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Abstract. This paper describes the model-based development process of hard 
real-time software with the Timing Definition Language (TDL): modeling and 
simulation of TDL components in Matlab®/Simulink®, their mapping to a spe-
cific platform and finally the code generation. 

1   TDL Components 

Model-based development requires appropriate domain abstractions. They allow de-
velopers to ignore nasty details in the process of modeling automotive software sys-
tems. On the one hand,  the challenge is to find abstractions that are high-level so that 
as many details as possible can be ignored. On the other hand, these abstractions must 
not be too disconnected from the underlying system so that efficient code can be gen-
erated out of the models.  

In case of general purpose programming, imperative languages turned out to rep-
resent an appropriate level of abstraction from the von-Neumann computer architec-
ture. In case of hard real-time systems, such abstractions have to consider the timing 
behavior as well as concurrency and have only been proposed recently. Synchronous 
languages such as Esterel [1] assume that infinitely fast computers exist that can  
immediately react to sensor input. Though composition of Esterel software is straight-
forward in theory, it encounters barriers in practice, in particular for distributed sys-
tems [2]. Giotto [3, 4, 5] and the Timing Definition Language (TDL) [6] share the 
same basic programming model which relies on the Logical Execution Time (LET) 
[5] abstraction. LET means that the observable temporal behavior of a task is inde-
pendent from its physical execution. It is only assumed that physical task execution is 
fast enough to fit somewhere within the logical start and end points. The following 
figure shows the relationship between logical and physical task execution. 

The inputs of a task are read at the release event and the newly calculated outputs 
are available at the terminate event. Between these, the outputs have the value of the 
previous execution. LET provides the cornerstone to deterministic behavior, platform 
abstraction as basis of portability and well-defined interaction semantics between 
parallel activities. It is always defined which value is in use at which time instant and 
there are no race conditions or priority inversions involved. 
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Fig. 1. Logical Execution Time (LET) abstraction 

In addition to expressing LET semantics in a more convenient syntax than Giotto, 
and slightly simplifying the mode switching semantics, TDL has introduced the mod-
ule (= component) as a top level language construct. This represents a significant step 
towards a component model for hard real-time systems. A TDL component provides a 
namespace for the definition of constants, types, sensors, actuators, tasks and modes. 
For the formal specification of the TDL constructs and their semantics we refer to the 
language report [6]. The TDL component construct serves multiple purposes: 

  

1) it supports information hiding, 
2) it acts as a static specification of components and dependencies,  
3) it serves as the unit of distribution of functionality over a network of elec-

tronic control units.  
4) it represents a partitioning of the set of actuators and control logic avail-

able in a system, and 
5) it may serve as the unit of dynamic loading of system extensions  

 

The TDL component construct is the precondition for another enhancement of LET-
based languages. LET introduces a delay for observable outputs which poses a prob-
lem for controllers whose behavior would be better if outputs are provided as fast as 
possible without LET delays. With the TDL component construct it became possible 
to introduce globally asynchronous, locally synchronous (GALS) behavior. In this 
context ‘globally’ means between TDL components and ‘locally’ means within a 
TDL component. In order to avoid delays within a TDL component for the benefit of 
digital controller applications, a task’s functionality code may be split in two parts: (a) 
a fast step and (b) a slow step, where the fast step is executed in logical zero time 
right at the release time of the task and the slow step is executed regularily. Output 
ports updated in the fast step are available immediately for a component’s actuator 
updates or as inputs to other tasks within a TDL component. 

Transparent Distribution. The TDL component in combination with the LET ab-
straction also forms the basis of what we call transparent distribution: Due to the 
LET semantics (1) the observable functional and temporal behavior of a system is the 
same no matter on which node of a distributed platform a TDL component is executed 
and (2) the developer does not have to care about the differences of local versus dis-
tributed execution of a TDL component. We refer to (1) and (2) as transparent distri-
bution [7]. Transparent distribution facilitates, for example, what the automotive in-
dustry calls Electronic Control Unit (ECU) consolidation. The implementation of 
transparent distribution has required solutions of non-trivial communication schedul-
ing problems as described in [10]. 
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TDL is a textual language. We show the TDL code of a sample TDL component 
after Figure 8. In addition to the textual version we have developed a visual and inter-
active TDL editor tool, called the TDL:VisualCreator, that offers exactly the same 
constructs as the textual version of TDL. The user of the TDL:VisualCreator tool can 
view the corresponding textual version of the TDL component at any time. The 
TDL:VisualCreator and other TDL tools are available as products from preeTEC.com 
and have been built on the basis of research results in the realm of the Giotto project 
[3] at the University of California, Berkeley and the MoDECS project [8] at the Uni-
versity of Salzburg, Austria. The following section exemplifies TDL development 
with the TDL:VisualCreator tool. In section 3 we illustrate how TDL components are 
automatically mapped to a sample FlexRay platform, illustrating the benefits of trans-
parent distribution. TDL with its component model and the transparent distribution of 
TDL components cut the  overall development time of FlexRay software by a factor 
of 20 compared to tools that require a manual or slightly automated specification of 
communication schedules and that do not abstract from the platform. 

