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Preface

Software development for the automotive domain has become the enabling tech-
nology for almost all safety-critical and comfort functions offered to the customer.
Ninety percent of all innovations in automotive systems are directly or indirectly
enabled by embedded software. The numbers of serious accidents have declined
in recent years, despite constantly increasing traffic; this is correlated with the
introduction of advanced, software-enabled functionality for driver assistance,
such as electronic stability control. Software contributes significantly to the au-
tomotive value chain. By 2010 it is estimated that software will make up 40% of
the value creation of automotive electrics/electronics.

However, with the large number of software-enabled functions, their inter-
actions, and the corresponding networking and operating infrastructure, come
significant complexities both during the automotive systems engineering pro-
cess and at runtime. A central challenge for automotive systems development
is the scattering of functionality across multiple subsystems, such as electronic
control units (ECUs) and the associated networks. As an example, consider the
central locking systems (CLS), whose functionality is spread out over up to 19
different ECUs in some luxury cars. Of course, this includes advanced function-
ality, such as seat positioning and radio tuning according to driver presets upon
entry, as well as unlocking in case of a detected impact or accident. However,
this example demonstrates that modern automotive systems bridge comfort- and
safety-critical functionality. This induces particular demands on safety and se-
curity, and, in general, software and systems quality. The resulting challenges
and opportunities were discussed, in depth, at the second Automotive Software
Workshop San Diego (ASWSD) 2006, on whose results we report here.

Automotive systems are prime examples of the class of cyber-physical sys-
tems, i.e., systems that combine IT infrastructure and functionality with the
control of physical processes. Consequently, the development process for auto-
motive systems has to take into account both the physical environment and its
representation in digital systems that get deployed in the vehicle. As an ex-
ample, cars have a broad spectrum of timing requirements, ranging from hard
real-time constraints at the level of motor control to soft real-time constraints at
the level of infotainment systems. Automotive systems span the entire spectrum
from time- and value-continuous, to mixed continuous and discrete, to discrete
systems. The engineering processes used for automotive software have to take
these and other domain-specific constraints into account – seamlessly from re-
quirements elicitation to deployment and quality assurance.

Increasingly, industry and academia try to address this challenge by intro-
ducing comprehensive requirements and architecture models that capture key
domain aspects and enable exploitation in terms of code synthesis, simulation
and, more generally, verification, and validation. A further goal in adopting a
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model-based approach to automotive systems engineering is seen in the oppor-
tunity to decouple the logical from the deployment architecture of the vehicle.
This decoupling holds the promise for a true product-line approach where con-
ceptualizations of automotive systems structure and behavior are systematically
reused across different car models. For instance, CLSs exist in almost all modern
cars. Yet, we know that most software functions are developed afresh in the tran-
sition from one car model to the next. Furthermore, automotive manufacturers
and suppliers hope to have models that help them contain the enormous space
of variants and configurations that emerges from the possible combinations of
software-enabled functions and their parameterizations.

Of course, due to the traditionally distributed engineering processes between
OEMs (original equipment manufacturers, such as car makers) and multiple tiers
of suppliers, models are needed that increase the precision and understanding in
the communication between OEMs and suppliers. Consequently, to be of value,
the models chosen need to be unambiguous to the highest degree possible, yet
allow a broad spectrum of properties of structure and behavior to be specified.
It is this tradeoff between precision and expressiveness that is a recurring theme
through many of the contributions contained in this post-proceedings volume of
ASWSD 2006.

Advanced development methods such as tailored development processes, struc-
tured systems and software architectures, model-driven development techniques
and notations as well as formalized techniques of quality assurance have emerged
as an approach to dealing with the mentioned demands and complexities, in par-
ticular during the analysis, specification and design phases of the development
process. Such advanced development approaches have numerous benefits and
advantages, including:

– They provide a basis for traceability from requirements specifications to
implementation artifacts. This enables model-based requirements tracing,
verification and validation approaches, and addresses systematic changes to
models during the development process.

– They hold the promise of reduced turn-around times in iterative and incre-
mental software and systems development. They enable engineers to explore
model changes before changing the actual system.

