new GUC framework. Essentially, the distinguishing environment Z is granted
a great deal of freedom in its choice of attacks, and any proof of protocol emu-
lation in the GUC framework must hold even in the presence of other arbitrary
protocols running concurrently. To simplify matters, we observe that in practice
protocols which are designed to share state do so only in a very limited fashion
(such as via a single common reference string, or a PKI, etc.). In particular,
we will model shared state information via the use of “shared functionalities”,
which are simply functionalities that may interact with more than one proto-
col session (such as the CRS functionality). For clarity, we will distinguish the
notation for shared functionalities by adding a bar (i.e. we use Ḡ to denote a
shared functionality). We call a protocol π that only shares state information
via a single shared functionality Ḡ a Ḡ-subroutine respecting protocol. Bearing
in mind that it is generally possible to model “reasonable” protocols that share
state information as Ḡ-subroutine respecting protocols, we can make the task
of proving GUC security simpler by considering a compromise between the con-
strained environment of basic UC and the unconstrained environment of GUC.
An Ḡ-externally constrained environment is subject to the same constraints as
the environment in the basic UC framework, only it is additionally allowed to
invoke a single “external” protocol (specifically, the protocol for the shared func-
tionality Ḡ). Any state information that will be shared by the challenge protocol
must be shared via calls to Ḡ (i.e. challenge protocols are Ḡ-subroutine respect-
ing), and the environment is specifically allowed to access Ḡ. Although Z is once
again constrained to invoking a single instance of the challenge protocol, it is
now possible for Z to internally mimic the behavior of multiple sessions of the
challenge protocol, or other arbitrary network protocols, by making use of calls
to Ḡ wherever shared state information is required. Thus, we may avoid the need
for JUC Theorem (and the implementation limitations it imposes), by allowing
the environment direct access to shared state information (e.g. we would allow
it to observe the Common Reference String when the shared functionality is the
CRS functionality). We call this new security notion Externalized UC (EUC)
security, and we say that a Ḡ-subroutine respecting protocol π Ḡ-EUC-emulates
a protocol φ if π emulates φ in the basic UC sense with respect to Ḡ-externally
constrained environments. We show that if a protocol π Ḡ-EUC-emulates φ,
then it also GUC emulates φ (and vice versa, provided that π is Ḡ-subroutine
respecting).

Theorem 1. Let π be any protocol which invokes no shared functionalities other
than (possibly) Ḡ, and is otherwise subroutine respecting (i.e. π is Ḡ-subroutine
respecting). Then protocol π GUC-emulates a protocol φ, if and only if protocol
π Ḡ-EUC-emulates φ.
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That is, provided that π only shares state information via a single shared func-
tionality Ḡ, if it merely EUC-emulates φ with respect to that functionality, then
π is a full GUC-emulation of φ! As a special case, we obtain that all basic UC em-
ulations (which may not share any state information) are also GUC emulations.

Corollary 1. Let π be any subroutine respecting protocol. Then protocol π GUC-
emulates a protocol φ, if and only if π UC-emulates φ.

The corollary follows by letting Ḡ be the null functionality, and observing that
the Ḡ-externally constrained environment of the EUC experiment collapses to
become the same environment as that of the basic UC experiment when Ḡ is the
null functionality. Thus, it is sufficient to prove basic UC security for protocols
with no shared state, or Ḡ-EUC security for protocols that share state only via
Ḡ, and we will automatically obtain the full benefits of GUC security.

Figure 2 depicts the differences in the experiments of the UC models we have
just described, in the presence of a single shared functionality Ḡ (of course, the
GUC framework is not inherently limited to special case of only one shared
functionality). We further elaborate the technical details of these new models,
and provide the proof of Theorem 1, in the full version of the paper [13].

We are now in a position to state a strong new composition theorem, which will
directly incorporate the previous result (that proving EUC security is sufficient
for GUC security). Let ρ be an arbitrary protocol (not necessarily subroutine
respecting!) which invokes φ as a sub-protocol. We will write ρπ/φ to denote a
modified version of ρ that invokes π instead of φ, wherever ρ had previously
invoked φ. We prove the following general theorem in the full version [13]:

Theorem 2 (Generalized Universal Composition). Let ρ, π, φ be PPT
multi-party protocols, and such that both φ and π are Ḡ-subroutine respecting,
and π Ḡ-EUC-emulates φ. Then ρπ/φ GUC-emulates protocol ρ.

We stress that π must merely Ḡ-EUC-emulate φ, but that the resulting composed
protocol ρπ/φ fully GUC-emulates ρ, even for a protocol ρ that is not subroutine
respecting.

3 Insufficiency of the Global CRS Model

In this section we demonstrate that a global CRS setup is not sufficient to
GUC-realize even the basic two-party commitment functionality. We then further
elaborate the nature of this insufficiency by considering some weaknesses in the
security of previously proposed constructions in the CRS model. Finally, we
suggest a new “intuitive” security goal, dubbed full simulatability, which we
would like to achieve by utilizing the GUC-security model (and which was not
previously achieved by any protocols in the CRS model).

3.1 Impossibility of GUC-Realizing Fcom in the Ḡgcrs Model

Recall that many interesting functionalities are unrealizable in the UC frame-
work without any setup assumption. For instance, it is easy to see that the



Universally Composable Security with Global Setup 73

UC with JUC Theorem

Z

A / S π / φ π / φ . . .

� � � � � � � � � � � ��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � � � � � � � � � � �

� � �

��

��
G

��

EUC

Z ��

A / S π / φ

� � � ��
�
�
�

�
�
�
�

� � � �

� � �

Ḡ
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Fig. 2. Comparison of models. Using Basic UC with JUC Theorem to share state, only
copies of the challenge protocol (or other protocols which may be jointly designed a
priori to share G) are allowed to access the common subroutine G, and Z may only in-
teract with the “multi-session” version of the challenge protocol. In the EUC paradigm,
only a single session of the challenge protocol is running, but the shared functionality
Ḡ it uses is accessible by Z. Finally, in the GUC setting, we see the full generality of
arbitrary protocols ρ1, ρ2, . . . running in the network, alongside multiple copies of the
challenge protocol. Observe that both Z, and any other protocols invoked by Z (such
as ρ1), have direct access to Ḡ in the GUC setting. Intuitively, the GUC modeling
seems much closer to the actual structure of networked protocol environments.

ideal authentication functionality, Fauth, is unrealizable in the plain model. Fur-
thermore, many two party tasks, such as Commitment, Zero-Knowledge, Coin-
Tossing, Oblivious Transfer and others cannot be realized in the UC frame-
work by two-party protocols, even if authenticated communication is provided
[15,16,10].

As a recourse, the common reference string (CRS) model was used to re-
assert the general feasibility results of [24] in the UC framework. That is, it
was shown that any “well-formed” ideal functionality can be realized in the
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CRS model [15,17]. However, the formulation of the CRS model in these works
postulates a setting where the reference string is given only to the participants in
the actual protocol execution. That is, the reference string is chosen by an ideal
functionality, Gcrs, that is dedicated to a given protocol execution. Gcrs gives
the reference string only to the adversary and the participants in that execution.
Intuitively, this formulation means that, while the reference string need not be
kept secret to guarantee security, it cannot be safely used by other protocol
executions. In other words, no security guarantees are given with respect to
executions that use a reference string that was obtained from another execution
rather than from a dedicated instance of Gcrs. (The UC with joint state theorem
of [18] allows multiple executions of certain protocols to use the same instance of
the CRS, but it requires all instances that use the CRS to be carefully designed
to satisfy some special properties.)

In contrast, we are interested in modeling a setting where the same CRS is
globally available to all parties and all protocol executions. This means that a
protocol π that uses the CRS must take into account the fact that the same CRS
may be used by arbitrary other protocols, even protocols that were specifically
designed to interact badly with π. Using the GUC security model defined in
Section 2, we define this weaker setup assumption as a shared ideal functionality
that provides the value of the CRS not only to the parties of a given protocol ex-
ecution, but rather to all parties, and even directly to the environment machine.
In particular, this global CRS functionality, Ḡgcrs, exists in the system both as
part of the protocol execution and as part of the ideal process. Functionality
Ḡgcrs is presented in Figure 3.

Functionality Ḡgcrs

Parameterized by a distribution D, Ḡgcrs proceeds as follows, when activated
by any party:

1. If no value has been previously recorded, choose a value d ←R D, and
record the value d.

2. Return the value d to the activating party.

Fig. 3. The Global Common Reference String functionality. The difference from the
Common Reference String functionality Gcrs of [10,15] is that Gcrs provides the ref-
erence string only to the parties that take part in the actual protocol execution. In
particular, the environment does not have direct access to the reference string.

We demonstrate that Ḡgcrs is insufficient for reproducing the general feasibility
results that are known to hold in the Gcrs model. To exemplify this fact, we show
that no two-party protocol that uses Ḡgcrs as its only setup assumption GUC-
realizes the ideal commitment functionality, Fcom (presented in Figure 4). The
proof, which we provide in the full version of this work [13], follows essentially the
same steps as the [15] proof of impossibility of realizing Fcom in the plain model.
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The reason that these steps can be carried out even in the presence of Ḡgcrs

is, essentially, that the simulator obtains the reference string from an external
entity (Ḡgcrs), rather than generating the reference string by itself. We conjecture
that most other impossibility results for UC security in the plain model can be
extended in the same way to hold for GUC security in the presence of Ḡgcrs.

Functionality Fcom

Commit Phase: Upon receiving a message (commit, sid, C, V, b) from party
C, where b ∈ {0, 1}, record the value b and send (receipt, sid, C, V ) to
V and the adversary. Ignore any future commit messages.

Reveal Phase: Upon receiving a message (reveal, sid) from C: If a value
b was previously recorded, then send the message (reveal, sid, b) to V
and the adversary and halt. Otherwise, ignore.

Fig. 4. The Commitment Functionality Fcom (see [15])

Theorem 3. There exists no bilateral, terminating protocol π that GUC-realizes
Fcom and uses only the shared functionality Ḡgcrs. This holds even if the com-
munication is ideally authentic.

In fact, it can be shown that the above impossibility result extends beyond the
mere availability of Ḡgcrs to any circumstance where the shared functionality will
only provide information globally (or, yet more generally, the impossibility holds
whenever all the shared information available to protocol participants can also
be obtained by the environment). For instance, this impossibility will hold even
in the (public) random oracle model, which is already so strong that it cannot
truly be realized without the use of a fully interactive trusted party. Another
interpretation of this result is that no completely non-interactive global setup
can suffice for realizing Fcom. The next section studies the problem of realizing
Fcom using setup assumptions with minimal interaction requirements.

3.2 Deniability and Full Simulatability

To demonstrate that the problems with using a global CRS to realize Fcom,
in the fashion of [17], are more than skin deep technicalities that arise only
in the GUC framework we now consider the issue of deniability. Intuitively, a
protocol is said to be “deniable” if it is possible for protocol participants to deny
their participation in a protocol session by arguing that any “evidence” of their
participation (as obtained by other, potentially corrupt protocol participants)
could have been fabricated.

Recalling the intuition outlined in the introduction, we would like realized
protocols to guarantee the same security as the ideal functionalities they realize,
meaning that the adversary will learn nothing more from attacking the protocol
than could be learned from attacking its corresponding ideal functionality. Pro-
tocols realized with such a guarantee are inherently deniable, since a protocol
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participant can accurately argue that any information sent during the protocol
session could have been obtained by an adversary using only the output from
the ideal functionality1 in an attack simulation conducted entirely without his
or her actual participation.

For instance, if we consider the ideal functionality for Zero Knowledge (ZK),
we expect that any secure realization of that functionality should reveal no
information to the adversary beyond the output of the ideal functionality (which
contains only a single bit). In particular, that output can easily be generated
entirely without the help of the prover, and thus the prover should be able to
deny his participation in the protocol, since it reveals no information that could
not have been obtained independently. However, we already know from the result
of [28] that it is impossible to achieve such deniability for ZK in the CRS model.
Indeed, we may see that the UC simulator for ZK functionality in [17] chooses
a fresh CRS, and generates the simulated protocol transcripts with respect to
that, instead of the published real-world CRS. Thus, if a protocol transcript
makes use of the real-world CRS, it could not have been obtained via simulation
(so a successful prover is indeed incriminated by the transcript).

When there is no deniability, the adversary is truly able to obtain some valu-
able information by observing protocol interactions that would not by revealed
by the ideal functionality. Thus we have found a practical example of security
loss that directly results from the relaxations of UC security inherent in the CRS
technique of [17]. We can now clearly see that the impossibility of realizing Fcom

via the CRS model in the GUC setting is due to a meaningful strengthening
of security guarantees (since deniability is guaranteed in the GUC setting, and
that guarantee is not achieved by protocols realized in the CRS model).

On an intuitive level, it might be helpful to consider the issue of deniability in
light of the “real world” resources required in order to run the GUC simulator to
simulate a given protocol session. If the resources required to simulate a protocol
session are readily available, then the protocol is plausibly deniable (since it is
plausible that information obtained from the protocol was the result of a simu-
lation). If the resources are difficult or impossible to obtain, then the protocol
is not plausibly deniable. We wish to employ simulation techniques that require
only minimal resources to conduct a simulation, increasing the plausibility of de-
nials (as well as decreasing the value of any information that an adversary might
obtain by attacking a secure protocol). Thus, we use the term fully simulatable
to refer to any plausibly deniable protocol realized in the GUC framework.

From this vantage point, we observe that the resource required to conduct the
protocol simulations in [17] is a “trapdoor” for the CRS. In particular, the CRS
must be “rigged” with such a trapdoor a priori. Such rigging is certainly not
plausible when there is a trusted party choosing the CRS, and this is in fact the
root of the deniability problem for the CRS model. Furthermore, knowledge of

1 Of course, if the output of the ideal functionality “incriminates” a user by revealing
some of his secrets, the resulting protocol does not meet our intuitive understanding
of the word “deniable”. Still, the protocol itself may be said to be “as deniable” as
the functionality it realizes.
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this trapdoor implies the ability to completely violate security of any protocol
constructed using the techniques of [17], and thus there would be no security
against any entity capable of simulating protocols. Similarly, in the “imaginary
angel” model of [30], the simulator requires access to super-polynomial time
functionalities that are certainly not plausibly available in the real world (and
thus, the deniability problem arises there as well). Indeed, if the “imaginary
angels” of [30] were to somehow be made practical in the real world, all security
would be lost.

We comment that, although we do not make any attempt to formalize a
“general” notion of deniability here, the guarantee we seek to provide is that
protocols are “as deniable” in the real world as they would have been in the
ideal world (past works did not satisfy even this basic requirement). In fact, as
we will see, our particular realization of fully simulatable security will guarantee
that even “on line” (interactive) deniability is preserved, since the simulator can
very practically be run in real time. Indeed, as long as an honest party P never
deviates from the protocol, it is not possible for other (even corrupt) protocol
participants to conclusively demonstrate P ’s participation in the protocol session
to a third party, even while the protocol is ongoing!

4 Fully Simulatable General Computation

We now turn our attention to the problem of constructing fully simulatable
GUC-secure protocols. That is, we would like it to be possible for a real-world
adversary to simulate the effects of any attack on a protocol, without actually
attacking the protocol (instead utilizing only the information that would be
revealed by an ideally secure realization). The result of Section 3 implies that
we cannot do this in the CRS model (if we correctly model a globally available
CRS). Thus, we must consider alternative models if we hope to achieve our goal.

To that end, we would like to find reasonable alternative global setup as-
sumptions that allow for realizing interesting tasks. That is, we are looking for
shared functionalities Ḡ (as defined in Section 2), so that on the one hand Ḡ
will be implementable in reality with reasonable trust assumptions, and on the
other hand we will have protocols that GUC-realize interesting functionalities
and still use no setup (i.e., no ideal functionalities) other than Ḡ. We say that
such GUC-secure protocols are “fully simulatable” since the GUC-simulator for
attacking the ideal protocol can, in a very practical sense, be run directly by
the adversary. This allows the adversary to simulate the same information that
can be gotten by attacking any session of the real protocol, without actually
performing any attack.

We first observe that if the system is equipped with a “fully interactive trusted
party” that realizes, say, Fmcom, the multi-session variant of Fcom, by interacting
separately and privately with each session, then we can directly use the protocol
of [17] to GUC-realize any “well-formed” functionality. However, we would like to
find more reasonable global setup assumptions, and in particular assumptions
that require less interaction from the trusted entity. (Indeed, this realization



78 R. Canetti et al.

requires the trusted party to perform strictly more work than it would by di-
rectly computing the desired functionalities, i.e. the trivial realization of ideal
model functionalities). Although it is clear that we can achieve fully simulatable
protocols by using highly interactive trusted parties to compute functionalities,
it seems to be a more difficult problem to realize GUC-secure protocols using an
“offline” shared functionality. Indeed, by our earlier impossiblity results, some
degree of interaction would seem to be essential, so we begin by considering the
idea of limiting the interaction to a “registration phase”.

4.1 The KRK Model

We observe that the “key registration with knowledge (KRK)” setup of [5], can
be modified to serve as a shared functionality, allowing us to realize any “well-
formed” ideal functionality against non-adaptive (“static”) adversaries using the
techniques of that work. Although the setup phase is interactive (parties must
register their public keys with registration authorities), it is possible to show
(with some minor modifications) that the protocol of [5] can allow the trusted
party to remain “offline” for all subsequent protocol activity.

Functionality Gkrk

Gkrk proceeds as follows, given a (deterministic) key generation function Gen
(with security parameter λ), running with parties P1, . . . , Pn and an adver-
sary S :

Registration: When receiving a message (register, sid, r) from party Pi

that has not previously registered, compute (PKi, SKi) ← Genλ(r) and
record the tuple (Pi, PKi, SKi).

Retrieval: When receiving a message (retrieve, sid, Pi) from party Pj

(where j �= i), if there is a previously recorded tuple of the
form (Pi, PKi, SKi), then return (sid, Pi, PKi) to Pj . Otherwise re-
turn (sid, Pi, ⊥) to Pj . When receiving a message (retrieve, sid, Pi)
from party Pi, if there is a previously recorded tuple of the form
(Pi, PKi, SKi), then return (sid, Pi, PKi, SKi) to Pi. Otherwise, return
(sid, Pi, ⊥) to Pi.

Fig. 5. The Knowledge-based Key Registration Functionality (similar to that of [5]).
Note that each instance of Gkrk can only be invoked by the parties of a single protocol
session (i.e. with a fixed sid). After converting this ideal functionality to a shared
functionality, Ḡkrk, and restricting retrieval of private keys to corrupt parties only, it
is possible GUC-realize any functionality using only a single public key per-party.

Recall that the KRK setup of [5] is an ideal functionality Gkrk (shown in
Figure 5), that chooses a private and public key pair for each registered party
and lets all parties know the value of the public key. In the natural version
of the KRK setup, parties are also allowed to retrieve their own secret keys.
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Since Gkrk is not a shared functionality, each instance of a protocol will have
its own instance of Gkrk, which does not lend itself to easy implementation.
To fix this, we re-formulate Gkrk as a shared functionality, Ḡkrk, that chooses
public keys only once per party – used by all instances. (This modeling makes
Ḡkrk significantly easier to implement in a real system, since only one key is
required for each party.) Furthermore, we add a simple modeling restriction: we
only allow parties to learn their own secret keys if they are corrupt.2 Using this
new Ḡkrk setup, the protocol of [5] works (with minor modifications) even in the
GUC-security model, provided that (a) party corruptions are non-adaptive, and
(b) all parties with the same PID (party identity) are corrupted together – we
call such corruption pattern PID-wise.

Theorem 4. The [5] protocol GUC-realizes Fzk, even when given access only
to Ḡkrk, as long as the party corruptions are non-adaptive and PID-wise.

The proof of this theorem is by a natural extension of the proof in [5] to the EUC
framework (which is, of course, equivalent to GUC), but surprisingly, we can
achieve a much stronger goal than non-adaptive GUC security with interactive
setup.

4.2 The Augmented CRS Model

Although it may seem that at least an interactive “registration phase” is required
in order to avoid our earlier impossibility result, we show that something even less
interactive will suffice. We propose a further simplification of Ḡkrk, denoted Ḡacrs,
and a protocol that GUC-realizes Fcom (and thus any well-formed functionality)
having access only to Ḡacrs. Unlike Ḡkrk, the Ḡacrs shared functionality does
not require any interaction (much like Gcrs), but merely offers a one-time use
interactive “key retrieval” service to those who choose to use it. Therefore, we
refer to this new setup assumption as the Augmented CRS (ACRS) model. In
particular, protocols realized in the ACRS model will not actually make use of
the key retrieval service, since the model only allows corrupt parties to retrieve
their keys. Thus, we are assured that honest parties need never communicate
interactively with Ḡacrs.

Somewhat counter-intuitively, it is even crucial that uncorrupted parties in
ACRS model never “bother” to obtain their secret keys from the trusted au-
thority (since even an honest party may inadvertently execute a rogue protocol,
which might expose the secret key). Similarly, it is crucial that corrupted parties
have access to their secret keys, since otherwise they would be unable to conduct
attack simulations. (On a side note, security is still guaranteed to honest parties
who obtain their keys and use them to conduct attack simulations provided that
they only use their keys for simulation purposes.) To enforce the protocol design
criteria that honest parties should not require access to their secret keys, we
directly define the Ḡacrs functionality so that it refuses to supply secret keys to

2 This modeling restriction is discussed in further detail in Section 4.2.
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honest parties. (Of course, a direct realization of Ḡacrs by a trusted party can-
not actually determine which parties are honest, yet intuitively this modeling
should still suffice. In fact, it is not problematic even if the real-world trusted
party gives keys to honest parties, as long as they are careful to protect their
own security by keeping their keys secret.)

More formally, our new shared functionality Ḡacrs is parameterized by two
functions, Setup and Extract. It first chooses a random secret value MSK and
a public value PK ← Setup(MSK), and publicizes PK (as a CRS). Next,
whenever a corrupted party P asks for its secret key, Ḡacrs returns the value
SKP ← Extract(PK; P ; MSK). The functionality is presented in Figure 6.

Functionality ḠSetup,Extract
acrs

Initialization Phase: At the first activation, compute a Common Refer-
ence String (PK) ← Setup(MSK) for a randomly chosen λ-bit value
MSK, and record the pair (PK,MSK).

Providing the public value: Whenever activated by a party requesting
the CRS, return PK to the requesting party and the adversary.

Dormant Phase: Upon receipt of a message (retrieve, sid, P ) from a
corrupt party P , return the value SKP ← Extract(PK; P ; MSK) to P .
(Receipt of this message from honest parties is ignored.)

Fig. 6. The Identity-Based Augmented CRS Shared Functionality

Comparing Ḡkrk and Ḡacrs. The main difference between Ḡacrs and Ḡkrk (the
global variant of Gkrk) is that in Ḡacrs there is a single public value, whereas in
Ḡkrk an extra public value must be given per party identity. Using a paradigm
analogous to the identity-based encryption of [6], we avoid the use of per-party
public keys and replace them with a single short “master public key” (and in-
deed our constructions use short public keys that depend only on the security
parameter). This property, combined with the fact that the parties who follow
their protocols never obtain their secret keys, makes Ḡacrs very close in spirit
to a global CRS setup as in Ḡgcrs. In fact, in light of the far-reaching impossi-
bility result for Ḡgcrs, Ḡacrs can be regarded as a “minimum interaction” global
setup.

We note that, as pointed out in [5], Ḡkrk can be naturally implemented by
multiple “registration authorities”, where no single authority needs to be fully
trusted by all. (However, we once again stress that Ḡkrk requires all parties, even
those who honestly follow their protocols, to interactively register with a some
authority and obtain a public key.) Similarly, multiple instances of Ḡacrs may
be run by different trusted authorities. Unlike Ḡkrk, however, parties may par-
ticipate in protocols while placing their trust in an arbitrary trusted authority,
without ever having registered with any authority. This is extremely useful for
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settings where PKIs are not desirable or easy to implement, and where no single
“global” authority is available (see e.g. [4]).3

In the full version of this work [13], we prove the following result:

Theorem 5. There exists a protocol that GUC-realizes Fcom given access to
Ḡacrs. Party corruptions can be adaptive (and in the non-erasure model), as long
as they are PID-wise.

Finally, we note that a GUC secure realization of Fcom is indeed sufficient to
GUC-realize any “well-formed” multi-party functionality. This may be accom-
plished by first using Fcom to realize Fzk (as in [17]), and then using Fzk to
realize the “one-to-many” Zero-Knowledge functionality, F1:M

zk (via the tech-
nique of [29]). The protocol compiler from [17] can then be used to yield a
UC-secure realization of any well-formed multi-party functionality in the F1:M

zk -
hybrid model, without using any shared state (thus it is also a GUC-secure
realization by Corollary 1).

5 GUC-Realizing Fcom Using the Ḡacrs Global Setup

We now describe the construction of a protocol satisfying the conditions of The-
orem 5, above. When combined with the compiler from [17], such a fully simulat-
able realization of Fcom yields a fully simulatable realization of any well-formed
two-party or multi-party functionality. Furthermore, we show that, in addition to
requiring only the more minimal Ḡacrs setup, our protocol achieves significantly
stronger properties than the fully simulatable protocol from [5] realized in the
Ḡkrk model. (Of course, our protocol can also be trivially modified for use in the
Ḡkrk model, where it will enjoy the same strengthened security guarantees.)

Firstly, our protocol realizing Fcom remains secure even in the presence of
adaptive corruptions (whereas the protocol of [5] does not). Intuitively, adaptive
security seems to be difficult to attain in either the Ḡkrk or Ḡacrs models, since
an adaptive adversary is eventually able to learn nearly all secrets in the system
(save only for the random coins of the trusted party), yet the simulator must
make use of these secrets. Our protocol essentially skirts this difficulty by using
some additional interactivity. Remarkably, the same technique also enables it
to maintain the security of past executions even when the trusted party imple-
menting Ḡacrs is later corrupted (revealing the random coins used to generate
the CRS, leaving the overall system with no secrets at all)! That is, our proto-
col guarantees that past transcripts of protocol interactions can never be used
3 In fact, the protocol we will describe in Section 5 can also support a “graceful failure”

approach similar to that outlined in [5], in the scenario where protocol participants
do not mutually trust any single authority. That is, by using suitable “graceful” tools
(in the case of our protocol, a “graceful” IBTC) , we can ensure full GUC security if
trustworthy authorities are used by all parties, and ordinary stand-alone security for
party P in the case where only party P ’s authority is trustworthy (even if party P ’s
own authority is made completely unavailable after publishing its reference string,
and/or is later corrupted subsequent to the completion of the protocol).
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to compromise the security or deniability of honest parties even if the trusted
party is later corrupted. Security is only lost when the trusted party acts mali-
ciously prior to, or during protocol execution. This kind of “forward security”
with respect to the trusted party further minimizes the trust assumptions re-
quired to realize Ḡacrs in the real-world. For instance, an adversary cannot later
coerce the trusted party into breaking the security of an honest party after the
completion of the protocol. Such forward security cannot be achieved using the
protocol of [5] since knowledge of the secret key allows “extraction” from past
commitments, breaking privacy. Similarly, the protocol of [17] also loses privacy
of past transcripts if the trusted party implementing the CRS setup later reveals
a trapdoor.

5.1 High-Level Description of the Protocol

Our protocol for realizing Fcom in the Ḡacrs shared hybrid model, which we
call Protocol UAIBC (for UC Adaptive Identity-Based Commitment), relies on
two new techniques. First, we construct an identity-based trapdoor commitment
(IBTC) which enjoys adaptive security. Then we provide a general transforma-
tion from any IBTC into a protocol that securely implements Fcom.

Constructing IBTC. In the setting of IBTC a single “master-key” is made
public. Additionally, all parties can obtain a private-key that is associated to
their party identifier. (Note that this setting corresponds exactly to the inter-
face of Ḡacrs.) Intuitively, an IBTC is a commitment scheme with the additional
property that a committer who knows the receiver’s secret-key can equivocate
commitments (i.e., it can open up commitments to any value, breaking the bind-
ing property). Furthermore, an adversary that obtains the secret-keys of multiple
parties still should not be able to violate the binding property of commitments
sent to parties for which it has not obtained the secret-key.

Constructions of IBTCs were previously known in the Random Oracle Model
[2,32]. Here we provide a conceptually simple approach to constructing an adap-
tively secure IBTC from any one-way function, in the standard model. Our
approach relies on the use of Σ-protocols [14], in an approach based on that
of [21] (and perhaps surprisingly can result in a very practical protocol). On
a very high-level (and very oversimplified) the general idea is as follows: 1) let
the master-key be a public-key for a signature scheme, 2) let the secret-key for
a party be a signature on its party identifier, and 3) construct a commitment
scheme where the reveal phase consists of a “proof” that either the revealed
value is consistent with the value committed to, or the committer knows a sig-
nature on the receiver’s party identifier (this “proof” must also “hide” which of
these two statements actually holds). We mention that the actual instantiation
of this idea is somewhat more involved, in order to guarantee adaptive security,
and we provide the full details of our construction in [13].

From IBTC to GUC Commitments. Recall that a protocol for realizing
Fcom must intuitively satisfy two properties (in addition to the traditional bind-
ing and hiding properties of any commitment scheme): 1) it must be equivocable,
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and 2) it must be extractable. We show how to transform any “equivocable” com-
mitment scheme (such as an IBTC) into a protocol for securely realizing Fcom

(for single bit commitments). Previously similar types of transformations have
appeared in the literature (e.g., [17], [7]). Unfortunately all such transformations
either require some additional non-global setup (and are thus not applicable in
out setting), or only work in the case of static security. We now turn our focus to
the protocol UAIBC, which GUC-realizes the Fcom functionality via a novel trans-
formation of an IBTC from a mere equivocable commitment (in the standard
model), to an equivocable and extractable commitment secure against adap-
tive corruptions in the GUC-security model. We remark that our transformation
technique can be employed by substituting any merely equivocable commitment
scheme (such as standard public key based trapdoor commitments) in place of
the IBTC in our protocol, and will yield a scheme that is both equivocable and
extractable, a general approach that may prove useful in many other contexts.

On a high-level, protocol UAIBC proceeds as follows. The committer Pi and
receiver Pj first perform a coin-tossing to generate a public-key K for a dense
crypto-system. This coin-tossing requires the receiver to use an IBTC, and has

Step # Pi(b) Pj

Commit

(1)
commit,sid,Pi,Pj ��

(2)
ck�� k1←r{0, 1}λ

(ck, dk) = Com(Pi; k1)

(3) k2 ←r {0, 1}λ
k2 ��

(4)
dk�� K = k1 ⊕ k2

(5)

k′
1 = Open(Pi; ck, dk)

K = k′
1 ⊕ k2

(c, d) = Com(Pj ; b)
if b = 0 e = EK(r; d)
if b = 1 e = random

c, e ��

Reveal

(1&2) if b = 0
if b = 1

b=0, d, r ��
b=1, d ��

if b = 0 EK(r; d)
?
=e

Open(Pj ; c, d)
?
=b

Fig. 7. Operation of Protocol UAIBC, with party Pi committing bit b to party Pj . Note
that Com and Open are operations for an IBTC (the first input is the identity of the
recipient), and EK is a Dense OT-PRC secure encryption using key K (the first input
is the random coins fed to the encryption operation, and the second is the plaintext).
Steps 2 to 4 of the Commit phase are essentially a coin-tossing protocol, whereas the
subsequent steps are similar to the protocol of [17].
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the property that if the committer is corrupted, the outcome of the coin-tossing
can be set to any value. After a completed coin-tossing, the committer commits
to a single bit b using an IBTC (let c denote this commitment), and additionally
sends an auxiliary string e: e is either a random string in case b = 1, and an
encryption to the decommitment information of c if b = 0. (We here require that
the encryption scheme used has pseudo-random ciphertexts.) In the reveal phase,
the committer is required to provide correct decommitment information for c,
and additionally reveal the value encrypted in e in case b = 0. We graphically
illustrate the operation of this protocol in Figure 7. In the full version of this
work [13], we prove that UAIBC GUC-realizes the Fcom ideal functionality in a
fully simulatable manner (even for adaptive adversaries in the non-erasure set-
ting), and in addition features the aforementioned “forward security” property.
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Abstract. Parallel repetition is well known to reduce the error prob-
ability at an exponential rate for single- and multi-prover interactive
proofs.

Bellare, Impagliazzo and Naor (1997) show that this is also true
for protocols where the soundness only holds against computationally
bounded provers (e.g. interactive arguments) if the protocol has at most
three rounds.

On the other hand, for four rounds they give a protocol where this is
no longer the case: the error probability does not decrease below some
constant even if the protocol is repeated a polynomial number of times.
Unfortunately, this protocol is not very convincing as the communica-
tion complexity of each instance of the protocol grows linearly with the
number of repetitions, and for such protocols the error does not even
decrease for some types of interactive proofs. Noticing this, Bellare et al.
construct (a quite artificial) oracle relative to which a four round pro-
tocol exists whose communication complexity does not depend on the
number of parallel repetitions. This shows that there is no “black-box”
error reduction theorem for four round protocols.

In this paper we give the first computationally sound protocol where
k-fold parallel repetition does not decrease the error probability below
some constant for any polynomial k (and where the communication com-
plexity does not depend on k). The protocol has eight rounds and uses
the universal arguments of Barak and Goldreich (2001). We also give
another four round protocol relative to an oracle, unlike the artificial
oracle of Bellare et al., we just need a generic group. This group can
then potentially be instantiated with some real group satisfying some
well defined hardness assumptions (we do not know of any candidate for
such a group at the moment).

1 Introduction

Interactive Proofs. In a (single prover) interactive proof a prover P tries
to convince a computationally bounded verifier V that their common input x
is in a language L. The soundness of such a protocol is an upper bound on the
error probability of V , i.e. the probability that V accepts P ’s claim, even though
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x �∈ L. In order to lower the error probability one can repeat the interactive proof
k times, where V accepts the claim if it accepts in all k runs. The protocol can
be repeated either sequentially, here V and P start the ith run of the protocol
only after finishing the (i − 1)th, or in parallel. Although the computational
and communication complexity of parallel and sequential repetition is the same,
parallel repetition has the big advantage of not increasing the round complexity.
For single prover interactive proofs, sequential and parallel repetition reduce the
error at an exponential rate: if a protocol with soundness ε is repeated k times
sequentially or in parallel, the error probability drops to εk.

In general, parallel repetition is more problematic than sequential repetition.
For example: parallel repetition does not preserve the zero-knowledge property
of a protocol [8], and there are two-prover proofs where running the proof twice
in parallel does not decrease the error at all [6]. On the positive side, Raz [12]
shows that k-fold parallel repetition of a two-prover two-round proof system
with soundness ε does decrease the error to εαk where α > 0 is some constant
depending only on the proof system.

Computational Soundness. Interactive arguments are defined like interac-
tive proofs, but where the soundness of the protocol only holds against compu-
tationally bounded provers. Damg̊ard and Pfitzmann [4] show that sequential
repetition lowers the error probability of arguments at an exponential rate.

Bellare et al. [2] show that parallel repetition reduces the error of computa-
tionally sound protocols with three rounds or less at an exponential rate. On the
negative side, they give, for any k, a four round protocol where k-fold parallel
repetition does not decrease the error at all. The communication complexity of
this protocol is linear in k, which leaves open the possibility that parallel rep-
etition does reduce the error if the communication complexity is not allowed
to depend on the number of repetitions. This is a possibility one should con-
sider, as the before-mentioned constant α in Raz’s theorem is inverse in the
communication complexity of the protocol, and this dependence is necessary [7].
So for protocols where the communication complexity grows linearly in k, par-
allel repetition does not imply error reduction at all for two-prover two-round
proofs. Observing that the four-round protocol of Bellare et al. can be restated
as a two-round two-prover protocol (without loosing the property that parallel
repetition does not decrease the error), makes the possibility that unbounded
communication complexity is necessary here even more likely.

Noticing this possibility, Bellare et al. propose another four-round protocol
with fixed communication complexity, which has the property that relative to
an oracle repeating the protocol any polynomial number of times in parallel,
does not decrease the error. This shows that there is no “black-box” error re-
duction theorem for this protocol. Bellare et al. see this result as evidence that
parallel repetition does not decrease the error of computationally sound proto-
cols. Another interpretation of this result could be that parallel repetition does
always reduce the error, and the reason why there’s no proof of this is that such
a proof would require non black-box techniques. We show that under standard
assumptions the interpretation of Bellare et al. is indeed correct for protocols
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with eight rounds or more, and we give much stronger evidence that this is also
true for protocols with four rounds.

The Verifier’s Secret. Except for Section 3, throughout we consider proto-
cols where the verifier holds no secret and thus its strategy is efficiently com-
putable. The reason is that otherwise there are trivial protocols where parallel
repetition does not decrease the error as observed by Bellare et al. [2], we extend
their observation in Section 3.

1.1 Our Contribution

For n a security parameter, we present the first computationally sound protocol
where k(n)-fold parallel repetition does not decrease the error for any polynomial
k(·). To achieve this we start with the protocol of Bellare et al. whose k-fold
parallel repetition does not decrease the error, but we modify it such that k is
chosen by the prover (in particular, if the prover has to run the protocol k(n)
times in parallel, he can set k = k(n)). As in this protocol the the length of the
second message from the prover to the verifier is linear in k, we must allow a
verifier Vsuper which runs in super-polynomial time, in order for the protocol to
work for any polynomial k(·). We then transform this protocol into one with a
fixed polynomial time verifier Vpoly using the universal arguments due to Barak
and Goldreich [1]. Loosely speaking, the long message is replaced by a hash
value, which then is followed by an interactive proof to Vpoly which shows that
Vsuper would have accepted the message. We get the following theorem.

Theorem 1. There exists an overwhelmingly complete eight round protocol with
error probability 3/4 such that k(·)-fold parallel repetition does not reduce its er-
ror probability below 1/17 for any polynomially bounded k(·), under the assump-
tion that collision-free family of hash functions and CCA2-secure cryptosystem
with respect to superpolynomial adversaries exists.

Unfortunately, the use of an universal argument increases the round complexity
of the protocol from the optimal four to eight.

In Section 5 we propose a new four round protocol relative to an oracle, where
k(n)-fold parallel repetition does not decrease the error for any polynomial k(·).
Unlike the artificial oracle used by Bellare et al., we only need a generic group
which potentially can be instantiated with a concrete group satisfying some
clearly defined hardness assumptions (basically, it must be hard to compute the
inverse of a random element).

More precisely, let p ∈ [2n, 2n+1] be a randomly chosen prime, let φ′ : Zp →
[0, 2K − 1] be a randomly chosen injection and φ(x) def= φ′(x mod p) its natural
extension to the whole of Z. Then denote by O the oracle defined by O(x) = φ(x)
and O(X, Y ) = φ(φ−1(X)+φ−1(Y )) if X, Y ∈ φ(Zp) and ⊥ otherwise. We prove
the following theorem.
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Theorem 2. There exists an overwhelmingly complete four round protocol rel-
ative the oracle O with error probability 1/2+negl(n) such that k(·)-fold parallel
repetition does not reduce its error probability below 1/2 + negl(n) for any poly-
nomially bounded k(·).

2 Preliminaries

2.1 Notation

We use Z to denote the integers and Zp to denote the integers modulo p. We
use log to denote the logarithm in base two. We denote by TM the set of Tur-
ing machines. We denote by PT and PT∗ the set of uniform and non-uniform
polynomial time Turing machines respectively. The corresponding sets of oracle
machines are denoted by adding a superscript, e.g. PTO. We use n to denote the
security parameter, and say that a function ε(n) is negligible if for every constant
c there exists a constant n0 such that ε(n) < n−c for n > n0. We use negl(n) to
denote a fixed but unspecified non-negative negligible function. A function f(n)
is overwhelming if 1 − f(n) is negligible. If ν : N → N is a function we denote by
PT∗ν the set of non-uniform Turing machines that executes in time ν(n)p(n) for
some polynomial p. We say that ν is polynomial-time computable if there exists
a Turing machine Mν that on input x ∈ {0, 1}n outputs ν(x) using at most p(n)
steps, for some polynomial p.

We say that a family of hash functions is PT∗ν-collision-free if it is collision-
free with respect to adversaries in PT∗ν . Similarly, we say that a cryptosystem is
PT∗ν -CCA2-secure, if it is CCA2-secure with respect to adversaries in PT∗ν .

We denote by 〈V (x), P (y)〉(z) the output of V on private input x and common
input z after interacting with P on private input y and common input z. We
denote by kV the sequential repetition of k copies of V and we denote by V k the
parallel repetition of k copies of V . In both cases identical private and common
inputs are given to each instance and the combined verifier accepts if and only
if all instances accept.

2.2 Computationally Sound Protocols

We consider the setting introduced in [2]. Two parties, a prover P and a verifier
V , are communicating. They are both given an initial context λ ∈ {0, 1}∗ and
the length of this string serves as the security parameter. The initial context
could be the output of another protocol or some string in a set-up assumption.
Since we do not mention λ explicitly below, we replace it by the security pa-
rameter in unary representation 1n, but our results hold in the more general
setting.

Both parties are also given a common input x which is generated together with
some secret information w by a probabilistic polynomial time instance generator
I that is given input 1n. The secret information w is given to P at the start of
the protocol.
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2.3 Universal Arguments

Barak and Goldreich [1] introduce the notion of universal arguments as a special
variant of Micali’s computationally sound proofs [9]. They define the relation
RU as the set of pairs ((M, x, t), w) such that the Turing machine M outputs 1
on input (x, w) within t steps. Denote by TM (x, w) the number of steps made
by M on input (x, w). A key property of their definition is that t is given in
binary. We are mainly interested in two properties of universal arguments: (1)
the complexity of the verifier depends only on the size of the common input and
not on the size of the witness, and (2) the witness used by the prover can be
extracted in a weak sense. The actual definition given by Barak and Goldreich
[1] is duplicated below.

Definition 1 (Universal Argument). A universal-argument system is a pair
of strategies, denoted (P, V ) that satisfies the following properties:

1. Efficient verification. There exists a polynomial p such that for any y =
(M, x, t), the total time spent by the probabilistic verifier strategy V , on com-
mon input y, is at most p(|y|). (In particular, all messages exchanged in the
protocol have length smaller than p(|y|).)

2. Completeness by a relatively efficient prover. For every ((M, x, t), w)
in RU we have Pr[(P (w), V )(M, x, t) = 1] = 1. Furthermore, there exists
a polynomial p such that the total time spent by P (w) on common input
(M, x, t) is at most p(TM (x, w)) ≤ p(t).

3. Computational soundness. For every polynomial-size circuit family
{P ∗n}n∈N, and every (M, x, t) ∈ {0, 1}n \RU Pr[(P ∗n , V )(M, x, t) = 1] < μ(n)
for some negligible function μ(n).

4. Weak proof of knowledge. For every positive polynomial p there exists
a positive polynomial p′ and a probabilistic polynomial-time oracle machine
E such that for every polynomial-size circuit family {P ∗n}n∈N, and every
sufficiently long y = (M, x, t) ∈ {0, 1}∗, if Pr[(P ∗n , V )(y) = 1] > 1

p(|y|) , then

Pr
r

[∃w ∩ {0, 1}t ∀i ∈ {1, . . . , t} : (x, w) ∈ RU ∧ E
P ∗

n
r (y, i) = wi] >

1
p′(|y|) .

Theorem 3 ([1]). If there exists a family of collision-free hash functions, then
there exists universal arguments with 4 rounds.

3 When the Verifier Holds a Secret

In this section we show that parallel repetition does not decrease the error prob-
ability of computationally sound protocols when the verifier gets any private
information.

Bellare et al. [2] give the following simple example of such a protocol: The
common input is an RSA modulus N = pq and the secret of the verifier is the
factors p and q. The verifier flips a coin. If it is heads it gives the factors to
the prover and otherwise not. It accepts if the prover’s reply is (p, q). An even
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simpler example is the following one-round protocol: The verifier has a secret bit
b, and accepts if the message from the prover is b.

Clearly, parallel repetition does not decrease the error probability for the two
protocols above (in fact, for the first protocol it increases), but neither does
sequential repetition. This leaves open the interesting possibility that parallel
repetition does always decrease the error probability of computationally sound
protocols where the verifier can hold a secret, for all protocols where sequential
repetition does reduce the error. Below we show that this is not the case by
giving a natural (four-round) protocol that when repeated sequentially lowers
the error probability, but if repeated in parallel gives error probability essentially
one. Here CS = (Kg, Enc, Dec) denotes a public key cryptosystem.

Protocol 1 (Don’t Do In Parallel (Verifier Holds a Secret))
Common input: Public key pk .
Private input to both prover and verifier: Private key sk.

1. V chooses b ∈ {0, 1} randomly, computes B = Encpk (b), and hands B to P .
2. P chooses c ∈ {0, 1} randomly, computes C = Encpk (c), and hands C to V .
3. If C �= B, then V hands c = Decsk (C) to P and otherwise ⊥.
4. P computes b′ = Decsk (B) and hands b′ to V .
5. V accepts if and only if b = b′.

The next two propositions are proved in Appendix A for completeness.

Proposition 1 (Single Instance). The protocol is overwhelmingly complete
and has 4 rounds. If the cryptosystem CS is CCA2-secure, then for every prover
P ∗ ∈ PT∗: Pr(pk ,sk),s[〈Vs(sk , pk), P ∗(pk )〉 = 1] < 1

2 + negl(n).

Proposition 2 (Sequential Repetition). If the cryptosystem CS is CCA2-
secure, then for every polynomially bounded k(·) and every prover P ∗ ∈ PT∗:
Pr(pk ,sk),s[〈kVs(sk , pk ), P ∗(pk )〉 = 1] < (1

2 )k + negl(n).

Proposition 3 (Parallel Repetition). For every polynomially bounded k(·)
there exists a prover P ∗ ∈ PT such that Pr(pk ,sk),s[〈V k

s (sk , pk), P ∗(pk )〉 = 1] ≥
1 − negl(n).

Proof. The prover P ∗ does the following. It waits for Bi from Vi. Then it defines
Ci = Bi+1 mod k and hands it to Vi. With overwhelming probability Ci �= Bi,
so it is given b′i+1 mod k = Decsk (Ci) from Vi. Then it returns b′i to Vi. Thus,
with overwhelming probability bi = b′i, each Vi accepts, and V k accepts with
overwhelming probability as well, since k is polynomial. ��

4 When the Verifier Holds No Secret

From now on we consider computationally sound protocols where the verifier
holds no secret. In this section we give an eight-round computationally sound
protocol where parallel repetition does not decrease the error.
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The Example of Bellare et al. Before we give our counter example we recall
the counter example given by Bellare et al. [2] on which our example is based.
The idea of the protocol is to explicitly allow the prover to make several instances
of it dependent if run in parallel.

Protocol 2 (Don’t Do In k-Parallel, [2])
Common input: Public key pk .
Private input to prover: Private key sk.

1. V chooses b ∈ {0, 1} and r ∈ {0, 1}n randomly, computes B = Encpk (b, r),
and sends B to P .

2. P computes b = Decsk (B). Then it chooses b′i ∈ {0, 1} and r′i ∈ {0, 1}n for
i = 1, . . . , k − 1 randomly under the restriction that b =

⊕k−1
i=1 b′i, computes

Ci = Encpk (b′i, r
′
i), and hands (C1, . . . , Ck−1) to V .

3. V hands (b, r) to P .
4. P hands ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)) to V .

5. V accepts if Ci = Encpk (b′i, r
′
i), B �= Ci, and

⊕k−1
i=1 b′i = b.

We have modified the protocol slightly to be more consistent with our counter
example below. In the original the test is b �=

⊕k−1
i=1 b′i and this is needed if

given a ciphertext the cryptosystem allows construction of a new ciphertext of
an identical plaintext. If we require that the cryptosystem used in the protocol
is CCA2-secure this is not an issue.

Intuitively, if a single instance of the protocol is run, then a prover without
access to sk can only convince the honest verifier with probability 1/2, since it
must commit itself to a guess

⊕k−1
i=1 b′i of b before receiving (b, r) and the cryp-

tosystem is non-malleable (recall that CCA2-security implies non-malleability).
On the other hand, if k instances of the protocol are run in parallel, then the
prover can send the tuple (Ci,1, . . . , Ci,k−1) = (B1, . . . , Bi−1, Bi+1, . . . , Bk) to Vi

and then either all verifier instances accept or all verifier instances fail, the first
event occurring with probability at least 1/2. If there are fewer than k instances
the remaining Ci’s can be defined as ciphertexts of zero.

Why the Example is Unsatisfactory. The example requires that the complexity
of the verifier in each instance grows linearly with the number of instances.
In other words, the example does not imply that k′-parallel repetition of the
protocol for k′ > k does not lower the error probability.

This deficiency motivated Bellare et al. [2] to consider if there exists any
analytical method, i.e, an error-reduction procedure, whereby one can show that
the error probability is lowered by the parallel repetition of a protocol. They
prove that there exists no such black-box error-reduction procedure. Although
we agree that this result is a strong indication that there exists no error-reduction
procedure at all, it does not preclude the possibility of a non-black-box error-
reduction procedure.



Parallel Repetition of Computationally Sound Protocols Revisited 93

4.1 Our Counter Example

The idea of our counter example is to reduce the complexity of the verifier by
making the long messages submitted by the prover in Bellare et al’s protocol
implicit. More precisely, we let the prover choose k on the fly, and hand a hash
value of the list of ciphertext (C1, . . . , Ck−1) instead of sending them explicitly.
It also sends a hash value of (b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1) instead of sending them ex-

plicitly. The problem with this is of course that now the verifier can not perform
the original verification. To solve this problem without increasing the complex-
ity of any instance of the verifier the prover proves using universal arguments
[1] that it knows correct preimages of the hash values. For technical reasons we
replace addition modulo 2 by addition modulo 17. The reader may think of 17
as some constant to be defined in the proof such that the theorem holds.

We assume that there exists a cryptosystem that is chosen ciphertext secure
in the sense of Rackoff and Simon [11] against adversaries in PT∗ν where ν(·)
is a polynomially computable superpolynomial function (the reader can think
of ν(n) as nlog n). It should be possible to construct such a scheme from any
family of trap-door permutations secure against adversaries in PT∗ν following
Dolev, Dwork, and Naor [5] or Sahai [13], but we are not aware of any explicit
proof of this. We also assume the existence of a family of hash functions that is
collision-free against adversaries in PT∗ν .

Denote by Rh the relation consisting of pairs ((B, H, h, k), (C1, . . . , Ck−1))
such that h = H(C1, . . . , Ck−1) and B �= Ci for i = 1, . . . , k − 1. Denote by
Ra the relation consisting of pairs ((pk , H, h, b, a, k), ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)))

such that b = −
∑k−1

i=1 b′i mod 17, a = H((b′1, r′1), . . . , (b′k−1, r
′
k−1)), and

h = H(Encpk (b′1, r
′
1), . . . , Encpk (b′k−1, r

′
k−1)).

Denote by MRh
a canonical Turing machine that decides Rh in polynomial time

in n and k and correspondingly for MRa .

Protocol 3 (Don’t Do In Parallel)
Common input: Public key pk and collision-free hash function H.
Private input to prover: Private key sk.

1. V chooses b ∈ Z17 and r ∈ {0, 1}n randomly, computes B = Encpk (b, r), and
sends B to P .

2. P computes b′ = Decsk (B). Then it chooses r′ ∈ {0, 1}n randomly, computes
C = Encpk (b′, r′) and h = H(C), and hands (h, k, th) to V , where k = 1 and
th = TMRh

((B, H, h, k), C).
3. If k > ν(n) or th > ν(n), then V outputs 0. Otherwise P and V execute

a universal argument on common input yh = (MRh
, (B, H, h, k), th) and

private input wh = C to the prover.
4. If V accepts the universal argument, then it hands (b, r) to P . Otherwise it

outputs 0.
5. P computes a = H(b′, r′) and ta = TMRa

((pk , H, h, b, a, k), (b′, r′)) and
hands (a, ta) to V .
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6. If ta > ν(n), then V outputs 0. Otherwise P and V execute a universal
argument on common input ya = (MRa , (pk , H, h, b, a, k), ta) and private
input wa = (b′, r′).

7. If V accepts the universal argument it outputs 1 and otherwise 0.

We stress that k, th, and ta are encoded in binary. Thus, even though the ad-
versary can choose th and ta larger than any polynomial (as they only have to
be smaller than the superpolynomial ν(n)), the complexity of the verifier can
still be bounded by some fixed polynomial in n as it is polynomial only in n
and log(ν(n)). This means that also k can be larger than any polynomial. This
freedom is needed since we do not want to put any fixed polynomial bound on
the “width” of the parallel repetition. On the other hand this is what forces
us to consider superpolynomial adversaries. The problem is that when reducing
soundness of the protocol to breaking the cryptosystem or the collision-freeness
of the hash function we need to extract the ciphertexts C1, . . . , Ck−1, but we
can not guarantee that a polynomial time adversary can not use implicit such
values, which could give a superpolynomial witness during extraction.

Proposition 4 (Single Instance). The protocol is overwhelmingly complete
and has 8 rounds. Let ν : N → N be a fixed superpolynomial and polynomial-time
computable function, let the hash function be PT∗ν-collision-free, and let CS be
PT∗ν-CCA2-secure. Then for every prover P ∗ ∈ PT∗ν for all sufficiently large n:
Pr(pk ,sk),s[〈Vs(pk ), P ∗(pk )〉 = 1] < 3

4 .

The relation between the constants 3/4 and 17 is essentially that in the reduction
we need to “split” the success probability of the adversary twice, giving a factor
1/8, and we need to extract, giving a factor (3/4)2. Thus, the resulting adversary
has success probability at least 1/16, which is bigger than 1/17.

Before we prove the above theorem we show that its error probability does
not decrease if repeated in parallel. We stress that each instance Vi of the verifier
V k has the same complexity both in terms of computation and communication
independently of k.

Proposition 5 (Parallel Repetition). For every polynomially bounded k(·)
there is a prover P ∗ ∈ PT such that Pr(pk ,sk),s[〈V k

s (pk ), P ∗(pk )〉 = 1] > 1
17 −

negl(n).

Proof. We define the prover P ∗ interacting with V k, i.e., the parallel repetition
of k instances of V , as follows. Given the cryptotexts Bi from all Vi it defines
(Ci,1, . . . , Ci,k−1) = (B1, . . . , Bi−1, Bi+1 . . . , Bk). Then it executes the first uni-
versal argument honestly. When it gets (bi, ri) from Vi it defines

((b′i,1, r
′
i,1), . . . , (b

′
i,k−1, r

′
i,k−1))

= ((b1, r1), . . . , (bi−1, ri−1), (bi+1, ri+1), . . . , (bk, rk)) .

If
∑k

i=1 bi �= 0 mod 17 it fails and stops. Otherwise it executes the rest of the
protocol honestly. With probability 1

17 we have
∑k

i=1 bi = 0 mod 17 and the
probability that Bi = Bj for some i �= j is negligible. Thus, it follows that
the prover succeeds at least with probability 1

17 − negl(n). ��
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Proof (Proposition 4). Completeness follows by inspection. Although the naive
implementation of the protocol has more than eight rounds, it is easy to see that
one can combine the rounds of the universal argument with the main protocol
and achieve eight rounds.
Suppose there exists a prover P ∗ ∈ PT∗ν with Pr(pk ,sk),s[〈Vs(pk ), P ∗(pk )〉 = 1] =
δ ≥ 3

4 for n in some infinite index set N . Consider the following experiment. The
adversary is given a public key pk and a challenge ciphertext B = Encpk (b, r)
where b is chosen randomly in Z17. Then it may ask any decryption queries except
B and then output a guess b′ of b. A simple averaging argument implies that if
| Pr[b′ = b] − 1/17| is non-negligible, then the cryptosystem is not CCA2-secure.

The CCA2-Adversary. We define an adversary A ∈ PT∗ν against the above
experiment run with the cryptosystem CS as follows. It accepts a public key pk
and a challenge B = Encpk (b, r), where b is chosen randomly in Z17. Then it
generates a collision-free hash function H and simulates the honest verifier V
except that it instructs it to use B instead of generating this ciphertext as in the
protocol. If th is too large and V outputs 0, then A outputs 0. The simulation
proceeds until the first universal argument has been executed. Then A invokes
the knowledge extractors of the universal argument to extract C1, . . . , Ck−1 such
that ((B, H, h, k), (C1, . . . , Ck−1)) ∈ Rh. More precisely, it tries a random r
and computes (C1, . . . , Ck−1) = (EP ∗

r (yh, 1), . . . , EP ∗

r (yh, k − 1)), where yh =
(MRh

, (B, H, h, k), th) and EP ∗

r is the extraction algorithm guaranteed by the
weak proof of knowledge property of universal arguments. If wh = (C1, . . . , Ck−1)
does not satisfy (yh, wh) ∈ RU it tries again with a fresh r. This procedure is
repeated at most gh(n) times, where gh(n) is a polynomial to be determined in
the analysis below. If extraction fails it outputs 0. Otherwise it asks its decryption
oracle for b′i = Decsk (Ci) for i = 1, . . . , k − 1 and outputs as its guess of b the
value b′ = −

∑k−1
i=1 b′i mod 17.

We want to show that the CCA2-security of CS is broken by A, since this contra-
dicts the security of CS. To do that we must argue that extraction succeeds from
the first universal argument, but this is not sufficient. The problem is that it is
conceivable that the adversary uses one set of ciphertext as a preimage of h in the
first universal argument and another set in the second. Intuitively, the collision-
freeness of the hash function prohibits this, but we must prove that this is so.

Divide the randomness s used by the verifier into three parts: sB is used to
form B, sh is used in the first universal argument, and sa is used in the second
universal argument. Denote by Sgood the set of tuples (H, pk , sk , sB) such that

Pr
sh,sa

[〈V(sB ,sh,sa)(H, pk ), P ∗(H, pk )〉 = 1] ≥ δ/2 .

An averaging argument implies Pr[(H, pk , sk , sB) ∈ Sgood ] ≥ δ/2. Note that the
common input yh = (MRh

, (B, H, h, k), th) is defined by (H, pk , sk , sB).

Claim 1. For every f > 0 there is a polynomial gh(n) such that the probability
that A fails to extract wh such that (yh, wh) ∈ RU on a common input yh induced
by (H, pk , sk , sB) ∈ Sgood is bounded by δ2−f .
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Proof. From the weak proof of knowledge property of a universal argument fol-
lows that there exists a positive polynomial p′(·) such that

Pr
r

[∃wh ∩{0, 1}t ∀i ∈ {1, . . . , t} : (yh, wh) ∈ RU ∧E
P ∗

n
r (yh, i) = wh,i] >

1
p′(|yh|) .

for common inputs yh induced by (H, pk , sk , sB) ∈ Sgood . Thus, for such common
inputs the expected number of repetitions needed to extract a witness is bounded
by p′(|yh|). If we define gh(n) = (2f/δ)p′(|yh|) it follows from Markov’s inequality
that extraction fails with probability bounded by δ2−f for such inputs. ��

We conclude from the union bound that the probability that (H, pk , sk , sB) ∈
Sgood and A succeeds to extract wh such that (yh, wh) ∈ RU is at least (1/2 −
2−f)δ. Then we set c1 = 1/2 − 2−f and note that we by choosing f > 0 appro-
priately may set c1 < 1/2 arbitrarily close to 1/2.

A Hypothetical Machine. Unfortunately, the above claim says nothing about the
probability that the negative sum (modulo 17) of the plaintexts of the extracted
C1, . . . , Ck−1 equal the plaintext of B. Intuitively, the problem is that the prover
could use one H-preimage of h in the first universal argument and another one in
the second, but this should of course never happen due to the collision-freeness
of H .

Denote by AC the machine that simulates A until C1, . . . , Ck−1 are extracted
from the first universal argument, or until it outputs 0. Then it chooses sa

randomly and continues the simulation of the interaction of V and P ∗ until
P ∗ hands (a, ta) to V . Then it repeatedly, at most ga(n) times, invokes the
extractors of the second universal argument with fresh randomness in the hope
to extract wa = ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)) such that (ya, wa) ∈ RU , and then

outputs (wh, wa). Otherwise it outputs 0.
Denote by S′good the set of tuples (H, pk , sk , sB, sh) such that (H, pk , sk , sB) ∈

Sgood and
Pr
sa

[〈V(sB ,sh,sa)(H, pk ), P ∗(H, pk )〉 = 1] ≥ δ/4 .

An averaging argument implies that

Pr
sh

[(H, pk , sk , sB, sh) ∈ S′good | (H, pk , sk , sB) ∈ Sgood ] ≥ δ/4 .

Claim 2. For every f ′ > 0 there is a polynomial ga(n) such that the probability
that AC fails to extract wa such that (ya, wa) ∈ RU on a common input ya

induced by (H, pk , sk , sB, sh) ∈ S′good is bounded by δ2−f ′
.

Proof. This follows mutatis mutandi from the proof of the previous claim. ��

We conclude that the probability that AC succeeds to extract wa where
(ya, wa) ∈ RU conditioned on (H, pk , sk , sB) ∈ Sgood is at least (1/4 − 2−f ′

)δ.
We define c2 = 1/4 − 2−f ′

and note that we by choosing f ′ > 0 appropriately
can set 0 < c2 < 1/4 arbitrarily close to 1/4.
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Claim 3. The probability that the output (wh, wa) contains a collision for H, i.e.,
it satisfies (C1, . . . , Ck−1) �= (Encpk (b′1, r

′
1), . . . , Encpk (b′k−1, r

′
k−1)), conditioned

on (H, pk , sk , sB) ∈ Sgood is negligible.

Proof. If this was not the case we could define A′C as the adversary that takes
a description H of a hash function as input and simply simulates AC and out-
puts (C1, . . . , Ck−1) and (Encpk (b′1, r

′
1), . . . , Encpk (b′k−1, r

′
k−1)). It would break

the collision-freeness of H with non-negligible probability. ��

Conclusion of Proof of Proposition. From our claims follow that the probability
that AC outputs (wh, wa) such that

(C1, . . . , Ck−1) = (Encpk (b′1, r
′
1), . . . , Encpk (b′k−1, r

′
k−1))

and b = −
∑k−1

i=1 b′i mod 17 is at least (c1δ)(c2δ) − negl(n) ≥ c3δ
2 > 1

16 , where
the constant 0 < c3 < 1/8 may be chosen arbitrarily close to 1/8. This concludes
the proof. ��

5 Parallel Repetition Relative to a Generic Group

In the previous section we gave – under standard assumptions – an eight-round
protocol with constant communication complexity where parallel repetitions
does not decrease the error. In this section we give such a protocol with op-
timal four rounds relative to a generic group oracle.

5.1 The Model

A generic group is a group where the group elements are encoded by random
strings. Access to the encoding and the group operation are provided by a public
oracle O. This model was put forward by Nechaev [10] and extended by Shoup
[14] to prove lower bounds on the running time of the best generic algorithms
to solve the discrete logarithm and related problems. An algorithm is called
generic, if it does not use the representation of the group elements, for example
the baby-step giant-step algorithm for the discrete logarithm problem is generic,
but index-calculus is not. Damg̊ard and Koprowski [3] extend this model to
groups of unknown order, our model is very similar to theirs, the main difference
is that our group oracle does not provide any efficient way to invert elements.1

For ease of notation we write N = 2n.
The distribution of the group oracle is defined as follows. A random prime p in

the range N < p < 2N and a random injection φ′ : Zp → [0, 2N − 1] are chosen.

1 There is no efficient generic algorithm to find the inverse of an element if a large
prime divides the (unknown) group order. In [3] the oracle explicitly provides the
operation of inverting elements, the reason is that [3] wanted to prove lower bounds
on the hardness of a problem in the RSA-group, where there exists an efficient
(non-generic) algorithm for inversion (Extended Euclid).
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Let φ(x) def= φ′(x mod p) denote the natural extension of φ′ to the whole of Z.
To find the encoding of an element the oracle is called with a single argument,
i.e., we define O(x) = φ(x). In addition to providing encodings, the oracle can
be called with two arguments from φ(Z) to find their product, i.e, we define
O(X, Y ) = φ(φ−1(X) + φ−1(Y )) if X, Y ∈ φ(Z) and ⊥ otherwise. As mentioned
above, unlike [3] our oracle does not provide the inverse operation φ(−x mod p)
from φ(x), in fact, for our proof it is necessary that computing φ(−x mod p)
given φ(x) is hard.

We will often have to sample a random element from the range of φ(Z),
unfortunately we cannot efficiently sample a uniformly random one, as we do
not know p. We thus use the following observation.

Observation 1. If x is uniformly distributed over [0, N2], then φ(x) is statisti-
cally close to the uniform distribution over φ(Z) for every O with N < p < 2N .

We use a polynomial time computable predicate τ : [0, 2N − 1] → {0, 1} such
that | PrX∈φ(Z)[τ(X) = 1]−1/2| is negligible. A simple way2 to construct such a
predicate is to set τ(x) = 1 ⇐⇒ x > N . Due to the random choice of φ it is not
hard to see that it has the required property with overwhelming probability over
the choice of φ. Below we assume that PrX∈φ(Z)[τ(X) = 1] = 1/2 to simplify the
exposition.

5.2 Our Counter Example

We present a protocol which can be seen as an interactive proof that the prover
P “knows” the group order p of the group oracle O. If P indeed knows p, he can
make the verifier V accept with probability 1.

Protocol 4 (Don’t Do In Parallel (Generic Group))
Common input: A predicate τ .
Private input to prover: A predicate τ and a group order p.

1. V O chooses x ∈ [0, N2] randomly and sends X = φ(x) to PO.
2. PO chooses any y ∈ [0, 2N − 1] which satisfies τ(φ(y)) = 1, computes Z =

φ(y − x), and sends Z to V O.
3. V O sends x to PO.
4. PO sends y to V O.
5. V O accepts if and only if φ(y − x) = Z and τ(φ(y)) = 1.

Note that if the prover computes the messages Z and y as shown in the
protocol, then the verifier accepts. In Step 2 the prover can compute φ(−x mod
p) = φ((p − 1)x) from X in polynomial time using his knowledge of p.

2 Here we are using the fact that the representation is random, i.e., our argument is not
purely generic. A simple way to avoid this is to use the predicate τ ′(x) = τ (PRFs(x))
for some pseudo-random function PRF and public seed s.
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Proposition 6 (Single Instance). The protocol is overwhelmingly complete
and has 4 rounds. For every prover PO,∗ ∈ TMO with total query complexity
polynomially bounded in n we have Pr[〈V O(τ), PO,∗(τ)〉 = 1] < 1

2 + negl(n),
where the probability is taken over O, τ , and the internal randomness of V O.

Before we prove the proposition above we show that parallel repetition fails to
reduce the error probability.

Proposition 7 (Parallel Repetition). For every polynomially bounded k(·)
there is a prover PO,∗ ∈ PTO such that Pr[〈(V O)k(τ), PO,∗(τ)〉 = 1] > 1

2 −
negl(n), where the probability is taken over O, τ , and the internal randomness
of V O.

Proof. The prover PO,∗ after receiving the messages Xi = φ(xi), 1 ≤ i ≤ k,
simply computes Zi = φ(

∑
l∈{1,...,k}\{i} xl). Then when it receives x1, . . . , xk

it computes y1 = . . . = yk =
∑k

l=1 xl. Note that Zi can be computed by re-
peated queries to O using only X1, . . . , Xk. By construction we have φ(yi −xi) =
φ(

∑k
l=1 xl −xi) = φ(

∑
l∈{1,...,k}\{i} xl) = Zi for i = 1, . . . , k. The distribution of

φ(y1) is statistically close to uniform, and thus τ(φ(y1)) = 1 with probability at
least 1/2 − negl(n). ��

Proof (Proposition 6). Let Q0 = X = φ(x) and for i > 0 we denote by Qi the
answer to the ith oracle query PO,∗ makes to O. We define Qi = {Q0, . . . , Qi}.
Without loss of generality we assume that the replies received by PO,∗ are either
of the form Qi = O(qi) = φ(qi) for some query qi ∈ Z or Qi = O(Qj , Qk) =
φ(φ−1(Qj), φ−1(Qk)) for j, k < i. Note that then each reply Qi is of the form
φ(ai + bix) where PO,∗ knows ai, bi ∈ Z.3 Denote by 	 = 	(n) the polynomial
number of oracle queries made by the prover. Without loss we assume that
(ai, bi) �= (aj , bj) for i �= j, and that Z ∈ Q�. The latter holds, since the proba-
bility that φ(y − x) = Z conditioned on Z �∈ Q� is easily bounded by 1/(N − 	).
We now prove two claims from which the proposition follows.

Claim 4 (Hard to find multiple of p). For any algorithm M ∈ TMO which makes
at most m−1 oracle queries, each of length at most m bits and where the output
is of length at most m bits, we have Pr[MO = v ∧ p | v] ∈ O

(
m2/N

)
(which is

negligible for a polynomially bounded m).

Proof. Denote by P(N) the set of primes in [N, 2N ], by the prime number
theorem |P(N)| = Θ(N/n).

The machine M can choose a sequence t1, t2, . . . , tm−1 of values in Z and
ask the oracle for T1, T2, . . . , Tm−1 where Ti = φ(ti). Moreover we allow M an
additional mth query which must be its output, i.e. v = tm. The ith oracle
query can be either of the form Ti = O(ti) or Ti = O(Tj , Tk) for j, k < i
(then ti = tj + tk). We can upper bound the size of any ti as log(ti) ≤ 2m as

3 Here “knows” means that one can efficiently extract ai, bi given the queries that
P O,∗ makes to O.
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follows: if the ith query is of the form O(ti) then log(ti) ≤ m (as no query can
be longer than m bits). If the query is of the form O(Tj , Tk), then log(ti) ≤
1 + max{log(tj), log(tk)}, so for any i ≤ m, log(ti) ≤ m + i ≤ 2m.

Let t =
∏m

i=1 ti. Then we have log(t) ≤
∑m

i=1 log(ti) ≤ 2m2. So at most
2m2/n primes from P(N) divide t, and thus also v = tm. The probability that
p is one of those primes is at most (2m2/n)/|P(N)| = Θ(m2/N). ��

The following claim is very similar to Theorem 1 in [14].

Claim 5 (x close to uniform). Let γ denote the view of the prover PO after step
2. Then with overwhelming probability x is statistically close to uniform (over
[0, N2]) given γ.

Proof. The view γ contains, for some s, the oracle answers Q0, . . . , Qs and (ai, bi)
for i = 1, . . . , s. In fact, we prove the slightly stronger statement where p is also
contained in γ. Recall that Qi = φ(ai + xbi) and note that since Q0 = φ(x) we
have a0 = 0, b0 = 1. Let a′i = ai mod p, b′i = bi mod p.

For (a′i, b
′
i) �= (a′j , b

′
j) we have Pr[Qi = Qj] ≤ 2/p as ai + bix = aj + bjx mod p

for at most one x in each interval t ≤ x ≤ t + p − 1. Thus by the union bound,
the probability that there is any nontrivial collision, i.e. Qi = Qj for some
(a′i, b

′
i) �= (a′j , b

′
j), is at most ε = s(s − 1)/p. So with overwhelming probability

1−ε there is no nontrivial collision, and conditioned on this event, x is uniformly
random over at least a 1 − ε fraction of [0, N2]. ��

We can now conclude the proof of the proposition, for this we must show that

Pr[φ(y − x) = Z ∧ τ(φ(y)) = 1] − 1/2 < negl(n) .

Let Z = φ(ai+bix) for some ai, bi. Then y = ai+(bi+1)x mod p when φ(y−x) =
Z. By Claim 4 we can assume that p � (bi +1). By Claim 5 x is close to uniformly
random for the prover at the point where he must choose ai, bi, thus ai + (bi +
1)x mod p is close to uniformly random over Zp (as bi+1 generates Zp additively).
This implies that Pr[τ(φ(y)) = 1] − 1/2 is negligible, since Pr[τ(φ(u)) = 1] is
negligibly close to 1/2 if u is chosen randomly in [0, N2]. ��
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A Omitted Proofs

Proof (Proposition 1). Completeness is clear and the number of rounds follow by
counting. Suppose the claim is false, i.e., there exists a prover P ∗ that succeeds
with probability at least 1/2 + n−c for n in some infinite index set N . Denote
by A the CCA2-adversary that proceeds as follows. It accepts a public key pk ,
hands the pair of messages (0, 1) to the experiment, and waits for a challenge
ciphertext B. Then it starts a simulation of the interaction between V and P ∗ on
the common input pk and using B. If P ∗ sends C �= B to the verifier it invokes
its decryption oracle to compute c = Decsk (C) and hands it back. Finally, it
outputs the reply b′ of P ∗ as its guess of the contents of B. It follows that A
breaks the CCA2-security of CS, since when the verifier accepts the guess b′

equal the content of B. ��

Proof (Proposition 2). We use a subscript i with the elements in the ith sequen-
tial execution, i.e., we write (Bi, Ci, ci, b

′
i, bi) for the values in the ith execution.
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Denote by Ei the event that the verifier accepts in the ith instance of the pro-
tocol. Thus, we have Pr[Ei] = Pr[b′i = bi] = 1

2 + 1
2 (Pr[b′i = 1 | bi = 0] − Pr[b′i =

1 | bi = 1]).
Suppose there exists a constant c, an infinite index set N , and a prover P ∗

such that Pr(pk ,sk),s[〈kVs(sk , pk), P ∗(pk )〉 = 1] ≥ (1
2 )k + n−c for n ∈ N and fix

such a security parameter n. Then we have

Pr[E1] Pr[E2 | E1] Pr[E3 | E2 ∧ E1] · · · Pr[E3 | ∧k−1
i=1 Ei] ≥ (1/2)k + n−c .

This implies that there exists a fixed l such that Pr[El |
∧l−1

i=1 Ei] ≥ 1
2 + n−c. In

other words | Pr[b′l = 1 | bl = 0∧
∧l−1

i=1 Ei]−Pr[b′l = 1 | bl = 1∧
∧l−1

i=1 Ei]| ≥ n−c/2.
We clearly also have Pr[∧l−1

i=1Ei] ≥ n−c. Denote by A the adversary that accepts
a public key pk and hands the pair of messages (0, 1) to the experiment, and
waits for a challenge ciphertext B. Then it proceeds as follows:

1. It simulates the interaction between kV and P ∗ on common input pk . The
verifier Vi for i = 1, . . . , l −1 is simulated honestly except that it invokes the
decryption oracle to compute ci = Decsk (Ci) if necessary. If any event Ēi

occur for an 1 ≤ i ≤ l − 1 it halts with output 0.
2. Then it defines Bl = B, continues the simulation computing cl using the

decryption oracle if necessary, and outputs the final message b′l of P ∗ in the
lth instance of the protocol.

By construction A never queries its decryption oracle on Bl = B. Thus, it
follows that the CCA2-security of CS is broken. ��
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Abstract. We establish new lower bounds and impossibility results for non-
interactive zero-knowledge proofs and arguments with set-up assumptions.

– For the common random string model, we exhibit a lower bound for the
trade-off between hardness assumptions and the length of the random string
for non-interactive zero-knowledge proofs. This generalizes a previous result
ruling out non-interactive zero-knowledge proofs for non-trivial languages
with a random string of length O(log n).

– In the registered public key model, we show that there does not exist a non-
interactive zero-knowledge proof for a non-trivial language.

– In the bare public key model with fully nonuniform simulation wherein the
size of the simulator is also allowed to depend on the size of the distinguisher
and the distinguishing gap, there does not exist a non-interactive zero-
knowledge proof for an NP-complete language, unless the polynomial
hierarchy collapses. On the other hand, there is a non-interactive zero-
knowledge argument for all of NP with a fully nonuniform simulator.

Our negative results complement upper bounds and feasibility results from
previous work.

Keywords: Non-interactive zero-knowledge, set-up assumptions, lower bounds.

1 Introduction

The seminal notion of zero-knowledge proofs, namely proofs that yield no knowledge
beyond the validity of the assertion proved, was introduced by Goldwasser, Micali and
Rackoff [GMR89]. Formally, an interactive protocol is zero-knowledge if there exists a
simulator that can simulate the behavior of every, possibly malicious, verifier without
access to the prover, such that its output is indistinguishable from the output of the
verifier after having interacted with the honest prover.

Minimizing the number of rounds is an important goal in design of zero-knowledge
proof systems. A lower bound was established by Goldreich and Oren [GO94], who
showed that at least three rounds of interaction are necessary to achieve auxiliary-input
zero-knowledge. To understand and overcome this limitation, recent work has focused
on both impossibility and feasibility results for weaker notions of zero-knowledge.
The relaxations include limiting the power of malicious verifiers [BLV06], limiting
prover resources [DS02], quasipolynomial-time simulation [P03, BP04], and witness
indistinguishability [DN00, BOV03].
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1.1 Non-interactive Zero-Knowledge with Set-Up

A different way to bypass the lower bound on interaction is to introduce set-up
assumptions. This approach was initiated by Blum, Feldman and Micali [BFM88], who
showed how to realize a non-interactive zero-knowledge protocol for NP, comprising
a single message from the prover to the verifier. In this work, we will focus on set-up
assumptions with a “public key” flavor, presented in decreasing order in the amount of
the trust the prover and verifier needs to put in the set-up:

– Common random string (CRS) model. This is the original model proposed by Blum
et al., wherein both the prover and the verifier receive a truly random string from
a trusted party. A slight relaxation of this model is the common reference string
model, wherein both parties receive a random string chosen accordingly to some
polynomial-time samplable distribution.

– Registered public key model. Barak et al. [BCNP04] introduced the registered public
key model as a relaxation of the CRS model under which general multi-party
computations can still be securely realized within the UC framework. In addition,
they showed how to realize non-interactive zero-knowledge in this model.1 We will
restrict ourselves to the special case wherein only the verifier registers a “public
key” with a “registration authority”. An honest verifier upon registration receives
a randomly generated public key, and does not need to keep the secret data used
for key generation, whereas a cheating verifier may register any public key of its
choice, but must provide the secret data associated with the key to the registration
authority. Prior to participating in the protocol, the prover obtains the verifier’s key
from the registration authority.

– Bare public key model. In the bare public key model introduced by Canetti et al.
[CGGM00], the verifier again has a public key that has been registered prior to
interacting with the prover. Here, there is no trusted “registration authority” that
verifies (and enforces) properties of the registered key. In particular, an honest
verifier registers a randomly generated key, whereas a cheating verifier may register
any arbitrary key, possibly even a malformed one.

We stress that in each of these models, the proofs are publicly verifiable - verification
does not require verifier’s secret key. Note that the bare public key model imposes
the strongest requirements on the simulator (minimal trust requirements) whereas
the common reference string model imposes the weakest requirement (maximal trust
requirements: a non-interactive protocol that is zero-knowledge in the bare public
key model is also zero-knowledge in the registered public key model, and a protocol
satisfying the latter is zero-knowledge in the common reference string model. We refer
the reader to [CGGM00, BCNP04] for further cryptographic motivations for these set-up
assumptions.

1.2 Weak Nonuniform Zero Knowledge

A non-interactive zero-knowledge protocol in the bare public key model is essentially a
2-round zero-knowledge protocol without set-up assumptions, except the verifier’s first

1 Specifically, Barak et al. demonstrated a non-interactive protocol that realizes the UC zero-
knowledge functionality, which implies zero-knowledge.
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message must be independent of the instance. This means that the result of Goldreich
and Oren [GO94] also rules out non-interactive zero-knowledge argument systems in
the bare public key model for languages outside BPP. Therefore, we will relax the
zero-knowledge requirement for the bare public key model in the following ways (as
has previously been done for general zero-knowledge in [DNRS03]):

– We allow the simulator to depend nonuniformly on the cheating verifier (namely
that for every nonuniform probabilistic polynomial-time cheating verifier, there is a
nonuniform probabilistic polynomial-time simulator), with the additional guarantee
of a polynomial relation between the size of the verifier and that of the simulator.2

The main difference from auxiliary-input zero knowledge is the latter guarantees
a single (uniform) polynomial-time algorithm that on input a description of the
verifier, outputs a description of the simulator.

– Next, we allow the size of the simulator to depend on that of the distinguisher and
the distinguishing gap.3 In particular, this guarantee (by itself, without nonunifor-
mity) implies quasipolynomial-time simulation [P03] (and therefore the security
guarantee is stronger than that offered by quasipolynomial-time simulation).

We refer to this relaxation as weak nonuniform zero knowledge, and it is meaningful
also in the standard model without set-up assumptions. Informally, weak nonuniform
zero knowledge guarantees that an efficient verifier can approximate whatever he
learns from interacting with the prover within any inverse polynomial factor at a
price of a polynomial blow-up in the running time and a polynomial amount of help
(corresponding to the nonuniformity). One can regard the simulator’s nonuniformity as
a measure of the knowledge leaked by an interaction with the honest prover.

As with the standard notion of zero knowledge, weak nonuniform zero knowledge
implies witness indistinguishability (in the standard sense with a negligible distinguish-
ing gap). More generally, weak nonuniform zero knowledge is sufficient in applications
wherein the zero knowledge property is only used to construct an intermediate hybrid
distribution in order to establish computational indistinguishability. This occurs for
instance in the construction of non-malleable cryptographic schemes by Dolev, Dwork
and Naor [DDN00] (as pointed out in [DNRS03]) and specifically, in their non-malleable
bit commitment scheme and Sahai’s CCA2-secure encryption scheme [S99]. We stress
that nonuniform zero knowledge yields nonuniform reductions in the proof of security
for these schemes.

An analogous relaxation for circuit obfuscation as formalized by Barak et al.
[BGI+01] was previously presented in [W05].4 Indeed, the only known positive
results for obfuscation in the standard model [C97, W05] merely achieve this weaker

2 Refer to [G01, Sec 4.3.3] for a discussion of this relaxation.
3 Dwork et al. [DNRS03] had earlier considered S(V, T, D) zero-knowledge, the simulator

is allowed to depend on both the verifier V and the distinguisher T (whereas we allow a
dependency on the size of T but not T itself). A dependency on the distinguishing gap was
introduced by Dwork, Naor and Sahai in their work on concurrent zero-knowledge [DNS04].

4 In the formalization proposed in [W05], the simulator is allowed to depend on the distinguisher,
although it is easy to verify that the virtual black-box simulators for the constructions in [C97,
W05] only need to depend on the size of the distinguisher and the distinguishing gap.
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requirement. One of the motivations for this work is to understand whether this
relaxation may also be meaningfully exploited in the context of zero-knowledge.

1.3 Our Contributions

We present lower bounds and impossibility results for non-interactive zero-knowledge
proofs and arguments with set-up assumptions, along with matching upper bounds
and feasibility results. Our main contributions are in the lower bounds; the protocols,
apart from the one for the bare public key model, follow readily from previous work
[KP98, P03, BCNP04]. We stress that understanding fundamental limitations do faciliate
protocol design in narrowing down possible approaches. As a whole, our results
complement known protocols to provide a clearer picture of the qualitative differences
in the various set-up assumptions, as well as better insight into what can and cannot be
realized in each of these models, and why.

Common random string model. We already know how to construct non-interactive zero-
knowledge proof systems for NP in the common random string model [BFM88, FLS99].
We establish a lower bound on the trade-off between hardness assumptions and length
of the common random string used in these constructions:

Informal Theorem. [Lower bound] In the common random string model,
if there is a polynomial-time algorithm for CIRCUIT-SAT with �(n) variables,
then non-interactive zero-knowledge proof systems with a random string of
length �(n) only exist for languages in BPP.
Informal Theorem. [Upper bound] In the common random string model,
under �−1(n)-hardness assumptions for enhanced trapdoor permutations, there
is a non-interactive zero-knowledge proof system for all of NP with a CRS of
length poly(�(n)).

The trade-off achieved in the upper bound is widely believed to be optimal (up to
polynomial factors in the length of the CRS) but has not been formally stated; we
provide and prove a formal statement to that effect. In the proof, we use probabilistic
hashing techniques from [GS89] to address an issue related to randomness-efficient
sampling [DI06]. We point out two special cases of our lower bound: to achieve a
CRS of length poly(log n), sub-exponential hardness assumptions for CIRCUIT-SAT

are indeed necessary. Also, if the CRS has length O(log n), then the language is in BPP
(since there is a trivial CIRCUIT-SAT with an exponential dependency on the number of
variables). This special case (which extends to readily to arguments, unlike the general
case) is folklore and was stated without proof in [DDP97].

Registered public key model. For the registered public key model, we establish a
separation between proof systems and argument systems:

Informal Theorem. [Impossibility] In the registered public key model, non-
interactive zero-knowledge proof systems only exist for languages in BPP.
Informal Theorem. [Feasibility] In the registered public key model, under
sub-exponential hardness assumptions for enhanced trapdoor permutations,
there is a non-interactive zero-knowledge argument system for all of NP.
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In the registered public key model, the only advantage the simulator has for generating
accepting transcripts for YES instances is the secret key corresponding to the public
key. However, a computationally unbounded adversary can easily sample a secret
key corresponding to the public key, and then run the simulator. This will yield an
accepting transcript for YES instances, but not for NO instances if the protocol is a
proof system. As such, we can have non-trivial non-interactive argument systems but
not proof systems in the registered public key model.

Bare public key model. For the weak non-uniform non-interactive zero-knowledge in
the bare public key model, we also establish a separation between proof systems and
argument systems. Our feasibility result shows that weak nonuniform simulation can
indeed be meaningful exploited in the context of zero-knowledge. Both of the following
results refer to the weak non-uniform setting:

Informal Theorem. [Impossibility] In the bare public key model, non-
interactive zero-knowledge proof systems only exist for languages in
coNP/poly. In particular, there is no non-interactive zero-knowledge proof
system for all of NP unless the polynomial hierarchy collapses [KL80].
Informal Theorem. [Feasibility] In the bare public key model, under sub-
exponential hardness assumptions for enhanced trapdoor permutations, there
is a non-interactive zero-knowledge argument system for all of NP.

We exploit derandomization via nonuniformity using the probabilistic method for both
results.

We use the same protocol, namely a straight-forward adapation of Pass’s 2-round
public-coin zero-knowledge argument [P03], for the feasibility results in the registered
and bare public key models, with somewhat different simulators. One can therefore
view the weak non-uniform zero-knowledge as a fall-back guarantee provided by Pass’s
protocol in the registered public key model: even if the assumption about the verifier’s
key being well-formed is not satisfied, the protocol still guarantees non-uniform zero-
knowledge, which implies witness indistinguishability.

1.4 Additional Related Work

Lower bounds for non-black-box zero-knowledge. On the whole, our lower bounds and
impossibility results make use many of the insights and techniques from the work of
Barak, Lindell and Vadhan [BLV06] on lower bounds for zero-knowledge, specifically,
those for 2-round zero-knowledge protocols against uniform adversaries. The latter is an
arguably less natural notion than non-interactive zero-knowledge protocols with set-up
assumptions, while imposing the technical constraint of uniformity. Indeed, our results
show that the ideas from [BLV06] are applicable to a more general setting.

Unconditional characterizations of NIZK. Another closely related work is that of Pass
and Shelat [PS05] providing a systematic unconditional study of non-interactive proof
systems in the common reference string model, and the secret parameter variant thereof,
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wherein the verifier also has a secret key corresponding to the public key. A natural next
project would be to extend their work to the registered public key and bare public key
models and to argument systems (after all, our lower bounds indicate that the limitation
to proof systems may be too restrictive), and to extend our work to secret parameter
variants of the different models.

2 NIZK with Set-Up

2.1 Non-interactive Protocols with Set-Up

We consider a set-up phase, parameterized by a (deterministic) function f : {0, 1}∗ →
{0, 1}∗, that represents a method for computing a public set-up key given a secret (and
supposedly random) key. An protocol (P, V ) is a non-interactive proof system with set-
up for a language L if there is a relation R such that L = LR, a set-up function f such
that the following holds:

COMPLETENESS. If (x, w) ∈ R,

Pr[σ ← f(Uk); π ← P (x, w, σ) : V (x, σ, π) = 1] ≥ 2/3

SOUNDNESS. If x /∈ L, then for every P ∗,

Pr[σ ← f(Uk); π ← P ∗(x, σ) : V (x, σ, π) = 1] ≤ 1/3

We say that a protocol has perfect completeness if the expression 2/3 is replaced by
1, and negligible soundness if the expression 1/3 is replaced by neg(|x|). We say that
(P, V ) is a non-interactive argument system with set-up if the soundness condition is
replaced by:

COMPUTATIONAL SOUNDNESS. If x /∈ L, then for every nonuniform PPT
P ∗,

Pr[σ ← f(Uk); π ← P ∗(x, σ) : V (x, σ, π) = 1] ≤ 1/3

We note that our positive results satisfy the following stronger notion of soundness:

ADAPTIVE SOUNDNESS. For every P ∗,

Pr[σ ← f(Uk); (x, π) ← P ∗(σ) : x /∈ L and V (x, σ, π) = 1] ≤ 1/3

We emphasize that in the formulations of completeness and soundness, both parties
receive a randomly generated public key, and the verifier does not receive the secret
randomness used to generate the key.

2.2 Non-interactive Zero-Knowledge

Since our main contributions are the negative results, we present the weakest possible
notion of security (in particular, we consider non-adaptive zero-knowledge). Estab-
lishing lower bounds for weaker notions makes our results stronger. We only present
definitions for zero-knowledge in the non-interactive setting.
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ZERO-KNOWLEDGE IN COMMON REFERENCE STRING MODEL. There ex-
ists a PPT simulator S such that the following distributions are nonuniformly
computationally indistinguishable:

{σ ← f(Uk); π ← P (x, w, σ) : (σ, π)}(x,w)∈R

and {(σ, π) ← S(x) : (σ, π)}(x,w)∈R

We refer to the special case where f is the identity as the Common Random
String model.

ZERO-KNOWLEDGE IN REGISTERED PUBLIC KEY MODEL. There exists
a PPT simulator S such that the following distributions are nonuniformly
computationally indistinguishable:

{ P (x, w, f(r)) }(x,w)∈R,r∈{0,1}k and { S(x, r) }(x,w)∈R,r∈{0,1}k

ZERO-KNOWLEDGE IN BARE PUBLIC KEY MODEL. There exists a PPT
simulator S such that the following distributions are nonuniformly computa-
tionally indistinguishable:

{ P (x, w, σ) }(x,w)∈R,σ∈{0,1}poly(k) and { S(x, σ) }(x,w)∈R,σ∈{0,1}poly(k)

Note that zero-knowledge in the bare public key model implies zero-knowledge in the
registered public key model, which in turn implies zero-knowledge in the common
reference string model. Also, recall that in the definition of (auxiliary-input) zero-
knowledge in the interactive setting, it suffices to consider deterministic cheating
verifiers; for the same reason, once we have established the zero-knowledge property
for a fixed public key in the registered public key and bare public key models, we derive
the zero-knowledge property for any (adversarial) distribution over public keys.

3 Common Random String Model

3.1 Lower Bounds

Theorem 1. If a language L has a non-interactive zero-knowledge proof system in the
common string model with a CRS of length �(n) (where n is the length of the instance)
and there exists a probabilistic poly(�−1(#variables), circuitsize) algorithm for the
CIRCUIT-SAT Problem, then L ∈ BPP.

By zero-knowledge and soundness, the distribution of the simulated random strings is
pseudorandom for YES instances and statistically far from uniform for NO instances.
The idea is to use the CIRCUIT-SAT algorithm to design an efficient test that

– outputs 1 with high probability for samplable distributions over {0, 1}�(n) that are
statistically far from uniform.

– outputs 1 with small probability on the uniform distribution over {0, 1}�(n).
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The latter will correspond to YES instances and the former will correspond to NO

instances. The difficulty lies in that the sampling algorithm may use poly(n) bits of
randomness, so we cannot directly test if the input lies in the support of the sampling
distribution. To overcome this, we use pairwise independent sampling to reduce the
randomness complexity of the sampling algorithm. This is inspired by the Goldwasser-
Sipser protocol for proving lower bounds on set sizes [GS89]; the formal analysis is
also very similar.

Proof (sketch). Suppose L has a non-interactive zero-knowledge proof system (P, V )
in the CRS model with a CRS of length � = �(n) and a simulator S. We modify the
proof system to satisfy the following additional properties:

– The completeness and soundness errors are both at most 1/64. This can be achieved
using randomness-efficient error reduction while increasing the CRS by an additive
O(1) bits [DDP02], although naive parallel repetition with a O(1) multiplicative
increase is fine too.

– On every input x, the simulator S always outputs accepting transcripts, and the
distinguishing error for YES instances is at most 1/32.

Let r denote the number of random bits used by S, and let S1 be S with the output
truncated to just the simulated CRS. Consider the following algorithm M for deciding
L: on input x,

1. Run S(x) for n independent iterations to obtain transcripts (σi, πi), i =
1, 2, . . . , n. In addition, pick n independent pairwise-independent hash
functions hi : {0, 1}�−2 → {0, 1}r.

2. Reject if for the majority of i = 1, 2, . . . , n, we have (σi, x, hi) ∈ Laux,
where

Laux =
{
(σ, x, h) | ∃ u ∈ {0, 1}�−2 s.t. S1(x; h(u)) = σ

}
∈ BPP

For each i, we show that Prhi,σi [(σi, x, hi) ∈ Laux] is small for x ∈ L and large for
x /∈ L:

– x ∈ L. By a union bound,

Pr
hi,σi

[
(σi, x, hi) ∈ Laux

]
≤ Pr

hi

[(U�, x, hi) ∈ Laux] +
1
32

≤ 2�−2

2�
+

1
32

<
1
3

– x /∈ L. By soundness, |S1(x; {0, 1}r)| ≤ 1
64 · 2�. Let Λ be the set of “low

probability” strings in S1(x; {0, 1}r), that is,

Λ =
{
σ : Pr

[
S1(x; Ur) = σ

]
≤ 1

2�−4

}

A union bound yields

Pr[σi ∈ Λ] ≤ 1
64

· 2� · 1
2�−4 =

1
4



Lower Bounds for Non-interactive Zero-Knowledge 111

On the other hand, for the “high probability” strings, a standard analysis via the
Chebyshev inequality yields

Pr
hi

[
(σi, x, hi) /∈ Laux | σi /∈ Λ

]
≤ 1

4

Hence,

Pr
hi,σi

[
(σi, x, hi) ∈ Laux

]
≥ 1

2

Hence, M is a BPP algorithm for deciding L. �	

3.2 Upper Bounds

The following result follows from a variant of the Kilian-Petrank non-interactive zero-
knowledge proof system for NP in the CRS model [KP98] (alluded to in [GOS06])
wherein the length on the random string depends polynomially on the security
parameter (and not the length of the instance). The idea is to rewrite the input as a
conjunction of a polynomial number of constant-sized statements and prove each of
these statements using the same CRS (as in [FLS99]).

Proposition 1 ([KP98, GOS06]). Suppose there exist enhanced trapdoor permutations
secure against �−1(n)ω(1)-size circuits. Then, there exists a non-interactive zero-
knowledge proof system for NP in the common random string model wherein the CRS
has length O(�(n)3) (where n is the length of the instance). In addition, the proof system
has perfect completeness, negligible adaptive soundness error and an efficient prover.

4 Registered Public Key Model

4.1 Impossibility Results

Theorem 2. If a language L has a non-interactive zero-knowledge proof system in the
registered public key model, then L ∈ BPP.

Proof. Consider the following algorithm M for deciding L: on input x,

1. pick r ← Uk.
2. accept iff V (x, f(r), S(x, r)) accepts.

Completeness and zero-knowledge guarantees that for all x ∈ L, M accepts with
probability at least 2/3 − neg(|x|). Next, consider a (unbounded) cheating prover P ∗

that for all x /∈ L and all σ, outputs π such that V (x, σ, π) = 1 if such a π exists, and
⊥ otherwise. Then, for all x /∈ L and σ ∈ f({0, 1}k),

Pr[V (x, σ, P ∗(x, σ)) = 1] ≥ Pr
r:f(r)=σ

[V (x, σ, S(x, r)) = 1]
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Averaging over σ, we obtain, for all x /∈ L,

Pr[M(x) = 1] = Pr
r

[V (x, f(r), S(x, r)) = 1]

≤ Pr
r

[V (x, f(r), P ∗(x, f(r)) = 1]

≤ 1/3 (by soundness)

Hence, M is a BPP algorithm for deciding L. �	

4.2 Feasibility Results

Indeed, by relaxing the soundness requirement to computational soundness, Barak et al.
constructed a non-interactive UC zero-knowledge protocol in the registered public key
model [BCNP04]. The protocol requires that the prover also has a public key in order
to achieve additional guarantees required by universal composability. We observe that
it is not necessary for the prover to register a key if zero-knowledge is our only goal
(but paying the price of subexponential hardness assumptions); in particular, we may
use the variant of Pass’s protocol [P03] shown in Fig 1.

Proposition 2. Suppose there exist enhanced trapdoor permutations secure against
2nδ

-size circuits for some constant δ > 0. Then, there exists a non-interactive zero-
knowledge argument system for NP in the registered public key model. In addition, the
argument system has perfect completeness, negligible adaptive soundness error and an
efficient prover.

Note that our negative results do not extend to the secret parameter model. There, Pass,
Shelat, Vaikuntanathan [PSV06] constructed a non-interactive zero-knowledge proof
system for all of NP assuming the existence of standard trapdoor permutations (or any
semantically secure encryption scheme).

5 Bare Public Key Model

5.1 Weak Nonuniform Zero Knowledge

As noted in the introduction, the lower bound of Goldreich and Oren [GO94] also
extends to the bare public key model:

Theorem 3 (implicit in [GO94]). If a language L has a non-interactive
zero-knowledge argument system in the bare public key model, then L ∈ BPP.

As such, we will focus on weak nonuniform zero-knowledge in the bare public
model. We say that a nonuniform PPT A has size s if the running time and the
length of the nonuniform advice for A is bounded by s. Two distributions A, B
are (s, ε)-indistinguishable if for every nonuniform PPT D of size s, | Pr[D(A) =
1]−Pr[D(B) = 1]| < ε. Unlike the uniform setting, we need to define zero-knowledge
for distributions over public keys chosen by an adversarial verifier V ∗.
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WEAK NON-UNIFORM ZERO-KNOWLEDGE IN BARE PUBLIC KEY MODEL.
There exists a polynomial p such that for every function s(n) = nO(1) and
ε(n) = 1/nO(1), and for every nonuniform PPT V ∗ of size s, there exists a
nonuniform PPT S of size p(n, s, 1/ε) such that for all sufficiently large n and
for all (x, w) ∈ R with |x| = n, the following distributions

{(τ, σ) ← V ∗(1n); (τ, σ, P (x, w, σ))} and {(τ, σ, π) ← S(x); (τ, σ, π)}

are (s(n), ε(n))-indistinguishable.

We stress once again that the definition allows for the size of the simulator to depend
on s, an upper bound on the sizes of the malicious verifier and the distinguisher,
and on ε, the distinguishing gap, although the dependency is determined by a fixed
polynomial p.

5.2 Impossibility Results

Theorem 4. If a language L has a weak nonuniform non-interactive zero-knowledge
proof system in the bare public model, then L ∈ P/poly.

Proof. The idea behind the proof is to use the probabilistic method to derandomize the
verifier in the NIZK proof system and obtain a polynomial number of deterministic
nonuniform verifiers with some randomness hardwired into it. We then use the
nonuniform simulators for these verifiers to decide the language.

Fix an input length n, and by the probabilistic method, there exists a set Λ ⊆
{0, 1}poly(n) of polynomial size satisfying the following properties:

– for all x ∈ L ∩ {0, 1}n and a fixed witness w for each x,
∣∣∣ Pr

α∈{0,1}poly(n)
[V (x, f(α), P (x, w, f(α))) = 1]

− Pr
α∈Λ

[V (x, f(α), P (x, w, f(α))) = 1]
∣∣∣ < 1

12

where the probabilities are also taken over the coin tosses of the prover.
– for all x ∈ {0, 1}n \ L,

∣∣∣ Pr
α∈{0,1}poly(n)

[∃π : V (x, f(α), π) = 1] − Pr
α∈Λ

[∃π : V (x, f(α), π) = 1]
∣∣∣ < 1

12

Now, for each r ∈ Λ, consider the malicious verifier V ∗r with r hardwired into it and
sends f(r) as its public key, and the class of distinguishers {Dx,r | x ∈ {0, 1}n} that
on input a transcript (r′, σ′π) accepts iff r′ = r and V (x, π) = 1. Let Sr denote the
nonuniform PPT simulator for V ∗r with distinguishing probability 1

12 and which fools
{Dx,r | x ∈ L ∩ {0, 1}n}. Hence, for all x ∈ {0, 1}n:

YES instance: Pr
r∈Λ

[Dx,r(Sr(x)) = 1] > 2
3 − 1

12 − 1
12 = 1

2

NO instance: Pr
r∈Λ

[Dx,r(Sr(x)) = 1] < 1
3 + 1

12 = 5
12

where the probabilities are also taken over the coin tosses of Sr. By hardwiring Λ and
{Sr|r ∈ Λ} as nonuniform advice, we obtain L ∈ BPP/poly = P/poly. �	
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Remark 1. The analogous result in [BLV06] requires that the proof system has either
perfect completeness or an efficient prover.

5.3 Feasibility Results

The idea is to derandomize the adversary and the distinguisher and hardwire the
trapdoor information about the public key into the simulator.

Theorem 5. Suppose there exist enhanced trapdoor permutations secure against 2nδ

-
size circuits for some constant δ > 0. Then, there exists a weak nonuniform non-
interactive zero-knowledge argument system for NP in the bare public key model.
Furthermore, the argument system has perfect completeness, negligible soundness error
and an efficient prover.

Proof. Let L be an NP-complete language for some relation R. Under the assumed
trapdoor permutation family, we can construct the following primitives:

– a one-way permutation π : {0, 1}n → {0, 1}n secure against 2nδ

-sized circuits;
– a non-interactive (perfectly binding, computationally hiding) commitment scheme

Com that can be broken (that is, recover the plaintext from the commitment) in time
2nδ/2

; and
– a zap system [DN00], namely a 2-round public-coin witness-indistinguishable

proof system for NP. For simplicity and ease of presentation, we present the
protocol and analysis assuming the existence of a 1-round zap (e.g. [BOV03]); for
a 2-round zap, we include the first round message as part of the public key.

The argument system for L is shown in Fig 1. The completeness property of this
protocol follows from that of the zap system. To prove computational soundness,
consider a nonuniform PPT cheating prover P ∗ that convinces the honest verifier to
accept some x /∈ L with non-negligible probability. By adaptive soundness of the
zap system, the commitment sent by P ∗ must contain the value π−1(σ), which can be

extracted in time 2O(nδ/2). Hence, we derive from P ∗ a nonuniform algorithm running
in time 2O(nδ/2) and inverts π with non-negligible probability, a contradiction.

To prove weak nonuniform zero-knowledge, fix s, ε, a nonuniform PPT V ∗ and an
input length n. Consider the following distributions for each (x, w) ∈ R with |x| = n:

– Hybrid H1. This is the distinguisher’s view in an interaction with the honest prover.

{(τ, σ), Com(0n), Pzap((x, Com(0n)), (w, ⊥)); (τ, σ) R←− V ∗(Us)}

– Hybrid H2. This is the distinguisher’s view when the prover commits to π−1(σ)
instead of 0n.

{(τ, σ), Com(π−1(σ)), Pzap((x, Com(π−1(σ))), (w, ⊥)); (τ, σ) R←− V ∗(Us)}

– Hybrid H3. We modify H2 so that the prover uses π−1(σ) (and the private
randomness used for the commitment) instead of w as the witness in the zap system.

{(τ, σ),Com(π−1(σ)), Pzap((x, Com(π−1(σ))), (⊥, π−1(σ))); (τ, σ) R←−V ∗(Us)}
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Set-up function: f(r) = π(r), where π is a permutation.

Common input: An instance x ∈ {0, 1}n , public key σ.

Prover’s private input: A witness w ∈ {0, 1}poly(n).

P → V : Send z = Com(0n) and a zap proving the statement “x ∈ L OR z
is a commitment to π−1(σ)” using witness w.

Fig. 1. Variant of Pass’s protocol [P03] for an NP-complete language L

Note that H1 and H2 are (s, ε/4)-indistinguishable by the hiding property of Com,
and that H2 and H3 are (s, ε/4)-indistinguishable by witness indistinguishability of the
zap system. Observe that for a fixed choice of x and coin tosses for Com and Pzap, a
sample from the distribution H3 may be computed as a deterministic function of the
choice of random coin tosses for V ∗. Hence, by the probabilistic method, there exists a
set Λ ⊆ {0, 1}s of size Θ((s log s + p′(n))/ε2) where p′ is a fixed polynomial equal to
|x| plus the total randomness used by Com and Pzap, such that the following distribution
H4 is (s, ε/4)-indistinguishable from H3.

– Hybrid H4. We modify H3 so that we replace V ∗’s coin tosses with a random
sample from Λ, where Λ ⊆ {0, 1}s is to be determined. We stress that Λ only
depends on |x|, s, ε and not on x itself.

{(τ, σ), Com(π−1(σ)), Pzap((x, Com(π−1(σ))), (⊥, π−1(σ)), σ);

(τ, σ) = V ∗(r′), r′ R←− Λ}

By hardwiring Λ and {π−1(σ) | r′ ∈ Λ, (τ, σ) = V ∗(r′)} as nonuniform advice,
we have a nonuniform PPT S of size O(|Λ|n + s) = poly(n, s, 1/ε) that on input x,
computes the distribution H4, which is (s, ε)-indistinguishable from H1. �	
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Abstract. This paper presents a very simple and efficient adaptively-
sound perfect NIZK argument system for any NP-language. In contrast
to recently proposed schemes by Groth, Ostrovsky and Sahai, our scheme
does not pose any restriction on the statements to be proven. Besides,
it enjoys a number of desirable properties: it allows to re-use the com-
mon reference string (CRS), it can handle arithmetic circuits, and the
CRS can be set-up very efficiently without the need for an honest party.
We then show an application of our techniques in constructing efficient
NIZK schemes for proving arithmetic relations among committed secrets,
whereas previous methods required expensive generic NP-reductions.

The security of the proposed schemes is based on a strong
non-standard assumption, an extended version of the so-called
Knowledge-of-Exponent Assumption (KEA) over bilinear groups. We
give some justification for using such an assumption by showing that the
commonly-used approach for proving NIZK arguments sound does not al-
low for adaptively-sound statistical NIZK arguments (unless
NP ⊂ P/poly). Furthermore, we show that the assumption used in our
construction holds with respect to generic adversaries that do not exploit
the specific representation of the group elements. We also discuss how to
avoid the non-standard assumption in a pre-processing model.

1 Introduction

1.1 Background

Non-Interactive Zero-Knowledge (NIZK). The notion of NIZK captures
the problem of proving a statement by just sending one message and without
revealing any additional information besides the validity of the statement, pro-
vided that a common reference string (CRS) has been properly set up. Since
its introduction by Blum, Feldman and Micali in 1988 [7], NIZK has been a
fundamental cryptographic primitive used throughout modern cryptography in
essential ways.

There is a considerable amount of literature dedicated to NIZK, in particular
to the study of which languages allow for what flavor of NIZK proof. As in case
of interactive ZK it is well known that there cannot be statistical NIZK proofs

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 118–136, 2007.
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(i.e., both ZK and soundness are unconditional) for NP-complete languages un-
less the polynomial hierarchy collapses [24,3,32]. Hence, when considering gen-
eral NP-languages, this only leaves room for a NIZK proof with computational
ZK or computational soundness (where the proof is also called an argument),
or both. However, in contrast to interactive ZK where it has long been known
that both flavors can exist [9,8,25], all proposed NIZK proofs or arguments for
general NP-languages have computational ZK (see e.g. [7,22,6,29,17]). Hence
the construction of a statistically NIZK (NISZK) argument has remained an
open problem (until very recently, see below). The question of the existence of
NISZK arguments is in particular interesting in combination with a result by
De Santis et al. [17], where they observe that for a strong notion of NIZK, called
same-string NIZK, soundness can only be computational when considering NP-
complete languages (assuming that one-way functions exist).

Statistical NIZK Arguments. Recently, Groth, Ostrovsky and Sahai pro-
posed an elegant construction for a perfect NIZK (NIPZK) argument for circuit-
SAT [26] by using bilinear groups. This shows NIZK can come with perfect ZK
for any NP-language. However, the scheme only provides security against a non-
adaptive dishonest prover who chooses the target instance x∗ �∈ L (for which it
wants to fake a proof) independent of the CRS. In an application though, it is
likely that the adversary first sees the CRS and then chooses the false statement
on which he wants to cheat. Using a counting argument, they argue that under
some strengthened assumption their scheme is secure against an adaptive dis-
honest prover if the size of the circuit to be proven is a-priori limited. However,
the bound on the size of the circuit is so restrictive that the circuit must be
smaller than sublinear in the bit size of the CRS (as discussed in Section 1.3).
Groth et al. also proposed a perfect NIZK argument for SAT which is provably
secure in Canetti’s Universal Composability (UC) framework [10]. However, be-
sides being much less efficient than their first construction, the scheme still does
not guarantee unrestricted security against an adaptive dishonest prover who
chooses the target instance x∗ �∈ L depending on the CRS. For instance, the UC
security does not exclude the possibility that a dishonest prover comes up with
an accepting proof for the statement “the CRS is invalid or S is true” for an
arbitrary false statement S. Since in a real-life execution the CRS is assumed
to be valid, this is a convincing argument of the false statement S. Accordingly,
the existence of an unrestricted statistical or perfect NIZK argument, which does
not pose any restriction on the instances to be proven, is still an open problem.

The Knowledge-of-Exponent Assumption. Informally, the Knowledge-of-
Exponent Assumption (kea) says that for certain groups, given a pair g and
ĝ = gx of group elements with unknown discrete-log x, the only way to efficiently
come up with another pair A and Â such that Â = Ax (for the same x) is by
raising g and ĝ to some power a: A = ga and Â = ĝa. kea was first introduced
and used by Damg̊ard in 1991 [14], and later, together with an extended version
(kea2), by Hada and Tanaka [27]. Recently, Bellare and Palacio [5] showed that
kea2 does not hold, and proposed a new extended version called kea3 in order
to save Hada and Tanaka’s results. kea3, which we call xkea for eXtended kea,
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says that given two pairs (g, ĝ) and (h, ĥ) with the same unknown discrete-log x,
the only way to efficiently come up with another pair A and Â such that Â = Ax

is by computing A = gahα and Â = ĝaĥα. Assumptions like kea and xkea

are widely criticized in particular because they do not appear to be “efficiently
falsifiable”, as Naor put it [30], though Bellare and Palacio showed that this is
not necessarily the case.

1.2 Our Result

Based on xkea over bilinear groups, we construct an adaptively-sound NIPZK
argument for circuit-SAT without any restrictions on the instances to be proven.
Besides being the first unrestricted adaptively-sound NISZK argument for any
NP-language, the proposed scheme enjoys a number of additional desirable prop-
erties: It is same-string NIZK, which allows to re-use the CRS. It is very efficient:
the CRS essentially consists of a few group elements, and a proof consists of a
few group elements per multiplication gate; this is comparable (if not better)
to the first scheme by Groth et al., which is the most efficient general-purpose
NIZK scheme known up to date (see the comparison in [26]). Furthermore, our
scheme can also be applied to arithmetic circuits over Zq for a large prime q
whereas known schemes are tailored to binary circuits; this often allows a more
compact representation of the statement to be proven. Finally, the CRS does
not need to be set-up by a trusted party. It can efficiently be set-up jointly by
the prover and the verifier. Furthermore, it can even be provided solely from a
(possibly dishonest) verifier without any correctness proof if we view the proof
system as a zap [21] rather than a NIZK. We are not aware of any other NIZK
arguments or proofs that enjoy all these desirable properties.

Based on the techniques developed for the perfect NIZK argument for SAT,
we also construct an efficient NIPZK argument for arithmetic relations among
committed secrets over Zq with large prime q. To the best of our knowledge, all
known schemes only work for secrets from restricted domains such as Z2 and
have to rely on generic inefficient reductions to NP-complete problems to handle
larger secrets. Our approach in particular allows for additive and multiplicative
relations among secrets committed to by standard Pedersen commitments.

We give two justifications for using such a strong non-standard assumption
like xkea. First, we prove that kea and xkea hold in the generic group model
(even over bilinear groups). This suggests that if there exists an algorithm that
breaks, say, kea in a certain group, then this algorithm must use the specific rep-
resentation of the elements of that group, and it is likely to fail when some other
group (representation) is used. A similar result was independently developed by
Dent [20] for non-bilinear groups. Second, we give some indication that a non-
standard assumption is unavoidable for adaptively-sound NISZK arguments. We
prove that the common approach for proving computational soundness, which
has been used for all NIZK arguments (we are aware of), does not allow for
statistical ZK unless NP ⊂ P/poly (i.e. unless any NP-problem can be solved by
an efficient non-uniform algorithm). Due to lack of space, this result is moved
to the full version of this paper [1].
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Finally, we discuss how to avoid xkea in our NIZK arguments by allowing
a pre-processing phase. Our scheme allows very efficient pre-processing where
the prover only needs to make commitments for random values and prove their
knowledge using efficient off-the-shelf zero-knowledge schemes.

1.3 Related Work

In order to make it easier for the reader to position our results, we would like
to give a brief discussion about recently proposed NIPZK arguments. In [26]
Groth et al. presented two schemes for proving circuit satisfiability, where the
first one comes in two flavors. Let us name the resulting three schemes by the
non-adaptive, the adaptive and the UC GOS scheme. These are the first (and so
far only) NISZK arguments proposed in the literature. The non-adaptive GOS
scheme is admitted by the authors to be not adaptively sound. The adaptive
GOS scheme is adaptively sound, but it only allows for circuits that are limited
in size, and the underlying computational assumption is somewhat non-standard
in that it requires that some problem can only be solved with “sub-negligible”
probability, like 2−εκε log κnegl(κ) where κ is the bit size of the problem instance.
The more one relaxes the bound on the size of the circuits, the stronger the
underlying assumption gets in terms of the assumed bound on the success prob-
ability of solving the problem; but in any case the size of the circuits are doomed
to be sub-linear in the size of the CRS.

Concerning the UC GOS scheme, we first would like to point out that it is of
theoretical interest, but it is very inefficient (though poly-time). Furthermore,
it has some tricky weak soundness property in that if a dishonest prover should
succeed in proving a false statement, then the statement cannot be distinguished
from a true one. It is therefore claimed in [26] that the scheme “achieves a weaker,
but sufficient, form of adaptive security.” This is true but only if some care is
taken with the kind of statements that the (dishonest) prover is allowed to prove;
in particular, soundness is only guaranteed if the statement to be proven does
not incorporate the CRS. Indeed, the same example that the authors use to
reason that their first scheme is not adaptively sound can also be applied to the
UC secure scheme: Consider a dishonest prover that comes up with an accepting
proof for the statement “the CRS is invalid”, or for a statement like “the CRS is
invalid or S is true” where S is an arbitrary false statement. In real-life, where
the CRS is guaranteed to be correct, this convinces the verifier of the truth of
the false statement S. would expect such a dishonest prover to be ruled out.
However, such a prover is not ruled out by the UC security: the simulator given
in [26] does generate an invalid CRS so that the statement in fact becomes true;
and thus the proof can obviously be simulated in the ideal-world (when given a
corresponding witness, which the simulator has in case of the UC GOS scheme).
We stress that this is not a flaw in the UC GOS scheme but it is the UC se-
curity definition that does not provide any security guarantees for statements
that incorporate the CRS, essentially because in the ideal-life model there is no
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(guaranteed-to-be-correct) CRS.1 This issue is addressed in a recent extension
of the UC framework [11].

In conclusion, UC NIZK security provides good enough security under the
condition that the statements to be proven do not incorporate the CRS. This
is automatically guaranteed in a UC setting, where the statements to be proven
must make sense in the ideal-world model, but not necessarily in other settings.

2 Preliminaries

2.1 Notation

We consider uniform probabilistic algorithms (i.e. Turing machines) which take
as input (the unary encoding of) a security parameter κ ∈ N and possibly
other inputs and run in deterministic poly-time in κ. We thus always implicitly
require the size of the input to be bounded by some polynomial in κ. Adversarial
behavior is modeled by non-uniform poly-time probabilistic algorithms, i.e., by
algorithms which together with the security parameter κ also get some poly-
size auxiliary input auxκ. In order to simplify notation, we usually leave the
dependency on κ (and on auxκ) implicit. By y ← A(x), we mean that algorithm
A is executed on input x (and the security parameter κ and, in the non-uniform
case, auxκ) and the output is assigned to y. Similarly, for any finite set S, we use
the notation y ← S to denote that y is sampled uniformly from S, and y ← x
means that the value x is assigned to y.

For two algorithms A and B, A‖B denotes the joint execution of A and B on
the same input and the same random tape, and we write (x; y) ← (A‖B)(w) to
express that in the joint execution on input w (and the same random tape) A’s
output is assigned to x and B’s to y. Furthermore, P

[
y = A(x)

]
denotes the

probability (taken over the uniformly distributed random tape) that A outputs
y on input x, and we write P

[
x ← B : A(x) = y

]
for the (average) probability

that A outputs y on input x when x is output by B: P
[
x ← B : A(x) = y

]
=∑

x P
[
y = A(x)

]
P

[
x = B

]
. We also use natural self-explanatory extensions of

this notation.
An oracle algorithm A is an algorithm in the above sense connected to an

oracle in that it can write on its own tape an input for the oracle and tell the
oracle to execute, and then, in a single step, the oracle processes its input in a
prescribed way, and writes its output to the tape. We write AO when we consider
A to be connected to the particular oracle O.

1 A minor flaw regarding the UC GOS scheme though is that Groth et al. claim the
scheme to be non-malleable, and their UC NIZK functionality indeed does guarantee
non-malleability in that a proof cannot be transformed into a different proof for the
same instance without knowing a witness. But it is easy to see that the UC GOS
scheme is not non-malleable, because the NIZK proof π generated at step 6. in
Figure 4 (by using the non-adaptive GOS scheme) is malleable: it uses the NIZK
proof from Figure 1 (with h of order n though) which is malleable by raising π1 and
π3 to some power s ∈ Z

∗
n and π2 to power s−1 (mod n).
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As is common practice, a value ν(κ) ∈ R, which depends on the security
parameter κ, is called negligible, denoted by ν(κ) ≤ negl(κ) or ν ≤ negl, if
∀ c > 0 ∃ κ◦ ∈ N ∀ κ ≥ κ◦ : ν(κ) < 1/κc. Furthermore, ν(κ) ∈ R is called
noticeable if ∃ c > 0, κ◦ ∈ N ∀ κ ≥ κ◦ : ν(κ) ≥ 1/κc.

2.2 Definition

Let L ⊆ {0, 1}∗ be an NP-language.

Definition 1. Consider poly-time algorithms G, P and V of the following form:
G takes the security parameter κ (implicitly treated hereafter) and outputs a
common reference string (CRS) Σ together with a trapdoor τ . P takes as input
a CRS Σ and an instance x ∈ L together with an NP-witness w and outputs a
proof π. V takes as input a CRS Σ, an instance x and a proof π and outputs
1 or 0. The triple (G, P , V) is a statistical/perfect NIZK argument for L if the
following properties hold.

Completeness: For any x ∈ L with corresponding NP-witness w

P
[
(Σ, τ) ← G, π ← P(Σ, x, w) : V(Σ, x, π) = 0

]
≤ negl .

Soundness: For any non-uniform poly-time adversary P∗

P
[
(Σ, τ) ← G, (x∗, π∗) ← P∗(Σ) : x∗ �∈ L ∧ V(Σ, x∗, π∗) = 1

]
≤ negl .

Statistical/Perfect Zero-Knowledge (ZK): There exists a poly-time simulator S
such that for any instance x ∈ L with NP-witness w, and for (Σ, τ) ← G,
π ← P(Σ, x, w) and πsim ← S(Σ, τ, x), the joint distributions of (Σ, π) and
(Σ, πsim) are statistically/perfectly close.

Remark 2. The notion of soundness we use here guarantees security against an
adaptive attacker, which may choose the instance x∗ depending on the CRS.
We sometimes emphasize this issue by using the term adaptively-sound. Note
that this is a strictly stronger notion than when the adversary must choose x∗

independent of the CRS.

Remark 3. In the notion of ZK we use here, P and S use the same CRS string.
In [17], this is called same-string ZK. In the context of statistical ZK, this notion
is equivalent (and not only sufficient) to unbounded ZK,which captures that the
same CRS can be used an unbounded number of times. This is obviously much
more desirable compared to the original notion of NIZK, where every proof
requires a fresh CRS. In [17], it is shown that there cannot be a same-string
NIZK proof with statistical soundness for a NP-complete language unless there
exist no one-way functions. This makes it even more interesting to find out
whether there exists a same-string NIZK argument with statistical security on
at least one side, namely the ZK side.
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2.3 Bilinear Groups and the Hardness Assumptions

We use the standard setting of bilinear groups. Let BGG be a bilinear-group gen-
erator that (takes as input the security parameter κ and) outputs (G, H, q, g, e)
where G and H is a pair of groups of prime order q, g is a generator of G, and e is
a non-degenerate bilinear map e : G×G → H, meaning that e(ga, gb) = e(g, g)ab

for any a, b ∈ Zq and e(g, g) �= 1H.
We assume the Discrete-Log Assumption, dla, that for a random h ∈ G it

is hard to compute w ∈ Zq with h = gw. In some cases, we also assume the
Diffie-Hellman Inversion Assumption, dhia, which states that, for a random
h = gw ∈ G, it is hard to compute g1/w. Formally, these assumptions for a
bilinear-group generator BGG are stated as follows. In order to simplify notation,
we abbreviate the output (G, H, q, g, e) of BGG by pub (for “public parameters”).

Assumption 4 (dla). For every non-uniform poly-time algorithm A

P
[
pub ← BGG, h ← G, w ← A(pub, h) : gw = h

]
≤ negl .

Assumption 5 (dhia). For every non-uniform poly-time algorithm A

P
[
pub ← BGG, h ← G, g1/w ← A(pub, h) : gw = h

]
≤ negl .

Furthermore, we assume xkea, a variant of the Knowledge-of-Exponent As-
sumption kea, (referred to as kea3 respectively kea1 in [5]). kea informally
states that given ĝ = gx ∈ G with unknown discrete-log x, the only way to
efficiently come up with a pair A, Â ∈ G such that Â = Ax for the same x is
by choosing some a ∈ Zq and computing A = ga and Â = ĝa. xkea states that
given ĝ = gx ∈ G as well as another pair h and ĥ = hx with the same unknown
discrete-log x, the only way to efficiently come up with a pair A, Â such that
Â = Ax is by choosing a, α ∈ Zq and computing A = gahα and Â = ĝaĥα. For-
mally, kea and xkea are phrased by assuming that for every algorithm which
outputs A and Â as required, there exists an extractor which outputs a (and α
in case of xkea) when given the same input and randomness.

Assumption 6 (kea). For every non-uniform poly-time algorithm A there ex-
ists a non-uniform poly-time algorithm XA, the extractor, such that

P
[
pub←BGG, x←Zq , (A, Â; a)←(A‖XA)(pub, gx) : Â=Ax ∧ A �=ga

]
≤ negl .

Recall that (A, Â; a) ← (A‖XA)(pub, gx) means that A and XA are executed
on the same input (pub, gx) and the same random tape, and A outputs (A, Â)
whereas XA outputs a.

Assumption 7 (xkea). For every non-uniform poly-time algorithm A there
exists a non-uniform poly-time algorithm XA, the extractor, such that

P

[
pub ← BGG, x ← Zq, h ← G,

(A, Â; a, α) ← (A‖XA)(pub, gx, h, hx)
: Â = Ax ∧ A �= gahα

]
≤ negl .
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It is well known that dla holds provably with respect to generic algorithms
(see e.g. [34]), which operate on the group elements only by applying the group
operations (multiplication and inversion), but do not make use of the specific
representation of the group elements. It is not so hard to see that this result
extends to groups G that come with a bilinear pairing e : G × G → H, i.e., to
generic algorithms that are additionally allowed to apply the pairing and the
group operations in H. We prove in Section 5 that also kea and xkea hold with
respect to generic algorithms.

We would also like to point out that we only depend on xkea for “proof-
technical” reasons: our perfect NIZK argument still appears to be secure even
if xkea should turn out to be false (for the particular generator BGG used),
but we cannot prove it anymore formally. This is in contrast to how kea and
xkea are used in [27] respectively [5] for 3-round ZK, where there seems to be
no simulator anymore as soon as kea is false.

3 A Perfect NIZK Argument for SAT

3.1 Handling Multiplication Gates

Let (G, H, q, g, e) be generated by BGG, as described in Section 2.3 above. Fur-
thermore, let h = gw for a random w ∈ Zq which is unknown to anybody.
Consider a prover who announces an arithmetic circuit over Zq and who wants
to prove in NIZK that there is a satisfying input for it. Following a standard
design principle, where the prover commits to every input value using Peder-
sen’s commitment scheme with “basis” g and h as well as to every intermediate
value of the circuit when evaluating it on the considered input, the problem re-
duces to proving the consistency of the multiplication gates in NIZK (whereas
the addition gates come for free due to the homomorphic property of Pedersen’s
commitment scheme).

Concretely, though slightly informally, given commitments A = gahα, B =
gbhβ and C = gchγ for values a, b and c ∈ Zq, respectively, the prover needs to
prove in NIZK that c = a · b. Note that

e(A, B) = e(gahα, gbhβ) = e(g, g)ab e(g, h)aβ+αb e(h, h)αβ and

e(C, g) = e(gchγ , g) = e(g, g)c e(g, h)γ

and hence, if indeed c = a · b, then

e(A, B)/e(C, g) = e(g, h)aβ+αb−γ e(h, h)αβ = e(gaβ+αb−γhαβ , h) . (1)

Say that, in order to prove that c = a ·b, the prover announces P = gaβ+αb−γhαβ

and the verifier accepts if and only if P is satisfying in that

e(A, B)/e(C, g) = e(P, h) .

Then, by the above observations it is immediate that an honest verifier accepts
the correct proof of an honest prover. Also, it is quite obvious that a simulator
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which knows w can “enforce” c = a · b by “cheating” with the commitments, and
thus perfectly simulate a satisfying P for the multiplication gate. Note that the
simulator needs to know some opening of the commitments in order to simulate
P ; this though is good enough for our purpose. For completeness, though, we
address this issue again in Section 4 and show a version which allows a full-
fledged simulation. Finally, it appears to be hard to come up with a satisfying
P unless one can indeed open A, B and C to a, b and c such that c = a · b.
Concretely, the following holds.

Lemma 8. Given openings of A, B and C to a, b and c, respectively, with
c �= a · b, and given an opening of a satisfying P , one can efficiently compute w.

Proof. Let P = gρh� be the given opening of P . Then, inheriting the notation
from above,

e(A, B)/e(C, g) = e(gahα, gbhβ)/e(gchγ , g) = e(g, g)ab−ce(g, h)aβ+αb−γe(h, h)αβ.

and
e(A, B)/e(C, g) = e(P, h) = e(gρh�, h) = e(g, h)ρ e(h, h)�

are two different representations of the same element in H with respect to the
“basis” e(g, g), e(g, h) = e(g, g)w, e(h, h) = e(g, g)w2

. This allows to compute w
by solving a quadratic equation in Zq. ��

The need for an opening of P can be circumvented by basing security on dhia

rather than dla as stated in the following lemma.

Lemma 9. Given openings of A, B and C to a, b and c, respectively, with
c �= a · b, and given a satisfying P , one can efficiently compute g1/w.

Proof. For a satisfying P it holds that

e(P, h) = e(A, B)/e(C, g) = e(g, g)ab−c e(g, h)aβ+bα−γ e(h, h)αβ

and thus, when c �= a · b as assumed, the following equalities follow one after the
other.

e(g, g) = e
(
(P g−aβ−bα+γh−αβ)1/(ab−c), h

)

e(g1/w, g) = e
(
(P g−aβ−bα+γh−αβ)1/(ab−c), g

)

g1/w = (P g−aβ−bα+γh−αβ)1/(ab−c)

Thus, g1/w can be computed from the available information. ��

It remains to argue that a (successful) prover can indeed open all the necessary
commitments. This can be enforced as follows. Instead of committing to every
value s by S = gshσ, the prover has to commit to s by S = gshσ and Ŝ = ĝsĥσ,
where ĝ = gx for a random x ∈ Zq and ĥ = hx (with the same x). Note that
the same randomness σ is used for computing S and Ŝ, such that Ŝ = Sx; this
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can be verified using the bilinear map: e(Ŝ, g) = e(S, ĝ). xkea now guarantees
that for every correct double commitment (S, Ŝ) produced by the prover, he
knows (respectively there exists an algorithm that outputs) s and σ such that
S = gshσ.

Based on the above observations, we construct and prove secure an adaptively-
sound perfect NIZK argument for circuit-SAT in the next section.

3.2 The Perfect NIZK Scheme

The NIZK scheme for circuit-SAT is given in Figure 1. Note that we assume an
arithmetic circuit C over Zq (rather than a binary circuit), but of course it is
standard to “emulate” a binary circuit by an arithmetic one.

CRS Generator G
(
1κ

)
:

G-1. (G, H, q, g, e) ← BGG(1κ), w ← Zq , ĝ ← G, h ← gw, ĥ ← ĝw,
G-2. output Σ ← (G, H, q, g, h, ĝ, ĥ, e) and τ ← w.

Prover P
(
Σ, C, x = (x1, . . . , xn)

)
:

P-1. Compute commitments for every input xi by Xi = gxihξi and X̂i = ĝxi ĥξi .
P-2. Inductively, for every multiplication gate in C for which the two input values a

and b are committed upon (either directly or indirectly via the homomorphic
property) by A = gahα and Â = ĝaĥα respectively B = gbhβ and B̂ =
ĝbĥβ, do the following. Compute a (double) commitment C = gchγ and
Ĉ = ĝcĥγ for the corresponding output value c = a · b, and compute the
(double) commitment P = gaβ+αb−γhαβ and P̂ = ĝaβ+αb−γĥαβ .

P-3. As proof π output all the commitments as well as the randomness η for the
commitment Y = gC(x)hη for the output value C(x) = 1.

Verifier V
(
Σ, C, π

)
:

Output 1 (i.e. “accept”) if all of the following holds, otherwise output 0.

V-1. Every double commitment (S; Ŝ) satisfies e(Ŝ, g) = e(S, ĝ).
V-2. Every multiplication gate in C, with associated (double) commitments (A, Â),

(B, B̂), (C, Ĉ) and (P, P̂ ) for the two input values, the output value and the
“multiplication proof”, satisfies e(A,B)/e(C, g) = e(P, h).

V-3. The commitment Y for the output value satisfies Y = g1hη.

Fig. 1. Perfect NIZK argument for circuit-SAT

Theorem 10. (G, P , V) from Fig. 1 is an adaptively-sound perfect NIZK argu-
ment for circuit-SAT, assuming xkea and dla.

Proof. Completeness is straightforward using observation (1). Also, perfect ZK
is easy to see. Indeed, the simulator S can run P with a default input for x, say
o = (0, . . . , 0), and then simply open the commitment Y for the output value
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y = C(o) (which is likely to be different from 1) to 1 using the trapdoor w.
Since Pedersen’s commitment scheme is perfectly hiding, and since P and P̂
computed in step P-2. for every multiplication gate are uniquely determined by
A, B, and C, it is clear that this simulation is perfectly indistinguishable from
a real execution of P .

It remains to argue soundness. Assume there exists a dishonest poly-time
prover P∗, which on input the CRS Σ outputs a circuit C∗ together with a
proof π∗ such that with non-negligible probability, C∗ is not satisfiable but
V(Σ, C∗, π∗) outputs 1. By xkea, there exists a poly-time extractor XP∗ such
that when run on the same CRS and the same random tape as P∗, the extrac-
tor XP∗ outputs the opening information for all (double) commitments in the
proof with non-negligible probability.2 Concretely, for every multiplication gate
and the corresponding commitments A, B, C and P , the extractor XP∗ outputs
a, α, b, β, c, γ, ρ, � such that A = gahα, B = gbhβ , C = gchγ and P = gρh�. If
P∗ succeeds in forging a proof for an unsatisfiable circuit, then there obviously
must be an inconsistent multiplication gate with inputs a and b and output
c �= a · b. (Note that since addition gates are processed using the homomorphic
property, there cannot be an inconsistency in an addition gate.) But this con-
tradicts dla by Lemma 8. ��

Remark 11. The NIZK argument from Fig. 1 actually provides adaptive ZK,
which is a stronger flavor of ZK than guaranteed by Definition 1. It guarantees
that S cannot only perfectly simulate a proof π for any circuit C, but when later
given a satisfying input x for C, it can also provide the randomness that explains
how π could have been generated by running P on witness x.

Remark 12. It is reasonable to assume that one can efficiently verify that, for
given (G, H, q, g, e), G and H are groups of order q, g generates G, and e is a
non-degenerate bilinear map. Then, the CRS Σ = (G, H, q, g, h, ĝ, ĥ, e) may be
generated by the (possibly dishonest) verifier, together with an (interactive) ZK
proof of the knowledge of w with gw = h, which can be done very efficiently
by using the 4-round ZK proof from [13] for instance. The prover additionally
needs to check if e(ĝ, h) = e(g, ĥ). Hence, the set-up of the CRS requires no
honest party nor any expensive 2-party (or multi-party) computation. If the
proof of knowledge of w is omitted, so that the verifier only publishes the CRS
Σ, then the argument is still witness indistinguishable. Thus, our scheme can
also be appreciated as a (computationally sound) zap [21].

Remark 13. By omitting P̂ (and the corresponding verifications), one can obtain
a slightly more efficient protocol based on the possibly stronger assumption dhia

instead of dla. The security can be proven in exactly the same way based on

2 As a matter of fact, xkea guarantees that for every double commitment there exists
an extractor that outputs the opening for that particular commitment with non-
negligible probability; but of course running all these extractors together allows to
extract for all commitments simultaneously with non-negligible probability (since
the size of C must be polynomially bounded).
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Lemma 9 instead of Lemma 8. Furthermore, if one is willing to trade xkea by
a new assumption (though of similar flavor, but which can also be proven in the
generic model) that the only way to come up with A, B, C and P such that
e(A, B)/e(C, g) = e(P, h) is by choosing A, B and C as commitments of a, b and
c = a · b, respectively, then one can get a NIZK scheme where (not counting the
unavoidable commitments A, B and C) the proof for each multiplication gate
consists of only 1 group element, P . Note that this requires less communication
than using standard interactive ZK techniques in combination with the Fiat-
Shamir heuristic [23].

4 Efficient Proof for Relations Among Commitments

We again consider the problem of proving that a Pedersen commitment C = gchγ

“contains” the product c = a · b of a and b committed to by A = gahα re-
spectively B = gbhβ. Recall that the multiplication proof discussed in Sec-
tion 3.1, consisting of P such that e(A, B)/e(C, g) = e(P, h) (and maybe the
corresponding P̂ ), can only be simulated if the simulator knows some open-
ings of A, B and C. This was good enough for the application to NIZK for
SAT, as in this case all commitments may be prepared by the simulator. How-
ever, for other applications, it might be desirable to have a similarly efficient
non-interactive multiplication proof which allows a fully-fledged simulation, i.e.,
which can be simulated for any given A, B and C. We show in this section
a modification of the multiplication proof of Section 3.1 which has this
property.

The setting is the same as in the previous section; We assume that a CRS
Σ = (G, H, q, g, h, ĝ, ĥ, e) has been properly set up and is publicly available. Per
default, the prover is required to provide Â, B̂ and Ĉ for the commitments A,
B and C in question, and the verifier should check if e(ĝ, A) = e(g, Â) etc., so
that the opening of A, B and C can be extracted via xkea. Note that such
Â, B̂ and Ĉ can be computed from A, B and C and x = logg ĝ ∈ Zq. Thus,
the ZK simulator who knows x can simulate Â, B̂ and Ĉ without knowing the
openings of the original commitments. For ease of description, these “hatted”
commitments and corresponding verifications are treated implicitly hereafter. We
begin with a simple relation for proving that a commitment A can be opened to
zero.

Open to Zero (a = 0): For A = g0hα, the prover publishes P = gα. The
verifier accepts if e(g, A) = e(h, P ).

It is obvious that an honest verifier accepts the correct proof of an honest prover.
ZK is straightforward: the simulator who knows w can compute P = A1/w

(without knowing the opening of A). Finally, given an opening (a, α) of A and
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a satisfying P , i.e., such that e(g, A) = e(h, P ), if a �= 0 then one can efficiently
compute g1/w. This follows from the following equalities:

e(g, gahα) = e(h, P )

e(g, ga) = e(g, Pg−α)w

e(g, g1/w) = e(g, (Pg−α)1/a)

and thus g1/w = (Pg−α)1/a.
The above protocol for opening to zero can be easily applied to show equality

(a = b) and addition (a + b = c) by replacing A in the above protocol with A/B
and AB/C, respectively.

We next show a proof system for multiplicative relation a · b = c. Recall that
the goal is to have a multiplication proof which allows a simulation for any A,
B and C given to the simulator.

Multiplication (ab = c): The prover publishes P = (R, S, T ) such that R =
hr, S = gr for random r and T = gaβ+αb−γ−arhαβ−αr. The verifier accepts
if e(g, R) = e(h, S) and e(A, B)/e(g, C) = e(A, R)e(h, T ).

Completeness is verified by seeing that the first verification equation follows from
e(g, R) = e(g, hr) = e(gr, h) = e(h, S), and the second from e(A, B)/e(g, C) =
e(g, g)ab−c e(g, h)aβ+αb−γ e(h, h)αβ in combination with

e(A, R) e(h, T ) = e(gahα, hr) e(h, gaβ+αb−γ−arhαβ−αr)

= e(ga, hr) e(hα, hr) e(h, gaβ+αb−γ−ar) e(h, hαβ−αr)

= e(g, h)aβ+αb−γ e(h, h)αβ ,

which gives the desired equality if indeed ab − c = 0.
Fully-fledged ZK and soundness are captured by following Lemma 14 and 15,

respectively.

Lemma 14. Given A, B and C, one can efficiently simulate random R, S and
T such that e(g, R) = e(h, S) and e(A, B)/e(g, C) = e(A, R)e(h, T ).

Proof. Given the trapdoor w, the simulator picks random u and sets R = Bhu,
S = R1/w, and T = A−uC−1/w. As in the real proof, (S, R, T ) is uniformly
distributed subject to the verification equations:

e(h, S) = e(h, R1/w) = e(g, R)

and

e(A, R) e(h, T ) = e(A, Bhu) e(h, A−uC−1/w)

= e(A, B) e(Au, h) e(h, A−u) e(g, C−1)

= e(A, B)/e(g, C) .

Thus, the simulation is perfect. ��
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Lemma 15. Given openings of A, B and C to a, b and c, respectively, with
c �= a · b, and given a satisfying P = (R, S, T ), one can efficiently compute g1/w.

Proof. We first observe that R and S constitute a proof of zero-opening. Hence
we can say that R = hr for some r. Furthermore, we can extract such r by
applying xkea to R and S since they are in correct relation verified by e(g, R) =
e(h, S). Now, for a, α, b, β, c, γ and r, we see the following holds from the second
verification equation:

e(A, B)/e(g, C) = e(A, R) e(h, T )

e(gahα, gbhβ) e(g, g−ch−γ) = e(gahα, R) e(h, T )

e(g, gab−c) = e(h, g−aβ−αb+ra+γh−αβRαT )

e(g, g1/w) = e(g, g−aβ−αb+ra+γh−αβRαT )1/(ab−c)

Therefore, if ab �= c, one can compute g1/w = (g−aβ−αb+ra+γh−αβRαT )1/(ab−c),
which contradicts to dhia. ��

Now, we need to discuss what kind of NIZK arguments these protocols for-
mally are. The crucial issue stems from the fact that Pedersen’s commitment
scheme is unconditionally hiding and thus the language of all triples (A, B, C)
which allow an opening with a · b = c is trivial. Therefore, proving a statement
among these commitments only makes sense in terms of proof of knowledge. By
Lemma 15, the “knowledge soundness” can be proven by using the extractor of
xkea as knowledge extractor. Accordingly, the quality of the extractor of xkea

immediately affects to the quality of the knowledge extractor. Since xkea only
provides a non-black-box extractor, the best the protocol can achieve is a proof
of knowledge characterized by a non-black-box knowledge extractor.

Let R be a binary poly-time relation, which we allow to depend on (κ and)
Σ in order to capture schemes that prove something about commitments with
“basis” g and h, which are part of the CRS. Let LR = {x | ∃w : (x, w) ∈ R} be
the language characterized by R.

Definition 16. A NIZK proof of knowledge for R is a NIZK proof (or argu-
ment) for LR such that additionally for every non-uniform poly-time prover P∗
there exists a non-uniform poly-time extractor EP∗ such that

P

[
(Σ, τ)←G,

(x∗, π∗; w∗)←(P∗‖EP∗)(Σ)
: (x∗, w∗) �∈R ∧ V(Σ, x∗, π∗)=1

]
≤ negl .

Such NIZK proof of knowledge with non-black-box extractor might be weaker
than the one with universal black-box extractor originally defined in [19]. This
issue is analogue to black-box vs non-black-box ZK where both definitions are
widely accepted. Although a stronger definition is in general favorable, a weaker
definition has potential to capture nicer schemes with weaker assumptions or
even schemes that are impossible otherwise, but still guarantees sufficient
security.

The following now follows immediately from the above lemmas.
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Theorem 17. The above scheme gives a perfect NIZK proof of knowledge for
Rmult =

{(
(A, B, C), (a, α, b, β, γ)

)
∈ G

3×Z
5
q

∣∣A = gahα, B = gbhβ, C = gabhγ
}

under xkea and dhia.

Finally, we note that all the statements in this section can be strengthened to
be based on dla rather than dhia by additionally providing P̂ = (R̂, Ŝ, T̂ ),
similarly as for the proof of SAT in Section 3.

5 The Security of (X)KEA Against Generic Attacks

The notion of a generic algorithm is due to Nechaev [31] and Shoup [34], where
it was shown that the discrete-log problem is hard for generic algorithms. In-
formally, a generic algorithm for trying to solve some DL-related problem in a
group G is one that does not exploit and thus does not depend on the actual
encoding of the group elements, but only relies on the group structure (and
that the encoding is injective). In our context, where G allows a bilinear map
e : G × G → H, we also allow the algorithm to make use of the bilinear map and
the group structure in H.

Formally, a generic algorithm for a bilinear group is an oracle algorithm A
which takes as input a prime q, encodings of elements of Zq with respect to a ran-
dom injective encoding function σ : Zq → S, and possibly encodings of elements
of Zq with respect to another random encoding function τ : Zq → T (with finite
S, T ⊂ {0, 1}∗). Furthermore, A is allowed to make oracle queries in order to
compute on encoded group elements: upon a query

(
add in G, sign, σ(y), σ(z)

)

the oracle O replies by σ
(
y+(−1)signz

)
and upon

(
add in H, sign, τ(y), τ(z)

)
by

τ
(
y +(−1)signz

)
, and upon

(
pair, σ(y), σ(z)

)
the oracle replies by τ(y ·z). Note

that the add-queries model the group operations in G and H, and the pair-query
models the pairing e : G × G → H.

Interestingly, in the literature a generic algorithm A is typically only allowed
to query the oracle on encodings that it has received either as input or as a reply
to one of the previous queries, but it is not allowed to take such an encoding
and, say, flip the last bit and query the oracle on that encoding. Sometimes
(but not always), this is argued by letting the set of encodings (here S and T )
be so large that essentially any such query would be invalid anyway. But this
also implies that A cannot sample random group elements without “knowing”
their discrete-log. We do not want to make such a restriction, in particular in the
context of kea; even though such a step does not appear to be beneficial, we still
feel it should be taken care off in a rigorous analysis. In order to avoid having to
deal with invalid encodings, we assume that S = T = Zq (actually, the natural
representation of Zq as strings) and that A queries O only on valid encodings,
meaning strings in Zq. In some sense this models groups whose elements can be
efficiently recognized.

Theorem 18. The assumptions kea and xkea over bilinear groups hold with
respect to generic algorithms (as long as 1/q is negligible).
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Note that the generic security of kea in the standard (rather than the bilinear)
group setting was concurrently and independently shown by Dent [20].

Proof. Let us first consider kea. A generic algorithm A takes as input σ(1) and
σ(x) for a random x ∈ Zq, and it should output σ(a) and σ(ax) for some a ∈ Zq.
Let m be the (polynomial) number of oracle queries A makes. It is easy to see that
any encoding that A might use (or receive) in an oracle query or that A might
output is of the form σ

(
Pk(x, u1, . . . , u2m)

)
respectively τ

(
Qk(x, u1, . . . , u2m)

)

for multi-variate polynomials Pk ∈ Zq[X, U1, . . . , U2m] of total degree at most 1
respectively Qk ∈ Zq[X, U1, . . . , U2m] of total degree at most 2, and for random
(but fixed once and for all Pk and Qk) pairwise-different u1, . . . , u2m ∈ Zq \ {x}.
Indeed, σ(1) and σ(x) correspond to the polynomials 1 and X , every encoding
that A uses in a query which is fresh in that it has not been given to A in a
reply (or as input) corresponds to a new variable Ui, and any reply given by
the oracle corresponds to a Pk respectively Qk that is inductively computed as
Pk = Pi ± Pj respectively as Qk = Qi ± Qj or Qk = Pi · Pj . In particular, it
is easy to see that by observing A’s oracle queries, one can keep track of these
polynomials.

We now define the extractor XA as follows. XA runs A but keeps track of these
polynomials Pk and Qk; and if the two polynomials Pout◦ , Pout1 ∈ {Pk}k=1...m

that correspond to the two encodings that A outputs are of the form Pout◦ = a
and Pout1 = aX , then it outputs a and otherwise 0.

Let us analyze XA. Obviously, if XA fails (in that A outputs σ(a) and σ(ax)
but XA does not output a) then, by the restriction on the degree, Pout1 �=
X ·Pout◦ , whereas Pout1 and X ·Pout◦ coincide when evaluated at (x, u1, . . . , u2m).
The event that XA fails is thus contained in the event E that at least two distinct
polynomials in {Pout1 , X ·Pout◦}, in {Pk}k=1...m or in {Qk}k=1...m evaluate to
the same value when applied to (x, u1, . . . , u2m). The standard argument for
analyzing generic algorithms, using Schwartz’ Lemma below, guarantees that
the probability of E is upper bounded by O(m2/q); since m is polynomial in κ,
this proves the claim (for kea).3

The proof for xkea uses exactly the same reasoning, the only difference
is that A gets four inputs, encodings of 1, x, w, xw ∈ Zq, which are associ-
ated with the polynomials 1, X, W, XW ∈ Zq[X, W, U1, . . . , U2m], and XA out-
puts a, α if Pout◦ is of the form Pout◦ = a + αW (which is the only Pout◦

which allows Pout1 = X · Pout◦). As above we can argue that if XA fails then
Pout1(x, w, u1, . . . , u2m) = x ·Pout◦(x, w, u1, . . . , u2m) but Pout1 �= X ·Pout◦ . Rea-

3 To make the argument rigorous, one has to consider a modified “game” where A is
provided with random encodings as long as the corresponding polynomial (rather
than its evaluation) is new, and then observe that one can define a joint probabil-
ity distribution for the original and the modified game which leaves the individual
(marginal) distributions intact, and such that E occurs in the original game if and
only if it occurs in the modified one (and thus has the same probability in both cases).
In the modified game, however, the polynomials are chosen completely independent
of (x, u1, . . . , u2m) and thus we can apply Schwartz’ Lemma.
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soning as above, the probability of this to happen can again be upper bounded
by O(m2/q). ��

Lemma 19 (Schwartz [33]). Let q ∈ Z be a prime. For any polynomial P in
Zq[X1, . . . , Xn] of total degree at most d, the probability that P vanishes on a
uniformly distributed tuple (x1, . . . , xn) ∈ Z

n
q is at most d/q.

6 Eliminating XKEA by Pre-processing

In this section, we briefly discuss the possibility of circumventing xkea, and
to solely rely on standard assumptions, by allowing pre-processing. Note that
in all of the above results, xkea is only needed in order to extract openings
of commitments that are prepared by the possibly dishonest player. There-
fore, a possible way to circumvent xkea is to have all players prepare in a
pre-processing phase random commitments U = guhν in such a way that one
can extract the openings (u, ν) of these commitments in the security proof: for
instance in the 2-player setting by a standard interactive ZK proof of knowl-
edge (e.g. the 4-round ZK scheme from [13]), or in the multi-player setting with
dishonest minority by a simple Pedersen VSS sharing. Then, when the actual
NIZK argument needs to be executed, instead of providing for every commit-
ment S = gshσ its hatted version Ŝ = ĝsĥσ, for every commitment S = gshσ

the opening (s + u, σ + ν) of SU is provided, where U is a fresh unused random
commitment from the pre-processing phase. This then obviously also allows to
extract s in the security proof as required. There are some feasibility results
about statistical NIZK arguments in the pre-processing model, cf. [18,28,15],
which rely only on general assumptions but require a complicated pre-processing
stage.

Beaver’s pre-processing techniques [4] can be applied in a straightforward way
to yield similarly efficient schemes as we do. However, this approach requires
the generation of random commitments with multiplicative relations in the pre-
processing phase, whereas with our techniques purely random commitments,
which are potentially easier to prepare, suffice. For instance in the multi-player
setting, this is known as the linear pre-processing model [16], and when the
number of players is small, using the techniques of [12], one can have a once-
and-for-all pre-processing stage that allows to produce an unbounded number of
pseudo-random commitments on the fly.
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Abstract. In the setting of secure multiparty computation, a set of mu-
tually distrustful parties wish to securely compute some joint function of
their private inputs. The computation should be carried out in a secure
way, meaning that no coalition of corrupted parties should be able to
learn more than specified or somehow cause the result to be “incorrect”.
Typically, corrupted parties are either assumed to be semi-honest (mean-
ing that they follow the protocol specification) or malicious (meaning
that they may deviate arbitrarily from the protocol). However, in many
settings, the assumption regarding semi-honest behavior does not suffice
and security in the presence of malicious adversaries is excessive and
expensive to achieve.

