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Abstract. Emerging model-based development methods in the Auto-
motive Vehicle Motion Control (VMC) domain are using different tools
at various stages of the engineering process. Behavioral models created in
various forms of finite state machines have to be exchanged across these
tools, but semantic unknowns in modeling environments and semantic
variations across tools preclude automated correct interpretation. This
research presents an approach to address this issue through an unambigu-
ous, math-based, tool-neutral extended finite state machine metamodel
(eFSM) for behavior specifications in the automotive VMC domain. The
semantics of the metamodel are anchored to formal specifications in a
mathematical framework. Our approach requires modeling with com-
mercial tool environments conforming to the eFSM. The conformance
is enforced by exporting the tool native models into eFSM-conformant
models and checking them against the well-formed rules encoded as OCL
constraints in the eFSM. We have performed “proof of concept” exer-
cises with two commercial tools in transforming their native models into
eFSM-conformant forms, and have been able to show that certain am-
biguities in both tools can be prevented through the eFSM, promising
higher confidence software engineering for the VMC domain.

1 Introduction

High integrity functions in Automotive Vehicle Motion Control (VMC) soft-
ware are becoming increasingly complex as more functions are being realized in
software. Factors contributing to the rising complexity include increasing num-
ber of interactions, distribution across many electronic control units (ECU-s)
and buses, number of different suppliers, and number of engineering stages
spread across different disciplines and different tool environments. To add to
the complexity, VMC functions are tightly constrained in timing interrelation-
ships, combining discrete and continuous control in ways that are difficult to
analyze. The size and complexity of VMC systems have grown beyond the abil-
ity to assure their correctness through exhaustive testing and simulation. These
difficulties motivate the need for VMC systems engineering processes that pre-
vent errors from the earliest stage and provide work products that are correct by
construction [1].
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In order to improve engineering quality, industry has been shifting effort from
program code level activity towards model based control and software engineer-
ing [2,3]. However, it is not possible to transfer model data unambiguously from
the tool of one engineering stage to that of another. In other words, different
tools are not able to interpret the model with the same meaning. Although tools
popular in the VMC engineering process, such as MathWorks Stateflow, I-Logix
Rhapsody, and ETAS ASCET, support modeling in the finite state machine
(FSM) paradigm, there are semantic unknowns and variations in their FSM-s.
Therefore, model data has to be manually interpreted, manipulated and trans-
ferred from one engineering stage to the next, imposing penalties in integrity,
quality, cost, and time.

Many research and industrial endeavors have addressed cross-tool model ex-
change issues. Industrial efforts include various standardization activities. ISO
10303 AP 233 [4] extends STEP, the international standard for exchange of prod-
uct data, to support exchange of behavioral models of various kinds, including
the FSM. The Object Management Group (OMG) SysML [5] is developing a
standardized system modeling language, as a profile of UML 2.0 [6]. However,
UML 2.0 does not have a strong mathematical foundation, e.g., it does not spec-
ify constraints on relationships such as generalization-specialization. Thus UML
2.0 does not support unambiguous model transformation and exchange. SAE
Analysis Architecture Description Language (AADL) [7] is a modeling language
to model system architecture for analysis. AADL focuses on structure and para-
functional properties, and is not suitable for systems engineering activities such
as requirement specifications. EAST-ADL [8] was developed as a modeling lan-
guage for electronic architecture with similar objectives, but does not provide
unambiguous semantic support for behavior specification. EAST-ADL relied on
external tools and languages for behavioral specifications. In parallel, researchers
have endeavored to formally specify the semantics of commercial tools. For ex-
ample, the formal operational semantics for Stateflow by Hamon and Rushby
[9] and the operation semantics of Stateflow in BSpec notation by Kestrel Tech-
nologies [10] are two of a dozen published Stateflow semantics. However, the
formal semantics defined by these research activities are “reverse engineered”,
without support from the tool vendors, based on the behaviors observed over a
set of examples. Conformance to vendor-implemented semantics is demonstrated
in most cases by comparing traces with a few tests. It does not provide adequate
confidence for the VMC domain.

While the international standards and commercial tools seek breadth of ap-
plication to enlarge their market, we seek disambiguation of model data for a
narrowly defined domain of applications, VMC, where integrity is paramount.
The scope is limited to statically configured systems with statically defined deter-
ministic behaviors. The typical behavior of a VMC application can be described
in a finite state machine with the continuous closed loop control functions em-
bedded in its action elements. The scope of data exchanges includes VMC sys-
tems engineering processes such as requirement specification, functional design,
analysis of various types, specification of the distributed platform, allocation of
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application functions and interactions to platform elements, code generation, in-
tegration, verification at every step, and overall validation. Behaviors of this kind
can be metamodeled as an extended finite state machine (eFSM). In this paper,
we propose an eFSM, with unambiguous semantics anchored in a mathematical
foundation, as a well-suited medium for interchange across different stages of the
engineering process mentioned above. The proposed approach requires modeling
constraints, which are VMC domain-specific to enable a correct-by-construction
process.

