
Towards Integrated Model-Driven Verification and
Empirical Validation of Reusable Software Frameworks

for Automotive Systems �

Venkita Subramonian and Christopher Gill

Department of Computer Science and Engineering
Washington University, St. Louis, MO, USA
{venkita,cdgill}@cse.wustl.edu

Abstract. Software for automotive systems is rapidly increasing in complexity
and scale, and leveraging reusable software frameworks in the development of
these systems offers significant potential to reduce engineering costs and cycle
times. However, the development of practical models and verification and valida-
tion techniques for automotive software built with reusable frameworks remains
an open research challenge. This paper makes three main contributions to the
state of the art in software engineering for automotive systems. First, it sum-
marizes ways in which reusable software frameworks are relevant to automotive
software engineering. Second, it describes an approach to verification and valida-
tion of reusable software frameworks which we have developed for other appli-
cation domains. Third, it presents an evaluation of our approach in the context of
an illustrative verification and validation scenario.

1 Introduction

The increasing complexity and scale of software for automotive systems argues for in-
creasing re-use of software in the development of those systems. Because interacting
software functions are increasingly distributed across many embedded micro-
controllers in automotive systems, leveraging reusable middleware in the development
of these systems offers significant potential to reduce engineering costs and cycle times.

However, these benefits only can be realized if the reusable middleware can be spe-
cialized through configuration and customization to address constraints, optimizations,
and trade-offs in timing and other quality of service (QoS) dimensions that are specific
to the automotive software applications being developed. Furthermore, system devel-
opers must be able to verify designs involving middleware prior to investing in their
implementation, and to validate those implementations prior to investing in their com-
mercial deployment.

Model checking can play a valuable role in verifying automotive applications’ in-
creasingly heterogeneous constraints, e.g., for safety-critical functions like computer
assisted steering and braking and for comfort functions such as in-vehicle navigation

� Research supported in part by NSF CAREER award CCF-0448562.

M. Broy, I.H. Krüger, and M. Meisinger (Eds.): ASWSD 2006, LNCS 4922, pp. 118–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Integrated Model-Driven Verification and Empirical Validation 119

and entertainment systems. As we discuss in Section 5, model checking also can gen-
erate verification traces to guide validation experiments, and the comparison of verifi-
cation and validation traces can be valuable to assess and improve the fidelity of the
models with respect to the actual behavior of the implemented software.

Our previous research has focused on specializing reusable middleware frameworks
to address footprint and timing trade-offs in networked embedded systems [1], enforc-
ing run-time timing [2] and liveness [3] constraints at run-time, and developing high-
fidelity timed automata [4] models of canonical reusable software building blocks that
are widely used in practice [5]. In this paper we describe our most recent research on
the integrated verification and validation of systems built with reusable software frame-
works. The results of that investigation (which we summarize in Section 5) demonstrate
the need for careful co-design in both the models and the reusable software itself to en-
sure that (1) scientifically valid comparisons are made between the software and the
models, (2) irrelevant differences between the software and the models are abstracted
away to reduce the effort required for verification and validation, and (3) relevant dif-
ferences between the software and the models are preserved and analyzed to reveal
important mis-matches between the software, the models, and the application require-
ments, which at least must be documented and where possible corrected .

The rest of this paper is structured as follows. Section 2 summarizes other research
related to our approach, and to its application in the automotive software application do-
main. Section 3 summarizes software platforms, frameworks, and design patterns that
are relevant to automotive applications. Section 4 describes our solution approach, in
which timed automata models of reusable middleware building blocks are used to ver-
ify properties of software built using them, and to generate traces used for integrated
verification and validation. Section 5 presents an illustrative example drawn from our
previous research in the avionics software domain, and shows how our approach can be
used to verify and validate that example: our results show that (1) checking models of
reusable middleware building blocks can verify timing properties of software that uses
those building blocks, (2) verification and validation can be integrated through collec-
tion and comparison of detailed time and event traces, and (3) observed differences be-
tween the verification and validation traces can be used to refine models to reflect more
accurately the actual software implementations they represent. Section 6 concludes the
paper with a summary of observations and recommendations arising from this research,
and describes remaining open research challenges and future work for verification and
validation of automotive software built upon reusable software frameworks.

2 Related Work

DREAM [6,7,8] provides an open-source tool and methodology that allows distributed
real-time embedded (DRE) system designers to do model-based schedulability anal-
ysis of time and event-driven DRE systems. DREAM offers a computational model
called the DRE semantic domain [7]. The key elements in this computational model
are tasks, timers, event channels and schedulers. Tasks are triggered either by a timer
or by external aperiodic events, and tasks communicate among themselves by means of
an event channel. Within this computational model, DREAM considers the problem of

120 V. Subramonian and C. Gill

deciding the schedulability of a given set of tasks with time and event-driven interac-
tions. By using timed automata models for each of the elements in the computational
model, the schedulability problem is converted [8] into a reachability problem in the
composed model through a model checking tool like UPPAAL. DREAM also provides
a model transformation facility by which a model of the DRE system is expressed using
a domain specific modeling language (e.g.ESML [9]), and is transformed using model
transformation [6] tools to create timed automata models in the DRE semantic domain.

