
TestML - A Test Exchange Language for
Model-Based Testing of Embedded Software

Juergen Grossmann1, Ines Fey1, Alexander Krupp3,
Mirko Conrad4, Christian Wewetzer2, and Wolfgang Mueller3

1 DaimlerChrysler AG, Alt Moabit 96a, D-10559 Berlin
juergen.grossmann, ines.fey@daimlerchrysler.com

2 dSPACE GmbH, Technologiepark 25, D-33100 Paderborn
christian.wewetzer@dspace.de

3 Paderborn University/C-LAB, Fuerstenallee 11, D-33102 Paderborn
alexander.krupp, wolfgang.mueller@c-lab.de

4 Member of the ACM
mirko.conrad@acm.org

Abstract. Test processes in the automotive industry are tool-intensive
and affected by technologically heterogeneous test infrastructures. In the
industrial practice a product has to pass tests at several levels of abstrac-
tion such as Model-in-the-Loop (MIL), Software-in-the-Loop (SIL) and
Hardware-in-the-Loop (HIL) tests. Different test systems are applied for
this purpose (e.g. dSPACE MTest, dSPACE Automation Desk, National
Instruments Teststand) and almost each test system requests its own
proprietary test description language. The exchange of tests between
different test systems and the reuse of tests between different test levels
is normally not possible. Efforts to integrate these heterogeneous test
environments, to address test exchange in a general manner and to stan-
dardize and harmonize the existing language environment are still at the
beginning and not tailored towards the requirements of the automotive
domain. To keep the whole development and test process efficient and
manageable, the definition of an integrated and seamless approach is re-
quired. TestML – the test exchange language we present in this article –
is defined to overcome the technological obstacles (different test language
syntax and semantics, different data formats and interface descriptions)
that almost automatically accompany the application of heterogeneous
test tools and test infrastructures. TestML supports the exchange of tests
between different test notations in a heterogeneous tool environment. In
this paper, we introduce the XML schema of TestML and demonstrate
the efficiency of the interchange format by giving examples from the
model-based development of electronic control units. Tool support is il-
lustrated by an application with Simulink/Stateflow.

1 Introduction

Development processes in the automotive industry are highly distributed and
fragmented. The Original Equipment Manufacturer (OEM) acts as the system

M. Broy, I.H. Krüger, and M. Meisinger (Eds.): ASWSD 2006, LNCS 4922, pp. 98–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

TestML - A Test Exchange Language for Model-Based Testing 99

integrator and solution provider. He is responsible for the development of high
level specifications and the integration and quality assurance at system level.
The software and hardware of the individual electronic control units (ECUs)
are normally provided by different suppliers. Tools, methods and data formats
used in the development processes of the suppliers and the OEMs are normally
different.

Moreover, new development paradigms, such as model based development,
have to be integrated into existing development processes and tool chains. Model-
based specifications in development and the establishment of powerful code gen-
erators have led the development process to be noticeably more effective, and
automated at a higher level of abstraction. Due to the availability of executable
models, tests and analytical methods can be applied early and integrated into
subsequent development steps. The positive effects — early error detection and
early bug fixing — are obvious.

To keep the whole development and test process efficient and manageable, the
definition of an integrated and seamless approach is required. Such an approach
especially would address the subjects of test exchange, autonomy of infrastruc-
ture, methods, and platforms and the reuse of tests. The respective technological
basis will be constituted by a domain specific test language, that is executable
will unify the test infrastructure as well as the definition and documentation
of tests. For this purpose, the BMBF project IMMOS (Integrated Methodol-
ogy for Model-based ECU Development) was carried out by DaimlerChrysler
AG, IT Power Consultants, dSPACE GmbH, Fraunhofer FIRST, FZI Karlsruhe
and Paderborn University. We present the test exchange language TestML as a
substantial project result.

In section 2 we give a short overview of the test processes in the automo-
tive domain and address related work. Section 3 describes the overall purpose
and ideas behind TestML whereas section 4 depicts the set-up and structure of
the language itself. To illustrate the behavioral semantics of TestML we pro-
vide a mapping between TestML constructs and Matlab/Simulink constructs in
Section 5. Section 6 provides a number of short test cases that exemplify the
expressiveness of TestML. Section 7 summarizes the paper.

2 Related Work

In the industrial practice an automotive control system has to pass several kind of
tests on different levels. Tests that go along with the integration of the complete
vehicle system are mainly the responsibility of the OEM. These tests address
the interaction between control units, the vehicle communication infrastructure
and last but not least tests of the complete vehicle system. Tests on ECU level
are mainly in the responsibility of the respective suppliers. They encompass
the verification of the of the software driven functionality and the electronic
characteristics of the ECU.

Actually a wide range of different test and simulation environments are used
in the automotive domain. For tests on model level, so-called Model-in-the-Loop

100 J. Grossmann et al.

(MIL) environments are used. To test the software itself, so-called Software-in-
the-Loop (SIL) and Processor-in-the-Loop Environments are introduced1. In the
end the integration between soft- and hardware (i.e. the complete ECU) is tested
using Hardware-in-the-Loop- (HIL) Environments [1]. Besides software related
tests (functionality, software integrity, software robustness), HIL environments
allow to test the electronic characteristics and may simulate a complete net-
work of interacting ECUs. Finally the OEM uses HIL Environments to test and
simulate the complete electronic infrastructure of a vehicle.