The rest of this paper is organized as follows. Section 2 explains the language
requirements for unambiguous model exchange in the context of the systems
engineering process for future VMC development. Section 3 presents the math-
based eFSM and its support for unambiguous model exchange. Section 4 de-
scribes model export exercises with two commercial tools, using the eFSM, and
the lessons learned from these exercises. The concluding Section 5 recapitulates
the approach, in the context of planned future work.

2 Disambiguation Needs in a High Integrity Process

Elimination of errors in interpreting model data transferred across engineering
process stages is the primary objective of this research. The eFSM is required as
an enabler for the process framework shown in Fig. 1 and Fig. 2. The objectives
of the process framework are to provide correct by construction products at
the minimum feasible life cycle cost, time-to-market, and execution complexity.
Vehicle-specific construction, verification and certification constitute a significant
part of vehicle cost and time to market. Other supporting requirements are
discussed during the following overview of the process framework.

Fig. 1. Systems engineering process framework for vehicle motion control development
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The process framework shown in Fig. 1 is based on principles of domain en-
gineering [11] and product line engineering [12]. It has five major groups of
processes or sub-frameworks, designated and related as follows. Pv are processes
specific to a vehicle and are based on reusing assets created and maintained
through processes, Pr, which in turn, follow the process and architectural frame-
work specifications created in the processes, Pa. The eFSM is a part of Pa.
Pintegrity , the processes of risk management, configuration management (CM),
quality assurance (QA), and V&V are applied to processes, Pv, Pr, and Pa.
Presources, the processes to plan, specify, select, maintain and qualify resources
(e.g. human skills, knowledge, tools, reuse repository, and other aids), are also
applied to processes, Pv, Pr, and Pa. Presources also include processes for up-
grade, growth, and adaptation. Thus, VMC systems are specified and created
with the reuse of proven elements and in ways proven to “plug & play” (com-
pose) correctly. In other words, Pv should be a correct-by-construction process
that guarantees the resultant models satisfy the specified system requirements.
This process imposes a requirement that the asset be reusable correctly in future
VMC applications yet unknown, thus requiring unambiguous semantics. As in
the systems engineering process framework, the software development processes
include the resource-related processes, Presource, the development processes, Pa,
Pr, and Pv, and the integrity processes, Pintegrity .

With formal reuse of a full complement of assets from a library or reposi-
tory, system conceptualization becomes a composition process rather than the
traditional decomposition process. Formal reuse begins with formal fine-grained
requirements models (in the form of extended finite state machines or automata)
from which vehicle-specific requirements are composed, following pre-defined
composition rules, applied to the requirements space (see layer 2 in Fig. 2).
The process requires that incorrect compositions, including unwanted interac-
tions, be prevented.

While the formal external behavioral models will endure over time, it is ex-
pected that the concrete realizations, for example layer 3 and greater in Fig. 2,
will change as implementation technologies change. Referring to Pv in Fig. 1,
the system conceptual architecture evolves bottom-up from the fine-grained re-
quirements models by searching for matching design & implementation (D & I)
entities in the reusable assets library in Pr . Search and matching criteria include
not only the functional requirements model, but also associated parafunctional
requirements and D & I constraints. When the best match is determined, the
requirements are “allocated” to the matching “D & I” entities. The process is
iterated until all requirements are allocated.

For provably correct transformation of requirements into concrete realizations
or implementations, certain process and architectural constraints are imposed.
Referring to the layer 2-3 transformation, shown as 2T3 in Fig. 2, the process
of functional design is constrained to be an elaboration (or refinement) of the
requirements specification automata. More than one requirement automaton
may be allocated to a functional design unit. The refinement constraint assures
that the functional design inherently conforms to the specification. When the
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Fig. 2. Multi-stage model transformation in the systems engineering process

engineering process progresses to the stage of identifying a component, for ex-
ample in layer 3-4 transformation — 3T4, the external interface of the functional
design (which is the same as the requirements specification) maps on to the
component, and becomes a part of the components external interface (through
its service access points). Thus the component is also a composable automaton.
More than one functional design unit may be allocated to a component.

The framework provides for a number of stages or layers of transformation,
i−1Ti, (beyond layer 3 in Fig. 2), depending on the complexity of the system, in
order to localize and isolate the effects of implementation decisions. Each trans-
formation stage uses previously proven transformation rules, mappings, meta-
models and ontologies defining the language of each stage, collectively shown as
the knowledge base. It is a combination of work products from processes Pa and
Pr. The language of each layer defines the universe of services available from
that layer, specified as composable automata.

