
Generating Sound and Resource-Aware Code
from Hybrid Systems Models�

Madhukar Anand, Sebastian Fischmeister, Jesung Kim,
and Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Sciences

University of Pennsylvania
{anandm,jesung,lee}@cis.upenn.edu, sfischme@seas.upenn.edu

Abstract. Modern real-time embedded systems are complex,
distributed, feature-rich applications. Model-based development of real-
time embedded systems promises to simplify and accelerate the imple-
mentation process. Although there are appropriate models to design such
systems and some tools that support automatic code generation from
such models, several issues related to ensuring correctness of the imple-
mentation with respect to the model remain to be addressed.

In this work, we investigate how to derive sampling rates for dis-
tributed real-time systems generated from a hybrid systems model such
that there are no switching discrepancies and the resources spent in
achieving this are a minimum. Of particular interest are the result-
ing mode switching semantics and we propose an approach to handle
faulty transitions and compute execution rates for minimizing missed
transitions.

1 Introduction

Modern real-time embedded systems are complex, distributed, feature-rich appli-
cations. For example a car incorporates thirty to sixty micro-controller units [1]
and desired functionality includes automatic parking, automatic car coordina-
tion, and automatic collision avoidance. The development of such functionality is
time-consuming and difficult, since faults in the temporal or value domain may
lead to system failures, which in turn can lead to catastrophes with possibly hu-
man losses. Model-based development of real-time embedded systems promises
to simplify and accelerate the implementation process. This is because of its
promises such as formal guarantees and code generation. Several mathematical
models such as Timed Automata [2], Hybrid Systems [3], State-charts [4] have
been successfully applied to real-time embedded systems. For embedded con-
trol software, hybrid systems are an appropriate modeling paradigm because it

� This research was supported in part by NSF CNS-0509143, NSF CNS-0720703, NSF
CNS-0720518, FA9550-07-1-0216, OEAW APART-11059 and ARO W911NF-05-1-
0182.

M. Broy, I.H. Krüger, and M. Meisinger (Eds.): ASWSD 2006, LNCS 4922, pp. 48–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating Sound and Resource-Aware Code from Hybrid Systems Models 49

can be used to specify continuous change of the system state as well as discrete
transition of states [5, 6].

Although modeling and analysis play an important part in development of
applications, it is also essential to establish the same guarantees in the imple-
mentation of the model. In particular, it is imperative that the correspondence
between the model and the code is precisely understood. In keeping with this ob-
jective, our efforts are directed towards automatic and faithful code generation
from hybrid systems models.

Introduction to CHARON. Charon [7], is a tool for modular specification of
interacting hybrid systems based on the notions of agent and mode. For hierar-
chical description of the system architecture, Charon provides the operations
of instantiation, hiding, and parallel composition on agents, which can be used
to build a complex agent from other agents. The discrete and continuous be-
haviors of an agent are described using modes. For hierarchical description of
the behavior of an agent, Charon supports the operations of instantiation and
nesting of modes. Furthermore, features such as weak preemption, history reten-
tion, and externally defined Java functions, facilitate the description of complex
discrete behavior. Continuous behavior can be specified using differential as well
as algebraic constraints, and invariants restricting the flow spaces, all of which
can be declared at various levels of the hierarchy. The modular structure of the
language is not merely syntactic, but also reflected in the semantics so that it
can be exploited during analysis.

Code generation from hybrid system models. A problem for code generation from
verified models is to understand the relationship between the model and the code.
The model’s verification and analysis are only useful, if the generated code has
the same properties as the model. Several code generators can derive code from
a model, however, the relationship between model and the code using continuous
time is not their primary concern (c.f., [4,8] or commercial tools like Real-Time
Workshop or TargetLink). On the other hand, some academic code generators
ensure that the model and the code have the same properties (c.f., [9]), but the
issue remains challenging.

Code generation from hybrid systems models eventually involves assigning a
rate by which the continuous state evolves. In such a discretized hybrid systems
model, the state changes in a discrete manner according to the rate typically
assigned by the model designer. Further, the concurrency of the model is broken
in distributed implementations where delays in updates can result in semantic
differences. Realizing a faithful implementation of the model, therefore, involves
addressing all of these issues.

Dynamic elements in the model aggravate the problem of faithful implementa-
tion. Such dynamic elements are, for instance, battery power output, sensor qual-
ity, actuator precision, which change over time and with respect to the changing
environment. Current models rely on a steady environment and resource set. Our
research is motivated by the need to provide formal semantics and guarantees
in dynamic environments.

50 M. Anand et al.

1.1 Related Work and Problem Statement

Model-based automatic code generation has been an extensive research initiative
in recent years, in the industry as well as academia. Commercial modeling tools
such as RationalRose [10], TargetLink [11], and Simulink [12] also support code
generation and address the effect of errors in the code. However, their concerns
are largely limited to numerical errors occurring each step during simulation,
and the effect of such errors on to discrete behavior is not addressed rigor-
ously. Synchronous languages for reactive systems, such as Statecharts [4],
Esterel [13], and Lustre [14], also support code generation. However, they
do not support hybrid systems modeling. Shift [15] is a language for hybrid
automata that also also supports code generation, but the focus is on dynamic
networks. A complementary project is the time-triggered language Giotto that
allows describing switching among task sets so that timing deadlines can be spec-
ified in a platform independent manner separately from the control code [16].
This concern is orthogonal, and in fact, Charon can be compiled into Giotto.

Model-based development of embedded systems is also promoted by other
projects with orthogonal concerns: Ptolemy supports integration of heteroge-
neous models of computation [8] and GME supports meta-modeling for develop-
ment of domain-specific modeling languages [17]. Girard et al [18] also consider
hybrid systems modeling of embedded applications, however, their focus is on
verification of safety properties and not code generation. There also exist other
efforts towards model-driven development of embedded software from models
other than hybrid systems(c.f., [19]). In a closely related work, Stauner [20]
discusses at length, the discrete refinement of hybrid automata, considering im-
plementation effects such as sampling errors and its impact on verification.