– They support product-line software development by separating different func-
tions for product line alternatives in an otherwise common, integrated model.

– Models, description techniques and associated development processes can be
coordinated to provide contiguous, gap-free refinement and transformation
steps from requirements to code. Models are connected and integrated to
span all abstraction levels. This enables design tools, test and verification
tools and code generators to work from the same sets of models to provide
improved software quality.

On the infrastructure side, service-oriented architectures and automotive
middleware platforms, such as AUTOSAR, are emerging as a means to manage
the complex dependencies between vehicular functions, to provide standardized,
scalable, and validated infrastructures.
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Mastering the complexities of future-generation automotive software devel-
opment poses a number of important, cross-disciplinary research challenges. The
transition from monolithic to flexible, service-oriented solutions requires ad-
vances in all aspects of the development process; this includes, in particular,
the selection of an adequate service model and corresponding development tech-
niques, together with supporting software infrastructures.

The goal for ASWSD 2006 was to bring together experts from industry and
academia who work on highly complex, distributed, reactive software systems
related to the automotive domain, and to discuss and further the understanding
of the following focus areas:

– Automotive models and model-driven development
– Automotive software and systems architectures
– Automotive domain architectures
– Automotive software services and service-oriented development
– Automotive hardware, middleware, and software platforms
– On- and off-board ad-hoc networking
– Networked automotive services
– Mobile sensor networks
– Reliability, security and privacy for automotive software
– Enabling technologies for telematics applications

The workshop took place March 15–17, 2006 in La Jolla, CA, USA, at the Cal-
ifornia Institute for Telecommunications and Information Technology (Calit2).
It contributed to fostering a deeper understanding of the research challenges and
agendas in this area. Potentials for cross-disciplinary research, as well as perti-
nent curricula and training programs to address these challenges, were identified
and discussed.

The workshop program consisted of five keynote presentations, 13 technical
paper presentations, a poster session and two panel discussions. The workshop
spanned 2 1/2 days and was divided into the following topical sessions: Quality
Assurance (QA), Real-Time Control (RT), Services and Components (SC), and
Model-Based Development and Tools (MD). The pre-proceedings, consisting of
the presentation slide sets, were made available at http://aswsd.ucsd.edu/2006.

To foster discussion on cross-cutting and interdisciplinary topics, the orga-
nizers decided to have five keynote presentations – three from industry and two
from academia, as well as two panel discussions as integral parts of the work-
shop program. Bruce Emaus (Vector CANtech), Rajesh Gupta (University of
California, San Diego), Jeff Greenberg (Ford Motor Company), Thomas Kropf
(Robert Bosch GmbH), and Alberto Sangiovanni-Vincentelli (University of Cal-
ifornia, Berkeley) were recruited as keynote speakers. Professors Frieder Seible
(Dean, Jacobs School of Engineering, UCSD) and Larry Smarr (Director, Calit2)
delivered opening remarks on the first day of the workshop.

The first keynote presentation, opening the Model-Based Development and
Tools session, was given by Bruce Emaus (President of Vector CANtech). It
was titled “Model-Based Development in the Upcoming Automotive Embed-
ded Software Architecture of AUTOSAR.” As automotive product architectures
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continue to migrate toward higher levels of distribution with increasing system
and software complexity, the use of model-driven automotive embedded soft-
ware development is rapidly changing as the industry pushes forward with a
new automotive software architecture called AUTOSAR. This presentation dis-
cussed both the essential business case for AUTOSAR and the design challenges
of model-based software development in the automotive distributed embedded
system domain.

Rajesh Gupta (University of California, San Diego) presented insight into new
approaches for hardware design in his talk “Meta Modeling for Component Com-
positions: A Hardware Guy’s View.” He stated that novel computational fabrics
are approaching intrinsic silicon efficiencies, imposing challenges to ensure pro-
grammability and program models. Currently, a methodology evolution occurs
from chip design to embedded software design. The availability of programming
models, methods and language support for building embedded systems (on chip)
will be critical to exploiting the enormous technology capacities. New methods
will mature that enable systematic modeling and exploitation of meta-data in
design, verification, and synthesis. Gupta showed an approach to developing com-
positional, verifiable system-on-chip specifications in SystemC. He also hinted at
opportunities for marrying service-oriented development techniques increasingly
popular in software with a traditional system on chip development.