As engineering, denoted as Pv in Fig. 1, progresses beyond the 3T4 transfor-
mation (Fig. 2), the modeling frameworks on both sides of the transformation,
i−1Ti, must be compatible, i.e., the semantics of elements in layers (i-1) and i
be unambiguous, the transformed elements have a defined correspondence from
layer (i-1) to layer i, and the process, i−1Ti, be semantic-preserving. Each trans-
formation, i−1Ti, requires a combination of tool automation for the rule-driven
part and human effort for the creative part of the work. It should be possible
to use the best-in-class tool for each i−1Ti. The reusable assets and work prod-
ucts of Pv should be protected from obsolescence due to changes in the tools. It
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should be possible to reposit the work products of every stage in a form inde-
pendent of the tools producing or consuming the work products. Upon a change
in implementation (layers greater than 3 in Fig. 2), the systems engineering pro-
cess is reapplied to the affected composable entity. If there is no other change
in the system, with formal reuse and conformance to the specified architecture,
only the changed component has to be re-verified against its specification. When
compositions of formally proven components (assets created in Pr) are created,
using rules defined in Pa, the components do not have to be re-verified. This
is an important requirement on the modeling framework, because it reduces
vehicle-specific costs of verification, rectification, and certification.

3 A Language for Modeling Finite State Machines

To enable unambiguous exchange of FSM-based behavioral models in the con-
ceptual process framework for high integrity VMC software, we have developed a
modeling language, eFSM, with rules and constraints, for describing FSM models
unambiguously. The eFSM is represented in a tool-neutral metamodel form and
consists of a set of modeling elements whose semantics and composition rules are
formally anchored to a math-based specification for unambiguous interpretation
and processing. Fig. 3 is an overview of the mathematical framework for defin-
ing and interpreting the eFSM. The basic elements of a FSM, such as states,
events, transitions, and actions, and their relationships are defined in the eFSM
and are linked to additional mathematical specifications (ontologies) which may
be expressed in other mathematical languages and processed by their respective
mathematical engines to reason about the model. The semantics of eFSM have
been developed as a composition of multiple semantic domains using ASML. A
detailed description of eFSM language, examples, and semantics are presented
in [13]. Multiple mathematical languages are accommodated by means of lan-
guage transformation, based on their respective metamodels and cross-language
transformation rules.

Adopted from the Mealy machine definition [14], the transition in the eFSM,
F , is a mathematical function defined as follows:

F : S × Σ → S × Γ (1)

where S is a finite, non-empty set of states. Σ is the input alphabet for a finite,
non-empty set of symbols, and Γ is the output alphabet for a finite, non-empty
set of symbols. We choose to formalize transition as function which precludes
non-determinism, owing to the high-integrity needs of the VMC domain. The
tradition formalization of transition as a relation allows for non-determinism,
which is not suitable for the VMC domain. The arrow labeled Tij in Fig. 3
shows an example transition from state Si to state Sj .

The elements in the input alphabet and output alphabet are called events
(ein and eout in Fig. 3). The FSM function uses “saturated” expressions for
input and output events [15]. Events may have associated parameters when
needed for input to the function performed during a transition or for the output
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Fig. 3. eFSM for unambiguous cross-tool model exchange

generated by the function during the transition. The function performed during
a transition, called an action, is defined mathematically as follows:

f : σ → γ

where f is an action function (b in Fig. 3) with σ being a set of inputs related to
the parameters associated with an input event (a in Fig. 3) in Σ and γ being a set
of outputs related to the parameters associated with an output event (c in Fig. 3)
in Γ . The guard condition, modeled as a function with a Boolean output, can also
be associated with an input event, the truth-value of which is interpreted as pres-
ence or absence of the event. With this definition, a FSM can itself be treated as a
mathematical function that maps an input alphabet into an output alphabet. In
the eFSM, a FSM is a specialization of a mathematical function where each tran-
sition is also a function, whose input alphabet is a combination of event, guard,
and state, and output alphabet, a combination of event and state.

3.1 Composition Rules

Compositions of FSM-s, transitions, and actions in eFSM are all constrained
to mathematical function composition with one-to-one or many-to-one mapping
from input to output. Complex functions in a model are composed from primitive
functions or less complex functions. If a composite function involves control
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flow, e.g., branching or forking, the control flow must be modeled explicitly
in a FSM conforming to the eFSM. Otherwise, a composite action is modeled
as a sequential composition of functions. Interacting FSM-s are also composed
mathematically to form a composite FSM. For sequential composition of FSM-
s, the outputs of a FSM in the composition are the inputs of its immediate
successor with the rules [16] specified as follows:

ΣF1∗F2 = ΣF1 ∪ ΣF2 − (ΓF1 ∩ ΣF2),
ΓF1∗F2 = ΓF1 ∪ ΓF2 − (ΓF1 ∩ ΣF2),
SF1∗F2 = SF1 ∪ SF2 ,

(2)

where F1 ∗F2 is sequential composition of FSM F1 and F2 (as defined in Eq.(1)),
as shown below:

F1 ∗ F2 =
⋃ {f |f ∈ F1, f(γ) �∈ ΣF2}

{f |f ∈ F2, f(σ) �∈ ΓF1}
{f = f1 ∗ f2|f1 ∈ F1, f2 ∈ F2, f1(γ) = f2(σ)}

(3)

For parallel compositions, the inputs and outputs of constituent FSM-s obey
the rules [17] specified as follows:

ΣF1||F2 = ΣF1 ∪ ΣF2 ,
ΓF1||F2 = ΓF1 ∪ ΓF2 ,
SF1||F2 = SF1 × SF2

(4)

where F1||F2 is the parallel composition of FSM F1 and F2, as shown below:

F1||F2 =
⋃ {f |f ∈ F1, f(σ) �∈ ΣF2}

{f |f ∈ F2, f(σ) �∈ ΣF1}
{f =f1||f2|f1 ∈ F1, f2 ∈ F2, f1(σ)=f2(σ), f(γ)={f1(γ)}∪ {f2(γ)}}

(5)

3.2 Constrained Generalization-Specialization Relationship

The eFSM supports extensions through a generalization-specialization relation-
ship. It utilizes the generalization-specialization relationship from the object-
oriented modeling paradigm as a technique to unify related concepts and thereby
support integration and reuse. The eFSM constrains specialization to be per-
formed by restriction and extension only, in order to eliminate ambiguity and
to reduce computational complexity. Specialization by restriction may be per-
formed by restricting the type of at least one element used in the more general
model type to a specialization (e. g., subtype) of the corresponding element in
the more general model. Restriction of the type of an element representing some
value may also be performed by limiting the range of eligible values (i.e. the
domain of a function), often expressed with an addition of constraint clauses.
Extension of a model type is performed through addition of elements. For exam-
ple, a FSM model type may be specialized to derive another FSM model type
through the addition of a state or a transition.
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A model type can also be specialized through a composition of elements from
multiple more general model types, if the elements in these general types are
mutually exclusive. An element in the specialized model type can be either of
the same type as the element in its corresponding more general model type or a
specialization of the element in the more general model type. The object-oriented
analogy of this type of specialization would be a class C composed of class A
and class B, is specialized to a class C’ that is composed of A’ and B where A’
is a specialization of A.

Multiple levels of specialization are possible to form a generalization-
specialization chain. With multi-level specialization, the eFSM can support the
creation of reusable assets (types) through recursively-chaining type instances.
At the first level of reusability are the types defined in the metamodeling en-
vironment, which include the FSM, State, Event, Transition, etc. as mentioned
earlier. These elements in effect constitute the modeling constructs for the first
level. When creating a FSM model, i.e., an instance of a FSM model type, as
many instances of these modeling elements are created and assigned values as
required to model the intended behavior. The behavior specification thus created
in a FSM model can also be made a “type” (say level-2 type), and a collection of
level-2 types constitutes the “type library” for the second level of reuse. At the
second level, instances of level-2 types are created for a particular vehicle (or a
vehicle product family). The level-2 types could also be specialized and placed
in the type library, and then instantiated for a particular vehicle. A third, or in
general nth, level of reuse will include in its “type library” elements created in
the (n − 1)th level.

3.3 Ontology

The ontologies used in the eFSM are based on mathematical languages. The fun-
damental modeling elements in the eFSM have a one-to-one correspondence with
mathematical concepts in the externally-defined mathematical specifications.
Common elements include the mathematical function, its domain (including co-
domain hereafter), and set. Domains include numbers with quantities extensible
to physical quantities. The language elements for specifying constraints in the
metamodeling environment map into first order logic (FOL). Structures of mod-
eling elements, constructed in the modeling environment, can also be represented
in FOL. To achieve semantics-preserving, unambiguous model transformation,
we adopt a rule-based model transformation method with a set of formally-
defined, isomorphic transformation rules. The mathematical reasoning can then
be performed by established mathematical engines external to the modeling tool.
Examples of such math-processing engines include Abstract State Machine Lan-
guage (ASML), Mathematica, and ISO 10303-11, EXPRESS.

As an example of domain-specific specialization, definitions of Action related
elements in the eFSM utilize an ontology which defines the basic knowledge of
rigid body motion in VMC, related to displacement, time, velocity, acceleration,
and jerk, and includes units of measurement, their dimensions, and unit bal-
ancing rules. When this ontology is specified as a constraint-set on functions
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relating these physical quantities in a composition, f1(f2(x)), the codomain of
f2, must match the domain of f1, i.e., be the same set of physical quantities.
Thus, this constraint-set is used to assure that the specification is unambiguous
and consistent with the physics of the controlled process. This check on the spec-
ification prevents errors from propagating and multiplying in the D&I stages of
the engineering process.