In this paper, we introduce the notion of covert adversaries, which
we believe faithfully models the adversarial behavior in many commer-
cial, political, and social settings. Covert adversaries have the property
that they may deviate arbitrarily from the protocol specification in an
attempt to cheat, but do not wish to be “caught” doing so. We provide a
definition of security for covert adversaries and show that it is possible to
obtain highly efficient protocols that are secure against such adversaries.
We stress that in our definition, we quantify over all (possibly malicious)
adversaries and do not assume that the adversary behaves in any par-
ticular way. Rather, we guarantee that if an adversary deviates from the
protocol in a way that would enable it to “cheat”, then the honest parties
are guaranteed to detect this cheating with good probability. We argue
that this level of security is sufficient in many settings.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of parties with private in-
puts wish to jointly compute some functionality of their inputs. Loosely speaking,
the security requirements of such a computation are that (i) nothing is learned
from the protocol other than the output (privacy), (ii) the output is distributed
according to the prescribed functionality (correctness), and (iii) parties cannot
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make their inputs depend on other parties’ inputs. Secure multiparty compu-
tation forms the basis for a multitude of tasks, including those as simple as
coin-tossing and agreement, and as complex as electronic voting, electronic auc-
tions, electronic cash schemes, anonymous transactions, remote game playing
(a.k.a. “mental poker”), and privacy-preserving data mining.

The security requirements in the setting of multiparty computation must hold
even when some of the participating parties are adversarial. It has been shown
that, with the aid of suitable cryptographic tools, any two-party or multiparty
function can be securely computed [23,12,10,3,6], even in the presence of very
strong adversarial behavior. However, the efficiency of the computation depends
dramatically on the adversarial model considered. Classically, two main cate-
gories of adversaries have been considered:

1. Malicious adversaries: these adversaries may behave arbitrarily and are not
bound in any way to following the instructions of the specified protocol. Pro-
tocols that are secure in the malicious model provide a very strong security
guarantee, as honest parties are “protected” irrespective of the adversarial
behavior of the corrupted parties.

2. Semi-honest adversaries: these adversaries correctly follow the protocol spec-
ification, yet may attempt to learn additional information by analyzing the
transcript of messages received during the execution. Security in the pres-
ence of semi-honest adversaries provides only a weak security guarantee, and
is not sufficient in many settings. Semi-honest adversarial behavior primarily
models inadvertent leakage of information, and is suitable only where par-
ticipating parties essentially trust each other, but may have other concerns.

Secure computation in the semi-honest adversary model can be carried out very
efficiently, but, as mentioned, provides weak security guarantees. Regarding ma-
licious adversaries, it has been shown that, under suitable cryptographic assump-
tions, any multiparty probabilistic polynomial-time functionality can be securely
computed for any number of malicious corrupted parties [12,10]. However, this
comes at a price. These feasibility results of secure computation typically do not
yield protocols that are efficient enough to actually be implemented and used
in practice (particularly if standard simulation-based security is required). Their
importance is more in telling us that it is perhaps worthwhile searching for other
efficient protocols, because we at least know that a solution exists in principle.
However, the unfortunate state of affairs today – many years after these feasi-
bility results were obtained – is that very few truly efficient protocols exist for
the setting of malicious adversaries. Thus, we believe that some middle ground
is called for: an adversary model that accurately models adversarial behavior in
the real world, on the one hand, but for which efficient, secure protocols can be
obtained, on the other.

1.2 Our Work – Covert Adversaries

In this work, we introduce a new adversary model that lies between the semi-
honest and malicious models. The motivation behind the definition is that in
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many real-world settings, adversaries are willing to actively cheat (and as such
are not semi-honest), but only if they are not caught (and as such they are not
arbitrarily malicious). This, we believe, is the case in many business, financial,
political and diplomatic settings, where honest behavior cannot be assumed,
but where the companies, institutions and individuals involved cannot afford
the embarrassment, loss of reputation, and negative press associated with being
caught cheating. It is also the case, unfortunately, in many social settings, e.g.
elections for a president of the country-club. Finally, in remote game playing,
players may also be willing to actively cheat, but would try to avoid being caught,
or else they may be thrown out of the game. In all, we believe that this type
of covert adversarial behavior accurately models many real-world situations.
Clearly, with such adversaries, it may be the case that the risk of being caught is
weighed against the benefits of cheating, and it cannot be assumed that players
would avoid being caught at any price and under all circumstances. Accordingly,
our definition explicitly models the probability of catching adversarial behavior;
a probability that can be tuned to the specific circumstances of the problem.
In particular, we do not assume that adversaries are only willing to risk being
caught with negligible probability, but rather allow for much higher probabilities.

The definition. Our definition of security is based on the classical ideal/real
simulation paradigm. Loosely speaking, our definition provides the following
guarantee. Let 0 < ε ≤ 1 be a value (called the deterrence factor). Then, any at-
tempt to cheat by an adversary is detected by the honest parties with probability
at least ε. Thus, provided that ε is sufficiently large, an adversary that wishes
not to be caught cheating, will refrain from attempting to cheat, lest it be caught
doing so. Clearly, the higher the value of ε, the greater the probability that the
adversary is caught and thus the greater the deterrent to cheat. We therefore
call our notion security in the presence of covert adversaries with ε-deterrent. Note
that the security guarantee does not preclude successful cheating. Indeed, if the
adversary decides to cheat then it may gain access to the other parties’ private
information or bias the result of the computation. The only guarantee is that
if it attempts to cheat, then there is a fair chance that it will be caught doing
so. This is in contrast to standard definitions, where absolute privacy and secu-
rity are guaranteed, for the given type of adversary. We remark that by setting
ε = 1, our definition can be used to capture a requirement that cheating parties
are always caught.

When attempting to translate the above described basic approach into a for-
mal definition, we obtain three different possible formulations, which form a
hierarchy of security guarantees. In Section 3 we present the three formulations,
and discuss the relationships between them and between the standard definitions
of security for semi-honest and malicious adversaries. We also present modular
sequential composition theorems (like that of [4]) for all of our definitions. Such
composition theorems are important as security goals within themselves and as
tools for proving the security of protocols.

Protocol constructions. As mentioned, the aim of this work is to provide
a definition of security for which it is possible to construct highly efficient
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protocols. We demonstrate this fact by presenting a generic protocol for se-
cure two-party computation that is only mildly less efficient than the protocol
of Yao [23], which is secure only for semi-honest adversaries. The first step of
our construction is a protocol for oblivious transfer that is based on homomor-
phic encryption schemes. Highly efficient protocols under this assumption are
known [1,17]. However, these protocols do not achieve simulation-based security.
Rather, only privacy is guaranteed (with the plus that privacy is preserved even
in the presence of fully malicious adversaries). Having constructed an oblivious
transfer protocol that meets our definition, we use it in the protocol of Yao [23].
We modify Yao’s protocol so that two garbled circuits are sent, and then a ran-
dom one is opened in order to check that it was constructed correctly. Our basic
protocol achieves deterrent ε = 1/2, but can be extended to greater values of ε
at a moderate expense in efficiency. (For example, 10 copies of the circuit yields
ε = 9/10.)

Protocol efficiency. The protocol we present offers a great improvement in
efficiency, when compared to the best known results for the malicious adversary
model. The exact efficiency depends on the variant used in the definition of covert
adversary security. For the weakest variant, our protocol requires only twice the
amount of work and twice the bandwidth of the basic protocol of [23] for semi-
honest adversaries. Specifically, it requires only a constant number of rounds, a
single oblivious transfer for each input bit, and has communication complexity
O(n|C|) where n is the security parameter and |C| is the size of the circuit
being computed. For the intermediate variant, the complexity is slightly higher,
requiring twice the number of oblivious transfers than in the weakest variant.
For the strongest variant, the complexity increases to n oblivious transfers for
each input bit. This is still much more efficient than any known protocol for the
case of malicious adversaries. We view this as a “proof of concept” that highly
efficient protocols are achievable in this model, and leave the construction of
such protocols for specific tasks of interest for future work.

1.3 Related Work

The idea of allowing the adversary to cheat as long as it will be detected was first
considered by [9] who defined a property called t-detectability; loosely speaking,
a protocol fulfilling this property provides the guarantee that no coalition of t
parties can cheat without being caught. The work of [9] differs to ours in that
(a) they consider the setting of an honest majority, and (b) their definition is
not simulation based. Another closely related work to ours is that of [5] that
considers honest-looking adversaries. Such adversaries may deviate arbitrarily
from the protocol specification, but only if this deviation cannot be detected.
Our definition differs from that of [5] in a number of important ways. First,
we quantify over all adversaries, and not only over adversaries that behave in
a certain way. Second, our definition provides guarantees even for adversaries
that may be willing to risk being caught cheating with non-negligible (or even
constant) probability. Third, we place the onus of detecting any cheating by an
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adversary on the protocol, and not on the chance that the honest parties will
analyze the distribution of the messages generated by the corrupted parties. (See
Section 3 for more discussion on why these differences are important.) Finally,
we remark that [5] considered a more stringent setting where all parties are
either malicious or honest-looking. In contrast, we consider a relaxation of the
adversary model (where parties are either fully honest or covert).

We remark that the idea of allowing an adversary to cheat with non-negligible
probability as long as it will be caught with good probability has been mentioned
many times in the literature; see [15,20] for just two examples. We stress, how-
ever, that none of these works formalized this idea. Furthermore, our experience
in proving our protocol secure is that simple applications of cut-and-choose do
not meet our definition (and there are actual attacks that can be carried out on
the cut-and-choose technique used in [20], for example).

Our work studies a weaker definition of security than the standard one. Weaker
definitions have been used before in order to construct efficient protocols for
specific problems. However, in the past these relaxed definitions typically have
not followed the simulation paradigm, but rather have considered privacy via
indistinguishability (and sometimes correctness); see [7] for one example. Our
work takes a completely different approach.

2 Secure Multiparty Computation – Standard Definition

In this section we briefly present the standard definition for secure multiparty
computation and refer to [10, Chapter 7] for more details and motivating dis-
cussion. The following description and definition is based on [10], which in turn
follows [13,21,2,4].

Multiparty computation. A multiparty protocol problem is cast by specify-
ing a random process that maps sets of inputs to sets of outputs (one for each
party). We refer to such a process as a functionality and denote it f : ({0, 1}∗)m →
({0, 1}∗)m, where f = (f1, . . . , fm). That is, for every vector of inputs x =
(x1, . . . , xm), the output-vector is a random variable y = (f1(x), . . . , fm(x)) rang-
ing over vectors of strings. The ith party Pi, with input xi, wishes to obtain fi(x).
We sometimes denote such a functionality by (x) �→ (f1(x), . . . , fm(x)). Thus,
for example, the oblivious transfer functionality is denoted by ((x0, x1), σ) �→
(λ, xσ), where (x0, x1) is the first party’s input, σ is the second party’s input,
and λ denotes the empty string (meaning that the first party has no output).

Security of protocols (informal). The security of a protocol is analyzed
by comparing what an adversary can do in a real protocol execution to what
it can do in an ideal scenario that is secure by definition. This is formalized by
considering an ideal computation involving an incorruptible trusted third party to
whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output (in order to model
the possibility of early aborting, the adversary receives its outputs first and then
can decide if the honest parties also receive output). Loosely speaking, a protocol
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is secure if any adversary interacting in the real protocol (where no trusted third
party exists) can do no more harm than if it was involved in the above-described
ideal computation. We consider malicious adversaries and static corruptions in
all of our definitions in this paper.

Execution in the ideal model. Let the set of parties be P1, . . . , Pm and let
I ⊆ [m] denote the indices of the corrupted parties, controlled by an adversary
A. An ideal execution proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi. The
adversary A receives an auxiliary input denoted z (and we assume that it
knows the length of all inputs).

Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties controlled by A may either
abort, send their received input, or send some other input of the same length
to the trusted party. This decision is made by A and may depend on the
values xi for i ∈ I and its auxiliary input z. Denote the vector of inputs sent
to the trusted party by w (note that w does not necessarily equal x).

If the trusted party does not receive m valid inputs (including the case that
one of the inputs equals ⊥), it replies to all parties with a special symbol ⊥
and the ideal execution terminates. Otherwise, the execution proceeds to the
next step.

Trusted party sends outputs to adversary: The trusted party computes
(f1(w), . . . , fm(w)) and sends fi(w) to party Pi, for all i ∈ I (i.e., to all
corrupted parties).

Adversary instructs trusted party to continue or halt: A sends either
continue or halt to the trusted party. If it sends continue, the trusted
party sends fj(w) to party Pj , for all j /∈ I (i.e., to all honest parties).
Otherwise, if it sends halt, the trusted party sends ⊥ to all parties Pj for
j /∈ I.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties output nothing. The adversary A out-
puts any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I and the messages {fi(w)}i∈I obtained from the
trusted party.

Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-party functionality, where f = (f1, . . . ,
fm), let A be a non-uniform probabilistic polynomial-time machine, and let
I ⊆ [m] be the set of corrupted parties. Then, the ideal execution of f on inputs
x, auxiliary input z to A and security parameter n, denoted idealf,A(z),I(x, n),
is defined as the output vector of the honest parties and the adversary A from
the above ideal execution.

Execution in the real model. We next consider the real model in which a
real m-party protocol π is executed (and there exists no trusted third party). In
this case, the adversary A sends all messages in place of the corrupted parties,
and may follow an arbitrary polynomial-time strategy. In contrast, the honest
parties follow the instructions of π.
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Let f be as above and let π be an m-party protocol for computing f . Fur-
thermore, let A be a non-uniform probabilistic polynomial-time machine and
let I be the set of corrupted parties. Then, the real execution of π on inputs x,
auxiliary input z to A and security parameter n, denoted realπ,A(z),I(x, n), is
defined as the output vector of the honest parties and the adversary A from the
real execution of π.

Security as emulation of a real execution in the ideal model. Having
defined the ideal and real models, we can now define security of protocols. We
will consider executions where all inputs are of the same length (see discussion
in [10]), and will therefore say that a vector x = (x1, . . . , xm) is balanced if for
every i and j it holds that |xi| = |xj |.

Definition 1. (secure multiparty computation) Let f and π be as above. Pro-
tocol π is said to securely compute f with abort in the presence of malicious ad-
versaries if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adver-
sary S for the ideal model, such that for every I ⊆ [m], every balanced vector
x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealf,S(z),I(x, n)

}
n∈IN

c≡
{
realπ,A(z),I(x, n)

}
n∈IN

where
c≡ indicates computational indistinguishability.

3 Definitions – Security with Covert Adversaries

3.1 Motivation

The standard definition of security (see Definition 1) is such that all possible
(polynomial-time) adversarial behavior is simulatable. In contrast, as we have
mentioned, here we wish to model the situation that parties may cheat. However,
if they do so, they are likely to be caught. There are a number of ways of
defining this notion. In order to motivate ours, we begin with a somewhat naive
implementation of the notion, and show its shortcoming.

First attempt. Define an adversary to be covert if the distribution over the
messages that it sends during an execution is computationally indistinguishable
from the distribution over the messages that an honest party would send. Then
quantify over all covert adversaries A for the real world (rather than all adver-
saries).1 A number of problems arise with this definition. First, the fact that the
distribution generated by the adversary can be distinguished from the distribu-
tion generated by honest parties does not mean that the honest parties indeed
detect this. This is due to the fact that the honest parties may not have an effi-
cient distinguisher; it is only guaranteed that there exists one. Furthermore, in
1 We remark that this is the conceptual approach taken by [5], and that there are

important choices that arise when attempting to formalize the approach. In any
case, as we have mentioned, the work of [5] differs greatly because their aim was to
model all parties as somewhat adversarial.
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order to guarantee that the honest parties detect the cheating, they would have
to analyze all traffic during an execution. However, this analysis cannot be part
of the protocol because then the distinguishers used by the honest parties would
be known (and potentially bypassed). Another problem is that, as mentioned in
the introduction, adversaries may be willing to risk being caught with more than
negligible probability, say 10−6. With such an adversary, the definition would
provide no security guarantee. In particular, the adversary may be able to always
learn all parties’ inputs, and only risk being caught in one run in a million.

Second attempt. To solve the aforementioned problems, we first we require
that the protocol itself be responsible for detecting cheating. Specifically, in the
case that a party Pi attempts to cheat, the protocol may instruct the honest
parties to output a message saying that “party Pi has cheated” (we require that
this only happens if Pi indeed cheated). This solves the first problem. To solve
the second problem, we explicitly quantify the probability that an adversary is
caught cheating. Roughly, given a parameter ε, a protocol is said to be secure
against covert adversaries with ε-deterrent if any cheating adversary will necessar-
ily be caught with probability at least ε.

This definition captures the spirit of what we want, but is still problematic. To
illustrate the problem, consider an adversary that plays honestly with probabil-
ity 0.99, and cheats otherwise. Such an adversary can only ever be caught with
probability 0.01 (because otherwise it is honest). If ε = 1/2 for example, then such
an adversary must be caught with probability 0.5, which is impossible. We there-
fore conclude that an absolute parameter cannot be used, and the probability of
catching the adversary must be related to the probability that it cheats.

Final definition. We thus arrive at the following approach. First, as mentioned,
we require that the protocol itself be responsible for detecting cheating. That
is, if a party Pi successfully cheats, then with good probability (ε), the honest
parties in the protocol will all receive a message that “Pi cheated”. Second,
we do not quantify only over adversaries that are covert (i.e., those that are not
detected cheating by the protocol). Rather, we allow all possible adversaries, even
completely malicious ones. Then, we require either that this malicious behavior
can be successfully simulated (as in Definition 1), or that the honest parties
will receive a message that cheating has been detected, and this happens with
probability at least ε times the probability that successful cheating takes place.
In other words, when an adversarial attack is carried out, we are guaranteed
that one of the following two happens:

1. The attack fails: this event is represented by the fact that the adversary can
simulate the interaction on its own, and so the attack cannot yield any more
than what is possible in the ideal model.

2. The attack succeeds: in this case we are guaranteed that with good proba-
bility (and this probability is a parameter in the definition), the adversarial
parties will be caught.

We stress that in the second case, the adversary may actually learn secret infor-
mation or cause some other damage. However, since it is guaranteed that such a
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strategy will likely be caught, there is strong motivation to refrain from carrying
it out.

As it turns out, the above intuition can be formalized in three different ways,
which form a hierarchy of security guarantees. Since we view the definitional part
of this work as of no less importance than the protocol constructions, we present
all three formulations. In practice, the practitioner should choose the formulation
that best suites her needs, and for which sufficiently efficient protocols exists. All
three definitions are based on the ideal/real simulation paradigm, as presented
in Section 2. We now present the definitions in order of security, starting with
the weakest (least secure) one.

3.2 Version 1: Failed Simulation Formulation

The first formulation we present is based on allowing the simulator to fail some-
times, where by “fail” we mean that its output distribution is not indistin-
guishable from the real one. This corresponds to an event of successful cheating.
However, we guarantee that the probability that the adversary is caught cheating
is at least ε times the probability that the simulator fails. The details follow.

Recall that we call a vector balanced if all of its items are of the same length.
In addition, we denote the output vector of the honest parties and adversary A
in an ideal execution of f by idealf,A(z),I(x, n), where x is the vector of inputs, z
is the auxiliary input to A, I is the set of corrupted parties, and n is the security
parameter. Finally, we denote the analogous outputs in a real execution of π by
realπ,A(z),I(x, n). We begin by defining what it means to “detect cheating”:

Definition 2. Let π be an m-party protocol, let A be an adversary, and let I be
the index set of the corrupted parties. A party Pj is said to detect cheating in π if
its output in π is corruptedi; this event is denoted outputj(realπ,A(z),I(x)) =
corruptedi. The protocol π is called detection accurate if for every j, k /∈ I, the
probability that Pj outputs corruptedk is negligible.

We require that all protocols be detection accurate (meaning that only corrupted
parties can be “caught cheating”). This is crucial because otherwise a party that
is detected cheating can just claim that it is due to a protocol anomaly and not
because it really cheated. The definition follows:

Definition 3. (security – failed simulation formulation) Let f and π be as in
Definition 1, and let ε : IN → [0, 1] be a function. Protocol π is said to securely
compute f in the presence of covert adversaries with ε-deterrent if it is detection
accurate and if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model such that for every I ⊆ [m], every balanced
vector x ∈ ({0, 1}∗)m, every auxiliary input z ∈ {0, 1}∗, and every non-uniform
polynomial-time distinguisher D, there exists a negligible function μ(·) such that,

Pr
[
∃i ∈ I ∀j /∈ I : outputj(realπ,A(z),I(x, n)) = corruptedi

]

≥ ε(n) ·
∣∣∣Pr

[
D(idealf,S(z),I(x, n)) = 1

]
− Pr

[
D(realπ,A(z),I(x, n)) = 1

]∣∣∣ − μ(n)
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The parameter ε indicates the probability that successful adversarial behavior
is detected (observe that when such a detection occurs, all honest parties must
detect the same corrupted party). Clearly, the closer ε is to one, the higher the
deterrence to cheat, and hence the level of security, assuming covert adversaries.
Note that the adversary can decide to never be detected cheating, in which
case the ideal and real distributions are guaranteed to be computationally
indistinguishable, as in the standard definition of security. In contrast, it can
choose to cheat with some noticeable probability, in which case the ideal and
real output distribution may be distinguishable (while guaranteeing that the
adversary is caught with good probability). This idea of allowing the ideal and
real models to not be fully indistinguishable in order to model “allowed cheating”
was used in [11].

We stress that the definition does not require the simulator to “fail” with
some probability. Rather, it is allowed to fail with a probability that is at most
1/ε times the probability that the adversary is caught cheating. As we shall see,
this is what enables us to construct highly efficient protocols. We also remark
that due to the required detection accuracy, the simulator cannot fail when the
adversary behaves in a fully honest-looking manner (because in such a case,
no honest party will output corruptedi). Thus, security is always preserved in
the presence of adversaries that are willing to cheat arbitrarily, as long as their
cheating is not detected.

Cheating and aborting. It is important to note that according to the above
definition, a party that halts mid-way through the computation may be con-
sidered a “cheat”. Arguably, this may be undesirable due to the fact that an
honest party’s computer may crash (such unfortunate events may not even be
that rare). Nevertheless, we argue that as a basic definition it suffices. This is
due to the fact that it is possible for all parties to work by storing their input
and random-tape on disk before they begin the execution. Then, before sending
any message, the incoming messages that preceded it are also written to disk.
The result of this is that if a party’s machine crashes, it can easily reboot and
return to its previous state. (In the worst case the party will need to request a
retransmit of the last message if the crash occurred before it was written.) We
therefore believe that honest parties cannot truly hide behind the excuse that
their machine crashed (it would be highly suspicious that someone’s machine
crashed in an irreversible way that also destroyed their disk at the critical point
of a secure protocol execution).

Despite the above, it is possible to modify the definition so that honest halting
is never considered cheating. This modification only needs to be made to the
notion of “detection accuracy” and uses the notion of a fail-stop party who acts
semi-honestly, except that it may halt early.

Definition 4. A protocol π is non-halting detection accurate if it is detection
accurate as in Definition 2 and if for every honest party Pj and fail-stop party
Pk, the probability that Pj outputs corruptedk is negligible.
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The definition of security in the presence of covert adversaries can then be mod-
ified by requiring non-halting detection accuracy. We remark that although this
strengthening is highly desirable, it may also be prohibitive. For example, we
are able to modify our main protocol so that it meets this stronger definition.
However, in order to do so, we need to assume fully secure oblivious transfer, for
which highly efficient (fully simulatable) protocols are not really known.

3.3 Version 2: Explicit Cheat Formulation

The drawback of Definition 3 is that it allows the adversary to decide whether to
cheat as a function of the honest parties’ inputs or of the output. This is undesir-
able since there may be honest parties’ inputs for which it is more “worthwhile”
for the adversary to risk being caught. We therefore wish to force the adversary
to make its decision about whether to cheat obliviously of the honest parties’
inputs. This brings us to an alternate definition, which is based on redefining
the ideal functionality so as to explicitly include the option of cheating. Aside
from overcoming the input dependency problem this alternate formulation has
two additional advantages. First, it makes the security guarantees more explicit.
Second, it makes it easy to prove a sequential composition theorem.

We modify the ideal model in the following way. Let ε : IN → [0, 1] be a
function. Then, the ideal execution with ε proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted by xi;
we assume that all inputs are of the same length, denoted n. The adversary
receives an auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties, controlled by A, may either
send their received input, or send some other input of the same length to the
trusted party. This decision is made by A and may depend on the values xi

for i ∈ I and the auxiliary input z. Denote the vector of inputs sent to the
trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as
its input, then the trusted party sends aborti to all of the honest parties and
halts. If a corrupted party sends wi = corruptedi to the trusted party as its
input, then the trusted party sends corruptedi to all of the honest parties
and halts.

Attempted cheat option: If a corrupted party sends wi = cheati to the
trusted party as its input, then the trusted party sends to the adversary
all of the honest parties’ inputs {xj}j /∈I . Furthermore, it asks the adversary
for outputs {yj}j /∈I for the honest parties. In addition,
1. With probability ε, the trusted party sends corruptedi to the adversary

and all of the honest parties.
2. With probability 1 − ε, the trusted party sends undetected to the adver-

sary and the outputs {yj}j /∈I to the honest parties (i.e., for every j /∈ I,
the trusted party sends yj to Pj).

The ideal execution then ends at this point.
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If no wi equals aborti, corruptedi or cheati, the ideal execution continues
below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . ,
fm(w)) and sends fi(w) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the ad-
versary sends either aborti for some i ∈ I, or continue to the trusted party. If
the trusted party receives continue then it sends fj(w) to all honest parties
Pj (j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to
all honest parties.

Outputs: An honest party always outputs the message it obtained from the
trusted party. The corrupted parties output nothing. The adversary A out-
puts any arbitrary (probabilistic polynomial-time computable) function of
the initial inputs {xi}i∈I and the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above
ideal model is denoted by idealc

ε
f,S(z),I(x, n).

Notice that there are two types of “cheating” here. The first is the classic abort,
except that unlike in Definition 1, the honest parties here are informed as to who
caused the abort. Thus, although it is not possible to guarantee fairness here, we
do achieve that an adversary who aborts after receiving its output is “punished”
in the sense that its behavior is always detected.2 The other type of cheating in
this ideal model is more serious for two reasons: first, the ramifications of the
cheat are greater (the adversary may learn all of the parties’ inputs and may be
able to determine their outputs), and second, the cheating is only guaranteed to
be detected with probability ε. Nevertheless, if ε is high enough, this may serve
as a deterrent. We stress that in the ideal model the adversary must decide
whether to cheat obliviously of the honest-parties inputs and before it receives
any output (and so it cannot use the output to help it decide whether or not it
is “worthwhile” cheating). We define:

Definition 5. (security – explicit cheat formulation) Let f , π and ε be as in
Definition 3. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-
time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealc

ε
f,S(z),I(x, n)

}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}

n∈IN

Definition 5 and detection accuracy. We note that in Definition 5 it is not
necessary to explicitly require that π be detection accurate because this is taken
2 Note also that there are two types of abort: in one the honest parties receive aborti

and in the second they receive corruptedi. This is included to model behavior by the
real adversary that results in it being caught cheating with probability greater than
ε (and not with probability exactly ε as when the ideal adversary sends a cheati
message).
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care of in the ideal model (in an ideal execution, only a corrupted party can
send a cheati input). However, if non-halting detection accuracy is desired (as in
Definition 4), then this should be explicitly added to the definition.

3.4 Version 3: Strong Explicit Cheat Formulation

The third, and strongest version follows the same structure and formulation of
the previous version (Version 2). However, we make the following slight, but
important change to the ideal model. In the case of an attempted cheat, if
the trusted party sends corruptedi to the honest parties and the adversary (an
event which happens with probability ε), then the adversary does not obtain
the honest parties’ inputs. Thus, if cheating is detected, the adversary does not
learn anything and the result is essentially the same as a regular abort. This
is in contrast to Version 2, where a detected cheat may still be successful. (We
stress that in the “undetected” case here, the adversary still learns the honest
parties’ private inputs and can set their outputs.) We denote the resultant ideal
model by idealsc

ε
f,S(z),I(x, n) and have the following definition:

Definition 6. (security – strong explicit cheat formulation): Let f , π and ε be as
in Definition 3. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-
time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model such that for every I ⊆ [m],
every balanced vector x ∈ ({0, 1}∗)m, and every auxiliary input z ∈ {0, 1}∗:

{
idealsc

ε
f,S(z),I(x, n)

}

n∈IN

c≡
{
realπ,A(z),I(x, n)

}

n∈IN

The difference between the regular and strong explicit cheat formulations is
perhaps best exemplified in the case that ε = 1. In both versions, all potentially
successful cheating attempt are detected. However, in the regular formulation,
the adversary may learn the honest parties’ private inputs (albeit, while being
detected). In the strong formulation, in contrast, the adversary learns nothing
when it is detected. Since it is always detected, this means that full security is
achieved.

3.5 Relations Between Security Models

Relations between covert security definitions. It is not difficult to show
that the three security definitions for covert adversaries constitute a strict hi-
erarchy, with version 1 being strictly weaker than version 2, which is strictly
weaker than version 3. We explicitly prove this in the full version of the paper.

Relation to the malicious and semi-honest models. As a sanity check
regarding our definitions, we present two propositions that show the relation
between security in the presence of covert adversaries and security in the presence
of malicious and semi-honest adversaries.
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Proposition 7. Let π be a protocol that securely computes some functionality
f with abort in the presence of malicious adversaries, as in Definition 1. Then,
π securely computes f in the presence of covert adversaries with ε-deterrent, for
any of the three formulations and for every 0 ≤ ε ≤ 1.

This proposition follows from the simple observation that according to Defini-
tion 1, there exists a simulator that always succeeds in its simulation. Thus,
Definition 3 holds even if the probability of detecting cheating is 0. Likewise,
for Definitions 5 and 6 the same simulator works (there is simply no need to
ever send a cheat input). Next, we consider the relation between covert and
semi-honest adversaries.

Proposition 8. Let π be a protocol that securely computes some functionality
f in the presence of covert adversaries with ε-deterrent, for any of the three
formulations and for ε ≥ 1/poly(n). Then, π securely computes f in the presence
of semi-honest adversaries.

This proposition follows from the fact that due to the requirement of detec-
tion accuracy, no party outputs corruptedi when the adversary is semi-honest.
Since ε ≥ 1/poly(n) this implies that the real and ideal distributions can be
distinguished with at most negligible probability, as is required for semi-honest
security. We stress that if ε = 0 (or is negligible) then the definition of covert
adversaries requires nothing, and so the proposition does not hold for this case.

We conclude that, as one may expect, security in the presence of covert ad-
versaries with ε-deterrent lies in between security in the presence of malicious
adversaries and security in the presence of semi-honest adversaries.

Strong explicit cheat formulation and the malicious model. The fol-
lowing proposition shows that the strong explicit cheat formulation converges to
the malicious model as ε approaches 1.

Proposition 9. Let π be a protocol. Then π securely computes some function-
ality f in the presence of covert adversaries with ε = 1 under Definition 6 if and
only if it securely computes f with abort in the presence of malicious adversaries.

This is true since, by definition, either the adversary does not attempt cheating,
in which case the ideal execution is the same as in the regular ideal model, or it
attempts cheating, in which case it is caught with probability 1 and the protocol
is aborted. In both cases, the adversary gains no advantage, and the outcome
can be simulated in the standard ideal model. (There is one technicality here
relating to whether the output of an honest party due to an abort is ⊥, or
abort/corrupted. In order for the proposition to go through, we actually have to
modify the basic ideal model so that aborti is received rather than ⊥.)

3.6 Modular Sequential Composition

Sequential composition theorems for secure computation are important for two
reasons. First, they constitute a security goal within themselves. Second, they are
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useful tools that help in writing proofs of security. As such, we believe that when
presenting a new definition, it is of great importance to also prove an appropriate
composition theorem for that definition. In our case, we obtain composition
theorems that are analogous to that of [4] for all three of our definitions. The
exact formulation of these theorems and the proofs appear in the full version.

4 Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality
in the presence of covert adversaries. We have three different protocols, one for
each of the three different security definitions. We first present the protocol for
the strong explicit cheat formulation, which provides ε = 1/2-deterrent. The
variations for the other models are minor and will be presented later. In all
cases, the deterrent can be boosted to 1 − 1/p(n) for any polynomial p(·), with
an additional price in complexity, as will be explained later.

The protocol is based on Yao’s protocol for semi-honest adversaries [23]. We
will base our description on the write-up of [18] of this protocol, and due to
lack of space we will assume familiarity with it. The protocol uses an oblivious
transfer (OT) protocol that is secure in the presences of covert adversaries. In
the full version, we prove the following theorem (via a highly efficient protocol):

Theorem 10. Assume the existence of semantically secure homomorphic en-
cryption schemes with errorless decryption. Then, for any k = poly(n) there
exists a secure protocol for computing the parallel string oblivious transfer func-
tionality ((x0

1, x
1
1), . . . , (x

0
n, xn

1 ), (σ1, . . . , σn)) �→ (λ, (xσ1
1 , . . . , xσn

n )) in the pres-
ence of covert adversaries with ε-deterrent for ε = 1 − 1

k , under any of the three
security definitions.

4.1 The Protocol

The original protocol of Yao is not secure when the parties may be malicious. In-
tuitively, there are two main reasons for this. First, the circuit constructor P1 may
send P2 a garbled circuit that computes a completely different function. Second,
the oblivious transfer protocol that is used when the parties can be malicious must
be secure for this case. The latter problem is solved here by using the protocol
guaranteed by Theorem 10. The first problem is solved by having P1 send P2 two
garbled circuits. Then, P2 asks P1 to open one of the circuits at random, in order
to check that it is correctly constructed. (This takes place before P1 sends the keys
corresponding to its input, so nothing is revealed by opening one of the circuits.)
The protocol then proceeds similarly to the semi-honest case. The main point here
is that if the unopened circuit is correct, then this will constitute a secure execu-
tion that can be simulated. However, if it is not correct, then with probability 1/2
party P1 will have been caught cheating and so P2 will output corrupted1. While
the above intuition forms the basis for our protocol, the actual construction of the
appropriate simulator is somewhat delicate, and requires a careful construction of
the protocol. We note some of these subtleties hereunder.
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First, it is crucial that the oblivious transfers are run before the garbled circuit
is sent by P1 to P2. This is due to the fact that the simulator sends a corrupted
P2 a fake garbled circuit that evaluates to the exact output received from the
trusted party (and only this output), as described in [18]. However, in order for
the simulator to receive the output from the trusted party, it must first send
it the input used by the corrupted P2. This is achieved by first running the
oblivious transfers, from which the simulator is able to extract the corrupted
P2’s input.

The second subtlety relates to an issue we believe may be a problem for many
other implementations of Yao that use cut-and-choose. The problem is that the
adversary can construct (at least in theory) a garbled circuit with two sets of
keys, where one set of keys decrypt the circuit to the specified one and another
set of keys decrypt the circuit to an incorrect one. This is a problem because
the adversary can supply “correct keys” to the circuits that are opened and
“incorrect keys” to the circuit (or circuits) that are computed. Such a strategy
cannot be carried out without risk of detection for the keys that are associated
with P2’s input because these keys are obtained by P2 in the oblivious transfers
before the garbled circuits are even sent (thus if incorrect keys are sent for one of
the circuits, P2 will detect this if that circuit is opened). However, it is possible
for a corrupt P1 to carry out this strategy for the input wires associated with
its own input. We prevent this by having P1 commit to these keys and send the
commitments together with the garbled circuits. Then, instead of P1 just sending
the keys associated with its input, it sends the appropriate decommitments.

A third subtlety that arises is connected to the difference between Definitions 3
and 5 (where the latter is the stronger definition where the decision by the adver-
sary to cheat is not allowed to depend on the honest parties’ inputs or on the
output). Consider a corrupted P1 that behaves exactly like an honest P1 except
that in the oblivious transfers, it inputs an invalid key in the place of the key
associated with 0 as the first bit of P2. The result is that if the first bit of P2’s
input is 1, then the protocol succeeds and no problem arises. However, if the first
bit of P2’s input is 0, then the protocol will always fail and P2 will always de-
tect cheating. Thus, P1’s decision to cheat may depend on P2’s private input,
something that is impossible in the ideal models of Definitions 5 and 6. In sum-
mary, this means that the protocol achieves Definition 3 (with ε = 1/2) but not
Definition 5. In order to solve this problem, we use a circuit that computes the
function g(x1, x

1
2, . . . , x

n
2 ) = f(x1, ⊕n

i=1x
i
2), instead of a circuit that directly com-

putes f . Then, upon input x2, party P2 chooses random x1
2, . . . , x

n−1
2 and sets

xn
2 = (⊕n−1

i=1 xi
2)⊕x2. This makes no difference to the result because ⊕n

i=1x
i
2 = x2

and so g(x1, x
1
2, . . . , x

n
2 ) = f(x1, x2). However, this modification makes every bit

of P2’s input uniform when considering any proper subset of x1
2, . . . , x

n
2 . This helps

because as long as P1 does not provide invalid keys for all n shares of x2, the prob-
ability of failure is independent of P2’s actual input (because any set of n−1 shares
is independent of x2). If, on the other hand, P2 attempts to provide invalid keys
for all the n shares, then it is caught with probability almost 1. This method was
previously used in [19]. We are now ready to describe the actual protocol.
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Protocol 11 (two-party computation of a function f)

– Inputs: Party P1 has input x1 and party P2 has input x2, where |x1| = |x2|.
In addition, both parties have a security parameter n. For simplicity, we will
assume that the lengths of the inputs are n.

– Auxiliary input: Both parties have the description of a circuit C for inputs
of length n that computes the function f . The input wires associated with x1
are w1, . . . , wn and the input wires associated with x2 are wn+1, . . . , w2n.

– The protocol
1. Parties P1 and P2 define a new circuit C′ that receives n + 1 inputs

x1, x
1
2, , . . . , x

n
2 each of length n, and computes the function

f(x1, ⊕n
i=1x

i
2). Note that C′ has n2 + n input wires. Denote the input

wires associated with x1 by w1, . . . , wn, and the input wires associated
with xi

2 by win+1, . . . , w(i+1)n, for i = 1, . . . , n.
2. Party P2 chooses n − 1 random strings x1

2, . . . , x
n−1
2 ∈R {0, 1}n and

defines xn
2 = (⊕n−1

i=1 xi
2) ⊕ x2, where x2 is P2’s original input (note that

⊕n
i=1x

i
2 = x2). The value z2

def= x1
2, . . . , x

n
2 serves as P2’s new input of

length n2 to C′.
3. Party P1 chooses two sets of 2n2 random keys by running G(1n), the key

generator for the encryption scheme:

k̂0
n+1, . . . , k̂

0
n2+n k̃0

n+1, . . . , k̃
0
n2+n

k̂1
n+1, . . . , k̂

1
n2+n k̃1

n+1, . . . , k̃
1
n2+n

4. P1 and P2 run n2 executions of an oblivious transfer protocol, as follows.
In the ith execution, party P1 inputs the pair

(
[k̂0

n+i, k̃
0
n+i], [k̂

1
n+i, k̃

1
n+i]

)

and party P2 inputs the bit zi
2. (Note, P2 receives for output the keys

k̂
zi
2

n+i and k̃
zi
2

n+i.) The executions are run using a parallel oblivious transfer
functionality, as in Theorem 10. If a party receives a corruptedi or aborti
message as output from the oblivious transfer, it outputs it and halts.

5. Party P1 constructs two garbled circuits G(C′)0 and G(C′)1 using in-
dependent randomness. The keys to the input wires wn+1, . . . , wn2+n

in the garbled circuits are taken from above (i.e., in G(C′)0 they are
k̂0

n+1, k̂
1
n+1, . . . , k̂

0
n2+n, k̂1

n2+n, and in G(C′)1 they are k̃0
n+1, k̃

1
n+1, . . . ,

k̃0
n2+n, k̃1

n2+n). Let k̂0
1 , k̂

1
1 , . . . , k̂

0
n, k̂1

n be the keys associated with P1’s in-
put in G(C′)0 and k̃0

1 , k̃
1
1 , . . . , k̃

0
n, k̃1

n the analogous keys in G(C′)1. Then,
for every i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 computes
ĉb
i = Com(k̂b

i ; r̂
b
i ) and c̃b

i = Com(k̃b
i ; r̃

b
i ), where Com is a perfectly-binding

commitment scheme and Com(x; r) denotes a commitment to x using
randomness r. P1 sends the garbled circuits to P2 together with all of the
above commitments. The commitments are sent as two vectors of pairs;
in the first vector the ith pair is {ĉ0

i , ĉ
1
i } in a random order, and in the

second vector the ith pair is {c̃0
i , c̃

1
i } in a random order.

6. Party P2 chooses a random bit b ∈R {0, 1} and sends b to P1.
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7. P1 sends P2 all of the keys for the inputs wires w1, . . . , wn2+n of the
garbled circuit G(C′)b, together with the associated mappings and the
decommitment values. (I.e. if b = 0, then party P1 sends (k̂0

1 , 0), (k̂1
1 , 1),

. . . , (k̂0
n2+n, 0), (k̂1

n2+n, 1) and r̂0
1 , r̂

1
1 , . . . , r̂

0
n, r̂1

n for the circuit G(C′)0.)
8. P2 checks the decommitments to the keys associated with w1, . . . , wn,

decrypts the entire circuit (using the keys and mappings that it received)
and checks that it is exactly the circuit C′ derived from the auxiliary
input circuit C. In addition, it checks that the keys that it received in the
oblivious transfers match the correct keys that it received in the opening
(i.e., if it received (k̂, k̃) in the ith oblivious transfer, then it checks that

k̂ = k̂
zi
2

n+i if G(C′)0 was opened, and k̃ = k̃
zi
2

n+i if G(C′)1 was opened).
If all the checks pass, it proceeds to the next step. If not, it outputs
corrupted1 and halts. In addition, if P2 does not receive this message at
all, it outputs corrupted1.

9. P1 sends decommitments to the input keys associated with its input for
the unopened circuit. That is, if b = 0, then P1 sends P2 the keys and
decommitment values (k̃x1

1
1 , r̃

x1
1

1 ), . . . , (k̃xn
1

n , r̃
xn
1

n ) to P2. Otherwise, if b=1,

then P2 sends the keys (k̂x1
1

1 , r̂
x1
1

1 ), . . . , (k̂xn
1

n , r̂
xn
1

n ).
10. P2 checks that the values received are valid decommitments to the com-

mitments received above. If not, it outputs abort1. If yes, it uses the keys
to compute C′(x1, z2) = C′(x1, x

1
2, . . . , x

n
2 ) = C(x1, x2), and outputs the

result. If the keys are not correct (and so it is not possible to compute
the circuit), or if P2 doesn’t receive this message at all, it outputs abort1.

Note that steps 7–10 are actually a single step of P1 sending a message to
P2, followed by P2 carrying out a computation.

If any party fails to receive a message as expected during the execution,
it outputs aborti (where Pi is the party who failed to send the message).
This holds unless the party is explicitly instructed above to output corrupted
instead (as in Step 8).

We have the following theorem:
Theorem 12. Let f be any probabilistic polynomial-time function. Assume that
the encryption scheme used to generate the garbled circuits has indistinguishable
encryptions under chosen-plaintext attacks (and has an elusive and efficiently
verifiable range), and that the oblivious transfer protocol used is secure in the
presence of covert adversaries with 1/2-deterrent by Definition 6. Then, Pro-
tocol 11 securely computes f in the presence of covert adversaries with 1/2-
deterrent by Definition 6.
The full proof of this theorem can be found in the full version.

4.2 Protocols for the Other Security Definitions

We present more efficient protocols for the two other security formulations (ver-
sions 1 and 2) which are more efficient. The protocols are essentially identical
to the one described above, with the only difference being the number of shares
used to split the inputs of P2 in step 2:
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– For the failed-simulation formulation (Version 1), we do not split the input of
P2 at all and use the original inputs (i.e., the original circuit C is used). This
reduces the number of oblivious transfers from n2 to n. The revised protocol
provides security for covert adversaries in the failed simulation formulation
with deterrence 1/2.

– For the explicit cheat formulation (not strong) (Version 2), we split the input
of P2 into 2 shares, instead of n. Note again that this reduces the number of
oblivious transfers from n2 to 2n. The revised protocol provides security for
covert adversaries in the explicit cheat formulation with deterrence 1/4.

4.3 Higher Deterrence Values

For all three versions, it is possible to boost the deterrence value to 1−1/poly(n),
with an increased price in performance. Let p(·) be a polynomial. Then, Proto-
col 11 can be modified so that a deterrent of 1 − 1/p(n) is obtained, as follows.
First, we use an oblivious transfer protocol that is secure in the presence of
covert adversaries with deterrent ε = 1 − 1/p(n). Then, Protocol 11 is modified
by having P1 send p(n) garbled circuits to P2 and then P2 randomly asking P1
to open all circuits except one. Note that when doing so it is not necessary to
increase the number of oblivious transfers, because the same oblivious transfer
can be used for all circuits. This is important since the number of oblivious
transfers is a dominant factor in the complexity. The modification yields a de-
terrent ε = 1 − 1/p(n) and thus can be used to obtain a high deterrent factor.
For example, using 10 circuits the deterrence is 9/10.

4.4 Non-halting Detection Accuracy

It is possible to modify Protocol 11 so that it achieves non-halting detection
accuracy; see Definition 4. Before describing how we do this, notice that the
reason that we need to recognize a halting-abort as cheating in Protocol 11 is
that if P1 generates one faulty circuit, then it can always just refuse to continue
(i.e., abort) in the case that P2 asks it to open the faulty circuit. This means that
if aborting is not considered cheating, then a corrupted P1 can form a strategy
whereby it is never detected cheating, but succeeds in actually cheating with
probability 1/2. In order to solve this problem, we construct a method whereby
P1 does not know if it will be caught or not. We do so by having P2 receive the
circuit opening via a fully secure oblivious transfer protocol, rather than having
P1 send it explicitly. This forces P1 to either abort before learning anything,
or to risk being caught with probability 1/2. The details are provided in the
full version. The price of this modification is that of one additional fully secure
oblivious transfer and the replacement of all of the original oblivious transfer
protocols with fully secure ones. (Of course, we could use an oblivious transfer
protocol that is secure in the presence of covert adversaries with non-halting
detection accuracy, but we do not know how to construct one.) Since fully-secure
oblivious transfer is expensive, this is a considerable overhead.
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Abstract. We investigate whether security of multiparty computation
in the information-theoretic setting implies their security under concur-
rent composition. We show that security in the stand-alone model proven
using black-box simulators in the information-theoretic setting does not
imply security under concurrent composition, not even security under
2-bounded concurrent self-composition with an inefficient simulator and
fixed inputs. This in particular refutes recently made claims on the equiv-
alence of security in the stand-alone model and concurrent composition
for perfect and statistical security (STOC’06). Our result strongly relies
on the question whether every rewinding simulator can be transformed
into an equivalent, potentially inefficient non-rewinding (straight-line)
simulator. We answer this question in the negative by giving a protocol
that can be proven secure using a rewinding simulator, yet that is not
secure for any non-rewinding simulator.

1 Introduction

Multiparty computation allows a set of parties with private inputs to jointly
compute a given function on their inputs such that the function evaluation
does not reveal any information about the inputs of other parties except for
what can already be deduced from the result of the evaluation. These properties
should hold even in the presence of a malicious adversary which fully controls the
network and which may control some subset of the parties that then may arbi-
trarily deviate from the protocol.

Defining the security of a multiparty computation via an ideal execution
with an incorruptible trusted party has proven a salient technique in the past.
More precisely, the trusted party receives the inputs of all parties, correctly
evaluates the considered function and hands back the result. In this work, we
consider multiparty computation in the information-theoretic setting, where the
adversary is computationally unbounded, and where consequently no underlying
complexity-theoretic assumptions are required.

Multiparty computation has been investigated for a variety of different se-
curity levels and execution scenarios. As far as security levels are concerned,
perfect security means that the result obtained in the real protocol run with
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the real adversary is identical to the result obtained in an ideal protocol run
with the simulator; statistical security is defined analogously but allows the
real and ideal results to deviate from each other by a small amount. As far as
different execution scenarios are concerned in which the protocol is executed
in, we distinguish between security in the stand-alone model, security under
concurrent self-composition, and security under concurrent general composition.
The stand-alone model only considers a single execution of the protocol under
consideration, and no other protocol is run concurrently. While this constituted
the standard setting for analyzing distributed security protocols in the past,
a common understanding arose that protocols have to be secure even when
executed many times in parallel (concurrent self-composition), or even when run
in an arbitrary network, where many different protocols may run concurrently
(concurrent general composition).

A considerable amount of work has been dedicated to carrying over results
obtained in the stand-alone model into the more realistic concurrent setting. In
particular, it is highly desirable to analyze protocols in the stand-alone model
with its much simpler execution scenario and restricted adversary capabilities,
and to derive theorems that allow for subsequently carrying these analyses over
into the more sophisticated models of concurrent composition. Our main re-
sult however constitutes a separation of these two notions, i.e., we show that
stand-alone security and security under concurrent composition do not coincide
in the information-theoretic setting, neither for perfect nor for statistical security,
and not even for fixed inputs and 2-bounded concurrent self-composition (i.e.,
only two executions of the same protocol are executed concurrently). We believe
that this helps to foster our understanding of the relationships of the respective
security notions, thereby refuting some recently made claims, see below.

1.1 Related Work

Defining the security of a protocol by comparing it with an ideal specification
has proven a salient technique in the past, see e.g. [7,8,2,16,3,17,18,4,1], since it
entails strong compositionality properties. In recent years, several results have
been obtained concerning the relation of concurrent composition of function eval-
uations to other security notions. First, [14] showed that a protocol that can be
concurrently composed and used as a subprotocol of another protocol (concur-
rent general composition) is already secure with respect to specialised-simulator
UC (a variant of the UC notion with another order of quantifiers). It was left
open, however, whether concurrent general composition was also necessary for
specialised-simulator UC. Then [15] showed that for a large class of functions
(those which can be used to transfer a bit), the possibility to compose a protocol
concurrently already implies the possibility to use that protocol as a subprotocol
in arbitrary contexts, i.e., concurrent self-composition and concurrent general
composition coincide for these functions. The relations left open by [14] were
proven by [10,11] who showed that concurrent general composition is equivalent
to specialised-simulator UC in the case of statistical and perfect security, and
strictly stronger in the case of computational security.



On the Necessity of Rewinding in Secure Multiparty Computation 159

All these results relate concurrent composition only to stronger notions, e.g.,
variants of the UC notion. To get feasibility results, it is necessary to look for
relations to weaker security notions, e.g. variants of the stand-alone model. This
approach was taken by [12], who could show that stand-alone security with a
non-rewinding black-box simulator already implies concurrent self-composition
(and in the perfect case even concurrent general composition). Unfortunately,
they also showed that stand-alone security with a non-rewinding black-box sim-
ulator is not sufficient for concurrent general composition in the case of statistical
or computational security. A similar approach had earlier successfully been pur-
sued in [5] in a different security model based on [16]. They showed that perfect
security with non-rewinding simulators allows for concurrent composition.

The central question left to solve consequently was how these results behave
in the presence of a rewinding simulator, which arguably constitutes a crucial
scenario in modern cryptography. It was thus investigated in [12] in which ways
the requirement that the simulator has to be non-rewinding can be weakened
such that the established implications remain valid. They gave theorems that
every rewinding black-box simulator can be replaced by an equivalent, computa-
tionally unbounded non-rewinding simulator. A consequence of these theorems
was that stand-alone security with a rewinding black-box simulator is already
sufficient for concurrent self-composition in the statistical case and even for con-
current general composition in the perfect case. Our results however refute these
claims.

In [9], it was shown that the task of performing a coin toss given a shorter
coin toss as seed can be realised with respect to rewinding black-box simulators
but not with respect to specialised-simulator UC. This resembles our results
(see Section 5 for a discussion) but applies only to the hybrid model (i.e., with
access to some ideal functionality) while the results in [12] were formulated in
the bare model. Furthermore, in contrast to the examples given here, those in
[9] do not cover the case of perfect security or of deterministic ideal functions,
and they did not explicitly apply their examples to the problem of rewinding
vs. non-rewinding simulators.

1.2 Our Results

We first show that rewinding constitutes a necessary ingredient for proving cer-
tain protocols secure:

Theorem 1 (Necessity of rewinding – informal). There exist protocols
that are secure in the information-theoretic stand-alone setting with a rewinding
black-box simulator, and yet are not secure in this setting with any non-rewinding
black-box simulator.

This disproves the following claim from [12]: Any black-box simulator for a per-
fect or statistically secure protocol can be transformed into a rewinding black-box
simulator.1 However, it still leaves open the question if stand-alone security for
1 The wording has been adapted to our notation.
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protocols with rewinding black-box simulators implies security under at least
concurrent self-composition (it only invalidates the existing proof chain). How-
ever, also this implication turns out not to hold, already if only two instances of
the same protocol are run concurrently and if only fixed inputs are considered:

Theorem 2 (Separating stand-alone model and concurrent (self-)com-
position – informal). There exist protocols that are secure in the stand-alone
model with a rewinding black-box simulator, and yet are not secure under
2-bounded concurrent self-composition, not even with an inefficient simulator
and fixed inputs. This holds for both the perfect and the statistical case.

This refutes the following claim from [12]: Every protocol that is perfectly/
statistically secure in the stand-alone model, and has a black-box simulator, is
secure under concurrent self-composition with fixed inputs, with an inefficient
simulator.

The counterexample for proving this theorem exploits a specific protocol real-
ization for a specific function. Thus one might still ask if there are other protocols
that can securely implement the considered function while at the same time pro-
viding security under concurrent composition. If this was the case, the impact
of Theorem 2 would be considerably weakened as one might identify the good
protocol realizations for the troublesome function under consideration and then
still achieve strong compositionality guarantees using those realizations.

However, we show that this is not the case in general, at least not for prob-
abilistic functionalities, statistical security, and concurrent general composition:
The task of extending coin toss (i.e., obtaining k +1 random coins from an ideal
functionality which gives only k random bits) can be securely implemented with
statistical security in the stand-alone model. However, there provably does not
exist any protocol for coin toss extension with respect to statistical concurrent
general composition.

Theorem 3 (A stronger separation – informal). There exists a probabilis-
tic function that can be securely implemented using a single instance of a proba-
bilistic function in the stand-alone model with statistical security and an efficient
rewinding black-box simulator, but that cannot be securely implemented by any
protocol with a polynomial number of rounds with respect to statistical concurrent
general composition.

2 Notation and Definitions

The stand-alone model. In the stand-alone model, a protocol π securely im-
plements an ideal function f if for every set of corrupted parties C and for every
adversary A there is a simulator S such that the families of random variables
REALπ,A,x(k) and IDEALf,S,x(k) are indistinguishable in the security para-
meter k for all inputs x = (x1, . . . , xn). Here REALπ,A,x is the output of the
adversary and of the uncorrupted parties in the following interaction: The un-
corrupted parties i /∈ C get input xi. Then the parties interact as prescribed by
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the protocol π. The adversary controls the corrupted parties, i.e., he can send
messages in the name of a party i ∈ C and receives all messages for parties
i ∈ C. Similarly, REALf,S,x consists of the output of the simulator S and of the
results of the function f . Here the inputs of f corresponding to the uncorrupted
parties are chosen according to x, and the inputs of the corrupted parties are
entered by the simulator. The simulator can choose his output in dependence of
the output of the function.2

In this paper, we distinguish two main flavors of the stand-alone model: per-
fect and statistical security. In the case of perfect security, REALπ,A,x(k) and
IDEALf,S,x(k) have to be identically distributed, while in the case of statistical
security they must be statistically indistinguishable. Both cases do not impose
any limitations on the adversary and the simulator. For completeness, we also
mention computational security which requires the simulator and the adversary
to be polynomially bounded and the two families of random variables to be com-
putationally indistinguishable. (Sometimes, one also requires the simulator to be
efficient in the case of statistical and perfect security. We address this case by
explicitly stating whether the simulator is efficient or inefficient in the respective
theorems.) A more detailed exposition of the stand-alone model can be found in
[6, Chapter 7].

Concurrent self-composition. The stand-alone model does not a-priori guar-
antee that two or more concurrent executions of the same protocol are secure,
even if a single instance is secure. Therefore one is interested in the notion of
concurrent self-composition, which roughly says that several instances of a given
protocol securely implement the same number of instances of the ideal func-
tion. In more detail, a protocol π securely implements a function f with respect
to g-bounded concurrent self-composition if g instances of π (considered as a
single protocol) securely implement g instances of the ideal function f in the
stand-alone model. Here we distinguish two cases: either the inputs to the differ-
ent instances of the protocol are all fixed in advance (i.e., each party i receives a
vector xi = (xi,1, . . . , xi,g) of inputs and uses xi,j as input for the j-th instance),
or the inputs to some instances can be chosen adaptively in dependence of mes-
sages sent in other instances. For us, only the first case is relevant, which is called
concurrent self-composition with fixed inputs. More details on this definition can
be found in [13]. The case of adaptive inputs is discussed in [15].

The special case, that g-bounded concurrent self-composition is given for any
polynomial g we call polynomially-bounded concurrent self-composition or simply
concurrent self-composition.

Concurrent general composition. The notion of concurrent general compo-
sition further extends the notion of concurrent self-composition. A protocol π
securely implements an ideal function f with respect to g-bounded concurrent
general composition if for any protocol σ that uses g copies of π as subprotocols,

2 In case the function gives different output to different parties (i.e., are asymmetric),
the situation gets slightly more complicated. However, all functions given in this
paper are symmetric, so the issue does not arise.
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σ securely implements σf in the stand-alone model (where σf denotes σ with
all instances of π replaced by ideal evaluations of the function f). More details
on this notion are found in [14].

Black-box simulators. A natural restriction on the simulators is to require
black-box simulators, i.e., the simulator is not chosen in dependence of the ad-
versary, but instead we require that there is an oracle Turing machine S (the
black-box simulator) such that for every adversary A we have indistinguishabil-
ity of REALπ,A,x(k) and IDEALf,SA,x(k) where SA is S with black-box access
to A. A fine point in this definition is whether the simulator may rewind the ad-
versary, i.e., whether the simulator may at some point in time make a snapshot
of the state of the adversary and then return the adversary to that state. Nor-
mally, one permits this operation and speaks of rewinding black-box simulators.
On the other hand, we may also require the simulator to be non-rewinding, so
that it can perform only one execution of the black-box adversary. This is often
also called a straight-line simulator.

3 The Necessity of Rewinding

We show that for certain functions and corresponding protocols, the ability to
rewind a black-box simulator is a crucial and unavoidable ingredient for achieving
simulation-based security proofs in secure multi-party computation. Throughout
this section, we consider the multiplication function fmult receiving two inputs
from a simple domain.

Definition 4 (Function fmult). The function fmult takes an input a ∈ {0, 1}
from Alice and an input b ∈ {1, 2} from Bob and returns a · b.

The corresponding protocol πmult that is intended to securely implement fmult

is defined as follows.

Definition 5 (Protocol πmult). Alice and Bob get inputs a ∈ {0, 1} and b ∈
{1, 2}, respectively.
– Alice sends a to Bob. If a /∈ {0, 1}, Bob assumes a = 0.
– Bob sends c := a · b to Alice. If a = 0, but c �= 0, Alice assumes c = 0. If

a = 1, but c /∈ {1, 2}, Alice assumes c = 1.
– Both parties output c.

We first show that πmult securely implements fmult if rewinding of the black-box
adversary is permitted. After that, we show that rewinding is also necessary, i.e.,
πmult securely implements fmult if and only if rewinding is permitted.

Lemma 6 (πmult securely implements fmult). The protocol πmult securely
implements fmult with perfect security in the stand-alone model with an efficient
rewinding black-box simulator.

We start with a short overview of the proof for the sake of illustration and
subsequently delve into the details. First, consider the case that Bob is corrupted.
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In this case, the simulator conducts a simulation of the real protocol by executing
the real adversary in the role of Bob and choosing Alices input as 1. Since in this
case the result of the function equals Bob’s input, the simulator learns his input
b as chosen by the adversary. Then the simulator enters this input b into the
ideal function fmult . From the result of the function fmult one can deduce Alice’s
input a (the result is 0 if and only if a is zero). Then the simulator rewinds
and restarts the adversary, this time choosing the true input a that Alice has
input. Thus the simulator learns the output out the adversary gives when the
input of Alice is a. Finally, the simulator outputs out . This constitutes a perfect
simulation since the simulator enters the same input b into the function fmult

and produces the same output out as the adversary does in the real model.
Now consider the case that Alice is corrupted. In this case simulation is

straightforward: Alice’s input a is sent in the clear as the first message of the
protocol (by the black-box adversary), so the simulator enters this input into the
ideal function fmult . The simulator finally has to simulate the message c = a · b
sent by Bob. This is straightforward since the simulator knows the correct value
of c from the output of fmult . Finally, the simulator gives the same output as
the simulated adversary, thus achieving a perfect simulation.

We now transform these intuitions into a rigorous proof.

Proof. In the case that no party is corrupted, the security (correctness) of the
protocol is obvious.

Now first consider the case that Bob is corrupted. The simulator S for this
case proceeds as follows:

– First fix the random tape of the adversary A, which is given as a black-box.
– Then send the message â = 1 to the adversary.
– Let ĉ be the reply of the adversary. If ĉ /∈ {1, 2}, set ĉ := 1 instead (as Alice

would have done herself).
– Set b := ĉ and use b as Bob’s input to the function fmult .
– Let res be the result of the function fmult . Let ã := 0 if res = 0 and ã := 1

otherwise.
– Rewind the adversary (but use the same random tape) and send the message

ã to the adversary.
– When the adversary outputs out , output out .

Let now an adversary A be given. Without loss of generality, assume A to be
deterministic (this is indeed no restriction since the random tape for which the
simulator is least successful can be hardwired into A). Then the following values
are defined:

– The message ĉa sent by the adversary when receiving a message a ∈ {0, 1}.
– The output ôuta of the adversary when he receives a message a ∈ {0, 1}.

Without loss of generality again, assume ĉ0 = 0 and ĉ1 ∈ {1, 2} (since Alice and
the simulator replace other values by valid ones).

Given the values of ĉa and outa, and the input a, we can calculate the different
values that occur during the run of the ideal protocol, in particular the values
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IDEALfmult ,SA,a(k) = (res , out). We summarise these values in the left table of
Figure (1). Furthermore, we can also calculate the different values that occur
during a real protocol run, i.e., c being the message sent by A to Alice, and
REALπmult ,A,a(k) = (res , out) the result of the function and the output of the
real adversary. These values are summarized in the right table of Figure (1).

Ideal protocol: Real protocol:

a ĉ res ã out
0 ĉ1 0 0 out0

1 ĉ1 ĉ1 1 out1

a c res out
0 0 0 out0

1 ĉ1 ĉ1 out1

Fig. 1. Values occuring in the run of the ideal protocol (left side) and the real protocol
(right side)

Since both out and res have the same values in real and ideal model (for all
values of a), perfect security in the case that Bob is corrupted follows.

Now we consider the case that Alice is corrupted. In this case, the following
simple simulator S achieves a perfect simulation:

– Query A for the first message a.
– If a /∈ {0, 1}, set a := 0.
– Then a is passed to the function fmult as Alice’s input.
– The result c := res = a ·b is given to the adversary as the answering message

from Bob.
– Finally, output the simulated black-box adversary’s output.

It is again straightforward to check that this constitutes a perfect simulation in
the case of a corrupted Alice. ��

The next lemma shows that considering only non-rewinding simulators is not
sufficient to prove that πmult securely implements fmult .

Lemma 7 (πmult needs rewinding). The protocol πmult does not securely
implement fmult in the stand-alone model with respect to perfect, statistical, or
computational security, with any non-rewinding black-box simulator (not even
with inefficient ones).

We again start with a proof sketch. We consider the case that Bob is corrupted.
To give the correct input to the ideal function fmult , the simulator needs to
interact with the black-box adversary before invoking fmult . Furthermore, to get
the correct value of Bob’s input, the simulator has to choose Alice’s input to be
a = 1 in the interaction with the black-box adversary (this is exactly how the
simulator in Lemma 6 was constructed). In addition to causing the result of the
function to be correct, the simulator also needs to output what the black-box
adversary would output in the same situation. The simulator already executed
the adversary with a = 1; consequently if the true input turns out to be 0, the
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simulator cannot learn what the adversary would output in that situation unless
he rewinds the adversary and executes it with Alice’s input a set to 0. However,
we assumed that rewinding is not permitted, and hence the simulation fails.

Proof. For contradiction, we assume that there is a non-rewinding black-box
simulator S such that for all adversaries A corrupting Bob and all inputs a ∈
{0, 1} from Alice, we have

REALπmult ,A,a(k) ≈ IDEALfmult ,SA,a(k). (1)

For brevity, we write S instead of SA.
Furthermore, we construct a family of adversaries A = A(b, o) with b ∈ {1, 2}

and o ∈ {0, 1}. The adversary A corrupts Bob and behaves as follows: When
receiving a message a from Alice, he sends c := a · b to Alice. Finally, he outputs
o if a = 0 and ⊥ otherwise.

To describe the real model, we use the following notation: Let a denote the
input of Alice. Since we only consider the case that Bob is corrupted, a is also
the message from Alice to Bob in the real model. Let c denote Bob’s answer.
Since Alice is uncorrupted, the result of the function evaluation in the real model
is also c. When using the adversary A given above, it is c = a · b. Finally let out
denote A’s output.

To prevent confusion, we add a swung dash (∼) to the random variables in the
ideal model. That is, c̃ is the result of the function fmult , and b̃ is the input given
by S in Bob’s stead to the function fmult . Further, let ã be the first message
given by S to the black-box A (which corresponds to the message sent by Alice
in the real protocol). Finally, let õut denote the output of the simulator S. The
input of the uncorrupted Alice is still called a, since it is the same in real and
ideal model (a, b and o are not random variables).

The simulator S has two possibilities: Either he queries the function fmult
(with some input b̃) before giving the message ã to the black-box adversary A
(we call this event F ), or he first sends the message ã to A.

Assume that event F occurs with non-negligible probability P (F ). In that
case, b̃ is chosen independently of b, so there exists a b, s.t. the probability that
b �= b̃ is at least 1

2P (F ). Then, in the case a = 1 the probability that a·b �= a·b̃ = c̃
is also at least 1

2P (F ). In the real model however, we have c = a · b. Since c and
c̃ denote the result of the function fmult in the real and ideal model, this is a
contradiction to Equation (1).

So event F happens only with negligible probability. Therefore, we can as-
sume without loss of generality that the simulator S always first sends ã to the
adversary, and only then inputs b̃ into fmult . Assume now that the probability
P (ã = 0) is non-negligible. Then consider the case a = 1. For ã = 0 the ad-
versary A answers with ã · b = 0, which is independent of b. In that case, b̃ is
chosen by the simulator independently of b. Therefore, P (b̃ �= b) ≥ 1

2P (ã = 0)
for some choice of b. Since c̃ = a · b̃, P (c̃ �= a · b) is non-negligible. But in the real
model we have c = a · b, in contradiction to Equation (1). Therefore P (ã = 0) is
negligible, so we can assume without loss of generality that the simulator always
sends ã = 1 to A (before invoking fmult).
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By construction, when receiving ã = 1, the adversary will give output ⊥.
Therefore, the simulator’s output õut is independent of o, so for some o we have
P (out �= o) ≥ 1

2 . But in the case a = 0, the adversary outputs out = o in the
real model. This contradicts (1). So there cannot exist a non-rewinding simulator
that fulfills Equation (1). ��

The general statement induced by the previous results is summarized in the
following corollary. Its proof is a direct consequence of Lemma 6 and 7.

Theorem 8. Let f be a function and π a protocol that securely implements
f with perfect, statistical, or computational security in the stand-alone model.
Then π does not necessarily securely implement f with perfect, statistical, or
computational security, respectively, with any non-rewinding black-box simulator.

In the proofs we have assumed the following variant of the stand-alone model: Af-
ter running the protocol, the output of the adversary should be indistinguishable
in the real and the ideal model. Another popular variant of the model instead
considers the view of the adversary. Our examples can be easily transferred to
the latter setting. Instead of giving some output out , the adversary sends a pro-
tocol message containing out that is ignored by the protocol. Then our proofs
directly carry over to that variant of the stand-alone model. This also applies to
the proofs in the next section.

The example given in this section could also be used to show that stand-
alone security does not imply concurrent self-composition: When two instances
of πmult run concurrently, a corrupted Bob can enforce the sum of the outputs to
equal 2 (unless Alice inputs 0 in both cases), which is impossible given access to
two copies of fmult . However, instead of showing this in detail, we will show the
separation between stand-alone security and concurrent self-composition in the
next section using another example which we consider to be more instructive.

4 Perfect Stand-Alone Security Does Not Imply
Concurrent Self-composition

In this section, we show that for certain functions and corresponding protocols,
security in the stand-alone model is not necessarily sufficient for guaranteeing
security under concurrent self-composition. Throughout this section, we consider
the functions fminx

, where x is a natural number that constitutes a parameter
of the function. The function fminx

outputs the minimum of its inputs.

Definition 9 (Function fminx
). Let x ≥ 2 be an integer. The function fminx

takes two inputs a, b ∈ {1, . . . , x} from Alice and Bob, where a is odd and b is
even. The result fminx(a, b) is the minimum of a and b.

Definition 10 (Protocol πminx
). Let x ≥ 2 be an integer. Alice gets an odd

input a ∈ {1, . . . , x}, Bob an even input b ∈ {1, . . . , x}.
– The protocol πminx

proceeds in at most x − 2 rounds 1, . . . , x − 2.
– In round r for an odd value r, Alice sends no if r �= a, and yes if r = a.
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– In round r for an even value r, Bob sends no if r �= b, and yes if r = b.
– If any other message is sent, the message is assumed by the recipient to

be no.
– As soon as a message yes has been sent (in some round r), the protocol

terminates, and both parties output r.
– If no message yes is sent in any round, the output is x − 1.

Lemma 11 (πminx
securely implements fminx

). Let x ≥ 2 be an inte-
ger. The protocol πminx

securely implements fminx
with perfect security in the

stand-alone model and with an efficient rewinding black-box simulator.

The proof can be sketched as follows; for the sake of readability, we only elaborate
on the case that Bob was corrupted. The simulator starts a simulation of a real
protocol where the (black-box) real adversary plays the role of Bob and Alice’s
input is set to its largest possible value amax . Then the minimum of Alice’s and
Bob’s input, which is returned by the ideal function fminx , allows us to calculate
Bob’s input b. This value b is then used as Bob’s input in the ideal evaluation
of fminx

. So far, we have already guaranteed that the result of the function is
identical in both the real and the ideal model. The simulator now has to learn
what the adversary would output. Learning this output requires the simulator
to perform a second simulation of the real protocol with the adversary using the
correct value of Alice’s input a (here we need the possibility to rewind). In the
case that the result of the function is smaller than Bob’s input b, this is an easy
task since the input of Alice is equal to the result of the function. If the function
result is however equal to the input of Bob, we can only deduce that Alice’s input
is larger than Bob’s input. In this case, the simulator simply assumes the largest
possible value amax that Alice might have input. Since the protocol terminates in
the round corresponding to Bob’s input b, the adversary will never learn whether
Alice used her maximum input or just some input greater than b. So in both
cases, the simulator learns what output the adversary gives in the real model,
and it can thus perform a perfect simulation.

Proof. Let a and b denote the inputs of Alice and Bob, respectively. Let amax be
the largest odd integer with amax ≤ x (Alice’s largest possible input), and bmax

the largest even integer with bmax ≤ x (Bob’s largest possible input).
If Alice and Bob are uncorrupted, it is easy to check, that the protocol indeed

calculates the minimum of a and b. Hence correctness (security) in this case is
clear.

Now consider the case that Bob is corrupted. In this case, the following sim-
ulator S achieves a perfect simulation:

– First fix the random tape of the adversary A, which is given as a black-box.
– Simulate a protocol run of πminx

with A where Bob is corrupted and Alice
gets input amax . Let r̃es be Alice’s output in this function evaluation.

– Let b̃ := r̃es if r̃es < amax , and b̃ := bmax otherwise.
– Invoke the ideal function πminx

using b̃ as Bob’s input. Let res be the result
of the function.
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– Let ã := res if res < b̃, and let ã := amax otherwise.
– Then simulate a protocol run of πminx with adversary A where Bob is cor-

rupted and Alice gets input ã. Let out be the adversary’s output in that
protocol run.

– Output out .

Now, consider an adversary A that corrupts Bob. Without loss of generality,
assume A to be deterministic (cf. the proof of Lemma 6). Assume further that
A only sends messages yes and no, and that these messages only occur in the
appropriate (i.e., even) rounds.

Then we can associate the following values with this adversary A:

– By b̂ we denote the number of the first round in which the adversary answers
with yes when Alice always sends no. If A never sends yes, let b̂ := bmax .
(Intuitively, b̂ denotes Bob’s input as chosen by the adversary.)

– By outa we denote the output made by the adversary in the execution of a
real protocol when Alice has input a.

Note that both b̂ and outa are obtained deterministically since both A and the
protocol πminx

are deterministic. The following facts are easy to observe:

(i) In a protocol run of πminx with A where Alice gets input a, Alice’s output
(i.e., the result of the function) is always min(a, b̂). (This holds since in
case b̂ < a, the adversary cannot distinguish Alice from an Alice with
input amax , and if b̂ > a, the protocol guarantees that a is output. The
case b̂ = a does not occur, since b̂ is even and a is odd.)

(ii) For a, a′ > b̂ it is outa = outa′ . (Because then the protocol terminates in
round b̂, so Alice behaves identically with inputs a and a′.)

We now show, that S entails a perfect simulation in the case that Bob is
corrupted. Consider an ideal protocol run consisting of the simulator S (having
black-box access to the adversary A), and the ideal function fminx

receiving
some input a on Alice’s side.

First, the simulator simulates a real protocol run with input amax for Alice.
By fact (i), Alice’s output in that protocol run is min(amax , b̂). Therefore it is
r̃es = min(amax , b̂).

If min(amax , b̂) = r̃es < amax , it follows r̃es = b̂. If min(amax , b̂) = r̃es ≥ amax ,
if follows b̂ ≥ amax , and therefore b̂ = bmax . In both cases the value b̃ calculated
by the simulator equals b̂.

Since the simulator enters b̃ as Bob’s input into the function fminx
, the result

of the function is res = min(a, b̃) = min(a, b̂).
Consider the case min(a, b̃) = res < b̃. Then a = res and the simulator sets

ã := res , so outa = out ã. In the case min(a, b̃) = res ≥ b̃, it is a > b̃ (since
a and b̃ cannot be equal, being of different parity). The simulator then chooses
ã := amax ≥ a > b̃, so a, ã > b. By fact (ii), we then have outa = out ã. So in
both cases, the output of the simulator and the output of the adversary coincide,
i.e., we have out = outa.
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In a nutshell, the result of the function (i.e., Alice’s output) in an ideal protocol
run is res = min(a, b̂), and the output of the simulator is out = outa.

In the real model the result of the function is min(a, b̂) according to Fact (i).
Moreover, the output of the adversary is outa by definition.

Consequently, the output of the adversary and and the result of the function
evaluation are identical in real and ideal model so that perfect security in the
case that Bob is corrupted follows.

The case that Alice is corrupted is proven identically, except for exchanging
the roles of Alice and Bob, the letters a and b and the words odd and even. ��

Lemma 12 (πminx
does not compose concurrently). Let x ≥ 4 be an inte-

ger. The protocol πminx does not securely implement fminx with perfect, statis-
tical, or computational 2-bounded concurrent self-composition with fixed inputs.

This even holds if we allow unbounded non-black-box simulators that may
adaptively query the two ideal instances of fminx .

The basic idea underlying the proof of the lemma can be given as follows. A
corrupted Bob will start two parallel sessions of the real protocol πminx

with
Alice and subsequently forward all protocol messages from one protocol session
into the other and vice versa. The output of both protocols will then be equal to
the smaller input that Alice has made (±1). This is impossible to achieve when
concurrently interacting with two ideal functions: The simulator has to invoke
one of the functions first. If it uses a large value for Bob’s input, the simulation
will fail if Alice gave a large input to that first function, and a small input to
the second one. If it uses a small value for Bob’s input, it will fail if Alice gave
large inputs to both functions.

Actually, the proof gives a slightly stronger result than Lemma 12 since it
shows that πminx

does not even allow for parallel composition.

Proof. We construct an adversary A corrupting Bob and attacking two concur-
rently composed instances of πminx

as follows:

– In each odd round, he receives messages mA,1, mA,2 from the two instances
A1, A2 of Alice.

– In each even round, he sends mA,1 to the second instance A2 of Alice, and
mA,2 to the first instance A1.

Let a1 denote the input of the first instance of Alice, and a2 the input of the
second instance of Alice. Let further res1 and res2 denote the respective outputs.

Then if a1 < a2, one easily sees that res1 = a1 and res2 = a1 + 1 (since the
forwarded yes-message reaches A2 only in the (a1 + 1)-st round). Similarly, if
a1 > a2, it is res1 = a2 + 1 and res2 = a2. Finally, if a1 = a2 < amax , we get
res1 = res2 = a1 = a2, and if a1 = a2 = amax we finally have res1 = res2 = x−1.

Now, consider an arbitrary simulator S. This simulator has access to two
instances f1

minx
, f2

minx
of the function fminx

, which receive inputs a1 and a2 from
Alice, respectively. The simulator may now invoke the functions one after the
other. Let f i

minx
denote the function invoked first (i.e., i is a random variable),
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and bi the Bob-input given to f i
minx

by S. Since both i and bi cannot depend on
the inputs a1 and a2 from Alice, at least one of the following two cases occurs with
probability at least 1

4 for suitable choices of a1 and a2: (i) It is a1 = a2 = amax
and bi < x − 1. (ii) It is ai = amax , a3−i = 1 and bi ≥ x − 1.

In case (i) the result of f i
minx

will be bi < x − 1. However, as we have shown
above, in the real model, with inputs a1 = a2 = amax the result of f1

minx
and

f2
minx

(i.e., the outputs of the Alice-instances) would be x − 1. Therefore the
results differ in real and ideal model.

In case (ii) the result of f i
minx

will be greater or equal x−1 (since amax ≥ x−1).
In the real model however, the results of the functions would be 1 and 2 (in some
order), because a3−i = 1. Since x ≥ 4, both results are smaller than x − 1 and
so the results differ in real and ideal model.

So with non-negligible probability, the function results in the ideal model do
not match those in the real model. The insecurity of πminx under 2-bounded
concurrent self-composition follows. ��

These lemmas yield the following theorem. Its proof is a direct consequence of
Lemma 11 and 12.

Theorem 13. Let f be a function and π a protocol that securely implements f
with perfect, statistical, or computational security in the stand-alone model with
an efficient rewinding black-box simulator. Then π does not necessarily securely
implement f with perfect, statistical, or computational security under 2-bounded
concurrent self-composition, not even with an inefficient non-black-box simulator
and fixed inputs.

5 A Stronger Separation

The results proven so far show that certain protocols can be secure in the
stand-alone model, require rewinding, and do not allow composition. The natural
question arising here is whether this issue of composition depends on a specific
choice of the protocol while some other protocol for the same task might be
composable. We show that, at least for the case of a probabilistic functionality,
statistical security, and concurrent general composition, this is not the case: The
task of extending coin toss (i.e., obtaining k +1 random coins from an ideal fun-
tionality which gives only k random bits) can be realised with statistical security
in the stand-alone model. However, there does not exist a protocol for coin toss
extension with respect to statistical concurrent general composition.

Corollary 14. There exists a probabilistic function F that can be securely im-
plemented using a single instance of a probabilistic function G in the stand-alone
model with statistical security and an efficient rewinding black-box simulator, but
that cannot be securely implemented using a single instance of G by any protocol
with a polynomial number of rounds with respect to statistical concurrent general
composition.
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Proof. Let F be the (k+1)-bit coin-toss functionality (i.e., the functionality that
provides one uniformly chosen string of length k+1, cf. [9]). F is a function that
ignores its inputs. Let G be the k-bit coin-toss functionality.

In [9] it is shown, that there is a protocol securely implementing F using G
in the stand-alone model with statistical security (and an efficient rewinding
black-box simulator).

Assume that there is a polynomial-round protocol π securely implementing F
using a single instance of G with respect to statistical concurrent general com-
position. Then by the results in [14], π also securely implements F with respect
to statistical specialised-simulator UC ([14] only shows the computational case,
but the proof easily carries over to the statistical case). But in [9] it is shown
that no polynomial-round protocol π using a single instance of G exists that se-
curely implements F with respect to specialised-simulator UC (actually, [9] state
the theorem for UC, but their proof also shows the case of specialised-simulator
UC, since the environments constructed in their proof do not depend on the
simulator). Thus we have a contradiction and the lemma follows. ��

6 Conclusion and Open Questions

We have shown that in the information-theoretic setting, the existence of a
rewinding simulator in the stand-alone model is not sufficient for the existence
of a non-rewinding simulator, nor for achieving concurrent composition. In that
light, the question naturally arises which additional constraints may be imposed
on the black-box simulator so that it can be converted into a non-rewinding
black-box simulator (which then in turn allows for concurrent composition, see
[12]). A major problem in coming up with a constructive transformation of a
rewinding simulator into a non-rewinding one seems to be the following: The
original simulator’s program may explicitly require several executions of the
black-box adversary, e.g., the knowledge-extractor in most proofs of knowledge
executes the adversary (i.e., the prover) twice or more often, and then uses
the results of several of the executions to construct the required output. Such
a knowledge-extractor cannot easily be transformed into a non-rewinding one,
since then its program would suddenly find itself in the unexpected situation of
terminating without having run the black-box adversary twice, yielding unde-
fined results. The simulators in the counterexamples given in this work are of
this form as well. On the other hand, many simulators found in the literature
use rewinding only to backtrack from wrong choices. After having backtracked,
they forget that they rewound the adversary and start anew, hoping to select
the right choice this time. Protocol with simulators of this kind include, e.g., the
well-known zero-knowledge proofs of graph-isomorphism and graph-3-colouring.

More formally we call a simulator obliviously rewinding, if it is an oracle
Turing machine with the following extension: at any point during its execution,
the simulator may set a marker M . Then a snapshot of the state of the simulator
and of the black-box adversary is taken. Furthermore, the simulator may then at
any other point of its execution choose to return to a marker M . If he chooses to
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do so, the state of the black-box adversary and of the simulator itself are restored
to the snapshot that was taken when the marker M was set. The program of
an obliviously rewinding simulator does not run into an undefined situation
when the simulation suddenly goes through without any rewinding. Therefore,
it may be possible that such an obliviously rewinding simulator can indeed be
transformed into a non-rewinding one as proposed in [12]. We leave this as an
open question.
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References

1. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.
IACR Cryptology ePrint Archive 2004/082, Mar. 2004.

2. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating
a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

3. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 3(1):143–202, 2000.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001. Extended version in Cryptology ePrint Archive,
Report 2000/67, http://eprint.iacr.org/.

5. Y. Dodis and S. Micali. Parallel reducibility for information-theoretically se-
cure computation. In M. Bellare, editor, Advances in Cryptology, Proceedings of
CRYPTO ’00, volume 1880 of Lecture Notes in Computer Science, pages 74–92.
Springer-Verlag, 2000.

6. O. Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).
Cambridge University Press, May 2004. Previous version online available at
http://www.wisdom.weizmann.ac.il/~oded/frag.html.

7. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game – or – a
completeness theorem for protocols with honest majority. In Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

8. S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority. In Advances in Cryptology: CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 77–93. Springer, 1990.

9. D. Hofheinz, J. Müller-Quade, and D. Unruh. On the (im)possibility of ex-
tending coin toss. In S. Vaudenay, editor, Advances in Cryptology, Proceed-
ings of EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 504–521. Springer-Verlag, 2006. Full version online available at
http://eprint.iacr.org/2006/177.

10. D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In J. Kilian,
editor, Theory of Cryptography, Proceedings of TCC 2005, Lecture Notes in Com-
puter Science, pages 86–103. Springer-Verlag, 2005. Online available at http://
iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html.

11. D. Hofheinz and D. Unruh. Simulatable security and polynomially bounded con-
current composition. In IEEE Symposium on Security and Privacy, Proceedings
of SSP ’06, pages 169–182. IEEE Computer Society, 2006. Full version online
available at http://eprint.iacr.org/2006/130.ps.

http://eprint.iacr.org/
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/2006/177
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html
http://eprint.iacr.org/2006/130.ps


On the Necessity of Rewinding in Secure Multiparty Computation 173

12. E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure
protocols and security under composition. In 38th Annual ACM Symposium
on Theory of Computing, Proceedings of STOC 2006, pages 109–118. ACM
Press, 2006. Online available at http://www.cs.biu.ac.il/~lindell/abstracts/
IT-composition_abs.html.

13. Y. Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In 35th Annual ACM Symposium on Theory of Computing, Proceedings
of STOC 2003, pages 683–692. ACM Press, 2003.

14. Y. Lindell. General composition and universal composability in secure multi-party
computation. In 44th Annual Symposium on Foundations of Computer Science,
Proceedings of FOCS 2003, pages 394–403. IEEE Computer Society, 2003. Online
available at http://eprint.iacr.org/2003/141.

15. Y. Lindell. Lower bounds for concurrent self composition. In M. Naor, editor,
Theory of Cryptography, Proceedings of TCC 2004, volume 2951 of Lecture Notes
in Computer Science, pages 203–222. Springer-Verlag, 2004.

16. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology:
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 392–404.
Springer, 1991.

17. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. 7th ACM Conference on Computer and Communica-
tions Security, pages 245–254, 2000. Extended version (with Matthias Schunter)
IBM Research Report RZ 3206, May 2000, http://www.semper.org/sirene/publ/
PfSW1_00ReactSimulIBM.ps.gz.

18. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In Proc. 22nd IEEE Sym-
posium on Security & Privacy, pages 184–200, 2001. Extended version of
the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

http://www.cs.biu.ac.il/~lindell/abstracts/IT-composition_abs.html
http://eprint.iacr.org/2003/141
http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz
http://eprint.iacr.org/


On Expected Probabilistic Polynomial-Time
Adversaries: A Suggestion for Restricted
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Abstract. This paper concerns the possibility of developing a coherent
theory of security when feasibility is associated with expected probabilis-
tic polynomial-time (expected PPT). The source of difficulty is that the
known definitions of expected PPT strategies (i.e., expected PPT inter-
active machines) do not support natural results of the type presented
below. To overcome this difficulty, we suggest new definitions of expected
PPT strategies, which are more restrictive than the known definitions
(but nevertheless extend the notion of expected PPT non-interactive al-
gorithms). We advocate the conceptual adequacy of these definitions, and
point out their technical advantages. Specifically, identifying a natural
subclass of black-box simulators, called normal, we prove the following
two results:

1. Security proofs that refer to all strict PPT adversaries (and are
proven via normal black-box simulators) extend to provide security
with respect to all adversaries that satisfy the restricted definitions
of expected PPT.

2. Security composition theorems of the type known for strict PPT
hold for these restricted definitions of expected PPT, where security
means simulation by normal black-box simulators.

Specifically, a normal black-box simulator is required to make an ex-
pected polynomial number of steps, when given oracle access to any
strategy, where each oracle call is counted as a single step. This natural
property is satisfies by most known simulators and is easy to verify.

1 An Opinionated Introduction

The title of this introduction and the use of first person singular are meant to
indicate that this introduction is more opinionated than is customary in our
field. Nevertheless, I will try to distinguish facts from my opinions by use of
adequate phrases.

In my opinion, the first question that should be asked when suggesting and/or
reviewing a definition is what is the purpose of the definition. When reviewing
an existing definition, a good way to start is to look into the history of the
� This research was partially supported by the Israel Science Foundation (grant

No. 460/05).
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definition, since the purpose may be more transparent in the initial works than
in follow-up ones.

Before turning to the history and beyond, let me state that I assume that the
reader is familiar with the notion of zero-knowledge and the underlying simula-
tion paradigm (see, e.g., [G01, Sec. 4.3.1]). In fact, some familiarity with general
secure multi-party computation (e.g., at the overview level of [G04, Sec. 7.1]) is
also useful. Indeed, this paper is not intended for the novice: it deals with subtle
issues that the novice may (or even should) ignore.

This is a trimmed version of my technical report [G06]. In particular, Sec-
tions 4-6 were omitted.

1.1 The History of Related Definitions

To the best of my recall, the first appearance in cryptography of the notion of
expected (rather than strict) probabilistic polynomial-time was in the seminal
work of Goldwasser, Micali, and Rackoff [GMR]. The reason was that the simu-
lators presented in that paper (for the Quadratic Residuosity and the Quadratic
Non-Residuosity interactive proofs) were only shown to run in expected prob-
abilistic polynomial-time.1 Recall that these simulators were used in order to
simulate the interaction of arbitrary strict probabilistic polynomial-time (adver-
sarial) verifiers with the honest prover.

At first, the discrepancy between the expected probabilistic polynomial-time
allowed to the simulator and the restriction of the adversary to strict proba-
bilistic polynomial-time did not bother anybody. One reason for this lack of
concern seems to be that everybody was overwhelmed by the new fascinating
notion of zero-knowledge proofs, its mere feasibility and its wide applicability
(as demonstrated by [GMR, GMW]). But as time passed, some researchers be-
came bothered by this discrepancy, which seemed to violate (at least to some
extent) the intuition underlying the definition of zero-knowledge. Specifically, re-
lating the complexity of the simulation to the complexity of the adversary is the
essence of the simulation paradigm and the key to the conclusion that the adver-
sary gains noting by the interaction (since it can obtain the same, essentially as
easily, without any interaction). But may we consider expected polynomial-time
and strict (probabilistic) polynomial-time as being the same complexity?

The original feeling was that the discrepancy between strict and expected
polynomial-time is not very significant, and I do hold this view to this very day.
After all, everybody seems quite happy with replacing one polynomial (bound
1 Note that while a small definitional variation (cf. [G01, Sec. 4.3.1.1] versus [G01,

Sec. 4.3.1.6]) suffices for obtaining a strict probabilistic polynomial-time (perfect)
simulation for the QR protocol, this does not seem to be the case when the QNR
protocol is concerned. The same dichotomy is manifested between the Graph Iso-
morphism and Graph 3-Colorability protocols (of [GMW]) on one hand and the
constant-round zero-knowledge proof of [GK96] on the other hand. The dichotomy
arises from two different simulation techniques; the first is tailored for “challenge-
response” protocols, while the second refers to the use of “proofs-of-knowledge”
(which may be implicit and trivial (as in [GK96])).
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of the running time) by another, at least as a very first approximation of the
intuitive notion of similar complexity.2 Still, I cannot deny that there is some-
thing unpleasing about this discrepancy. Following [KL05], let me refer to this
issue as an aesthetic consideration.

Jumping ahead in time, let me mention a more acute consideration artic-
ulated in [KL05]: A different handling of adversaries and simulations (e.g., the
discrepancy between expected polynomial-time and strict probabilistic
polynomial-time) raises technical difficulties and, in particular, stands in the way
of various desired composition theorems (e.g., of the type presented in [GO94,
C00]). But let me get back to the story.

Faced with the aforementioned aesthetic consideration, a few researchers sug-
gested a simple solution: extending the treatment of adversaries to ones running
in expected polynomial-time. This suggestion raised a few problems, the first be-
ing how to define expected polynomial-time interactive machines? (In addition,
there are other problems, which I will discussed later.)

Feige’s proposal [F90] was to consider the running-time of the adversary when
it interacts with the honest party that it attacks, and require that the adver-
sary runs in expected polynomial-time (in such a random interaction). My own
proposal was to allow only adversaries that run in expected polynomial-time re-
gardless with whom they interact; that is, the adversary is required to run in ex-
pected polynomial-time when interacting with any other strategy. Feige objected
to my proposal saying that it unduly restricts the adversary, which is designed
to attack a specific strategy and thus should be efficient only when attacking
this strategy. My own feeling was that it is far more important to maintain a
coherent theory by using a “stand-alone” notion of expected polynomial-time;
that is, a notion that categorizes strategies regardless of their aim (e.g., without
reference to whether or not these strategies model adversaries (and which strate-
gies these adversaries attack)). The rationale underlying this feeling is discussed
in Section 1.2. (Furthermore, Feige’s definition also extends the standard defini-
tion of strict probabilistic polynomial-time adversaries by allowing adversaries
that may not even halt when interacting with strategies other the those they
were designed to attack (see proof of Proposition 5).)

In any case, a major problem regarding the suggestion of extending the treat-
ment of adversaries to ones running in expected polynomial-time is whether such
an extension is at all possible. One specific key question is whether known simula-
tors can handle expected polynomial-time adversaries. As pointed out in [KL05],
in some cases (e.g., the simulator of [GK96]), the answer is negative even if one
uses the more restricted notion of expected polynomial-time adversaries (which
refers to interaction with any possible strategy). Another important question
is whether composition theorems that are known to hold for strict probabilistic

2 It is telling that my advocacy of knowledge tightness [G01, Sec. 4.4.4.2], a notion
aimed at quantitatively bounding the ratio of the running times of the simulator
and adversary, has never gain much attention. (And yes, I am aware of the recent
work of Micali and Pass [MP06] that introduces and advocates an even more refined
notion.)
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polynomial-time (strategies and simulators) can be extended to the case of ex-
pected polynomial-time (strategies and simulators).

Indeed, the “question of composition” became a major concern in the 1990’s
and motivated a re-examination of many aspects of the theory of cryptography.
Here I refer specifically to the Sequential Composition Theorem of Canetti [C00],
which supports modular construction of protocols, and to the Concurrent Com-
position Theorem of Canetti [C01], which is aimed at preserving security in
settings where numerous executions of arbitrary protocols are taking place con-
currently. These composition results were obtained when modeling adversaries
as strict probabilistic polynomial-time strategies and allowing only strict prob-
abilistic polynomial-time simulators. One consequence of the lack of analogous
results for the case of expected polynomial-time was that the modular construc-
tion of secure protocol had to avoid protocols that were only known to be sim-
ulateable in expected polynomial-time.3

Recently, Katz and Lindell [KL05] initiated a study of the possibility of sim-
ulating expected polynomial-time adversaries and/or obtaining composition the-
orems (or sufficiently good alternatives) for the expected polynomial-time case.
They showed that in some cases (e.g., when the simulator satisfies some ad-
ditional properties and/or under some super-polynomial intractability assump-
tions) such partial results can be obtained.4 These results do not provide a
“free” transformation from the strict probabilistic polynomial-time model to
the expected polynomial-time model, where “free” means without referring to
additional assumptions. In my opinion, as long as this is the state of affairs, one
better look for alternative directions.

1.2 Towards New Definitions

My starting point (or thesis) is that we should not care about expected
polynomial-time adversaries per se. As hinted by my historical account, re-
searchers were perfectly happy with strict probabilistic polynomial-time adver-
saries and would have probably remained so if it were not for the introduction
of expected polynomial-time simulators. Indeed, at the end of the day, the user
(especially a non-sophisticated one) should care about what an adversary can
obtained within a specific time (or various possible amounts of work), where the
term ‘obtain’ incorporates also a quantification of the success probability. I claim
that our goal as researchers is to provide such statements (or rather techniques
3 For example, relatively efficient proofs-of-knowledge (which only guarantee expected

polynomial-time extraction) were avoided (e.g., in [G04, Sec. 7.4.1.3]) and strong
proofs-of-knowledge (cf. [G01, Sec. 4.7.6]) were used instead.

4 Roughly speaking, the two main results of [KL05] refers to versions of computational
indistinguishability that are required to hold with respect to super-polynomial-time
observers. This means that for obtaining (ordinary) computational security, some-
where along the way, one needs to make a super-polynomial-time intractability as-
sumption. Also note that the simulators constructed in [KL05] use the corresponding
adversaries in a “slightly non-black-box” manner in the sense that they terminate
executions (of these adversaries) that exceed a specific number of steps.
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for providing such statements), and that expected polynomial-time machines may
appear in the analysis only as intermediate steps (or mental experiments).

My thesis is further enforced by the confusing and unintuitive nature of ex-
pected running-time especially when applied in the context of cryptography5

and by numerous annoying phenomena related to expected-time complexity. In
particular, note that, unlike strict polynomial-time, expected polynomial-time
is a highly non-robust notion that is not preserved under changes of computa-
tional model and standard algorithmic compositions.6 These “features” are an
artifact of the “bad interaction” between the expectation operator and many
non-linear operators: for example, for a random variable X , we cannot upper-
bound E[X2] as a function of E[X ]. Thus, if X is a random variable that repre-
sents the running-time of some process Π (where the probability space is that of
the internal coin tosses of Π), then we cannot bound the expected running-time
of various modest variants of Π (e.g., which square its running-time) in terms
of the expected running-time of Π . (See Footnote 25, which refers to a natural
case in which this problem arises.)

The foregoing reservations regarding expected polynomial-time are of lesser
concern when expected running-time is only used as an intermediate step (rather
than as a final statement). Taking this approach to its extreme, I claim that for
this purpose (of an intermediate step) it is legitimate to use any (reasonable) def-
inition of expected polynomial-time strategies, and that among such possibilities
we better select a definition that supports the desired results (e.g., simulation
of corresponding adversaries and composition theorems). Thus, we should seek
a definition of expected polynomial-time strategies that enjoys the following
properties:

1. The definition should include all strict probabilistic polynomial-time strate-
gies (but should not extend “much beyond that”; e.g., super-polynomial-time
computations may only occur with negligible probability).

2. When applied to non-interactive strategies (i.e., stand-alone algorithms) the
definition of expected polynomial-time strategies should yield the standard
notion of expected polynomial-time.

This property is not only a matter of aesthetic considerations but is rather
important for composition theorems (as desired in Property 3b). Further-
more, when applied to the context of zero-knowledge, the current property
implies that expected polynomial-time simulators are deemed admissible by
this definition.7

5 Indeed, things become even worse if we bear in mind the need to keep track of
both the running-time and the success probability (which should be calculated with
respect to various strict time bounds). That is, I claim that providing only the
expected running-time and the overall success probability is quite meaningless, since
the success is likely to be correlated with the running-time.

6 See analogous discussion of average-case complexity in [G97].
7 In fact, we should strengthen Property 2 by requiring that also in the context of

secure multi-party computation (where the simulators are themselves interactive
machines) the known “expected polynomial-time” simulators (of strict probabilistic
polynomial-time) are deemed admissible by the selected definition.



On Expected Probabilistic Polynomial-Time Adversaries 179

3. The definition should allow to derive the results that we seek:
(a) Known simulators that handle strict probabilistic polynomial-time ad-

versaries should also handle adversaries that satisfy the definition.8
(b) The definition should support natural composition theorems (e.g., of the

type proven by Canetti [C00]).

With the foregoing properties in mind, let me suggest a couple of new definitions
of expected polynomial-time strategies. These definitions will be more restrictive
than the existing definitions of this notion (which were reviewed in Section 1.1).

1.3 The New Definitions

Looking at the problem of simulating an “expected polynomial-time” adversary
(cf. [KL05]), it becomes evident that the source of trouble is the fact that the
bound on the running-time of the adversary (w.r.t any real interaction) is no
longer guaranteed when the adversary is invoked by a simulator. The point
being that the queries made by the simulator may have a different distribution
than the messages sent in any real interaction (especially, since some of these
queries may not appear in the transcript output by the simulator). Furthermore,
the simulator is resetting the adversary, which may allow it to find queries that
are correlated to the adversary’s internal coin tosses in ways that are unlikely
to happen in any real interaction (see examples in [KL05] and in the proof of
Proposition 5). Such queries may cause the adversary to run for a number of
steps that is not polynomial on the average. Indeed, this problem does not occur
in the case of strict probabilistic polynomial-time adversaries because in that
case we have an absolute bound on the number of steps taken by the adversary,
regardless of which messages it receives.

Let me stress that assuming that the adversary runs in expected polynomial-
time when interacting with any other party does not solve the problem, because
the distribution of the simulator’s queries may not correspond to the distribution
of an interaction with any standard interactive machine. The simulator’s queries
correspond to a “reset attack” on the adversary, where reset attack are as defined
in [CGGM] (except that here they are applied on the adversary’s strategy rather
than on the honest party’s strategy). Specifically, in a reset attack, the internal
coin tosses of the strategy are fixed (to a random value) and the attacker may
interact several times with the resulting residual (deterministic) strategy.

The forgoing discussion suggests a simple fix to the problem. Just define ex-
pected polynomial-time strategies as ones that run in expected polynomial-time
under any reset attack that interact with them for a polynomial number of
times. Actually, we should allow attacks that interact with these strategies for
an expected polynomial number of times.9 (See Definition 3.)
8 Actually, we may relax this condition by allowing a modification of the simulator

but not of the protocol and/or the underlying intractability assumptions.
9 When measuring the expected number of interactions, I refer to a variant of Feige’s

notion of expected complexity with respect to the designated machine. Indeed, this
widens the class of possible (reset) attackers, which further limits the class of admis-
sible strategies (i.e., those that are expected polynomial-time under such attackers).
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It seems that any (black-box) simulator that handles strict probabilistic
polynomial-time adversaries can also handle adversaries that run in expected
polynomial-time under the foregoing definition. After all, this definition was
designed to support such a result. However, I was not able to prove this result
without further restricting the class of simulators (in a natural way). For details,
see Section 1.4.

But before turning to the results, let me suggest an even more restricted
notion of expected polynomial-time strategies. I suggest to consider strategies
that run in expected polynomial-time when interacting with any (“magical”)
machine that receives the strategy’s internal coin tosses as side information. Ar-
guably, this is the most restricted (natural) notion of expected polynomial-time
strategies (which, when applied to non-interactive machines, coincides with the
standard definition of expected polynomial-time). Needless to say, this definition
(which is more restrictive than the aforementioned resetting definition) also sup-
ports the extension of simulators that handle strict probabilistic polynomial-time
adversaries to handle adversaries satisfying the current definition.

Clearly, both definitions satisfy the first two desirable properties stated in
Section 1.2. As for the third desirable property, it at the focus of the next
subsection.

1.4 The Main Results

The main results establish the third desirable property for both definitions, while
assuming that the provided simulators (i.e., the simulators provided by the cor-
responding hypothesis) belong to a natural subclass of black-box simulators.
Indeed, one could hope that these results would hold for all (universal) simula-
tors or at least for all black-box simulators.10

The issue at hand is the definition of efficient black-box simulators. Since
black-box simulators are typically given oracle access to an efficient strategy,
some texts only refer to what happens in such a case (and mandate that the
overall simulation be efficient, where one also accounts for the steps of the strat-
egy). A more natural and robust definition mandates that the number of steps
performed by the black-box simulator itself be feasible, when the simulator is
given oracle access to any strategy. Specifically, I consider black-box simulators
that, make an expected number of steps that is upper-bounded by a polynomial
in the length of the input, where each oracle call is counted as a single step, and
call such a simulator normal. Indeed, the known (black-box) simulations includ-
ing those that run in expected polynomial-time (e.g., [GK96]) are normal. For
further discussion see the beginning of Section 3.

As stated in Section 1.3, the new definitions (or actually the “resetting-based”
one) were devised to support the first main result (stated in [G06, Thm. 10]).
This result asserts that any normal black-box simulator that handles strict prob-

10 Recall that a universal simulator is a universal machine that is given that the code
of the adversary that it simulates. In contrast, a black-box simulator is only given
oracle access to the corresponding strategy.
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abilistic polynomial-time adversaries can also handle adversaries that run in ex-
pected polynomial-time under the new definition(s). In particular, it implies that
normal black-box zero-knowledge protocols remain simulateable when attacked
by adversaries that satisfy the new definition(s) of expected polynomial-time.
This applies, in particular, to the proof system of [GK96], for which analo-
gous (“free”) results were not known under the previous definitions of expected
polynomial-time.11

Note that the fact that the aforementioned (normal black-box) simulations run
in expected polynomial-time also when given access to any expected polynomial-
time adversary is quite obvious from the new definition(s). This follows from the
fact that normal black-box simulators invoke the adversary strategy for an ex-
pected polynomial number of times, while the “resetting-based definition” upper-
bounds the total expected time consumed by the adversary in such invocations.
What should be shown is that, also in this case, the corresponding simulation
produces good output (i.e., indistinguishable from the real interaction). This can
be shown by using a rather straightforward “truncation” argument.12

Let us now turn to the question of composition, starting with the sequential
composition of zero-knowledge protocols. The known result (of [GO94]) refers
to strict probabilistic polynomial-time adversaries (and holds both with respect
to strict and expected polynomial-time simulation).13 However, the known ar-
gument does not extend to expected polynomial-time adversaries. Recall that
the said argument transforms any adversary that attacks the composed protocol
into a residual adversary that attacks the basic protocol. The source of trouble
is that the fact that the former adversary is expected polynomial-time (under
any definition) does not imply that the latter adversary is expected polynomial-
time (under this definition). See the proof of Theorem 9 for details. Fortunately,
there is an alternative way: just note that the simulator obtained by [GO94],
which refers to strict probabilistic polynomial-time adversaries, can handle ex-
pected polynomial-time adversaries (i.e., by invoking [G06, Thm. 10] (or rather
its zero-knowledge version – Theorem 8)).

The foregoing idea can also be applied to the general setting of secure multi-
party computation, but additional care is needed to deal with the extra com-

11 Note that Katz and Lindell [KL05] showed that the simulator presented in [GK96]
fails (w.r.t expected polynomial-time under the previous definitions). Their work
implies that, if strongly hiding commitment schemes are used in the protocol, then
an alternative simulator does work. In contrast, my result applies to the simulator
presented in [GK96] and does not require strengthening the commitment scheme used
in the protocol. Furthermore, the running-time is preserved also for no-instances (cf.,
in contrast, [KL05, Sec. 3.3]).

12 Indeed, the running-time analysis relies on the hypothesis that the simulator is nor-
mal, whereas the analysis of its output only relies on the hypothesis that the simu-
lator is black-box. In contrast, for the claim itself to make sense at all it suffices to
have a universal simulator (as otherwise it is not clear what we mean by saying that
a simulator that handles any A ∈ C can handle any A′ ∈ C′).

13 The original proof (of [GO94]) refers to strict polynomial-time simulators, but it
extends easily to expected polynomial-time simulators.
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plexities of this setting (as described next). Specifically, the so-called sequential
composition theorem of Canetti [C00] (see also [G04, Sec. 7.4.2]) refers to an
oracle-aided (or “hybrid”) protocol Π that uses oracle calls to a functionality14

f , which can be securely computed by a protocol ρ. (Note that the correspond-
ing oracle-aided protocol was not mentioned in the context of zero-knowledge,
because it is trivial (i.e., it merely invokes the basic protocol several times).)
The theorem asserts that the security of Π (with respect to a specific function-
ality unmentioned here) is preserved when Π uses subroutine calls to ρ rather
than oracle calls to f . This result refers to security with respect to strict prob-
abilistic polynomial-time adversaries that is demonstrated by strict probabilistic
polynomial-time simulators. One point to notice is that the proof of security
of the resulting protocol, denoted Π ′, proceeds by incorporating the simula-
tor of ρ into an adversary for Π . Thus, if the simulator of ρ runs in expected
polynomial-time then so does the resulting adversary (for Π), and thus the sim-
ulator for Π has to handle expected polynomial-time adversaries (even if we
only care of strict polynomial-time adversaries attacking Π ′). Indeed, having a
simulator for Π that handles any expected polynomial-time adversaries suffices
for a partial result that refers to strict probabilistic polynomial-time adversaries
for the resulting protocol Π ′ and to expected polynomial-time simulators (for ρ,
Π , and Π ′). The general (sequential) composition theorem for the case of ex-
pected polynomial-time (which refers to expected polynomial-time adversaries
and simulators) follows by applying [G06, Thm. 10].

An important corollary to the foregoing extendability and composition the-
orems (i.e., [G06, Thm. 10] and [G06, Thm. 11]) asserts that it is possible to
compose secure protocols, when security is demonstrated via expected polynomial-
time simulators but refers only to strict probabilistic polynomial-time adversaries.
In such a case, the extendability theorem allows to use these simulators with re-
spect to expected polynomial-time adversaries, whereas the composition theorem
applies to the latter. Thus, one may freely use expected polynomial-time simu-
lators, and be assured that the corresponding secure protocols can be composed
(just as in the case that their security is demonstrated via strict polynomial-time
simulators).

Turning to the concurrent composition theorem of Canetti [C01], recall that it
evolves around the notion of environmental security (a.k.a UC-security [C01]).
Specifically, Canetti proved that any protocol that is environmentally secure
preserves security under arbitrary concurrent executions, where the adversaries,
simulators, and environments are all modeled as strict probabilistic polynomial-
time strategies (with non-uniform auxiliary inputs for the environments). He
then suggested the methodology of establishing environmental-security as a way
of obtaining security under concurrent composition. Consequently, an exten-
sion of Canetti’s methodology to the expected polynomial-time setting requires
(1) verifying that Canetti’s proof extends to this setting, and (2) obtaining
environmental security for expected polynomial-time adversaries and environ-

14 A functionality is a randomized version of a multi-input multi-output function
(cf. [G04, Sec. 7.2.1]).
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ments. Using the new definitions of expected polynomial-time strategies, the first
requirement follows analogously to the proof of the sequential composition theo-
rem, while the second requirement follows by generalizing [G06, Thm. 10] (which
may be viewed as referring to trivial environments).

The bottom-line is that, for normal black-box simulators, the new defini-
tions of expected polynomial-time strategies provide a “free” transformation
from the strict probabilistic polynomial-time model to the expected polynomial-
time model. In particular, normal black-box simulators that work in the strict
model extend to the expected model, and the most famous composition theorems
extend similarly.

1.5 Why Deal with Expected Polynomial-Time at All?

In light of the difficulties discussed in Section 1.1, one may ask why do we need
this headache (of dealing with expected polynomial-time) at all? This question is
further motivated by my views (expressed in Section 1.2) by which we should not
care about expected polynomial-time adversaries per se. The answer, as hinted in
Section 1.1, is that we do care about expected polynomial-time simulators.

Specifically, some natural protocols are known to be secure (or
zero-knowledge) only when the definition of security allows expected polynomial-
time simulators. A notable example, already mentioned several times is the
constant-round zero-knowledge proof system of [GK96]. Furthermore, as proved
in [BL02], constant-round proof system for sets outside BPP do not have strict
polynomial-time black-box simulators (although they do have such non-black-
box simulators [B01], which are less preferable for reasons discussed below).

In general, expected polynomial-time simulators seem to allow more efficient
protocols and/or tighter security analysis. Whereas various notions of protocol
efficiency are well-understood, a few words about the tightness of various se-
curity analyses are in place. Loosely speaking, security tightness15 refers to the
ratio between the running-time of the adversary and the (expected) running-
time of the simulator that handles it. The security tightness of a protocol is
a lower-bound on this ratio that holds for every probabilistic polynomial-time
adversary.16 Indeed, in many cases (also when strict polynomial-time simulators
exist), the expected running-time of the simulator provides a better bound than
the worst-case running-time of the simulator.

In my opinion, security tightness should serve as a major consideration in
the evaluation of alternative protocols, and claims about protocol efficiency are
almost meaningless without referring to their security tightness. For example, in
many cases, modest parallelization can be achieved at the cost of a deterioration
15 In the special case of zero-knowledge, the corresponding notion is called knowledge

tightness [G01, Sec. 4.4.4.2]. Note a minor technicality: here tightness is define as
the reciprocal of the ratio in [G01, Sec. 4.4.4.2].

16 Thus, if there exists a polynomial q such that, for every polynomial p, every p-
time adversary is simulated in time q · p then the protocol has (noticeable) security
tightness 1/q. But if the simulation of p-time adversaries requires time p3 then the
protocol does not have a noticeable security tightness.
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in the security tightness (cf. [G01, Sec. 4.4.4.2]). Let me stress that, by definition,
black-box simulators always yield a noticeable17 bound on the security tightness
(and in some cases they offer a constant bound), whereas non-black-box simu-
lators may fail to have such bound (e.g., indeed, that’s the case with Barak’s
simulators [B01]).

Thus, I suggest the following methodology: When designing your protocol
and proving its security, allow yourself expected polynomial-time simulations.
To assist the design and analysis, use the “extendability results” (e.g., [G06,
Thm. 10]) provided in this work as well as relevant composition theorems (e.g.,
[G06, Thm. 11]). Finally, when obtaining the desired protocol with a security
analysis that refers to an expected polynomial-time simulator, you may interpret
it as providing a trade-off between the simulation time and the corresponding
deviation (from the real interaction). But actually, a final claim that refers to
expected simulation time may be as appealing when stated in terms of security
tightness (e.g., the effect of any strict polynomial-time adversary can be achieved
by a simulation that is expected to run three times as long).

Indeed, my opinion is that there is no contradiction between not caring about
expected polynomial-time adversaries and providing security guarantees that refer
to the expected simulation time: Whereas (at least potentially) the adversary is
a real entity, its simulation is (always) a mental experiment. Furthermore, I
believe that the foregoing methodology may yield the best trade-offs between
the efficiency of the protocol and the tightness of its security.

Finally, let me note that there are alternative ways of handling the problems
that motivate the introduction of expected polynomial-time to Cryptography
(i.e., the failure of strict polynomial-time simulation in some cases). These alter-
natives are based on different measures that are applicable to “varying” running-
time (i.e., running-time that is expressed as a random variable). In each case,
one should start with a definition that refers to standard algorithms, and extend
it to a definition that refers to interactive machines. For details, see Section 5
in my technical report [G06]. Indeed, the issues arising in such extensions are
the same as the ones discussed throughout the rest of this paper. It is my belief,
however, that expected running-time (as treated in the rest of this paper) pro-
vides the best trade-offs between the efficiency of the protocol and the tightness
of its security.

1.6 Organization

Section 2 provides formal statements of the aforementioned (old and new) defi-
nitions as well as a demonstration of a hierarchy among them. Since the special
case of zero-knowledge protocols provides a good benchmark for the general case
of secure protocols, the main results are first presented in that setting (see Sec-
tion 3). This simplifies things, because in that special case the simulators are
standard algorithms rather than interactive strategies (for the so-called “ideal-
model”; see, e.g., [G04, Sec. 7.2]). Nevertheless, I believe that the main ideas are
17 As usual, a noticeable function is one that decreases slower than the reciprocal of

some positive polynomial.
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already present in the zero-knowledge setting, and that this belief is supported
by the treatment of general protocols (provided in Section 4 of my technical
report [G06]). Section 5 of [G06] discusses the applicability of my approach to
alternative notions of expected polynomial-time algorithms, while Section 6 con-
tains conclusions and open problems.

2 The Definitions

We adopt the standard terminology of interactive machines, while occasionally
identifying strategies (which specify the next message to be sent by an interactive
machine given its view so far) with the interactive machines that activate them.
We use the shorthand PPT for probabilistic polynomial-time whenever using the
full term is too cumbersome; typically, we do so when contrasting strict PPT and
expected PPT. For simplicity, we only consider the two-party case. We denote
by x the common (part of the) input, and denote by y and z the corresponding
private inputs of the two parties. The reader may ignore y and z, which model
(possibly non-uniform) auxiliary information.

2.1 Known Definitions

We start by formulating the two known definitions that were mentioned in Sec-
tion 1.1.

Definition 1 (Feige [F90]). The strategy σ is expected PPT w.r.t a specific in-
teractive machine M0 if, for some polynomial p and every x, y, z, the expected
number of steps taken by σ(x, z) during an interaction with M0(x, y) is upper-
bounded by p(|x|), where the expectation is taken over the internal coin tosses of
both machines.

We stress that σ may be expected PPT with respect to some interactive machines
but not with respect to others.

Definition 2 (attributed to Goldreich, e.g., in [KL05]). The strategy σ is ex-
pected PPT w.r.t any interactive machine if, for some polynomial p, every interac-
tive machine M , and every x, y, z, the expected number of steps taken by σ(x, z)
during an interaction with M(x, y) is upper-bounded by p(|x|).

Here we may assume, without loss of generality, that M (which is computation-
ally unbounded) is deterministic, and thus the expectation is only taken over
the internal coin tosses of σ. The same convention is applied also in Definition 4
(but not in Definition 3; see discussion there).

2.2 New Definitions

In the first new definition, we refer to the notion of a reset attack as put forward
in [CGGM]. Such an attack proceeds as follows. First, we uniformly select and
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fix a sequence of internal coin tosses, denoted ω, for the attacked strategy σ,
obtaining a residual deterministic strategy σω . Next, we allow the attacker to
interact with σω numerous times (rather than a single time). Specifically, for
each possible value of ω, the expected number of times that attacker interacts
with σω is upper-bounded by a polynomial.18

Note that the attacker is not given ω explicitly, but its ability to (sequentially)
interact with the residual strategy σω for several times provides it with addi-
tional power (beyond interacting with σ itself for several times, where in each
interaction σ uses a fresh sequence of coin tosses). As shown in [CGGM], such
an attack is equivalent to a single interaction in which the attacker may (repeat-
edly) “rewind” σ (or rather σω) to any prior point in the interaction and ask to
resume the interaction from that point. Indeed, such an attack is reminiscent of
the way that a (black-box) simulator uses an adversary strategy.

Definition 3 (tailored for simulation). A q-reset attack on σ is an attack that,
for every x, y, z and ω, interacts with σω for an expected number of times that
is upper-bounded by q(|x|).19 The strategy σ is expected PPT w.r.t any reset
attack if, for some polynomial p, every polynomial q, every q-reset attack on σ,
and every x, y, z, the expected total number of steps taken by σ(x, z) during this
attack is upper-bounded by q(|x|) · p(|x|).20

We stress that the number of invocations of σ (like the total number of steps
taken by σ) is a random variable defined over the probability space consisting
of all possible interactions of the attacker and σ. Here (unlike in Definition 2),
allowing the potential attacker to be probabilistic increases its power (and thus
adds restrictions on strategies satisfying the definition). The reason is that, for
each fixed ω, the number of invocations of σω is allowed to be an arbitrary
random variable with a polynomially bounded expectation (rather than being
strictly bounded by a polynomial).

In the next (and last) definition, we consider a “magical” attacker that is
given the outcome of the strategy’s internal coin tosses as side information.
That is, such an attack proceeds as follows. First, we uniformly select and fix a
18 Indeed, the restriction on the number of interactions is a hybrid of the spirit of

Definitions 1 and 2. We are upper-bounding the (expected) number of interactions
initiated by the attacker (rather than its running-time), but do so not with respect
to the designated σ but rather with respect to each of the residual σω. Note that a
simplified version that refers to the expected number of interactions with σ (i.e., the
expectation is taken also over the coins of σ) yield a “bad” definition. (For example,
suppose that σω sends ω and makes 2|ω| steps if ω = 1|ω| and halt immediately
otherwise. Then, intuitively σ is expected PPT (and in fact it even satisfies Defini-
tion 4), but the reset attack that, upon receiving ω in the first interaction, invokes
σω for 2|ω| additional times if and only if ω = 1|ω|, causes σ to make an expected
exponential number of steps.)

19 As in Definitions 1 and 2, such an attack is given x and y as its input.
20 The upper-bounded of q(|x|) · p(|x|) seems natural; however, an upper-bounded of

p(|x|+ q(|x|)) would work just as well (for all results stated in this work), but would
yield weaker quantitative bounds.
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sequence of internal coin tosses, denoted ω, for the attacked strategy σ, obtaining
a residual deterministic strategy σω. Next, we provide the attacker with ω (as
well as with z) and allow it a single interaction with σω. We stress that this
attacker is merely a mental experiment used for determining whether or not σ
is expected polynomial-time (under the following definition).

Definition 4 (seemingly most restrictive). The strategy σ is expected PPT w.r.t
any magical machine if, for some polynomial p, every interactive machine M ′

that is provided with the internal coin tosses of σ as side information, and every
x, y, z, the expected number of steps taken by σ(x, z) during an interaction with
M ′ is upper-bounded by p(|x|). That is, for a randomly selected ω, the expected
number of steps taken by σω(x, z) during its interaction with M ′(x, y, z, ω) is
upper-bounded by p(|x|).21

Here as in Definition 2, we may assume, without loss of generality, that M ′

(which is computationally unbounded) is deterministic, and thus the expecta-
tion is only taken over the internal coin tosses of σ. Thus, Definition 4 refers to
the expectation, taken uniformly over all choices of ω, of the number of steps
taken by (the residual deterministic strategy) σω(x, z) during an interaction with
(the deterministic strategy) M ′(x, y, z, ω). Indeed, a strategy σ that satisfies Def-
inition 4 runs in expected polynomial-time even if each of the incoming messages
is selected to maximize its running-time, when this selection may depend on the
internal coin tosses of σ (and its auxiliary-input z). This formulation is closest
in spirit to the standard definition of strict PPT strategies.

2.3 Relating the Definitions

It is easy to see that, for i = 1, 2, 3, Definition i+1 implies Definition i. In fact,
it is not hard to see that the converses do not hold. That is:

Proposition 5. For i = 1, 2, 3, the set of strategies that satisfy Definition i+1
is strictly contained in the set of the strategies that satisfy Definition i.

Proof: The first two containments (i.e., for i = 1, 2) are plainly syntactic. In-
tuitively, the fact that Definition 4 implies Definition 3 follows by noting that a
reset attack does not add power to a computationally unbounded machine that
gets σ’s internal coin tosses. (A rigorous proof of this implication is provided in
our technical report [G06].)

To show that the foregoing containments are strict we present correspond-
ing strategies that witness the separations. The following examples are rather
minimal, but they can be augmented into strategies that make sense (even for
natural protocols). For example, a strategy that halts immediately upon receiv-
ing the message 0 and runs forever upon receiving the message 1 witnesses the

21 Note that, unlike in Definitions 1-3, the attacker is given σ’s auxiliary input (i.e.,
z). This is most natural in the context of the current attack, which is also given σ’s
internal coin tosses (i.e., ω).
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separation between Definition 1 and Definition 2. Note that this example has
nothing to do with the issue of expected polynomial-time (although an example
that does relate to the latter issue can be constructed similarly).

To separate Definition 3 from Definition 4 consider a strategy that uniformly
selects an n-bit long string r, and upon receiving a message s halts immediately
if s �= r and halts after making 2n steps otherwise. Clearly, this strategy does
not satisfy Definition 4, but it does satisfy Definition 3.

A small twist on the foregoing example can be used to separate Definition 2
from Definition 3: Suppose that upon receiving s, the strategy first sends r, and
then halts immediately if s �= r and halts after making 2n steps otherwise. In
this case a 2-reset attack can cause this strategy to always run for 2n steps, while
no ordinary interactive machine can do so.

Discussion. Consider a restriction of all four definitions such that each bound on
an expectation is replaced by a corresponding strict bound. Then the resulting
(strict) versions of Definition 2–4 coincide but remain separated from the (strict)
version of Definition 1. We believe that this fact speaks against Definition 1.

3 Results for Zero-Knowledge

The setting of zero-knowledge provides a good warm-up for the general study of
secure protocols. Recall that, in the context of zero-knowledge, simulators are
used to establish the security of predetermined prover strategies with respect
to attacks by adversarial verifiers. We start by showing that (normal black-
box) simulators that handle strict PPT adversaries also handle adversaries that
are expected PPT (under Definitions 3 and 4). We next turn to an expected
PPT version of the standard sequential composition theorem. (In our techni-
cal report [G06], analogous results are proved for general secure protocols.) To
shorthand the text, when we say that some quantity (referring to an interaction)
is polynomial, we mean that it is polynomial in the length of the common input.

Since the notion of normal black-box simulators is pivotal to our results, let
us start by briefly recalling the standard definition of black-box simulators (see,
e.g., [G01, Def. 4.5.10]). Loosely speaking, a black-box simulator is a universal
machine that is given oracle access to a deterministic strategy and provides a
simulation of the interaction of this strategy with the party attacked by this
strategy.22 In extending this notion to randomized strategies, we refer to pro-
viding the simulator with oracle access to a residual (deterministic) strategy
obtained by fixing random coin tosses to the given randomized strategy.

Typically, one considers the execution of black-box simulator when given ora-
cle access to any (strict or expected) PPT adversary. In that case, one sometimes
22 In typical use of a black-box simulator one refers to the quality of this simulation.

Specifically, it is require that if the former strategy is efficient (in some adequate
sense) then the simulation is computationally indistinguishable from the real corre-
sponding interaction. Since the notion of efficiency will vary (i.e., from strict PPT to
expected PPT), we shall not couple the operational aspect of the black-box simulator
with the quality of the output that it produces, but rather separate the two.
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states both the complexity and the quality of the simulation when referring only
to the case that the oracle is a PPT strategy.23 While the restriction of the qual-
ity requirement to the said case is often essential, this is typically not the case
with respect to the complexity requirement. Indeed, it is more natural to formu-
late the complexity requirement when referring to any possible oracle. We adopt
this convention below, but in order to avoid possible confusion (with different
views) we refer to simulators that satisfy this convention as normal.

Definition 6 (normal black-box simulators). A black-box simulator is called
normal if, on any input and when given oracle access to any strategy, it make
an expected number of steps that is upper-bounded by a polynomial in the length
of the input, where each oracle call is counted as a single step.

Although it is possible to construct black-box simulators that are not normal
(e.g., they run forever if the black-box manages to solve a hard problem), the
standard black-box simulators (e.g., the ones of [GMR, GMW, GK96]) are all
normal. Furthermore, normality seems a very natural property and it is easy to
verify. For example, if the running-time analysis of a simulator (unlike the anal-
ysis of the quality of its output) does not rely on any intractability assumptions,
then it is probably the case that the simulator is normal.24

The total simulation time. We will often refer to the (total) simulation time of
the combined simulator SV ∗

, which consists of a normal black-box simulator
S that is given oracle access to an adversarial verifier V ∗. Needless to say, for
any normal simulator S, if V ∗ is strict PPT then the expected (total) simula-
tion time of SV ∗

is polynomial. As observed by Katz and Lindell [KL05], this
is not necessarily the case if V ∗ is expected PPT w.r.t Definition 2. The key
observation, which motivates Definition 3, is that the desired bound on the ex-
pected (total) simulation time of SV ∗

does hold if V ∗ is expected PPT w.r.t any
reset attack.

Observation 7. If S is a normal black-box simulator and V ∗ is expected
polynomial-time w.r.t Definition 3 then the expected total simulation time of
SV ∗

is polynomial.

The straightforward proof is provided in our technical report [G06].

3.1 Simulating Expected PPT Adversaries

Bearing in mind that (in the context of zero-knowledge) the simulator is a stan-
dard algorithm, it suffices to state the following result with respect to Defini-
tion 3, and its applicability to Definition 4 follows as a special case.

23 See corresponding footnote in our technical report [G06].
24 The word “probably” indicates that the said implication is not claimed as a fact but

rather suggested as a conjecture regarding any natural case.
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Theorem 8 (extendability of normal black-box simulators, the zero-knowledge
case). Let (P, V ) be an interactive proof (or argument) system for a set L, and
〈P, V ∗〉(x) denote the output of the adversarial verifier strategy V ∗ on input
x after interacting with the prescribed prover P . Let M be a normal black-box
simulator that, on input in L and when given access to any strict PPT strategy
V ∗, produces output that is computational indistinguishable from 〈P, V ∗〉. Then,
when M is given oracle access to any strategy V ∗ that is expected PPT w.r.t any
reset attack, the expected simulation time of MV ∗

is polynomial and the output
is computational indistinguishable from 〈P, V ∗〉.

Note that the hypothesis allows the simulator to run in expected PPT while
simulating a strict PPT adversary. This makes the hypothesis weaker and the
theorem stronger; that is, the theorem can be applied to a wider class of protocols
(including protocols that are not known to have strict PPT simulators such as,
e.g., the constant-round zero-knowledge proof of [GK96]).

Proof: Fixing any expected PPT w.r.t Definition 3 strategy V ∗, we first note
that (by Observation 7) the expected simulation time of MV ∗

is polynomial. To
analyze the quality of this simulation, suppose towards the contradiction that
D distinguishes between the simulation and the real interaction, and let p be
a polynomial such that the distinguishing gap of D for infinitely many x ∈ L

is at least ε(|x|) def= 1/p(|x|). Let t∗(x) denote the total (over all invocations)
expected number of steps taken by V ∗ when invoked by M . Note that t∗(x) is
upper-bounded by a polynomial in |x|, and assume (without loss of generality)
that t∗(x) also upper-bounds the expected running time of V ∗ in the real in-
teraction (with P ). Now, consider a strict PPT V ∗∗ that emulates V ∗, while
truncating the emulation as soon as 3t∗/ε steps are emulated. Then, the vari-
ation distance (a.k.a statistical difference) between MV ∗

(x) and MV ∗∗
(x) is at

most ε(|x|)/3, because ε/3 upper-bounds the probability that the total number
of steps taken by V ∗ during all invocations by M exceeds 3t∗/ε (and otherwise
V ∗∗ perfectly emulates all these invocations, since none exceeds 3t∗/ε steps).
Similarly, the variation distance between 〈P, V ∗〉(x) and 〈P, V ∗∗〉(x) is upper-
bounded by ε(|x|)/3. It follows that D distinguishes the simulation MV ∗∗

from
the real interaction 〈P, V ∗∗〉 with a gap that exceeds ε/3, on infinitely many
inputs in L, in contradiction to the hypothesis that M simulates all strict PPT
verifiers.

Discussion. We believe that the fact that the proof of Theorem 8 is rather
straightforward should not be counted against Definition 3, but rather the other
way around. That is, we believe that the claim that the simulation of strict
PPT adversaries extends (without modifications) to expected PPT adversaries
is natural, and as such a good definition of expected PPT adversaries should
support it. It may be that Theorem 8 can be generalized also to arbitrary black-
box simulators and even to arbitrary universal simulators, but the current proof
fails to show this: the running-time analysis relies on the hypothesis that the
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simulator is normal, whereas the output-quality analysis relies on the hypothesis
that the simulator is black-box.25

Note that the combined simulator resulting from Theorem 8 is trivially ex-
pected PPT under reset attacks (and also under Definition 4), because it is a
non-interactive machine (which runs in expected polynomial-time). Things are
not as simple when we move to the setting of secure protocols, where the simu-
lator is an interactive strategy (which operates in a so-called ideal-model). See
[G06, Sec. 4.1].

3.2 Sequential Composition

The following Theorem 9 is an expected PPT version of the standard result
(of [GO94]) that refers to strict PPT adversaries and simulators (see also [G01,
Lem. 4.3.11]). Note that the standard result does not require the simulator to be
black-box (let alone normal). The reason for the extra requirement will become
clear in the proof.

Theorem 9 (expected PPT version of sequential composition for
zero-knowledge). In this theorem zero-knowledge means the existence of a nor-
mal black-box simulator that handles any expected PPT w.r.t Definition 3 (resp.,
w.r.t Definition 4) adversarial verifier, where handling means that the corre-
sponding combined simulator runs in expected PPT and produces output that is
computationally indistinguishable from the real interaction. Suppose that (P, V )
is a zero-knowledge protocol. Then, sequentially invoking (P, V ) for a polynomial
number of times yields a protocol, denoted (P ′, V ′), that is zero-knowledge.

Proof: The proof of the strict PPT version (see [G01, Sec. 4.3.4]) proceeds in
two steps: First, any verifier V ∗ that attacks the composed protocol (or rather
the prover P ′) is transformed into an verifier V ∗∗ that attacks the basic protocol
(or actually the prover P ). This transformation is quite straightforward; that
is, V ∗∗ handles a single interaction with P (while receiving the transcript of
previous interactions as auxiliary input). Let M denote a simulator for (P, V ∗∗).
Then, a simulator for the composed protocol (or rather for the attack of V ∗

on P ′) is obtained by invoking M for an adequate number of times (using a
correspondingly adequate auxiliary input in each invocation).
25 Recall that a universal simulator obtains the code of the adversary’s strategy rather

than a black-box access to it. Thus, it may be the case that such a simulator can
distinguish the code of V ∗ from the code of V ∗∗ (i.e., the timed version of V ∗), and
produce bad output in the latter case. Indeed, a “natural” simulator will not do so,
but we cannot rely on this. Turning to a more natural example, we note that the
known non-black-box simulator of Barak [B01] (as well as its modification [BG02])
may fail to simulate expected PPT verifiers, because the random variable repre-
senting its simulation time is polynomially related (rather than linearly related) to
the running-time of the verifier. Recall that it may be the case that t(x) has ex-
pectation that is upper-bounded by a polynomial in |x| while t(x)2 has expectation
that is lower-bounded by exp(|x|); for example, consider t : {0, 1}∗ → N such that
Pr[t(x) = 2|x|] = 2−|x| and Pr[t(x) = |x|2] = 1 − 2−|x|.
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Wishing to pursue the foregoing route, we merely need to check that any
verifier V ∗ that is expected PPT w.r.t Definition 3 (resp., Definition 4) is trans-
formed into a verifier V ∗∗ that is expected PPT w.r.t Definition 3 (resp., Def-
inition 4). Unfortunately, this is not necessarily the case. Indeed, the expected
running-time of V ∗∗ when given a random auxiliary input (i.e., one produced
at random by prior interactions) is polynomial, but this does not mean that the
expected running-time of V ∗∗ on each possible value of the auxiliary input is
polynomial. For example, it may be the case that, with probability 2−|x| over
the history of prior interactions, the current interaction of V ∗ (i.e., V ∗∗ with
the corresponding auxiliary input) runs for 2|x| steps. The bottom-line is that
V ∗∗ may not be expected PPT w.r.t any reasonable definition (let alone w.r.t
Definition 3 or Definition 4).

In view of the forgoing, we take an alternative route. We only use the hy-
pothesis that some normal black-box simulator M can handle all strict PPT
verifiers that attack the basic prover P . Next, we observe that the proof of [G01,
Lem. 4.3.11] (i.e., the strict PPT version) can be extended to the case that the
simulation of the basic protocol (w.r.t strict PPT adversaries) runs in expected
PPT. The key observation is that in this case V ∗∗ is strict PPT, although it
will be fed with auxiliary inputs that are produced in expected PPT (by the
simulation of prior interactions of V ∗∗ with P ). Thus, we obtain an expected
PPT simulation that handles any strict PPT attack on P ′. Furthermore, the
simulation amounts to invoking M for a polynomial number of times (while
providing it with black-box access to V ∗∗, which in turn is implemented by a
black-box access to V ∗). It follows that the simulation of (P ′, V ∗) is performed
by a normal black-box simulator (because M is normal). Hence, we have ob-
tained a normal black-box simulator that can handle any strict PPT attack on
the composed protocol (or rather on the prover P ′). The current theorem follows
by applying Theorem 8 to the latter simulator.

Discussion. The proof of Theorem 9 is somewhat disappointing because it does
not use the hypothesis that P is zero-knowledge w.r.t expected PPT verifiers.
Instead, Theorem 8 is used to bridge the gap between strict and expected PPT
verifiers. A similar (but not identical) phenomenon will occur in the sequential
composition theorem for general protocols, presented in [G06, Sec. 4.2].
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Abstract. An obfuscator is a compiler that transforms any program
(which we will view in this work as a boolean circuit) into an obfuscated
program (also a circuit) that has the same input-output functionality as
the original program, but is “unintelligible”. Obfuscation has applica-
tions for cryptography and for software protection.

Barak et al. initiated a theoretical study of obfuscation, which focused
on black-box obfuscation, where the obfuscated circuit should leak no in-
formation except for its (black-box) input-output functionality. A family
of functionalities that cannot be obfuscated was demonstrated. Subse-
quent research has showed further negative results as well as positive
results for obfuscating very specific families of circuits, all with respect
to black box obfuscation.

This work is a study of a new notion of obfuscation, which we call
best-possible obfuscation. Best possible obfuscation makes the relaxed re-
quirement that the obfuscated program leaks as little information as
any other program with the same functionality (and of similar size).
In particular, this definition allows the program to leak non black-box
information. Best-possible obfuscation guarantees that any information
that is not hidden by the obfuscated program is also not hidden by any
other similar-size program computing the same functionality, and thus
the obfuscation is (literally) the best possible. In this work we study
best-possible obfuscation and its relationship to previously studied defi-
nitions. Our main results are:

1. A separation between black-box and best-possible obfuscation. We
show a natural obfuscation task that can be achieved under the
best-possible definition, but cannot be achieved under the black-box
definition.

2. A hardness result for best-possible obfuscation, showing that strong
(information-theoretic) best-possible obfuscation implies a collapse
in the polynomial hierarchy.

3. An impossibility result for efficient best-possible (and black-box) ob-
fuscation in the presence of random oracles. This impossibility result
uses a random oracle to construct hard-to-obfuscate circuits, and
thus it does not imply impossibility in the standard model.
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1 Introduction

An open question in computer security is whether computer programs can be
obfuscated; whether code can be made unintelligible while preserving its function-
ality. This question is important as obfuscation has wide-ranging applications,
both for software protection and for cryptography. Beyond its theoretical impor-
tance, the question of obfuscation is of great practical importance. Numerous
ad-hoc heuristical techniques are used every day by practitioners to obfuscate
their code, even though many of these techniques do not supply any provable
notion of security.

A theoretical study of obfuscation was initiated by Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan and Yang [2]. They studied several notions of
obfuscation, primarily focusing on black-box obfuscation, in which an obfuscator
is viewed as a compiler that, given any input program or circuit, outputs a pro-
gram with the same functionality from which it is hard to find any deterministic
information on the input program. Formally, black-box obfuscation requires that
anything that can be efficiently computed from the obfuscated program, can also
be computed efficiently from black-box (i.e. input-output) access to the program.
Their main result was that this (strong) notion of obfuscation cannot always be
achieved, as they were able to present an explicit family of circuits that provably
cannot be black-box obfuscated.

Barak et al. [2] considered also an alternative notion of obfuscation called
indistinguishability obfuscation that sidesteps the black-box paradigm. An in-
distinguishability obfuscator guarantees that if two circuits compute the same
function, then their obfuscations are indistinguishable in probabilistic polyno-
mial time. This definition avoids the black-box paradigm, and also avoids the
impossibility results shown for the black-box obfuscation notion. Indeed, Barak
et al. showed that it is simple to build inefficient indistinguishability obfusca-
tors. One main disadvantage of indistinguishability obfuscation is that it does not
give an intuitive guarantee that the circuit “hides information”. This is apparent
in their proposed construction of an inefficient indistinguishability obfuscator,
where a small circuit is revealed which is equivalent to the original circuit. For
some functionalities, this is a great deal of information to give away.

This Work. We propose a new notion of obfuscation, best-possible obfuscation,
that avoids the black-box paradigm, and also gives the appealing intuitive guar-
antee that the obfuscated circuit leaks less information than any other circuit
(of a similar size) computing the same function. This work is a study of this new
notion of best-possible obfuscation.

Instead of requiring that an obfuscator strip a program of any non black-
box information, we require only that the (best-possible) obfuscated program
leak as little information as possible. Namely, the obfuscated program should be
“as private as” any other program computing the same functionality (and of a
certain size). A best-possible obfuscator should transform any program so that
anything that can be computed given access to the obfuscated program should
also be computable from any other equivalent program (of some related size).
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A best-possible obfuscation may leak non black-box information (e.g. the code
of a hard-to-learn function), as long as whatever it leaks is efficiently learnable
from any other similar-size circuit computing the same functionality.

While this relaxed notion of obfuscation gives no absolute guarantee about
what information is hidden in the obfuscated program, it does guarantee (liter-
ally) that the obfuscated code is the best possible. It is thus a meaningful notion
of obfuscation, especially when we consider that programs are obfuscated every
day in the real world without any provable security guarantee.

In this work we initiate a study of best-possible obfuscation. We explore its pos-
sibilities and limitations, as well as its relationship with other definitions of ob-
fuscation that have been suggested. We formalize the best-possible requirement
in Definition 5, by requiring that for every efficient learner who tries to extract
information from an obfuscated circuit, there exists an efficient simulator that
extracts similar information from any other circuit with the same functionality
and of the same size. We consider both computationally best-possible obfusca-
tion, where the outputs of the learner and simulator are indistinguishable with
respect to efficient distinguishers, and information theoretically best-possible ob-
fuscation (perfect or statistical), where even an unbounded distinguisher cannot
tell the difference between the two. We emphasize that statistically or perfectly
best-possible obfuscation refer to the distinguisher, whereas we only consider
information that can be learned efficiently given the obfuscated circuit. This
strengthens negative results. Our positive result on perfectly best-possible ob-
fuscation applies also to unbounded learners.

Relationship with Previous Definitions. We study how best-possible obfusca-
tion relates to black-box obfuscation, and present a separation between the two
notions of obfuscation. The proof of this result also gives the first known sep-
aration between black-box and indistinguishability obfuscation. The separation
result considers the complexity class of languages computable by polynomial
sized ordered decision diagrams or POBDDs; these are log-space programs that
can only read their input tape once, from left to right (see Section 3). We observe
that any POBDD can be best-possible obfuscated as a POBDD (Proposition 2),
whereas there are many natural functions computable by POBDDs that prov-
ably cannot be black-box obfuscated as any POBDD (Proposition 3). These two
results give new possibility results (for best-possible and indistinguishability ob-
fuscation), and simple natural impossibility results (for black-box obfuscation).
Note that the impossibility result for black-box obfuscation only applies when
we restrict the representation of the obfuscator’s output to be a POBDD itself.

We also compare the notions of best-possible and indistinguishability obfus-
cation. Proposition 4 shows that any best-possible obfuscator is also an indistin-
guishability obfuscator. For efficient obfuscators the definitions are equivalent
(Proposition 5). For inefficient obfuscation, the difference between the two defi-
nitions is sharp, as inefficient information-theoretic indistinguishability obfusca-
tors are easy to construct (see [2]), but the existence of inefficient statistically
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best-possible obfuscators even for the class of languages recognizable by 3-CNF
circuits (a sub-class of AC0) implies that the polynomial hierarchy collapses to
its second level.

We believe that the equivalence of these two definitions for efficient obfusca-
tion motivates further research on both, as the “best-possible” definition gives a
strong intuitive security guarantee, and the indistinguishability definition may
sometimes be technically easier to work with.

Impossibility Results. We explore the limits of best-possible obfuscation. As
noted above, we begin by considering information-theoretically (statistically)
best-possible obfuscation. In Theorem 1 we show that if there exist (not neces-
sarily efficient) statistically secure best-possible obfuscators for the simple circuit
family of 3-CNF circuits (a sub-class of AC0), then the polynomial hierarchy col-
lapses to its second level. Corollary 1 of this theorem states that also if there
exists an efficient statistically secure indistinguishability obfuscator for the same
simple circuit family, then the polynomial hierarchy collapses to its second level.
This is the first impossibility result for indistinguishability obfuscation in the
standard model.

We also consider best-possible obfuscation in the (programmable) random or-
acle model. In this model, circuits can be built using special random oracle gates
that compute a completely random function. Previously, this model was consid-
ered by Lynn, Prabhakaran and Sahai [17] as a promising setting for presenting
positive results for obfuscation. We show that the random oracle can also be
used to prove strong negative results for obfuscation. In Theorem 2 we present
a simple family of circuits with access to the random oracle, that are provably
hard to best-possible obfuscate efficiently. This impossibility results extends to
the black-box and indistinguishability obfuscation notions. We note that using
random oracles for obfuscation was originally motivated by the hope that giving
circuits access to an idealized “box” computing a random function would make
it easier to obfuscate more functionalities (and eventually perhaps the properties
of the “box” could be realized by a software implementation). We, on the other
hand, show that the existence of such boxes (or a software implementation with
the idealized properties) could actually allow the construction of circuits that
are impossible to obfuscate. Although this negative result does not rule out that
every circuit without random oracle gates can be best-possible obfuscated, we
believe it is illuminating for two reasons. First, as a warning sign when consid-
ering obfuscation in the random oracle model, and secondly as its proof hints
that achieving general purpose best-possible obfuscation in the standard model
would require a significant leap (a discussion of this point appears at the end of
Section 4).

1.1 Related Work

Negative Results. Barak et al. showed that black-box obfuscation cannot always
be achieved. They showed this by presenting families of circuits that cannot be
black-box obfuscated: there exists a predicate that cannot be computed from
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black-box access to a random circuit in the family, but can be computed from
(non black-box access to) any circuit in the family. Thus they showed that there
exist circuits that cannot be obfuscated, but it remained possible that almost
any natural circuit could be obfuscated. Goldwasser and Kalai [12], showed that
if the definition of obfuscation is strengthened even further with a requirement
that the obfuscation leak no more information than black-box access even in the
presence of auxiliary input, then a large class of more natural circuits cannot be
obfuscated.

Positive Results. The functionalities for which obfuscation was ruled out in [2]
and [12] are somewhat complex. An interesting open question is whether obfus-
cation can be achieved for simpler classes of functionalities and circuits. Lynn,
Prabhakaran and Sahai [17] were the first to explicitly explore this question.
They suggested working in the random oracle model and focused on obfuscat-
ing access control functionalities (note that impossibility results of [2] and [12]
extend to the random oracle model). At the heart of their construction is the ob-
fuscation of a point function. A point function Ip(x) is defined to be 1 if x = p, or
0 otherwise, and they observed that in the random oracle model point functions
can be obfuscated, leading to obfuscation algorithms for more complex access
control functionalities. Under cryptographic assumptions, it is also known how
to obfuscate point functions without a random oracle. Canetti [6] showed (im-
plicitly) how to obfuscate point functions (even under a strong auxiliary-input
definition), using a strong variant of the Decisional Diffie-Hellman assumption.
Wee [21] presented a point function obfuscator based on the existence of one-way
permutations that are hard to invert on a very strong sense.

Other solutions for obfuscating point functions are known if the obfuscator
doesn’t need to work for every point, but rather for a point selected at ran-
dom from a distribution with some min-entropy. For this relaxed requirement
Canetti, Micciancio and Reingold [8] presented a scheme that uses more general
assumptions than those used by [6] (their solution is not, however, secure in
the presence of auxiliary inputs). Dodis and Smith [9] were able to obfuscate
proximity queries in this framework.

The Random Oracle Model. The random oracle model is an idealization, in which
it is assumed that all parties have oracle access to a truly random function R.
The parties can access this function by querying the random oracle at different
points. The Random oracle methodology is a heuristic methodology, in which
the random oracle is used for building provably secure cryptographic objects,
but then, to implement the cryptographic object in the real world, the random
oracle is replaced by some real function with a succinct representation. This
methodology was introduced by Fiat and Shamir [15], and later formalized by
Bellare and Rogaway [3].

A clear question raised by this methodology is whether the security of the
cryptographic objects in an ideal world with a random oracle can be translated
into security for the real-world implementation. In principle, this was answered
negatively by Canetti, Goldreich and Halevi [7], who showed that there exist
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cryptographic schemes that are secure in the presence of a random oracle, but
cannot be secure in the real world, regardless of the implementation of the ran-
dom oracle. Their work left open the possibility that the random oracle method-
ology could still work for “natural” cryptographic practices. This was ruled out
by Goldwasser and Kalai [11] for the Fiat-Shamir method [15], which uses a
random oracle for obtaining digital signatures from identification schemes. The
method was shown to lead to insecure signature schemes regardless of the pos-
sible implementation of the random oracle.

In the context of obfuscation, Lynn, Prabhakaran and Sahai [17] explored
which circuits could be obfuscated in the (programmable) random oracle model,
where the view generated by the black-box simulator is indistinguishable when
taken over a randomly selected oracle. This work considers the same model.
They used the random oracle R to obfuscate a point function Ip (when p is
given to the obfuscator) using the value R(p). On input x the obfuscated circuit
outputs 1 if and only if R(x) = R(p). The only information about p in the
obfuscated circuit is the value R(p), and this ensures that the obfuscation does
not leak any non black-box information about Ip. They then proceeded to show
how to obfuscate point functions with more general outputs (on input x = p the
function outputs some value, and otherwise it outputs ⊥), multi-point functions
and other more complex access control circuits. Narayanan and Shmatikov [16]
gave a positive result for obfuscating databases in the random oracle model. In
this work we explore whether indeed the random oracle model is a promising
setting for further work on obfuscation.

1.2 Organization

We begin by presenting notation and formal definitions in Section 2. We com-
pare our new definition of obfuscation with previous definitions in Section 3. In
Section 4 we present impossibility results for statistically best-possible obfusca-
tion, and for best-possible obfuscation in the random oracle model. We conclude
with discussions and extensions in Section 5.

2 Definitions and Discussion

2.1 Notation and Preliminaries

Notation. Let [n] be the set {1, 2, . . . n}. For x ∈ {0, 1}n, where x = x1x2 . . . xn,
and an index subset M ⊆ [n], where M = {i1, i2, . . . im}, we use x|M to denote
the restriction of x to the indices in M . I.e. x|M = xi1xi2 . . . xim . For a (discrete)
distribution D over a set X we denote by x ∼ D the experiment of selecting
x ∈ X by the distribution D. A function f(n) is negligible if it smaller than any
(inverse) polynomial: for any polynomial p(n), there exists some n0 such that
for all n ≥ n0 we get that f(n) < p(n).

Distributions, Ensembles and Indistinguishability. An ensemble D = {Dn}n∈N

is a sequence of random variables, each ranging over {0, 1}�(n), we consider only
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ensembles where �(n) is polynomial in n (we occasionally abuse notation and
use D in place of Dn). An ensemble D is polynomial time constructible if there
exists a probabilistic polynomial time Turing Machine (PPTM) M such that
Dn = M(1n).

Definition 1. The statistical distance between two distributions X and Y over
{0, 1}�, which we denote by Δ(X, Y ), is defined as:

Δ(X, Y ) =
1
2

∑

α∈{0,1}�

|Pr[X = α] − Pr[Y = α]|

Definition 2. Computational Indistinguishability (Goldwasser Micali [13], Yao
[22]) Two probability ensembles D and F are computationally indistinguishable
if for any PPTM M, that receives 1n and one sample s from Dn or Fn, and
outputs 0 or 1, there exists a negligible function neg, such that for all n’s:

|Prs∼Dn [M(1n, s) = 1] − Prs∼Fn [M(1n, s) = 1]| ≤ neg(n)

The Random Oracle Model. In the random oracle model we assume that all par-
ties (the circuits, obfuscator, adversary etc.) have access to a random oracle and
can make oracle queries. All oracle queries are answered by a single function R,
that is selected uniformly and at random from the set of all functions. Specifi-
cally, for each input length n, R will be a function from {0, 1}n to {0, 1}p(n) for
some polynomial p. For simplicity, we will assume throughout this work that for
all n’s the function R is a random permutation 1 on {0, 1}n. Circuits access the
random oracle by making oracles queries using a special oracle gate. It is im-
portant that we assume that calls to these oracle gates are clearly visible when
running the circuit.