There are several modeling tools for hybrid systems such as Charon [7],
Ptolemy [8], Shift [15], the Matlab/Simulink Hybrid Toolbox [21], Hytech [22],
and d/dt [23]. However, most of them are only modeling tools and do not sup-
port automatic-code generation. A listing of many tools and their description is
available at [24].

Code generation from hybrid models was introduced with focus on single-
thread execution in [3]. This was extended to multi-threaded models accounting
for faulty transitions in [25]. and distributed systems in [26,27]. All these previous
works however, are not aware of the resources available on the implementation
platform and therefore need manual parameter assignment in the code.

Contributions. In this paper, we extend previous, related work to consider the
problem of calculating sampling rates based on the platform resource model.
Specifically, we investigate how to derive criteria to preserve the model’s switch-
ing semantics based on the platform resource model to ensure that there are
no faulty or missed transitions. Our ideas are demonstrated in the context
of the modeling language CHARON, where we propose an additional step in
the code generation module. This additional step involves (1) specifying a plat-
form resource model for the available hardware and its properties and (2) using

Generating Sound and Resource-Aware Code from Hybrid Systems Models 51

this model to compute the optimal sampling rates so that switching semantics
are preserved while expending the least amount of resources in the process.

2 Basic Model and Assumptions

A hybrid model consists of a real vector x denoting the continuous state, a finite
set of discrete states P that associates x with a differential equation ẋ = fp(x).
For each p ∈ P , and a set of transitions E ⊆ P × P . The continuous state x
evolves according to the differential equation ẋ = fp(x) when the current discrete
state is p. When the current discrete state is changed from p to p′, x is optionally
reset to a new value R(x, p, p′) defined by a map R : R

n × P × P → R
n, and

continues evolution in accordance with a new differential equation ẋ = fp′(x)
associated with p′. To control the discrete behavior, discrete transitions can be
guarded by predicates over x and externally updated variables. That is, a set
G((p, p′)) ⊆ R

n for each (p, p′) ∈ E specifies the necessary condition on the
continuous state that the transition (p, p′) can be taken. Note that a discrete
transition is not necessarily taken immediately even if the guard is true. To
enforce a transition, an invariant set I(p) ⊆ R

n is associated for each p ∈ P to
specify the condition that the discrete state can stay in p (that is, the condition
that x will follow ẋ = fp(x)). An outgoing transition should be taken before the
continuous state goes out of the invariant set.

In this paper, we assume that there is a network of hybrid automata (called
agents) communicating via a set of shared variables. We will denote a single agent
by A = (A, SV) where A is the hybrid model of the agent, and SV is the set of
shared variables. A system of communicating hybrid agents is represented by the
tuple C = 〈(A, SV)1, . . . , (A, SV)n〉. We assume that every s ∈ SV is updated
by a unique agent, and it follows dynamics such that ṡ ∈ [L1, L2], L1, L2 ∈
Q \ {0}. Such linear automata are of practical significance, as hybrid systems
with very general dynamics can be locally approximated arbitrarily closely using
rectangular dynamics [28]. The transition guards at a location are assumed to
be such that at most one of them is enabled at a time.

Example 1. Consider the example of vehicle coordination where we assume that
there are two vehicles. The first vehicle is the leader and follows the dynamics
depicted as agent A1 in Figure 1. x1 denotes the distance of the leader from the
baseline, v1, its velocity. The leader’s dynamics are determined by the control
function u. The second vehicle trails the leader and maintains a safe distance
from it. The dynamics of this vehicle is described as the agent A2. Its distance
from the baseline is given by x2, and velocity by v2. If it is closer than dmin

from the leader, it slows with a rate v̇2 = −1 and if it is farther than dmax,
it accelerates with a rate v̇2 = 1. The invariant in the state q1 is x1 − x2 ∈
[dmin − η, dmax + η], in q2 is x1 −x2 ≥ dmin − η, and in q3 is x1 −x2 ≤ dmax + η,
where η is the tolerance parameter. It is assumed that, there is an infrastructure
for communicating variables between the vehicles and that, the transmission
delay is bounded and known. 	

52 M. Anand et al.

G3 : x1 − x2 ∈ (dmin, dmax)

q1 q2

A2

v̇1 = u

q3

ẋ2 = v2

v̇2 = 0
ẋ2 = v2

v̇2 = 1

A1

q0

ẋ1 = v1

G1 : x1 − x2 ≥ dmax

G2 : x1 − x2 ≤ dmin

G4

G5G6

G5 : x1 − x2 ≥ dmax

G6 : x1 − x2 ≤ dmin

G4 : x1 − x2 ∈ (dmin, dmax)

v̇2 = −1
ẋ2 = v2

Fig. 1. A system with two agents

We now formally define the resource model and the platform on which the code
will be implemented. Implementation of the continuous model involves assigning
a suitable sampling rate to every agent. Such a discretization of the continuous
model can be defined as,

Definition 1. (DCHA) Given a system of communicating hybrid agents C, and
a relative period of update of variables ρ, ρ ∈ Z

+, the discretized system of
communicating agents (DCHA) is given by D = 〈(A, SV, ρ)1, . . . , (A, SV, ρ)n〉,
such that gcd(ρ1, . . . , ρn) = 11,2. 	

In our notation, we denote the maximum difference between the sampling rates
of agents as skew3.

Note that the DCHA is the model implemented on actual platforms. We
will therefore, give guarantees of execution with reference to this model. For a
rigorous definition of system of communicating agents and their semantics, we
refer the reader to [25].When the discretized model is mapped to a real time task
in the code-generation environment, each agent is assigned a period of execution.
These periods of execution are assigned taking into consideration correctness
guarantees and the resources available at each node. The exact procedure for
assigning periods is elaborated in Sections 4.

Our objective in incorporating the resource model (i.e., model of memory,
energy, CPU,etc) in addition to the hybrid model is that, we can generate a
minimal sampling frequency that can be supported on the platform. This opti-
mum is calculated by ensuring the model semantics and conserving the resources
available. Therefore, we define a resource as consisting of a utilization function
and a specification of energy utilization for every operation.