2   Modeling Sample TDL Components 

A case study for controlling an Active Rear Steering (ARS) system illustrates the 
advantages of the straight-forward modeling process with TDL. The ARS system is 
courtesy of MagnaSteyr Fahrzeugtechnik [9].  

A TDL module (= component) corresponds to a control application that periodi-
cally reads sensor values, calculates output values and writes these to actuators. Thus, 
a TDL module consists of a set of sensors, a set of actuators and a set of modes. Each 
mode consists of a set of periodic task invocations and other periodic activities such 
as actuator updates or mode switch checks. A module can be in one mode at a time.  

In the ARS case study we use the TDL:VisualCreator tool that also allows TDL 
modeling within Matlab®/Simulink®. This has the advantage, that TDL components 
can be simulated. Note that the developer specifies the TDL modules and their timing 
behavior, that is the LET of the tasks, independent of a specific execution platform. 

To edit a TDL module we drag the TDL module block from the Simulink® Library 
Browser (see Figure 2) and drop it on to a model. 

 

 

Fig. 2.  TDL module as block in Matlab®/Simulink® 
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A double-click on the module block opens the TDL:VisualCreator where you can 
edit the various elements of a module (see Figure 3). The tree on the left hand lists the 
possible TDL constructs: the imported modules (see below) in folder Imports, the 
constants, types, sensors, actuators, the task declarations in folder Tasks, and the 
modes of the TDL module. Figure 3 shows that we have defined three sensors 
(delta_r_act, angular_rate, current) and one actuator (voltage) of the TDL module 
RearActuatorController. The developer edits the properties of a TDL construct by 
clicking on it. Figure 3 shows the properties of the selected sensor current. The corre-
sponding properties and the corresponding values are displayed below the tree. 

 

Fig. 3. Editing a TDL module in the TDL:VisualCreator 

The TDL module RearActuatorController has only one task DCMotorController 
(see also Figure 3). In this simplified case study the mode main is the only mode of 
operation in this TDL module.  

 

Fig. 4. Modeling a task’s functionality with Matlab®/Simulink® 
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Let us now illustrate how we define the functionality of task DCMotorController 
and its timing behavior, that is, its LET. A double-click on the task opens a Simulink 
editor. The developer can use any of Matlab®/Simulink®’s discrete blocks to model 
the controller behavior. Figure 4 exemplifies this for the DCMotorController. 

In the next step we define the timing behavior of the task DCMotorController in 
mode main and how it gets its inputs and to where it provides its output. For that 
purpose we click on mode main in the tree. Now we can define the period of mode 
main as one of its properties. In this example we set it to 1ms (see Figure 5). In the 
data flow editor, shown on the right-hand side of the window, we define the input and 
the output connections of task DCMotorController. 

 

Fig. 5. Defining the timing of a mode 

Finally, we define the LET of task DCMotorController within mode main. This is 
done by specifying the invocation frequency in relation to the mode period (see Fig-
ure 6). As the Frequency property is set to 1 it means that the LET of task DCMotor-
Controller is 1ms (mode period) divided by 1 (frequency), thus 1 ms. 

Figure 7 shows the overall Matlab®/Simulink® model of the ARS system, consist-
ing of the two TDL modules RearActuatorController and VehicleDynamics and a 
subsystem Vehicle that represents the ‘plant’, that is, the relevant aspects of the vehi-
cle that needs to be controlled. What we did not show was the definition of the import 
relationship between the two modules. Module RearActuatorController imports Vehi-
cleDynamics and uses the output port delat_r_sp of VehicleDynamics’ public task 
dynamicsController. TDL module imports are discussed below. 
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Fig. 6. Defining the LET of a task 

 

Fig. 7. ARS system model 

The output of the Scope block (see Figure 8: speed, front angle, rear angle) illus-
trates the controller behavior: at low speeds steering operations cause the wheels on 
the rear axis to point in the opposite direction of the front wheels, whereas at higher 
speeds the wheels on the front axis and the rear axis point in the same direction. 