2.2 Definitions of Obfuscation

In the subsequent definitions, we consider a family C of probabilistic polynomial
size circuits to be obfuscated. For a length parameter n let Cn be the circuits in
C with input length n. The size of the circuits in Cn is polynomial in n. If the
obfuscator O is a polynomial-size circuit, then we say it efficiently obfuscates
the family C, and that C is efficiently obfuscatable. Note that when considering
obfuscation in the random oracle model, all circuits are allowed oracle access
(including the circuits to be obfuscated), and all probabilities are taken over the
selection of a random oracle. Whenever we refer to obfuscation, we will mean
(efficient) black-box obfuscation unless explicitly noted otherwise.

Definition 3 (Black-Box Obfuscation [2]). An algorithm O, which takes as
input a circuit in C and outputs a new circuit, is said to be a black-box obfuscator
for the family C, if it has the following properties:
1 Note that all our results hold for random function oracles (as long as the function’s

range is significantly larger than its domain, say at least twice as large.)
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– Preserving Functionality:
There exists a negligible function neg(n), such that for any input length n,
for any C ∈ Cn:

Pr[∃x ∈ {0, 1}n : O(C)(x) 	= C(x)] ≤ neg(n)

The probability is over the random oracle and O’s coins.
– Polynomial Slowdown:

There exists a polynomial p(n) such that for all but finitely many input
lengths, for any C ∈ Cn, the obfuscator O only enlarges C by a factor of
p: |O(C)| ≤ p(|C|).

– Virtual Black-box:
For any polynomial size circuit adversary A, there exists a polynomial size
simulator circuit S and a negligible function neg(n) such that for every input
length n and every C ∈ Cn:

|Pr[A(O(C)) = 1] − Pr[|SC(1n) = 1]| ≤ neg(n)

Where the probability is over the coins of the adversary, the simulator and
the obfuscator. In the presence of a random oracle, the probability is also
taken over the random oracle.

Definition 4 (Indistinguishability Obfuscation [2]). An algorithm O, that
takes as input a circuit in C and outputs a new circuit, is said to be a (compu-
tational/statistical/perfect) indistinguishability obfuscator for the family C, if it
has the preserving functionality and polynomial slowdown properties as above,
and also has the following property (instead of the virtual black-box property).

– Computationally/Statistically/Perfectly Indistinguishable Obfuscation:
For all large enough input lengths, for any circuit C1 ∈ Cn and for any
circuit C2 ∈ Cn that computes the same function as C1 and such that
|C1| = |C2|, the two distributions O(C1) and O(C2) are (respectively) com-
putationally/statistically/perfectly indistinguishable.

Definition 5 (Best-Possible Obfuscation). An algorithm O, which takes as
input a circuit in C and outputs a new circuit, is said to be a (computation-
ally/statistically/perfectly) best-possible obfuscator for the family C, if it has
the preserving functionality and polynomial slowdown properties as above, and
also has the following property (instead of the virtual black-box property).

– Computational/Statistical/Perfect Best-Possible Obfuscation:
For any polynomial size learner L, there exists a polynomial size simulator S
such that for every large enough input length n, for any circuit C1 ∈ Cn and
for any circuit C2 ∈ Cn that computes the same function as C1 and such that
|C1| = |C2|, the two distributions L(O(C1)) and S(C2) are (respectively)
computationally/statistically/perfectly indistinguishable.
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Informally, this definition guarantees that anything that can be learned efficiently
from the obfuscated O(C1), can also be extracted efficiently (simulated) from any
program C2 of similar size for the same function. Thus, any information that
is exposed by O(C1) is exposed by every other equivalent circuit of a similar
size, and we conclude that O(C1) is a better obfuscation than any of these other
circuits.

When dealing with best-possible obfuscators, we often refer to the “empty”
learner; this is the learner that simply outputs whatever obfuscation it gets as
input. It is simple to see that if there exists an efficient simulator M for the
“empty” learner, then there exists an efficient simulator M′ for every efficient
learner L: M′ on input C2 simply computes M(C2) and outputs the result of
L(M(C2)). Thus, an equivalent definition to ‘Best Possible’ can do away with the
leaner and only require the existence of an efficient simulator, i.e., a simulator
S such that for circuits C1, C2 of identical size and identical functionality the
distributions O(C1) and S(C2) are indistinguishable.

Note that when we refer to best-possible or indistinguishability obfuscators we
always mean efficient and computational obfuscators unless we explicitly note
otherwise. By perfect indistinguishability, we mean that the distributions are
identical (statistical distance 0). For statistical indistinguishability, unless noted
otherwise, we only assume that the distinguisher’s advantage (the statistical
distance) is smaller than a (specific) constant.2 This strengthens negative results.

3 Comparison with Prior Definitions

In this section we compare the new definition of best-possible obfuscation to the
black-box and indistinguishability definitions proposed by Barak et al. [2].

3.1 Best-Possible vs. Black-Box Obfuscation

Best-possible obfuscation is a relaxed requirement that departs from the black-
box paradigm of previous work. We first observe that any black-box obfuscator
is also a best-possible obfuscator.

Proposition 1. If O is an efficient black-box obfuscator for circuit family C,
then O is also an efficient (computationally) best-possible obfuscator for C.

Proof. Assume for a contradiction that O is not a best-possible obfuscator for
C. This implies that there is no best-possible simulator for the “empty” learner
that just outputs the obfuscated circuit it gets. In particular, O itself is not a
good simulator. Thus there exists a polynomial p and a distinguisher D, such

2 The existence of an inefficient perfectly best-possible obfuscator, implies the exis-
tence of an efficient one that uses the simulator to obfuscate. A similar argument
also applies to statistically best-possible obfuscation, unless the statistical distance
guarantee is very weak.
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that for infinitely many input lengths n, there exist two circuits C1, C2 ∈ Cn,
such that |C1| = |C2| and C1 and C2 are equivalent, but:

|Pr[D(O(C1)) = 1] − Pr[D(O(C2)) = 1]| ≥ p(n)

Now consider D as a predicate adversary for the black-box obfuscator O. The
black-box simulator S for D clearly behaves identically on C1 and C2 (because
they have the same functionality), but D’s behavior on O(C1) and O(C2) is non-
negligibly different. Thus (for infinitely many input lengths) S is not a black-box
simulator for D, a contradiction.

Next, we provide a (weak) separation result. We exhibit a natural (low) com-
plexity class, that of languages computable by polynomial size ordered binary
decision diagrams (POBDDs), such that best-possible obfuscation within the
class is achievable, but there are simple functionalities that are provably impos-
sible to black-box obfuscate within the class.

Ordered Binary Decision Diagrams (OBDDs). The computational model of or-
dered binary decision diagrams was introduced by Bryant [5]. An ordered binary
decision diagram is a rooted directed acyclic graph with a vertex set V contain-
ing non-terminal vertices, each with two children, and terminal vertices (without
children), each labeled 0 or 1. Each edge e in the graph is marked with an input
literal �e (e.g. �e could be x1, x8 etc.). For every non-terminal vertex, the labels
of its (two) outgoing edges should be negations of each other (e.g. x3 and x3).
An input x ∈ {0, 1}n is accepted by an OBDD if and only if after removing every
edge e for which �e = 0 there exists a path from the root node to a terminal
node labeled by 1. In addition, in an OBDD, on every path from the root vertex
to a terminal vertex, the indices of the literals of edges on the path must be
strictly increasing. We will focus on polynomial-size OBDDs, or POBDDs. We
note that another way to view POBDDs is as logarithmic-space deterministic
Turing Machines whose input tape head can only move in one direction (from
the input’s first bit to its last).

Bryant [5] showed that OBDDs have a simple canonical representation. For
any function, there exists a unique smallest OBDD that is its canonical repre-
sentation. Moreover, for polynomial-size OBDDs, this canonical representation
is efficiently computable.

Note that we defined obfuscation for circuits, not OBDDs, but for every
OBDD, there exists a boolean circuit (that computes the same functionality)
from which it is easy to extract the OBDD. When we refer to obfuscating the
family of OBDDs, we are implicitly referring to obfuscating the underlying family
of circuits representing OBDDs.

We begin by observing that POBDDs can be perfectly best-possible ob-
fuscated as POBDDs (namely the output of the obfuscator is a POBDD it-
self). This is a corollary of POBDDs having efficiently computable canonical
representations.
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Proposition 2. There exists an efficient perfectly best-possible (and perfectly
indistinguishable) obfuscator for POBBDs.

Proof. The best-possible obfuscator for a POBDD P simply takes P , computes
(efficiently) its canonical representation, and outputs that program as the best-
possible obfuscation. The canonical representation has the same functionality
as P , is no larger than P , and (most significantly) is unique, depending only
on the functionality of P . The simulator gets a POBDD P ′ and also efficiently
computes its canonical representation. The canonical representations of P and
P ′ are identical if and only if P and P ′ compute the same functionality. Thus
the obfuscator is indeed a perfectly best-possible obfuscator for the family of
POBDDs.

We next show that there exists a family of languages computable by POBDDs,
that cannot be black-box obfuscated (efficiently or inefficiently) as POBDDs (i.e
the resulting program itself being represented as a POBDD). This gives a (weak)
separation between best-possible and black-box obfuscation. The weakness is
that it remains possible that any input POBDD can be black-box obfuscated such
that the output circuit is no longer a POBDD but is in some higher complexity
class.

Proposition 3. There exists a family of languages computable by POBDDs,
that cannot be black-box obfuscated as POBDDs.

Proof (Sketch). Intuitively, because POBDDs have a simple efficiently com-
putable canonical representation, non black-box information can be extracted
from a POBDD by reducing it to its “nice” canonical form, and then extracting
information from this canonical form.

More formally, consider (for example) the simple family of point functions
{Ip}p∈{0,1}n , where the function Ip outputs 1 on input the point p and 0 every-
where else. Note that point functions are computable by POBDDs. Now observe
that any POBDD computing a point function for a point p can be reduced to its
canonical representation, from which p is easily extracted. Thus for any supposed
obfuscator that obfuscates point functions as POBDDs there exists an adversary
that (for every point) can extract all the bits of the point from the “obfuscated”
POBDD. Clearly, no black-box simulator can successfully extract even a single
bit of the point for a non-negligible fraction of point functions. Thus there exists
no black-box obfuscator that obfuscates POBDDS computing point functions as
POBDDs.

We note that many other natural languages computable by POBDDs cannot be
black-box obfuscated as POBDDs. Black-box obfuscation of POBDDs as more
complex circuits remains an intriguing open question.

3.2 Best-Possible vs. Indistinguishability Obfuscation

As mentioned above, the notions of best-possible obfuscation and indistinguisha-
bility obfuscation are related, though the guarantees given by these two types
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of obfuscation are different. In this section we will show that any best-possible
obfuscator is also an indistinguishability obfuscator. Furthermore, for efficient
obfuscation, the two notions are equivalent. For inefficient obfuscation (which
is still interesting), however, the notions are not equivalent unless the poly-
nomial hierarchy collapses. In fact, inefficient indistinguishability obfuscators
exist unconditionally (see [2]). On the other hand, building even inefficient best-
possible obfuscators remains an interesting open question. We begin by showing
that best-possible obfuscation is in fact at least as strong as indistinguishability
obfuscation.

Proposition 4. If O is a perfectly/statistically/computationally best-possible
obfuscator for circuit family C, then O is also a (respectively) perfect/statistical/
computational indistinguishability obfuscator for C.

Proof (Sketch). To prove the claim, consider the “empty” learner L that just
outputs whatever obfuscation it is given, and its simulator S. Let δ be the
computational or statistical distinguishability in the (computational or per-
fect/statistical) guarantee of the obfuscator. We get that for any two circuits
C1 and C2 that are of the same size and compute the same functionality:

δ(L(O(C1)), S(C2)) = δ(O(C1), S(C2)) ≤ ε

δ(L(O(C2), S(C2))) = δ(O(C2), S(C2)) ≤ ε

Thus (since computational and statistical distinguishabilities are transitive):

δ(O(C1), O(C2)) ≤ 2ε

Note that the perfect/statistical/computational guarantee is preserved.

As noted above, if we restrict our attention to efficient obfuscators, indistin-
guishability obfuscators are also best-possible obfuscators.

Proposition 5. If O is an efficient perfect/statistical/computational indistin-
guishability obfuscator for a circuit family C, then O is also an efficient (respec-
tively) perfectly/statistically/computationally best-possible obfuscator for C.

Proof. Let O be an efficient indistinguishability obfuscator. Then for any learner
L, let S be the (efficient) simulator that gets a circuit C2, runs O(C2), and then
activates L on O(C2). We get that if O is a perfect/statistical/computational in-
distinguishability obfuscator, then for any two circuits C1 and C2 that are of the
same size and compute the same functions, the two distributions L(O(C1)) and
S(C2) = L(O(C2)) are perfectly/statistically/computationally indistinguishable
(because O is an indistinguishability obfuscator). Thus O is also an efficient
best-possible obfuscator.

Note that the efficiency of the indistinguishability obfuscator is essential to
guarantee the efficiency of the simulator, without which the obfuscator does not
meet the best-possible definition.
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It is important to note that there is no reason to believe that the two notions of
obfuscation are equivalent for inefficient obfuscation. In fact, whereas [2] design
exponential-time indistinguishability obfuscators, there is no known construc-
tion for inefficient best-possible obfuscators. We believe that even constructing
inefficient best-possible obfuscators is interesting.

We end this subsection by observing that if P = NP then it is not hard to
construct efficient perfect best-possible obfuscators (and indistinguishability ob-
fuscators) for every polynomial-size circuit. In fact this complexity assumption is
almost tight. We will show in Theorem 1, that if statistically best-possible obfus-
cators can be built even for very simple circuits, then the polynomial hierarchy
collapses to its second level.

Proposition 6. If P=NP then the family of polynomial-sized circuits can be
efficiently perfectly best-possible obfuscated.

Proof. Assume P = NP . For any circuit C, it is possible to efficiently extract the
smallest lexicographically first circuit Cmin that is equivalent to C (this problem
is solvable using a language in the second level of the polynomial hierarchy). As
Barak et al. [2] note, such an extraction procedure is a perfectly indistinguishable
obfuscation of C, and thus there exists an efficient perfect indistinguishability
obfuscator for the family of polynomial-size circuits. By Proposition 5 it is also
an efficient perfect best-possible obfuscator for the family of polynomial-size cir-
cuits. Note that even if P 	= NP then we get an (inefficient) indistinguishability
obfuscator. It remains, however, unclear whether we can get an inefficient best-
possible obfuscator, as the (always efficient!) simulator can no longer run the
“circuit minimization” procedure.

4 Impossibility Results for Best-Possible Obfuscation

4.1 Statistically Best-Possible Obfuscation

In this section we present a hardness result for statistically best-possible obfus-
cation. In Section 3 it was shown that if P = NP then every polynomial-sized
circuit can be perfectly best-possible obfuscated, thus we cannot hope for an un-
conditional impossibility result. We show that the condition P = NP is (nearly)
tight, and in fact the existence of statistically best-possible obfuscators even
for the class of languages recognizable by 3-CNF circuits (a sub-class of AC0)
implies that the polynomial hierarchy collapses to its second level. This result
shows the impossibility of statistically best-possible obfuscation for any class
that contains 3-CNF formulas (and in particular also for the class of general
polynomial sized circuits).

Theorem 1. If the family of 3-CNF formulas can be statistically best-possible
obfuscated (not necessarily efficiently), then the polynomial hierarchy collapses
to its second level.
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Proof (Intuition). We begin by considering the case that the family of 3-CNF
formulas can be perfectly best-possible obfuscated (not necessarily efficiently)
while perfectly preserving functionality (i.e. the obfuscated circuit never errs).
We can use the Simulator S for the “empty” learner, to construct an NP proof
for Co-SAT (a Co-NP -complete problem). To see this, consider an input 3-CNF
formula ϕ of size |ϕ|. We would like to find a witness for non-satisfiability of
ϕ. Towards this end, we first construct an unsatisfiable formula ψ of size |ϕ|. A
witness for the non-satisfiability of ϕ is a pair of random strings (r, r′) such that
the output of the simulator S on ϕ with randomness r is equal to its output on
ψ with randomness r′. This proof system is indeed in NP :

– Efficiently Verifiable. The simulator is efficient, and thus the witness is effi-
ciently verifiable.

– Complete. If ϕ is unsatisfiable, then ϕ and ψ compute the same function
(the constant 0 function) and are of the same size. We know that O is
a perfect best-possible obfuscator and thus the distributions O(ϕ), S(ϕ),
S(ψ), O(ψ) are all identical. This implies that there must exist (r, r′) such
that S(ϕ, r) = S(ψ, r′).

– Sound. If ϕ is satisfiable, then because the obfuscator perfectly preserves
functionality, the distributions O(ϕ), O(ψ) are disjoint (they are distribu-
tions of circuits with different functionalities). Thus the distributions S(ϕ),
S(ψ) of the (perfect) simulator’s output are also disjoint, and there exist no
(r, r′) such that S(ϕ, r) = S(ψ, r′).

The full proof for the case of statistically best-possible obfuscation follows
along similar lines, giving a reduction from a Co-NP -complete problem (circuit
equivalence) to a problem in AM .3 By the results of Fortnow [10], Aliello and
H̊astad [1], and Boppana, H̊astad and Zachos [4] (see also Feigenbaum and Fort-
now [14]), this collapses the polynomial hierarchy to its second level. The full
proof is omitted from this extended abstract.

Proposition 2 and Theorem 1 give examples of circuit classes can and cannot be
statistically best-possible obfuscated. The proofs give characterizations of circuit
classes that can be statistically best-possible obfuscated. A sufficient condition
for statistically best-possible obfuscation of a class of circuits is having an effi-
ciently computable canonical representation, a necessary condition is having a
statistical zero knowledge proof for the equivalence problem.

Finally, a corollary of this theorem is that the same class of 3-CNF formulas
cannot be statistically indistinguishability obfuscated in polynomial time unless
the polynomial hierarchy collapses. This is the first impossibility result for in-
distinguishability obfuscation in the standard model.

Corollary 1. If the family of 3-CNF formulas can be efficiently statistically in-
distinguishability obfuscated, then the polynomial hierarchy collapses to its second
level.
3 Actually, this is a problem in statistical zero knowledge: the complement of the

Statistical Difference Problem, introduced by Sahai and Vadhan [20].
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Proof. By Proposition 5, if there exists an efficient statistical indistinguisha-
bility obfuscator for the family of 3-CNFs, then there also exists an efficient
statistically best-possible obfuscator for the same family. This, in turn, implies
(by Theorem 1) that the polynomial hierarchy collapses to its second level.

4.2 Computationally Best-Possible Obfuscation

In this section we present an impossibility result for (efficient) computationally
best-possible obfuscation in the (programmable) random oracle model. We show
how to use a random oracle to build circuits for point functions that cannot
be best-possible obfuscated. We note that the use of the random oracle both
strengthens and weakens this result. The result is strengthened because a random
oracle could conceivably help obfuscation (a la [17]), but weakened because the
random oracle is used to build a circuit that cannot be obfuscated. Moreover, in
the proof we need to assume that a distinguisher can see the obfuscated circuit’s
oracle calls and that it can access the random oracle itself. It is still possible
that circuits that do not use the random oracle can be best-possible obfuscated.

We show that a specific family of circuits for computing point functions can-
not be obfuscated in the presence of a random oracle R. A point function Ip

is the function that outputs 1 on input p and 0 on all other inputs. We be-
gin by presenting the family of point function circuits for which we will show
impossibility of obfuscation.

Definition 6 (The circuit family {CM
p }). For any input length n, the family

of circuits {CM
p }n defines a set of circuits on inputs of length n. Each circuit

CM
p computes the point function Ip on the point p ∈ {0, 1}n, and is defined by

the point p and an index subset M ⊆ [n] (all index subsets in this section are of
size n

2 ). The information that the circuit CM
p gives about p is:

– The index subset M is included in CM
p “in the clear”.

– The bits of p that aren’t in the index subset M (p|[n]−M) are also given in
the clear.

– The bits of p that are in M (p|M) are “hidden”, the only information given
about them is R(p|M ).

For an input x, to compute the point function Ip, the circuit CM
p outputs 1 if

and only if x is equal to p in the indices that aren’t in M (x|[n]−M = p|[n]−M), and
the random oracle gives the same values on x and p restricted to M (R(x|M ) =
R(p|M )). Thus CM

p (x) = 1 if and only if x = p, otherwise the circuit outputs 0.

We also take the family {Ip} to be the family of point function circuits that
contain their point in the clear, and are padded to be of the same size as the
circuits {CM

p } on each input length. We claim that the family of point function
circuits {CM

p } ∪ {Ip} cannot be best-possible obfuscated.

Theorem 2. The circuit family {CM
p }∪{Ip} cannot be efficiently computation-

ally best-possible obfuscated.
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Proof (Proof Intuition). Observe that any obfuscator O must preserve the func-
tionality of a circuit CM

p . Furthermore, the only information the obfuscator has
about the indices of the point p that are in the subset M is the value R(p|M ). To
preserve functionality, for any input x, the obfuscated circuit O(CM

p ) needs to
find out whether x = p. Now because the only information available to the obfus-
cator and the obfuscated circuit about p|M is the value R(p|M ), for most inputs
x, the obfuscated circuit must ask the random oracle for the value R(x|M ). Thus
for many x’s one of the (polynomially many) oracle calls of O(CM

p ) should be
to R(x|M ).

In the proof we construct a distinguisher between obfuscated circuits and the
output of the “empty” learner’s simulator. For an index subset T ⊆ [n] and input
x ∈ {0, 1}n, we examine the distinguisher DT,x that activates the obfuscated
circuit it was given, O(CM

p ) (for some index subset M and point p), on the
input x, and tries to guess whether T was the subset used in the underlying
circuit that was obfuscated (i.e. whether M = T ). To do this, the distinguisher
runs O(CM

p ) on the input x and outputs 1 if and only if the obfuscated circuit
queried the random oracle on the input x|T . Recall that we concluded above
that if M = T , then we expect the obfuscated circuit to query the random
oracle on the input x|T . Thus, when the distinguisher DT,x gets O(CM

p )(x), it
has an advantage in deciding whether M = T or not. This advantage disappears
when the distinguisher is activated on the output of a simulator that was given
the circuit Ip: the simulator was given no information about M , so its output
cannot help the distinguisher determine whether or not M = T . The full proof
is omitted from this extended abstract.

The family of circuits that we show cannot be obfuscated is a family that com-
putes point functions. This may seem contradictory, as Lynn, Prabhakaran and
Sahai [17] showed that a class of circuits computing point functions can be ob-
fuscated in the random oracle model. The source of this disparity is that they
(as well as all other known positive results on obfuscating point functions) only
consider obfuscators that get the point in the clear, whereas the family of point
function circuits that we present ({CM

p }) hides information about the point.
Malkin [18], was the first to ask whether any point function implementation can
be black-box obfuscated.

Thus Theorem 2 shows impossibility for simpler and more natural function-
alities than those considered in previous results, but does so using circuits with
random oracle gates.

Extensions. We note that this impossibility result applies also to black-box
obfuscation (the proof is omitted from this extended abstract, but note that
the distinguisher in the theorem can be viewed as a predicate adversary). One
possible objection to this impossibility result, is that the information revealed
by obfuscation of circuits in the family {CM

p } (namely the subset M) is not
necessarily information related to the point p. We note, however, that unless
an obfuscator guarantees that no non black-box information is revealed by the



210 S. Goldwasser and G.N. Rothblum

obfuscation, for circuits for which the point p is related to the subset M , the
obfuscated circuit may leak non black-box information about the point p.

Implications for a world without random oracles. We conclude with a discussion
of the ways in which our proof uses the random oracle model, and how one could
hope to remove this assumption. Our construction uses the random oracle R in
two ways. First, R is used to hide information about p in the circuit family
{CM

p }. Essentially, we use R to obfuscate a point function (where the point is
p|M ). Intuitively, since we know how to (black-box) obfuscate point functions
without using random oracles, we could use (strong) cryptographic assumptions
in place of the random oracle for this.

The second place in our proof where we use the properties of random oracles
is when we assume a distinguisher can see the points on which the obfuscated
circuit queries the random oracle. If we want to get rid of the random oracles,
this is a more troubling assumption. The issue is that even if we could use some
other method to hide information about the point p in the standard model, there
is no reason to assume we could identify any internal computation of the obfus-
cated circuit. For example, consider using Canetti’s point function obfuscation
and giving the obfuscator a circuit C that hides some information on p by expos-
ing only (r, rp|M ). Even if on any input x the obfuscated circuit always computes
(r, rx|M ), there is no guarantee that a distinguisher can identify these compu-
tations! Thus O(C) may not expose any information on M . We note, however,
that to prove that an obfuscator can obfuscate any circuit computing a point
function, one would have to construct an obfuscator that indeed hides internal
computations. Thus it seems that even for achieving the (seemingly modest)
goal of best-possible obfuscation for polynomial-size point-function circuits, one
would have to present a method for hiding complex internal computations of a
circuit. Such a method, in and of itself, would likely have interesting implications.

5 Concluding Remarks and Discussions

We conclude with a discussion of best-possible obfuscation and issues raised in
this work.

Input/Output Representation. Several of our results highlight the issue of the
representation of an obfuscator’s input and output. At times (in Section 3) we
restrict the representation of both the obfuscator’s input and output functional-
ity to be “simple” circuits representing POBDDs. At other times (in the proof
of Theorem 2), we construct complex circuits that hide information about their
functionality from the obfuscators. In general, restricting the input representa-
tion makes the task of obfuscation easier (see discussion in section 4.2), whereas
restricting the output representation makes the task of obfuscation harder, and
we use this in Proposition 3 to show that point functions cannot be black-box
obfuscated as POBDDs. Previous positive results on obfuscation considered ob-
fuscators that get a particular representation of the functionality (e.g. the point
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p for the point function Ip). Future work on black-box (and non black-box) ob-
fuscation should consider the question of which representations of the desired
functionality are obfuscated.

This issue was also raised by Malkin [18], who asked whether any point func-
tion implementation can be black-box obfuscated in the standard model. An
relaxed (but related4) formulation of this question is whether the family of
polynomial-size circuits computing point functions can be best-possible obfus-
cated. The proof of Theorem 2 answers this question negatively in the presence of
random oracles, but either an impossibility proof or a provably secure obfuscator
would likely have interesting consequences.

Circuit Sizes. In our definition of best-possible obfuscation (Definition 5) we
compare the obfuscated circuit O(C1) with circuits C2 of the same size as C1
(and computing the same functionality). This definition requires that the ob-
fuscation of C1 leak as little information as any equivalent circuit of a specific
(polynomially) smaller size. We could make stronger requirements, such as leak-
ing less information than an equivalent circuit C2 that is as large as O(C1), twice
as large as C1, etc. (all results would still hold). In general, the larger the circuit
used as a benchmark (C2), the stronger the definition. The important point is
guaranteeing that O(C1) leaks as little information as any other functionally
equivalent circuit of a related size.

Auxiliary Input. Goldwasser and Kalai [12] augment the virtual black-box re-
quirement of obfuscation to hold in the presence of auxiliary input. They note
that this is an important requirement for any obfuscation that is used in practice,
as auxiliary input comes into play in the real world. Following this argument, we
could extend the best-possible obfuscation requirement to hold in the presence
of auxiliary input. This is a strengthening of the definition, and thus all nega-
tive results clearly still hold. The positive result of Proposition 2 (obfuscating
POBDDs) also holds even in the presence of (dependent) auxiliary input.

Weaker Variants. In light of the negative results of Theorems 1 and 2 it is inter-
esting to consider weaker variants of best-possible obfuscation
(Definition 5). While the variants below lose some of the appealing intuitive
“garbling” guarantee of Definition 5, meeting any of them would all give at least
some indication that the obfuscator truly garbles circuits.

– Hiding Less Information. One natural approach is to follow in the footsteps
of Barak et al. [2], and consider best-possible predicate obfuscators: an obfus-
cation is predicate best-possible if any predicate of the original circuit that
can be learned from the obfuscation, could also be learned from any other
circuit of a similar size computing the same functionality. While this defini-
tion is weaker than computationally best-possible obfuscation, the proof of

4 This formulation is equivalent to the original question raised by Malkin under the
assumption that point functions can indeed be obfuscated when the point is given in
the clear. In this case, a best-possible obfuscation leaks as little information as the
black-box obfuscated point function circuits, and is thus also a black-box obfuscation.
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Theorem 2 rules out even general-purpose predicate best-possible obfusca-
tion in the random oracle model (and gives some intuition that this type of
obfuscation would be hard to achieve int he standard model).

– Weaker Indistinguishability. Canetti [6] and Wee [21] relax the virtual black-
box requirement, requiring only polynomially small indistinguishability be-
tween the output of an adversary and its simulator. Moreover, they allow
the simulator’s size to depend (polynomially) on this indistinguishability
parameter. We note that negative results in this work (Theorems 1 and 2)
hold even if we require only polynomially small indistinguishability and al-
low the simulator’s size to depend (polynomially) on the indistinguishability
parameter.

– Weaker Functionality. Definition 5 requires that with all but negligible prob-
ability, the obfuscated circuit perfectly preserves the functionality of the orig-
inal circuit. We could relax this, and require only that for every input, with
all but a small constant error probability, the obfuscated circuit outputs the
same output as the original circuit. Our negative results apply even under
this weakened preserving functionality requirement. The positive result on
best-possible obfuscation of POBDDs (Proposition 2) gives an obfuscator
that perfectly preserves the functionality of the circuit it obfuscates.
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Abstract. An obfuscation O of a function F should satisfy two require-
ments: firstly, using O it should be possible to evaluate F ; secondly, O
should not reveal anything about F that cannot be learnt from oracle
access to F . Several definitions for obfuscation exist. However, most of
them are either too weak for or incompatible with cryptographic appli-
cations, or have been shown impossible to achieve, or both.

We give a new definition of obfuscation and argue for its reasonability
and usefulness. In particular, we show that it is strong enough for crypto-
graphic applications, yet we show that it has the potential for interesting
positive results. We illustrate this with the following two results:
1. If the encryption algorithm of a secure secret-key encryption scheme

can be obfuscated according to our definition, then the result is a
secure public-key encryption scheme.

2. A uniformly random point function can be easily obfuscated accord-
ing to our definition, by simply applying a one-way permutation.
Previous obfuscators for point functions, under varying notions of
security, are either probabilistic or in the random oracle model (but
work for arbitrary distributions on the point function).

On the negative side, we show that
1. Following Hada [12] and Wee [25], any family of deterministic func-

tions that can be obfuscated according to our definition must already
be “approximately learnable.” Thus, many deterministic functions
cannot be obfuscated. However, a probabilistic functionality such as
a probabilistic secret-key encryption scheme can potentially be ob-
fuscated. In particular, this is possible for a public-key encryption
scheme when viewed as a secret-key scheme.

2. There exists a secure probabilistic secret-key encryption scheme that
cannot be obfuscated according to our definition. Thus, we cannot
hope for a general-purpose cryptographic obfuscator for encryption
schemes.

Keywords: obfuscation, point functions.

1 Introduction

The obfuscation of a function (or, more generally, a program) should provide
nothing more than the possibility of evaluating that function. In particular,

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 214–232, 2007.
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from an obfuscation of a function, one should not be able to learn more than
one can learn from oracle access to that function.

History and Related Work. Practical yet informal approaches to code obfusca-
tion were considered in [13,16]. The first theoretical contributions were made
by Hada [12] who gives a security definition for obfuscations and relates it to
zero-knowledge proof systems.

In their seminal paper [1], Barak et al. define a hierarchy of obfuscation def-
initions, the weakest of which is predicate-based and the strongest of which is
simulation-based. They show that there are languages that cannot be obfus-
cated, even under the weakest definition that they proposed. Specifically, they
show that there are (contrived) sets of programs such that no single obfuscation
algorithm can work for all of them (and output secure obfuscations of the given
input program). Hence, Barak et al. rule out the possibility of generic obfus-
cation (and the proof argument they give also applies to our notion), yet they
leave room for the possibility of obfuscators for specific families of programs.

Goldwasser and Tauman Kalai present obfuscation definitions which model
several types of auxiliary information available to an adversary [11]. They show
general impossibility results for these definitions using filtered functions (func-
tions whose output is forced to zero if the input is not of a special form). They
also show that secure (without auxiliary information) obfuscations of point func-
tions (functions that are 0 everywhere except at one point, see Definition 5) are
automatically secure with respect to independent auxiliary information.

Even before a precise definition of obfuscation was formulated, positive ob-
fuscation results could be given implicitly and in a different context for a special
class of functions. Namely, Canetti [3] and Canetti et al. [4] essentially obfuscate
point functions. The construction from Canetti [3] works for (almost) arbitrary
function distributions and hence requires a very strong computational assump-
tion. On the other hand, one construction from Canetti et al. [4] requires only a
standard computational assumption, but is also proven only a for uniform func-
tion distribution. Both of these constructions are probabilistic and technically
very sophisticated.

Positive results for the predicate-based definition of Barak et al. [1] were
demonstrated by Lynn et al. [17] who show how to employ a random oracle to
efficiently obfuscate the control flow of programs, which includes point functions.

Subsequently Wee showed how to obfuscate point functions in the standard
model [25] (still predicate-based). Yet he only does this under very strong com-
putational assumptions and for a weakened definition of obfuscation. Wee also
shows that, at least under one of the original obfuscation definitions of Barak
et al. [1], point functions can only be obfuscated under strong computational
assumptions.

Finally, a generalisation of one-way functions can be found in the work of
Dodis and Smith [6] who show how to obfuscate a proximity function.

Our Work. We concentrate on a new definition that is a variant of the simulation-
based definition of Barak et al. [1]. We deviate from the notion of [1] only in
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that we consider probabilistic functions and also pick the function to be obfus-
cated according to a distribution and hence demand only “good obfuscations on
average.” (This is similar to Canetti’s “oracle hashing” definition from [3], or to
the “approximate functionality with respect to a particular input distribution”
variant [1].) However, we stress that the impossibility results from [1] also carry
over to such a weakened notion in a meaningful sense. In fact, a similar no-
tion is already informally considered in [1, Discussion after Theorem 4.5]. That
means that also for our notion, there can be no general-purpose obfuscators. Yet
our goal is to consider obfuscations for specific applications such as obfuscating
secret-key encryption schemes. We stress that there are secret-key encryption
schemes that are unobfuscatable (see Remark 1), so general-purpose obfuscators
cannot exist; then again, there are also schemes that can be obfuscated (e.g., a
public-key encryption scheme when viewed as secret-key). We are interested in
specific obfuscations, not in general-purpose obfuscation.

Intuitively, our variation makes sense in many cryptographic applications
where the function to be obfuscated is chosen at random by a trusted party.
This could for instance model the situation where an issuer of smartcards selects
a signing key and then hardwires it on a smartcard.

To show the usefulness of our notion, we demonstrate that by obfuscating
the encryption algorithm of an IND-CPA secure symmetric encryption scheme,
we obtain an IND-CPA secure asymmetric scheme. As a sidenote, we prove
that, surprisingly, the analogous result does not hold for IND-CCA schemes.
The latter is not a consequence of our relaxed definition, but is inherent in all
existing definitions of obfuscation. We also prove similar results (both positive
and negative) concerning the construction of signature schemes from MACs using
obfuscation.

Although we are not yet able to give a concrete (interesting) example of a
public-key encryption scheme or a signature scheme produced using our new
definition of obfuscation, we provide evidence that the definition is satisfiable in
other contexts. In particular, we show that, given a one-way permutation, it is
possible to obfuscate a point function deterministically and in a quite straight-
forward way in the standard model. Previous obfuscations of point functions
(under different definitions) were either probabilistic and quite involved or in
the random oracle model; this owes to the fact that they were geared to work
for arbitrary distributions on the point function to be obfuscated.

Our definition does not overcome the impossibility results of Barak et al. [1].
Actually, following Hada [12] and Wee [25], we remark that any family of de-
terministic functions must be approximately learnable to be obfuscatable. We
prove that in particular, it is not possible to obfuscate pseudorandom functions
under our definition.

2 Previous Definitions

Barak et al. [1] discuss the obfuscation of an arbitrary Turing machine or circuit.
This leads to the same notation for the description of a circuit and the function
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it evaluates. Moreover, from an adversary’s point of view, the security does not
depend on the particular way some function is implemented prior to obfuscation.

Under our definitions, the implementation or representation of a function prior
to obfuscation is relevant for the security of the obfuscation. To emphasize this,
we will make an explicit distinction between keys of a function on the one hand,
and keyed functions on the other.

Let F = {Fk}k∈N be a class of probabilistic functions Fk = {FK}K∈Kk
where

all FK ∈ Fk have an identical domain Xk. We call K the key and we assume
there is some probabilistic polynomial time (in k) algorithm F that, on input of
K ∈ Kk and x ∈ Xk, samples from FK(x).

Formally, we regard an obfuscator as a combination of two algorithms: a
key transformation algorithm O :

⋃
k Kk →

⋃
k K′k that takes a key K ∈ Kk

and returns the obfuscated key K ′ ∈ K′k; and a probabilistic polynomial time
algorithm G that, on input a key K ′ ∈ K′k and x ∈ Xk, samples from FK(x).
Depending on the context, we will not always make explicit mention of G.

We are now ready to rephrase Barak et al.’s definition of obfuscation in the
setting that we consider. We only give a uniform model and, for the moment, con-
centrate on obfuscating deterministic functions. Note that our model is slightly
more restrictive, as a result of which polynomial slowdown is automatically sat-
isfied. (This refers to the slowdown between the function and its obfuscation.)

Definition 1 (Universal Obfuscation). A PPT algorithm O is a universal
obfuscator for a class F of deterministic functions if the following holds.

– Approximate Functionality: For all k ∈ N, for all K ∈ Kk and all x ∈ Xk it
holds that FK(x) = GO(K)(x) with overwhelming probability over the choices
of O.

– Virtual Black-Box: Loosely speaking, given access to the obfuscated key O(K)
of a function FK , an adversary cannot learn anything about the original func-
tion FK that it could not learn from oracle access to FK . Formal definitions
follow.

Note that we call Definition 1 “universal” to indicate that—in contrast to our
own upcoming refinement of this definition—security for each individual function
FK to be obfuscated is required.

Barak et al. [1] give several ways to formulate the notion of not learning
anything, two of which we recall below.

Predicate-Based Obfuscation. This is based on computing a predicate. In
this case the task of an adversary given the obfuscation O(K) is to compute
any boolean predicate on K. That is to say, for any adversary and any boolean
predicate π, the probability that an adversary computes π(K) given O(K) is
no greater than the probability that a simulator, given only oracle access to
FK , computes π(K). This notion is formally defined by a slightly simpler, but
equivalent, notion.

Definition 2 (Predicate-Based Universal Black-Box). A probabilistic al-
gorithm O for a family F of functions satisfies the weak universal black-box
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property if for all PPT D, there exist a PPT S and a negligible function ν such
that for all k and all K ∈ Kk,

∣∣∣Pr
[
K ′ ← O(K) : D(K ′) = 1

]
− Pr

[
SFK (1k) = 1

]∣∣∣ ≤ ν(k) .

Simulation-Based Obfuscation. This is based on computational indistin-
guishability. Under this formulation one does not restrict the nature of what an
adversary must compute: it says that for any adversary, given O(K), it is possi-
ble to simulate the output of the adversary given only oracle access to FK . The
outputs of the adversary and the simulator must be computationally indistin-
guishable. It is easy to see that in fact it is necessary and sufficient to simulate
the output of the obfuscator (thus removing the need to quantify over all ad-
versaries). This equivalence has also been observed by Wee [25] who gives the
following formulation.

Definition 3 (Simulation-Based Universal Black-Box). A probabilistic al-
gorithm O for a class F of functions satisfies the strong universal black-box prop-
erty if there exists a PPT S such that for all PPT D there exists a negligible
function ν such that for all k and all K ∈ Kk

∣∣∣Pr
[
K ′ ← O(K) : D(K ′) = 1

]
− Pr

[
K̃ ′ ← SFK (1k) : D(K̃ ′) = 1

]∣∣∣ ≤ ν(k) .

3 Our Definition

Inspired by existing impossibility results, we endeavour to find a definition of
cryptographic obfuscation that both allows meaningful applications such as trans-
forming secret-key cryptosystems into public-key systems, and at the same time
is satisfiable. Recall that previous work on obfuscation uses a universal quanti-
fier for the functions FK ∈ Fk to be obfuscated. In contrast, we will assume a
key distribution on the keys K and hence on the functions FK that have to be
obfuscated. For simplicity we will assume a uniform distribution on the keys.

First, we will define and discuss a new notion of obfuscation that is a relaxation
of the simulation-based definition of Section 2. In Section 4 we will examine
some applications and limitations of our new definition. In the following, we will
put emphasis on the virtual black-box property. (However, we include a short
discussion of an adaptation of the approximate functionality requirement.)

3.1 The Definition

Simulation-based obfuscation refers to computational indistinguishability: given
only oracle access one can produce something indistinguishable from the obfus-
cator’s output. Note that the most straightforward analogue of Definition 1 with
a randomized key distribution is not very meaningful. Since the distinguisher
does not know the key K, a simulator can make up a different key and obfuscate
it, so trivial obfuscation would be possible. To prevent this (and end up with a
more sensible definition), we additionally give the distinguisher, similarly to the
simulator, oracle access to the function.
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Definition 4 (Simulation-Based Virtual Black-Box Property). An ob-
fuscation O for a class of functions F has the simulation-based virtual black-box
property iff for all PPT distinguishers D there is a PPT simulator S such that
the following quantity is negligible in k.
∣∣∣Pr

[
K ← Kk : DFK (1k, O(K)) = 1

]
− Pr

[
K ← Kk : DFK (1k, SFK (1k)) = 1

]∣∣∣.

3.2 On the Approximate Functionality Requirement

The natural analogue of the “approximate functionality” requirement from Def-
inition 1 for the case of function distributions would be the following. For all
keys K and inputs x, with overwhelming probability over the random choices of
O, the obfuscation GO(K)(x) has exactly the same distribution as FK(x). This
is a very strong requirement, and we can actually relax this a little.

Definition 3.1. An obfuscator O satisfies the statistical functionality require-
ment for F iff there exists a negligible function ν such that for all k, the following
holds:

∑

K,K′

Pr[K, K ′ : K ′ ← O(K), K ← Kk] max
x

(σ(GK′(x), FK (x))) ≤ ν(k).

Here, σ is used to denote the statistical distance.

For deterministic functions, the requirement reduces to the statement that, with
overwhelming probability over the choice of the key generation and the obfus-
cator O, FK and GO(K) should be the same functions. This is similar to the
approximate functionality of the universal definition [1, Definition 4.3], with the
caveat that we take our probability over FK as well. We note that all the results
to follow do not depend on the choice of functionality requirement.

3.3 Comparison to Previous Definitions

The Definitions of Barak et al. Definition 4 differs in several aspects from [1,
Definition 2.1]. First, Definition 4 requires security w.r.t. a randomly chosen key
from a given set, whereas [1, Definition 2.1] demands security for every key in
that set. In that sense, Definition 4 is a relaxation of [1, Definition 2.1] (although
this does not protect Definition 4 from impossibility results for general-purpose
obfuscation; see below).

On the other hand, Definition 4 requires a multi-bit output from the simu-
lator, whereas [1, Definition 2.1] restricts adversary and simulator to a one-bit
output. As [1, Definition 2.1] demands security for all keys in a set, this one-
bit output can be seen as an approximation of a predicate on the key. In fact,
when directly relaxing [1, Definition 2.1] by randomizing the distribution on the
key, approximating a predicate on the key leads to a more sensible definition
than simply comparing the probabilities for 1-output of adversary and simula-
tor. Such a predicate-based formulation, even with randomly chosen key and
a distinguisher with oracle access, is incomparable to our definition (since the
predicate could be not computable in polynomial time).
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Perfect One-Way Hashing and Point Functions. We note that a distribution
on the keys (or, on the function to obfuscate) was already considered in other
definitions, e.g., in the security definition for perfect one-way hashing (that is
actually an obfuscation of a point function) from [3]. In the case of [3], security
could be achieved as long as the distribution on the functions was well-spread,
which basically means that a brute-force search for the function has only negli-
gible success. Our results from Section 4.3 (that also concern an obfuscation of
a point function) are formulated with a uniform distribution on the key.

In contrast to the very sophisticated construction from [3], our construction
is quite simple: an obfuscation of a point function Px, is Π(x) for a one-way per-
mutation Π . However, there can be well-spread distributions (different from the
uniform one) on the key for which our point function obfuscation becomes inse-
cure. (Imagine a one-way permutation that leaks the upper half of the preimage,
and a distribution that keeps the lower half of the preimage constant.) In other
words, the price to pay for the simplicity of our construction is the dependency
on a uniform distribution of the key.

Also, the construction from [3] is “semantically secure” in the sense that any
predicate on the hashed value (i.e., the key of the point function to be obfuscated)
is hidden. Our construction from Section 4.3 does not guarantee this; just like
the one-way permutation that is employed, our construction only hides the key
in its entirety. This may have the disadvantage that in some applications, this
might not be sufficient, and in particular not a meaningful “idealization” of a
point function. However, in other settings (such as a password query), this may
be exactly the idealization one is interested in.

Other Similar Definitions. Technically, Definition 4 is quite similar to [12, Def-
inition 10] (the latter definition which is also formulated with a distribution on
the keys). Essentially, the only difference is that [12, Definition 10] equips the
distinguisher with an extra copy of the obfuscation instead of oracle access to
the function. As argued by Hada [12], this leads to a very strong definition (that
is in particular strictly more restrictive than ours).

Finally, the definitions from Wee [25, Section 5.2] are technically similar to
ours, in that they allow the adversary a multi-bit output. These definitions suf-
fer from strong impossibility results (in particular, a function must be exactly
learnable for obfuscation); this is partly due to the fact that these definitions
demand security for all keys in a given set. In our case, a function must be
approximately learnable for obfuscation, and this enables, e.g., the obfuscation
of point functions (see Sections 4.3 and 4.4).

3.4 Specific vs. General-Purpose Obfuscation

Impossibility of General-Purpose Obfuscation. As indicated, also Definition 4
suffers from certain impossibility results. First, the argument from [1, Section 3]
works also for the case of a randomized key distribution, and hence there are cer-
tain (albeit constructed) examples of unobfuscatable function families.
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There are even less constructed examples, as we will show in Remarks 1 and 2,
and in Section 4.4. In other words: there can be no general-purpose obfuscation.1

Specific Obfuscators. What we advocate here is to consider specific obfusca-
tors for specific function families. For example, we will show (in Section 4.1)
that obfuscating the encryption algorithm of a secret-key encryption scheme
yields a public-key encryption scheme, and that such obfuscations (in princi-
ple at least) exist. However, our example that such obfuscations exist assumes
a public-key encryption scheme in the first place. Plugging this example into
the secret-key→public-key transformation gives (nearly) the same public-key
encryption scheme one started with. So the following question arises:

What is Gained? First, the secret-key→public-key transformation can be seen,
similarly to [5], as a technical paradigm to realize public-key encryption in the
first place. In that context, a formalization of obfuscation can provide an interface
and a technical guideline of what to exactly achieve.

Second, the mentioned impossibility results does not exclude that a sensible
formulation of what can be obfuscated exists. In other words, there may be a
large and easily describable class of functions which can be obfuscated. Universal,
general-purpose obfuscators for this class may exist and provide solutions for
applications which correspond to functions inside this class.

4 Results Concerning the Simulation-Based Virtual
Black-Box Property

In this section we discuss two applications of Definition 4: transforming secret-
key encryption into public-key encryption and transforming MACs into signature
schemes. Although we are not yet able to give an example of such a construction
we provide evidence that our definition is satisfiable by demonstrating how to
obfuscate a point function using a one-way permutation. Finally we present an
impossibility result concerning Definition 4, thereby demonstrating that obfus-
cation definitions should be tailored to the context in which one wishes to use
them.

4.1 Transforming Secret-Key Encryption

When the idea of public-key cryptography was first proposed by Diffie and Hell-
man [5], they suggested that one way to produce a public-key encryption scheme
was to obfuscate a secret-key scheme. This application of obfuscation was also
suggested by Barak et al. [1].

A secret-key encryption scheme SKE consists of the following three algorithms.

1 It is actually worse: there are function families that cannot be obfuscated even with
very specific, case-tailored obfuscators.
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– A PPT key generation algorithm SKE.KeyGen that takes as input 1k for
k ∈ Z≥0. It outputs a key K.

– A polynomial time encryption algorithm SKE.Enc that takes as input 1k for
k ∈ Z≥0, a secret key K, and a message m ∈ {0, 1}∗. It outputs a ciphertext
c. Algorithm SKE.Enc may be probabilistic or deterministic.

– A polynomial time decryption algorithm SKE.Dec that takes as input 1k for
k ∈ Z≥0, a key K, and a ciphertext c. It outputs a message m.

Functionality of the scheme requires that for all keys, encryption followed by
decryption under the same key is the identity function (slight relaxations of this
statement are possible).

A secret-key cryptosystem is IND-CPA secure if no adversary with access
to an encryption oracle can pick two messages, of equal length, such that it
can distinguish (still having encryption-oracle access) between encryptions of
the two. This is the notion called find-then-guess CPA (FTG-CPA) security by
Bellare et al. [2].

A public-key cryptosystem consists of the same three algorithms, but with
the difference that the key generation algorithm now outputs two keys: one
private and one public. The public key is used for encryption, the private key
for decryption. The scheme is IND-CPA secure if no adversary with access to
the public key (and hence an encryption oracle) can pick two messages, of equal
length, the encryptions of which it can distinguish.

A secret-key encryption scheme is turned into a public-key encryption scheme
by releasing as the public key an obfuscation O(K) of SKE.Enc(1k, K, ·), the
private key encryption algorithm using key K.

Note that the correctness requirement of an obfuscation may not guarantee
that the public-key scheme obtained in this way functions correctly in terms of
decryption of encryption being the identity function. In fact, this is guaranteed
only with overwhelming probability. However, we ignore this issue here as one
can always demand perfect correctness from the obfuscation (which would result
in a public-key encryption with perfect functionality), or one can weaken the
functionality requirement for public-key encryption schemes.

Remark 1 (On the obfuscatability of secret-key encryption). In the following,
we simply assume a secret-key encryption scheme with obfuscatable encryption
algorithm. One may wonder how realistic that assumption is. First, there are
unobfuscatable secret-key cryptosystems; any scheme that enjoys ciphertext in-
tegrity [14] in a “publicly verifiable way” cannot be obfuscated. That is, imagine
that a keypair of a digital signature scheme is made part of the secret key, and any
ciphertext is signed using the signing key, while the verification key is included
in every ciphertext. Then by the functionality requirement, an obfuscation must
be able to sign messages (i.e., ciphertexts) under this signing key (note that the
“real” verification key can be obtained by oracle access to encryption, so the
obfuscator cannot make up a different signing key). However, by unforgeability
of the signature scheme, no simulator can do so with oracle access to encryption
only.
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But, on the other hand, specific secret-key encryption schemes can be ob-
fuscated: imagine a public-key encryption scheme where the public key is part
of every ciphertext.2 The ability to encrypt arbitrary messages can then be ac-
quired with one black-box query to the encryption oracle, hence if we view such
a scheme as secret-key encryption, its encryption algorithm can be obfuscated.

So we find ourselves in a situation where we cannot hope for an all-purpose
obfuscation (for secret-key encryption). In contrast, we hope for efficient ob-
fuscations of specific schemes. We are unfortunately not able to give concrete
examples here; instead, we simply assume such obfuscations and see how we
could benefit:

Theorem 4.1. If a secret-key encryption scheme SKE that is IND-CPA is
turned into a public-key encryption scheme using the method above with an ob-
fuscator satisfying Definition 4, then the resulting scheme is an IND-CPA secure
public-key encryption scheme.

Proof. For the sake of brevity, we will write EK(·) for SKE.Enc(1k, K, ·) and OEK

for an obfuscation thereof. Let a PPT adversary A = (A1, A2) be an adversary
of the public-key scheme whose advantage is

AdvIND−CPA =
∣∣∣Pr[K ← SKE.KeyGen(1k), OEK

← O(K),

(m0, m1, h) ← A1(OEK ), b ← {0, 1} : A2(h, OEK (mb)) = b] − 1
2

∣∣∣.

(In the above we have split the adversary in two and use h to denote state infor-
mation it might wish to relay.) We must show that this advantage is negligible.
By approximation of obfuscation, we have

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k), OEK

← O(K),

(m0, m1, h) ← A1(OEK
), b ← {0, 1} : A2(h, EK(mb)) = b] − 1

2

∣∣∣,

where X ≈ Y denotes that |X − Y | is negligible.
If we view A as a distinguisher against the obfuscation (that chooses b on its

own and uses its oracle access to EK(·) to obtain EK(mb)), then Definition 4
guarantees the following. There must be a simulator S that, given only oracle
access to EK , produces an output O′EK

indistinguishable from OEK
from A’s

point of view, yielding

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k), O′EK

← SEK ,

(m0, m1, h) ← A1(O′EK
), b ← {0, 1} : A2(h, EK(mb)) = b] − 1

2

∣∣∣.

2 This trick was suggested by a TCC referee.
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Now consider the adversary (A′1, A2) of the symmetric scheme SKE that runs
SEK to obtain O′EK

and then runs A = (A1, A2), replacing OEK
with O′E′

K
.

From the above it follows that

AdvIND−CPA ≈
∣∣∣Pr[K ← SKE.KeyGen(1k),

(m0, m1, h) ← A′1
EK (1k), b ← {0, 1} : A2(h, EK(mb)) = b] − 1

2

∣∣∣,

and since the term on the right hand side is negligible by assumption, it follows
that A’s advantage against the public-key scheme is negligible as well. ��

A stronger security requirement for secret-key and public-key encryption schemes
is indistinguishability of ciphertexts under adaptive chosen-ciphertext attacks
(IND-CCA, see [23]; for secret-key schemes, this is also called FTG-CCA in [2]).
This notion is very similar to IND-CPA security, only an attacker (who tries to
distinguish encryptions of two self-chosen plaintexts) is also given access to a
decryption oracle. (Obviously, that access is limited in the sense that decryption
of the ciphertext the adversary should distinguish is not allowed.)

It is natural to ask whether an IND-CCA secure secret-key scheme can be
directly converted to an IND-CCA secure public-key scheme by obfuscating the
encryption function. The next theorem shows that the answer is unfortunately
negative:

Theorem 4.2. Assuming that there is an IND-CCA secure secret-key encryp-
tion scheme SKE with obfuscatable encryption algorithm. Then, there is also
another obfuscatable, IND-CCA secure secret-key encryption scheme SKE′ and
an obfuscator O′ for SKE′ such that, after obfuscating the encryption function
O′, the result is not an IND-CCA secure public-key encryption scheme.

Proof. Assume an IND-CCA secure secret-key encryption scheme SKE that is
obfuscatable in the sense of Definition 4. Modify SKE into a scheme SKE′ as
follows: the modified key generation outputs (K, r) for a key K as produced
by SKE.KeyGen and a uniformly chosen random k-bit string r. A message m
is encrypted under key (K, r) to (c, d), where c ← SKE.Enc(1k, K, m) and d is
the empty bitstring. A ciphertext (c, d) is decrypted under secret-key (K, r) to
m ← SKE.Dec(1k, K, c) if d is the empty bitstring, to K is d = r, and to ⊥
otherwise.

The IND-CCA security of SKE′ can be reduced to that of SKE: say that
A′ is an IND-CCA adversary on SKE′. A corresponding adversary A on SKE
can internally simulate A′ and only needs to translate oracle calls accordingly.
Namely, A appends to each SKE-encryption an empty component d so as to
make it an SKE′-encryption; decrpytion queries (c, d) are answered depending
on d: if d is empty, the query is relayed to A’s own decryption oracle, otherwise A
answers the query on its own with ⊥. (Note that this ensures that A never asks
for decryption of the challenge ciphertext, since by assumption A′ does not do
so.) Since A′ can have only negligible probability in guessing r, this provides A′
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with a view at most negligibly away from its own SKE′-IND-CCA game. Hence
A is successful iff A′ is, and thus, SKE′ is IND-CCA secure because SKE is.

Consider an obfuscator O for the encryption algorithm of SKE that satisfies
Definition 4. Modify O into O′, such that obfuscations produced by O′ append
an empty bitstring d to encryptions. Furthermore, make O′ include r in the
obfuscation. Since only the encryption algorithm is considered for obfuscation,
O′ still satisfies Definition 4. (Specifically, a simulator S′ for O′ can be obtained
from a simulator S for O by simply appending a uniformly selected k-bit string
r to the output of S.)

However, applying O′ to SKE.Enc yields a public key encryption scheme in
which r is part of the public key. Any query of the form (c, r) to the decryption
oracle can be used by an IND-CCA attacker to obtain K and thus break the
scheme. ��

Note that the precondition in Theorem 4.2—namely, an obfuscatable IND-CCA
secure secret-key encryption scheme—is satisfiable by an IND-CCA public-key
encryption scheme with a the argument from Remark 1.

Although, by Theorem 4.2, a direct construction of an IND-CCA secure
public-key scheme is not possible using obfuscation, this does not mean that
Definition 4 is not useful in this context: using Theorem 4.1 combined with a
generic conversion from, say, IND-CPA to NM-CPA such as [22], one still obtains
at least a non-malleable public-key scheme.

4.2 Transforming Message Authentication Codes

Another obvious application of obfuscation is to transform message authenti-
cation codes (in which a secret key is used for authenticating and verifying a
message) into signature schemes (in which a secret key is used for signing, i.e.,
authenticating, a message, but in which the verification key is public). Intuitively,
this could be done by obfuscating the verification algorithm of the message au-
thentication code. To begin with we will introduce the necessary concepts.

A message authentication code MAC consists of the three PPT algorithms
MAC.Key, MAC.Sign and MAC.Verify, where

– MAC.Key(1k) outputs a secret key K,
– MAC.Sign(1k, K, m) signs a message m ∈ {0, 1}∗ under key K and outputs

a signature μ,
– MAC.Verify(1k, K, m, μ) verifies a signature μ to the message m.

As a functionality (or, correctness) requirement, one demands that under any
possible key K, verifying a legitimately generated signature should always suc-
ceed. Again, relaxations are possible.

We demand for security that it should be hard for a PPT adversary to come
up with a valid message/signature pair without knowing the secret key. Here, the
adversary may request signatures of messages of its choice from a signing oracle.
(Of course, signatures which are obtained through that oracle do not count
as successful forgeries.) Since we explicitly allow that the signing algorithm is
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probabilistic, there may be multiple signatures for a single message. Therefore,
we also equip the adversary with an oracle for verifying messages. Formally,
a message authentication code MAC is secure under adaptive chosen-message
attacks, or MAC-CMA secure, if and only if, for all PPT adversaries A, the
following probability is negligible.

Pr
[
K ← MAC.KeyGen(1k), (m, μ) ← AMAC.Verify(1k,K,·,·),MAC.Sign(1k,K,·)(1k) :

MAC.Verify(1k, K, m, μ) = 1
]

Analogously, a weaker notion of security, namely security under verify-only at-
tacks, or MAC-VOA, can be derived by omitting the signing oracle from the
above definition. Note that we have restricted here to PPT adversaries; actually,
there are even schemes that achieve unconditional security [24].

The natural public-key analogue of message authentication codes are digital
signature schemes. These are identical to message authentication codes, only the
key generation algorithm outputs two keys: one public key that is used for verify-
ing signatures, and a private key that is used for signing messages. Correctness is
defined as for message authentication codes. The security notions SIG-CMA and
SIG-VOA are defined exactly analogously to their message authentication code
counterparts (only the adversary is given the public verification key in addition
to 1k).

So, in a digital signature scheme, verification is public, whereas in a mes-
sage authentication code it requires a secret key. Thus, the verification
algorithm of a message authentication code is a natural candidate for obfus-
cation. In fact, by obfuscating the verification algorithm of a message authen-
tication code, we syntactically obtain a digital signature scheme. (As in the
case of secret/public-key encryption, we ignore the perfect functionality require-
ment; here either the functionality requirement on the obfuscation must be
perfect, or the functionality definition for digital signature schemes must be
weakened.)

Technically, this means that the key generation SIG.KeyGen of the transformed
scheme outputs a secret key K obtained from MAC.KeyGen along with an obfus-
cation of the verification function, O(MAC.Verify(1k, K, ·, ·)), (with hard-coded
secret key) as the public key. (Signing is unchanged, and verification simply
means using the algorithm given by the public key.)

Remark 2 (On the obfuscatability of message authentication). We will simply
assume a message authentication code with obfuscatable verification algorithm.
Again, one may wonder how realistic that assumption is. First, there are certain
(artificial) MACs whose verification algorithm cannot be obfuscated. (In par-
ticular, there can be no general-purpose MAC authenticator.) Since this is less
straightforward to see than the existence of unobfuscatable secret-key encryption
schemes, we now sketch such a MAC. (This is basically the general construction
from [1, Section 3] adapted to the MAC interface.)
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Let MAC be a MAC-VOA secure MAC. Define MAC′ through

– MAC′.KeyGen(1k) := (K, α, β) for K ← MAC.KeyGen(1k) and uniformly
chosen α, β ∈ {0, 1}k.

– MAC′.Sign(1k, K ′, m) = (0, μ) for μ ← MAC.Sign(1k, K, m), where K ′ is
parsed as (K, α, β).

– MAC′.Verify(1k, K ′, m, (0, μ)) = MAC.Verify(1k, K, μ)
– MAC′.Verify(1k, K ′, m, (1, μ)) = 1 iff μ(α) = β, where μ is interpreted as an

algorithm description.3

– MAC′.Verify(1k, K ′, m, (2, μ, i)) =“the i-th bit of β”, but only if μ = α (oth-
erwise, MAC′.Verify returns 0).

First, it is easy to see that with oracle access to MAC′.Verify, no valid (in the
sense of MAC′.Verify) “signatures” of the form (1, μ) or (2, μ) can be generated.
Hence, MAC′ inherits MAC’s MAC-VOA security.

But now consider a distinguisher D who, on input an obfuscation O of
MAC′.Verify(1k, K ′, ·, ·), returns O(0k, (1, O′)), where the algorithm description
O′ is constructed from O such that

O′(x) = O(0k, (2, x, 1))|| . . . ||O(0k, (2, x, k)).

Then, functionality of an obfuscation dictates that O′(α) = β with overwhelming
probability, and hence, Pr[D(O) = 1] must be overwhelming. On the other hand,
no simulator can (with non-negligible probability, and from oracle access to
MAC′.Verify alone) produce a fake obfuscation Õ that satisfies Õ′(α) = β, so
Pr

[
D(Õ) = 1

]
is negligible. Hence, MAC′ cannot be obfuscated in the sense of

Definition 4.
On the other hand, there also are obfuscatable MACs. Similarly to the encryp-

tion setting, any MAC-VOA secure digital signature scheme can be converted
into a MAC-VOA secure MAC that is obfuscatable: simply declare the verifi-
cation key part of the (secret) MAC key K. The obfuscation of the verification
algorithm is simply the verification key. To achieve simulation of this obfusca-
tion in the sense of Definition 4, we cannot use the trick from the encryption
setting, where the public key was part of every encryption. In our setting, the
verification algorithm outputs only one bit, and we must take care not to make
a trivial signature forgery possible. However, a simulation of obfuscation is pos-
sible by simply outputting a fresh verification key randomly. No distinguisher
can, with oracle access to the “right” verification routine, distinguish the “right”
verification key from an independently generated one; to do so, it would need to
forge a signature, which would contradict the MAC-VOA security of the digital
signature scheme.

Analogously to the results in the previous section, we can make two statements
about the security of the digital signature schemes that are obtained by obfus-
cating the verification algorithm of a message authentication code:
3 Here and in the further analysis, we ignore complexity issues; techniques similar to

those from [1] can and must be used to make MAC′.Verify PPT.
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Theorem 4.3. Say that a message authentication code MAC is MAC-VOA. If
MAC is turned into a digital signature scheme by obfuscating using the method
above and using an obfuscator satisfying Definition 4, then the resulting scheme
is a SIG-VOA secure digital signature scheme.

Proof. The proof is very similar to the proof of Theorem 4.1 (in particular, the
idea is to first use the functionality and then the simulatability of obfuscation),
so we omit it. ��

Theorem 4.4. Assuming that there is a MAC-CMA secure message authenti-
cation code MAC with obfuscatable verification algorithm. Then there is also a
MAC-CMA secure message authentication code MAC′ and an obfuscator (in the
sense of Definition 4) O′ for MAC′’s verification function, such that the result
if not SIG-CMA secure as a digital signature scheme.

Proof. The proof is analogous to the proof of Theorem 4.2. First, assume an
obfuscatable MAC-CMA secure message authentication code MAC. Modify MAC
into a code MAC′ by including a uniformly selected r ∈ {0, 1}k to the secret key
during key generation. Signing and verification take places as before, except
that if m = r is to be signed, the signing algorithm appends K to the signature.
This authentication code is still MAC-CMA, since an attacker has negligible
probability of guessing r.

Any obfuscation O of the verification function can be modified into another
one O′ that includes the second part r of the secret key. If O satisfies Definition 4
for MAC, then so does O′ for MAC′, since a simulator that is to simulate an
obfuscation of the verification function can simply choose r by itself. (It cannot
be detected in doing so by only looking at the verification algorithm.)

However, applying O′ to the verification algorithm of MAC′ obviously leads
to a digital signature scheme that is not SIG-CMA secure: an attacker gets r
as part of the public key and simply needs to submit it to the signing oracle to
obtain the signing key K. ��

4.3 Deterministic Obfuscation of Point Functions

In this section we prove a concrete feasibility result for Definition 4 by showing
how to obfuscate a point function, as defined below.

Definition 5 (Point Functions). For k ∈ Z≥0 and x ∈ {0, 1}k, the point
function Px : {0, 1}k → {0, 1} is defined by Px(y) = 1 if y = x and 0 otherwise.
Define Pk = {Px : x ∈ {0, 1}k}.

We now show how to obfuscate point functions under Definition 4. Note that
the requirement that the obfuscation has the same functionality as the original
function follows directly from the construction.

Theorem 4.5. Let Π be a one-way permutation on {0, 1}k with respect to the
uniform distribution. Then the obfuscation O(x) = Π(x) satisfies Definition 4
with respect to the uniform distribution on Pk and where the obfuscated function
on input y and O(x) outputs 1 iff Π(y) = O(x).
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Proof. Consider the simulator S that outputs a uniformly sampled y ∈ {0, 1}k.
We need to show that the difference from Definition 4 is negligible for any PPT
distinguisher D. This is done by

Pr
[
x ← {0, 1}k : DPx(1k, Π(x)) = 1

]

= Pr
[
y ← {0, 1}k : DPy(1k, Π(y)) = 1

]

(∗)
≈ Pr

[
x, y ← {0, 1}k : DPx(1k, Π(y)) = 1

]

= Pr
[
x ← {0, 1}k : DPx(1k, S(1k)) = 1

]
,

where X ≈ Y means that |X − Y | is negligible in k. Here, (∗) can be shown
by a reduction to the one-way property of Π . If there was a D for which (∗)
does not hold, this D can be used to invert Π with non-negligible probability. A
probabilistic Π-inverter D′ then internally simulates D and works as follows. If D
makes in any case at most, say, p(k) oracle queries, D′ chooses i ∈ {1, . . . , p(k)}
uniformly and answers all queries up to the i-th with 0 and outputs the i-th
query as a guess for a preimage. ��

Note 1. Very recently, [20] investigated to what extent point function obfusca-
tions can be used to bootstrap other obfuscations. They did this under a defi-
nition of obfuscation in which adversaries are bounded only in their number of
oracle queries, but not in the number of their computation steps. With respect
to this definition, [20] shows that there are circuits which can be obfuscated with
a random oracle, but not with just an oracle to a point function.

They also improve an upper bound on the concurrent self-composability of
Wee’s construction for point function obfuscation. Note that our construction,
under our definition, is self-composable, which follows easily from the obfuscator
being deterministic.

4.4 An Infeasibility Result

We conclude our work on Definition 4 by considering impossibility results on
previous notions of obfuscation. The two notions that come closest to the new
notion are simulation-based universal black box (Definition 3) and obfuscation
with respect to independent auxiliary input [11, Definition 4].

Wee [25] shows that in the standard model obfuscation of deterministic func-
tions with respect to Definition 3 is possible if and only if the functions are
efficiently and exactly learnable (meaning that with a polynomial number of
queries and effort one can construct a circuit that computes the function ex-
actly). Since point functions are not efficiently and exactly learnable, it is clear
from our positive result in the preceding section that Definition 4 is indeed a
relaxation.

However, for a deterministic function one possible distinguisher simply sam-
ples random inputs and checks whether the obfuscated function (or simulated
one) gives the same output as the real function (to which the distinguisher has
oracle access). Consequently, the simulated function needs to correspond to the
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real function on all inputs, except for a small (and hard to find) fraction. Hence
a function should be efficiently approximately learnable, that is, with a polyno-
mial number of queries and effort one can construct a circuit that computes the
function except on a small (and hard to find) fraction of the inputs. This in par-
ticular rules out the obfuscation of deterministic signature schemes, public-key
decryption and pseudorandom functions.

To give a taste of a formal proof of the above, we give an explicit theorem and
proof for the impossibility to obfuscate a pseudorandom function [8], as defined
below.

Definition 6. [8] A family of functions F = {fk}, fk : {0, 1}k → {0, 1}k is
pseudorandom if any probabilistic polynomial time algorithm D the advantage

∣∣∣
[
f ← fk : Df (1k) = 1

]
− Pr

[
r ← rk : Dr(1k)

]∣∣∣

is negligible in k where rk is the set of all functions from {0, 1}k to {0, 1}k.

Theorem 4.6. It is impossible to obfuscate a pseudorandom function under
Definition 4.

Proof. Suppose for contradiction that there is an obfuscator O that satisfies
Definition 4 when applied to a pseudorandom function family F = {fk}. For
f ← fk, consider the distinguisher D that, on input a supposed obfuscation g
and with oracle access to f , chooses x ∈ {0, 1}k and compares f(x) with g(x).
By functionality of the obfuscation, in case g = O(f), we may assume that
f(x) = g(x) with overwhelming probability.

Now by assumption, there is a simulator S for this distinguisher that satisfies
Definition 4. This S must thus be able to produce a function g with f(x) = g(x),
but it has only negligible probability of guessing x and thus, with overwhelming
probability, does not query its f -oracle at x.

Thus S can be used to predict f(x) with overwhelming probability without
explicitly querying f . Hence S can be modified into a distinguisher that distin-
guishes f from a truly random function r as in Definition 6, which contradicts
the pseudorandomness of F . ��

To conclude, in addition to potential applications, the results of this section
demonstrate that while it is satisfiable, Definition 4 is not appropriate for all
application scenarios.

5 Conclusion

We have presented a simulation-based definition that, on the one hand, allows for
obfuscating point functions, yet at the same time is strong enough for converting
secret-key cryptography into public-key cryptography.

We would like to stress again that we do not rule out unobfuscatability results.
In fact, we have shown certain scenarios in which obfuscation is not possible.
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On the other hand, our positive results (in particular the simplicity of our point
function obfuscation) leave hope that obfuscations in interesting cryptographic
scenarios are possible. We have given toy examples for the case of secret-key
encryption or message authentication.
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Abstract. We present the first positive obfuscation result for a tradi-
tional cryptographic functionality. This positive result stands in contrast
to well-known negative impossibility results [BGI+01] for general obfus-
cation and recent negative impossibility and improbability [GK05] results
for obfuscation of many cryptographic functionalities.

Whereas other positive obfuscation results in the standard model ap-
ply to very simple point functions, our obfuscation result applies to the
significantly more complicated and widely-used re-encryption functional-
ity. This functionality takes a ciphertext for message m encrypted under
Alice’s public key and transforms it into a ciphertext for the same mes-
sage m under Bob’s public key.

To overcome impossibility results and to make our results meaningful
for cryptographic functionalities, we use a new definition of obfuscation.
This new definition incorporates more security-aware provisions.

1 Introduction

A recent line of research in theoretical cryptography aims to understand whether
it is possible to obfuscate programs so that a program’s code becomes unintelligi-
ble while its functionality remains unchanged. A general method for obfuscating
programs would lead to the solution of many open problems in cryptography.

Unfortunately, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and
Yang [BGI+01] show that for many notions of obfuscation, a general program
obfuscator does not exist—i.e., they exhibit a class of circuits which cannot
be obfuscated. A subsequent work of Goldwasser and Kalai [GK05] shows the
impossibility and improbability of obfuscating more natural functionalities.

In spite of these negative results for general-purpose obfuscation, there are a
few positive obfuscation results for simple functionalities such as point func-
tions. A point function Ix returns 1 on input x and 0 on all other inputs.
Canetti [Can97] shows that under a very strong Diffie-Hellman assumption point
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functions can be obfuscated. Further work of Canetti, Micciancio and Rein-
gold [CMR98], Wee [Wee05] and Dodis and Smith [DS05] relaxes the assumptions
required for obfuscation and considers other (related) functionalities. Despite
these positive results, obfuscators for traditional cryptographic functionalities
(such as those that deal with encryption) have remained elusive.

Our Results. In this work, we present the first obfuscator for a more traditional
cryptographic functionality. Namely, we show that:

Main Theorem 1 (Informal). Under reasonable bilinear complexity assump-
tions, there exists an efficient program obfuscator for a family of circuits imple-
menting re-encryption.

A re-encryption program for Alice and Bob takes a ciphertext for a message m
encrypted under Alice’s public key, and transforms it into a ciphertext for the
same message m under Bob’s public key. Re-encryption programs have many
practical applications such as the iTunes DRM system (albeit, with symmet-
ric keys [Smi05]), secure distributed file servers [AFGH06] and secure email
forwarding.

The straightforward method to implement re-encryption is to write a program
P which decrypts the input ciphertext using Alice’s secret key and then encrypts
the resulting message with Bob’s public key. When P is run by Alice, this is a
good solution.

In the practical applications noted above, however, the re-encryption pro-
gram is executed by a third-party. When this is the case, the straightforward
implementation has serious security problems since P ’s code may reveal Alice’s
secret key to the third party. A better solution is to design an obfuscator for the
re-encryption program P . That is, we would like that:

A third party who has a re-encryption program learns no more from the re-
encryption program than it does from interaction with a black-box oracle that
provides the same functionality.

As we discuss later in §1.2, several re-encryption schemes have been proposed
before [BS97, BBS98, DI03, AFGH06], but none of these prior works satisfy
the strong obfuscation requirement informally stated above. Our main technical
contribution is the construction of a novel re-encryption scheme which meets
this strong notion while remaining surprisingly practical. As a side note, in
our construction, ciphertexts that are re-encrypted from Alice to Bob cannot
be further re-encrypted from Bob to Carol. This may be a limitation in some
scenarios, but it is nonetheless sufficient for the important practical applications
noted above.

Our main conceptual contribution is a definition of obfuscation that both
sidesteps impossibility results by considering randomized functionalities and is
more meaningful for cryptographic applications than previous definitions of ob-
fuscation. Let us briefly explain.
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1.1 Notion of Secure Obfuscation

The work of [BGI+01] views an obfuscator as a compiler which takes a program
(i.e., boolean circuit) P and turns it into an equivalent program that satisfies the
predicate black-box property: any predicate that is computable from the obfus-
cated program should also be computable from black-box access to the program
(see Definition 1).

Secure Obfuscation. Unfortunately, the predicate definition [BGI+01] and sub-
sequent work does not provide a meaningful security guarantee when the ob-
fuscated program is used as part of a larger cryptographic system. Intuitively,
while the predicate black-box property gives a quantifiable guarantee that some
information (namely, predicates) about the program is hidden by the obfuscated
circuit, other “non-black-box information” may still leak. Moreover, this leaked
information might compromise the security of a cryptographic scheme which
uses the obfuscated circuit. For instance, it is completely possible that an obfus-
cated program for “delegating signatures” both meets the predicate black-box
definition and is unforgeable under black-box access to a signature oracle, yet
allows an adversary who has the obfuscated program code to forge a signature!

Since many potential applications of obfuscation use obfuscated circuits in
larger cryptographic schemes, the definition of obfuscation should guarantee that
the security of cryptographic schemes is preserved in the following sense.

If a cryptographic scheme is “secure” when the adversary is given black-
box access to a program, then it remains “secure” when the adversary is
given the obfuscated program.

The most important feature of our new definition of obfuscation is that it pre-
serves security in the above sense, and thus we refer to it as secure obfuscation.
Informally, our definition requires that if there exists a non black-box adversary
with access to an obfuscated program who can break the security of a crypto-
graphic scheme, then there exists a black-box simulator which breaks the scheme
with similar probability using only black-box access to the program. Thus, if
the scheme is secure against black-box adversaries, then it is also secure against
adversaries with access to obfuscated programs. The definition we give in this
work gives the above guarantee for any cryptographic scheme with a distinguish-
able attack property; any scheme where a distinguisher with public information
and black-box access to the obfuscated functionality can distinguish whether
or not an attacker has broken the scheme. Semantically secure encryption and
re-encryption are examples of such schemes.

This new definition of obfuscation can play an important role in the design of
cryptographic schemes that use obfuscation. With secure obfuscation, the design
of such schemes proceeds in two stages:

1. Specify the functionality of a program (or program family), and prove secu-
rity of the cryptographic scheme against an adversary given black-box access
to the program.

2. Construct a secure obfuscator for the program (or program family).
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The combination of these two steps guarantees security of the scheme against an
adversary that has full access to the obfuscated program. Indeed, for our scheme,
we show step (1) in Theorem 3 and step (2) in Theorem 4.

Average-Case Obfuscation. Our new definition only requires obfuscation for a
random circuit in a family of circuits (as in [Can97, CMR98, Had00, DS05,
GK05]). This relaxed requirement remains meaningful for the many crypto-
graphic applications of obfuscation in which the circuit to be obfuscated is chosen
at random. Normally the random choice of a circuit corresponds to the random
selection of cryptographic keys. We call the new definition of security average-
case secure obfuscation. Combining more security-aware provisions (i.e. giving a
distinguisher oracle access to the functionality) with this average-case relaxation
was originally suggested by Pass [Pas06].

Obfuscating Probabilistic Circuits. It is not hard to see that deterministic func-
tionalities that are not learnable cannot be obfuscated under our definition
(see §2.2). In fact, security-preserving definitions considered in previous works
([BGI+01, Wee05]) are only achievable for learnable deterministic functions. An
important conceptual contribution of our definition and of this work is showing
that these impossibility results disappear when considering obfuscation of prob-
abilistic circuits. Furthermore, obfuscation of probabilistic circuits is important
because most interesting cryptographic functionalities are probabilistic.

Other work on Obfuscation. Recently, Ostrovsky and Skeith [OS05] consider a
different notion of public-key obfuscation focused on keyword search. A public-
key obfuscator does not maintain the functionality of a program, but rather
ensures that the outputs of a public-key obfuscated program are encryptions of
the original program’s outputs. Adida and Wikström [AW05] use a variation
of this definition for public mixing. Both of these works differ from our notion
of obfuscation in that our notion preserves functionality and explicitly considers
black-box versus non-black-box access to a program.

1.2 The Obfuscated Re-encryption Scheme

Comparison with Prior Work. Mambo and Okamoto [MO97] noted the pop-
ularity of re-encryption programs in practical applications and suggested effi-
ciency improvements over the decrypt-and-encrypt approach. Blaze, Bleumer,
and Strauss introduced the notion of proxy re-encryption [BS97, BBS98] in
which the re-encryption program is executed by a third-party proxy. In their
security notion, the proxy cannot read the messages of either Alice or Bob. The
Blaze et al. construction is bidirectional (i.e., a program to translate ciphertexts
from Alice to Bob can also be used to translate from Bob to Alice) and can
be repeatedly applied (i.e., a ciphertext can be re-encrypted from Alice to Bob
to Carol, etc.). Ateniese, Fu, Green, and Hohenberger [AFGH06] presented a
semantic-security style definition for proxy re-encryption and designed the first
unidirectional scheme, although their scheme can only be applied once. Ateniese
et al. also built a secure distributed storage system using their algorithms.
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While these prior works are secure under specialized definitions, they cannot
be considered as obfuscations for re-encryption since they leak subtle non-black-
box information. On the other hand, the re-encryption definitions of Ateniese et
al. [AFGH06] provide some security guarantee with respect to dependent aux-
iliary inputs, which we will not consider in this work. For example, they show
that even when Alice has the re-encryption program from Alice to Bob, Bob’s
semantic security still holds. (Although our definition does not require this, the
scheme we present here satisfies this property.)

Overview of the Construction. We now provide intuition behind our construction
of an obfuscator for re-encryption (see §4 for the full construction). In a series of
attempts, we develop a cryptosystem and an obfuscated re-encryption program
which translates ciphertexts under pk1 to ciphertexts under pk2. Our starting
point is a suitable public key cryptosystem.

Recall the semantically-secure encryption scheme due to Boneh, Boyen, and
Shacham [BBS04] as instantiated in a group G of order q equipped with a bilinear
map. The keys in this scheme are generated by selecting a random h

r← G

and a, b
r← Zq, and setting sk = (a, b, h) and pk = (ha, hb, h). To encrypt a

message m ∈ G, select two random values r, s
r← Zq and output the ciphertext

C = [har, hbs, hr+s · m]. To decrypt a ciphertext C = [W, X, Y ], compute the
plaintext Y/(W 1/a · X1/b). Let pk1 = (ga1 , gb1 , g) and pk2 = (ha2 , hb2 , h) be two
public keys for this cryptosystem.

The basic (naive) re-encryption program from pk1 to pk2 contains (sk1, pk2).
The program simply decrypts the input using sk1 and encrypts the resulting
message with pk2. Clearly this program exposes both sk1 and the underlying
plaintext to any third-party executing the re-encryption program.

As a first attempt to obfuscate the basic program, consider the re-encryption
program that contains Z1 = a2/a1 and Z2 = b2/b1 and re-encrypts the ciphertext
[W, X, Y ] by computing [WZ1 , XZ2 , Y ] for pk2. (On a different cryptosystem, a
similar approach was suggested by Blaze et al. [BBS98].) Unfortunately, this
re-encryption program leaks non-black-box information (i.e., does not satisfy
the virtual black-box property in Def. 2). For example, the program containing
(Z1, Z2) which translates ciphertexts from Alice to Bob can be transformed into
a new program containing (Z−1

1 , Z−1
2 ) which translates ciphertexts from Bob to

Alice—a feat which black-box access does not allow.
As a second attempt, consider the re-encryption program containing Z1 =

ha2/a1 and Z2 = hb2/b1 . Alice, with sk1 = (a1, b1, g), can compute this program
given Bob’s public key pk2 = (ha2 , hb2 , h). (On a different cryptosystem, a sim-
ilar approach was suggested by Ateniese et al. [AFGH06].) The re-encryption
program works as follows: on input a ciphertext [W, X, Y ] = [ga1r, gb1s, gr+s ·m]
under pk1, output the ciphertext [e(W, Z1), e(X, Z2), e(Y, h)] = [E, F, G] un-
der pk2. To decrypt [E, F, G], the holder of sk2 would first compute Q =
G/(E1/a2 · F 1/b2) and then find and output the message mi in the message
space M such that e(mi, h) = Q. Of course, to ensure efficient decryption, this
limits the size of the message space M to be a polynomial. Notice the encryp-
tion scheme now support two “forms” of ciphertexts—an original form and a
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re-encrypted one, each containing elements from different groups. As a result, a
re-encrypted ciphertext cannot be further re-encrypted. The question, though,
is whether or not such a program is any closer to being an obfuscation.

To be a secure obfuscation according to our Def. 2, the output of an ad-
versary who is given the obfuscated program must be indistinguishable—even
to a distinguisher with oracle access to the re-encryption program—from the
output of a simulator given only black-box access to the program. Unfortu-
nately, in the second attempt, knowledge of the public keys pk1 = (ga1 , gb1 , g)
and pk2 = (ha2 , hb2 , h) easily allows a distinguisher to test whether a program
containing (Z1, Z2) is a valid re-encryption program for these keys by checking
that e(ga1 , Z1) = e(g, ha2) and e(gb1 , Z2) = e(g, hb2). We do not know how to
construct a simulator that can output a program which also passes this test.

To bypass this problem, we design our re-encryption program to be a proba-
bilistic function of the keys. More specifically, consider the program containing
(ya2/a1 , yb2/b1 , y) = (Z1, Z2, Z3) for a randomly selected y ∈ G. (In the context
of point functions, a similar approach was suggested by Canetti [Can97].) Alice
can still generate this re-encryption program using only Bob’s public key. The
re-encryption program becomes: on input [W, X, Y ] = [ga1r, gb1s, gr+s · m] un-
der pk1, output the ciphertext under pk2 as [e(W, Z1), e(X, Z2), e(Y, Z3), Z3] =
[E, F, G, H ]. Decryption works as follows: first compute Q = G/(E1/a2 · F 1/b2)
and then output message mi in the message space M such that e(mi, H) = Q.

This solution has one subtle problem because all ciphertexts produced by
the obfuscated re-encryption program include H = y as the fourth component,
whereas ciphertexts produced by the decrypt-and-encrypt approach contain a
fresh random value in that position. Thus, the obfuscated program does not
“preserve the functionality” of the original one. This is easily fixed by having the
obfuscated program re-randomize its output by choosing z

r← Zq and outputting
[Ez, F z, Gz , Hz]. (Note, it is not sufficient that we choose y randomly, since this
choice is only made once for all re-encrypted ciphertexts, whereas z is chosen
freshly for each re-encryption.)

Even this, however, falls short, because we do not know how to prove this
construction is secure. In particular, since the distinguisher has access to a re-
encryption oracle, it can query the oracle on the values contained in the obfus-
cated program! Indeed, in the above scheme, there is a specific (complicated)
property of valid obfuscated programs that a distinguisher can test for, and we
do not know how to construct a simulator that also passes this test.

In order to overcome this final hurdle, our program re-randomizes the input ci-
phertext before applying the transformation above. If the public key is (ga, gb, g),
and the input ciphertext is C = [W, X, Y ], our program re-randomizes C by sam-
pling r′, s′ and computing the ciphertext [W ·(ga)r′

, X ·(gb)s′
, Y ·gr′+s′

]. Finally,
we are able to show this construction meets our obfuscation definition under two
reasonable complexity assumptions.

As a final point about our complexity assumptions, because our obfuscation
definition only requires average-case obfuscation, we do not have to make the
strong complexity assumptions necessary in the constructions of Canetti [Can97]
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and Wee [Wee05]. Thus, our scheme simultaneously meets a strong theoretical
definition while retaining the sensibility associated with standard assumptions
and efficient algorithms.

2 Definitions

Barak et al. [BGI+01] required that an obfuscator strip programs of non-black-
box information. They formalized this by requiring that any predicate com-
putable from the obfuscated program is also computable from black-box access
to it. Goldwasser and Kalai [GK05] gave a stronger definition, guaranteeing
security in the presence of (dependent) auxiliary input. A formal definition,
which we call predicate black-box obfuscation (or predicate obfuscation, for short),
follows.

For a family C of polynomial-size circuits, for a length parameter n let Cn be
the circuits in C with input length n (i.e. C = {Cn}).

Definition 1 (Predicate Obfuscation [BGI+01, GK05]). An efficient al-
gorithm Obf is a predicate obfuscator for the family C = {Cn}, if it has the
following properties:

– Preserving Functionality: There exists a negligible function neg(n), s.t. for
all input lengths n, for any C ∈ Cn:

Pr[∃x ∈ {0, 1}n : (Obf(C))(x) �= C(x)] ≤ neg(n)

The probability is taken over Obf’s random coins.
– Polynomial Slowdown: There exists a polynomial p(n) such that for suffi-

ciently large input lengths n, for any C ∈ Cn, the obfuscator Obf only en-
larges C by a factor of p: |Obf(C)| ≤ p(|C|).

– Predicate Virtual Black-box: For every polynomial sized adversary circuit A,
there exists a polynomial size simulator circuit Sim and a negligible function
neg(n), such that for every input length n, for every C ∈ Cn, for every
predicate π, for every auxiliary input z ∈ {0, 1}q(n):

∣∣∣Pr[A(Obf(C), z) = π(C, z)] − Pr[SimC(1n, z) = π(C, z)]
∣∣∣ ≤ neg(n)

The probability is over the coins of the adversary, the simulator and the
obfuscator.

As discussed in §1, the predicate black-box definition does not guarantee security
when obfuscated circuits are used in cryptographic settings. To address this, we
introduce the new notion of average-case secure obfuscation:

Definition 2 (Average-Case Secure Obfuscation). An efficient algorithm
Obf that takes as input a (probabilistic) circuit and outputs a new (probabilistic)
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circuit, is an average-case secure obfuscator for the family C = {Cn}, if it
satisfies the following properties:

– Preserving Functionality: “With overwhelming probability Obf(C) behaves
almost identically to C on all inputs”. There exists a negligible function
neg(n), such that for any input length n, for any C ∈ Cn:

Pr
coins of Obf

[∃x ∈ {0, 1}n : Δ ((Obf(C))(x), C(x)) ≥ neg(n)] ≤ neg(n)

The distributions (Obf(C))(x) and C(x) are taken over Obf(C)’s and C’s
random coins respectively. Δ denotes statistical (L1) distance between dis-
tributions.

– Polynomial Slowdown: (identical to Definition 1)
– Average-Case Secure Virtual Black-Box: For any efficient adversary A, there

exists an efficient simulator Sim and a negligible function neg(n), such that
for every efficient distinguisher D, for every input length n and for every
polynomial-size auxiliary input z:

∣∣∣∣
Pr[C r← Cn : DC(A(Obf(C), z), z) = 1]
− Pr[C r← Cn : DC(SimC(1n, z), z) = 1]

∣∣∣∣ ≤ neg(n)

The probability is over the selection of a random circuit C from Cn, and the
coins of the distinguisher, the simulator, the oracle and the obfuscator. Note
that entities with black-box access to C cannot set C’s random tape.

Note that without loss of generality it is sufficient to require the existence
of a simulator for the “dummy” adversary that just outputs its input. This
would give an equivalent definition, but it loses some intuitive appeal.

Discussion. Intuitively, Definition 2 guarantees that any attack that a non-
black box adversary can mount using the obfuscated circuit, can also be mounted
by a black-box simulator with (oracle) access to the functionality. This new def-
inition differs from the predicate definition in several ways. It considers obfus-
cation of a random circuit from a family, and furthermore, the circuit families
considered can be probabilistic (this allows us to side-step impossibility results,
see §2.2). We also follow [GK05] in requiring that the obfuscation be secure in
the presence of (independent) auxiliary input, where the auxiliary input is se-
lected first, and then a random circuit is chosen from the family. Note that the
average-case secure virtual black-box requirement of our new definition is incom-
parable to the predicate black-box requirement of [BGI+01]; the latter is weaker
in that it only requires that the obfuscator hides predicates, but is stronger in
that it provides the predicate distinguisher with the actual program (whereas
our definition only gives our predicate distinguisher black-box access).

Finally, we emphasize that in this new definition there are two important
sources of randomness. The first source of randomness is in the circuits being
obfuscated, which are probabilistic. The second, more subtle, source of ran-
domness is in the selection of a random circuit C from the family Cn. The
average-case secure virtual black-box requirement guarantees security when a
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circuit is selected from the family by a specific distribution (i.e., the uniform
distribution—one should think of this as uniformly choosing random keys for a
cryptographic scheme). The predicate black-box definition, on the other hand,
guarantees security for every circuit in the family, or (equivalently) for every
distribution on circuits. Other work [CMR98, DS05] guarantees security for a
large class of distributions on circuits from a family, such as every distribution
with at least super-logarithmic min-entropy. Our notion of secure obfuscation
can be generalized to give security against more general classes of distributions.
For clarity, we choose to present the less general definition above.

2.1 Meaningfulness for Security

This section serves as an informal discussion of the security guarantee provided
by average-case secure obfuscation. As mentioned in §1, the definition of obfus-
cation should be security-preserving in the following sense: “If a cryptographic
scheme is secure when the adversary is given black-box access to a program, then
it remains secure when the adversary is given the obfuscated program.” We claim
that for a large class of applications (including re-encryption), average-case se-
cure obfuscation indeed gives this guarantee.

To see this, consider any cryptographic scheme, for which a distinguisher,
that has only public information (e.g. public keys) and black-box access to an
obfuscated program, can test whether a given adversary can break a scheme
(we call this the distinguishable attack property). Many standard cryptographic
schemes, such as semantically secure encryption and re-encryption, have this
property. For such schemes Definition 2 indeed guarantees that for every adver-
sary that mounts an attack using an obfuscated circuit, there exists a black-box
simulator that can mount an attack with a similar success probability. Thus, if
the scheme is secure against black-box adversaries, it is also secure against non
black-box adversaries that are given the obfuscated program.

To illustrate the meaningfulness of the notion of average-case secure obfusca-
tion, we propose to use the following informal argument as a methodology for
constructing secure cryptographic schemes:

If a cryptographic scheme has the following three properties:

1. The scheme is secure against black-box adversaries with oracle access to
functionality X selected randomly from a family F

2. A distinguisher D with oracle access to X can test whether an adversary A
can break the security guarantee of the scheme (we call this property the
distinguishable attack property)

3. There exists an average-case secure obfuscator for a family CF of circuits
implementing the functionalities in F ,

Then the cryptographic scheme is also secure against adversaries who are given
an obfuscation of a circuit selected at random from the family CF .

As a case study, consider semantically-secure re-encryption (see Def. 3). An
attacker is given two relevant public keys and black-box access to a re-encryption



242 S. Hohenberger et al.

oracle. The attacker is successful if it can distinguish the encryptions of two dif-
ferent messages (of its choice) under one of the public keys. As with many cryp-
tographic schemes, re-encryption schemes have Property (1). For Property (2),
a distinguisher who is given public keys and oracle access to the re-encryption
functionality can indeed test whether an adversary has a noticeable chance of
mounting a successful attack.1 Thus, for any re-encryption functionality, assum-
ing that Property (3) holds (i.e. there exists an average-case secure obfuscator
for some circuit family computing re-encryption), we conclude that the scheme is
also secure against adversaries who are given an obfuscated re-encryption circuit.
The predicate definition would not let us make such a conclusion.

2.2 Obfuscating Probabilistic Programs

In this section we discuss an impossibility result for average-case secure obfus-
cation of deterministic circuits, and explain how we side-step this impossibility
by considering probabilistic circuits. Wee [Wee05] observes that the only deter-
ministic circuits that can be obfuscated under strong security-preserving notions
of obfuscation are those that are learnable. This result also applies to obfuscat-
ing deterministic circuits under Definition 2. To see the intuition behind this
result, consider a circuit family C, the “empty” adversary who simply outputs
the obfuscated circuit Obf(C) it gets, and a distinguisher (with black-box access
to C) that outputs 1 only if whatever circuit it gets agrees with C for random
inputs.2 Because Obf preserves functionality, the above adversary that outputs
Obf(C) will get the distinguisher to accept with all but negligible probability. To
make the distinguisher accept with similar probability, the simulator must learn,
from black-box access, a circuit that is (at the very least) very close to C on
random inputs. Thus random circuits from C must be learnable from black-box
access. In particular, deterministic circuit families that are not learnable cannot
be obfuscated under Definition 2.

This impossibility disappears when we consider probabilistic circuit fami-
lies. This is because the (efficient) distinguisher with black-box access to a
probabilistic C and non black-box access to Obf(C) cannot necessarily distin-
guish whether the distributions that C and Obf(C) output on a particular in-
put are statistically close or far. This is similar to the case of encryption (see
Goldwasser and Micali [GM84]), where only randomness can prevent an ad-
versary from recognizing whether two ciphertexts are encryptions of the same
bit. Our obfuscation of re-encryption programs uses this observation. In fact,
our simulator outputs a “dummy circuit” that has little to do with the cir-
cuit being obfuscated, but is still indistinguishable from the true obfuscated
circuit.

1 To do this, the distinguisher simply runs the adversary with the public keys, answer-
ing the adversary’s re-encryption requests using the re-encryption oracle.

2 Wee considers different distinguishers that check different inputs.
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3 Algebraic Setting and Assumptions

Bilinear Groups. Let BMsetup be an algorithm that, on input the security param-
eter 1k, outputs the parameters for a bilinear map as (q, g, G, GT , e), where G, GT

are groups of prime order q ∈ Θ(2k). The efficient mapping e : G × G → GT

is both bilinear, i.e., for all g ∈ G and a, b ∈ Zq, e(ga, gb) = e(g, g)ab, and
non-degenerate, i.e., if g generates G, then e(g, g) �= 1.

For simplicity, we present our solution using bilinear maps of the form e :
G × G → GT . Our scheme can also be implemented in the more general setting
where e : G1 × G2 → GT and isomorphisms between G1 and G2 may not be
efficiently computable. Galbraith, Paterson, and Smart [GPS06] provide more
information on various implementation options.

Complexity Assumptions. In this paper, we make the following two complexity
assumptions in bilinear groups. When we say two distributions are computation-
ally indistinguishable, we mean with respect to a distinguisher with auxiliary
information (which is selected independently of the instance).

Assumption 1 (Strong Diffie Hellman Indistinguishability). Let G be a
group of order q where q is a k-bit prime, g

r← G and a, b, c, d
r← Zq. Then the

following two distributions are computationally indistinguishable:
{
g, ga, gb, gc, gabc

}
k

c≈
{
g, ga, gb, gc, gd

}
k

This assumption has not been proposed before, but it is implied by the Decision
3-party Diffie-Hellman assumption proposed in [BSW06].

Assumption 2 (Decision Linear [BBS04]). Let G be a group of order q

where q is a k-bit prime, f, g, h
r← G and a, b, c

r← Zq. Then the following two
distributions are computationally indistinguishable:

{
f, g, h, fa, gb, ha+b

}
k

c≈
{
f, g, h, fa, gb, hc

}
k

4 A Special Encryption Scheme and Re-encryption
Functionality

In this section, we describe a special encryption scheme and a re-encryption
functionality for which we later present a secure obfuscation scheme.

4.1 A Special Encryption Scheme Π

Our special encryption scheme Π is described in Fig.1. The encryption algorithm
supports two forms of ciphertexts and takes an additional input β ∈ {0, 1} to
choose between them. For the first form, encryption and decryption work as
per the Boneh et al. [BBS04] construction. For the second form, the encryption
and decryption are novel and relevant for re-encryption. Note that this encryp-
tion system also requires the message space M to be a subset of G which is
of size polynomial in k. The semantic security of this scheme will be proven in
Thm. 3.
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Common: For a security parameter 1k, let (q, g,G, GT , e) ← BMsetup(1k) be a
common parameter and let M ⊂ G where |M | = O(poly(k)) be the message
space.

KeyGen(1k, (q, g, G, GT , e)) :
1. Randomly select a new generator h

r← G and random a, b
r← Zq.

2. Output pk = (ha, hb, h) and sk = (a, b, h).
Enc(pk , β, m) :

1. Parse pk = (ha, hb, h).
2. Choose random r, s

r← Zq.
3. If β = 0, output the ciphertext

[
0, (ha)r, (hb)s, hr+s · m, 0

]
.

4. If β = 1, then choose a random t
r← G, and output the ciphertext

[1, e((ha)r, t), e((hb)s, t), e(hr+s · m, t), t].
Dec(sk , [s, W,X, Y,Z]) :

1. Parse sk = (a, b, h).
2. If s = 0, then output Y/(W 1/a · X1/b).
3. If s = 1, then

(a) Compute Q = Y/(W 1/a · X1/b).
(b) For each m ∈ M , test if e(m,Z) = Q. If so, output m and halt.

Fig. 1. Encryption Scheme Π

4.2 Re-encryption Functionality

Recall that obfuscation is with respect to a class of circuits. We now define a
special class of re-encryption circuits for the encryption scheme Π which can be
easily analyzed.

Let (pk1, sk1) and (pk2, sk2) be two keys pairs which were generated by run-
ning KeyGen on independent random tapes. When given an honestly-generated
ciphertext encrypted under pk1, a re-encryption circuit decrypts the ciphertext
and then re-encrypts the resulting message under a second public key pk2. For
technical reasons, we also require the circuit to produce the pairs of public keys
for which it transforms ciphertexts.

More formally, the re-encryption circuit Fsk1,pk2
, when run on input c1 =

Enc(pk1, 0, m) for any message m ∈ M , computes m ← Dec(sk1, c1), then com-
putes c2 ← Enc(pk2, 1, m), and finally outputs c2. When Fsk1,pk2

is run on input
the special symbol keys, it outputs the ordered pair of public keys (pk1, pk2).
For ciphertexts corresponding to messages in not in M , the circuit returns a ran-
domized ciphertext of the second form for the same message. For other ill-formed
inputs, it returns ⊥.

Furthermore, let Csk1,pk2
be the same as Fsk1,pk2

with the exception that the
values sk1 and pk2 can be read from the circuit description. This property is easy
to achieve by adding a “message” section to the circuit which does not affect the
circuit’s output, but encodes a message, with say, and gates encoding a 1 and
or gates encoding a 0. We now define the family of circuits:

Ck =
{
Csk1,pk2

| (pk1, sk1) ← KeyGen(1k), (pk2, sk2) ← KeyGen(1k)
}
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4.3 Security for Re-encryption

We generalize the standard notion of indistinguishability [GM84] for encryption
schemes by allowing the adversary to have access to a re-encryption oracle. In
particular, the following definition captures the notion that “given a ciphertext
y and black-box access to a re-encryption circuit, an adversary does not learn
any information about the plaintext corresponding to y.”

Definition 3 (IND-security with Oracle Csk1,pk2
). Let Π be an encryp-

tion scheme and let the random variable INDb(Π, A, k) where b ∈ {0, 1}, A =
(A1, A2) and k ∈ N denote the result of the following probabilistic experiment:

INDb(Π, A, k)
(pk1, sk1) ← KeyGen(1k), (pk2, sk2) ← KeyGen(1k)
(m0, m1, i, β, z) ← ACsk1,pk2

1 (1k)
y ← Enc(pk i, β, mb)
B ← ACsk1,pk2

2 (y, z)
Output B

Scheme Π is indistinguishable under a chosen-plaintext attack if ∀ p.p.t. algo-
rithms A the following two ensembles are computationally indistinguishable:

{
IND0(Π, A, k)

}

k

c≈
{
IND1(Π, A, k)

}

k

Remark 1. For simplicity, we allow the adversary to pick the key pk i under
which the challenge is encrypted and the form β of the encryption. By a standard
hybrid argument, the above definition is equivalent to one in which the adversary
is given four encryptions of the challenge message—one per key and per form.

Theorem 3. The encryption scheme Π (in Fig. 1) is an indistinguishable-
secure encryption scheme with respect to oracle Csk1,pk2

under the Decision Lin-
ear assumption in G.

The proof sketch is given in Appendix A.

5 The Obfuscator for Re-encryption

In Fig. 2, we describe an obfuscator Obf for the class of re-encryption circuits
Ck relative to the encryption scheme Π defined in the previous section.

5.1 Main Result

Theorem 4. The obfuscator in Fig. 2 is a secure obfuscator for family Ck.

Proof sketch. Let pk1 = (ga1 , gb1 , g) and pk2 = (ha2 , hb2 , h) with appropriately
defined secret keys. Let C denote the re-encryption circuit Csk1,pk2

, and let
R ← Obf(C) be an obfuscated version of C.
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Algorithm Obf, on input a circuit Csk1,pk2 ∈ Ck,
1. Reads sk1 = (a1, b1, g) and pk2 = (ha2 , hb2 , h) from the description of

Csk1,pk2 .
2. Selects a random integer z

r← Z
∗
q and compute the re-encryption tuple

(Z1, Z2, Z3) = ((ha2)z/a1 , (hb2)z/b1 , hz).
3. Constructs and outputs an obfuscated circuit Rsk1,pk2 that contains the

values pk1, pk2, Z1, Z2, Z3 and does the following:
- On input keys, output pk1 = (ga1 , gb1 , g) and pk2 = (ha2 , hb2 , h).
- On input a 5-tuple [0, W, X, Y, 0] where W, X, Y ∈ G, then:

(a) Select input re-randomization values r, s
r← Z

∗
q .

(b) Re-randomize the input as W ′ ← W · (ga1)r, X ′ ← X · (gb1)s,
and Y ′ ← Y · gr+s.

(c) Compute E ← e(W ′, Z1).
(d) Compute F ← e(X ′, Z2).
(e) Compute G ← e(Y ′, Z3).
(f) Select an output re-randomization value y

r← Z
∗
q .

(g) Output the ciphertext [1, Ey , F y, Gy , Zy
3 ].

- Otherwise return ⊥.

Fig. 2. Obfuscator Obf for Re-encryption circuits for Π

Preserving Functionality. Consider any C ∈ Ck and let circuit R ← Obf(C). We
claim that the output distributions of C and R are statistically close (in fact,
identical). To see this, we must consider three classes of inputs. First, for any
message m ∈ M , observe that

Enc(pk1, 0, m) = [0, ga1r, gb1s, gr+s · m, 0]

for a randomly chosen r, s
r← Z

∗
q . When such a ciphertext is fed as input to R,

the circuit outputs

[1, e(ga1(r+r′), ha2z/a1)y, e(gb1(s+s′), hb2z/b1)y , e(gr+s+r′+s′ · m, hz)y, hzy]

for randomly chosen r′, s′, y
r← Z

∗
q . Substituting r = r+r′

� , s = s+s′

� , t = hyz, and
� is such that3 g� = h, this 5-tuple can be re-written as

[1, e(ha2r, t), e(hb2r, t), e(hr+s · m, t), t]

which is identically distributed to the output of Enc(pk2, 1, m). Second, the same
holds for all m ∈ G\M . Lastly, for keys and junk input, the outputs are identical.

Polynomial slowdown. This property follows by inspection because the obfus-
cated circuit computes a few bilinear maps and exponentiations.

3 We do not need to compute � explicitly.
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Virtual Blackbox. In order to satisfy the virtual black-box property, it suffices
to only consider the “dummy” adversary. Thus, we must construct a simulator
SimC(1k, z) such that for all distinguishers DC which take as input an obfuscated
circuit R and auxiliary input z,

∣∣Pr[DC(Obf(C), z) = 1] − Pr[DC(SimC(1k, z), z) = 1]
∣∣ < neg(k).

Let us define the simulator SimC(1k, z) as follows:

1. Query the oracle C on keys to get pk1, pk2.
2. Sample Z ′1, Z

′
2, Z

′
3

r← G.
3. As in Step (3) of the Obf algorithm, create and output a circuit R′ using the

values (pk1, pk2, Z
′
1, Z

′
2, Z

′
3).

Notice that SimC produces a circuit which does not correctly compute the re-
encryption function. However, we now show that under appropriate complexity
assumptions, no p.p.t. distinguisher DC will notice.

Towards this goal, notice that the output of DC(Obf(C), z) is distributed
identically to Nice(DC , k, z) and the output of DC(SimC(1k, z)) is distributed
identically to Junk(DC , k, z) where

Nice(DC , k, z) Junk(DC , k, z)
q, G ← BMsetup(1k) q, G ← BMsetup(1k)
g, h, r

r← G g, h, r
r← G

a1, a2, b1, b2
r← Zq a1, a2, b1, b2

r← Zq

pk1 ← (ga1 , gb1 , g) pk1 ← (ga1 , gb1 , g)
pk2 ← (ha2 , hb2 , h) pk2 ← (ha2 , hb2 , h)
Z1 ← ra2/a1 ; Z2 ← rb2/b1 Z ′1, Z

′
2

r← G

b ← DC(pk1, pk2, Z1, Z2, r, z) b ← DC(pk1, pk2, Z
′
1, Z

′
2, r, z)

Output b Output b

In the above experiments, the oracle C represents the re-encryption oracle for the
public keys pk1 to pk2 which are chosen in the experiment. There is a slight abuse
of notation here; when we write expt(DC , k, z) we mean that the distinguisher
D has oracle access to Csk1,pk2

for the keys sk1, pk2 chosen in the experiment.
The virtual blackbox property follows immediately from the following lemma. �
Lemma 1. Under the SDHI and Decision Linear assumptions, for all p.p.t.
distinguishers D and auxiliary information z, the following two distributions are
statistically close.

{
Nice(DC , k, z)

}

k

and
{

Junk(DC , k, z)
}

k

Proof Outline. We prove this lemma in a series of incremental steps. We begin
with a simple indistinguishability problem and incrementally add elements and
provide access to various oracles until the experiments are equivalent to their final
form in Lemma 1. Let us now start with a claim which relates the SDHI problem
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to a simple indistinguishability problem: (In all of the following experiments, we
implicitly generate q, G ← BMsetup(1k) and each experiment is indexed by k
and z although we omit this extra notation when the context is clear.)

Proposition 1. Under the SDHI assumption, Nice(1)
k,z

c≈ Junk(1)
k,z where

Nice(1): Proceeds as Nice except that the output is (ga1 , g, ha2 , h, Z1, r, z).
Junk(1): Proceeds as Junk except that the output is (ga1 , g, ha2 , h, Z ′1, r, z).

If there exists a distinguisher D which distinguishes Nice(1) from Junk(1) with
advantage ε, then there exists an distinguisher D′ which solves the SDHI problem
with the same advantage (in roughly the same time).

Proof sketch. The algorithm D′(g, ga, gb, gc, Q, z) works as follows:

1. D′ chooses a random w
r← Zq.

2. D′ runs D(gw, (gb)w, ga, g, Q, gc, z) and echoes the response.

Consider a1 = 1/b, a2 = a and r = gc. Thus, if Q = gabc, then we have
Q = rab = ra2/a1 in which case the input to D is identically distributed to
Nice(1). Otherwise, Q is equal to rt for some random t and the input to D is
identically distributed to Junk(1). �
We now extend Proposition 1 to include more input values.

Proposition 2. Under the SDHI assumption, Nice(2)
k,z

c≈ Junk(2)
k,z where

Nice(2): Same as Nice except that the output is (pk1, pk2, Z1, Z2, r, z).
Junk(2): Same as Junk except that the output is (pk1, pk2, Z

′
1, Z

′
2, r, z).

Proof sketch. Consider the hybrid distribution T (2) which is the same as Nice(2)

except that Z ′2
r← G and the output is (pk1, pk2, Z1, Z

′
2, r, z). If Nice(2) and

Junk(2) are distinguishable with advantage ε, then either Nice(2) and T (2) or T (2)

and Junk(2) are distinguishable by algorithm D with advantage ε/2. Either case
implies a distinguisher for Nice(1) from Junk(1). In the later case, this involves
picking b1, b2 ∈ Zq to form public keys, picking Z ′2 randomly, and using the input
instance from Nice(1) (or Junk(1)) to simulate the input distribution for D. The
former case does the same, but swaps the role of ai and bi. �
Towards the proof of our main theorem, we now extend Prop. 2 by providing
the distinguisher with an oracle which returns a five-tuple of random values
which works as follows. On input [0, W, X, Y, 0], where W, X, Y ∈ G, R selects
three random values E, F, G

r← GT and a random value H
r← G and returns

[1, E, F, G, H ]. Otherwise, R returns ⊥. Intuitively, oracle R outputs only ran-
dom values and thus should not help any distinguisher.

Proposition 3. Under the SDHI assumption, Nice(3)
k,z

s≈ Junk(3)
k,z where

Nice(3): Same as Nice(DR, k, z).
Junk(3): Same as Junk(DR, k, z).
(That is, the distinguishers have oracle access to R instead of C and unlike
the (2)-experiments which output a tuple, these experiments output a bit.)
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Proof sketch. The oracle R can be perfectly simulated without any auxiliary
information. Thus, for any DR, there exists another non-oracle distinguisher
D′ (which internally runs D while perfectly simulating R to D) whose output
distribution is identical to D. Proposition 2 therefore implies that for all distin-
guishers DR, Nice(2) c≈ Junk(2) which implies Nice(3) s≈ Junk(3) (since the later
experiment outputs a bit) �

We now return to the first experiments in which the distinguisher has oracle
access to the re-encryption circuit C.

Proposition 4. For any p.p.t. distinguisher D, let

α(k, z) = Adv
(
Nice(DC , k, z), Junk(DC , k, z)

)

β(k, z) = Adv
(
Nice(DR, k, z), Junk(DR, k, z)

)

be the advantage4 that D has in distinguishing Nice from Junk given either a
re-encrypting oracle C or a random oracle R respectively. There exists a p.p.t.
algorithm A which decides the Decision Linear problem with probability at least
1
2 + 1

4 (α(k, z) − β(k, z)).

Proof. Without loss of generality, assume that α > β. (If not, then we flip the
way A guesses in its final step.) The algorithm A takes as input, a Decision
Linear instance Γ = (h1, h2, h, hx

1 , hy
2, Q) and auxiliary information z, and:

1. A samples a challenge bit c
r← {0, 1} to pick whether to run Nice or Junk.

2. A samples integers a, b, u
r← Zq and group elements g, Z ′1, Z

′
2, Z

′
3

r← G.
3. A sets pk1 = (ga, gb, g) and pk2 = (h1, h2, h) and computes a valid re-

encryption tuple (Z1, Z2, Z3) by Z1 ← h
u/a
1 , Z2 ← h

u/b
2 , and Z3 ← hu.

4. If c = 1, then A runs DO(pk1, pk2, Z1, Z2, Z3, z) where O is defined below.
If c = 0, then A runs DO(pk1, pk2, Z

′
1, Z

′
2, Z

′
3, z).

When D queries the oracle O on input [0, W, X, Y, 0], A responds as follows:
(a) Sample input re-randomization values r, s, t

r← Zq.
(b) Re-randomize the input as W ′ ← W ·gar, X ′ ← X ·gbs, and Y ′ ← Y ·gr+s.
(c) Compute E ← e(W ′, Z1) · e(g, htx

1 ).
(d) Compute F ← e(X ′, Z2) · e(g, hty

2 ).
(e) Compute G ← e(Y ′, Z3) · e(g, Qt).
(f) Sample output re-randomization value �

r← Zq.
(g) Respond with the ciphertext [1, E�, F �, G�, Z�

3].

Whenever D queries its oracle on input keys, A responds with pk1 and pk2,
and on all other queries, A responds with ⊥.

5. Eventually D outputs c′ ∈ {0, 1}. If c = c′, A outputs 1 (i.e., it guesses that
Q = hx+y). Else if c �= c′, then A outputs 0 (i.e., it guesses that Q �= hx+y).

4 By advantage, we mean the following. Suppose D0, D1 are two probability distri-
butions. Then for any adversary A, the advantage in distinguishing D0 from D1 is
defined as: AdvA(D0, D1) = | Pr[x0

r← D0 : A(x0) = 1] − Pr[x1
r← D1 : A(x1) = 1]|.
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Note that A almost mimics the real obfuscated program. The difference is that
when computing (4c)-(4e), additional terms are multiplied in to the ciphertext.
When the Γ instance is a decision linear tuple, then these operations simply
contribute to additional re-randomization of the ciphertext (this does not change
the ciphertext distribution). However, if Γ is not a decision linear instance, then
these operations make E, F, G a random 3-tuple that is also independent of Z3.
This proof step is essential.

Claim: If Γ is a decision linear instance, then Pr[A(Γ ) = 1] = 1
2 + α(k, z)/2.

Proof of Claim: When Q = hx+y, then A perfectly simulates NiceC or JunkC

towards the algorithm D. The key point is to recognize that (h1, h2, h) can be
interpreted as a randomly generated public key since h1, h2 can be rewritten
as h1 = he1 and h2 = he2 for some (unknown) e1, e2. Since the re-encryption
tuple Z1, Z2, Z3 is also a valid re-encryption tuple for pk1 → pk2, the input
parameters to D in step 4 are identically distributed to the inputs to D in ei-
ther experiment Nice or Junk. Moreover, the response to an oracle query on
keys is also identically distributed. All that remains is to show that the re-
sponses A provides to oracle queries on [0, W, X, Y, 0] are also identically dis-
tributed. This last point follows by inspection because Q = hx+y and Z1, Z2, Z3
are a valid re-encryption tuple. A simple probability analysis completes
the result:

Pr[A(Γ ) = 1|Γ ∈ DL] =
1
2

(
Pr[Nice(DC) = 1] + Pr[Junk(DC) = 0]

)

=
1
2

(
Pr[Nice(DC) = 1] + 1 − Pr[Junk(DC) = 1]

)

=
1
2

+
Adv(Nice(DC), Junk(DC))

2

=
1
2

+
α

2

Claim: If Γ is not a decision linear instance, then Pr[A(Γ ) = 1] = 1
2 +β(k, z)/2.

Proof of Claim: This proof is almost identical to the previous one. The only
difference is we must show that responses to the oracle queries return four
randomly selected group elements. Let us denote by ω, χ, γ, v the values such
that W = gω, X = gχ, Y = gγ and Q = hv, and by e1, e2 the values such
that h1 = he1 and h2 = he2 . Observe that the elements returned by the
oracle are

E = [e(W · gar, h
u/a
1 ) · e(g, htx

1 )]� = e(g, h)�e1[ωu/a+tx]+rz�e1

F = [e(X · gbs, h
u/b
2 ) · e(g, hty

2 )]� = e(g, h)�e2[χu/b+ty]+sz�e2

G = [e(Y · gr+s, hu) · e(g, Qt)]� = e(g, h)�[(γ+r+s)u]+tv�

H = hu�

Since r, s, t, � are fresh independently selected values, then E, F, G, H will also
be independent on every invocation of the oracle.
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Proof of Lemma 1. By the decision linear assumption and Prop. 4, it follows
that |α(k, z) − β(k, z)| is negligible. By Prop. 3, β(k, z) must be a negligible
function, and therefore, so too must α(k, z). This establishes the lemma.
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A Proof of Security for Encryption Scheme

Proof sketch.[of Thm. 3] Let us first argue that Π is an encryption scheme, i.e.,
it is perfectly complete. When β = 0, this follows from the BBS scheme. For the
second form of ciphertexts, on input [1, E, F, G, H ], the decryption algorithm
first computes Q = G

E1/a2 ·F 1/b2
, which by inspection is equal to e(m, H). The

decryption algorithm loops over each (of the polynomially many) mi ∈ M and
tests whether e(mi, H) = Q and therefore eventually recovers m as required.

To argue that the scheme meets the security definition, suppose adversary
A = (A1, A2) and distinguisher D has advantage ε in distinguishing IND0(· · · )
from IND1(· · · ). Then, we construct an adversary A′ that decides the Decision
Linear problem with advantage ε/4 as follows. Let Γ = (h1, h2, h, hx

1 , hy
2 , Q) be

a DL instance; A′ works as follows:

1. Sample a, b, c
r← Zq.

2. Set pk1 = (h1, h2, h) and pk2 = (hac
1 , hbc

2 , hc).
3. Run AO1 (1k) to produce a tuple (m0, m1, i, β, z).

When A queries [s, W, X, Y, Z] to its oracle, respond as follows:
(a) Return ⊥ if s �= 0 or Z �= 0, or if W, X, Y �∈ G, etc.
(b) Sample r ∈ G and use the valid re-encryption program Z1 ← ra, Z2 ← rb

and Z3 ← r to compute a response.
4. Sample a bit t

r← {0, 1}.
5. Set y to be the ciphertext [0, hx

1 , hy
2 , Q·mt, 0] if i = 0 and [0, (hx

1)ac, (hy
2)

bc, Qc·
mt, 0] if i = 1. Furthermore, if β = 1, transform y into a second-form cipher-
text (this can be done with public information).

6. Run B ← AO2 (y, z)
7. Run t′ ← D(B) and output 1 if t′ = t (guess that Γ is a DLA instance) and

otherwise output 0.

We argue that when Γ is a DL instance, A′ perfectly simulates the experiment
INDt. When Γ is not an instance, then the encryption y is independent of the
message mt and so the probability that t′ = t is exactly 1/2. The proof of the
theorem follows by standard probability manipulation of these two facts. �

http://www.theregister.co.uk/2005/03/18/itunes_pymusique
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Abstract. Secret-sharing schemes are an important tool in cryptogra-
phy that is used in the construction of many secure protocols. However,
the shares’ size in the best known secret-sharing schemes realizing gen-
eral access structures is exponential in the number of parties in the access
structure, making them impractical. On the other hand, the best lower
bound known for sharing of an �-bit secret with respect to an access
structure with n parties is Ω(�n/ log n) (Csirmaz, EUROCRYPT 94).
No major progress on closing this gap has been obtained in the last
decade.

Faced by our lack of understanding of the share complexity of secret
sharing schemes, we investigate a weaker notion of privacy in secrets
sharing schemes where each unauthorized set can never rule out any se-
cret (rather than not learn any “probabilistic” information on the secret).
Such schemes were used previously to prove lower bounds on the shares’
size of perfect secret-sharing schemes. Our main results is somewhat sur-
prising upper-bounds on the shares’ size in weakly-private schemes.

– For every access structure, we construct a scheme for sharing an �-bit
secret with (�+ c)-bit shares, where c is a constant depending on the
access structure (alas, c can be exponential in n). Thus, our schemes
become more efficient as � – the secret size – grows. For example,
for the above mentioned access structure of Csirmaz, we construct a
scheme with shares’ size � + n log n.

– We construct efficient weakly-private schemes for threshold access
structures for sharing a one bit secret. Most impressively, for the 2-
out-of-n threshold access structure, we construct a scheme with 2-bit
shares (compared to Ω(log n) in any perfect secret sharing scheme).

1 Introduction

Secret-sharing schemes are a tool used in many cryptographic protocols. A secret-
sharing scheme involves a dealer who has a secret, a finite set of n participants,
and a collection A of subsets of the set of participants called the access structure.
A perfect secret-sharing scheme for A is a method by which the dealer distributes
shares to the parties such that: (1) any subset in A can reconstruct the secret
from its shares, and (2) any subset not in A can never reveal any partial infor-
mation on the secret (in the information theoretic sense). Secret-sharing schemes
were first introduced by Blakley [10] and Shamir [44] for the threshold case, that
� The work of the first author was done while on sabbatical at the University of

California, Davis, partially supported by the Packard Foundation. The second author
is partially supported by the NSF and the Packard Foundation.
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c© International Association for Cryptologic Research 2007



254 A. Beimel and M. Franklin

is, for the case where the subsets that can reconstruct the secret are all the
sets whose cardinality is at least a certain threshold. Secret-sharing schemes for
general access structures were introduced by Ito, Saito, and Nishizeki [28]. More
efficient schemes were presented in, e.g., [9,45,15,30,46,25]. Originally motivated
by the problem of secure information storage, secret-sharing schemes have found
numerous other applications in cryptography and distributed computing, e.g.,
Byzantine agreement [42], secure multiparty computations [8,18,19], threshold
cryptography [23], access control [40], and attribute based encryption [26].

A major problem with secret-sharing schemes is that the shares’ size in the
best known secret-sharing schemes realizing general access structures is exponen-
tial in the number of parties in the access structure (e.g., in the schemes based on
monotone span programs [30] presented in 1993). Thus, the known constructions
for general access structures are impractical. This is true even for explicit access
structures (e.g., access structures whose characteristic function can be computed
by a small uniform circuit). On the other hand, the best known lower bounds
on the shares’ size for sharing a secret with respect to an access structure (e.g.,
in [31,9,17,12,24,20,21,11,41]) are far from the above upper bounds. The best
lower bound was proved by Csirmaz [20] in 1994, proving that, for every n, there
is an access structure with n parties such that sharing an �-bit secrets requires
shares of length Ω(�n/ logn). The question if there exist more efficient schemes,
or if there exists an access structure that does not have (space) efficient schemes
remains open. The following widely believed conjecture was made by the first
author in 1996 [3]:

Conjecture 1. There exists an ε > 0 such that for every positive integer n there
is an access structure with n parties, for which every secret sharing scheme
distributes shares of length exponential in the number of parties n, that is, 2εn.

Proving (or disproving) this conjecture is one of the most important open ques-
tions concerning secret sharing. No major progress on proving or disproving this
conjecture has been obtained in the last decade.

Faced by our lack of understanding of the share complexity of secret sharing
schemes, we investigate a weaker notion of privacy of secrets sharing schemes
where each unauthorized set can never rule out any secret (rather than not learn
any “probabilistic” information on the secret). Our belief is that studying these
schemes will shed light on perfect secret-sharing schemes and the techniques
needed to prove lower bounds and upper bounds for them. Our main results is
somewhat surprising upper-bounds on the shares’ size in weakly-private secret-
sharing schemes.

Weakly-private scheme were studied implicitly and explicitly in previous pa-
pers. They were first studied in [16], where it is proved that ideal weakly-private
secret-sharing schemes are perfect (a scheme is ideal if the domain of shares of
each party is the same as the domain of shares). Thus, relaxing the privacy re-
quirement does not help for ideal schemes. The relation between perfect secret
sharing and weakly-private secret sharing was further discussed in [29]. Lower
bounds for secret-sharing schemes were proved in [35] using combinatorial ar-
guments; their results actually apply to weakly-private schemes. In particular,
they show that the size of the share of each (non-redundant) party in a weakly-
private scheme is at least the size of the secret (such result was proved for perfect
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schemes in [31]). Weakly-private secret-sharing schemes were used in [43,7] to
prove lower bounds on the shares’ size of perfect secret-sharing schemes of a
certain (matroidial) access structure.

Our main motivation studying weakly-private secret-sharing schemes is to un-
derstand what makes them hard (if they are hard). The strongest lower bounds
for secret-sharing schemes [17,12,24,20,21] consider the shares as random vari-
ables and use entropy arguments to prove the lower bounds. In particular, the
proofs rely on the perfectness (or near perfectness) of the schemes. We raise
the question if this requirement is essential for proving lower bounds for secret-
sharing schemes. This can help in understanding what techniques can be used
to prove such lower bounds. While more direct combinatorial methods used to
prove lower bounds for weakly-private secret-sharing schemes (e.g., in [43,35,7])
are more intuitive, they might not be strong enough to prove super-polynomial
lower-bounds.

To understand this question, let us consider two additional cryptographic
protocols. Blundo et al. [13] proved a lower bound on the size of the shares in
perfectly private key distribution schemes using entropy arguments. Beimel and
Chor [5] showed that the same lower bound holds even for weakly-private key
distribution schemes. A similar phenomenon is true for 2-party secure computa-
tion in the honest-but-curious model. Kushilevitz [36] characterizes the functions
that can be computed privately in this model; in particular, a function can be
computed in the honest-but-curious 2-party model with weak privacy if and only
if it can be computed with perfect privacy.1 As we have seen that weak privacy
suffices for proving lower bounds and impossibility results for some cryptographic
tasks, it is natural to ask if this is the case for secret-sharing schemes.

1.1 Our Results

Our main results in this paper are somewhat surprising upper-bounds on the
shares’ size in weakly-private secret-sharing schemes. In addition we prove some
lowers bounds.

A generic construction of weakly-private schemes. For every access structure,
we construct a scheme for sharing an �-bit secret with (� + c)-bit shares, where
c is a constant depending on the access structure (alas, c can be exponential in
n – the number of the parties in the access structure). For comparison, in the
best known constructions of perfect secret-sharing schemes realizing an arbitrary
access structure, the size of the shares is �c′, where c′ is a constant (which can
also be exponential in n).

Let us consider a few examples. Capocelli et al. [17] proved that there is an
access structures with 4 parties such that in every perfect secret-sharing scheme
realizing it with �-bit secrets, the shares of at least one party is at least 1.5�-bit
strings. In contrast, we show how to realize this access structures by a weakly-
private scheme with (� + 2)-bit shares. Csirmaz [20] proved that for every n ∈ N

1 The notion of weak privacy in [36] is different than ours; however, the impossibility
result for our definition of weak privacy follows from the proof in that paper. See
treatment in [4].
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there is an access structures An with n parties such that in every perfect secret-
sharing scheme realizing An with �-bit secrets, the shares of at least one party
are Ω((n/ log n)�)-bit strings. In contrast, we show how to realize this access
structures by a weakly-private scheme in which the shares are (� + n logn)-bit
strings. In particular, if we take � = n log n, then in any perfect scheme the shares
are Ω(�2/ log2 �)-bit strings, while in the weakly-private schemes we construct
the shares are 2�-bit strings.

As discussed above, one of the motivations for weakly-private secret-sharing
schemes is for proving lower bounds on perfect schemes. For example, Kurosawa
and Okada [35] have used combinatorial arguments to prove an inferior version
of the above mentioned result of [17]. However, their proof applies to weakly-
private schemes and our results show that using weakly-private schemes one
cannot hope to prove a lower bound of �+ω(1). Beimel and Livne [7] (improving
on Seymour [43]) proved lower bounds of the shares’ size in a matroidial access
structure M with 7 parties. On one hand, the shares in the best known perfect
secret-sharing scheme realizing M with with �-bit secrets are 1.5�-bit strings [38].
On the other hand, by our result, there is secret-sharing scheme realizing M with
with �-bit secrets and (� + 16)-bit shares. Thus, if the lower bound for perfect
scheme realizing M can be improved to � + ω(1), then such proof must use the
fact that the scheme is perfect (e.g., generalize the combinatorial proof of [7] to
use some additional ideas).

In addition, we present a construction, due to Yuval Ishai [27], giving efficient
weakly-private secret-sharing schemes for a doubly exponential number of access
structures. Specifically, for every n ∈ N, there are 22n

access structures with 2n
parties that have a weakly-private scheme for sharing a 1-bit secret using shares
of length O(n3). This should be contrasted with perfect secret sharing schemes
where efficient schemes for sharing a 1-bit secret are known only for exponentially
many access structures.

Weakly-private threshold schemes for sharing one bit. The most important
secret-sharing schemes are threshold secret-sharing schemes. Shamir [44] shows
that there are very efficient perfect t-out-of-n secret-sharing schemes for shar-
ing �-bit secrets when � ≥ log n, namely the shares are �-bit strings as well.
However, the best known perfect t-out-of-n schemes for sharing a 1-bit secret
(when 2 ≤ t ≤ n− 1) use log n-bit shares (e.g., in Shamir’s scheme).2 Kilian and
Nisan [32] proved that this is unavoidable when t ≤ αn for some constant α < 1;
they prove that the shares are at least log(n − t + 2)-bit strings.

In contrast, we construct efficient weakly-private schemes for threshold access
structures for sharing a 1-bit secret. Our most efficient construction is a sim-
ple weakly-private 2-out-of-n secret-sharing scheme with 1-bit secrets and 2-bit
shares. For larger values of t, we construct weakly-private t-out-of-n schemes for
sharing 1-bit secrets with O(t)-bit shares. In particular, our scheme improves
the share size when t ≤ log n − 2 log log n. These schemes have the additional
nice property that they are anonymous, that is, the reconstruction of the secret
does not depend on the identity of the authorized set. Anonymous secret-sharing
schemes were introduced by [47], and were further studied in [14,33,39].

2 For t = 2 and t = n − 1, we can use the formula-based scheme of [9].
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We present an additional construction of weakly-private threshold scheme that
is efficient for big thresholds. When n is a prime-power and n > t/2, we construct
a weakly-private t-out-of-n scheme that is better than the known perfect schemes,
that is, our scheme uses a domain of shares of size n − 1 when t ≈ n/2 and a
domain of size 3n/4 when t = n − 1 (the size of the domain of shares in the best
known perfect secret-sharing scheme is at least n). We remark that the size of
the shares in the optimal perfect (n − 1)-out-of-n schemes for sharing a 1-bit
secret is unknown as the lower bound of [32] for this case on the size of the
domain of shares is 3, and the upper bound is n.

Our last result is a lower bound on the size of shares in weakly-private t-out-
of-n schemes for sharing a 1-bit secret. We prove that in this case the secrets are
taken from a domain of size min

{
t, Ω( log log(n−t)

log log log(n−t) )
}

. For anonymous weakly-
private t-out-of-n schemes for sharing a 1-bit secret we prove a much stronger
lower bound of min

{
2t,

√
(n − t)/2

}
. This should be compared to the lower

bound of n − t + 2 for perfect t-out-of-n schemes for sharing a 1-bit secret.

Are weakly-private schemes suitable for proving lower bounds? Our results sug-
gest that weakly-private schemes are indeed weaker than perfect schemes. The
ideas used in constructing our weakly-private schemes guarantee the weak pri-
vacy, but they are far from providing perfect privacy or statistical privacy. We
conclude that weakly-private secret-sharing schemes are not useful for proving
lower bounds for large domains of secrets (e.g., for proving that the informa-
tion rate of an access structure is bounded from 1). The situation is less clear
for secret sharing of a 1-bit secret. In this case the share complexity of weakly-
private secret schemes is still open; weakly-private secret-sharing schemes might
be useful for proving lower bounds for perfect scheme for sharing a 1-bit secret.
The efficient weakly-private schemes for the doubly exponential family and the
efficient weakly-private threshold schemes might discourage such belief.

Alternative notions of “weaker” secret sharing. In this work we discuss weakly-
private secret-sharing schemes as a relaxation of perfect secret-sharing schemes.
Below we mention a few other relaxations of perfect secret-sharing schemes;
all these relaxations are incomparable to weakly-private secret-sharing schemes.
A notion that is related is statistical secret-sharing schemes, considered in,
e.g., [6,22]. In these schemes the privacy and possibly also the correctness are
only statistical. Another related notion is computational secret-sharing schemes,
considered in [49,34,2,48]. In these schemes, unauthorized sets of parties cannot
distinguish in polynomial time between the different secrets.

Organization. In Section 2 we define perfect and weakly-private secret-sharing
schemes. In Section 3 we present the construction of the generic weakly-private
secret-sharing scheme for arbitrary access structures, and in Section 4 we describe
efficient weakly-private secret-sharing schemes for doubly exponential number of
access structures. In Section 5 we construct weakly-private threshold schemes for
sharing 1-bit secrets, and in Section 6 we prove lower bounds for them.
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2 Definitions and Notations

In this section we define perfect secret sharing and weakly-private secret sharing.
We start by defining an access structure – the collection of sets that should be
able to reconstruct the secret.

Definition 1 (Access Structure). Let U = {P1, . . . , Pn} be a set of parties.
A collection A ⊆ 2U is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An
access structure is a monotone collection A ⊆ 2U of non-empty subsets of U .
Sets in A are called authorized, and sets not in A are called unauthorized.

Definition 2 (Perfect Secret-Sharing Schemes). Let S be a finite set of
secrets, where |S| ≥ 2, and R be a set of random strings. An n-party secret-
sharing scheme Π with domain of secrets S is a mapping from S × R to a set of
n-tuples S1 ×· · ·×Sn, where Si is called the share-domain of Pi. A dealer shares
a secret s ∈ S among the n parties according to Π by first sampling a random
string r ∈ R (according to some given distribution), computing the vector of
shares Π(s, r) = 〈s1, . . . , sn〉, and then privately communicating each share si to
the party Pi. We say that Π realizes an access structure A ⊆ 2U if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of par-
ties. That is, for any set B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there ex-
ists a reconstruction function ReconB : Si1 × · · · × Si|B| → S such that
ReconB(ΠB(s, r)) = s for every s ∈ S, every r ∈ R, and every possible
value of ΠB(s, r), the restriction of Π(s, r) to its B-entries.

Privacy. Every unauthorized set can never learn anything about the secret (in
the information theoretic sense) from their shares. Formally, for any set
C 
∈ A, for every two secrets a, b ∈ S, and for every possible |C|-tuple of
shares 〈si〉Pi∈C : Pr[ ΠC(a, r) = 〈si〉Pi∈C ] = Pr[ ΠC(b, r) = 〈si〉Pi∈C ].

In this work we concentrate on weakly-private secret-sharing schemes, where an
unauthorized set can never rule out any secret.

Definition 3 (Weakly-Private Secret-Sharing Schemes). We say that a
secret-sharing scheme Π weakly realizes an access structure A ⊆ 2U if it satisfies
the correctness requirement of Definition 2 and it satisfies the following weak
privacy requirement:

Weak Privacy. Every unauthorized set can never rule out any secret from its
shares. Formally, for any set C 
∈ A, for every two secrets a, b ∈ S, and for
every possible |C|-tuple of shares 〈si〉Pi∈C: Pr[ ΠC(a, r) = 〈si〉Pi∈C ] > 0 if
and only if Pr[ ΠC(b, r) = 〈si〉Pi∈C ] > 0.

In this work we measure the share complexity of a scheme either as the length
of the strings representing the shares or as the size of the domain of shares. The
latter is used mainly when we discuss threshold schemes.

Definition 4 (Possible Vectors of Shares). Let Π be a secret-sharing
scheme and A be a set of parties. We say that a vector of shares 〈si〉Pi∈A is
possible with secret a for A in Π if Pr[ ΠA(a, r) = 〈si〉Pi∈A ] > 0.
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The most important secret-sharing schemes are threshold schemes, where the
authorized sets are all sets whose size is at least some given threshold.

Definition 5 (t-out-of-n Secret Sharing). A secret-sharing scheme Π is
a t-out-of-n secret-sharing scheme if it realizes the access structure At,n

def=
{A ⊆ {P1, . . . , Pn} : |A| ≥ t}. We say that a secret-sharing scheme Π is a
weakly-private t-out-of-n secret-sharing scheme if it weakly realizes At,n.

In the definition of secret-sharing schemes we say that for every set B there is
a reconstruction function ReconB that takes the shares of the parties of B and
reconstructs the secret. That is, the reconstruction function can use the identities
of the parties of B. For example, in Shamir’s scheme the parties in every set B
of size t reconstruct the secret by applying a linear function to their shares; the
coefficients in this linear function depend on the set B. A scheme is anonymous
if the reconstruction is done as a function of the shares without knowing the
identities of the parties in B. The following definition, which is equivalent to the
definition of [14], captures this intuition by requiring that if a vector of shares
is possible given a secret s, then every possible permutation in the order of the
coordinates in this vector is possible given s.

Definition 6 (Anonymous t-out-of-n Secret Sharing). We say that a per-
fect or weakly-private t-out-of-n secret-sharing scheme is anonymous if for ev-
ery s ∈ S, every vector of shares 〈s1, s2, . . . , sn〉, and every permutation π :
{1, . . . , n} → {1, . . . , n}, the vector 〈s1, s2, . . . , sn〉 is possible with secret s for
{P1, . . . , Pn} iff the vector 〈sπ(1), sπ(2), . . . , sπ(n)〉 is possible with secret s for
{P1, . . . , Pn}.

Notation. For a set Σ, let
(

Σ
<t

)
be the collections of subsets of Σ of size less than

t and let
(
Σ
t

)
be the collections of subsets of Σ of size exactly t. For an integer

n ∈ N, let [n] def= {1, . . . , n} .

3 A Generic Construction of Weakly-Private
Secret-Sharing Schemes

In this section we show that weakly-private schemes can be more efficient than
perfect schemes. We construct for every access structure A a weakly-private
secret-sharing scheme realizing A with shares whose size is linear in the size of
the domain of secrets (but possibly exponential in the number of parties).

Theorem 1. For every access structure A with n parties there is some constant
c such that for every � ∈ N there exists a weakly-private secret-sharing scheme
realizing A with �-bit secrets and (� + c)-bit shares for each party (however, c
may be exponential in n).

The theorem is proven in Lemma 1. For comparison, the size of the shares in the
best known constructions of perfect secret-sharing schemes realizing an arbitrary
access structure, the size of the shares is � · c′, where c′ is a constant that can
also be exponential in n.
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Define the following sets of vectors of shares for a secret s ∈ {0, 1}� are:

{P1}-Vectors: 〈〈a, r〉, 〈a, s〉〉, for every r ∈ {0, 1}� and every a ∈ {0, 1}.
{P2}-Vectors: 〈〈a, s〉, 〈a, r〉〉 for every r ∈ {0, 1}� and every a ∈ {0, 1}.

To share a secret s, choose at random i ∈ {1, 2} and choose a random
vector from the {Pi}-vectors.

Fig. 1. The weakly-private scheme realizing Γ

A Warmup. Let Γ be the access structure with two participants P1 and P2
and one authorized set {P1, P2}. As a warm up, we describe a weakly-private
scheme realizing Γ . The scheme we describe is inferior to the best perfect scheme
realizing Γ . The main purpose of describing this scheme is to introduce the ideas
of the general scheme.

In the scheme we construct, the secret is an �-bit string and the shares are
(� + 1)-bit strings. The scheme is described in Fig. 1. In this scheme, in each
vector of shares exactly one party holds the secret and the other party holds a
random element. Only both parties together know which party holds the secret,
thus they can reconstruct the secret and each individual party can never rule
out any secret. The vectors of shares are divided to two sets, {P1}-vectors and
{P2}-vectors. The {Pi}-vectors, where Pi holds a random element, disable {Pi}
from ruling out any secret (where i ∈ {0, 1}).

We first explain how P1 and P2, holding shares 〈a1, b2〉 and 〈a2, b2〉 respectively
(where ai is a bit and bi is either the secret or a random string), reconstruct the
secret: If a1 = a2, then the secret is b1, otherwise the secret is b2. To argue that
the scheme is weakly private, note that for every secret s ∈ {0, 1}�, Party Pi can
get every share in {0, 1} × {0, 1}� in the {Pi}-vectors.

The construction of the weakly-private schemes. Let A be an access structure
with n parties and � ∈ N. We first describe a very simple scheme with �-bit
secrets and �-bit shares that has useful properties. To share a secret s, there is
a set of vectors of shares for every maximal unauthorized set C /∈ A, called the
C-vectors, which prevent C from ruling out any secret. In the C-vectors, the
share of every Pi /∈ C is the secret s, while the share of each party in C ranges
over all the possible shares in {0, 1}�. Thus, the number of C-vectors, for a given
secret s, is 2�|C|.

Clearly, weak privacy holds in the above scheme (that is, every unauthorized
set can never rule out any secret). We next argue that every authorized set B
can reconstruct the secret with probability at least 1/|B| ≥ 1/n (even when
� � n). Let B ∈ A be any authorized set holding a vector of shares v. This
vector is a sub-vector of a C-vector for some C /∈ A. Since B is authorized and
C is unauthorized, there must be some Pi ∈ B \ C, thus Pi holds s in v. The
parties in B, which do not know C, choose Pi ∈ B at random and output its
share as the secret.

In the previous scheme, the authorized set B could not know the set C.
However, to reconstruct the secret with certainty, the set B needs to know C
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Let s ∈ {0, 1}� be the secret.

1. Choose at random a maximal unauthorized set C /∈ A.
2. Share the n-bit string representing C using a weakly-private scheme

Πweak realizing A. Let a1, . . . , an be the generated shares.
3. Choose a random bi ∈ {0, 1}� for every Pi ∈ C and set bi = s for

every Pi /∈ C.
4. The share of Pi is (ai, bi).

Fig. 2. A generic weakly-private scheme Πgeneric realizing an access structure A

(or at least some Pi ∈ B \C). Thus, we represent C as an n-bit string and share
this string using a weakly-private scheme realizing A. That is, we reduced the
question of sharing a secret taken from a big domain to sharing a secret from a
domain of size 2n. Such (perfect) schemes, with 2O(n)-bit shares, exist for every
access structure (e.g., [28,9,30]). The formal description of the scheme Πgeneric
appears in Fig. 2. The possible vectors of shares generated in Πgeneric when the
maximal unauthorized set chosen in Step (1) of the scheme is C are called the
C-vectors.

Lemma 1. The generic weakly-private scheme Πgeneric, described in Fig. 2,
weakly realizes the access structure A. Furthermore, if Πgeneric uses a weakly-
private scheme Πweak with n-bit secrets and c-bit shares, then, to share �-bit
secrets, Πgeneric distributes (� + c)-bit shares.

Proof. To prove that Πgeneric weakly realizes A, we prove the correctness and
weak privacy of the scheme. To reconstruct the secret, an authorized set B,
holding shares 〈(ai, bi)〉Pi∈B, reconstructs the set C from the shares 〈ai〉Pi∈B,
finds some Pi ∈ B \ C, and returns bi.

To argue that the scheme is weakly private, consider a maximal unauthorized
set C holding shares 〈(ai, bi)〉Pi∈C that are possible with some secret s0. These
shares are possible given any secret s: First, the shares 〈ai〉Pi∈B are possible
in Πweak for the set C. Thus, by the definition of the C-vectors, the shares
〈(ai, bi)〉Pi∈B are a restriction of a C-vector that is possible for the secret s. �

Example 1. Csirmaz [20] proved that for every n ∈ N there is an access structures
An with n parties such that in every perfect secret-sharing scheme realizing An

with �-bit secrets, the shares of at least one party are Ω((n/ log n)�)-bit strings.
The description of the access structure An is somewhat technical. The only
property we need is that in An each party is contained in at most n minimal
authorized sets. Thus, by [28], there is a perfect scheme realizing An for sharing
n-bit secrets using O(n2) bit shares. By Lemma 1, there is a scheme weakly
realizing An with �-bit secrets and (� + n2)-bit shares. If we use Lemma 2 and
Lemma 3 (proved in section 3.1), we get a scheme weakly realizing An with �-bit
secrets and (� + n log n)-bit shares. In particular, if we take � = n log n, then in
perfect scheme shares are Ω(�2/ log2 �)-bit strings, while in the weakly-private
schemes we construct the shares are 2�-bit strings.
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3.1 Improvements of the Generic Scheme

In the generic scheme Πgeneric, presented in Fig. 2, the shares are (� + c)-bit
strings, where c can be large, that is, it is the size of the shares in a scheme
Πweak realizing A with n-bit secrets. In this section we try to reduce the constant
c. We observe that in the proof of Lemma 1, the properties required from the
secret-sharing scheme Πweak are the following:

– Every authorized set B can compute the identity of a party Pi ∈ B \C, and
– Every unauthorized set C can never rule out that the shared set is C.

Next we formally define schemes satisfying these conditions.

Definition 7 (Weakly-Private Sharing of Unauthorized Sets). Let S be
the set of maximal unauthorized sets in A. We say that a secret-sharing scheme
Π with domain of secrets S weakly shares the unauthorized sets of an access
structure A if it satisfies the following two requirements:

– For any set B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there exists a reconstruction
function ReconB : Si1 ×· · ·×Si|B| → S such that for every maximal C ∈ S,
for every r ∈ R, and for every possible value of ΠB(C, r),

ReconB(ΠB(C, r)) = Pi such that Pi ∈ B \ C.

– Every unauthorized set can never rule out itself from its shares. Formally,
for any maximal unauthorized set C 
∈ A, for every possible |C|-tuple of
shares 〈si〉Pi∈C : If there is some maximal unauthorized set C0 /∈ A such that
Pr[ ΠC(C0, r) = 〈si〉Pi∈C ] > 0 then Pr[ ΠC(C, r) = 〈si〉Pi∈C ] > 0.

In Πgeneric, if we use a scheme that weakly shares the unauthorized sets of A,
then the proof of Lemma 1 remains valid.

Lemma 2. Assume that there is a scheme Πset that weakly shares the unautho-
rized sets of A with cset-bit shares. To share �-bit secrets, the generic weakly-
private scheme Πgeneric, when using Πset instead of Πweak, weakly realizes the
access structure A distributing (� + cset)-bit shares.

We next give an example of weakly-private schemes for sharing unauthorized
sets. We first use ideas similar to Ito, Saito, and Nishizeki [28]. They proved
that if every party is contained in at most d minimal sets of an access structure
A, then there is a scheme perfectly realizing A with �-bit secrets and �d-bit
shares.

Lemma 3. Assume A is an access structure such that every party is contained
in at most d minimal authorized sets of A. Then, there is a scheme for weakly
sharing the unauthorized sets of A distributing d �log n�-bit shares.

Proof. To share a maximal unauthorized set C, for every minimal authorized set
B, choose a random party PjB ∈ B \ C, choose |B| random elements 〈si,B〉Pi∈B

such that si,B ∈ {0, . . . , n − 1} and
∑
{i:Pi∈A} si,B ≡ jB (mod n). The share of

Pi is 〈si,B : Pi ∈ B, B ∈ A is a minimal authorized set〉. Clearly, this scheme is
correct. Furthermore, each maximal unauthorized set can never rule out itself as
the parties in C cannot rule out any jB for a minimal authorized
set B in A. �
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4 Upper Bounds for Efficient Weakly-Private Sharing of
Double Exponential Number of Access Structures

In this section we present a construction due to Yuval Ishai [27] giving an efficient
weak secret-sharing schemes with a 1-bit secret for a family of access structures
of a doubly exponential size. We first define this family.

Definition 8 (The Access Structure AC). For every n and every C ⊆
{0, 1}n, we define an access structure AC with 2n parties denoted
P 0

1 , P 1
1 , . . . , P 0

n , P 1
n . For every c = 〈c1, . . . , cn〉 ∈ {0, 1}n define a set Qc

def=
{P c1

1 , P c2
2 , . . . , P cn

n }. The minimal authorized sets in AC are {Qc : c ∈ C} ∪{{
P 0

j , P 1
j

}
: j ∈ [n]

}
.

Theorem 2. For every C ⊆ {0, 1}n there is a weakly-private secret-sharing
scheme realizing AC with domain of secrets {0, 1} and O(n3)-bit shares.

Proof. The idea, again, is that for every unauthorized set we construct a set
of vectors that prevent the set from ruling out a secret. Towards this goal, we
define the following function: For a, b ∈ {0, 1} and x, y ∈ {0, 1}n, let f(a, b, x, y)
be the function which outputs a if x 
= y and outputs b otherwise. Informally,
the input a of f is the secret we want to share, the input b is a random input,
and if we set x = y = z, we will prevent the set Qz from ruling out the secret b.
To construct the scheme, we use the randomized encodings of Applebaum, Ishai,
and Kushilevitz [1]. Specifically, the function f can be efficiently encoded by a
function f ′((a, b, x, y), r) such that:

1. The output distribution of f ′ induced by a random choice of r reveals the
output of f and no additional information about a, b, x, y, that is, there are
two distributions D0, D1 such that
(a) If f(a, b, x, y) = 0 then f ′((a, b, x, y), r) is distributed according to D0

and if f(a, b, x, y) = 1 then f ′((a, b, x, y), r) is distributed according to
D1, and

(b) The distributions D0 and D1 have a disjoint support.
2. The length of the output of f ′ is O(n3), and
3. Each output bit of f ′ depends on at most a single bit of (a, b, x, y).