Definition 2. (Resource) A resource R is defined by the tuple 〈id, U, E〉, where,
id ∈ Z

+ is a unique identifier of the resource, U is the maximum amount of uti-
lization, and an optional field E which indicates the amount of energy consumed
per unit of utilization. A node N is defined as a set of interacting resources. 	

1 Greatest common divisor.
2 This assumption is not necessary but introduced to keep the discussion simple.
3 We acknowledge that our definition here differs from the standard definition of skew.

However, our use of the term is motivated by similar considerations.

Generating Sound and Resource-Aware Code from Hybrid Systems Models 53

The definition of platform consists of a mapping between the model and the
node that executes the code corresponding to that model, the communication
delay involved, and finally a quantum of execution supported at each node. The
quantum is defined by how often a computation can be performed on any node.

Definition 3. (Platform) A platform P is defined as the tuple 〈N , M, φ, ν〉
where N is a system of nodes, M : A → N is a function that maps an agent to
a node on which it is to be executed, φ is a map that takes as input the agent ids
and returns the bound on communication delay between two agents in A, and ν
is the baseline period, i.e., the quanta of the period of execution of any agent.

Note that we assume a underlying reliable communication mechanism The ab-
stractions for platform and code consider only the basic of all the actual im-
plementation effects and make several simplifying assumptions. For instance,
jitter, clock drift, message loss, and other errors in the system, which are of-
ten observed in real systems, have not been considered here. These effects can
potentially weaken some of the results presented in this work. The aim of this
work however, is to establish a sound theory as a first attempt at categorizing
some of the implementation effects. More artifacts of the implementation can be
incorporated into the model at the cost of more involved analysis.

Example 2. Consider the vehicle coordination system with two agents as shown
in Figure 1. For the trailing vehicle (V2), the resources could be a battery, the
CPU and the sensor for tracking the leader(V1). The resource model for the
vehicle V2 can thus be represented as,

V2 id Umax E
Batt1 1000mAh -
CPU 5Mhz 0.001J/op

Sensor1 1kHz 0.2J/sample

The target platform here consists of two nodes, the leader and the trailing vehicle,
and if we assume no communication delays, it is described as 〈{V1, V2}, M,
φ(V1, V2)〉, where M = {A1 → V1, A2 → V2}, and φ(Ai, Aj) = 0. The baseline
period (quantum of execution) is the smallest sampling period that could be
supported. For example, we could have ν to be 0.01. 	

3 Code Generation from Hybrid System Models

This section gives a brief overview of the procedure of code generation from
hybrid models. We first present translation of continuous behavior specified by
differential equations and algebraic equations, and then explain translation of
discrete actions specified by guarded transitions. Later in this section, we discuss
the issue of discrepancy between the model and the generated code, real-time
resource concerns and choice of correctness criteria. For more details on code
generation, we refer the reader to [3, 25].

54 M. Anand et al.

3.1 Code Generation Procedure

A differential equation of the form of ẋ = f(x) specifies continuous change of
variable x at the rate specified as the first derivative f(x) of x with respect to
time (i.e., dx/dt = f(x)). Continuous change of a variable can be simulated by
stepwise update of the variable based on a numerical method that computes
an approximate value of the variable after a discrete time step (e.g., Runge-
Kutta method [29]). The simplest numerical method is the one known as Euler’s
method, which projects the value of the variable at the next time step through
linear extrapolation. For example, a differential equation ẋ = 2 is translated into
an assignment statement x := x + 2 × h, where h is the step size. In fact, no
more sophisticated method is necessary if the right-hand side of the differential
equation is a constant.

Once the differential equations are solved, algebraic equations are evaluated
to reflect the change due to differential equations. The general form of algebraic
equations is y = g(x). An algebraic equation can be implemented by an assign-
ment statement of the same form. That is, an algebraic equation y = g(x) is
simply translated into an assignment of the form y := g(x).

Discrete actions of hybrid automata specify instantaneous switching of system
dynamics and optional reset of variables. Discrete actions are specified by tran-
sitions between positions, where each position defines different dynamics. The
transition has a guard that specifies the necessary condition for the transition
to be taken, and may have optional assignments to variables that are performed
at the moment when the transition is taken. When a transition is taken, differ-
ential equations and algebraic equations defined in the source position become
no longer active, and those defined in the destination position take effect imme-
diately.

The guard in the hybrid system model enables or disables a transition, rather
than immediately triggers a transition in hybrid systems models. This means
that enabled transitions may be taken delayed as long as the invariant is satis-
fied. Conceptually, transitions are non-deterministic in the model, and the im-
plementation determines exactly when a transition is taken. An obvious policy
is an urgent transition policy where a transition is taken as soon as the guard
evaluates true. We have proposed a transition policy what we call instrumenta-
tion [25] that enforces transitions to be taken some time Δ after the transition
is enabled but no later than Δ before the transition is disabled. The value of Δ
is chosen such that all faulty transition possibilities are eliminated (Section 4.1).
Yet another possibility is to enforce a transition once it evaluated to be enabled.
We call such a policy an eager transition policy. Surely, the urgent transition
policy is an eager transition policy. The instrumented transition policy is an ea-
ger transition policy if the instrumented guard set is a non-empty set. We only
consider an eager transition policy in this paper.

3.2 Switching Discrepancies in the Code

There are a number of issues, such as ensuring the switching semantics and faith-
ful translation of continuous dynamics, that need to be addressed to provide

Generating Sound and Resource-Aware Code from Hybrid Systems Models 55

guarantees in the generated code. Here, we focus on preventing switching dis-
crepancies. The continuous semantics of the model are implemented in the code
with the help of numerical methods which introduce an error due to discretiza-
tion in addition to the roundoff and truncation errors on target platforms. These
errors along with the order of scheduling of the reads may cause a transition to
be falsely enabled. If such a faulty transition is taken, the dynamics of the sys-
tem may be completely different from the intended model. The example below
highlights such a possibility.