Jeff Greenberg (Manager of the VIRTTEX driving simulator at Ford Motor
Company and Ford’s Senior Technical Leader for automotive HMI) explained the
challenge of automotive systems engineering from multiple angles. He focused
on the necessity to create a simulation platform that not only is able to incor-
porate the emerging advanced software-enabled automotive systems, but also
allows evaluation of the resulting human machine interface (HMI) concerns. The
latter becomes increasingly important to ensure that the benefits of driver safety
brought about by novel electronic features outweigh the increasing distraction
drivers are exposed to (e.g., cell phone use during vehicle operation.)

Thomas Kropf (Vice President for system and software engineering, Driver
Assistance Systems, Robert Bosch GmbH) delivered the keynote presentation
“Driver Assistance Systems: Challenges for Automotive System and Software
Design.” He explained recent developments in the domain of driver assistance
systems and described the challenges automotive suppliers are facing today in
system and software design. He presented examples for new design methods, tools
and processes which are used to overcome the current design limitations. Kropf’s
presentation pointed out the difficulty in applying traditional formal methods in
the rich requirements spectrum of automotive systems outlined above.

Alberto Sangiovanni-Vincentelli (University of California, Berkeley) discussed
the question “Is Embedded Software for Safety Critical Automotive Systems Re-
ally a Software Problem?” in his presentation, delivered by Manfred Broy. He
stated that embedded software design is one, albeit critical, aspect of the more
general problem of embedded system design, which is about the implementa-
tion of a set of functionalities satisfying a number of constraints ranging from
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performance to cost, emissions, power consumption, and weight. Sangiovanni-
Vincentelli’s presentation illustrated the main challenges and opportunities of
vertical design chain integration. In addition, it presented platform-based design
as an important approach to meeting challenges and taking advantage of oppor-
tunities in automotive systems development. Platform-based design is a design
methodology where reuse and programmability are central. It is an approach
that provides unified and harmonious views on embedded software design and
hardware architecture, consisting of formal techniques at the abstract level facili-
tating early verification with the correct set of tools and methods. The Metropolis
environment was described as a framework to sustain the methodology.

Two panel discussions complemented the keynote presentations. The first
panel discussed “Integrated Automotive System Development – Process, Chal-
lenges and Opportunities.” Panelists were Jeff Greenberg (Ford Motor Com-
pany), Rajesh Gupta (University of California, San Diego), Edward Lee (Uni-
versity of California, Berkeley), and Wolfgang Pree (University of Salzburg).
The panelists discussed the various phases of the automotive engineering pro-
cess, into which the software/hardware co-design process is embedded. The mal-
leability of software was discussed as a particular challenge in the seamlessness
from early requirements to simulation to implementation and quality assurance.
On the technical side, the panelists discussed the absence of adequate program-
ming models that take time (hard- and soft real time) into consideration as a
first-class citizen. Consequently, the spectrum from continuous to mixed con-
tinuous/discrete to discrete automotive software has yet to be mastered. The
panelists formulated this as a challenge for the research community.

The second panel discussed “Model-Based Service Engineering for Automo-
tive – Hype and Substance.” Panelists were Bernhard Schätz (Technische Uni-
versität München, Germany), Bruce Emaus (Vector CANtech), Thomas Kropf
(Robert Bosch GmbH), Klaus Müller-Glaser (University of Karlsruhe), and
Daniel Gajski (University of California, Irvine). The discussion emphasized the
increasingly distributed nature of functions realized by automotive software. Sig-
nals and information from components are combined in ways that were not
intended originally. Service-oriented concepts can effectively help to manage
the complexities caused by this heterogeneity. Initial approaches to introducing
service-oriented concepts can already be found in industry – sometimes under
different names. One of the biggest challenges is the absence of suitable models
to describe the functions and their dependencies in a service-oriented way, in ad-
dition to existing implementation and hardware-oriented models of automotive
controller components.