Even though our approach is similar to DREAM in that we use timed automata mod-
els to verify system properties, the problems that these two bodies of research address
are different. Whereas DREAM addresses the problem of deciding schedulability of a
set of tasks under the DRE semantic domain, our research addresses the problem of
correct composition of reusable software elements that are at a finer level of granu-
larity than the elements in the computational model offered by DREAM. Both these
kinds of analysis are important - while the higher level computational model provided
by DREAM helps the DRE systems designer to address the schedulability problem in
time and event-driven systems, our approach helps the system designer choose config-
urations that are appropriate for the specific application. Moreover, the computational
model in DREAM makes an assumption that all communication between tasks uses an
event channel, and the communication between tasks and event channels themselves are
abstracted away using synchronized transitions in UPPAAL. During actual implemen-
tation, these synchronized transitions are realized using reusable software which could
have different configurations that impact the timing and liveness properties of a DRE
system in different ways. Hence a more detailed model of the fundamental reusable
software elements is necessary, which has been the focal point of our research.

Automotive Software Verification [10,11] uses a design pattern based approach to build
reusable software that provides high-level communication services to higher layer au-
tomotive software tasks. A middleware architecture for communication is realized in
the context of the OSEK/VDX operating system. The communication activities carried
out by the middleware are mapped on to tasks in OSEK/VDX. [12] discusses code gen-
eration from a high level RT-UML [13] model for OSEK/VDX. That work identifies
key issues in mapping of UML models where some annotations in RT-UML cannot be
mapped directly to the constructs and primitives offered as part of OSEK/VDX.

AUTOSAR (AUTomotive Open System ARchitecture) [14] is an open standard for au-
tomotive software architecture that specifies standardized interfaces for communication
among automotive electronic components. It aims to alleviate the complexity involved
in developing and upgrading software based control systems in the automotive domain.
The use of abstract concepts that are fundamental building blocks in a particular domain
combined with adequate modeling techniques and models based on these fundamental
building blocks can have a valuable and sustainable impact on automotive software
engineering.

3 Automotive Software Engineering

Fine-grained reusable middleware frameworks like ACE [15] address the challenge of
providing common domain-specific building blocks that can be used to build higher

Towards Integrated Model-Driven Verification and Empirical Validation 121

level software abstractions. For example, the ACE framework provides building blocks
like Reactor, Acceptor, Connector and Active Objects, which have been used to build
a wide range of reusable middleware frameworks and services for distributed real-time
embedded systems - e.g., for real-time scheduling (Kokyu [16]), distributed commu-
nication (TAO [17], nORB [18,19,20]), and component middleware (CIAO [21]). The
presence of such foundational fine-grain abstractions is not limited to reusable software
built on ACE. For example, in the sensor networks application domain, TinyOS [22]
provides building blocks like Timer, ADC, RFM, Active Messages, etc. for building dif-
ferent kinds of sensor network middleware - e.g., for reconfiguration, scheduling, group
communication, and self-stabilization. We now discuss a similar low-level framework
in the context of automotive software engineering.

Operating System Features. OSEK VDX [23] is a set of interface specifications for op-
erating systems, communication, and network management in the automotive domain.
The OSEK operating system is targeted to run on micro-controllers and is therefore
designed to require a minimum of hardware resources (e.g., CPU and memory). These
specifications enable automotive OEM and third-party ECU (electronic control unit)
suppliers to use a standardized set of APIs to facilitate system integration, thus making
automotive applications more portable, reusable and interoperable. A customized ver-
sion of the OSEK OS can be generated by using the OSEK Implementation Language
(OIL), through which one can specify a portable description of all OSEK-specific ob-
jects (e.g., events, tasks, resources).

An OSEK compliant operating system implementation provides automotive applica-
tion developers with a set of reusable primitive building blocks that include (1) tasks,
(2) event objects, and (3) messages. Tasks are the equivalent of threads in general pur-
pose operating systems. They are the basic schedulable entities in the OSEK/VDX and
forms the basis for enforcing the various real-time requirements of automotive applica-
tions. Event objects are used to inform tasks of various events occurring in the system
- e.g., arrival of messages on a communication link, or expiration of a timer. Messages
are used to communicate between software components residing within an ECU.

POSA2 Abstractions. A task in OSEK/VDX can wait on multiple events at a time using
the WaitEvent function, which is a key feature of the Reactor pattern [24]. Reactor is an
event handling design pattern used in network programming (e.g., in ACE [15]) to de-
multiplex events from multiple sources, possibly using just a single thread. This design
pattern is used in low level reusable middleware to demultiplex and dispatch incom-
ing requests and replies from peers. Event handlers like request and reply handlers are
registered with a reactor. The reactor uses a synchronous event demultiplexer, e.g., the
UNIX select system call, to wait for data to arrive from one or more peers. When data
arrives, the synchronous event demultiplexer notifies the reactor, which then dispatches
the appropriate event handler based on the event source.