3.4 Language Transformation

In the systems engineering process, commercial tools are commonly used as the en-
gineering interface for creation of work products at each stage. The work products,
typically in the form of models, must have unambiguous semantics for
(re)use across the stages. As the modeling languages adopted by different
commercial tools are different, unambiguous semantics of models across tools and
engineering stages cannot be achieved by directly using the tool native modeling
languages.The models created in the tools must then be transformed to the eFSM-
conformant models for exchanges with unambiguous interpretation and process-
ing. This implies the semantic domain of a commercial tool must be mapped to
the semantic domain of the eFSM. Such mapping is the metamodel-level trans-
formation of modeling languages, and it requires the modeling constructs in the
tool native modeling language have semantically equivalent modeling constructs
in the eFSM. This can be achieved through constraining tool native modeling
language followed by mapping of allowed tool native modeling language con-
structs to the eFSM modeling constructs unambiguously. The feasibility of such
a mapping is assured if the semantic domain of the eFSM is wider than that
of the tool’s restricted native modeling language, though we do not provide
a formal proof. To meet this condition and avoid introducing the ambiguity
when modeling using a tool, only those modeling elements of the tool-specific
modeling language, whose semantics can be unambiguously mapped to those of
the eFSM elements, are allowed to be used in modeling. This requires applying
domain-specific constraints to the tool native modeling languages. The modeling
elements with tool-specific, implicit semantics, such as priorities of transitions
captured in graphical layout, must be explicated before they can be used for
modeling. To ensure the resultant model in a tool is eFSM-conformant, the con-
straints must be checked inside the tool, if the tool-APIs support user-specified
constraints, or during exportation of the model. Models satisfying the constraints
are eFSM-conformant.

The constrained tool-specific modeling elements can be transformed into se-
mantic equivalent eFSM modeling elements (simple or composite) through a
one-to-one mapping. The semantic, one-to-one mapping between the constrained
tool-specific modeling elements and the eFSM modeling elements can be defined
as transformation rules. Some tool-specific semantics defined unambiguously
within a tool, which may be ambiguous across tools, such as data retention
during event processing, can also be captured in the transformation rules. Addi-
tional semantic well-formedness rules, such as the presence of required elements
and matches of their types, can also be defined as rules incorporated in the
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eFSM. The transformation of a model created natively in a tool to an eFSM-
conformant model is then realized by applying transformation rules. The rules
are encoded and operationalized using techniques such as a graph rewriting and
transformation engine [18], and are applied to the tool-native models to obtain
the eFSM-conformant models. When the transformation encounters elements for
which a mapping rule is not defined, it flags a violation of the elements, thereby
testing conformance of the eFSM. Rules for mapping from the “canonical form
to the tool are part of future work.

3.5 Execution Semantics

Given the basic modeling elements, composition rules, constrained relationship
and ontology, and parafunctional 1 specification support, the eFSM is further
constrained to achieve the following execution semantics. The FSM processes
only one event in each computation cycle. A computation cycle, modeled using
a parafunctional element, starts from an arrival of an triggering event and ends
with the production of the output. The next computation cycle begins only after
the completion of the preceding computation cycle. All parts of the input are
available before the computation cycle starts and are stable during the cycle.
Discretized continuous control behavior is modeled as an action, triggered by
a periodic event occurring at the fixed time period, required by the executing
control algorithm. A simple unit of continuous control behavior can then be
modeled as a function, f(x). Its domain and co-domain are limited to a specified
topological vector space. Multiple functions, f1, f2, and f3, which are limited to
the same topological vector space, may be composed sequentially as f1(f2(f3(x)))
to create a complex behavior. These semantics assume the completion of the
action before the start of next computation cycle.

The assumption on the action completion is specified as a rule and must be
verified in order to ensure correct operation. To allow the verification, the eFSM
is extended to associate some normalized equivalent of its worst case execution
time (WCET).

4 Proof of Concept Exercises

Our proof-of-concept exercises is to examine the mapping from the semantic
domains of two selected commercial tools, Rhapsody [19] from I-Logix and State-
flow [20] from Mathworks, to the eFSM semantic domain for unambiguous inter-
pretation and processing. The exercises follow the transformation principles in
Section 3.4. Since neither Stateflow nor Rhapsody provides API-s for specifying
and checking user-specified constraints, the constraints and transformation rules
were checked during and after transformation.

1 Parafunctional refers to properties of software that are considered beyond the func-
tional requirements, and is equivalent to Quality of Service (QoS) properties.
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Table 1. Transformation rules from Rhapsody Statechart to eFSM (r2e() is a injective
mapping from a Rhapsody element to an eFSM element)

Rhapsody element eFSM element Mapping rules
basic states SR states SF sr ∈ SR ⇒ (sf = r2e(sr))