The discussion also emphasized the importance of approaching automotive
system design from a user’s view, focusing on the applications that the car as
a system provides to its users. Automotive system services should be designed
from the perspective of users and applications, not as a combination of pieces of
functionality from existing components. The dependency of user-relevant services
must be captured in suitable models.
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In both panels, it was observed that in automotive system design the black-
box controller business model, as a hardware/software unit of specification,
integration, maintenance, and contract, is still predominant. This defines the
OEM–supplier relationship. Providing pure software solutions to OEMs is cur-
rently not a viable business model for suppliers. Here, the industry needs to
change and research needs to come up with suitable service-oriented business
models and system development models. Automotive systems must open up to
facilitate addition of new services – inside and outside of the vehicle. Infotain-
ment systems were cited as likely first candidates to go in this direction.

A poster presentation session provided the opportunity to showcase current
research projects for invited presenters from academia and automotive industry.

This volume includes a selection of refereed technical and invited papers
presented at the workshop. In the following, we give a brief overview of the
selected papers and their contents.

The paper “The Case for Modeling Security, Privacy, Usability, and Reliabil-
ity (SPUR) in Automotive Software” by Prasad et al. emphasizes the importance
of the attributes security, privacy, usability, and reliability (SPUR) in creating
specifications for embedded in-vehicle automotive software. The paper reviews
several real-world use-cases and their functional and non-functional system re-
quirements. From there, the authors derive underlying automotive architectural
elements spanning multiple software service domains. In particular, the suggested
approach elevates the SPUR requirements from an afterthought to the earliest
requirements and architecture design phases.

Neema et al. target the issue of model ambiguities across different tools and
methods in their paper “Addressing Cross-Tool Semantic Ambiguities in Behav-
ior Modeling for Vehicle Motion Control.” They provide a model and semantics
for behavior specifications in the automotive vehicle motion control (VMC) do-
main, facilitating the exchange of finite state machine models across different
tools, and leading towards automated correct interpretation. The authors in-
troduce an extended finite state machine metamodel (eFSM) with semantics
definitions based on a mathematical framework. They show how models devel-
oped within commercial tool environments are checked for conformance with
eFSM-models, promising higher-confidence software engineering for the VMC
domain.

The paper “A Software and System Modeling Facility for Vehicle Environ-
ment Interactions” by Nelson and Huang describes an advanced modeling facil-
ity for system and software design, intended to address the growing complexity
of automotive embedded software and the resulting issues for vehicle develop-
ment. Increased complexity will require a broader range of modeling capabilities
beyond functional/behavioral modeling. The authors present a more comprehen-
sive modeling process with the capability to model vehicle systems from multiple
viewpoints, such as the traditional functional point of view and the viewpoints of
software structure, component interactions, and the human-machine interface.
All viewpoints are brought together in a common set of models.
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Anand et al. describe an approach for “Generating Sound and Resource-
Aware Code From Hybrid Systems Models” in their contribution. The authors
propose a framework for generating resource-aware code from hybrid systems
models with guarantees of no switching discrepancies. They propose an approach
to handling faulty transitions and compute execution rates for minimizing missed
transitions. The approach is an effort at bridging the semantic gap between
the model and the code due to discretization and resource constraints. This
work helps to address remaining issues related to ensuring correctness of the
implementation with respect to the model in model-based development of real-
time embedded systems.

“Towards Verification of Model Transformations via Goal-Directed Certifica-
tion,” a contribution by Karsai and Narayanan, investigates a technique called
‘goal-directed certification’ that provides a pragmatic solution to the problem of
verifying the correctness of model transformations within model-based develop-
ment approaches. Model transformations include generating code from models,
transforming design models into analysis models, and transforming a model be-
tween variants of a formalism (such as variants of Statecharts). The authors
use concepts of bisimulation to verify whether a certain transformation instance
preserved certain properties and subsequently extend this idea using weak bisim-
ulation and semantic anchoring to a more general class of transformations.