The Active Object pattern, which separates method invocation from method exe-
cution, is also relevant. Since the thread of execution is separate from the thread of
invocation, this pattern can be used to serialize access to resources used by multiple
threads. This pattern can be used, as is discussed in [10,11], to separate the communi-
cation subsystem from the automotive application by using different tasks for each of
these layers of the system.

122 V. Subramonian and C. Gill

4 Solution Approach

In previous research [25,5], we have developed timed automata [4] models of reusable
software building blocks that have been used to implement a wide range of software
frameworks and applications. These lower-level timed automata models of the reusable
building blocks can be combined with higher-level formal models of the applications
and frameworks that use them to provide a faithful model of a system including the
reusable software platform on which the system is deployed, such that the composite
models can be verified for correctness with high fidelity to the implemented system.

Our focus has been on creating timed automata models of reusable software ob-
jects provided by ACE [15]. ACE is a portable C++ framework used for developing
high-performance concurrent and real-time software using threads, sockets, and other
mechanisms provided by a wide range of OS platforms. By developing high fidelity
formal models at a level of abstraction that is just above the operating system, our ap-
proach adds rigor to other model-based approaches currently being pursued by the sys-
tems research community, which target reusable software architectures at higher levels
of abstraction. Our approach also provides sound and composable models of founda-
tional reusable software building blocks to the formal methods community, offering
new opportunities for innovation in formal methods that can directly impact the design,
implementation, verification, and validation of real-world software systems.

In Section 4.1 we first present a simple example drawn from our previous research
in the avionics software domain, which serves to illustrate and motivate our approach.
In Section 4.2, we then give an overview of the ACE building blocks we have modeled,
and discuss the suitability of several model checking tools for verification of timing and
liveness properties in software built using those building blocks.

4.1 Illustrative Example

In this section, we illustrate how timed automata models can be used to analyze tim-
ing and liveness properties in software built upon reusable software building blocks.
We first present a motivating example [26] - a simple distributed real-time embedded
subsystem from the domain of avionics mission computing [27] - and describe how our
modeling approach presented in Section 4.2 can be used to describe the reusable ACE
software building blocks incorporated within that example. In Section 5 we then show
how our approach can be used to analyze timing properties of this example subsystem
taking into account the semantics of the reusable software building blocks with which
this system is implemented.

Figure 1 shows the elements of our example avionics system: (1) a Rate Generator,
which wraps a hardware timer and sends periodic events to event consumers that register
for those events; (2) a GPS Subsystem, which wraps one or more hardware devices for
navigation and caches a periodically refreshed location value to provide low-latency
response; (3) a Graphical Display, which wraps the hardware for a heads-up display
device in the cockpit to provide visual information to the pilot and a location value
that is updated by querying an interface on the GPS component when the controlling
software receives a triggering event.

Towards Integrated Model-Driven Verification and Empirical Validation 123

TIME
14:34:06

POSITION
N 43˚ 39' W 93˚ 21'

GPS Subsystem Graphical DisplayRate Generator

Fig. 1. Example Avionics System

This example is representative of a broader class of distributed real-time embedded
systems where clusters of closely-interacting components are connected via specialized
networking devices, such as VME-bus backplanes. Although the functional character-
istics of these systems may differ, they often share the rate-activated computation and
display/output timing constraints illustrated here.

Both control flow (rate generator to GPS and GPS to display) and data flow (dis-
play to GPS) interactions occur in this subsystem. An event push style of communica-
tion is used by the rate generator (to send a timer-driven triggering event to the GPS),
and by the GPS (to communicate the availability of data to the display). A data pull
style of communication is then used by the display subsystem (to obtain location data
from the GPS). In the middleware-based software framework from which this example
was drawn, the push style of communication is typically implemented using a publish-
subscribe event channel, and the pull style of communication is typically implemented
using a remote function call.

Even though middleware-based software architectures currently are not prevalent
in the automotive software engineering domain, the low-level software building blocks
that are the focus of our work are directly relevant there, as we have discussed in greater
detail in Section 3. Furthermore, as reducing development costs and cycle times be-
comes increasingly important, specialized reusable middleware solutions designed for
stringent timing and footprint constraints [18,19,20] may be adapted further for the au-
tomotive software engineering domain. Therefore, the observations and lessons learned
from our verification and validation studies of this example, which we present in Sec-
tion 6, are relevant to automotive software engineering.