In particular, if the ith bit of f ′ depends on xj and we fix r, then we can compute
the ith bit of f ′ from r and xj without knowing the other bits of x (or knowing
a, b, y).

For any subset C ⊆ {0, 1}n, we describe in Fig. 3 a weakly-private scheme
realizing AC . First note that every pair

{
P 0

j , P 1
j

}
can reconstruct the secret

using the shares given in Step (1) of the scheme. Second, consider a set that
contains at most one party from every pair

{
P 0

j , P 1
j

}
and for some j ∈ [n] does

not contain neither P 0
j nor P 1

j . Such set can never rule out any value of s0, hence
can never rule out any value of s. Thus, it remains to prove that a set Qc can
reconstruct the secret if and only if c ∈ C.

If c ∈ C, then in Step (4) of the scheme a w 
= c is chosen. The parties of Qc

together hold the bits of f ′((s1, b, c, w), r), which is an element of Ds1 , hence they
can also compute f(s1, b, c, w) = s1 (since the support of D0 and the support
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To share a secret s ∈ {0, 1}:

1. For every j choose rj ∈ {0, 1} at random, and send to P 0
j the bit rj

and to P 1
j the bit rj ⊕ s,

2. Choose s0 ∈ {0, 1} at random, define s1 ← s ⊕ s0,
3. For every j ∈ [n − 1] choose qj ∈ {0, 1} at random, set qn = s0 ⊕⊕n−1

j=1 qj , and send to P 0
j and P 1

j the bit qj .
4. Choose w /∈ C at random, choose b ∈ {0, 1} at random, and choose a

random r.
5. Send to player P d

j , for j ∈ [n] and d ∈ {0, 1}, the value of output bits
of f ′((s1, b, x,w), r) that depend on xj assuming that xj = d.

6. All bits of f ′((s1, b, x, w), r) that do not depend on bits of x are sent
to all parties.

Fig. 3. A weakly-private scheme realizing AC

of D1 are disjoint). Furthermore, they hold q1, . . . , qn, hence, they can compute
s = s0 ⊕

⊕n
j=1 qj .

For any z /∈ C, the set of n players Qz can never rule out any value of s1:
When w = z and b = 0 are chosen in Step (4) of the scheme, the parties of Qz

can compute a random element of D0 and when w = z and b = 1 are chosen in
Step (4) of the scheme they can compute a random element of D1. Thus, the
parties do not know if w 
= z and they got an element of Ds1 or w = z and
b = s1 and they got an element of Ds1 . �

5 Upper Bounds for Weakly-Private Threshold Sharing
of One Bit

In this section we construct weakly-private t-out-of-n secret-sharing schemes for
sharing one bit. We first present a simple weakly-private 2-out-of-n scheme in
which the size of the domain of shares of each party is 4. Generalizing the ideas
of this scheme we present a 3-out-of-n scheme in which the size of the domain
of shares of each party is 6, and a t-out-of-n scheme in which the size of the
domain of shares of each party is Õ(2t). Finally, we present a different scheme,
based on Shamir’s scheme, in which the size of domain of shares is roughly
n− t/(2(n− t+1)) (when n is a prime-power). The best known perfect t-out-of-
n schemes use domain of shares of size n. By a lower bound of [32], the size of the
domain of shares in every perfect t-out-of-n schemes is at least n − t. Thus, our
weakly-private t-out-of-n secret-sharing schemes are more efficient than every
perfect t-out-of-n secret-sharing schemes when t < log n − 2 log log n and more
efficient than known schemes when t > n/2.

5.1 The Weakly-Private Scheme for t = 2

Lemma 4. There exists an anonymous weakly-private 2-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of every party is 4.
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Proof. To prove the claim we describe a scheme with domain of shares {0, 1, 2, 3}
for each party.

– To share the secret 0, choose a random index i ∈ [n] and choose a random
σ ∈ {2, 3}. The share of Pi is σ. The share of Pj , for j 
= i, is 0 if σ = 2 and
1 if σ = 3.

– To share the secret 1, choose a random index i ∈ [n] and choose a random
σ ∈ {0, 1}. The share of Pi is σ. The share of Pj , for j 
= i, is 3 if σ = 0 and
2 if σ = 1.

The 2-out-4 scheme is explicitly described in Example 2.
On one hand, the reconstruction of the secret by any two parties is simple:

If the shares are {0, 0}, {0, 2}, {1, 1} , or {1, 3}, then the secret is 0. Otherwise
the secret is 1. On the other hand, each value is possible for each coordinate for
each secret, thus, the scheme is weakly private. �

Example 2. We explicitly describe the weakly-private 2-out-4 anonymous secret-
sharing scheme. The shares for the secret 0 are randomly chosen from 〈0, 0, 0, 2〉,
〈0, 0, 2, 0〉, 〈0, 2, 0, 0〉, 〈2, 0, 0, 0〉 and 〈1, 1, 1, 3〉, 〈1, 1, 3, 1〉, 〈1, 3, 1, 1〉, 〈3, 1, 1, 1〉.
The shares for the secret 1 are randomly chosen from 〈2, 2, 2, 1〉, 〈2, 2, 1, 2〉,
〈2, 1, 2, 2〉, 〈1, 2, 2, 2〉 and 〈3, 3, 3, 0〉, 〈3, 3, 0, 3〉, 〈3, 0, 3, 3〉, 〈0, 3, 3, 3〉.

5.2 Weakly-Private Schemes for t < log n

We now describe a generalization of the above scheme for larger thresholds.
Specifically, in the scheme we design: (1) the scheme is anonymous (as defined
in Definition 6), (2) in each vector of shares all but at most t−1 coordinates are
equal, and (3) every vector of values in Σt−1 is possible for every t − 1 parties
for every secret (where Σ is the domain of shares of each party).

We will first describe a generic way to construct a weakly-private t-out-of-n
scheme based on the existence of two functions f0, f1 with certain properties.
Roughly speaking, these functions take an arbitrary vector of shares of length t−
1 and stretch it to a vector of shares of length n. The exact properties we require
from these functions are sufficient for proving the correctness of the scheme
(however, weaker conditions may also be sufficient for proving correctness). We
show a simple construction of f0, f1 satisfying these properties for t = 3 with
domain of size 6. We then show that certain combinatorial structure can be
used to construct such functions f0 and f1, and show that such structures exist
implying a t-out-of-n scheme with domain of shares of size O(t22t).

Lemma 5. Let t be an integer, Σ be a finite domain, and Σ0 and Σ1 be a
partition of Σ. Assume there are two functions f0, f1, where fs :

(
Σs

<t

)
→ Σs

for s ∈ {0, 1} satisfying

∀A0⊆Σ0,A1⊆Σ1such that |A0|+|A1|≤t f0(A1) /∈ A0 ∨ f1(A0) /∈ A1. (1)

Then, for every n ≥ t there is an anonymous weakly-private t-out-of-n scheme
with domain of secrets {0, 1} and domain of shares Σ for each party.
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Proof. We describe the scheme using the given functions f0 and f1. To share the
secret s ∈ {0, 1}, do the following:

1. Choose t − 1 random distinct indices i1, . . . , it−1 ∈ [n] and choose t − 1
random values σ1, . . . , σt−1 for the parties Pi1 , . . . , Pit−1 respectively.

2. Let As be the set of elements of Σs in σ1, . . . , σt−1. For every
� /∈ {i1, . . . , it−1}, the share of P� is fs(As).

The privacy is guaranteed since every t − 1 parties can be chosen in Step 1.
We next argue that Property (1) implies the correctness of the scheme. That
is, every vector of t shares is possible for at most one secret. Assume towards
contradiction that b = 〈b1, . . . , bt〉 is possible both for the secret 0 and for the
secret 1. For s ∈ {0, 1}, let Bs be the set of elements of Σs in the vector b (without
repetition). As b is possible for a secret s ∈ {0, 1}, in Step 1 of the scheme some
vector σ = 〈σ1, . . . , σt−1〉 could have been chosen, where As are the elements
of Σs in this vector (without repetition). The vector b is obtained by taking a
sub-vector of σ and completing it to a vector of length t with the value fs(As)
(possibly with repetitions). Therefore, the following conditions must hold:

1. Bs ⊆ As,
2. Let ns be the number of times that fs(As) appears in b. Thus,

ns ≥ |As| − |Bs| + 1 ≥ 1. (2)

In particular, fs(As) appears at least once in b.

Thus, f0(A1) ∈ B0 ⊆ A0 and f1(A0) ∈ B1 ⊆ A1. Furthermore, |B0| + |B1| ≤
t−n0 −n1 +2 (since f0(A1) appears n0 times in b and f1(A0) appears n1 times
in b), thus |A0| + |A1| ≤ t (by (2)). This contradicts Property (1), and thus the
scheme is correct. �

We next reformulate Lemma 5 using only one function f0.

Lemma 6. Let t be an integer, Σ be a finite domain, and Σ0 and Σ1 be a
partition of Σ. Assume there is a function f0 :

(
Σ1
<t

)
→ Σ0 such that for every

A0 ⊆ Σ0, where |A0| < t,

⋃
{A1 ⊆ Σ1 : |A0| + |A1| ≤ t and f0(A1) ∈ A0} � Σ1. (3)

Then, for every n ≥ t there is an anonymous weakly-private t-out-of-n scheme
with domain of secrets {0, 1} and domain of shares Σ for each party.

Proof. We show that there is a function f1 such that f0, f1 satisfy Property (1)
of Lemma 5. For every A0 ⊆ Σ0 define f1(A0) as any element σ in

Σ1 \
(⋃

{A1 ⊆ Σ1 : |A0| + |A1| ≤ t and f0(A1) ∈ A0}
)

.

Now, if f0(A1) ∈ A0, then σ /∈ A1, thus, f0, f1 satisfy Property (1). �
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Specific implementation for t = 3

Lemma 7. There exists an anonymous weakly-private 3-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of every party is 6.

Proof. We show how to implement the functions f0, f1 satisfying Property (1)
of Lemma 5 with Σ0 = {0, 1, 2}, Σ1 = {3, 4, 5}, and Σ = Σ0 ∪Σ1. Define f0 and
f1 as follows:

A1 f0(A1)
∅ 0

{3} 0
{4} 1
{5} 2

{3, 4} 1
{3, 5} 0
{4, 5} 2

A0
A1 s.t. |A0| + |A1| ≤ t

and f0(A1) ∈ A0
f1(A0)

∅ − 3
{0} ∅, {3} , {3, 5} 4
{1} {4} , {3, 4} 5
{2} {5} , {4, 5} 3

{0, 1} ∅, {3} , {4} 5
{0, 2} {3} , {5} 4
{1, 2} {4} , {5} 3

As indicated by the table, Property (3) holds for f0; the function f1 is constructed
using Lemma 6. �

Remark 1. We next explain why we need a share domain of size six in the above
3-out-of-n scheme. Assume, f0, f1 satisfy Property (1). Thus, for example, if
f1({0, 1}) = σ we require f0({σ}) 
= 0, 1, and |Σ0| ≥ 3. Similarly, |Σ1| ≥ 3.

Generic implementation using set-systems

To construct the weakly-private t-out-of-n secret-sharing schemes for larger val-
ues of t we use a set-system with specific properties. The existence of such
set-system is basically equivalent to the existence of a function f0 satisfying
Property (3) in Lemma 6. The definition of the set-system we use is similar to
the definition used in [37] and the construction we present is the same as theirs.

Definition 9. Let C = {C1, . . . , Cm} be a collection of m sets and B =
⋃m

i=1 Ci.
We say that C is an (�, m, b) set-system if the following three requirements hold:

1. |C| = m and |B| ≤ b,
2. The union of every � sets in C is properly contained in B. That is, for every

A0 ⊂ [m], where |A0| = �, ⋃

i∈A0

Ci � B,

3. Every subset of A1 ⊆ B of size � is contained in at least one Ci, that is,
A1 ⊆ Ci.

It is easy to satisfy one of the above Conditions 2 and 3. For example, to satisfy
Conditions 2 we can partition B to � + 1 disjoint non-empty sets. To satisfy
Conditions 3 we can take C = {B}. The difficulty is to satisfy the two conditions
simultaneously.
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Example 3. Let B = [�2 +1] and C be the collection of all subsets of size � of B.
Then, C is an (�, m, �2 + 1) set-system, where m

def=
(
�2+1

�

)
= 2O(� log �). Clearly,

Items 1 and 3 of Definition 9 hold. To prove that Item 2 holds, notice that the
size of B is �2 + 1 and the size of each set in C is �, thus the size of the union of
� subsets is at most �2, that is, there exists at least one element of B that is not
in the union of the � sets.

Lemma 8. If there is a (t − 1, m, b) set-system, then there is an anonymous
weakly-private t-out-of-n secret-sharing scheme with domain of secrets {0, 1} and
domain of shares of size m + b.

Proof. Let C1, . . . , Cm be a (t − 1, m, b) set-system and B =
⋃m

i=1 Ci. Without
loss of generality, assume that B∩ [m] = ∅. Let Σ0 = [m] and Σ1 = B. We define
f0 :

([Σ1]
<t

)
→ Σ0 satisfying the condition of Lemma 6: For every A1 ⊂ B of size

at most t − 1, we define f0(A1) as the smallest i such that A1 ⊆ Ci. By Item 3
such i exists.

We prove that a stronger condition that Property (3) of Lemma 6 holds,
namely, we prove that for every A0 ⊆ Σ0

⋃
{A1 ⊆ Σ1 : |A1| ≤ t − 1 and f0(A1) ∈ A0} � Σ1. (4)

Notice that
⋃

{A1 ⊆ Σ1 : |A1| ≤ t − 1 and f0(A1) ∈ A0}

=
⋃

i∈A0

(⋃
{A1 ⊆ Σ1 : |A1| ≤ t − 1 and f0(A1) = i}

)
.

However, f0(A1) = i implies that A1 ⊆ Ci. Thus,
⋃

{A1 ⊆ Σ1 : |A1| ≤ t − 1 and f0(A1) ∈ A0} ⊆
⋃

i∈A0

Ci � Σ1

(by Item 2 of Definition 9). By Lemma 6, there is a secret-sharing scheme with
the parameters promised in the lemma. �

We show the existence of an (�, m, m) set-system using a probabilistic proof
provided that � = O(log m). The construction is simple; we choose m subsets
independently with uniform distribution.

Lemma 9. Let m = 2�+1�2. There exists an (�, m, m) set-system.

Proof. We show the existence using a probabilistic proof. Define B = [m]. Pick
m sets C1, . . . , Cm ⊂ B where each set is chosen independently with uniform
distribution (in particular, Pr[j ∈ Ci] = 1/2 for every i and j).

We prove that with positive probability Conditions 2 and 3 hold, thus, there
exists a “good” choice such that {C1, . . . , Cm} is an (�, m, m) set-system.

We first prove that Condition 2 holds with probability greater than 0.5. First
fix a set A0 ∈ [m] of size �. For every index j ∈ [m], the probability that
for at least one i ∈ A0 the index j is in Ci is 1 − 2−�. The probability that
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To share a secret s ∈ {0, 1} using a domain of shares Σ ⊆ GF(q) of size
�q − (q − 1)(2(n − t + 1))	 + 1, where q ≥ n is a prime-power:

1. Pick random s1, . . . , st−1 ∈ Σ, and let a ← s.
2. Compute the unique polynomial Qa of degree at most t− 1 such that

– Qa(i) = si for every 1 ≤ i ≤ t − 1.
– The coefficient of xt−1 in Qa is a.

3. If Qa(i) /∈ Σ for some t ≤ i ≤ n, then a ← a + 2; Goto Step 2.
4. (∗ We found an a such s ≡ a (mod 2) and Qa(i) ∈ Σ for 1 ≤ i ≤ n ∗)

The share of Pi is Qa(i).

Fig. 4. A t-out-of-n secret-sharing scheme with domain of shares of size
�q − (q − 1)(2(n − t + 1))	 + 1

∪i∈A0Ci = B is the probability that for every j ∈ [m] for at least one i ∈ A0 the
index j is in Ci. This probability is (1 − 2−�)m ≤ e−m/2�

. Thus, by the union
bound, the probability that there exists a set A0 violating Condition 2 is at most(
m
�

)
e−m/2�

< e� ln m−m/2�

. By our choice of m, this probability is less than half.
The same calculations show that Condition 3 holds with probability greater

than 0.5. First fix a set A1 ⊂ B of size �. The probability that A1 ⊆ Ci for a fixed
i is 2−�. Thus, the probability that A1 
⊆ Ci for every i ∈ [m] is (1 − 2−�)m ≤
e−m/2�

. By the union bound, the probability that there exists a set A1 violating
Condition 3 is at most

(
m
�

)
e−m/2�

< e� ln m−m/2�

< 1/2. �
Theorem 3. There is an anonymous weakly-private t-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of each party is 2(t − 1)22t.

In the full version of this paper, we discuss the restriction that we used in the
construction of the above scheme. In particular, we prove that in every t-out-
of-n scheme implementing Lemma 5 the size of the domain is 2Ω(t), thus our
implementation in Theorem 3 is almost optimal.

5.3 Weakly-Private Schemes for t ≥ n/2

We next present weakly-private t-out-of-n secret-sharing schemes for large values
of t. For example, when n is a prime-power, we construct an (n − 1)-out-of-n
scheme with share domain of size roughly 0.75n for every party. For t ≈ n/2,
we construct a scheme with domain of shares of size n − 1. In our scheme, we
restrict the domain of shares in a variant of Shamir’s scheme [44] to a subset
of the field. In this variant of Shamir’s scheme, the secret is the coefficient of
xt−1 in the polynomial (compared to x0 in Shamir’s scheme). The advantage of
this variant is that it reduces the size of the field by 1 (yielding the best known
perfect t-out-of-n scheme for sharing 1-bit secrets). Unlike the previous schemes
for t < log n, the scheme we present in this section is not anonymous.

Theorem 4. Let n ∈ N be integer and q ≥ n be a prime-power. For every
1 < t < n there is a weakly-private t-out-of-n secret-sharing scheme in which the
size of the domain of shares of each party is

⌊
q − q−1

2(n−t+1)

⌋
+ 1.
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Proof. We describe the scheme in Fig. 4. All arithmetic in the scheme is in
GF(q). To simplify the notations, we assume that the elements of GF(q) are
{0, . . . , q − 1}. In the proof below of the weak privacy, we prove that for every
s1, . . . , st−1 ∈ Σ there exists at least one value a satisfying the conditions of
Step 4, thus the scheme terminates. We say that a polynomial Q passes through
a share si of Pi if Q(i) = si.

The reconstruction of the secret by t parties is done as in Shamir’s scheme:
the parties compute the unique polynomial Q of degree t−1 that passes through
their shares, compute the coefficient a of xt−1 in Q, and output a mod 2. We
next prove the weak privacy of the scheme, that is, every t−1 parties are unable
to rule out either secret. Fix any set C of t−1 parties, fix any t−1 values 〈si〉Pi∈C

in Σ as the shares of C, and fix a secret s ∈ {0, 1}. There are at least (q − 1)/2
values a such that a ≡ s mod 2. If for one such a the unique polynomial Q of
degree t−1 with coefficient a of xt−1 that passes through the shares of C satisfies
Q(i) ∈ Σ for every i /∈ C, then the shares 〈si〉Pi∈C are possible for C given s. We
will show that every party Pi /∈ C eliminates at most q−|Σ| < q−1

2(n−t+1) values of
a and there are n− t+1 parties not in C. Thus, since (n− t+1) q−1

2(n−t+1) ≤ q−1
2 ,

there is at least one a that survives.
To complete the proof, we fix Pi /∈ C, and prove that Pi eliminates at most

q − |Σ| values of a. For each value si ∈ {0, . . . , q − 1} \ Σ, there is a unique
polynomial of degree t − 1 that passes through the shares of C ∪ {Pi}. Thus,
such value si only eliminates the coefficient of xt−1 in this polynomial. �

6 Lower Bounds for Weakly-Private Threshold Schemes

We state lower bounds on the size of domain of shares in weakly-private t-out-
of-n schemes. The proofs of these results appear in the full version of this paper.

Lemma 10. Let n ≥ 9. In every weakly-private 2-out-of-n secret-sharing
scheme with domain of secrets {0, 1}, the size of the domain of shares of at
least one party is at least 4.

Theorem 5. In every anonymous weakly-private t-out-of-n secret-sharing
scheme with domain of secrets {0, 1}, the size of the domain of shares of at
least one party is at least min

{
2t,

√
(n − t)/2

}
.

Theorem 6. In every weakly-private t-out-of-n secret-sharing scheme with do-
main of secrets {0, 1}, the size of the domain of shares of at least one party is at
least min

{
t, log log(n−t)

2 log log log(n−t)

}
. Furthermore, if n > t−1+(t−1)(2t−1)2((2t−1)t−1),

in every weakly-private t-out-of-n secret-sharing scheme with domain of secrets
{0, 1}, the size of the domain of shares of at least one party is at least 2t.
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Abstract. One of the main open problems in secret sharing is the char-
acterization of the access structures of ideal secret sharing schemes. As a
consequence of the results by Brickell and Davenport, every one of those
access structures is related in a certain way to a unique matroid.

Matroid ports are combinatorial objects that are almost equivalent
to matroid-related access structures. They were introduced by Lehman
in 1964 and a forbidden minor characterization was given by Seymour
in 1976. These and other subsequent works on that topic have not been
noticed until now by the researchers interested on secret sharing.

By combining those results with some techniques in secret sharing, we
obtain new characterizations of matroid-related access structures. As a
consequence, we generalize the result by Brickell and Davenport by prov-
ing that, if the information rate of a secret sharing scheme is greater than
2/3, then its access structure is matroid-related. This generalizes several
results that were obtained for particular families of access structures.

In addition, we study the use of polymatroids for obtaining upper
bounds on the optimal information rate of access structures. We prove
that every bound that is obtained by this technique for an access struc-
ture applies to its dual structure as well.

Finally, we present lower bounds on the optimal information rate of
the access structures that are related to two matroids that are not asso-
ciated with any ideal secret sharing scheme: the Vamos matroid and the
non-Desargues matroid.

Keywords: Secret sharing, Information rate, Ideal secret sharing
schemes, Ideal access structures, Matroids, Polymatroids.

1 Introduction

1.1 The Problems

A secret sharing scheme is a method to distribute a secret value into shares in
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secret from their shares. Secret sharing schemes were independently introduced
by Shamir [34] and Blakley [5]. Only unconditionally secure perfect secret sharing
schemes will be considered in this paper. That is, the shares of the participants in
a non-qualified subset must not contain any information about the secret value.

The family of the qualified subsets is the access structure of the scheme,
which is supposed to be monotone increasing, that is, every subset containing
a qualified subset must be qualified. Then an access structure is determined by
its minimal qualified subsets.

The complexity of a secret sharing scheme can be measured by the length
of the shares. In all secret sharing schemes, the length of every share is greater
than or equal to the length of the secret [20]. A secret sharing scheme is said to
be ideal if all shares have the same length as the secret.

The qualified subsets of a threshold access structure are those having at least a
fixed number of participants. Shamir’s construction [34] provides an ideal scheme
for every threshold access structure. Even though there exists a secret sharing
scheme for every access structure [18], in general some shares must be much
larger than the secret [12,13].

This paper deals with the optimization of the complexity of secret sharing
schemes for general access structures.

The characterization of the ideal access structures, that is, the access struc-
tures of ideal secret sharing schemes, is one of the main open problems in that
direction. Brickell and Davenport [10] discovered important connections of this
problem with matroid theory. The main definitions and basic facts about secret
sharing schemes, matroids, and polymatroids are presented in Section 2. Table 1,
at the end of the paper, may be helpful to the readers that are not familiar with
the concepts that are discussed here.

A necessary condition for an access structure to be ideal is obtained from
the results by Brickell and Davenport [10]. They proved that every ideal secret
sharing scheme on a set P of participants univocally determines a matroid M
on the set Q = P ∪ {D}, where D /∈ P is a special participant, usually called
dealer . In addition, the access structure Γ of the ideal scheme is determined by
this matroid. Specifically, the minimal qualified subsets of Γ are

min Γ = {A ⊆ P : A ∪ {D} is a circuit of M}.

Therefore, every ideal access structure is matroid-related , that is, it can be de-
fined in this way from a matroid. This necessary condition is not sufficient,
because there exist matroids that cannot be defined from any ideal secret shar-
ing scheme [27,33], and hence the access structures that are related to these
matroids are not ideal.

The matroids that are obtained from ideal secret sharing schemes are generally
called secret sharing matroids, but we prefer to call them ideal secret sharing
representable matroids , or iss-representable matroids for short. This is due to
the fact that an ideal secret sharing scheme can be seen as a representation of
its associated matroid.

Brickell [9] proposed a special class of ideal schemes, the vector space secret
sharing schemes . The matroids that are associated with these ideal schemes are
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precisely the linearly representable ones. Therefore, all linearly representable ma-
troids are iss-representable. This implies that the representation by ideal secret
sharing schemes is a generalization of the linear representation of matroids. In
addition, every access structure that is related to a linearly representable ma-
troid is ideal. These access structures are called vector space access structures .
This sufficient condition is not necessary, because there exist iss-representable
matroids that are not linearly representable [35].

As a consequence of the results by Brickell and Davenport [10] the open
problem of characterizing the access structures of ideal secret sharing schemes
can be splitted into the following two open problems.

Problem 1. Characterize the matroid-related access structures.

Problem 2. Characterize the ideal secret sharing representable matroids.

Surprisingly enough, almost all authors interested on secret sharing, including
the ones of this paper, have been unaware that matroid-related access structures
were studied before secret sharing was invented. Of course, a different name was
used: matroid ports .

A clutter on a set P is a family Λ of subsets of P such that there do not exist
two different subsets A, B ∈ Λ with A ⊂ B. A clutter Λ on P is a matroid port
if there exists a matroid M on Q = P ∪ {D}, where D /∈ P , such that

Λ = {A ⊆ P : A ∪ {D} is a circuit of M}.

Therefore, an access structure is matroid-related if an only if the clutter formed
by its minimal qualified subsets is a matroid port. Matroid ports were introduced
by Lehman [21] in 1964 to solve the Shannon switching game. Seymour [32]
presented in 1976 a characterization of matroid ports by excluded minors that
is based on a previous characterization of matroid ports due to Lehman [22]. As
a consequence, an answer to Problem 1 is obtained.

A more general open problem in secret sharing is to determine the complexity
of the best secret sharing scheme for any given access structure. For instance,
we can try to maximize the information rate, which is the ratio between the
length in bits of the secret and the maximum length of the shares. The optimal
information rate of an access structure Γ , which is denoted by ρ(Γ ), is defined as
the supremum of the information rates of all secret sharing schemes with access
structure Γ . Clearly, 0 < ρ(Γ ) ≤ 1, and ρ(Γ ) = 1 if Γ is ideal.

Problem 3. Determine the value of ρ(Γ ) or, at least, improve the known bounds
on this function.

Duality has been defined for matroids, for linear codes, and for access structures.
It plays an important role in the considered problems. For instance, if an access
structure is related to a matroid, its dual is related to the dual matroid. One
can consider the dual of a linear secret sharing scheme by identifying it with a
linear code. A linear scheme with the same information rate for the dual access
structure is obtained in this way. Nevertheless, it is not known whether the dual
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of an ideal access structure is ideal as well. In addition, the relation between the
optimal information rates of an access structure and its dual is equally an open
problem.

1.2 Our Results

Because of their important implications to the problems we are considering here,
one of the main goals of this paper is to point out the results by Lehman [21,22]
and Seymour [32] on matroid ports to researchers interested on secret sharing.
We think that they will be very useful to obtain new general results on the
problems we are considering here as well as to solve them for particular families
of access structures.

One of our main results, Theorem 17, is a new characterization of matroid-
related access structures in terms of the existence of independent sequences .
These sequences are combinatorial configurations that were introduced in [6,30]
to obtain upper bounds on the optimal information rate. Our characterization
is obtained by combining Seymour’s characterization of matroid ports [32] with
the fact that the Shannon entropy defines a polymatroid over a set of random
variables [15,16]. As a corollary of Theorem 17 we obtain a generalization of
the result by Brickell and Davenport [10]. Namely, they proved that the access
structure of every ideal secret sharing scheme is matroid-related, and we prove
that this is so for every secret sharing scheme with information rate greater than
2/3. This is the main result in this paper.

Theorem 4. The access structure of every secret sharing scheme with informa-
tion rate greater than 2/3 is matroid-related.

Our proof for this theorem, as well as the ones for the results we apply in it, do
not rely on the result by Brickell and Davenport [10]. Moreover, except for the
relation between entropy and polymatroids, those proofs use only combinatorial
techniques. Therefore, we can say that we present here a new, almost purely
combinatorial proof for that important result.

Theorem 4 explains a gap property that has been observed in some particular
classes of access structures that have been previously studied, in which every
access structure is either ideal or has optimal information at most 2/3. So, there
is no access structure Γ with 2/3 < ρ(Γ ) < 1 in these families. Specifically,
this has been proved for the access structures on sets of four [36] and five [19]
participants, the ones defined by graphs [7,10,12], the bipartite ones [30], the
ones with three or four minimal qualified subsets [24], the ones with intersection
number equal to one [26], and for a special class of homogeneous structures with
rank three [23]. This fact was proved by methods that seemed to be specific to
every one of those families, and hence it was not clear to which extent this result
could be generalized. Since in all those families every matroid-related access
structure is ideal, this gap property is a direct consequence of Theorem 4, which
implies that ρ(Γ ) ≤ 2/3 if Γ is not matroid-related. Therefore, we generalize and
explain a phenomenon that had been observed in several particular situations.
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Moreover, our result can be applied to other families that have been studied
previously as, for instance, the weighted threshold access structures [3] and the
access structures with rank three [25].

In addition, we present in Section 3 a new result about the use of polyma-
troids to obtain upper bounds on the information rate, a technique that was
introduced by Csirmaz [13]. Specifically, we prove that every bound on the op-
timal information rate of a given access structure that can be obtained by using
polymatroids applies also to the dual access structure. In order to do that, we
define in a suitable way the dual of a polymatroid. The interest of this result is
that, for the first time, we present a connection between the complexities of the
secret sharing schemes for an access structure and the ones for its dual that is
not restricted to linear schemes.

Finally, Section 5 is devoted to present lower bounds on the optimal infor-
mation rate of the access structures related to the Vamos matroid and the non-
Desargues matroid. Since these matroids are not iss-representable, the related
access structures are not ideal. We prove that the optimal information rate of
the access structures related to the Vamos matroid is at least 2/3, while this pa-
rameter is at least 3/4 for the structures related to the non-Desargues matroid.
The only previously known results on the optimal information rate of non-ideal
matroid-related access structures have been presented in a recent work by Beimel
and Livne [2]. They give lower bounds on the length of the shares in secret shar-
ing schemes for the access structures related to the Vamos matroid.

1.3 Related Work

As a sequel of the results by Brickell and Davenport [10], there is a number of
works dealing with Problem 2. The Vamos matroid was the first matroid that was
proved to be non-iss-representable. This was done by Seymour [33] and different
proofs were given later by Simonis and Ashikhmin [35] and Beimel and Livne [2].
An infinite family of non-iss-representable matroids was given by Matúš [27]. As
we said before, all linearly representable matroids are iss-representable [9]. The
first example of an iss-representable matroid that is not linearly representable,
the non-Pappus matroid, was presented in [35].

A number of important results and interesting ideas for future research on
Problem 2 can be found in the works by Simonis and Ashikhmin [35] and
Matúš [27]. The first one deals with the geometric structure that lies behind
iss-representations of matroids. The second one analyzes the algebraic proper-
ties that the matroid induces in all its iss-representations. These properties make
it possible to find some restrictions on the iss-representations of a given matroid
and, in some cases, to exclude the existence of such representations. By using
these tools, Matúš [27] presented an infinite family of non-iss-representable ma-
troids with rank three.

One of the most important results on the optimization of the complexity
of secret sharing schemes for general access structures is the fact that nonlinear
secret sharing schemes are in general more efficient than the linear ones. By using
the results and techniques in [1,17], Beimel and Weinreb [4] presented families
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of access structures for which there exist nonlinear secret sharing schemes whose
complexity is polynomial on the number of participants while the complexity of
the best linear schemes is not polynomial.

Lower bounds on the optimal information rate of wide families of access struc-
tures can be found by applying the different techniques to construct secret shar-
ing schemes with high information rate given in [8,11,31,37,38]. Upper bounds
on this parameter have been found by using Information Theory [6,7,12]. In par-
ticular, Capocelli, De Santis, Gargano, and Vaccaro [12] presented for the first
time bounds smaller than 1 on the optimal information rate. Specifically, they
showed access structures whose optimal information rates are at most 2/3. Csir-
maz [13] proved that every secret sharing scheme defines a polymatroid that is
related to the access structure and he observed that those upper bounds on the
optimal information rate could be derived from this fact. A general combinato-
rial method to find upper bounds, the independent sequence method , was given
in [6] and was improved in [30]. However, there exists a wide gap between the
best known upper and lower bounds on the optimal information rate for most
access structures.

2 Basics on Secret Sharing, Matroids, and Polymatroids

The reader is referred to [36] for an introduction to secret sharing and to [29,39]
for general references on matroid theory. The book by Welsh [39] contains a
chapter about polymatroids. Table 1 summarizes the connections between some
of the concepts that are introduced here.

Let Q be a finite set of participants and D ∈ Q a special participant called
dealer . Consider a finite set E with a probability distribution on it. For every
i ∈ Q, consider a finite set Ei and a surjective mapping πi : E → Ei. Those
mappings induce random variables on the sets Ei. Let H(Ei) denote the Shannon
entropy of one of these random variables. For a subset A = {i1, . . . , ir} ⊆ Q, we
write H(A) for the joint entropy H(Ei1 . . . Eir ), and a similar convention is used
for conditional entropies as, for instance, in H(Ej |A) = H(Ej |Ei1 . . . Eir ).

The mappings πi define a secret sharing scheme Σ with access structure Γ on
the set P = Q − {D} of participants if H(ED) > 0 and H(ED|A) = 0 if A ∈ Γ
while H(ED|A) = H(ED) if A /∈ Γ . In this situation, every random choice of
an element x ∈ E, according to the given probability distribution, results in
a distribution of shares ((si)i∈P , s), where si = πi(x) ∈ Ei is the share of the
participant i ∈ P and s = πD(x) ∈ ED is the shared secret value.

A participant is said to be redundant in an access structure if there is no
minimal qualified set containing it. An access structure is connected if there is
not any redundant participant in it.

The ratio ρ(Σ) = H(ED)/ maxi∈P H(Ei) is called the information rate of
the scheme Σ, and the optimal information rate ρ(Γ ) of the access structure
Γ is the supremum of the information rates of all secret sharing schemes with
access structure Γ . It is not difficult to check that H(Ei) ≥ H(ED) for every
non-redundant participant i ∈ P , and hence ρ(Σ) ≤ 1. Secret sharing schemes
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with ρ(Σ) = 1 are said to be ideal and their access structures are called ideal as
well. Of course, ρ(Γ ) = 1 for every ideal access structure Γ .

If the sets E and Ei are vector spaces over some finite field K , the mappings
πi are linear mappings, and the uniform probability distribution is considered
in E, we say that Σ is a K -linear secret sharing scheme. The linear schemes
in which Ei = K for every i ∈ Q are ideal and they are called K -vector space
secret sharing schemes . Their access structures are called K -vector space access
structures . Observe that there exist ideal linear schemes that are not vector space
secret sharing schemes. In such schemes, dim Ei = dimED > 1 for every i ∈ P .

We notate P(Q) for the power set of Q. Given a secret sharing scheme Σ on
the set P = Q − {D}, consider the mapping h : P(Q) → R defined by h(X) =
H(X)/H(ED). This mapping satisfies the following properties [13].

1. h(∅) = 0, and
2. h is monotone increasing: if X ⊆ Y ⊆ Q, then h(X) ≤ h(Y ), and
3. h is submodular : if X, Y ⊆ Q, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ),

and
4. for every X ⊆ Q, either h(X ∪ {D}) = h(X) + 1 or h(X ∪ {D}) = h(X).

A polymatroid is any pair S = (Q, h) satisfying the first three properties.
Polymatroids satisfying the fourth property as well will be called here D-secret
sharing polymatroids, or D-ss-polymatroids for short. Therefore, every secret
sharing scheme Σ defines a D-ss-polymatroid S = S(Σ) = (Q, h). Nevertheless,
there exist D-ss-polymatroids that are not associated with any secret sharing
scheme.

For a D-ss-polymatroid S = (Q, h), we consider the access structure

ΓD(S) = {A ⊆ P : h(A ∪ {D}) = h(A)}.

Clearly, the access structure of a secret sharing scheme Σ is the one defined
in this way by the associated polymatroid S(Σ). Since there exists a secret
sharing scheme for every access structure Γ , all access structures are of the form
ΓD(S) for some D-ss-polymatroid S. Nevertheless, different D-ss-polymatroids
can define the same access structure.

A matroid can be defined as a polymatroid M = (Q, h) with the following
additional property.

4′. h(X) ∈ Z and 0 ≤ h(X) ≤ |X | for every X ⊆ Q, or, equivalently, for every
X ⊆ Q and x ∈ Q, either h(X ∪ {x}) = h(X) + 1 or h(X ∪ {x}) = h(X).

We need to recall now some terminology and basic facts about matroids. For a
matroid M = (Q, r) (we change from h to r because this is the usual notation
for matroids), the set Q and the mapping r are called, respectively, the ground
set and the rank function of the matroid M. The value r(X) is called the rank
of the subset X while the rank of the matroid M is defined to be r(M) = r(Q).
A subset X ⊆ Q is said to be independent if r(X) = |X |. The dependent subsets
are those that are not independent. A circuit is a minimally dependent subset
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while a basis is a maximally independent subset. All bases have the same number
of elements, which coincide with the rank of the matroid.

As a consequence of the results by Brickell and Davenport [10], if Σ is an
ideal scheme, then the polymatroid S = S(Σ) is a matroid and, hence, S is a
j-ss-polymatroid for every j ∈ Q. Moreover, by considering (πi(x))i∈Q−{j} as
shares of the secret value πj(x), the scheme Σ defines an ideal secret sharing
scheme with access structure Γj(S) on the set of participants Q − {j}. We say
that Γ is a matroid-related access structure if Γ = ΓD(M) for some matroid M.
It is not difficult to check that this definition is equivalent to the one we gave in
the Introduction. Observe that the results by Brickell and Davenport [10] imply
that all ideal access structures are matroid-related.

Let K be a finite field and let M be a r0 × n matrix with entries in K . If
|Q| = n and the points in Q are put in a one-to-one correspondence with the
columns of M , a matroid M on the set Q is obtained by considering that the
rank of a subset X ⊆ Q is equal to the rank of the corresponding columns
of M . In this situation, we say that the matrix M is a K -representation of the
matroid M. The matroids that can be defined in this way are called linearly rep-
resentable. Observe that linearly representable matroids coincide with the ones
that are obtained from vector space secret sharing schemes and their related
access structures are precisely the vector space access structures. The matroids
that are associated with an ideal linear secret sharing scheme are called multi-
linearly representable, a class that contains the linearly representable matroids.
The non-Pappus matroid is not linearly representable [29], but it was proved to
be multilinearly representable in [35]. The existence of iss-representable matroids
that are not multilinearly representable is an open problem.

The matroid M is said to be connected if, for every two different points i, j ∈
Q, there exists a circuit C with i, j ∈ C. As a consequence of [29, Proposition
4.1.2], the matroid M is connected if and only if the access structure ΓD(M) is
connected. A connected matroid is determined by the circuits that contain some
given point [21]. Therefore, if Γ is a matroid-related connected access structure,
there exists a unique matroid M with Γ = ΓD(M).

3 Polymatroids and Optimal Information Rate

Most of the upper bounds on the optimal information rate that have been given
until now were obtained by information-theoretical arguments. Specifically, by
using basic properties of the Shannon entropy function. Csirmaz [13] pointed out
that all those results are based solely on the so-called Shannon inequalities on
the entropy of subsets of variables and, hence, they can be deduced from the fact
that every secret sharing scheme defines a D-ss-polymatroid related to the access
structure.

If S = (Q, h) is a polymatroid, we define σ(S) = max{h({x}) : x ∈ Q}. For
every access structure Γ , we consider the value κ(Γ ) = inf σ(S), where the infi-
mum is taken over all D-ss-polymatroids S with Γ = ΓD(S). The upper bounds
on the optimal information rate that can be obtained by using polymatroids
(that is, by using Shannon inequalities) are based on the following proposition.
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Proposition 5. The optimal information rate of every access structure Γ is
upper bounded by ρ(Γ ) ≤ 1/κ(Γ ).

Proof. Let Σ be a secret sharing scheme with access structure Γ and let S be
the D-ss-polymatroid defined by Σ. Then ρ(Σ) = 1/σ(S) ≤ 1/κ(Γ ). ��

Therefore, upper bounds on ρ(Γ ) can be found by deriving lower bounds on
κ(Γ ) from combinatorial properties of the access structure. Actually, 1/κ(Γ )
is the best upper bound that can be obtained by this technique. Since κ(Γ )
deals only with the properties of the D-ss-polymatroids S such that Γ = ΓD(S),
and some of these polymatroids may not be associated with any secret sharing
scheme, there can exist access structures Γ such that ρ(Γ ) < 1/κ(Γ ). As far
as we know, no examples of access structures in this situation are known, but
Theorem 8 gives some intuition supporting their existence.

Since κ(Γ ) = 1 if Γ is matroid-related, it is clear that no upper bounds on
the optimal information rate of matroid-related access structures can be found
by using this method.

As far as we know, the only known upper bounds that do not fit this pat-
tern are the one given by Gál [17], which was improved in [28], and the one
presented by Beimel and Livne [2]. The first one applies only to linear secret
sharing schemes and it is the basis for proving the separation between the com-
plexities of linear and nonlinear schemes [1,4]. The second one applies to the
access structures related to the Vamos matroid.

As an example of the kind of results that are obtained by using polymatroids,
we present the independent sequence method , which was introduced in [6] and
was improved in [30]. Let Γ be an access structure on a set of participants P .
Consider A ⊆ P and an increasing sequence of subsets B1 ⊆ · · · ⊆ Bm ⊆ P .
We say that (B1, . . . , Bm | A) is an independent sequence in Γ with length m
and size s if |A| = s and, for every i = 1, . . . , m, there exists Xi ⊆ A such that
Bi ∪ Xi ∈ Γ , while Bm /∈ Γ and Bi−1 ∪ Xi /∈ Γ if i ≥ 2. The independent
sequence method is based on the following result. We notice that this theorem
was not stated in [6,30] in terms of polymatroids, but in terms of the entropy
function. The proof in [6] is easily adapted to this new statement.

Theorem 6. ([6,30]) Let Γ be an access structure on the set P . Let S = (Q, h)
be a D-ss-polymatroid such that Γ = ΓD(S). If there exists in Γ an indepen-
dent sequence (B1, . . . , Bm | A) with length m and size s, then h(A) ≥ m. As a
consequence, κ(Γ ) ≥ m/s and ρ(Γ ) ≤ s/m.

The following corollary of that theorem points out that independent sequences
can be used in the characterization of matroid-related access structures. Actually,
the converse of this result will be proved in Section 4.

Corollary 7. An access structure is not matroid-related if it admits an inde-
pendent sequence with length m and size s < m.

The next result by Csirmaz [13] points out the limitations of the use of polyma-
troids to find upper bounds on the optimal information rate.
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Theorem 8. ([13]) If Γ is an access structure on a set P of participants with
|P | = n, then κ(Γ ) ≤ n.

Proof. It is not difficult to prove that there exists a D-ss-polymatroid S = (Q, h)
with Γ = ΓD(S) such that h(X) = n + (n − 1) + · · · + (n − (k − 1)) for every
subset of participants X ⊆ P with |X | = k. ��
By taking into account the known methods to construct secret sharing schemes,
it is against intuition to suppose that there can exist, for every access structure,
a secret sharing scheme such that the length of the shares is around n times the
length of the secret. Therefore, as a consequence of Theorem 8, it seems that the
optimal information rate of an access structure will be in general much smaller
than 1/κ(Γ ), the best upper bound that can be obtained by using polymatroids.
Nevertheless, besides the Shannon inequalities, the properties of the entropy
function imply other inequalities, the so-called non-Shannon inequalities . Thus,
it might be possible to find better upper bounds on the optimal information rate
than the ones derived from Proposition 5 by using information theory. This may
be the case for matroid-related access structures as well.

Anyway, the polymatroid technique has proved to be very useful when study-
ing some particular families of access structures. In some cases the obtained
upper bounds are tight or, at least, close to the best known lower bounds. In the
following we prove a positive result for the polymatroid technique. Namely, we
prove in Theorem 12 that the bounds that are obtained by this technique for an
access structure apply also to its dual.

Before presenting our result, we recall some facts about dual access structures
and dual matroids. The dual of the access structure Γ on the set P is defined as
the access structure Γ ∗ = {A ⊆ P : P −A /∈ Γ}. If M = (Q, r) is a matroid, the
mapping r∗ : P(Q) → Z defined by r∗(X) = |X | − r(Q) + r(Q − X) is the rank
function of a matroid M∗ = (Q, r∗), which is called the dual of the matroid M.
Since ΓD(M∗) = (ΓD(M))∗, the dual of a matroid-related access structure is
matroid-related. If Σ is an ideal secret sharing scheme with access structure Γ ,
then there exists a linear scheme Σ∗ with access structure Γ ∗ and information
rate ρ(Σ∗) = ρ(Σ) [14]. Actually, Σ can be seen as a linear code, and the linear
scheme Σ∗ is the one constructed from the dual code. As a consequence, if a
matroid is linearly or multilinearly representable, the same applies to the dual
matroid. Nevertheless, it is not known whether the dual of an iss-representable
matroid is iss-representable, and the relation between ρ(Γ ) and ρ(Γ ∗) is an open
problem too. Our result, Theorem 12, deals with this open problem. Specifically,
we prove that the upper bounds for ρ(Γ ) that are obtained by the polymatroid
technique apply also to ρ(Γ ∗).

There exist several inequivalent ways to define the dual of a polymatroid [39]
and we have to choose the suitable one to prove our result. Specifically, if
S = (Q, h) is a polymatroid, we consider the dual polymatroid S∗ = (Q, h∗),
where h∗ : P(Q) → R is defined by h∗(X) =

∑
x∈X h({x}) − h(Q) + h(Q − X).

This definition generalizes the duality that is usually considered for matroids.
Clearly, if M = (Q, r) is a loopless matroid, that is, with r({x}) = 1 for every
x ∈ Q, then the dual matroid of M coincides with the dual polymatroid. We
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prove in the next lemma that S∗ is actually a polymatroid, and we describe in
Lemma 10 the relation between the dual of a D-ss-polymatroid and the dual of
the corresponding access structure.

Lemma 9. S∗ = (Q, h∗) is a polymatroid.

Proof. Obviously, h∗(∅) = 0. Take a subset X ⊆ Q and a point y /∈ X . Since
h({y}) + h(Q − (X ∪ {y})) ≥ h(Q − X), we get that h∗(X ∪ {y}) ≥ h∗(X).
Therefore, h∗ is monotone increasing. Finally, consider two arbitrary subsets
X, Y ⊆ Q. Then from the definition of h∗ and the submodularity of h,

h∗(X) + h∗(Y ) − h∗(X ∪ Y ) − h∗(X ∩ Y ) =

= h(Q − X) + h(Q − Y ) − h(Q − (X ∪ Y )) − h(Q − (X ∩ Y )) ≥ 0.

This proves that h∗ is submodular. ��

Lemma 10. Let S = (Q, h) be a D-ss-polymatroid. Assume that ΓD(S) = ∅
and ∅ /∈ ΓD(S). Then S∗ = (Q, h∗) is also a D-ss-polymatroid and ΓD(S∗) =
(ΓD(S))∗.

Proof. Let Γ = ΓD(S). Since ∅ /∈ Γ and P = Q − {D} ∈ Γ , we have that
h({D}) = 1 and h(P ) = h(Q), and hence h∗({D}) = 1. Consider a subset
X ⊆ P . Then h∗(X ∪ {D}) = h({D}) +

∑
x∈X h({x}) − h(Q) + h(P − X).

If X ∈ Γ ∗, then P − X /∈ Γ and h(P − X) = h(Q − X) − 1. In this case,
h∗(X ∪{D}) = h∗(X). Analogously, if X /∈ Γ ∗ then h(P − X) = h(Q − X), and
hence h∗(X ∪ {D}) = h∗(X) + 1. ��

To be precise, the polymatroid S∗ is properly a dual of S, in the sense that
S∗∗ = S, if and only if h(Q − {x}) = h(Q) for every x ∈ Q. The polymatroids
satisfying this property will be said to be normalized . In addition, we need
some technical results that are given in the next lemma, whose proof is an easy
exercise.

Lemma 11. Let S = (Q, h) be a polymatroid. Then the following properties
hold.

1. The polymatroid S∗ = (Q, h∗) is normalized.
2. h∗∗(X) ≤ h(X) for every X ⊆ Q.
3. S is normalized if and only if S∗∗ = S.
4. If S is normalized, then h∗({x}) = h({x}) for every x ∈ Q.

Theorem 12. Let Γ be an access structure with Γ = ∅ and ∅ /∈ Γ , and let Γ ∗

be its dual. Then κ(Γ ) = κ(Γ ∗).

Proof. Let Γ be an access structure. Consider the sets of real numbers Ω(Γ ) =
{σ(S) : Γ = ΓD(S)} and Ω̂(Γ ) = {σ(S) : S is normalized, Γ = ΓD(S)}. If
S is a D-ss-polymatroid such that Γ = ΓD(S), then S∗∗ is normalized, Γ =
ΓD(S∗∗) and σ(S∗∗) ≤ σ(S). Therefore, κ(Γ ) = inf Ω(Γ ) = inf Ω̂(Γ ). The proof
is concluded by taking into account that Ω̂(Γ ) = Ω̂(Γ ∗). ��
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4 On the Characterization of Matroid-Related Access
Structures

4.1 A Theorem by Seymour

Let Γ be an access structure on a set P and take a subset Z ⊆ P . We define the
access structures Γ \Z and Γ/Z on the set P−Z by Γ \Z = {A ⊆ P−Z : A ∈ Γ}
and Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}. Every access structure that can be
obtained from Γ by repeatedly applying the operations \ and / is called a minor
of the access structure Γ . If Z1 and Z2 are disjoint subsets then (Γ \ Z1)/Z2 =
(Γ/Z2) \ Z1, and (Γ \ Z1) \ Z2 = Γ \ (Z1 ∪ Z2), and (Γ/Z1)/Z2 = Γ/(Z1 ∪ Z2).
Therefore, every minor of Γ is of the form (Γ \ Z1)/Z2 for some disjoint subsets
Z1, Z2 ⊆ P . In addition, (Γ \ Z)∗ = Γ ∗/Z and (Γ/Z)∗ = Γ ∗ \ Z.

We can consider as well minors of matroids and polymatroids. Let S = (Q, h)
be a polymatroid. Given a subset Z ⊆ Q, we define the polymatroids S \ Z =
(Q − Z, h\Z) and S/Z = (Q − Z, h/Z), where h\Z(X) = h(X) and h/Z(X) =
h(X ∪ Z) − h(Z) for every X ⊆ Q − Z. It is not difficult to prove that, if S is a
D-ss-polymatroid and Γ = ΓD(S), then for every Z ⊆ P , both S \ Z and S/Z
are D-ss-polymatroids and Γ \ Z = ΓD(S \ Z) and Γ/Z = ΓD(S/Z). Moreover,
if M = (Q, r) is a matroid, then M \ Z and M/Z are matroids as well. The
following proposition is a direct consequence of all these considerations.

Proposition 13. Every minor of a matroid-related access structure is matroid-
related.

We introduce now the forbidden minors in the characterization by Seymour.
The set of participants of the access structures Φ and Φ̂ is P = {p1, p2, p3, p4}.
The minimal qualified subsets of Φ are {p1, p2}, {p2, p3} and {p3, p4}, while the
minimal qualified subsets Φ̂ are {p1, p2}, {p2, p3}, {p2, p4} and {p3, p4}. For every
s ≥ 3, the set of participants of the access structure Ψs is P = {p1, . . . , ps, ps+1}
and its minimal qualified subsets are {p1, . . . , ps} and {pi, ps+1} for every i =
1, . . . , s. Observe that Φ∗ ∼= Φ and Ψ∗s = Ψs. The minimal qualified subsets of Φ̂∗

are {p1, p3, p4}, {p2, p3} and {p2, p4}.
The forbidden minor characterization of matroid ports by Seymour is stated

here in our terminology.

Theorem 14. (Seymour [32]) An access structure is matroid-related if and only
if it has no minor isomorphic to Φ, Φ̂, Φ̂∗ or Ψs with s ≥ 3.

4.2 Generalizing the Result by Brickell and Davenport

New characterizations of matroid-related access structures are given in Theo-
rem 17. They are obtained by combining Theorem 14 with the results in Sec-
tion 3. As a consequence we obtain Theorem 4, a generalization of the result by
Brickell and Davenport [10].

We need to introduce two technical results that are used in the proof of Theo-
rem 17. First, the independent sequence method we have described in Section 3
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has a good behavior with respect to minors, and second, all the forbidden mi-
nors in Seymour’s characterization admit an independent sequence with length
m = 3 and size s = 2.

Lemma 15. Let Γ ′ be a minor of an access structure Γ . If there exists in Γ ′

an independent sequences with length m and size s, then the same occurs for Γ .

Proof. Consider disjoint subsets Z1, Z2 ⊆ P such that Γ ′ = (Γ \Z1)/Z2. Suppose
that (B1, . . . , Bm | A) is an independent sequence with length m and size s = |A|
in Γ ′. Then (B1 ∪ Z2, . . . , Bm ∪ Z2 | A) is an independent sequence in Γ . ��

Proposition 16. Every one of the access structures Φ, Φ̂, Φ̂∗, and Ψs with s ≥ 3
admits an independent sequence with length m = 3 and size s = 2.

Proof. We are going to consider sequences (B1, B2, B3 | a1a2) with B1 ⊆ B2 ⊆
B3 ⊆ P and a1, a2 ∈ P . Such a sequence will be independent in the access
structure Γ if the subsets B1 ∪ {a1, a2}, B2 ∪ {a1} and B3 ∪ {a2} are in Γ while
B1 ∪ {a1}, B2 ∪{a2} and B3 are not in Γ . The sequence (∅, {p1}, {p1, p4} | p2p3)
is independent for both Φ and Φ̂, while an independent sequence for Φ̂∗ is
(∅, {p4}, {p1, p4} | p2p3). Finally, (∅, {ps}, {p2, . . . , ps} | ps+1p1) is an independent
sequence in Ψs. ��

Theorem 17. Let Γ be an access structure. Then the following statements are
equivalent.

1. Γ is matroid-related.
2. There does not exist in Γ any independent sequence with length m and size

s < m.
3. There does not exist in Γ any independent sequence with length m = 3 and

size s = 2.
4. κ(Γ ) < 3/2.

Proof. If Γ is matroid-related, then κ(Γ ) = 1 and, by Corollary 7, there does not
exist in Γ any independent sequence with length m and size s < m. In addition,
by Theorem 6, there does not exist in Γ any independent sequence with length
m = 3 and size s = 2 if κ(Γ ) < 3/2. Finally, if Γ is not matroid-related, then
there exists a minor Γ ′ of Γ that is isomorphic to one of the forbidden minors
in Theorem 14. From Proposition 16, Γ ′ admits an independent sequence with
length m = 3 and size s = 2 and, by Lemma 15, the same occurs with Γ . ��

Two direct consequences of Theorem 17 are stated in Corollary 18. Our main
result, Theorem 4, is proved from the second one. As we said before, we have
obtained in this way a generalization of the important result by Brickell and Dav-
enport [10], who proved that the access structure of every ideal secret sharing
scheme is matroid-related. Moreover, since the result by Brickell and Daven-
port has not been used in the proof of Theorem 17, we have presented here an
alternative proof for it.
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Corollary 18. Let Γ be an access structure. Then the following statements hold.

1. Γ is matroid-related if and only if κ(Γ ) = 1.
2. If Γ is not matroid-related, then κ(Γ ) ≥ 3/2, and hence ρ(Γ ) ≤ 2/3.

This result implies a gap in the values of κ(Γ ). Namely, there does not exist
any access structure Γ with 1 < κ(Γ ) < 3/2. This gap does not mean that the
corresponding gap appears in the values of the optimal information rate ρ(Γ ).
Specifically, the existence of non-ideal matroid-related access structures Γ with
2/3 < ρ(Γ ) < 1 is an open problem.

5 On Non-ideal Matroid-Related Access Structures

Since there exist matroids that are not iss-representable, there are matroid-
related access structures that are not ideal. Very little is known about the opti-
mal information rate of these structures. We cannot find upper bounds by the
techniques in Section 3 because κ(Γ ) = 1 if Γ is matroid-related. By using other
techniques, upper bounds have been given by Beimel and Livne [2]. We present
here some lower bounds on the optimal information rate of the access structures
related to the Vamos matroid and the non-Desargues matroid.

The Vamos matroid V is the matroid on the set Q1 = {v1, . . . , v8} such that
its bases are all sets with cardinality 4 except the following five: {v1, v2, v3, v4},
{v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8} and {v5, v6, v7, v8}. The Vamos ma-
troid is not iss-representable [33] and, hence, the access structures related to it
are not ideal. In a recent work, Beimel and Livne [2] prove that, for every secret
sharing scheme realizing one of these access structures with domain of the secrets
of size k, the size of the domain of the shares is at least k+Ω(

√
k). Observe that

this bound does not exclude that the optimal information rate of these structures
may be equal to one, because ρ(Γ ) is the supremum of the information rates of
the schemes realizing Γ .

The non-Desargues matroid N is the matroid with rank 3 on a set with 10
points determined by a non-Desargues configuration on a projective plane. That
is, take three different lines L1, L2, L3 that meet in a point p0 and, on the line
Li, two different points qi, ri = p0. Finally, consider the points s12, s23, and s31,
where sij is the intersection of the lines qiqj and rirj . If such a configuration has
been taken on a projective plane over a field, the points s12, s23 and s31 must
be collinear by the Desargues’ Theorem. The non-Desargues matroid is defined
by this configuration but considering that the three points sij are not collinear.
That is, the set of points of N is Q2 = {p0, q1, q2, q3, r1, r2, r3, s12, s23, s31}, and
the bases are all subsets with three points that are not supposed to be collinear.
As a consequence of the Desargues’ Theorem, this matroid is not linearly repre-
sentable. Moreover, Matúš [27] proved that it is not iss-representable.

Lower bounds on the optimal information rate of the access structures related
to those matroids are given in the next theorem. We just present here a sketch
of the proof. All details will be discussed in the full version.
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Theorem 19. Consider two arbitrary points D1 ∈ Q1 and D2 ∈ Q2 and the
access structures Γ1 = ΓD1(V) and Γ2 = ΓD2(N ). Then ρ(Γ1) ≥ 2/3 and ρ(Γ2) ≥
3/4.

Proof. Suppose that D1 = v1. For every 2 ≤ i < j ≤ 8, let Γ (i,j) be the access
structure on P1 whose minimal qualified subsets are the minimal qualified subsets
A of Γ1 such that {vi, vj} ⊆ A. It can be proved that Γ (3,4), Γ (5,6) and Γ (7,8)

are K -vector space access structures for some finite field K . By applying the
λ-decomposition technique to these substructures, we get that ρ(Γ1) ≥ 2/3. A
similar construction can be obtained for other values of D1 ∈ Q1.

There exists a finite field K such that, for every x ∈ P2 = Q2 − {D2}, the
matroid N \{x} is K -representable and, hence, Γ2\{x} is a K -vector space access
structure. Therefore, we can apply the λ-decomposition technique by Stinson [38]
to the nine access structures {Γ2 \ {x}}x∈P2. By doing that, a secret sharing
scheme for Γ2 with information rate equal to 3/4 is obtained. ��

Table 1

Access structures of. . . Access structures related to. . .

SSS with ρ > 2/3
=⇒ [here]
⇐= ? Matroids

⇑ �⇓ [27,33]
Ideal SSS ⇐⇒ [10] Iss-representable matroids

⇑ ⇓?
Ideal linear SSS ⇐⇒ Multilinearly representable matroids

⇑ �⇓ [35]
Vector space SSS ⇐⇒ [9] Linearly representable matroids

6 Open Problems

The known results about the connection between secret sharing and matroids,
including our main result, are summarized in Table 1. Equally, some open prob-
lems appear there. The following open problem was posed in [24,26].

Problem 20. Is there any access structure Γ with 2/3 < ρ(Γ ) < 1?

From Theorem 4, if such an access structure exists, it must be matroid-related.
We proved before that there exist non-ideal matroid-related access structures
Γ with ρ(Γ ) ≥ 3/4. Nevertheless, it is possible that ρ(Γ ) = 1 even if Γ is not
ideal. Observe that the results in [2] about the length of the shares for the access
structures related to the Vamos matroid do not imply an affirmative answer to
Problem 20. Actually, very little is known about the optimal information rate of
non-ideal matroid-related access structures.

Problem 21. Is there any matroid-related access structure Γ with ρ(Γ ) < 1?
And with ρ(Γ ) ≤ 2/3?
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The existence of ideal access structures that are not realized by any ideal linear
secret sharing scheme is another unsolved question, which is equivalent to the
following open problem.

Problem 22. Is there any iss-representable matroid that is not multilinearly rep-
resentable?

Even though the existence of access structures Γ with ρ(Γ ) < 1/κ(Γ ) is quite
natural from Theorem 8, no actual example is known.

Problem 23. Present an access structure Γ with ρ(Γ ) < 1/κ(Γ ).
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Abstract. In this work we present secure two-party protocols for var-
ious core problems in linear algebra. Our main result is a protocol to
obliviously decide singularity of an encrypted matrix: Bob holds an n×n
matrix, encrypted with Alice’s secret key, and wants to learn whether or
not the matrix is singular (while leaking nothing further). We give an
interactive protocol between Alice and Bob that solves the above prob-
lem in O(log n) communication rounds and with overall communication
complexity of roughly O(n2) (note that the input size is n2). Our tech-
niques exploit certain nice mathematical properties of linearly recurrent
sequences and their relation to the minimal and characteristic polyno-
mial of the input matrix, following [Wiedemann, 1986]. With our new
techniques we are able to improve the round complexity of the commu-
nication efficient solution of [Nissim and Weinreb, 2006] from O(n0.275)
to O(log n).

At the core of our results we use a protocol that securely computes the
minimal polynomial of an encrypted matrix. Based on this protocol we
exploit certain algebraic reductions to further extend our results to the
problems of securely computing rank and determinant, and to solving
systems of linear equations (again with low round and communication
complexity).

Keywords: Secure Linear Algebra, Linearly Recurrent Sequences,
Wiedemann’s Algorithm.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryp-
tography in particular. Numerous cryptographic applications such as private
information retrieval, secret sharing schemes, and multi-party secure computa-
tion make use of linear algebra. In particular, the ability to solve a set of linear
equations is an important algorithmic and cryptographic tool. In this work we
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design efficient and secure protocols for various linear algebra problems. Our
protocols enjoy both low communication and round complexity.

The secure computation of many linear algebra tasks efficiently reduces to
the following problem. Alice holds the private key of a public-key homomor-
phic encryption scheme, and Bob holds a square matrix A whose entries are
encrypted under Alice’s public key. Alice and Bob wish to decide whether A
is singular while leaking no other information on A. Our protocol is based on
an algorithm by Wiedemann for “black-box linear algebra” [24] which is highly
efficient when applied to sparse matrices. This algorithm uses linearly recurrent
sequences and their relation to the greatest common divisor problem for polyno-
mials (see Section 3). Somewhat surprisingly, we design a secure protocol based
on this algorithm which is applicable to general matrices. Previous secure pro-
tocols for linear algebra problems used basic linear algebra techniques such as
Gaussian Elimination. Our protocols exploit more advanced properties of linear
systems to achieve improved complexity bounds.

Cramer and Damg̊ard initiated the study of secure protocols for solving vari-
ous linear algebra problems [6]. Their work was done in the information theoretic
multi-party setting, with the main focus on achieving constant round complex-
ity. The communication complexity of their protocols is Ω(n3) while the size of
the inputs is just O(n2). A generic approach for designing secure protocols is to
apply the garbled circuit method of Yao [25], for which the communication com-
plexity is related to the Boolean circuit complexity of the underlying function.
However, these linear algebra functions are strongly related to the problem of
matrix multiplication [4], with essentially the same circuit complexity. The best
known upper bound for matrix multiplication is O(nω) [5] for ω ∼= 2.38, which
is still larger than the input size. In a recent paper, Nissim and Weinreb [19]
introduced an oblivious singularity protocol with communication complexity of
roughly O(n2). However, their protocol, which relies on the Gaussian elimination
procedure, has round complexity Ω(n0.275), which is considered relatively high.
The need for low round complexity is motivated by the fact that in most practi-
cal systems the time spent on sending and receiving messages is large compared
to local computation time.

Our Results. We design a secure protocol for deciding singularity of a matrix,
which gets the best of previous results, both in terms of communication and
round complexity, up to a logarithmic factor. We achieve communication com-
plexity of roughly O(n2) and O(log n) round complexity. Our constructions are
secure, assuming the existence of a homomorphic public-key encryption scheme
and a secure instantiation of Yao’s garbled circuit protocol. The latter can be
constructed using an appropriate symmetric key encryption and an oblivious
transfer protocol which is secure against semi-honest adversaries. Using the pro-
tocol for deciding singularity, we design a secure protocol for solving a linear
system Ax = y based on an algorithm by Kaltofen and Saunders [14]. The tech-
nical difficulty in applying this algorithm is that it depends on the rank of the
matrix A. Computing the rank of A in the clear would compromise the privacy
of the protocol. We overcome this problem by designing a protocol for computing
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an encryption of the rank of an encrypted matrix. As the rank of a matrix is
a basic concept in linear algebra, this protocol is of independent interest. The
above techniques also yield communication and round efficient secure protocols
for computing the minimal polynomial and the determinant of an encrypted
matrix. Our results give rise to communication and round efficient secure proto-
cols for problems that are reducible to linear algebra, e.g., perfect matching and
problems with low span program complexity [15]. We summarize our main pro-
tocols in Table 1. Note that the outputs of our protocols are always encrypted,
which in particular enables composition of our protocols. Thus, our protocols
may be conveniently used as sub-protocols in other secure protocols.

Our protocols are designed under the assumption that Bob holds an encrypted
version of the input and Alice holds the decryption key. In practice, secure lin-
ear algebra is often needed when the inputs of Alice and Bob are in the clear.
However, applying simple reductions, we are able to give improved secure pro-
tocols for many natural problems of this kind. For example, consider the linear
subspace intersection problem, in which each of Alice and Bob holds a subspace
of �n and they wish to securely decide whether there is a non-zero vector in
the intersection of their input subspaces. Even for insecure computation, it is
shown in [2] that the deterministic communication complexity of the problem is
Ω(n2). This result agrees with ours up to a logarithmic factor.1 Another natural
problem that we can compute securely and efficiently is solving a shared system
of linear equations. Here Alice and Bob both hold independent systems of linear
equations in the same variables. They jointly want to compute a solution vec-
tor that satisfies both sets of equations, without revealing anything about their
secret inputs.

Table 1. Basic linear algebra protocols with O(n2 log n · log |�|) communication com-
plexity and O(log n) rounds. Here A ∈ �n×n is a matrix and x ∈ �n is a vector.

Protocol name INPUT OUTPUT
Bob Alice Bob Alice

MINPOLY Enc(A) SK Enc(mA) —
SINGULAR Enc(A) SK Enc(det(A) = 0?) —
RANK Enc(A) SK Enc(rank(A)) —
DET Enc(A) SK Enc(det(A)) —
LINEAR SOLVE Enc(A),Enc(x) SK Enc(y) (y random s.t. Ax = y) —

Techniques. Our protocols rely on random reductions from computing linear
algebra properties of a matrix A ∈ �n×n to computing the minimal polynomial
mA of a certain matrix related to A [24,14,11]. In particular, the singularity of
A is related to the constant coefficient of this minimal polynomial, and the rank
of A to its degree.
1 Although determining the randomized communication complexity of subspace inter-

section is an open problem, it serves as an evidence that our upper bound may be
tight.
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Since no efficient secure protocol for computing the minimal polynomial of
a shared matrix is known, we exploit another probabilistic reduction from this
problem to computing the minimal polynomial of a particular linearly recurrent
sequence. A sequence of field elements a = (ai)i∈� ∈ �� is linearly recurrent of
order n ∈ � if there exist f0, . . . , fn ∈ � with fn �= 0 such that

∑n
j=0 fjai+j =

0, for all i ∈ �. The field elements f0, . . . , f2n−1 completely characterize the
sequence a and are, roughly speaking, related to its minimal polynomial (see
Section 3). Picking u, v uniformly in �n, the minimal polynomial of the linearly
recurrent sequence a = (u�Aiv)i∈� of order n coincides, with high probability,
with the minimal polynomial of matrix A [11].

To securely compute the minimal polynomial of the above sequence, we first
show how to compute the first 2n elements of a in low round and communication
complexity. Then we use the Berlekamp/Massey algorithm [17] to reduce the
problem to computing the extended greatest common divisor of two polynomials
derived from the first 2n elements of sequence a. Finally, we exploit the fact the
the Boolean circuit complexity of the extended GCD algorithm is significantly
smaller than that of the original linear algebraic function to apply Yao’s garbled
circuit method here. Moreover, we show a general technique to apply Yao’s
garbled circuit method from a starting point where Bob holds an encrypted input
and Alice holds the decryption key. As we discussed earlier in the introduction,
trying to apply Yao’s construction directly to the original linear algebra problems
would result in Ω(nω) communication complexity.

Organization. In Section 2 we discuss the setting and some basic building blocks.
In Section 3 we define linearly recurrent sequences and discuss their basic prop-
erties. Then, in Section 4, we show how to compute the minimal polynomial of an
encrypted matrix. We design protocols for deciding singularity, computing rank
and determinant of an encrypted matrix, and solving an encrypted linear system
in Section 5. The appendices contain some additional details and applications of
our secure protocols.

2 General Framework

Homomorphic encryption schemes. As a first step in our protocols, we
reduce the original linear algebra problems to a state where Bob holds data
encrypted by a public key homomorphic encryption scheme, and Alice holds
the private decryption key. Our constructions use semantically-secure public-
key encryption schemes that allow for simple computations on encrypted data.
In particular, we use encryption schemes where given two encryptions Enc(m1)
and Enc(m2), we can efficiently compute a random encryption Enc(m1 + m2).
Note that this implies that given an encryption Enc(m) and c ∈ �, we can
efficiently compute a random encryption Enc(cm). We will be working with en-
cryption of elements in a finite field. Paillier’s [20] cryptosystem is an appropriate
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choice for this purpose. One minor issue is that the domain of Paillier’s cryp-
tosystem is the ring Zn, where n is the product of two large and secret primes.
Note that Zn has all of the properties of a finite field except that some of the
non-zero elements in Zn are not invertible. We assume that all the non-zero
values used by our protocols are invertible elements of Zn. This assumption is
reasonable since otherwise one could use our protocols to factor n. Particularly,
an extended GCD algorithm on any element x used by our protocols and n,
would either find the inverse of x mod n, or find a non-trivial factor of n. So
in the context of our paper, we can describe computations in Zn as if it was a
finite field. Several other constructions of homomorphic encryption schemes are
known, each with their particular properties (see e.g. [22,13,10,21,23,3,18,7]).

We view our protocols as algorithms that Bob executes on his encrypted input.
As mentioned above, the homomorphic encryption allows Bob to locally perform
several simple computations on his input. However, other computations require
the help of Alice. As a simple example of a protocol where Bob uses Alice’s help,
consider the following (folklore) protocol MATRIX MULT for encrypted matrix
multiplication.

Bob holds the encryptions Enc(A) and Enc(B) of two matrices A ∈ �
n×�

and B ∈ ��×m. Alice holds the private decryption key. At the end of the pro-
tocol Bob should hold the encryption Enc(AB) of the product matrix AB ∈
�

n×m. Bob chooses two random matrices RA ∈ �
n×� and RB ∈ �

�×m and
sends Alice the two matrices Enc(A + RA) and Enc(B + RB), which he can lo-
cally compute using the homomorphic properties of Enc(·). Alice decrypts these
matrices and returns Enc((A + RA) · (B + RB)) to Bob. Finally Bob locally
computes Enc(AB) = Enc((A + RA)(B + RB)) − Enc(ARB) − Enc(RAB) −
Enc(RARB). The protocol runs in two rounds and the communication com-
plexity of this protocol is n� + �m + nm. The security proof for this protocol is
straightforward.

Notation. We denote by neg(x) a function that is negligible in x, i.e., neg(x) =
x−ω(1). Let � be a finite field with p elements, and denote k = log p. To make
our complexity statements simpler, we make the assumption that the size of
the field � is not too big2 with respect to the dimensions of the matrix, i.e.
log |�| = k = O(n). Our protocols usually work with error probability of about
n/|�|. That is, we also assume the field size to be super-polynomial in n. If the
field size is too small, we can always work over an extension field of appropriate
size. This may add a small multiplicative factor polylog(n) to the communication
complexity of the protocol. For example, for the case of �2 we could view the
elements as if they were from (�2)α for α = (log n)1+ε. This would add a factor
of (log n)1+ε to the communication complexity, and reduce the error probability
to neg(n).

For an encryption scheme, we denote by λ its security parameter. We assume
that the result of encrypting a field element is of length O(λ + k). As a con-

2 For bigger fields the complexity of our protocols grows at most by an additional
factor of log k.
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vention, the complexities of our protocols count the number of encrypted field
elements that are communicated during the protocol.

We view a vector v ∈ �
n as a column vector. To denote a row vector

we use v�. For a vector v ∈ �
n, we denote by Enc(v) the coordinate-wise

encryption of v. That is, if v = 〈a1, . . . , an〉 where a1, . . . , an ∈ �, then Enc(v) =
〈Enc(a1), . . . , Enc(an)〉. Similarly, for a matrix A ∈ �m×n, we denote by Enc(A)
the m × n matrix such that Enc(A)[i, j] = Enc(A[i, j]). An immediate conse-
quence of the above properties of homomorphic encryption schemes is the abil-
ity to perform the following operations without knowledge of the secret key: (i)
Given encryptions of two vectors Enc(v1) and Enc(v2), we can efficiently com-
pute Enc(v1 + v2), and similarly with matrices. (ii) Given an encryption of a
vector Enc(v) and a constant c ∈ �, we can efficiently compute Enc(cv). (iii)
Given an encryption of a matrix Enc(A) and a matrix A′ of the appropriate
dimensions, we can efficiently compute Enc(AA′) and Enc(A′A), as any entry in
the resulting matrix is a linear combination of some encrypted matrix entries.

Adversary model. Our protocols are constructed for the two-party semi-honest
adversary model.3 Roughly speaking, both parties are assumed to act in accor-
dance with their prescribed actions in the protocol. Each party may, however,
collect any information he/she encounters during the protocol run, and try to
gain some information about the other party’s input. We will compose our pro-
tocols in a modular manner and will argue about their privacy using well-known
sequential composition theorems [12] in the semi-honest adversary model. De-
signing communication and round efficient secure protocols for linear algebraic
problems in the malicious model remains an open problem.

Complexity Measures. Any interaction between Alice and Bob in the proto-
col is called a round of communication. The total number of such interactions
consists the round complexity of the protocol. In each round some data is sent
from Bob to Alice or from Alice to Bob. The size of all the data (i.e. the total
number of bits) that is communicated between Alice and Bob during the whole
execution of the protocol is called the communication complexity of the protocol.
We make the convention to count the communication complexity of our proto-
cols in terms of the number of encrypted values Enc(·) exchanged between Alice
and Bob.

2.1 Applying Yao’s Garbled Circuit Method

In Yao’s garbled circuit method [25] Alice and Bob hold private binary inputs
x and y, respectively, and wish to jointly compute a functionality f(x, y), such
that Alice learns f(x, y) and Bob learns nothing. Let f be a functionality with

3 Getting the same results in the multi-party information theoretic setting remains an
open problem. In particular, our protocols reduce the linear algebra problems into a
variant of the extended GCD problem for polynomials. Unfortunately, a communi-
cation and round efficient protocol for this problem is not known in the multi-party
information theoretic setting.
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m′ inputs and �′ outputs, which can be computed by a Boolean circuit of size
G. Then the construction of Yao results in a protocol that runs in a constant
number of rounds and communication complexity O(G + m′ + �′).4

In our (homomorphic encryption) setting, we typically get to a state where
Bob holds Enc(y) and Alice holds a private decryption key, and they wish for
Bob to learn Enc(f(y)) while Alice learns nothing, for some function f com-
puted by a given circuit. In our protocols, we sometimes need to switch from
this “homomorphic encryption setting” to the setting of Yao’s garbled circuit
to perform some tasks more efficiently. Then, we change from this setting to
the “homomorphic encryption setting” and continue. For completeness, next we
explain a simple way of doing so securely and efficiently.

From Homomorphic Encryption to Yao’s. Assume that Bob is holding
Enc(a) where a ∈ �. Parties want to switch to a circuit Cf that computes
the function f(a, ...) on a and other inputs, without revealing the
value of a.

Bob generates a random r ∈ � and sends Enc(a + r) to Alice. Alice de-
crypts to get a + r. Now, parties create a circuit C′f such that Bob feeds r to
C′f as his part of the input, and Alice feeds a + r to C′f as her part of the
input. They also add the additional circuitry that subtracts (a + r) − r = a,
and use the output of this circuitry in the same way that a would be used in
Cf . Everything else will stay the same as it was in Cf . The circuit for sub-
traction requires O(k) gates. This does not affect the overall complexity of the
circuit.

From Yao’s to Homomorphic Encryption. Assume that Bob and Alice
want to apply Yao’s garbled circuit method to compute the function f , and Cf

is an appropriate circuit for this task. Lets denote the output of f by o ∈ �.
Then, parties want to have Bob hold Enc(o) without revealing o itself. In what
follows, we assume that Bob creates the circuit and Alice evaluates it (for more
information on Yao’s protocol see [16]).

Bob generates a random value r ∈ F . Parties create a circuit C′f such that
Bob feeds r to C′f as part of his input. C′f is the same as Cf except that parties
add the additional circuity to the end of the circuit to add r to o and out-
put o + r instead of o. Note that only Alice receives the output. She encrypts
and sends Enc(o + r) to Bob. Bob computes Enc(o) = Enc(o + r) − Enc(r) on
his own.

The circuit for addition requires O(k) gates and does not affect the overall
complexity of the circuit. Parties can use the above two transformation on the
same circuit if the goal is to change back and forth between the two different
settings.

4 Here we make the (simplifying but reasonable) assumption that the primitives used
in [25] (i.e., the 1-out-of-2 oblivious transfer protocol and sending one garbled gate
of the circuit which is usually done by sending the output of a pseudorandom bit
generator) have a communication complexity O(λ) (where λ = |Enc(·)|) for each
execution.
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3 Linearly Recurrent Sequences

We reduce our various problems from linear algebra to computing the minimal
polynomial of a certain linearly recurrent sequence. In this section we formally
define linearly recurrent sequences and discuss some of their basic properties.
We follow the exposition given in [11].

Let � be field and V be a vector space over �. An infinite sequence a =
(ai)i∈� ∈ V � is linearly recurrent (over �) if there exists n ∈ � and f0, . . . , fn ∈
� with fn �= 0 such that

∑n
j=0 fjai+j = 0, for all i ∈ �. The polynomial

f =
∑n

j=0 fjx
j of degree n is called a characteristic polynomial of a.

We now define a multiplication of a sequence by a polynomial. For f =∑n
j=0 fjx

j ∈ �[x] and a = (ai)i∈� ∈ V �, we set

f • a = (
n∑

j=0

fjai+j)i∈� ∈ V �.

This makes ��, together with •, into an �[x]-module.5

The property of being a characteristic polynomial can be expressed in terms
of the operation •. A polynomial f ∈ �[x]\ {0} is a characteristic polynomial
of a ∈ �

� if and only if f • a = 0 where 0 is the all-0 sequence. The set of
all characteristic polynomials of a sequence a ∈ �

�, together with the zero
polynomial form an ideal in �[x]. This ideal is called the annihilator of a and
denoted by Ann(a). Since any ideal in �[x] is generated by a single polynomial,
either Ann(a) = {0} or there is a unique monic polynomial m ∈ Ann(a) of least
degree such that 〈m〉 = {rm : r ∈ �[x]} = Ann(a). This polynomial is called the
minimal polynomial of a and divides any other characteristic polynomial of a.
We denote the minimal polynomial of a by ma. The degree of ma is called the
recursion order of a.

Let A ∈ �n×n be a matrix, and u,v ∈ �n be vectors. We will be interested
in the following three sequences:

– A = AA = (Ai)i∈� where the sequence elements are from V = �n×n.
– a = aA,v = (Aiv)i∈� where the sequence elements are from V = �n.
– a′ = a′A,u,v = (u�Aiv)i∈� where the sequence elements are from V = �.

Definition 1. The minimal polynomial of a matrix A ∈ �
n×n is defined as

mA = mA, i.e. as the minimal polynomial of the sequence A = (Ai)i∈�.

By our definition of the minimal polynomial of a sequence the minimal poly-
nomial of A can alternatively be characterized as the unique monic polynomial
p(x) over � of least degree such that p(A) = 0.

We denote by fA = det(xIn − A) =
∑n

i=0 fjx
j the characteristic polynomial

of matrix A ∈ �n×n. Note that fA is monic.
5 Roughly speaking, a module is something similar to a vector space, with the only

difference that the “scalars” may be elements of an arbitrary ring instead of a field.
A formal definition can be found in many linear algebra textbooks (e.g., [11]).
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Lemma 1. Consider ma′ , ma, mA, the minimal polynomials of the sequences
a′,a,A respectively. Then ma′ |ma|mA|fA.

Proof. We first show mA|fA. By the Cayley-Hamilton Theorem fA(A) = 0.
Consequently,

fA • A = (
n∑

j=0

fjA
i+j)i∈� = (AifA(A))i∈� = 0,

and fA(A) is a characteristic polynomial of A. Therefore mA, the minimal poly-
nomial of A, divides fA.

Next, to prove ma|mA, write mA =
∑n

i=0 aix
i. As mA • A = 0, we get that

(
∑n

j=0 ajA
i+j)i∈� = 0. Hence,

mA • a = (
n∑

j=0

aj(Ai+j · v))i∈� = ((
n∑

j=0

ajA
i+j ·)v)i∈� = (0 · v)i∈� = 0.

Therefore mA is a characteristic polynomial of a as well, thus ma|mA. The proof
of ma′ |ma is similar.

Corollary 1. The sequences a, a′,A are linearly recurrent of order at most n.

We will use the following useful result (e.g. see [8, page 92]).

Lemma 2. The minimal polynomial mA(x) of A divides the characteristic poly-
nomial fA(x) of A, and both polynomials have the same irreducible factors.

Since fA(0) = det(−A) = (−1)n det(A), we obtain:

Corollary 2. mA(0) = 0 if and only if det(A) = 0.

Corollary 3. If fA is square-free, then mA = fA, which implies that mA(0) =
fA(0) = (−1)n · det(A).

4 Computing the Minimal Polynomial of a Matrix

In this section we consider the following problem: Bob holds an n×n dimensional
matrix Enc(A) over a finite field �, encrypted under a public-key homomorphic
encryption scheme. Alice holds the private decryption key. We design a secure
two-party protocol such that in the end Bob holds an encryption of mA, the
minimal polynomial of A. Computing the minimal polynomial of matrix A can be
reduced to computing the minimal polynomial of the linearly recurrent sequence
of field elements a′ = (u�Aiv)i∈�. The correctness of the reduction is proved in
Exercise 12.15 in [11].

Lemma 3. Let A ∈ �n×n and let mA be the minimal polynomial of matrix A.
For u,v ∈ �n chosen uniformly at random, we have mA = ma′ with probability
at least 1 − 2 deg(mA)/|�|.
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To compute ma′ , the minimal polynomial of the sequence a′, we first need to
compute a prefix of the sequence itself. As we will later see, the 2n first entries of
the sequence will suffice. As the communication complexity of the sub-protocol
for matrix multiplication is linear in the matrix size, we are interested in com-
puting (Enc(u�Aiv))0≤i≤2n−1 using the least number of matrix multiplication
operations.

We now show how to compute the sequence using 2 logn matrix multiplication
operations. First compute Enc(A2j

) for 0 ≤ j ≤ log n. This can be easily done in
log n sequential matrix multiplications. For two matrices X and Y of matching
size let X |Y be the matrix obtained by concatenating X with Y . Then compute
the following using a sequence of log n matrix multiplications: (Note that all the
matrices are of dimensions at most n × n.)

Enc(Av) = Enc(A) · v
Enc(A3v|A2v) = Enc(A2) · Enc(Av|v)
Enc(A7v|A6v|A5v|A4v) = Enc(A4) · Enc(A3v|A2v|Av|v)
... =

...
Enc(A2n−1v|A2n−2v| . . . |Anv) = Enc(An) · Enc(An−1v|An−2v| . . . |Av|v)

Finally, multiply each vector Enc(Aiv) from the left by u� to get Enc(u�Aiv)
for 0 ≤ i ≤ 2n − 1.

Our next step is to compute the minimal polynomial. By Corollary 1, the
order of the sequence a′ is at most n. To compute the minimal polynomial of the
sequence a′ given the encryption of its first 2n elements, we use the following sub-
protocol. Using the well-known Berlekamp/Massey algorithm [17] there exists
an algebraic circuit of size O(n2) that computes the minimal polynomial from a
sequence a′ = (a′i)i∈� of maximal recursion order n. Further efficiency improve-
ment can be obtained by noting that computing the minimal polynomial can
actually be reduced to computing the greatest common division (GCD)
of two polynomial of degree 2n. For completeness we give further details in
Appendix A.2. Using the fast Extended Euclidean algorithm [11, Chapter 11]
the latter one can be carried out using an algebraic circuit of size O(n log n).
By implementing each algebraic operation over � with a binary circuit of size
O(k log k log log k) we get a binary circuit of size O(nk log n log k log log k) for
computing the minimal polynomial. We will use the fact that the size of this
circuit is O(n2k log n), and so it will not be the dominate part in the overall
complexity of our protocol (since we assume |�| = 2O(n) and thus k = log |�| =
O(n)). Using the techniques from Section 2.1 we now apply Yao’s protocol to
this circuit and obtain the following result.

Lemma 4. Suppose Bob holds a sequence Enc(a′) = (Enc(a′0), . . . , Enc(a′2n−1)),
where a′ = (a′i)i∈� is a linearly recurrent sequence of order at most n. There
exists a secure two-party protocol that runs in constant rounds and O(n2k log n)
communication complexity that returns the encrypted minimal polynomial
Enc(ma′) of a′ to Bob.
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The following protocol computes the minimal polynomial of matrix A.

Protocol MINPOLY

Input: Enc(A) where A ∈ �n×n

Output: Enc(mA).

1. Pick random vectors u,v ∈R �
n.

Compute Enc(a′), i.e. for i = 0, . . . , 2n−1 compute the values Enc(a′
i) =

Enc(u�Aiv) using 2 log n executions of the matrix multiplication proto-
col.

2. Compute Enc(ma′), an encryption of the minimal polynomial of the se-
quence a′ = (a′

i)0≤i≤2n−1 using Yao’s Protocol.
3. Return Enc(ma′) as encryption of the minimal polynomial of matrix A.

The following theorem summarizes the properties of Protocol MINPOLY.

Theorem 1. Let Enc(A) be an encrypted n × n matrix over a finite field �.
Then protocol MINPOLY securely computes Enc(mA) with probability 1−2n/|�|,
communication complexity O(n2k log n) and round complexity O(log n), where
k = log |�|.

5 Singularity, Rank, Determinant, and Linear Equations

In this section, we present our main basic linear algebra protocols from Table 1
for testing if a matrix is singular, computing the rank of a matrix, computing
the determinant of a matrix, and solving a system of linear equations.

5.1 Testing Matrix Singularity

One possible implementation of a protocol to securely test matrix singularity
is based on Corollary 2 stating that mA(0) = 0 if and only if det(A) = 0.
Hence, testing singularity can be reduced to computing the minimal polynomial
of the matrix A and checking if its constant term equals zero. By Theorem 1
its success probability is bounded by 1 − 2n/|�| and a secure implementation
is given by protocol MINPOLY from Section 4. We now present an alternative
protocol achieving a slightly improved error bound by exploiting certain algebraic
properties of the minimal polynomial of sequence a.

Again we reduce matrix singularity to computing the minimal polynomial of
a′. Our reduction works in three steps. Our first step is to reduce the problem
of deciding whether det(A) = 0 to deciding whether the linear system Ax = v
is solvable for some random vector v ∈ �n. If A is non-singular then, obviously,
the linear system must be solvable. On the other hand, if det(A) = 0, then with
probability at least 1 − 1/ |�|, the linear system has no solution.

In the second step we reduce the problem of deciding whether the linear
system Ax = v is solvable to computing ma, the minimum polynomial of the
recurrent sequence of vectors a = (Aiv)i∈�.
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Lemma 5. If ma(0) �= 0 then the system Ax = v is solvable.

Proof. Since by Corollary 1 the order of a is at most n, we can write ma =∑n
i=0 mix

i. As ma is the minimal polynomial of a, we get that

mnAnv + mn−1A
n−1v + . . . + m1Av + m0Iv = 0.

Since m0 = ma(0) is non-zero, we get

−m−1
0 (mnAnv + mn−1A

n−1v + . . . + m1Av) = v

and hence

A(−m−1
0 (mnAn−1v + mn−1A

n−2v + . . . + m1Iv)) = v.

Therefore, the system Ax = v is solvable.

In the third step we reduce computing the minimal polynomial of sequence a =
(Aiv)i∈� to computing the minimal polynomial of a′ = (u�Aiv)i∈�, where u ∈
�

n is a random vector. The correctness of the reduction is proved in Lemma 12.17
in [11].

Lemma 6. Let A ∈ �n×n, v ∈ �n, ma the minimal polynomial of the sequence
a = (Aiv)i∈�. For a u ∈ �n chosen uniformly at random we have that ma is the
minimal polynomial of the sequence a′ = (u�Aiv)i∈� with probability at least
1 − deg(ma)/|�|.

Protocol SINGULAR

Input: Enc(A) where A ∈ �n×n

Output: Enc(0) if det(A) = 0 and Enc(1) otherwise.

1. Pick random vectors u,v ∈R �
n.

For i = 0 . . . 2n − 1 compute the values a′
i = Enc(u�Aiv) using 2 log n

executions of the matrix multiplication protocol.
2. Compute Enc(ma′), an encryption of the minimal polynomial of the se-

quence a′ = (a′
i)0≤i≤2n−1 except that in the last step a circuit is used

that returns 0 if ma′(0) = 0 and 1 otherwise using Yao’s Protocol.

The following theorem summarizes the properties of Protocol SINGULAR.

Theorem 2. Let Enc(A) be an encrypted n×n matrix over a finite field �. Then
Protocol SINGULAR securely checks if A is singular with probability 1 − (n +
1)/|�|, communication complexity O(n2k log n) and round complexity O(log n),
where k = log |�|.
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Proof. We first prove that if det(A) �= 0 then the output of the protocol is
Enc(1). If ma′(0) = 0, this means that the constant coefficient of ma′ is 0, thus
x|ma′ . By Lemma 1, ma′ |fA, where fA is the characteristic polynomial of the
matrix A. Hence, the constant coefficient of fA is 0, which implies det(A) = 0.
Hence if A is non-singular, the output of the entire protocol must be Enc(1).

On the other hand, if det(A) = 0 then, by Lemma 5, if the following two
events happen, the output of the protocol is Enc(0): (i) The system Ax = v is
not solvable. (ii) ma′ = ma. The probability of event (i) is at least (1 − 1/|�|).
The probability of event (ii), by Lemma 6, is at least 1−deg(ma)/|�| ≥ 1−n/|�|.
Therefore, with probability at least 1 − (n + 1)/|�| the output is Enc(0). Secu-
rity of the protocol follows by security of the sub-protocols used. Round and
communication complexity of the protocol is easy to verify.

5.2 Computing the Rank

In this section we show how to compute Enc(rank(A)) given an encryption
Enc(A) of a matrix A ∈ �

n×n. To compute the rank of a matrix A, we use
the following two results which are proved in [14].

Lemma 7. Let A be a matrix in �n×n of (unknown) rank r. Let U and L be
randomly chosen unit upper triangular and lower triangular Toeplitz matrices in
�

n×n, and let B = UAL. Lets denote the i× i leading principal of B by Bi. The
probability that det(Bi) �= 0 for all 1 ≤ i ≤ r is greater than 1 − n2/|�|.

Lemma 8. Let matrix B ∈ �
n×n have leading invertible principals up to Br

where r is the (unknown) rank of B. Let X be a randomly chosen diagonal
matrix in �

n×n. Then, r = deg(mXB) − 1 with probability greater
than 1 − n2/|�|.

The above two results lead to the following protocol for computing the rank of
a matrix.

Protocol RANK

Input: Enc(A) where A ∈ �n×n.
Output: Enc(r) where r is rank of A.

1. Generate random unit upper and lower triangular Toeplitz matrices
U,L ∈ �n×n and a random diagonal matrix X ∈ �n×n.

2. Compute Enc(M) = XU · Enc(A) · L.
3. Run the protocol MINPOLY on M except that in the last step, use a

circuit that only outputs the degree of the minimal polynomial minus 1,
and not the polynomial itself.

The following theorem is implied by the above two lemmas and summarizes the
properties of our RANK protocol.
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Theorem 3. Let Enc(A) be an encrypted n × n matrix over a finite field �.
Then Protocol RANK securely outputs the encrypted rank of A with probability at
least 1−2n2/|�|, communication complexity O(n2k log n), and round complexity
O(log n), where k = log |�|.

5.3 Computing the Determinant

In this section we show how to compute Enc(det(A)), given an encryption Enc(A)
of a matrix A ∈ �

n×n. The protocol uses the following fact from linear
algebra [24].

Lemma 9. Let B be an n×n matrix over � where all the leading principal sub-
matrices of B, including B itself are nonsingular, and let X be a uniformly cho-
sen diagonal matrix in �n×n. Then, fXB is square-free with probability greater
than 1 − n/|�|.

Protocol DET

Input: Enc(A) where A ∈ �n×n.
Output: Enc(d) where d is the determinant of A.

1. Generate random unit upper and lower triangular Toeplitz matrices
U,L ∈ �n×n and a random diagonal matrix X ∈ �n×n.

2. Computes Enc(Z) = XU · Enc(A) · L.
3. Run the protocol MINPOLY on Z except that in the last step, use a

circuit that computes (−1)nmZ(0)/ det(X) instead of mZ (note that
Bob knows det(X), and feeds it to the circuit as part of his input.).

The following theorem summarizes the properties of our DET protocol.

Theorem 4. Let Enc(A) be an encrypted n × n matrix over a finite field �.
Then Protocol DET securely outputs the encryption of determinant of A with
probability at least 1 − 3n2/|�|, communication complexity O(n2k log n), and
round complexity O(log n), where k = log |�|.

Proof. If A is singular, Z = XUAL is also singular. Therefore, based on Corol-
lary 2, mZ(0) = 0. Hence, the protocol correctly returns Enc(0) as the answer.
On the other hand, if A is non-singular, Z is also non-singular. Note that from
given the determinant of Z, Bob can easily derive the determinant of A, as he
has all the other matrices in the clear.

Based on Corollary 3, if Z is square-free, computing the constant coefficient
of mZ is sufficient to compute the det(Z). We now show that the probability
that Z is square-free is high. By Lemma 7, the probability that all the leading
principals of the matrix UAL are of full rank is 1 − n2/|�|. Conditioned on the
latter, Lemma 9 implies that with probability 1 − n/|�| the matrix Z = XUAL
is square-free. Hence, with probability greater than 1 − 2n2/|�|, the matrix Z
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is indeed square free. We also need the minimal polynomial protocol to succeed,
which happens with probability 1−2n/|�|. Hence, the overall success probability
of the protocol is at least 1−3n2/|�|. The round and communication complexity
of the protocol is easy to verify.

5.4 Solving Linear Equations

In this section we discuss the problem of solving a system of linear equations.
Given encryptions Enc(M) and Enc(y), where M ∈ �m×n and y ∈ �m, we are
interested in outputting an encryption Enc(x) of a random solution to the linear
system Mx = y, if the system is solvable.

The easy case is where M is a non-singular square matrix. In this case it is
enough to compute Enc(M−1) and then execute Protocol MATRIX MULT once
to compute Enc(M−1)Enc(y) = Enc(M−1y), which is the unique solution to
the system (and hence is also a random solution). To compute Enc(M−1) from
Enc(M) we use Protocol MATRIX INVERT which assume the encrypted input
matrix M to be invertible. see Appendix A.1 for an implementation of protocol
MATRIX INVERT based on [1].

To reduce the general case to the non-singular case, we adapt an algorithm of
Kaltofen and Saunders [14]. Their algorithm solves Mx = y in the following way:
(i) Perturb the linear system Mx = y to get a system M ′x = y′ with the same
solution space. The perturbation has the property that, with high probability, if
M is of rank r, then M ′

r, the top-left r × r sub-matrix of M ′, is non-singular. (ii)
Pick a random vector u ∈ �n and set y′r to be the upper r coordinates of the vector
y′+M ′u. (iii) Solve the linear system M ′

rxr = y′r , and denote the solution by ur.
(iv) Let u∗ ∈ �n be a vector with upper part ur and lower part 0n−r. It can be
shown that x = u∗−u is a uniform random solution to the system M ′x = y′ and
thus is a uniform random solution to the original system. The correctness proof
for this algorithm may be found in [14, Theorem 4]. Note that this algorithm is
correct assuming that the system Mx = y is solvable. An implementation of the
first step relies on the following simple linear algebraic lemma.

Lemma 10. Let M be a matrix in �m×n of (unknown) rank r. Let P ∈ �m×m

and Q ∈ �n×n randomly chosen full rank matrices, and let M ′ = PMQ. Denote
the r × r leading principal of M ′ by M ′

r. The probability that det(M ′
r) �= 0 is

greater than 1 − 2n/|�|.

Implementing Kaltofen-Saunders algorithm in a secure protocol is not straight-
forward. On one hand, we need to compute r, the rank of M , in order to invert
the top-left sub-matrix of M . On the other hand, computing r violates the pri-
vacy of the protocol, as r cannot be extracted from a random solution to the
linear system. We overcome this problem by showing how to implement the
Kaltofen-Saunders algorithm using only an encryption of r (computed using
Protocol RANK from Section 5.1). The key idea is that we can work with the
r×r top-left sub-matrix of the perturbed matrix M ′, without knowing the value
of r in the clear.
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Protocol LINEAR SOLVE

Input: Enc(M) where M ∈ �
m×n and n ≤ m, and Enc(y) where y ∈ �

m.
This protocol assumes the system Mx = y is solvable.
Output: Enc(x), where x ∈ �n is a random solution to the system Mx = y.

1. Execute Protocol RANK on Enc(M) to compute Enc(r) where r =
rank(M).

2. Locally compute Enc(M ′) = P · Enc(M) · Q and Enc(y′) = P · Enc(y)
where P and Q are random non-singular m × m and n × n matrices
respectively.

3. Compute the encrypted matrix Enc(N ′), where N ′ ∈ �
n×n consists of

the r by r leading principal of M ′ in the top-left corner and of the unit
matrix in the bottom-right corner.

4. Compute Enc(N ′−1) using protocol MATRIX INVERT.
5. Pick a random vector u ∈ �n and set Enc(y′

r) for y′
r ∈ �n to be a vector

whose upper r coordinates are the upper r coordinates of Enc(y′) +
Enc(M ′)u and lower n − r coordinates are Enc(0).

6. Compute Enc(ur) = Enc(N ′−1) · Enc(y′
r) and output Enc(x) = Q−1 ·

Enc(u − ur).

Some remarks are in place. First, note that the protocol is valid only for
solvable linear system. To check if a system is solvable, it is sufficient to compare
the rank of the matrices M and M |y where | stands for concatenation. The
encryption of the rank of these matrices can be computed using Protocol RANK,
while the comparison can be easily done using Yao’s garbled circuit method.

In Step 3 to compute Enc(N ′) from Enc(M ′) and Enc(r) one proceeds as follows.
First Enc(r) is converted into unary representation (i.e., (Enc(δ1), . . . , Enc(δn))
with δi = 1 if i ≤ r and δi = 0 otherwise) using Yao’s garbled circuit method.
Then create Enc(Δ), where Δ is the n × n matrix Δ = diag(δ1, δ2, . . . , δn). Then
Enc(N ′) is computed as Enc(N ′) = Enc(M ′)Enc(Δ) + In − Enc(Δ), where In is
the n × n identity matrix.

As a final note, we stress that the requirement that n ≤ m is made only
for simplicity of presentation. Otherwise, N ′ would have been of dimension
min(m, n) × min(m, n) instead of n × n, and the changes needed in the rest
of the protocol are minor. The following Theorem concludes the properties of
Protocol LINEAR SOLVE.

Theorem 5. Let Enc(M) be an encrypted m×n matrix over a finite field �, and
let Enc(y) be an encrypted vector y ∈ �m. Protocol LINEAR SOLVE securely
computes Enc(x), where x ∈ �n is a random solution of Mx = y, with probabil-
ity 1 − 3n2/|�|, communication complexity O(n2k log n) and round complexity
O(log n), where k = log |�|.

We now discuss the success probability of Protocol LINEAR SOLVE. In Step 1,
we compute an encryption of the rank of M which is by Theorem 3 correct with



Secure Linear Algebra Using Linearly Recurrent Sequences 307

probability 1 − 2n2/|�|. In Step 2, we multiply the matrix M from the right and
from the left by random non-singularmatrices to get the matrixM ′. By Lemma 10,
the top left r × r sub-matrix of M ′ is of rank r with probability 1 − 2n/|�|. If this
is the case, then the rest of the protocol follows the Kaltofen-Saunders algorithm,
and thus its correctness is implied by [14, Theorem 4].
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A More Protocols

A.1 Matrix Inversion

Bob holds an encrypted matrix Enc(M) such that M ∈ �
n×n is guaranteed

to be invertible. Alice holds the private decryption key. Based on the shared
field inversion protocol from Bar-Ilan and Beaver [1] we design a protocol for
computing Enc(M−1).

Protocol MATRIX INVERT

Input: Enc(M) where M ∈ �n×n.
Output: Enc(M−1)

1. Bob picks an n × n random non-singular matrix Q.
2. Bob computes the encrypted matrix Enc(QM) by multiplying Enc(M)

from the left by the matrix Q, and sends Enc(QM) to Alice.
3. Alice decrypts Enc(QM) and compute (QM)−1 = M−1Q−1. Alice en-

crypts M−1Q−1 and sends Bob Enc(M−1Q−1).
4. Bob computes Enc(M−1) = Enc(M−1Q−1)Q.
5. Bob locally outputs Enc(M−1).
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It is easy to see that Alice gets a random non-singular matrix QM , and thus
learns no information in the protocol. Since Bob only learns encrypted values
from the protocol, he gets no information on the value of M .

A.2 Minimal Polynomial

We demonstrate an algorithm from [9] how to efficiently compute the mini-
mal polynomial of a sequence a = (ai)i∈� of recursion order n using the Ex-
tended Euclidean Algorithm on polynomials. By the definition from Section 3
the minimal polynomial ma of the sequence a is the unique monic polynomial
ma(x) = m(x) of least degree ≤ n for which m(x) • a = 0. By division with
remainder we can rewrite this as

ma · (a1 + a2x + . . . + a2nx2n−1) − q(x) · x2n = r(x), (1)

where r(x) is a remainder polynomial of degree < n, and q(x) is a quotient
polynomial. Denote by a(x) the sum

∑2n
i=1 aix

i−1. If we apply the extended GCD
algorithm to the two polynomials a(x) and x2n, keeping track of remainders, we
get two sequences pi(x), qi(x) such that the ri := pi(x) · a(x)− qi(x) · x2n form a
series of polynomials whose degree is strictly decreasing. As soon as the degree of
ri is less than n, we have the required polynomials from (1) with ma(x) = pi(x),
q(x) = qi, and r(x) = ri(x).

B Applications

B.1 Linear Subspace Intersection

Let � be a finite field and n be a positive integer. Alice holds a subspace VA ⊆ �n

of dimension na ≤ n. The subspace VA is represented by an na × n matrix A,
where the rows of A span VA. Similarly, Bob’s input is a subspace VB⊆�n of
dimension nb, represented by an nb × n matrix B. Letting VI = VA ∩ VB, Alice
and Bob wish to securely study different properties of VI .

In [19], constant round O(n2) protocols were designed for securely comput-
ing the subspace VI , and for securely computing the rank of the subspace VI .
However, it turned out that the problem of securely deciding whether the sub-
space VI is the trivial zero subspace seems harder to solve. Ignoring security
issues, computing the intersection of the input subspaces is at least as hard as
deciding whether they have a non trivial intersection. However, constructing a
secure protocol for the latter turns to be somewhat harder as the players gain
less information from its output.

The following lemma from [19] reduces the problem of deciding subspace in-
tersection, to computing whether a matrix is of full rank:

Lemma 11 ([19]). Define M = AB�. Then VI �= {0} if and only if the matrix
M is not of full row rank.
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This gives rise to the following protocol:

Protocol INTERSECTION DECIDE

Input: Alice (resp. Bob) holds a na × n (resp. nb × n) matrix A (resp. B)
over a finite field � representing a subspace VA⊆�n (resp. VB⊆�n). Let B�

be a n × n′
b matrix that represents the subspace V �

B , where n′
b

def= n − nb.
Output: If VI is the trivial zero subspace, Alice outputs 1. Else, Alice outputs
0.

1. Alice generates keys for a homomorphic public key encryption system,
and sends Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def= AB�. Note that M is a

na × n′
b matrix.

3. Alice and Bob execute Protocol RANK on Enc(M). Denote by Enc(r)
the output of the protocol held by Bob.

4. Alice and Bob execute protocol EQUAL on minna, n′
b and Enc(r). Bob

sends the encrypted output to Alice who decrypts and outputs it.

This protocol has the same communication complexity as of the protocol de-
signed in [19]. However, the round complexity of this protocol, which is O(log n)
is substantially better than the round complexity of [19], which is Ω(n0.275). We
note that the techniques in our paper are very different from those of [19].

B.2 Solving a Common Linear Equation System

Let � be a finite field and n be a positive integer. Alice holds an na × n matrix
MA and a vector va ∈ Fna . Similarly, Bob’s input is an na × n matrix MB and
a vector vb ∈ Fnb . Alice and Bob wish to securely compute a random vector
x ∈ �n such that both MAx = va and MBx = vb.

This problem can be viewed as computing a random vector from the intersec-
tion of the affine subspaces representing the solutions to the systems MAx = va

and MBx = vb. This problem was considered in [19], who designed a protocol
of communication complexity O(n2k log n) and round complexity Ω(n0.275). We
show a protocol which improves the round complexity to O(log n) while keeping
the communication complexity roughly O(n2).

The protocol is simple: Alice generates keys for a homomorphic public key
encryption system, and sends Bob Enc(MA), Enc(va) and the public key. Bob
encrypts his input to get the encrypted linear system.

(
Enc(MA)
Enc(MB)

)
x =

(
Enc(va)
Enc(vb)

)

Alice and Bob then execute Protocol LINEAR SOLVE after which Bob holds
Enc(x) where x is a random solution to the common system. Finally, bob sends
Enc(x) to Alice, which decrypts and outputs x.
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Abstract. Perfectly secure message transmission (PSMT), a problem
formulated by Dolev, Dwork, Waarts and Yung, involves a sender S and
a recipient R who are connected by n synchronous channels of which up
to t may be corrupted by an active adversary. The goal is to transmit,
with perfect security, a message from S to R. PSMT is achievable if and
only if n > 2t.

For the case n > 2t, the lower bound on the number of communication
rounds between S and R required for PSMT is 2, and the only known effi-
cient (i.e., polynomial in n) two-round protocol involves a communication
complexityofO(n3�)bits,where� is the lengthofthemessage.Arecentsolu-
tion by Agarwal, Cramer and de Haan is provably communication-optimal
by achieving an asymptotic communication complexity of O(n�) bits; how-
ever, it requires the messages to be exponentially large, i.e., �=Ω(2n).

In this paper we present an efficient communication-optimal two-
round PSMT protocol for messages of length polynomial in n that is
almost optimally resilient in that it requires a number of channels n ≥
(2 + ε)t, for any arbitrarily small constant ε > 0. In this case, optimal
communication complexity is O(�) bits.

1 Introduction

In the problem of perfectly secure message transmission (PSMT) a sender S and
a recipient R are connected by n distinct, synchronous communication channels.
Of these channels, an active adversary may be corrupting any selection of up to
t. The goal is to have S transmit a message to R perfectly securely, i.e., in such
a way that (1) the adversary gets no information about the message, and (2)
that R receives the correct message with probability 1. In general, a protocol for
PSMT requires multiple communication exchanges—rounds—between S and R,
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for example, to first agree on a one-time pad before having the padded message
transmitted from S to R.

PSMT was introduced by Dolev, Dwork, Waarts and Yung in [8]. Their main
result is that PSMT is achievable if and only if n > 2t. For this particular bound,
they also showed that two communication rounds are necessary and sufficient in
order to achieve PSMT (i.e., a communication flow from R to S, and then a flow
from S to R). However, their protocol to achieve this bound is inefficient as it
involves an exponential (in n) computation and communication overhead. In [17],
Sayeed and Abu-Amara gave polynomial-time two-round protocol that requires
a communication complexity of O(n3�) bits, where � is the length of the message
to be transmitted. More recently, Srinathan, Narayanan and Rangan [18] showed
that, in order to achieve two-round PSMT, Ω(n�) bits must be communicated.
This lower bound has been matched by the protocol by Agarwal, Cramer and
de Haan [1], at the price, however, of requiring messages of length exponential
in n. In [16], Patra, Choudhary, Srinathan and Rangan show that by using one
additional round (i.e., three rounds in total), this communication bound can be
achieved with polynomial message length.

Our contributions. In this paper, we present an efficient two-round protocol
for PSMT with optimal communication complexity that works for messages of
length polynomial in n. The protocol works for any parameterization of n ≥
(2+ε)t, where ε > 0 is a fixed but arbitrarily small constant—i.e., the protocol is
almost optimally resilient. Note, however, that our protocol is optimally resilient
with respect to the communication complexity we achieve: O(�), where � is the
length of the message—as it follows from the lower bound in [18] that n =
2t + Ω(t) is necessary in order to achieve communication complexity O(�) (in
contrast to Ω(n�) for the general case n > 2t).

Our protocol is derived from a modification of the communication-optimal
one-round PSMT protocol for n > 3t in [17], and by applying a technique that we
call player virtualization, which can be viewed as a very simple and constructive
instantiation of so-called Bracha assignments [6], which are used to “amplify”
the resilience of a distributed computation protocol while preserving some of its
other properties. (We describe this technique in more detail below.)

Additionally, we also show a tight bound on the communication complexity
of one-round PSMT for n > 3t.

The “player virtualization” technique. The idea of creating virtual players whose
behavior is simulated by the actions of groups of real players was introduced by
Bracha in [6] in the context of Byzantine agreement [14], in order to prove the
existence of a randomized protocol for the problem for any n > (3 + δ)t, where
n is the total number of players, t is the number of faulty players, and δ > 0
is an arbitrary constant, running in expected O(log n) rounds. The goal was
to simulate Ben-Or’s randomized distributed coin-flipping protocol [2], which
required, for good performance, that the number of faulty players be at most
O(

√
n)—i.e., the effect of the simulation is to obtain a set of virtual players with

a lower corruption rate than in the original player set. While Bracha was able
to prove the existence of such a protocol, the result is non-constructive.
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Fig. 1. The wire virtualization scheme for PSMT

A similar—but perhaps simpler—idea, also applied in the context of Byzantine
agreement, is to partition the player set into smaller, non-overlapping “commit-
tees” (e.g., [5,7]), with the goal of obtaining at least one out of the several subsets
of players that maintains the global corruption ratio (t/n). This approach, how-
ever, typically has the converse effect of the set of committees having a higher
corruption rate than the original player set.

In the context of secure multi-party computation [19,10], Hirt and Mau-
rer [11] essentially applied player virtualization in order to reduce a generalized-
adversary computation to threshold-adversary computations of a small size.
Their construction, however, generally yields protocols with exponential (in n)
computation and communication complexities.

Constructive Bracha assignments have also been used for the leader election
problem in the full information model [15,20], and recently in order to reduce
the communication (to polylogarithmic in n) required for the task [13] ([13] also
studies “almost-everywhere agreement” [9] under reduced communication). At a
high level, these constructions are based on expander graphs, and typically carry
a probability of error. We elaborate more on this type of approach in Section 5.

We now give a high-level description of how we apply player (more precisely,
“wire”) virtualization to PSMT. Recall that we are given S and R who are
connected by n wires of which t might be corrupted by the adversary. We first
observe the following facts about PSMT:

1. For any N ≥ 3(T + δ), where δ > 0 is a constant and N denotes the total
number of wires and T the number of possibly corrupted wires, there is a
one-round PSMT protocol Π1 with constant communication overhead. Such
a protocol is described in Section 3.1.

2. For any ν > 2τ , where ν denotes the total number of wires and τ the number
of possibly corrupted wires, there is a two-round PSMT protocol Π2 that is
communication-optimal but requires messages of exponential size in ν. This
is the protocol in [1].
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The basic idea now is to run an instance of protocol Π1 wherein the N wires
are simulated by instances of protocol Π2 among different selections of ν wires.
In particular, we can apply protocol Π2 to any subset of ν < n physical wires. If a
strict minority of the wires happens to be corrupted then the resulting protocol
will simulate an uncorrupted “virtual wire;” if not, then the virtual wire will
behave like a corrupted physical wire. As a result, such a virtual wire can now
be abstractly used as an additional wire by a “higher-level” PSMT protocol.

Our goal is to generate N virtual wires with the help of protocol Π2 such that,
independently of which t physical wires are corrupted, at most T ≤ N/(3 + δ)
of the virtual wires can act as if they were corrupted. Once we achieve this, we
can simply apply protocol Π1 on the set of N virtual wires. As can be easily
seen, this construction preserves round complexity 2. However, in order to also
maintain poly(n) efficiency when running the protocols Π1 and Π2, we need the
additional constraints N = poly(n) and ν = O(log n).

We meet these constraints by choosing ν = O(1) and having each possible
set of ν physical wires (including repetitions) simulate a different virtual wire,
resulting in N = nν . The approach is depicted in Figure 1. As we show in
the sequel, it turns out that this construction works for any parameterization
of n ≥ (2 + ε)t, where ε = Ω(1); i.e., round-optimal, bit-optimal and efficient
PSMT with almost optimal resiliency can be achieved in this way.

Organization of the paper. In the next section we present the model and the
definition of the PSMT problem. We dedicate Section 3 to the treatment of
the one-round case. We first present an efficient PSMT protocol for n > 3t
wires which, as we also show, has optimal communication overhead. Design and
analysis of the virtualization construction yielding our main result are presented
in Section 4. We conclude in Section 5 with some optimization considerations
and final remarks.

2 Model and Definitions

Sender S and recipient R are connected by n distinct synchronous channels
(“wires”) W1, W2, . . . , Wn. An adversary A may select up to t of the n wires
and corrupt them actively, i.e., A may eavesdrop on the selected wires as well as
change the messages being sent on them. The adversary is assumed to be com-
putationally unbounded. Furthermore, the adversary is assumed to be adaptive,
i.e., it can adaptively decide on which further wires to corrupt at any point dur-
ing the protocol — but “non-mobile,” i.e., the adversary is not allowed to have
corrupted any more than t different wires by the end of the protocol, overall.

Definition 1. A protocol between S and R, based on local computation and
communication via the network described above, achieves perfectly secure mes-
sage transmission (PSMT) if it transmits a message from S to R such that the
following two conditions are satisfied:

Privacy: A does not get any information about the message being transmitted.
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Protocol 1-PSMT(n, t,m)

– Given a message m = [m1m2 . . . mk] (k = n − 3t), the sender S randomly
forms a polynomial f(x) of degree at most d = (n − 2t − 1) by choosing
its coefficients as follows:

coeff(xi) =

{
mi+1, if 0 ≤ i < k,

ci−k, if k ≤ i < (k + t),

where the ci−k’s are chosen uniformly at random from F.
– On wire Wj , 1 ≤ j ≤ n, the sender S sends the share rj = f(αj−1), where

α is a generator of the multiplicative group of F.
– The recipient R uses the Welch-Berlekamp decoding algorithm [4] on the

received values in order to obtain the message.

Fig. 2. One-round PSMT with low communication overhead

Correctness: R gets full information about the message transmitted by S;
i.e., R learns the message with probability 1. �

In the sequel, and without loss of generality, we assume that the messages are
taken from a finite field F with |F| > n.

We define the bit-communication complexity (or, communication complexity,
for short) of a PSMT protocol to be the total number of bits being com-
municated between S and R. For convenience, we also define the communi-
cation overhead, Λ, as the total number of bits communicated by the proto-
col divided by the length of the message. The round complexity of a PSMT
protocol is its number of subsequent communication rounds between S and
R. In particular, a one-round PSMT protocol consists of a synchronous flow
of communication on the wires from S to R, and a two-round PSMT proto-
col has a synchronous flow from R to S followed by a synchronous flow from
S to R.

3 One-Round PSMT with Low Communication Overhead

In this section, we extend the one-round PSMT protocol in [8,17] for n = 3t+1 to
handle any n > 3t with low communication overhead—in fact, exactly Λ = n

n−3t ,
which, as we also show, is optimal for this case.

3.1 Protocol 1-PSMT

At a high level, the PSMT protocols in [8,17] hide the message to be transmitted
using the approach in [3] of verifiable secret sharing (VSS) over a finite field F

using Reed-Solomon codes. In contrast to their solutions, instead of hiding the
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message in one single coefficient of the polynomial, we split the message into
“pieces” and assign each piece to a separate coefficient, and correspondingly
increase the degree of the polynomial. Effectively, this allows us to hide n − 3t
different field elements in one VSS instance.

In more detail, assuming an adequate field size1, the message is interpreted
as a sequence of k = n − 3t field elements, and transmitted using the protocol
of Figure 2. We are able to show:

Theorem 1. Protocol 1-PSMT(n, t, m) is a one-round PSMT protocol for any
n > 3t with communication overhead Λ = n

n−3t .

Proof (sketch).

Correctness: Since n > d + 2t, R can decode the complete polynomial,
compute the low-degree coefficients mi, 1 ≤ i ≤ k, and extract the full
message m.

Privacy: Since f(x) is of degree d = t+(k−1), any t shares of the form f(αj)
are independent from the k coefficients mi. Thus, A gets no information
about m.

Communication overhead: The protocol communicates n field elements in
order to transmit a secret message consisting of k = n − 3t field elements.
Thus, the communication overhead of the protocol is Λ = n

n−3t . ��

The following corollary will be useful for our main virtualization result in Sec-
tion 4.

Corollary 1. One-round PSMT with constant communication overhead is pos-
sible for n = (3 + δ)t, for any constant δ > 0.

As we now show, the communication overhead of our one-round PSMT protocol
is in fact optimal. The reader intrigued by the use of 1-PSMT in our virtualiza-
tion scheme is invited to proceed directly to Section 4.

3.2 Communication Lower Bound for One-Round PSMT

In [18], Srinathan, Narayanan and Rangan established a lower bound on the
communication overhead (of Λ ≥ n

n−2t ) for two-round PSMT. In this section we
show a lower bound of Λ ≥ n

n−3t for one-round PSMT when n > 3t. Note that
one-round PSMT is impossible if n ≤ 3t.

Theorem 2. Any one-round PSMT protocol for n > 3t wires requires commu-
nication overhead Λ ≥ n

n−3t .

Proof. Let M be the message space from where the sender S’s message is drawn.
Let Tm

i denote the set of all possible transmissions that can occur on wire
Wi ∈ {W1, . . . , Wn} when S transmits message m. Furthermore, for j ≥ i, let
1 Alternatively, we would first split the message into blocks, and then transmit each

block separately.
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Mm
i,j ⊆ Tm

i ×Tm
i+1×· · ·×Tm

j denote the set of all possible transmissions that can
occur on the wires in {Wi, Wi+1, . . . , Wj} when S transmits message m. Finally,
let M2t+1,n =

⋃
m∈MMm

2t+1,n, and Ti =
⋃

m∈MTm
i , and let us call Ti the

capacity of wire Wi and Mk,� the capacity of the set of wires {Wk, Wk+1, . . . , W�}.
Consider any one-round PSMT protocol for n > 3t. Perfect privacy requires

that the transmissions on any t wires be independent of the message. Thus, for
any two messages m1, m2 ∈ M it must hold that

Mm1
2t+1,3t = Mm2

2t+1,3t .

(The above must hold for any selection of t wires; we focus on the set {W2t+1, . . . ,
W3t} for simplicity.) Furthermore, perfect correctness implies that the (uncor-
rupted) transmissions on any n−2t wires must uniquely determine the message.
Thus, it must also hold that

Mm1
2t+1,n ∩ Mm2

2t+1,n = ∅ .

Since Mm
2t+1,3t may be the same for every message m, it follows that

n∏

i=3t+1

|Ti| ≥ |M3t+1,n| ≥ |M| .

Let d = n − 3t. More generally, the above inequality holds for any selection
of d wires D ⊂ {W1, W2, . . . , Wn}, |D| = d, i.e.,

∏
Wi∈D |Ti| ≥ |M|, and in

particular it holds for every selection Dk = {W(kd+1) mod n, W(kd+2) mod n, . . . ,
W(kd+d) mod n}, with k ∈ {0, 1, . . . , n − 1}.

If we consider all sets Dk separately, then each wire is accounted for exactly
d times. Thus, the product of the capacities of all Dk yields the capacity of the
full wire set to the d-th power, and since each Dk has capacity at least |M|, we
get

|M|n ≤
n−1∏

k=0

∏

Wj∈Dk

|Tj | =

(
n∏

i=1

|Ti|
)d

,

and therefore

Λ ≥
∑n

i=1 log|Ti|
log|M| ≥ n

d
=

n

n − 3t
.

��

4 Communication-Optimal Two-Round PSMT for
n ≥ (2 + ε)t

In this section, we use wire virtualization and protocol 1-PSMT from the previ-
ous section to construct our new two-round PSMT protocol.
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4.1 The Wire Virtualization Construction

Let n ≥ (2+ε)t for some ε > 0. Let Π2 be the communication-optimal (but inef-
ficient) two-round PSMT protocol in [1] (or even the communication-suboptimal
protocol in [17]) for ν wires tolerating τ =  ν−1

2 � corrupted wires, where ν =
O(1) (ν will be quantified later, based on the analysis below). Choosing ν = O(1)
implies that protocol Π2’s communication overhead is constant, and thus that
Π2 is communication-optimal.

Further, let Π1 be 1-PMST, the communication-optimal one-round protocol
from Section 3.1 for N wires tolerating T ≤ N

3+δ corrupted wires for some fixed
constant δ > 0 (where N = nν ; see below).

We start by forming all N = nν possible virtual wires W1, . . . , Wnν involving
ν wires from the set of real wires W = {W1, . . . , Wn}, allowing repetitions.
We call this collection of virtual wires W , W = {W1, . . . , Wnν }. We can apply
protocol Π2 to any element of W with the effect that it will achieve PSMT as
long as at most τ =  ν−1

2 � of the involved real wires are actually corrupted. We
thus call a virtual wire correct when it involves at most τ corrupted real wires
and corrupted otherwise. Let T be the number of corrupted virtual wires in W .

Our goal now is to find a constant ν such that of all N = nν possible virtual
wires out of W , at most T = N

3+δ are corrupted. This will then allow us to apply
one-round protocol Π1 to the N virtual wires where, in turn, every virtual wire
is simulated by the two-round protocol Π2 (see Figure 1). The analysis in the
next section will yield constant ν.

4.2 Virtualization Analysis

We consider the following random experiment in order to give a (deterministic)
estimation on the ratio of corrupted virtual wires.

Let ν be fixed. Let p be the probability that, picking one of the N = nν

possible ν-tuples of n real wires uniformly at random, the respective virtual
wire is corrupted. If this probability is at most T

N = 1
3+δ then, clearly, at most

T = N
3+δ virtual wires are corrupted — which is tolerated by protocol Π1.

For this, we consider random variable X ∈ {0, . . . , ν} denoting the number of
corrupted wires in the selection. Let P be the probability distribution induced
by the following random experiment: pick a wire out of W uniformly at random,
repeat this ν times, and let the resulting selection of wires form a tuple of size
ν (i.e., a virtual wire).

Our goal is to show that there is a constant ν such that p = Pr(X ≥ ν/2) ≤
1

3+δ , and thus, that the number of actual corrupted virtual wires in Π1 is at most
T = N

3+δ . We achieve this with help of the Chernoff bound (see Appendix A).
According to the process associated with P , let Xi be the 0-1 distributed

random variable describing whether the i-th chosen wire is corrupted. Then
X =

∑ν
i=1 Xi. We demand

Pr
(
X ≥ ν

2

)
≤ 1

3 + δ
.
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Since, clearly, the random variables X1, . . . , Xν are independent, we can estimate
this probability by the Chernoff bound (Equation 2) as

Pr
(

X ≥ ν

2
= λμν = λ

ν

2 + ε

)
≤ e−

ν
2(2+ε) (λ−1)2 where λ =

2 + ε

2
,

and demand

e−
ν

2(2+ε) (λ−1)2 !
≤ 1

3 + δ
.

We thus require that

ν

2(2 + ε)
(λ − 1)2 =

ν

8(2 + ε)
ε2 ≥ ln (3 + δ) ,

which yields

ν ≥
⌈

8 ln(3 + δ)(2 + ε)
ε2

⌉
, (1)

obtaining a lower-bound estimation on ν depending on constants ε and δ, where
ε is an input parameter and δ is any positive constant of free choice.

Theorem 3. The construction described above is a two-round PSMT protocol
for any n ≥ (2 + ε)t, ε > 0, and has constant communication overhead, which is
optimal.

Proof (sketch).

Correctness and privacy. Correctness and privacy of the protocol follow
from the above quantitative analysis and from the respective properties of
protocols Π1 and Π2.

Number of rounds. The top-level protocol Π1 is one-round and operates on
virtual wires. Every virtual wire can be independently simulated in parallel
by the two-round protocol Π2. Thus, the resulting protocol involves two
communication rounds.

Communication overhead. Protocol Π2 operates on ν real wires. Since
ν = O(1), the protocol has constant communication overhead. Protocol
Π1 operates on N = nν virtual wires and also has constant communica-
tion overhead since we have T = N

3+δ . Thus Π1 involves N messages of size
�
N · O(1) which are each transmitted by an instance of protocol Π2 with
constant communication overhead, resulting in the total communication of
N · �

N ·O(1) = O(�) bits — or communication overhead Λ = O(1) — match-
ing the lower bound for two-round PSMT established in [18]. ��

5 Conclusions

In this paper, we presented a communication-optimal two-round PSMT protocol
for n ≥ (2+ε)t where ε > 0 is an arbitrary, small constant. For the protocol to be
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communication-optimal, messages of length only polynomial in n are required.
The communication complexity of the protocol is O(�).

As it follows from the lower bound in [18], communication complexity O(�)
can only be achieved if n = 2t + Ω(t). Thus, our protocol is optimally resilient
under the constraint of communication complexity O(�). Our protocol is con-
structed along the lines of Bracha’s player-virtualization technique, systemati-
cally extending the player set in order to amplify the resilience of a lower-level
protocol.

We also obtained a tight bound on the communication complexity of one-
round PSMT for n > 3t.

Regarding optimizations to our construction, note that our estimation on ν
is rather conservative since it is based on a rough Chernoff-bound estimation.
Experiments computing minimal values ν for particular values of ε show that
much better results can be achieved. However, depending on the particular value
of ε, our construction may still demand the message size to be a polynomial in
n of high degree. For example, ε = .6 yields ν = 3, ε = .3 yields ν = 11, while
ε = .1 yields ν = 83.

In some cases, variations of the given construction achieve better results —
for example, by setting ν = 3 and applying virtualization recursively. Another
possibility, at least in order to non-constructively prove the existence of proto-
cols for smaller message sizes, is to have ν = Θ(log n) and proceed along the
lines of Bracha [6]. We note that in this case constant communication overhead
can still be achieved while requiring low-level protocol Π2 to be of lower-than-
optimal resilience, i.e., ν ≥ (2 + α)τ , where α > 0 is a constant. Yet another
direction worth investigating in order to achieve a lower number of virtual wires,
as suggested by one of the reviewers, would be a “de-randomized” choice of sets
obtained from short walks on low-degree expander graphs.
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A Chernoff Bounds

Chernoff bounds [12] give bounds on the probability that of n independent
Bernoulli trials the outcome deviates form the expected value by a given fraction.
Here we present the “upper tail” version.
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Let Xi (1 ≤ i ≤ n) be a sequence of independent 0-1 distributed random
variables with expected value μ. By C(μ, n, λ) (λ > 1) we denote the probability
that, out of n trials, the outcome exceeds the expected value nμ by a given factor
depending on λ. The following inequality, which holds for 1 < λ < 2e, bounds
this probability.

C(μ, n, λ) = Pr

(
n∑

i=1

Xi ≥ λμn

)
≤ e−

μn(λ−1)2

2 (2)
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Abstract. We show a new protocol for blind signatures in which secu-
rity is preserved even under arbitrarily-many concurrent executions. The
protocol can be based on standard cryptographic assumptions and is the
first to be proven secure in a concurrent setting (under any assumptions)
without random oracles or a trusted setup assumption such as a com-
mon reference string. Along the way, we also introduce new definitions
of security for blind signature schemes.

1 Introduction

Blind signature schemes, introduced by Chaum [11], are a fascinating primitive
that (roughly speaking) enable a user to interact with a signer and obtain a
signature on a message m without revealing anything about m to the signer.
Blind signature schemes are a crucial component of many systems in which
certain values need to be certified, yet anonymity should be ensured: classical
examples include e-cash (where a bank signs ‘e-coins’ that are withdrawn by
customers) and e-voting (where an authority signs public keys for voters to use
when they later cast their votes).

Definitions of security for blind signature schemes were first proposed by
Pointcheval and Stern [29], though many refinements and extensions of their
original definitions have since been suggested. At a high level, all existing def-
initions impose two basic requirements: blindness (or anonymity) and unforge-
ability. Blindness formalizes the notion that a malicious signer should be unable
to ‘link’ any message/signature pair with a particular execution of the signing
protocol. Unforgeability for blind signatures is the analogue of the notion of un-
forgeability for standard signature schemes: informally, a malicious user should
be unable to output a valid signature on any message other than those whose
signatures were explicitly requested from the signer. A subtlety in the case of
blind signatures is that a malicious user’s execution of the protocol with the
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signer may not result in any well-defined message whose signature is being re-
quested. Because of this, the formal definition requires that for any polynomial
� and any user executing the protocol � times with the signer, the user should
be unable to output � + 1 valid signatures on � + 1 distinct messages.

When defining blindness and unforgeability it is necessary to distinguish
whether security requires different executions of the protocol to be carried out
sequentially (i.e., waiting for one execution to finish before beginning the next),
or whether security holds even when multiple executions are performed concur-
rently (i.e., in an arbitrarily-interleaved manner). (One can also consider the
intermediate case in which executions are run in parallel.) Concurrency in the
context of blindness has received little attention, both because the ‘standard’
definition of blindness considers only two executions of the protocol and also,
perhaps, because many known constructions of blind signature schemes achieve
perfect blindness. In contrast, handling concurrency in the context of unforge-
ability has received much attention (surveyed below), and it is not hard to see
that — assuming there exist blind signature schemes at all — there exist schemes
that are unforgeable in the sequential setting but not in a concurrent setting.

1.1 Previous Constructions

Chaum [11] proposed a candidate blind signature scheme without any proof
of security (though his scheme was later proven secure in the random oracle
model under a somewhat non-standard cryptographic assumption [5]). Since
then, numerous works have aimed to design secure schemes. We review these
here, with particular attention to the type of unforgeability proved.

Schemes in the random oracle model. Initial constructions of blind signa-
ture schemes were in the random oracle model [6], and, in fact, until relatively
recently all efficient constructions relied on random oracles. Pointcheval and
Stern [28] showed the first secure blind signature schemes, though they prove
unforgeability (in the parallel setting) only for a user who requests logarithmi-
cally-many signatures. This was improved in later work by Pointcheval [27], who
showed schemes that are unforgeable (in a restricted variant of the parallel set-
ting) for polynomially-many signatures. Abe [1] gave a protocol with improved
round complexity, and also proved unforgeability in the concurrent setting. Bel-
lare, et al. [5] and Boldyreva [8] present 2-round blind signature schemes; note
that 2-round protocols (which consist of a single message from the user and a
response by the signer) are automatically secure in a concurrent setting.

Schemes in the standard model. Relatively early, it was suggested [12] that
blind signatures might be constructed using protocols for generic secure 2-party
computation. Juels, Luby, and Ostrovsky [19] point out that the näıve way of im-
plementing this approach does not work, but show how to adapt and extend this
idea so as to achieve a secure solution. Although they claim security in the con-
current setting, no details of the proof in this case are provided; as best as we can
tell, their solution is secure in the sequential setting only. Indeed, security of their
protocol in the concurrent setting seems to require a concurrently-secure protocol
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for 2-party computation, but constructing such protocols without random oracles
or setup assumptions is currently a major open question. The work of [4] could be
used here, but then security would require sub-exponential hardness assumptions
(something avoided in our work).

Camenisch, et al. [9] show the first efficient protocol secure in the standard
model, proven unforgeable only for the case of sequential attacks.

Lindell [23] has shown the impossibility of concurrently-secure blind signatures
if simulation-based definitions of security are used.1 In an effort to overcome the
limitations of the above protocols, as well as Lindell’s impossibility result, much
recent work has focused on proving security for blind signature schemes in the
concurrent setting by assuming a common reference string [26,21,16]. However,
although Lindell’s impossibility result was used as justification for relying on a
common reference string in these works, Lindell’s results do not apply if game-
based security definitions (rather than simulation-based security definitions) are
used. Indeed, this serves as the starting point for our work.2

1.2 Our Contributions

As hinted at earlier, the standard definition of blindness considers only the inter-
action of a malicious signer with two users; furthermore, the definition does not
seem to reasonably extend for the case of multiple users (the issue is how to deal
with a signer who may abort some sessions). We propose a new definition here
which extends seamlessly to the multi-user setting, and (in retrospect) seems to
capture better the security requirements of a blind signature scheme.

As our main contribution, we present the first concurrently-secure blind sig-
nature scheme that does not rely on random oracles or any setup assumptions
such as a common reference string. In order to ‘bypass’ the impossibility result
of Lindell [23], we prove security using game-based definitions that have anyway
been standard in almost all prior work in this area. Our protocol relies on stan-
dard cryptographic assumptions (e.g., trapdoor permutations and the decisional
Diffie-Hellman assumption), and we prove security with respect to game-based
definitions that are stronger than others that have appeared in the literature.

Besides being interesting in its own right, our construction serves as yet
another illustration that known impossibility results for concurrently-secure 2-
party computation [23,24] might be overcome for specific functionalities of in-
terest by considering relaxed (yet still meaningful) definitions of security. In
this sense, our work exemplifies what we see as a viable alternative to the ap-
proaches to concurrently-secure computation taken by, e.g., [10,23,31,3,20,4,25],
who focus on staying within the simulation paradigm (in part, because they are
striving for a generic result) but are thus forced to impose additional assump-
tions (e.g., a common reference string [10] or a bound on network delay [20]) or
to settle for alternate definitional relaxations (e.g., bounded concurrency [23] or
super-polynomial-time simulation [4]).
1 Technically, he only rules out black-box proofs of security.
2 We do not formally define what it means for a definition to be ‘simulation-based’ or

‘game-based,’ but instead appeal to the reader’s intuition regarding such matters.
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1.3 Outline

In Section 2 we discuss definitions of security for blind signature schemes, and
present a new set of definitions that are stronger than any to have previously
appeared in the literature. We also propose, for the first time, a definition of
blindness for the case of a signer interacting with an arbitrary number of users.

We then build up to our main result in stages: in Section 3.1 we describe the
recent blind signature scheme of Fischlin [16] which is used as a building block
in our work, and then in Section 3.2 we construct a blind signature scheme
that can be proven concurrently-secure using complexity leveraging.3 Our main
result (which does not rely on complexity leveraging) appears in Section 4, along
with proof sketches of the blindness and unforgeability properties. Due to space
limitations, complete proofs are omitted but will appear in the full version.

2 Definitions

A standard signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy), where
the key generation algorithm Gen takes as input a security parameter 1k and out-
puts a pair of keys (pk, sk) with the security parameter implicit in both; the sign-
ing algorithm Sign takes as input a message m and a secret key sk and outputs a
signature σ; and the verification algorithm Vrfy takes as input a public key pk, a
message m, and a candidate signature σ and outputs a decision bit. Correctness
requires that if (pk, sk) is output by Gen(1k) then Vrfypk(m, Signsk(m)) = 1 for
all m. We use the standard definition of existential unforgeability under adaptive
chosen-message attacks [18].

We assume signature schemes that are length-regular : i.e., there exists a
polynomial p(·) such that if (pk, sk) are output by Gen(1k) then for any m
in the message space (1) Signsk(m) ∈ {0, 1}p(|m|) and (2) Vrfypk(m, σ) = 0
if σ �∈ {0, 1}p(|m|). We will not write this explicitly in the rest of the
paper.

We now define a blind signature scheme.

Definition 1. A blind signature scheme consists of ppt algorithms Gen, Vrfy
along with interactive ppt algorithms S, U such that:

• Gen, on input 1k, outputs a key pair (PK, SK) with k implicit in both.
• The joint execution of S, holding input SK, and U , holding inputs PK, m,
results in an output σ for U , assuming neither S nor U abort. We write this
as σ ← 〈SSK, UPK(m)〉. If U aborts, its output is ⊥ (which is never a valid
signature) and we assume that it notifies S.

• Vrfy, on input PK, m, σ, outputs a decision bit.
Correctness requires that for all (PK, SK) output by Gen(1k) and all m, if σ ←
〈SSK, UPK(m)〉 then VrfyPK(m, σ) = 1.
3 Roughly speaking, this means we assume primitives A and B such that A cannot be

broken in polynomial time but can be broken in time T (k) for some super-polynomial
function T , while B cannot be broken in time T (k).



Concurrently-Secure Blind Signatures Without Random Oracles 327

We now define unforgeability and blindness. In both definitions, the adversary
maintains state throughout its execution.

Definition 2. Blind signature scheme (Gen, S, U , Vrfy) is unforgeable if for any
polynomial �, the success probability of any ppt algorithm Û in the following
game is negligible:

• Gen(1k) outputs keys (PK, SK), and Û is given PK.
• Û(PK) interacts concurrently with � = �(k) instances S1

SK, . . . , S�
SK.

• Û outputs (m1, σ1, . . . , m�+1, σ�+1).
Û succeeds if the {mi} are distinct and VrfyPK(mi, σi) = 1 for all i.

We next turn to defining blindness. We begin with a (strong) variant of the
standard definition of blindness, which only considers the execution of the signer
with two users. This is followed by some discussion of how the definition might
be extended for the case of multiple users.

Definition 3. Blind signature scheme (Gen, S, U , Vrfy) satisfies blindness if the
advantage of any ppt algorithm Ŝ in the following game is negligible:

1. Ŝ(1k) outputs an arbitrary public key PK along with equal-length messages
m0, m1.

2. A random bit b is chosen, and Ŝ interacts concurrently with Ub
def= UPK(mb)

and Ub̄
def= UPK(mb̄). When Ub, Ub̄ have completed their execution, σ0, σ1 are

defined as follows:

• If either Ub or Ub̄ abort, then (σ0, σ1) := (⊥, ⊥).
• Otherwise, let σ0 (resp, σ1) be the output of U0 (resp., U1).

Ŝ is given (σ0, σ1).
3. Finally, Ŝ outputs a bit b′.

Ŝ succeeds (denoted Succ) if b′ = b. The advantage of Ŝ is
∣∣Pr[Succ] − 1

2

∣∣.

For the definition to be meaningful, we cannot give Ŝ the signature output by
one user in case the other aborts: if we did, Ŝ could simply abort the execution
with its ‘left’ oracle and then, depending on whether it is given a signature on
m0 or m1, easily determine b. On the other hand, in contrast to [16], we allow the
game to continue if either user aborts (this only strengthens the definition). Note
also that Ŝ may generate PK in an arbitrary manner, not necessarily using Gen.
It seems perfectly natural to us to allow this possibility, though it appears to
have been formally considered only relatively recently [2,26,16].

In extending the above definition to the case of a signer interacting with
an arbitrary number of users, an obvious approach is to allow the signer to
output two vectors m0, m1 containing the same messages m1, . . . , m� (possibly
allowing repeats) in permuted order. A difficulty that arises is how to deal with
a signer who aborts some of the sessions. Some natural ways of dealing with
this are (1) if the signer aborts any session, it receives no signatures; or (2) say
m0 = (m0

1, . . . , m
0
�) and m1 = (m1

1, . . . , m
1
�). Then if the signer aborts the ith



328 C. Hazay et al.

session, it is given neither the signature on m0
i nor the signature on m1

i . The first
option seems (to us) to be too weak. The second option seems a bit arbitrary,
though reasonable; an aesthetic drawback is that it is not clear that it is implied
by Definition 3. In the full version we sketch a third possibility, intermediate in
strength between the above two, which is implied by Definition 3.

In any case, all the above ways of dealing with abort (even in the original
case with two users) seem a bit arbitrary even though for technical reasons they
are necessary to make the definitions non-trivial. We therefore propose a new
definition which, in our opinion, handles the issue of abort in a cleaner way.
Though it allows some ‘attacks’ which are ruled out by Definition 3, we believe
it models the security desired of typical proposed applications of blind signatures
(such as e-cash or e-voting). Further discussion follows the definition.

Definition 4. Blind signature scheme (Gen, S, U , Vrfy) satisfies a posteriori
blindness if for any polynomial �, any �′ such that 1 ≤ �′(k) ≤ �(k) for all
k, and any ppt algorithm Ŝ, the advantage of Ŝ in the following game is at
most a negligible quantity:

1. Ŝ(1k) outputs an arbitrary public key PK and a message distribution4 M
sampleable in polynomial time.

2. Messages m1, . . . , m� are sampled according to M, and Ŝ interacts con-
currently with UPK(m1), . . ., UPK(m�). The game ends if the number of non-
aborted sessions is not equal to �′. Otherwise, we say event NA(�′) occurs
and the game continues.

3. Let i1, . . . , i�′ denote the indices of the non-aborted sessions and let π be a
random one-to-one function mapping {1, . . . , �′} to these indices. Ŝ is given
(mπ(1), σπ(1)), . . ., (mπ(�′), σπ(�′)).

4. Finally, Ŝ outputs (i, i′).
Ŝ succeeds (this event is denoted by Succ) if π(i) = i′. The advantage of Ŝ is
Pr[Succ] − 1

�′ Pr[NA(�′)].

Note that allowing the signer to choose the message distribution is stronger than
quantifying over all sampleable distributions, since it allows the signer to choose
a distribution that depends on the (maliciously-chosen) public key.

The intent of the above definition is to model the scenario where (honest)
users anyway choose the ‘messages’ to be signed from some known distribution.
For example, in the case of e-cash the message might be a random string; in the
case of e-voting the message might be an honestly-generated public key; finally,
a scenario similar (but not identical) to that of Definition 3 can be achieved
if M is the uniform distribution over {m0, m1}. After interacting with users
who choose their messages according to this distribution, the signer is given all
message/signature pairs (in a randomly-permuted order) from the non-aborted
sessions; this corresponds to the scenario when the users in the non-aborted
sessions reveal their message/signature pairs (e.g., by spending an e-coin or

4 This could be specified, e.g., by a circuit whose output (on uniform input) defines
the distribution.
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casting a vote). Informally, the signer ‘wins’ if it can link some
message/signature pair to its corresponding session with probability better
than randomly guessing a non-aborted session.

The nice thing about the above definition is that it models exactly what the
signer actually ‘sees’ in the real world, without imposing any artificial (though
necessary) restrictions. We remark also that Definition 4 in the special case � = 2
implies the general case.

We stress, however, that Definition 4 guarantees no ‘blindness’ whatsoever in
the aborted sessions. In particular, a scheme in which the user reveals m (and
aborts) if the signer sends an improper first message could still potentially be
secure with respect to Definition 4 though it would not satisfy Definition 3. We do
not view this as a problem since we view ‘messages’ as having no inherent secrecy
requirement (indeed, the user eventually reveals its message anyway); rather, the
goal is to prevent the linking of a particular message (that is later used) to a
particular session. In this sense, schemes satisfying a posteriori blindness are
analogous to commitment schemes with a posteriori secrecy (cf. [17, Section
4.8.2.5]). For this reason, schemes satisfying this notion may not be appropriate
for all possible applications of blind signatures.5

3 A Warm-Up for Our Main Result

Our blind signature scheme builds on an elegant construction due to Fischlin [16]
that relies on a common reference string. We review Fischlin’s scheme and then,
as a step toward our main result, present a blind signature scheme that can be
proven concurrently-secure using complexity leveraging (cf. footnote 3).

3.1 Fischlin’s Blind Signature Scheme

We describe a simplified6 version of Fischlin’s scheme that satisfies our definitions
of blindness and unforgeability in the common reference string (CRS) model.
Let Π ′ = (Gen′, Sign′, Vrfy′) be a standard signature scheme, and let Com be
a perfectly-binding commitment scheme. Fischlin’s scheme is defined as follows
(see also Figure 1):

Setup: The CRS contains a public key pkE for a semantically-secure public-
key encryption scheme, and a string ρ used as a CRS for a non-interactive
zero-knowledge (NIZK) proof system. EpkE (·) denotes encryption using pkE .

Key generation: Gen(1k) runs Gen′(1k) to obtain keys (pk′, sk′) and outputs
these keys.

Signing: The protocol for a user U to obtain a signature on a message m is as
follows:

5 However, we conjecture that any scheme satisfying Def. 4 can be converted to one
satisfying Def. 3 by using a commitment to the message in the signing protocol.

6 The scheme presented by Fischlin includes some additional complications that are
used to achieve strong unforgeability, which we do not consider here.
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CRS: pkE, ρ
Public key: pk′

S(sk′) U(m)

� com com ← Com(m)

σ′ ← Sign′
sk′(com) σ′

�
C ← EpkE (com‖σ′)
π : {C correct (for m)}

Fig. 1. Fischlin’s protocol

• U computes com ← Com(m) and sends com to the signer.
• S computes σ′ ← Sign′sk′(com) and sends σ′ to U .
• U verifies the signature sent in the previous step, and aborts if it is invalid.

Otherwise, the user computes C ← EpkE (com‖σ′) and computes an NIZK
proof π (using ρ) that (m, C, pkE , pk′) ∈ L where L is defined as the set of
tuples (m, C, pkE , pk′) for which there exists ω1, ω2, com, σ′ such that

com := Com(m; ω1)
∧

C := EpkE (com‖σ′; ω2)
∧

Vrfy′pk′(com, σ′) = 1 .

(Note that L is an NP language.) The signature is (C, π).
Verification: To verify signature (C, π) on m with respect to public key pk′

and CRS (pkE , ρ), verify that π is a valid proof (with respect to ρ) that
(m, C, pkE , pk′) ∈ L.

We now sketch the proofs of blindness and unforgeability. For blindness, note
that the signer observes only a commitment to m, an encryption of this com-
mitment, and an NIZK proof π; it is not too hard to see that none of these leaks
information about m, nor allows the signer to correlate a particular execution
of the protocol with a particular signature output by U .

For unforgeability, an adversary Û that forges a signature in the sense of Def-
inition 2 can be used to construct a forger F for standard signature scheme Π ′:
given public key pk′ of an instance of Π ′, forger F generates pkE on its own
(along with the corresponding secret key skE), generates ρ at random, and runs
Û in the natural way. F can easily execute the protocol with Û using its own
signing oracle. Finally, if Û outputs � + 1 distinct messages {mi} with valid
signatures {(Ci, πi)}, then with all but negligible probability (by soundness of
the NIZK proof system and perfect binding of the commitment scheme) each
Ci is a valid encryption of a distinct commitment comi and a valid signature
σ′i (with respect to Π ′) on this commitment. Given this, F can recover all the
{(comi, σ

′
i)} by decrypting all the ciphertexts using skE ; since F accessed its

signing oracle exactly � times, at least one (comi, σ
′
i) leads to a valid forgery

for Π ′.
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3.2 Concurrently-Secure Blind Signatures: A Partial Solution

If we try to adapt Fischlin’s scheme so as to avoid the CRS, we encounter two
main obstacles. We describe these now, along with our solutions.

Removing ρ: If the signer generates ρ, the proof π may leak information about
the underlying m, com, or σ′ (which would violate blindness); on the other hand,
the user clearly cannot generate ρ itself since then soundness may no longer apply
and forgery would be possible.

We can resolve this by relying on ZAPs [14] rather than NIZK, and having
the signer include the first message ρ for a ZAP as part of its public key. (A
ZAP is a two-round witness-indistinguishable proof system; see Appendix A).
Since a ZAP is witness indistinguishable but not zero knowledge, however, the
protocol must be changed so as to provide an alternate witness that will be
available to a simulator (for proving blindness) but not to a malicious user (or else
forgery becomes possible). We provide such a witness by having the signer include
y0 = f(x0) and y1 = f(x1) in its public key, where f is a one-way function,
and then having the signer give a witness-indistinguishable proof of knowledge
of either x0 or x1 as part of the signing protocol [15]. When constructing the
signature (after execution of the signing protocol), the user U computes C as
in Fischlin’s protocol and then gives a witness-indistinguishable proof π that
(essentially) it either constructed C appropriately or it knows one of x0 or x1.