The paper “An Instrumentation-Based Approach to Controller Model Valida-
tion” by Cleaveland, Smolka and Sims discusses the concept of instrumentation-
based validation (IBV): the use of model instrumentation and coverage-based
testing to validate models of embedded control software. Assertions, formalized
requirements, are realized through monitors that observe the behavior of execut-
ing controller models, which are instrumented with these assertions. The authors
describe an implementation within the Reactis tool suite for the automated test-
ing and validation of controller models given in Simulink/Stateflow.

Grossmann et al. describe “TestML – A Test Exchange Language for Model-
Based Testing of Embedded Software” in their contribution. TestML supports
the exchange of tests between different test notations in a heterogeneous tool
environment, for instance, facilitating the reuse of tests between different test
levels, such as such as model-in-the-loop (MIL), software-in-the-loop (SIL), and
hardware-in-the-loop (HIL) tests. The authors introduce the XML schema of
TestML and demonstrate the efficiency of the interchange format by giving
examples from the model-based development of electronic control units. Tool
support is illustrated by an application with Simulink/Stateflow.

The paper “Towards Integrated Model-Driven Verification and Empirical Val-
idation of Reusable Software Frameworks for Automotive Systems” by Subra-
monian and Gill claims that leveraging reusable software frameworks in the
development of automotive systems offers significant potential to reduce en-
gineering costs and cycle times, caused by rapidly increasing complexity and
scale. The authors show the relevance of reusable software frameworks, describe
an approach to verification and validation of such frameworks based on timed
automata models, and present an evaluation of their approach.
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Pree and Templ describe in their paper “Modeling with the Timing Def-
inition Language (TDL)” the model-based development process of hard real-
time software with the TDL. They explain the modeling and simulation of TDL
components in Matlab/Simulink, their mapping to a specific platform, and code
generation. The authors claim that benefits of applying a TDL-based develop-
ment process are significant development and maintenance cost savings, and, for
instance, increased flexibility for automakers to change the execution platforms
and, if necessary, redefine the OEM-supplier relationship.

“Towards Model-Driven Development of Hard Real-Time Systems—
Integrating ASCET-MD and aiT/StackAnalyzer” by Ferdinand et al. presents
tools, experimental integration, preliminary results, and plans for further tool
integration of automatic code generators such as ETAS’ ASCET, and static pro-
gram analysis tools like AbsInt’s StackAnalyzer and the timing analyzer aiT.
Through an integration of these tools it is, for instance, possible to give ASCET
users a direct feedback on the effects of their design decisions on resource usage,
allowing them to select more efficient designs and implementation methods, by
making aiT/StackAnalyzer analysis results accessible from within ASCET.

Finally, Giese introduces “Reusable Services and Semi-Automatic Service
Composition for Automotive Software.” The author describes a service-oriented
approach for the reuse of automotive software functions across models; it exploits
a recombination of functions in a restricted manner in order to enable reuse.
The author shows how all phases of the development process can benefit from
a service-oriented approach and describes how advanced synthesis techniques
can be employed to reuse components, patterns, and services and compose them
with only minimal manual efforts.

The workshop clearly exhibited the state of the art of model-based automotive
software engineering and pointed out various challenges in the area. This is also
reflected by the papers selected for this volume.

The organizers were delighted to again observe the extremely positive expe-
rience created through the dialog between leading researchers and industry par-
ticipants from the USA and Europe. During the workshop significant progress
was achieved to develop a common understanding of the challenging problems
in the automotive domain such as:

– Models and model-transformations for hard and soft real-time systems
– Comprehensive engineering approaches for model-driven hardware/software

co-design
– Integrating HMI design and development with automotive systems engineer-

ing processes
– Transitioning from component- to service-oriented systems engineering to

support product-line development and reuse

The comments we received from participants during and after the workshop
were overwhelmingly positive. In particular, the combination of and balance be-
tween industrial and academic participation with high-quality contributions from
both sides was remarked as a distinguishing positive element of this workshop
series.
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The organizers and editors extend their profound thanks to all workshop
participants, authors, keynote speakers, panelists, poster presenters, reviewers,
sponsors, and members of the local organization team for their important con-
tributions to the success of the workshop itself and of this post-proceedings
volume.