Normally, different test systems are applied for the different simulation envi-
ronments and almost each test system has individual requirements for methods,
languages and concepts. The established test tools from National Instruments [2],
dSPACE [3], Etas [4], Vector [5], MBtech [6] for example are highly specialized
ones. They rely on proprietary languages and technologies and are mostly closed
in respect to portability, extension and integration. In comparison, in the domain
of Electronic Design standardization efforts have culminated in the definition of
a set of verification and test languages: SystemVerilog [7], PSL [8], and e [9]. The
languages and tool support facilitate the efficient creation of highly automated
model-based testbenches [10]. This is achieved by a concise representation of in-
terfaces including timing information, and by support for constraint based stim-
ulus generation, and advanced (temporal) coverage and assertion facilities for
evaluation. However, the current concepts focus on digital design, and they do
not focus on testing of continuous domain models which are commonly applied
in the automotive industry.

Efforts to address test exchange and test reuse in such heterogeneous envi-
ronments are still in the beginning. The emerging IEEE standard ATML [11] is
not finalized and not supported by the automotive tool chains. A new promising
approach, that is based on TTCN-3 [12] and — among others — integrates the
TestML concepts described in this paper, is already under definition but not yet
available for industrial practice [13,14].

3 The TestML Principles

TestML is a tool-independent XML-denoted language, which was developed for
the interchange of test descriptions. The language elements are represented by
individual XML elements that are defined by an XML schema. The complete
XML schema for TestML can be accessed in [15].

TestML was tailored specifically to meet the demands of model-based testing
of embedded software in the automotive sector. The language covers the differ-
ent test stages from the module to integration and system tests as well as test
levels from MIL to HIL. Besides describing strictly functional tests, different
comparative test approaches such as regression testing and back-to-back testing
1 A SIL environment allows to test the compiled target software using environment

models both running on standardized personal computers. A PIL platform addition-
ally simulates the targets processor environment to allow tests that address special
target platform issues.

TestML - A Test Exchange Language for Model-Based Testing 101

are supported. Our aim is to realize an interchange format for the large spec-
trum of test description languages established in the automotive industry. This
section describes the purpose of TestML and expands on the background and
the demands of the language design.

3.1 A Unified Format for Test Exchange

Our basic assumption is that semantic similarities as well as overlaps exist be-
tween the different test description languages (see [16] for an overview). On the
one hand, these similarities represent the indispensable precondition for the idea
of interchanging test scenarios and test data across tool and language barriers.
On the other hand, they offer the necessary foundation for the definition of a
generic exchange format.

TestML was conceived as a language for exchanging test descriptions in the
context of model-based testing of embedded automotive software. This includes
software from different sub-domains like telematics, body control, power train
and driving assistance. Whereas communication related issues are crucial for
telematics, the majority of body control and driving assistance software belongs
to feedback control systems that rely on sensors and actuators and have to deal
with a large amount of continuous real world data. The general conditions of
the different automotive sub-domains constitute a series of specific demands
that have to be made on a technology-independent test description language
spanning different tools in the automotive domain:

– specification of discrete and continuous (analogue) stimuli
– a concept of time to describe time-dependent events
– specification of reactive test cases to test feedback communication and con-

trol systems
– management of measurement data as inputs as well as reference data for

comparative tests
– expressions for tests evaluation regarding the analysis of discrete and con-

tinuous signals.

The Basis of TestML is a self-contained language definition that makes it possible
to cover test descriptions at different levels of abstraction (such as test scenarios
and test data) independent from the respective tool environment.

The integrating effect of the language results from the potential to map the
language constructs of existing test description languages to TestML and vice
versa by using appropriate adapters. TestML itself acts as an intermediate no-
tation that is interposed between the separate tool-dependent languages in the
exchange of test data and test descriptions (see Fig. 1). The advantages are ob-
vious. If multiple languages are to be supported, the complexity of integration
increases only linearly for this solution. If integration is achieved through the
realization of bilateral, point-to-point coupling without an intermediate format
instead, the complexity increases quadratically.

102 J. Grossmann et al.

SIL-System

TestML
Adapter

TestML

MIL-System

TestML
Adapter

PIL-System

TestML
Adapter

HIL-System

TestML
Adapter

Test System X

TestML
Adapter

Fig. 1. Integration of different test descriptions using an intermediate language

3.2 Abstraction of Specific Test Systems

Complex test systems are used for the testing of control units. Test systems
usually consist of multiple logical components (signal generators, capture/replay
tools, test evaluation components, environment models etc.) that have to be
coordinated and collectively controlled in the course of test execution. Setup
and control of test systems differ contingent. In addition to the heterogeneous
tool environment different test notations exist that can be used to describe the
tests. For an evaluation and categorization of existing test notations for model-
based software testing of embedded software systems see [16].

In its function as an exchange language TestML enables operation of several
different test systems. Because individual test systems differ greatly in their
concrete technical specifications, it must be possible to abstract from the concrete
realization of the respective source and target system for the exchange of test
descriptions. Thus, we define one such abstraction termed TestML test system.
A TestML test system consists of a combination of test components that we
consider minimally necessary regarding the exchange of test descriptions. The
individual components of the test system subsequently given below are, except
for the test interface, represented implicitly by TestML means of description.
The TestML test system itself is not an explicit part of the TestML language.
Knowledge about setup and structure of the system help to better understand
the subsequent annotation of individual means of description in TestML. Figure 2
shows a diagrammatic illustration of the TestML test system including TestML
elements referring to the individual components.