Removing pkE: If the signer generates pkE then it is trivial for a malicious
signer to violate the blindness property; if the user generates pkE on its own,
then the reduction in the proof of unforgeability given in the previous section
no longer works since F can no longer recover a forgery for Π ′ from a forgery
for the blind signature scheme (since it cannot decrypt C).

If we are willing to rely on complexity leveraging, we can overcome this dif-
ficulty by using a commitment scheme Com∗ to construct C rather than an
encryption scheme. If Com∗ is secure against ppt adversaries, blindness still
holds. If, however, Com∗ can be broken in time T (k) for some super-polynomial
function T (·), then (referring to the proof of unforgeability in the previous sec-
tion) we can construct a forger F running in time O(T (k)) who extracts a valid
signature for Π ′. If we further assume that Π ′ is secure even against adversaries
running in time O(T (k)), this still yields a contradiction and is enough to prove
unforgeability of the blind signature scheme.

This gives the main intuition. We now give a more complete description of the
protocol, along with sketches of the proofs of blindness and unforgeability. We
take the liberty of being somewhat informal, as this protocol is meant mainly
as a ‘stepping stone’ toward our main result (which does not use complexity
leveraging).

Let Π ′ = (Gen′, Sign′, Vrfy′) be a standard signature scheme, and let f be
a one-way function. We assume these are secure (in the appropriate sense) for
adversaries running in time O(T (k)), where T (·) is a super-polynomial function.
Let Com, Com∗ be perfectly-binding commitment schemes, where Com∗ is such
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Public key: pk′, y0, y1, ρ
S(sk′, x0) U(m)

� com com ← Com(m)

�
WI-PoK : f−1(y0) or f−1(y1)

�� verify

σ′ ← Sign′
sk′(com) σ′

�
C∗

1 ← Com∗(com‖σ′)
C∗

2 ← Com∗(0k)

π :

C∗
1 correct (for m)

or
C∗

2 = Com∗(f−1(y0))
or

C∗
2 = Com∗(f−1(y1))

Fig. 2. A partial solution using complexity leveraging

that given C∗ ← Com∗(m) it is possible to recover m in time T (k). (However,
Com∗ is still hiding for ppt adversaries.) Our protocol is defined as follows:

Key generation: Gen(1k) runs Gen′(1k) to obtain keys (pk′, sk′). It also chooses
x0, x1 ← {0, 1}k and sets y0 := f(x0) and y1 := f(x1). Finally, it com-
putes ρ as the verifier’s initial message in a ZAP. The public key is PK :=
(pk′, y0, y1, ρ) and the secret key is SK := (sk′, x0).

Signing: The protocol for U to obtain a signature on message m is as follows:
• U computes com ← Com(m) and sends com to the signer.
• S and U execute a witness-indistinguishable proof of knowledge (WI-PoK)

in which S proves knowledge of either f−1(y0) or f−1(y1). (This should
be witness indistinguishable even against adversaries running in O(T (k))
time.) If this proof fails, U aborts.

• S computes σ′ ← Sign′sk′(com) and sends σ′ to U .
• U verifies the signature sent in the previous step, and aborts if it is invalid.

Otherwise, the user computes C∗1 ← Com∗(com‖σ′) and C∗2 ← Com∗(0k). It
then computes a ZAP π (with respect to ρ) that (m, C∗1 , C∗2 , pk′, y0, y1) ∈ L,
where L contains tuples for which there exist ω1, ω2, com, x, σ′ such that:

com := Com(m; ω1)
∧

C∗1 := Com∗(com‖σ′; ω2)
∧

Vrfy′pk′(com, σ′) = 1
or

C∗2 := Com∗(x; ω2)
∧

f(x) ∈ {y0, y1}

(Note that L ∈ NP .) The signature is (C∗1 , C∗2 , π).
Verification: To verify signature (C∗1 , C∗2 , π) on message m, verify that π is a

valid proof (with respect to ρ) that (m, C∗1 , C∗2 , pk′, y0, y1) ∈ L.
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We now sketch the proofs of blindness and unforgeability. Again, these are
informal because they are mostly intended to provide the reader with some
intuition toward our main result that appears in the following section.

Proof sketch (blindness). Given a malicious signer Ŝ we will consider a se-
quence of hybrid experiments, and argue that the success probability of Ŝ (in
the sense of Definition 3) cannot change by more than a negligible amount in go-
ing from one experiment to the next. The first experiment is the original game
of Definition 3, and in the final experiment the success probability of Ŝ will
be exactly 1/2. We conclude that the success probability of Ŝ in the original
experiment is negligibly-close to 1/2, thus proving blindness.

In the initial experiment H0 the signer Ŝ outputs a public key PK = (pk′,
y0, y1, ρ) and two equal-length messages m0, m1. A random bit b is chosen and
Ŝ interacts with Ub

def= UPK(mb) and Ub̄
def= UPK(mb̄). If neither of these users

aborts, then Ŝ is given the signatures output by these users. Finally, Ŝ outputs
a bit b′, and succeeds if b′ = b.

In the first hybrid experiment H1, whenever U0 does not abort we extract
from the WI-PoK (given by Ŝ to U0) a value x such that f(x) ∈ {y0, y1}. If Ŝ
gives a valid WI-PoK but extraction fails, b′ is chosen at random; otherwise, b′ is
computed as in H0. Clearly, the success probabilities in games H0 and H1 differ
by only a negligible amount. We remark that extraction here is only required
from one of the proofs given by Ŝ, and furthermore if the WI-PoK given to U0
fails then no signatures need be provided to Ŝ (even if the WI-PoK given to
U1 succeeds). Thus, no difficulties arise due to the concurrent execution of two
WI-PoKs by Ŝ.

In H2, the signatures output by U0, U1 are both computed using the witness
x that was extracted (this is only done if neither user aborts and extraction is
successful, as otherwise either Ŝ is given (⊥, ⊥) or else extraction failed and b′ is
chosen at random). Specifically, each user computes C∗1 as before but now sets
C∗2 := Com∗(x; ω); the proof π is constructed using (ω, x) as the witness. Hiding
of Com∗ (for ppt adversaries) and witness-indistinguishability of the ZAP imply
that the success probabilities of Ŝ in experiments H1 and H2 differ by only a
negligible amount.

In the final experiment H3, the first component C∗1 of the signature generated
by each user is computed as a commitment to ‘garbage’, i.e., an all-0s string of
the appropriate length. Also, the commitments com sent by each of the users
during their execution of the protocol are replaced with commitments to garbage
as well. Hiding of Com and Com∗ (against ppt adversaries) again implies that
the success probabilities in experiments H2 and H3 differ by only a negligible
amount.

In H3, both protocol executions are distributed identically and both signa-
tures are independent of these executions; thus, the probability of success is
exactly 1/2. This concludes the proof.

Proof sketch (unforgeability). As in the analysis of the Fischlin scheme, an
adversary Û that, with non-negligible probability, forges a signature with respect
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to the blind signature scheme can be used as a sub-routine of an algorithm that
‘breaks’ another cryptographic assumption. Here, however, there are two main
differences:
1. First, the resulting algorithm must be able to extract the underlying mes-

sages being committed to in C∗1 and/or C∗2 ; this can be done in time T (k)
(but not in polynomial time) and so we obtain an algorithm running in
O(T (k)) time rather than in polynomial time.

2. Second, the algorithm is only ensured to extract (with non-negligible prob-
ability) either � + 1 distinct commitments {comi} along with � + 1 valid
signatures {σ′i}, or a value x with f(x) ∈ {y0, y1} (in the proof for the
Fischlin scheme only the first of these could occur). The first event imme-
diately leads to a forgery on Π ′. The second event leads to an algorithm I
inverting f with non-negligible probability (using the technique of Feige and
Shamir [15]).

If the signature scheme Π ′ and the one-way function f are secure even against
adversaries running in time O(T (k)), the above leads to a contradiction. Hence,
we conclude that the blind signature scheme is unforgeable.

4 A Concurrently-Secure Blind Signature Scheme

In this section, we describe our main result: a concurrently-secure blind sig-
nature scheme based on standard cryptographic assumptions. In addition to a
standard signature scheme, our construction also relies on a perfectly-binding
commitment scheme and a ZAP, reviewed in Appendix A. We also use a spe-
cial type of commitment scheme, described below, and a particular concurrent
zero-knowledge protocol, discussed in detail in the following section.

For our protocol we will require a special type of commitment scheme that we
call ambiguous. In such a scheme, commitment depends on a key pkc which can
be generated in one of two ways: either by a ‘normal’ key-generation procedure
ComGen, or by an ‘alternate’ key-generation procedure ExtGen which outputs
some additional trapdoor information td along with pkc. If pkc is generated by
ComGen, the scheme is perfectly hiding. On the other hand, if pkc is generated
by ExtGen then td enables extraction of the committed value. Formally:

Definition 5. An ambiguous commitment scheme is a tuple of ppt algorithms
(ComGen, ExtGen, Com, Extract) such that:

Functionality: ComGen(1k) outputs a key pkc. ExtGen(1k) outputs a key pkc

and a trapdoor td.
Indistinguishability: The keys output by ComGen and ExtGen are computa-

tionally indistinguishable; that is:
{

pkc ← ComGen(1k) : pkc

}
c≈

{
(pkc, td) ← ExtGen(1k) : pkc

}
.

Perfect hiding: If pkc is output by ComGen, then (with probability 1) Compkc(·)
is a perfectly-hiding commitment scheme.
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Extraction: If (pkc, td) is output by ExtGen, then Extracttd(Compkc(m)) = m
with probability 1. (This implies that if pkc is output by ExtGen, then
Compkc(·) is perfectly binding.)

The last two requirements imply that the ranges of ComGen and ExtGen are
disjoint.

Commitment schemes with the above functionality (satisfying also some addi-
tional requirements) were shown previously by Damg̊ard and Nielsen [13] based
on a variety of number-theoretic assumptions. The following construction is eas-
ily seen to satisfy Definition 5 under the decisional Diffie-Hellman assumption:

– ComGen(1k) first generates a group G of prime order q, along with gener-
ators g, h ∈ G. It then chooses r1, r2 ← Zq. If r1 �= r2 it outputs pkc =
(G, q, g, h, gr1, hr2), and otherwise7 it outputs pkc = (G, q, g, h, g0, h1).

– ExtGen(1k) generates G, q, g, h exactly as ComGen. It then chooses r ← Zq

and outputs pkc = (G, q, g, h, gr, hr) and td = r.
– Com∗pkc

(m), where m ∈ G and pkc = (G, q, g, h, g1, h1), chooses random
x, y ← Zq and outputs A = gxhy and B = gx

1hy
1 · m.

– Extractr(A, B) outputs B/Ar.

4.1 The PRS Concurrent Zero-Knowledge Protocol

As part of our blind signature scheme, we rely on a concurrent zero-knowledge
protocol adapted from work of Prabhakaran, Rosen, and Sahai [30,32] and de-
scribed in Figure 3; we will refer to this protocol as cZK. Protocol cZK is almost
identical to the protocol shown in [32, Section 4.8.2], with one difference being
that we are satisfied with an argument system8 rather than a proof system.
The first step of the second stage of cZK is also added specifically for the proof
of security of our blind signature scheme. Finally, cZK is also a (stand-alone)
argument of knowledge, something we need for our protocol.

We do not offer a proof that cZK satisfies the definition of concurrent zero-
knowledge, appealing instead to the analysis in [32] which extends without sig-
nificant modification to our protocol. Actually, for the proof of security of our
blind signature scheme we do not rely on the concurrent zero-knowledge property
of cZK as a ‘black-box,’ but instead rely on the properties of the specific zero-
knowledge simulator shown by Prabhakaran, et al. We therefore briefly describe
their simulation strategy at a high level.

The keys to the simulation strategy of [30] are that (1) second-stage messages
can be simulated (without knowing a witness) in a straight-line manner as long
as the simulator learns in advance the value α that the verifier committed to
in the first phase; and (2) the value α can be extracted if the verifier ever
answers correctly for two different values of sj . Correspondingly, the simulation
7 We explicitly check whether r1 �= r2, even though this occurs with negligible proba-

bility, since perfect hiding for keys output by ComGen must hold with probability 1.
8 Recall that in a proof system soundness must hold unconditionally, while in an

argument system soundness need only hold against a ppt cheating prover.
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Inputs: The prover and verifier reduce their common input to a graph G = (V, E).
From its witness, the prover computes (as private input) a Hamiltonian cycle C ⊆
E. Let k be the security parameter.

First stage: Let r = log2(k).

1. The verifier uniformly selects α ∈ {0, 1}r , and then chooses values {α0
i,j}r

i,j=1

and {α1
i,j}r

i,j=1 at random subject to the constraint that α0
i,j ⊕ α1

i,j = α for
all i, j. The verifier sets com ← Com(α) and comb

i,j ← Com(αb
i,j), and sends

all these commitments to the prover.
2. For j = 1, . . . , r:

1. The prover selects a random sj ∈ {0, 1}r and sends it to the verifier.

2. Let sj = sj
1 · · · sj

r. The verifier sends {αs
j
i

i,j}r
i=1 along with the randomness

used in generating {coms
j
i

i,j}r
i=1. The prover verifies that these match the

corresponding initial commitments sent by the verifier, and aborts if this
is not the case.

Second stage: The prover and verifier run r parallel executions of (a modified version
of) Blum’s Hamiltonicity protocol [7]:

1. The verifier and prover execute a (standard) zero-knowledge proof in which
the verifier proves that its commitments (sent in step 1 of the first phase) are
‘consistent’: namely, that there exist values α and {α0

i,j , α
1
i,j}r

i,j=1 such that
(1) com is a commitment to α; (2) comb

i,j is a commitment to αb
i,j for all i, j, b;

and (3) α0
i,j ⊕α1

i,j = α for all i, j. If the verifier’s proof fails, the prover aborts.
2. The prover selects r random permutations π1, . . . , πr of the vertices V , and

sends perfectly-binding commitments to the entries of the adjacency matrices
of the resulting permuted graphs.

3. The verifier sends α, and the verifier and prover execute a (standard) zero-
knowledge proof in which the verifier proves that com is a commitment to α.
If the verifier’s proof fails, the prover aborts.

4. For j = 1, . . . , r do: if αj = 1 send πj and open all the commitments in
the jth adjacency matrix. If αj = 0 open only the commitments to entries
corresponding to the (permuted) cycle C.

5. The verifier checks the values sent by the prover in the standard way.

Fig. 3. A concurrent zero-knowledge argument of knowledge

used in [30,32] can be separated, both conceptually and functionally, into two
parts: a ‘look-ahead’ sub-routine (whose goal is to extract α for all existing
sessions) and a ‘straight-line simulation’ sub-routine (which actually generates
the transcript that is output by the simulator). The look-ahead sub-routine
dynamically updates a table containing (roughly speaking) all the α-values that
have been extracted thus far; if the straight-line simulation sub-routine is reached
and a corresponding value of α (needed to continue the simulation) is not in the
table, the simulator aborts with output ⊥.

Another important feature of the simulation strategy is that control alternates
between the two sub-routines according to a fixed schedule that does not depend



Concurrently-Secure Blind Signatures Without Random Oracles 337

on the actions of the particular verifier under consideration. This, in turn, means
that we can distinguish in advance the portion of the simulator’s random coins
that are used for ‘look-aheads’ and those that are used for straight-line simu-
lation. We will exploit this feature in the unforegablility proof of our protocol.
We remark also that the transcript generated by the ‘straight-line simulation’
sub-routine is built up incrementally, message-by-message, but once a message
is placed in this transcript it is never removed.

4.2 Our Construction: An Overview

We begin with some intuition motivating our construction. Recalling the scheme
presented in Section 3.2, we see that the use of complexity leveraging there is due
to the need to extract from the commitments of Û in the proof of unforgeability
(which requires super-polynomial time). A first thought is to let Com∗ in that
protocol be an ambiguous commitment scheme, with the public key pkc for the
commitment included in the signer’s public key and generated using ComGen.
Then, in the proof of unforgeability, we can generate pkc using ExtGen (instead
of ComGen) and thus extract the necessary values from the signature forgeries
output by Û .

An immediate problem is that a malicious signer could then easily violate
blindness by generating pkc using ExtGen. To prevent this, we have the signer
provide a proof9 that pkc was correctly generated as part the signing protocol.
Because we will want to replace pkc with an incorrectly-generated key in the
proof of unforgeability, this proof will need to be (concurrent) zero knowledge
(witness indistinguishability does not help us here). Because we will again want
to provide an ‘alternate’ witness in the proof of blindness, it will also be a proof
of knowledge. We remark that once we introduce this change, we no longer need
the values y0, y1 in the signer’s public key

This almost completes the description of our protocol. However, a difficulty
arises if we try to prove unforgeability of the construction as described to this
point. Roughly speaking, for the construction thus far it is possible to prove the
following:

Given Û who interacts with � instances of S and outputs � + 1 valid
signatures on distinct messages with non-negligible probability (cf. Def-
inition 2), we can construct an adversarial forger F who interacts with
a signing oracle for (standard signature scheme) Π ′ and outputs � + 1
valid signatures on distinct messages with non-negligible probability.

The problem is that F makes more than � queries to its signing oracle, and it is
therefore not clear that the � + 1 signatures output by F yield a valid forgery!
To see why, note that although Û invokes only � instances of S, simulation of
the zero-knowledge proof by F requires rewinding of Û , and many more than �
signatures will have to be generated as part of this rewinding. (In the protocol
of Section 3.2 no rewinding was needed and so F made exactly � queries to its

9 Actually, we use an argument system but this does not affect the intuition.
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Public key: pk′, pkc, ρ
S(sk′) U(m)

� com com ← Com(m)

�
cZK : {pkc correct}

�� verify
nonce ← {0, 1}k

σ′ ← Sign′
sk′(com‖nonce) nonce, σ′

�
C∗ ← Com∗

pkc
(com‖nonce‖σ′)

π :

⎧
⎨

⎩

C∗ correct (for m)
or

pkc correct

⎫
⎬

⎭

Fig. 4. A high-level overview of our protocol

signing oracle there.) Dealing with this issue is the most difficult and technically-
involved aspect of our construction.

We resolve the issue in the following way: instead of having the signer generate
a (standard) signature on the commitment com sent by the user in the first round,
we have the signer choose a random string nonce ∈ {0, 1}k and sign com‖nonce
(computation of the final signature by U is changed in the obvious way). In the
proof of unforgeability, we still construct a forger F who outputs � + 1 valid sig-
natures on distinct messages {(comi‖noncei)}, but requests more than � signa-
tures from its signing oracle. Now, however, we can show that these � + 1 mes-
sages are (in a certain sense) independent of the random nonces used during the
rewinding done by F . (Here, in particular, we rely on the fact that in step 1 of
the second phase of cZK the verifier proves consistency of its commitments, and
therefore it does not matter in which iteration the simulator extracted α.) Since
the nonces used during rewinding are chosen at random, this means that with
overwhelming probability at least one of the messages comi‖noncei will be differ-
ent from any query made by F to its signing oracle, in which case F can output a
forgery for Π ′.

We remark that in proving the above we rely on the specific concurrent zero-
knowledge protocol cZK, as well as a particular simulation strategy for this
protocol, rather than relying on concurrent zero-knowledge in a ‘black-box’ way.
Indeed, we do not know how to prove unforgeability of our construction when
instantiated with an arbitrary concurrent zero-knowledge protocol.

4.3 Our Construction

We now give the details of our construction. Let Π ′ = (Gen′, Sign′, Vrfy′) be
a standard signature scheme, let cZK be the protocol of Figure 3, and let
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(ComGen, ExtGen, Com∗, Extract) be an ambiguous commitment scheme. Our
protocol is constructed as follows (see Figure 4):

Key generation: First, Gen′(1k) is run to obtain keys (pk′, sk′) and
ComGen(1k) is run to obtain pkc. The signer also computes ρ as the ver-
ifier’s initial message in a ZAP. The public key is PK := (pk′, pkc, ρ) and the
secret key is sk′ along with the randomness used to generate pkc.

Signing: The protocol for a user U to obtain a signature on a message m is as
follows:

• U computes com ← Com(m) and sends com to the signer.
• S and U execute protocol cZK by which S proves that pkc was generated

correctly. Formally, it proves that pkc ∈ LComGen, where

LComGen
def=

{
pkc : ∃ω s.t. pkc := ComGen(1k; ω)

}
.

If this proof fails, U aborts. If S aborts in cZK (because it detects that U
is cheating), then S aborts the entire signing protocol.

• S chooses nonce ← {0, 1}k, computes σ′ ← Sign′sk′(com‖nonce), and sends
nonce, σ′ to U .

• U verifies the signature sent in the previous step, and aborts if it is invalid.
Otherwise, the user computes C∗ ← Com∗pkc

(com‖nonce‖σ′). It then com-
putes a ZAP π (with respect to ρ) that (m, C∗, pk′, pkc) ∈ L2, where L2
contains tuples such that there exist ω1, ω2, com, nonce, σ′ with:

(
com := Com(m; ω1)

∧

C∗ := Com∗pkc
(com‖nonce‖σ′; ω2)

∧
Vrfy′pk′(com‖nonce, σ′) = 1

)

or
pkc := ComGen(1k; ω1)

The signature is (C∗, π).

Verification: To verify signature (C∗, π) on message m, verify that π is a valid
proof (with respect to initial message ρ) that (m, C∗, pk′, pkc) ∈ L2.

We claim the following about the above scheme:

Theorem 1. Assuming that (1) Com is computationally hiding; (2) (ComGen,
ExtGen, Com∗, Extract) is an ambiguous commitment scheme; (3) cZK is an ar-
gument of knowledge with negligible knowledge error; and (4) the ZAP being used
is witness indistinguishable, the blind signature scheme above satisfies blindness.

Theorem 2. Assuming that (1) Com is perfectly binding; (2) (ComGen, ExtGen,
Com∗, Extract) is an ambiguous commitment scheme; (3) the ZAP being used
has negligible soundness error; and (4) Π ′ = (Gen′, Sign′, Vrfy′) is existentially
unforgeable under adaptive chosen-message attacks, the blind signature scheme
above satisfies unforgeability.
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The proof of blindness (in the sense of Definition 3) follows the general structure
of the proof of blindness sketched in Section 3.2. (The above scheme also satisfies
all definitions of blindness mentioned in Section 2 and in particular Definition 4.)
The proof of unforgeability was sketched in Section 4.2. Complete proofs of all
the above will appear in the full version.

References

1. M. Abe. A Secure Three-Move Blind Signature Scheme for Polynomially-Many
Signatures. Eurocrypt 2001.

2. M. Abdalla, C. Namprempre, and G. Neven. On the (Im)possibility of Blind Mes-
sage Authentication Codes. CT-RSA 2006.

3. B. Barak, R. Canetti, J.B. Nielsen, and R. Pass. Universally Composable Protocols
with Relaxed Set-Up Assumptions. FOCS 2004.

4. B. Barak and A. Sahai. How To Play Almost Any Mental Game Over The Net —
Concurrent Composition via Super-Polynomial Simulation. FOCS 2005.

5. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The One-More-
RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J.
Cryptology 16(3): 185–215 (2003).

6. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. ACM CCCS ’93.

7. M. Blum. How to Prove a Theorem so No One Else Can Claim It. Proceedings of
the International Congress of Mathematicians, pp. 1444–1451, 1986.

8. A. Boldyreva. Efficient Threshold Signatures, Multisignatures, and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme. PKC 2003.

9. J. Camenisch, M. Koprowski, and B. Warinschi. Efficient Blind Signatures without
Random Oracles. SCN 2004.

10. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. STOC 2002.

11. D. Chaum. Blind Signatures for Untraceable Payments. Crypto ’82.
12. I. Damg̊ard. Payment Systems and Credential Mechanisms with Provable Security

against Abuse by Individuals. Crypto ’88.
13. I. Damg̊ard and J.B. Nielsen. Perfect Hiding and Perfect Binding Universally Com-

posable Commitment Schemes with Constant Expansion Factor. Crypto 2002.
14. C. Dwork and M. Naor. Zaps and Their Applications. FOCS 2000.
15. U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds.

Crypto ’89.
16. M. Fischlin. Round-Optimal Composable Blind Signatures in the Common Refer-

ence String Model. Crypto 2006.
17. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge Uni-

versity Press, 2001.
18. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against

Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2): 281–308 (1988).
19. A. Juels, M. Luby, and R. Ostrovsky. Security of Blind Digital Signatures.

Crypto ’97.
20. Y. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent General Composition of

Secure Protocols in the Timing Model. STOC 2005.
21. A. Kiayias and H.-S. Zhou. Two-Round Concurrent Blind Signatures without Ran-

dom Oracles. SCN 2006.



Concurrently-Secure Blind Signatures Without Random Oracles 341

22. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. J. Cryptology 16(3): 143–184 (2003).

23. Y. Lindell. Bounded-Concurrent Secure Two-Party Computation without Setup
Assumptions. STOC 2003.

24. Y. Lindell. Lower Bounds for Concurrent Self-Composition. TCC 2004.
25. S. Micali, R. Pass, and A. Rosen. Input-Indistinguishable Computation.

FOCS 2006.
26. T. Okamoto. Efficient Blind and Partially Blind Signatures without Random Or-

acles. TCC 2006.
27. D. Pointcheval. Strengthened Security for Blind Signatures. Eurocrypt ’98.
28. D. Pointcheval and J. Stern. Provably Secure Blind Signature Schemes. Asi-

acrypt ’96.
29. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind

Signatures. J. Cryptology 13(3): 361–396 (2000).
30. M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero Knowledge with Log-

arithmic Round-Complexity. FOCS 2002.
31. M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Com-

posability without Trusted Setup. STOC 2004.
32. A. Rosen. Concurrent Zero-Knowledge. Springer, 2006.

A ZAPs

A ZAP is a 2-round witness-indistinguishable proof (with negligible sound-
ness error) for some NP-language L with associated relation RL. Formally, let
Lp(k)

def= L ∩ {0, 1}≤p(k). A ZAP consists of two polynomial-time interactive
algorithms P , V along with a polynomial p such that:

• On input 1k, the verifier V outputs an initial message ρ.
• On input ρ, a statement x ∈ Lp(k), and a witness w such that (x, w) ∈ RL,

the prover P outputs a proof π.
• Given ρ, x, and π, the verifier V outputs a decision bit.

For any k and (x, w) as above, V(ρ, x, P(ρ, x, w)) = 1 with probability 1. A ZAP
also satisfies adaptive soundness even against all-powerful cheating provers; that
is, for arbitrary P∗ the following is negligible:

Pr
[
ρ ← V(1k); (x, π) ← P∗(ρ) : V(ρ, x, π) = 1

∧
x �∈ L

]
.

We define witness indistinguishability by requiring that the advantage of any
ppt adversary A in the following game is negligible:
1. A(1k) outputs a string ρ, a sequence x1, . . . , x� ∈ Lp(k), and two sequences

w0
1 , . . . , w

0
� and w1

1 , . . . , w
1
� . It is required that (xi, w

0
i ), (xi, w

1
i ) ∈ RL for all i.

2. A random bit b is chosen.
3. Compute πi ← P(ρ, xi, w

b
i ) for all i, and give these to A.

4. A outputs a bit b′. The advantage of A is
∣∣Pr[b′ = b] − 1

2

∣∣.
ZAPs can be constructed based on trapdoor permutations [14].



Designated Confirmer Signatures Revisited�

Douglas Wikström

ETH Zürich, Department of Computer Science
douglas@inf.ethz.ch

Abstract. Previous definitions of designated confirmer signatures in the
literature are incomplete, and the proposed security definitions fail to
capture key security properties, such as unforgeability against malicious
confirmers and non-transferability. We propose new definitions.

Previous schemes rely on the random oracle model or set-up assump-
tions, or are secure with respect to relaxed security definitions. We
construct a practical scheme that is provably secure with respect to
our security definition under the strong RSA-assumption, the decision
composite residuosity assumption, and the decision Diffie-Hellman as-
sumption.

To achieve our results we introduce several new relaxations of standard
notions. We expect these techniques to be useful in the construction and
analysis of other efficient cryptographic schemes.

1 Introduction

In a digital signature scheme, as introduced by Diffie and Hellman [10], a signer
computes a signature of a message using its secret key, and then anybody hold-
ing the public key can verify the signature. This means that the receiver of a
signature can show the signature to anybody. If the signer does not want the
signer to transfer the signature it can use undeniable signatures [5] or designated
verifier signatures [17], but then the holder of the signature no longer holds any
indisputable evidence of a signature. Chaum [4] proposed designated confirmer
signatures (DC-signatures) as a means to get the best of both worlds at the price
of the introduction of a semi-trusted third party called the confirmer.

An example application for DC-signatures is a job offer scenario. Alice is
offered a job by Bob and wishes to receive a formal signed offer at some point,
but Bob wants to avoid that Alice shows this offer to his competitor Eve. To
solve the problem Carol comes to the rescue. Bob computes a DC-signature
using his own secret key and Carols public key. Then he proves to Alice that
he formed the signature in this way. The DC-signature is special in that it can
only be verified directly by Carol, and its distribution is indistinguishable from a
distribution that can be computed using only the public keys of Carol and Bob.
Furthermore, given a valid/invalid DC-signature, Carol can either convert it into
a valid/invalid ordinary signature of Bob that can be verified by anybody, or she
� This is an extended abstract. The full paper [23] is available at the Cryptology ePrint

Archive, http://eprint.iacr.org.
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can prove that she has the ability to do this. Bob can assume that nobody can
forge a signature for his public key, and that as long as Carol is honest nobody
learns that he signed an offer. Alice can safely assume that Bob can not fool her,
and that if Bob denies having signed an offer and Carol is honest, then Carol
can prove to anybody that Bob is lying.

1.1 Previous Work

The first formal model of DC-signatures was given by Okamoto [19], but he did
not consider the problem of signer coercion. Thus, a signer could be coerced
into confirming/denying a signature without the randomness of the signature
computation. This problem was considered by Camenisch and Michels [2], who
provided stronger definitions. They also proposed both a scheme based on general
primitives and more practically oriented schemes, and sketched a security proof
for the general construction. In their work on verifiable encryption of discrete
logarithms Camenisch and Shoup [3] give a very brief sketch of a DC-signature
scheme where most interactive protocols use Schnorr-style techniques.

Goldwasser and Waisbard [16] proposed a relaxed security definition to allow
the proofs of knowledge to be strong witness hiding instead of zero-knowledge,
and thus allow concurrency. They give a transformation that converts an or-
dinary signature scheme into a DC-signature scheme secure according to their
relaxed definition. They use no random oracles, but the disavowal protocol is
based on general zero-knowledge techniques, and the other protocols are based
on cut-and-choose techniques.

Gentry, Molnar, and Ramzan [13] considered another relaxation based on an
observation originally made by Michels and Stadler [18]. Instead of computing
a signature of the message directly, the signer computes a “confirmer commit-
ment” of the message, and then sign the commitment. The constructions in [13]
are efficient and do not rely on the random oracle model, but they require the
existence of trusted RSA-parameters.

1.2 Our Contributions

Firstly, we take a careful look at existing definitions of DC-signatures. It turns
out that two protocols that are not mentioned in previous works, are needed for
successful deployment: a proof of correct conversion of a signature, and a proof
that a public key is “well formed”. We also observe that the definitions of security
proposed by Camenisch and Michels [2], Goldwasser and Waisbard [16], and
Gentry et al. [13] respectively do not ensure unforgeability when the confirmer
is malicious. Furthermore, we note that the relaxed definition in [16] does not
prevent transferability, which is arguably a key property of DC-signatures, and
the definition in [2] is flawed and can not be satisfied at all. Thus, previous
definitions do not capture the notion of DC-signatures correctly. We propose
new definitions that correct these deficiencies.

Secondly, we consider how to construct a secure DC-signature scheme. We
prove the security of a generic construction with respect to the new security
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definition. We then describe an instantiation of the generic construction that
is secure under the strong RSA-assumption, the decision composite residuos-
ity assumption, and the decision Diffie-Hellman assumption. In contrast to the
scheme briefly sketched by Camenisch and Shoup [3] our scheme does not rely
on the random oracle model, and it satisfies stronger security requirements than
the schemes proposed in [16] and [13]. Furthermore, the setting we consider is
stricter in that we do not assume the existence of a trusted key generator as is
done in [3]. Despite this our scheme is practical.

Thirdly, our approach to the problem of constructing DC-signatures is dif-
ferent from previous in that instead of relaxing the security definitions of DC-
signatures, we relax the security definitions of the primitives used to construct
them and prove that weaker primitives suffice. The relaxed notions we introduce
and our techniques are of general interest in the construction of efficient and
provably secure cryptographic schemes.

Because of space requirements we only sketch most of our results and proofs
in this extended abstract, and focus on the new ideas presented. For details and
proofs of all claims we refer the reader to the full version [23] of this paper.

1.3 Notation

We consider security with respect to uniform algorithms and our assumptions are
also uniform in nature, but our results are easily translated to their non-uniform
analogs. We use PT, PPT and EPPT to denote the set of uniform, uniform
and probabilistic, and uniform expected, polynomial time Turing machines re-
spectively. We let κ be the main security parameter. We write 〈V (x), P (y)〉(z) to
denote the output of V with private input x when it interacts with P with private
input y on common input z. We write A[S(x)] to denote that A has “oracle access”
to an interactive Turing machine S with private input x. Formally, we assume
that A has a separate pair of communication tapes over which it communicates
with S. Whenever we write an expression of the form 〈V (x), A[S(y)](z)〉(w) it is
assumed that communication takes place in two phases. Before any message is
communicated between V and A, A and S may communicate freely. Then some
messages are communicated between V and A. When some message is again
communicated between A and S, communication is no longer possible between
V and A. Finally, when A chooses part of the common input on which it inter-
acts with V , we write 〈V, A[S(x)](y)〉(z, ·). We abuse notation and say that a
protocol is an interactive proof if it is overwhelmingly sound and we say that a
protocol is a proof of knowledge only if it is also an interactive proof.

We use 1 and 0, and logical true and false interchangeably. We denote the
natural numbers by N, the integers by Z, the integers modulo n by Zn, the
multiplicative group modulo n by Z

∗
n and the subgroup of squares modulo n by

SQn. We call a prime integer p safe if (p − 1)/2 is prime.
We use the variation of the strong RSA-assumption which says that given

a product N of two random safe primes of the same bit-size and a random
g ∈ SQN , it is infeasible to compute (b, η) such that bη = g mod N and η �= ±1.
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We use the variation of the decision composite residuosity assumption (DCR),
which says that given a product n of two random safe primes of the same bit-
size, it is infeasible to distinguish the uniform distribution on elements in Z

∗
n2

from the uniform distribution on nth residues in Z
∗
n2 . We use the decision Diffie-

Hellman assumption for the subgroup GQ of squares of Z
∗
P , where P = 2Q + 1

is a safe prime. This says that if g generates GQ and α, β, γ ∈ ZQ are random,
then the distributions of (gα, gβ, gαβ) and (gα, gβ, gγ) are indistinguishable.

2 Definition of Designated Confirmer Signature Schemes

A DC-signature scheme consists of algorithms and interactive protocols. There
are two key generation algorithms Kgdc

s and Kgdc
c for the signer and confirmer

respectively. There is a single signature algorithm Sigdc that given a secret sig-
nature key, a message, and a confirmer public key outputs a signature. The
signature can not be verified directly, but the confirmer can use a conversion
algorithm Condc with his secret key and the signer public key to transform
it into a signature that can be verified by anybody holding the public key of
the signer using the verification algorithm Vfdc. The protocols πwf and πc are
used by the confirmer to prove that it formed its key correctly and the correct-
ness of a conversion. The protocols πv and πe are used by the signer and con-
firmer respectively, to convince a verifier that a given DC-signature is valid and
valid/invalid respectively. The protocols πwf and πc are not present in previous
formalizations.

Definition 1 (DC Signature Scheme). A designated confirmer signature
scheme DCS consists of algorithms Kgdc

s , Kgdc
c , Sigdc ∈ PPT and Condc, Vfdc ∈

PT, and interactive protocols πwf = (Pwf , Vwf ), πc = (Pc , Vc), πv = (Pv , Vv ),
and πe = (Pe , Ve) with the following completeness properties. For every κ ∈ N,
for every possible outputs (ssk , spk ) of Kgdc

s (1κ) and (sk , pk) of Kgdc
c (1κ) re-

spectively, for every m ∈ {0, 1}∗, and for every r, σ0 ∈ {0, 1}∗, and with σ1 =
Sigdc

ssk ,r(m, pk )

1. Vfdc
spk (m, Condc

sk (σ1, spk)) = 1,
2. Pr[〈Vwf , Pwf (sk)〉(pk ) = 1] is overwhelming,
3. Pr[〈Vc , Pc(sk )〉(σ0, Condc

sk (σ0, spk), pk ) = 1] is overwhelming,
4. Pr[〈Ve , Pe(sk)〉(m, σ0, Vfdc

spk (m, Condc
sk (σ0, spk )), pk , spk) = 1] is overwhelm-

ing, and
5. Pr[〈Vv , Pv (ssk , r)〉(m, σ1, pk , spk) = 1] is overwhelming.

2.1 Well-Formed Keys and Signatures

We introduce the notion of well-formed confirmer keys to formalize the set of
strings which behave as keys functionally, and we introduce the notion of well-
formed signatures as a generalization of the set of honestly generated signatures.
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Definition 2 (Well-Formed Keys). Let DCS be a DC-signature scheme. We
say that the tuple (Kgdc

c,1, Kgdc
c,2, Kgdc

c,3) splits Kgdc
c if

1. Kgdc
c,1 and Kgdc

c,2 are probabilistic and Kgdc
c,3 is a deterministic polynomial time

(in their first parameters) algorithms,
2. on input 1κ, Kgdc

c computes pk1 = Kgdc
c,1(1

κ), sk = Kgdc
c,2(pk1), and pk2 =

Kgdc
c,3(1

κ, pk1, sk), and outputs (pk , sk) = ((pk1, pk2), sk),
3. for every κ ∈ N and pk1, pk2 ∈ {0, 1}∗ there exists at most one sk ∈ {0, 1}∗

such that pk2 = Kgdc
c,3(1

κ, pk1, sk), and
4. if pk2 = Kgdc

c,3(1
κ, pk1, sk), then for every output (spk , ssk) of Kgdc

s (1κ) and
m, r ∈ {0, 1}∗: Vfdc

spk (m, Condc
sk (Sigdc

ssk ,r(m, pk), spk )) = 1.

We say that (pk1, pk2) is well-formed with respect to the splitting if pk2 =
Kgdc

c,3(pk1, sk) for some sk . We say that ((pk1, pk2), sk ) is well-formed for such
a secret key sk .

If the signer or the confirmer proves to the verifier that a DC-signature is
valid/invalid relative a well-formed confirmer public key, then the verifier is con-
fident that if converted, the result is also valid/invalid in a consistent way. Every
key generator can be trivially split, but we are interested in splittings that given
(pk1, pk2) allow a simple proof of knowledge of sk such that ((pk1, pk2), sk ) is
well-formed.

Definition 3 (Well-Formed Signature). Let DCS be a DC-signature scheme
and let wf : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1} be a polynomially computable
function. We say that wf is a well-formedness function with respect to DCS
and a splitting of Kgdc

c if for every well-formed (pk , sk), every output (spk , ssk)
of Kgdc

s (1κ), and every possible output s = Condc
sk (Sigdc

ssk (m, pk), spk ), we have
wf (s, pk , spk) = 1.

All honestly generated signatures are well formed, but some valid signatures may
not be. It is trivial to see that there exists a well-formedness function for every
DC-signature scheme, but we are interested in well-formedness functions that
simplify the construction of our protocols.

2.2 Definition of Security

Assume that some splitting and well-formedness functions are fixed and define
the following relations.

Definition 4 (Relations)

1. Well-Formed Confirmer Keys. Denote by Rwf the set of all well-formed
key pairs ((pk1, pk2), sk).

2. Correct Conversion. Denote by Rc the set of pairs ((σ, s, pk , spk), sk)
such that (pk , sk) ∈ Rwf and s = Condc

sk (σ, spk ).
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3. Correct Evaluation. Denote by Re the set of pairs ((m, σ, c, pk , spk), sk)
such that (pk , sk) ∈ Rwf , and s = Condc

sk (σ, spk ) for some s such that
Vfdc

spk (m, s) = c and wf (s, pk , spk) = 1.
4. Proof of Validity. Denote by Rv the set of pairs ((m, σ, pk , spk), w),

where w is a witness that Vfdc
spk (m, Condc

sk (σ, spk )) = 1 for every sk such that
(pk , sk) ∈ Rwf .

The relation Re only considers well-formed signatures. If a signature is not
well-formed, it was by definition computed by a corrupt signer. In this case the
confirmer need not protect the signer and can simply convert the signature and
prove that it did so correctly. The relation Rv does not capture the set of valid
signatures. It captures the set of signatures that are valid given that the public
confirmer key is well-formed.

We now consider what each honest party or group of honest parties in a
DC-signature scheme might expect from a secure implementation.

Honest Verifier. An honest verifier naturally expects that it is infeasible to
convince it of a false statement. Furthermore, it seems reasonable that the verifier
only accepts a proof of well-formedness of a public key if it shows that the prover
knows the secret key, since otherwise it can not be confident that the confirmer
actually is able to convert a signature.

Definition 5 (Soundness). A DC-signature scheme DCS is sound if πc, πe ,
and πv are interactive proofs for the relations Rc, Re , and Rv respectively, and
πwf is a proof of knowledge for the relation Rwf .

Note that if a confirmer public key pk is well-formed and σ is a candidate signa-
ture for a signer public key spk , then well-formedness implies that a signature
can be converted in only one way. Thus, the confirmer can not choose if a sig-
nature should be considered valid or not. Well-formedness also implies that if a
signer proves the validity of σ, it can not be converted into an invalid one.

It may be dangerous for a signer to use a confirmer public key that is not
well-formed. Thus, we assume that any signer (or somebody the signer trusts)
executes πwf with the confirmer before using its public key.

Honest Signer. It must be infeasible for the adversary to convince anybody that
the honest signer has signed a message m unless this is the case. This must hold
even when the adversary can ask arbitrary signature queries and execute the
proof of validity protocol πv . In other words we need a slight generalization of
security against chosen message attacks [15].

We formalize the honest signer S to be a probabilistic interactive Turing ma-
chine that accepts as input a key pair (spk , ssk). Whenever it receives a message
with prefix πwf , Sigdc, or πv on its communication tape it halts the execution
of any executing interactive protocol and proceeds as follows. Given a mes-
sage (πwf , pk) it executes the verifier Vwf of the protocol πwf on common input



348 D. Wikström

pk . If Vwf accepts the proof, then S stores pk . Given a message (Sigdc, m, pk)
it checks if it has stored pk . If not, it returns ⊥, and otherwise it computes
σ = Sigdc

ssk ,r(m, pk) and writes σ on the communication tape. Given a message
(πv , m, σ, pk), where it previously computed σ = Sigdc

ssk ,r(m, pk) it executes the
prover of the protocol πv on common input (m, σ, pk , spk) and private input
some witness w that ((m, σ, pk , spk), w) ∈ Rv . When we use several copies of S
below we index them for easy reference.

Experiment 1 (CMA-Security, Expcma
DCS,A(κ))

(spk , ssk) ← Kgdc
s (1κ)

(m, s) ← A[S(spk , ssk)](spk )

If Vfdc
spk (m, s) = 0 or if S signed m return 0 and otherwise 1.

Definition 6 (CMA-Security). A DC-signature scheme DCS is secure
against chosen message attacks (CMA-secure) if for every A ∈ PPT:
Pr[Expcma

DCS,A(κ) = 1] is negligible.

In the definitions of Camenisch and Michels [2], Goldwasser and Waisbard [16],
and Gentry et al. [13] security hold only with respect to honestly generated
confirmer keys, i.e., their definitions do not ensure any form of CMA-security
for the signer when the confirmer is corrupted.

The definition does not say that an adversary can not form a bit-string σ and
then convince an honest verifier using πv or πe that this is a valid designated
signature of some message m not signed by S, but we prove in the full paper
that this follows from soundness and CMA-security.

Honest Confirmer. Nobody except the confirmer should be able to play the role
of the prover in the protocols πwf , πc , and πe using the honest confirmers public
key as common input, even after interacting with the real confirmer.

We formalize the honest confirmer C to be a probabilistic interactive Turing
machine that accepts as input a key pair (pk , sk). Whenever it receives a message
with prefix πwf , Condc, or πe on its input communication tape it halts the exe-
cution of any interactive protocol it is executing and proceeds as follows. Given
a message (πwf ) it executes the prover of protocol πwf on common input pk and
private input sk . Given a message (Condc, σ, spk ) it computes s = Condc

sk (σ, spk ),
writes s on its output communication tape, and executes the prover of protocol
πc on common input (σ, s, pk , spk) and private input sk . On input (πe , m, σ, spk)
it computes s = Condc

sk (σ, spk ). If wf (s, pk , spk ) = 1, i.e., s is well-formed, then
C computes c = Vfdc

spk (m, s), writes c on its output communication tape, and
executes the prover of protocol πe on common input (m, σ, c, pk , spk ) and pri-
vate input sk . Otherwise C writes (malformed, s) on its output communication
tape and executes the prover of protocol πc on common input (σ, s, pk , spk ) and
private input sk .
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Experiment 2 (Impersonation-Resistance, Expimp−res
DCS,A (κ))

(pk , sk) ← Kgdc
c (1κ)

d1 ← 〈Vwf , A[C(pk , sk)](pk)〉(pk )
d2 ← 〈Vc , A[C(pk , sk)](pk )〉(·, ·, pk , ·)
d3 ← 〈Ve , A[C(pk , sk)](pk )〉(·, ·, ·, pk , ·)

Return d1 ∨ d2 ∨ d3.

Definition 7 (Impersonation Resistance). A designated confirmer signa-
ture scheme DCS is impersonation-resistant if for every A ∈ PPT:
Pr[Expimp−res

DCS,A (κ) = 1] is negligible.

Note that C never invokes Pe without executing Condc. This is without loss
of generality, since Condc is deterministic and the common input contains the
extracted signature anyway. Note that this differs from the signature case, where
a signer could potentially want to prove the correctness of a particular signature
to several receivers.

Remark 1. A stronger definition would allow the adversary to interact with the
confirmer and the verifier concurrently on other inputs. Unfortunately, such a
definition requires the protocols πc and πe to be non-malleable [11] with respect
to each other and themselves. General methods such as [21] can be used to con-
struct non-malleable zero-knowledge protocols, but currently these techniques
are far from practical. Thus, we do not follow this definitional path.

Honest Signer andHonest Confirmer. To startwith we observe that from the point
of view of an honest signer andhonest verifier, or from the point of view of an honest
verifier and honest confirmer, no additional requirements are natural to impose.

When the signer and the confirmer are honest we require that knowledge that
the signer signed a particular message can not be transfered. Note that this is
needed in the job offer scenario. Non-transferability can clearly only hold until
a DC-signature has been converted.

We formalize this as follows. Let SC be the machine that simulates both S
and C on inputs (pk , sk) and (spk , ssk) except for the following modifications.
Given a message (Sigdc, m, pk ′) with pk ′ = pk it waits for a message (m, σ), stores
this, and writes σ on its communication tape. If later invoked on (πv , m, σ, pk ) it
returns ⊥ instead of invoking Pv . For pk ′ �= pk it behaves as S. Given a message
(Condc, σ, spk ′) such that spk ′ = spk and (m, σ) is stored it checks if (m, σ, s)
is stored for some s. If not, then it computes s = Condc

sk (Sigdc
ssk (m, pk), spk ) and

stores (m, σ, s). Finally, it writes s on its communication tape. It does not invoke
the prover of πc . If spk ′ �= spk or (m, σ) is not stored it behaves as C. Finally,
given a message (πe , m, σ, spk ), where (m′, σ) is stored for some m′ it returns 0
if m �= m′ and 1 otherwise. It does not execute the prover of πe .

Intuitively, SC delays the computation of every DC-signature using the public
key pk until it is converted. We want to say that if there is an adversary A that
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interacts with S and C, there is another adversary A′ that interacts with SC such
that its output is indistinguishable from that of A, despite that all its signature
queries are “delayed”. For this to make sense the order of messages sent to S, C,
and SC must be given to the distinguisher as well. We say that an adversary is
scheduled if whenever it writes a message with prefix Sigdc, πv , πwf , Condc, and
πe the message and any return value (excluding the messages exchanged by the
protocols that may be invoked) are stored on a special write only scheduling tape.
Furthermore, when the adversary halts its output is prefixed by its scheduling
tape. The additional input pk to S below is stored as a well-formed public key,
and this is done in the simulation of SC as well.

Experiment 3 (Non-Transferability, Expnon−trans−b
DCS,A,V (κ))

((pk , sk), (spk , ssk)) ← (Kgdc
c (1κ), Kgdc

s (1κ))

d ←
{

D(A(pk , spk , ssk)[SC(pk , sk , spk , ssk)]) if b=0
D(A(pk , spk , ssk)[S(pk , spk , ssk), C(pk , sk)]) if b=1

Definition 8 (Non-Transferability). A DC-signature scheme DCS is non-
transferable if for every scheduled A1 ∈ EPPT there exists a scheduled A0 ∈
EPPT such that for every distinguisher D ∈ EPPT:
| Pr[Expnon−trans−1

DCS,A1,D (κ) = 1] − Pr[Expnon−trans−0
DCS,A0,D (κ) = 1]| is negligible.

Remark 2. Our definition is similar to the “liberal” definition of zero-knowledge
in that the simulator is allowed to run in expected polynomial time.

Remark 3. Again, our experiment is not completely realistic. A stronger defini-
tion would allow the adversary to interact concurrently with S and C on other
common inputs when trying to convince a verifier. Unfortunately, such defini-
tions imply that the protocols πwf , πc , πe , and πv are non-malleable in a very
strong sense. We are not aware of any general methods to achieve this.
Informally, a DC-signature scheme is coercion-free if a signer can reveal its secret
signing key and still claim that it did not compute a particular DC-signature.
Naturally, this can only hold as long as the DC-signature is not converted,
or proved to be valid. Note that this is already captured in our definition of
non-transferability.

The definition of non-transferability in Camenisch and Michels [2] can not be
satisfied, since it requires the existence of a straight-line zero-knowledge simulator
for an interactive proof without set-up assumptions. The definition of Goldwasser
and Waisbard [16] only prevents the adversary from transferring confidence of va-
lidity of a signature using the confirmation protocol of the scheme. It says nothing
about the possibility of using another confirmation protocol. The relaxed defini-
tion of Gentry et al. [13] explicitly allows some forms of transferability.

Most previous definitions require some form of indistinguishability of signa-
tures computed by different signers, but this is unnecessarily strong. In any claim
about a signature, the holder of the signature would disclose the identity of the
claimed signer anyway, and our definition implies that anybody can generate
something indistinguishable from a valid signature of any such signer.
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Definition of Security. We now define security of a DC-signature scheme in the
natural way.

Definition 9. A designated confirmer signature scheme DCS is secure if it is
sound, CMA-secure, impersonation-resistant, and non-transferable.

On Concurrency. In our definitions the “oracle access” to the honest signer S
and the honest confirmer C are sequential. Stronger definitions similar to those
of Camenisch and Michels [2], where the adversary is given concurrent “oracle
access”, follow by giving the adversary access to several copies of S and C, each
executing on the same input key pair.

3 Theoretical Tools

3.1 A Relaxation of Zero-Knowledge

The definition of zero-knowledge is very strong in that the simulation property
must hold with respect to every verifier and every instance (x, w) in the relation
R under consideration. As pointed out by Goldreich [14] it is quite natural to
consider a uniform definition that only requires that it is infeasible to find an
instance on which a verifier can gain knowledge.

In many cryptographic settings the instance can not be chosen completely
freely by the adversary, e.g., the adversary may ask an honest party to prove
that it performed a decryption correctly, where the keys to the cryptosystem
are generated honestly. Furthermore, in some security proofs the simulator can
be allowed an additional advice string dependent on the instance, e.g., if a de-
cryption oracle is present in the environment where the simulator is invoked we
may give the simulator decryptions of some ciphertexts. The following definition
allows for both these settings.

Experiment 4 (Zero-Knowledge, Exp(T,F )−zk−b
π,R,I,V ∗,D(κ))

t ← T (1κ)
(i, z) ← I(1κ, t)

(x, w, a) ← F (t, i)

d ←
{

D(x, z, a, 〈V ∗(z), P (w)〉(x)) if b=0
D(x, z, a, M(z, a, x)) if b=1

Return 0 if R(x, w) = 0 and d otherwise.

Definition 10. Let π = (P, V ) be an interactive protocol, let T ∈ PPT and F :
{0, 1}∗ → {0, 1}∗, and let R be a relation. We say that π is (T, F )-zero-knowledge
for R if for every verifier V ∗ ∈ EPPT there exists a simulator M ∈ EPPT such
that for every instance chooser I ∈ EPPT and every distinguisher D ∈ EPPT:
| Pr[Exp(T,F )−zk−0

π,R,I,V ∗,D (κ) = 1] − Pr[Exp(T,F )−zk−1
π,R,I,V ∗,D (κ) = 1]| is negligible.
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Remark 4. We do not require that F is polynomial time in the definition, but
the concrete protocols we present are (T, F )-zero-knowledge with efficiently com-
putable functions F . This seems also essential to allow sequential composition.

Remark 5. The definition makes sense for non-uniform adversaries as well. Fur-
thermore, the definition can be both generalized and relaxed. One natural re-
laxation is to give only part of the sample t to the instance finder. Note that
a probabilistic F is captured by this relaxation. A related definition gives the
instance finder access to some specific oracle, i.e., we would talk about (T, F, O)-
zero-knowledge for some specific oracle O. This seems to make most sense when
the oracle is efficiently computable using the sample t (of which not all is given
to the instance finder).
Choose some canonical interpretation of strings such that the output of I is
always of the form ((x1, w1), z). Then when the output of T is always of the
form t = (x2, w2), and F (t, i) = ((x1, x2), (w1, w2), ∅), we simply say that the
protocol is T -zero-knowledge.

We show in the full paper that if a simulator satisfies the definition, then it can
be used instead of a real protocol execution polynomially many times sequentially
as long as F is polynomial time. This extension is necessary in our analysis.

3.2 Cryptosystems with Labels and Δ-CCA2-Security

Our starting point is the generalization of CCA2-security for cryptosystems with
labels introduced by Shoup and Gennaro [22].

In such a scheme the encryption algorithm Enc takes as input a label L in
addition to a public key pk and a message m. The decryption algorithm Dec
takes as input a label L in addition to a secret key sk and a ciphertext c. CCA2-
security is then defined as usual except that the adversary must choose a label
L in addition to the two challenge ciphertexts m0 and m1, and it may not ask
the decryption query (L, c), where c is the challenge ciphertext.

The definition of CCA2-security is strict in that the indistinguishability prop-
erty of ciphertexts holds for any two messages. In our setting a weaker property
suffices, namely that any two encrypted signatures from the same signer are
indistinguishable. Thus, we introduce the following relaxed definition.

Experiment 5 (Δ-CCA2-Security, ExpΔ−cca2−b
CS,A (κ))

(pk , sk) ← CSKg(1κ)
(r, m0, m1, state) ← ADecsk (·,·)(choose, pk)

c ← Encpk (Δ(r, mb))

d ← ADecsk (·,·)(guess, state, c)

Interpret Δ(r, mb) as a pair (L, m′b). The experiment returns 0 if Decsk (·, ·) was
queried on (L, c), and otherwise d.

Definition 11 (Δ-CCA2-Security). Let Δ ∈ PPT. A public key cryptosys-
tem CS with labels is said to be Δ-CCA2-secure if for every adversary A ∈ PPT:
| Pr[ExpΔ−cca2−0

CS,A (κ) = 1] − Pr[ExpΔ−cca2−1
CS,A (κ) = 1]| is negligible in κ.
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3.3 Collision-Free Signature Schemes

We say that a signature scheme is collision-free if it is infeasible to find two
distinct messages and a signature such that the signature is a valid with respect
to both messages, even if the adversary is given the honestly generated secret
key and the public key.

4 A Generic Construction of Designated Confirmer
Signatures

It is natural to construct DC-signatures from a CMA-secure signature scheme
and a CCA2-secure cryptosystem. A signer holds a secret key for the signature
scheme and the confirmer holds a secret key of the cryptosystem. A DC-signature
is simply an ordinary signature encrypted with the cryptosystem, conversion
corresponds to decryption, and zero-knowledge proofs of knowledge are used to
instantiate the protocols. The theorem below implies that this is secure, but for
most signature schemes and cryptosystems it is prohibitively inefficient.

As a first step in the construction of an efficient DC-signature scheme we
prove that weaker primitives suffice to construct a secure DC-signature scheme,
but the basic idea is the same. Let CS = (CSKg, Enc, Dec) be a cryptosystem
with labels and let SS = (Kg, Sig, Vf) be a signature scheme with fixed size
signatures (this is easy to ensure by padding) that fit in the plaintext space of
CS. Define Kgdc

s to compute (spk , ssk) = Kg(1κ) and s⊥ = Sigssk (⊥), where ⊥
is a special symbol, and output ((spk , s⊥), ssk) (we drop s⊥ from our notation
when convenient). Define Kgdc

c (1κ) to output CSKg(1κ), and define Vfdc to be Vf
except that Vfdc

spk (⊥, ·) = 0. On input ssk , m, and pk the DC-signature algorithm
Sigdc is defined to compute s = Sigssk (m) and σ = Encpk (spk , s), and output
σ. On input sk , σ, and spk the conversion algorithm Condc is defined to output
s = Decsk (spk , σ). In other words, the public signature key spk is used as a label.
Let (Kgdc

c,1, Kgdc
c,2, Kgdc

c,3) be a splitting of Kgdc
c and let wf be some well-formedness

function with respect to DCS. Let πwf , πc , πe , and πv be interactive protocols,
complete with respect to the relations Rwf , Rc , Re , and Rv . It is easy to see
that DCS = (Kgdc

s , Kgdc
c , Condc, Vfdc, πwf , πc , πe , πv ) is a DC-signature scheme.

The algorithm Δ(r, (r′, m)) first computes (spk , ssk) = Kgr(1κ) and s =
Sigssk ,r′(m), and then outputs (spk , s). Define Ths(1κ) = (Kgdc

c (1κ), Kgdc
s (1κ)).

Define Fhs to take as input the pair ((pk , sk , spk , ssk), (r, m, m′)), compute σ =
Sigdc

ssk ,r(m), and output ((m′, σ, Vfdc
spk (m′, Condc

sk (σ)), pk , spk), sk , ∅). Let Tcs(1κ)
simply output Kgdc

c (1κ). Define Fcs to take input ((pk , sk), (m, σ, c, spk )) and
output the tuple ((m, σ, c, pk , spk ), sk , Condc

sk (σ, spk )).

Theorem 1. 1 Suppose that CS is Δ-CCA2-secure and that SS is CMA-secure
and collision-free, and that πwf , πc, πe , and πv are proofs of knowledge for the re-
lations Rwf , Rc, Re , and Rv . Suppose that πwf and πc are Kgdc

c -zero-knowledge
1 Camenisch and Michels [2] claim a similar, but weaker, theorem according to their

definition, but as explained above their definition can not be satisfied, and only a
proof sketch is given.
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for the relations Rwf and Rc respectively. Suppose that πe is both (Ths, Fhs)-
zero-knowledge and (Tcs, Fcs)-zero-knowledge for the relation Re . Suppose πv is
Kgdc

s -zero-knowledge for the relation Rv . Then DCS is secure.

4.1 On the Use of Two Distinct Weak Simulators

Perhaps the most interesting of our techniques is the use of two simulators for
the same protocol, of which one requires additional advice. Consider the problem
of constructing a black box-reduction of a successful attacker A against non-
transferability into a successful attacker A′ against the Δ-CCA2-security of the
underlying cryptosystem. The Δ-CCA2-attacker A′ takes a public key pk as
input and must simulate the non-transferability experiment to the adversary
without using the secret key sk . At some point A′ outputs a random bit string
r and two messages (r0, m0) and (r1, m1) to the Δ-CCA2-experiment, and it is
given a ciphertext σ = Encpk (spk , Sigssk ,rb

(mb)) for a random b ∈ {0, 1}, where
(spk , ssk) = Kgr(1

κ). The ciphertext σ is used in the simulation somehow, and
finally A′ outputs a bit. The simulation involves converting signatures, but A′

may use its decryption oracle to answer such queries, as long as it never asks for
a decryption of σ.

We observe that when the protocol πe is simulated for some DC-signature
σ′ �= σ computed by A, the simulator is free to invoke the decryption oracle on σ′,
i.e., a (Tcs, Fcs)-zero-knowledge simulator is sufficient. On the other hand, for the
particular signature σ we can not proceed in this way, since that would violate
the rules of the Δ-CCA2-experiment, but since σ is computed honestly using
honestly formed signature keys a (Ths, Fhs)-zero-knowledge simulator suffices.

5 Concrete Tools

In this section we present the tools we need to instantiate the generic DC-signature
scheme with an efficient concrete scheme under standard complexity assumptions.

5.1 A Twin-Moduli Signature Scheme

To prove the existence of the scheme presented below we must assume that
an arbitrary bit-string can be embedded into a prime in an efficient way. We
assume that there is an efficient algorithm Embf ′

f that given n ∈ [0, 2κ − 1]
with overwhelming probability finds s ∈ [2f(κ)−1, 2f(κ)−1 + 2f(κ)−f ′(κ) − 1] such
that e = 2f(κ)n + s is prime. We call this assumption the (f, f ′)-Embedding
Assumption. In practice this is not a problem for reasonable f and f ′. The
twin-moduli signature scheme, SS2 = (Kg2, Sig2, Vf2), is based on using two
sets of RSA-parameters and the embedding algorithm Embf ′

f . Denote by κr

a security parameter such that 2−κr is negligible in κ. On input 1κ the key
generator Kg2 chooses κ/2-bit safe primes p0, q0, p1, and q1 randomly, defines
N0 = p0q0 and N1 = p1q1, chooses g0 ∈ SQN0 and g1 ∈ SQN1 randomly,
and outputs ((N0, g0, N1, g1), (p0, q0, g0, p1, q1, g1)). Set κp = f(2κr + κm + 1)
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and κ′p = f ′(2κr + κm + 1). The signature algorithm Sig2 takes as input a
private key (p0, q0, g0, p1, q1, g1) and a message m ∈ [0, 2κm − 1]. It chooses
r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1] randomly. Then it computes

s0 = Embf ′

f (r + m) e0 = 2κp(r + m) + s0 z0 = g
1/e0
0 mod N0

s1 = Embf ′

f (r) e1 = 2κpr + s1 z1 = g
1/e1
1 mod N1 .

Finally, it outputs (r, z0, s0, z1, s1). The verification algorithm Vf2 takes as input
a public key (N0, g0, N1, g1), a message m ∈ {0, 1}κm, and a candidate signature
(r, z0, s0, z1, s1). It computes e0 = 2κp(r+m)+s0 and e1 = 2κpr+s1, and verifies
that r ∈ [1, 22κr+κm+1 − 1], s0, s1 ∈ [0, 2κp − 1], that e0 and e1 are odd, and that
ze0
0 = g0 mod N0 and ze1

1 = g1 mod N1. The basic idea of the scheme is similar
to an idea of Cramer et al. [7], but the proposition below does not follow from
their work. Using a collision-free hash function H : {0, 1}∗ → [0, 2κm − 1] it can
be used to sign messages of any length.

Proposition 1. The scheme exists under the (f, f ′)-Embedding assumption and
is CMA-secure and collision-free under the strong RSA-assumption.

5.2 The Cramer-Shoup-Pailler Cryptosystem

The cryptosystem we use is based on Cramer and Shoup’s [8] CCA2-secure
version of the Paillier [20] as described in [3], i.e., it is a cryptosystem with
labels. This cryptosystem is special in that plaintexts “live in the exponent”,
which simplifies the construction of Schnorr-like proofs about the plaintext.

If we think of our scheme as the combination of a Paillier ciphertext and a
hash proof and write Enc for Paillier encryption we may explain the cryptosystem
we use as follows. An encryption of a twin-moduli signature (r, z0, z1, s0, s1)
essentially consists of a tuple

(Ea, Er0 , c
′
0, Er1 , c

′
1) = (Enc(Pack(r, s0, s1)), Enc(r0), gr0

0 z0, Enc(r1), gr1
1 z1) ,

where r0 and r1 are random and Pack is an invertible function that can be
computed using only multiplication by constants and addition. Decryption is
done in the obvious way. Note that gr0

0 z0 and gr1
1 z1 leaks information about

the public key of the twin-moduli signature scheme, but encryptions of any two
signatures of the same signer are indistinguishable. A single hash proof ties the
components of a ciphertext together and the result is Δ-CCA2-secure when Δ
is defined using the twin-moduli signature scheme.

5.3 Proofs of Knowledge of Equality Relations

There are various protocols in the literature [12,1,9,3] for proving equality of
integer exponents over groups of unknown order based on variations of Fujisaki-
Okamoto commitments, under the strong RSA-assumption. These protocols are
strictly speaking not proofs of knowledge, since extraction may fail with neg-
ligible probability over the choice of commitment parameters, but they can be
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used as proofs of knowledge provided that there are trusted commitment pa-
rameters present during the execution of the protocols. Furthermore, they are
usually given as honest verifier zero-knowledge protocols, but it is easy to make
them zero-knowledge for a malicious verifier. A useful feature of these protocols
is that they bound the bit-size of the exponents.

5.4 Verifiable Generation of Hiding Commitment Scheme

The problem with the proofs of equal integer exponents in a two party setting
is that it is difficult to generate the Fujisaki-Okamoto commitment parameters
efficiently. Recall that the commitment parameters consist of a random RSA-
modulus N = pq, where p and q are safe primes, a random g ∈ SQN , and h = gx

for a random x ∈ [0, N2κr ]. A commitment C of m ∈ Z is formed as C = grhm

for an r ∈ [0, N2κr ]. The problem is that if (N, g, h) are generated by the prover,
then the commitments are not binding. On the other hand, if they are generated
by the verifier, then h may not be of the form gx, and then the commitments are
not hiding. As far as we know there is no truly efficient solution to this problem.

We now sketch our solution to this problem. The prover generates a pair
(Nr, gr), where Nr is an RSA-modulus of two safe primes and gr ∈ SQNr . This
is done only once and is part of the public key of the prover in our application.
The verifier then generates (N, g, h) as above, except that it defines h = gx for
a random x ∈ [0, NNr2κr ]. It then computes a “commitment” hr = gx

r of x
and executes a Schnorr-like zero-knowledge “proof of knowledge” that the same
integer x was used for both hr and h. Extraction of x is possible with high
probability provided that (Nr, gr) are chosen correctly. This ensures that the
parameters (N, g, h) can be used safely by a prover. On the other hand, provided
|SQNr | and |SQN | are relatively prime, hr is essentially independently generated
from h. This implies that the parameters (N, g, h) can be used safely by the
verifier, since essentially no knowledge of x is leaked. To ensure that |SQNr | and
|SQN | are relatively prime with overwhelming probability we assume that N is
generated independently from Nr. In practice this is very reasonable.

In the full paper we show that the parameters (N, g, h) output by the protocol
below can be used to execute the proof of equal exponents that assumes trusted
commitment parameters. We call the two players in the proof the generator G
and the receiver R to distinguish them from their roles in a larger protocol.
Denote by πpl = (Ppl , Vpl ) the zero-knowledge proof of knowledge of a logarithm
for prime order groups described by Cramer et al. [6].

Protocol 1 (Secure Generation of Integer Commitment Scheme)
Common Input:A κ-bit integer Nr and gr ∈ Z

∗
Nr

to both parties.

1. The receiver chooses a safe κ-bit prime P = 2Q + 1, and H ∈ GQ randomly,
where GQ is the unique subgroup of order Q. Then it chooses z ∈ ZQ ran-
domly, computes K = Hz mod P , hands (P, H, K) to the generator, and
executes πpl as the prover on common input (P, H, K) and private input z.
If the verifier rejects, then the generator hands ⊥ to the receiver and halts.
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2. The generator verifies that P is a safe prime and that H, K ∈ GQ. Then it
chooses an RSA-modulus N , g ∈ SQN , and x ∈ [0, 22κ+κr − 1] randomly,
and computes h = gx mod N and hr = gx

r mod Nr. Then it chooses cg ∈
[0, 2κc − 1], rg ∈ Zq, and r ∈ [0, 22κ+2κr+κc − 1] randomly, defines w =
HrgKcg , α = gr mod N and αr = gr

r mod Nr, and hands (h, hr, w, α, αr) to
the receiver.

3. The receiver chooses cr ∈ [0, 2κc −1] randomly and hands cr to the generator.
4. The generator computes c = cg ⊕ cr and d = cx + r mod 22κ+2κr+κc , hands

(d, cg, rg) to the receiver, and outputs (N, g, h).
5. The receiver outputs (N, g, h) if HrgKcg = w, hcα = gd mod N and hc

rαr =
gd

r mod Nr. Otherwise it outputs ⊥.

We denote the above protocol by πtp = (G, R), where G is the generator and
R the receiver.

Remark 6. Although the receiver can use the same prime P in every protocol
instance, the generator must check that P is of the expected form to be confident
that it can run the protocol πpl , which is only sound if GQ has prime order.

Checking for primality is expensive, i.e., it requires O(κr) exponentiations.
If one assumes that it is infeasible to find a specific safe prime P such that
the discrete logarithm problem is feasible in GQ, then any party can choose a
prime P that is used in every protocol instance. Then each party performs the
primality test only once. This is a natural assumption in practice, where one can
use a prime from a cryptographic standard.

Proposition 2. For every pair (Nr, gr) with Nr ∈ N and gr ∈ Z
∗
Nr

the proba-
bility Pr[〈R, G〉(Nr, gr) �= ⊥] is overwhelming.

Proposition 3. Let (N, g, h) be randomly distributed Fujisaki-Okamoto param-
eters. Define [R∗, G](Nr, gr) to be a pair consisting of the output of R∗ and G.

Then for every receiver R∗ ∈ EPPT there exists a simulator M ∈ EPPT
such that for every pair (Nr, gr) with Nr ∈ N and gr ∈ Z

∗
Nr

the distributions
of [R∗, G](Nr, gr) and M(Nr, gr, N, g, h) are statistically indistinguishable and
M(Nr, gr, N, g, h) is always on the form (·, outG) with outG ∈ {(N, g, h), ⊥}.

Informally, this simply means that we can simulate the protocol in such a way
that a particular set of parameters are used. Since the generator does not have
any secret input, it is not meaningful to say that the protocol is zero-knowledge.
However, one may view the proposition as saying that the protocol leaks no
knowledge to the receiver about the exponent x that is chosen by the generator
within the protocol. In this sense the protocol is zero-knowledge.

Denote by Tsrsa the algorithm that on input 1κ outputs (Nr, gr), such that Nr

is a product of two random safe κ/2-bit safe primes and gr is randomly chosen in
SQNr .

Proposition 4. Suppose that (Nr, gr) = Tsrsa (1κ). Then the probability that
the receiver outputs (N, g, h), where h is not in the subgroup of Z

∗
N generated

by g, is negligible under the strong RSA-assumption and the discrete logarithm
assumption.
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Remark 7. Even with the modification of Remark 6 the protocol requires a non-
constant number of exponentiations, since the generator may have to generate
a new RSA-modulus to ensure that its modulus is generated independently of
Nr. If the reader find this annoying, please note that if the generator chooses an
RSA-modulus N with at least 2κ + 2 bits it can reuse the same modulus in any
proof, since the orders of g and gr are coprime. However, the size of the random
exponents in the protocol above, and in all protocols that use the modulus must
then be doubled, and this gives a far less efficient protocol in practice. Thus, we
detail the solution above.

6 An Efficient Instantiation

In the full paper we show that there is an instantiation of the generic DC-
signature scheme which is secure under the DCR-assumption, the strong RSA-
assumption, and the DDH-assumption. We sketch this solution below.

Given the generic description in Section 4 and Theorem 1 all the algorithms
of our instantiation follow from setting the signature scheme equal to our twin-
moduli signature scheme, and the Δ-CCA2-secure scheme equal to our vari-
ation of the Cramer-Shoup-Paillier scheme, provided that we define a split-
ting of the key generator and a well-formedness function. The public key of
the cryptosystem contains an RSA-modulus n, but the scheme functions prop-
erly for any integer n with some minor modifications. The key generator out-
puts a commitment based on the El Gamal cryptosystem of the secret key
that is unconditionally committing to ensure that the uniqueness property of
well-formedness. Thus, we define the splitting such that it is not necessary to
execute an expensive proof that n is correctly formed. The well-formedness
function for signatures is based on the fact that for any honestly computed
signature (r, z0, z1, s0, s1) it holds that r ∈ [22κr+κm , 22κr+κm + 2κr+κm − 1],
s0, s1 ∈ [2κp−1, 2κp−1 + 2κp−κ′

p − 1], and ze1
1 = g1 mod N1. Recall that the

signature verification algorithm only requires that r ∈ [1, 22κr+κm+1 − 1] and
s0, s1 ∈ [0, 2κp − 1]. The slack is exploited to avoid costly proofs of membership
in intervals.

The idea of the twin-moduli signature scheme is loosely speaking that all
that is needed to verify a signature can be done “in the exponent”. Recall
that a verification involves multiplication by constants, adding, checking for
interval-membership and oddity, and then checking the roots of the signature.
Let us write C(m) for a Fujisaki-Okamoto commitment of the form glhm mod N
for some random l, and simply write Enc(m) for a Paillier-part of a crypto-
text, i.e., we ignore the encoding and the third component that guarantees
CCA2-security. Then the proof of validity of a signature can be explained as
follows. A DC-signature essentially consists of a tuple (Ea, Er0 , c

′
0, Er1 , c

′
1) on

the form

(Enc(Pack(r, s0, s1)), Enc(r0), gr0
0 z0, Enc(r1), gr1

1 z1) .
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The prover forms commitments

C′r = C(r − 22κr+κm)

C′s0
= C((s0 − 2κp−1 − 1)/2)

C′s1
= C((s1 − 2κp−1 − 1)/2)

and proves knowledge of the committed values. The protocol used to do this
also implies that r − 22κr+κm ∈ [−22κr+κm + 1, 22κr+κm − 1] and (s0 − 2κp−1 −
1)/2, (s1 − 2κp−1 − 1)/2 ∈ [−2κp−2 + 1, 2κp−2 − 1]. Then the verifier computes

Cr = C′rC(22κr+κm)

Cs0 = (C′s0
)2C(2κp−1 + 1)

Cs1 = (C′s1
)2C(2κp−1 + 1)

Ca = C22κp

r C2κp

s0
Cs1 ,

and the prover proves that the value committed to in Ca equal the value en-
crypted in Ea. Note that Cs0 and Cs1 are commitments to odd integers s0 and
s1 in [0, 2κp − 1] and Cr is a commitment to an integer r ∈ [1, 22κr+κm+1 − 1].
Thus, part of the verification has already been executed.

To complete the verification the verifier computes commitments of the integers
e0 and e1 induced by the values r, s0, and s1 by forming

Ce0 = (CrC(m))2
κp

Cs0 and Ce1 = C2κp

r Cs1 .

All that then remains is to prove that if e0 and e1 are committed to in Ce0 and
Ce1 and r0 and r1 are encrypted in Er0 and Er1 , then

(c′0)
e0 = ge0r0

0 g0 mod N0 and (c′1)
e1 = ge1r1

1 g1 mod N1 .

This shows that the encrypted signature is a valid twin-moduli signature.
The proof of invalidity for well-formed signatures is similar, but more com-

plicated in that at some point the prover must show that ze0
0 /g0 �= 1 without

revealing this value. A standard trick to solve this problem is to randomize the
result, i.e., revealing (ze0

0 /g0)l for a randomly chosen l. However, in general it
may happen that ze0

0 /g0 is contained in some particular subgroup of Z
∗
N0

and
the simulator clearly does not know if this is the case.

When the public signature key is chosen honestly and the malicious verifier
does not know the factorization of N0, it is infeasible to find any element that
generates a non-trivial subgroup of SQN0 . Thus, in this case the above idea works
straightforwardly and there is no problem. In other words we have a (Ths, Fhs)-
zero-knowledge simulator.

For maliciously generated N0, g0, z0, and e0 the above approach does not
work at all, and it seems difficult to come up with an efficient approach that
does work. Fortunately, we know that it suffices to have a simulator that is given
the values z0 and e0 as an additional advice string, and given these it is obviously
trivial to generate (ze0

0 /g0)l with the right distribution. In other words we have
a (Tcs, Fcs)-simulator.

The complexity of our scheme for some practical parameters is given below.
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Table 1. The estimated average complexity of the algorithms and the protocols in
terms of κ-bit exponentiations when κ = 1024, κr = κc = 50, and κm = 160

Operation Alg./Prot. Signer Confirmer Verifier
Signing Sigdc 140
Converting Condc 66
Verifying Vfdc 1
Well-Formedness πwf 61 59
Correctness of conversion πc 327 227
Validity/Invalidity πe 189 169
Validity πv 166 151
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Abstract. The informal goal of a watermarking scheme is to “mark” a
digital object, such as a picture or video, in such a way that it is difficult
for an adversary to remove the mark without destroying the content of
the object. Although there has been considerable work proposing and
breaking watermarking schemes, there has been little attention given to
the formal security goals of such a scheme. In this work, we provide a new
complexity-theoretic definition of security for watermarking schemes. We
describe some shortcomings of previous attempts at defining watermark-
ing security, and show that security under our definition also implies
security under previous definitions. We also propose two weaker security
conditions that seem to capture the security goals of practice-oriented
work on watermarking and show how schemes satisfying these weaker
goals can be strengthened to satisfy our definition.

1 Introduction

Informally, a digital watermarking scheme is a procedure which embeds a “mark”
in an object so that it is hard to remove the mark without “damaging” the object.
These procedures have a wide variety of applications to digital rights management,
including detection of unauthorized copies, limitations on media copying, tracing
of information leaks, and resolution of ownership disputes over digital content; for
further exposition on various applications see, for example [1, ch. 20]. As a result,
watermarking schemes have seen intense research efforts; for example, see [2] and
the references therein, or the proceedings [3,4,5,6,7,8,9,10,11,12,13,14,15,16]. Most
of this work is focused on the construction of schemes for various digital media and
attacks on these schemes, where there is a long history of schemes being broken
almost immediately after they are proposed.

Given this history, it is not surprising that in the security community, there is a
perception that secure watermarking is “theoretically impossible,” as expressed,
for instance, in [1,17,18]. While this idea is intuitively appealing, it is difficult
to prove something is (im)possible without first formally defining the notion.
Consider for instance, the related notions of program obfuscation and steganog-
raphy, which were both widely believed to be impossible. Program obfuscation
was formalized and shown to be impossible in general [19], but subsequently some
progress has been made in limited cases [20,21]. Steganography, in contrast, was
formalized and shown to be possible, but at limited rates [22,23,24].

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 362–382, 2007.
c© International Association for Cryptologic Research 2007
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Surprisingly, formal definitions for watermarking security have only recently
appeared in the literature. The state of the art focuses on defining schemes
secure against specific “protocol attacks,” which attack the protocols that use a
watermark rather than removing a mark from an object [25]; these very powerful
attacks changed researchers’ understanding of what it means for a watermark to
be “secure.” For example, Kutter et al. [26] introduced the copy attack, in which
a watermark is copied from an object O1 into an object O2 to form an object
O′2 that appears marked even though it was never legitimately watermarked.
This makes it impossible to use the attacked watermarking scheme for various
applications, such as resolving ownership disputes.

Later Adelsbach, Katzenbeisser, and Veith formalized copy attacks and a dif-
ferent protocol attack known as an ambiguity attack. They then showed protocols
intended to be provably secure against these attacks [27]. Several other authors
have also produced schemes claimed to be provably resistant to copy attacks
or other protocol attacks [28,29].1 While this line of work has led to interesting
results, there are some limitations, which we summarize in [30]. Additionally,
this approach leads to an “arms race,” in which, as new protocol attacks are
discovered, new watermarking schemes must be designed and proven secure.

The primary contribution of this work is to initiate the systematic study of
watermarking security definitions. We define a “strong watermarking” security
condition with respect to a metric space on objects, which compares a water-
mark to an ideal functionality in which an object is marked if and only if it is
similar to some object previously marked by the functionality. We show that
this definition implies security against previously known protocol attacks, and
explore the question of proving impossibility. We also explore weaker security
conditions and show how, under some conditions, schemes satisfying these weaker
definitions can be strengthened or amplified to produce strong watermarks.

We stress that in these latter results, we explicitly do not construct “secure”
watermarking schemes from scratch. Instead, we show that watermark design-
ers can achieve a strong notion of security from weak constructions that are
not secure against protocol attacks. These results have two implications. First,
impossibility results for strong watermarking in a metric space will also imply
impossibility of these weaker goals. Second, this means that watermark designers
need not complicate their schemes by attempting to rule out protocol attacks.
Instead, they need only achieve the weaker notion and then apply our results;
put another way, it is enough to build schemes that heuristically satisfy these
goals and apply our constructions to build (heuristically) strong watermarking
schemes, similar to results that say we can build (heuristically) strong secret-key
encryption schemes from (heuristically) strong block ciphers.

Overview of our results. In Section 3 we propose a new definition of secure
watermarking schemes, that we call strong watermarking, in the case that the
marking and detecting procedures share a secret key. Our definition allows the

1 We stress that these constructions, similarly to our own, do not attempt to construct
a provably secure watermark “from scratch” but rather try to build something “se-
cure against X” from a watermark that is not assumed to be secure in this sense.
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adversary to make adaptive queries to oracles for both marking an object and
detecting whether an object is marked. The main idea of the definition is that
a strong watermarking scheme (in which there is no communication between the
marking and detection procedures) should simulate an “ideal watermarking func-
tionality,” which we define. We show that strong watermarking implies security
against all known protocol attacks, and argue that the definition will imply se-
curity against future protocol attacks. Furthermore, we show that security in
our model depends critically on both the notion of similarity and the distribu-
tion on objects to be marked; specifically, we show an example of these settings
under which strong watermarking is impossible, and an example where strong
watermarking exists, relative to an oracle.

In Section 4 we introduce a “weaker” notion of watermark, which we call a
non-removable embedding. This is a weak notion because it only requires that the
watermark cannot be removed; we explicitly allow copy and ambiguity attacks
to succeed against non-removable embeddings. We formalize this notion, prove a
separation between the notion and our proposed strong definition, and point out
that many watermarking schemes in the literature use a security metric closely
related to this notion. We also introduce a notion of “limited” adversaries, who
only create new objects based on some limited set of transformations. This notion
is interesting since there are some techniques in the watermarking literature
which seem to imply provable security against “limited” attacks such as Gaussian
noise. Additionally, some applications of watermarking only require watermarks
to be “robust” against distortions caused by physical processes; these can be
modeled by limited adversaries. We note that all of our results on amplification
can be easily extended to the limited adversarial setting. We then show how
schemes that are provably secure under the strong watermarking definition can
be constructed from non-removable embeddings plus a semi-offline trusted third
party, a standard digital signature scheme, and a semantically secure symmetric
encryption scheme. This shows that our notion of strong watermarking can be
built on the “weak” primitive of non-removable embeddings. While we do require
a third party, this party is not required during watermark detection.

In Section 5 we study an alternative method for producing a strong water-
marking scheme. Specifically, we consider the question of security amplification
of watermarking schemes. We formally specify two new notions that correspond
to a weaker version of strong watermarking and show how schemes which satisfy
these natural conditions can be efficiently composed to produce strong water-
marking schemes. Note that this construction can be seen as an heuristic method
to create strong watermarking schemes as well as a way to extend impossibility
results for a given notion of similarity.

2 Preliminaries

We will work with discrete metric spaces. A discrete metric space M is a finite
space equipped with a distance function d : M × M → Z

+ ∪ {0}. The distance
function is symmetric, obeys the triangle inequality and has the property that
if d(x, y) = 0 then x = y. We will associate with a metric space a similarity
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relation ∼ defined by x ∼δ y ≡ d(x, y) ≤ δ for some fixed δ. When the meaning
is clear from context, we will drop the δ and simply write ∼. For simplicity, we
will assume that all parties can efficiently evaluate ∼. Finally, we denote by D
a distribution on M. Unless otherwise specified, we assume that all parties can
efficiently sample from D and we denote by O ←R D an object O ∈ M sampled
according to the distribution D.

We will also make use of a digital signature scheme S = {SGen, Sig, Ver}. We
say that a signature scheme is (t, q, ε)-existentially unforgeable under adaptive
chosen message attack [31] if all adversaries running in time at most t making
at most q queries to a signature oracle have chance at most ε of obtaining a
signature on a message not previously queried.

We will use a symmetric encryption scheme SE = {Encrypt, Decrypt}. We
say that a symmetric encryption scheme is (t, q, ε)-secure in the left-or-right
sense [32] if every time t adversary, given q queries to a “left-or-right” oracle
LORK(b, x0, x1) = Encrypt(K, xb) cannot distinguish between the case that b =
0 and b = 1 with advantage better than ε.

Finally, we will need a pseudorandom function ensemble{
F : {0, 1}k × {0, 1}L(k) → {0, 1}�(k)

}
k∈N

[33]. We say that a function F is
(t, q, ε)-pseudorandom if any adversary running in time at most t and making at
most q queries to a function oracle can distinguish an oracle for F (Uk, ·) from
an oracle for a random function f : {0, 1}L(k) → {0, 1}�(k) with advantage at
most ε.

3 Strong Watermarking
As previously mentioned, the informal notion of a watermarking scheme requires
the ability to somehow “mark” digital objects, such as pictures, sound, video, or
text. The scheme should also satisfy several additional requirements:

– The result, O′, of marking an object, O, should be “similar” to O.
– An adversary, given O′, should not be able to find an object O′′ that is

similar to O′ but unmarked; this prevents removal of the mark except by
“damaging” the object.

– Most objects O must not be marked. If this is not the case, then certain
desirable uses of watermarks, such as searching for copies of O′ and proving
ownership of O′, are not possible.

– There should be no communication required between the marking procedure
and the detecting procedure; or this communication should be minimized.
This is necessary for many applications, for example, a media player that
may not have a network connection.

We will model the notion of similarity or damage by postulating the existence
of a “perceptual metric” that measures the distance between objects of a given
type. Thus such a metric would assign a small distance between two pictures that
look alike and a large distance between two very different pictures. In practice it
is difficult to characterize such a metric space, so researchers typically focus on
Euclidean or weighted L1 distance in some “perceptually significant” space such
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as the Fourier [34], Wavelet [35], or Fourier Mellin [36] transforms. Once we fix
a metric d, the natural notion of similarity is the relation ∼δ defined previously,
that is, we will say that objects O1 and O2 are similar if d(O1, O2) ≤ δ.

Given this formalization of similarity, we can construct a perfectly secure
watermarking scheme that optimally satisfies the above requirements. To mark
an object O with key K, the ideal scheme simply adds O to its list of objects
marked with K; to test whether an object O′ is marked with K, the ideal scheme
simply searches the appropriate list of marked objects and returns true if it finds
an object similar to O′ and false otherwise. This “ideal” scheme does not allow
an adversary to succeed in “unmarking” a marked object but leaves the largest
possible set of objects unmarked subject to this constraint. The ideal scheme
is undesirable in that it requires unbounded, online communication between
the marking and detection algorithms; our intent is to compare a real-world
watermarking scheme (which does not allow any online communication between
the marking and detection procedures) to this ideal.

An informal statement of our definition allows an adversary access to a mark-
ing oracle and a detection oracle for a watermarking scheme. The adversary then
attempts to attack the scheme by finding an object such that the results of the
actual detection algorithm and the ideal detection procedure differ: either the
object is marked and should not be, or it is unmarked and should be. Unfor-
tunately, any watermarking scheme that produces objects that are similar to
its input and has a static detection scheme would be insecure under this defi-
nition. The intuition is that the following attack would succeed with very high
probability:

1. The adversary samples an object O ∈ M. Since it has not been queried to
the marking procedure, it is not yet marked under the ideal scheme.

2. Next the adversary queries Mark(O), to get an object O′ similar to O.
3. Finally, the adversary queries Detect(O). In the watermarking scheme under

attack, O should not be marked (since it was not marked in step 1, and
there is no communication between marking and detection schemes). But in
the ideal scheme, it is close to O′, which is marked. Thus the adversary has
succeeded in finding an object on which the real and ideal schemes differ.

We give a formal proof of this in [30], where we also show that a cryptograph-
ically natural alternative definition also rules out secure schemes that distort
originals by less than half the similarity radius. Our solution is to introduce a
third, challenge oracle that selects objects to watermark from some probability
distribution; the performance of the watermarking scheme is only compared to
that of the ideal scheme on these challenge objects.

3.1 Definition of Strong Watermarking Schemes

A secret-key watermarking scheme W = {WMGen, Mark, Detect} consists of
three algorithms: WMGen : 1∗ → Keys generates a secret key to be used in
marking and detection; Mark : Keys × M → M takes a key and an object to
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Oracle Mark∗(O):
1. O′ ← Mark(K, O)
2. Marked ← Marked ∪ {O′}
3. return(O′)

Oracle Detect∗(O):
1. b ← Detect(K, O)
2. B′ ← IdealDetect(O)
3. if b �∈ B′

4. then bad ← true
5. return(b)

Oracle Challenge∗
D()

1. O ←R D
2. O′ ← Mark(K, O)
3. chalns ← chalns ∪ {O′}
4. Marked ← Marked ∪ {O′}
5. return(O′)

Fig. 1. Definition of Mark∗, Challenge∗ , and Detect∗ oracles for strong watermarking.
The global variables K, Marked, chalns, and bad are initialized in Figure 2.

Experiment Expstrong
D,W (A):

1. K ← WMGen(1k)
2. bad ← false
3. Marked ← ∅
4. chalns ← ∅
5. AMark∗,Challenge∗,Detect∗()
6. return (bad)

Procedure IdealDetect(O):
1. if (∃O′ ∈ chalns : O ∼ O′)
2. then return {true}
3. else if (∃O′ ∈ Marked : O ∼ O′)
4. then return {true, false}
5. else
6. return {false}

Advstrong
D,W (A) = Pr[bad = true]

Fig. 2. Definition of security experiment for strong watermarking

mark and returns a new object; and Detect : Keys × M → {true, false}. Notice
that we do not explicitly allow any online communication between the Detect and
Mark procedures, since in many applications the devices detecting and marking
objects may not have any means by which to communicate.

We can now define strong watermark security. Our definition formalizes the
informal discussion above. An adversary is given access to oracles for Mark and
Detect, and a special Challenge∗ oracle that samples and marks objects from
an efficiently sampleable distribution D over M. The adversary wins if he calls
Detect∗ on an object that is either marked, but not similar to the result of a Mark∗

or Challenge∗ query, or unmarked, but similar to the result of some Challenge∗

query. Notice that unlike in the hypothetical discussion above, we only require
the objects near the result of Mark (rather than the input) to be marked, since
these are (presumably) the ones that the adversary will be able to access. The
formal security experiment has four global variables: Marked and chalns, sets of
objects; bad, a boolean flag; and K, a key. In Figures 1 and 2 we show pseudocode
for initializing the security experiment and the ideal detection functionality, as
well as for oracles Mark∗, Challenge∗, and Detect∗. We note that some of our
reductions require the ability to sample from the distribution D on M.

We say that a watermark is ρ-preserving for D if Pr[K ← WMGen(1k); O ←R

D; O′ ← Mark(K, O) : d(O, O′) > ρ] is negligible in k; that is, if the marked
version of an object is almost always within distance ρ of the original. This
“bounded distortion” requirement is not strictly necessary for security in all
applications, but is typically vital to the utility of a watermarking scheme.

The advantage of an adversary AStrong is Advstrong
D,W (AStrong) as defined in

Figure 2. The scheme is a (D, t, qM , qD, qC , ε, δ)-strong watermarking scheme if
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for all adversaries AStrong running in time at most t, making at most qM queries
to Mark∗, at most qD queries to Detect∗, and at most qC queries to Challenge∗ ,
the advantage of AStrong is at most ε with respect to similarity relation ∼δ.

Philosophically, one may think of the above experiment as a game between,
say, a “hacker” and a “studio.” The hacker can “give” movies to the studio to see
how they look when marked, and he can check, using his personal DVD player,
whether any particular object is marked. Meanwhile, the studio will release other
videos not created by the hacker; it is the hacker’s goal to “unmark” one of these
movies, or alternatively, to create a movie that appears to be marked but was
never marked by the studio. If the hacker cannot do this, the studio can have
good confidence that a movie will appear marked iff it was produced by them.

Dependence on ∼ and D. It should be clear that the existence of strong
watermarks depends critically on both the similarity relation ∼ and the distri-
bution on challenge objects, D. For instance, if an attacker can deduce, given
the result of a query to Challenge∗D, the object O ←R D from line 1 of Figure 1,
then as pointed out in our earlier discussion, the scheme cannot be secure for D
and ∼. Thus D must have high entropy, and Mark must be “one-way” for most
keys. Likewise, if for any given O, enumerating the set Nδ(O) = {O′ : O′ ∼ O} is
feasible, then a watermarking scheme cannot be secure. In this work, we do not
explore all the necessary conditions on ∼ and D; it seems to be a difficult chal-
lenge to even identify the correct similarity metric and distribution for many of
the applications of watermarking. Here we briefly give two results that show that
even when the previous two conditions are satisfied, there cannot be a “generic”
argument for the existence or impossibility of strong watermarks.

Proposition 1. Let D be the uniform distribution on k-bit strings and let d(x, y)
be the hamming distance metric on k-bit strings. Then there is no δ-preserving,
(D, O(k), 1, 1, 1, 1/2δ+1, δ)-strong watermarking scheme.

Notice that for δ(k) = O(log k), the neighbor set has size superpolynomial in
k, and D has k bits of entropy, yet no watermarking scheme can have security
better than 1/2k. The proposition can be seen to be true as follows. Suppose we
uniformly pick a point x ∈ {0, 1}k; consider the point y returned by Mark∗(x),
and let z and w be uniformly chosen points in Nδ(y) and Nδ(x), respectively.
Now we know that if a watermarking scheme is to be ε-secure, it must be that
Pr[Detect∗(z) = false] ≤ ε, since otherwise an adversary can remove a mark with
probability greater than ε by sampling a random point in the neighborhood of a
marked object. It can also be shown that Pr[z ∈ Nδ(x)] ≥ 1/2δ. This gives us that
Pr[z ∈ Nδ(x)∧Detect∗(z) = true] ≥ 1−(Pr[z �∈ Nδ(x)]+Pr[Detect∗(z) = false]) ≥
2−δ − ε. Note that ε security also requires that Pr[Detect∗(w) = true] ≤ ε, since
otherwise we can easily find a marked point – by randomly sampling an object
in the neighborhood of a random point – breaking the watermark. Thus we also
have that ε ≥ Pr[Detect∗(w) = true∧w ∈ Nδ(y)]. But by symmetry, for any fixed
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Experiment Expcp
D,W (B) :

1. K ← WMGen(1k)
2. O1 ←R D
3. O′

1 ← Mark(K, O1)
4. O2 ←R D
5. O′

2 ← B(O′
1, O2)

6. if Detect(K, O′
2)

7. and O2 ∼ O′
2 �∼ O′

1
8. then b = true
9. else b = false
10. return(b)

Advcp
D,W (B) = Pr[b = true]

Experiment Expamb
D,W (B) :

1. K ← WMGen
2. repeat
3. O1 ←R D
4. until Detect(K, O1) = false
5. O′

1 ← B(O1)
6. if Detect(K, O′

1) and O1 ∼ O′
1

7. then b = true
8. else b = false
9. return(b)

Advamb
D,W (B) = Pr[b = true]

AdversaryAB
cp() :

1. O1 ← Mark∗(O ←R D)
2. O2 ←R D
3. O′

2 ← B(O′
1, O2)

4. Detect∗(O′
2)

Adversary AB
amb:

1. O1 ←R D
2. Detect∗(O1)
3. O′

1 ← B(O1)
4. Detect∗(O′

1)

Fig. 3. Experiments for copy and ambiguity attacks and the corresponding strong
watermark adversary

choice of K, x, y, we have Pr[Detect∗(w) = true ∧w ∈ Nδ(y)] = Pr[Detect∗(z) =
true ∧ z ∈ Nδ(x)]. This gives ε ≥ 2−δ − ε, or ε ≥ 2−δ−1.

Notice that a similar argument applies to any metric space, distribution and
marking function such that (i) the neighborhood of an object and its marked
version are symmetric, (ii) these neighborhoods have noticeable intersection, and
(iii) it is possible to uniformly sample from the neighborhood set of an object.
Thus to rule out an impossibility result, we seek to violate these properties.

Proposition 2. There exists an oracle Π, relative to which there exists a dis-
tribution DΠ , a metric dΠ , and a 1-preserving watermarking scheme WΠ such
that WΠ is (DΠ , t, t, t, t, t2/2k, 1)-strong.

Intuitively, we will choose Π , dΠ and DΠ so that for most strings x it will
be very hard to even find a string y such that dΠ(x, y) = 1, but the oracle
gives us a way to sample from a set of “special” strings x′ that violate this
property. Once we mark an object x′ it is no longer in this special set, so it is
hard for the adversary to remove the mark. Formally, the oracle Π “knows” a
uniformly chosen bijection π : {0, 1}2k → {0, 1}k×{0, 1}k for each k and answers
three types of queries: sample, dist, and move. Π(sample, y) returns π−1(y, 0k).
Π(dist, x0, x1) computes (yb, zb) = π(xb), and then returns 0 if x0 = x1, 1 if
y0 = y1 and some zb = 0k, 2 if y0 = y1, and 3 otherwise. Π(move, x, z′) computes
(y, z) = π(x); if z = 0k then it returns π−1(y, z′); if z = z′ it returns π−1(y, 0k),
and otherwise it returns x. The distribution DΠ is defined as Π(sample, Uk) and
the metric dΠ(x, y) = Π(dist, x, y), so that for most 2k-bit strings x, there is
only one string at distance 1 from x. The marking scheme WΠ uses k-bit keys,
and computes MarkΠ(K, x) = Π(move, x, K), while DetectΠ(K, x) returns true
iff Π(move, x, K) �= x.

We remark that, obviously, the oracle distribution Π does not prove that strong
watermarks exist. It merely shows that there cannot be a “black-box” proof that
rules out all possible strong watermarking schemes without considering the details
of D and ∼. We believe it is an interesting open question to find any D and ∼, even
if they are contrived, that provably admit a strong watermarking scheme without
reference to an oracle, or even with small values (qM , qC , qD).
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3.2 Strong Watermarks Are Secure Against Protocol Attacks

Adelsbach et al. provided the first formal definition of copy attacks and ambigu-
ity attacks [27]. We adapt their definitions to our setting, in which we consider
only the presence of a mark rather than its content. We show that strong wa-
termarks are secure against copy and ambiguity attacks.

First we consider copy attacks. Informally, a copy attack occurs when an ad-
versary can “copy” a watermark from a marked object O′1 to a second object O2.
In our watermarking model, “copy” means that the adversary, given a marked
object O′1, can cause an object O2 to return true for Detect∗ despite never
having been queried to Mark. More formally, we say a watermarking scheme is
(D, t, εcp, δcp)-secure against copy attacks if all adversaries B running in time
at most t have advantage Advcp

D,W(B) ≤ εcp with respect to similarity relation
∼δcp . Notice that in this definition (and in the original definition of Adelsbach et
al. [27]) the copy adversary is not afforded access to a Mark∗ or Detect∗ oracle.
We can prove that a D-strong watermarking scheme is not vulnerable to copy
attacks for any sampleable distribution D′ : if there exists an adversary B that
successfully carries out a copy attack, then the adversary AB

cp in Figure 3 suc-
ceeds at breaking the strong watermark. A formal theorem statement and proof
are in [30].

Next, we consider ambiguity attacks. A classical ambiguity attack takes an
unmarked object O1, and produces a new “original” object O2 such that O1
appears to be marked with O2 as the original. In our model, we can recast
ambiguity attacks as, given an unmarked object O1, find an object O2 such
that O2 ∼ O1 and O2 appears to be marked, without legitimately marking O2.
Strong watermarking implies security against ambiguity attacks: if B succeeds
at carrying out an ambiguity attack, then the adversary AB

amb shown in Figure 3
breaks the strong watermark. Details are in [30].

Remark. We note that some works on protocol attacks describe attacks where
the adversary is allowed to choose the key to the watermarking scheme. While
it is important to eventually address such chosen-key attacks, we believe it is
an interesting and important first step to concentrate on getting the definitions
right for the more basic scenario. Thus in this paper we do not consider attacks
that involve manipulating the keys of the marking and detection procedures.

4 Non-removable Embeddings and Strong Watermarks

Many watermarking schemes in the literature actually provide a somewhat differ-
ent interface from the watermarking primitive described in the previous section.
Instead, these schemes focus on embedding a short string within an object so that
if the adversary does not distort the object too much, the embedded string can
be recovered. Typical schemes do not attempt to prevent “insertion” of strings
into an object, which is the reason that many protocol attacks succeed. In this
section, we give a formal notion of a primitive, the non-removable embedding
(NRE), that seems to capture this design goal. We will demonstrate that NREs
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Experiment ExpNRE
D (A):

1. (z, z′)← EMGen(1k)
2. Embedded← ∅
3. OA ← AEmbed(z,·,·),Challenge∗(z′)

Oracle Challenge∗(m):
1. O ←R D
2. O′ ← Embed(z, O, m)
3. Embedded← Embedded ∪ {(O′, m)}
4. return O′

AdvNRE
D (A) = Pr[∃(Oi, mi) ∈ Embedded : OA ∼ Oi ∧ Extract(z′, OA) �= mi]

Fig. 4. Security experiment and Embed∗ oracle for non-removable embeddings

are provably weaker objects than strong watermarks: if NREs exist at all, then
there are NREs that allow copy attacks. After separating the notions of NREs
and strong watermarks, we give a construction which makes limited use of a
semitrusted third party to construct a strong watermarking scheme from a NRE.

The notion of an NRE is closely related to a security notion widespread in
the watermarking literature. Many schemes presented in the watermarking liter-
ature, for example [37,38,39,40,41], take as their evaluation metric the bit error
rate for a watermarked message given a specified constraint on the distortion
allowed the adversary, or “watermark to noise ratio.” Essentially, these schemes
attempt to bound the rate of bit errors in the embedded string for a given amount
of distortion induced by the adversary. One of the interesting properties of the
NRE notion is that we can easily build an NRE from such schemes. Because
we deal with probabilistic polynomial time adversaries, we can assume that the
bit errors follow a computationally bounded distribution. Therefore, we can use
the coding methods of Micali et al. to obtain an NRE from up to a bit error
rate of one half: we simply encode the message before embedding and decode on
extraction [42].

To begin, an embedding scheme (Embed, Extract, EMGen) is a triple of al-
gorithms with the following signatures: Embed : Aux × M × {0, 1}k → M,
Extract : Aux′×M → {0, 1}k∪ ⊥, and EMGen : 1∗ → Aux ×Aux′ for some fixed
k. Here M is a metric space, and Aux and Aux′ are sets of possible auxiliary
inputs. For example, Aux might be a set of secret keys, while Aux′ might be a
set of public keys. k is the length of strings to be embedded in objects.

We further require that embedded messages can be extracted, i.e. for (z, z′) ←
EMGen(1k), we have Extract(z′, Embed(z, O, x)) = x with high probability. An
embedding scheme is ρ-preserving for D if for all m ∈ {0, 1}k, d(Embed(O, m), O)
≤ ρ with high probability over O ←R D. Together, these give a correctness and
a bounded distortion requirement for a non-removable embedding.

We define security of embedding scheme NRE by saying it is (D, t, qE , qC , ε, δ)
non-removable for distribution D if for all A running in time at most t, that make
at most qE queries to an Embed oracle and at most qC queries to the Challenge∗

oracle, the advantage AdvNRE
D (A) defined in Figure 4 is at most ε.

Remarks. This definition does not rule out the protocol attacks we have dis-
cussed: in particular, if there is a ρ-preserving non-removable embedding for the
metric space M with metric d, we can construct a 2ρ-preserving non-removable
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embedding for the metric space M × {0, 1}k with metric d′, that allows copy
attacks to succeed, as follows. We define the metric d′((O1, y1), (O2, y2)) to be
d(O1, O2) if y1 = y2 and d(O1, O2) + ρ otherwise; define Embed′(z, (O, y), x) =
(Embed(z, O, x), x), and Extract′(z′, (O, x)) = Extract(z′, O) if Extract(z′, O) �=⊥
and Extract′(z′, (O, x)) = x otherwise. Then it is easy to see that, as long as
ρ < δ, given a marked object O = (O1, x) and an unmarked object O′ = (O2, y)
we can “copy” the mark from O onto O′ by setting O′′ = (O2, x); yet it is still
hard to remove x from O.

Although we do not explicitly require it, we note that typical applications
will require that ρ < δ and in many cases, ρ  δ. We also note that it is
trivial to construct a ρ-preserving non-removable embedding for the case that
ρ = sup(x,y)∈M×M d(x, y), using an error correcting code with minimum distance
2δ, if one exists for the metric space M.2 Thus the interesting question, for a
given metric space, becomes “for what values of (ρ, δ) is a NRE possible?”

Barak et al. [43] defined watermarking for circuits, showing there are families
of circuits for which such watermarking is impossible, and that the notion is
incompatible with obfuscation even for watermarks that only succeed on some
circuits. They briefly discuss how allowing “approximate implementations” may
change their results. Our definition, in contrast, places these decisions in the
choice of ∼ and the distribution D.

We also note that many “public-key” watermarking schemes in the literature
seem to target (D, t, qE , 1, ε, δ) non-removability, expressed in terms of bit error
rate for the watermarked message as noted above. A simple hybrid argument im-
plies such schemes also have (D, t, qE , qC , qCε, δ) non-removability [44,41]. Thus
while we are not aware of any strong candidate NREs, the existence of such a
scheme seems to be a natural assumption if watermarking can be feasible at all.

We note that Moulin and Wang have shown that quantization index modula-
tion (QIM) techniques provide provably good watermarks against an adversarial
memoryless channel. The restriction to memoryless channels, together with an
assumption that the host signal is Gaussian, allows them to analytically derive
the “worst possible” channel and evaluate the bit error rate for a watermark
signal under a specified bound on the mean squared error introduced by the
adversary. Therefore, we can view their result as showing that QIM techniques
yield a non-removable embedding for the class of memoryless adversary chan-
nels. While this is a severely limited class of adversaries, it shows that our notion
is realizable at least under “toy” circumstances.

Finally, the StirMark benchmark [45,46] performs transformations such as
resampling, resizing, and “jitter” in images; this benchmark is widely used to
evaluate watermarks. We can capture both Moulin and Wang’s result and the
StirMark benchmark in our framework. If C is a set of object transformations, we
define an attacker from class C to be an adversary who can only create objects via

2 We let Embed(O, x) = encode(x) and Extract(O) = decode(O). If the code’s min-
imum distance is 2δ then clearly any distortion by distance δ or less will result in
extraction of the “embedded” message, but the worst-case distortion of this proce-
dure is the maximum possible distance between two objects in M.
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sampling from D, queries to oracles, and applying transformations from C to ob-
jects he has already created. Then it is a straightforward extension of our results
to show that if there is an NRE that is secure against all attackers from class C,
there is a strong watermarking scheme that is secure against all attackers from C.

4.1 Building Strong Watermarks from Embeddings

We now show how to build ideal watermarking schemes from non-removable em-
beddings, digital signature schemes, and a trusted third party (TTP). The main
benefit of our scheme is that the TTP need not be present during watermark
detection; anyone can check whether an object is marked without needing to
contact the TTP in a wide variety of cases. Our scheme requires digital signa-
tures in addition to a TTP because the underlying embeddings are not assumed
secure against insertion of watermarks or copy attacks. The nonremovable em-
bedding is necessary to allow offline detection, because otherwise an adversary
could remove any metadata that might be attached to an object as a mark.

The TTP has well-known public keys and provides two services over se-
cure channels: Register(O, K, x) picks a unique identifier i, checks that x =
Encrypt(K, O), and returns (i, SigTTP (i, x)); Retrieve(i) returns the x associated
with i if any exists, or ⊥ otherwise; we assume that neither call returns un-
til a correctly authenticated response is received. We require that parties who
execute Mark can communicate with the TTP as necessary. However, Retrieve
is implemented in a semi-offline manner. Unique identifiers are assigned in as-
cending order, and the TTP publishes a signed list, TTPList, of all (i, x) pairs
each day. Consequently, Retrieve(i; TTPList) only needs to contact the TTP if
i > TTPList.length. Standard measures (such as substituting a zero-knowledge
proof of knowledge of (O, K) for (O, K); maintaining an ordered, signed TTPList;
checking for consistency of TTP lists between updates; et cetera) can be taken
to reduce the level of trust required in the TTP; we omit them for clarity of
presentation, and because they do not affect the security proof.

Now let E = (Embed, Extract, EMGen) be an embedding; and let
SE = (Encrypt, Decrypt) be a symmetric encryption scheme. We then define a
new watermarking scheme WE = (WMGenE,SE , MarkE,SE , DetectE,SE) as shown
in Figure 5. Mark(O) encrypts O, registers the ciphertext with the TTP, and
embeds the TTP’s identifier and signature in O. Detect(O; TTPList) extracts
the TTP identifier and signature, retrieves the associated ciphertext, and checks
that O is close to the result of Embed applied to the plaintext.

The main result of this section is that if the underlying embedding is non-
removable, then the scheme WE satisfies our notion of strong watermarking.
Formally, we can state the following theorem, whose proof is in [30].

Theorem 1. Suppose E is a (D, tE , qEM , qEC , εE, δ)-secure non-removable em-
bedding, S = (SGen, Sig, Ver) is (tS , qS , εS)-existentially unforgeable under cho-
sen message attack, and SE = (Encrypt, Decrypt) is (t, qen, εen) left-or-right se-
cure under chosen plaintext attack. Then WE is a (t′, qM , qD, qC , ε′, δ)-strong
watermarking scheme, where ε′ = 2εS + εen + εE, qM + qC ≤ min(qen, qS),
qM ≤ qEM , and qC ≤ qEC .
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Algorithm MarkE ((z, z′, K), O)
1. x← Encrypt(K, O)
2. (i, σ) ← Register(O, K, x)
3. O′ ← Embed(z, O, (i, σ))
4. return O′

Algorithm WMGenE(1k)
1. (z, z′)← EMGen(1k)
2. K ←R {0, 1}k

3. return (z, z′, K)

Algorithm DetectE((z, z′, K), O∗; TTPList):
1. if (Extract(z′, O∗) =⊥) then return false
2. (i∗, σ∗)← Extract(z′, O∗)
3. x∗ ← Retrieve(i∗; TTPList)
4. O ← Decrypt(K, x∗)
5. if (x∗ =⊥ or O =⊥ or VerTTP((i∗, x∗), σ∗) = false)
6. then return false
7. if Embed(z, O, (i∗, σ∗)) ∼ O∗

8. then return true
9. else return false

Fig. 5. Pseudocode for WMGenE , MarkE , and DetectE

Remarks. We note that the scheme as written requires the Embed procedure to
be deterministic; this is without loss of generality because the shared symmetric
key between Mark and Detect can include a seed for a pseudorandom function
that is used to generate the random bits used by Embed in a deterministic way
from its arguments, without changing the security properties of the scheme.

We also note that if the distribution D has Shannon entropy less than k – the
length of strings embedded by E – then in principle the TTP can be removed from
this scheme. In this case, the marking scheme first losslessly compresses the object
O into a short string x of length less than k, and the string x is then encrypted
and authenticated using standard cryptographic techniques to get a ciphertext c
which is embedded into O. The detection scheme recovers c, checks it for authen-
ticity and if it passes, decrypts c to obtain x, then expands x to the original object
O before comparing it to the input object. Thus our TTP can be seen as imple-
menting a compression algorithm for unknown or incompressible distributions D.

5 Strengthening Watermarks by Composition

Suppose we are given a watermarking scheme with known attacks that succeed at
insertion or removal of a watermark with high probability, for example 90%, but
retains some weak sense of security, in that it is not known how to defeat it with
probability 1. In this section, we show that this sense of security is essentially
enough for strong watermarking. Given an offline watermarking scheme W that
satisfies two weak properties, we can construct an (offline) strong watermarking
scheme in the sense of Section 3. The first property is that the scheme is secure in
this weak sense – every adversary fails to defeat the scheme with some constant
probability. The second property is that marking an object many times preserves
some similarity to the original.

As mentioned previously, we believe this results has both positive and negative
applications. Many of the heuristic watermarking schemes in the literature are
broken, but frequently the known attacks do not succeed with probability 1. Thus
applying our amplification scheme could heuristically create schemes which are,
in some sense, secure “against known attacks.” On the other hand, our results
show that in order to rule out even weakly secure watermarking schemes for
a given metric and distribution, it is sufficient to concentrate on showing the
impossibility of a strong watermarking scheme.
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5.1 Weakly Secure Watermarking Schemes

Our scheme will work by applying the Mark function to its own output several
times. Because our security notions depend on the probability distribution on the
inputs to Mark, we will need some assumption on the distribution of the outputs
of Mark. The strongest assumption is that these distributions are identical, but
in general this amounts to assuming that Mark is the identity function. Thus,
instead, we assume that the (weak) security of a watermark holds even if we
make some small distortions to an object before marking it. Formally, we say
that a randomized algorithm D is a (t, r)-perturbation of D if D runs in time t
and Pr[O ←R D; O′ ← D(O) : dM(O, O′) > r] is negligible. We will say that
our watermarking schemes are weakly secure for D if they are weakly secure for
any (t, r)-perturbation of D.

(Weak) security against removal. We define the removal advantage of an
adversary against a watermarking scheme to be the probability that an adversary
can produce, given a watermarked object drawn from a (t, r)-perturbation of D,
a similar object that is not marked. Formally, define

Advrm
W,D(A) = Pr[K ← W.WMGen(1k); O ←R D; O′ ← W.MarkK(D(O));

O′′ ← A(O′) : W.DetectK(O′′) = false ∧ O′′ ∼δ O′] .

Then, we say that a watermark W is (t, εrm, δ, D, r)-secure against removal if for
every time-t adversary A, and every (t, r)-perturbation D of D, Advrm

W,D(A) ≤
εrm. Informally, this definition says that every adversary who runs in time
at most t fails to remove the watermark of an object drawn from a (t, r)-
perturbation of D with probability at least 1 − εrm.

We remark that this experiment captures the intuitive notion of trying to
remove a watermark without damaging some challenge object, a common goal
of attacks on watermarking schemes found in the literature. We also note that
the goal of our scheme is to strengthen a watermark with only constant security
against removal – meaning that we explicitly allow a watermarking scheme that
can be removed, say, 99% of the time.

(Weak) Security against insertion. We informally define the insertion ad-
vantage of an adversary against a watermarking scheme to be the probability
that an adversary can produce, given a single watermarked object, another wa-
termarked object. Formally, define

Advins
W,D(A) = Pr[K ← WMGen(1k); O ← A(1k); O′ ← W.MarkK(O);

O′′ ← A(O′) : W.DetectK(O′′) = true ∧ O′′ �∼δ O′] .

Then, we say that a watermark W is (t, εins, δ)-secure against insertion if for ev-
ery time-t adversary A, Advins

W,D(A) ≤ εins. Informally, this definition says that
every adversary who runs in time t must fail to produce a (new) watermarked ob-
ject with probability at least 1−εins. We remark that security against insertion is
essentially an adversarial notion of the “false positive rate” of a watermark [2,27].
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We can now state the main result of this section; the proof depends on several
additional results proved in the remainder of the section:

Theorem 2. Suppose there exists a watermarking scheme W such that:

– W is ρ-preserving;
– W is both (t, εrm, δ, D, kO(1)ρ)-secure against removal and (t, εins, δ)-secure

against insertion; and
– εrm, εins are constants such that 4εins lg 1

εrm
< 1; and t = kω(1)

Then there exists a (D, t′, qM , 1, qD, ν, δ)-strong watermarking scheme W ′, where
t′ = kω(1) and ν = 1/kω(1). The scheme W ′ is kO(1)ρ-preserving.

Proof. The new watermark W ′ is constructed from W using the techniques de-
veloped in the remainder of this section: first the “alternating” composition
ALT� with 	 = O(lg k) levels, from Section 5.3 is applied to W . By repeated
application of Theorem 3 the resulting scheme S(W ) is ν-secure against re-
moval and insertion, for negligible ν. Lemma 1 implies that this scheme is also
a (D, t′, qM , 1, qD, ν, δ)-strong watermark, for qM + qD = 1. To achieve arbi-
trary qM and qD, we construct the scheme S′(W ) described in Section 5.4 with
m = qM + qD. By Theorem 4 the resulting scheme is a (D, t′, qM , 1, qD, ν, δ)-
strong watermark.

5.2 Single-Property Amplification

Let K = (K1, K2, . . . , Km) be a set of independently chosen secret keys. We de-
fine MarkW

K
(O) := W.MarkKm(W.MarkKm−1(. . . W.MarkK1(O) . . . )), i.e. MarkW

K

is the sequential marking of an object O with each secret key in the vector K.
We now have two choices for defining the DetectW

K
(O′) algorithm, each resulting

in a different watermarking scheme. Define the schemes as follows:

AND(m, W ).DetectK(O′) =
∧

1≤i≤m

W.DetectKi(O
′)

OR(m, W ).DetectK(O′) =
∨

1≤i≤m

W.DetectKi(O
′)

Intuitively, we expect that AND(m, W ) will improve the insertion security of
watermark W while impeding the removal security. This is because to insert a
watermark one must insert m copies of W , while to delete a watermark one need
only delete 1 out of m. Likewise, we intuitively would expect that OR(m, W )
will decrease the insertion security while increasing the removal security. We can
write this formally in the following theorem, whose proof is in [30].

Theorem 3. Let W be ρ-preserving, (t, εins, δ)-secure against insertion, and
(t, εrm, δ, D, r)-secure against removal. Then:

(a) OR(m, W ) is (t′, mεins, δ − mρ) secure against insertion.
(b) AND(m, W ) is (t′, mεrm, δ − mρ, D, r − mρ) secure against removal.
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Where t′ = t − mTM − O(1) if TM is the time to mark an object. Furthermore,
for any q(k) ∈ kO(1),

(c) AND(m, W ) is (t′, εm
ins + 1/q, δ − mρ) secure against insertion.

(d) OR(m, W ) is (t′, εm
rm + 1/q, δ − mρ, D, r − mρ) secure against removal.

Where t′ = t/poly(q, m).

5.3 Simultaneous Amplification

Let W be a watermarking scheme with key space K and define the scheme
ALT(W ) with key space K4 by ALT(W ) = AND(2, OR(2, W )). Then by the previ-
ous theorem, if W is (kω(1), c/2, δ, D, r) secure against removal and (kω(1), d/4, δ)
secure against insertion, then ALT(W ) is (kω(1), c2/2, δ − 4ρ, D, r − 4ρ)-secure
against removal and (kω(1), d2/4, δ−4ρ)-secure against insertion. If we define the
scheme ALT�(W ) by ALT1(W ) = ALT(W ) and ALT�(W ) = ALT(ALT�−1(W )),
we see that ALT�(W ) is (kω(1), d2�

/4, δ−4�ρ)-secure against insertion and (kω(1),

c2�

/2, δ − 4�ρ, D, r − 4�ρ)-secure against removal, for 	 = O(log k). By setting
	 = �log k� and letting S(W ) = OR(2, ALT�(W )) we obtain a scheme that inserts
poly(k) marks such that any poly(k)-time adversary has negligible advantage for
both removal and insertion, if the original scheme is weakly secure against (for
example) subexponential time adversaries.

Intuitively, we can think of this scheme as building a tree of marking schemes
over the object O to be marked. By building the tree appropriately, alternating
AND and OR at each level, we can reduce both the insertion and deletion proba-
bilities for the resulting detection scheme. Each leaf of the tree corresponds to an
independently keyed insertion of a watermark. Suppose we have a depth t tree
comprising 2t independent keys. The top gate, an OR, will recursively compute
AND.Detect(O, k[1]...k[2t−1]) and AND.Detect(O, k[2t−1]...k[2t]) and return true
if at least one recursive branch returns true. OR is defined analogously. Alter-
natively, from the bottom-up view, there is one object in which we may have
embedded n = 2t marks; we check if each mark is present and then compute
a formula based on these truth values to decide whether the composed mark is
present.

We note that the full alternating binary tree only exponentially reduces the
insertion and removal probabilities if we start with εrm < 1/2 and εins < 1/4.
For many watermarking schemes in the literature, however, we might expect that
the insertion probability is low, say εins < 1/100, while the removal probability
is high, say εrm = 0.9. In this case, we can make the lowest level of the tree
consist of an OR of 20 marks to get ε′rm = 1/e2 < 1/2 and ε′ins < 1/5. We can
then build a binary tree on top of the resulting watermark.

It remains to show that the scheme S(W ) is correct, i.e. that S.DetectK

(S.MarkK(D)) = true except with negligible probability. Notice, however, that
S.Detect returns true if either its left branch or its right branch return true.
But the insertion of the marks in the right branch is just one particular in-
stance of an adversary (against the left branch) that returns an output that is
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distorted by distance at most 4�ρ from its input, so if δ > 4�ρ, the probability
that this “adversary” succeeds in removing the mark inserted by the left branch
is negligible.

5.4 Strong Watermark Security from Insertion and Removal
Security

Notice that the definition of (t, εins, δ) security against insertion implies (D,
t, 1, 1, 0, εins, δ)-strong watermark security: any strong watermark adversary
A who makes one Mark∗ query and one Detect∗ query can be converted into
a weak insertion adversary B: B(1k) simply runs A until A makes a query to
Mark∗, say O, and outputs O; B(O′) returns O′ to A and outputs the object
O′′ that A queries to Detect∗. Since the list chalns is empty, submitting an
unmarked O′′ will give b = false and b′ = false, so A can only win by “in-
serting” a watermark. Additionally satisfying (t, εrm, δ, D, r)-security against re-
moval implies (D(D), t, 0, 1, 1, ε, δ) strong watermark security for any D that
perturbs D by at most r, because an adversary who makes only a single query
O′ ← Challenge∗(D(D)) can only win by querying Detect∗(O′′) such that:

– O′′ ∼ O′ and DetectK(O′′) = false; if this happens with probability greater
than εrm then the removal security of the scheme is contradicted.

– d(O′′, O′) > δ and DetectK(O′′) = true; if this happens with probability
greater than εins then the insertion security is violated: an insertion adver-
sary can always draw his challenge object O′ ← D(D).

This observation leads to the following lemma:

Lemma 1. If W is (t, εins, δ)-secure against insertion and (t, εrm, δ, D, r)-secure
against removal then W is a (D(D), t, qM , 1, qC , εins + εrm, δ)-strong watermark-
ing scheme, for any distortion function D ∈ time(t) that perturbs D by distance
at most r, and any qC ≤ 1 − qM .

Suppose that we extend the definition of a strong watermark to allow Mark to
maintain a local state. Then we can generically increase the number of (mark and
challenge) queries we are secure against by a factor of n while also increasing the
running time of Detect by a factor of n as follows. We require that Mark′K keeps a
count, i, of the number of objects it has marked (say modulo n). When Mark′K(O)
marks a new object, it computes the entire set of keys to use as Ki = FK(i),
where F is a pseudorandom function of the appropriate output size, and then
calls MarkKi(O). Then in Detect′K(O) we try K = FK(1), FK(2) . . . FK(n) and
output true if any of these watermarks is detected. This increases the insertion
probability by at most a factor of n. We make this more formal in the following
theorem, whose proof is in [30].

Theorem 4. Let W = (Mark, Detect) be a (D, t, qM , 1, 1 − qM , εwm, δ)-strong
watermarking scheme and let W ′ = (Mark′, Detect′) be a watermarking scheme
with the stateful Mark’ algorithm described above, and let F be a (t, n, εprf )-
pseudorandom function. Then W ′ is a (D, t, qM , 1, n−qM , nεwm +εprf , δ)-strong
watermarking scheme.



From Weak to Strong Watermarking 379

6 Conclusions

In this paper we have initiated the scientific study of complexity-based security
of watermarking schemes. We define a notion of watermarking security based
on comparison to an ideal scheme, and give evidence that this is the right no-
tion of security for watermarks in two ways. First, we show that security in our
sense implies previous definitions of security, while the converse is not true. Sec-
ond, we have shown how to construct a watermark which is secure in our sense
from several weaker primitives, which seem to capture the goals of research in
watermarking primitives. Our intent is not to introduce new watermarking pro-
tocols, but to suggest that security in the “strong watermark” sense is the “right
definition”: if secure watermarks (in any sense) are feasible at all, then so are
strong watermarking schemes. A key question left open by our work, therefore, is
the construction of similarity-preserving strong watermarking schemes that are
provably-secure under standard cryptographic assumptions; even a construction
for a contrived metric space would be an interesting first step in this direction.
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Abstract. Private approximation of search problems deals with finding
approximate solutions to search problems while disclosing as little infor-
mation as possible. The focus of this work is on private approximation
of the vertex cover problem and two well studied clustering problems –
k-center and k-median. Vertex cover was considered in [Beimel, Carmi,
Nissim, and Weinreb, STOC, 2006] and we improve their infeasibility
results. Clustering algorithms are frequently applied to sensitive data,
and hence are of interest in the contexts of secure computation and pri-
vate approximation. We show that these problems do not admit private
approximations, or even approximation algorithms that leak significant
number of bits. For the vertex cover problem we show a tight infeasibil-
ity result: every algorithm that ρ(n)-approximates vertex-cover must leak
Ω(n/ρ(n)) bits (where n is the number of vertices in the graph). For the
clustering problems we prove that even approximation algorithms with a
poor approximation ratio must leak Ω(n) bits (where n is the number of
points in the instance). For these results we develop new proof techniques,
which are more simple and intuitive than those in Beimel et al., and yet
allow stronger infeasibility results. Our proofs rely on the hardness of
the promise problem where a unique optimal solution exists [Valiant and
Vazirani, Theoretical Computer Science, 1986], on the hardness of ap-
proximating witnesses for NP-hard problems ([Kumar and Sivakumar,
CCC, 1999] and [Feige, Langberg, and Nissim, APPROX, 2000]), and on
a simple random embedding of instances into bigger instances.

1 Introduction

In secure multiparty computation two or more parties wish to perform a compu-
tation over their joint data without leaking any other information. By the general
feasibility results of [22,8,2], this task is well defined and completely solved for
polynomial time computable functions. When what the parties wish to compute
is not a function, or infeasible to compute (or both) one cannot directly apply the
feasibility results, and special care has to be taken in choosing the function that
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is computed securely, as the outcome of the secure computation may leak infor-
mation. We deal with such problems – vertex-cover and clustering that are NP-
complete problems – and check the consequences of choosing to compute private
approximations for these search problems, i.e., approximation algorithms that do
not leak more information than the collection of solutions for the specific instance.

The notion of private approximation was first put forward and researched
in the context of approximating functions [6,10], and was recently extended to
search problems [1]. These works also consider relaxations of private approxima-
tions, which allow for a bounded leakage. The research of private approximations
yielded mixed results: (i) private approximation algorithms or algorithms that
leak very little were presented for well studied problems [6,10,7,15,13,1], but (ii)
it was shown that some natural functions do not admit private approximations,
unless some (small) leakage is allowed [10]; and some search problems do not
even admit approximation algorithms with significant leakage [1]. We continue
the later line of research and prove that vertex-cover and two clustering prob-
lems – k-center and k-median – do not admit private approximation algorithms,
or even approximation algorithms that leak significant number of bits.

1.1 Previous Works

Feigenbaum et al. [6] noted that an approximation to a function may reveal in-
formation on the instance that is not revealed by the exact (or optimal) function
outcome. Hence, they formulated, , via the simulation paradigm, a notion of pri-
vate approximations that prevents exactly this leakage. Their definition implies
that if applied to instances x, y such that f(x) = f(y), the outcome of an ap-
proximation algorithm f̂(x), f̂ (y) are indistinguishable. Under their definition of
private approximations, Feigenbaum et al. provided a protocol for approximat-
ing the Hamming distance of two n-bit strings with communication complexity
Õ(

√
n), and polynomial solutions for approximating the permanent and other

natural #P problems. Subsequent work on private approximations improved the
communication complexity for the Hamming distance to polylog(n) [13]. Other
works on private approximations for specific functions include [15,7].

Attempts to constructs private approximations of the objective functions of
certain NP-complete problems were unsuccessful. This phenomenon was ex-
plained by Halevi, Krauthgamer, Kushilevitz, and Nissim [10] proving strong
inapproximability results for computing the size of a minimum vertex cover even
within approximation ratio n1−ε. They, therefore, presented a relaxation, allow-
ing the leakage of a deterministic predicate of the input. Fortunately, this slight
compromise in privacy allows fairly good approximations for any problem that
admits a good deterministic approximation. For example, minimum vertex cover
may be approximated within a ratio of 4 leaking just one bit of approximation.

Recently, Beimel, Carmi, Nissim, and Weinreb [1] extended the privacy re-
quirement of [6] from functions to search problems, giving a (seemingly) lenient
definition which only allows leaking whatever is implied by the set of all exact
solutions to the problem. A little more formally, if applied to instances x, y that
share exactly the same set of (optimal) solutions, the outcome of the approxima-
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tion algorithm A(x) on x should be indistinguishable from A(y). They showed
that even under this definition it is not feasible to privately approximate the
search problems of vertex-cover and 3SAT. Adopting the relaxation of [10] to
the context of private search, Beimel et al. showed for max exact 3SAT an ap-
proximation algorithm with a near optimal approximation ratio of 7/8 − ε that
leaks only O(log log n) bits. For vertex-cover, the improvement is more modest
– there exists an approximation algorithm within ratio ρ(n) that leaks �(n) bits
where ρ(n) · �(n) = 2n. On the other hand, they proved that an algorithm for
vertex-cover that leaks O(log n) bits cannot achieve nε approximation. We close
this gap up to constant factors. A different relaxation of private approximation
was presented in the context of near neighbor search by Indyk and Woodruff [13],
and we refer to a generalization of this relaxation in Section 4.

1.2 Our Contributions

The main part of this work investigates how the notion of private approxima-
tions and its variants combine with well studied NP-complete search problems
– vertex-cover, k-center, and k-median. We give strong infeasibility results for
these problems that hold with respect to a more lenient privacy definition than
in [1] – that only requires that A(x) is indistinguishable from A(y) on instances
x, y that have the same unique solution. To prove our results, we introduce new
strong techniques for proving the infeasibility of private approximations, even
with many bits of leakage.

Vertex Cover. As noted above, the feasibility of private approximation of vertex-
cover was researched in [1]. Their analysis left an exponential gap between the
infeasibility and feasibility results. We close this gap, and show that, unless RP =
NP, any approximation algorithm that leaks at most �(n) bits of information and
is within approximation ratio ρ(n) satisfies ρ(n)·�(n) = Ω(n). This result is tight
(up to constant factors) by a result described in [1]: for every constant ε > 0,
there is an n1−ε-approximation algorithm for vertex-cover that leaks 2nε bits.

Clustering. Clustering is the problem of partitioning n data points into disjoint
sets in order to minimize a cost objective related to the distances within each
point set. Variants of clustering are the focus of much research in data mining
and machine learning as well as pattern recognition, image analysis, and bioin-
formatics. We consider two variants: (i) k-center, where the cost of a clustering
is taken to be the longest distance of a point from its closest center; and (ii)
k-median, where the cost is taken to be the average distance of points from
their closest centers. Both problems are NP-complete [12,14,18]. Furthermore,
we consider two versions of each problem, the one outputting the indices of the
centers and the second outputting the coordinates of the solutions. For private
algorithms these two versions are not equivalent since different information can
be learned from the output.

We prove that, unless RP = NP, every approximation algorithm for the indices
version of these problems must leak Ω(n) bits even if its approximation ratio as
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poor as 2poly(n). As there is a 2-approximation algorithm that leaks at most n
bits (the incidence vector of the set of centers), our result is tight up to a constant
factor. Similar results are proved in the full version of the paper for the coordinate
version of these problems (using a “perturbable” property of the metric).

Trying to get around the impossibility results, we examine a generalization
of a privacy definition by Indyk and Woodruff [13], originally presented in the
context of near neighbor search. In the modified definition, the approximation
algorithm is allowed to leak the set of η-approximated solutions to an instance
for a given η. We consider the coordinate version of k-center, and show that
there exists a private 2-approximation under this definition for every η ≥ 2, and
there is no approximation algorithm under this definition when η < 2.

New Techniques. The basic idea of our infeasibility proofs is to assume that
there exists an efficient private approximation algorithm A for some NP-complete
problem, and use this algorithm to efficiently find an optimal solution of the prob-
lem contradicting the NP-hardness of the problem. Specifically, in our proofs we
take an instance x of the NP-complete problem, transform it to a new instance
x′, execute y′ ← A(x′) once getting an approximate solution for x′, and then
efficiently reconstruct from y′ an optimal solution for x. Thus, we construct a
Karp-reduction from the original NP-complete problem to the private approxi-
mation version of the problem. This should be compared to the reduction in [1]
which used many calls to A, where the inputs to A are chosen adaptively, ac-
cording to the previous answers of A.

Our techniques differ significantly from those of [1], and are very intuitive
and rather simple. The main difference is that we deal with the promise versions
of vertex cover and clustering, where a unique optimal solution exists. These
problems are also NP-hard under randomized reductions [21]. Analyzing how a
private approximation algorithms operate on instances of the promise problem,
we clearly identify a source for hardness in an attempt to create such an algo-
rithm – it, essentially, has to output the optimal solution. Furthermore, proving
the infeasibility result for instances of the unique problems shows that hardness
of private approximation stems from instances we are trying to approximate a
“function” – given an instance the function returns its unique optimal solution.
Thus, our impossibility results are for inputs with unique solutions where the
privacy requirement is even more minimal than the definition of [1].

To get our strongest impossibility results, we use the results of Kumar and
Sivakumar [16] and Feige, Langberg, and Nissim [5] that, for many NP-complete
problems, it is NP-hard to approximate the witnesses (that is, viewing a witness
and an approximation as sets, we require that their symmetric difference is
small). These results embed a redundant encoding of the optimal solution, so
that seeing a “noisy” version of the optimal solution allows recovering it. In
our infeasibility proofs, we assume that there exists an approximation algorithm
A for some unique problem, and use this algorithm to find a solution close to
the optimal solution. Thus, the NP-hardness results of [16,5] imply that such
efficient algorithm A cannot exist.
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Our last technique is a simple random embedding of an instance into a bigger
instance. Let us demonstrate this idea for the unique-vertex-cover problem. In
this case, we take a graph, add polynomially many isolated vertices, and then
randomly permute the names of the vertices. We assume that there exists a
private approximation algorithm A for vertex-cover and we execute A on the
bigger instance. We show that, with high probability, the only vertices from
the original graph that appear in the output of A are the vertices of the unique
vertex cover of the original graph. The intuition behind this phenomenon is that,
by the privacy requirement, A has to give the same answer for many instances
generated by different random permutations of the names, hence, if a vertex is in
the answer of A, then with high probability it corresponds to an isolated vertex.

Organization. Section 2 contains the main definitions used in this paper and
essential background. Section 3 includes our impossibility result for almost pri-
vate algorithms for the index version of k-center, based on the hardness of
unique-k-center. Section 4 discusses an alternative definition of private approx-
imation of the coordinate version of k-center, and contains possibility and im-
possibility results for this definition. Section 5 describes our impossibility result
for almost private algorithms for vertex-cover. Finally, Section 6 discusses some
questions arising from our work.

2 Preliminaries

In this section we give definitions and background needed for this paper. We start
with the definitions of private search algorithms from [1]. Thereafter, we discuss
the problems we focus on: the clustering problems – k-center and k-median –
and vertex cover. We then define a simple property of the underlying metrics
that will allow us to present our results in a metric independent manner. Finally,
we discuss two tools we use to prove infeasibility results: (1) hardness of unique
problems and parsimonious reductions, and (2) error correcting reductions.

2.1 Private Approximation of Search Problems

Beimel et al. [1] define the privacy of search algorithms with respect to some un-
derlying privacy structure R ⊆ {0, 1}∗×{0, 1}∗ that is an equivalence relation on
instances. The notation x ≡R y denotes 〈x, y〉 ∈ R. The equivalence relation de-
termines which instances should not be told apart by a private search algorithm A:

Definition 1 (Private Search Algorithm [1]). Let R be a privacy structure.
A probabilistic polynomial time algorithm A is private with respect to R if for
every polynomial-time algorithm D and for every positive polynomial p(·), there
exists some n0 ∈ N such that for every x, y ∈ {0, 1}∗ such that x ≡R y and
|x| = |y| ≥ n0

∣∣∣ Pr[D(A(x), x, y) = 1] − Pr[D(A(y), x, y) = 1]
∣∣∣ ≤ 1

p(|x|) ,

where the probabilities are taken over the random choices of A and D.
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For every search problem, a related privacy structure is defined in [1], where two
inputs are equivalent if they have the same set of optimal solutions. In Section 2.2
we give the specific definitions for the problems we consider.

We will also use the relaxed version of Definition 1 that allows a (bounded)
leakage. An equivalence relation R′ is said to �-refine an equivalence relation R
if R′ ⊆ R and every equivalence class of R is a union of at most 2� equivalence
classes of R′.

Definition 2 ([1]). Let R be a privacy structure. A probabilistic polynomial
time algorithm A leaks at most � bits with respect to R if there exists a privacy
structure R′ such that (i) R′ is a �-refinement of R, and (ii) A is private with
respect to R′.

2.2 k-Center and k-Median Clustering

The k-center and k-median clustering problems are well researched problems,
both known to be NP-complete [12,14,18]. In both problems, the input is a
collection P of points in some metric space and a parameter c. The output is a
collection of c of the points in P – the cluster centers – specified by their indices
or by their coordinates. The partition into clusters follows by assigning each
point to its closest center (breaking ties arbitrarily). The difference between
k-center and k-median is in the cost function: in k-center the cost is taken
to be the maximum distance of a point in P from its nearest center; in k-
median it is taken to be the average distance of points from their closest centers.
For private algorithms, the choice of outputting indices or coordinates may be
significant (different information can be learned from each), and hence we define
two versions of each problem.

Definition 3 (k-center – outputting indices (k-center-I)). Given a set P =
{p1, . . . , pn} of n points in a metric space and a parameter c, return the indices
of c cluster centers I = {i1, . . . , ic} that minimize the maximum cluster radius.

Definition 4 (k-center – outputting coordinates (k-center-C)). Given a
set P = {p1, p2, . . . , pn} of n points in a metric space and a parameter c, re-
turn the coordinates of c cluster centers C = {pi1 , . . . , pic} that minimize the
maximum cluster radius (C ⊆ P ).1

The k-median-I and k-median-C problems are defined analogously.

Theorem 1 ([12,14,18]). In a general metric space, k-center (k-median) is
NP-hard. Furthermore, the problem of finding a (2−ε)-approximation of k-center
in a general metric space is NP-hard for every ε > 0.

Proof (sketch): The reduction is from dominating set. Given a graph G =
(V, E), transform each vertex v ∈ V to a point p ∈ P . For every two points
1 We do not consider versions of the problem where the centers do not need to be

points in P .
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p1, p2 ∈ P let dist(p1, p2) = 1 if (v1, v2) ∈ E, otherwise dist(p1, p2) = 2. As the
distances are 1 and 2, they satisfy the triangle inequality. There is a dominating
set of size c in G iff there is a k-center clustering of size c and cost 1 (k-median
clustering of cost n−c

n ) in P . Furthermore, every solution to k-center with cost
less than 2 in the constructed instance has cost 1, which implies the hardness of
(2 − ε)-approximation for k-center.

There is a greedy 2-approximation algorithm for k-center [9,11]: select a first
center arbitrarily, and iteratively selects the other c − 1 points each time maxi-
mizing the distance to the previously selected centers. We will make use of the
above reduction, as well as the 2-approximation algorithm for this problem, in
the sequel.

We next define the privacy structures related to k-center. Only instances
(P1, c1), (P2, c2) were |P1| = |P2| and c1 = c2 are equivalent, provided they
satisfy the following conditions:

Definition 5. Let P1, P2 be sets of n points and c < n a parameter determining
the number of cluster centers.

– Instances (P1, c) and (P2, c) are equivalent under the relation Rk-center-I if
for every set I = {i1, . . . , ic} of c point indices, I minimizes the maximum
cluster radius for (P1, c) iff it minimizes the maximum cluster radius for
(P2, c).

– Instances (P1, c) and (P2, c) are equivalent under the relation Rk-center-C if
(i) for every set C ⊆ P1 of c points, if C minimizes the maximum cluster
radius for (P1, c) then C ⊆ P2 and it minimizes the maximum cluster radius
for (P2, c); and similarly (ii) for every set C ⊆ P2 of c points, if C minimizes
the maximum cluster radius for (P2, c) then C ⊆ P1 and it minimizes the
maximum cluster radius for (P1, c)

Definition 6 (Private Approximation of k-center). A randomized algo-
rithm A is a private ρ(n)-approximation algorithm for k-center-I (respectively
k-center-C) if: (i) the algorithm A is a ρ(n)-approximation algorithm for
k-center, that is, for every instance (P, c) with n points, it returns a solution
– a set of c points – such that the expected cluster radius of the solution is at
most ρ(n) times the radius of the optimal solution of (P, c). (ii) A is private with
respect to Rk-center-I (respectively k-center-C).

The definitions for vertex-cover are analogous and can be found in [1].

2.3 Distance Metric Spaces

In the infeasibility results for clustering problems we use a simple property of the
metric spaces, which we state below. This allows us to keep the results general
and metric independent. One should be aware that clustering problems may
have varying degrees of difficulty depending on the underlying metric used. Our
impossibility results will show that unique-k-center and unique-k-median may
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be exactly solved in randomized polynomial time if private algorithms for these
problems exist. When using metric spaces for which the problems are NP-hard,
this implies RP = NP.

The property states that given a collection of points, it is possible to add to
it new points that are “far away”:

Definition 7 (Expandable Metric). Let M be a family of metric spaces.
A family of metric spaces M is (ρ, m)-expandable if there exists an algorithm
Expand that given a metric M =

〈
P, dist

〉
∈ M, where P = {p1, . . . , pn}, runs

in time polynomial in n, m, and the description of M , and outputs a metric
M ′ =

〈
P ′, dist′

〉
∈ M, where P ′ = {p1, . . . , pn, pn+1, . . . , pn+m}, such that

– dist′(pi, pj) = dist(pi, pj) for every i, j ∈ [n], and
– dist′(pi, pj) ≥ ρd for all n < i ≤ n + m and 1 ≤ j < i, where d =

maxi,j∈[n](dist(pi, pj)) is the maximum distance within the original n points.

General Metric Spaces. Given a connected undirected graph G = (V, E) where
every edge e ∈ E has a positive length w(e), define the metric induced by G
whose points are the vertices and distG(u, v) is the length of the shortest path
in G between u and v. The family M of general metric spaces is the family of
all metric spaces induced by graphs. This family is expandable: Given a graph
G, we construct a new graph G′ by adding to G a path of m new vertices
connected to an arbitrary vertex, where the length of every new edge is ρ(n) · d.
The metric induced by G′ is the desired expansion of the metric induced by G.
The expansion algorithm is polynomial when ρ(n) is bounded by 2poly(n).

Observation 1. Let ρ(n) = 2poly(n). The family of general metric spaces is
(ρ(n), m)-expandable for every m.

Similarly, the family of metric spaces induced by a finite set of points in the
plain with Euclidean distance is expandable.

2.4 Parsimonious Reductions and Unique Problems

Parsimonious reductions are reductions that preserve the number of solutions. It
was observed that among the well known NP-complete problems, such reductions
can be found [3,19,20]. Indeed, one can easily show that such reductions also exist
for our problems:

Lemma 1. SAT and 3-SAT are parsimoniously reducible to the vertex-cover,
k-center, and k-median problems (the general metric version).

The existence of such parsimonious reductions allows us to base our negative
results on a promise version of the problems – where only a unique optimal
solution exists. We use the results of Valiant and Vazirani [21] that the promise
version unique-SAT is NP-hard under randomized reductions. Therefore, if there
exists a parsimonious reduction from SAT to an NP-complete (search) problem
S, then its promise version unique-S is NP-hard under randomized reductions.
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Corollary 1. Vertex-cover, unique-k-center, and unique-k-median (general
metric version) are NP-hard under randomized reductions.

2.5 Error Correcting Reductions

An important tool in our proofs are error correcting reductions – reductions
that encode, in a redundant manner, the witness for one NP-complete prob-
lem inside the witness for another. Such reductions were shown by Kumar and
Sivakumar [16] and Feige, Langberg, and Nissim [5] – proving that for certain
NP-complete problems it is hard to approximate witnesses (that is, when viewed
as sets, the symmetric difference between the approximation and a witness is
small). For example, such result is proved in [5] for vertex-cover. We observe
that the proof in [5] applies to unique-vertex-cover and we present a similar re-
sult for unique-k-center and unique-k-median. We start by describing the result
of [5] for unique-vertex-cover.

Definition 8 (Close to a minimum vertex cover). A set S is δ-close to a
minimum vertex cover of G if there exists a minimum vertex cover C of G such
that |S�C| ≤ (1 − δ)n.

Theorem 2 ([21,5]). If RP �= NP, then for every constant δ > 1/2 there is
no efficient algorithm that, on input a graph G and an integer t where G has
a unique vertex cover of size t, returns a set S that is δ-close to the minimum
vertex cover of G.

We next describe the result for unique-k-center.

Definition 9 (Close to an optimal solution of unique-k-center). A set S
is δ-close an optimal solution of an instance (P, c) of unique-k-center if there
exists an optimal solution I of (P, c) such that |S�I| ≤ (1 − δ)n.

Theorem 3. If RP �= NP, then, for every constant δ > 2/3, there is no ef-
ficient algorithm that for every instance (P, c) of unique-k-center finds a set
δ-close to the optimal solution of (P, c). The same result holds for instances of
unique-k-median.

The proof technique of Theorem 3 is similar to the proofs in [5]. The proof is
described in the full version of this paper.

3 Infeasibility of Almost Private Approximation of
Clustering

In this section, we prove that if RP �= NP, then every approximation algo-
rithm for the clustering problems is not private (and, in fact, must leak Ω(n)
bits). We will give a complete treatment for k-center-I (assuming the underly-
ing metric is expandable according to Definition 7). The modifications needed for
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k-median-I are small. The proof for k-center-C and k-median-C are different and
use a “perturbable” property of the metric. The proofs for the 3 latter problems
appear in the full version of this paper. We will start our proof for k-center-I by
describing the infeasibility result for private algorithms, and then we consider
deterministic almost private algorithms. The infeasibility result for randomized
almost private algorithms appears in the full version of this paper.

3.1 Infeasibility of Private Approximation of Clustering Problems

In this section, we demonstrate that the existence of a private approximation
algorithm for k-center-I implies that unique-k-center is in RP. Using the hardness
of the promise version unique-k-center, we get our infeasibility result.

We will now show that any private ρ(n)-approximation algorithm must es-
sentially return all the points in the unique solution of an instance. We use the
fact that the underlying metric is (2n ·ρ(n+1), 1)-expandable. Given an instance
(P, c) = ({p1, . . . , pn}, c) for k-center-I we use Algorithm Expand with param-
eters (2n · ρ(n + 1), 1) to create an instance (P ′, c + 1) by adding the point p∞

returned by Expand, i.e. pn+1 = p∞ and dist′(pi, p
∞) ≥ ρ(n + 1) · d. Any op-

timal solution I ′ for (P ′, c + 1) includes the new point p∞ (if p∞ �∈ I ′ then this
solution’s cost is at least 2n · ρ(n + 1) · d whereas if p∞ ∈ I ′ the cost is at most
d). Hence, the unique optimal solution I ′ consists of the optimal solution I for
(P, c) plus the index n + 1 of the point p∞.

Lemma 2. Let A be a private ρ(n)-approximation algorithm for k-center-I, let
(P, c) be an instance of k-center-I and construct (P ′, c + 1) as above. Then

Pr[A(P ′, c + 1) returns the indices of all critical points of (P, c)] ≥ 1/3 .

The probability is taken over the random coins of algorithm A.

Proof. Let pi1 , . . . , pic be the points of the unique optimal solution of (P, c)
(hence pi1 , . . . , pic , pn+1 are the points of the unique optimal solution of (P ′, c +
1)). Consider an instance (P ′′, c + 1) where P ′′ is identical to P ′, except for the
points pi1 and p∞ whose indices (ii and n + 1) are swapped.2 As both pi1 and
p∞ are the optimal solution in P ′, swapping them does not change the optimal
solution, and hence (P ′′, c + 1) ≡Rk-center-I (P ′, c + 1).

Let Ĩ ′ and Ĩ ′′ denote the random variables A(P ′, c + 1) and A(P ′′, c + 1)
respectively. Note that the optimal cost of (P ′′, c+1) is bounded by d. Whereas
if i1 �∈ Ĩ ′′ we get a clustering cost of 2n·ρ(n+1)·d. Hence, if Pr[i1 �∈ Ĩ ′′] > 1/(2n)
algorithm A cannot maintain an approximation ratio of ρ(n + 1). This implies
that Pr[i1 �∈ Ĩ ′] < 2/(3n), otherwise, it is easy to construct a polynomial time
procedure that would distinguish (Ĩ ′, P ′, P ′′) from (Ĩ ′′, P ′, P ′′) with advantage
Ω(1/n). A similar argument holds for indices i2, . . . , ic.

To conclude the proof, we use the union bound and get that Pr[{i1, . . . , im} ⊂
Ĩ ′] ≥ 1 − 2c/3n ≥ 1/3. ��
2 Note that while P ′ can be efficiently constructed from P , the construction of P ′′ is

only a thought experiment.



Private Approximation of Clustering and Vertex Cover 393

We now get our infeasibility result:

Theorem 4. Let ρ(n) ≤ 2poly(n). The k-center-I problem does not admit a poly-
nomial time private ρ(n)-approximation unless unique-k-center can be solved in
probabilistic polynomial time.