The following listing shows the textual version of the TDL module RearActuator-
Controller. As stated above this module imports the other TDL module VehicleDy-
namics. The sensor, actuator, task and mode declarations correspond exactly to the  
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Fig. 8. ARS scenario 

definition in the TDL:VisualCreator described above. The uses keyword marks an 
external function that implements platform-specific behavior. For example, the sensor 
delta_r_act is read by means of the external function getDelta_r_act. The implementa-
tion of sensor reading and actuator writing depends on the hardware and is thus sepa-
rated from the platform-independent TDL code. 

 
module RearActuatorController { 
 
  import VehicleDynamics; 
 
  public sensor double delta_r_act uses getDelta_r_act; 
  sensor double angular_rate uses getAngular_rate; 
  sensor double current uses getCurrent; 
 
  actuator double voltage uses setVoltage; 
 
  public task DCMotorController { // task declaration 
    input 
      double delta_r_sp; 
      double delta_r_act; 
      double angular_rate; 
      double current; 
    output 
      double voltage; 
    uses DCMotorControllerImpl(delta_r_sp,delta_r_act,  
        angular_rate,current,voltage); 
  } 
 
  start mode main [period=1 ms] { 
    task 
      [freq=1] DCMotorController { // task invocation with LET = 1 ms 
         delta_r_sp := VehicleDynamics.dynamicsController.delta_r_sp; 
         delta_r_act := delta_r_act; 
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         angular_rate := angular_rate;current := current; 
        } 
    actuator 
      [freq=1] voltage := DCMotorController.voltage; 
  } 
 
} 

 
Module Import. In order to allow the decomposition of large applications into 
smaller parts and to allow expressing dependencies between modules statically, the 
module concept provides an import mechanism, which allows a client module to spec-
ify that it depends on a service module and to access public elements of the imported 
module. In the ARS case study module RearActuatorController imports VehicleDy-
namics. Thus module RearActuatorController can use any of the exported items, that 
is, those that have the property Public set to true. 

While it is obvious that using imported constants, types and sensors does not pose 
any semantic difficulties, it is not a priori clear how to treat constructs such as tasks 
and actuators. Multiple applications may read the same sensors, for example, but what 
happens if multiple applications write to the same actuators? Note that any of the 
parallel running TDL modules may be in one of several modes and it is not statically 
defined which actuators are under control of which application at which time. There-
fore it must be prevented that multiple modules write to the same actuator. The mod-
ule construct comes in handy to solve this problem. We simply restrict actuator  
updates to the module the actuator is declared in. Thus, the module construct also acts 
as a partitioning of the set of actuators. In a large application, sensors could be de-
clared in a common service module, from where they can be used in any client mod-
ule. A client module declares a subset of the actuators of the complete system and 
provides the functionality and timing to set their values. 

Tasks form the units of computation. They are invoked periodically with a speci-
fied frequency. They deliver results through task output ports to actuators or to other 
tasks, and they read input values from sensor ports or from output ports of other tasks. 
A task whose visibility property Public is set to true exports all of its output ports. 
Thus, client modules can access the results delivered through a task’s output ports, but 
it is not possible to invoke tasks from client modules. 
 

Separation of Concerns. A TDL module expresses only the timing behavior with 
LET semantics: when tasks read inputs and when they provide outputs, when mode 
switch conditions are checked and when actuators are updated. The functionality is 
separated and specified as functions external to TDL: that is, how sensors are read, 
how actuators are updated, how tasks process their inputs. These external functions 
can be implemented in any programming language. In case of using TDL within Mat-
lab®/Simulink® as illustrated in the realm of the TDL modeling by means of the 
TDL:VisualCreator above, the task functionality can be specified with Simulink® 
blocks (see Figure 5). For these Simulink® subsystems the developer generates C 
code with one of the available code generation tools so that the system can be mapped 
to a specific execution platform. Currently, TDL supports language bindings for 
ANSI C and Java. 

We view this separation of timing and functionality as a precondition of an appro-
priate component model, in particular in the automotive industry. It allows the  
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protection of intellectual property rights of the supplier companies. The supplier com-
panies still can implement the specific control laws and provide that functionality as 
object code. On the other hand, the Original Equipment Manufacturers (OEMs) can 
integrate the components from various different suppliers based on the TDL compo-
nent model—they do not have to know about the implementation of the functionality. 
We will exemplify one aspect of the integration process, the TDL module-to-node 
mapping, in more detail in the next section. 

3   Sample TDL Component Deployment on a FlexRay Cluster  

The TDL component model offers another separation of concerns that we have called 
transparent distribution: the behavior of a component is independent of the execution 
platform. With TDL the platform can also be considered after a component has been 
developed. This is in stark contrast to the current development practice which pro-
duces software that is strongly intertwined with the platform it was developed for. 
The good news for the developer is that the mapping to a specific platform, no matter 
whether it is distributed or not, becomes a straight-forward assignment of TDL mod-
ules to nodes (ECUs). preeTEC’s automatic schedule and code generators and the 
TDL run-time system guarantee that the executable code exhibits exactly the same 
timing behavior as in the simulation, provided that the target platform offers sufficient 
computing resources. If not, no code is generated and the developer gets hints why 
this was not possible. 