The abstract test system for TestML consists of the following components:

– The system under test (SUT) represents the system that is to be tested.
Mainly relevant for TestML is its test interface. From the perspective of
TestML, the SUT itself is hidden behind the test interface.

– The stimulation unit is responsible for the generation of test stimuli; actual
test execution takes place here.

– The capture unit records the system reactions and/or the system reactions
as well as the test stimuli.

– The evaluation unit is responsible for the evaluation of test cases. It ac-
cesses all data recorded by the capture unit and can be operated temporally
independent from the stimulation unit.

TestML - A Test Exchange Language for Model-Based Testing 103

SUT

Stimulation Unit

Capture Unit
Evaluation

Unit

Test Behavior
<behavior/>

<stimulate/>

<capture/> <evaluate/><interfaceMapping/>

<testInterface/>

Fig. 2. Abstract test system for TestML

3.3 Test Behavior

The term test behavior subsumes processes that describe the stimulation of the
test object at the moment of test execution. To serve its function as an exchange
language, TestML has to cover and integrate the widest possible spectrum of
different behavioral descriptions. Below we will specify a series of different cri-
teria that can serve as the basis for the differentiation of varying classes of test
behavior and fundamentally characterize the spectrum of TestML behavioral
descriptions. The criteria are:

1. Types of stimuli
The type of stimuli used for stimulation represents a basic criterion of differ-
entiation in the stimulation of a test object. Four different types of stimula-
tion signals are differentiated in literature ([17], [16]). Relevant at this point
is the differentiation of timed signals and timeless messages.

2. Determination
Test behavior can be specified as reactive behavior or as determined behavior.
A test with reactive test behavior controls and changes the stimulation of
the test object depending on how the test object reacts to the continuous
stimulation. To do so, the output signals or output messages of the test object
are interpreted, evaluated, and considered for the generation of new stimuli.
In determined test behavior, the stimulation of the test object is established
from the outset. The reaction of the test object is not considered for the
generation of stimuli or is used only to abort the test at an appropriate
time.

3. Data synthesis
Another criterion for test behavior is the differentiation of synthetically gen-
erated stimulation sequences and recorded measured data that can later be
replayed for test purposes. Synthetically generated stimulation sequences are
usually described through programming techniques. Apart from the stimu-
lation of a test object, recorded data is mainly used as a reference for test
evaluation. Comparative approaches like regression testing or back-to-back
testing explicitly require the existence of recorded reference data.

104 J. Grossmann et al.

Specification of test behavior is one of the main aspects of a test description
and is an essential part of a test description language. In practice, a variety of
different methods, notations, and tools exist for this purpose. For a good synopsis
for the automotive sector see [16]. For TestML we decided to use hybrid timed
automata as a basic concept to describe test behavior. Hybrid automata emanate
the theory of hybrid systems and are regarded as a mathematical model, which
offers a reliable basis for modeling timed applications and systems with discrete
and analog behavior (cf. [18]). The use of hybrid automata to describe continuous
test behavior in the context of embedded systems could be successfully shown
in [19]. To support the definition of exact and well-defined mappings between
existing test languages and TestML we provided a rigorous formal behavioral
semantics for TestML by means of Abstract State Machines (ASMs) [20].

4 Structure and Elements of TestML Test Descriptions

This section describes the elements and the setup of test descriptions with
TestML. The most important basic elements of the language will be introduced
individually and illustrated below. Each basic element represents an important
concept and/or function from the field of testing and, as is common in XML,
stands for a container that may contain further means of description and encap-
sulates them to the outside.

– The element testml forms the root element for each TestML description and
represents a number of test cases. The element testml needs no further ex-
planation from here on.

– The element testInterface serves to describe the interface to the SUT.
– The elements testSequence and rtTestSequence constitute test sequences that

describe an operating scenario to be tested by means of test inputs.
– The elements stimulate, capture and evaluate describe stimulation, recording,

and test analysis within one test sequence.
– The element behavior is used for the specification of test behavior.

A number of other means of description exist besides the mentioned basic ele-
ments that represent either data types, operators and/or mathematical
expressions, structure the language and/or form the inner structure of the above-
mentioned elements. Figure 3 shows the section of the TestML schema in which
the basic elements are defined.

4.1 The Test Interface

The test interface is described by the element testInterface. A large number of
input and output channels represented by the element port in TestML are part of
a test interface, ensuring type safe communication between the SUT and the test
behavior defined modularly in TestML. Values can be written to the SUT and/or
read by the SUT through each defined channel. The type of communication can
be specified in more detail by stating the direction of communication and the
data types supported by the individual channel.

TestML - A Test Exchange Language for Model-Based Testing 105

Fig. 3. The basic elements of a test description with TestML

Specification of a test interface

<t e s t I n t e r f a c e ID=”Te s t i n t e r f a c e 1”>
<port ID=”P1 phi Brake ” type=”double ” d i r e c t i o n=”input”

name=”phi Brake”/>
<port ID=”P2 phi Gas ” type=”double” d i r e c t i o n=”input”

name=”phi Gas”/>
<port ID=”P3 v act ” type=”double” d i r e c t i o n=”input”

name=”v act”/>
<port ID=”P4 BrakePedal” type=”boolean ”

d i r e c t i o n=”output ” name=”BrakePedal”/>
</t e s t I n t e r f a c e >

The listing above depicts the description of a test interface with 4 channels
in TestML. The direction of communication, the type and the name of the port
are annotated in the form of XML attributes to the element port.