Proof. Let A be a polynomial time private ρ(n)-approximation for k-center-I.
Let (P, c) = ({p1, . . . , pn}, c) be an instance of unique-k-center and let I be the
indices of the centers in its unique solution. Construct the instance (P ′, c+1) as
above by adding the point pn+1 = p∞. As ρ(n) ≤ 2poly(n), constructing P ′ using
Algorithm Expand is efficient. By Lemma 2, A(P ′) includes every index in I
with probability at least 1/3. With high probability, A(P ′, c+1) contains exactly
c points from P , and the set A(P ′) \ {n + 1} is the unique optimal solution for
(P, c). ��

Combining Theorem 4 with Corollary 1 we get:

Corollary 2. Let ρ(n) ≤ 2poly(n). The k-center-I problem (general metric ver-
sion) cannot be privately ρ(n)-approximated in polynomial time unless RP �= NP.

3.2 Infeasibility of Deterministic Approximation of Clustering
Problems That Leaks Many Bits

In this section we prove that even if RP �= NP, then for every ρ(n) ≤ 2poly(n)

there is no efficient deterministic ρ(n)-approximation algorithm of k-center-I
that leaks 0.015n bits (as in Definition 2).3 As in the previous section, we as-
sume the underlying distance metric is expandable. To prove the infeasibility
of almost private approximation of k-center-I, we assume towards contradiction
that there exists an efficient deterministic ρ(n)-approximation algorithm A that
leaks 0.015n bits. We use this algorithm to find a set close to the solution of a
unique-k-center instance.

In the proof of the infeasibility result for private algorithms, described in Sec-
tion 3.1, we started with an instance P of unique-k-center and generated a new
instance P ′ by adding to P a “far” point. We considered an instance P ′′ that is
equivalent to P ′ and argued that, since the instances are equivalent, a determin-
istic private algorithm must return the same output on the two instances. For
almost private algorithms, we cannot use the same proof. Although the instances
P ′ and P ′′ are equivalent, even an algorithm that leaks one bit can give different
answers on P ′ and P ′′.

The first idea to overcome this problem is to add linearly many new “far”
points (using Algorithm Expand). Thus, any deterministic approximation algo-
rithm must return all “far” points and a subset of the original points. However,
there is no guarantee that this subset is the optimal solution to the original in-
stance. The second idea is using a random renaming of the indices of the instance.
We will prove that with high probability (over the random choice of the renam-
ing), the output of the almost private algorithm is close to the optimal solution
3 Throughout this paper, constants are shamelessly not optimized.
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of unique-k-center. This contradicts the NP-hardness, described in Section 2.5,
of finding a set close to the exact solution for unique-k-center instances.

We next formally define the construction of adding “far” points and permuting
the names. Given an instance (P, c) of unique-k-center with distance function
dist, we use Algorithm Expand with parameters (2 · ρ(10n), 9n) to create an
instance (P ′, 9n + c) with distance function dist′ by adding 9n “far” points. Let
N

def= 10n be the number of points in P ′ and c′
def= c + 9n. We next choose a

permutation π : [N ] → [N ] to create a new instance (Pπ, 9n + c) with distance
function distπ, where distπ(pπ(i), pπ(j))

def= dist′(pi, pj).
We start with some notation. Let I be the the set of indices of the points in the

unique optimal solution for (P, c) and S
def= [n] \ I (that is, S is the set of indices

of the points in the original instance P not in the optimal solution). Note that
|I| = c and |S| = n − c. For any set A ⊆ [N ], we denote π(A) def= {π(i) : i ∈ A}.
The construction of Pπ and the sets S and I are illustrated in Fig. 1.

It is easy to see that an optimal solution Iπ for (Pπ , c′) includes the 9n “far”
points, that is, {pπ(i) : n + 1 ≤ i ≤ 10n} (if not, then this solution’s cost is
at least 2 · ρ(N) · d whereas if {π(n + 1), . . . , π(10n)} ⊂ Iπ the cost is at most
d). Thus, Iπ contains exactly c points from {pπ(i) : 1 ≤ i ≤ n} which must be
π(I). That is, the unique optimal solution Iπ of (Pπ, c′) consists of the indices
in [N ] \ π(S).

Observation 2. Let π1, π2 be two permutations such that π1(S) = π2(S). Then,
(Pπ1 , c

′) ≡Rk-center-I (Pπ2 , c
′).

In Fig. 2 we describe Algorithm Close to Unique k-Center that finds a set
close to the unique minimum solution of an instance of unique-k-center assuming
the existence of a deterministic ρ(N)-approximation algorithm A for k-center-I
that leaks 0.015N -bits. Notice that in this algorithm we execute the approxi-
mation algorithm A on (Pπ , c′) – an instance with N = 10n points – hence the
approximation ratio of A (and its leakage) is a function of N .

We next prove that, with high probability, Algorithm Close to Unique k-

Center returns a set that is close to the optimal solution. In the analysis, we
partition the set of permutations π : [N ] → [N ] to disjoint subsets. We prove
that in every subset, with high probability, Algorithm Close to Unique k-

Center returns a set that is close to the optimal solution, provided that it
chose a permutation in the subset. Specifically, for every D ⊂ [N ], we consider
the subset of the permutations π such that π(S) = D.

In the rest of the proof we fix an instance (P, c) with a unique optimal solution
I and define S

def= [n] \ I. Furthermore, we fix a set D ⊂ [N ] such that |D| = |S|
and consider only permutations such that π(S) = D. (The algorithm does not to
need know S and D; these sets are used for the analysis.) We prove in Lemma 4
that with high probability [N ]\A(Pπ, c′) is close to D, and we show in Lemma 3
that in this case Algorithm Close to Unique k-Center succeeds.
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The points Pπ
The points P

I

π(I)[n]

D = π(S)

S

Fig. 1. The construction of Pπ

Algorithm Close to Unique k-Center:
Input: An instance (P = {p1, . . . , pn}, c) and an integer t.
Promise: (P, c) has a unique set of c cluster centers with maximum cluster radius
at most t.
Output: A set 0.7-close to the unique set of c cluster centers with maximum cluster
radius at most t.

1. Use algorithm Expand with parameters (2 ·ρ(10n), 9n) to create a set of points
P ′ = {p1, . . . , pn, pn+1, . . . , p10n}.

2. Choose a permutation π : [N ] → [N ] uniformly at random and construct Pπ.
3. Let B ← A(Pπ, c + 9n) and B−1 ← {i ∈ [n] : π(i) ∈ B}.
4. Return B−1.

Fig. 2. An algorithm that finds a set 0.7-close to the unique minimum solution of
an instance of unique-k-center assuming that A is an almost private approximation
algorithm for k-center-I

Lemma 3. Let B be a set such that |B∩D| ≤ 0.15n and π is a permutation such
that A(Pπ , c′) = B. Then, Algorithm Close to Unique k-Center returns a
set 0.7-close to I when it chooses the permutation π in Step (2).

Proof. When choosing π, Algorithm Close to Unique k-Center returns the
set

B−1 = {i ∈ [n] : π(i) ∈ B} = {i ∈ I : π(i) ∈ B} ∪ {i ∈ S : π(i) ∈ B}
= {i ∈ I : π(i) ∈ B} ∪ {i : π(i) ∈ B ∩ D}.

Thus, |B−1 \I| = |B∩D| ≤ 0.15n. As |B−1| = |I|, we get |I \B−1| = |B−1 \I| ≤
0.15n. Therefore, |B−1 � I| ≤ 0.3n, and B−1 is 0.7-close to I. ��

Lemma 4. Let pr def= Pr[ |A(Pπ , c′)∩D| ≤ 0.15n ], where the probability is taken
over the uniform choice of π subject to π(S) = D. Then, pr ≥ 3/4.

Proof. We prove that if pr < 3/4, there is a permutation π such that A does
not ρ(N)-approximate k-center-I on (Pπ , c′), in a contradiction to the definition
of A.
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In this proof, we say that a set B is “bad” if |B ∩ D| > 0.15n. The number of
permutations such that π(S) = D is (|S|)!(N − |S|)! = (n − c)!(9n + c)!. As we
assumed that pr < 3/4, the number of permutations π such that π(S) = D and
A(Pπ , c′) is “bad” is at least

0.25(n − c)!(9n + c)! ≥ (n − c)!
√

n
( 9n+c

e

)9n+c
. (1)

We will prove that, by the properties of A, the number of such permutations is
much smaller achieving a contradiction to our assumption that pr < 3/4.

We first upper bound, for a given “bad” set B, the number of permutations
π such that π(S) = D and A(Pπ , c′) = B. Notice that the output of the deter-
ministic algorithm A(Pπ , c′) must contain all points in {pπ(i) : n+1 ≤ i ≤ 10n}
(otherwise the radius of the approximated solution is at least 2 · ρ(N) · d, com-
pared to at most d when taking all points in {pπ(i) : n + 1 ≤ i ≤ 10n}
and additional c points). Thus, if a permutation π satisfies π(S) = D and
A(Pπ , c′) = B, then [N ] \ B ⊂ D ∪ π(I), which implies [N ] \ (B ∪ D) ⊂ π(I).
Letting b

def= |B ∩ D| ≥ 0.15n,

| [N ] \ (B ∪ D) | = N − |B| − |D| + |B ∩ D| = 10n − (9n + c) − (n − c) + b = b.

Every permutation π satisfying π(S) = D and A(Pπ , c′) = B has a fixed set of
size b contained in π(I), thus, the number of such permutations is at most

(|S|)!
(

|I|
b

)
b!(N − |S| − b)! = (n − c)!

(
c

b

)
b!(9n + c − b)!.

Taking b = 0.15n can only increase this expression (as we require that a smaller
set is contained in π(I)). Thus, noting that c ≤ n, the number of permutations
such that π(S) = D and A(Pπ , c′) = B is at most (n− c)!

(
n

0.15n

)
(0.15n)!(8.85n+

c)!. First,
(

n
0.15n

)
≤ 2H(0.15)n ≤ (16)0.15n, where H(0.15) ≤ 0.61 is the Shannon

entropy. Thus, using Stirling approximation, the number of such permutations
is at most

O
(√

n(0.3)0.15n
)

·
(

(n − c)!
√

n

(
9n + c

e

)9n+c
)

. (2)

By Obseration 2, all instances (Pπ , c′) for permutations π such that π(S) = D
are equivalent according to Rk-center-I. Thus, since A leaks at most 0.015N bits,
there are at most 20.015N possible answers of A on these instances, in particular,
there are at most 20.015N = 20.15n “bad” answers. Thus, by (2), the number of
permutations such that π(S) = D and A(Pπ , c′) is a “bad” set is at most

O
(
20.15n

√
n(0.3)0.15n

)
·
(

(n − c)!
√

n

(
9n + c

e

)9n+c
)

(3)

As the number of permutations in (3) is smaller than the number of permutations
in (1), we conclude that pr ≥ 3/4. ��
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Combining Lemma 3 and Lemma 4, if A is a ρ(N)-approximation algorithm for
k-center-I that leaks 0.015N bits, then Algorithm Close to Unique k-Center

returns a set that is 0.7-close to the optimal solution with probability at least
3/4, and by Theorem 3, this is impossible unless RP = NP.

In the full version of the paper we show that Algorithm Close to Unique

k-Center finds a set close to the optimal solution even when A is randomize.

Theorem 5. Let ρ(n) ≤ 2poly(n). If RP �= NP, every efficient
ρ(n)-approximation algorithm for k-center-I (in the general metric version) must
leak Ω(n) bits.

4 Privacy of Clustering with Respect to the Definition
of [13]

Trying to get around the impossibility results, we examine a generalization of
a definition by Indyk and Woodruff [13], originally presented in the context of
near neighbor search. In the modified definition, the approximation algorithm is
allowed to leak the set of approximated solutions to an instance. More formally,
we use Definition 1, and set the equivalence relation Rη to include η-approximate
solutions as well:

Definition 10. Let L be a minimization problem with cost function cost. A
solution w is an η-approximation for x if costx(w) ≤ η · minw′(costx(w′)). Let
appx(x) def= {w : w is an η-approximation for x}. Define the equivalence relation
Rη

L as follows: x ≡Rη
L

y iff appx(x) = appx(y).

Note that Definition 10 results in a range of equivalence relations, parameterized
by η. When η = 1 we get the same equivalence relation as before.

We consider the coordinate version of k-center. In the full version of this
paper we show a threshold at η = 2 for k-center-C: (1) When η ≥ 2, every
approximation algorithm is private with respect to Rη

k-center-C. (2) For η < 2 the
problem is as hard as when η = 1.

5 Infeasibility of Approximation of Vertex Cover That
Leaks Information

In [1], it was proven that if RP �= NP, then for every constant ε > 0, every algo-
rithm that n1−ε approximates vertex cover must leak Ω(log n) bits. In this paper
we strengthen this result showing that if RP �= NP, then every algorithm that
n1−ε-approximates vertex cover must leak Ω(nε) bits. We note that this results
is nearly tight: In [1], an algorithms that n1−ε-approximates vertex cover and
leaks 2nε bits is described. We will describe the infeasibility result in stages. We
will start by describing a new proof of the infeasibility of deterministic private
approximation of vertex cover, then we will describe the infeasibility of deter-
ministic n1−ε-approximation of vertex cover that leaks at most αnε bits (where
α < 1 is a specific constant). In the full version of the paper we show the same
infeasibility result for randomized algorithms.
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5.1 Infeasibility of Deterministic Private Approximation of Vertex
Cover

We assume the existence of a deterministic private approximation algorithm for
vertex-cover and show that such algorithm implies that RP = NP. The idea of
the proof is to start with an instance G of unique-vertex-cover and construct a
new graph Gπ. First, polynomially many isolated vertices are added to the graph.
This means that any approximation algorithm must return a small fraction of the
vertices of the graph. Next, the names of the vertices in the graph are randomly
permuted. The resulting graph is Gπ . Consider two permutations that agree
on the mapping of the vertices of the unique-vertex-cover. The two resulting
graphs are equivalent and the private algorithm must return the same answer
when executed on the two graphs. However, with high probability on the choice
of the renaming of the vertices, this answer will contain the (renamed) vertices
that consisted the minimum vertex cover in G, some isolated vertices, and no
other non-isolated vertices. Thus, given the answer of the private algorithm, we
take the non-isolated vertices and these vertices are the unique minimum vertex
cover. As unique-vertex-cover is NP-hard [21], we conclude that no deterministic
private approximation algorithm for vertex exists (unless RP = NP).

The structure of this proof is similar to the proof of infeasibility of k-center-I,
presented in Section 3.2. There are two main differences implied by the charac-
teristics of the problems. First, the size of the set returned by an approximation
algorithm for vertex-cover is bigger than the size of the minimum vertex cover
as opposed to k-center where the approximation algorithm always returns a set
of c centers (whose objective function can be sub-optimal). This results in some-
what different combinatorial arguments used in the proof. Second, it turns out
that the roll of the vertices in the unique vertex cover of the graph is similar to
the roll of the points not in the optimal solution of k-center. For example, we
construct a new graph by adding isolated vertices which are not in the minimum
vertex cover of the new graph.

We next formally define the construction of adding vertices and permuting
the names. Given a graph G = (V, E), where |V | = n, an integer N > n, and
an injection π : V → [N ] (that is, π(u) �= π(v) for every u �= v), we construct
a graph Gπ = ([N ], Eπ), where Eπ = {(π(u), π(v)) : (u, v) ∈ E}. That is, the
graph Gπ is constructed by adding N − n isolated vertices to G and choosing
random names for the original n vertices. Throughout this section, the number of
vertices in G is denoted by n, and the number of vertices in Gπ is denoted by N .
We execute the approximation algorithm on Gπ, hence its approximation ratio
and its leakage are functions of N . Notice that if G has a unique vertex cover
C, then Gπ has a unique vertex cover π(C) def= {π(u) : u ∈ C}. In particular,

Observation 3. Let G be a graph with a unique minimum vertex cover C, where
k

def= |C|, and π1, π2 : V → [N ] be two injections such that π1(C) = π2(C). Then,
(Gπ1 , k) ≡RVC (Gπ2 , k).
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In Fig. 3, we describe an algorithm that uses this observation to find the unique
minimum vertex cover assuming the existence of a private approximation algo-
rithm for vertex cover. In the next lemma, we prove that Algorithm Vertex

Cover solves the unique-vertex-cover problem.

Algorithm Vertex Cover:

Input: A Graph G = (V, E) and an integer t.
Promise: G has a unique vertex cover of size t.
Output: The unique vertex cover of G of size t.

1. Let N ← (4n)2/ε.
2. Choose an injection π : V → [N ] uniformly at random and construct the graph

Gπ.
3. Let B ← A(Gπ) and B−1 ← {u ∈ V : π(u) ∈ B}.
4. Return B−1.

Fig. 3. An algorithm that finds the unique minimum vertex cover

Lemma 5. Let ε > 0 be a constant. If A is a deterministic N1−ε-private ap-
proximation algorithm for vertex cover and G has a unique vertex cover of size t,
then, with probability at least 3/4, Algorithm Vertex Cover returns the unique
vertex cover of G of size t.

Proof. First, observe that B−1 is a vertex cover of G: For every (u, v) ∈ E the
edge (π(u), π(v)) is in Eπ, thus at least one of π(u), π(v) is in B and at least
one of u, v is in B−1. Notice that if π(v) /∈ A(Gπ) for every v ∈ V \ C, then
Algorithm Vertex Cover returns the vertex cover C. We will show that the
probability of this event is at least 3/4.

We say that an injection π : V → [N ] avoids a set B if π(v) /∈ B for every v ∈
V \ C. See Fig. 4. By Obseration 3, the output B of the deterministic algorithm
A depends only on π(C). Thus, it suffices to show that for every possible value
of D, the probability that a random injection π such that π(C) = D avoids
B = A(Gπ) is at least 3/4. As Gπ has a cover of size at most n, and A is an
N1−ε-approximation algorithm, |B| ≤ nN1−ε. Thus, since N = (4n)2/ε,

Pr[π avoids B|π(C) = D] ≥
|V |−|C|∏

i=1

(
1 − |B|

N − n

)
≥

(
1 − nN1−ε

N/2

)n

=
(

1 − 2n

N ε

)n

=
(

1 − 1
8n

)n

>
3
4
.

To conclude, the probability that the random π avoids A(Gπ) is at least 3/4.
In this case B−1 = C (as B−1 is a vertex cover of G that does not contain any
vertices in V \ C) and the algorithm succeeds. ��
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D

V N

C

V \ C

An injection π that does not avoid B

B

V N

BC

V \ C

An injection π that avoids B

B

D

Fig. 4. Injections that avoid and do not avoid the output of A

Infeasibility of leaking O(log n) bits. Now, assume that Algorithm A is a deter-
ministic N1−ε-approximation algorithm that leaks at most (ε log N)/2 bits. In
this case, for every equivalence class of ≡RVC , there are at most 2(ε log N)/2) =
N ε/2 possible answers. In particular, for every possible value of D, there are at
most N ε/2 answers for all graphs Gπ such that the injection π satisfies π(C) = D.
If the injection π avoids the union of these answers, then Algorithm Vertex

Cover succeeds for a graph G that has a unique vertex cover of size t. The size
of the union of the answers is at most N ε/2 · nN1−ε = nN1−ε/2, and if we take
N = (4n)4/ε in Algorithm Vertex Cover, then with probability at least 3/4
the algorithm succeeds for a graph G that has a unique vertex cover of size t.
However, we want to go beyond this leakage.

5.2 Infeasibility of Approximation of Vertex Cover That Leaks
Many Bits

Our goal is to prove that there exists a constant α such that for every constant
ε > 0, if RP �= NP, then there is no efficient algorithm that N1−ε-approximates
the vertex cover problem while leaking at most αN1−ε bits. This is done by
using the results of [16,5] that shows that it is NP-hard to produce a set that is
close to a minimal vertex cover as defined in Section 2.5. Using this result, we
only need that B−1 is close to the minimum vertex cover. We show that, even if
A leaks many bits, for a random injection, the set B−1 is close to the minimum
vertex cover.

In Fig. 5, we describe Algorithm Close to Unique k-Center that finds a set
close to the unique vertex cover of G assuming the existence of a deterministic
N1−ε-approximation algorithm for vertex cover that leaks αN ε bits. (In the
full version of the paper we show how to generalize the analysis to deal with
a randomized N1−ε-approximation algorithm.) To prove the correctness of the
algorithm we need the following definition and lemma.

Definition 11. Let C ⊂ V be the unique minimum vertex cover of a graph G,
and π : V → [N ] be an injection. We say that π δ-avoids a set B if |{v ∈ V \C :
π(v) ∈ B}| ≤ δ|V |.
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Algorithm Close to Vertex Cover:
Input: A Graph G = (V, E) and an integer t.
Promise: G has a unique vertex cover of size t.
Output: A set S that is δ-close to the unique vertex cover of G of size t for some
constant δ > 1/2.

1. Let N ← (100n)1/ε.
2. Choose a random injection π : V → [N ] with uniform distribution and construct

the graph Gπ.
3. Let B ← A(Gπ) and B−1 ← {u ∈ V : π(u) ∈ B}.
4. Return B−1.

Fig. 5. An algorithm that returns a set close to a unique minimum vertex cover

Lemma 6. Let ε > 0 be a constant, and B ⊂ [N ], D ⊂ [N ] be sets, where |B| ≤
nN1−ε. If N = (100n)1/ε and an injection π : V → [N ] is chosen at random
with uniform distribution, then Pr[π does not 0.2-avoid B|π(C) = D] ≤ e−0.2n.

The lemma is proved by using the Chernoff bound noting that the events π(u) ∈
B and π(v) ∈ B are “nearly” independent for u �= v.

Lemma 7. There exists a constant α < 1 such that, for every constant ε > 0,
if A is a deterministic N1−ε-approximation algorithm for vertex cover that leaks
at most αN ε bits, then for every G and t such that G has a unique vertex cover
of size t, with probability at least 3/4, Algorithm Close to Vertex Cover

returns a set that is 0.6-close to the minimum vertex cover of G.

Proof (sketch): Let G and t be such that G has a unique vertex cover of size t;
denote this vertex cover by C. We fix a set D and consider only injections π such
that π(C) = D. Let α = 0.002 and assume that A leaks at most αN ε = 0.2n bits
(since N = (100n)1/ε). By Obseration 3, if we restrict ourself to such injections,
then the output of A has at 20.2n options. Denote these answers by B1, . . . , B�

for � ≤ 20.2n. By Lemma 6, for every possible value of B, the probability that a
random injection π such that π(C) = D does not 0.2-avoid B is at most e−0.2n.
Thus, by the union bound, the probability that a random injection π such that
π(C) = D 0.2-avoids A(Gπ) is at least 1 − (2/e)0.2n � 3/4. In this case B−1

contains at most 0.2n vertices not from the minimum vertex cover C. Recall
that B−1 is a vertex cover of G. Therefore, |C \ B−1| ≤ 0.2n (as |B−1| > |C|
and |B−1 \ C| ≤ 0.2n). We conclude that B−1 is 0.6-close to a vertex cover of
G as claimed. ��

Theorem 6. There exists a constant α > 0 such that, if RP �= NP, there is no
efficient N1−ε-approximation algorithm for vertex cover that leaks αN ε bits.
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6 Discussion

The generic nature of our techniques suggests that, even if the notion of private
approximations would be found useful for some NP-complete problems, it would
be infeasible for many other problems. Hence, there is a need for alternative
formulations of private approximations for search problems.

The definitional framework of [1] allows for such formulations, by choosing the
appropriate equivalence relation on input instances. Considering vertex-cover
for concreteness, the choice in [1] and the current work was to protect against
distinguishing between inputs with the same set of vertex covers. A different
choice, that could have been made, is to protect against distinguishing between
inputs that have the same lexicographically first maximal matching. (In fact, the
latter is feasible and allows a factor 2 approximation).

A different incomparable notion of privacy was pursued in recent work on
private data analysis. For example, [4] present a variant on the k-means clus-
tering algorithm that is applied to a database, where each row contains a point
corresponding to an individual’s information. This algorithm satisfies a privacy
definition devised to protect individual information.

Finally, a note about leakage of information as discussed in this work. It is clear
that introduction of leakage may be problematic in many applications (to say the
least). In particular, leakage is problematic when composing protocols. However,
faced by the impossibility results, it is important to understand whether a well
defined small amount of leakage can help. For some functionalities allowing a
small amount of leakage bypasses an impossibility result – approximating the
size of the vertex cover [10], and finding an assignment that satisfies 7/8 − ε of
the clauses for exact max 3SAT [1]. Unfortunately, this is not the case for the
problems discussed in this work.

Acknowledgments. We thank Enav Weinreb and Yuval Ishai for interesting dis-
cussions on this subjects and we thank the TCC program committee for their
helpful comments.
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Abstract. A (k; n)-robust combiner for a primitive F takes as input
n candidate implementations of F and constructs an implementation
of F , which is secure assuming that at least k of the input candidates are
secure. Such constructions provide robustness against insecure implemen-
tations and wrong assumptions underlying the candidate schemes. In a
recent work Harnik et al. (Eurocrypt 2005) have proposed a (2; 3)-robust
combiner for oblivious transfer (OT), and have shown that (1; 2)-robust
OT-combiners of a certain type are impossible.

In this paper we propose new, generalized notions of combiners for
two-party primitives, which capture the fact that in many two-party
protocols the security of one of the parties is unconditional, or is based
on an assumption independent of the assumption underlying the security
of the other party. This fine-grained approach results in OT-combiners
strictly stronger than the constructions known before. In particular, we
propose an OT-combiner which guarantees secure OT even when only
one candidate is secure for both parties, and every remaining candidate is
flawed for one of the parties. Furthermore, we present an efficient uniform
OT-combiner, i.e., a single combiner which is secure simultaneously for a
wide range of candidates’ failures. Finally, our definition allows for a very
simple impossibility result, which shows that the proposed OT-combiners
achieve optimal robustness.

Keywords: robust combiners, oblivious transfer, weak oblivious
transfer.

1 Introduction

Many cryptographic schemes are based on unproven assumptions about the dif-
ficulty of some computational problems. While there exist assumptions whose
validity is supported by decades of research (e.g., factoring or discrete logarithm),
many new assumptions offering new possibilities are being proposed in literature,
and it is unclear how to decide which assumptions are trustworthy. Therefore,
given multiple implementations of some cryptographic primitive, each based on
different assumptions, it is often difficult to decide which implementation is the
most secure one.

Robust combiners offer a method for coping with such difficulties: they take as
input multiple candidate schemes based on various assumptions, and construct a
scheme whose security is guaranteed if at least some candidates are secure. That
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is, the resulting scheme is secure as long as sufficiently many of the assumptions
underlying the input candidates are valid. This provides tolerance against wrong
assumptions since even a breakthrough algorithm for breaking one (or some) of
the assumptions does not necessarily make the combined scheme insecure.

Actually, the concept of robust combiners is not new, and many construc-
tions of this type have been used in various cryptographic schemes to improve
the security guarantees, e.g., cascading of block ciphers. However, a rigorous
study of robust combiners was initiated only recently [Her05, HKN+05]. More
formally, a (k; n)-robust F-combiner is a construction which takes as input n
implementations of a primitive F , and yields an implementation of F which is
guaranteed to be secure as long as at least k input implementations are secure.
Robust combiners for some primitives, like one-way functions or pseudorandom
generators, are rather simple, while for others, e.g., for oblivious transfer (OT),
the construction of combiners seems considerably harder. In particular, Harnik
et al. [HKN+05] show that there exists no “transparent black-box” (1; 2)-robust
OT-combiner. In the same paper they propose also a very simple and efficient
(2; 3)-robust OT-combiner.

Contributions. We propose stronger and more general definitions of robust
combiners for two-party primitives, which enable a more fine-grained approach
to the design of combiners. In particular, the new definitions capture scenarios
where in the candidate implementations the security of Alice is based on an
assumption different from the assumption underlying Bob’s security, or where
the security of one party is unconditional. This finer distinction can then be
exploited in constructions of combiners.

For this new definition we propose OT-combiners yielding secure OT when
the total number of candidates’ failures on either side is strictly smaller than
the number of candidates. In particular, we propose an OT-combiner which
guarantees secure OT even when only one candidate is secure for both parties,
and every remaining candidate is insecure for one of the parties. Moreover, we
propose also an efficient uniform OT-combiner, i.e., a single combiner which is
secure simultaneously for a wide range of candidates’ failures.

We show also that the proposed combiners are optimal in terms of achieved
robustness. Specifically, we prove the impossibility of black-box OT-combiners
achieving better robustness, and also we show that any (possibly even non-
black-box) OT-combiner achieving better robustness would in fact implement
OT from scratch. This is in contrast to the impossibility proof from [HKN+05]
where only the existence of transparent black-box combiners was excluded. How-
ever, our impossibility results are not directly comparable with the previous
one: on one hand our results are stronger, since they are not limited to the
transparent black-box combiners, but on the other hand they are weaker, since
they exclude a primitive which is stronger then the one considered in [HKN+05]
(cf. Section 3).

Finally, since our definition is stronger than the previous definition, all con-
structions satisfy also the latter, and as a corollary we obtain also tight bounds
for the previous definition.
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Related work. As mentioned above, there are numerous implicit uses and
constructions of combiners in the literature (e.g., [AB81, EG85, MM93, DK05,
HL05]), but a more rigorous study of robust combiners was initiated only re-
cently, by Herzberg [Her05] and by Harnik et al. [HKN+05], who formalized
the notion of combiners, and have shown constructions of combiners for vari-
ous primitives. Moreover, Harnik et al. [HKN+05] have shown also that not all
primitives are easy to combine, by proving that there is no transparent black-box
(1; 2)-robust OT-combiner. Boneh and Boyen [BB06] studied the efficiency of
combiners for collision resistant hash functions. In [MP06] robust combiners for
private information retrieval were proposed, and also cross-primitive combin-
ers have been studied. Such combiners can be viewed as generalized reductions
between primitives, and their study, in addition to be of practical value, offers
insights into relations between cryptographic primitives.

The problem of strengthening imperfect oblivious transfer, which is closely re-
lated to OT-combiners (see below), was first considered by [CK88], and has been
studied in many subsequent works (e.g.,[BCW03, Cac98, DFSS06]). In particular
Damg̊ard, Kilian and Salvail [DKS99] defined the notion of weak oblivious trans-
fer (WOT) and provided algorithms for strengthening it. The use of techniques
for strengthening WOT in the construction of combiners has been suggested
by Harnik et al. [HKN+05] as an alternative way of obtaining a (2; 3)-robust
OT-combiner.

Organization. In the next section we review the primitives used in the rest
of the paper, and present generalized definitions of robust combiners for two-
party primitives. Then in Section 3 we propose combiners for oblivious transfer
tolerating an insecure minority, and prove that they achieve optimal robustness.
In Section 4 we exploit the symmetry of oblivious transfer to obtain uniform
OT-combiners with optimal robustness. Finally, in Section 5 we conclude and
discuss some open problems.

2 Preliminaries and Definitions

2.1 Primitives

We review shortly the primitives relevant in this work. For more formal defini-
tions we refer to the literature. The parties participating in the protocols and
the adversary are assumed to be probabilistic polynomial time Turing machines,
(PPTMs).

Oblivious transfer1 (OT) is a protocol between a sender holding two bits b0 and
b1, and a receiver holding a choice-bit c. The protocol allows the receiver to get
bit bc so that the sender does not learn any information about receiver’s choice
c, and the receiver does not learn any information about bit b1−c.
1 The version of oblivious transfer described here and used in this paper is more

precisely denoted as 1-out-of-2 bit-OT [EGL85]. There are several other versions of
OT, e.g., Rabin’s OT, 1-out-of-n bit-OT, or 1-out-of-n string-OT, but all are known
to be equivalent [Rab81, Cré87, CK88].
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Weak oblivious transfer. ((p, q)-WOT) is an oblivious transfer with relaxed pri-
vacy guarantees for the participants [DKS99]: with probability at most p a cheat-
ing sender will learn which bit the receiver chose to receive, and with probability
q a cheating receiver will learn both of the sender’s input bits.

Secret sharing. [Bla79, Sha79] allows a party to distribute a secret among a group
of parties, by providing each party with a share, such that only authorized subsets
of parties can collectively reconstruct the secret from their shares. We say that
a sharing among n parties is a �-out-of-n secret sharing, if any � correct shares
are sufficient to reconstruct the secret, but any subset of less than � shares gives
no information about the secret. A simple method for �-out-of-n secret sharing
was proposed by Shamir [Sha79]: a party P having a secret value s ∈ Fq where
q > n, picks a random polynomial f(x) over Fq, such that f(0) = s and the
degree of f(x) is (at most) � − 1. A share for party Pi is then computed as
si := f(zi), where z1, . . . , zn are fixed, publicly known, distinct non-zero values
from Fq. Since the degree of f(x) is at most � − 1, any � shares are sufficient
to reconstruct f(x) and compute s = f(0) (via Lagrange interpolation). On the
other hand, any � − 1 or fewer shares give no information about s, since they
can be consistently completed to yield a sharing of any arbitrary s ∈ F [q], and
the number of possible completions is the same for every s.

Bit Commitment. (BC) is a two-phase protocol between a sender, holding an
input bit b, and a receiver, who has no input. In the commit phase the sender
commits to bit b without revealing it, by sending to the receiver a commitment
to b, i.e., an “encrypted” representation e of b. Later, in the decommit phase,
the sender gives to the receiver a decommitment string d, allowing the receiver
to “open” e and obtain b. In addition to correctness, a bit commitment scheme
must satisfy two properties: hiding, i.e., the receiver does not learn the bit b
before the decommit phase, and binding, i.e., the sender cannot come up with
decommitment strings d, d′ which lead to opening the commitment as different
bits.

2.2 Robust Combiners

In this section we recall definitions of robust combiners, and present some
generalizations, which allow for a more fine-grained approach to the design of
combiners. These generalizations are motivated by the fact, that in many imple-
mentations of cryptographic primitives various security properties are based on
different, often independent, computational assumptions, or even hold uncon-
ditionally, and cannot be broken. Thus when designing combiners, whose main
goal is to protect against wrong assumptions, it can be worthwhile to consider
these security guarantees explicitly, as it can potentially lead to more efficient
practical constructions (cf. [HKN+05, MP06]). Moreover, the proposed gener-
alizations lead to combiners which are strictly stronger than the constructions
known before, and also allow for easier impossibility proofs.
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Definition 1 ((k; n)-robust F-combiner [HKN+05]). Let F be a crypto-
graphic primitive. A (k; n)-robust F -combiner is a PPTM which gets n candi-
date schemes implementing F as inputs and implements F while satisfying the
following two properties:

1. If at least k candidates securely implement F , then the combiner securely
implements F .

2. The running time of the combiner is polynomial in the security parameter κ,
in n, and in the lengths of the inputs to F .2

If the primitive for which one wishes to construct a combiner is a two-party
primitive between Alice and Bob (like for example OT or bit commitment),
we can make a finer characterization of the security required from the candi-
dates. That is, we can distinguish cases when in the candidate implementations
the security of Alice is based on an assumption different from the assumption
underlying Bob’s security, or when the security of one party is unconditional.
For such candidates breaking one assumption does not necessarily imply a total
loss of security (for both parties) and this property can be exploited for the
construction of combiners.

Definition 2 ((α, β; n)-robust F-combiner). Let F be a cryptographic prim-
itive for two parties Alice and Bob. A (α, β; n)-robust F -combiner is a PPTM
which gets n candidate schemes implementing F as inputs and implements F
while satisfying the following two properties:

1. If at least α candidates implement F securely for Alice, and at least β can-
didates implement F securely for Bob, then the combiner securely imple-
ments F .

2. The running time of the combiner is polynomial in the security parameter κ,
in n, and in the lengths of the inputs to F .

Note that a (k; n)-robust combiner is a special case of a (k, k; n)-robust combiner,
but they are not equivalent. For example, a (2, 2; 3)-robust combiner tolerates
input candidates C1, C2, C3, where one C1 is secure for Alice only, C2 is secure for
Bob only, and C3 is secure for both parties, while a (2; 3)-robust combiner can
fail for such candidates. In other words, the notion of a (k, k; n)-robust combiner
(and hence of a (α, β; n)-robust combiner), is strictly stronger then that of a
(k; n)-robust combiner, and it provides better security guarantees.

Another difference between (k; n)- and (α, β; n)-robust combiners is that for
the new definition it is possible to have “non-uniform” constructions with explicit
dependence on α and β. This motivates an even stronger notion of uniform
combiners. For example, even if there exists a (α, β; n)-robust combiner for every
α, β ≥ 0 satisfying α+β ≥ δ, where δ is some threshold, it might be the case that
the combiner makes explicit use of the values α and β, and thus works differently
for every particular pair values (α, β). In such a scenario more desirable would
2 Here an implicit assumption is made, that the candidates themselves run in polyno-

mial time.
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be a uniform construction, i.e., a single combiner that is secure under the sole
assumption that α + β ≥ δ. In particular, a uniform combiner does not obtain
the values of α and β as parameters.

Definition 3 ({δ; n}-robust uniform F-combiner). Let F be a two-party
primitive. We say that an F-combiner is a {δ; n}-robust uniform F -combiner
if it is a (α, β; n)-robust F-combiner, simultaneously for all α and β satisfying
α + β ≥ δ.

Note that the parameter δ is a bound on the sum of the number of candidates
secure for Alice and the number of candidates secure for Bob, hence given n
candidates δ is from the range 0 . . . 2n. As an example consider a {4; 3}-robust
uniform combiner. Such a combiner is a (regular) (2; 3)-robust combiner, but
at the same time it is also a (3, 1; 3)-robust combiner, i.e., it tolerates input
candidates C1, C2, C3, where one Ci is secure for both parties, and the remaining
two candidates are secure for Alice only. It is not hard to see that not every
(k; n)-robust combiner is automatically also a {δ; n}-robust uniform combiner
with δ = 2k. In particular, the (2; 3)-robust OT-combiner from [HKN+05] breaks
on inputs of the type described above for (3, 1; 3)-robust combiner.

For completeness, we recall three more definitions from [HKN+05]. Note that
these definitions extend naturally to the generalized combiners from Defini-
tions 2 and 3.

Definition 4 (Black-box combiner [HKN+05]). A (1; 2)-robust combiner
is called a black-box combiner if the following two conditions hold:

Black-Box Implementation: The combiner is an oracle PPTM given access
to the candidates via oracle calls to their implementation function.

Black-Box Proof: For every candidate there exists an oracle PPTM RA (with
access to A) such that if adversary A breaks the combiner, then RA breaks
the candidate.3

Definition 5 (Transparent black-box combiner [HKN+05]). A transpar-
ent black-box combiner is a black-box combiner for an interactive primitive where
every call to a candidate’s next message function is followed by this message be-
ing sent to the other party.

Definition 6 (Third-party black-box combiner [HKN+05]). A third-party
black-box combiner is a black-box combiner where the input candidates behave
like trusted third parties. The candidates give no transcript to the players but
rather take their inputs and return outputs.

Since the primary goal of robust combiners is to protect against wrong assump-
tions, in our constructions we require that the candidates input to a combiner
provide the desired functionality and the underlying assumptions can affect only

3 For (k; n)-robust combiners there are at least n−k+1 candidates that can be broken
in this manner.
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the security properties (e.g. secrecy). This approach is justified by the fact that
in cryptographic schemes the security is usually based on some assumptions,
while the functionality properties are straightforward and hold unconditionally.
Moreover, in some cases a possible way of dealing with unknown implementa-
tions of primitives is to test them for the desired functionality, hence, even if the
candidate input primitives are given as black-boxes, one can test them before
applying a combiner (cf. Section 3.1 in [HKN+05]).

3 OT-Combiner with Secure Majority

The impossibility result for transparent black-box (1; 2)-robust OT-combiners
[HKN+05] implies directly the impossibility of transparent black-box (n; 2n)-
robust OT-combiners, as from their existence would follow the existence of
transparent black-box (1; 2)-robust OT-combiners. Similarly, it implies also the
impossibility of transparent black-box (α, β; n)-robust combiners for α + β ≤ n.
However, since (k, k; n)-robust combiners are stronger than (k; n)-robust com-
biners, we can show very simple impossibility results, which essentially exclude
(α, β; n)-robust OT-combiners of any type4, that would work for α + β ≤ n: in
Lemma 1 we prove that there are no black-box OT-combiners with such robust-
ness, and in Lemma 2 we show that constructing an OT-combiner of any type
(for α + β ≤ n) is at least as hard as constructing an OT protocol without any
assumptions.

As mentioned previously, these results are not directly comparable with the
impossibility result from [HKN+05]: on one hand our results are stronger, since
they go beyond transparent black-box combiners, but on the other hand they are
weaker, since they exclude a primitive which is stronger then the one considered
in [HKN+05].

Lemma 1. There does not exist a black-box (α, β; n)-robust OT-combiner for
α + β ≤ n.

Proof. Assume that such a combiner exists, for some values α, β, and n such
that α + β ≤ n. Let OT1 be the trivial instance of OT where the sender sends
both values to the receiver, and let OT2 be the trivial instance where the receiver
sends his choice bit to the sender, who sends the receiver the value of his choice.
Observe that OT1 is information-theoretically secure for the receiver, and OT2
is information-theoretically secure for the sender.

Consider calling the combiner with input consisting of β instances of OT1 and
n − β ≥ α instances of OT2, and let OT denote the resulting OT protocol. By
assumption, OT is secure for both parties. Since it is impossible to construct an
OT protocol information-theoretically secure for both the sender and the receiver,
there exists an adversary A (possibly inefficient), which breaks the protocol OT.
By the definition of a black-box combiner, it follows that given oracle access to
A one can break 2n − α − β + 1 > n “sides” of the candidates. However, since

4 I.e., not only transparent black-box combiners.
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one side of each candidate is information-theoretically secure, we can break at
most n sides. A contradiction. ��

Lemma 2. Any (α, β; n)-robust OT-combiner for α + β ≤ n implies the exis-
tence of OT.

Proof. Assume that such a combiner exists, for some values α, β, and n such
that α + β ≤ n. Let OT1 and OT2 be trivial instances of OT, as in the proof of
Lemma 1. Calling the combiner using β instances of OT1 and n−β ≥ α instances
of OT2 as input yields a secure OT protocol without any assumption. ��

We will now show that the bound of Lemmas 1 and 2 is tight, by presenting
constructions of (α, β; n)-robust OT-combiners for any α, β, and n, if α+β > n.
First we describe a combiner, which is very simple but not fully satisfactory, as
it is not efficient.5

Lemma 3. For every α ≥ 0, β ≥ 0 and α + β > n there exists an inefficient
third-party black-box (α, β; n)-robust OT-combiner.

Proof. The combiner is a straightforward generalization of the (2; 3)-robust OT-
combiner from [HKN+05], which is based on two “special-purpose” combin-
ers, combiner R for protecting the receiver, and combiner S for protecting the
sender.6

The (α, β; n)-robust combiner works in two phases: in the first phase subsets
of the candidates of size α are combined using the combiner R, resulting in
n′ =

(
n
α

)
OT schemes. Each of resulting instance is secure for the receiver and at

least one is secure for both parties. In the second phase the n′ OTs are combined
using the combiner S to yield a final scheme protecting both the sender and the
receiver. ��

The combiner presented in the above proof is perfect in the sense that it does not
introduce any additional error. However, it is inefficient in n, since the value of n′,
i.e., the number of OTs resulting from the first phase, would be superpolynomial
in n. Lemma 5 presents a combiner that is not perfect, but efficient in n and other
parameters, as required in Definition 1. In the construction we use a third-party
combiner for bit commitment, which is an adaptation of a secret-sharing-based
BC-combiner, due to Herzberg [Her05], to our generalized definition. As this
may be of independent interest, we describe it separately.

Lemma 4. For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there
exists a third-party black-box (α, β; n)-robust BC-combiner.

Proof. We describe a string commitment that lets a sender commit to a value s ∈
{0, 1}m, for an arbitrary m such that 2m > n, using n candidate implementations
of bit-commitment from which at least α are hiding and at least β are binding.
5 Due to its inefficiency, this is strictly speaking not a robust combiner (cf. Def. 1). In

a slight abuse of terminology, we call it an inefficient combiner.
6 For completeness, we recall these special-purpose combiners in the appendix.
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The sender computes7 an �-out-of-n Shamir’s secret sharing of s over F2m , for
� := n−α+1, resulting in shares s1, . . . , sn. Then the sender uses the n instances
of bit-commitment to commit to the share si bit-by-bit, for each i ∈ [n]. In the
opening phase the sender opens the commitments to all the shares, and the
receiver reconstructs the secret s.

To see that this commitment is hiding, notice that at least α shares are guaran-
teed to be hidden from the receiver, since at least α candidate bit-commitments
are hiding. Therefore before the opening phase the receiver sees at most n−α < �
shares, which give no information about the secret. On the other hand, since at
least β candidates of the bit-commitments are binding, the sender is indeed
committed to at least β shares. Since α + β > n, i.e., β > n − α, the sharing
polynomial, which has degree at most n − α, is uniquely determined by these β
shares, and so the commitment to s is also binding. ��

Lemma 5. For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there
exists a third-party black-box (α, β; n)-robust OT-combiner.

Proof. First assume that the sender and the receiver have a common random
string r at their disposal. Later we describe how this additional assumption can
be dropped.

Using r, the combiner works as follows: it simulates (p, q)-WOT with p + q ≤
1 − 1/n by picking each time an input OT-candidate uniformly at random. This
is possible, since we are having n candidates, α of which are secure for the sender
and β are secure for the receiver, with α+β ≥ n+1. By picking one candidate at
random we obtain a probability p ≤ (n−β)/n that the sender learns the receiver’s
choice, and a probability q ≤ (n − α)/n that the receiver learns both bits input
by the sender, hence p + q ≤ ((n − α) + (n − β))/n = (2n − α − β)/n ≤ 1 − 1/n,
as required. Given such a (p, q)-WOT, use the (efficient) amplification algorithm
of Damg̊ard et al. [DKS99] to obtain a secure OT.

To complete the argument, we have to show how the sender and the receiver
can generate a common random string r. It is well-known that OT implies bit-
commitment [Cré87], and bit-commitment implies coin-toss [Blu82].8 Therefore,
we can convert our n candidate implementation of OT into n candidate imple-
mentations of bit-commitment, and then use the bit-commitment-combiner of
Lemma 4 to obtain a secure implementation of bit-commitment, provided that
α + β > n. This implementation can then be used to implement coin-toss, i.e.,
the parties can generate a common random string r using the input candidates
only, without additional assumptions. Finally, it is easy to verify that all the
described protocols use the candidates in a third-party black-box manner, and
that the combiner is efficient. ��

From Lemmas 1 and 5, we get immediately the following theorem about (α, β; n)-
robust OT-combiner.

7 In this computation we view bit-strings from {0, 1}m as elements of F2m .
8 For completeness, we describe both protocols in the appendix.
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Theorem 1. There exists a black-box (α, β; n)-robust OT-combiner if and only
if α + β > n holds. The construction is third-party black-box and efficient.

Furthermore, the impossibility result of [HKN+05] together with Lemma 5 yield
the following corollary about (k; n)-robust OT-combiner.

Corollary 1. There exists a transparent black-box (k; n)-robust OT-combiner if
and only if 2k > n. The construction is third-party black-box and efficient.

4 OT-Combiners Based on the Symmetry of OT

A closer look at the combiners from the proofs of Lemmas 3 and 5 shows that
these are “non-uniform” combiners (cf. Sect. 2.2). Namely, the proofs show that
for given α, β > 0 with α + β > n there exists a (α, β; n)-robust combiner, i.e.,
the actions of the combiner are different for different values α, β. (For Lemma 3
it is explicit in the construction, and for Lemma 5 it is due to the fact that
the amplification algorithm from [DKS99] makes explicit use of parameters p, q.)
More desireable would be an uniform construction, which would have a switched
order of quantifiers, i.e., we would like a single combiner that is secure for every
α, β > 0 with α + β > n, and would therefore be strictly stronger than any of
the special combiners. In this section we show how to construct such a combiner
by exploiting the symmetry of OT, i.e., the fact that given OT with sender
Alice and receiver Bob, we can perfectly logically reverse it to obtain OT with
receiver Alice and sender Bob. That OT can be reversed has first been discovered
independently in [CS91, OVY93]. A simpler and more efficient protocol has been
proposed in [WW06].

Our construction is based on a simple trick, which is somehow non-standard,
yet plausible in most scenarios: we require that the parties can swap their roles
when executing candidate protocols, i.e., any input candidate OTi can be exe-
cuted in such a way that the sender (of the main OT-protocol) plays the role
of the receiver in OTi, and the receiver plays the role of the sender in OTi.
Moreover, we require that we have at our disposal multiple copies of each candi-
date implementation (in particular, our protocols use the candidates both in the
original setting as well in the swapped configuration). For example, if the input
candidates are given as software packages, these requirements are not a problem,
as it means only calling different functions, but if a candidate is given as a pair
of physical devices implementing the primitive, the swapping operation can be
problematic, as it may require a real physical swap of the corresponding devices.
However, it is difficult to come up with a primitive that cannot be swapped or
duplicated in principle. Such a primitive would need to make use of some kind
of a physical phenomenon, only available to one of the parties, but not to the
other.

We use the swapping of the roles in OT — which can be viewed as a “physical”
reversal — together with a logical reversal of OT [CS91, OVY93, WW06] to
obtain an OT in the original direction (from the original sender to the original
receiver), but with swapped security properties. More precisely, let swap be this



414 R. Meier, B. Przydatek, and J. Wullschleger

Sender’s input: two bits b0, b1

Receivers’s input: choice bit c
Input OT protocols: OT1, OT2

Note: Auxiliary combiners R and S [CK88,HKN+05] are described in the appendix.

1. Parties apply swap to obtain OT∗
1= swap(OT1) and OT∗

2= swap(OT2).

2. Parties define OT′ = R(OT1,OT2) and OT′′ = R(OT∗
1,OT∗

2).

3. Parties invoke S(OT′,OT′′)(b0, b1; c).

Fig. 1. A {3; 2}-robust uniform OT-combiner

two-step process, i.e., physical swap followed by logical reversal, and consider an
implementation OT and its swapped-and-reversed version, OT∗ = swap(OT). If
OT is a correct OT-protocol, then so is OT∗. Moreover, if in OT the security of
the sender is based on assumption A, and the security of the receiver is based
on assumption B, then in OT∗ we have the opposite situation: the security of
the sender is based on assumption B, and the security of the receiver is based on
assumption A. In particular, if OT is an implementation unconditionally secure
for the sender, then OT∗ is an implementation unconditionally secure for the
receiver.

As a first application of this swapping trick we show a {3; 2}-robust uniform
OT-combiner, i.e., a combiner which is simultaneously (α, β; 2)-robust for any
α, β satisfying α + β ≥ 3. Recall that if it is known in advance that the security
of one party is guaranteed (e.g. α = 2), then the corresponding combiner is very
simple [HKN+05]. However, the combiner for the case α = 2 is quite different
from the combiner for the case β = 2, hence these simple combiners are not
uniform.

The idea behind our uniform combiner is to use both, the two candidate OT1,
OT2, and their swapped counterparts OT∗1 = swap(OT1) and OT∗2 = swap(OT2).
Since α + β ≥ 3, at least two of OT1, OT2, OT∗1, OT∗2 are secure for both
parties, at most one is insecure for the sender, and at most one is insecure for
the receiver. This is sufficient to implement a secure OT. The construction makes
use of the two “special-purpose” OT-combiners we have used previously in the
proof of Lemma 3, i.e., combiner S for protecting the sender, and combiner R for
protecting the receiver (cf. Appendix). Figure 1 presents the entire construction
in more detail, and the following theorem summarizes its properties.

Theorem 2. There exists a third-party black-box {3; 2}-robust uniform OT-
combiner using the swap-operation.

Proof. (sketch) Consider the protocol in Figure 1. Let OT denote the resulting
OT protocol. OT has to satisfy correctness, privacy for the sender, and privacy
for the receiver. Correctness is trivially given due to the correctness of the can-
didates OT1, OT2, the symmetric schemes OT∗1, OT∗2, and the combiners R and
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S. Given the symmetry of OT, if the privacy of one party is compromised for
one candidate, then the privacy of the other party is compromised for the cor-
responding swapped candidate. Combining OT1, OT2, respectively OT∗1, OT∗2,
with R ensures that the receiver’s privacy is protected in both OT′ and OT′′,
and the sender’s privacy in at least one of them. Hence S(OT′, OT′′) protects
the sender from a possible security break of one of the input canditates. Finally,
is easy to verify that this is a third-party black-box combiner. ��

The next lemma gives a general construction to obtain a uniform combiner from
a non-uniform one. This construction makes use of the swap-operation, and can
be used for combiners of any symmetric two-party primitive.

Lemma 6. If there exists a (k, k; 2n)-robust OT-combiner, then there exists a
{k; n}-robust uniform OT-combiner using the swap-operation.

Proof. (sketch) The (k, n)-robust uniform OT-combiner works as follows: given
n candidate instances of OT, satisfying α+β ≥ k, we duplicate all instances, and
apply the swap-operation to the duplicates. In this way we obtain 2n candidate
instances, where at least k of them are secure for the sender, and at least k are
secure for the receiver. Now we can apply the (k, k; 2n)-robust OT-combiner to
these 2n instances, and get a secure implementation of OT. ��

Lemma 6 together with Theorem 1 give us the following theorem.

Theorem 3. For any n ≥ 2 and δ > n, there exists a third-party black-box
{δ; n}-robust uniform OT-combiner using the swap-operation.

Although the presented uniform OT-combiner works with all OT protocols pro-
posed in the literature, it naturally raises the question whether the role-swapping
technique can be dropped. Sommer [Som06] has recently pointed out that for
transparent black-box OT-combiners the use of the candidates in the swapped
direction is in fact necessary. More precisely, he observed that the impossibility
proof of Harnik et al. [HKN+05] can be adapted to exclude transparent black-
box {3; 2}-robust uniform OT-combiners using the candidates in the prescribed
direction only.

5 Conclusions and Open Problems

We proposed stronger definitions of robust combiners for two-party protocols,
which yield robuster, more general combiners for oblivious transfer. The ob-
servation that a partially broken candidate implementation can still provide
security for one of the parties leads to OT-combiners strictly stronger than the
constructions known previously. Furthermore, we have shown that for symmet-
ric two-party primitives even stronger combiners are possible if the parties can
swap their roles in the candidate protocols.

As we mentioned above, there is currently a trade-off between the perfect
security and the efficiency of a combiner: we do not know whether there exists an
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efficient (in the number of candidates) perfect uniform OT-combiner. Moreover,
it would be interesting to find other settings, in which the introduced swapping-
trick could be useful.
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Appendix

For completeness, we recall some constructions used in the proposed combin-
ers. First we describe the “special-purpose” combiners R and S from [CK88,
HKN+05]. Combiner R takes n OT candidates, and guarantees security of the
receiver if at least one of the candidates is secure for the receiver:

R(OT1, . . . , OTn)(b0, b1; c)
1. The sender picks random bits r0

1 , r
0
2 , . . . , r

0
n, such that b0 = r0

1 ⊕ r0
2 ⊕

· · · ⊕ r0
n, and sets r1

i := r0
i ⊕ b0 ⊕ b1, for every i = 1 . . . n.

2. The receiver picks random bits c1, c2, . . . , cn such that
c = c1 ⊕ c2 ⊕ · · · ⊕ cn.

3. For every i = 1 . . . n parties run OTi(r0
i , r1

i ; ci).
From i-th execution the receiver obtains output rci

i .
4. The receiver outputs bc computed as the XOR of his outputs from all

executions, i.e.
bc = rc1

1 ⊕ rc2
2 ⊕ · · · ⊕ rcn

n .

Combiner S takes n OT candidtates, and guarantees security of the sender if at
least one of the candidates is secure for the sender:
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S(OT1, . . . , OTn)(b0, b1; c)
1. The sender picks random bits r0

1 , r
0
2, . . . , r

0
n, and r1

1 , r
1
2 , . . . , r

1
n, such that

b0 = r0
1 ⊕ r0

2 ⊕ · · · ⊕ r0
n and b1 = r1

1 ⊕ r1
2 ⊕ · · · ⊕ r1

n .

2. For every i = 1 . . . n parties run OTi(r0
i , r1

i ; c).
From i-th execution the receiver obtains output rc

i .
3. The receiver outputs bc computed as the XOR of his outputs from all

executions, i.e.
bc = rc

1 ⊕ rc
2 ⊕ · · · ⊕ rc

n .

The following protocol generates a random bit-string using bit-commitment. Let
m > 0.

Coin-toss
1. The sender picks a random s′ ∈ {0, 1}m and commits to it.
2. The receiver picks a random s′′ ∈ {0, 1}m and sends it to the sender.
3. The sender opens the commitment to s′, and both parties output s =

s′ ⊕ s′′.

The following protocol implements bit-commitment using OT. Let κ > 0 be a
security parameter.

Commit(v)
1. The sender picks random r ∈ {0, 1}κ, and the receiver a c ∈ {0, 1}κ.
2. The sender inputs x0 = ri and x1 = ri ⊕ v and the receiver ci to the i-th

instance of OT.
3. The receiver obtains yi from the i-th instance of OT.

Open
1. The sender sends v and r to the receiver.
2. The receiver verifies whether for all i we have yi = ri ⊕ civ.
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Abstract. We present a lower bound on the round complexity of a nat-
ural class of black-box constructions of statistically hiding commitments
from one-way permutations. This implies a Ω( n

log n
) lower bound on the

round complexity of a computational form of interactive hashing, which
has been used to construct statistically hiding commitments (and related
primitives) from various classes of one-way functions, starting with the
work of Naor, Ostrovsky, Venkatesan and Yung (J. Cryptology, 1998).
Our lower bound matches the round complexity of the protocol studied
by Naor et al.

Keywords: Interactive hashing, statistically hiding commitments,
black-box lower bounds.

1 Introduction

A zero-knowledge proof is a protocol wherein one party, the prover, convinces
another party, the verifier, of the validity of an assertion while revealing
no additional knowledge. Introduced by Goldwasser, Micali and Rackoff in
the 1980s [gmr89], zero-knowledge proofs have played a central role in the
design and study of cryptographic protocols. In these applications, it is
important to construct constant-round zero-knowledge protocols for NP under
minimal assumptions. In many cases, a computational zero-knowledge argument
system suffices, and we know how to construct such protocols for NP under
the (essentially) minimal assumption of one-way functions [bjy97, ow93].
On the other hand, there are cases wherein we need stronger guarantees,
namely a computational zero-knowledge proof system, or a statistical zero-
knowledge argument system.1 Surprisingly, the main bottleneck to reducing
the assumptions for known constructions of both constant-round computational

� Work done while visiting Tsinghua University, Beijing; IBM T.J. Watson Research
Center; and IPAM, Los Angeles.

1 It is unlikely that every language in NP has a statistical zero-knowledge proof system
[f89, ah91, bhz87].
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zero-knowledge proof systems and statistical zero-knowledge argument systems
[bcy91, gk96a] is statistically hiding commitments.2

We know how to construct constant-round statistically-hiding commitments
from collision-resistant hash functions [dpp98, ny89] and from claw-free per-
mutations [gk96a]. In 1992, Naor, Ostrovsky, Venkatesan and Yung [novy98]
showed that one-way permutations are sufficient for statistically hiding commit-
ments wherein the round complexity is linear in the security parameter. This was
very recently extended to one-way functions by Haitner and Reingold [hr06b].
Both works use the powerful tool of interactive hashing [ovy93], a 2-party
protocol for choosing a small set of strings, with binding and hiding requirements
similar to those in commitment schemes. An intriguing open problem (posed in
[novy98] and reiterated in [dhrs04, ks06, hr06a]) is whether some variant of
interactive hashing could yield a constant-round statistically hiding commitment
from one-way permutations. In fact, even a no(1)-round commitment would
be interesting. The restriction to interactive hashing may seem limiting, but
it is the only technique that we presently know of. Moreover, Ding, et al.
[dhrs04] exhibited a constant-round interactive hashing protocol satisfying a
weaker binding guarantee, which indicates that interactive hashing may not be
the bottleneck.

1.1 Our Contributions and Techniques

We study a natural class of black-box constructions of statistically hiding
commitments from one-way permutations that include several generalizations
of the novy construction, and show that any such construction yields a
commitment scheme with at least Ω(n/ log n) rounds. This matches the round
complexity of a variant of the main novy construction ([ks06, hr06a]).
Specifically, our lower bound holds for constructions wherein the sender (in the
commitment scheme) evaluates the one-way permutation only at the start of the
commit phase, and does so on independent random inputs. The sender then uses
the output values, her private input to the commitment scheme, and possibly
additional randomness in the rest of the commit phase and does not use the
inputs to the one-way permutation until the reveal phase.

We derive as a corollary, a Ω(n/ log n) lower bound on a computational form of
interactive hashing presented in [nov06, hr06a], based on an abstraction of the
way interactive hashing is used in the novy construction and the subsequent
works of Haitner et al. [hhk

+
05, nov06, hr06b]. The same abstraction also

applies to the use of interactive hashing in the transformation of honest-verifier
zero-knowledge arguments into cheating-verifier zero-knowledge arguments [d93,
ovy93]. The lower bound tells us that we need to avoid the standard notion of
interactive hashing if we want round-efficient versions of these applications.
2 It is not surprising that we need statistically hiding commitments for statistical

zero-knowledge arguments; what is surprising is that the only known approach
for constructing constant-round zero-knowledge proof systems [gk96a] requires
statistically hiding commitments to guarantee soundness, because the verifier begins
by committing to her challenges.
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Our lower bound for statistically hiding commitments only holds for fully
black-box reductions [rtv04], namely, we require not only that the construction
treats the one-way permutation as a black-box, but also that the reduction in
the proof of security uses black-box access to a cheating sender that breaks
the binding property to invert the permutation with noticeable probability. At
a high level, our lower bound follows the paradigm of Gennaro and Trevisan
[gt00] for proving lower bounds on efficiency of black-box cryptographic
constructions, which is in turn based on the Impagliazzo-Rudich framework
[ir89] for separating cryptographic primitives. The proof techniques and ideas
are otherwise largely inspired by lower bounds for black-box zero-knowledge from
the work of Goldreich and Krawczyk [gk96b].

Roughly speaking, a fully black-box reduction guarantees an efficient proce-
dure that by interacting and rewinding the cheating sender, produces transcripts
of the commitment scheme with a certain outcome. Using the repeated sampling
technique from [ir89], we can ensure that the probability that a partial transcript
has the outcome is exponentially small in the length of the sender’s last message.
This means that the sender sends O(log n) bits in each round of protocol. On
the other hand, the sender must send a total of Ω(n) bits in the protocol (so
that there is a different transcript for every possible challenge for the one-way
permutation), which means the protocol must have Ω(n/ logn) rounds. This
simplified and slightly inaccurate sketch overlooks several technical difficulties.

1.2 Perspective

Notions and limitations of interactive hashing. The last few years has witnessed
a lot of work on the use of interactive hashing protocols in cryptography with two
main notions of security: computationally binding, and binding for static sets
[nov06]. The latter is used in building and studying oblivious transfer protocols
in the bounded storage model and over noisy channels [ccm98, dhrs04, cs06],
in constructing variants of statistically binding commitments [nv06], and in
transforming honest-verifier zero-knowledge proofs into cheating-verifier zero-
knowledge proofs [d93, dgow95, gsv98]. It was noted in [nov06, ccm98]
that the computational binding implies binding for static sets; our lower bound
implies that the converse is not true. Specifically, the constant-round protocol
of [dhrs04] does not satisfy the computational formulation (which answers an
open problem in [dhrs04] in the negative).

Efficiency of cryptographic reductions. Previous work establishing lower bounds
for efficiency of black-box cryptographic reductions has focused on the query
complexity and randomness complexity of these reductions
[kst99, ggkt05, ltw05, hk05] whereas our work focuses on round com-
plexity. Upon closer inspection, our work is also qualitatively very different
(apart from studying a different computational resource) as the works of
[ggkt05, ltw05, hk05] rule out weakly black-box reductions (unless P = NP),
wherein the proof of security may exploit the code of the adversary (in a non-
black-box manner). As mentioned earlier, our main result only rules out fully
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black-box reductions and uses fairly different techniques. We stress that all
known reductions between cryptographic primitives - with the exception of the
non-black-box techniques used in zero-knowledge and multi-party protocols, e.g.
[b01], but including the non-black-box constructions in [aik04] - do not exploit
the code of the adversary in the proof of security. As such, ruling out fully black-
box reductions is almost as meaningful as ruling weakly black-box reductions.

Information-theoretic analogues. Many black-box cryptographic constructions
apart from interactive hashing-based commitments have an
information-theoretic analogue which is easier to achieve, in that it does not
have some kind of “simulateable” requirement, namely, an efficient procedure
for simulating random transcripts with a certain outcome. This was articulated
in [dgw95], using random selection as a case study. Such connections been
exploited in both directions, the most remarkable being the construction of
extractors from Nisan-Wigderson pseudo-random generators [t01]. In [ltw05],
the connection between hardness amplification and combinatorial hitters was
used to derive lower bounds on query and randomness complexity of the
former. While the resulting lower bounds on query complexity are tight, those
for randomness complexity are far from the best-known constructions. The
information-theoretic analogue for computational interactive hashing would be
interactive hashing with binding for static sets, for which we cannot expect to
prove a super-constant lower bound (again, due to the constant-round protocol
in [dhrs04]). Indeed, we exploit the “simulateable” requirement for our main
result.

Trade-offs between interaction and assumptions. The novy construction demon-
strated the feasibility of trading off higher interaction costs in order to build a
cryptographic primitive under weaker cryptographic assumptions (specifically,
perfectly hiding commitments with a linear number of rounds assuming one-
way permutations, versus a constant number of rounds assuming claw-free
permutations). Rudich’s work [r91] shows that this trade-off is necessary in
relation to secret key agreement and trapdoor functions. Our main result shows
that the trade-off is also necessary for the novy construction. While the trade-off
is an additive constant in Rudich’s work, our lower bound yields a gap between
constant and almost-linear number of rounds.

Implications for protocol design. One could view this work quite broadly as
providing a simple informal criterion for reasoning about the round complexity
of classes of fully-black-box constructions (of protocols with a “simulatable”
requirement) and formal techniques towards establishing a lower bound. The
former is especially useful for protocol design in identifying and ruling out
inefficient constructions. We stress here that our lower bounds do not apply
to the black-box constructions of commitments from various classes of one-way
functions in the works of Haitner et al. [hhk

+
05, nov06, hr06b], in two different

ways. One is the use of one-way functions in [hhk
+
05] to implement coin-tossing

and zero-knowledge proofs to transform commitments that are hiding against
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honest receivers into commitments that are hiding against arbitrary receivers.
We note that our lower bound holds assuming merely hiding against honest
receivers. The second is that the inputs to the one-way functions are used again in
the commit phase. This is only needed to handle the lack of structure in general
one-way functions. In particular, all the constructions are much simpler and
requires fewer rounds when optimized for one-way permutations - they “collapse”
to the novy construction. In short, the ways in which these constructions bypass
our lower bounds do not provide much insight into how we may bypass the lower
bounds for one-way permutations.

1.3 Additional Related Work

Fischlin [f02] showed that there is no black-box construction of 2-message
statistically hiding from one-way permutations (or even trapdoor permutations).
The result follows quite readily from Simon’s oracle separating collision-resistant
hash functions and one-way permutations [s98]. On the other hand, Harnik
and Naor [hn06] gave a non-black-box construction of a 2-message statistically
hiding commitment from one-way functions under a non-standard assumption
on compressibility of NP instances. From what we understand, there is no strong
evidence either supporting or refuting the assumption.

2 Definitions and Preliminaries

We use PPT to denote both probabilistic polynomial-time Turing machines and
probabilistic polynomial-time interactive Turing machines. The round complexity
of a 2-party protocol is number of pairs of messages exchanged by both parties (in
both directions). Unless otherwise stated, we use 1n as the security parameter.

2.1 One-Way Permutations

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure one-way
function if f is computable in polynomial time and for every nonuniform PPT A,

Pr
x∈{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < 1/s(n)

A function f is a one-way permutation if for every n, f restricted to {0, 1}n

is a permutation, and for all polynomials s(n) and all sufficiently large n, f is
s(n)-secure.

A random permutation π is exponentially one-way even if the adversary is given
access to a π−1 oracle, as long as it cannot query π−1 on the challenge. Here,
π−1
�=y is an oracle that on input y′, returns π−1(y′) if y′ �= y, and ⊥ otherwise.

Lemma 1 (implicit in [gt00]). Fix s(n) = 2n/5. For all sufficiently large n,
there exists a permutation π on {0, 1}n such that for all circuits A of size s(n),

Pr
y∈{0,1}n

[Aπ,π−1
�=y (y) = π−1(y)] <

1
s(n)

Moreover, the statement relativizes.
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2.2 Statistically Hiding Commitments

We present the definition for bit commitment. To commit to multiple bits, we
may simply run a bit commitment scheme in parallel.

Definition 2. A (bit) commitment scheme (S, R) is an efficient two-party
protocol consisting of two stages. Throughout, both parties receive the security
parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes
to commit to the receiver R, and a sequence of coin tosses σ. At the end
of this stage, both parties receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives
the private input b and coin tosses σ for z. This stage is non-interactive:
S sends a single message to R, and R either outputs a bit and accepts
or rejects.

Definition 3. A commitment scheme (S, R) is perfectly hiding if

Completeness. If both parties are honest, then for any input bit b ∈
{0, 1} that S gets, R outputs b and accepts at the end of the decommit
stage.
Statistically Hiding. For every unbounded deterministic strategy
R∗, the distributions of the view of R∗ in the commit stage while
interacting with an honest S are identical for b = 0 and b = 1. If the
distributions are statistically indistinguishable, we obtain a statistically
hiding commitment.

Computationally Binding. For every nonuniform PPT S∗, S∗
succeeds in the following game (breaks the commitment) with negligible
probability:
– S∗ interacts with an honest R and outputs a commitment z.
– S∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1,

R on input (z, τb) accepts and outputs b.

3 Constructing Commitments from One-Way
Permutations

In this section, we provide formal definitions of the various classes of construc-
tions of commitments from one-way permutations we consider in this paper.

3.1 Fully Black-Box Constructions

Definition 4. A fully black-box construction of a statistically hiding com-
mitment scheme from one-way permutations is a triplet of polynomial time
computable oracle procedures (S, R, M) for which there exists a polynomial T
and a constant c satisfying the following properties:
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Efficiency. The running times of S, R, M are bounded by T .

Functionality. For every family of permutations π, (Sπ , Rπ) is a
statistically hiding commitment scheme.

Security. For every ε = 1/ poly(n), for all sufficiently large n, every
permutation π : {0, 1}n → {0, 1}n and every adversary S∗, if S∗ breaks
(Sπ , Rπ) with probability ε, then

Pr
y∈{0,1}n

[MS∗,π(y) = π−1(y)] ≥
( ε

T

)c

3.2 Interactive Hashing

Interactive hashing is a 2-party protocol between a sender and a receiver, similar
to a commitment scheme. The sender begins with a private input y ∈ {0, 1}q

and goal is for both parties to select a set of 2k strings in {0, 1}q (specified by a
circuit C : {0, 1}k → {0, 1}q) containing y. The hiding property stipulates that
the receiver does not learn which of the 2k strings equals y, and the binding
property stipulates that the sender can “control” at most one of the 2k strings.
The computational formulation (introduced explicitly in [nov06] along with
selecting many instead of merely 2 outputs) guarantees an efficient reduction
from breaking the binding property to solving some computational problem on
random instances.

Definition 5 ([nov06]). A computational interactive hashing scheme (with
multiple outputs) is an efficient protocol (SIH, RIH) where both parties receive
common inputs (1q, 1k), SIH receives a private input y ∈ {0, 1}q, with the common
output being a circuit C : {0, 1}k → {0, 1}q and the private output of SIH being
a string z ∈ {0, 1}k. The protocol satisfies the following properties:

Correctness. For all R∗ and all y ∈ {0, 1}q, let C, z be the
common and private output of SIH in the protocol (SIH, R∗)(1q, 1k). Then,
C(z) = y.

Perfectly Hiding. For all R∗, (V, Z) is distributed identically to
(V, Uk), where V = viewR∗(SIH(Uq, ), R∗).
Computationally Binding. There exists an oracle PPT A such that
for every S∗ and any relation W , letting C, ((x0, z0), (x1, z1) be the
common and private output of SIH in the protocol (SIH, R∗)(1q, 1k), if
it holds that

Pr[(x0, C(z0)) ∈ W ∧ (x1, C(z1)) ∈ W ∧ z0 �= z1] > ε,

where the above probability is over the coin tosses of RIH and S∗, then
we have that

Pr
y∈{0,1}q

[(AS
∗
(y, 1q, 1k, ε), y) ∈ W ] > 2−k · (ε/q)O(1).
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Nguyen et al. [nov06] presented a protocol satisfying the above definition with
q − k rounds, obtained by ending the novy protocol k − 1 rounds earlier. The
protocol is very simple: the receiver chooses q − k linearly independent vectors
v1, . . . , vk over {0, 1}q. In round i, the receiver sends vi and the sender responds
with bit-wise dot product vi ·y. We may reduce the round complexity by a factor
of O(log q) by having the receiver send a pairwise independent hash function hi :
{0, 1}q → {0, 1}O(log q) in round i and the sender responding with hi(y) [hr06a].
Note that the sender is deterministic, and the protocol is public-coin. Our lower
bound shows that using a randomized sender or a private-coin protocol or q-
wise independent hash functions will not further improve the round complexity
(beyond constant factors).

Returning to the above definition, note that it refers to general relations W
that may not be polynomial-time computable, and it does not give A oracle
access to the relation W , which strengthens the security guarantee of the [nov06]
protocol. Our lower bound holds even if A has oracle access to the relation W ,
which is a weaker guarantee and thus a stronger lower bound. We also note that
we may use the techniques in [ltw05] to show that this weaker guarantee also
implies binding for static sets, thereby strengthening an observation made in
[nov06].

Naor et al. [novy98] showed that any computational interactive hashing
scheme (SIH, RIH) yields a fully black-box construction of a perfectly hiding
commitment scheme (S, R) from any one-way permutation π with essentially
the same round complexity.3 The construction is as follows:

Commit. To commit to a bit b, S chooses a random σ ∈ {0, 1}n,
where n is the security parameter. Then, S and R run as a sub-protocol
(SIH(π(σ), RIH)(1n, 11), playing the roles SIH, RIH respectively. Let C, z
be the common and private outputs of S in the sub-protocol. S then
sends b′ = b ⊕ z.

Decommit. S sends (b, σ). R accepts and outputs b if C(b⊕b′) = π(σ),
and rejects otherwise.

We stress that in the construction, S queries π exactly once, to compute π(σ),
and does not need σ again except for decommitment.

As noted in the introduction, Damg̊ard [d93] showed how any computational
interactive hashing scheme can be used to transform constant-round honest-
verifier public-coin zero-knowledge arguments into cheating-verifier public-coin
zero-knowledge arguments unconditionally. The transformation may also be
made more efficient by exploiting interactive hashing with multiple outputs so
that a single application of interactive hashing yields a cheating-verifier zero-
knowledge argument with soundness to 1/ poly(n) (instead of 1/2).

3 More precisely, Naor et al. showed how to construct a perfectly hiding commitment
scheme from any one-way permutation using the interactive hashing protocol in
[ovy93]. Implicit in the proof of correctness and security is a proof that the [ovy93]
protocol satisfies Definition 5 for k = 1.
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3.3 π-Oblivious Constructions

We describe the syntactic constraints on the class of fully black-box constructions
for which we prove a lower bound. We consider constructions wherein the sender
evaluates the one-way permutation only at the start of the commit phase, and
does so on independent random inputs. The sender then uses the values (and not
the inputs to the permutation), its input bit and possibly additional randomness
in the rest of the commit phase. To decommit, the sender sends its input bit and
its random tape, including the inputs to the permutation. We allow the receiver
to query the permutation at any point in the protocol.

More formally,

Definition 6. A fully black-box construction (S, R, M) of a statistically hiding
commitments from one-way permutations is π-oblivious if there exists some
interactive PPT Sob such that for any permutation π on {0, 1}n, to commit to a
bit b with coin tosses σ, S parses σ = (z, σ̃), where z = (z1, . . . , zt) ∈ ({0, 1}n)t,
and proceeds according to Sob(b, σ′), where σ′ = (z′, σ̃) and z′ = π(z) =
(π(z1), . . . , π(zt)). In particular, Sob never queries π. To decommit, S sends a
single message (b, σ).

Clearly, the novy construction is a π-oblivious; there, t = 1 and Sob = SIH gets
input π(z1), and σ̃ is the empty string since SIH is deterministic. Other candidates
of π-oblivious constructions include variants of the novy construction wherein
we run n2 copies of some variant of interactive hashing in parallel either on the
same t = 1 input π(z1) or on t = n2 independent inputs π(z1), . . . , π(zt), or a
single copy of interactive hashing on the tn-bit string π(z1), . . . , π(zt).

On the other hand, the construction of statistically hiding commitments from
one-way functions in [hr06b] is not π-oblivious. This is because the sender will
query π at some point z1 and send both h1(π(z1)) and h2(z1) during the commit
phase, for some hash functions h1, h2.

4 Main Result: Lower Bound for Commitments

Now, we state and prove our main result:

Theorem 1. Any π-oblivious fully black-box construction of a statistically
hiding commitment scheme from one-way permutations yields a commitment
scheme with Ω( n

log n ) rounds. This holds even if the hiding property for commit-
ment scheme only holds for the honest receiver. More generally, if we assume
that permutation is s-secure one-way, then we have an Ω( n

log s ) lower bound.

Our lower bound is tight:

Theorem 2 ([novy98, ks06, hr06a]). There is a π-oblivious fully black-box
construction of a perfectly hiding commitment scheme from s-secure one-way
permutations with O( n

log s) rounds.
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4.1 Proof Intuition

First, we point out at a high level how we exploit the fact that the construction
is fully black-box. We use as the one-way permutation the one guaranteed by
Lemma 1, which remains one-way even under a “chosen challenge” attack. This
means that in order for the reduction M to successfully invert a challenge y,
it must get a cheating sender S∗ to invert π on y itself. However, M is only
given black-box access to S∗, so it is limited to sending S∗ different inputs and
possibly rewinding S∗.

For concreteness, consider the novy construction of commitment schemes
from one-way permutation using computational interactive hashing as a sub-
protocol. When trying to invert a challenge y, the reduction M tries to get the
sender to generate a commitment that is consistent with her input to interactive
hashing protocol being y (otherwise, the decommitments will not help to invert
y). At each round of commit phase, the honest SIH reveals some information
about her input π(σ). At the end of the commit phase, she should have revealed
n − 1 bits of information about her input (since we’re using interactive hashing
to choose 2 strings). We claim, at each round, she can only reveal O(log n) bits
of information about her input, which yields a Ω(n/ log n) lower bound on the
number of rounds. Suppose there is some round where SIH reveals ω(log n) bits
of information. This means that there are nω(1) inputs to the interactive hashing
protocol that are consistent with the partial transcript. Consider a cheating
sender that at each round samples a random input y′ that is consistent with the
partial transcript and responds as though her input to the interactive hashing
protocol is y′, then the probability that the reduction observes a transcript that
is consistent with y is negligible. It is important that SIH does not query π,
so that we may sample consistent partial transcripts using a PSPACE oracle. If
SIH is deterministic, it is straight-forward to quantify “information” about the
sender’s input and turn this outline into a proof.

For general π-oblivious constructions, we construct the cheating sender in
essentially the same way: at each round (for both the commit and reveal phases),
the sender samples a random (b, σ′) that is consistent with the partial transcript
and responds as though her input to Sob is (b, σ′) (where σ′ = (z′, σ̃)). The
main technical difficulty in the analysis is in quantifying “information” about the
sender’s input. Indeed, how much information a message reveals about z depends
on both b and σ̃. Also, for a fixed partial transcript, the set (and number) of z′’s
that are consistent with the given transcript may vary with different choices of
b, σ̃.

4.2 Proof of Theorem 1

We may assume that the commitment scheme (S, R) runs in r rounds, with R
going first. Let T, c be the polynomial and constant guaranteed by the fully
black-box reduction. We will show that r � n−log t

8c log T = Ω( n
log n ). Suppose

otherwise, and take π to be the permutation guaranteed by Lemma 1.
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Conventions regarding M . Recall that the reduction M has oracle access
to a sender S∗ with which it inverts the permutation π. It can query S∗ on
sequences of messages of the form qi = (q1, . . . , qi) corresponding to the first i
messages from R in the commit phase, or a message of the form (qr , decommit),
requesting for a decommit to a previous commitment. M runs for at most T steps,
and therefore makes at most T queries to S∗. In addition, we may adopt wlog

the following simplifying assumptions on M by modifying M appropriately (as
is the case with lower bounds for black-box zero-knowledge [gk96b]):

1. It never asks the same query twice.
2. If M queries the oracle with qi, it has queried the oracle with all proper

prefixes of qi (namely all sequences of the form (q1, . . . , qj) for j ≤ i.)

Notations. We introduce some notations:

– Sob(b, σ′,qi) denotes the Sob’s response with input b, σ′ and and the first i
messages from R being qi.

– Given a partial transcript (qi,ai) = (q1, . . . , qi, a1, . . . , ai) and y ∈ {0, 1}n,
Con(qi,ai) is the set of inputs (b, σ′) to Sob that would yield the transcript
(qi,ai); formally,

Con(qi,ai) = {(b, σ′) | Sob(b, σ′, q1, . . . , qj) = aj , ∀j = 1, 2, . . . , i}

and
Cony(qi,ai) = {(b, z′, σ̃) ∈ Con(qi,ai) | ∃j : z′j = y}

In particular, |Cony(ε)|/|Con(ε)| = 1 − (1 − 2−n)t ≤ t2−n, where ε is the
empty string (transcript).

Sender strategy S∗. Consider the following sender strategy S∗:

– Upon receiving a query of the form (qi−1, qi), look up previous replies ai−1.
(For i = 1, (qi−1,ai−1) = ε.) Sample uniformly at random4 (b, σ′) from the
set Con(qi−1,ai−1), and respond with ai = Sob(b, σ′,qi).

– Upon receiving a query of the form (qr , decommit), look up previous replies
ar. Sample uniformly and independently at random (b0, z0, σ̃0), (b1, z1, σ̃1)
from the set Con(qr ,ar), and send (b0, π

−1(z0), σ̃0), (b1, π
−1(z1), σ̃1).

Note that in an interaction with an honest receiver R, S∗ breaks the commitment
with probability 1/2 − neg(n) > 1/4. This is because the hiding property of the
commitment scheme guarantees that a random decommitment is almost equally
likely to be a 0 and a 1. Hence,

Pr
y∈{0,1}n

[
MS∗,π(y) = π−1(y)

]
>

(
1

4T

)c

4 S∗ can be made stateless by using a rT -wise independent family of hash functions,
namely apply a hash function to the queries and use the output as randomness for
uniform sampling [gk96b].
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Analysis. Note that a PSPACE oracle suffices for simulating S∗ in the commit
phase, whereas a PSPACE oracle and a π−1 oracle suffice in the reveal phase. Fix
an input y to M . We want to show that with high probability, we may efficiently
simulate the the computation MS∗,π(y) given oracle access to PSPACE, π, π−1

�=y .
We say that a partial transcript (qi, ai) is heavy if

|Cony(qi,ai)|
|Con(qi,ai)|

> γr+1−i, where γ =
( t

2n

) 1
r+1

;

otherwise, we say that (qi,ai) is light. In particular, ε is light, since |Cony(ε)|
|Con(ε)| ≤

γr+1. Informally, the quantity |Cony(·)|
|Con(·)| applied to a transcript (qi, ai) is the

density of “favorable” outcomes for the reduction M , wherein an outcome is
favorable if in the decommitment, S∗ inverts π on y. We want to show that with
high probability, every transcript generated by S∗ (in its interaction with M) is
light, that is, the density of favorable outcomes is low.

Consider the queries M makes to S∗:
– A commit phase query of the form qi = (qi−1, qi). Let ai−1 be S∗’s answers

to the prefixes. Observe that

|Cony(qi−1,ai−1)|
|Con(qi−1,ai−1)|

=
∑

ai

|Con(qi,ai−1, ai)|
|Con(qi−1, ai−1)|

· |Cony(qi, ai−1, ai)|
|Con(qi, ai−1, ai)|

=
∑

ai

Pr[S∗(qi) = ai] ·
|Cony(qi, ai−1, ai|
|Con(qi, ai−1, ai)|

> Pr[S∗(qi) → ai; (qi, ai−1, ai) is heavy] · γr+1−i

This implies

Pr[S∗(qi) → ai; (qi,ai−1, ai) is heavy | (qi−1, ai−1) is light] < γ

– A reveal phase query of the form (qr, decommit). Let ar be S∗’s answers to
qr. If (qr ,ar) is light, that is, |Cony(qr,ar)|

|Con(qr,ar)| ≤ γ, then with probability 1−2γ,
we can generate two independent random decommitments without inverting
π on y.

Applying a union bound over that rT commit phase queries that M makes to
S∗, we have: with probability at least 1 − rTγ, in every reveal phase query
(qr, decommit) that M makes to S∗, the transcript (qr ,ar) is light. Taking
another union bound, we deduce that with probability 1 − (r + 2)Tγ, we may
efficiently simulate MS∗,π on input y with oracle access to PSPACE, π, π−1

�=y .
Hence, there is an oracle PPT M̃ running in time poly(T, n) such that

Pr
y∈{0,1}n

[
M̃PSPACE,π,π−1

�=y(y) = π−1(y)
]

>

(
1

4T

)c

− (r + 2)Tγ >
1
2

(
1

4T

)c

a contradiction to π being one-way. �
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4.3 Lower Bounds for Interactive Hashing

Using the connection between commitment schemes and computational interac-
tive hashing described in Section 3.2, we derive a tight lower bound for the latter
[nov06, hr06a]:

Theorem 3. Any computational interactive hashing scheme on common input
(1n, 1k) has Ω( n

log n ) rounds, for k = o(1).

We believe that our techniques and analysis extend readily to yield lower bounds
on efficiency of the security reduction for computational interactive hashing (an
open problem posed in [hr06a]) and the round complexity of random selection
[dgw95, dgow95, gsv98]. We will explore these extensions in the full version
of this paper.
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Abstract. We address the question of whether or not semantically se-
cure public-key encryption primitives imply the existence of chosen ci-
phertext attack (CCA) secure primitives. We show a black-box separa-
tion, following the methodology introduced by Impagliazzo and Rudich
[23], for a large non-trivial class of constructions. In particular, we show
that if the proposed CCA construction’s decryption algorithm does not
query the semantically secure primitive’s encryption algorithm, then the
proposed construction cannot be CCA secure.

1 Introduction

Public-key encryption primitives (PKEP) are used in numerous cryptographic
protocols. Two frequently used definitions of security for PKEP in the crypto-
graphic literature are semantic and chosen ciphertext attack security. Semantic
security (SS) was introduced by Goldwasser and Micali [21] and guarantees that
encrypted messages sent over a network are confidential to passive adversaries
that are limited to eavesdropping (we provide formal definitions of this and the
following notions in the next section). Unfortunately, in practice most adver-
saries are not limited to passive eavesdropping, and they can actively control
and manipulate network traffic. This is especially true on the modern Internet,
where it is particularly easy to manipulate traffic. Therefore, a strengthened se-
curity definition was needed. Naor and Yung [29] introduced Chosen Ciphertext
Attack (CCA1) security, in which the adversary is allowed temporary access to
a decryption oracle prior to the adversary’s attempt to decrypt a message of
interest. While this definition is substantially stronger than that of semantic se-
curity, it is still not strong enough for many network purposes. Therefore, an even
stronger definition of CCA security was introduced by Rackoff and Simon [31]
that gives the adversary continuous access to a deprecated decryption oracle that
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is restricted only in that it will not decrypt ciphertexts of direct interest to the
adversary. This security is called CCA2 (or adaptive chosen ciphertext attack)
security, and is the security standard that most PKEP need to meet in many
of today’s cryptographic protocols. The first CCA2 secure PKEP was given by
Dolev, Dwork, and Naor [11], followed by a large body of research on developing
such protocols and understanding the security notion (c.f. [35,10,27,7,12]).

There are many known constructions of SS PKEPs based on general crypto-
graphic assumptions such as trapdoor predicates[21], trapdoor functions[20,21],
and trapdoor permutations[9]. In addition, these constructions are
black-box and are relatively efficient. In contrast, all known constructions of
CCA1 [29] and CCA2 [11,27,35] secure PKEPs from general cryptographic as-
sumptions are based on only the existence of enhanced trapdoor permutations
and are both non-black-box and inefficient due to their use of ZK or WI proofs.

In this paper we address the question of whether the weaker security require-
ment (semantic security) for public-key encryption, is in fact equivalent to the
stronger requirement (chosen ciphertext attack security). That is, can any SS
PKEP be used (without any further assumptions) to construct a CCA PKEP?

This is a natural question which is one of major open problems in cryptog-
raphy in the last several years. To the best of our knowledge, the first explicit
published posing of this as a problem is by Bellare et al. [4], while the most
recent one is by Pass, shelat, and Vaikuntanathan [30]. In fact, the latter work
addresses a similar problem, and establishes a reduction from any SS PKEP to
non-malleable SS PKEP, without any further assumptions (and in a non-black
box way). Non-malleable PKEP is a somewhat weaker security requirement than
that of CCA2 (in particular, it is equivalent [8] to a definition where the adver-
sary is allowed a single, parallel CCA2 query). As the authors of [30] discuss,
their result does not generalize to a construction for general CCA security, which
remains an interesting open question.

In sum, the current state of knowledge regarding the question we study, is
that there is a construction of CCA PKEP from SS PKEP with additional as-
sumptions , as well as a (non-black-box) construction of (the weaker) NM PKEP
from SS PKEP without any further assumptions. It is not known whether there
is an equivalence (whether through a black-box or a non-black-box construction)
between SS PKEP and CCA PKEP.

As will be explained below, we show a black-box separation between semantic
and CCA1 security for a large interesting class of constructions. This can be
interpreted as evidence toward a negative answer to our question, or as guidance
toward a positive answer (a reduction).

1.1 Black-Box Reductions and Separations

The existence of most modern cryptographic primitives implies P �= NP , and
thus is currently too difficult to prove unconditionally. Instead, cryptographers
put a great deal of effort into constructing more complex primitives from simpler
ones that are assumed to exist. In such constructions (reductions), if we assume
primitives of type P exist and wish to show that a primitive of type Q exists,
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then we provide a construction C such that C(MP ) is an implementation of Q
whenever MP is an implementation of P . This is proved by showing that any
supposed adversary AQ breaking C(MP ) as an implementation of Q, can be
used for an adversary algorithm AP breaking MP as an implementation of P .

However, almost all constructions in modern cryptography are black-box (for
example, the equivalence of one-way functions, weak one-way functions, PRNG’s,
PRFG’s, PRPG’s and digital signatures [19,22,26,28,33].) This means, intu-
itively,1 that the construction C of Q uses the implementation MP of P as
a black box (or oracle), without using the algorithmic description (actual code)
of the construction. Moreover, the proof constructs the adversary AP which
uses the adversary AQ in a black-box manner (again, using it just as an oracle,
without looking at its actual code).

While it is not clear how to prove a negative result, namely that there exist
no reduction of primitive Q to primitive P , Impagliazzo and Rudich [23] initi-
ated a methodology for proving that no black-box reductions exist. Specifically,
their methodology involved proving that no relativizing reduction exists (note
that black box reductions must relativize). This is done by exhibiting an ora-
cle relative to which an implementation of P exists, while an implementation
of Q does not.2 Using this methodology, [23] proved a black-box separation be-
tween key agreement and one-way functions. A line of subsequent works used
this methodology or new variants to show black-box separations among various
other cryptographic primitives (c.f. [34,6,36,24,16,17]), and to show that black-
box constructions suffer from inherent efficiency limitations [25,14,15].

Non-Black-Box Constructions. We note that while the vast majority of con-
structions in cryptography are black-box, there are several results that are non-
black-box (importantly, all known constructions of CCA secure PKEP from
generic assumption are non-black-box). Many of these constructions are based
on using Zero-Knowledge (ZK) or Witness Indistinguishable (WI) proofs (both
interactive and non-interactive) in the construction.3 These proofs are often used
1 There are actually several subtleties and different types of black-box reductions

of varying strengths, c.f. [32]. However, this intuitive description suffices for our
presentation purposes here.

2 Even here it’s not immediately clear how to make this approach work, since the
construction and its proof of security could always ignore the presence of the oracle
and independently realize the primitive Q. To address this problem, Impagliazzo and
Rudich [23] give a model in which one can prove separations modulo some major
results in complexity theory. In their model they begin by assuming that P = NP,
and adding an oracle O relative to which P exists and Q does not, implying that a
black-box reduction would yield a proof that P �= NP . Subsequent work, starting
with Simon [36], used a stronger approach that embeds a PSPACE complete portion
into the oracle O before proving that relative to O P exists but Q does not. This
yields an unconditional proof that no relativizing (and thus no black-box) reductions
exist. Other subsequent work (e.g. [17]) relaxed this approach to obtain a weaker
black-box separation methodology.

3 Perhaps the only exception is the works of Barak [2,3] who has shown the existence of
some protocols that are non-black-box, and that do not make use of ZK techniques.
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to prove some property about the circuit description of a cryptographic primi-
tive, and thus require the primitive to have a circuit description, and so are not
black-box. Examples of such constructions include the development of PKEP
that are secure against chosen ciphertext attacks [29,35], assuming (enhanced)
trapdoor permutations exist4. Unfortunately, the protocols that perform such
proofs are invariably far too inefficient for practical deployment of the resulting
cryptographic primitive (although, they are still polynomial time, they are of
a degree that is too large to be practical), thus further justifying the quest for
black-box constructions.

The Meaning of Black-Box Separations in Cryptography and Our Scenario. In
general, a black-box separation can be interpreted as evidence that a reduction of
Q to P is unlikely using current techniques, or at least that it is unlikely to be effi-
cient (as black-box reductions seem to be much more efficient than non-black-box
ones). Such results may also be viewed as guiding which approaches to take when
trying to actually prove a reduction exists. We refer the reader to the previous
literature on black-box separations, e.g. [23,32], for a more in-depth discussion of
the meaning and importance of black-box separations in cryptography.

In the particular scenario of the black-box constructions of CCA secure PKEP
from SS secure ones, we can view a separation as pointing to several possibilities:

– The need to develop some form of appropriate ZK or WI proofs based on
semantic security (and such a direction is attempted in [30]), but such con-
structions are still likely to be inefficient.

– The need to develop more non-black-box techniques that are more efficient
and applicable to the scenario of public-key encryption.

– In the failure of the latter two points, any construction of a CCA secure
primitive derived solely from the hardness of a SS secure PKEP will be
inefficient, or need to take into account specifics of the assumption that
are not generic. For instance, any CCA cryptosystem based on SS PKEP
proposed by Ajtai and Dwork [1], that results from the assumed hardness
of a lattice problem, will either be too inefficient to be practically useful
due to the need to use inefficient non-black-box techniques, or will require
a unique construction whose proof of security relies on specific properties of
the lattice assumption. This direction might include finding efficient ZK or
WI proofs based on the specific hardness assumption under consideration.

1.2 Our Contributions

We prove the following:

Theorem (informal statement): There exists no black box reduction that
from a given SS PKEP (g, e, d) constructs a CCA1 secure scheme

4 Both of these results actually only need the requirement that certain types of non-
interactive zero-knowledge proofs exist, and these proofs are known to exist relative
to enhanced trapdoor permutations.
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(Gg,e,d, Eg,e,d, Dg,d) We call such reductions (where the new primitive’s decryp-
tion algorithm does not query the underlying primitive’s encryption algorithm)
shielding reductions. Our result, then, rules out any shielding black box reduc-
tions of CCA1 PKEP to SS PKEP. Consequently, the only possible constructions
of a CCA1 (and thus also of CCA2) secure PKEP from a SS PKEP must either
be non-black-box, or have its decryption algorithm use the encryption algorithm
of the underlying scheme in an essential way.

Our Model and Proof Technique. The proof essentially follows the IR [23]
methodology, showing that there is no (shielding) black-box reduction. This
is done by introducing an oracle O relative to which there exists a SS PKEP
O = (g, e,d), but no CCA secure PKEP (GO,EO,Dg,d) exists relative to O.5

Our oracle O includes (g, e,d), where g, e are random functions. If there were
no other parts to the oracle, the proof of semantic security would be imme-
diate, but then O would in fact be CCA secure as well. Thus, we add more
“weakening” components to O, which make the proof of semantic security a
little harder but still relatively simple, but make O and any other candidate
scheme (GO,EO,Dg,d) vulnerable to CCA1 attacks. The latter is the technical
heart of the proof, which is quite complex. We chose to expand on the intuition
and main ideas of the proof. The full proof with all technical detail appears
at [18].

For clarity of presentation, we start by thinking of all participants as being
computationally unlimited, but restricted to making a polynomial number of
polynomial sized oracle queries to the oracle O. This already gives an inter-
esting result, and encompasses all the main issues in the proof. Because the
constructed adversary in the proof only uses more than a polynomial amount
of time (i.e. its computationally unlimited powers) to search for and randomly
choose efficiently verifiable strings, it is therefore possible to remove the require-
ment of computationally unlimited parties and replace it with the ability of
randomly choosing NP witnesses. The proof can then be extended to support
computationally bounded parties, by adding a PSPACE complete component to
the oracle (or assuming P = NP), achieving the standard separation model of
[23] and most subsequent work.

It may seem that if a construction of a CCA secure scheme (G,E,D) from
any SS scheme (g, e,d) exists, it would be unnatural for D to call e. After all,
e is intended to be used by parties that do not require knowledge of any secret
keys, thus using it in an essential way for a decryption algorithm seems counter
intuitive.

However, we show that relative to our oracle O, there is in fact a CCA2 se-
cure scheme, where D uses e (namely a non-shielding black-box construction).

5 This does not exactly follow the IR methodology, because it does not rule out any rel-
ativizing reductions (as the new primitive’s (G, E,D) algorithms do not have access
to the entire oracle O, only to the underlying primitive’s algorithms). Nonetheless,
it rules out all (shielding) black box reductions.
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The basic idea behind this scheme is the following (full details can be found
in the full version [18]). To encrypt a message bit b with a random string r,
first encrypt b using e with a public-key pk (and the randomness provided by
the string r), and then encrypt all the individual bits of r as well using the
same public-key, using new random strings derived deterministically from r (for
example r + 1, r + 2, . . .).

This CCA2 secure (relative to our oracle) primitive implies that the shielding
limitation on the decryption algorithm in our theorem is inherent for our oracle
(and not just a gap in our proof analysis). On the other hand, note that this
scheme is artificial, and makes heavy use of the fact that e is a random function,
by using new random strings deterministically derived from r (this technique is
legitimate when the encryption function is truly random, but does not work in
general). In fact, based on standard hardness assumptions, it is easy to show
that there exist semantically secure PKEP relative to which the above construc-
tion does not achieve CCA2 security. Similarly, the construction of Fujisaki and
Okamoto [13], which is a black-box construction of CCA PKEP from SS PKEP
in the random oracle model, is also non-shielding, but this again heavily relies
on the random oracle property.

This leaves open the possibility of using the weaker form of black-box sep-
aration of [17] to separate CCA1 security from semantic security without any
restrictions on the black box reduction.6

We feel that closing this gap and answering whether a black box reduction
where the CCA decryption algorithm does invoke the SS encryption algorithm
exists, is a very interesting and non-trivial problem for future research. While
our work does not completely answer the question of whether CCA secure PKEP
can be constructed from SS ones without any further assumptions, we do make
significant progress toward that direction.

Organization. In Section 2 we formally define the notion of PKEP and the
definitions of semantic, CCA1 and CCA2 security. This is followed in Section 3
by a description of our oracle construction, and a proof sketch that relative to
such oracles with overwhelming probability there is an SS PKEP. In Section 4
we present our separation theorem and sketch its proof. In Section 5 we provide
an example construction on which the various parts of the CCA1 attack are
demonstrated, and in Section 6 we briefly discuss why our result transfers to
the more tradition model that assumes P = NP or that includes a PSPACE
oracle.

6 In fact, using this weaker separation model of [17], we can show that there are no
black-box reductions of CCA1 to semantic security for another non-trivial class of
constructions, which includes the artificial example mentioned above. Specifically,
this is the class where D does invoke e in a certain way, where for every suc-
cessful decryption query d(sk , c) ∈ {0, 1} there is a corresponding invocation of
e(g(sk), ∗, ∗) = c (or very roughly, when D invokes e“in every possible opportu-
nity”). The difficult case for which we do not know how to prove a separation, is the
intermediate case where D (roughly) must invoke e in an essential way sometimes,
but not other times.
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2 Preliminaries and Definitions

2.1 Notation

Given a set S we use the notation x ∈R S to denote the process of choosing x
uniformly at random from S. Given a function f : N → R, we say it is negligible
if for all sufficiently large n ∈ N and for all c ∈ N: f(n) ≤ n−c.

2.2 Definitions of PKEPs

Below we give the formal definitions of PKEPs and the notions of semantic,
CCA1 and CCA2 security.

Definition 1 (PKEP). A public-key encryption primitive is a triple of
(G, E, D) of algorithms: G and E are probabilistic while D is deterministic.
Let p1 and p2 be polynomials specified by the PKEP.

– for every n, for every r ∈ {0, 1}n G(r) outputs a pair of keys (sk , pk).
– for every m ∈ {0, 1}p1(n), each string r′ ∈ {0, 1}p2(n) of coin tosses of

E and pair (sk , pk ) output by G on some input r ∈ {0, 1}n, it holds that
D(sk , E(pk , m, r′)) = b.

We note that while this definition requires correct decryption our proof can be
easily modified to allow for some error in decryption in any purported CCA1
construction.

Next, we give the definitions of semantic, CCA1 and CCA2 security. The
definitions are presented concurrently.

Definition 2. Let EP = (G, E, D) be a PKEP. Let A = (A1, A2) be a proba-
bilistic adversary that is described in two parts, each of which has access to an
oracle.

The PKEP EP is atk-secure, where atk ∈ {SS,CCA1,CCA2}, if there exists
a negligible function μ such that for every adversary A = (A1, A2) and for all
sufficiently large n ∈ N:

Pr
s∈R{0,1}n,(pk,sk)←G(s)

(x0,x1,σ)←A
O1
1 (pk)

b∈R{0,1};r∈R{0,1}p2(n)c←E(pk ,xb,r)

[AO2
2 (σ, c) = b] ≤ 1

2
+ μ(n),

where σ represents state information communicated between the parts of the
adversary, c represents a challenge ciphertext and :

– if atk=SS then O1 and O2 are the null oracle: the oracles give the empty
response, ⊥, to all queries;

– if atk=CCA1 then O1(·) = D(sk , ·), and O2 is the null oracle;
– if atk=CCA2 then O1(·) = D(sk , ·), and O2(·) = D(sk , ·) but modified on

the encryption challenge so that O2(c) = ⊥.
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In the case of SS and CCA1 security it is known that there are black-box reduc-
tions in both directions between PKEP that encrypt 1-bit messages and PKEP
that encrypt n-bit messages (for the direction going from encrypting 1 to n bits,
it is easy to see that the concatenation of independent encryptions works as a
construction). We make use of this fact in our result, and focus on primitives
that encrypt the message space of only one bit. Clearly the above definitions
simplify slightly in this case (i.e. x0 = 0 and x1 = 1).

3 The Oracle

We define an experiment that produces an oracle that effectively implements a
PKEP that is semantically secure but not CCA1 secure. We think of the oracle
as consisting of 5 sub-oracles (g, e,d,w,u), but this can easily be unified into one
oracle by appropriate coding. This security of the oracle if achieved by effectively
defining g, e to be appropriate random length increasing functions, and defining
d appropriately, so that it can appropriately decrypt these function. This easily
gives a secure PKEP, alas it is too secure (CCA2). Therefore, in order to weaken
its security a fourth component of the oracle w is added which given a public-
key pk for (g, e, d) will output an encrypted version of the secret-key. This is
of no use to the adversary in the SS definition of security, but makes it trivial
for a CCA adversary to break the primitive’s security. Finally, a fifth sub-oracle
u is added that gives the adversary the ability to determine the legitimacy of
public-keys and ciphertexts (i.e., those that could legitimately be output by g
and e); this sub-oracle is not necessary for the result, but substantially simplifies
an already technical proof.

Definition 3 (Oracle Distribution). Let O = (g, e,d,w,u) ← Υ denote an
oracle that is chosen randomly according to the distribution described below. For
each n ∈ N let:

g: {0, 1}n → {0, 1}3n be a random one-to-one function. (g generates public-keys
given secret-keys.)

e: {0, 1}3n×{0, 1}×{0, 1}n → {0, 1}3n where for every pk , the function e(pk , ·, ·)
is a uniformly at random selected one-to-one function. (e takes a public-key,
a message bit and a random string, and outputs a ciphertext.)

d: {0, 1}n × {0, 1}3n → {0, 1, ⊥} where for every sk , c and b set d(sk , c) = b if
there exists an r such that e(g(sk), b, r) = c; otherwise set d(sk , c) = ⊥. (d
takes a secret-key and ciphertext and outputs the corresponding decryption.)

w: {0, 1}3n × {0, 1}n → {0, 1}3n×n where for each pk and j set w(pk , j) = ⊥
if g−1(pk ) is undefined; otherwise, if g−1(pk ) = sk

defn
= (sk1, ..., skn), set

w(pk , j) = e(pk , sk1, rpk ,1,j), . . . , e(pk , skn, rpk ,n,j), where for 1 ≤ k ≤ n let
rpk ,k,j ∈R {0, 1}n. (w takes a public-key and an index as input, and outputs
a bit-by-bit encryption of the public-key’s corresponding secret-key.)

u: {0, 1}3n×{0, 1}3n → {�, ⊥} where for each pk and c set u(pk , c) = � if there
exists an sk , b and r such that g(sk) = pk and e(pk , b, r) = c; otherwise, set
u(pk , c) = ⊥. (u takes a public-key and a string, and determines if the string
corresponds to an encryption relative to the public-key.)
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Notation. In order to ease discussions of queries to an oracle O, we briefly
introduce some notation. Given an oracle O we often say that O = (O, R)
where O = (g, e,d) denotes the sub-oracles corresponding to the encryption
primitive, and R = (u,w) corresponds to the security weakening sub-oracle
w and the helper oracle u. We denote by (o, q) the query q to the sub-oracle
o ∈ {g, e,d,w,u} in O. For example, we denote by (g, sk) the query g(sk).
Similarly, we denote by the pair (< o, q >, r) the response r to the query q
made to the sub-oracle o. We call such a pair a query/response, and say a
query/response (< o, q >, r) is consistent with o if o(q) = r. In cases where
a query q = (v1, .., vi) is represented by several semantically different strings
v1, .., vi we denote by (< o, v1, .., vj−1, ∗, vj+1, ..vi >, r) the fact that there exists
a vj such that the oracle query o(v1, v2, ..., vi) was made and the response was
r. For example (< e, (pk , ∗, r) >, c) represents the notion that there exists a bit
b ∈ {0, 1} such that (< e, (pk , b, r) >, c) represents a query/response consistent
with the sub-oracle e.

The following theorem states that this oracle provides semantic security for
the PKEP (g, e,d).

Theorem 1. For every oracle adversary A limited to a polynomial number of
oracle queries, there exists a negligible function μ such that for all sufficiently
large n:

Pr
O←Υ

[
Pr[AO(pk , c) = b] ≤ 1/2 + μ(n)

]
≥ 1 − 1/2n/2

where the interior probability is over the choice of sk ∈R {0, 1}n, b ∈R {0, 1},
r ∈R {0, 1}n and any coin flips performed by A. Further, pk = g(sk ) and
c = e(pk , b, r).

Proof Sketch: If O consisted of only the sub-oracles g, e and d, then security
would follow directly from their probabilistic construction (in a way which is by
now standard, c.f. [23,16]). To ensure that w and u do not destroy this security,
it is shown that the adversary can effectively simulate the responses of these
oracles. An adversary can simulate the response to a query u(pk , c) by outputting
b if there has been a previous query/response (< e, pk , b, ∗ >, c), and otherwise
outputting ⊥. When b is output the simulation is clearly correct, and when
outputting ⊥ the simulation is correct with high probability, as the ability of the
adversary to find a value c such that e(pk , ∗, ∗)−1(c) �= ∅ is negligible (in n) due
to the random selection of e (again, following a standard argument). Similarly,
w(pk , i) can be simulated if there has previously been a query/response of the
form (< g, sk >, pk) by outputting a random encryption of sk , and otherwise
outputting ⊥.

It is not hard to verify that (g, e,d) is not secure against a CCA1 attack: The
adversary A1 takes the input pk , queries w(pk , 0) to get an encrypted version
of sk , and then uses its CCA1 access to the decryption oracle to decrypt sk .
sk is then passed to A2, which uses it to evaluate and output d(sk , c). In the
next section we show that in fact any shielding construction is vulnerable to a
(possibly much more complex) CCA1 attack.
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4 The Separation

4.1 A Large Class of Constructions: Shielding Reductions

In order to state a proper theorem that provably restricts the class of black-
box constructions capable of being CCA1 secure, this class needs to be formally
defined. Let O = (g, e,d) be a semantically secure PKEP. We will consider
constructions (GO,EO,DO) of PKEPs that are purportedly CCA1 secure. We
require that there exist constants ρ0, ρ1, ρ2 and ρ3 such that for all sufficiently
large n ∈ N we have:

– GO : {0, 1}n → {0, 1}nρ0 × {0, 1}nρ1 . (GO(S) = (SK ,PK ))
– EO : {0, 1}nρ1 × {0, 1} × {0, 1}nρ2 → {0, 1}nρ3 (EO(PK , M, R) = C)
– DO : {0, 1}nρ0 × {0, 1}nρ3 → {0, 1} ∪ {⊥}. (DO(SK , C) = M)

In the above definition we consider n the security parameter for the PKEP.
We make several assumptions without loss of generality: each of the algorithms
on inputs corresponding to security parameter n make exactly nq queries to O
of size at most ns, that no duplicate queries are made, that G never queries
d (it can predict the responses itself), and that the triple satisfies the PKEP
correctness property so long as O does (i.e., all ciphertexts decrypt properly,
but again this assumption can be weakened so that random encryptions decrypt
properly with some probability greater than 1/2.).

The important assumption we make is that D does not query e; this is for-
mally what we mean by a shielding construction. This assumption does result
in loss of generality and is what is responsible for the restriction in our sep-
aration of CCA1 and Semantic Security. This assumption is required in order
for latter hybridization experiments to go through. Further, as discussed in the
introduction, using the oracle given in this paper, it is possible to construct a
non-shielding CCA2 secure PKEP, implying that this assumption is necessary
for our oracle.

4.2 Separation Theorem

From this point on, fix an arbitrary PKEP construction (G,E,D) that satisfies
all of the assumptions of Section 4.1 (in particular, it is shielding).

Theorem 2. There exists a CCA1 adversary A = (A1, A2) for which it’s the
case that for all sufficiently large n:

A simple averaging argument then shows that for almost every selection of O,
the adversary breaks the CCA1 security of the PKEP. Combining this with a
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simple counting argument shows that there exists a specific oracle relative to
which O = (g, e,d) is semantically secure, but where (G,E,D) is not.

The main idea behind our oracle separation is as follows. since we want to
construct a CCA1 attack, where the adversary only has access to the decryption
oracle before it receives the challenge ciphertext, this access cannot be used to
learn something specific about the challenge. Therefore, the goal of our adversary
will be to use the decryption oracle access to learn enough information on the
secret key, that will allow it to later decrypt the challenge ciphertext with good
probability. This will be done by reconstructing a secret-key SK ′, corresponding
to its public-key, which will later be used with the decryption algorithm D to
decrypt the challenge ciphertext.

In our black-box model, where parties are computationally unlimited but lim-
ited in the number of oracle queries they can make, all security of the constructed
primitive (G,E,D) must stem from the oracle PKEP (g, e,d). Therefore, it
seems intuitive that the only secret and usable information that an execution
of GO(S) → (PK ,SK ) embeds in SK are the strings sk for which the corre-
sponding strings pk = g(sk) have been embedded in PK (It is known by the
work of Impagliazzo and Rudich [23] that the construction needs to use the
’trapdoorness’ of the oracle if it hopes to be secure, as a random-oracle —such
as that provided simply by using only the sub-oracles g and e— is insufficient
to achieve even semantic security). Therefore, our adversary’s goal will be to
retrieve such sk strings by using the decryption oracle. Clearly, the adversary
will additionally have to make use of the sub-oracle w, for without the presence
of this oracle, the scheme (g, e,d) is CCA1 secure. Once such embedded sk are
retrieved, the adversary must learn how to use them to actually construct an
appropriate SK ′ and decrypt the challenge ciphertext. Unfortunately, most of
these steps are non-trivial, and the adversary is not able to generate a key SK ′

that can decrypt every ciphertext. Instead, we focus on the ability of finding an
SK ′ that can be used to decrypt the average ciphertext generated by an exe-
cution of EO(PK , M, R) for randomly chosen M and R, as this is exactly the
distribution from which the adversary’s challenge ciphertext will come. Below
we give a very high-level description of the steps an adversary must perform to
decrypt a challenge ciphertext for the given PKEP.

The large probabilistic experiment (CCA1 attack) that the adversary will
perform is broken to the following three parts (given in more detail below).

– In the first part, the adversary uses its input PK to learn the relevant public
keys pk and ciphertexts c that are embedded in it.

– In the second part, the adversary’s goal is to learn secret keys sk corre-
sponding to the keys pk recovered in the first stage. Note that for each pk ,
access to w gives the adversary an encrypted version of sk (encrypted with
respect to e(pk , ∗, ∗)). The adversary also has access to a decryption oracle
D(SK , ∗, ∗). Thus, the goal in this stage will be to ’embed’ the encryptions
of sk into useful ciphertexts C that can be fed to the decryption oracle, and
whose decryptions can be translated back to decryptions of sk . We do not
necessarily achieve this goal for all the sk that correspond to pk collected in
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the first part. However, we achieve it for enough such sk that make the third
part go through.

– In the third part, the adversary uses the keys sk constructed in the second
part, in order to construct an SK ′ such that D(SK ′, C) decrypts correctly
with high probability for randomly chosen ciphertexts C.

The technical heart of the proof is in the second and third parts, where enough
sk should be retrieved to enable a good construction of SK ′. Below we provide
more technical detail on each of these parts, sketching some of the obstacles
encountered and their solutions. The experiment is then described in Section 5
for a specific PKEP construction example that demonstrates several different
cases in the proof.

A Caveat. We point out that the description here assumes that certain highly
unlikely probabilistic events never occur. Examples of such events are the adver-
sary making queries of the form d(sk , c) �= ⊥ when there has never previously
been a query of the form g(sk) = pk or a query e(pk , ∗, ∗) = c; or that estima-
tions of specific values retrieved through sampling deviate substantially from the
actual value they estimate. In the full version, these bad events are specified, and
their possibility of occurring is taken into account in the analysis. To simplify
presentation here, it is simply assumed they do not occur.

The Environment and the First Part of the Experiment: Learning
about PK . Define the environment that the adversary is operating in to consist
of the oracle O = (O, R) that was chosen by Υ in the probabilistic statement of
the theorem, as well as the seed S selected to generate the public- and secret-key
pair (PK ,SK ) = GO(S), where PK is given to the adversary, and access to the
decryption oracle DO(SK , ·) is initially given to the adversary. These are fixed
for the remainder of the description of all three parts.

The first part of the experiment learns some basic facts about the semanti-
cally secure PKEP O, and it learns which pk ∈ g({0, 1}∗) are ’embedded’ in the
public-key PK . The determination of these pk is done by sampling a large num-
ber of executions of EO(PK , M, R) for randomly chosen M and R and looking
for queries of the form (e, pk , ∗, ∗). If such queries are made, then it is reasonable
to assume that pk might be embedded into PK . Note there are two issues that
immediately arise here: first, there might be values of pk retrieved that have
been arrived at during the execution of E by the response to some query g(sk)
(rather than being embedded in PK). However, such values can easily by filtered
out by monitoring queries to g. The other issue is that there might very well be
pk embedded in PK that are never retrieved by this sampling process, but we
can safely ignore them, as the fact that they do not show up in this sampling
suggests that they are not used during most encryptions of EO(PK , M, R) for
randomly chosen M and R. Let KS be the set of public-keys pk retrieved in the
first part of the experiment.

The final thing done in this part of the experiment is that a set E of specific
encryptions output by e during the executions of E is created. This is done
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because some specific encryption c output by e may be consistently embedded
into encryptions C produced by E (i.e, this information is encoded into PK ).
Later, the decryption algorithm D(SK , ·) may check for the presence of the
embedding of c in C, and refuse to decrypt C if c is missing. Knowledge of such
c ∈ E will be necessary in the second and third parts of the experiment.

To summarize, at the end of the first stage the adversary has a list KS of
public keys pk and a list E of ciphertexts c (with respect to the system O =
(g, e,d)), that were encountered during a large number of random executions of
the encryption protocol EO(PK , ∗, ∗). Intuitively, KS corresponds to the public
keys pk embedded into PK , and E include ciphertexts embedded into PK .

The Second Part of the Experiment: Retrieving sk Embedded in SK .
In the second part of the experiment the adversary attempts to retrieve a subset
of g−1(KS ) to be used to later construct the alternate secret-key SK ′. Again,
the intuition is that the values in g−1(KS ) that are embedded in SK must be
responsible for the purported security of the primitive (G,E,D).

Note that for any pk ∈ KS , the adversary can query w(pk , 0) = (e1, ..., en),
where the response (e1, . . . , en) represents the bit-wise encryption of sk (with
respect to pk ). Thus, the adversary’s goal is to embed these bit encryptions ei

into ciphertexts C whose decryption (obtained from the decryption oracle) helps
decrypt ei to obtain sk . This is done using the following idea (presented in an
over simplified form).

Imagine that during the execution of a random encryption of the message M
made by EO(PK , M, R) there is a query made to e(pk, b, r) in order to encrypt
a bit b for a pk ∈ KS , but which has the property that when one replaces
the query’s response with a random encryption e(pk , 1 − b, ∗) of the bit 1 − b,
the resulting ciphertext C′ output by E will decrypt to something other than
M (we say that it decrypts improperly since M is not output); but when one
replace the query’s response with a random encryption e(pk , b, ∗) the resulting
ciphertext C′′ decrypts to M (respectively, we say it decrypts properly). Call
such a query e(pk , b, r) decisive with respect to pk . If we can find such decisive
queries, then the adversary can use the decryption oracle in conjunction with
the encryptions (e1, . . . , en) obtained from w, to retrieve sk = g−1(pk ). This is
done by re-executing E(PK , M, R) n times, where in the ith iteration it replaces
the response to the query e(pk , b, r) with ei. In the ith case call the output of E
Ci. If Ci decrypts to M (as discovered with the adversary’s decryption oracle),
then the adversary knows that the ith bit of sk is b and otherwise it is 1 − b.
Therefore, it can retrieve sk = g−1(pk ).

The question is how does the adversary find such decisive queries. There are
actually two issues here: how does the adversary know which pk have decisive
queries, and assuming it knows that a pk has decisive queries, which query
e(pk, ∗, ∗) made during a random encryption EO(PK , M, R) is decisive. Assume
for the moment that we know that with high probability over the choice of M and
R that there is (on average) a decisive query with respect to pk made during an
execution of EO(PK , M, R). The adversary can perform nq (the largest number
of queries made by E) hybridization experiments, where in the ith experiment a
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large number of encryptions E(PK , M ′, R′) are performed (for randomly chosen
M ′ and R′) but in each of these the first i responses to queries of the form
e(pk , b, ∗) are replaced with random encryptions of bits e(pk , b′, r′) (b′ and r′

randomly chosen), and the responses to the remainder of the queries e(pk , ∗, ∗)
are left unaltered. Since we have assumed that such a decisive query must exist,
then there will be an i < nq such that there is a significant increase in the
fraction of improper decryptions in the ith and the (i+1)th experiments. In this
case, we can think of the ith query of the form e(pk , ∗, ∗) as being decisive in an
execution of EO(PK , M, R). Of course this is only true on average, so we cannot
deduce the value of any bit of g−1(pk ) with a single call to the decryption oracle
using the decisive encryption. However, for each bit of sk , we can perform a
sampling experiment to retrieve it.

Note that it is the creation of these hybrid ciphertexts that requires us to
introduce the shielding restriction. If the construction were not shielding, there
is no guarantee that any of the hybrid ciphertexts would decrypt, and therefore
the experiment would be useless for retrieving keys. The reason is that, roughly
speaking, the reduction being shielding means that in the process of encrypting
E(PK , M, R), replacing one random encryption of e(pk , b, r) with another ran-
dom encryption e(pk , b, r′) of the same bit b, should not be noticeable to the
decryption algorithm D, and thus still result in a proper decryption (while re-
placing with an encryption of another bit may result in an improper decryption).

The above explanation assumes that the adversary already knows that a par-
ticular pk ∈ KS will have (on average) a decisive query during a random ex-
ecution of EO(PK , M, R). But this presents a serious challenge: how does the
adversary even know whether any pk has a decisive query, let alone figure out
which pk has one? And what to do about pk that do not have decisive queries?
In fact, it is possible that no individual pk has any decisive queries. Consider for
example a scheme E where the message is encrypted three times with respect to
three different public keys pk1, pk2, pk3, and the decryption algorithm D calls
d on each of them, and outputs the majority.7 Then, it is clear that for any
pk i, even if we replace all encryptions e(pk i, b, ∗) with arbitrary encryptions, the
final ciphertext will decrypt correctly, as long as encryptions with respect to the
other two public keys are unaltered.

We solve the above problems by adding a layer of an hybridization experiment
performed on the set of pk , where at each stage encryptions with respect to
all public keys up to the current one are replaced with random encryptions,
while other encryptions are executed correctly. Specifically, we consider two sets
of keys: a bad key set BKS and a good key set GKS . BKS contains pk that
are embedded in PK , but for which g−1(pk ) is unknown. Initially, this is set
to be the set KS . GKS contains those pk that were initially in BKS , but for
which sk = g−1(pk ) has been previously retrieved by the adversary. Initially,
GKS = ∅. Given BKS we perform the following hybridization experiments over
keys in BKS to find a decisive key pk , and then using the methodology described

7 A more detailed example, including this and several other parts demonstrating var-
ious aspects of the overall experiment, is presented in Section 5.



448 Y. Gertner, T. Malkin, and S. Myers

earlier to retrieve sk = g−1(pk ). We can then remove pk from BKS and insert it
in GKS . The hybridization experiment over BKS is then repeated until enough
secret-keys corresponding to decisive pk embedded into PK have been retrieved.

Suppose BKS = {pk1, ..., pk �}, then l hybridization experiments are per-
formed where in the ith experiment we sample the percentage of times a modified
execution of EO(PK , M, R) produces a ciphertext that decrypts properly, when
all queries of the form e(pkk, b, r) for (k ≤ i) are replaced with queries of random
encryptions e(pkk, b′, r′) for randomly chosen b′ and r′. Clearly in the zeroth ex-
periment, by the correctness property of the PKEP, all encryptions will properly
decrypt, and we expect that as we go through the experiments there will be some
experiment i, where the percentage of encryptions that decrypt properly drops
substantially. This is because we expect that some bits that E is using to encode
M are encoded in encryption e(pk , ∗, ∗) for pk ∈ BKS . If there is no such sub-
stantial drop in the percentage of proper decryptions by the final hybridization
experiment, then this intuitively corresponds to the case where enough sk that
are embedded in SK have been retrieved that are sufficient to construct an alter-
nate decryption key SK ′. Note that this does not mean that all of the embedded
sk have been retrieved, only that those that have will suffice to construct an SK ′

that can be used to decrypt an average ciphertext generated by PK .
To illustrate this, consider again the example mentioned above, where the

decryption algorithm outputs the majority of decryptions with respect to three
keys pk1, pk2, pk3. Here, the first hybridization experiment will identify pk2 as
having some decisive query j, and find sk2 = g−1(pk2) (by replacing encryptions
with respect to pk1, as well as the first j − 1 encryptions with respect to pk2,
with random encryptions; maintaining encryptions with respect to pk3, as well as
encryptions j+1 and on with respect to pk2 correctly, and replacing the j’th en-
cryption with respect to pk2 with the encrypted bit of sk2). It will then move pk2
to GKS and perform the hybridization experiment again on BKS = {pk1, pk3}
(where encryptions with respect to pk2 are now always done correctly). It will
identify pk3 as having a decisive query and find sk3 in a similar manner, ending
up with BKS = {pk1}, for which it will not succeed to retrieve a corresponding
sk1 (because once encryptions with respect to pk2, pk3 are performed correctly,
there is no decisive query for pk1). Nonetheless, having sk2, sk3 is sufficient to
decrypt the challenge ciphertexts.

Finally, we note that the hybridization experiments described above must
take into account the lists obtained in the first stage. In that stage the adver-
sary constructed a set of encryptions E that had the property that they might
be embedded into encryptions E(PK , M ′, R′) (for random M ′ and R′), and the
decryption algorithm D(SK , ·) checked for the presence of these embeddings.
Because of this, when performing the hybridization experiments that were pre-
viously described, it is essential that the response to a query e(pk, b, r) is replace
only if e(pk , b, r) �∈ E .

A More Formal Look. We now give a slightly more formal presentation of
the second part of the experiment, to give an idea of technicalities involved.
In Figure 1 pseudo-code is given for the second part of the experiment and
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for a helper function Ê, which is a modified version of the encryption algo-
rithm E. This encryption algorithm takes as additional arguments a set BKS
of bad-keys for which responses to encryption queries can be modified, a set E
of encryption queries that cannot be modified, and a series of 2nq ciphertexts
for each pk ∈ BKS , where cpk ,b

i is used to answer the ith oracle query of the
form e(pk , b, ∗) made by E, when pk ∈ BKS and (e, pk , b, r) /∈ E . By properly
modifying the input values to this series, hybridization experiments can easily be
performed. Recall that nq is, by assumption, the largest number of queries that
E makes. To aid future discussion, we say that the input c

pkj ,b

� corresponds to a
correct encrypted bit if c

pkj ,b

� = e(pk j , b, ∗), and otherwise it corresponds an in-
correct encrypted bit. The algorithm Ê is not called directly by the second part
of the experiment, rather a function called ApproxErrorRate(t,PK , ES,BKS)
is introduced to repeatedly call Ê on a distribution of inputs—which will be
specified momentarily— and returns an estimate of the probability that cipher-
texts from that distribution decrypt properly. This estimate is achieved by us-
ing the decryption oracle to determine the fraction of ciphertexts output by
Ê that decrypt properly. The distribution of inputs to Ê is specified by call-
ing Ê(PK , M, R,BKS , E , c′1, ..., c

′
t, ct+1, ..., c2|BKS |nq) where M and R are chosen

randomly, c′1, ..., c
′
t are encryptions of random-bits under the appropriate pk ’s,

and ct+1...c2|BKS |nq are encryptions of correct encrypted bits. Therefore, by call-
ing ApproxErrorRate with an increasing value of t we can perform a hybridization
experiment in the second part of the experiment.

To summarize, at the end of the second stage the adversary has a list GKS of
public keys (which is a subset of the list KS from the first stage), together with
a corresponding sk = g−1(pk ) for each pk in GKS . Intuitively, these g−1(GKS)
are the ’essential’ secret keys sk (with respect to the system O = (g, e, d)) which
are embedded into the secret key corresponding to PK and are used for proper
decryption (in the system (GO,EO,DO)).

The Third Part of the Experiment: Constructing SK ′. Next, we specify
how to use the secret-keys in g−1(GKS ) in order to construct a secret-key SK ′.
Given a specific example of a PKEP, this can often be a trivial task, but we
require a uniform procedure that is guaranteed to work for all possible construc-
tions that are considered by the statement of the theorem. Further, there is no
guarantee that GKS = KS , so there may very well be a secret-key sk embed-
ded into SK , for which g(sk) �∈ GKS . From the second part of the experiment
we know that g−1(GKS ) contains enough secret-keys embedded into SK to de-
crypt properly, but not necessarily those that are necessary to reconstruct SK .
For an example of the difficulty of constructing a uniform protocol for construct-
ing SK ′, consider two PKEP that completely ignore the oracle O, and therefore
fall into the theorem’s specification of acceptable constructions: an RSA based
and a Quadratic Residuosity based PKEP. In both cases there would be no sk
embedded in the secret-keys of either PKEP and so this should in theory be an
easy case, but based on the public-keys of each respective PKEP the adversary
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ÊO(PK , M, R, BKS, E, c
pk1,0
1 , ..., c

pk1,0
nq , c

pk1,1
1 , ..., c

pk1,1
nq , · · · , , c

pk|BKS|,1
1 , ..., c

pk|BKS|,1

nq )

∀ pk′ ∈ BKS, b′ ∈ {0, 1} set δpk′,b′ ← 0

Simulate Execution EO(PK , M, R)
On query (g, sk) reply with g(sk).
On query (d, sk, c) reply with d(sk, c).
On query (e, pk, b, r)

If pk /∈ KS or (e, pk, b, r) ∈ E reply with e(pk, b, r).
otherwise

δpk,b ← δpk,b + 1

reply with c
pk,b
δpk,b

Output result of simulation

Exp2(PK , KS, E)
(1) Let BKS ← KS
(2) Let GKS ← ∅
(3) Repeat |KS| times
(4) w ← 2|BKS|nq

(5) for t = 0 to w
(6) Let pt = ApproxErrorRate(t, PK , E, BKS)
(7) Δ ← {j| 1 ≤ j ≤ w and |pj − pj−1| > 1

nα6 } (computed gaps)

(8) If Δ = ∅ then Output (BKS, GKS) and FINISH EXPERIMENT
(9) � ← min Δ
(10) Let e(pkj , b, ∗) correspond to the correct encrypted bit of the �th ciphertext

input to Ê.
(11) ψ ← |pk|/3
(12) For each k (1 ≤ k ≤ ψ) set Dk ← ∅
(13) for z = 1 to n2α4
(14) (d1, ..., dψ) ← w(pk, z) (we consider z a binary string)
(15) For each k (1 ≤ k ≤ ψ) set Dk ← Dk ∪ {dk}
(16) for k = 1 to ψ

(17) πk ← ApproxErrorRate′(�, PK , E, BKS, Dk)
(18) If |πk − p�−1| ≥ 1/nα5 then skk ← 1 − b otherwise skk ← b

(19) Let sk = (sk1, ..., skψ)

(20) GKS ← GKS ∪ {(pk, sk)}
(21) BKS ← BKS \ {pk}

Fig. 1.

must generate corresponding secret-keys. To solve this problem, in order to find
corresponding secret-keys a massive search is used.

We make use of the unlimited computational power of the adversary and
have it enumerate all possible pairs of oracles O∗ generated by Υ and seeds S∗

that are consistent with our knowledge of O and SK , and create a set of Valid
Environments. Note that this step does not actually require the adversary to
query the oracle O, for it is simply enumerating all possible environments and
checking to see which are consistent. An oracle O∗ and seed S∗ are consistent if
GO

∗
(S∗) = (PK ,SK ∗) for some SK ∗, this execution of G queries g∗(sk ′) = pk

for each pk ∈ KS , and sk ′ = g−1(pk) for each pk ∈ GKS . Further, O∗ is consis-
tent with any queries and responses that have been made to O by the adversary,
and DO

∗
(SK ∗, ·) is consistent with any queries that have been made to the

decryption oracle DO(SK , ·).
Because of the random process Υ by which O was selected and the random

selection of S, each pair (O∗, S∗) in the set of Valid Environment is equally likely
to be the environment (O, S) that the adversary is actually in. Therefore, the
adversary uniformly at random selects one such pair (O′, S′), and lets SK ′ be the
reconstructed secret-key where GO

′
(S′) = (PK ,SK ′). At this point SK ′ contains

the secret-keys in g−1(GKS ), but while O and O′ agree on all of the queries that
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have previously been made by the adversary, they probably agree on little else.
Therefore, we consolidate the oracles O′ and O into a new oracle Ô. This is done
so that O and Ô agree on nearly all queries (and in particular any queries that
are likely to be made during calls to C = EO(PK , M, R) and DO(SK , C)), but
relative to which it is still the case that GÔ(S′) = (SK ′,PK ). This is achieved
by taking O and modifying so that it is consistent with any queries that would
have been made during the execution of GO′

(S′) = (SK ′,PK ) and DO′
(SK ′, C)

for every decryption C made by the adversary so far to the decryption oracle
DO(SK , ·).

Since O and Ô agree on nearly all queries, with high probability
EO(PK , M, R) = EÔ(PK , M, R) = C and therefore M = DÔ(SK ′, C) =
DO(SK , C). Therefore, if the adversary could execute DÔ(SK ′, ·) we’d be done,
and the adversary could break the CCA1 security of the PKEP with high prob-
ability, by simply decrypting the challenge ciphertext. Unfortunately, the adver-
sary cannot construct the oracle Ô with a polynomial number of queries to O.
It will instead simulate access to Ô using O and u. The largest problem in sim-
ulating Ô during an execution of DÔ(SK ′, C) is in simulating queries d̂(sk , c)
for ĝ(sk) = pk ∈ BKS , because e(pk , b, r) = ê(pk , b, r) = c for most b and r, but
most likely sk �= g−1(pk), and therefore d̂(sk , c) = b but d(sk , c) = ⊥. However,
it is exactly such queries whose responses were found not to be necessary for the
decryption algorithm, because pk ∈ BKS . Therefore, on such queries d̂(sk , c)
the adversary simply flips a coin and outputs the result as the response to the
query. This is where we use u to make sure that indeed a bit in {0, 1} should be
output, as opposed to ⊥. Using this simulation, DÔ(SK , C) is likely to decrypt
properly for an encryption EO(PK , M, R) for randomly chosen M and R, and
thus the adversary can decrypt its challenge ciphertext.

5 An Example

We consider an example of a simple (and artificial) PKEP construction to help
ground and clarify the different parts of the experiment. Fix n ∈ N. Define:

– GO(S): let S = (S0, ..., ..., S8), where each Si ∈ {0, 1}n. Query g(Si) = pk i

for each i, 0 ≤ i ≤ 6. Compute k1 = e(pk6, 0, S8), and outputs PK =
(pk0, .., pk5, pk6, S8) and SK = (sk0 = S0, ..., sk5 = S5, sk6 = S6, k1).

– EO(PK , M, R): let PK be as noted, M ∈ {0, 1} and R = (R0, ..., R6)
where each Ri ∈ {0, 1}n. Compute ci = e(pk i, M, Ri) for each 1 ≤ i ≤ 5.
Compute k1 = e(pk6, 0, S8). If R6 is the bit-string of all zeros, then query
e(pk0, M, R0) = c0 and output C = (0, k1, 03n, 03n, 03n, 03n, c0); otherwise,
output C = (1, k1, c1, c2, . . . , c5).

– DO(SK , C): Let C = (b, k′1, c1, c2, . . . , c5) where b ∈ {0, 1}, k′1 ∈ {0, 1}n and
each ci ∈ {0, 1}n. Let SK be as noted. If k′1 �= k1 output ⊥. Otherwise, if
d(sk6, k

′
1) �= 0 output ⊥. Otherwise, If b = 0, then output d(sk0, c0). Other-

wise, let Mi = d(sk i, ci) for each i ≤ 5, and output Majority(M1, ..., M5),
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Now consider a (PK, SK) generated by GO(S) as described above, and a CCA
adversary attempting break the security of the scheme (G,E,D) as prescribed
by our experiments.

In the first part of our experiment the adversary will perform a large number
of encryptions EO(PK, M, R) for randomly chosen M and R, and will observe
queries of the form e(pk i, ∗, ∗) made during such executions for 1 ≤ i ≤ 6, but
it is unlikely that queries e(pk0, ∗, ∗) are observed. Thus it is unlikely the ad-
versary will need pk0 to decrypt the challenge ciphertext and it can be ignored.
The adversary also will observe the query e(pk6, 0, S8) with response k1, and
note that it will have to ensure the key it later constructs is consistent with this
query/response.

In the second part of the experiment the adversary will attempt to determine
sk i for 1 ≤ i ≤ 6. This will be done by encrypting random messages by exe-
cuting EO(PK , M, R), but replacing responses of queries of the form e(pk i, b, r)
with responses to e(pk i, b

′, r′) where b′ and r′ are chosen randomly in a hy-
bridization experiment. In this case the hybridization is over the pk i. In such an
experiment, the resulting ciphertexts C′ will either decrypt to the appropriate
message M that was originally encrypted or it will not (note the adversary uses
the decryption oracle to check this).

In our toy example, randomizing only the responses to all queries epki
, i ∈

{1, 2}, will result in proper decryptions, as the Majority function in D acts as a
form of error-correcting code. However, when responses to all queries of the form
epki

, i ∈ {1, 2, 3}, are randomized, the result is occasional improper decryptions.
The occasional improper decryption allows the adversary to determine sk3. This
is because the oracle w will provide a number of random encryptions of sk3
that can injected into modified executions of EO(PK , M, R) as in the hybrid ex-
periment. By determining if the ciphertexts produced by these executions of E
decrypt properly the bits of sk3 can be retrieved. By the end of the second part
of the experiment the adversary will have retrieved sk i for 3 ≤ i ≤ 6. Note that
sk i, 0 ≤ i ≤ 2 will not be retrieved because of the error-correcting properties
of the Majority function in D. Still, this is sufficient to decrypt on average and
thus all the adversary will ask.

In the third part of the experiment the adversary must reconstruct the secret-
key. Since it does not know sk0, ..., sk2 it cannot reconstruct SK , but it can
construct an SK ′ that is satisfactory to decrypt the challenge ciphertext. From
observation it is clear that a secret-key of the form
SK ′ = (sk ′0, sk

′
1, sk

′
2, sk3, ..., sk6, k1) will decrypt the challenge ciphertext with

high probability, only possibly failing in the unlikely event that the first bit of
the challenge ciphertext is 0. The issue is automating the above construction.
In order to do so the adversary essentially searches through all oracle/seed pairs
(Ô, Ŝ) in which the oracles are consistent with everything the adversary knows
about O (i.e. g(sk i) = pk i for 3 ≤ i ≤ 6 and e(pk6, 0, S8) = k1) and that
GÔ(Ŝ) = (ŜK,PK ). Such a ŜK is then used by the adversary to decrypt its
challenge ciphertext.
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6 The Complexity Theoretic Statements

A quick review of the experiment the adversary performs shows that the only
situation in which the adversary uses more than a polynomial amount of com-
putation is when it must select uniformly at random an oracle and seed pair
(O′, S′) from the set of Valid Environments. It selects such oracles and seeds
based on them satisfying a polynomial number of local consistency constraints
that are efficiently verifiable. Further, once this is done almost all of the oracle
O′ is thrown out when the adversary consolidates O with O′. Therefore, the
process of randomly selecting an oracle and seed could alternately be thought
of as selecting an oracle ’stub’ with corresponding seeds, where the oracle stub
only specifies the oracle’s values on those queries that are necessary to satisfy
the constraints mentioned. Once such a stub had been selected, the oracle can be
randomly extended to a full oracle if needed without changing the distribution.
However, choosing such stubs can be thought of as uniformly at random select-
ing an NP witness. Bellare, Goldreich and Petrank [5] show that if P = NP
then one can efficiently and uniformly at random select NP-Witnesses. There-
fore, we can consider this result in the more traditional model of Impagliazzo
and Rudich[23], and state the theorem in the traditional computational model,
based on the assumption that P = NP . Alternatively, following the lead of Si-
mon [36], we can further embed a PSPACE oracle into our final oracle O. Since
PPSPACE = NPPSPACE we get a restriction on black-box result in the standard
computational model.
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Abstract. Assume that two distant parties, Alice and Bob, as well as
an adversary, Eve, have access to (quantum) systems prepared jointly
according to a tripartite state ρABE . In addition, Alice and Bob can
use local operations and authenticated public classical communication.
Their goal is to establish a key which is unknown to Eve. We initiate
the study of this scenario as a unification of two standard scenarios:
(i) key distillation (agreement) from classical correlations and (ii) key
distillation from pure tripartite quantum states.

Firstly, we obtain generalisations of fundamental results related to
scenarios (i) and (ii), including upper bounds on the key rate, i.e., the
number of key bits that can be extracted per copy of ρABE. Moreover,
based on an embedding of classical distributions into quantum states, we
are able to find new connections between protocols and quantities in the
standard scenarios (i) and (ii).

Secondly, we study specific properties of key distillation protocols. In
particular, we show that every protocol that makes use of pre-shared
key can be transformed into an equally efficient protocol which needs
no pre-shared key. This result is of practical significance as it applies
to quantum key distribution (QKD) protocols, but it also implies that
the key rate cannot be locked with information on Eve’s side. Finally,
we exhibit an arbitrarily large separation between the key rate in the
standard setting where Eve is equipped with quantum memory and the
key rate in a setting where Eve is only given classical memory. This shows
that assumptions on the nature of Eve’s memory are important in order
to determine the correct security threshold in QKD.

1 Introduction

Many cryptographic tasks such as message encryption or authentication rely
on secret keys,1 i.e., random strings only known to a restricted set of parties.
1 In the sequel, we will use the term key instead of secret key.
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In information-theoretic cryptography, where no assumptions on the adversary’s
resources2 are made, distributing keys between distant parties is impossible if
only public classical communication channels are available [1,2]. However, this
situation changes dramatically if the parties have access to additional devices
such as noisy channels (where also a wiretapper is subject to noise), a noisy
source of randomness, a quantum channel, or a pre-shared quantum state. As
shown in [2,3,4,5,6], these devices allow the secure distribution of keys.3

This work is concerned with information-theoretic key distillation from pre-
distributed noisy data. More precisely, we consider a situation where two distant
parties, Alice and Bob, have access to (not necessarily perfectly) correlated pieces
of (classical or quantum) information, which might be partially known to an
adversary, Eve. The goal of Alice and Bob is to distill virtually perfect key
bits from these data, using only an authentic (but otherwise insecure) classical
communication channel.

Generally speaking, key distillation is possible whenever Alice and Bob’s data
are sufficiently correlated and, at the same time, Eve’s uncertainty on these data
is sufficiently large. It is one of the goals of this paper to exhibit the properties
pre-shared data must have in order to allow key distillation.

In practical applications, the pre-distributed data might be obtained from real-
istic physical devices such as noisy (classical or quantum) channels or other sources
of randomness. Eve’s uncertainty on Alice and Bob’s data might then be imposed
by inevitable noise in the devices due to thermodynamic or quantum effects.

Quantum key distribution (QKD) can be seen as a special case of key distilla-
tion where the pre-shared data is generated using a quantum channel. The laws
of quantum physics imply that the random values held by one party, say Alice,
cannot at the same time be correlated with Bob and Eve. Hence, whenever Al-
ice and Bob’s values are strongly correlated (which can be checked easily) then
Eve’s uncertainty about them must inevitably (by the laws of quantum mechan-
ics) be large, hence, Alice and Bob can distil key. Because of this close relation
between key distillation and QKD, many of the results we give here will have
direct implications to QKD.

Furthermore, the theory of key distillation has nice parallels with the theory of
entanglement distillation, where the goal is to distil maximally entangled states
(also called singlets) from (a sequence of) bipartite quantum states. In fact, the
two scenarios have many properties in common. For example, there is a gap
between the key rate (i.e., the amount of key that can be distilled from some
given noisy data) and the key cost (the amount of key that is needed to simulate
the noisy data, using only public classical communication) [7]. This gap can be
seen as the classical analogue of a gap between distillable entanglement (the
amount of singlets that can be distilled from a given bipartite quantum state)
and entanglement cost (the amount of singlets needed to generate the state).

2 In this context, the term resources typically refers to computational power and
memory space.

3 In certain scenarios, including the one studied in this paper, an authentic classical
channel is needed in addition.
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1.1 Related Work

The first and basic instance of an information-theoretic key agreement scenario
is Wyner’s wiretap channel [8]. Here, Alice can send information via a noisy
classical channel to Bob. Eve, the eavesdropper, has access to a degraded version
of Bob’s information. Wyner has calculated the rate at which key generation
is possible if only Alice is allowed to send public classical messages to Bob.
Wyner’s work has later been generalised by Csiszár and Körner, relaxing the
restrictions on the type of information given to Eve [3]. Based on these ideas,
Maurer and Ahlswede and Csiszár have proposed an extended scenario where
key is distilled from arbitrary correlated classical information (specified by a
tripartite probability distribution) [2,4]. In particular, Maurer has shown that
two-way communication can lead to a strictly positive key rate even though the
key rate in the one-way communication scenario might be zero [2].

In parallel to this development quantum cryptography emerged: in 1984 Ben-
nett and Brassard devised a QKD scheme in which quantum channels could be
employed in order to generate a secure key without the need to put a restriction
on the eavesdropper [5]. In 1991, Ekert discovered that quantum cryptographic
schemes could be based on entanglement, that is, on quantum correlations that
are strictly stronger than classical correlations [6]. Clearly, this is key distillation
from quantum information.

The first to spot a relation between the classical and the quantum development
were Gisin and Wolf; in analogy to bound entanglement in quantum information
theory, they conjectured the existence of bound information, namely classical
correlation that can only be created from key but from which no key can be dis-
tilled [9]. Their conjecture remains unsolved, but has stimulated the community
in search for an answer.

To derive lower bounds on the key rate, we will make repeated use of results by
Devetak and Winter, who derived a bound on the key rate if the tripartite quan-
tum information consists of many identical and mutually independent pieces,
and by Renner and König, who derived privacy amplification results which also
hold if this independence condition is not satisfied [10,11].

1.2 Contributions

We initiate the study of a unified key distillation scenario, which includes key
distillation from pre-shared classical and quantum data (Section 2). We then
derive a variety of quantitative statements related to this scenario. These unify
and extend results from both the quantum and classical world.

There are numerous upper bounds available in the specific scenarios and it
is our aim to provide the bigger picture that will put order into this zoo by
employing the concept of a secrecy monotone, i.e., a function that decreases
under local operations and public communication (Section 3), as introduced
in [12]. The upper bounds can then roughly be subdivided into two categories:
(i) the ones based on classical key distillation [13] and (ii) the ones based on
quantum communication or entanglement measures [14].



Unifying Classical and Quantum Key Distillation 459

The unified scenario that we develop does not stop at an evaluation of the key
rate but lets us investigate intricate connections between the two extremes. We
challenge the viewpoint of Gisin and Wolf who highlight the relation between key
distillation from classical correlation and entanglement distillation from this very
correlation embedded into quantum states [9]: we prove a theorem that relates
key distillation from certain classical correlation and key (and not entanglement)
distillation from their embedded versions (Section 4). This ties in with recent
work which established that key distillation can be possible even from quantum
states from which no entanglement can be distilled [15].

A fruitful concept that permeates this work is the concept of locking of classi-
cal information in quantum states : let Alice choose an n-bit string x = x1 . . . xn

with uniform probability and let her either send the state |x1〉 . . . |xn〉 or the
state H⊗n|x1〉 . . . |xn〉 to Bob, where H is the Hadamard transformation. Not
knowing if the string is sent in the computational basis or in the Hadamard
basis, it turns out that the optimal measurement that Bob can do in order to
maximise the mutual information between the measurement outcome y and Al-
ice’s string x is with respect to a randomly chosen basis, in which case he will
obtain I(X ; Y ) = n

2 . If, however, he has access to the single bit which deter-
mines the basis, he will have I(X ; Y ) = n. A single bit can therefore unlock an
arbitrary amount of information. This effect has been termed locking of classical
information in quantum states or simply locking and was first described in [16].
In this paper, we will discuss various types of locking effects and highlight their
significance for the design and security of QKD protocols (Section 5).

Finally, we demonstrate that the amount of key that can be distilled from
given pre-shared data strongly depends on whether Eve is assumed to store
her information in a classical or in a quantum memory. This, again, has direct
consequences for the analysis of protocols in quantum cryptography (Section 6).

For a more detailed explanation of the contributions of this paper, we refer
to the introductory paragraphs of Sections 3–6.

2 The Unified Key Distillation Scenario

In classical information-theoretic cryptography one considers the problem of dis-
tilling key from correlated data specified by a tripartite probability distribution
pijk (pijk ≥ 0,

∑
i,j,k pijk = 1). Alice and Bob who wish to distil the key have

access to i and j, respectively, whereas the eavesdropper Eve knows the value
k (see, e.g., [17]). Typically, it is assumed that many independently generated
copies of the triples (i, j, k) are available4. The key rate or distillable key of a
distribution pijk is the rate at which key bits can be obtained per realisation of
this distribution, if Alice and Bob are restricted to local operations and public
but authentic classical communication.

4 Using de Finetti’s representation theorem, this assumption can be weakened to the
assumption that the overall distribution of all triples is invariant under permutations
(see [18] for more details including a treatment of the quantum case).



460 M. Christandl et al.

Before we continue to introduce the quantum version of the key distillation sce-
nario described above, let us quickly note that it will be convenient to regard prob-
ability distributions as classical states, that is, given probabilities pi, we consider
ρ =

∑d
i=1 pi|i〉〈i|, where |i〉 is an orthonormal basis of a d-dimensional Hilbert

space; we will assume that d < ∞. In the sequel we will encounter not only clas-
sical or quantum states, but also states that are distributed over several systems
which might be partly classical and partly quantum-mechanical. To make this ex-
plicit, we say that a bipartite state ρAB is cq (classical-quantum) if it is of the form
ρAB =

∑
i pi|i〉〈i|A ⊗ρi

B for quantum states ρi
B and a probability distribution pi.

This definition easily extends to three or more parties, for instance:

– a ccq (classical-classical-quantum) state ρABE is of the form
∑

i,j pij |i〉〈i|A ⊗
|j〉〈j|B ⊗ ρij

E , where pij is a probability distribution and ρij
E are arbitrary

quantum states.
– the distribution pijk corresponds to a ccc (classical-classical-classical) state

ρABE =
∑

i,j,k pijk|ijk〉〈ijk|ABE, where we use |ijk〉ABE as a short form
for |i〉A ⊗ |j〉B ⊗ |k〉E (as above, the states |i〉A for different values of i, and
likewise |j〉B and |k〉k, are normalised and mutually orthogonal).