∧(SF = SF ∪ sf )
termination states St

R final states St
F sr ∈ St

R ⇒ (sf = r2e(sr))
∧(St

F = St
F ∪ sf )

actions AR actions AF ar ∈ AR ⇒ (af = r2e(ar))
∧(AF = AF ∪ af )

triggers ER events EF er ∈ ER ⇒ (ef = r2e(er))
∧(EF = EF ∪ ef )

guards GR guards GF gr ∈ GR ⇒ (gf = r2e(gr))
∧(GF = GF ∪ gf )

transitions TR transitions TF tr ∈ TR ⇒ (tf .event = r2e(tr.trigger))
∧(tf .guard = r2e(tr.guard))
∧(tf .action = r2e(tr.action))
∧(TF = TF ∪ tf )

termination connectors Ct
R final states St

F cr ∈ Ct
R ⇒ (sf = r2e(cr))

∧(St
F = St

F ∪ sf )
junction connectors Cj

R transitions TF (jr ∈ Cj
R) ∧ (t1r . . . ti

r, t
j
r ∈ TR)

∧({t1r, ..., ti
r} → j → tj

r)
⇒ (t1f .event = r2e(t1r.trigger))

∧(t1f .guard = r2e(t1r.guard))
∧(t1f .action = r2e(t1r.action + tj

r.action))
· · ·
∧(ti

f .event = r2e(ti
r.trigger))

∧(ti
f .guard = r2e(ti

r.guard))
∧(ti

f .action = r2e(ti
r.action + tj

r.action))
∧(TF = TF ∪ {t1f , ..., ti

f})
condition connectors Cc

R states S (cr ∈ Cc
R) ∧ (tc

r, t
1
r . . . ti

r ∈ TR)
∧(tc

r → cr → {t1r, ..., ti
r})

⇒ (t1f .event = r2e(tc
r.trigger))

∧(t1f .guard = r2e(tc
r.guard + t1r.guard))

∧(t1f .action = r2e(tc
r.action + t1r.action))

· · ·
∧(ti

f .event = r2e(tc
r.trigger))

∧(ti
f .guard = r2e(tc

r.guard + t1r.guard))
∧(ti

f .action = r2e(tc
r.action + tj

r.action))
∧(TF = TF ∪ {t1f , ..., ti

f})
action on entry ai

r ∈ sr action af ai
r ∈ sr ⇒ (tf .tostate = r2e(sr))

∧(af = r2e(ai
r))

∧(tf .action = tf .action + af )
∧(TF = TF ∪ tf )

action on exit ao
r ∈ sr action af ao

r ∈ sr ⇒ (tf ∈ TF ) ∧ (tf .fromstate = r2e(sr))
∧(af = r2e(ao

r))
∧(tf .action = af + tf .action)
∧(TF = TF ∪ tf )

reaction in state ar
r ∈ sr transition tf ar

r ∈ sr ⇒ (tf .fromstate = sr)
∧(tf .tostate = r2e(sr))
∧(tf .event = r2e(ar

r.trigger))
∧(tf .guard = r2e(ar

r.guard))
∧(tf .action = r2e(ar

r.action))
∧(TF = TF ∪ tf )
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4.1 Rhapsody

Rhapsody 6.0 employs Statecharts for state-based behavior modeling. In Rhap-
sody Statecharts, a State can be a basic state, or a termination state, or an or-
state, or an and-state. Each state can have action on entry, action on exit , and
reaction in state defined. A connector can be Condition, or History, or Termina-
tion, or Junction, or Diagram, or Sync-Join, or Sync-Fork . A transition has Trig-
ger , Guard , and Actions. To support unambiguous model exchange, we mapped
a defined subset of the Statechart to our eFSM with the rules, as shown in Ta-
ble 1, according to the behavioral semantics of the modeling constructs. The trans-
formation rules shown in Table 1 show the mathematical mapping of syntactic
constructs of Rhapsody into eFSM, and are operationalize with a rule-based trans-
formation engine [21] that matches the appropriate syntactic construct in Rhap-
sody and performs the mapping actions as shown in the table. For example, a
junction connector jr with a set of transitions {t1r . . . tir, t

j
r} in Rhapsody indicates

that t1r . . . tir sharing some common actions in tjr. Consequently, the mapping rule
for jr transforms the junction connector with its transitions {t1r . . . tir, t

j
r} into a

set of eFSM transitions {t1f . . . tif} with the event and guard of tkf (1 ≤ k ≤ i) being
the trigger and guard of tkr and the actions of tkf being the actions of tkr followed
by the actions of tjr. Since the eFSM does not yet incorporate State hierarchies,
composite states and state hierarchy were outside the defined subset. Similarly,
since the eFSM execution semantics allows only one event to be processed each
computation cycle, History is outside the defined subset.

(a) Sensor interface and signal processor

(b) Sensor interface (c) Signal processor

Fig. 4. Behavioral models in Rhapsody
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With the above defined transformation rules, we translated a part of a behav-
ioral model for a cruise control defined using elements within the defined subset
of Rhapsody Statecharts, to eFSM realized in the Generic Modeling Environ-
ment (GME) [22]. Fig. 4 and 5 show the sensor interface and signal processing
portion of the whole model in Rhapsody and in eFSM in GME, respectively. Af-
ter the transformation, we performed checks of the rules and constraints defined
in the eFSM, and detected errors such as signal mismatches in value ranges or
units, which were not detectable in the Rhapsody model.