4.2 Test Sequences

TestML represents test cases through the elements testSequence and rtTestSe-
quence. To emphasize that test cases are usually complete application scenarios,
they are identified as test sequences in TestML. While the element rtTestSe-
quence can describe a real-time test case, the element testSequence represents a
non real-time test case. Real-time test cases and non real-time test cases can be
differentiated by the lack of temporal references within the element testSequence.
The structural set-up of TestML test sequences otherwise remains the same.

A TestML test sequence usually consists of the elements stimulate, capture
and evaluate as well as a modular behavioral description through elements of
the type behavior. We will address this in more detail in section 3.3.

4.3 Stimulation, Recording and Evaluation

The specification of stimulation, recording, and evaluation in TestML is under-
taken, with a strict conceptual separation, by the elements stimulate, capture

106 J. Grossmann et al.

and evaluate: Among other things, this separation is rooted in the separation of
time- and resource-intensive evaluation operations necessary for real-time tests
that usually have to be carried out after the stimulation to ensure the necessary
reaction times of the real-time test system during stimulation.

The elements stimulate, capture and evaluate essentially have two functions.
On the one hand, they serve as control commands for the abstract stimulation,
capture and evaluation units defined in section 4.3. The control occurs implicitly,
that is without the existence of explicit control commands. This means that for
a concrete target system each element stimulate, capture and evaluate is inter-
preted as a number of platform-specific control commands. These are necessary
to control the concrete test units provided by the concrete system.

On the other hand, the elements stimulate, capture and evaluate encapsulate
the detailed expressions and statements of a TestML test description. The el-
ement stimulate contains the complete behavior specification to generate the
required stimulus signals (see element behavior in section 3.3 for details). More-
over, the elements stimulate and capture contain mappings that map the input
and output ports of a test interface (element port, see section 4.1) on the ele-
ments of a behavior signature (element signature, see section 3.3) or accordingly
on capture variables. The mapping on a behavior signature is part of the stimu-
lation description while mapping of capture variables is conducted in the element
capture. Capture variables serve as references to access recording data and are
later used within the element evaluate for test evaluation. Irrespective of it be-
ing used for stimulation or recording, mapping is specified through the element
interfaceMapping. The following listing depicts mapping between channels of a
test system and recording variables within an element capture.

Mapping of channels to capture variables

<inter faceMapping >
<map>

<portRef IDREF=”P1 phi Brake”/>
<s i gna lRe f IDREF=”S ig1 ph i Brake”/>

</map>
<map>

<portRef IDREF=”P2 phi Gas”/>
<s i gna lRe f IDREF=”Sig2 phi Gas”/>

</map>
</interfaceMapping >

The element evaluate describes the test evaluation. Whereas the elements
stimulate and capture are obligatorily started simultaneously at the beginning
of test execution, the element evaluate can be started independent of the two
other elements, even after test execution. In principle, test evaluation takes place
based on the data recorded by the element capture. Test evaluation is carried
out by specifically defined operators and commands. These operators and com-
mand allow the comparison of signal values and complete signal shapes and are
explained in the following section.

TestML - A Test Exchange Language for Model-Based Testing 107

4.4 Data Types, Operators and Expressions

In most programming languages the basic data types are bool, integer, double,
and string. Naturally, they are supported by TestML. They may be represented
according to their corresponding type as defined in the W3C XML schema, i.e.
xs:integer for an integer. Also, test specific special data types are offered, such
as time and signal. Times are given as a double value and a time unit. The
possible units are day, hour, second, millisecond, and microsecond represented
by their common abbreviations “d”, ”h”, “s”, “ms”, and “us”. The following
listing shows the declaration of a double variable and, following the declaration,
a write operation to set the variable to the value of 100. All declared variables
are referenced within TestML by their ID.

Instantiation of data types

<double ID=”var1 ” name=”Examples v a r i ab l e ”/>
<write>

<doubleRef IDREF=”var1”/>
<value><double>

<value >100</value>
</double></value>

</write>

The data type signal is special in that it may not only describe a singular
value, but a time-dependent wave-form. Most of the times, the value data type
of a signal is double. The waveform is represented by means of simple signal
expressions or TestML automata, which are introduced in section 3.3. The next
listing shows a simple signal expression specifying a ramp which rises from 0 to
100 within 10 seconds.

Instantiation of a signal

<s i gna l >
<time>

<unit>s</unit> <double><value >10</value></double>
</time> <ramp>

<s ta r t ><double><value>0</value></double><s ta r t >
<end><double><value >100</value></double></end>

</ramp>
</s i gna l >

For expression evaluation a set of simple operators is provided. Table 1 shows a
selection of operators. The four basic arithmetic operations are provided, as well
as equality, comparison, and logical operators. The operators may be combined
to form expressions as usual. They may be applied in an extended form to signals,
which represent a time series of values.