Figure 2 illustrates how reusable low-level building blocks like the reactors, event
handlers, and thread pools provided by ACE, are incorporated into the example shown
in Figure 1. Each communication channel in the example subsystem illustrated in Fig-
ure 1 has a corresponding event handler. For example, the Timer EC EH event han-
dler handles requests sent from the rate generator to the Event Channel (EC), the
GPS EC EH event handler handles requests sent from the GPS unit to the EC, etc.

To illustrate how timed automata models of reusable software can be used to analyze
timing and liveness properties in practice, we now consider a simple but representative
example scenario using the low-level models of reusable ACE building blocks described
in Section 4.2 in order to (1) capture the semantics of the reactor and event handler
models, (2) illustrate how interference with specified constraints on timing can arise
in software built with those reusable software building blocks, and (3) show how the
particular form of interference that may arise can be analyzed through model checking.

124 V. Subramonian and C. Gill

Fig. 2. Reusable Software in the Avionics Example

In many distributed real-time embedded systems, correct operation can depend on
satisfying stringent but relatively simple timing constraints, such as receiving the result
from a remote method invocation before a relative deadline. In this example, system
timing is affected by interference between nominally independent call sequences, when
they must contend for shared resources such as the CPU. We consider a scenario where
a single thread is used by a reactor to demultiplex events to its registered event handlers.
The extent to which the event handlers contend for shared resources impacts whether
or not a deadline miss can occur. Using our models we then can determine (1) whether
any deadline misses can occur due to interference between call sequences, and (2) if a
deadline miss is possible, which sequences of actions can cause it to occur. For example
if the rate generator and GPS push events at roughly the same time, then whichever
event handler (Timer EC EH or GPS EC EH) is dispatched first could delay the other
event handler, potentially resulting in a missed deadline.

4.2 Modeling in ACE

To be able to verify the correctness of customized reusable software in the context of
each specific application, we have developed detailed and formal models of common
reusable software building blocks found in the widely used ACE [15] framework, such
as reactors, thread pools, event handlers, and interaction channels, which can be com-
posed and checked rigorously to evaluate timing and liveness properties in each partic-
ular application and its supporting reusable software configuration. A crucial challenge
is to determine the appropriate level of abstraction at which to model system software.
To answer this question, one must look at the kinds of abstractions used in state-of-
the art system implementations. For example, distribution middleware services such as
CORBA [28] object request brokers (ORBs) provide a level of abstraction that pro-
motes portability and reusability and hence makes an appealing candidate for formal
modeling. Since many state-of-the-art distribution middleware implementations expose
sets of configuration options used to tailor the reusable software for particular applica-
tions, modeling the combinations of configuration options [29] is a useful and necessary
step toward model-driven construction and verification of distributed real-time embed-
ded systems. We contend, however, that to evaluate issues such as timing and liveness,
which are crucial to many distributed real-time embedded systems, finer-grained models
of lower-level reusable software building blocks are needed to capture (and supplement
analysis of) crucial details related to concurrency and interaction.

Towards Integrated Model-Driven Verification and Empirical Validation 125

Results of our previous experience with system software construction indicate the
efficacy of such a fine-grained approach. In that work we built a special-purpose ORB
called nORB [18,19,20], with support for real time operation dispatching in the context
of memory constrained networked embedded systems. We took a fine-grained bottom-
up approach to the development of nORB, starting with lower level elements of the
ACE [15] framework: Reactor, Acceptor, Connector, CDR Stream, etc. Along with tak-
ing a fine-grained approach to building nORB, we used the application itself as a guide
for making fundamental design and implementation trade-offs. That work has given us
insights into application-driven construction and customization of reusable software for
this and other domains, allowing us to define composable models with a high degree of
fidelity to how reusable software is built in practice.

Our modeling approach is designed specifically for analysis of timing and liveness in
concurrent software with real-time constraints. We rely first on model checking to en-
sure soundness. Due to the potential size of the state spaces that need to be checked, we
then apply several optimizations: (1) building highly modular models, by sub-dividing
them into fine-grain composable automata; (2) encoding our models in formats used
by model checkers that allow automata to be added to a model, or removed from it,
dynamically; and (3) adopting a hybrid approach in which parts of the analysis are pro-
vided by other analysis techniques [30,3] thus reducing the state space that must be
explored through model checking. Model checkers such as UPPAAL [31], IF [32], Bo-
gor [33], and SPIN [34] each have their particular features and restrictions. For example,
among these four tools, timed automata models are supported only by UPPAAL and IF,
whereas only Bogor supports object-oriented and concurrent constructs explicitly. UP-
PAAL uses a rendezvous model of communication whereas in IF communication is
asynchronous. Because our models must capture time, concurrency, and asynchronous
interactions between system elements that can be added and removed dynamically, we
selected IF as the most suitable model checking environment for our needs in that work.

Figure 3 shows our model architecture, which is implemented using the IF tool
set [32,35,36]. We specify our fine-grained models as IF processes that run in parallel
and interact through shared variables and asynchronous signals. The behavior of these
processes is represented formally in IF as timed automata with urgency [37] and the
semantics of a system modeled in IF is the Labeled Transition System (LTS) obtained
by interleaving the executions of its processes.