We will be concerned with key distillation from arbitrary tripartite quantum
states ρABE shared by Alice, Bob, and an adversary Eve, assisted by local quan-
tum operations and public classical communication (LOPC) [10,19,15]. A local
quantum operation on Bob’s side is of the form

ρABE �→ (IAE ⊗ ΛB)(ρABE) .

Public classical communication from Alice to Bob can be modelled by copying
a local classical register, i.e., any state of the form ρAA′BE =

∑
i ρi

ABE ⊗ |i〉〈i|A′

is transformed into ρ′AA′BB′EE′ =
∑

i ρi
ABE ⊗ |iii〉〈iii|A′B′E′ . Similarly, one can

define these operations with the roles of Alice and Bob interchanged.
The goal of a key distillation protocol is to transform copies of tripartite states

ρABE into a state which is close to

τ �
ABE =

1
2�

2�∑

i=1

|ii〉〈ii|AB ⊗ τE (1)

for some arbitrary τE . τ �
ABE (also denoted τ � for short) corresponds to a perfect

key of length �, i.e., uniform randomness on an alphabet of size 2� shared by
Alice and Bob and independent of Eve’s system. We measure closeness of two
states ρ and σ in terms of the trace norm ‖ρ−σ‖ := 1

2Tr|ρ−σ|. The trace norm
is the natural quantum analogue of the variational distance to which it reduces
if ρ and σ are classical.

We will now give the formal definition of an LOPC protocol and of the key
rate.

Definition 1. An LOPC protocol P is a family {Λn}n∈N of completely positive
trace preserving (CPTP) maps

Λn : (HA ⊗ HB ⊗ HE)⊗n → Hn
A ⊗ Hn

B ⊗ Hn
E
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which are defined by the concatenation of a finite number of local operation and
public communication steps.

Definition 2. We say that an LOPC protocol P distills key at rate RP if there
exists a sequence {�n}n∈N such that

lim sup
n→∞

�n

n
= RP

lim
n→∞

‖Λn(ρ⊗n
ABE) − τ �n

ABE‖ = 0

where τ �n

ABE are the ccq states defined by (1). The key rate or distillable key of
a state ρABE is defined as KD(ρABE) := supP RP .

The quantity KD obviously depends on the partition of the state given as ar-
gument into the three parts controlled by Alice, Bob, and Eve, respectively. We
thus indicate the assignment of subsystems by semicolons if needed. For instance,
we write ρAD;B;E if Alice holds an additional system D.

It can be shown that the maximisation in the definition of KD can be restricted
to protocols whose communication complexity grows at most linearly in the
number of copies of ρABE. Hence, if d = dim HA ⊗ HB ⊗ HE < ∞ then the
dimension of the output of the protocol is bounded by log dimHn

A ⊗Hn
B ⊗Hn

E ≤
cn log d, for some constant c. (The proof of this statement will appear in a full
version of this paper.)

The above security criterion is (strictly) weaker than the one proposed in [10]5,
hence KD(ρABE) is lower bounded by a lower bound derived in [10]:

KD(ρABE) ≥ I(A : B)ρ − I(A : E)ρ . (2)

This expression can be seen as a quantum analogue of the well-known bound of
Csiszár, Körner, and Maurer [3,17]. Here I(A : B)ρ denotes the mutual informa-
tion defined by I(A : B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ where S(A)ρ := S(ρA)
is the von Neumann entropy of system A (and similarly for B and E). For later
reference we also define the conditional mutual information I(A : B|E)ρ :=
S(AE)ρ + S(BE)ρ − S(ABE)ρ − S(E)ρ.

Note also that the criterion for the quality of the distilled key used in Defi-
nition 2 implies that the key is both uniformly distributed and independent of
the adversary’s knowledge, just as in [11]. Previous works considered uniformity
and security separately. Note that, even though weaker than certain alternative
criteria such as the one of [10], the security measure of Definition 2 is universally
composable [11].

In [20], the question was posed whether the security condition also holds
if the accessible information is used instead of the criterion considered here.
Recently, it has been shown that this is not the case [21]. More precisely, an

5 The security criterion of [10] implies that, conditioned on any value of the key, Eve’s
state is almost the same. In contrast, according to the above definition, Eve’s state
might be arbitrary for a small number of values of the key.



462 M. Christandl et al.

example of a family of states was exhibited such that Eve has exponentially small
knowledge in terms of accessible information but constant knowledge in terms
of the Holevo information. This implies that in this context, security definitions
based on the accessible information are problematic. In particular, a key might
be insecure even though the accessible information of an adversary on the key
is exponentially small (in the key size).

3 Upper Bounds for the Key Rate

In this section, we first derive sufficient conditions that a function has to satisfy
in order to be an upper bound for the key rate (Section 3.1). We focus on func-
tions that are secrecy monotones [12], i.e., they are monotonically decreasing
under LOPC operations. Our approach therefore parallels the situation in clas-
sical and quantum information theory where resource transformations are also
bounded by monotonic functions; examples include the proofs of converses to
coding theorems and entanglement measures (see, e.g., [14]). As a corollary to
our characterisation of secrecy monotones, we show how to turn entanglement
monotones into secrecy monotones.

In a second part (Section 3.2), we provide a number of concrete secrecy
monotones that satisfy the conditions mentioned above. They can be roughly
divided into two parts: (i) functions derived from the intrinsic information and
(ii) functions based on entanglement monotones. Finally, we will compare dif-
ferent secrecy monotones (Section 3.3) and study a few particular cases in more
detail (Section 3.4).

3.1 Secrecy Monotones

Theorem 1. Let M(ρ) be a function mapping tripartite quantum states ρ ≡
ρABE into the positive numbers such that the following holds:

1. Monotonicity: M(Λ(ρ)) ≤ M(ρ) for any LOPC operation Λ.
2. Asymptotic continuity: for any states ρn, σn on Hn

A⊗Hn
B⊗Hn

E, the condition
‖ρn − σn‖ → 0 implies 1

log rn

∣∣M(ρn) − M(σn)
∣∣ → 0 where rn = dim(Hn

A ⊗
Hn

B ⊗ Hn
E).

3. Normalisation: M(τ �) = � .

Then the regularisation of the function M given by M∞(ρ) =
lim supn→∞

M(ρ⊗n)
n is an upper bound on KD, i.e., M∞(ρABE) ≥ KD(ρABE)

for all ρABE with dimHA ⊗ HB ⊗ HE < ∞. If in addition M satisfies

4. Subadditivity on tensor products: M(ρ⊗n) ≤ nM(ρ),

then M is an upper bound for KD.

Proof. Consider a key distillation protocol P that produces output states σn such
that ‖σn−τ �n‖ → 0. We will show that M∞(ρ) ≥ RP . Let us assume without loss
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of generality that RP > 0. Indeed, by monotonicity we have M(ρ⊗n) ≥ M(σn),
which is equivalent to

1
n

M(ρ⊗n) ≥ �n

n

(
M(σn) − M(τ �n)

�n
+ 1

)
, (3)

where we have used the normalisation condition. As remarked in Definition 2
there is a constant c > 0 such that log rn ≤ cn and by definition of RP there
exists a c′ > 0 and n0 such that for all n ≥ n0, log dn ≥ c′n. Hence �n ≥ c′n ≥
c′

c log rn, therefore asymptotic continuity implies

lim
n→∞

1
�n

∣∣M(σn) − M(τ �n)
∣∣ = 0 .

Taking the limsup on both sides of (3) gives M∞(ρ) ≥ lim supn
�n

n = RP . Thus
we have shown that M∞ is an upper bound for the rate of an arbitrary protocol,
so that it is an also upper bound for KD. �

If we restrict our attention to the special case of key distillation from bipartite
states ρAB, we can immediately identify a well-known class of secrecy mono-
tones, namely entanglement monotones. A convenient formulation is in this
case not given by the distillation of states τ � with help of LOPC operations,
but rather by the distillation of states γ� via local operations and classical
communication (LOCC), where γ� = U |ψ〉〈ψ|⊗�

AB ⊗ ρA′B′U †, for some unitary

U =
∑2�

i=1 |ii〉〈ii|AB ⊗ U
(i)
A′B′ and |ψ〉 = 1√

2
(|00〉 + |11〉) [15,22]. Note that mea-

suring the state γ� with respect to the computational bases on Alice and Bob’s
subsystems results in � key bits.

Corollary 1. Let E(ρ) be a function mapping bipartite quantum states ρ ≡ ρAB

into the positive numbers such that the following holds:

1. Monotonicity: E(Λ(ρ)) ≤ E(ρ) for any LOCC operation Λ.
2. Asymptotic continuity: for any states ρn, σn on Hn

A ⊗ Hn
B , the condition

‖ρn−σn‖ → 0 implies 1
log rn

∣∣E(ρn)−E(σn)
∣∣ → 0 where rn = dim(Hn

A⊗Hn
B).

3. Normalisation: E(γ�) ≥ � .

Then the regularisation of the function E given by E∞(ρ) = lim supn→∞
E(ρ⊗n)

n
is an upper bound on KD, i.e., E∞(ρAB) ≥ KD(|ψ〉〈ψ|ABE) where |ψ〉〈ψ|ABE

is a purification of ρAB. If in addition E satisfies

4. Subadditivity on tensor products: E(ρ⊗n) ≤ nE(ρ),

then E is an upper bound for KD.

The analogue of this result in the realm of entanglement distillation has long
been known: namely, every function E satisfying LOCC monotonicity, asymp-
totic continuity near maximally entangled states as well as normalisation on
maximally entangled states (E(|ψ〉〈ψ|) = log d for |ψ〉 = 1√

d

∑
i |ii〉) can be
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shown to provide an upper bound on distillable entanglement ED [23,24], that
is, E∞(ρ) ≥ ED(ρ). Additionally, if E is subadditive, the same inequality holds
with E∞ replaced by E. Indeed this result can be seen as a corollary to Corol-
lary 1 by restricting from distillation of states τ � to distillation of |ψ〉〈ψ|⊗� and
noting that |ψ〉〈ψ|⊗� is of the form τ � with trivial A′B′.

In the above corollary, we have identified asymptotic continuity on all states
as well as normalisation on the states γ� (rather than on singlets) as the crucial
ingredients in order for an entanglement measure to bound distillable key from
above. Note also that we require those additional conditions as, for instance, the
logarithmic negativity as defined in [25] satisfies the weaker conditions, therefore
being an upper bound on distillable entanglement, but fails to be an upper bound
on distillable key.

We will now show how to turn this bound for bipartite states (or tripartite
pure states) into one for arbitrary tripartite states. The recipe is simple: for
a given state ρABE , consider a purification |ψ〉〈ψ|AA′BB′E where the purifying
system is denoted by A′B′ and is split between Alice and Bob. Clearly, for any
splitting, KD(|ψ〉〈ψ|AA′BB′E) ≥ KD(ρABE). This inequality combined with the
previous corollary applied to |ψ〉〈ψ|AA′BB′E proves the following statement.

Corollary 2. If E satisfies the conditions of Corollary 1 then

KD(ρABE) ≤ E∞(ρAA′BB′) ,

where ρAA′BB′ = TrE |ψ〉〈ψ|AA′BB′E and ρABE = TrA′B′ |ψ〉〈ψ|AA′BB′E . If E is
subadditive, the same inequality holds with E replacing E∞.

3.2 Examples of Secrecy Monotones

We will now introduce a number of secrecy monotones. We will only briefly
comment on the relations between them. A more detailed analysis of how the
different bounds on the key rate compare is given in Section 3.3.

Intrinsic Information. The intrinsic information of a probability distribution
pijk is given by

I(A : B ↓ E) := inf I(A : B|E′)ρ (4)

where ρABE is the ccc state corresponding to pijk. The infimum is taken over
all channels from E to E′ specified by a conditional probability distributions
pl|m. ρABE′ is the state obtained by applying the channel to E. This quantity
has been defined by Maurer and Wolf and provides an upper bound on the key
rate from classical correlations [13]. We can extend it in the following way to
arbitrary tripartite quantum states ρABE .

Definition 3. The intrinsic information of a tripartite quantum state ρABE is
given by

I(A : B ↓ E)ρ := inf I(A : B|E′)ρ

where the infimum is taken over all CPTP maps ΛE→E from E to E′ where
ρABE′ = (IAB ⊗ ΛE→E)(ρABE).
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This definition is compatible with the original definition since it reduces to (4)
if the systems A, B and E are classical.

It is straightforward to show that the intrinsic information satisfies the re-
quirements of Theorem 1. Hence we have proved the following theorem.

Theorem 2. The intrinsic information is an upper bound on distillable key,
i.e., KD(ρABE) ≤ I(A : B ↓ E)ρ.

Let us note that this bound differs from the bound proposed in [26,19] where
instead of all quantum channels, arbitrary measurements were considered. Our
present bound can be tighter, as it can take into account Eve’s quantum memory.

In the case where ρABE is pure, this bound can be improved by a factor of two
because I(A : B ↓ E)ρ = 2Esq(ρAB), where Esq is the squashed entanglement
defined below and because squashed entanglement is an upper bound for the key
rate.

Squashed Entanglement

Definition 4. Squashed entanglement is defined as

Esq(ρAB) =
1
2

inf
ρABE :

ρAB=TrEρABE

I(A : B|E)ρ

Squashed entanglement can be shown to be a LOCC monotone, additive [27], and
asymptotically continuous [28]. In [29, Proposition 4.19] it was shown to satisfy
the normalisation condition and is therefore an upper bound on distillable key
according to Corollary 1.

Theorem 3. Squashed entanglement is an upper bound on distillable key, i.e.,
KD(ρABE) ≤ Esq(ρAA′BB′) where ρAA′BB′ = TrE |ψ〉〈ψ|AA′BB′E and ρABE =
TrA′B′ |ψ〉〈ψ|AA′BB′E.

Reduced Intrinsic Information. There is another way in which we can find
a bound on the key rate which is tighter than the intrinsic information. In [30]
it was shown that the classical intrinsic information is E-lockable, i.e., it can
increase sharply when a single bit is taken away from Eve. Since (classical)
distillable key is not E-lockable, the bound that the intrinsic information provides
cannot be tight. This was the motivation for defining the Reduced Intrinsic
Information by I(AB ↓↓ E) = inf I(AB ↓ EE′) + S(E′) where the infimum
is taken over arbitrary classical values E′ [30]. We now define the quantum
extension of this function.

Definition 5. Let a = 1, 2. The reduced intrinsic information (with parameter
a) is given by

I(A : B ↓↓ E)(a)
ρ = inf{I(AB ↓ EE′)ρ + aS(E′)ρ}

where the infimum is taken over all extensions ρABEE′ with a classical register
E′ if a = 1 and over arbitrary extensions ρABEE′ if a = 2.
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The parameter a reflects the different behaviour of the intrinsic information
subject to loss of a single bit (qubit). The Reduced Intrinsic Information is an
upper bound on distillable key since

KD(ρABE) ≤ KD(ρABEE′) + aS(E′) ≤ I(AB ↓ EE′) + aS(E′) .

The first inequality corresponds to Corollary 4 below.

Theorem 4. The reduced intrinsic information is an upper bound on distillable
key, i.e., KD(ρABE) ≤ I(A : B ↓↓ E)(a)

ρ , for a = 1, 2.

Relative Entropy of Entanglement. The relative entropy of entanglement
and its regularised version are well-known entanglement measures that serve as
important tools in entanglement theory.

Definition 6. The relative entropy of entanglement is given by [31,32]

ER(ρAB) = inf
σAB

S(ρAB‖σAB)

where S(ρAB‖σAB) = TrρAB[log ρAB − log σAB] and the minimisation is taken
over all separable states σAB, i.e. σAB =

∑
i piρ

i
A ⊗ ρi

B.

The relative entropy of entanglement was the first upper bound that has been
provided for KD(|ψ〉〈ψ|ABE) [15,22]. We now extend this result to all tripartite
quantum states ρABE.

Theorem 5. The relative entropy of entanglement is an upper bound on dis-
tillable key, i.e., KD(ρABE) ≤ E∞R (ρAA′BB′) ≤ ER(ρAA′BB′) where ρAA′BB′ =
TrE |ψ〉〈ψ|AA′BB′E and ρABE = TrA′B′ |ψ〉〈ψ|AA′BB′E.

It is a particular advantage of ER in its function as an upper bound that it is
not lockable [33].

3.3 Comparison of Secrecy Monotones

Pure Versus Mixed. For entangled states, bounds derived from entangle-
ment measures are usually tighter than the intrinsic information and its re-
duced version. Consider for example the state ρABE = |ψ〉〈ψ|AB ⊗ ρE where
|ψ〉AB = 1√

2
(|00〉 + |11〉). Here we have

ER(ρABE) = E∞R (ρABE) = Esq(ρABE) = KD(ρABE) = 1 ,

while
I(A : B ↓ E)ρ = I(A : B ↓↓ E)(a)

ρ = 2 ,

for a = 1, 2. In general, for tripartite pure states, squashed entanglement is a
tighter bound on the key rate than the intrinsic information by at least a factor
of two:

2Esq(|ψ〉〈ψ|ABE) = I(A : B ↓ E)|ψ〉〈ψ|.
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The Locking Effect. We will now give a concrete example which shows that
there is a purification |ψ〉AA′BB′E of ρABE such that

KD(ρABE) = ER(ρAA′BB′) < I(AA′ : BB′ ↓ E)ρ .

Consider the distribution pijkl defined by the following distribution for pij

i 0 1 2 3

j

0 1
8

1
8 0 0

1 1
8

1
8 0 0

2 0 0 1
4 0

3 0 0 0 1
4

and where k and l are uniquely determined by (i, j),

k = i + j(mod 2) for i, j ∈ {0, 1}
k = i(mod 2) for i ∈ {2, 3}
l = �i/2�

for all (i, j) with pij > 0. We denote the corresponding cccc state by ρABEF =∑
ijkl pijkl|ijkl〉〈ijkl|. Clearly KD(ρA;B;EF ) = 0, as Eve can factorise Alice and

Bob, by keeping k when l = 1 and forgetting it when l = 0. In the former case,
when l = 0, then Alice and Bob have (i, j) = (2, 2), and when l = 1, then Alice
and Bob have (i, j) = (3, 3). In the latter case, both Alice and Bob have at
random 0 or 1 and they are not correlated.

On the other hand, when Eve does not have access to l, then the key rate
is equal to 1, i.e., KD(ρA;B;E)=1. Indeed, it cannot be greater, as key can-
not increase more than the entropy of the variable that was taken out from
Eve. However one finds that the intrinsic information is equal to 3/2, i.e.,
I(A : B ↓ E)ρ = 3/2 [30].

Let us consider the purification of the above state,

|ψA′ABEF 〉 =
1
2
(
|0〉A′ |22〉AB|0〉E |0〉F + |0〉A′ |33〉AB|1〉E |0〉F

+|ψ〉A′AB|0〉E |1〉F + |φ〉A′AB|1〉E |1〉F

)
,

where
|ψ〉 =

1√
2
(|0〉A′ |00〉AB + |1〉A′ |11〉AB)

and
|φ〉 =

1√
2
(|0〉A′ |01〉AB + |1〉A′ |10〉AB) .



468 M. Christandl et al.

Thus when E and F are with Eve, the state ρAA′;B of Alice and Bob is a mixture
of four states: |0〉|22〉, |0〉|33〉, |φ〉 and |ψ〉. This state is separable state, hence
ER(ρAA′;B) = 0.

Consider now the state ρAA′F ;B where F is controlled by Alice instead of Eve.
Measuring F makes the state separable and in [33] it was shown that measuring
a single qubit cannot decrease the relative entropy of entanglement by more than
1, thus we obtain

ER(ρAA′F ;B) ≤ 1.

By Theorem 5 we then have KD(ρABE) ≤ 1, but indeed one can distil one bit
of key from ρABE , therefore

KD(ρABE) = ER(ρAA′F ;B) = 1.

In [30] the considered distribution was generalised to make the gap between in-
trinsic information and distillable key arbitrarily large. It is not difficult to see
that ER is still bounded by one. This shows that the bound based on relative
entropy of entanglement, though perhaps more complicated in use, can be sig-
nificantly stronger than intrinsic information bound. We leave it open, whether
or not the intrinsic information bound is weaker in general when compared to
the relative entropy bound. This parallels the challenge to discover a relation
between the relative entropy of entanglement and squashed entanglement. Here
it has also been observed that squashed entanglement can exceed the relative
entropy of entanglement by a large amount, due to a locking effect [34].

3.4 Upper and Lower Bounds When ρABE = ρAB ⊗ ρE

In this section we focus on states of the form ρABE = ρAB ⊗ρE. Since distillable
key cannot increase under Eve’s operations, the form of the state ρE is not
important and we conclude that KD(ρAB ⊗ ρE) is a function of ρAB only. If the
state ρAB is classical on system A, then it is known that distillable key is equal
to the quantum mutual information, KD(ρAB ⊗ ρE) = I(A : B)ρ [10]. Indeed,
we know from Theorem 2 that the key rate can never exceed I(A : B)ρ. For
separable quantum states ρAB we were able to further improve this bound. The
upper bounds are summarised in the following theorem. (Its proof will appear
in a full version of this paper.)

Theorem 6. For all states ρAB ⊗ ρE,

KD(ρAB ⊗ ρE) ≤ I(A : B)ρ

with equality if ρAB is classical on system A. If ρAB is separable, i.e., ρAB =∑
i piρ

i
A ⊗ ρi

B, then

KD(ρAB ⊗ ρE) ≤ ILOPC
acc (E) ≤ Iacc(E)

where E = {pi, ρ
i
A ⊗ ρi

B} and ILOPC
acc (E) is the maximal mutual information

that Alice and Bob can obtain about i using LOPC operations (see e.g. [35,36]),
whereas Iacc(E) denotes the usual accessible information, i.e. maximal mutual
information about i obtained by joint measurements.
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We will now derive a general lower bound on the key rate in terms of the distil-
lable common randomness.

Definition 7. We say that an LOPC protocol P distills common randomness
at rate RP if there exists a sequence {�n}n∈N such that

lim sup
n→∞

�n − mn

n
= RP

lim
n→∞

‖Λn(ρ⊗n
AB) − τ �n‖ = 0

where mn is the number of communicated bits. The distillable common random-
ness of a state ρAB is defined as DR(ρAB) := supP RP .

For some protocols the rate may be negative. However it is immediate that
DR(ρAB) is nonnegative for all ρAB. The following statement is a direct conse-
quence of the results in [10,11].

Theorem 7. For the states ρABE = ρAB ⊗ ρE the distillable key is an upper
bound on the distillable common randomness, i.e., KD(ρAB ⊗ ρE) ≥ DR(ρAB)
for all ρAB and ρE.

4 Embedding Classical into Quantum States

The problem of distilling key from a classical tripartite distribution (i.e., ccc
states) is closely related to the problem of distilling entanglement from a bipar-
tite quantum state (where the environment takes the role of the adversary), as
noted in [9,30]. It thus seems natural to ask whether, in analogy to bound entan-
gled quantum states (which have positive entanglement cost but zero distillable
entanglement), there might be classical distributions with bound information.
These are distributions with zero key rate but positive key cost, i.e., no key can
be distilled from them, yet key is needed to generate them. The existence of such
distributions, however, is still unproved. (There are, however, some partial posi-
tive answers, including an asymptotic result [30] as well as a result for scenarios
involving more than three parties [37].)

In [9,30], it has been suggested that the classical distribution obtained by
measuring bound entangled quantum states might have bound information. Such
hope, however, was put into question by the results of [15], showing that there
are quantum states with positive key rate but no distillable entanglement (i.e.,
they are bound entangled). However, the examples of states put forward in [15]
have a rather special structure. It is thus still possible that distributions with
bound information might be obtained by measuring appropriately chosen bound
entangled states.

In the following, we consider a special embedding of classical distributions
into quantum states as proposed in [9]. We then show how statements about
key distillation starting from the original state and from the embedded state are
related to each other. Let

ρccc :=
∑

ijk

pijk|ijk〉〈ijk|ABE (5)
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be a ccc state defined relative to fixed orthonormal bases on the three subsystems
(in the following called computational bases). We then consider the qqq embedding
ρqqq = |ψ〉〈ψ| of ρccc given by

|ψ〉 =
∑

i

√
pijk|ijk〉ABE .

Note that, if Alice and Bob measure ρqqq in the computational basis, they end
up with a state of the form

ρccq =
∑

ij

pij |ij〉〈ij|AB ⊗ |ψij〉〈ψij |E (6)

for some appropriately chosen |ψij〉. We call this state the ccq embedding of ρccc.
In a similar way as classical distributions can be translated to quantum states,

classical protocols have a quantum analogue. To make this more precise, we
consider a classical LOPC protocol P that Alice and Bob wish to apply to a ccc
state ρccc as in (5). Obviously, P can equivalently be applied to the corresponding
ccq embedding ρccq as defined in (6) (because Alice and Bob’s parts are the same
in both cases). Because Eve might transform the information she has in the ccq
case to the information she has in the ccc case by applying a local measurement,
security of the key generated by P when applied to ρccq immediately implies
security of the key generated by P when applied to ρccc. Note, however, that the
opposite of this statement is generally not true.

In general, a classical protocol P can be subdivided into a sequence of steps
of the following form:

1. generating local randomness
2. forgetting information (discarding local subsystems)
3. applying permutations
4. classical communication.

The coherent version of P , denoted Pq, is defined as the protocol acting on a qqq
state where the above classical operations are replaced by the following quantum
operations:

1. attaching subsystems which are in a superposition of fixed basis vectors
2. transferring subsystems to Eve
3. applying unitary transformations that permute fixed basis vectors
4. adding ancilla systems (with fixed initial state) to both the receiver’s and

Eve’s system, and applying controlled not (CNOT) operations to both an-
cillas, where the CNOTs are controlled by the communication bits.

Consider now a fixed ccc state ρccc of the form (5) and let P be a classical
protocol acting on ρccc. It is easy to see that the following operations applied
to the qqq embedding ρqqq of ρccc result in the same state: (i) measuring in the
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computational basis and then applying the classical protocol P ; or (ii) apply-
ing the coherent protocol Pq and then measuring the resulting state γ� in the
computational basis. This fact can be expressed by a commutative diagram.

|ψ〉〈ψ|⊗n Pq−−−−→ γ�

measurement
⏐⏐


⏐⏐
measurement

ρ⊗n
ccq

P−−−−→ τ �

Hence, if the coherent version Pq of P acting on ρqqq distills secure key bits at
rate R then so does the protocol P applied to the original ccc state ρccc.

It is natural to ask whether there are cases for which the converse of this
statement holds as well. This would mean that security of a classical protocol
also implies security of its coherent version. In the following, we exhibit a class of
distributions for which this is always true. The key rate of any such distribution
is thus equal to the key rate of the corresponding embedded qqq state.

Roughly speaking, the class of distributions we consider is characterised by
the property that the information known to Eve is completely determined by
the joint information held by Alice and Bob.

Theorem 8. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0. If a classical protocol P applied to ρccc produces key at rate R then
so does its coherent version Pq applied to the qqq embedding |ψ〉 of ρccc (and
followed by a measurement in the computational basis).

Proof. The ccq embedding of ρccc is given by a state of the form

ρccq =
∑

ij

pij |ij〉〈ij|AB ⊗ |ψij〉〈ψij |E .

Since, by assumption, every pair (i, j) determines a unique k =
k(i, j), |ψij〉〈ψij |E equals |k(i, j)〉〈k(i, j)| and, hence, ρccq is identical to the orig-
inal ccc state ρccc. The assertion then follows from the fact that measurements
in the computational basis applied to Alice and Bob’s subsystems commute with
the coherent version Pq of P . �

Corollary 3. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0. Then, the key rate for the qqq embedding ρqqq of ρccc satisfies

KD(ρqqq) = KD(ρccc) .

Note that the above statements do not necessarily hold for general distributions.
To see this, consider the state

|ψ〉ABA′E = |00〉AB|+〉A′ |+〉E + |11〉AB|ψ+〉A′E
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where |+〉 := 1√
2
(|0〉+ |1〉) and |ψ+〉 := 1√

2
(|0〉|0〉+ |1〉|1〉). Moreover, let ρccc be

the ccc state obtained by measuring |ψ〉〈ψ|AA′;B;E in the computational basis.
Because all its coefficient are positive, it is easy to verify that |ψ〉〈ψ|ABA′E can
be seen as the qqq embedding of ρccc. Observe that, after discarding subsystem
A′, ρccc corresponds to a perfect key bit. However, the ccq state obtained from
|ψ〉〈ψ|ABA′E by discarding A′ and measuring in the computational basis is of the
form 1

2 (|00〉〈00|AB ⊗ |+〉〈+|E + |11〉〈11|AB ⊗ IE/2). This state, of course, does
not correspond to a key bit as Eve might easily distinguish the states |+〉〈+|
and IE/2.

We continue with a statement on the relation between the intrinsic infor-
mation of a ccc state and the so-called entanglement of formation6 EF of its
qqq embedding. More precisely, we show that, under the same condition as in
Theorem 8, the first is a lower bound for the latter (see also [39,40]).

Theorem 9. Let ρccc be a ccc state of the form (5) such that, for any pair of
values (i, j) held by Alice and Bob there exists at most one value k of Eve with
pijk > 0, and let ρqqq be the qqq embedding of this state. Then

I(A : B ↓ E)ρccc ≤ EF (TrE(ρqqq)) .

Proof. Note first that any decomposition of TrE(ρqqq) into pure states can be
induced by an appropriate measurement on the system E. Hence, we have

EF (TrE(ρqqq)) = min
{|k̄}〉

∑

k̄

pk̄S(A)|ψk̄〉 (7)

where the minimum ranges over all families of (not necessarily normalised) vec-
tors |k̄〉 such that

∑
k̄ |k̄〉〈k̄| = IE (this ensures that they form a measurement),

pk̄ := |〈k̄|E |ψ〉ABE |2, and |ψk̄〉 := 〈k̄|E |ψ〉ABE/
√

pk̄.
For any pair (i, j) of values held by Alice and Bob (with nonzero probability)

we have TrAB [ρqqq (|ij〉〈ij| ⊗ IE)] = pij |k〉〈k|, where k = k(i, j) is the corre-
sponding (unique) value held by Eve. Hence, the probability distribution of the
state ρ̄ccc obtained by applying the above measurement on Eve’s system satisfies

qijk̄ := Tr(|ψ〉〈ψ|ABE |ijk̄〉〈ijk̄|) = pijkqk̄|k ,

where qk̄|k := Tr(|k̄〉〈k̄||k〉〈k|). The intrinsic information is thus bounded by

I(A : B ↓ E)ρccc ≤ min
{|k̄〉}

I(A : B|Ē)ρ̄ccc ,

where ρ̄ccc is the state defined above (depending on the choice of the vectors
|k̄〉). Moreover, using Holevo’s bound, we find

I(A : B|Ē)ρ̄ccc ≤ min
{|k̄}〉

∑

k̄

pk̄S(A)|ψk̄〉 .

The assertion then follows from (7). �
6 The entanglement of formation EF is an entanglement measure defined for bipartite

states by EF (σAB) := min
∑

i piS(TrB(σi
AB)) where the minimum is taken over all

ensembles {pi, σ
i
AB} with

∑
i piσ

i
AB = σAB [38].
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Because the intrinsic information is additive (i.e., it is equal to its regularised
version), Theorem 9 also holds if the entanglement of formation EF is replaced
by the entanglement cost EC .

The discussion above suggests that classical key distillation from ccc states
can indeed by analysed by considering the corresponding qqq embedding of the
state, but the original ccc state has to satisfy certain properties. This relation
might be particularly useful for the study of bound information as discussed at
the beginning of this section. In fact, there exist bound entangled states which
satisfy the property required by Theorem 8 above [41].

5 On Locking and Pre-shared Keys

In [30] it was observed that, by adding one bit of information to Eve, the (clas-
sical) intrinsic information can decrease by an arbitrarily large amount. In [16]
it was shown that classical correlation measures of quantum states can exhibit a
similar behaviour; more precisely, the accessible information can drop by an ar-
bitrarily large amount when a single bit of information is lost. This phenomenon
has been named locking of information or just locking. For tripartite states ρABE ,
locking comes in two flavours: i) locking caused by removing information from
Eve, ii) locking caused by removing information from Alice and/or Bob (and
possibly giving it to Eve). Let us call those variants E-locking and AB-locking,
respectively.

In [33] it was shown that entanglement cost as well as many other entangle-
ment measures can be AB-locked. Further results show that squashed entangle-
ment and entanglement of purification are also AB-lockable [34,42]. So far the
only known non-lockable entanglement measure is relative entropy of entangle-
ment.

It was shown in [30] that distillable key is not E-lockable for classical states.
In the sequel we extend this result and prove that the distillable key for quantum
states ρABE is not E-lockable, either. The proof proceeds along the lines of [30],
replacing the bound of Csiszár and Körner by its quantum generalisations due to
[10] (see also [11]). Let us emphasise that we leave open the question on whether
distillable key is AB-lockable (even for ccc states).

Theorem 10. Consider a state ρABEE′ and let P be a key distillation protocol
for ρABE with rate RP . Then there exists another protocol P ′ for ρABEE′ with
rate RP′ ≥ RP−2S(ρE′). If, in addition, E′ is classical then RP′ ≥ RP−S(ρE′).

Proof. For any fixed ε > 0 there exists n ∈ N such that the protocol P transforms
ρ⊗n

ABE into a ccq state σABE which satisfies the following inequalities:

‖σABE − τ �‖ ≤ ε,
�

n
≥ RP − ε. (8)

Suppose that Alice and Bob apply this map to the state ρ⊗n
ABEE′ (i.e., they try

to distil key, as if the system E′ was not present). The state ρ⊗n
ABEE′ is then
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transformed into some state σABEE′ which traced out over E′ is equal to the
ccq state σABE . Repeating this protocol m times results in σ⊗m

ABEE′ , from which
Alice and Bob can draw at least m(I(A : B) − I(A : EE′)) − o(m) bits of key
by error correction and privacy amplification [10]. This defines a protocol P ′. To
evaluate its rate, we use subadditivity of entropy which gives the estimate

I(A : EE′)σ ≤ I(A : E)σ + I(AE : E′)σ .

From (8) and Fannes’ inequality we know that7

I(A : B)σ ≥ � − 8ε� − H(ε)
I(A : E)σ ≤ 8ε� + H(ε) .

This together with (2) implies

KD(σABEE′ ) ≥ I(A : B)σ − I(A : EE′)σ ≥ (1 − 16ε)� − 2H(ε) − I(AE : E′)σ .

To get the key rate of P ′, we divide the above by n and use (8),

RP′ ≥ 1
n

KD(σABEE′) ≥ (1 − 16ε)(RP − ε) − 1
n

2H(ε) − 1
n

I(AE : E′)σ .

Because this holds for any ε > 0, the assertion follows from I(AE : E′)σ ≤
2S(E′)σ = 2nS(E′)ρ and, if E′ is classical, I(AE : E′)σ ≤ S(E′)σ = nS(E′)ρ.

�

Applying the above theorem to an optimal protocol leads to the statement that
the key rate KD is not E-lockable.

Corollary 4. For any state ρABEE′ , KD(ρABEE′) ≥ KD(ρABE)−2S(ρE′) and,
if E′ is classical, KD(ρABEE′) ≥ KD(ρABE) − S(ρ′E).

Consider now a situation where Alice and Bob have some pre-shared key U which
is not known to Eve.

A major consequence of Theorem 10 is that a pre-shared key cannot be used
as a catalyst to increase the key rate. More precisely, the corollary below implies
that, for any protocol P that uses a pre-shared key held by Alice and Bob, there
is another protocol P ′ which is as efficient as P ′ (with respect to the net key
rate), but does not need a pre-shared key.

Corollary 5. Let P be a key distillation protocol for ρABE ⊗τ � where τ � is some
additional �-bit key shared by Alice and Bob. Then there exists another protocol
P ′ for ρABE with rate RP′ ≥ RP − �.

Proof. Consider the state ρA′B′EE′ where E′ is a system containing the value
U of a uniformly distributed �-bit key, A′ := (A, U), and B′ := (B, U). Note

7 H(ε) denotes the binary entropy, i.e., the Shannon entropy of the distribu-
tion [ε, 1 − ε].
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that ρA′B′E is equivalent to ρABE ⊗ τ �. The assertion then follows from the ob-
servation that any protocol which produces a secure key starting from ρA′B′EE′

can easily be transformed into an (equally efficient) protocol which starts from
ρABE , because Alice and Bob can always generate public shared randomness.

�

The following example shows that the factor 2 in Theorem 10 and Corollary 4
is strictly necessary. Let

ρABEE′ =
4∑

i=1

|i〉〈i|A ⊗ |i〉〈i|B ⊗ |ψi〉〈ψi|EE′

where |ψi〉 are the four Bell states on the bipartite system EE′. Then, obviously,
KD(ρABEE′) = 0, but if E′ (which is only one qubit) is lost, then KD(ρABE) = 2,
since E is then maximally mixed conditioned on i. One recognises here the effect
of superdense coding.

6 Classical and Quantum Adversaries in QKD

Up to now, we have considered an adversary with unbounded resources. Of
course, if one limits the adversary’s capabilities, certain cryptographic tasks
might become easier. In the following, we will examine a situation where the
adversary cannot store quantum states and, hence, is forced to apply a mea-
surement, turning them into classical data. We will exhibit an example of a
2d-dimensional ccq state which only has key rate 1, but if Eve is forced to mea-
sure her system, the key rate raises up to roughly 1

2 log d.
Note that upper bounds on the key rate which are defined in terms of an

optimal measurement on Eve’s system (see, e.g., [26,19] and Section 3) are also
upper bounds on the key rate in a setting where Eve has no quantum memory.
Hence, our result implies that these upper bounds are generally only rough
estimates for the key rate in the unbounded scenario.

Consider the state

ρAA′BB′E =
1
2d

d∑

k=1

|00〉〈00|AB(|kk〉〈kk|A′B′ ⊗ |k〉〈k|E)

+ |11〉〈11|AB(|kk〉〈kk|A′B′ ⊗ U |k〉〈k|E |U †)

where U is the quantum Fourier transform on d dimensions. (Such a state has
been proposed in [16] to exhibit a locking effect of the accessible information. It
also corresponds to the flower state of [33].)

It is easy to see that the bit in the system AB is uncorrelated to Eve’s infor-
mation and, hence, completely secret, i.e., KD(ρAA′BB′E) = KD(ρAB) ≥ 1. On
the other hand, if this bit is known to Eve then she has full knowledge on the
state in A′B′, i.e., KD(ρAA′BB′EE′) ≤ I(AA′ : BB′ ↓ EE′)ρ = 0, where E′ is a
classical system carrying the value of the bit in AB (see Theorem 2). From this
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and Corollary 4 (or, alternatively, Theorem 4), we conclude that the key rate
(relative to an unbounded adversary) is given by

KD(ρAA′BB′E) = KD(ρAB) = 1 .

Let us now assume that Eve applies a measurement on her system E, trans-
forming the state defined above into a ccc state σAA′BB′E . Because the values
of Alice and Bob are maximally correlated, it is easy to see that the key rate of
this state satisfies KD(σAA′BB′E) = S(A|E)σ = S(A)σ − I(A : E)σ. Note that
S(A)σ = 1 + log d. Moreover, the mutual information I(A : E)σ for an optimal
measurement on E corresponds to the so-called accessible information, which
equals 1

2 log d, as shown in [16]. We thus conclude that

KD(σAA′BB′E) = 1 +
1
2

log d .

Note that the accessible information is additive, so even if the measurements are
applied to blocks of states, the amount of key that can be generated is given by
this expression.

The above result gives some insights into the strength of attacks considered
in the context of quantum key distribution (QKD). A so-called individual attack
corresponds to a situation where the adversary transforms his information into
classical values. In contrast, a collective attack is more general and allows the
storage of quantum states.

As shown in [18], for most QKD protocols, security against collective attacks
implies security against any attack allowed by the laws of quantum physics. The
above result implies that the same is not true for individual attacks, i.e., these
might be arbitrarily weaker than collective (and, hence, also general) attacks.
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Abstract. We construct an intrusion-resilient symmetric-key authenti-
cated key exchange (AKE) protocol in the bounded retrieval model. The
model employs a long shared private key to cope with an active adver-
sary who can repeatedly compromise the user’s machine and perform any
efficient computation on the entire shared key. However, we assume that
the attacker is communication bounded and unable to retrieve too much
information during each successive break-in. In contrast, the users read
only a small portion of the shared key, making the model quite realistic
in situations where storage is much cheaper than bandwidth.

The problem was first studied by Dziembowski [Dzi06a], who con-
structed a secure AKE protocol using random oracles. We present a gen-
eral paradigm for constructing intrusion-resilient AKE protocols in this
model, and show how to instantiate it without random oracles. The main
ingredients of our construction are UC-secure password authenticated
key exchange and tools from the bounded storage model.

1 Introduction

Robust systems for network security must guarantee resilience to compromises
and intrusions. Company laptops, for example, often fall prey to Trojan horse
viruses that users inadvertently “install” when they travel (without the protec-
tion of their company’s firewalls). These viruses can persist until a sysadmin
removes them, and then all credentials stored on the laptop must be replaced. A
malicious virus could even steal a user’s credentials with a key logger and erase
itself, compromising all future use of the credentials until they are replaced.

A natural technique to overcome this problem is to use fresh session keys (or
other credentials) dynamically generated using some secure key exchange pro-
tocol (e.g., Diffie-Hellman) between the parties involved. However, the problem
with this latter approach is that such keys are not authenticated. So it seems
like one must either sacrifice authentication, or lose one’s resilience to compro-
mises. The bounded retrieval model, introduced in various related contexts by
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[DLL05, CLW06, Dzi06a, Dzi06b],1 provides an elegant and often very realistic
way to resolve the above conflicting requirements. It assumes that storage is
cheap and thus users can afford to store large quantities of data; in our con-
text, this means that users can share very long symmetric keys (which can then
be used to provide authentication). On the other hand, the bandwidth and re-
trieval capacities of both the users and the attacker are limited. For the users,
this means that they only need to access very small portions of their long-term
keys for authentication (and key exchange). On the other hand, we will be more
generous to the attacker. We allow it to repeatedly compromise the user’s ma-
chine for limited periods of time, and, during each such break-in, to perform
any efficient computation on the entire shared key. However, we assume that the
attacker’s bandwidth capacity from the user’s machine is bounded, so that the
attacker is unable to retrieve too much information about the long symmetric
key. Thus, in this model it might be possible to construct intrusion-resilient and,
yet, authenticated key exchange protocols.

Indeed, this was recently done by Dziembowski [Dzi06a] who constructed such
a protocol in the random oracle model. However, it is well known by now that a
protocol proven secure in the random oracle model might not be secure when the
random oracle is replaced by any secure cryptographic hash function [CGH04].
Therefore, an efficient construction without a random oracle is desired.

Our Main Result. We resolve the above open problem and construct an
efficient intrusion-resilient authenticated key exchange (AKE) protocol in the
bounded retrieval model. In fact, our contribution consists of two parts. First,
we present a general paradigm for constructing such intrusion-resilient proto-
cols, and, second, we then show how to instantiate our paradigm without ran-
dom oracles. At a high level, our general paradigm first performs what we call a
Weak Key Exchange (WKE), which only guarantees that the session keys output
by the participants Alice and Bob are individually unpredictable (and equal in
case the attacker is passive). After this stage, Alice and Bob use their “weak”
keys as passwords for a Password Authenticated Key Exchange (PAK) protocol
[BM93, BPR00, BMP00, GL01]. Such protocols are typically used in settings
where the shared secrets are not uniformly distributed and have low entropy,
and the goal is to construct AKE protocols resistant to offline dictionary attacks.
Interestingly, in our setting the secrets will actually have high-entropy, and, with
little effort, can even be made individually random. However, the utility of PAK
protocols for our purposes comes from their implicit authentication guarantee:
a party A with a password pw will only arrive at a shared session key only when
interacting with a party B holding the same password pw. Thus, in our setting
PAK is used to guarantee that Alice and Bob will agree on a session key after
the WKE phase only if their individually unpredictable weak keys match.

Somewhat surprisingly, the security of our construction does not seem to fol-
low from PAK protocols secure under most previously used definitions of PAK

1 These works used slightly different terminology and formalizations. Here we use the
model of [Dzi06a], but borrow the nomenclature of [CLW06], since we feel that it
reflects the general model most accurately.
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(e.g., [BPR00, GL01, BDK+05]). Instead, we need to employ Universally Com-
posable (UC) PAK, as defined in [CHK+05]. This is a very strong definition which
guarantees the security of PAK even when used in arbitrary “environments” (see
Section 2). Very informally (see the discussion at the end of Section 4 for more
details), the strong guarantees of a UC PAK are required because of the extreme
weakness of the security provided by the WKE definition described above. WKE
may allow the adversary to adaptively correlate the session keys of Alice and Bob
in an arbitrary manner, provided that they remain individually unpredictable. In-
deed, the adversary is even provided with some a priori partial information about
the secret keys of Alice and Bob, obtained via a previous intrusion. To further
complicate matters, we require that the security of all future AKE sessions is pre-
served even after multiple intrusions, yet WKE provides no forward security guar-
antee at all. It is this latter complication which prevents most simulation based
definitions of PAK from sufficing for our purposes. Namely, it is difficult to simu-
late the PAK protocol in a manner consistent with both past and future informa-
tion obtained by the adversary about the secret key X . On the other hand, UC
secure PAK protocols already support such simulation, since the environment in
the UC experiment can also provide such partial information about party’s secrets
(which are, indeed, generated by the UC environment) directly to the adversary.

We can instantiate the above “WKE+PAK” paradigm in several ways to get
concrete intrusion-resilient AKE protocols in our model. First, we observe that
the original protocol of Dziembowski [Dzi06a] could be viewed as a special case
our our method. Specifically, the 2-round WKE implicit in [Dzi06a] is built using
purely information-theoretic tools used in the bounded storage model [Mau92]
(most crucially, averaging samplers [BR94, Vad04]). In our construction, we will
use a similar (and slightly simpler) WKE. As for the (high-entropy) PAK pro-
tocol, the protocol implicit in [Dzi06a] first applied the random oracle to the
password, which simultaneously solved two main difficulties of the PAK setting:
non-uniform passwords became uniform, and correlated passwords became inde-
pendent (unless equal to begin with). Not surprisingly, after this application of
the random oracle, a standard symmetric-key AKE protocol (more or less from
[BR93]) was sufficient for the implicit PAK protocol of [Dzi06a]. In contrast,
PAK protocols are much more complicated in the standard model, especially in
the UC-model. Luckily, Canetti et al. [CHK+05] built such an efficient UC PAK
protocol in the common reference string (CRS) model. Since a CRS is trivially
implementable in our model, — the parties can generate and store it as part of
their long shared secret, — we immediately get the first intrusion-resilient AKE
protocol without random oracles.

To summarize, we get our main result by first properly abstracting and
modularizing the construction of [Dzi06a] (as consisting of “hidden” WKE and
UC PAK), and then proving a general composition theorem allowing us to build
intrusion-resilient AKE protocols (by composing WKE and UC PAK).

Proactive Security. One obvious issue in the bounded retrieval model is that
even a long key will become useless after too many break-ins, as the adversary
will eventually steal too much of the key. Of course, to solve this problem we can
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let Alice and Bob occasionally refresh their long keys as follows. They first run
the AKE protocol to obtain a fresh key short key r, then expand r into a long key
R using a pseudorandom generator (this operation will take some time, but is
feasible overall), then XOR this long R to their currently shared long key (once
again, this will take some time), and, finally, erase the short r. Needless to say,
the parties should perform these last few steps “offline” and only when being
absolutely sure that the AKE phase succeeded. Also, since most pseudorandom
generators operate in the stream cipher mode, these periodic updates can be
done “in place”. Additionally, the final long key will be secure as long as either
a large enough portion of the original key is not yet leaked, or if the AKE phase
was not compromised.

Correcting Errors. We can also extend our model to allow the adversary to
adaptively cause errors in some fraction of the symmetric keys. This extension
allows us to tolerate either accidental hard-drive failures of some small part of the
secret storage, or even malicious attacks when a virus might be able to rewrite
or damage a small portion of the disk. In fact, our extension for this case is only
nominally less efficient than our main construction. As our main tool, we employ
secure sketches [DORS06] in this construction. The only caveat here is that we
need to assume that the attacker cannot inject errors into the CRS. Thus, the
CRS must be stored in a protected read-only area or made public in some other
way. Details appear in Appendix A.

1.1 Related Works

The Bounded Storage Model (BSM) [Mau92] is closely related to the bounded
retrieval model. In the BSM, a large random string (analogous to our long secret
key) is broadcast publicly at a rate that overwhelms the adversary’s ability to
compress and store it. This is similar to the bounded retrieval restriction in our
model. However, in the BSM the parties are assumed to share a short additional
key which can only be compromised after the attacker lost access to a long string.
In contrast, in our model the only secret is the long string, and the attacker can
adaptively break-in and learn large parts of this long string. This makes the
bounded retrieval model considerably more complicated than the BSM. Indeed,
it is easy to see that, unlike the BSM model, it is impossible to have information-
theoretically secure AKE protocols in our model. However, the techniques from
the BSM model are useful in our model as well: indeed, the WKE protocol we
use crucially utilizes tools from the BSM (such as averaging samplers).

The utilization of PAK protocols in our solution was influenced by the study
AKE protocols using biometric data [BDK+05]. In particular, this work also
introduced the idea of using low entropy intermediate keys as inputs to a PAK
protocol, which is fundamental to our construction. The usual PAK model was
insufficient in that application as well, and was augmented to allow the adversary
to specify some correlation between parties’ (unequal) passwords. However, this
extension was much weaker and much simpler than the one required in our
setting. In particular, UC PAK protocols were not needed for that application.
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Another related line of work is that of privacy amplification and authenticated
key agreement using a shared weak secret key [MW03, Wol98, RW03, DKRS06].
As in our model, the secret key is only guaranteed to have some entropy. How-
ever, all these information-theoretic protocols require accessing and performing
computation on the entire key. In contrast, a key feature of our model is that the
keys are huge, and participants can only access a tiny portion of the key (we call
this property locality). Thus, the above methods are inapplicable to our setting.
In fact, we already mentioned that information-theoretic solutions (such as the
above) are impossible in our setting.

Another related problem is protection against partial key exposure (so-called
exposure-resilient cryptography; see [CDH+00]), where an adversary can directly
access most of the original bits of the secret key without effecting the security
of the system. However, the solutions in this model are again non-local, and the
adversary is not allowed to compute arbitrary functions of the key, like in our
model.

A different direction for dealing with key exposure is the study of key-evolving
schemes. Such schemes allow the attacker to obtain the entire (short) key, but
assume the existence of global time, and update their secret key at each time
period (thus, unlike our schemes, these schemes are stateful). In forward secure
schemes [And97, BM99, CHK03, BY03], an adversary is allowed to compromise
the system at some point, but is still unable to break the system for previous
time periods all of which have not been compromised. Unfortunately, all “future”
security is necessarily gone in this model.

The model of key-insulated cryptography [DKXY02, DKXY03] fixed this prob-
lem, where all past and future periods remain secure after a fixed number of
compromises. However, this is achieved by introducing a non-corruptible server
which holds a master key and helps the user update its secret key from period
to period. So called intrusion-resilient cryptosystems [IR02, DFK+03] extend
the above modeling and allow the attacker to corrupt both the user and the
server, but not in the same time period. From our perspective, such schemes can
be viewed as partitioning a key into two parts, allowing the attacker to obtain
either part at each period, and updating both parts in between the periods.

Finally, we already mentioned several recent works that introduced the
bounded retrieval model in various contexts. Dagon et al. [DLL05] used it for
database protection, Di Crescenzo et al. [CLW06] — for password authentication
resisting offline dictionary attacks,2 and Dziembowski — for public-key encryp-
tion [Dzi06b] and intrusion-resilient AKE [Dzi06a] (the latter being the subject
of this paper).

1.2 Structure of the Paper

In Section 2 we present some technical lemmas and tools. In Section 3 we formally
define the model and security for intrusion resilient AKE. In Section 4 we present

2 Here the model is similar to ours, except the adversary may only steal original bits
of the large key and not any function like in our model.
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a secure construction of intrusion resilient AKE and discuss the use of Universally
Composable PAK. Finally we discuss extending the model to allow for errors in
Appendix A.

2 Preliminaries

In this section we briefly review some of the facts and tools used in this paper.
Throughout, Un denotes the uniform distribution on bit strings of length n,
and ‖ denotes string concatenation. We assume that the definitions of negligible
function (negl(k)) and computational indistinguishability (X

c≡ Y ) are familiar.

Definitions and Facts from Probability. The statistical distance between
two random variables taking values in S is defined to be

Δ(X, Y ) = max
T⊂S

| Pr[X ∈ T ] − Pr[Y ∈ T ]|.

The min-entropy H∞(X) of a discrete random variable X is defined as

H∞(X) = min
x∈supp(X)

{− logPr[X = x]} ,

where supp(X) is the support of X . Let X be a random variable taking values
in {0, 1}n, and let k ≤ n. We say that X is a k-source if H∞(X) ≥ k, that is,
for every x ∈ supp(X), Pr[X = x] ≤ 2−k. Therefore, informally speaking, that
X has high min-entropy means that the value X takes on is hard to guess (for
an unbounded adversary). For a random variable X taking values in {0, 1}n and
α ∈ [0, 1], we say that X has entropy rate α if X is an αn-source.

The following well known lemma quantifies the intuition that short compres-
sions of long entropy-rich strings must leave out a lot of information. This allows
us to tell how random our long secret keys look after some partial compromises.

Lemma 1 (c.f. [NZ96]). Let X and Y be any two (correlated) random
variables. Suppose that X is an n-source, and Y takes values in {0, 1}r. Then
for every ε > 0, with probability at least 1 − ε over y ← Y , X |Y =y is a
(n − r − log (1/ε))-source.

Averaging Samplers. We also make use of a combinatorial tool called an Av-
eraging Sampler. Averaging samplers, first introduced by [BR94], are procedures
that approximate the mean of any function from bit strings to [0, 1] by taking a
limited number of random samples in the domain of the function. We stress that
an averaging sampler must work without any information about the function it
is trying to approximate.

Definition 1 (Averaging Sampler). A function Samp : {0, 1}d → [N ]m is
a (μ, θ, γ) averaging sampler if for every function f : [N ] → [0, 1] with average
value 1

N

∑
i f(i) ≥ μ, it holds that

Pr
{i1,...,im}←Samp(Ud)

⎡

⎣ 1
m

m∑

j=1

f(ij) < μ − θ

⎤

⎦ ≤ γ
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UC PAK. Our construction makes use of a Universally Composable Password
Authenticated Key exchange (UC PAK) protocol, as defined in [CHK+05]. Infor-
mally, the UC security notion of [Can01] requires that a protocol implementing
an “ideal functionality” cannot be distinguished from the ideal functionality 3

it implements, even by an “environment” that chooses inputs to (and observes
outputs from) the parties running the protocol while it is under attack by the
adversary. One result of this very strong notion of security is that protocol de-
signers may use an ideal functionality as a subroutine, yet rest assured that later
replacing that ideal functionality with a UC secure protocol will not harm the
security analysis of the newly designed protocol. In this spirit, we will be making
use of the UC PAK ideal functionality (Figure 1) as a subroutine in our protocol.

The UC PAK functionality captures the following intuitive guarantees: (1) If
the parties are both honest and the adversary does not attempt to “compromise”
their session, then they both receive an identical uniformly distributed random
key, (2) if the adversary makes a failed attempt to compromise their session, hon-
est parties each receive independently generated uniformly distributed random
keys, and (3) the adversary is only able to successfully compromise a session by
either correctly guessing the password of one of the parties (in a single attempt),
or by corrupting one of the parties – in either case the adversary is allowed to
choose the key(s) received by the honest parties. Unless the adversary success-
fully compromises a session, the only information provided by the functionality
to the adversary is a notification when parties initiate the PAK protocol. (Of
course, the adversary is also notified of the success or failure of an attempt to
compromise a session.) Note the functionality does not guarantee that honest
parties receive a shared key, even if the session was not compromised; they are
merely assured that they each either have a good shared key, or a completely
random one.

Unfortunately, like most non-trivial two-party UC functionalities, UC PAK
protocols cannot be implemented in the plain model. Therefore, we rely on the
construction of [CHK+05], which assumes that a short Common Reference String
(CRS) is publicly available. Since the parties in our AKE protocol already share
large secrets, it is a simple matter for them to share a short (public) CRS value
as well (alternatively, a small portion of the shared secret can be “sacrificed”
to generate the CRS). Thus, the introduction of a CRS does not require any
significant alterations to our model. Note that, in the special case where our
security model is augmented with adversarial errors, the adversary should not
be allowed to introduce errors into the CRS itself. Since a CRS is usually very
short, protecting it within (public) “read-only memory” should not be costly.

3 The Model and Definitions of Security

In this section we describe symmetric-key AKE protocols and their security in
the BRM. Throughout this section, k is a security parameter. The length of
3 Technically, the behavior of the protocol under any given attack cannot be distin-

guished from the behavior of some “simulated” attack on the ideal functionality.
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Fig. 1. Ideal Functionality FpwKE , from [CHK+05]

the large symmetric-key is denoted by N , where N = N(k) is a fixed sufficiently
large polynomial. During a setup phase, a symmetric-key X ∈R {0, 1}N is chosen
uniformly and shared between two parties Alice and Bob.

An authenticated key exchange protocol Π is a pair of algorithms (A, B)
describing the honest behavior of two parties. As described in the introduction,
the adversary’s limited access to X is vital to the security of our schemes, and
we assume that the honest parties are similarly restricted (in fact, the honest
parties will use a relatively small amount of their keys compared to the captured
portion). We say that Π is m-local if A and B each access at most m = m(k)
bits in any execution of Π .

Adversaries will be able to steal a total of βN bits over the course of several
executions, where 0 ≤ β < 1. We call β the retrieval rate of the adversary.
Note that the adversary can adaptively decide on the size of the data to capture
during a particular session, as long as it does not violate the total accumulated
retrieval bound.

For the moment, we assume that a key X will be used for at most T sessions,
where T (k) is a polynomial determined by the retrieval rate of the adversary
and the size of X . The assumption of an upper bound on the number of uses
of X will be relaxed; below we show that security for a fixed T (k) implies security
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for an arbitrary polynomial number of sessions under the assumption that the
parties get some predetermined uncompromised sessions.

As with other models for authenticated key exchange, adversaries in our model
(denoted C) completely control the channel between A and B. In particular,
C can inject, drop, modify and delay messages. We also give C the power to
temporarily intrude into the machines of A and B and retrieve some informa-
tion about their internal state, including X . In this paper, our protocols are
only proven secure for sequential executions of sessions. We comment on this
limitation later.

At the beginning of each session, the adversary decides whether or not to
intrude. From now on, we call a session during which the adversary intrudes
a compromised session. After declaring a session (say session i) compromised,
the adversary C outputs a circuit V (a virus) that will get to see the private
information of A and B. This includes rA and rB , the private coins of A and
B to be used in this session, and the secret key X . The virus V computes
Si = V (X, rA, rB),4 and sends Si to the the adversary C.

We stress that V can be any polynomial-size circuit adaptively computed by C
at the start of session i (so C may incorporate information gained from previous
intrusions into V ). The only other restriction on V is that the its output Si is
bounded. In particular, we require that

∑T
i=1 |Si| < βN .

Clearly in a compromised session neither security nor correctness can be
achieved. The best we can hope for is to construct a protocol that guarantees
security and correctness for each uncompromised session. This is reflected in how
success is determined in our definition below.

Our definition follows the style of [BPR00] and [Dzi06a].

The Adversarial Model. The power of an active adversary C is modeled by giving
C oracle access to the protocol instances run by Alice and Bob. Denote by A and
B the prescribed programs of Alice and Bob respectively. Denote by ΠA

i (resp.
ΠB

i ) the instance of protocol Π that Alice (resp. Bob) runs in the i-th session.
For each P ∈ {A, B}, the instances ΠP

i are executed sequentially, that is, for
each i, instance ΠP

i+1 starts after instance ΠP
i completes. At the end of the i-th

session, ΠA
i (resp. ΠB

i ) outputs a bit accA
i (resp. accB

i ) indicating whether A
(resp. B) accepts or aborts in Session i. As in previous work, we assume that this
bit is always known to the adversary C. Denote by skA

i (resp. skB
i ) the session

key output by ΠA
i (resp. ΠB

i ) in the i-th session. If accA
i = 0 (resp. accB

i = 0),
then skA

i =⊥ (resp. skB
i =⊥).

We define the following types of oracles that the adversary C is allowed to
invoke, all of which except for the Intrude oracle are as defined in [BPR00]. We
note that the adversary’s retrieval bounded is expressed below in the definition
of the Intrude oracle.

– Execute(i): Upon this call, the complete execution between protocol instances
ΠA

i and ΠB
i takes place. The output of this call is the transcript, that is,

4 WLOG we assume that the adversary intrudes Alice and Bob simultaneously in a
compromised session.
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the sequence of all messages exchanged between ΠA
i and ΠB

i . This oracle
models passive eavesdropping in Session i.

– Send(P, i, M): This call sends the message M to the instance ΠP
i (where P ∈

{A, B}). The output of this call is the message the instance ΠP
i would send

after receiving the message M , given its current state. This oracle models
active man-in-the-middle attacks in Session i.

– Intrude(i, V ): This oracle models intrusion into the machines of both A and
B. The second input V to this call is a circuit (the virus) constructed based
on the adversary C’s current state. Upon this call, the oracle computes and
outputs Si = V (X, rA

i , rB
i ), where rA

i and rB
i are the private coins of A and

B in session i. We require that
∑T

j=1 |Sj | < βN .
– Test(P, i): The output of this call is either the session key skP

i output by ΠP
i ,

or an independently chosen random string, each case happening with proba-
bility 1/2. The adversary’s goal is to distinguish between the two cases. The
call Test(P, i) can be invoked any time after Party P concludes Session i.
The adversary may not invoke Test(P, i) when accP

i = 0 (i.e. when skP
i =⊥),

or if the adversary has previously invoked Intrude(i, V ).

The adversary C’s advantage in Session i is defined as

Advi(C) = |2 · Pr[C Succeeds in Test(P, i)] − 1|.

Remark: The query Intrude(i, V ) is allowed only before the start of Session i and
is not allowed during Session i.

Definition 2. A session key protocol Π is intrusion-resilient for T = T (k)
sessions if for every PPT C with retrieval rate β, the following conditions are
satisfied:

– (Correctness) With probability 1 − negl(k) the following holds: For each i ∈
[T ], if session i is uncompromised and accA

i = accB
i = 1, then skA

i = skB
i .

– (Privacy) For each i ∈ [T ] s.t. the Test oracle is invoked for session i,
Advi(C) = negl(n).

We now return to the issue of defining security for a fixed polynomial T (k)
number of sessions. We observe that an authenticated key exchange protocol Π
can be used to refresh its own long secret keys during uncompromised sessions.
The idea is that the parties can run Π to obtain a short key r, and then use that
key as the seed for a pseudorandom generator. The output of the generator is
then XORed with the previous long key, and the value r is erased. This ensures
that the final long key will be “as good as new” if the attacker did not break-in
right at the end of Π (i.e., r is uncompromised), and still “as good as before”
even if the attacker compromised the value of r. Thus, as long as at least one
uncompromised key update happened before the attacker obtained too much
information about the long key, the long key remains secure. We defer the details
to the full version on the paper.
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We conclude this section by presenting a lemma that simplifies the analysis
of our constructions. We show below that it suffices to construct a protocol that
is intrusion-resilient for three sessions.

Lemma 2. Suppose that a session key protocol Π is intrusion-resilient for three
sessions against every PPT C that is β-retrieval bounded within the three sessions
and attacks Π as follows: The adversary compromises the first session as usual;
the second session is uncompromised; in the third session the adversary not only
compromises the session but also gets the entire key X of Alice and Bob. Then for
every polynomial T = T (k), the protocol Π is intrusion-resilient for T sessions.

The proof of Lemma 2 is a straightforward simulation of several sessions in only
3 sessions. Again, the proof will appear in the full version of this paper.

4 Authenticated Key Exchange from Weak Key Exchange

In this section we describe an approach for constructing AKE protocols in our
model. We define the notion of Weak Key Exchange (WKE) and give an efficient
construction, and then we show how to compose any WKE protocol with any
UC PAK to realize a secure intrusion resilient AKE protocol.

4.1 Weak Key Exchange: Definition

Briefly, WKE provides only the guarantee that the output keys will have a high
min-entropy from the viewpoint of the adversary. In particular, the adversary
may possibly arrange for the keys to be unequal and correlated in an arbitrary
fashion. Of course, we still require that the keys match when the protocol runs
with no active interference from the adversary. WKE also provides no security
guarantees on past keys once a subsequent WKE session is initiated (i.e. there
is no forward security, and indeed, no long term security requirement at all).
Our definition for WKE is a modification of the definition for authenticated key
exchange, and thus we focus on the differences between the definition of WKE
and that of AKE (as described above).

We use the same adversarial model as in AKE, but with a few critical weak-
enings. In particular, we will only allow for 2 sessions (in a similar spirit to
Lemma 2), where the first session is compromised, and the second is not. Fur-
thermore, we modify the Test oracle, and the corresponding experiment defining
the adversarial advantage, replacing it with the following:

– Test(P, i, sk): The output of this call is 1 if i = 2 and sk = skP
i 
=⊥.

This oracle may only be called once by the adversary (for one party, using
Session 2), in addition to the previous restrictions.

The adversary’s advantage in the privacy requirement is redefined as

Adv2(C) = Pr[C causes Test(i, P, sk) = 1].
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There is no forward security guarantee for weak key exchange, as the adver-
sary may not corrupt (or even invoke) any session that occurs after the second
session (wherein it must query the Test oracle, attempting to break privacy).
Furthermore, the adversary can only succeed by guessing the entire key skP

i

(which is more difficult than merely distinguishing it from random), and thus
the privacy guarantee is considerably weakened.

Definition 3 (Weak Key Exchange(WKE)). A protocol is a weak key ex-
change if for every PPT C with retrieval rate β, the following conditions are
satisfied:

– (Weak Correctness) With probability 1−negl(k) the following holds: for each
i ∈ {1, 2}, if Session i runs honestly, (i.e. the adversary does not tamper
with any protocol messages) then skA

i = skB
i .

– (Weak Privacy) The advantage of the adversary is negligible, i.e. Adv2(C) =
negl(n), where Adv2(C) is as defined above, and in particular depends on the
modified Test oracle.

We note that in the event that the adversary chooses to alter the content of
protocol flows, A and B may agree to accept a session where they receive differing
keys.5

Below we present and analyze a construction meeting this definition, with
information theoretic security.

4.2 Weak Key Exchange: Construction

Our protocol makes use of an averaging sampler, as described in [BR94], which
samples a small number of bits from a much larger source (in this case, the shared
secret X), while nearly preserving the min-entropy rate of the larger source. It
was shown in [Vad04] how to explicitly construct samplers 6 for a δN -source using
only d = log(N/m)+O(log(1/γ)) random bits and m = O(log(1/γ)) bit samples
from the input source to produce output that is γ-close to a (2δ/3)m-source
for any γ > exp(−N/2O(log∗ N)). Note that, given the practical importance of
efficiency, here we obey the requirement that the number of bits of X which are
read during the execution of a WKE is small. (This partly motivates the choice
of parameters for the averaging sampler, and in particular, m = O(log(1/γ)) is
essentially the best one can hope for in terms of efficiency.)

Making use of the existence of such samplers, our protocol proceeds as follows
(where we use XSamp(·) to denote the string formed by concatenating the bits of
X located at the indices selected by Samp):

Lemma 3. The Weak Key Exchange protocol described in Figure 2 is secure for
appropriate choices of the sampler parameters.

5 Indeed, the adversary may attempt to guess either skA
2 or skB

2 in the attack scenario
for the privacy requirement, and they may not be equal.

6 See Lemma 8.4 and its usage in Theorem 8.5 in [Vad04] for details.
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Fig. 2. A WKE Protocol

Proof. The proof of security is direct, and the security guarantee is in fact in-
formation theoretic. The weak correctness property is obvious. The view of the
adversary at the start of the second session is the output of some circuit V (X),
obtained during the compromise of the first session. As we are considering only
β-retrieval bounded adversaries, the output of the circuit V must be no larger
than βN -bits, and thus the adversary knows at most βN -bits of information
about X . In particular, we observe that, from the adversary’s point of view, X
is nearly 7 a (1 − β)N -source (since X is uniformly random over N bits, but
the adversary’s view is conditioned over the βN -bit output of V (X) obtained
during the first session).

Thus, by Lemma 6.2 of [Vad04] (and using the same sampler parameters as
those of the explicit local extractor construction in Theorem 8.5 therein), the
pairs (rA, XSamp(rA)) and (rB , XSamp(rB)) are (very nearly) individually γ-close
to the distribution (Ud, W ), where for every r ∈ {0, 1}d, the distribution W |Ud=r

is at least a (2(1 − β)/3)m-source. Thus, KA = XSamp(rA) ‖ XSamp(r′
B) ≈ W ‖

XSamp(r′
B), where W has (nearly) min-entropy (2(1 − β)/3)m even conditioned

on rA. Therefore, even conditioned on the adversary’s view after the WKE pro-
tocol completes, KA has min-entropy nearly (2(1 − β)/3)m, irrespective of the
adversary’s choice of r′B. An analogous argument applies to KB, and thus, for
sufficiently large choices of m, the weak privacy security requirement follows. �

4.3 Intrusion-Resilient AKE from WKE and UC PAK

On a high level, the protocol uses a WKE to select “passwords” with a high
min-entropy for use by Alice and Bob in a standard PAK protocol. Since PAK

7 Technically, with probability (1 − 2−λ) taken over the distribution of S ← V (X),
the random variable X|V (x)=S (which is X conditioned on the adversary’s view) has
min-entropy (1 − β)N − λ for any choice of λ. This follows directly from Lemma 1.
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protocols securely realizing the ideal functionality FpwKE do not necessarily ver-
ify the output keys (i.e. check that the key exchange was successful, satisfying
correctness), we use MACs to verify them, completing the protocol.

Fig. 3. An AKE protocol based on WKE and UC PAK

Remark: PAK can be implemented using the protocol of [CHK+05], which is a 6-
round protocol that is efficiently implementable under standard number theoretic
assumptions. Our WKE construction is a 2-round protocol, and we add four extra
rounds in the above construction (two to exchange nonces, and two to verify the
keys at the end), for a total of 12 rounds. However, in practice we can move the
exchange of nonces in parallel with the WKE messages, reducing the number of
rounds by 2, and we can move one of the verification messages in parallel with
the last flow of the PAK protocol to save an additional round, bringing the total
down to 9 rounds.

Theorem 1. The AKE protocol described in Figure 3 is intrusion-resilient for
three sessions defined in Lemma 2. Therefore, under the assumption that secure
update sessions can be periodically scheduled, there is an intrusion-resilient AKE
protocol for an unbounded number of sessions.

Proof sketch: Since we are using a universally composable PAK protocol, by
the UC Theorem of [Can01], we may substitute the execution of the PAK protocol
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with calls to the ideal functionality FpwKE described above 8 (using KA and KB

as the passwords for the calls by PA and PB , respectively). Clearly, the session
keys output by the ideal functionality are indistinguishable from random to the
adversary (by definition), unless the adversary makes a successful TestPwd query
(which must be issued prior to the completion of the PAK protocol), allowing him
to choose the output keys. However, as can be seen from the definition of the ideal
functionality, the adversary is allowed only a single query to TestPwd. Following
Definition 3, we observe that the adversary cannot guess the output from the
WKE with non-negligible probability (even when conditioned on the entire view
of the adversary up to and including the point at which the functionality FpwKE

is invoked, which is identical to the view when attacking just the WKE, plus the
addition of a random sid and some other innocuous messages that may be sent
from FpwKE to the adversary), the probability that the adversary succeeds in
a TestPwd query is at most negligible. Thus, we are guaranteed that skA and
skB are indistinguishable from random, and either equal (in the event that no
TestPwd query was issued) or independently generated (in the event that a failed
TestPwd query was issued). Furthermore, it is easy to show that the last two
flows of the protocol (Steps 4-6) ensure that correctness holds, provided that skA

and skB are either identical, or independently chosen random values. Finally, we
observe that the adversary can never distinguish skA or skB from random once
the session has completed, even after being given all 9 of X , since the keys are
chosen at random (independently of X) by the ideal functionality FpwKE and
are never revealed to the adversary. �
Remark: The UC PAK protocol of [CHK+05] is only secure against “static” ad-
versaries in the UC framework. At first glance, it might seem that we require
security against “adaptive” adversaries here, since the random coins used by
the parties are revealed during an intrusion. However, since we are only dealing
with sequential sessions, and since there is no security guarantee provided for
compromised sessions, we need not concern ourselves with the ability to sim-
ulate attacks on the compromised sessions (which would have necessitated the
use of the adaptive security notion). The random coins used by uncompromised
sessions are indeed erased, and thus static adversary UC security is sufficient.

The Need for UC-Secure PAK. We begin by remarking that the use of com-
putationally secure tools is unavoidable in our setting (despite the information
theoretic security of our WKE). This is due to a combination of the forward
security requirement and efficiency requirements for the scheme: if it is efficient
8 The substitution is legitimate since it is possible for an environment Z to internally

simulate the rest of the protocol, including the setup phase with the shared secret
X. Since UC security holds against any environment, in particular, this environment
should be unable to distinguish calls to the ideal functionality FpwKE from calls to
the realized protocol.

9 Indeed, if the adversary were given all of X prior to the completion of the WKE
phase, the security property on the WKE would be broken, allowing the adversary
to potentially issue a successful TestPwd query. Thus, it is in fact still critical that
the adversary be β-retrieval bounded.
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to compute a key-exchange, then the output must be information-theoreticallyfc
determined by a small number of bits, all of which can be obtained by the ad-
versary during a subsequent intrusion (without violating the retrieval bound).

Given that reliance on a computationally secure tool is unavoidable, if we are
going to use a WKE-based approach, one might initially suggest composing it
with a standard PAK protocol relying on a traditional “stand-alone” security def-
inition (particularly since we are restricting parties to sequential AKE sessions).
Unfortunately, there are serious obstacles to this seemingly natural approach.

First, we observe that the passwords (the weak keys) output by our WKE
phase may be correlated in an arbitrary manner. Many traditional definitions
of PAK (as well as various other cryptographic tools) do not provide security in
the scenario where the parties are using unequal but correlated passwords (or,
resp., keys). Indeed, the protocol of [Dzi06a] employs random oracles specifically
to transform the parties’ correlated random secrets into independently random
ones. Since we wish to avoid the use of random oracles, we are left to deal with
definitions of PAK that allow the adversary to correlate passwords. For instance,
the PAK definition of [BDK+05] allows the adversary to specify (a priori) the
joint distribution from which honest parties choose their passwords, so that they
can be forced to obey an arbitrary correlation function.

Surprisingly, it seems difficult (perhaps even impossible) to prove the security
of our construction even when composed with the (very strong) notion of PAK
from [BDK+05]. In particular, it is hard to construct a reduction from the AKE
protocol to the security of the PAK protocol. To see this, consider the issue of
simulating the large AKE secret X . If X is chosen directly by the reduction, then
either (1) the passwords used by the parties being attacked by the reduction are
not be properly derived from X , or (2) the reduction itself is also able to derive
the passwords from X . Of course, in case (2) the reduction is not able to break
the security of parties with unknown passwords, rendering it meaningless. On
the other hand, in case (1), the simulation performed by the reduction does not
faithfully reproduce the setting of the AKE adversary. In fact, it seems hopeless
to prove that such simulations go undetected by the adversary in our setting,
since the adversary can eventually obtain all the relevant portions of X (via
an intrusion subsequent to the completion of the PAK protocol), and check for
consistency. As an alternative approach, the reduction could specify a correla-
tion function for the PAK security game that chooses the value of X , and then
generates correlated passwords accordingly. Unfortunately, this too fails, since
the reduction itself will not learn the value of X , and thus will be unable to
properly simulate the input to the adversary during an intrusion.

Ultimately, we turn to UC PAK to overcome this difficulty. With a UC PAK,
the reduction plays the role of the environment in the UC security definition.
Here, the environment is allowed to choose the passwords used by the parties,
and thus the reduction may choose X and generate passwords accordingly, as in
case (1) above. This time, the reduction remains meaningful, since the adversary
will not be privy to the passwords used by honest parties (due to the separation
between the UC distinguishing environment, and the UC adversary). In fact, if
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we make use of the UC composition theorem, the entire security proof seems to
follow the natural intuition for combining WKE and PAK.

To the best of the author’s knowledge, this setting represents the first instance
of protocol which, even when executed sequentially and in isolation, seems to
require the use of a UC secure tool. Our setting thus provides a powerful and
naturally occuring example of the benefits of UC security in modular proto-
col design. Here we are able to consider a protocol which, when designed in-
tuitively using standard tools, (seemingly) cannot be proven secure even in a
simple “stand-alone” protocol execution setting. Yet, when the same intuitive
design is implemented using a UC secure tool, a proof of security far more readily
presents itself.
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of indices. We first give a formal definition of the model with errors, and then
we give the definition of secure sketches and show how they can be used to resist
errors.

Definition 4. Again we modify Definition 2. In this case, during a compromised
session, the virus V may have two outputs: the first is the information sent back
to the adversary, and second is the error vector which describes which bits of X
to flip. We say that an adversary is γ-error bounded if it flips at most a γN bits
of X between key updates.

Our construction meeting Definition 4 uses secure sketches. Intuitively, a secure
sketch is a primitive that lets us generate a sketch of a string w that will help a
user with a noisy version w′ of w correct errors, but will not help an outside ob-
server significantly. Originally, secure sketches were defined for a general metric,
but we only need the case for Hamming distance.

Definition 5 (Secure Sketch [DORS06]). An (k, k′, t)-secure sketch is a
pair of algorithms (SS, Rec) such that

1. (Security) If W is a k-source, then W can be guessed by an adversary who
sees SS(W ) with probability at most 2k′

.10

2. (Correctness) If w and w′ differ at less than t indices, then Rec(w′, SS(w)) =
w.

We now show how to construct a WKE protocol that functions correctly in the
presence of errors. We use secure sketches to ensure that the strings XSamp(rA)
and XSamp(rB) are corrected in the passive case. The details of the updated
protocol appear below in Figure 4

We choose β1, β2, ε and γ in Figure 4 so that when we have a β1-retrieval
bounded adversary who can flip a total of γN bits during the interaction, the
adversary’s chance at guessing a password handed to the PAK is at most 2−β2N .

Lemma 4. For an appropriate setting of parameters, the protocol in Figure 4
satisfies the security definition of WKE in the augmented model where the adver-
sary can inject a γ fraction of errors, and transmit β1N bits during during the
first round. (Recall that we only need to prove security in the case of two rounds
for WKE).

Proof sketch: Correctness in the passive case is obvious from the definitions
of the primitives used. Privacy follows from the original analysis of our WKE
construction, together with the observation that after seeing sA (resp. sB), it
is still hard to guess XA

Samp(rA) (resp. XB
Samp(rB)). We defer a detailed analysis,

including parameter settings, to an expanded version of this work. �
10 We would like to briefly say that H∞(W |SS(W )) > k′, but what we actually

need is that the average min-entropy H̃∞(W |SS(W )) is greater than k′, where
H̃∞(A|B) = − log(Eb←B [maxa Pr [A = a|B = b]]), which corresponds to the prose
description given.
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Fig. 4. A WKE Protocol For Noisy Keys

Once we have an error-resistant WKE protocol, composing with a UC-secure
PAK protocol results in an error-resistant and intrusion resilient AKE protocol.
The reason this is true is because the PAK protocol does not access X on its
own, and once the WKE property for its input passwords is established, the UC
theorem allows us to replace the PAK protocol with an ideal functionality and
the original proof goes through unchanged. Again, we defer the full details of
the analysis.
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Abstract. A protocol compiler is described, that transforms any prov-
ably secure authenticated 2-party key establishment into a provably
secure authenticated group key establishment with 2 more rounds of
communication. The compiler introduces neither idealizing assumptions
nor high-entropy secrets, e. g., for signing. In particular, applying the
compiler to a password-authenticated 2-party key establishment without
random oracle assumption, yields a password-authenticated group key
establishment without random oracle assumption. Our main technical
tools are non-interactive and non-malleable commitment schemes that
can be implemented in the common reference string (CRS) model.

Keywords: key establishment, protocol compiler, password-based au-
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1 Introduction

During the last decades, the design of 2-party key establishments has been ex-
plored intensively. Certainly not all relevant issues are covered by the available
theoretical models, but the techniques at hand proved to be a valuable foun-
dation for the design of practical protocols. On the other hand, the design of
group key establishments with n > 2 participants is much less understood, and
there is a need for significant theoretical progress. In particular for password-
authenticated protocols the situation is not very satisfying. A number of proto-
cols have been designed for such a setting, including [24,1,2,28,13], but it seems
to be a non-trivial task to establish strong provable security guarantees without
making idealized assumptions.
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One valuable tool for breaking down the task of designing a group key es-
tablishment protocol into conceptually simpler steps are protocol compilers that
build on the security of a given 2-party solution: It seems a plausible design ap-
proach to start with a 2-party key establishment and then to apply an efficient
compiler which derives the desired n-party solution. Indeed, a number of such
generic constructions have been discussed in the literature, including [9,25,17].
Remarkably, all proposed constructions rely, to the best of our knowledge, on the
use of high-entropy secrets for achieving security against active adversaries. In
particular, for the case of password-based authentication in the standard model,
no generic 2-to-n compiler seems to be known. The only result in this direction
we are aware of is a construction of Abdalla et al. [1,2] to extend a 2-party
solution to the 3-party case.

Our contribution. We describe a compiler that enables the derivation of an au-
thenticated group key establishment protocol from an arbitrary authenticated
2-party key establishment (AKE). In particular, for a password-authenticated
2-party key establishment (PAKE) we obtain a password-authenticated group
key establishment. Our compiler does not impose idealizing assumptions or high-
entropy secrets for authentication. The suggested construction builds on the use
of non-interactive and non-malleable commitments, which in the Common Ref-
erence String (CRS) model are known to be implementable through IND-CCA2
secure encryption schemes. For the security proof, we build on a model adapted
from [18,20,6] which in turn builds on [4,3]. The structure of our compiler is
inspired by the constant-round protocol recently proposed by Bohli et al. [6]
which in turn builds on [8,14,15]. If the underlying 2-party protocol requires r
rounds of communication, the group key establishment output by the compiler
takes r + 2 rounds.

Organization of the paper. In the next section we recall the basic components
of the security framework. We also address some specifics of password-based
authentication, a scenario where the application of our protocol compiler seems
particularly attractive. Thereafter, we detail the suggested protocol compiler and
present the respective security proof. Section 4 indicates some possible applica-
tions of our compiler.

2 Security Model and Security Goals

For our compiler, we assume the availability of a common reference string (CRS)
which, similarly as in [14,6], encodes

i) the necessary information for implementing a non-interactive and
non-malleable commitment scheme,

ii) a uniformly at random chosen element from a family of universal hash func-
tions and

iii) two values v0, v1 that will serve as arguments for a pseudorandom function
when computing the session identifier and session key.
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The total set of users will be denoted by P and is assumed to be of polyno-
mial size. By U = {U1, . . . , Un} ⊆ P we denote the set of protocol participants.
We assume that shared (low- or high-entropy) secrets needed for authentication
are generated in a trusted initialization phase. During this trusted initialization
phase, also possibly needed public keys may be distributed to all potential pro-
tocol participants. If authentication is based on shared secrets, we may either
assume that each pair of protocol participants Ui, Uj ∈ U shares such a secret
or that the complete set of protocol participants U shares one common secret
(our compiler is provably secure in either case). We assume that all secrets are
chosen independently.

Specifics for password-based authentication. In the case of password-authenticated
key establishment, we assume a dictionary D ⊆ {0, 1}∗ to be publicly available.
It is supposed to be efficiently recognizable and of constant or polynomial size. In
particular, a polynomially bounded adversary is able to exhaust the complete dic-
tionary D. We assume that all passwords are chosen independently and uniformly
at random from D.

2.1 Communication Model and Adversarial Capabilities

As mentioned earlier, our security model is essentially adopted from [6] which
in turn builds on [8,14,15,5]. Moreover, as we consider forward secrecy, we also
include a Corrupt-oracle. As usual, users are modeled as probabilistic polynomial
time (ppt) Turing machines. For our proofs, we may either use uniform or non-
uniform Turing machines.

Protocol instances. Each protocol participant U ∈ U may execute a polynomial
number of protocol instances in parallel. A single instance Πsi

i can be interpreted
as a process executed by protocol participant Ui. Throughout, the notation Πsi

i

(i ∈ N) will be used to refer to instance si of protocol participant Ui ∈ U . To
each instance we assign seven variables:
usedsi

i indicates whether this instance is or has been used for a protocol run.
The usedsi

i flag can only be set through a protocol message received by the
instance due to a call to the Execute- or to the Send-oracle (see below);

statesi

i keeps the state information needed during the protocol execution;
termsi

i shows if the execution has terminated;
sidsi

i denotes a public session identifier that can serve as identifier for the session
key sksi

i . Note that even though we do not construct session identifiers as
session transcripts, the adversary is allowed to learn all session identifiers;

pidsi

i stores the set of identities of those users that Πsi

i aims at establishing a
key with—including Ui himself;

accsi

i indicates if the protocol instance was successful, i. e., the user accepted
the session key;

sksi

i stores the session key once it is accepted by Πsi

i . Before acceptance, it
stores a distinguished null value.

For more details on the usage of the variables we refer to the work of Bellare et
al. in [3].
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Communication network. We assume arbitrary point-to-point connections
among users to be available. The network is non-private and fully asynchronous:
The adversary may delay, eavesdrop, insert and delete messages at will.

Adversarial capabilities. We consider ppt adversaries only. Let b be a bit cho-
sen uniformly at random. The capabilities of an adversary A are made explicit
through a number of oracles allowing A to communicate with protocol instances
run by the users:

Send(Ui, si, M). This sends message M to the instance Πsi

i and returns the
reply generated by this instance. If A queries this oracle with an unused
instance Πsi

i and M ⊆ P a set of identities of principals, the usedsi

i -flag is
set, pidsi

i initialized with pidsi

i := {Ui}∪M , and the initial protocol message
of Πsi

i is returned.
Execute({Π

su1
u1 , . . . , Π

suμ
uμ }). This executes a complete protocol run among the

specified unused instances of the respective users. The adversary obtains
a transcript of all messages sent over the network. A query to the Exe-
cute oracle is supposed to reflect a passive eavesdropping. In particular, for
a password-authenticated setting, no online-guess for the secret password
can be implemented with a query to this oracle.

Reveal(Ui, si). This yields the value stored in sksi

i .
Test(Ui, si). Provided that the session key is defined (i. e. accsi

i = true and
sksi

i �= null) and instance Πsi

i is fresh (see the definition of freshness below),
A can execute this oracle query at any time when being activated. Then, the
session key sksi

i is returned if b = 0 and a uniformly chosen random session
key is returned if b = 1. In this model, an arbitrary number of Test queries is
allowed for the adversary A, but once the Test oracle returned a value for an
instance Πsi

i , it will return the same value for all instances partnered with
Πsi

i (see the definition of partnering below).
Corrupt(Ui). This returns all long-term secrets of user Ui. In case of password-

based authentication, all passwords held by Ui are returned. In the case of
Ui having long-term private keys, e. g., for signing, these private keys are
returned.

Remark 1. The model described above seems apparently stronger than those
normally used elsewhere since it allows for multiple Test queries. Nevertheless,
one can easily show the two notions to be equivalent via a standard hybrid
argument with a loss of a factor q in the reduction, with q being the total number
of protocol instances. A similar model was also considered by Abdalla et al. in [2]
to prove the security of their password-authenticated 3-party key establishment.
Fortunately, as pointed out in [2], the loss of a factor q in the reduction can be
avoided in most cases as several of the existing schemes (e.g., [19,20,15]) already
meet this apparently stronger notion of security. This is due to the fact that, in
their security proofs, they show that all fresh session keys that can be tested by
the adversary are indistinguishable from random.
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2.2 Correctness, Integrity and Secrecy

Before we define correctness, integrity and secrecy, we introduce partnering to
express which instances are associated in a common protocol session.

Partnering. We refer to instances Πsi

i , Π
sj

j as being partnered if pidsi

i = pidsj

j ,
sidsi

i = sidsj

j , sksi

i = sksj

j and accsi

i = accsj

j = true.
To avoid trivial cases, we assume that an instance Πsi

i always accepts the ses-
sion key constructed at the end of the corresponding protocol run if no deviation
from the protocol specification has occurred. Moreover, we want that all users
in the same protocol session come up with the same session key, and we capture
this in the subsequent notion of correctness.

Correctness. We call a group key establishment protocol P correct, if in the
presence of a passive adversary A—i. e., A must neither use the Send nor the
Corrupt oracle—the following holds: for all i, j with both sidsi

i = sidsj

j and accsi

i =
accsj

j = true, we have sksi

i = sksj

j �= null and pidsi

i = pidsj

j .

Key integrity. By definition, correctness takes only passive attacks into account.
In contrast, key integrity imposes no restrictions on the adversary’s oracle access:
We say that a correct group key establishment protocol fulfills key integrity, if
with overwhelming probability all instances of users that have accepted with the
same session identifier sidsj

j hold identical session keys sksj

j and identical partner
identifiers pidsj

j .
Next, for detailing the security definition, we will have to specify under which

conditions a Test-query may be executed.

Freshness. A Test-query should only be allowed to those instances holding a key
that is not for trivial reasons known to the adversary. To this aim, an instance
Πsi

i is called fresh if none of the following holds:

– For some Uj ∈ pidsi

i a query Corrupt(Uj) was executed before a query of the
form Send(Uk, sk, M) has taken place, for some message (or set of identi-
ties) M and some Uk ∈ pidsi

i .
– The adversary earlier queried Reveal(Uj , sj) with Πsi

i and Π
sj

j being part-
nered.

The idea of this definition is that revealing a session key from an instance Πsi

i

trivially yields the session key of all instances partnered with Πsi

i , and hence
this kind of “attack” will be excluded in the security definition.

Security/key secrecy. For a secure group key establishment protocol, we have
to impose a corresponding bound on the adversary’s advantage: The advantage
AdvA(�) of a ppt adversary A in attacking protocol P is a function in the security
parameter �, defined as

AdvA := |2 · Succ − 1|.
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Here Succ is the probability that the adversary queries Test only on fresh in-
stances and guesses correctly the bit b used by the Test oracle (without violating
the freshness of those instances queried with Test) :

In the case of password-authenticated key establishment, due to the poly-
nomial size of the dictionary D, we cannot prevent an adversary from cor-
rectly guessing shared passwords with non-negligible probability. Thus, for the
password-authenticated setting, our goal is to restrict the adversary A to online-
verification of password guesses, namely, to prove that AdvA is only negligibly
above the probability A has guessed a shared password online. We introduce a
function ε to capture such weaknesses that originate in the employed authen-
tication technique. For the password case, ε should bound A’s probability of
guessing a shared password, assuming he is not able to test (online) more than
a constant number of passwords per protocol instance.

Remark 2. Following the spirit of [14,6], it would be desirable to restrict the
number of passwords that can be guessed online to one per protocol instance.
As described, our compiler accesses the underlying authenticated 2-party key
establishment as a black-box only, and our security proof does not guarantee
that only one password can be verified per instance. For specific instances a
tighter security reduction may be possible, however.

Definition 1. We say that an authenticated group key establishment protocol P
is ε-secure, if for every ppt adversary A the following inequality holds for some
negligible function negl:

AdvA(�, qsend) ≤ ε(�, qsend) + negl(�), (1)

where � is the security parameter and qsend is the number of different protocol
instances A queries the Send oracle with. The function ε is expected to be at
most linear in its second variable, i.e. the number of Send queries.

Forward Secrecy. We follow the spirit of the definition of forward secrecy from
[19], yet our definition is weaker: we consider the “weak corruption model” of [3]
in which corrupting a principal means only retrieving his long term secret keys.
Forward secrecy is then achieved if such corruption does not give the adversary
any information about previously agreed session keys. This same approach has
also been taken in [7,16].

Remark 3. Note that our definition of freshness allows for Test queries to in-
stances such that their (or their partners’) long term secret keys have been
revealed to the adversary by a Corrupt query as long as no Send query has been
asked to any of these instances (or their partners) after the Corrupt query. Thus,
the above definition of ε-security implies forward secrecy in this sense.

3 From Two to Group: A Compiler

In this section, we describe how an n-party AKE can be derived from any 2-
party AKE carrying over its essential security properties. Our compiler assumes
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the availability of a 2-party key establishment that is ε-secure in the sense of
Definition 1, where ε is defined according to the authentication method used.
Our construction then yields an ε̂-secure n-party AKE where ε̂ is bounded by 4·ε.

3.1 Tools

For the actual compiler, black-box access to the authenticated 2-party key estab-
lishment suffices, and Fig. 1 captures this access with an oracle 2-AKE(·, ·) that
upon input of two principals Ui, Uj ∈ P (or rather their identities), returns the
respective output of the 2-party protocol. We assume this output to be either a
secret key κ ∈ {0, 1}k or a special symbol � indicating that the key establish-
ment failed (due to adversarial interference). Additionally, the tools involved in
our construction are:

– a non-interactive non-malleable commitment scheme [12] C, fulfilling
the following requirements:
1. it must be perfectly binding, i. e., every commitment c defines at most

one value decommit(c);
2. it must achieve non-malleability for multiple commitments—if an adver-

sary receives commitments to a (polynomial sized) set of values ν he
must not be able to output commitments to a (polynomial sized) set of
values β related to ν in a known way.

Note that in the CRS model with a common reference string ρ, the above
commitment schemes C = Cρ can be constructed from any public key en-
cryption scheme that is non-malleable and secure for multiple encryptions
(in particular, from any IND-CCA2 secure public key encryption scheme).

– a collision-resistant pseudorandom function family F = {F �}�∈N as
used by Katz and Shin [21]. We assume F � = {F �

η}η∈{0,1}L to be indexed by a
superpolynomial sized set {0, 1}L and denote by v0 = v0(�) a publicly known
value such no ppt adversary can find two different indices λ �= λ′ ∈ {0, 1}L

such that Fλ(v0) = Fλ′(v0). For deriving the session key we use another
public value v1 which fulfills the above collision-resistance condition as well
and is also encoded in the CRS (see [21] for more details).

– a family of universal hash functions UH that maps the concatenation
of bitstrings from {0, 1}kn and a partner pidsi

i onto {0, 1}L. The CRS selects
one universal hash function UH from this family. We use UH to select an
index within the aforementioned collision-resistant pseudorandom function
family.

3.2 Design Rationale

The idea of our compiler is inspired in the classical construction of Burmester and
Desmedt [8], where the trick of constructing a group key from pairwise agreed
keys among the group principals was first introduced. Further, our construction
in some sense generalizes the design of [6], that builds an n-party PAKE on
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Gennaro and Lindell’s 2-party PAKE. Once the pairwise key establishments
have been completed, each principal must commit to the XOR-value of the two
keys he shares with his neighbors. This value is disclosed in a subsequent round,
allowing all principals to derive each of the 2-party keys, from which both the
session identifier and the session key will be derived. Intuitively, if an adversary
has not been able to pervert the security of any of the 2-party protocol executions
involved, neither will he be able to retrieve any information about the resulting
group session key (for XORs of “randomly looking” elements should look as well
random to him). Moreover, integrity is also provided by an argument similar to
the one in [6].

The compiler does not rely on further authentication techniques than those
used in the basic 2-party AKE protocol, neither on any further idealization
assumption. Also, our design is symmetric in the sense that all users perform the
same steps. Fig. 1 shows the three rounds of our construction, adding 2 rounds
to those of the underlying 2-party AKE. For the sake of readability, we do not
explicitly refer to instances si of users. Also, we omit the pidsi

i -values, assuming
that when the protocol is initiated (via a Send or Execute call) each participant
involved receives a message informing him of the actual pid of the session, which
in addition makes him aware of his position in the “cycle” of involved principals
and therefore the 2-AKE step (Round 0) can be performed accordingly.

Remark 4. The compiler can be applied to any polynomial number of partici-
pants n ≥ 2. The case n = 2 is not excluded, but to some extent pathological:
Here the compiler executes the underlying 2-party AKE twice, so that each party
obtains two independent keys

−→
K i,

←−
K i, which are then combined to form the ac-

tual session key.

3.3 Security Analysis

Assume that we are given a correct and secure authenticated 2-party key es-
tablishment protocol. Assume further that C is a non-interactive non-malleable
commitment scheme and F a collision-resistant pseudorandom function family.
In the following, we show that under these assumptions the compiler in Fig. 1
yields a correct and secure group key establishment. In particular, this is true
when the underlying 2-party AKE protocol is based on passwords.

Theorem 1. Let F be a family of secure collision-resistant pseudorandom func-
tions, let C be a non-interactive perfectly binding non-malleable commitment
scheme, and let 2-AKE be a correct and ε-secure authenticated 2-party key es-
tablishment protocol. Then the protocol in Fig. 1 is a correct and 4 · ε-secure
authenticated group key establishment protocol, which also provides key integrity.

Proof. Correctness. In an honest execution of the protocol, it is easy to verify
that all participants in the protocol will terminate by accepting and computing
the same session identifier and session key.

Integrity. Owing to the collision-resistance of the family F , all oracles that accept
with identical session identifiers use with overwhelming probability the same
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Round 0:
2-AKE: For i = 1, . . . , n execute 2-AKE(Ui, Ui+1).a Thus, each user Ui holds

two keys
−→
K i,

←−
K i shared with Ui+1 respectively Ui−1.

Round 1:
Computation: Each Ui computes

Xi :=
−→
K i ⊕ ←−

K i

and chooses a random ri to compute a commitment Ci = Cρ(i, Xi; ri).
Broadcast: Each Ui broadcasts M1

i := (Ui, Ci)

Round 2:
Broadcast: Each Ui broadcasts M2

i := (Ui, Xi, ri)
Check: Each Ui checks that X1 ⊕ X2 ⊕ · · · ⊕ Xn = 0 and the correctness of

the commitments. If at least one of these checks fails, set acci := false and
terminate the protocol execution.

Computation: Each Ui sets Ki :=
←−
K i and computes the n − 1 values

Ki−j :=
←−
K i ⊕ Xi−1 ⊕ · · · ⊕ Xi−j (j = 1, . . . , n − 1),

defines a master key

K := (K1, . . . , Kn, pidi),

and sets ski := FUH(K)(v1), sidi := FUH(K)(v0) and acci := true.

a All indices are to be taken in a cycle, i. e., Un+1 = U1, etc.

Fig. 1. A protocol compiler

index value UH(K) and therewith also derive the same session key and have
identical partner identifiers.

Key secrecy. The proof of key secrecy will proceed in a sequence of games, start-
ing with the real attack against the key secrecy of the group key exchange pro-
tocol and ending in a game in which the adversary’s advantage is 0, and for
which we can bound the difference in the adversary’s advantage between any
two consecutive games. Following standard notation, we denote by Adv(A, Gi)
the advantage of the adversary A in Game i. Furthermore, for clarity, we clas-
sify the Send queries into 3 categories, depending on the stage of the protocol
to which the query is associated, starting with Send-0 and ending with Send-2.
Send-t denotes the Send query associated with round t for t = 0, 1, 2.

Game 0. This first game corresponds to a real attack, in which all the param-
eters, such as the public parameters in the common reference string and the
long-term secrets associated with each user, are chosen as in the actual scheme.
By definition, Adv(A, G0) = Adv(A).
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Game 1. In this game, for i = 1, . . . , n, we modify the simulation of the Send
and Execute oracles so that, whenever an instance Πsi

i is still considered fresh at
the end of Round 0, the keys

←−
K i and

−→
K i that it shares with instances Π

si−1
i−1 and

Π
si+1
i+1 are replaced with random values from the appropriate set. An instance

Πsi

i is considered fresh at the end of Round 0 if it has not halted or rejected and if
no query Corrupt(Uj) for some Uj ∈ pidsi

i has been asked by the adversary before
a query of the form Send(Uk, sk, M) for some Uk ∈ pidsi

i and some message M .
Note that the distance between this game and the previous one is bounded by

the probability that the adversary breaks the security of any of the underlying
2-AKE protocols. More precisely, we have

∣∣Adv(A, G1) − Adv(A, G0)
∣∣ ≤ 2 · Adv2-AKE(�, 2 · qsend),

where qsend represents the number of different protocol instances in Send queries.
The factor 2 multiplying qsend emerges because one instance in the group key
protocol builds on two instances of the 2-AKE protocol for the key establishment
with the right and left neighbor, respectively. The other factor 2 is due to the
security definition which states that the advantage of an adversary is twice its
success probability minus 1.

To prove this, we show how an adversary A2-AKE is constructed from a given
adversary A distinguishing Game G1 from Game G0.

A2-AKE is given access to a simulation of the 2-AKE protocol as outlined
in Section 2. To answer its queries, A2-AKE will associate each user instance
Πsi

i in the group protocol with two independent instances of the same user in
the 2-AKE protocol. Now, whenever A makes a Corrupt query, A2-AKE answers
it by querying the Corrupt oracle of the 2-AKE protocol and returns the same
answer. To answer an Execute query, A2-AKE first queries the Execute oracle of
the 2-AKE protocol with the corresponding instances to obtain the transcript for
Round 0. To simulate the following rounds, A2-AKE first queries the Test oracle
of the 2-AKE protocol with the corresponding instances and uses the returned
values as the keys

←−
K i and

−→
K i. To answer a Send-0 query, A2-AKE queries the

Send oracle of the 2-AKE protocol with the corresponding instance and returns
its response. To answer Send queries pertaining rounds 1 and 2, A2-AKE first
sets the values of the keys

←−
K i and

−→
K i by querying either the Test or Reveal

oracle of the 2-AKE protocol with the corresponding instances and proceeds
with the simulation as in the previous game. More precisely, if an instance Πsi

i

in the group protocol is still considered fresh at the beginning of Round 1, then
A2-AKE queries the Test oracle of the 2-AKE protocol with the corresponding
instances in the 2-AKE protocol. Otherwise, A2-AKE queries the Reveal oracle.

Finally, one can easily see that the view of A corresponds to Game G0 if
Test reveals the actually exchanged key and to Game G1 if Test returns a random
element from the key space. Thus, A succeeds distinguishing Game G0 and
Game G1 with a probability of at most Adv2-AKE(�, 2 · qsend).

Game 2. In this game, we change the simulation of the Send oracle so that a fresh
instance Πsi

i does not accept in Round 2 whenever one commitment Cj for j �= i
it receives in Round 1 was generated by the simulator but not generated by the
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respective instance Π
sj

j , j �= i in the same session. At this, we take two instances
Π

sα0
α0 , Π

sαr
αr for being in the same session, if there is a sequence of instances

(Π
sαμ
αμ )0≤μ≤r such that for each μ = 0, . . . , r − 1 the instances Π

sαμ
αμ and Π

sαμ+1
αμ+1

are partnered through an execution of the underlying 2-party key establishment
(i. e., they hold a common 2-party session key

−→
Kαμ =

←−
Kαμ+1 associated with

the same session identifier and the same two protocol participants).
The adversary A can detect the difference to Game G1 if A replayed a com-

mitment that should have led to acceptance in Round 2 in that game. Because
the committed value Xi is a random value independent of previous messages,
the probability for this is negligible.

∣∣Adv(A, G2) − Adv(A, G1)
∣∣ ≤ negl(�)

To see why, note that given one session, an instance Πsi

i expects commitments
Cj to (j, Xj), such that X1 ⊕ · · · ⊕ Xn = 0. Πsi

i will only accept with negligible
probability if all commitments where generated by the simulator, however, not
being exactly the commitments Cj , j �= i by the respective oracles Π

sj

j , j �= i of
the session. This can be seen as follows: The equation

X1 ⊕ · · · ⊕ Xn = 0

results in ←−
K1 ⊕ −→

K1 ⊕ · · · ⊕ ←−
Kn ⊕ −→

Kn = 0.

For Πsi

i , Xi =
←−
K i ⊕ −→

K i is given where
←−
K i is shared with Ui−1 and

−→
K i is shared

with Ui+1. Because the commitment Cj includes the index of user Uj and is
perfectly binding, the adversary A cannot reveal the commitments if they are
permuted within the participants of the session. As by now all keys are random
values, the probability for any XOR sum of keys not consisting exactly of the
keys in one session (thus canceling each other w.r.t. XOR) to be 0 is only 1/2k.
The adversary A is at maximum capable of doing this qsend times, giving him a
probability qsend/2k of distinguishing the games.

Game 3. This game reproduces the modification also for adversary-generated
commitments: The simulation of the Send oracle changes so that a fresh instance
Πsi

i does not accept in Round 2 whenever one commitment Cj for j �= i it receives
in Round 1 was adversary-generated. The adversary’s advantage diverges only
negligibly from the previous game:

∣∣Adv(A, G3) − Adv(A, G2)
∣∣ ≤ negl(�)

To prove this, we construct a malleability attacker ACOM to the commitment
scheme from an adversary A that comes up with a commitment Cj to Πsi

i such
that Πsi

i would accept in Game G2 but not in Game G3. Our goal is to show
that the probability with which ACOM succeeds in outputting a related vector of
commitments is related to the probability with which A can distinguish Games
G3 from G2.
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ACOM is given commitments Ci = Cρ(i, Xi; ri) for i = 1, . . . , n where the
Xi values are random bitstrings fulfilling X1 ⊕ · · · ⊕ Xn = 0. For bitstrings X ′i,
i = 1, . . . , n, the 2n-ary relation is given by

R(X1, . . . , Xn, X ′1, . . . , X
′
n) = 1

if and only if

X ′1 ⊕ · · · ⊕ X ′n = 0 and Xi = X ′i for at least one index i ∈ {1, . . . , n}.

ACOM starts by guessing the first instance Πsi

i to receive from A a set of com-
mitments C′j , for j �= i, with at least one of these commitments being adversary-
generated. For all sessions other than the one in which Πsi

i is involved, ACOM

simulate the oracles exactly as it would in Game G2. For the session in which
Πsi

i is involved, ACOM uses the Ci values that it has received as input to answer
Send-1 queries. Then, as soon as A provides Πsi

i with a set of commitments C′j
for j �= i, then ACOM halts the simulation and outputs this set along with Ci.

One can easily see that ACOM will succeed in outputting a set of related
commitments satisfying the relation R if it guesses correctly the first instance
to receive a set of commitments containing at least one adversary-generated
commitment and passing the verification test. This is true because games G3
and G2 are indistinguishable up to that point and the simulation of the oracles
by ACOM is perfect.

By definition of non-malleability, the success probability of ACOM is only neg-
ligibly greater than that of an adversary who does not see the list of commitments
Ci for i = 1, . . . , n. If no commitments are given, an adversary’s probability to
send valid commitments Cj for j �= i such that X ′1 ⊕ · · · ⊕ Xi ⊕ · · · ⊕ X ′n = 0 is
qsend/2k as in the previous game. As a result, the non-malleability of the commit-
ment scheme guarantees that the adversary’s success probability with access to
these commitments is negligibly close to qsend/2k, thus, being negligible in total.

Game 4. Now the simulation of the Execute and Send oracles are modified at
the point of computing the session key. The simulator keeps a list of assignments
(K1, . . . , Kn, sksi

i ). Once an instance receives the last Send-2 query, the simulator
computes K1, . . . , Kn and checks if for this sequence a master key was already
issued and assigns this key to the instance. If no such entry exists in the list, the
simulator chooses a session key sksi

i ∈ {0, 1}� uniformly at random.
The master key K = (K1, . . . , Kn, pidsi

i ) has, once the Xi are public, suf-
ficient entropy such that the output of the pseudorandom function FUH(K) is
distinguishable from a random sksi

i with negligible probability only.
∣∣Adv(A, G4) − Adv(A, G3)

∣∣ ≤ negl(�).

In Game G4, all session keys are chosen uniformly at random and the adver-
sary has no advantage.

Adv(A, G4) = 0.

�
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4 Applications and Comments

The above compiler allows for the construction of very efficient authenticated
group key exchange protocols adding up to the “base” 2-AKE only two rounds
of communication. As we have remarked, our compiler adds neither any authen-
tication tool nor any additional idealization assumptions to the base scheme.

Example 1. Applying our compiler to a password-authenticated 2-party key es-
tablishment offering forward secrecy, we immediately obtain a forward secure
password-authenticated group key establishment. It should be pointed out here,
however, that stronger notions of forward secrecy than ours can be consid-
ered [19]. Actually, it is an interesting question to explore whether the KOY
2-AKE from [19] (or variants of it) can be proven secure in our model—therewith
yielding through application of our compiler the first forward secure password-
authenticated group key establishment.

Of course, our compiler can also be applied in the random oracle model—in
practice this means to replace the “full-fledged” commitment scheme and the
family of collision resistant pseudorandom functions through the (more efficient)
use of a cryptographic hash function (cf. [21]). Going one step further, from
an engineering perspective it is tempting to apply the compiler to an efficient
authenticated 2-party key establishment, even if no security proof in the above
model is available. Of course, in this case our security analysis does not yield a
provable security statement on the resulting group key establishment.

Example 2. A natural starting point for applying our compiler would be the
(H)MQV family discussed in [27,23,26,22]. The resulting scheme could be rather
efficient in practice, but the available formal security analysis builds on a model
due to Canetti and Krawczyk [11]. We have not attempted to carry out a security
analysis in the model underlying the above discussion and consequently cannot
claim provable security guarantees of a derived group key establishment.

5 Conclusions

The compiler we presented allows the construction of authenticated group key
establishment schemes based on any provably secure authenticated 2-party key
establishment. At this forward secrecy is taken into account, and the suggested
compiler does not introduce new idealizing assumptions or tools for authentica-
tion, like an existentially unforgeable signature scheme. In terms of efficiency,
adding only two additional rounds to a 2-party solution seems acceptable, too,
and renders the compiler an interesting tool for practical protocol design.

Both from a theoretical and from a practical point of view, it seems worthwhile
to explore the tightness of the above security proof more closely, when applying
the compiler to specific protocols. In the described form, the compiler restricts
to black-box access to the underlying two-party key establishment, but for a
specific use case, there is no need for such a restriction.
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Also, we have not explored the behaviour of our compiler within the universal
composability framework. In particular, it would be interesting to explore the
security level achieved applying our compiler to universally composable password
based two party key exchange protocols, along the lines of [10].
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Abstract. In an identity based encryption scheme, each user is identi-
fied by a unique identity string. An attribute based encryption scheme
(ABE), in contrast, is a scheme in which each user is identified by a set
of attributes, and some function of those attributes is used to determine
decryption ability for each ciphertext. Sahai and Waters introduced a
single authority attribute encryption scheme and left open the question
of whether a scheme could be constructed in which multiple authorities
were allowed to distribute attributes [SW05]. We answer this question in
the affirmative.

Our scheme allows any polynomial number of independent authori-
ties to monitor attributes and distribute secret keys. An encryptor can
choose, for each authority, a number dk and a set of attributes; he can
then encrypt a message such that a user can only decrypt if he has at
least dk of the given attributes from each authority k. Our scheme can
tolerate an arbitrary number of corrupt authoritites.

We also show how to apply our techniques to achieve a multiauthority
version of the large universe fine grained access control ABE presented
by Gopal et al. [GPSW06].

1 Introduction

Identity based encryption(IBE), introduced by Shamir [Sha85], is a variant of
encryption which allows users to use any string as their public key (for example,
an email address). This means that the sender can send messages knowing only
the recipient’s identity (or email address), thus eliminating the need for a sep-
arate infrastructure to distribute public keys. The first IBE systems were given
by Boneh and Franklin [BF01] and Cocks [Coc01], and IBE has received a lot of
attention in the literature since then [CHK03, BB04, Wat05].

However, this scenario may not be entirely realistic, since we don’t necessarily
have a unique string identifier for each person. Instead, we often identify peo-
ple by their attributes. We might want to send a message to the secretary in
accounting in charge of travel reimbursements, or send a question to a nurse in
a particular hospital who is knowledgeable about prescriptions, or announce a
party to anyone living in town who is either a student or between the ages of
18 and 25. Thus, Sahai and Waters gave a fuzzy IBE scheme which could be
used for attribute based encryption. In this model, a recipient is defined not by

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 515–534, 2007.
c© International Association for Cryptologic Research 2007



516 M. Chase

a single string, but by a set of attributes [SW05]. Sahai and Waters describe a
scheme (from here on referred to as SW) in which a sender can encrypt a mes-
sage specifying an attribute set and a number d so that only a recipient who has
at least d of the given attributes can decrypt the message. For example, a sender
could encrypt a message to be decryptable by anyone who has 2 out of 3 of: a
Rhode Island driver’s license, Rhode Island voter registration, or a student ID
from Brown University. Thus, their scheme allows the sender to encrypt a mes-
sage for more than one recipient, and to specify who should be able to decrypt,
using attributes alone.

There is, however, one major limitation to the SW scheme. In their scheme, as
in every IBE scheme, the user must go to a trusted party and prove his identity
in order to obtain a secret key which will allow him to decrypt messages. In this
case, each user must go to the trusted server, prove that he has a certain set of
attributes, and then receive secret keys corresponding to each of those attributes.
However, this means we must have one trusted server who monitors all attributes
– who keeps records of driver’s licenses, voter registration, and college enrollment.
In reality, we have 3 different entities responsible for maintaining this information
(the RI DMV, the RI Board of Elections, and the University office), so we would
want to be able to entrust each of these to a different (and perhaps not entirely
trusted) server. Thus, Sahai and Waters presented the following challenge: Is
it possible to construct an attribute based encryption scheme in which many
different authorities operate simultaneously, each handing out secret keys for a
different set of attributes?

Our Results. We resolve this problem in the affirmative. We give an efficient
scheme for multiauthority attribute based encryption. We allow the sender to
specify for each authority k a set of attributes monitored by that authority and
a number dk so that the message can be decrypted only by a user who has at
least dk of the given attributes from every authority. We allow any number of
attribute authorities to be corrupted, and guarantee the security of encryption
as long as the required attributes cannot be obtained exclusively from those
authorities and the trusted authority remains honest.

We also provide several extensions to our basic multiauthority scheme. We
describe techniques to allow the encryptor to determine for each ciphertext how
many attributes to require from each authority. We also describe a variant of
our scheme in which the encryptor can specify a number D such that a user
can decrypt if he has sufficient numbers of the given attributes from at least D
authorities. It is this variant that would be used to implement the RI example
above. In this example, we have 3 authorities, and the ciphertext will include
1 attribute from each. However, we only want to require that a user must have
satisfactory attributes from 2 out of the 3 authorities in order to decrypt.

Challenges and Techniques. The most challenging aspect of a single author-
ity ABE scheme is preventing collusion. Recall the above example. Now suppose
Alice has a RI driver’s license and Bob is a Brown University student. Together
they have two out of three of the required attributes, but they should not be
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able to combine their keys and decrypt the ciphertext. In SW each user’s keys
are generated using different random sharings of a secret, so keys generated for
different users cannot be combined.

It might seem that a multiauthority ABE scheme could be formed simply
by letting each authority run its own copy of SW and then combining the re-
sults. However, here we once again run into the problem of collusion. The SW
techniques will prevent collusion within authorities, so different keys obtained
from any one authority cannot be combined. However, suppose we have a ci-
phertext which requires attributes from authority 1 and authority 2. If Alice has
all the appropriate attributes from authority 1 and Bob has all the appropriate
attributes from authority 2, they still should not be able to combine their keys
and decrypt. Note that the SW techniques cannot be directly applied here: in
SW, a single authority sees all the attributes requested by a user and gives a
secret key, so it can easily rerandomize the secret sharing appropriately. In the
multiauthority case, we would again like to split up a secret in a different way
for each user, this time dividing it between multiple authorities. However, now
we need to do this without any communication between the authorities.

We use two main techniques: The first is to require that every user have some
kind of a global identifier (GID). We require only two properties from this: (1)
no user can claim another user’s identifier, and (2) all authorities can verify a
user’s identifier. Thus, the GID could be a name or SSN or any other identifying
string for which a user has provable credentials, and it seems likely that such
information would be present when users’ attributes are verified. To see why this
is necessary, consider the following two scenarios: In the first Bob requests keys
for attribute set A1 from authority 1 and Alice requests keys for attribute set
A2 from authority 2. In the second Bob requests attribute set A1 from authority
1 and attribute set A2 from authority 2. If the authorities do not communicate,
and Alice and Bob are identified by nothing beyond their attributes, then in the
authorities’ view these scenarios must be identical. The global identifier allows
the authorities to distinguish these two scenarios in order to prevent collusion.

At the same time we still want a user’s ability to decrypt to depend only on
his attributes (this is what distinguishes ABE from traditional IBE schemes).
Thus, we use our second tool: the central authority. Each user will send his
GID to the central authority and receive a corresponding key. Note that the
authority will not get any information about the users’ attributes; it’s purpose
is simply to give a setup key for the user’s GID. We will also require that this
authority be trusted: it will hold the master secret for the system, so it will be
able to decrypt any message. Note that the presence of a trusted party is a fairly
standard requirement: in an IBE scheme, the single authority must obviously be
trusted, and even when this is extended to a hierarchical IBE (HIBE) scheme,
in which many of the lower level authorities can be corrupted, one must require
that the root authority be honest.

Each authority has a pseudorandom function (PRF) which it will use to ran-
domize the secret keys it gives out. A PRF guarantees that, on the one hand,
the secret keys for each user are derived deterministically, but, at the same time,
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that they will appear completely random. When a user requests a secret key, the
authority will compute the PRF on the user’s GID and then use the result as
the secret in SW key generation. A user with sufficient attributes can then use
his secret keys to reconstruct this secret for each authority. However, since the
outputs of the PRFs will be different for each user, each user will reconstruct a
different set of secrets. Thus, we need the central authority, who will know all
of the other authorities’ PRFs. For each user, it will compute the extra value
which, when combined with the secrets the user has reconstructed, will result in
a user-independent system decryption value which allows the user to decrypt.

Essentially this lets us break up a constant secret across multiple authorities
based on the user’s GID, in such a way that each authority can compute his part
independently given only the GID. The use of PRFs mean that each user’s secret
keys are independent of any other user’s keys, and collusion is impossible. Then
the central authority gives the added keys necessary to ensure that if we compute
each PRF on the same GID, we can always combine the results to obtain a fixed
value, and thus it allows us to give ciphertexts that are independent of the GID.
For a full description and explanation of this technique, see Section 4.

Other ABE Schemes. As mentioned above, our scheme is an extension of
the basic Fuzzy IBE scheme of Sahai and Waters. Their scheme requires that a
user have t out of n of the desired attributes in order to decrypt. More recently,
Gopal et al. presented a scheme for fine grained access control in the Key-Policy
model [GPSW06]. In this model, when a user requests a private key, the authority
determines what combinations of attributes must be present in order for this user
to decrypt and gives the user the corresponding private key.

The main difference is that in this system, the private key no longer corre-
sponds to a simple set of attributes that the user possesses. Instead, each private
key represents a formula describing which sets of attributes must appear on the
ciphertext in order for this user to decrypt. Ciphertexts are encrypted with a
simple set of attributes.

Our techniques can also be applied to this more complex scheme to form
a system in which, in order to decrypt a ciphertext encrypted with a set of
attributes for each authority, a user must have received from each authority a
policy which allows decryption for that set of attributes. Gopal et al. also present
a large universe access structure scheme (an extension of the large universe
scheme in SW). This also can be combined with our techniques to create a
multiauthority large universe access structure scheme. For details, see Section 5.

2 Preliminaries

In our ABE scheme, we assume that the universe of attributes can be partitioned
into K disjoint sets. Each will be monitored by a different authority. As men-
tioned above, we also have one trusted central authority who does not monitor
any attributes.
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Note: In the following we use Au to denote the attribute set of user u and AC to
denote the attribute set of a ciphertext. Ak

u and Ak
C are the attributes handled

by authority k in the attribute sets of the user and the ciphertext respectively.
A MultiAuthority ABE system is composed of K attribute authorities and

one central authority. Each attribute authority is also assigned a value dk. The
system uses the following algorithms:

Setup: A randomized algorithm which must be run by some trusted party (e.g.
central authority). Takes as input the security parameter. Outputs a public
key, secret key pair for each of the attribute authorities, and also outputs a
system public key and master secret key which will be used by the central
authority.

Attribute Key Generation: A randomized algorithm run by an attribute au-
thority. Takes as input the authority’s secret key, the authority’s value dk, a
user’s GID, and a set of attributes in the authority’s domain Ak

C . (We will
assume that the user’s claim of these attributes has been verified before this
algorithm is run). Output secret key for the user.

Central Key Generation: A randomized algorithm run by the central au-
thority. Takes as input the master secret key and a user’s GID and outputs
secret key for the user.

Encryption: A randomized algorithm run by a sender. Takes as input a set of
attributes for each authority, a message, and the system public key. Outputs
the ciphertext.

Decryption: A deterministic algorithm run by a user. Takes as input a cipher-
text, which was encrypted under attribute set AC and decryption keys for an
attribute set Au. Outputs a message m if |Ak

C ∩Ak
u| > dk for all authorities k.

Note that the number of authorities in the system need not be fixed perma-
nently: it is possible to allow the central authority to add additional attribute
authorities to the system at any point. For a discussion of this and other possible
extensions to this scheme, see Section 6.

As in [SW05], our scheme is proved secure in the selective ID (sid) model, in
which the adversary must provide the identity he wishes to attack(the challenge
identity) before receiving the parameters of the system.

Let κ be the security parameter. We require that the number of authorities,
K, and the number of attributes monitored by each authority, nk, be upper
bounded by a number n which is polynomial in κ.

Consider the following game:

Setup
– The adversary sends a list of attribute sets AC = A1

C . . . AK
C , one for

each authority. He must also provide a list of corrupted authorities which
cannot include the central authority.

– The challenger generates parameters for the system and sends them to
the adversary. This means the system public key, public keys for all
honest authorities, and secret keys for all corrupt authorities.
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Secret Key Queries
– The adversary can make as many secret key queries as he wants to the

attribute authorities or to the central authority. The only requirements
are (1) that for each GID, there must be at least one honest authority k
from which the adversary requests fewer than dk of the attributes given
in Ak

C , i.e. the adversary never requests enough attributes to decrypt the
challenge ciphertext, and (2) that the adversary never queries the same
authority twice with the same GID (see below for discussion).

Challenge
– The adversary sends two messages M0 and M1.
– The challenger chooses a bit b, computes the encryption of Mb for at-

tribute set AC , and sends this encryption to the adversary.
More Secret Key Queries

– The adversary may make more secret key queries subject to the require-
ments described above.

Guess
– The adversary outputs a guess b′ that message Mb′ has been encrypted.

The adversary is said to succeed if he can correctly identify the encrypted mes-
sage, i.e. if b = b′.

Definition 1. A multiauthority attribute scheme is sid-secure if there exists a
negligible furnction ν such that, in the above game any adversary will succeed
with probability at most 1/2 + ν(κ).

Note that our scheme is designed only for static attributes: each authority will
only issue one set of secret keys for each GID. If a user later returns with the
same GID but a different set of attributes, the authority will refuse the request.
However this can easily be converted into a scheme which allows changes in
attributes by allowing each user a range of GID instead of just one. Then when
a user needs to change his attribute set, he simply moves on to a new GID and
requests secret keys from each authority with the new attribute set and new
GID (he must however obtain new secret keys from all authorities).

We have found no obvious attack when this requirement is removed; it seems
to be an artifact of our proof techniques. Essentially, in our reduction, when
we give out secret keys from a certain authority, we need to know whether
the adversary will request sufficient attributes from that authority to decrypt
the challenge ciphertext. Our reduction responses will depend crucially on that
factor. (For more details, see Section 4.)

Definition 2 (Bilinear Diffie-Hellman(BDH) Assumption). Let G be a
group of prime order q and generator g where |q| is proportional to the security
parameter κ. There exists a negligible function ν such that for all adversaries A,
given G, q, g, ga, gb, gc and bilinear map e for randomly chosen a, b, c ← Zq, A
can distinguish e(g, g)abc from e(g, g)R for random R ← Zq with probability at
most ν(κ).
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3 Single Authority ABE

We will begin by demonstrating how the simplest attribute based encryption
(ABE) scheme, Sahai and Waters’ “Fuzzy IBE” or “Threshold ABE” scheme,
can be converted into a multiauthority scheme. Then in Section 5 we will describe
a multi authority scheme for more complex ABE.

We will now explain some of the intuition behind our scheme. We will incre-
mentally build up to the full robust multiauthority construction. We begin by
examining the single authority case, which was considered by Sahai and Waters
[SW05]. In their scheme, there is one authority giving out secret keys for all of
the attributes. Each encryptor then specifies a list of attributes such that any
user with at least d of those attributes will be able to decrypt. They show that
the scheme they present is sid secure.

We review these results and attempt to explain a possible derivation, building
up to the description of the SW scheme through a series of incomplete schemes.
We will then show how this can be easily converted into a multiauthority scheme.
We hope that once the intuition behind SW is completely clear, the changes
necessary to convert this scheme into a multiauthority one will also be fully
intuitive.

Step One – Feldman VSS

First, let’s consider a very simplified scheme based on the Feldman Verifiable
Secret Sharing scheme [Fel87].

Recall that, given d points p(1), . . . , p(d) on a d − 1 degree polynomial, we
can use Lagrange interpolation to compute p(i) for any i. However, given only
d−1 points, any other points are information theoretically hidden. According to
the Lagrange formula, p(i) can be computed as a linear combination of d known
points. Let Δj(i) be the coefficient of p(j) in the computation of p(i). Then
p(i) =

∑
j∈S p(j)Δj(i) where S is a set of any d known points and Δj(i) =∏

k∈S,j �=k(i − k)/(j − k). Note that any set of d random numbers defines a
valid polynomial, and given these numbers we can find any other point on that
polynomial.

Furthermore, if we are instead given gp(1), . . . , gp(d), we can similarly compute
gp(i) for any i, and the hiding property mentioned above still applies.

This suggests a technique for attribute based encryption: If a user has at-
tribute i, his secret key will include gp(i), for some degree d − 1 polynomial p.
We can encrypt a message m by giving gp(0)m. Then any user with at least d
attributes can interpolate to obtain the secret gp(0) and thus discover m. How-
ever, to any user without d attributes gp(0) is information theoretically hidden
and thus finding m will be impossible.

Note that we can easily extend this to prevent collusion: If we give all our users
points from the same polynomial, any group with at least d attributes between
them would be able to combine their keys to find p(0). However, if we instead
give each user u a different polynomial pu (but still with the same zero point
pu(0) = p(0)), then one user’s points will give no information on the polynomial
held by the other (as long as neither has more than d − 1 points). To see this,
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note that, given any d − 1 points on polynomial p1 and any d − 1 points on
polynomial p2, with the requirement that these polynomials must intersect at 0,
it is still the case that any value for y = p1(0) = p2(0) will define a valid pair of
polynomials. Thus, y is information theoretically hidden. Then our first scheme
runs a follows:

Init First fix y ← Zq.
SK for user u: Choose a random polynomial p such that p(0) = y. SK: {Di =

gp(i)}∀i∈Au .
Encryption: E = gym.
Decryption: Use d SK elements Di to interpolate to obtain Y = gp(0) = gy.

Then m = E/Y .

Step Two – Specifying attributes

If we take this approach, any user with any d attributes will be able to decrypt.
But we want each encryptor to be able to give a specific subset of attributes
such that at least d are necessary for decryption.

In order to do this, we need an extra tool: bilinear maps. Recall that for
bilinear map e, g ∈ G1, and a, b ∈ Zq, e(ga, gb) = e(g, g)ab.

Now, suppose instead of giving each user gp(i) for each attribute i, we choose
a random value ti and give gp(i)/ti . If the user knew gti for at least d of these
attributes, he could compute e(g, g)p(i) for each i and then interpolate to find the
secret e(g, g)p(0). Then if our encryption includes e(g, g)p(0)m, the user would be
able to find m. Thus, the encryptor can specify which attributes are relevant by
providing gti for each attribute i in the desired set.

Suppose we only give one secret key to one user u. Now, for i ∈ Au, i /∈ AC

the ti values appear only once: when we give gp(i)/ti . Thus, since ti was chosen at
random, p(i) is still information theoretically hidden. The only attributes i for
which user u has any information on p(i) are those where i ∈ Au ∩ AC . As long
as there are less than d of these, p(0) (and thus e(g, g)p(0)) must be information
theoretically hidden.

If we allow multiple secret key queries, this is no longer the case. However
given the BDH Assumption, we can show that e(g, g)p(0) is still hidden as long
as no user has more than d − 1 attributes in common with the ciphertext. This
will be a special case of the proof in the next step. The resulting scheme is as
follows:

Init First fix y, t1, . . . , tn ← Zq. Let Y = e(g, g)y.
SK for user u: Choose a random polynomial p such that p(0) = y. SK:{Di =

gp(i)/ti}∀i∈Au .
Encryption for attribute set AC : E = Y m and {Ei = gti}∀i∈AC .
Decryption: For d attributes i ∈ AC ∩ Au, compute e(Ei, Di) = e(g, g)p(i).

Interpolate to find Y = e(g, g)p(0) = e(g, g)y. Then m = E/Y .

Step Three: Multiple Encryptions

There are several obvious problems with this scheme. First, we would like to
be able to encrypt multiple times without the decryptor needing to get a new
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secret key each time. But, once a user has obtained e(g, g)p(0), he can decrypt
any subsequent encryptions whether or not he has the appropriate attribute set.

What if instead of giving e(g, g)p(0)m in our encryption, we give e(g, g)p(0)sm,
where s is a different random number for each encryption? If we also give {Ei =
gtis}∀i∈AC instead of {Ei = gti}, the above process will allow a user with the
appropriate attributes to find e(g, g)p(0)s, and thus to decrypt m. Note that now
our secret e(g, g)p(0)s is different for each ciphertext.

This also solves another of our problems: it gives us a way to compute the ci-
phertext. Before, computing the ciphertext required knowing the gti values and
e(g, g)p(0), which was in turn enough to decrypt any message. Now, decrypting a
message requires knowing gtis for the appropriate attributes i and the appropri-
ate s. Thus, we can now publish Ti = gti and Y = e(g, g)p(0) as the public key,
and each encryptor can choose his own random s to compute {Ei = T s

i }∀i∈AC ,
and Y sm.

Furthermore, we can show that e(g, g)p(0)s is still hidden, even when the user
knows Ti for all i, a set {T s

i }∀i∈AC , and adaptively chose secret keys for user u
with |Au ∩AC | at most d−1. Thus, we can show this scheme is sid secure based
on the BDH Assumption. We have now reconstructed the SW scheme:

Init First fix y, t1, . . . , tn ← Zq.
PK for system T1 = gt1 . . . Tn = gtn , Y = e(g, g)y. PK = {Ti}1≤i≤n, Y
SK for user u: Choose a random polynomial p such that p(0) = y. SK: {Di =

gp(i)/ti}∀i∈Au .
Encryption for attribute set AC : E = Y s = e(g, g)ysm and

{Ei = gtis}∀i∈AC .
Decryption: For d attributes i ∈ AC ∩ Au, compute e(Ei, Di) = e(g, g)p(i)s.

Interpolate to find Y s = e(g, g)p(0)s = e(g, g)ys. Then m = E/Y s.

4 Multiple Authorities

Now we consider the multiauthority case. Once again, we will build up our
construction by first considering a series of incomplete schemes.

As a first thought, we might simply have many copies of SW, one for each
authority. We want to require that a user be able to decrypt a ciphertext only
if he has at least d of the specified attributes from each of the K authorities.
Recall that the SW scheme centers around finding enough polynomial shares
e(g, g)p(i)s to reconstruct the secret e(g, g)p(0)s = e(g, g)ys which has been used
to blind the message. (Recall that the encryption includes E = e(g, g)ysm).
Now, if we want each authority to give out its own polynomials, one simple
solution might be to do an additive secret sharing to form the SW secrets (i.e.
the values y such that every random polynomial p is chosen with p(0) = y).
Thus, we pick a random value for the master secret y0 and for each authority
k = 1 . . .K, yk is a share of y0 so

∑
yk = y0. We can output e(g, g)y0 as the entire

system’s public key. Then to encrypt message m, a user gives E = e(g, g)y0sm
and Ek,i = T s

k,i for all i, k where they wish to allow a decryptor to use attribute
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i from authority k. To decypt, the user has to perform SW decryption for each
authority and find Y s

k = e(g, g)yks, then multiply the results together to get∏K
k=1 Y s

k =
∏K

k=1 e(g, g)yks = e(g, g)s
∑K

k=1 yk = e(g, g)y0s and thus obtain m.
However, if a user does not have enough of the required attributes from one
authority k̂, then the SW secret for that authority: Yk̂ = e(g, g)yk̂s will remain
indistinguishable from random and thus so will e(g, g)y0s and m. Thus our first
attempt Multi Authority Scheme is as follows:

System
Init First fix y1 . . . yk, {tk,i}i=1...n,k=1...K ← Zq. Let y0 =

∑K
k=1 yk.

System Public Key Y0 = e(g, g)y0 .
Attribute Authority k

Authority Secret Key The SW secret key: yk, tk,1 . . . tk,n.
Authority Public Key Tk,i from the SW public key: Tk,1 . . . Tk,n where
Tk,i = gtk,i .
Secret Key for User u from authority k Choose random d − 1 degree
polynomial p with p(0) = yk. Secret Key: {Dk,i = gp(i)/tk,i}i∈Au .

Encryption for attribute set AC Choose random s ← Zq. Encryption: E =
Y s

0 m, {Ek,i = T s
k,i}i∈Ak

C ,∀k.
Decryption: For each authority k, for d attributes i ∈ Ak

C ∩ Au, compute
e(Ek,i, Dk,i) = e(g, g)p(i)s. Interpolate to find Y s

k = e(g, g)p(0)s = e(g, g)yks.
Combine these values to obtain

∏K
k=1 Y s

k = Y s
0 . Then m = E/Y s

0 .

There is a problem with the scheme as described above: Suppose an encryptor
encrypts a message to the attribute set AC which includes attributes Ak

C for
each authority k. Now suppose we have a set of K users where each user k
has attribute set Au = Ak

C from authority k, but no attributes from any other
authority. Recall that we want to allow decryption only if the decryptor has
enough of the required attributes from every one of the authorities. However,
if the scheme is as described above, this set of users will be able to collude:
Each user k will use his attribute set to find the SW secret for authority k:
Y s

k = e(g, g)yks. Then the users combine these values to obtain
∏K

k=1 Y s
k =∏K

k=1 e(g, g)yks = e(g, g)y0s = Y s
0 and thus m.

Clearly, if there is no way to identify users beyond their attribute sets, then
the above collusion is impossible to prevent: to the authorities, k separate users
each with attribute set Ak

C and one user with attribute set AC look identical.
We solve this problem by requiring that each user have a unique global iden-

tifier (GID), as described in Section 1. A user must present the same GID to
each authority in order to receive a coherent set of keys (and presumably prove
to each authority that the GID is valid). However, encryption will, as before,
only specify a set of attributes of which d will be required to decrypt. Thus, the
ability to decrypt is independent of the GID (except in that all secret keys must
have been obtained for the same GID).

Now that we can distinguish different users, we need some way to ensure
that different users cannot combine their results from different authorities. Sup-
pose we have each authority k choose a different random yk,u value for each
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user. Let yu,0 be the master secret for user u. If user u finds e(g, g)yk,us and
shares it with user u′ in an attempt to collude, it won’t give user u′ any in-
formation on his master secret e(g, g)y0,u′s =

∏K
k=1 e(g, g)yk,u′s (since yk,u is

independent of yk,u′), so the above collusion will no longer be possible. Recall
that the SW scheme uses different polynomials to split up the secret (y) in a
different way for each user, thus preventing collusion. Now we are using a simi-
lar technique to prevent collusion across authorities: we choose a new set of yk,u

values and divide the secret (y0) among the authorities in a different way for
each user.

Note that we need to include
∏K

k=1 e(g, g)yk,u = e(g, g)y0,u in the public
key so that it can be used to form an encryption (E = e(g, g)y0,usm). More-
over, recall that these ciphertexts must be independent of the identity of the
user – we would like the ability to decrypt to depend only on the attributes.
This means, in order for the encryption/decryption to work with this new ad-
dition, we would need

∏K
k=1 e(g, g)yk,u = e(g, g)y0,u to be the same for all

users.
But if all authorities choose yk,u independently, how can we ensure that∑K
k=1 yk,u = y0 for all u? It would seem that we must need some kind of com-

munication between authorities, and our goal of k autonomous authorities is
impossible with this approach.

An alternative might be to allow our authorities to share some state. If one of
the authorities knew the other authorities’ random choices, he could choose his
yk,u values to ensure that

∑K
k=1 yk,u = y0. However, we don’t necessarily want

to require that any of our attribute authorities be completely trusted, so we may
not want them to share this information.

Thus, we add the additional “central” authority (see Section 1), who handles
no attributes, but who must be fully trusted. This authority will be allowed
to know some of the state of each of the other authorities. In particular, it
will know enough of their secret state to reconstruct yk,u for any user u and
for all authorities k. It will use this information to provide a secret key which,
when combined with a value gs to be given in the encryption and with the
“secrets” Y s

k,u obtained from each of the other authorities, will give user u the
“master secret”: Y s

0 = e(g, g)y0s which can then be used to obtain m. Now
we only need to trust one authority and it need not be one of the attribute
authorities. 1

Finally, instead of using truly random values, we have each of our K author-
ities choose the yk,u values using a pseudorandom function (PRF). Thus, now
the central authority has only to store the seeds of all of the PRFs.

Final MultiAuthority Scheme: (changes from previous schemes are
underlined.)

1 Note, we could require that one of the attribute authorities be trusted and have
it maintain the state information of all the other authorities. However, we chose
to separate these functions in order to consider a more general case. The central
authority could easily be combined with a trusted attribute authority.
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System
Init Fix prime order groups G, G1, bilinear map e : G → G1, and generator
g ∈ G. Choose seeds s1, . . . , sK for for all authorities. Also choose
y0, {tk,i}k=1...K,i=1...n ← Zq.
System Public Key Y0 = e(g, g)y0 .

Attribute Authority k
Authority Secret Key sk, tk,1 . . . tk,n.
Authority Public Key Tk,1 . . . Tk,n where Tk,i = gtk,i .
Secret Key for User u Let yk,u = Fsk

(u). Choose random d − 1 degree
polynomial p with p(0) = yk,u. Secret Key: {Dk,i = gp(i)/tk,i}i∈Au .

Central Authority
Central Authority Secret Key sk for all authorities k, y0.
Secret Key for User u Let yk,u = Fsk

(u) for all k. Secret Key: DCA =
g(y0−

∑K
k=0 yk,u).

Encryption for attribute set AC Choose random s ← Zq. E = Y s
0 m,

ECA = gs, {Ek,i = T s
k,i}i∈Ak

C ,∀k.
Decryption: For each authority k, for d attributes i ∈ Ak

C ∩ Au, compute
e(Ek,i, Dk,i) = e(g, g)p(i)s. Interpolate to find Y s

k,u = e(g, g)p(0)s =
e(g, g)yk,us for each authority k. Compute Y s

CA = e(ECA, DCA). Combine

these values to obtain Y s
CA∗

∏K
k=1 Y s

k = Y s
0 . Then m = E/Y s

0 .

Theorem 1. This scheme is sid-secure according to the definition in Section 2.
First we give some main points of intuition behind the reduction. Then we follow
with a more formal proof.
Basis of SW Reduction. We will show that we can reduce the BDH problem
to the problem of breaking our encryption scheme. That means we are given
A = ga, B = gb, C = gc and asked to distinguish e(g, g)abc from e(g, g)R for
a random R ← Zq. We assume there exists an adversary that can break the
security properties of our multiauthority system (as defined in Section 2) and
we show that we could use such an adversary to solve this problem.

We want to show that, even given a challenge encryption and adaptively
chosen secret key queries, in our challenge encryption, Mb = E/e(g, g)y0s is
indistinguishable from a random message (which means the adversary can have
no more than negligible probability of correctly identifying b). We will show that
e(g, g)y0s is indistinguishable from a random element of G2. Since we are basing
our reduction on the BDH assumption, this means we want to implicitly set
y0s = abc. We need to be able to output e(g, g)y0 and gs as part of the central
public key, so we will implicitly set s = c and y0 = ab. (These values cannot be
computed, but we will use them to determine the other values in our reduction.)
Extension to Multiple Authorities. Note that the adversary is allowed to
request secret keys for a given user u and attribute set Au as long as there re-
mains one honest authority k such that Ak

C ∩Ak
u < d, i.e. the user has insufficient

attributes from this authority to decrypt. Thus, in the worst case, for all but one
authority k, the adversary will be able to compute Y s

k,u = e(g, g)yk,us for addi-
tive share yk,u. Every user will also be able to compute Y s

CA,u = e(gs, DCA) =
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e(gs, gy0−
∑

yk,u). We need
∏

e(g, g)yk,us∗e(gs, DCA) = e(g, g)y0s to be something
which the adversary cannot compute (in particular, e(g, g)abc which is indistin-
guishable from random). Thus, we must “hide” this incomputable value in the
share yk,u for the one authority from which the adversary does not have sufficient
attributes. Let k̂ be this authority. Then we will implicitly set yk̂,u = ab + zk,ub

for random zk,u. For all other honest authorities, we need e(g, g)yk,us to be
computable, so we will implicitly set yk,u = zk,ub for some random zk,u (this
particular choice will be explained below). Note that k̂(u) may be a different au-
thority for each user u. This is where the reduction will make use of the PRFs.
Since to the adversary the PRFs for honest authorities are indistinguishable from
true random functions, we can implicitly replace these PRFs with the necessary
values for each user u and authority k = k̂(u) or k �= k̂(u), and the result will
be indistinguishable. (The values will still be randomly distributed).
Answering Secret Key Queries. Note that in order for our reduction to
succeed, we need to generate public keys for honest authorities k so that:

– When k = k̂(u), we can output secret keys such that this authority’s secret
(q(0) = Fsk

(u)) is uncomputable (eg. ab + zk,u), given that the user u does
not have sufficient attributes from this authority. This situation is identical
to that in a single authority security reduction.

– When k �= k̂(u), using the same public keys, we can output secret keys for
users who know (potentially) all of the attributes from this authority as long
as this authority’s secret is generated appropriately. In this case we set the
secret q(0) = Fsk

(u) = zk,ub.

For i ∈ Ak
C , we must be able to output Tk,i = gtk,i in the public key and

Ek,i = T s
k,i = gtk,is = gtk,ic in the challenge ciphertext. Thus, we choose tk,i =

βk,i for known random βk,i. For i /∈ AC , we set tk,i = βk,ib for known random,
βk,i. (Note that for these attributes Ek,i = T s

k,i is not computable).
Consider the second case: We need to output Dk,i = gp(i)/bβk,i and Dk,i =

gp(i)/βk,i , where we require p(0) = bzk,u. If we simply choose p in terms of b, (eg.
p = bρ for known random d − 1 degree polynomial ρ), this is trivial.

The first case, as mentioned above, follows the original single authority reduc-
tion almost exactly. The only difference is that now we have an extra randomizing
term added (Fsk

(u) = ab + zk,ub instead of Fsk
(u) = ab). For up to d − 1 points

(i ∈ Ak
C ∩ Ak

u), we need to give secret keys Dk,i = gp(i)/tk,i = gp(i)/βk,i , where
p(0) = ab+zk,ub. This might seem difficult since we can’t compute gab. However,
recall that, using interpolation, we can pick any d points and use them to define
a polynomial. So, for the attributes i in the challenge, we will set p(i) to be a
random multiple of b. For these attributes Dk,i = gp(i)/βk,i will be a computable
multiple of B. Since we have also fixed p(0), we have now chosen d points on
the polynomial, so now for the remaining attributes, we can interpolate to find
gp(i)/tk,i as a weighted product of gp(0)/tk,i and gp(j)/tk,i for each of the fixed at-
tributes j (those in the challenge ciphertext). Recall that for these attributes, we
have tk,i = βk,ib. Thus, for each of the fixed attributes j, gp(j)/tk,i will be a com-
putable multiple of B, and for p(0), gp(0)/tk,i = g(ab+zk,ub)/bβk,i = g(a+zk,u)/βk,i
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is a computable combination of A and g. That means Dk,i = gp(i)/tk,i will be
also computable for all i ∈ Ak

u − Ak
C .

Proof (of Theorem 1). Suppose there exists and adversary that plays the security
game as described in Section 2 and succeeds with nonnegligible probability ε. Then
we will show that we can use such an adversary to break the BDH assumption.

First, we assume that the adversary will still succeed with the same advantage
even when the PRF Fsk

is replaced by a truly random function for each honest
authority k. Note that if this is not the case, then we can distinguish the PRF
from random, contradicting the definition of a PRF.

We need to specify how our reduction responds in each stage of the game (as
described in Section 2). Our reduction will behave as follows:

– Given A = ga, B = gb, C = gc and Z = e(g, g)abc or e(g, g)R for random
R ← Zq

– Receive AC and list of corrupted authorities Corr from adversary.
– Init:

• System PK : Y0 = e(A, B) (implicitly set y0 = ab.)
• Honest Authority PK’s: Choose random βk,i; PK: {Tk,i = gβk,i}i∈Au∩Ak

C
,

{Tk,i = Bβk,i}i∈Au−Ak
C

• Corrupt Authority k SK’s: Choose random tk,i ← Zq, random PRF key
sk. SK:sk, {tk,i}

– SK queries: Let k̂(u) be the first authority k queried such that
|Ak

u ∩ Ak
C | < d.

• SK queries for user u to Honest Attribute Authorities k �= k̂(u) : Recall
that for these authorities we will implicitly set p(0) = Fsk

(u) = zk,ub.
Choose a random zk,u and choose a random polynomial ρ such that
ρ(0) = zk,u. We will implicitly set p(i) = bρ(i). Now for i ∈ Ak

C ,
tk,i = βk,i, so Dk,i = gp(i)/tk,i = gbρ(i)/βk,i = Bp(i)/βk,i . For i /∈ Ak

C ,
tk,i = bβk,i, so Dk,i = gp(i)/tk,i = gbρ(i)/bβk,i = gρ(i)/βk,i . SK: {Dk,i =
Bρ(i)/βk,i}i∈Ak

u∩Ak
C
, {Dk,i = gρ(i)/βk,i}i∈(Ak

u−Ak
C)

• SK queries for user u to Honest Attribute Authorities k = k̂(u) : Re-
call that for authority k̂ for user u, we will choose random rk,u and
implicitly set p(0) = Fsk

(u) = ab + zk,ub. Choose d − 1 random points
vi. For i ∈ Ak

C , we will implicitly set p(i) = vib. For these attributes,
tk,i = βk,i, so that means Dk,i = gp(i)/tk,i = gbvi/βk,i = Bvi/βk,i . Re-
call that we need p(0) = Fsk

(u) = ab + zk,ub, and we have now set
p(i) = vib for d − 1 other points. Thus, p is fully determined, and
by interpolation, for any other attribute i, we have implicitly defined
Δ0(i)(ab+zk,ub)+

∑
Δj(i)vjb. For these attributes tk,i = bβk,i, so Dk,i =

gp(i)/tk,i = g
Δ0(i)(ab+zk,ub)+

∑
Δj(i)vj b

bβk,i = gΔ0(i)a ∗ g
Δ0(i)zk,u+

∑
Δj(i)vj

βk,i =

AΔ0(i) ∗ g
Δ0(i)zk,u+

∑
Δj(i)vj

βk,i

SK: {Dk,i = Bvi/βk,i}i∈Ak
u∩Ak

C
,

{Dk,i = AΔ0(i) ∗ g
Δ0(i)zk,u+

∑
Δj(i)vj

βk,i }i∈(Ak
u−Ak

C).
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• SK queries for user u to Central Authority:
DCA = g (

∑
k/∈Corr zk,u−

∑
k∈Corr Fsk

(u)))

– Receive M0, M1 and pick a random b.
– Challenge Ciphertext: Zm, E = gs = C, {Cβk,i}i∈AC

– Guess for Z: Receive a guess b′ and If b = b′ guess “e(g, g)abc” otherwise
guess “e(g, g)R”.

After making all his secret key queries, the adversary will send a guess b′ that
the message encrypted was Mb′ . Note that, if Z = e(g, g)abc, then the encryption
given was a valid encryption of Mb, and the adversary should have his usual non-
negligible advantage ε of correctly identifying Mb. However, if Z = e(g, g)R, then
the encryption was a completely random value, so the adversary can have no bet-
ter than 1/2 probability of guessing correctly. Thus, if the adversary guesses cor-
rectly, we guess that Z = e(g, g)abc and if he is wrong, we guess that Z = e(g, g)R.
If we analyze the probability that the reduction successfully distinguishes Z, we
find that the reduction has an advantage of ε/2. Thus an adversary which breaks
this encryption scheme with advantage ε implies an algorithm for breaking the
BDH Assumption with nonegligible advantage ε/2. We can conclude that this
encryption scheme is sid-secure.

Remark 1. Note that our reduction relies critically on the fact that, for each
user u that the adversary queries about, we choose exactly one authority for
which that user has less than d of the attributes in the challenge, and this is the
authority for which we set Fsk

(u) = a+zk,ub. Note that, if the adversary requests
at least d attributes for u from this authority, even if none of them appears in
the challenge, the value of Fsk

(u) is completely determined by the secret keys
that the authority returns (although it is not known, since the discrete logs ti of
the public key Ti are not known to the adversary.)

If we allowed the adversary to at some later point request a second set of
attributes from this authority for this user, such that it overlapped by at least
d with the challenge, we would not be able to give these secret keys in such a
way that they would be consistent with the previously determined value of Fsk

.
(Doing so would involve computing gab.)

To prevent this, we require that in order to change his attribute set, a user
must also change his GID. However, our collusion resistance requires that keys
from different authorities for different keys be incompatible. Thus, it is not clear
how we could allow the adversary to change the attribute set for a user with-
out obtaining a new key from all authorities using a completely new GID. See
Section 2 for a discussion of possible ways to get around this problem.