108 J. Grossmann et al.

Table 1. List of Operators

Operator Meaning Operator Meaning

< add/ > addition < and/ > logical and
< sub/ > subtraction < or/ > logical or
< mult/ > multiplication < not/ > logical not
< div/ > division < xor/ > logical xor
< abs/ > absolute value < equ/ > equality
< max/ > maximum value < grt/ > greater
< min/ > minimum value < geq/ > greater or equal

An example of a comparison expression is shown in the next listing, which
compares two signals with the identifiers Data1 v act and Data2 v act.

comparison expression

<cond>
<grt>

<s i gna lRe f IDREF=”Data1 v act”/>
<s i gna lRe f IDREF=”Data2 c act ”/>

</grt>
</cond>

4.5 Behavioral Constructs

The structure and elements of the element behavior are depicted in Fig. 4. They
all together form a so-called TestML automaton. The most important elements
of a TestML automaton are the elements signature, step and switch. The element
signature provides an interface to the internally specified and encapsulated be-
havior. The element itself consists of a number of signal declarations (much like
the ports in the test interface) that can individually be accessed in reading or
writing depending on the specification.

Fig. 4. The element behavior

TestML - A Test Exchange Language for Model-Based Testing 109

The element step describes a defined state within a TestML automaton. Each
step in turn is either defined by a TestML automaton or contains one or more
commands that define test behavior directly — either through arithmetic equa-
tions, time-based signal primitives or alternatively for timeless messages. The
element switch defines a transition that marks the passage between two steps.
By use of the element cond every transition can be annotated by conditions for a
time- or value-dependent control of automata. If the transition condition evalu-
ates to true, the transition fires and the step referenced by the element succ will
be processed next. For each step one transition without condition is allowed. A
transition without condition fires after all time-dependent instructions that are
defined within the respective step have been terminated.

5 Mapping TestML Automata to Matlab Simulink

This section provides an executable TestML implementation using Simulink/S-
tateflow [21]. We mainly emphasize on behavioral aspects and introduce a de-
tailed mapping that maps the TestML constructs defined in section 4.5 to the
well-defined behavioral constructs of Simulink/Stateflow. For a concise TestML
semantics refer to [20].

In TestML we generally distinguish between timed automata and non-timed
automata. Timed automata reside inside TestML real-time test cases and non-
timed automata reside inside non real-time test cases. Each top level TestML
automaton, independent of its type, can be mapped to a Stateflow chart, that
resides inside a Simulink Stateflow block. The signature of a TestML automaton
is represented by the input and output ports of the Stateflow block. Hence the
mapping between the automaton signature and an arbitrary test interface can
be simply realized by drawing lines between Simulink ports. Figure 5 shows a
Stateflow block called “TestML Automaton”, which provides four data output
ports phi Brake, phi Gas, v des, leverPos and one data input port v act.

Each Stateflow chart that represents a TestML Automaton consists of a top
level state with the same name as the TestML automaton. This top level state
contains further states and transitions, which each represent either a TestML
step or a TestML switch. For time control the top level state provides a local
time property called time. We define local time with

time = t − startT ime

in which time represents the local time, t holds the global time, and startT ime
represents the point in time that the automaton has started. In general global
time progress is realized by Simulink simulation time using a discrete simulation
solver. Moreover, each TestML step — except a final or start step — is real-
ized by a Stateflow state, which provides a local time property called stepT ime.
Local step time is defined in the same way as local automaton time. The prop-
erty startT ime here represents the point in time when the step has started.
As we will see later on, TestML steps have to control the running status of
all embedded entities (write statements and embedded automata). Hence we

110 J. Grossmann et al.

v_act

phi_Brake

phi_Gas

v_des

leverPos

TestML Automaton

phi_Brake

phi_Gas

v_des

lever_pos

v_act

Out2

Out3

Out4

SUT

Fig. 5. A TestML automaton represented by Stateflow

introduce a step property called runningEntities. This property is initialized
when a step is entered and holds the number of all embedded entities (e.g.
en : runningEntities = 2). It is decremented whenever an embedded entity
stops and sends the EntityStopped event.

on EntityStopped : runningEntities − −

TestML start steps are simply realized as Stateflow default transitions.
TestML final steps are denoted as empty states with the name “final”.

TestML_Automaton/
 en:startTime=t
 du: time=t-startTime

final/

Step2/
 en: runningEntities=2
 en: startTime=t
 on EntityStopped: runningEntities--
 du:stepTime=t-startTime

Step1/
 en: runningEntities=2
 en: startTime=t
 on EntityStopped: runningEntities--
 du:stepTime=t-startTime

WriteStatement_1 1
WriteStatement_1 1

SubAutomaton_1 2WriteStatement_2 2

[Step2.runningEntities==0]

[Step1.runningEntities==0]

1

[v_act>=18]
2

Fig. 6. Base structure of a TestML automaton in Stateflow

We have to provide an equivalent Stateflow transition for each TestML switch.
A switch is composed of the elements cond and next. The element next can
simply be interpreted as transition end, which refers to the next Stateflow state
to be executed when the respective transition condition evaluates to true. The
element cond expresses a switch condition that can in most cases be mapped
directly to a Stateflow transition condition. The sole exception is the absence of
a switch condition. In TestML the absence of a switch condition defines a so-
called “default switch” which fires when all embedded entities of the current step
have been finished. In contrast a Stateflow transition without any annotations
fires immediately after its source state is activated.

We can not use the empty Stateflow transition to implement the TestML
default switch. Instead we have to check the status of all embedded entities.