In order to map a set of TDL modules to a specific platform, the user puts a Distri-
bution block from the Simulink® Library Browser to the particular model by drag-
ging it from the library and dropping it onto the model (see Figure 9). In our  

 

 

Fig. 9. Adding a Distribution block to the ARS system model 
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example, we name the block AES-FlexRay platform as we want to map the two TDL 
modules to a FlexRay cluster [11] with the socalled AES operating system [12]. Note 
that any number of platform mappings could be defined for a model, simply by put-
ting further Distribution blocks to a model with TDL modules.  

A double-click on the TDL Distribution block opens the TDL:VisualDistributor 
tool (see Figure 10). It already contains the TDL modules RearActuatorController and 
VehicleDynamics defined in the ARS model where the Distribution block was in-
serted. 

 

Fig. 10. TDL:VisualDistributor tool with the TDL modules defined in the Simulink® model 

In order to assign the TDL modules to the nodes of a platform we now have to de-
fine the platform. The TDL:VisualDistributor offers the editing features to define the 
topology and properties of potentially distributed platforms that are common in the 
automotive domain. For a demo video that illustrates how to define a FlexRay plat-
form we refer to the Web [13]. The TDL:VisualDistributor can also save and load 
platforms. In this case study we assume that a platform that describes a FlexRay clus-
ter with two MPC5554 nodes as ECUs, each running the AES operating system, has 
already been defined.  We load that platform and can then assign the two TDL mod-
ules by means of a straight-forward drag & drop operation to the two nodes ECU1 
and ECU2 of that particular FlexRay cluster. Figure 11 shows the resulting view of 
the specified module-to-node assignment. 

The TDL:VisualDistributor accomplishes the automatic generation of all files that 
are required to build the executable(s) for the specific platform. In case of the FlexRay-
AES platform we need, for example, the platform-independent TDL source code for the 
modules RearActuatorController and VehicleDynamics, the C code (generated, for 
example, with the Real-Time-Workshop Embedded Coder) for each task function of 
each TDL module, the FIBEX file representing the communication schedule, the 
FlexRay-specific configurations and the makefiles. For that purpose we simply choose 
the Build All menu item in the File menu of the TDL:VisualDistributor tool. 

After compiling the code and uploading it to each of the nodes the system behaves as 
simulated in the TDL:VisualCreator. As TDL modeling means basically setting the LET 
periods of tasks, and as the user does not have to define a communication schedule and 
the numerous FlexRay details, TDL together with the automatic generators reduces the 
development time by a quantitatively measured factor of 20 and more compared to 
state-of-the-art methods and tools, if a FlexRay-system is developed from scratch. 
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Fig. 11. TDL module-to-node assignment for a FlexRay cluster 

4   Opportunities for the Automotive Industry Resulting from a 
TDL-Based Development Process  

Besides significant development and maintenance cost savings, for example, for 
FlexRay software, a TDL-based development process could provide the desired flexi-
bility for automakers to change the execution platform when required and at the same 
time redefine the OEM-supplier relationship. 

Remember that the TDL components can be modeled and simulated without 
knowing on which platform they will be executed. One key benefit of the TDL-based 
development process is that an Original Equipment Manufacturer (OEM) would not 
have to worry from the beginning on which node of a distributed platform a TDL 
component will be executed. 

Let us assume a sample scenario of how the automotive industry could harness the 
TDL technology: An OEM and a supplier agree about the coarse-grained system 
structure by means of TDL components. Each TDL component corresponds to a sys-
tem function, such as automatically maintaining the distance to other vehicles. The 
OEM and its suppliers only have to refine each system so far as required by TDL, that 
is, the definition of the timing. The suppliers then implement the functionality of the 
TDL components, that is, typically the control laws, and error handling as well as 
accomplish the component validation and testing. 

Parallel to this activity the OEM selects the computing and communication plat-
form. For example, the OEM wants to reduce the number of ECUs (Electronic Con-
trol Units) and use more powerful computing nodes instead. The OEM can finetune 
the platform configuration with a tool such as the TDL:VisualDistributor. 
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Once the supplier companies return the TDL components together with the im-
plemented functionality, the integration has already been accomplished and the sys-
tem testing effort is significantly reduced—the TDL tools and middleware guarantee 
the time-safe execution of all TDL components. 

Instead of specifying the platform in parallel to the development activities of the 
supplier companies, the OEM might prefer to define, in the traditional way, the plat-
form upfront and give away the TDL components to the suppliers afterwards. The 
OEM would still benefit from the TDL approach: besides the guaranteed time and 
value determinism, future changes of the platform only require an automatic regenera-
tion of the code and the communication schedules. This improves an OEM’s flexibil-
ity, for example, to reduce the number of ECUs or to upgrade the hardware. 
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