(a) Sensor interface and signal pro-
cessor.

(b) Sensor interface (c) Signal processor

Fig. 5. Behavioral models in GME conforming to our eFSM

As can be seen, the states in Rhapsody models were transformed to states in
eFSM. The sensor interface Statechart model in Rhapsody contained entry and
exit actions, which were combined with actions of corresponding transitions as
composite actions in eFSM-compliant sensor interface transitions. The compo-
sition followed the function composition rules and was implemented as mapping
rules in Table 1. Similarly, the reaction in state action in state Enable state in
the Rhapsody signal processor model was transformed to a separate, self-loop
transition in eFSM-compliant signal processor model. In addition to the map-
ping rules in Table 1, other constraints and rules implemented in eFSM, such as
the constraint for signal type match and the rule of generalization-specialization
relationship, were also enforced during the transformation.

4.2 StateFlow

Stateflow models behaviors of dynamical systems based on finite state machines,
and uses a different Statechart formalism with additional semantic elements,
notably junction structures, and flow charts. Also, the Stateflow action language
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Table 2. Transformation rules from Stateflow to eFSM (s2e() is a injective mapping
from a Stateflow element to an eFSM element)

Stateflow element eFSM element Mapping rules
leaf states SS states SF ss ∈ SS ⇒ (name(sf ) = s2e(ss))

∧(SF = SF ∪ sf )
actions AS actions AF as ∈ AS ⇒ (af = s2e(as))

∧(AF = AF ∪ af )
condition actions CAS actions AF cas ∈ AS ⇒ (af = s2e(cas))

∧(gf = s2e(c))
∧(AF = AF ∪ af )
∧(GF = GF ∪ gf )

triggers ES events EF es ∈ ES ⇒ (ef = s2e(es))
∧(EF = EF ∪ ef )

guards GS guards GF gs ∈ GS ⇒ (gf = s2e(gs))
∧(GF = GF ∪ gf )

transitions TS transitions TF ts ∈ TS ⇒ (tf .event = s2e(ts.trigger))
∧(tf .guard = s2e(ts.guard))
∧(tf .action = s2e(ts.conditionaction))

∪(s2e(ts.action))
∧(TF = TF ∪ tf )

entry action ai
s ∈ ss action af ai

s ∈ ss ⇒ (tf .tostate = s2e(ss))
∧(af = s2e(ai

s)
∧tf .action = tf .action ∪ af )
∧TF = TF ∪ tf

exit action ao
s ∈ ss action af ao

s ∈ ss ⇒ (tf .fromstate = s2e(ss))
⇒ (af = s2e(ao

s))
∧(tf .action = af ∪ tf .action)
∧(TF = TF ∪ tf )

during action ad
s ∈ ss transition tf ad

s ∈ ss ⇒ (tf .fromstate = s2e(ss))
∧(tf .tostate = s2e(ss))
∧(tf .event = s2e(ES − {es|ts.fromstate = ss})
∧(tf .action = s2e(ad

s))
∧(TF = TF ∪ tf )

differs from Statecharts, and has been extended to reference Matlab functions,
and Matlab workspace variables.

As in the Rhapsody case, we restricted Stateflow modeling elements to a
defined subset, disallowing Junctions, History, State hierarchies, and Function
States [20] to avoid ambiguity. Table 2 summarizes the transformation rules for
mapping the defined Stateflow subset into eFSM. Similarly, the mapping rules
are based on the behavioral semantics of the modeling constructs in Stateflow
and eFSM. For example, the entry actions as of a state s in Stateflow is trans-
formed into the last actions of each incoming transition tf of the ss in the eFSM
model. According to the rule, tf .tostate = s2e(ss) identifies all transitions tf in
the eFMS, whose destination state is ss. The Stateflow action as is then trans-
formed into the eFSM action af and is added to the transition’s action set with
tf .action = tf .action ∪ af . Due to different graphical representations, the trans-
formed eFSM model in Fig. 5 has the trigger events and the transition actions as
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embedded elements in the blockarrows instead of representing as textual labels
as in the Rhapsody model. One major advatage of using embedded type elements
over textual labels is that the type elements support better type checking.

In addition to the above rules, while parsing and mapping actions, we checked
that (i) the arguments of the actions are from the set of inputs and/or outputs
to the Stateflow model, similar to what the Stateflow compiler does, and (ii)
the functions are contained in a pre-defined set of mathematically well-formed
functions. According to the Stateflow semantics, Data variables are persistent
and retain their their values over multiple computation cycles, while Events are
transient and consumed in a single computation cycle. These implicit semantics
results in creation of unintentional state variables. In the transformation rules
specified here these are transformed to explicit definition in eFSM as parame-
terized Events carrying Data of sampled signals. This results in elimination of
the implicitly defined state variables in the original Stateflow model.