Example 3. (Faulty Transition) Consider the vehicle coordination system in Ex-
ample 1. Let us say that the relative period of update for agents A1 and A2 be
(5, 3) and the actual periods of updates be 0.1s and 0.06s, respectively. Also, let
u = 2, dmin = 0.1, dmax = 0.5, and initial positions of vehicles be x0

1 = 0.3072
and x0

2 = 0.2, from the baseline, initial velocities v0
1 = 0, v0

2 = 0, the commu-
nication delay φ(A1, A2) = 0.03, and the current states of agents be q0 and q2.
Then, a possible run of the system is,

t x1(A1) x1(A2) x2(A2)
0.06 0.3072 0.3072 0.2018
0.10 0.3172 0.3072 0.2018
0.12 0.3172 0.3072 0.2072
. . .

where xi(Aj) denotes the value of variable xi on agent Aj . Notice that at time
0.12, the difference between vehicles is 0.3172 − 0.2072 = 0.11(> 0.1), but the
estimated distance at A2 is 0.3072−0.2072 = 0.0956 < 0.1 and the system makes
a faulty transition to q3. 	

Although the above example indicates a faulty transition, since the transition is
made to q3 in which the trailing vehicle decelerates, it is not critical to ensuring
safety. However, in some cases, if the system makes a faulty transition to an
accelerating state q2, then, the trailing vehicles accelerates. This is critical to
safety as the gap between the vehicles decreases in this case. The example below
illustrates this.

Example 4. (Faulty Transition) Now consider that the relative period of update
for agents A1 and A2 be (2, 1) and the actual periods of updates be 0.2s and 0.1s,
respectively. Also, let dmin = 0.1, dmax = 0.2, and initial positions of vehicles
be x0

1 = 0.19 and x0
2 = 0.1 from the baseline, initial velocities v0

1 = 0.1, v0
2 = 0.2,

the communication delay φ(A1, A2) = 0.01, and the current states of agents be
q0 and q3. The first vehicle reverses its direction at v̇2 = −1 at time 0.1s. Then,
a possible run of the system is,

t x1(A1) x1(A2) x2(A2)
0 0.19 0.19 0.1

0.1 0.21 0.19 0.1
0.2 0.20 0.21 0.11
. . .

56 M. Anand et al.

At time 0.2, the difference between vehicles is 0.20 − 0.11 = 0.09(< dmax), but
the estimated distance at A2 is 0.21− 0.11 = 0.1(= dmax) and the system could
a faulty transition to q2. Since q2 is an accelerating state, this transition reduces
the distance between vehicles, potentially causing a collision. 	

Yet another possibility for switching errors is that of missed transitions. Insuffi-
cient sampling rates, choice of scheduling of reads, etc., may cause a transition
to be missed. Missing some transitions may cause the system to end up in a
erroneous state. We illustrate this with an example below.

Example 5. (Missed Transition) Consider the system in Example 1. Let the rel-
ative periods of execution be (5, 3), the actual periods of update (0.25s, 0.15s),
dmin = 0.25, dmax = 0.5, the control parameter u = 0. x1 = 0.48, v1 = 5,
v2 = 4.5 at t = 0.15, and the current state of A2 be q2. Further, let d = x1 − x2,
ḋ = ẋ1−ẋ2 ∈ [0.45, 0.5]. The guard G4 is then the condition d ∈ (0.25, 0.5) which
on instrumentation will become d ∈ (0.25+0.1×0.5, 0.5−0.1×0.5) = (0.3, 0.45)
as the maximum skew is 0.1, and L2 = 0.5. We would then have a run of the
system as,

t x1(A1) x2(A2)
0.15 0.48 0.0
0.25 0.98 0.0
0.30 0.98 0.6862
. . .

We see that the transition from q2 to q1 is missed here, and at time t = 0.3s,
the system transits to q3. 	

Switching can also be affected by resource constraints and its dynamic nature.
For example, as the battery wears off, it may not yield the same output causing
a deadline miss of some task. If the tasks scheduled to run do not meet the
deadlines, it may affect the dynamics which in turn could induce faulty transi-
tions. To counter this, in our proposed approach, we start with an assignment of
relative periods to different agents. From these relative periods, and the current
estimates of resources, the actual periods of execution are synthesized. We choose
these actual periods so that these correspond to the least amount of energy used
while retaining the guarantees of switching behavior.

3.3 Correctness Criteria

The generated code and the model can be termed equivalent if the code exhibits
a trace that is also a trace in the model. However, to account for delays in
communication and skew due to different rates of execution in the code, we
relax this requirement and define a relative faithful implementation. Under this
relaxed form of correctness, the code exhibits a trace of the model, but the state
of the model is entered at a later time. This can be captured formally as,

Definition 4. (Relative Faithful Implementation) Let V C be the set of all vari-
ables and αx be the maximum bound on the error of a variable x. Given a trace

Generating Sound and Resource-Aware Code from Hybrid Systems Models 57

of states of the code K for an agent Aj, 〈q0, q1, . . .〉, at physical timestamps
〈clk0, clk1, . . .〉, if, ∀clk,

1. ∀x ∈ V C, |xD(lt) − xK(lt)| < αx, where xK and xD represent the value of
variable in the code and the model respectively, and lt, the logical time in the
code.

2. ∀j, ∃qD, qK = qD , (ltD − ltK) < φj(ltK)+ ϕ(ltK) where qK is the state of the
code of logical time ltK, at physical time clk, qD is the projection of the state
of the model onto the code for Aj at logical time ltD, φj = maxi φ(i, j) and
ϕ is the maximum skew due to different rates of updates at logical time ltK.

then, code for Aj is a relative faithful implementation. If ∀j, Aj is a relative
faithful implementation, then K is a relative faithful implementation of D. 	

Informally, a relative faithful implementation says that (1) the error in continuous
variables is bounded , and (2) the difference between the state of the model and the
implementation can be off by at most the sum total of worst case communication
delay and skew in update of variables. Under this relaxed scheme of things, the
implementation can enter the state of the model after updates are received (which
can arrive at worst φj(ltK) + ϕ(ltK) late). We now present the framework that
would help ensure that the implementation is relative faithful to the model.