TestML - A Test Exchange Language for Model-Based Testing 111

When all entities are finished the property runningEntities of a TestML step
is zero. We can use this as a switch condition of a Stateflow transition.

[< Stepname > .runningEntities == 0]

Figure 6 shows the base structure of a TestML automaton implemented with
Stateflow. The Automaton consists of two steps with two switches in between: a
TestML default switch and a switch listening on the input port v act. The main
functional behavior of a TestML step is defined by its embedded entities. These
are either embedded TestML automata or write statements which assign signals
or simple values to ports. Embedded TestML automata are implemented almost
in the same way as top-level automata. Sole difference: Embedded automata
have to provide the EntityStopped event that will be fired when the execution
of the automaton has finished. The event is triggered by the final state and
can be realized by en : EntityStopped using the Stateflow Action Language.
The concrete implementation of TestML write statements depends on the type
of the enclosing automaton. Inside timed automata we assign timed signals to
ports. Timed signals have a distinct duration. When executing write operations,
one has to consider and control the duration of the signal that is written. In
contrast, non-timed automata only provide simple value assignments that have
no duration. Temporal control is not necessary here.

WriteStatement _1/ 1

execution/
en: duration=20;
du: phi_Brake=const(5)

finished/
en:EntityStopped

[stepTime>=execution.duration]

Fig. 7. Timed write statement which applies a constant signal to phi Brake

We start with the implementation of write statements that reflect duration.
For each write statement we provide a top level state that contains a controller
structure that manages temporal and functional behavior. Multiple write state-
ments that belong to the same TestML step are realized as multiple parallel
executed top level states (see section 6). The enclosed controller structure con-
sists of two states. The “execution state” is responsible for signal execution and
its application to a port. When activated, an execution state calculates signal
values as part of its during action and applies the calculated value to a speci-
fied port (e.g. du : phi Brake := const(4)). We may use graphical functions for
value calculation that each represent a signal of a certain kind which is param-
eterized by a set of signal-specific parameters (e.g. ramp(offset, slope, limit),
const(constval)), sinewave(offset, frequency, amplitude). The “finished” step

112 J. Grossmann et al.

is triggered when the actual step time exceeds the signals duration. We imple-
ment this using the following transition condition:

[executer.duration > stepT ime]

During its entry a finished step fires an EntityStopped event en :
EntityStopped so that the enclosing step is informed about the signals end.
Figure 7 shows the implementation of a write statement that applies a constant
signal with the length of 20 seconds to a port called phi Brake.

WriteStatement_1/ 1

finished/
en:EntityStopped

{phi_Brake=const(5)}

Fig. 8. Non-timed write statement which applies a constant signal to phi Brake

Non-timed automata contain write statements that do not reflect duration.
For this kind of write statements we adopt the structure of timed write state-
ments and simply omit the execution state. The value calculation and its appli-
cation to a port are realized as an action defined as part of the Stateflow default
transition. Figure 8 shows a non-timed write statement that applies a constant
value to a port called phi brake.

6 Exemplary Use of TestML Automata

In the following, the description potential of TestML is shown and illustrated by
means of short examples taken from practice. The samples selected each repre-
sent a specific type of test behavior mentioned in section 3.3. In the following
examples, the TestML automata are not depicted in their XML representation
but as annotated states in an UML alike notation2.

6.1 Specification of Timed, Deterministic Test Stimuli

We now examine a typical test sequence taken from a cruise control test. The
focus of the test is on accelerator pedal interpretation, i.e. the unit which is re-
sponsible for interpreting the driver interaction via brake and gas pedal. For this
2 We deliberately avoid to depict the XML representation here, since this quickly be-

comes too large even for short examples. The use of graphical representations makes a
more compact visualization possible. In the following the TestML element step is de-
picted as a state and the element switch is presented as a transition. Statements which
are used within the element step, either for the definition of signals or simple values or
to assign these definitions to a port, are annotated in the form of pseudo code inside the
states. For further information on XML representations, refer to the enclosed schema.

TestML - A Test Exchange Language for Model-Based Testing 113

example, the test interface was deliberately kept small. The port v act describes
the current vehicle speed in m/s, phi Acc represents accelerator pedal travel and
is given in percent and phi Brake represents brake pedal travel and also given
in percent. In order to test the acceleration pedal interpretation the following
timed test scenario is used:

1. Within the first second, the current vehicle speed is kept constantly at
−10 m/s and afterwards the value for v act is set to −5 m/s for a second.

2. In the course of the test, the accelerator pedal travel is raised from 0% to
100% and then lowered linearly from 100% to 0%.

3. In the course of the test, the brake pedal travel is linearly lowered from 100%
to 0% and then raised from 0% to 100%.

Figure 9 shows both the individual signal forms and the description used
for the generation of signal forms with TestML. Every state of the TestML

Step1

write(phi_Brake,ramp(100,0,1s))
write(phi_Gas,ramp(0,100,1s))
write(v_act,const(-10,1s))

Step2 Step3

FinalInitial

0
1

2

phi_Brake
phi_Gas

v_act

0

50

100

time [s]

write(phi_Brake,ramp(0,100,1s))
write(phi_Gas,ramp(100,0,1s))
write(v_act,const(-5,1s))

write(phi_Brake,const(0,0.1s))
write(phi_Gas,const(100,0.1s))
write(v_act,const(0,0.1s))

Fig. 9. Specification of synthetic stimulation sequences with TestML automata

automaton depicted above defines a time interval with its length being deter-
mined by the duration of instructions within the respective state. The example
mentioned above contains for the state “Step1” the following three instructions:

– Write a ramp signal with the value course from 100 to 0 and the length of one
second on the channel called phi Brake [write(phi Brake, ramp(100, 0, 1s))].