As in the Rhapsody case, we have been able to map Stateflow models cre-
ated within the eFSM-imposed constraints, into eFSM models in GME. We are
currently investigating techniques for natively enforcing the eFSM restrictions
within the Stateflow environment using the Stateflow provided API-s.

4.3 Lessons Learned

Through the proof-of-concept exercises, we gathered some valuable lessons on
modeling language support for high integrity VMC control software. Modeling
language support for strong type and modeling constraints are essential for un-
ambiguous model exchange. For example, while the signals in both Rhapsody
and Stateflow can be strongly typed with a specified unit, these tools do not
incorporate any automated check for type compatibility prior to simulation or
code generation. Some of the typing errors related to programming data-types
are occasionally caught by a compiler; however, the more serious ones related to
units and dimensionality are never caught since programming languages do not
offer any abstractions for capturing physical quantities. In such a modeling en-
vironment, integration of discrete and continuous control behaviors in a unified,
unambiguous model is not possible. Large amounts of effort have been spent
on reducing model ambiguity through restrictions using some ad hoc approach
such as a style guide for Stateflow. However, these approaches have not enabled
unambiguous exchange of models across different tools.

As the behavioral models for VMC have complex interactions, ad hoc transfor-
mation is infeasible. The mathematical foundation of the eFSM allows creation
of rules and constraints formally so that they can be interpreted and executed
by machines automatically. Our experiences indicate that domain-specific rules
and constraints are the key to support correct-by-construction modeling and un-
ambiguous model exchange. Such domain-specific rules allow unambiguous se-
mantic model transformation, thus preventing errors in the model and enabling
a correct-by-construction process. For example, a constraint that any transition
involving physical devices must be explicit and deterministic with all exceptions
and interruptions captured as events will be implemented as a rule in eFSM.
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Many semantic mistakes made by the designer during modeling, which cannot
be captured otherwise, can be captured with such domain-specific rules.

5 Conclusions and Future Work

Semantics-preserving cross-tool model exchange is a key requirement to sup-
port a correct and efficient systems engineering process. In this paper, we have
presented a math-based eFSM to enable software engineering of high integrity
systems, e.g. drive-by-wire vehicles, with higher confidence and lower effort
than current techniques. The eFSM contains modeling elements with explicitly-
defined generalization-specialization relationship, mathematical composition
rules and constraints, and domain-specific ontology. It also enables mathematical
reasoning, transformation, and checking for the satisfaction of system require-
ments from early stages of the engineering life cycle. Models conforming to the
eFSM can be unambiguously exchanged across different tools. The developed
eFSM enables better “process efficacy” in the systems engineering processes,
mostly in the requirements specification and verification and validation aspects.

It should be noted that our approach involves overlaying a restricted semantic
domain (eFSM semantics) on the wider semantic domains of COTS tools such as
Stateflow and Rhapsody. Enforcing this common semantic domain across mul-
tiple tools enables semantic preserving transformation and reduces the problem
of verifying transformation correctness from establishing behavioral equivalence
to structural equivalence.

One of the consequential challenge of this approach lies in imposing restric-
tions on the engineers using the Stateflow and Rhapsody tools. This is both a
technological and an educational challenge. The availability of certain features in
a tool, despite their semantic ambiguity, makes it attractive for the users. Auto-
matic overlays, and online constraint checkers embedded within tools may make
it technologically feasible to impose the restrictions, by automatically ensuring
conformance to the high confidence high integrity design subset. Educational
aids must also be created to assist the developers in understanding the cause
and impact of the ambiguity in the use of certain abstractions. Some degree of
restrictions are already in use by way of adherence to ”best practice” and ”safety
guidelines” developed by Automotive Manufacturers, and other bodies such as
Mathworks Automotive Advisory Board (MAAB).

The restrictions also impose challenge on the overall scalability of our ap-
proach, since the restrictions while improve the semantic preciseness of the
models, also increase the effort in representing some behaviors. For example
history driven behaviors can be conveniently represented with history junctions
in Stateflow, and have to be otherwise represented with larger number of states.
The transformations as described earlier are polynomial complexity and are not
subject to scalability concern.

The eFSM represents early work on building the foundations for correct-by-
construction process for VMC domain. However, much work remains to be done
in the area of transformation and verification. We will continue this research to
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extend and evaluate the eFSM through constructing challenge problem model
sets of representative VMC applications and platforms, and exercising the full
systems engineering process with tool-assisted modeling and transformation. The
extensions will include additional domain-specific rules for VMC modeling and
transformation. The evaluations will include examining the breadth of the eFSM
applicability, i.e., the scope of the domains over which various rule-sets hold,
proving semantic mapability between tool native modeling elements and the
eFSM modeling elements in both directions, and studying the effect on software
correctness, process efficacy, system complexity reduction, and overall scalability
of eFSM.
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