Our models are divided into three layers: (1) models of network and OS level abstrac-
tions such as channels for interprocess communication; (2) models of semantically rich
reusable software building blocks like reactors; and (3) models of the application func-
tionality implemented in the form of event handlers. Although Figure 3 shows a static
view of our models, the models themselves are executable in the IF environment and
can be checked against system property specifications. The unshaded rectangular boxes
shown in Figure 3 are modeled using timed finite state automata specified using the
IF language. The shaded rectangular boxes shown in Figure 3 are data structures that
are shared by the different automata in the models. Automata with timed transitions
(transitions that are guarded with conditions based on clock variables) are indicated in
Figure 3 by timer icons. [38] and [39] provide detailed explanation of these models.

126 V. Subramonian and C. Gill

IPC_SAP Buffers

IPC Channel

EventHandler
EventHandler

Reactor

Reverse channel

IPC_SAPIPC_SAP Forward channel

Handler
RepositoryIPC_SAP_Set

Handler
Repository

ThreadPool

IPC_SAP_Set

Data structures and operations

IPC_SAP

Event Handler
Transition

control
mechanisms

Application
abstraction

layer

Middleware
abstraction

layer

Network/OS
abstraction

layer

Acceptor

Connector

SAP Event Demultiplexer

SAP Reader

SAP Writer

Leader/
Followers

Property
Specifications

Read buffer Write Buffer

Read buffer Write Buffer
Read buffer Write Buffer

3

2

1

Fig. 3. Model Architecture

5 Integrated Verification and Validation

We now summarize the results of a verification and validation study we conducted to
evaluate the fidelity of the reusable middleware models developed in our previous re-
search [5] by instrumenting both the models and the software they represent, and com-
paring the execution traces produced by that instrumentation in both cases. To do this,
we recorded events via instrumentation points in the kernel, middleware, and applica-
tion layers using data streams [40]. We also added output to timed automata transitions
corresponding to the middleware instrumentation points. We then collected traces from
the execution of the models and of the software, and post-processed those traces to
generate time-lines for comparison. We compared the two timelines in terms of (1) the
sequence of events that occurred in each case, and (2) the time at which each event
occurred. The models were realized and executed using IF 2.0 (with bug-fixes) on a
2.8GHz Pentium 4 with 2GB RAM running Enterprise Linux with a 2.6.9-22 kernel.
All validation experiments were run on a 1.4GHz Pentium 3 with 1GB RAM and run-
ning Fedora 2 with a LibeRTOS [41] 2.6.12 kernel.

Figure 4 shows a short extract from the sequence of events generated by post-proces-
sing traces from model and actual executions of the example scenario described in Sec-
tion 4.1. In that scenario, two clients each send a request to the same server and the
server hosts two event handlers each processing the requests from one client. We logged
the following events along with their time stamps - (1) a client sending a request, (2)
the request arriving at the socket buffer on the server, (3) the upcall to the event handler,
and (4) the receipt of reply from the event handler by the client. The sequence of events

Towards Integrated Model-Driven Verification and Empirical Validation 127

0: BEFORE_CLIENT_SEND_REQUEST(2)
0: EVENT_SOCK_DEF_READABLE(4)
0: BEFORE_CLIENT_SEND_REQUEST(1)
0: EVENT_SOCK_DEF_READABLE(2)
0: HANDLE_INPUT_BEGIN(2)
25: EVENT_SOCK_DEF_READABLE(1)
25: AFTER_CLIENT_RECV_REPLY(1)
25: HANDLE_INPUT_BEGIN(4)
50: EVENT_SOCK_DEF_READABLE(3)
50: AFTER_CLIENT_RECV_REPLY(2)
50: BEFORE_CLIENT_SEND_REQUEST(2)
50: EVENT_SOCK_DEF_READABLE(4)
50: BEFORE_CLIENT_SEND_REQUEST(1)
50: EVENT_SOCK_DEF_READABLE(2)
50: HANDLE_INPUT_BEGIN(2)
75: EVENT_SOCK_DEF_READABLE(1)
75: AFTER_CLIENT_RECV_REPLY(1)
75: HANDLE_INPUT_BEGIN(4)
100: EVENT_SOCK_DEF_READABLE(3)
100: AFTER_CLIENT_RECV_REPLY(2)