4 Proposed Implementation Framework

In this section, we propose a framework for code generation with an emphasis
to avoid switching discrepancies (faulty and missed transitions) and conserve re-
sources while giving these guarantees. The Figure 2 provides an overview of how
the model-driven development process in our framework with CHARON: first,
the developer creates the application-specific hybrid systems model by program-
ming agents, modes, and mode changes and by defining relative update periods.
Then he specifies the platform resource model, which includes, for instance, an
agent-to-node assignment, each node’s hardware properties, power levels, com-
munication delays, and agent’s worst-case execution times. This resource model
is then fed into a constraint solver, which computes the optimal agent’s sam-
pling rates to prevent faulty and missed transitions as described in the following
sections. Note that we do assume that the base period of updates of variables
in an agent (ρ) are provided beforehand, and we compute the actual period of
updates (which is a multiple of base periods) depending on available resources.

GenerationAppl. hybrid
system model

Constraint
solver

CHARON
generated code

resource model
Platform

Fig. 2. Resource-aware Code-generation Framework

58 M. Anand et al.

Before we elaborate on computing the optimal rates of sampling of agents, we
highlight the solution to avoiding faulty and missed transitions.

4.1 Preventing Faulty Transitions

A faulty transition is a violation of equivalence of discrete states in a faithful
implementation. It may occur due to the following reasons : 1) errors in the
variables cause the guard to be evaluated true that should otherwise be false,
or 2) variables are updated at different times due to scheduling and/or different
update frequencies, causing the guard to be evaluated to be true. To prevent this
from occurring, we have proposed a technique what we call instrumentation. The
essence of that technique is to refine the model by tightening transition condi-
tions according to the maximum errors due to numerical and different sampling
rates. The approach enforces that the transitions in the code are consistent with
the model.

Errors in variables could be due to roundoff, truncation or be timing-induced
due to the different rates of execution of the agents. Roundoff and truncation
errors are assumed to be given, the communication delay is obtained by mon-
itoring and the maximum skew, denoted by ϕ due to dissimilar periods can
be computed by, ϕ(Ai, Aj)max = maxn∈[1..N]

(
nhj −

⌊
nhj−φ(Ai,Aj)

hi

⌋
hi

)
where

N = LCM(hi,hj)
hj

4, hi and hj are the step sizes in the sampling of Agent Ai and
Aj , respectively.

Definition 5. (Instrumentation) Let p be a state of agent Aj with EAj (p) being
the set of discrete transitions, and the interval under consideration be [lt, lt+Δ].
If the guard set g ∈ GAj (e), e ∈ EAj is of the form, g =

∧
i xi ∈ [lxi , uxi], the

invariant IAj (p) =
∧

i xi ∈ [l
′

xi
, u

′

xi
], ϕ and φ(Ai, Aj) compute the skew and delay

between the agents, then, the instrumented guards and invariants are given by,

ginst =
∧
i

xi ∈
[
lxi + γp,xi + L2xi

δxi , uxi − γp,xi − L2xi
δxi

]
(1)

Iinst =
∧
i

xi ∈
[
l
′

xi
+ γp,xi + L2xi

δxi , u
′

xi
− γp,xi − L2xi

δxi

]
(2)

where δxi = ϕ(Ai, Aj)+φ(Ai, Aj), xi is updated by agent Ai, with ẋi ∈ [L1xi
, L2xi

],
and γp,xi is the roundoff and truncation error in xi in the state p. 	

We now illustrate how instrumentation prevents faulty transitions with the fol-
lowing example.

Example 6. Consider the system in Example 3 and the time interval under con-
sideration be [0,1]. If we denote d = x1 −x2, then, ḋ = ẋ1 − ẋ2 = 2t− t = t. Since
t ∈ [0.05, 1], we can say that ḋ ∈ [0.05, 1]. Now, given that φ(A1, A2) = 0.03, and

4 Least common multiple.

Generating Sound and Resource-Aware Code from Hybrid Systems Models 59

the skew at t = 0.12 is 0.02, and assuming the bound on roundoff and trunca-
tion errors is 0.001, the transition guard, x1 − x2 ≤ 0.1 upon instrumentation
becomes x1 − x2 ≤ (0.1 − 0.001− 1 · (0.02+0.03)) = x1 −x2 ≤ 0.049. Therefore,
the faulty transition at t = 0.12 can be prevented. 	

The theorem below formally states that instrumentation prevents faulty transi-
tions. For a sketch of the proof, we refer the reader to [25].

Theorem 1. Let the code K of the model D be implemented on a distributed
platform. Let for every agent Aj , p be the current state with IAj (p) the set of
invariants in that state, and GAj (e) the set of guards. If every guard (in GAj (e))
that evaluates to true is instrumented as given in Definition (5) then there will
be no faulty transitions. 	

Notice that in Example 6, the instrumentation reduces the guard interval sub-
stantially. In general, it is possible that with the shrinking of the guard set, the
transition is missed completely. In the next section, we will analyze and derive
a condition to check for missed transitions and possibly avoid them by sampling
at a higher rate.

As a final note in this section, we add that while instrumentation reduces the
guard set, it does not affect switching in any other way. In particular, if the
original interval was such that only one transition was enabled from the location
at any time, the property remains valid with instrumented guards as well as it
is a subset of the original interval.

4.2 Preventing Missed Transitions

Missed transitions are transitions that are enabled in the model but not taken
in the code. They occur either because the guard is not evaluated sufficiently or
scheduling affected the order of evaluation. In general, a transition will not be
missed, if it stays enabled long enough to be detected. The theorem below gives
a sufficient condition to prevent missed transitions.