– Write a ramp signal with the value course from 0 to 100 and the length of one
second on the channel called [phi Gas (write(phi Gas, ramp(0, 100, 1s))].

– Write a constant signal with the value −10 and the length of one second on
the channel called v act [write(v act, const(−10, 1s))].

After the statements have been executed a change into the next state, called
“Step2”, takes place via the output transition. For the state “Step2” we have
the following three instructions. The complete execution stops as soon as the
final state is reached.

– Write a ramp signal with the value course from 100 to 0 and the length of one
second on the channel called phi Brake [write(phi Brake, ramp(0, 100, 1s))].

– Write a ramp signal with the value course from 0 to 100 and the length of one
second on the channel called phi Gas [write(phi Gas, ramp(100, 0, 1s))].

– Write a constant signal with the value −10 and the length of one second on
the channel called v act [write(v act, const(−5, 1s))].

114 J. Grossmann et al.

6.2 Specification of Timed, Reactive Test Stimuli

In order to be able to show the use of TestML automata for the specification
of reactive test behavior, the example mentioned above needs to be modified.
Here, it is not the pedal interpretation which is tested rather than the cruise
control. The test interface is expanded by an input and an output channel. The
port v target is an input port and describes the desired vehicle speed; v act is an
output port and represents the current vehicle speed. The reactive test behavior
may be described as follows:

1. Set target speed v target at 18 m/s
2. Use gas pedal until vehicle speed is greater than or equals 18 m/s.
3. Switch on cruise control.
4. Use brake pedal until vehicle speed equals 0 m/s.

Figure 10 shows the individual signal forms (left-hand side) as well as the
description for the generation of the signal forms with (right-hand side).

Initial Final

Step1 Step2

write(LeverPos, const(0))
write(v_target, const(18))
write(phi_Brake, const(0))
write(phi_Gas, const(50))

write(LeverPos, const(1))
write(v_target, const(18))
write(phi_Brake, const(25))
write(phi_Gas, const(0))

v_act>=18 v_act<=0

0
10

20

phi_Brake

phi_Gas

v_act

0

25

50

time [s]

Fig. 10. Specification of reactive stimulation sequences with TestML automata

In contrast to the example from the previous section, the transition between
the states “Step1” and the state “Step2” is equipped with a condition. The con-
dition defines the switching characteristics between “Step1” and “Step2”. The
instructions are executed until the transition condition for “Step1” is fulfilled.
Then the instructions from “Step2” are executed.

– Write a constant signal of 50 on phi Gas [write(phi Gas, const(50))] and a
constant signal of 0 on phi Brake [write(phi Brake, const(0)]. The cruise
control is switched off [write(LeverPos, const(0))] and the velocity of the
target vehicle is set to 18m/s [write(v target, const(18))].

– If the channel v act has taken on a value greater or equal 18 m/s, write a con-
stant signal of 0 on the channel phi Gas [write(phi Gas, const(0))], a con-
stant signal of 70 on the phi Brake channel [write(phi Brake, const(70))]
and switch on the cruise control [write(LeverPos, const(1))]. The velocity
of the target vehicle remains at 18m/s [write(v target, const(18))].

With a basic set of signal primitives and their suitable combinations, the use of
TestML automata supports the definition of complex signal forms.

TestML - A Test Exchange Language for Model-Based Testing 115

6.3 TestML Automata for Timeless Test Stimuli

Apart from systems working with timed test stimuli, there are frequently systems
found in practice which are controlled solely by timeless stimuli, so-called mes-
sages. A test description for such a system consists of a set of actually timeless
messages, which – by all means in a given order – are sent to different channels
of the test system. The message sequence depicted below stands as an example
for the discontinuous test case description as it can be used in this case for the
AutomationDesk tool from dSPACE [3]. Again, we define the test of a cruise
control function. Besides the already known phi Brake input the brake pedal
flag BrakePedal is also read.

A possible hysteresis of the brake pedal recognition is tested. First, a rising
edge from 0 to 100 for the phi Brake input is created and then the ped min
value is set. The ped min value is the highest value in which the BrakePedal
output again takes on the value 0, provided that there is no hysteresis. The test
description to be represented in the TestML looks as follows:

1. Writing 0.0 to phi Brake
2. Waiting for time step seconds
3. Writing 100.0 to phi Brake, this way a rising edge from 0.0 to 100.0 is

created
4. Waiting for time step seconds
5. Calculation of ped value according to ped value = ped min − tol
6. Writing of ped value to phi Brake
7. Reading BrakePedal and saving of the value in the brake flag variable

The following automaton shows the implementation of the simulation by a
TestML automaton. Reading the model output (last point of list mentioned
above) is carried out by the capture element, which will not be depicted at this
point.

Initial

WriteWrite
write(phi_brake,
ped_min - tol)

Write

write (phi_Brake,0)
write

(phi_Brake,100)
Final

Wait

Timer t=0

Wait

Timer t=0

t>=time_step t>=time_step

Fig. 11. Specification of message based test sequences with TestML automata

Individual states of the automaton describe the activation of individual mes-
sages. Because of the use of timers, which can be defined locally on the automata,
the transitions between the states are time-controlled and define temporal dis-
tances between messages.