0 : BEFORE_CLIENT_SEND_REQUEST(2)
0 : EVENT_SOCK_DEF_READABLE(4)
0 : BEFORE_CLIENT_SEND_REQUEST(1)
0 : EVENT_SOCK_DEF_READABLE(2)
0 : HANDLE_INPUT_BEGIN(2)
25 : EVENT_SOCK_DEF_READABLE(1)
25 : AFTER_CLIENT_RECV_REPLY(1)
25 : HANDLE_INPUT_BEGIN(4)
51 : EVENT_SOCK_DEF_READABLE(3)
51 : AFTER_CLIENT_RECV_REPLY(2)
51 : BEFORE_CLIENT_SEND_REQUEST(2)
51 : EVENT_SOCK_DEF_READABLE(4)
51 : BEFORE_CLIENT_SEND_REQUEST(1)
51 : EVENT_SOCK_DEF_READABLE(2)
51 : HANDLE_INPUT_BEGIN(2)
76 : EVENT_SOCK_DEF_READABLE(1)
76 : AFTER_CLIENT_RECV_REPLY(1)
77 : HANDLE_INPUT_BEGIN(4)
102 : EVENT_SOCK_DEF_READABLE(3)
102 : AFTER_CLIENT_RECV_REPLY(2)

Fig. 4. Comparison of timelines between model (left) and actual (right) executions

shows that that the model and actual executions are reasonably close both in terms of the
order of events and the time at which they occur. However, one key difference between
the model and actual execution traces is the execution time of event handler processing.
During model execution, the progress of time is controlled by the model checker and
unless it is specified explicitly (as we show later), there is no execution jitter. However,
during actual software execution we recorded the execution jitter shown in Figure 5.

As part of our experiments, we ran 25 iterations of the above flow - i.e., with the
client sending a request and the event handler responding with a reply - in both model
and actual execution. Based on the generated timeline traces, we then plotted the events
generated against their timestamps for both model and actual executions to obtain the

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400

Ev
en

ts

Time (msec)

Model
Actual

Fig. 5. Timeline comparison between model and actual implementation

128 V. Subramonian and C. Gill

graph shown in Figure 5. This figure shows visually how close the model is to the actual
execution in terms of the times at which various events occur.

We also observed that the cumulative effect of jitter during actual execution becomes
more pronounced as time progresses, which suggests that modeling the execution jitter
as random noise would be a reasonable first approximation. To make the composed ver-
ification model reflect the actual system more closely, we added a jitter interval of 1ms
to the event handler execution time in our model, which caused a significant increase in
state space explored by the model checker. For exhaustive simulation, the model with-
out jitter produced 2325 states, 2380 transitions, and took 1 second, whereas with jitter
the model produced 217885 states, 225130 transitions, and took 181 seconds to explore
exhaustively. The exhaustive simulation with jitter produced 288 traces of possible ex-
ecutions of the example scenario described in Section 4.1. To illustrate the range of
variability added to the model by the jitter interval, we generated timelines for each of
the 288 verification traces from the model with jitter, and then superimposed them in a
new graph with the event numbers on the y-axis and timestamps on the x-axis. The re-
sult, shown in Figure 6, confirms that the model checker explores various combinations
of execution jitter as it moves from state to state during exhaustive simulation.

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400

Ev
en

ts

Time (msec)

Fig. 6. Timeline with execution jitter for all paths explored by the model checker

6 Concluding Remarks

Observations and Lessons Learned. These results shown in Section 5 highlight several
important principles for co-design of verification and validation in middleware mod-
els and software. First, the choice of instrumentation points is essential: discrepancies
between where events are recorded in the software and in the models may skew the
relationships between the timelines. While fixing this may be trivial in some cases, in
other cases it may be necessary to expand a single model state into a more nuanced
automaton to capture software semantics in more detail.

Towards Integrated Model-Driven Verification and Empirical Validation 129

Second, observational equivalence must be evaluated subject to the constraints being
checked. Relevant non-determinism in the software must be reflected in the model to
ensure that the model is not over-constrained (and thus fails to check important cases)
but irrelevant non-determinism should be eliminated from the model to reduce model
checking complexity and to increase correspondence between the timeline representa-
tions for the model and software traces. Because the same model elements may be re-
used for a variety of software configurations, doing this in practice can be aided greatly
by (1) the ability to turn model and software instrumentation points on and off together,
through a set of common configuration descriptors, (2) post-processing predicates for
both time-lines that filter out irrelevant variations while detecting relevant ones, and
(3) classifiers that annotate the timelines to indicate regions where event timing and
ordering correspond between them, and regions where event timing or ordering differ.

Third, the ability to conduct scientifically valid evaluations of the correspondence
between verification and validation results, especially in the face of concurrency [42],
requires that (1) the sources of non-determinism in the model be the same as those in
the software, (2) the equivalence classification of traces from the model be the same as
the equivalence classification of traces from the software, (3) for every specific trace
generated from the model, a trace in the same equivalence class must be generated by
the software experiments, and vice versa, and (4) the likelihood of generating a partic-
ular trace from the model or the software should be appropriate even if the generation
of every trace is impractical or intractable. The last two points highlight a very impor-
tant relationship between (1) exerting more control (e.g., through scheduling [2]) over
when events occur and in what order to (re)produce specific scenarios, and (2) allowing
a wider variety of scenarios to be explored to avoid repeated verification or validation
of essentially equivalent scenarios.