Theorem 2. Let the code K of the model D be implemented on a distributed
platform, hj be the period of sampling in agent Aj. Let I be an instrumented
invariant in a state and g =

∧
i xi ∈ [lxi , uxi], g ⊆ I represent the instrumented

guard of a transition in that state. If lt represents the current logical time at Aj,
xi(lt) the current estimate of xi at Aj , and Txi are defined as,

Txi(k) =

⎧
⎨
⎩

[
lt + lxi

−xi(lt)
Lkxi

+ δmax, lt + uxi
−xi(lt)
Lkxi

+ δmin

]
if (xi(lt)<lxi), ẋi >0[

lt + uxi
−xi(lt)
Lkxi

+ δmax, lt + lxi
−xi(lt)
Lkxi

+ δmin

]
if (xi(lt)>uxi), ẋi <0

k = 1, 2, then, the transition will not be missed if,
∥∥∥∥∥∥
⋂
i

⎛
⎝ ⋂

k=1,2

Txi(k)

⎞
⎠

∥∥∥∥∥∥
≥ 2hj (3)

60 M. Anand et al.

where δmin = ϕmin + φ(Ai, Aj), δmax = ϕmax + φ(Ai, Aj) between agents Ai

and Aj, and ẋi ∈ [L1xi
, L2xi

], then, the transition will be detected and will not
be missed if they are taken as soon as enabled.

Proof. (sketch) We proceed to sketch the proof of the theorem in two parts.
First, we will derive a condition on the overlap of guard and invariant that will
allow us to detect the enabling of the transition. Then, given that the guard is
of the form g =

∧
i xi ∈ [lxi , uxi] , we will derive a sufficient condition to meet

this overlap, based on the periods of execution of agents.
To prove the first statement, assume that we are given a task-period set

Ω = {(τi, hi)}1 ≤ i ≤ n. Each task τi will be treated as a periodic task with
period hi executing in a distributed environment. Let the execution time of τi

be ηi and this is scheduled to run every hi time units. Note that ηi here includes
both execution time and also perhaps communication delay associated. Also, we
speak of time in the reference frame at the processor executing task τi. Therefore,
in the worst case, τi might be scheduled at time jhi and a guard might be enabled
(in the code, perhaps on a different processor) immediately after that, i.e., at
time jhi + ε, ε > 0 and be detected only when τi is next scheduled to run which
may be as late as (j +2)hi − ηi. Since we assume eager switching, this transition
will be taken at (j +2)hi −ηi. Thus, if a guard is not enabled at (j +2)hi −ηi, it
will go undetected and this will result in a missed transition. Hence, the guard
should stay enabled for at least ((j + 2)hi − ηi) − (khi + ε) = 2hi − ηi − ε time
units. Since ε is arbitrary, to be safe, we can claim that it should stay enabled in
the code for 2hi time units so that the transition is not missed. This is illustrated
in Figure 3. Now, consider the guard set g =

∧
i xi ∈ [lxi , uxi]. Let the current

���
���
���
���

���
���
���
���

G enabled

j · hi (j + 1) · hi (j + 2) · hi

ηi

Fig. 3. Worst case scenario

logical time be lt and current values of variables at agent Aj given by xi(lt).
We will consider the case where xi(lt) < lxi and xi(lt) > 0, the argument for
the case where xi(lt) > uxi and xi(lt) < 0 is similar. Since ẋi ∈ [L1xi

, L2xi
], ẋi

can utmost grow as L2xi
. The guard on xi, ([lxi , uxi]) will then be enabled for

the time interval T2 = [lt + lxi
−xi(lt)
L2xi

+ δmax, lt + uxi
−xi(lt)
L2xi

+ δmin], assuming
that in the worst case, the notification for enabling of the guard gets to Aj in
time δmax and the notification for exiting comes at δmin. This is true because
xi is continuous and the guards are assumed to be disjoint in time, otherwise
there could be resets and the dynamics of xi would be different. Similarly, if ẋi

grows as slow as L1xi
], then, it will be enabled for the time interval of T1 =

[lt + lxi
−xi(lt)
L1xi

+ δmax, lt + uxi
−xi(lt)
L1xi

+ δmin]. Therefore, if T1 ∩ T2 �= ∅, then

Generating Sound and Resource-Aware Code from Hybrid Systems Models 61

it represents the time interval for which guard on xi will be enabled. Hence
considering the time interval for each of the xi’s, we can find the time interval
when the guard will definitely be true.

From the above arguments, we can conclude that a Condition (3) gives a
sufficient condition for preventing missed transitions, if the transitions are taken
as soon as they are detected. 	

The example below illustrates a case where a transition is missed and the suffi-
cient condition is not met.

Example 7. Consider the case of Example 5. As a quick check, we find that if
the system evolves as fast as 0.5, then T2 = (0.48−0.45

0.5 + 0.1, 0.48−0.3
0.5 + 0.05) =

(0.16, 0.41). Similarly, T1 = (0.48−0.45
0.45 + 0.1, 0.48−0.3

0.45 + 0.05) = (0.167, 0.45). We
find that ‖T1 ∩ T2‖ = 0.243 �≥ 2(0.15) does not satisfy the sufficient condition
for preventing missed transitions. However, if we choose the period of execution
to be 0.12, we can see that the transition will not be missed. 	

With the Theorems 1 and 2, we have a sufficient condition to ensure a relative
faithful implementation that we record in the following corollary.

Corollary 1. Let the code K of the model D be implemented on a distributed
platform. If the code for every agent Ai every G ∈ GAj is dynamically instru-
mented so that G and corresponding invariant I satisfy the condition of overlap
in Theorem 2, and all variables in K have bounded error, then, K is a relative
faithful implementation of D. 	

4.3 Minimal Periods of Execution

In this section, we describe an algorithm to choose minimal periods of execution
to avoid missing a transition and meeting the resource constraints. The main idea
of the approach described as Algorithm 1 is to scale the relative periods of exe-
cution so that they meet the supported level of utilization. Specifically, as we are
interested in finding the minimal periods of execution, we start with the smallest
possible assignment and keep incrementing the periods till the supported level
of utilization is met. Note that our algorithm needs to be run every time the
available resource changes. We assume that the run time is instrumented to take
this into consideration and call the procedure appropriately.