7 Summary and Outlook

TestML is a XML-noted test exchange language that is tailored towards the re-
quirements of model-based testing of embedded vehicle software throughout the

116 J. Grossmann et al.

course of development. The reason for this development can be found in the need
for test definitions, which can be reused during the whole development process,
both in different test phases and different test environments as well as in the
exchange between suppliers and the OEM. Thus, the aim of the language design
was to be able to map a spectrum as broad as possible of the test description
languages established in the automotive industry. With this, an exchange of tests
between different tool platforms for the MIL, SIL and HIL test is made possi-
ble. TestML supports, besides classical functional tests, also comparative test
approaches, such as regression testing and back-to-back tests, which are based
on the existence of recorded reference data.

Test scenarios capable of real-time use are an important functionality of HIL
test beds. As a major extension over most existing means for test description,
TestML provides language constructs for tests under real-time conditions. This
enables support of the entire development process by the test exchange language.

Special care was taken to provide a flexible test behavior description language
covering different levels of abstraction. The concept of hybrid automata used to
capture test behavior permits the mapping of common classes of automotive test
descriptions, including deterministic and reactive test stimuli with or without
temporal references as well as the use of recorded data streams as they accrue out
of test drives. The decision to map all test aspects on automata made it possible
to avoid an overloading of the exchange language with manifold constructs, which
ultimately would have led to semantically redundant definitions. We would like to
thank our participants in the IMMOS project for their contribution to TestML,
especially S. Sadeghipour and H.-W. Wiesbrock from ITPower Consultants, Prof.
H. Schlingloff and M. Friske from Fraunhofer FIRST.

References

1. Schäuffele, Zurawka (ed.): Automotive Software Engineering. Vieweg & Sohn Ver-
lag, Wiesbaden (2006)

2. National Instruments: Web pages of the National Instruments corporation (2007)
3. dSpace AG: Web pages of the dSpace corporation (2005)
4. Etas Group: Web pages of the Etas Group (2007)
5. Vector Informatik GmbH: Web pages of the Vector Informatik GmbH (2007)
6. MBtech Group: Web pages of the MBtech Group (2007)
7. IEEE: IEEE Std.1800-2005 - Standard for SystemVerilog Unified Hardware Design,

Specification and Verification Language (2005)
8. IEEE: IEEE Std.1850-2005 - IEEE Standard for Property Specification Language

(PSL) (2005)
9. IEEE: IEEE Std.1647-2006 - Standard for the Functional Verification Language ’e’

(2006)
10. Bergeron, J., Cerny, E., Nightingale, A., Hunter, A.: Verification methodology man-

ual for SystemVerilog. Springer, Heidelberg (2006)
11. SCC20 ATMLGroup: IEEE ATML specification drafts and IEEE ATML status

reports (2006)
12. ETSI: ES 201 873-1 V3.2.1: Methods for Testing and Specification (MTS). The

Testing and Test Control Notation Version 3, Part 1: TTCN-3 Core Language
(2007)

TestML - A Test Exchange Language for Model-Based Testing 117

13. Schieferdecker, I., Großmann, J.: Testing of Embedded Control Systems with Con-
tinous Signals. In: Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung einge-
betteter Systeme II, TU Braunschweig, pp. 113–122 (2006)

14. Schieferdecker, I., Bringmann, E., Grossmann, J.: Continuous TTCN-3: testing of
embedded control systems. In: SEAS 2006: Proceedings of the 2006 international
workshop on Software engineering for automotive systems, pp. 29–36. ACM Press,
New York (2006)

15. IMMOS Project: TestML schema definition version 1.0.3 (2006)
16. Conrad, M.: Modell-basierter Test eingebetteter Software im Automobil. PhD the-

sis, TU-Berlin (2004)
17. Conrad, M., Sax, E.: Mixed signals. In: Testing Embedded Software, pp. 229–249

(2003)
18. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algo-

rithmic approach to the specification and verification of hybrid systems. In: hybrid
systems, pp. 209–229 (1992)

19. Lehmann, E.: Time Partition Testing Systematischer Test des kontinuierlichen Ver-
haltens von eingebetteten Systemen. PhD thesis, TU-Berlin, Berlin (2004)

20. Grossmann, J., Mueller, W.: A Formal Behavioral Semantics for TestML. In: Proc.
of IEEE ISoLA 2006, Paphos Cyprus, pp. 453–460 (2006)

21. The MathWorks: Web pages of Simulink - Simulation and Model-Based Design
(2006)

	TestML - A Test Exchange Language for Model-Based Testing of Embedded Software
	Introduction
	Related Work
	The TestML Principles
	A Unified Format for Test Exchange
	Abstraction of Specific Test Systems
	Test Behavior

	Structure and Elements of TestML Test Descriptions
	The Test Interface
	Test Sequences
	Stimulation, Recording and Evaluation
	Data Types, Operators and Expressions
	Behavioral Constructs

	Mapping TestML Automata to Matlab Simulink
	Exemplary Use of TestML Automata
	Specification of Timed, Deterministic Test Stimuli
	Specification of Timed, Reactive Test Stimuli
	TestML Automata for Timeless Test Stimuli

	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