Open Problems and Future Work. Several open problems will shape our future work
on model-based verification and validation of reusable software frameworks. First, the
need for automated instrumentation of both models and software with respect to par-
ticular constraints to be checked motivates the development of automated analysis and
aspect weaving techniques. Second, the need for round-trip co-design and engineering
of models and software is demonstrated by our results in Section 5, which emphasizes
the need to develop integrated tools for software design, implementation, verification,
and validation, into which different sets of reusable software building blocks and fine
grained formal models for those building blocks can both be incorporated. Third, the
ability to configure schedulers and other means of controlling software execution at
run-time must also be integrated within these software tools, in terms of both models
and software implementations.

References

1. Subramonian, V., Xing, G., Gill, C., Lu, C., Cytron, R.: Middleware specialization for
memory-constrained networked embedded systems. In: Proceedings of 10th IEEE Real-time
and Embedded Technology and Applications Symposium (RTAS) (2004)

2. Aswathanarayana, T., Subramonian, V., Niehaus, D., Gill, C.: Design and performance of
configurable endsystem scheduling mechanisms. In: Proceedings of 11th IEEE Real-time
and Embedded Technology and Applications Symposium (RTAS) (2005)

130 V. Subramonian and C. Gill

3. Sanchez, C., Sipma, H.B., Manna, Z., Subramonian, V., Gill, C.: On Efficient Distributed
Deadlock Avoidance for Real-time and Embedded Systems. In: 20th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS 2006) (2006)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

5. Subramonian, V., Gill, C., Sanchez, C., Sipma, H.B.: Composable Models for Timing and
Liveness Analysis in Distributed Real-time Embedded Systems Middleware. Technical Re-
port WUCSE-2005-54, Computer Science and Engineering Department, Washington Uni-
versity in St.Louis (2005)

6. Madl, G., Abdelwahed, S., Schmidt, D.C.: Verifying distributed real-time properties of em-
bedded systems via graph transformations and model checking. International Journal of
Time-Critical Computing Systems (2005)

7. Madl, G., Abdelwahed, S.: Model-based analysis of distributed real-time embedded system
composition. In: EMSOFT 2005: Proceedings of the 5th ACM international conference on
Embedded software, pp. 371–374. ACM Press, New York (2005)

8. Madl, G., Abdelwahed, S., Karsai, G.: Automatic Verification of Component-Based Real-
time CORBA Applications. In: The 25th IEEE Real-time Systems Symposium (RTSS 2004),
Lisbon, Portugal (2004)

9. Karsai, G., Neema, S., Bakay, A., Ledeczi, A., Shi, F., Gokhale, A.: A Model-based Front-
end to ACE/TAO: The Embedded System Modeling Language. In: Proceedings of the Second
Annual TAO Workshop, Arlington, VA (2002)

10. Marques, R.S., Simonot-Lion, F.: Guidelines for the development of a communication mid-
dleware for automotive applications. In: Proceedings of the 3rd Workshop on Object-oriented
Modeling of Embedded Real-Time Systems (OMER3 2005) (2005)

11. Marques, R.S., Simonot-Lion, F.: Design-Patterns based development of an automotive mid-
dleware. In: Proceedings of the 6th IFAC International Conference on Fieldbus Systems and
their Applications (FeT 2005) (2005)

12. Gu, Z., Wang, S., Shin, K.G.: Issues in Mapping from UML Real-Time Profile to OSEK
API. In: Proc. Workshop on Specification and Validation of UML models for Real-Time and
Embedded Systems (SVERTS 2003) (2003)

13. Object Management Group: UML Profile for Schedulability. Final Draft OMG Document
ptc/03-03-02 edn. (2003)

14. AUTomotive Open System ARchitecture: AUTOSAR (2005), www.autosar.org
15. Institute for Software Integrated Systems: The ADAPTIVE Communication Environment

(ACE) (Vanderbilt University), www.dre.vanderbilt.edu/ACE/
16. Gill, C.D., Levine, D.L., Schmidt, D.C.: The Design and Performance of a Real-time

CORBA Scheduling Service. Real-time Systems, The International Journal of Time-Critical
Computing Systems, special issue on Real-time Middleware 20(2) (2001)

17. Institute for Software Integrated Systems: The ACE ORB (TAO) (Vanderbilt University),
www.dre.vanderbilt.edu/TAO/

18. Group, D.: nORB - Special Purpose Middleware for Networked Embedded Systems (2005),
deuce.doc.wustl.edu/nORB/

19. Subramonian, V., Xing, G., Gill, C., Lu, C., Cytron, R.: Middleware Specialization for
Memory-Constrained Networked Embedded Systems. In: Proceedings of the 10th IEEE
Real-time and Embedded Technology and Applications Symposium (RTAS), Toronto,
Canada, IEEE, Los Alamitos (2004)