This is implemented in the function SMALLEST-K. Here we consider schedu-
lability under EDF and Rate Monotonic (RM) algorithms. The function takes
as input α, that is the level of utilization permissible with the supported levels
of energy, and returns the smallest multiple of the base period of update k for
which all the agents mapped onto a particular node (N) can be scheduled. We
assume that voltage scaling techniques (c.f., [30]) can be used to fix a level of
utilization of the CPU. In addition to checking schedulability, we assume that a
function RESOURCE-CHECK is implemented that checks to see if agents are
scheduled with a particular period and other resource constraints. For exam-
ple, the function could check to see, if the frequency of reading of sensor data

62 M. Anand et al.

is less than the maximum permissible sampling frequency of the sensor. If an
energy budget is associated, then it can be used to check whether the budget is
met. If a particular k does not satisfy schedulability or resource constraints, it is
incremented and then tested again. Note that increased k results in longer pe-
riods of execution. In the algorithm, Wj and ρj denote the maximum execution
requirement and the sampling rate of Agent Aj which we assume are fixed.

Algorithm 1. Algorithm to find periods of execution of agents.
SMALLEST-K (α,N):
1: k ← 1
2: CASE-EDF:
3: while

((∑
M(j)=N

Wj

k·ρj
�≤ α

)
∨ (RESOURCE-CHECK(N) �= true)

)
do

4: k ← k + 1
5: end while
6: CASE-RM:
7: J = {j1, . . . jn|M(ji) = N}
8: while

((
∀j ∈ J,

∑
j�

ρj

ρ1
	 · Wj �≤ α · k · ρj

)
∨ (RESOURCE-CHK(N) �= true)

)
do

9: k ← k + 1
10: end while
11: return k

SELECT-PERIODS-NODE (N):
1: kNmax ← SMALLEST-K(αmin)
2: kNmin ← SMALLEST-K(αmax)
3: return (kNmin , kNmax)

SELECT-PERIODS (〈p1, . . . , pn〉):
1: (kmin, kmax) ← (0, 0)
2: for N ∈ N do
3: (k1, k2) ← SELECT-PERIODS-NODE(N)
4: (kmin, kmax) ← (max(kmin, k1), max(kmax, k2))
5: end for
6: k ← kmax

7: while k ≥ kmin do
8: if (CHECK-MISSED(〈p1, . . . , pn〉, k)) then
9: return k

10: end if
11: k ← k − 1
12: end while

The function SELECT-PERIODS-NODE returns the maximum and mini-
mum possible utilization and returns the range of scaling factor k possible on
that node. The KNmin corresponds to the smallest periods possible on the node
N with the supported amount of resources on node N . The SELECT-PERIODS
function takes as input the present set of states 〈p1, . . . , pn〉 and computes the
possible values of k for every node and computes the range of k’s possible for all

Generating Sound and Resource-Aware Code from Hybrid Systems Models 63

the nodes. This range is represented by (kmin, kmax). To find the minimal value
of k, we start iterating from kmax since it represents the least utilization level.
At each iteration, we check to see whether choosing that value of k would result
in a missed transition. The function CHECK-MISSED implements this check.
Thus, at the end of the while loop (Steps 7-12), we would have found a k which
can be supported on all nodes while being guaranteed for no missed transitions.
Once we have found the value of k, we can supply the parameters to the code.

Example 8. (Room Heater) Our example for illustrating the algorithm is
adapted from the heater benchmark for hybrid systems verification [31]. The
benchmarks considers the case of a set of rooms being heated by limited num-
ber of heaters that are shared by the rooms. The number of heaters is strictly
less than the number of rooms. In our example, we consider two rooms and
one heater. The model of this system, described in Figure 4 consists of two
thermostats and a heater. The temperature in a room is assumed to vary as,
ẋi = cihi +bi(u−xi), i = 1, 2 where hi is 1 if the heater is in the room, otherwise
0, u is the outside temperature, and ci, and bi are constants. The heater model
is a pure switched system. If (xi ≤ geti) ∧ (xj − xi ≥ difi), then the heater is
moved from room j to room i, where i = 1, 2; j = 2/i.

G2 : (xi ≤ offi) ∧ (hi = 1)

Thermostat

ẋi = bi(u − xi)

bi(u − xi)

ON OFF
G1 : xi ≥ oni

ẋi = ci+

Fig. 4. The hybrid system model of the thermostat

The system is implemented on two nodes. There are two agents, one to check
whether the heater has to be moved (A1), and the other for switching on or
switching off the heaters(A2). The controller in the room with the heater runs
both of them, and the controller in the other room runs only the second agent.

Let us assume that the relative periods of the two agents are (3, 1) and the
relative worst case execution times be (2, 1). Let us also assume that the lev-
els of utilization are 0.25 and 0.5. In the room with the heater (say room 1),
the controller has to schedule both the agents so, we have k1min is such that

1
k1max

(2
3 + 1

1) ≤ 0.5 which yields k1min = 4. Similarly with utilization 0.25, we
can get k1max = 7. In room 2, since there is only one agent to be scheduled, we
have, k2min is such that 1

k1max
(1
1) ≤ 0.5 which yields k2min = 2. Similarly with

utilization 0.25, we can get k2max = 4. Therefore, after taking the maximum over
both nodes, we get (kmin, kmax) = (4, 7). The agent A2 in room 1 is waiting on
transition G1 and in room 2 is waiting on transition G2. It can be seen that k = 7
that corresponds to utilization 0.25, indeed satisfies the sufficient condition for
no missed transitions. 	

64 M. Anand et al.

5 Conclusions and Future Work

We have proposed a framework for generating resource-aware code from hybrid
systems models with guarantees of no switching discrepancies. Our approach is
an effort to bridge the semantic gap between the model and the code due to
discretization and resource constraints. We accomplish this by incorporating a
resource model of the target platform in addition to the application model and
generating parameterized code from this model. The parameters are supplied
at runtime by monitoring the state of the resources and checking for missed
transitions.