5 MultiAuthority + Large Universe and Complex Access
Structures

In [GPSW06], Goyal et al. showed a Large Universe Access Control Structure
ABE scheme. We can also apply our techniques to this scheme to achieve a
corresponding multiauthority system.
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A large universe construction has the advantage that the size of the public
keys is dependent only on the maximum number of attributes which can be
required in an encryption. (In contrast, the basic SW scheme has public keys size
proportional to the total number of attributes in the system.) Thus, this method
allows a much larger universe of attributes. A large universe construction was
first presented in [SW05].

Goyal et al. showed how to combine the large universe construction with a con-
struction (GPSW) which allows the authority to give secret keys corresponding to
a more general policy than simple t-out-of-n threshold . In particular, they allow
any policy that can be described by an access tree. In such a tree, each leaf node
corresponds to an attribute, and intermediate nodes are t-out-of-n gates for arbi-
trary values of t and n. (Thus, OR and AND gates are possible as special cases.) If
we consider the input at each leaf node to be 1 if and only if the corresponding at-
tribute is present in a given ciphertext, then evaluating this circuit will determine
whether or not the user should be able to decrypt this ciphertext.

Below we give a multiauthority large universe access control structure ABE
scheme. In this system, each authority will choose an access structure τk for the
user and give him a corresponding secret key. A user will be able to decrypt
a ciphertext with attribute set AC if and only if all of his access structures τk

output 1 when evaluated on the corresponding subset of the attributes, Ak
C .

We use essentially the same techniques as in the simple multi-authority
scheme. Each authority runs a copy of the single authority protocol, with a
separate copy of the public key (in this case tk,1, . . . tk,n+1). The master secret
for each authority (yk) is replaced by a PRF on the user’s ID, so that the master
secret for the entire system (y0) can be divided among all the authorities in a
different way for each user. Finally, a central authority is necessary to ensure
that, for each user, the PRFs from all authorities can be combined to obtain the
system secret.

MultiAuthority Scheme for Large Universe and Complex Access Structures

System
Init Fix prime order groups G, G1, bilinear map e : G → G1, and generator
g ∈ G. Choose PRF keys s1 . . . sK and y0 ← Zq, and g2 ← G1.
System Public Key g1 = gy0.

Attribute Authority k
Authority Secret Key sk

Authority Public Key tk,1 . . . tk,n+1 ← G1.
Let h(x) be the n degree polynomial defined by tk,1, . . . tk,n+1. Also define
Tk(x) = gxn

2 gh(x) = gxn

2
∏n+1

i=1 t
Δi(x)
k,i

Secret Key for User u for access structure τk Let yk,u = Fsk
(u). Now

run the Key Generation from GPSW but with the master secret y = yk,u

and with the points tk,1, . . . tk,n+1, i.e. KeyGeneration(τ , MK = yk,u and
PK = gyk,u , g2, tk,1, . . . tk,n+1): We choose a polynomial qr for the root node
of the tree τk such that qr(0) = yk,u. Then we choose random polynomi-
als for all other nodes x such that qx(0) = qparent(x)(x). Finally, for the leaf
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node x, we choose random rk,x and compute secret key elements: Dk,x =
g

qx(0)
2 T (i)rk,x where i = att(x) and Rk,x = grk,x .

SK: Dk,x, Rk,x for all leaf nodes x in τk

Central Authority
Central Authority Secret Key sk for all authorities k, y0.
Secret Key for User u Let yk,u = Fsk

(u) for all k. Secret Key: DCA =

g
(y0−

∑K
i=0 yk,u)

2 .
Encryption for attribute set AC Choose random s ← Zq. E = e(g1, g2)sm,

E′ = gs, {Ek,i = Tk(i)s}i∈Ak
C ,∀k.

Decryption: For each authority k, run the Decryption algorithm as in GPSW,
i.e. run DecryptNode on the root of the tree τk:
For leaf node x if we have Dk,x, this algorithm computes e(Dk,x,E′)

e(Rk,x,Ek,i)
=

e(gqx(0)
2 Tk(i)rk,x ,gs)
e(grk,x ,Tk(i)s) = e(gqx(0)

2 ,gs)e(Tk(i)rk,x ,gs)
e(grk,x ,Tk(i)s) = e(g, g2)qx(0)s. Then at each

level of the tree, if we have successfully computed DecryptNode for sufficient
children, it combines the results to obtain e(g, g2)qx(0)s for parent node x.
Finally, if we have sufficient attributes for the tree τk, DecryptNode computes
e(g, g2)qr(0)s = e(g, g2)yk,us.
Now decryption proceeds as in the previous multiauthority scheme: If we
have sufficient attributes to decrypt, then for every authority we will have
computed Y s

k,u = e(g, g2)yk,us. Next, use the key obtained from the central

authority to compute Y s
CA = e(E′, DCA) = e(gs, g

y0−
∑K

i=1 yk,u

2 ). Combine
these values to obtain Y s

CA ∗
∏K

k=1 Y s
k = e(g, g2)y0s = Y s

0 . Then m = E/Y s
0 .

We will present only the key intuition for the proof of security. For a full proof,
see the full version.

Basis of Single Authority Reduction. We again want to show a reduction
from BDH, so we want the quantity which we will use to blind the message, in
this case e(g1, g2), to be equal to e(g, g)abc. Thus, we will set g1 = a, g2 = b, and
implicitly, s = c.

Extension to Multiple Authorities. Again here, as in the simple mul-
tiauthority scheme, for each user u, the adversary is allowed to request keys
that are sufficient to decrypt the ciphertext from all but one authority. In this
scheme, in the worst case, for all but one authority k, the adversary will be
able to compute Y s

k,u = e(g1, g2)yk,us. Every user will also be able to compute
Y s
CA,u = e(gs, DCA) = e(g, g2)(y0−

∑
yk,u)s. And, as mentioned above, we need∏

e(g, g2)yk,us ∗ e(gs, DCA) = e(g, g2)y0s to be an uncomputable value (in par-
ticular e(g, g)abc). Thus, again we must “hide” this incomputable value in the
share yk,u for the one authority k̂ from which this user does not have sufficient
attributes. Thus, we set yk̂,u = a + zk̂,u and for all other honest authorities,
yk,u = zk,u for known random zk,u. Once again, we make use of the pseudo-
randomness of the PRFs to claim that, since all these values are distributed
randomly, the result will be indistinguishable from computing the values using
a true PRF.
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Answering Secret Key Queries. Once again, we must show that, for all
users u, we can form public keys for all honest authorities k such that:

– When k = k̂(u), we can output secret keys such that this authority’s secret
(q(0) = Fsk

(u)) is not known (eg. a + zk,u), given that the user u does not
have sufficient attributes from this authority. This situation is identical to
that in a single authority security reduction.

– When k �= k̂(u), using the same public keys, we can output secret keys for
users who know (potentially) all of the attributes form this authority as long
as this authority’s secret is generated appropriately. In this case we set the
secret q(0) = Fsk

(u) = zk,u.

We set up the tk,i values for each authority k as in the GPSW reduction. This
is done in such a way that if i ∈ Ak

C , Tk(i)s is computable (recall that this must
be part of the encryption), but Dk,x = g

qx(0)
2 T (i)rk,x , Rk,x = grk,x is computable

if and only if we know qx(0). If i /∈ Ak
C , Tk(i)s will not be computable, but we

will be able to compute Dk,x, Rk,x when given only gqx(0).
Now, in the first situation, we can proceed as in the single authority reduction,

and run the PolyUnsat algorithm [GPSW06] to set the polynomials for each
level of the tree so that at the root r, qr(0) = a + zk,u. At the leaves, this
will make qx(0) completely known for nodes corresponding to i ∈ AC and will
make gqx(0) known for i /∈ AC . According to the setup above, this lets us form
Dk,x, Rk,x for all required leaf nodes x. In the second case, we simply proceed
as in the real protocol.

Finally, the challenge encryption can be formed as E = ZMb, E
′ = C, {Ek,i =

T (i)s} for random bit b. The reduction’s output and the analysis proceed as in
the previous reduction.

Remark 2. Note that we cannot allow changes in a user’s access structure (with-
out corresponding changes in the user’s GID) for the same reason that in the
threshold multiauthority scheme we cannot allow changes in a user’s attribute
set (see Section 4).

6 Extensions

We briefly describe several possible extensions to our scheme. For security proofs,
see full version.
Changing dk SW noted that one could easily extend their scheme to allow d,
the number of attributes in the ciphertext required to decrypt, to vary with
each encryption. Essentially, the scheme would be instantiated with d = dmax,
the maximum overlap one might want to require. We would also extend the
attribute set by adding dmax dummy attributes and each user would get a
secret key element Di for each of these new attributes. We refer to the set of
dummy attributes as AD. If the encryptor wanted to require d′ < dmax of the
attributes in the ciphertext, he could include Ei = T s

i for dmax − d′ dummy
attributes i ∈ AD .
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Note that in our mulitauthority scheme a similar approach would allow one
to choose exactly how many of the attributes given in the ciphertext to require
from each authority, i.e to vary the values dk. We need only add dmaxk dummy
attributes for each authority k and proceed as described above.
Leaving out authorities. In the mulitauthority scheme as stated, each user
must go to every authority before he can decrypt any message. Using the tech-
nique above, an encryptor can allow decryption by someone who has none of
the attributes handled by a specific authority by including all of the dummy
attributes for that authority in the encryption set. However, a user would still
have to go to that authority to obtain secret keys for these dummy values in
order to decrypt. There could be an arbitrarily large number of authorities in
the system, so this might involve a lot of work.

We can remove this requirement by adding one ”authority attribute k” for
each authority. We would add a corresponding TNk = gtNk to the public key and
the central authority would give every user u a secret key for each authority:
DNk = gyk,u/tNk . To encrypt without requiring any attributes from authority k,
the encryptor would include T s

Nk in the encryption. A user could then combine
this with his DNk value and obtain Y s

k,u = e(g, g)yk,us, thus bypassing the need
for any attributes from authority k.
More complicated functions of the authorities. Our basic scheme as
described in Section 4 requires that a user have sufficient attributes from all of
the authorities in order to decrypt. However, we might want to allow a user to
decrypt if he had sufficient attributes from at least D of the authorities.

We have to make the following changes to our basic scheme: Our central au-
thority will now choose a random D−1 degree polynomial P with P (0) = y0. For
each authority k he will compute P (k), and then compute a value which com-
bined with Y s

k,u = e(g, g)yk,us = e(g, g)Fsk
(u)s will give e(g, g)P (k)s. If the user

obtains D of these values he can interpolate to find e(g, g)P (0)s = e(g, g)y0s = Y s
0

and then obtain m. Thus, the secret key from the central authority for user u
will be DCA = {gP (k)−Fsk

(u)}k=1...K .
Adding Attribute Authorities. We can also allow the central authority to
add additional attribute authorities to the system at any point in the execution
of the scheme.

In the basic scheme, where attributes from all authorities are required for
decryption, this will occur as follows: The central authority will choose a new
system public key Y ′0 = e(g, g)y′

0, and all future encryption will be relative to this
public key. The central authority will store the PRF seed for the new authority,
and all secret keys it gives out will be computed using y′0 and the new enlarged
set of PRFs. Note that this means that all users will need to obtain a new key
from the central authority in order to decrypt any messages encrypted under the
new key. However, they will not need to obtain new keys from any of the old
attribute authorities.

In the scheme described in the above section, which uses a threshold over
authorities, the central authority has simply to give each user an additional
value for the new authority k: e(g, g)P (k)−Fsk

(u). Note that in this case, if a user
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does not intend to use any attributes from this new authority, he need not obtain
a new key from the central authority.
Single Authority CNF Attribute Encryption. In [SW05] it was left
open whether decryption ability could be determined by a more complicated
function of a user’s attributes. Looked at differently, our scheme can be viewed
as a single authority scheme in which the attributes necessary for decryption are
given by a CNF formula chosen by the encryptor. In this case, each authority
corresponds to a clause, and dk = 1 for all authorities.

A user would obtain all of his secret keys ({Dk,i} and DCA) from the authority
and then would be able to decrypt any message for which he had at least one of
the specified attributes i ∈ Ak

C for each clause k.
The only additional complication is that our multiauthority scheme required

that each authority’s attribute set be disjoint. Thus, the set of attributes allowed
in each clause must be disjoint. To get around this, we create a separate copy of
each attribute for each clause in which it could possibly appear. Thus, if a user
has attribute i, he will have in his secret key Dk,i for every clause k in which
attribute i could appear. Then the encryptor includes T s

1,i if attribute i appears
in the first clause, and T s

2,i if it occurs in the second clause, etc.
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Abstract. We construct public-key systems that support comparison
queries (x ≥ a) on encrypted data as well as more general queries such
as subset queries (x ∈ S). Furthermore, these systems support arbitrary
conjunctive queries (P1 ∧ · · · ∧ P�) without leaking information on indi-
vidual conjuncts. We present a general framework for constructing and
analyzing public-key systems supporting queries on encrypted data.

1 Introduction

Queries on encrypted data are easiest to explain with an example. Consider a
credit card payment gateway that observes a stream of encrypted transactions,
say encrypted under Visa’s public key. The gateway needs to flag all transac-
tions satisfying a certain predicate P . Say, all transactions whose value is over
$1000. Storing Visa’s secret key on the gateway is a bad idea for both security
and privacy concerns. Instead, Visa wishes to give the gateway a token TKP

that enables the gateway to identify transactions satisfying P without learning
anything else about these transactions. Of course, generating the token TKP

will require Visa’s secret key.
As another example, consider a mail server that receives a stream of email mes-

sages encrypted under the recipients public key. If the email message satisfies a cer-
tain predicate P the mail server should forward the email to the recipient’s pager.
If the email satisfies some other predicate P ′ the server should just discard the
email. Otherwise, the server should place the email in the recipient’s inbox. The
recipient does not want to give the mail server the full private key. Instead, she
wants to give the server two tokens TKP and TKP ′ enabling the server to test for
the predicates P and P ′ without learning any other information about the email.

Our goal is to build a public-key system that supports a rich set of query predi-
cates. In our payment gateway example one can imagine comparison queries such
as (value > 1000) or even conjunctions such as (value > 1000) and (Transaction
Time > 5pm). The gateway should learn no information other than the value
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of the conjunctive predicate. In case a conjunction P1 ∧ P2 is false, the gateway
should not learn which of the two conjuncts P1 or P2 is false. In our second
example involving a mail server one can imagine testing for subset queries such
as (sender ∈ S) where S is a set of email addresses. Conjunctive queries such
as (sender ∈ S) and (subject = urgent) also make sense. Perhaps in the distant
future, when highly complex queries on encrypted data are possible, one can
imagine running an anti-virus/anti-spam predicate on encrypted emails. The
mail server learns nothing about incoming encrypted email other than its spam
status.

Unfortunately, until now, only simple equality queries on encrypted data were
possible. Song et al. [19] developed a mechanism for equality tests on data en-
crypted with a symmetric key system. Boneh et al. [8] constructed equality tests
in the public-key settings.

Our results. We present a general framework for analyzing and constructing
searchable public-key systems for various families of predicates. We then con-
struct public-key systems that support comparison queries (such as greater-than)
and general subset queries. We also support arbitrary conjunctions. We evalu-
ate our results based on ciphertext size and token size. Let T = {1, 2, . . . , n}
and suppose we encrypt a tuple x = (x1, . . . , xw) ∈ T w. Say x1 is a transaction
value, x2 is a card expiration date, and so on. The following table summarizes
our results at a high level.

Ciphertext Token
Query Type Source Size Size
Equality query: (xi = a) for any a ∈ T [19, 17, 8, 1] O(1) O(1)

Comparison query: (xi ≥ a) for any a ∈ T [10, 12]1 O(
√

n) O(
√

n)

Subset query: (xi ∈ A) for any A ⊆ T This paper O(n) O(n)

Equality conjunction: (x1 = a1) ∧ . . . ∧ (xw = aw) This paper O(w) O(w)

Comparison conjunction: (x1 ≥ a1) ∧ . . . ∧ (xw ≥ aw) This paper O(nw) O(w)

Subset conjunction: (x1 ∈ A1) ∧ . . . ∧ (xw ∈ Aw) This paper O(nw) O(nw)

Here (a1, . . . , aw) is an arbitrary vector that defines a conjunctive equality or
a comparison predicate. Similarly, A1, . . . , Aw are arbitrary subsets of {1, . . . , n}
that define a conjunctive subset query predicate. We emphasize that when a
conjunction predicate is false, the system does not leak which of the w conjuncts
caused it.

Prior to these results the best systems for comparison and subset queries
were the trivial brute-force systems that we discuss in Section 3. For comparison
queries these systems generate a ciphertext of size O(nw) and for subset queries
they generate a ciphertext of size O(2nw). Note that even without conjunction,

1 Both papers [10, 12] focus on traitor tracing, but as we show in the full version of
our paper [11], their approach directly gives a comparison searching system without
conjunctions.
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namely for w = 1, our subset query construction generates ciphertexts that are
exponentially shorter than the best known previous solution (O(n) vs. O(2n)).

The main tool used in these constructions is a new primitive we call Hidden
Vector Encryption or HVE for short. This primitive can be viewed as an extreme
generalization of Anonymous Identity Based Encryption (AnonIBE) [8, 1, 13].
We show how HVE implies all the results in the table.

A natural question is to look for public key systems that support larger classes
of predicates, such as regular expressions. Ultimately, one would like a public-
key system that supports searches for any predicate computable by a poly-size
circuit. Presently, this appears to be a difficult open problem.

Related work. Equality tests on encrypted data were considered in [19, 8]. Equal-
ity searches on an encrypted audit log were proposed in [20]. Equality tests in the
symmetric key settings are closely related to oblivious RAM techniques [17, 14].
Equality tests in the public key settings are closely related to Anonymous Iden-
tity Based Encryption (AnonIBE) [8, 1, 13]. Conjunctive equality queries were
first studied in [15]. Equality searches on streaming data that hide the requested
predicate were discussed in [18] and [4]. Efficient equality searches in databases
were recently presented in [2]. Bethencourt et al. [3] recently gave a construc-
tion for efficient range queries in a weaker security model. That is, when the
encrypted index falls in the specified range, the search token reveals the index.

2 Definitions

We begin by defining a general framework for queries on encrypted data. Let Σ be
a finite set of binary strings. A predicate P over Σ is a function P : Σ → {0, 1}.
We say that I ∈ Σ satisfies the predicate if P (I) = 1.

2.1 Searchable Encryption

Let Φ be a set of predicates over Σ. A Φ-searchable public key system comprises
of the following algorithms:

Setup(λ). A probabilistic algorithm that takes as input a security parameter
and outputs a public key PK and secret key SK.

Encrypt(PK, I, M). Encrypts the plaintext pair (I, M) using the public key
PK. We view I ∈ Σ as the searchable field, called an index, and M ∈ M
as the data.

GenToken(SK, 〈P 〉). Takes as input a secret key SK and the description of a
predicate P ∈ Φ. It outputs a token TKP .

Query(TK, C). Takes a token TK for some predicate P ∈ Φ as input and a
ciphertext C. It outputs a message M ∈ M or ⊥. Roughly speaking, if C
is an encryption of (I, M) then the algorithm outputs M when P (I) = 1
and outputs ⊥ otherwise. The precise requirement is captured in the query
correctness property below.
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Correctness. The system must satisfy the following correctness property:

– Query correctness: For all (I, M) ∈ Σ × M and all predicates P ∈ Φ:

Let (PK, SK) R← Setup(λ), C
R← Encrypt(PK, I, M),

and TK R← GenToken(SK, 〈P 〉).
If P (I) = 1 then Query(TK, C) = M .

If P (I) = 0 then Pr[Query(TK, C) = ⊥] > 1 − ε(λ) where ε(λ) is a
negligible function.

Suppose that given a ciphertext C ← Encrypt(PK, I, M) we are only inter-
ested in testing whether a predicate P (I) is satisfied. In this case the message
space M can be set to a singleton, say M = {true}. Algorithm Query(TK, C) will
return true when P (I) = 1 and ⊥ otherwise. A larger message space M is useful
if TK is intended to unlock some M ∈ M whenever the predicate P (I) = 1.
For example, when the transaction value is over $1000 we may want the pay-
ment gateway to obtain more information about the transaction. Otherwise, the
gateway should learn nothing.

Notice that a Φ-searchable system does not provide a Decrypt algorithm that
uses SK to decrypt a ciphertext C and outputs (I, M). One can always add this
capability by also encrypting (I, M) under a standard public key system. There
is no need for the searchable system to explicitly provide this capability.

An example – comparison queries. Before defining security, we first give a moti-
vating example using comparison queries. Let Σ = {1, . . . , n} for some integer n.
For σ ∈ {1, . . . , n} let Pσ be the following comparison predicate:

Pσ(x) =

{
1 if x ≥ σ,
0 otherwise

Let Φn = {P1, . . . , Pn} be the set of all n comparison predicates. Suppose the
adversary has the tokens for predicates Pσ1 , Pσ2 , . . . , Pσw where σ1 < σ2 <
· · · < σw. Lets x, y, z be some integers as in Figure 1. Clearly the adversary
can distinguish Encrypt(PK, x, m) from Encrypt(PK, y, m) using the token for
the predicate Pσ2 . However, the adversary should not be able to distinguish
Encrypt(PK, y, m) from Encrypt(PK, z, m). Indeed, separating an encryption of
y from an encryption of z is information that should not be exposed by the to-
kens at the adversary’s disposal. Our definition of security captures this property
using the general framework.

2.2 Security

We define security of a Φ-searchable system E using a query security game
that captures the intuition that tokens TK reveal no unintended information
about the plaintext. The game gives the adversary a number of tokens and
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σ1 σ2 σ3 σ41 n

x y z

Fig. 1. Tokens for σ1, σ2, σ3, σ4 given to the adversary

requires that the adversary cannot use these tokens to deduce unintended infor-
mation. The game proceeds as follows:

– Setup. The challenger runs Setup(λ) and gives the adversary PK.
– Query phase 1. The adversary adaptively outputs descriptions of predi-

cates P1, P2, . . . , Pq1 ∈ Φ. The challenger responds with the corresponding
tokens TKj ← GenToken(SK, 〈Pj〉). We refer to such queries as predicate
queries.

– Challenge. The adversary outputs two pairs (I0, M0) and (I1, M1) subject
to two restrictions:

• First, Pj(I0) = Pj(I1) for all j = 1, 2, . . . , q1.
• Second, if M0 
= M1 then Pj(I0) = Pj(I1) = 0 for all j = 1, 2, . . . , q1.

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Iβ , Mβ)

to the adversary.
The two restrictions ensure that the tokens given to the adversary do not

trivially break the challenge. The first restriction ensures that tokens given to
the adversary do not directly distinguish I0 from I1. The second restriction
ensures that the tokens do not directly distinguish M0 from M1.

– Query phase 2. The adversary continues to adaptively request tokens for
predicates Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions above. The chal-
lenger responds with the corresponding tokens TKj ← GenToken(SK, 〈Pj〉).

– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A in attacking E as the quantity
QU AdvA = | Pr[β′ = β] − 1/2|.

Definition 1. We say that a Φ-searchable system E is secure if for all poly-
nomial time adversaries A attacking E the function QU AdvA is a negligible
function of λ.

Another example – equality queries. Let Σ be some finite set. For σ ∈ Σ let
Pσ(x) be an equality predicate, namely

Pσ(x) =

{
1 if x = σ,
0 otherwise

Let Φeq = {Pσ for all σ ∈ Σ}. Then a Φeq-searchable encryption supports
equality queries on ciphertexts. It is easy to see that a secure Φeq-searchable
encryption is also an anonymous IBE system [8, 1, 13] — an Identity Based
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Encryption system where a ciphertext reveals no useful information about the
identity that was used to create it. This should not be too surprising since it was
previously shown [8, 1] that anonymous IBE is sufficient for equality searches.
A Φeq-searchable encryption system (Setup,Encrypt,GenToken,Query) gives an
anonymous IBE as follows:
– SetupIBE(λ) runs Setup(λ) and outputs IBE parameters PK and master key

SK.
– EncryptIBE(PK, I, M) where I ∈ Σ outputs Encrypt(PK, I, M).
– ExtractIBE(SK, I) where I ∈ Σ outputs TKI ← GenToken(SK, 〈PI〉).
– DecryptIBE(TKI , C) outputs Query(TKI , C).

The correctness property ensures that if C is the result of Encrypt(PK, I, M)
then Query(TKI , C) will output M since PI(I) = 1. It is not difficult to see
that the Φeq-security game ensures semantic security for both the message and
the identity. Hence, the resulting system is an anonymous IBE.

By considering larger classes of predicates Φ we obtain more general searching
capabilities. The challenge is then to build secure encryption schemes that are
Φ-searchable for the most general Φ possible.

Chosen ciphertext security. Definition 1 easily extends to address chosen cipher-
text attacks (CCA), but we do not pursue that here.

2.3 Selective Security

We will also need a slightly weaker security definition in which the adversary
commits to the search strings I0, I1 at the beginning of the game. Everything
else remains the same. The game proceeds as follows:

– Setup. The adversary outputs two strings I0, I1 ∈ Σ. The challenger runs
Setup(λ) and gives the adversary PK.

– Query phase 1. The adversary adaptively outputs descriptions of predi-
cates P1, P2, . . . , Pq1 ∈ Φ. The only restriction is that

Pj(I0) = Pj(I1) for all j = 1, 2, . . . , q1 (1)

The challenger responds with the corresponding tokens TKj ← GenToken(
SK, 〈Pj〉).

– Challenge. The adversary outputs two messages M0, M1 ∈ M subject to
the restriction that:

if M0 
= M1 then Pj(I0) = Pj(I1) = 0 for all j = 1, 2, . . . , q1 (2)

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Iβ , Mβ)

to the adversary.
– Query phase 2. The adversary continues to adaptively request query to-

kens for predicates Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions (1)
and (2). The challenger responds with the corresponding tokens TKj ←
GenToken(SK, 〈Pj〉).
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– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of adversary A in attacking E is the quantity sQU AdvA =
| Pr[β′ = β] − 1/2|.

Definition 2. We say that a Φ-searchable system E is selectively secure if
for all polynomial time adversaries A attacking E the function sQU AdvA is a
negligible functions of λ.

3 The Trivial Construction

Let Σ be a finite set of binary strings. We build a Φ-searchable public key system
ETR, for any set of (polynomial time computable) predicates Φ. We refer to this
system as the brute force Φ-searchable system.

The brute force system. Let E = (Setup′,Encrypt′,Decrypt′) be a public-key
system. Let Φ = {P1, P2, . . . , Pt} The Φ-searchable system ETR is defined as
follows:

Setup(λ). Run Setup′(λ) t times to obtain

PK ← (PK1, . . . , PKt) and SK ← (SK1, . . . , SKt)

Output PK and SK.
Encrypt(PK, I, M). For j = 1, . . . , t define:

Cj
R←

{
Encrypt′(PKj , M) if Pj(I) = 1,
Encrypt′(PKj , ⊥) otherwise.

Output C ← (C1, . . . , Ct). Note that the length of C is linear in n.
GenToken(SK, 〈P 〉). Here 〈P 〉 (the description of a predicate P ) is the index

j of P in Φ. Output TK ← (j, SKj).
Query(TK, C). Let C = (C1, . . . , Ct) and TK = (j, SKj).

Output Decrypt′(SKj , Cj).

The following lemma proves security of this construction. The proof is a
straightforward hybrid argument and is given in Appendix A.

Lemma 1. The system ETR above is a secure Φ-searchable encryption system
assuming E is a semantically secure public key system against chosen plaintext
attacks.

3.1 A Third Example — Conjunctive Comparison Predicates

Suppose Σ = {1, . . . , n}w for some n, w. Let Φn,w be the set of nw predicates

Pa1...aw(x1, . . . , xw) =

{
1 if xj ≥ aj for all j = 1, . . . , w,
0 otherwise

for all ā = (a1 . . . aw) ∈ {1, . . . , n}w. Then |Φn,w| = nw.
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The trivial system in this case produces ciphertexts of length O(nw). Essen-
tially, the system uses a unary encoding of the w columns and assigns a private
key to each cell in this n by w matrix. We will construct a much better system
in Section 6.

4 Background on Pairings and Complexity Assumptions

Our goal is to construct Φ-searchable systems for a large class of predicates Φ
that is much better than the trivial construction. To do so we will make use of
bilinear maps.

4.1 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an em-
phasis on groups of composite order. We follow [9] in which composite order
bilinear groups were first introduced.

Let G be a an algorithm called a group generator that takes as input a security
parameter λ ∈ Z

>0 and outputs a tuple (p, q, G, GT , e) where p, q are two distinct
primes, G and GT are two cyclic groups of order n = pq, and e is a function
e : G

2 → GT satisfying the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We assume that the group action in G and GT as well as the bilinear map e
are all computable in polynomial time in λ. Furthermore, we assume that the
description of G and GT includes generators of G and GT respectively.

To summarize, G outputs the description of a group G of order n = pq with an
efficiently computable bilinear map. We will use the notation Gp, Gq to denote
the respective subgroups of order p and order q of G and we will use the notation
GT,p, GT,q to denote the respective subgroups of order p and order q of GT .

4.2 The Bilinear Diffie-Hellman Assumption

First we review the standard Bilinear Diffie-Hellman assumption, but in groups
of composite order. For a given group generator G define the following distribu-
tion P (λ):

(p, q, G, GT , e) R← G(λ), n ← pq, gp
R← Gp, gq

R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gc

p

)

T ← e(gp, gp)abc

Output (Z̄, T )
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For an algorithm A, define A’s advantage in solving the composite bilinear
Diffie-Hellman problem for G as:

cBDH AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T ) = 1] − Pr[A(Z̄, R) = 1]

∣∣∣∣

where (Z̄, T ) R← P (λ) and R
R← GT,p.

Definition 3. We say that G satisfies the composite bilinear Diffie-Hellman as-
sumption (cBDH) if for any polynomial time algorithm A we have that the func-
tion cBDH AdvG,A(λ) is a negligible function of λ.

4.3 The Composite 3-Party Diffie-Hellman Assumption

Our construction makes use of an additional assumption in composite bilinear
groups. For a given group generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n ← pq, gp
R← Gp, gq

R← Gq

R1, R2, R3
R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gab

p · R1, gabc
p · R2

)

T ← gc
p · R3

Output (Z̄, T )

For an algorithm A, define A’s advantage in solving the composite 3-party
Diffie-Hellman problem for G as:

C3DHAdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T ) = 1] − Pr[A(Z̄, R) = 1]

∣∣∣∣

where (Z̄, T ) R← P (λ) and R
R← G.

Definition 4. We say that G satisfies the composite 3-party Diffie-Hellman as-
sumption (C3DH) if for any polynomial time algorithm A we have that the func-
tion C3DHAdvG,A(λ) is a negligible function of λ.

The assumption is formed around the intuition that it is hard to test for Diffie-
Hellman tuples in the order p subgroup if the elements to be tested have a
random order q subgroup component.

5 Hidden Vector Encryption

We construct a Φ-searchable encryption system for a general class of equality
predicates. We call such systems Hidden Vector Systems or HVEs for short. We
then show in Section 6 that our HVE system leads to comparison and subset
queries far more efficient than the trivial system.
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5.1 HVE Definition

Let Σ be a finite set and let ∗ be a special symbol not in Σ. Define Σ∗ = Σ∪{∗}.
The star ∗ plays the role of a wildcard or “don’t care” value. In our subset and
range query applications we typically set Σ = {0, 1}. Note that here we use the
symbol Σ differently than how it was used in Section 2.1.

For σ = (σ1, . . . , σ�) ∈ Σ�
∗ define a predicate PHVE

σ over Σ� as follows. For
x = (x1, . . . , x�) ∈ Σ� set:

PHVE
σ (x) =

{
1 if for all i = 1, . . . , � : (σi = xi or σi = ∗),
0 otherwise

In other words, the vector x matches σ in all the coordinates where σ is not ∗.
Let ΦHVE = {PHVE

σ for all σ ∈ Σ�
∗}. We refer to � as the width of the HVE.

Definition 5. A Hidden Vector System (HVE) over Σ� is a selectively secure
ΦHVE-searchable encryption system.

The case � = 1 degenerates to the example discussed in Section 2.2 where we
showed equivalence to anonymous IBE [8, 1, 13]. For larger � we obtain a more
general concept that is much harder to build. In particular, the wildcard char-
acter ‘∗’ — which is essential for the applications we have in mind — makes it
challenging to construct a ΦHVE-searchable system. We construct an HVE with
the following parameters:

CT-size = O(�) and TK-size = O( weight(σ) )

where weight
(
σ = (σ1, . . . , σ�)

)
is the number of coordinates where σi 
= ∗.

5.2 Construction

For our particular HVE construction we will let Σ = Zm for some integer m.
We set Σ∗ = Zm ∪ {∗}. We describe an HVE where the payload M is in a small
subset M of GT , namely |M| < |GT |1/4. This is not a serious restriction since
the payload M is typically a short symmetric message key. Our HVE system
works as follows:

Setup(λ). The setup algorithm first chooses random primes p, q > m and creates
a bilinear group G of composite order n = pq, as specified in Section 4.1.
Next, it picks random elements

(u1, h1, w1), . . . , (u�, h�, w�) ∈ G
3
p , g, v ∈ Gp , gq ∈ Gq.

and an exponent α ∈ Zp. It keeps all these as the secret key SK.
It then chooses 3� + 1 random blinding factors in Gq:

(Ru,1, Rh,1, Rw,1), . . . , (Ru,�, Rh,�, Rw,�) ∈ Gq and Rv ∈ Gq.
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For the public key, PK, it publishes the description of the group G and the
values

gq, V = vRv, A = e(g, v)α,

⎛

⎜⎝
U1 = u1Ru,1, H1 = h1Rh,1, W1 = w1Rw,1

...
U� = u�Ru,�, H� = h�Rh,�, W� = w�Rw,�

⎞

⎟⎠

The message space M is set to be a subset of GT of size less than n1/4.
Encrypt(PK, I ∈ Z

�
m, M ∈ M ⊆ GT ). Let I = (I1, . . . , I�) ∈ Z

�
m. The en-

cryption algorithm works as follows:
– choose a random s ∈ Zn and random Z, (Z1,1, Z1,2), . . . , (Z�,1, Z�,2) ∈

Gq. (The algorithm picks random elements in Gq by raising gq to random
exponents from Zn.)

– Output the ciphertext:

C =
(

C′ = MAs, C0 = V sZ,

⎛

⎜⎝
C1,1 = (UI1

1 H1)sZ1,1, C1,2 = W s
1 Z1,2

...
C�,1 = (UI�

� H�)sZ�,1, C�,2 = W s
� Z�,2

⎞

⎟⎠
)

GenToken(SK, I∗ ∈ Σ�
∗). The key generation algorithm will take as input the

secret key and an �-tuple I∗ = (I1, . . . , I�) ∈ {Zm ∪ {∗}}�. Let S be the set
of all indexes i such that Ii 
= ∗. To generate a token for the predicate PHVE

I∗

choose random (ri,1, ri,2) ∈ Z
2
p for all i ∈ S and output:

TK =
(

I∗, K0 = gα
∏

i∈S(uIi
i hi)ri,1w

ri,2
i , ∀i ∈ S : Ki,1 = vri,1 , Ki,2 = vri,2

)

Query(TK, C). Using the notation in the description of Encrypt and
GenToken do:
– First, compute

M ← C′ /

(
e(C0, K0) /

∏

i∈S

e(Ci,1, Ki,1) e(Ci,2, Ki,2)

)
(3)

– If M 
∈ M output ⊥. Otherwise, output M .

Correctness. Before proving security we first show that the system satisfies the
correctness property defined in Section 2.1. Let (I, M) be a pair in Σ� ×M and
let B∗ ∈ Σ�

∗. This B∗ defines a predicate PB∗ in ΦHVE.

Let (PK, SK) R← Setup(λ), C
R← Encrypt(PK, I, M),

and TK R← GenToken( SK, B∗).

– If PB∗(I) = 1 then a simple calculation shows that Query(TK, C) = M .
This uses in a crucial way the fact that e(hp, hq) = 1 for all hp ∈ Gp and
hq ∈ Gq.

– If PB∗(I) = 0 the following lemma shows that when the message space M
satisfies |M| < n1/4 then Pr[Query(TK, C) 
= ⊥] is negligible.

Here the probability is over the random bits used to create the ciphertext.
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Lemma 2. With the notation as above, and assuming |M| < n1/4, whenever
PB∗(I) = 0 the quantity Pr[Query(TK, C) 
= ⊥] is negligible.

The probability is over the random bits used to create the ciphertext.

Proof. Let I = (I1, . . . , I�) ∈ Σ and let B∗ = (B1, . . . , B�) ∈ Σ�
∗. Let S be the

set of all indexes i such that Bi is not a wildcard ∗ at index i. Since PB∗(I) = 0
we know that there is some i ∈ S such that Bi 
= Ii. Then the decryption
equation (3) contains a factor

e(C0, K0) / e(Ci,1, Ki,1) e(Ci,2, Ki,2) = e(v, ui)(Bi−Ii)·sri,1

which is a uniformly distributed value in GT,p and is independent of the rest
of the equation. Since the message space is of size n1/4 and the size of GT,p is
approximately n1/2, the false positive probability is at most 1/n1/4, which is
negligible in the security parameter as required. ��

We note that in practice there is no need to use a small message space M ⊆ GT

to determine if decryption succeeded. We only use M to simplify the description
of the system. In practice, one could do the following. The encryptor first picks a
random k ∈ GT and derives two uniform and independent b-bit symmetric keys
(k0, k1) from k. It encrypts the payload M using a symmetric encryption system
under key k0 to obtain C1. Next, it runs our Encrypt(PK, I, k) to obtain C.
The final ciphertext is the tuple (C, C1, k1). Now, our Query algorithm works as
follows. It first recovers a k′ from C using the given token TK. Next, it derives
(k′0, k

′
1) from k′ and outputs ⊥ if k′1 
= k1. Otherwise, it outputs the decryp-

tion of C1 under k′0 using a symmetric system. Lemma 2 shows that the false
error probability is now 1/2b. Alternatively, if the symmetric encryption system
provides authenticated encryption, then one could decide if Query produced the
right value based on whether symmetric decryption succeeded.

Extensions. In our description above we limited the index space Σ to be Zm.
We can expand this space to all of {0, 1}∗ by taking a large enough m to con-
tain the range of a collision-resistant hash function. Then Encrypt(PK, I ∈
({0, 1}∗)�, M ∈ GT ) first hashes all the coordinates of I into Zm using the
collision resistant hash and then applies the Encrypt algorithm described above.

5.3 Proof of Security

We prove our scheme selectively secure (as defined in Section 2.3) under the
composite 3-party Diffie-Hellman assumption and the bilinear Diffie-Hellman
assumption. We give the high-level arguments of the proof in this section and
defer the proofs of some lemmas to the full version of our paper [11].

Suppose the adversary commits to vectors L0, L1 ∈ Σ� at the beginning of
the game. Let X be the set of indexes i such that L0,i = L1,i and X be the set
of indexes i such that L0,i 
= L1,i.

The proof uses a sequence of 2�+2 games to argue that the adversary cannot
win the original security game of Section 2.3 which we denote by G. We begin
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by slightly modifying the game G into a game G′. Games G and G′ are identical
except for how the challenge ciphertext is generated. In G′ if M0 
= M1 then
the adversary multiplies the challenge ciphertext component C′ by a random
element of GT,p. The rest of the ciphertext is generated as usual. Additionally,
if M0 = M1 then the challenge ciphertext is generated correctly.

Lemma 3. Assume that the Bilinear Diffie-Hellman assumption holds. Then
for any polynomial time adversary A the difference of advantage of A in game
G and game G′ is negligible.

The proof is in the full version of our paper [11].
Next, we define a game G̃. In this game the adversary will give two challenge

messages, M0, M1. If M0 
= M1 then the challenger outputs a random element
of GT as the C′ component of the challenge ciphertext. The rest of ciphertext
is constructed as normal. If M0 = M1 the challenger outputs the challenge
ciphertext as normal.

Lemma 4. Assume that the Composite 3-party Diffie-Hellman assumption
holds. Then for any polynomial time adversary A the difference of advantage
of A in game G′ and game G̃ is negligible.

The proof is in the full version of our paper [11].
Finally, we define two sequences of hybrid games Gj and G′j for j = 1, . . . , |X |.

We define the game Gj as follows. Let X̃ be a set containing the first j indexes in
X. The challenger creates the challenge ciphertext components C0 and Ci,1, Ci,2

as normal for all i /∈ X̃. However, for all i ∈ X̃ the challenger creates Ci,1, Ci,2
as completely random group elements in G. Additionally, if M0 
= M1 then C′

is replaced by a completely random element from GT (otherwise it is created as
normal).

We define a game G′j as follows. Let X̃ be a set containing the first j indexes
in X and let δ be the (j + 1)-th index in X. In the challenge ciphertext the
challenger creates C0 and Ci,1, Ci,2 as normal for all i /∈ X̃ and i 
= δ. For all
i ∈ X̃ the challenger creates Ci,1, Ci,2 as completely random group elements in
G. Finally, the challenger chooses a random s′ and creates

Cδ,1 = (uIδ
p hp)s′

g
zδ,1
q , Cδ,2 = gs′

p g
zδ,2
q .

Additionally, if M0 
= M1 then C′ is replaced by a completely random element
from GT (otherwise it is created as normal).

Observe that for all i in X̃ the challenge ciphertext contains no information
about Lβ,i. Therefore the adversary’s advantage in game G|X| is 0. Additionally,
game G0 is equivalent to G̃. We state the following two lemmas whose proofs
are given in the full version of our paper [11].

Lemma 5. Assume the Composite 3-party Diffie-Hellman assumption holds.
Then for all j and any polynomial time adversary A the difference of advan-
tage of A in game Gj and game G′j is negligible.
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Lemma 6. Assume the Composite 3-party Diffie-Hellman assumption holds.
Then for all j and any polynomial time adversary A the difference of advan-
tage of A in game G′j and game Gj+1 is negligible.

It now follows that if the Composite 3-party Diffie-Hellman and Bilinear Diffie-
Hellman assumptions hold then no polynomial-time adversary can break our
scheme with non-negligible advantage. This follows from the sequence of hybrid
games starting with the original game G:

G, G̃, G′0, G1, G1′ , G2, G2′ , . . . , G|X|.

The adversary’s advantage in the game G|X| is 0 and the difference in adversary’s
advantage between any two consecutive hybrid games is negligible by the lemmas
above. Hence, no polynomial adversary can win game G with non-negligible
advantage.

6 Applications of HVE

We show how HVE leads to efficient systems for subset queries and conjunctive
comparison queries. Throughout the section we let Σ01 = {0, 1} and Σ01∗ =
{0, 1, ∗}.

Conjunctive comparison queries. In Section 3.1 we defined conjunctive com-
parison queries and the predicate family Φn,w. We use HVE to build a Φn,w-
searchable encryption system with ciphertext size O(nw) and token size O(w).

Let (SetupHVE, EncryptHVE, GenTokenHVE, QueryHVE) be a secure HVE
over Σnw

01 . Thus, the width of this HVE is � = nw. We construct a Φn,w-
searchable system as follows:

– Setup(λ) is the same as SetupHVE(λ).
– Encrypt(PK, I, M) where I = (x1, . . . , xw) ∈ {1, . . . , n}w. Build a vector

σ(I) = (σi,j) ∈ Σnw
01 as follows:

σi,j =

{
1 if j ≥ xi,
0 otherwise

(4)

Then output EncryptHVE(PK, σ(I), M) which gives a ciphertext of size
O(nw). For example, for w = 2 and I = (x1, x2) the vector σ(I) looks like:

0 · · · 0 1 1 · · · 1 0 · · · 0 1 1 · · · 1
1 x1 n 1 x2 n

σ(S) = ∈ {0, 1}2n

– GenToken(SK, 〈Pā〉) where ā = (a1, . . . , aw) ∈ {1, . . . , n}w. Define σ∗(ā) =
(σi,j) ∈ Σnw

01∗ as follows:

σi,j =

{
1 if xi = j,
∗ otherwise

(5)
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Output TKā
R← GenTokenHVE(SK, σ∗(ā)) which gives a token of size O(w).

For example, for w = 2 and ā = (x1, x2) the vector σ∗(ā) looks like:

∗ · · · ∗ 1 ∗ · · · ∗ ∗ · · · ∗ 1 ∗ · · · ∗
1 x1 n 1 x2 n

σ∗(ā) = ∈ {0, 1, ∗}2n

– Query(TKā, C) output QueryHVE(TKā, C)

To argue correctness and security, observe that for a predicate Pā ∈ Φn,w and an
index I ∈ {1, . . . , n}w we have that: Pā(I) = 1 if and only if PHVE

σ∗(ā)(σ(I)) = 1.
Therefore, correctness and security follow from the properties of the HVE. We
thus obtain the following immediate theorem.

Theorem 1. (Setup,Encrypt,GenToken,Query) is a selectively secure
Φn,w- searchable system assuming (SetupHVE,EncryptHVE,GenTokenHVE,
QueryHVE) is an HVE over Σnw

01 .

Conjunctive range queries. We note that a system that supports comparison
queries can also support range queries. To search for plaintexts where x ∈ [a, b]
the encryptor encrypts the pair (x, x). The predicate then tests x ≥ a ∧ x ≤ b.

6.1 Subset Queries

Next, we show how to search for general subset predicates. Let T be a set of size
n. For a subset A ⊆ T we define a subset predicate as follows:

PA(x) =

{
1 if x ∈ A

0 otherwise

We wish to support searches for any subset predicate. More generally, we wish
to support searches for conjunctive subset predicates over T w. That is, let σ =
(A1, . . . , Aw) be a w-tuple where Ai ∈ T for all i = 1, . . . , w. Then σ is an
elements of (2T )w. Define the predicate Pσ : T w → {0, 1} as follows:

Pσ

(
(x1, . . . , xw)

)
=

{
1 if xi ∈ Ai for all i = 1, . . . , w,
0 otherwise

Let Φ = { Pσ for all σ ∈ (2T )w}. Note that Φ is huge — its size is 2nw.
The Φ-searchable system is as follows:

– Encrypt(PK, I, M) where I = (x1, . . . , xw) ∈ T w. Build a vector σ(S) =
(σi,j) ∈ Σnw

01 as:

σi,j =

{
1 if xi = j,
0 otherwise

(6)

Then output EncryptHVE(PK, σ(I), M). The ciphertext size is O(nw) as was
the case for comparison queries.
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– GenToken(SK, 〈Pα〉) where α = (A1, . . . , Aw). Define σ∗(α) = (σi,j) ∈ Σnw
01∗

as follows:

σi,j =

{
0 if j 
∈ Ai,
∗ otherwise

(7)

Output TKα
R← GenTokenHVE(SK, σ∗(α)). The token size is O(nw), which

is bigger than tokens for comparison queries.
– Setup and Query are the same algorithms from the HVE system, as for

comparison queries.

It is easiest to see how this works in the one dimensional setting, namely w = 1.
We encrypt a value x ∈ T using an HVE vector

0 · · · 0 1 0 · · · 0
1 x n

σ(x) = ∈ {0, 1}n

Consider a predicate PA where, for example, A = {2, 3, n} ⊆ T . We generate a
token for PA by calling GenTokenHVE(SK, σ∗(A)) using the HVE vector

0 ∗ ∗ 0 0 · · · 0 ∗
1 2 3 4 5 n

σ∗(A) = ∈ {∗, 1}n

The main point is that x ∈ A if and only if PHVE
σ∗(A)(σ(x)) = 1. Therefore, cor-

rectness and security follow from the properties of the HVE. We obtain a secure
system for subset queries for arbitrary subsets.

Theorem 2. (Setup,Encrypt,GenToken,Query) is a selectively secure
Φ- searchable system assuming (SetupHVE,EncryptHVE,GenTokenHVE,
QueryHVE) is an HVE over Σnw

01 .

Note that the trivial system of Section 3 for subset queries produces ciphertexts
of size O(2n). The construction above generates ciphertexts of size O(n).

Subset queries on large domains using Bloom filters. So far we considered subset
queries over a domain of size n. In Section 1 we presented examples where one
wishes to test a subset relation over a large domain. For example, we discussed
email filtering queries of type (sender ∈ S) where S is a set of email addresses.
To use our construction one would first hash email addresses to a set {1, . . . , n}
for some n, using a publicly known hash function, and then use the HVE for
small domain.

Unfortunately, by hashing into a small domain there is some chance for false
positives, namely Query may output M even though (sender 
∈ S). False posi-
tives result from hash collisions. The false positive probability can be reduced
by a standard application of Bloom filters [5]. Instead of using one hash func-
tion, we use multiple functions H1, . . . , Hd : {0, 1}∗ → T . Again, consider the
one-dimensional case, namely w = 1. To encrypt a word W ∈ {0, 1}∗ the
encryptor creates a vector σ(W ) ∈ {0, 1}n that contains a ‘1’ at positions
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H1(W ), . . . , Hd(W ) and ‘0’ everywhere else. The encryptor then runs Encrypt(
PK, σ(W ), M).

To generate a token for a set A = {W1, . . . , Ws} the GenToken algorithm
builds a vector σ∗(A) ∈ {0, ∗}n that contains ∗ at positions Hi(Wj), for all
i = 1, . . . , d and j = 1, . . . , s, and contains ‘0’ everywhere else. By choosing n
and d appropriately, the false positive probability can be made arbitrarily small.

Another subset query application. In our subset query application we identified
a ciphertext with an element x and a user’s token with a set A. This allowed us
to test whether x ∈ A. We observe that we can easily apply HVE to achieve the
opposite semantics where a user’s key is associated with an element x and the
ciphertext with a set A. This could be used by a gateway to test if a particular
user was one of the (possibly) many receivers of an email. We expect there to
be several other applications that one can build with HVE.

7 Extensions

Privacy for search queries. In some cases one may want the token TKP not to
identify which predicate P is being queried. For example, in the anti-spam exam-
ple from the introduction, the user may not want to reveal his anti-spam predi-
cate to the server. A similar problem was studied by Ostrovsky and Skeith [18]
and is related to Private Information Retrieval [16]. For public-key systems sup-
porting comparison queries this is clearly not possible since, given TKP the
server can identify the threshold in P with a simple binary search. It is an open
problem to convert our system to a symmetric-key system where TKP does not
expose P . One approach is to simply keep the public key secret from the server;
however, this is not sufficient in our system.

Validating ciphertexts. Throughout the paper we assumed that the encryptor is
honestly creating ciphertexts as specified by the encryption system. For some ap-
plications discussed in the introduction (e.g. spam filtering) this may not be the
case. By creating malformed ciphertexts an attacker may generate false-positive
or false-negatives for the server using the tokens.

Fortunately, in some settings including a payment gateway or spam filter, this
is easily avoidable. Briefly, one technique is as follows. The recipient who has
SK will also publish a regular public-key PK1 and ask the encryptor to encrypt
the plaintext (I, M) with both the searchable system and with PK1. The result-
ing ciphertext is the pair C =

(
Encrypt(PK, I, M), EncryptPKE(PK1, (I, M))

)
.

When the recipient receives a ciphertext C = (C0, C1) it recovers (I, M) from
C1 and uses SK to test that C0 is a valid encryption of (I, M). If not then
the ciphertext is immediately rejected. In doing so, the recipient automati-
cally drops invalid ciphertexts. More precisely, a Φ-searchable system could
provide an algorithm Test(C, I, M, SK) that outputs true when C is a valid
encryption of (I, M) and false otherwise. Our HVE system supports this
type of test.
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Alternatively, one could require the encryptor to prove that his ciphertext is
well formed, for example to prove that C0 is consistent with C1. This can be
done using non-interactive proof techniques [6, 7].

8 Conclusion

In public key systems supporting queries on encrypted data a secret key can pro-
duce tokens for testing any supported query predicate. The token lets anyone
test the predicate on a given ciphertext without learning any other informa-
tion about the plaintext. We presented a general framework for analyzing se-
curity of searching on encrypted data systems. We then constructed systems
for comparisons and subset queries as well as conjunctive versions of these
predicates.

The underlying tool behind these new constructions is a primitive we call
HVE. The one-dimensional version of HVE (namely � = 1) is essentially an
Anonymous IBE system. For large � we obtain a new concept that is extremely
useful for a large variety of searching predicates. We note that by setting � = 1
in our HVE construction we obtain a new simple anonymous IBE system secure
without random oracles.

This work posses many challenging open problems. For example, the best
non-conjunctive (i.e. w = 1) comparison system we currently have requires ci-
phertexts of size O(

√
n) where n is the domain size. In principal it should be

possible to improve this to O(log n), but this is currently a wide open prob-
lem that will require new ideas. Similarly, for non-conjunctive subset queries
the best we have requires ciphertexts of size O(n). Again, can this be improved
to O(log n)? Our results mostly focus on conjunction. Are there similar results
for disjunctive queries? More generally, what other classes of predicates can we
search on?
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A Proof of Lemma 1

We prove that the trivial system presented in Section 3 is secure.

Proof. Showing that QU AdvA is negligible is a straight forward hybrid argument.
Let A be an adversary playing the query security game. For i = 1, . . . , n + 1 we
define experiment number i as follows:
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– The challenger runs Setup(λ) to obtain

PK ← (PK1, . . . , PKn) and SK ← (SK1, . . . , SKn)

It gives PK to A. Next, A is given the tokens for any predicates of its choice.
– Then A outputs two pairs (I0, M0) and (I1, M1) subject to the restrictions

of the query security game challenge phase. For j = 1, . . . , n the challenger
constructs the following ciphertexts:

Cj
R←

⎧
⎪⎨

⎪⎩

Encrypt′(PKj , M0) if Pj(I0) = 1 and j ≥ i,
Encrypt′(PKj , M1) if Pj(I1) = 1 and j < i,
Encrypt′(PKj , ⊥) otherwise

The challenger gives C ← (C1, . . . , Cn) to A.
– The adversary continues to adaptively request query tokens subject to the

restrictions of the query security game. Finally, A outputs a bit β′ ∈ {0, 1}.
We let EXP(i)

QU[A] denote the probability that β′ equals 1.

This completes the description of experiment i. A standard argument shows that

2 · QU AdvA =
∣∣∣EXP(1)

QU[A] − EXP(n+1)
QU [A]

∣∣∣ ≤
n∑

i=1

∣∣∣EXP(i)
QU[A] − EXP(i+1)

QU [A]
∣∣∣

But
∣∣∣EXP(i)

QU[A] − EXP(i+1)
QU [A]

∣∣∣ is clearly negligible assuming E is semantically
secure against chosen plaintext attacks.
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Abstract. We show how to obfuscate a secret shuffle of ciphertexts:
shuffling becomes a public operation. Given a trusted party that samples
and obfuscates a shuffle before any ciphertexts are received, this reduces
the problem of constructing a mix-net to verifiable joint decryption.

We construct public-key obfuscations of a decryption shuffle based on
the Boneh-Goh-Nissim (BGN) cryptosystem and a re-encryption shuf-
fle based on the Paillier cryptosystem. Both allow efficient distributed
verifiable decryption.

Finally, we give a distributed protocol for sampling and obfuscating
each of the above shuffles and show how it can be used in a trivial way
to construct a universally composable mix-net. Our constructions are
practical when the number of senders N is small, yet large enough to
handle a number of practical cases, e.g. N = 350 in the BGN case and
N = 2000 in the Paillier case.

1 Introduction

Suppose a set of senders P1, . . . , PN , each with input mi, want to compute
the sorted list (mπ(1), . . . , mπ(N)) of messages while keeping the permutation π
secret. A trusted party can provide this service. First, it collects all messages.
Then, it sorts the inputs and outputs the result. A protocol, i.e., a list of machines
M1, . . . , Mk, that emulates the service of this trusted party is called a mix-net,
and the parties M1, . . . , Mk are referred to as mix servers. The notion of a
mix-net was introduced by Chaum [9] and the main application of mix-nets is
to perform electronic elections.

Program obfuscation is the process of “muddling” a program’s instructions to
prevent reverse-engineering while preserving proper function. Barak et al. [2] first
formalized obfuscation as simulatability from black-box access. Goldwasser and
Tauman-Kalai [15] extended this definition to consider auxiliary inputs. Some
simple programs have been successfully obfuscated [8,26]. However, generalized
program obfuscation, though it would be fantastically useful in practice, has
been proven impossible in even the weakest of settings for both models (by their
respective authors). Ostrovsky and Skeith [21] consider a weaker model, public-
key obfuscation, where the obfuscated program’s output is encrypted. In this
model, they achieve the more complex application of private stream searching.
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1.1 Our Contributions

We show how to obfuscate the shuffle phase of a mix-net: shuffling becomes a
public operation, leaving only verifiable decryption to be performed privately.
We show how any homomorphic cryptosystem can provide obfuscated mixing,
though the resulting mix-net becomes inefficient. We show how special and dis-
tinct properties of the Boneh-Goh-Nissim [7] and Paillier [22] cryptosystems
enable obfuscated mixing efficient enough to be practical in some settings.

We formalize our constructions in the public-key obfuscation model of Ostro-
vsky and Skeith, whose indistinguishability property closely matches the security
requirements of a mix-net. Of course, in a mix-net setting, one cannot expect a
single party to generate a complete and correct obfuscated shuffle: we describe
an efficient zero-knowledge proof of the correct obfuscation of a shuffle and a pro-
tocol that allows a set of parties to jointly and robustly generate an obfuscated
randomly chosen shuffle. Our shuffles require considerably more exponentiations,
roughly quadratic in the number of senders instead of linear, than private mix-
net techniques, yet they remain reasonably practical for precinct-based elections,
where voters are anonymized in smaller batches and all correctness proofs can
be carried out in advance.

1.2 Previous Work

Most mix-nets in the literature are based on homomorphic cryptosystems and
use the re-encryption-permutation paradigm introduced by Park et al. [23] and
made universally verifiable by Sako and Kilian [24]. Each mix server in turn re-
encrypts and permutes the ciphertexts. The first efficient zero-knowledge shuf-
fle proofs were given independently by Neff [20] and Furukawa and Sako [14].
Groth [17] generalized Neff’s approach and improved its efficiency. A third, dif-
ferent, approach was given recently by Wikström [28]. The first definition of
security of a mix-net was given by Abe and Imai [1] and the first proof of se-
curity of a mix-net as a whole was given by Wikström [27,28]. Wikström and
Groth [30] give the first adaptively secure mix-net.

Multi-candidate election schemes where the set of candidates is predetermined
have been proposed using homomorphic encryption schemes, initially by Benaloh
[6,5] and subsequently by others to handle multiple races and multiple candi-
dates per race [10,25,11,13,3,17]. Homomorphic tallying is similar to obfuscated
shuffles in that, on and after election day, only public computation is required
for the anonymization process. However, homomorphic tallying cannot recover
the individual input plaintexts, which is required by the election laws in some
countries and in the case of write-in votes.

Ostrovsky and Skeith define the notion of public-key obfuscation to describe
and analyze their work on streaming-data search using homomorphic
encryption [21]. In their definition, an obfuscated program is run on plaintext
inputs and provides the outputs of the original program in encrypted form. We
use a variation of this definition, where the inputs are encrypted and the unob-
fuscated program may depend on the public key of the cryptosystem.
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1.3 Overview of Techniques

The protocols presented in this work use homomorphic multiplication with a
permutation matrix. Roughly, the semantic security of the encryption scheme
hides the permutation.

Generic Construction. Consider two semantically secure cryptosystems, CS =
(G, E , D) and CS′ = (G′, E ′, D′), where CS′ is additively homomorphic and the
plaintext space of CS′ can accommodate any ciphertext from CS. Note the in-
teresting properties:

E ′pk′ (1)Epk(m) = E ′pk′ (Epk(m)) , E ′pk′ (0)Epk(m) = E ′pk′(0) , and

E ′pk′ (0)E ′pk′(Epk(m)) = E ′pk′(Epk(m)) .

Consider the element-wise encryption of a permutation matrix under E ′, and
consider inputs to the shuffle as ciphertexts under E . Homomorphic matrix mul-
tiplication can be performed using the properties above for multiplication and
addition. The result is a list of doubly encrypted messages, E ′pk′(Epk(mi)), that
must then be decrypted verifiably. Unfortunately, a proof of double decryption
is particularly inefficient because revealing any intermediate ciphertext Epk(mi)
is not an option, as it would immediately leak the permutation.

BGN Construction. The BGN cryptosystem is additively homomorphic and has
two encryption algorithms and two decryption algorithms that can be used with
the same keys. Both additive and multiplicative homomorphisms are provided
in the following sense:

Epk(m1) ⊗ Epk(m2) = E ′pk(m1m2) , Epk(m1)Epk(m2) = Epk(m1 + m2) ,

and E ′pk(m1)E ′pk(m2) = E ′pk(m1 + m2) .

Thus, both the matrix and the inputs can be encrypted using the same en-
cryption algorithm E and public key, and the matrix multiplication uses both
homomorphisms. The result is a list of singly encrypted ciphertexts under E ′,
which lends itself to efficient, provable decryption.

Paillier Construction. The Paillier cryptosystem is additively homomorphic and
supports layered encryption, where a ciphertext can be encrypted again using
the same public key. The homomorphic properties are preserved in the inner
layer; in addition to the generic layered homomorphic properties we have the
special relation

E ′pk(Epk(0, r))Epk(m,s) = E ′pk(Epk(0, r)Epk(m, s)) = E ′pk(Epk(m, r + s)) .

Thus, we can use E ′ encryption for the permutation matrix, and E encryption
for the inputs. When representing the permutation matrix under E ′, instead
of E ′pk(1) to represent a one we use E ′pk(Epk(0, r)) with a random r. During the
matrix multiplication, the “inner” Epk(0, r) performs re-encryption on the inputs,
which allows the decryption process to reveal the intermediate ciphertext without
leaking the permutation, making the decryption proof much more efficient.
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2 Preliminaries

2.1 Notation

We denote by κ the main security parameter and say that a function ε(·) is neg-
ligible if for every constant c there exists a constant κ0 such that ε(κ) < κ−c for
κ > κ0. We denote by κc and κr additional security parameters such that 2−κc

and 2−κr are negligible, which determines the bit-size of challenges and random
paddings in our protocols. We denote by PT, PPT, and PT∗, the set of uni-
form polynomial time, probabilistic uniform polynomial time, and non-uniform
polynomial time Turing machines respectively. In interactive protocols we de-
note by P the prover and V the verifier. We understand a proof of knowledge to
mean a complete proof of knowledge with overwhelming soundness and negligi-
ble knowledge error. We denote by ΣN the set of permutations of N elements,
and we write Λπ = (λπ

ij) for the permutation matrix of π ∈ ΣN . We denote by
Mpk, Rpk, and Cpk, the plaintext space, the randomizer space, and the ciphertext
space induced by the public key pk of some cryptosystem.

2.2 Homomorphic Cryptosystems

In the following definition we mean by abelian group a specific representation
of an abelian group for which there exists a polynomial time algorithm for com-
puting the binary operator and inversion.

Definition 1 (Homomorphic). A cryptosystem CS = (G, E , D) is homomor-
phic if for every key pair (pk, sk) ∈ G(1κ)

1. The message space Mpk is a subset of an abelian group G(Mpk) written ad-
ditively.

2. The randomizer space Rpk is an abelian group written additively.
3. The ciphertext space Cpk is a abelian group written multiplicatively.
4. For every m, m′ ∈ Mpk and r, r′ ∈ Rpk we have Epk(m, r)Epk(m′, r′) =

Epk(m + m′, r + r′).

Furthermore, if Mpk = G(Mpk) it is called fully homomorphic, and if G(Mpk) =
Zn for some integer n > 0 it is called additive.

For an additively homomorphic cryptosystem, REpk(c, r) = cEpk(0, r) is called
a re-encryption algorithm.

2.3 Functionalities

Definition 2 (Functionality). A functionality is a family F = {Fκ}κ∈N of
sets of circuits such that there exists a polynomial s(·) such that |F | ≤ s(κ) for
every F ∈ Fκ.
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Specifics of the Model. In the original Ostrovsky and Skeith definition [21], plain-
text inputs are processed by an obfuscated program into ciphertext outputs. In
our setting, inputs are already encrypted. Thus, the original functionality and
the obfuscator depend on the same public key (and possibly the secret key).
The security of the obfuscation—i.e. the indistinguishability property—is then
defined separately, following the pattern of Ostrovsky and Skeith.

In addition, as this is a public-key obfuscator, the output of the obfuscated
program requires a decryption. We call the reader’s attention to the difference be-
tween the encryption layers : though they may use the same public key, the
obfuscation-related encryption and the inputs’ encryption have distinct purposes.

Definition 3 (Public-Key Obfuscator). An algorithm O ∈ PPT is a public-
key obfuscator for a functionality F with respect to a cryptosystem CS = (G, E , D)
if there exists a decryption algorithm D′ ∈ PT and a polynomial s(·) such that
for every κ ∈ N, F ∈ Fκ, (pk, sk) ∈ G(1κ), and x ∈ {0, 1}∗,

1. Correctness. D′sk(O(1κ, pk, sk, F )(x)) = F (pk, sk, x).
2. Polynomial blow-up. |O(1κ, pk, sk, F )| ≤ s(|F |).

Example 1. Suppose CS is additively homomorphic, (pk, sk) ∈ G(1κ), a ∈ Mpk,
and define Fa(pk, sk, x) = ax, where x ∈ Mpk. An obfuscated circuit for func-
tionality F of such circuits can be defined as a circuit with Epk(a) hardcoded
which, on input x ∈ Mpk, outputs Epk(a)x = Epk(ax).

We extend the definition of polynomial indistinguishability (known as IND-CPA
security for public-key cryptosystems) to our public-key obfuscator.

Experiment 1 (Indistinguishability, Expoind−b
F ,CS,O,A(κ))

(pk, sk) ← G(1κ)
(F0, F1, state) ← A(choose, pk),

d ← A(O(1κ, pk, sk, Fb), state)

If F0, F1 ∈ Fκ return d, otherwise 0.

Definition 4 (Indistinguishability). A public-key obfuscator O for a func-
tionality F with respect to a cryptosystem CS = (G, E , D) is polynomially indis-
tinguishable if | Pr[Expoind−0

F ,CS,O,A(κ) = 1] − Pr[Expoind−1
F ,CS,O,A(κ) = 1]| is negligible.

The obfuscator in Example 1 is polynomially indistinguishable if CS is polyno-
mially indistinguishable (IND-CPA secure.)

2.4 Shuffles

The most basic form of a shuffle is the decryption shuffle. It simply takes a list of
ciphertexts, decrypts them and outputs the plaintexts in sorted order. In some
sense this is equivalent to a mix-net.
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Definition 5 (Decryption Shuffle). A CS-decryption shuffle, for a cryptosys-
tem CS = (G, E , D) is a functionality DSN = {DSN(κ),κ}κ∈N, where N(κ) is a
polynomially bounded and polynomially computable function, such that for ev-
ery κ ∈ N, DSN(κ),κ = {DSπ}π∈ΣN(κ), and for every (pk, sk) ∈ G(1κ), and
c1, . . . , cN(κ) ∈ Cpk the circuit DSπ is defined by

DSπ(pk, sk, (c1, . . . , cN(κ))) = (Dsk(cπ(1)), . . . , Dsk(cπ(N(κ)))) .

Another way to implement a mix-net is to use the re-encryption-permutation
paradigm of Park et al. [23]. Using this approach the ciphertexts are first re-
encrypted and permuted in a joint way and then decrypted. The re-encryption
shuffle below captures the joint re-encryption and permutation phase. Both types
of shuffles are illustrated, in their obfuscated form, in Figure 1.

Definition 6 (Re-encryption Shuffle). A CS-re-encryption shuffle, for a ho-
momorphic cryptosystem CS is a functionality RSN = {RSN(κ),κ}κ∈N, where
N(κ) is a polynomially bounded and polynomially computable function, such
that for every κ ∈ N, RSN(κ),κ = {RSπ,r}π∈ΣN(κ),r∈({0,1}∗)N(κ) , and for every
(pk, sk) ∈ G(1κ), and c1, . . . , cN(κ) ∈ Cpk the circuit RSπ,r is defined by

RSπ(pk, sk, (c1, . . . , cN(κ))) = (REpk(cπ(1), r1), . . . , REpk(cπ(N(κ)), rN(κ))) .
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Fig. 1. The obfuscation of two types of shuffles. The circle denotes the encryption
scheme under which inputs are encrypted. The square denotes the encryption scheme
used by the obfuscator, which may depend on the circle encryption scheme and its
keypair. The left-most inputs and right-most outputs do not include the square-layer
encryption, which is only used by the public-key obfuscation process. An obfuscated
decryption shuffle “swaps” one encryption scheme for the other, while an obfuscated
re-encryption shuffle “layers” the two encryption schemes. The dashed circle denotes a
re-encryption of the original ciphertext.

3 A Generic Decryption Shuffle

We show that, in principle, all that is needed is an additively homomorphic
cryptosystem. Consider two semantically secure cryptosystems, CS = (G, E , D)
and CS′ = (G′, E ′, D′), with CS′ being additively homomorphic. Suppose that
ciphertexts from CS can be encrypted under CS′ for all (pk, sk) ∈ G(1κ) and
(pk′, sk′) ∈ G′(1κ), i.e., Cpk ⊆ M′pk′ . The following operations are then possible
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and, more interestingly, indistinguishable thanks to the semantic security of the
first cryptosystem:

E ′pk′(1)Epk(m) = E ′pk′(Epk(m)) and E ′pk′(0)Epk(m) = E ′pk′(0) .

3.1 The Obfuscator

Consider a permutation matrix Λπ = (λπ
ij) corresponding to a permutation

π. Consider its element-wise encryption under CS ′ with public key pk′ and a
corresponding matrix of random factors (rij) ∈ R′N

2

pk′ , i.e., Cπ = (E ′pk′ (λπ
ij , rij)).

Then given d = (d1, d2, . . . , dN ) ∈ CN
pk it is possible to perform homomorphic

matrix multiplication as

d � Cπ =

(
N∏

i=1

(cπ
ij)

di

)
giving Dsk(D′sk′ (d � Cπ)) = (mπ(i))N

i=1 .

Definition 7 (Obfuscator). The obfuscator O for the decryption shuffle DSN

takes input (1κ, (pk, pk′), (sk, sk′), DSπ), where (pk, sk) ∈ G(1κ), (pk′, sk′) ∈
G′(1κ) and DSπ ∈ DSN(κ),κ, computes Cπ = E ′pk′ (Λπ), and outputs a circuit
that hardcodes Cπ, and on input d = (d1, . . . , dN(κ)) computes d′ = d � Cπ as
outlined above and outputs d′.

Technically, this is a decryption shuffle of a new cryptosystem CS′′ = (G′′, E , D),
where CS′′ executes the original key generators and outputs ((pk, pk′), (sk, sk′))
and the original algorithms E and D simply ignore (pk′, sk′). We give a reduction
without any loss in security for the following straight-forward proposition. We
also note that O does not use (sk, sk′): obfuscation only requires the public key.

Proposition 1. If CS′ is polynomially indistinguishable then O is polynomially
indistinguishable.

The construction can be generalized to the case where the plaintext space of
CS′ does not contain the ciphertext space of CS. Each inner ciphertext di is
split into pieces (di1, . . . , dit) each fitting in the plaintext space of CS′ and then
each list (d1,l, . . . , dN,l) is applied to the encrypted permutation matrix as be-
fore. This gives lists (d′1,l, . . . , d

′
N,l) from which the output ((d′1,l)l, . . . , (d′N,l)l)

is constructed.

3.2 Limitations of the Generic Construction

The matrix Cπ requires a proof that it is the encryption of a proper permu-
tation matrix. This can be accomplished using more or less general techniques
depending on the cryptosystem, but this is prohibitively expensive in general.

Even if we prove that Cπ is correctly formed, the post-shuffle verifiable decryp-
tion of E ′pk′(Epk(mi)) to mi is prohibitively expensive: the inner, intermediate
ciphertext Epk(mi) is exactly the input ciphertext, which means it cannot be
revealed without trivially leaking the permutation. Given this constraint, we
know of no efficient way, not even a cut-and-choose approach, to prove correct
decryption. Instead, we turn to more efficient constructions.
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4 Obfuscating a Boneh-Goh-Nissim Decryption Shuffle

We show how to obfuscate a decryption shuffle for the Boneh-Goh-Nissim (BGN)
cryptosystem [7] by exploiting both its additive homomorphism and its one-time
multiplicative homomorphism.

4.1 The BGN Cryptosystem

We denote the BGN cryptosystem by CSbgn = (Gbgn, Ebgn, Dbgn). It operates in
two groups G1 and G2, both of order n = q1q2, where q1 and q2 are distinct prime
integers of the same size. We use multiplicative notation in both G1 and G2, and
denote by g a generator in G1. The groups G1 and G2 exhibit a polynomial-time
computable bilinear map e : G1 × G1 → G2 such that G = e(g, g) generates G2.
Bilinearity implies that ∀u, v ∈ G1 and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab. We refer
the reader to [7] for details on how such groups can be generated and on the
cryptosystem’s properties, which we briefly summarize here.

Key generation. On input 1κ, Gbgn generates (q1, q2, G1, g, G2, e(·, ·)) as above
such that n = q1q2 is a κ-bit integer. It chooses u ∈ G1 randomly, defines
h = uq2 , and outputs a public key pk = (n, G1, G2, e(·, ·), g, h) and secret key
sk = (pk, q1).

Encryption in G1. On input pk and m, Ebgn selects r ∈ Zn randomly and
outputs c = gmhr.

Decryption in G1. On input sk = q1 and c ∈ G1, Dbgn outputs loggq1 (cq1).

Since decryption computes a discrete logarithm, the plaintext space must be
restricted considerably. Corresponding algorithms E ′bgn and D′bgn perform en-
cryption and decryption in G2 using the generators G = e(g, g) and H = e(g, h).
The BGN cryptosystem is semantically secure under the Subgroup Decision As-
sumption, which states that no A ∈ PT∗ can distinguish between the uniform
distributions on G1 and the unique order q1 subgroup in G1 respectively.

Homomorphisms. The BGN cryptosystem is additively homomorphic. We need
this property, but we also exploit its one-time multiplicative homomorphism
implemented by the bilinear map:

e(Ebgn
pk (m0, r0), Ebgn

pk (m1, r1)) = E
′bgn
pk (m0m1, m0r1 + m1r0 + (logg u)q2r0r1)

The result is a ciphertext in G2 which cannot be efficiently converted back to
an equivalent ciphertext in G1. Thus, the multiplicative homomorphism can be
evaluated only once, after which only homomorphic additions are possible. For
clarity, we write c1 ⊗ c2

def= e(c1, c2) for ciphertexts in G1.

4.2 The Obfuscator

Our obfuscator is based on the fact that matrix multiplication only requires
an arithmetic circuit with multiplication depth 1. Thus, the BGN cryptosystem
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can be used for homomorphic matrix multiplication. Consider a N1 ×N2-matrix
C = (cij) = (Ebgn

pk (aij)) and a N2 × N3-matrix C′ = (djk) = (Ebgn
pk (bjk)), and let

A = (aij) and B = (bjk). Define homomorphic matrix multiplication by

C � C′ =

⎛

⎝
N2∏

j=1

cij ⊗ djk

⎞

⎠ giving D
′bgn
sk (C � C′) =

⎛

⎝
N2∑

j=1

aijbjk

⎞

⎠ = AB .

Definition 8 (Obfuscator). The obfuscator Obgn for the decryption shuffle
DSbgn

N takes input (1κ, pk, sk, DSbgn
π ), where (pk, sk) ∈ Gbgn(1κ) and DSbgn

π ∈
DSbgn

N(κ),κ, computes Cπ = Ebgn
pk (Λπ), and outputs a circuit with Cπ hard-coded

such that, on input d = (d1, . . . , dN(κ)), it outputs d′ = d � Cπ.

Note that Obgn does not use sk.

Proposition 2. The obfuscator Obgn for DSbgn
N is polynomially indistinguish-

able if the BGN cryptosystem is polynomially indistinguishable.

Composition. Ciphertexts in G2 cannot be efficiently converted back into equiv-
alent ciphertexts in G1. In addition, we do not know how to select groups G1
and G2 such that G2 exhibits a new bilinear map into a third group. Thus, the
BGN-based shuffle construction we propose here is not composable: we can only
mix once. In Section 7, we explain how to achieve the distributed generation of
a BGN-based shuffle.

5 Obfuscating a Paillier Re-encryption Shuffle

We show how to obfuscate a re-encryption shuffle for the Paillier cryptosys-
tem [22] by exploiting its additive homomorphism and its generalization intro-
duced by Damg̊ard et al. [12]. We expose a previously unnoticed homomorphic
property of this generalized Paillier construction.

5.1 The Paillier Cryptosystem

We denote the Paillier cryptosystem CSpai = (Gpai, Epai, Dpai), defined as:

Key Generation. On input 1κ, Gpai chooses safe κ-bit primes p = 2p′ + 1 and
q = 2q′ + 1 randomly, defines a modulus n = pq, defines global parameter
v = n + 1 and outputs a public key pk = n and a secret key sk = p.

Encryption. On input pk and m ∈ Zn, Epai selects r ∈ Z
∗
n randomly and

outputs vmrn mod n2.
Decryption. On input sk and c, given e such that e = 1 mod n and e =

0 mod φ(n), Dpai outputs (ce − 1)/n.

The Paillier cryptosystem is polynomially indistinguishable under the Deci-
sion Composite Residuosity Assumption, which states that no A ∈ PT∗ can
distinguish the uniform distribution on Z

∗
n2 from the uniform distribution on

the subgroup of nth residues in Z
∗
n2 .
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Generalized Paillier. Damg̊ard et al. [12] generalize this scheme, replacing com-
putations modulo n2 with computations modulo ns+1 and plaintext space Zn

with Zns . Damg̊ard et al. prove that the security of the generalized scheme
follows from the security of the original scheme for s > 0 polynomial in the secu-
rity parameter, though we only exploit the cases s = 1, 2. We write Epai

ns+1(m) =
vmrns

mod ns+1 for generalized encryption to make explicit the value of s used
in a particular encryption. Similarly we write Dpai

p,s+1(c) for the decryption al-
gorithm (see [12] for details) and we use Mns+1 and Cns+1 to denote the corre-
sponding message and ciphertext spaces.

Alternative Encryption. There are well known alternative encryption algorithms.
One can pick the random element r ∈ Z

∗
ns instead of in Z

∗
n. If hs+1 is a generator

of the group of ns+1th residues, then we may define encryption of a message
m ∈ Zns as vmhr

s+1 mod ns+1 where r is chosen randomly in [0, n2κr ].

Homomorphisms. The Paillier cryptosystem is additively homomorphic. Fur-
thermore, the recursive structure of the Paillier cryptosystem allows a cipher-
text Epai

n2 (m) ∈ Cn2 = Z
∗
n2 to be viewed as a plaintext in the group Mn3 = Zn2

that can be encrypted using a generalized version of the cryptosystem, i.e., we
can compute Epai

n3

(
Epai

n2 (m)
)
. Interestingly, the nested cryptosystems preserve the

group structures over which they are defined. In other words we have

Epai
n3 (Epai

n2 (0, r))E
pai
n2 (m,s) = Epai

n3 (Epai
n2 (0, r)Epai

n2 (m, s)) = Epai
n3 (Epai

n2 (m, r + s)) .

This homomorphic operation is similar to the generic additive operation from
Section 3, with the inner “1” replaced by an encryption of 0. As a result, though
the output is also a doubly encrypted mi, a re-encryption has occurred on the
inner ciphertext. This technique extends the layered-Paillier homomorphic prop-
erty first observed by Lipmaa [18].

5.2 The Obfuscator

We use the additive homomorphism and the special homomorphic property ex-
hibited above to define a form of homomorphic matrix multiplication of matri-
ces of ciphertexts. Given an N -permutation matrix Λπ = (λπ

ij) and randomness

r, s ∈ (Z∗n)N×N , define Cπ = (cπ
ij) =

(
Epai

n3

(
λπ

ijE
pai
n2 (0, rij), sij

))
. We define a kind

of matrix multiplication of d = (d1, . . . , dN ) ∈ CN
n2 and Cπ:

d � Cπ =

(
N∏

i=1

(cπ
ij)

di

)
giving Dpai

p,2(D
pai
p,3(d � Cπ)) = (mπ(1), . . . , mπ(N)) .

In other words, we can do homomorphic matrix multiplication with a permuta-
tion matrix using layered Paillier, but we stress that the above matrix multipli-
cation does not work for all matrices. We are now ready to define the obfuscator
for the Paillier-based shuffle. Again, Opai does not use sk.
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Definition 9 (Obfuscator). The obfuscator Opai for the re-encryption shuf-
fle RSpai

N takes as input a tuple (1κ, n, sk, RSpai), where (n, p) ∈ Gpai(1κ) and
RSpai ∈ RSpai

N(κ),κ, computes Cπ = (Epai
n3 (λπ

ijE
pai
n2 (0, rij), sij)), and outputs a cir-

cuit with hardcoded Cπ that, on input d = (d1, . . . , dN(κ)), outputs d′ = d � Cπ.

Proposition 3. The obfuscator Opai for RSpai
N is polynomially indistinguishable

if the Paillier cryptosystem is polynomially indistinguishable.

Composition. It may be possible to compose Paillier re-encryption shuffles using
additional layers in the Damg̊ard et. al. Paillier generalization. However, because
an extra layer of encryption is added at each step, the re-encryption actions
are not truly composed with one another, e.g., the second stage re-encryption
acts on the first stage’s obfuscation layer, while the innermost ciphertext is re-
encrypted only on the first pass. Thus, in Section 7, we explain how to generate
and obfuscate a Paillier re-encryption shuffle in a distributed way.

6 Proving Correctness of Obfuscation

We show how to prove the correctness of a BGN or Paillier obfuscation. We
assume, for now, that a single party generates the encrypted matrix, though the
techniques described here are immediately applicable to the distributed genera-
tion and proofs in Section 7. For either cryptosystem, we start with a trivially
encrypted “identity matrix”, and we let the prover demonstrate that he correctly
shuffled the columns of this matrix.

Definition 10. Denote by Rmrp the relation consisting of pairs ((pk, C, C′), r)
such that C ∈ CN×N

pk , C′ = (REpk(ci,π(j), rij)), r ∈ RN×N
pk , and π ∈ ΣN .

In the BGN case, the starting identity matrix can be simply C = Epk(Λid, 0∗).
Recall that, where the BGN matrix contains encryptions of 1, the Paillier

matrix contains outer encryptions of different inner encryptions of zero, which
need to remain secret. Thus, in the Paillier case, we begin by generating and
proving correct a list of N double encryptions of zero. We construct a proof of
double-discrete log with 1/2-soundness that must be repeated a number of times.
This repetition remains “efficient enough” because we only need to perform a
linear number of sets of repeated proofs. We then use these N doubly encrypted
zeros as the diagonal of our identity matrix, completing it with trivial outer
encryptions of zero.

In both cases, we then take this identity matrix, shuffle and re-encrypt its
columns, and provide a zero-knowledge proof of knowledge of the permutation
and re-encryption factors. A verifier is then certain that the resulting matrix is
a permutation matrix.

6.1 Proving a Shuffle of the Columns of a Ciphertext Matrix

Consider the simpler and extensively studied problem of proving that ciphertexts
have been correctly re-encrypted and permuted, a so-called “proof of shuffle.”
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Definition 11. Denote by Rrp the relation consisting of pairs ((pk, d, d′), r) such
that d = (dj) ∈ CN

pk and d′ = REpk((dπ(j)), r) for some r ∈ RN
pk and π ∈ ΣN .

There are several known efficient methods [20,14,17,28] for constructing a proto-
col for this relation. Although these protocols differ slightly in their properties,
they all essentially give “honest-verifier zero-knowledge proofs of knowledge.”
As our protocol can be adapted to the concrete details of these techniques, we
assume, for clarity, that there exists an honest-verifier zero-knowledge proof of
knowledge πrp for the above relation. These protocols can be extended to prove
a shuffle of lists of ciphertexts (which is what we need), but a detailed proof of
this fact has not appeared. We present a simple batch proof (see [4]) of a shuffle
to allow us to argue more concretely about the complexity of our scheme.

Protocol 1 (Matrix Re-encryption-Permutation)
Common Input. A public key pk and C, C′ ∈ CN×N

pk

Private Input. π ∈ ΣN and r ∈ RN×N
pk such that C′ = REpk((ci,π(j)), r).

1. V chooses u ∈ [0, 2κc − 1]N randomly and hands it to P.
2. They both compute d = (

∏N
i=1 cui

ij ) and d′ = (
∏N

i=1(c
′
ij)

ui).
3. They run the proof of a shuffle πrp on common input (pk, d, d′) and private

input π, r′ = (
∑N

i=1 rijui).

Proposition 4. Protocol 1 is public-coin and honest-verifier zero-knowledge.
For inputs with C = Epk(Λπ) for π ∈ ΣN the error probability is negligible
and there exists a knowledge extractor.

Remark 1. When the plaintexts are known, and this is the case when C is an
encryption of the identity matrix, slightly more efficient techniques can be used.
This is sometimes called a “shuffle of known plaintexts” (see [20,17,28]).

6.2 Proving Double Re-encryption

The following relation captures the problem of proving correctness of a double
re-encryption.

Definition 12. Denote by Rpai
dr the relation consisting of pairs ((n, c, c′), (r, s)),

such that c′ = chr
1 mod n2

hs
2 mod n3 with r, s ∈ [0, N2κr ].

Protocol 2 (Double Re-encryption)
Common Input. A modulus n and c, c′ ∈ Cn3

Private Input. r, s ∈ [0, n2κr ] such that c′ = chr
2 mod n2

hs
3 mod n3.

1. P chooses r′ ∈ [0, n22κr ] and s′ ∈ [0, n322κr ] randomly, computes α =
chr′

2 mod n2
hs′

3 mod n3, and hands α to V.
2. V chooses b ∈ {0, 1} randomly and hands b to P.
3. P defines (e, f) = (r′ − br, s′ − b(he

2 mod n2)s). Then it hands (e, f) to V.
4. V checks that α = ((c′)bc1−b)he

2 mod n2
hf

3 mod n3.
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The protocol is iterated in parallel κc times to make the error probability
negligible. For proving a lists of ciphertexts, we use independent copies of the
protocol for each element, but reuse the challenges.

Proposition 5. Protocol 2 is a public-coin honest verifier zero-knowledge proof
of knowledge for Rpai

dr .

7 Distributed Generation and Obfuscation of a Shuffle

Our two constructions can be efficiently generated in a distributed fashion.
Roughly, we begin with the trivial encryption of the identity matrix. (In the
Paillier case, a sub-protocol is required to generate the inner-layer encryptions
of the 0-diagonal using successive re-encryptions by the parties.) We then let
each party in turn shuffle and re-encrypt the rows of this matrix. In the end,
the resulting permutation matrix captures the composition of the shuffles from
each party: it is as if the actions of a mix-net were captured ahead of time into
an encrypted matrix, then unleashed onto the ciphertext inputs at shuffle time.
The details of this process, including the proofs of correct shuffling and the UC
proof of security, are provided in the full version of this paper.

8 Complexity Estimates

Our constructions clearly require O(N2) exponentiations, but we give estimates
that show that the constant hidden in the ordo-notation is reasonably small
in some practical settings. For simplicity we assume that the cost of squaring
a group element equals the cost of multiplying two group elements and that
computing an exponentiation using a κe-bit integer modulo a κ-bit integer cor-
responds to κe/κ full exponentiations modulo a κ-bit integer. We optimize using
fixed-base exponentiation and simultaneous exponentiation (see [19]). We assume
that evaluating the bilinear map corresponds to computing 6 exponentiations in
the group G1 and we assume that such one such exponentiation corresponds to
8 modular exponentiations. This seems reasonable, although we are not aware
of any experimental evidence. In the Paillier case we assume that multiplication
modulo ns is s2 times as costly as multiplication modulo n. We assume that the
proof of a shuffle requires 8N exponentiations (this is conservative).

Most exponentiations when sampling and obfuscating a shuffle are fixed-base
exponentiations. The only exception is a single exponentiation each time an
element is doubly re-encrypted, but there are only N such elements. In the proof
of correct obfuscation the bit-size κc of the elements in the random vector u used
in Protocol 1 is much smaller than the security parameter, and simultaneous
exponentiation is applicable. In the Paillier case, simultaneous exponentiation is
applicable during evaluation, and precomputation lowers the on-line complexity.
Unfortunately, this does not work in the BGN case due to the bilinear map.
We refer the reader to the Scheme program in the full paper for details on our
estimates. For practical parameters we get the estimates in Fig. 2.
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Given a single computer, the BGN construction is only practical when N ≈
350 and the maximal number of bits in any submitted ciphertext is small. On
the other hand, the Paillier construction is practical for normal sized voting
precincts in the USA: N ≈ 2000 full length messages can be accommodated,
and, given one week of pre-computing, the obfuscated shuffle can be evaluated
overnight. Furthermore, all constructions are easily parallelized.

Construction Sample & Obfuscate Prove Precompute Evaluate
BGN with N = 350 14 (0.5h) 3 (0.1h) NA 588 (19.6h)
Paillier with N = 2000 556 (18.5h) 290 (9.7h) 3800 (127h) 533 (17.8h)

Fig. 2. The table gives the complexity of the operations in terms of 104 modular κ-bit
exponentiations and in parenthesis the estimated running time in hours assuming that
κ = 1024, κc = κr = 50, and that one exponentiation takes 12 msec to compute (a
1024-bit exponentiation using GMP [16] takes 12 msec on our 3 GHz PC)

9 Conclusion

It is surprising that a functionality as powerful as a shuffle can be public-key
obfuscated in any useful way. It is even more surprising that this can be achieved
using the Paillier cryptosystem which, in contrast to the BGN cryptosystem, was
not specifically designed to have the kind of “homomorphic” properties we ex-
ploit. One intriguing question is whether other useful “homomorphic” properties
have been overlooked in existing cryptosystems.

From a practical point of view we stress that, although the performance of our
mix-net is much worse than that of known constructions, it exhibits a property
which no previous construction has: a relatively small group of mix servers can
prepare obfuscated shuffles for voting precincts. The precincts can compute the
shuffling without any private key and produce ciphertexts ready for decryption.
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A Proofs

Proof (Proposition 1 and Proposition 2). We only detail the first proof, since
the second follows by a trivial modification. Denote by A an arbitrary adversary
in the polynomial indistinguishability experiment run with the obfuscator O.
Denote by A′ an adversary to the polynomial indistinguishability experiment
Expind−b
CS′,A′(κ) with the cryptosystem CS′ defined as follows. It accepts a public

key pk as input and forwards it to A. When A returns (DSπ0 , DSπ1), A′ out-
puts the two messages 0 and 1. Then it is given an encryption c(b) = E ′pk(b).
Denote by Λπ0 and Λπ1 the two permutation matrices corresponding to DSπ0

and DSπ1 respectively. The adversary A′ defines a matrix Cπb = (cπ
ij), by setting

cπ
ij = E ′pk(λπ0

ij ) if λπ0
ij = λπ1

ij and cπ
ij to a reencryption of c(b) if λπ0

ij = 0, or to
a reencryption of c(1−b) if λπ0

ij = 1. Note that c(1−b) can be computed homo-
morphically from c(b). Then A′ continues the simulation using Cπb to compute
the obfuscated circuit, and when A outputs a bit it gives it as its output. By
construction Pr[Expind−b

CS′,A(κ) = 1] = Pr[Expoind−b
DSN ,CS′,O,A(κ) = 1].

http://eprint.iacr.org/
http://eprint.iacr.org/
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Proof (Proposition 3). Let A be any adversary in the polynomial indistinguisha-
bility experiment run with the obfuscator Opai. Denote by Aind the polynomial
indistinguishability adversary that takes a public key pk as input and then sim-
ulates this protocol to A. When A outputs two challenge circuits (RSpai

0 , RSpai
1 )

with corresponding matrices (M0, M1), i.e., the matrices are permutation ma-
trices with the ones replaced by re-encryption factors, Aind outputs (M0, M1).
When the experiment returns Epai

pk (Mb) it forms the obfuscated circuit and hands
it to A. Then Aind outputs the output of A. It follows that the advantage of
Aind in the polynomial indistinguishability experiment with the Paillier cryp-
tosystem and using polynomial length list of ciphertexts is identical to the ad-
vantage of A in the polynomial indistinguishability experiment with Opai. It
now follows from a standard hybrid argument that the polynomial indistin-
guishability of the Paillier cryptosystem is broken if Opai is not polynomially
indistinguishable.

Proof (Proposition 4). Completeness and the fact that the protocol is public-coin
follow by inspection. We now concentrate on the more interesting properties.

Zero-Knowledge. The honest-verifier zero-knowledge simulator simply picks u
randomly as in the protocol and then invokes the honest-verifier zero-knowledge
simulator of the subprotocol πrp. It follows that the simulated view is indistin-
guishable from the real view of the verifier.

Negligible Error Probability. Consider the following intuitively appealing lemma.

Lemma 1. Let η be a product of κ/2-bit primes and let N be polynomially
bounded in κ. Let Λ = (λij) be an N ×N -matrix over Zη and let u ∈ [0, 2κc −1]N

be randomly chosen. Then if Λ is not a permutation matrix Pru[∃π ∈ ΣN :
uΛπ = uΛ] is negligible.

Proof. Follows by elementary linear algebra (see [29]).

By assumption C = Epk(Λπ) for some π ∈ ΣN . Write Λ = Dpk(C′). Then the
lemma and the soundness of the proof of a shuffle πrp implies the soundness of
the protocol.

Knowledge Extraction. For knowledge extraction we may now assume that C′

can be formed from C by permuting and re-encrypting its columns. Before we
start we state a useful lemma.

Lemma 2. Let η be a product of κ/2-bit primes, let N be polynomially bounded
in κ, and let u1, . . . , ul−1 ∈ Z

N such that ujj = 1 mod η and uji = 0 mod η for
1 ≤ i, j ≤ l − 1 < N and i �= j. Let ul ∈ [0, 2κc − 1]N be randomly chosen, where
2−κc is negligible. Then the probability that there exists a1, . . . , al ∈ Z such that
if we define u′l =

∑l
j=1 ajuj mod η, then u′l,l = 1 mod η, and u′l,i = 0 mod η for

i < l is overwhelming in κ.
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Proof. Note that b = ul,l −
∑l−1

j=1 ul,juj,l is invertible with overwhelming prob-
ability, and when it is we view its inverse b−1 as an integer and define aj =
−b−1ul,j for j < l and al = b−1. For i < l this gives ul,i =

∑l
j=1 ajuj,i =

b−1(1 − aiuii) = 0 mod η and for i = l this gives ul,l =
∑l

j=1 ajuj,l = b−1(ul,l −
∑l−1

j=1 ul,juj,l) = 1 mod η.

It remains to exhibit a knowledge extractor. By assumption there exists a poly-
nomial t(κ) and negligible knowledge error ε(κ) such that the extractor of the
subprotocol πrp executes in time Tγ′(κ) = t(κ)/(γ′ − ε(κ)) for every common
input (d, d′), induced by a random vector u, to the subprotocol such that the
success probability of the subprotocol is γ′. We invoke the extractor, but we
must stop it if γ′ turns out to be too low and find a new random u that induces
a common input to the subprotocol with a larger value of γ′. We assume that
the same negligible function ε(κ) bounds the failure probability in Lemma 2.

Consider a fixed common input (pk, C, C′) and prover P . Denote by γ the
probability that P convinces V . We assume that ε(κ) < γ/4, i.e., the knowledge
error will increase somewhat compared to the knowledge error of πrp.

We denote by B the distribution over {0, 1} given by pB(1) = γ/(8t(κ)).
Note that this distribution can be sampled for any common input even with-
out knowledge of γ, since we can simply perform a simulation of the protocol,
pick an element from the space {1, . . . , 8t(κ)} randomly, and define the sam-
ple to be one if the prover succeeds and the picked element equal one. We are
going to use the random variable to implicitly be able to say if an induced
common input to the subprotocol gives a too low success probability γ′. We
now make this idea precise. The extractor proceeds as follows, where in the
BGN case η denotes the modulus n and in the Paillier case η denotes the or-
der of the plaintext space of the outer layer Paillier, i.e., n2 where n is the
modulus.

1. For l = 1, . . . , N do:
(a) Start the simulation of an execution between V and P and denote by

ul the random vector chosen by the simulator. Denote by (pk, dl, d
′
l) the

common input to the subprotocol πrp induced by ul.
(b) If ul,j = ul,j′ for some j �= j′ or if there does not exists ak,l ∈ Z such that∑l

l′=1 ak,l′ul′,j equals one modulo η if j = l and it equals zero modulo
η for j < l, then go to Step 1a.

(c) Invoke the knowledge extractor of the protocol πrp on the common in-
put (pk, dl, d

′
l). However, in between each step executed by the extrac-

tor, the distribution B is sampled. If a sample equals one before the
extractor halts, then go to Step 1a. Otherwise, denote by πl and sl the
permutation and extracted randomness such that ((pk, dl, d

′
l), (πl, sl)) ∈

Rrp.
2. Compute ak,l ∈ Z such that

∑N
l=1 ak,lul,j equals one or zero modulo η

depending on if k = j or not. Define (bkj) = (akl)(ulj) − I, where I is
the identity N × N -matrix and the matrix operations are taken over the
integers.
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In BGN Case. Compute r = (rk,j) = (ak,l)(sl,j), and output (π, r).

In Paillier Case. Compute r = (rk,j) = (
∏N

i=1(ci,π(j)/c′ij)
bki/η

∏N
l=1 s

ak,l

l,j ),
where the division bki/η is taken over the integers, and output (π, r).

We do the easy part of the analysis first. Consider the correctness of the
output given that the extractor halts. Since ul,j = ul,j′ for all j �= j′ and
both Dpk(C) and Dpk(C′) are permutation matrices by assumption, we con-
clude that π1 = . . . = πN = π for some permutation π ∈ ΣN . We have

N∏

i=1

(c′ij)
uli = d′lj = dl,π(j)Epk(0, sl,j) = Epk(0, sl,j)

N∏

i=1

culi

i,π(j) . (1)

Apply the ak,l as exponents on the left of Equation (1) and take the product
over all l. This gives

N∏

l=1

(
N∏

i=1

(c′ij)
uli

)ak,l

=
N∏

i=1

(
N∏

l=1

(c′ij)
ak,luli

)
= c′kj

N∏

i=1

(c′ij)
bki .

Then apply the exponents ak,l on the right side of Equation (1) and take the
product over all l. This gives

N∏

l=1

(
Epk(0, sl,j)

N∏

i=1

culi

i,π(j)

)ak,l

=

(
N∏

l=1

Epk(0, sl,j)akl

) (
N∏

i=1

cbki

i,π(j)

)
ck,π(j) .

To summarize: c′kj =
(∏N

i=1(ci,π(j)/c′ij)
bki

)(∏N
l=1 Epk(0, sl,j)akl

)
ck,π(j). The ar-

gument is concluded differently depending on the cryptosystem used.

In BGN Case. Note that bki = 0 mod η for all k and i, and the order of any
ciphertext divides η. Thus, the first product equals one in the ciphertext group.
Furthermore, the randomizer space is Zη so we have

c′kj = Epk

(
0,

N∑

l=1

aklsl,j

)
ck,π(j) .

In Paillier Case. Again bki = 0 mod η for all k and i, but the order of a
ciphertext may be larger than η. However, we may define b′ki = bki/η, where
division is over the integers, define s′j =

∏N
i=1(ci,π(j)/c′ij)

b′
ki , and write

c′kj = Epk

(
0, s′j

N∏

l=1

sakl

l,j

)
ck,π(j) .

We remark that s′j is an element in Z
∗
n3 and not in Z

∗
n as expected. However, it

is a witness of re-encryption using alternative Paillier encryption.
It remains to prove that the extractor is efficient in terms of the inverse suc-

cess probability of the prover. Fix an l. Denote by E the event that the prover
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succeeds to convince the adversary, i.e., Pr[E] = γ. Denote by S the set of vec-
tors u such that Pr[E | u ∈ S] ≥ γ/2. An averaging argument implies that
Pr[u ∈ S] ≥ γ/2. Denote by Eul

the event that the go to statement in Step 1b
is executed. We show that if u ∈ S, then a witness is extracted efficiently with
constant probability, and if u �∈ S, then the extraction algorithm will be stopped
relatively quickly.

If u �∈ S, then we focus only on the distribution B. The expected number
of samples from B needed before a sample is equal to one is clearly 1/pB(1) =
8t(κ)/γ. Thus, if we ignore the issue of finding the witness the simulation in Step
1c is efficient in terms of 1/γ.

If u ∈ S, then the expected number of steps needed by the extractor of the
subprotocol πrp is bounded by Tγ/2(κ). By Markov’s inequality the probabil-
ity that more than 2Tγ/2(κ) steps are needed is bounded by 1/2. The proba-
bility that one of the first ω = 2Tγ/2(κ) samples of B is one is bounded by
1 − (1 − pB(1))ω ≤ 1 − eω(−pB(1)+pB(1)2) ≤ 1 − e−1/2, since ε(κ) < γ/4.

Thus, Step 1c executes in expected time 8t(κ)/γ, and from independence fol-
lows that it halts due to the extractor finding a witness with probability at least
1 − 1

2 (1 − e−1/2). In other words the expected number of restarts of the lth
iteration of Step 1 is constant.

From Lemma 2 and independence of the ul,j follow that the probability that
the go to statement of Step 1b is executed is negligible. This means that the
extractor runs in expected time cNt(κ)/(γ − 4ε(κ)) for some constant c. This
concludes the proof, since cNt(κ) is polynomial and 4ε(κ) is negligible.

Proof (Proposition 5). Completeness and the public-coin property follow by in-
spection. The honest-verifier zero-knowledge simulator simply picks e ∈ [0, n2κr ]
and f ∈ [0, n32κr ] and b ∈ {0, 1} randomly and defines α = ((c′)bc1−b)he

2hf
3 mod

n3. The resulting view is statistically close to a real view, since 2−κr is negligible.
For soundness, note that if we have che

2hf
3 = α = (c′)he′

2 hf ′

3 mod n3 with
e, f, e′, f ′ ∈ Z, then we can divide by hf

3 and take the he
2th root on both sides.

This gives c = (c′)he′−e
2 h

(f ′−f)/he
2

3 mod n3, which implies that the basic protocol
is special 1/2-sound. The protocol is then iterated in parallel κc times which
gives negligible error probability 2−κc . The proof of knowledge property follows
immediately from special soundness.
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Abstract. We present a public-key encryption scheme with the following prop-
erties. Given a branching program P and an encryption c of an input x, it is
possible to efficiently compute a succinct ciphertext c′ from which P (x) can be
efficiently decoded using the secret key. The size of c′ depends polynomially on
the size of x and the length of P , but does not further depend on the size of P .
As interesting special cases, one can efficiently evaluate finite automata, decision
trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
c′ does not depend on the size of the object being evaluated. These are the first
general representation models for which such a feasibility result is shown. Our
main construction generalizes the approach of Kushilevitz and Ostrovsky (FOCS
1997) for constructing single-server Private Information Retrieval protocols.

We also show how to strengthen the above so that c′ does not contain addi-
tional information about P (other than P (x) for some x) even if the public key
and the ciphertext c are maliciously formed. This yields a two-message secure
protocol for evaluating a length-bounded branching program P held by a server
on an input x held by a client. A distinctive feature of this protocol is that it hides
the size of the server’s input P from the client. In particular, the client’s work is
independent of the size of P .

1 Introduction

Computing on encrypted data is arguably one of the most intriguing open problems in
cryptography. The variant of this problem we are interested in may be illustrated by the
following motivating scenario. Suppose that a client, holding a sensitive local input x,
wishes to run a remote program P on this input. For instance, x can be the medical
history of an individual and P a complex propriety algorithm determining whether to
offer insurance coverage to this individual. To the end of evaluating P (x), the client
wishes to publish an encrypted version of x, denoted by c, while still allowing a server
owning P to effectively run its program on the ciphertext c. That is, based on P and c
the server should compute in polynomial time a message c′, from which the client can
recover P (x) using its secret key.

As described so far, the problem can be solved by simply letting c′ include a complete
description of P . However, this trivial solution has two significant weaknesses. First,
it completely reveals P to the client, whereas ideally the client should only be able to
learn P (x). Second, when the description size of P is larger than its input and output,

� Supported by grants 36/03 and 1310/06 from the Israel Science Foundation and grant 2004361
from the U.S.-Israel Binational Science Foundation.

S.P. Vadhan (Ed.): TCC 2007, LNCS 4392, pp. 575–594, 2007.
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this solution is wasteful in terms of communication. Ideally, the communication should
be a-priori bounded by some polynomial in the size of the input x, the output P (x)
and the security parameter, independently of the description size of P . The same holds
for the amount of local computation and storage used by the client. To summarize, it is
desirable to obtain solutions which satisfy the following two goals:

1. Hide P from the client (to the extent possible).
2. Make the client’s work independent of the size of P . In particular, c′ should be

succinct in the sense that its size depends only on the size of the input and output
and not on that of P .

Jumping ahead, the main open problem in the area is that of realizing the second goal.
This problem is the focus of our work.

Before addressing known methods for realizing the above two goals, it is instruc-
tive to further clarify what we mean when referring to a “program” P . A program is
a string that represents a function, mapping an input x to an output y. To simplify the
exposition, we restrict the attention to finite boolean functions f : {0, 1}n → {0, 1}.
The correspondence between a program P and the function it represents is determined
by an underlying representation model. Common representation models for finite func-
tions include circuits, formulas, branching programs, OBDDs, finite automata, decision
trees, and truth tables. Once the representation model is fixed, every string P has a
unique interpretation as a program computing some specific function f . In this work
we will be interested in universal representation models, in which every function f can
be computed by some program P in the model. Note that all of the models in the above
list are universal. However, the complexity of representing a function can greatly vary
between the models. Circuits are the most powerful model in the list, in the sense that
a program in any of the other models has an equivalent circuit of essentially the same
size. On the other extreme, truth tables are the least powerful of these models, requiring
a program of size 2n for any function f . This makes truth tables useless for all but very
small input lengths n.

We return to the question of realizing the above two goals. Goal 1 can be addressed
by using techniques from the area of secure computation. Most notably, Yao’s gar-
bled circuit technique [36,7,25] can handle any circuit P , allowing to computation-
ally hide all information about P other than P (x) and the size of P . A similar result
can be obtained for less powerful representation models, such as formulas or various
kinds of branching programs, with the additional feature of keeping P information-
theoretically private [35,4,18,22]. However, all these techniques inherently fail with
respect to Goal 2, as they require the size of c′ to be comparable to the size of P . This
gives rise to the following question:

For which natural representation models can we realize Goal 2, namely evalu-
ate an arbitrary program P on an encrypted input so that the client’s work does
not depend on the size of P ?

A positive answer for the case of circuits (hence also for all other models) would easily
follow from the existence of a completely malleable encryption scheme — one that
allows to freely perform both additions and multiplications on ciphertexts. However,
there is yet no candidate for an encryption scheme with this strong property.
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The first protocols in which the client’s work can go below the size of P were given in
the context of Private Information Retrieval (PIR) [10,23]. A single-server PIR protocol
can be viewed as a protocol for evaluating a truth table P of size N = 2n on an
encrypted input x of size n. There are such protocols in which the client’s work is
polynomial in n [6,26], thus affirmatively answering the above question for the case
of a truth table representation. Extensions to a set representation (where P lists the
set of inputs on which f evaluates to 1) were given in the context of private keyword
search [23,9,13,30]. Recently, an efficient protocol for evaluating 2-DNF formulas and
degree-2 polynomials on encrypted data was given by Boneh et al. [5].1 The question
of realizing Goal 2 for more powerful and useful representation models remained open.

1.1 Our Contribution

We obtain an affirmative answer to our main question for the case of length-bounded
branching programs. To explain the meaning of this result, we give some background
on branching programs and their complexity. A (deterministic) branching program P
is defined by a directed acyclic graph in which the nodes are labeled by input variables
and every nonterminal node has two outgoing edges, labeled by 0 and 1. An input
x ∈ {0, 1}n naturally induces a computation path from a distinguished initial node
to a terminal node, whose label determines the output P (x). The size of P is defined
as the number of nodes in the graph and its length is the length of the longest path
from the initial node to a terminal node. Branching programs are a relatively powerful
representation model. In particular, any logarithmic space or NC1 computation can be
carried out by a family of polynomial-size branching programs.

We consider classes of branching programs whose length is bounded by some pub-
lic parameter �, where � = �(n) is polynomial in n. Representation by �(n)-bounded
branching programs is universal whenever �(n) ≥ n. Indeed, any function f can be
computed by a complete decision tree of length n and size O(2n). Branching programs
of length �(n) = n are of special interest, as they can simulate several representation
models that are often used in practice. For instance, if f can be computed by a deter-
ministic finite automaton with s states, then it can be computed by a branching program
of length n and size sn+1. Other useful models such as decision trees and OBDDs are
also special cases of length-n branching programs.

Our main result is a public-key encryption scheme with the following properties.
Given a branching program P and an encryption c of an input x, it is possible to effi-
ciently compute a succinct randomized ciphertext c′ from which P (x) can be efficiently
decoded using the secret key. The size of c′ and the work required for decrypting it de-
pend polynomially on the size of x and the length of P , but do not further depend on
the size of P . Thus, whenever the length �(n) is some fixed (polynomial) function of n,
we realize Goal 2 above. As interesting special cases, one can evaluate finite automata,
decision trees, and OBDDs on encrypted data, where the size of the resulting ciphertext
c′ does not depend on the size of the object being evaluated. These are the first general

1 In fact, the scheme of [5] realizes a stronger form of computing on encrypted data in which
the length of the ciphertext c′ depends only on the security parameter and not on the length of
the input.
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representation models for which such a feasibility result is shown. We also strengthen
the above protocol to realize Goal 1 in a very strong sense, guaranteeing that c′ does not
contain additional information about P (other than P (x) for some x) even if the public
key and the ciphertext c are maliciously formed.

Size hiding. Our protocols have the following size hiding feature: the ciphertext c′ does
not reveal any information whatsoever about the size of P , no matter how large P is.2

This should be contrasted with previous methods of computing on encrypted data, in
which the communication complexity and the client’s work directly reflect (an upper
bound on) the size of P . Thus, we achieve a stronger version of Goal 1 than in all
previous solutions. A similar notion of size hiding was previously considered by Micali
et al. in the context of zero-knowledge sets [27].

Applications to secure two-party computation. Our technique for computing on en-
crypted data immediately gives rise to a one-round (two-message) secure protocol for
evaluating a length-bounded branching program P held by a server on an input x held
by a client. (This also implies a protocol for the setting in which P is public but its
inputs are partitioned between the two parties.) In the case of malicious parties, the
protocol satisfies the same relaxed security definition used in previous works on one-
round secure computation [29,1,13,20,24]. A distinctive feature of our protocol is that
the client’s work is independent of the size of P and moreover the protocol hides the
size of P from the client.3 The latter size hiding feature demonstrates that while hiding
the sizes of both inputs is impossible for interesting functions, there are useful special
cases where one can hide the size of one of the inputs while maintaining security.

As a concrete application, one can obtain a secure one-round protocol for keyword
search which totally hides from the client the size of the data set held by the server.
That is, a client holding a secret keyword x can query a database D held by a server
without revealing x and while assuring the server that it cannot learn anything about D
(including its size) other than whether x ∈ D. Previous solutions to the secure keyword
search problem [9,13,30] fall short of achieving the size hiding goal. A size hiding
protocol as above is obtained by representing D as a trie data structure, which can be
viewed as an instance of a length-n branching program.

We finally note that the one-round protocol obtained using our technique yields a
simpler alternative to similar protocols from the literature that provide unconditional
security to the server [35,4,18,22]. Its complexity improves over previous protocols
even in the case of branching programs of unbounded length. For evaluating a branch-
ing program of size s over n inputs, the communication complexity of our protocol is
O(kns) (where k is a security parameter), improving over the O(ks2) complexity of
the best previous solutions in this setting [18].

2 We note that perfect size hiding cannot be achieved in the physical reality, as the time it takes
the server to respond reveals an upper bound on the size of P . However, increasing this upper
bound on the size of P does not involve additional work. This should be contrasted with the
partial size hiding that can be achieved using previous protocols by simply padding the inputs.

3 A secure two-party protocol in which the client’s work is almost independent of the size of P
can be obtained using the technique of Naor and Nissim [28]. However, this protocol requires
multiple rounds of interaction and does not achieve size hiding.
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Techniques. The basic version of our protocol uses a simple generalization of the tech-
nique of Kushilevitz and Ostrovsky [23] for constructing single-server PIR protocols.
In fact, the protocol of [23] (as well as its variants from [34,26]) can be viewed as an
instance of our protocol in which the branching program is a complete (but possibly
non-binary) decision tree whose i-th level depends only on the i-th input variable.

Our protocol proceeds roughly as follows. The ciphertext c is obtained by separately
encrypting each bit of x using a homomorphic public-key encryption scheme. (For effi-
ciency reasons we rely on the Damgård-Jurik scheme [11]; this scheme was previously
used in the context of PIR by Lipmaa [26].) To evaluate P on x we proceed in a bottom
up manner. Starting from the terminal nodes, in the i-th iteration we handle all nodes
whose distance from the terminal nodes is i. For each such node, we compute a cipher-
text containing an (iterated) encryption of its value. Using the homomorphic property,
the encryption assigned to every node can be computed from the encryptions assigned
to its children (which were computed in previous iterations) and the encryption of the
input bit labeling this node. The ciphertext c′ is the (iterated) encryption assigned to the
initial node. The client can recover P (x) by applying iterated decryptions to c′.

The stronger variant of our protocol which remains secure in the case of malicious
clients is more involved, and relies on variants of previous techniques of Aiello et al. [1],
Naor and Pinkas [29], Laur and Lipmaa [24], and (especially) Kalai [20].

Organization. In Section 2 we define our general notion of representation models as
well as the specific branching program model for which our results apply. In Section 3
we define the problem of computing on encrypted data as well as a variant of Oblivious
Transfer on which our solution relies. Our main protocol is presented in Section 4. This
protocol guarantees the privacy of the client as well as the privacy of the server against
a semi-honest client. The case of malicious clients is discussed in Section 5. For lack of
space, some details are deferred to the full version.

2 Preliminaries

We denote by y ← A(x) the process of invoking the (possibly randomized) algorithm
A on input x and assigning the result to y. We say that a function ε(k) is negligible if
for every constant c > 1 we have ε(k) < 1/kc for all sufficiently large k. We use the
following standard notion of statistical distance:

Definition 1 (Statistical distance). Let X, Y be random variables over the finite set
U . Denote the distance between X and Y by

SD(X, Y ) = maxU ′⊆U

∣∣∣∣ Pr
x←X

[x ∈ U ′] − Pr
y←Y

[y ∈ U ′]
∣∣∣∣

2.1 Representation Models

Loosely speaking, a representation model is a way of interpreting strings as “programs”
for evaluating (families of) functions over some finite domain. We are only interested
in representation models which are universal in the sense that every function has a
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program evaluating it in that model. For simplicity we restrict the attention to functions
defined over a binary input alphabet. An extension to the general case is straightforward.

Definition 2 (Representation model). A representation model is a polynomial-time
computable function U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, where U(P, x) is referred to as
the value returned by a “program” P on the input x. When U is understood from the
context, we use P (x) to denote U(P, x). We say that a function f : {0, 1}∗ → {0, 1}∗
can be implemented in a representation model U if there exists an infinite sequence
(P0, P1, . . .), referred to as an implementation of f in U , such that f(x) = U(P|x|, x)
for every x ∈ {0, 1}∗.

We now define the branching programs model. This is the representation model for
which our main result applies.

Definition 3 (Branching program (BP)). A (deterministic) branching program over
the variables x = (x1, . . . , xn) with input domain I and output domain O is defined by
a tuple (G = (V, E), v0, T, ψV , ψE) where:

– G is a directed acyclic graph. Denote by Γ (v) the children set of a node v.
– v0 is an initial node of indegree 0. We assume without loss of generality that every

u ∈ V − {v0} is reachable from v0.
– T ⊆ V is a set of terminal nodes of outdegree 0.
– ψV : V → [n] ∪ O is a node labeling function assigning an output value to each

terminal node in T , and a variable index from [n] to each nonterminal node in
V − T .

– ψE : E → 2I is an edge labeling function, such that every edge is mapped to a
non-empty set, and for every node v the sets labeling the edges to nodes in Γ (v)
form a partition of I .

BP evaluation. The output P (x) of a branching program P on an input assignment x ∈
In is naturally defined by following the path induced by x from v0 to a terminal node
v�, where the successor of node v is the unique node v′ such that xψV (v) ∈ ψE(v, v′).
The output is the value ψV (v�) labeling the terminal node reached by the path.

BP complexity measures. Let P = (G(V, E), v0, T, ψV , ψE) be a BP. The size of P
is |E|. (Note that in the case where |I| is constant we have |E| = O(|V |).) The height
of a node v ∈ V , denoted height(v), is the length (in edges) of the longest path from
v to a node in T . The length of P is the height of v0. We say that an implementation
(P0, P1, . . .) of a function f in the branching program model is length-bounded by �(·)
if the length of each Pn is at most �(n).

Remark 1. In the following we will sometimes assume that branching programs have
binary inputs and outputs, namely that I = O = {0, 1}. We stress, however, that the
generalization to non-binary domains is useful for some of the applications we have in
mind. For instance, non-binary input alphabets are useful for casting the PIR protocol
from [23] as a special case of our main construction, and large output alphabets are
useful for applications such as private retrieval by keywords [9,13].
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Our protocols take the simplest form when the branching program being evaluated is
layered in the following sense.

Definition 4 (Layered BP). We say that P is a layered branching program of length �

if the node set V can be partitioned into � + 1 disjoint levels V =
⋃�

i=0 Vi, such that
V0 = {v0}, V� = T , and for every e = (u, v) we have u ∈ Vi, v ∈ Vi+1 for some i. We
refer to Vi as the i-th level of P .

Every branching program of size s can be efficiently transformed into a layered branch-
ing program of size at most s2 and same length (cf. [32]). For convenience, we assume
in our protocol that the server’s BP is layered, which may square the server’s work but
has no effect on the communication complexity or the client’s work. The quadratic over-
head in the server’s work can be avoided in most useful special cases (e.g., evaluating
decision trees or finite automata) and can be avoided in the general case if only client
privacy is required.

3 Cryptographic Primitives

In this section we define both our goal of computing on encrypted data and the main
cryptographic tool on which we rely.

3.1 Computing on Encrypted Data

We consider a scenario where a client, holding an input x, publishes a public key pk and
an encryption c of x under pk. This encryption is used by a server to efficiently evaluate
a program P (in some given representation model) on c, obtaining a ciphertext c′. The
client then uses its secret key to recover P (x) from c′. This is formalized as follows.

Definition 5 (Computing on encrypted data). Let U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
be a representation model. A protocol for evaluating programs from U on encrypted
data is defined by a tuple of algorithms (Gen, Enc, Eval, Dec) and proceeds as follows.

– SETUP: Given a security parameter k, the client computes (pk, sk)← Gen(1k) and
saves sk for a later use.

– ENCRYPTION: The client computes c ←Enc(pk, x), where x is the input on which
a program P should be evaluated.

– EVALUATION: Given the public key pk, the ciphertext c, and a program P , the
server computes an encrypted output c′← Eval(1k, pk, c, P ).

– DECRYPTION: Given the encrypted output c′, the client outputs y ←Dec(sk, c′).

We require that if both parties act according to the above protocol, then for every input
x, program P , and security parameter k ∈ N, the output y of the final decryption phase
is equal to U(P, x) except, perhaps, with negligible probability in k.

An essential security requirement for computing on encrypted data is client privacy,
requiring that the pair (pk, c) produced in the above process keep the client’s input x
semantically secure [17,16].
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Definition 6 (Client privacy). Let Π = (Gen, Enc, Eval, Dec) be a protocol for com-
puting on encrypted data. We say that Π satisfies the client privacy requirement if the
advantage of any PPT adversary Adv in the following game is negligible in the security
parameter k:

– Adv is given 1k and generates a pair x0, x1 ∈ {0, 1}∗ such that |x0| = |x1|.
– Let b

R← {0, 1}, (pk, sk)← Gen(1k), and c ←Enc(pk, xb).
– Adv is given the challenge (pk, c) and outputs a guess b′.

The advantage of Adv is defined as Pr[b = b′] − 1/2.

Client privacy alone can be realized by simply letting Eval output P . However, it be-
comes nontrivial to satisfy when |P | � |x| and the communication complexity is re-
quired to be sublinear in |P |. The latter requirement is in the center of this work.

While client privacy suffices for some applications, we will also be interested in pro-
tecting the privacy of the server by hiding the program P to the extent possible. For
simplicity we consider here the case of a semi-honest client, who generates a valid pub-
lic key pk and ciphertext c. The case of malicious clients will be addressed in Section 5.

Definition 7 (Server privacy: semi-honest model). Let Π = (Gen, Enc, Eval, Dec)
be a protocol for evaluating programs from a representation model U on encrypted
data. We say that Π has statistical server privacy in the semi-honest model if there
exists a PPT algorithm Sim and a negligible function ε(·) such that the following holds.
For every security parameter k, input x ∈ {0, 1}∗, pair (pk, c) that can be generated
by Gen, Eval on inputs k, x, and program P ∈ {0, 1}∗, we have

SD(Eval(1k, pk, c, P ) , Sim(1k, 1|x|, pk, U(P, x), 1|P |)) ≤ ε(k).

The case of perfect server privacy is defined similarly, except that ε(k) = 0 and Sim
is allowed to run in expected polynomial time.

In the case of computational server privacy, Sim should satisfy the following require-
ment. For every polynomial-size circuit family D there is a negligible function ε(·) such
that for any k, x, pk, c, P as above we have

Pr[D(Eval(1k, pk, c, P )) = 1] − Pr[D(Sim(1k, 1|x|, pk, U(P, x), 1|P |)) = 1] ≤ ε(k).

Our main protocol will have perfect server privacy. In fact, it will additionally hide the
size of the server’s input P from the client. We refer to this property as size hiding. This
implies, in particular, that the length of c′ must be independent of the length of P .

Definition 8 (Size hiding server privacy: semi-honest model). We say that Π has
(perfect, statistical, or computational) size hiding server privacy in the semi-honest
model if it satisfies the requirements of Definition 7 with the following difference: Sim
does not get the length of P as an input.

Remark 2. Protocols Π which satisfy our definitions of client privacy (Definition 6) and
standard server privacy (Definition 7) can be easily derived from previous protocols for
one-round secure computation. In particular, Yao’s protocol [36] yields a protocol for
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evaluating circuits on encrypted data with computational server privacy, and protocols
from [35,21,14,18,4,22] yield protocols for evaluating formulas, branching programs,
and even non-deterministic branching programs on encrypted data with perfect or sta-
tistical server privacy. However, in all these protocols the length of c′ is generally bigger
than the length of P . In particular, none of these protocols satisfies the additional size
hiding property of Definition 8.

3.2 Oblivious Transfer

It will be convenient to present our main protocol in a modular way, using a variant
of one-round Oblivious Transfer (OT) [33,12] as a subprotocol. To this end it will be
necessary to rely on a stronger server privacy property than the one implied by standard
definitions of OT. As before, we focus here on the case of a semi-honest client and
postpone the treatment of malicious clients to Section 5.

A standard one-round OT protocol involves a server, holding a list of t secrets (s1, s2,
. . . , st), and a client, holding a selection index i. The client sends a query q to the server,
who responds with an answer a. Using a and its random input, the client should be able
to recover si. The standard security requirements include client privacy, requiring that q
keep i hidden from the server, and server privacy, requiring that a keep all secrets other
than si hidden from the client. Note that the latter server privacy requirement does not
rule out the possibility that a reveals information about the query q which is not implied
by the output si alone. (In fact, a can include the entire query q without violating server
privacy.) This might compromise the security of our main protocol, in which the client
issues multiple OT queries and each query is used by the server to compute multiple
answers. It will be crucial for the security of the protocol that the client be unable
to correlate answers with queries, beyond correlations which follow from the outputs.
Such correlations will reveal to the client information about the structure of the server’s
branching program.

Roughly speaking, our notion of strong OT strengthens the above server privacy
requirement by requiring the distribution of the answer a conditioned on the output si

to be independent of the query q. In other words, the distribution of the answer depends
on the output alone. It turns out that a natural implementation of one-round OT based
on homomorphic encryption [23,34] satisfies the required properties (see Section 4.1).
We now formally define strong OT.

Definition 9 (Strong OT). A strong OT protocol is defined by a tuple of PPT algo-
rithms (GOT, QOT, AOT, DOT). The protocol involves two parties, a client and a server,
where the server’s input is a t-tuple of strings (s1, . . . , st) of length τ each, and the
client’s input is an index i ∈ [t]. The parameters t, τ are given as inputs to both parties.
The protocol proceeds as follows:

– The client generates (pk, sk)← GOT(1k), computes a query
q ← QOT(pk, 1t, 1τ , i), and sends (pk, q) to the server.

– The server computes a ←AOT(pk, q, s1, . . . , st) and sends a to the client.
– The client computes and outputs DOT(sk, a).

We require that if both parties follow the protocol, the client always outputs si. We
denote the length of the query q by α(k, t, τ) and the length of the answer a by β(k, t, τ).
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Our main protocol will require β(k, t, τ) = τ + poly(k, t) to efficiently accommodate
BPs of arbitrary length. (In fact, it suffices that the above holds for t = 2.) This will
be our default efficiency requirement. However, this requirement can be relaxed if one
settles for weaker forms of our main result that apply to shallow BPs, such as constant-
length BPs over a polynomial-size input alphabet.

We now define the client privacy and (strong) server privacy requirements.

Definition 10 (Strong OT: client privacy). We require that the client’s query q keep i
semantically secure. That is, the advantage of any PPT adversary Adv in the following
game is negligible in the security parameter k:

– Adv is given 1k and generates 1t, 1τ and i0, i1 such that i0, i1 ∈ [t].
– Let b

R← {0, 1}, (pk, sk)← GOT(1k), and q ← QOT(pk, 1t, 1τ , ib).
– Adv is given the challenge (pk, q) and outputs a guess b′ for b.

The advantage of Adv is defined as Pr[b = b′] − 1/2.

Our strong variant of perfect server privacy is defined similarly to Definition 7.

Definition 11 (Strong OT: server privacy). There exists an expected polynomial time
simulator SimOT such that the following holds. For every k, t, τ , i ∈ [t], pair (pk, q) that
can be generated by GOT, QOT on inputs k, t, τ, i, and strings s0, . . . , st−1 ∈ {0, 1}τ ,
the distributions AOT(pk, q, s1, . . . , st) and SimOT(pk, 1t, si) are identical.

In the following it will sometimes be convenient to index the server’s inputs si by
0, 1, . . . , (t − 1) instead of 1, 2, . . . , t.

4 Main Protocol

In this section we will describe our main protocol for evaluating branching programs on
encrypted data. The protocol will provide client privacy, along with size hiding server
privacy in the semi-honest model. Extensions that achieve server privacy in the mali-
cious model will be presented in Section 5.

We fix a polynomially bounded length function �(·), and assume that if the client’s
input x is of length n, then the server’s BP P is of length �(n). (To conform to our
general definition of representation models, one may define P (x) = 0 for P and x
that do not match.) We also view the input domain I and output domain O as being
implicitly determined by n. However, in the following it will be convenient to view �,
|I|, and |O| as separate parameters which are given to both parties, and analyze the
complexity of the protocol as a function of these parameters. We will also assume that
P is layered (see Definition 4). As discussed in Section 2.1, every BP can be efficiently
transformed into an equivalent layered BP without increasing its length.

Our protocol is based on a strong OT protocol as defined in Section 3.2 and proceeds
roughly as follows. (For simplicity, assume that the input domain I of P is binary and
that every nonterminal node in the graph has outdegree 2.) The client generates, for
every input variable xi and level j, an OT query qj

i corresponding to a selection of the
xi-th string out of a pair of strings of an appropriate length. (This length will depend
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on j and will be later understood from the context.) The �n queries qj
i jointly form the

encryption c of x.
To evaluate P on c, the server makes a bottom-up pass on P , starting with the ter-

minal nodes T and ending with the initial node v0. This pass labels each node v in the
graph by an OT answer which encrypts the output value to which x leads from this
node. The pass consists of � + 1 iterations, where in iteration j (0 ≤ j ≤ �) all nodes of
height j are handled. In iteration 0 every terminal node v is labeled by the correspond-
ing output value ψV (v). At the onset of the j-th iteration, j ≥ 1, all nodes of height
j − 1 have already been labeled. For each node v of height j, we want the labeling of
v to encrypt the label of the child of v to which x leads. Such a label is computed by
using the OT answering algorithm as follows. Suppose that the children of v are v0 and
v1, where P branches from v to vb if xi = b. The label of v then computed by applying
the OT answering algorithm to the query qj

i on the pair of strings (label(v0), label(v1)).
Note that since P is layered, the two labels have the same length. Moreover, by the
strong server privacy property of the OT protocol, the label of v can be viewed as an
encryption of the label of the selected child vxi . In particular, this label does not con-
tain any information about the identity of the variable xi that was used to determine the
selection. (If a standard one-round OT is used, this is not necessarily be the case.)

Finally, at the end of iteration �, the initial node v0 is labeled by an OT answer which
can be viewed as an (iterated) encryption of the output value P (x). The client decrypts
P (x) by applying the OT decryption algorithm � times to the label of v0.

The above protocol is formally described in Figure 1. Its correctness is implied by
the following lemma, which can be easily proved by induction on the height h.

Lemma 1. For any node v, let Pv(x) denote the output of P on the input x if v is
used as the initial node. Then, for every 0 ≤ h ≤ � and every node v of height h we
have DOT

(h)(sk, label(v)) = Pv(x), where DOT
(h)(sk, ·) denotes the h-th iterate of

DOT(sk, ·).
In particular, DOT

(�)(sk, label(v0)) = P (x), from which correctness follows. We turn
to analyze the protocol’s efficiency.

Efficiency. Recall that we denote the length of an OT query by α(k, t, τ) and the length
of an OT answer by β(k, t, τ). Let βj be as defined in Step 2, namely the result of
applying the j-th iterate of β(k, t, ·) on log |O|. The length of the encryption c computed
by the client is then bounded by �n · α(k, t, β�) and the length of the ciphertext c′

computed by the server is β�+1. By default, we assume the strong OT implementation to
be such that β(k, t, τ) = τ + poly(k, t). (See Section 4.1 for a concrete implementation
using the Damgård-Jurik cryptosystem.) In such a case, the overall communication is
poly(k, n, �), which is in particular independent of |P | as required. We will later present
an optimized instantiation of the main protocol with a total communication of O(kn�)
(for the case of binary inputs and outputs). Finally, the computation performed by each
party is polynomial in the length of its input.

Remark 3. When �(n) 
 n, the requirement that β(k, t, τ) = τ + poly(k, t) can be
relaxed. In particular, if �(n) = O(log n) it suffices that β(k, t, τ) = O(τ)+poly(k, t).
A strong OT protocol with the latter efficiency requirement can be based on homo-
morphic cryptosystems which expand the ciphertext length by a constant factor, such
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Main Protocol

– Common inputs: security parameter 1k , a branching program length parameter 1�,
input domain I = {0, 1, . . . , t − 1}, output domain O = {0, 1}γ .

– Client input: an assignment x = (x1, . . . , xn) ∈ In.
– Server input: a layered BP P = (G(V, E), v0, T, ψV , ψE) of length �.
– Sub-protocol: a strong OT protocol (GOT, QOT, AOT, DOT) with answer length

β(k, t, τ ).

1. Setup Gen(1k):
– Let (pk, sk)← GOT(1k).
– Return (pk, sk).

2. Encryption Enc(pk, x):
– For 1 ≤ i ≤ n, generate a vector qi = (q1

i , . . . , q�
i ), where qj

i is obtained by:

qj
i ← QOT(pk, 1t, 1βj , xi),

and where the lengths βj are defined by β1 = log |O| and βj+1 = β(k, t, βj).
– Return c = (q1, . . . , qn).

3. Evaluation Eval(1k, pk, c = (qj
i ), P ):

– Initialization: for each v ∈ T set label(v) ← ψV (v).
– While v0 isn’t labeled:

• Pick an unlabeled node v ∈ V − T such that all its children are labeled.
• Let i ← ψV (v) and h ← height(v).
• Let label(v) ←AOT(pk, qh

i , label(u0), . . . , label(ut−1)), where um is
the (unique) node such that m ∈ ψE(v, um).
Note that the nodes um are not necessarily distinct.

– Return c′ = label(v0).
4. Decryption Dec(sk, c′):

– Let d� ← c′.
– For j = � down to 1, let dj−1 ←DOT(sk, dj).
– Return d0.

Fig. 1. Evaluating a branching program on encrypted data

as El-Gamal (see Section 4.1). If �(n) = O(1), we can rely on an arbitrary strong OT,
which in turn can be based on an arbitrary homomorphic encryption scheme (including,
for instance, the Goldwasser-Micali cryptosystem [17]).

Remark 4. The PIR protocol of [23] can be viewed as an instance of our construction
in which � is set to some constant d, the input domain I is of size t = N1/d (where N is
the database size), and the database is represented as a complete decision tree of depth
d and degree N1/d. Its variant suggested in [34] (resp., [26]) corresponds to a decision
tree of depth

√
log N and degree t = 2

√
log N (resp., depth log N and degree t = 2).

These three depth parameters correspond to the different BP length regimes discussed
in Remark 3.
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We turn to prove the security properties of the main protocol. In the following we as-
sume that the given strong OT subprotocol is secure and that its answer complexity is
β(k, t, τ) = τ + poly(k, t). In Section 4.1 we will show that this assumption is implied
by the DCRA assumption.

Theorem 1. The protocol described in Figure 1 provides client privacy according to
Definition 6 as well as perfect size hiding server privacy in the semi-honest model ac-
cording to Definition 8.

Proof sketch: Client privacy readily follows from the client privacy requirement in the
underlying OT protocol. The security of sending polynomially many strong OT queries
under the same key follows from the security of encrypting multiple messages under
the same key in public-key encryption schemes (see [16], Theorem 5.2.11).

To prove size hiding server privacy, we describe a perfect simulator Sim. The idea is
to recreate the labels of the computation path from v0 to a terminal node labeled with
P (x) without knowing the nodes traversed by the path. Sim will use the OT simulator
SimOT as a subroutine. On inputs (1k, 1|x|, pk, P (x)) (and given |I| = t as an additional
public input), Sim proceeds as follows:

– Let � ← �(|x|), λ0 ← P (x).
– For j = 1 to �, let λj ← SimOT(pk, 1t, λj−1).
– Return λ�.

Consider the computation path v0, v1, . . . , v� induced by x. It follows by induction on j
that the distribution of λj produced by Sim is identical to the distribution of label(v�−j)
produced by Eval(1k, pk, c, P ), for every k, x, P and pair (pk, c) which can be gener-
ated by Gen, Enc on k, x. In particular, the simulator’s output λ� is distributed identi-
cally to c′ = label(v0). Note that the strong OT requirement allows SimOT to produce
the correct distributions independently of the OT queries included in c. �

4.1 Implementing Strong OT

Our concrete implementation of strong OT is based on the Damgård-Jurik (DJ) homo-
morphic public-key cryptosystem [11], which generalizes Paillier’s cryptosystem [31].
It is suitable for our needs because it allows us to encrypt a group element of length τ
into a ciphertext of length τ + O(k), where k is a security parameter. This efficiency
feature is unique among all known homomorphic encryption schemes and is needed
for our main protocol to be efficient for arbitrary length bounds �(n). The semantic
security of the DJ cryptosystem follows from the Decisional Composite Residuosity
Assumption (DCRA) [11].

We now describe the main properties of the DJ cryptosystem that are useful for our
purposes (see [11] for further details).

– KEY GENERATION: Given a security parameter k, Gen(1k) outputs a secret key
(p1, p2), where p1, p2 are random k-bit primes (i.e., 2k−1 ≥ p1, p2 < 2k), and a
public key N = p1p2. The above choice of p1, p2 guarantees that gcd(N, φ(N)) =
1. This property will be useful in what follows. We refer to N which can be gener-
ated by Gen(1k) as a valid DJ key.
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– ENCRYPTION: The DJ cryptosystem is length-flexible in the sense that every fixed
key N allows to encrypt plaintexts of an arbitrary (polynomial) length, where the
encryption only adds O(k) bits to the length of the plaintext. Given a plaintext
length parameter e, where 1 ≤ e < min (p1, p2), we define a plaintext group
MN,e = ZNe and a ciphertext group CN,e = Z

∗
Ne+1 . The restriction on e is re-

quired for correct decryption, and since we will only use e ≤ poly(k) it will always
hold. Now fix some valid pair (N, e). To abbreviate notation we denote the cipher-
text group CN,e = Z

∗
Ne+1 by C. Let C0 = CNe

=
{
cNe |c ∈ C

}
. Clearly, C0

is a subgroup of C. Let g = N + 1 ∈ C. The output distribution of the encryp-
tion is specified via an injective homomorphism H : MN,e → C/C0 defined by
H(m) = gm · C0, where gm · C0 denotes the coset represented by gm in C/C0.
To encrypt m ∈ MN,e, the encryption function EN,e(m) returns a random ele-

ment in the coset H(m). This can be done by sampling r
R← Z∗N and outputting

c = gm ·rNe

(where all multiplications are in C). In particular, an encryption of 0 is
a random element of C0. Note that the difference between the size of the ciphertext
(�log Ne+1�) and the size of the plaintext (�log Ne�) is indeed only O(k).

– DECRYPTION: Given c = gm ·rNe

and the factorization (p1, p2) of N , it is possible
to efficiently decrypt m. We denote the decryption algorithm by D(p1,p2),e(c).

– HOMOMORPHISM: Given two ciphertexts c ∈ EN,e(m) and c′ ∈ EN,e(m′), their
product c·c′ (in the ciphertext group) is a valid encryption of the sum m+m′ (in the
plaintext group). It follows that cρ is an encryption of ρ · m. Moreover, multiplying
c by a random encryption of 0 rerandomizes c into a random encryption of m.

Strong OT from the DJ cryptosystem. The following strong OT protocol is similar
to the PIR protocol of [23] and its generalizations from [34,26]. The choice of DJ as the
underlying cryptosystem is motivated by the goal of handling branching programs of an
arbitrary length. If the length function �(n) is small, other homomorphic cryptosystems
can be used (see Remark 3).

Construction 2 (Strong OT). Let (Gen, EN,e, D(p1,p2),e) be the DJ cryptosystem.
The OT protocol (GOT, AOT, QOT, DOT) proceeds as follows.

1. GOT(1k):
– Let (N, (p1, p2))← Gen(1k).
– Return (N, (p1, p2)).

2. QOT(N, 1k, 1t, 1τ , i):
– Let e be the minimal integer such that Ne > 2τ . We naturally identify strings in

{0, 1}τ with integers in MN,e = ZNe , and assume that elements in the groups
MN,e and CN,e are padded so that their representation reveals e.

– Let qi ← EN,e(1) and qj ← EN,e(0) for all j ∈ [t] \ i.
– Return q = (q1, . . . , qt−1).

3. AOT(N, q, s1, . . . , st):
– Infer e from q.
– Let qt ← EN,e(1) · (

∏t−1
i=1 qsi

i )−1 (where all operations are in CN,e).
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– Let a ←
∏t

i=1 qsi

i · EN,e(0).
– Return a.

4. DOT((p1, p2), a):
– Infer e from a.
– Return D(p1,p2),e(a).

Analysis. Correctness follows by observing that (q1, . . . , qt) encrypt the i-th unit vector
of length t and a encrypts the inner product of (s1, . . . , st) with this vector, which yields
si. Client privacy follows from the semantic security of the DJ cryptosystem, which can
be based on the DCRA assumption [11]. Server privacy follows from the fact that (due
to rerandomization) the server’s answer on any valid q is a random encryption of si,
which can be easily generated by SimOT. The protocol’s query length is α(k, t, τ) =
t · (τ + O(k)) and its answer length is β(k, t, τ) = τ + O(k).

4.2 Optimizations

Optimizing the server’s work. Our main protocol requires the branching program P to
be layered. Converting an arbitrary BP to an equivalent layered BP of the same length
may generally result in a quadratic blowup to its size, which in turn results in a quadratic
computational overhead on the server’s part. (We note, however, that most “natural”
BPs, including ones that arise from other computation models such as finite automata,
are either already layered or can be turned into equivalent layered BPs with only a linear
overhead.) The quadratic overhead can be easily avoided in general if only client privacy
is required. The main protocol can be modified in this case to operate on a non-layered
BP by padding the labels that serve as OT inputs to match the size of the longest label.

Optimizing the encryption length. In the main protocol, the length of the encryption
c produced by Enc must be bigger than

∑�
j=1 βj > �2. It turns out that the quadratic

dependence on � can be avoided by exploiting the specific structure of the DJ cryptosys-
tem. The improvement is based on the following observation:

Observation 3. For every valid DJ key pair (N, e), e′ < e, m ∈ MN,e and c ∈
EN,e(m) (i.e., c is some valid encryption of m) it holds that

c mod Ne′+1 ∈ EN,e′(m mod Ne′
).

It follows from Observation 3 that the ciphertext c may consist of n encryptions qi in the
largest group (rather than n encryptions qj

i for every level j of the BP), since the server
can convert encryptions from the largest group into encryptions from smaller groups.
(Note that since we only encrypt 0’s and 1’s, the conversion does not modify the en-
crypted value.) The improved implementation achieves communication complexity of
O(kn�) bits from the client to the server (instead of O(kn�2) in the original implemen-
tation) and O(k�) bits from the server to the client (as in the original implementation).
Clearly, the optimization doesn’t compromise client or server privacy. Thus, we have:

Theorem 4. Assuming DCRA [11], there is a protocol for evaluating a binary branch-
ing program of length � and of arbitrary size on an encrypted input of length n, with
a total communication of O(kn�) bits (where k is a security parameter). The protocol
provides client privacy as well as size hiding server privacy in the semi-honest model.
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5 Handling Malicious Clients

In this section we sketch the required modifications for achieving security against mali-
cious clients. For lack of space we only describe the high level ideas and refer the reader
to the full version for further details. For simplicity, we restrict the attention throughout
this section to the case of branching programs over binary inputs.

We start by observing that a malicious client can easily break the server privacy of
the main protocol even if it honestly generates the public key pk.

Example 1. Consider a client who sends an encryption of 2 (instead of 0 or 1) as an
OT query. In this OT invocation, the client can recover both s0 and s1. This potentially
reveals additional information about the structure of the branching program P . For in-
stance, in the degenerate case where P consists of an initial node and two terminal
nodes, the client will learn the values of both terminal nodes.

The above mild form of cheating is relatively easy to handle using previous tech-
niques [15,1,24] and will be addressed in Section 5.1. A more challenging goal is to
handle clients that are also free to choose invalid public keys pk. This scenario will be
addressed in Section 5.2.

Before describing our solutions, we formalize our notions of server privacy in the
malicious model. The following definitions modify Definition 8 in that they allow an
unbounded simulator to extract an effective input x∗ from a corrupted ciphertext c∗

and a (possibly) corrupted public key pk∗. The use of unbounded simulation seems
necessary in the “vanilla” one-round malicious model (i.e., without setup assumptions)
and was previously made in similar contexts [29,1,13,20,24].

We start by defining the trusted setup model, where the client is forced to use a valid
public key pk but can cheat by creating invalid ciphertexts c∗. This model is motivated
by the fact that the same public key may be reused to encrypt many different inputs.
Thus, one can afford an expensive certification procedure (e.g., using interactive zero-
knowledge proofs or a trusted party) that is used once and for all.

Definition 12 (Size hiding server privacy: trusted setup model). Let Π =
(Gen, Enc, Eval, Dec) be a protocol for evaluating programs from a representation
model U on encrypted data. We say that Π has statistical server privacy in the trusted
setup model if there exists a computationally unbounded, randomized algorithm Sim
and a negligible function ε(·) such that the following holds. For every security parame-
ter k, valid public key pk that can be generated by Gen(1k), and arbitrary ciphertext c∗

there exists an “effective” input x∗ such that for every program P ∈ {0, 1}∗, we have

SD(Eval(1k, pk, c, P ) , Sim(1k, pk, c∗, U(P, x∗))) ≤ ε(k).

The case of computational server privacy is defined in an analogous way (see Defini-
tion 7), where statistical indistinguishability is replaced by computational one.

We turn to the fully malicious model.

Definition 13 (Size hiding server privacy: fully malicious model). We say that Π
has (statistical or computational) server privacy in the fully malicious model if it satis-
fies Definition 12 with the following modification: instead of quantifying over all valid
public keys pk, now the quantification is over arbitrary public keys pk∗.
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Protocols for computing on encrypted data in the above model give rise to one-round
(two-message) protocols for secure two-party computation of U(·, ·) under the relaxed
security definitions of [29,1,13].

A natural approach for handling malicious clients would be to leave the main pro-
tocol as it is and only upgrade the original strong OT primitive into one that achieves
security against malicious clients. Unfortunately, we cannot use this modular approach
for several reasons. First, the basic variant of the protocol requires the client to use
each input xi in multiple OT invocations (corresponding to the different levels where
xi appears) and so the client could cheat by simply using inconsistent inputs in these
OT invocations. More importantly, we do not know how to construct a strong OT proto-
col which simultaneously satisfies both our security and efficiency requirements in the
malicious model. It is interesting to note that a one-round OT protocol of Kalai [20],
which is based on Paillier’s cryptosystem and can be generalized to work with the DJ
cryptosystem, fails with respect to both security (in that it is not a strong OT) and effi-
ciency (in that its answer significantly blows up the length of the selected string). Still,
ideas from [20] will be instrumental in our solution for the fully malicious model.

5.1 Trusted Setup Model

We now describe a solution in the trusted setup model. Our starting point is the opti-
mized instantiation of the protocol for the semi-honest model (Section 4.2), where in
the case of binary inputs (t = 2) the client sends a single encryption for each input. Our
goal is to prevent the type of attack described in Example 1, namely to ensure that each
encryption sent by the client is indeed an encryption of 0 or 1. To this end one could em-
ploy general-purpose zero-knowledge proofs, forcing the client to prove that its queries
are well formed. However, this approach requires multiple rounds of interaction which
we would like to avoid, and also involves a considerable efficiency overhead.

Instead, we apply the conditional disclosure of secrets (CDS) methodology of [15,1].
The idea is that instead of making the client prove that its queries are well formed, it
suffices for the server to disclose its answer c′ to the client only under the condition that
the queries are well formed. Using the homomorphic property of the encryptions, the
latter conditional disclosure can be done without the server even knowing whether the
condition is satisfied.

The original CDS solutions from [1] relies on homomorphic encryption over groups
of a prime order. An efficient extension to groups of a composite order was suggested
in [24], assuming that the order of the group is sufficiently “rough”. We employ a similar
extension which avoids the roughness assumption and is geared towards the solution in
the fully malicious model.

We start by describing the approach of [1]. The simplest setting involves a server
holding a (valid) public key pk of a homomorphic cryptosystem, a ciphertext c ∈
Epk(m) (presumably generated by a client), and a secret s. The client holds the secret
key sk corresponding to pk. The goal is for the server to send a single (randomized)
ciphertext c̃ such that: (1) if m = 0 then s can be recovered from c̃ using the secret
key; and (2) if m �= 0 then c̃ reveals (almost) no information about s. The above is re-
ferred to as a CDS of the secret s under the condition m = 0. A solution to this simple
CDS problem can be easily extended to CDS under more general conditions, involving
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multiple inputs mi and general predicates over atomic conditions of the form mi = bi.
In particular, 2n invocations of the above primitive are sufficient to disclose a secret
under the suitable condition here, namely that n ciphertexts ci all encrypt 0/1 values.

The solution of [1] is to let c̃ be a random encryption of s+ρm, where ρ is a random
integer between 1 and the order of the plaintext group. Note that c̃ can be efficiently
computed using the homomorphic properties of the encryption. Requirement (1) holds
because if m = 0 then c̃ encrypts s + ρ · 0 = s. Requirement (2) holds in the case
where the plaintext group is of a prime order; indeed, in that case if m �= 0 then ρm is
uniformly distributed over the plaintext group and therefore can be used to hide s.

The next observation is that in the case that the plaintext group has a composite order,
not all is lost. In this case, if m �= 0 then ρm is uniformly distributed over a nontrivial
subgroup of the plaintext group. If s is chosen uniformly at random from the plaintext
group, then s will still have at least one bit of remaining entropy even when conditioned
on c̃. This residual randomness can be extracted using standard privacy amplification
techniques. Specifically, to disclose an l-bit secret we first repeat the above l + k times
with independent secrets si, increasing the conditional entropy to l + k, and then apply
an arbitrary strong randomness extractor (e.g., a pairwise independent hash function) to
extract l (almost) perfectly secret bits from the partially leaked secrets.

The above approach (or the similar approach from [24]) solves our problem in the
trusted setup model. In this case, every possible string c∗ can be interpreted as a valid
ciphertext encrypting some message m in the plaintext group ZNe . Thus, we can use
the above to disclose the server’s answer under the condition that the n encryptions
produced by the client are well formed. This yields a protocol for the trusted setup
model whose communication complexity is comparable to that of the optimized version
of the original protocol.4

5.2 Fully Malicious Model

The previous solution relied on the fact that for a valid key N , every c∗ can be inter-
preted as a valid encryption of some message m. This does not hold in general. In fact,
there is an explicit cheating strategy which uses N such that gcd(N, φ(N)) > 1 (e.g.,
N = p1p2, where p1, p2 are odd primes and p2 = 2p1+1) in order to break the previous
protocol. The main difficulty arises from the fact that the set of harmful keys N cannot
be efficiently recognized. Our high level approach for getting around this problem is to
project ciphertexts sent by the client onto a “harmless” subgroup of C by having the
server raise them to the power of NT , where T = �log N�. To maintain correctness,
plaintexts are chosen from a subgroup of ZNe of size Ne−T , which requires to moder-
ately increase the values of e used in our protocol. We refer the reader to the full version
for further details.
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4 This holds for the case of computational server privacy, where we can afford to disclose a
short secret s and then encrypt the (long) answer using this key. The statistically private variant
involves an additional multiplicative overhead of O(�).
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