20. Subramonian, V., Gill, C.: Middleware Design and Implementation for Networked Embed-
ded Systems. In: Zurawski, R. (ed.) Embedded Systems Handbook, CRC Press, Boca Raton
(2006)

21. Institute for Software Integrated Systems: Component-Integrated ACE ORB (CIAO) (Van-
derbilt University), www.dre.vanderbilt.edu/CIAO/

www.autosar.org
www.dre.vanderbilt.edu/ACE/
www.dre.vanderbilt.edu/TAO/
deuce.doc.wustl.edu/nORB/
www.dre.vanderbilt.edu/CIAO/

Towards Integrated Model-Driven Verification and Empirical Validation 131

22. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: Proceedings of the ninth international conference on Archi-
tectural support for programming languages and operating systems, pp. 93–104. ACM Press,
New York (2000)

23. OSEK Consortium: OSEK/VDX communication specification (2004),
http://www.osek-vdx.org

24. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objects, New York, vol. 2. Wiley & Sons,
Chichester (2000)

25. Subramonian, V., Gill, C., Sanchez, C., Sipma, H.B.: Composable timed automata models
for real-time embedded systems middleware. Technical Report WUCSE-2005-29, Computer
Science and Engineering Department, Washington University in St.Louis (2005)

26. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time Aspects in Com-
ponent Middleware. In: OTM 2004. LNCS, vol. 3291, pp. 1520–1537. Springer-Verlag, Hei-
delberg (2004)

27. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based Avionics
System. In: Proc. of the Workshop on Model-Driven Embedded Systems in RTAS (2003)

28. Object Management Group: The Common Object Request Broker: Architecture and Specifi-
cation. 3.0.2 edn. (2002)

29. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt, D.C.: A
Platform-Independent Component Modeling Language for Distributed Real-time and Em-
bedded Systems. In: Proceedings of the 11th Real-time Technology and Application Sympo-
sium (RTAS 2005), San Francisco, CA, pp. 190–199. IEEE, Los Alamitos (2005)

30. Sanchez, C., Sipma, H.B., Subramonian, V., Gill, C., Manna, Z.: Thread Allocation Protocols
for Distributed Real-Time and Embedded Systems. In: Wang, F. (ed.) FORTE 2005. LNCS,
vol. 3731, pp. 159–173. Springer, Heidelberg (2005)

31. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

32. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer, Heidelberg (2004)

33. Robby, Dwyer, M., Hatcliff, J.: Bogor: An Extensible and Highly-Modular Model Checking
Framework. In: In the Proceedings of the Fourth Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003), Helsinki, Finland, ACM, New York (2003)

34. Holtzman, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

35. Bozga, M., Graf, S., Ober, I., Mounier, L.: IF-2.0: A Validation Environment for Component-
Based Real-Time Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, Springer, Heidelberg (2002)

36. Bozga, M., Fernandez, J.C., Ghirvu, L., Graf, S., Krimm, J.P., Mounier, L.: IF: A Validation
Environment for Timed Asynchronous Systems. In: Proceedings of CAV 2000 (2000)

37. Bornot, S., Sifakis, J., Tripakis, S.: Modeling Urgency in Timed Systems. In: de Roever,
W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 103–129.
Springer, Heidelberg (1998)

38. Subramonian, V.: Timed Automata Models for Principled Composition of Middleware. PhD
thesis, Washington University in St. Louis, Computer Science and Engineering Department
Technical Report WUCSE-2006-23 (2006)

39. Subramonian, V., Gill, C., Sánchez, C., Sipma, H.B.: Reusable models for timing and liveness
analysis of middleware for distributed real-time and embedded systems. In: Sixth ACM/IEEE
International Conference on Embedded Software (EMSOFT 2006), pp. 252–261 (2006)

http://www.osek-vdx.org

132 V. Subramonian and C. Gill

40. Buchanan, B., Niehaus, D., Dhandapani, D., Menon, R., Sheth, S., Wijata, Y., House, S.: The
data stream kernel interface. Technical Report ITTC-FY98-TR11510-04, Information and
Telecommunication Technology Center, University of Kansas (1998)

41. Linutronix: LibeRTOS (2004), http://www.linutronix.de/linutronix/e/
libertos.html

42. Niehaus, D., James, J., Gill, C.: Closing the Programmer’s Universe: A Pattern Language for
Reproducibility in Concurrent Programming Environments. In: Pattern Languages of Pro-
grams Conference, Allerton Park, IL (2003)

http://www.linutronix.de/linutronix/e/libertos.html
http://www.linutronix.de/linutronix/e/libertos.html

	Towards Integrated Model-Driven Verification and Empirical Validation of Reusable Software Frameworks for Automotive Systems
	Introduction
	Related Work
	Automotive Software Engineering
	Solution Approach
	Illustrative Example
	Modeling in ACE

	Integrated Verification and Validation
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