There are potentially many directions of future work. We hope to complete
the implementation of the framework. In the paper, we have largely focused
on power and CPU as the main resources. We would like to extend it to more
comprehensive set of resources. Also, in the present scheme of things, a change in
resource levels or transition on any agent can trigger a recalculation of the periods
of all the agents. This is so because of the assumption that all the agents have
relative periods of execution. An alternative, would be to start with constraints
on periods, such as ρ1 ≤ 2ρ2. This way, we would only need to recompute the
periods whenever the constraints are about to be violated. Another possible
extension to the framework, would be to mask faults and failures or consider
graceful degradation by viewing it as an extreme case of resource dynamism.
Finally, we hope to use ideas from runtime monitoring [32] to monitor and steer
the system towards desirable behavior.

Acknowledgments. We would like to thank anonymous referees for their sug-
gestions in improving this paper.

References

1. Martin, N.: Lock who’s talking: Motorola’s c.d. team. LockSmart Online Article
(1998)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
enc 126, 183–235 (1994)

3. Alur, R., Ivančić, F., Kim, J., Lee, I., Sokolsky, O.: Generating embedded software-
from hierarchial hybrid models. In: Proceedings of LCTES (2003)

4. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puterProgramming 8, 231–274 (1987)

5. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Comp. Science 138, 3–34 (1995)

6. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Real-
Time:Theory in Practice, REX Workshop. LNCS, vol. 600, Springer-Verlag, Hei-
delberg (1991)

7. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hy-
bridsystems in CHARON. In: HSCC, pp. 6–19 (2000)

8. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Luvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity–the Ptolemy approach. Proceedings of the
IEEE 91, 127–144 (2003)

Generating Sound and Resource-Aware Code from Hybrid Systems Models 65

9. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Charon: a language for modular
specification of multi-agent hybrid systems. Technical Report MS-CIS-00-01, Dept.
of Computer and Information Science, University of Pennsylvania (2000)

10. RationalRose, http://www-306.ibm.com/software/awdtools/developer/rose/
11. TargetLink, http://www.dspaceinc.com/ww/en/inc/home/products/sw/pcgs/

targetli.cfm
12. Simulink, http://www.mathworks.com/products/simulink/
13. Berry, G., Gonthier, G.: The synchronous programming language esterel: de-

sign,semantics, implementation. Technical Report 842, INRIA (1988)
14. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow

programming language Lustre. Proceedings of the IEEE 79, 1305–1320 (1991)
15. Deshpande, A., Göllu, A., Varaiya, P.: SHIFT: a formalism and a programming

language for dynamic networks of hybrid automata. In: HS 1997. LNCS, vol. 1567,
Springer, Heidelberg (1996)

16. Henzinger, T., Kirsch, C., Sanvido, M., Pree, W.: From control models to real-time
code using Giotto. IEEE Control Systems Magazine (2003)

17. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. In: Proceedings of the IEEE, vol. 91, pp. 145–164 (2003)

18. Model-Driven Hybrid and Embedded Software for Automotive Applications. In:
2nd RTAS Workshop on Model-Driven Embedded Systems (MoDES 2004) (2004)

19. Shah, B., Dennison, R., Gray, J.: A model-driven approach for generating embed-
dedrobot navigation control software. In: ACM-SE 42: Proceedings of the 42nd
annual Southeast regional conference, pp. 332–335. ACM Press, New York (2004)

20. Stauner, T.: Discrete-Time Refinement of Hybrid Automata. In: Tomlin, C.J.,
Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 407–420. Springer,
Heidelberg (2002)

21. Hybrid Toolbox - Hybrid Systems, Control, Optimization,
http://www.dii.unisi.it/hybrid/toolbox

22. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hy-
bridsystems. International Journal on Software Tools for Technology Transfer 1,
110–122 (1997)

23. Asarin, E., Dang, T., Maler, O.: The d/dt Tool for Verification of Hybrid Systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

24. Tools, H.S.: http://wiki.grasp.upenn.edu/graspdoc/hst/
25. Hur, Y., Kim, J., Lee, I., Choi, J.Y.: Sound Code Generation from Communicating

Hybrid Models. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp.
432–447. Springer, Heidelberg (2004)

26. Anand, M., Kim, J., Lee, I.: Code generation from hybrid systems models for
distributed embedded systems. In: Proceedings of the IEEE ISORC, pp. 166–173
(2005)

27. Anand, M., Fischmeister, S., Kim, J., Lee, I.: Distributed-code generation from
hybrid systems models for time-delayed multirate systems. In: EMSOFT 2005:
Proceedings of the 5th ACM international conference on Embedded software, pp.
210–213. ACM Press, New York (2005)

28. Henzinger, T.A., Ho, P.H.: Algorithmic analysis of nonlinear hybrid systems. In:
Wolper, P. (ed.) Proceedings of the 7th International Conference On Computer
Aided Verification, Liege, Belgium, vol. 939, pp. 225–238. Springer, Heidelberg
(1995)

http://www-306.ibm.com/software/awdtools/developer/rose/
http://www.dspaceinc.com/ww/en/inc/home/products/sw/pcgs/targetli.cfm
http://www.dspaceinc.com/ww/en/inc/home/products/sw/pcgs/targetli.cfm
http://www.mathworks.com/products/simulink/
http://www.dii.unisi.it/hybrid/toolbox
http://wiki.grasp.upenn.edu/graspdoc/hst/

66 M. Anand et al.

29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cam-
bridge (1999)

30. Pillai, P., Shin, K.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: Proceedings of the 18th Symposium on Operating Systems
Principles SOSP 2001 (2001)

31. Fehnker, A., Ivancic, F.: Benchmarks for Hybrid Systems Verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

32. Tan, L., Kim, J., Lee, I.: Testing and Monitoring Model-based Generated Program.
In: Proceeding of Runtime Verification Workshop (RV 2003), Boulder, Colorado
(2003)

	Generating Sound and Resource-Aware Code from Hybrid Systems Models
	Introduction
	Related Work and Problem Statement

	Basic Model and Assumptions
	Code Generation from Hybrid System Models
	Code Generation Procedure
	Switching Discrepancies in the Code
	Correctness Criteria

	Proposed Implementation Framework
	Preventing Faulty Transitions
	Preventing Missed Transitions
	Minimal Periods of Execution

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