This material is based on work supported by the National Science Foun-
dation under Grants No. CNS-0413136 and CCF-0702791. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

February 2008 Manfred Broy
Ingolf H. Krüger

Michael Meisinger
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The Case for Modeling Security, Privacy,

Usability and Reliability (SPUR) in Automotive
Software

K. Venkatesh Prasad, Thomas J. Giuli, and David Watson

Ford Motor Company, Dearborn, MI 48121, USA
{kprasad,tgiuli,dwatso80}@ford.com

Abstract. During the past few years, there has been considerable
growth in the practice of modeling automotive software requirements.
Much of this growth has been centered on software requirements and
its value in the context of specific functional areas of an automobile,
such as powertrain, chassis, body, safety and infotainment systems. This
paper makes a case for modeling four cross-functional attributes of soft-
ware, namely security, privacy, usability, and reliability, or SPUR. These
attributes are becoming increasingly important as automobiles become
information conduits. We outline why these SPUR attributes are im-
portant in creating specifications for embedded in-vehicle automotive
software.

Several real-world use-cases are reviewed to illustrate both consumer
needs and system requirements — functional and non-functional system
requirements. From these requirements the underlying architectural el-
ements of automotive SPUR are also derived. Broadly speaking these
elements span three software service domains: the off-board enterprise
software domain, the nomadic (device or service) software domain and
the embedded (in-vehicle) software domain, all of which need to work in
tandem for the complete lifecycle management of automotive software.

1 Introduction

The nature and terrain of computing in the automobile is in a state of tran-
sition. Automotive computing is transforming from being function-oriented to
being service oriented, while the terrain (or logical boundaries) of computing
in an automobile is expanding to include both computing elements in the wire-
less external infrastructure and the nomadic (or hand held, mobile) infrastruc-
ture. This transition is being driven on the one hand by consumers, wanting
to keep pace with their changing life styles and, on the other hand, by regula-
tory agencies placing more stringent demands on the attributes such as safety,
emissions, fuel economy. Given the transformation in the nature and terrain
of automotive computing, this paper makes the case for modeling security, pri-
vacy, usability and reliability (SPUR) — motivated in part by David Patterson’s
manifesto [1].
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For nearly a century, the automobile was defined by components with local
functionality and differentiated by proprietary systems engineering implementa-
tions involving mostly mechanical coupling between components. Over the past
three decades, with the advent of microelectronics and local-area networks [2] in
the automobile, there has been a steady growth in the use of mechatronics [3]
and the practice of allocating functions across multiple components. The applica-
tions of systems engineering principles, in turn has been extended to a combina-
tion of mechanical, electronic, digital, analog (or discrete-time, continuous-time)
sub-systems and components. With the growing maturity of the software ecosys-
tem [4], including operating systems, programming languages, development en-
vironments, and engineering tools, the modern automobile is being increasingly
defined by software. There is a trend to allocate automobile functions across
multiple standardized components (to reduce the number or unique hardware
modules) and to use software design, modeling and engineering for function
implementation and associated product differentiation [5]. In this context, the
automobile is rapidly becoming a distributed computing environment.

Commensurate with the growth in demand for new features, from both con-
sumers and regulatory agencies, is the increase in the complexity of functional
allocation across the distributed computing environment in the vehicle. In ad-
dition, the computing terrain of the automobile is rapidly changing [6]. With
the advent of wireless personal, local, and wide-area technologies, the physical
boundary of the automobile is no longer the logical bounding box for functional
allocation. Functions may be distributed across on-board computing units [5],
off-board (such as roadside) infrastructure units [7] and nomadic devices [8] such
as cellular phones.

To manage this growth in the complexity of allocating functions, a higher level
of abstraction will likely be required. A service-oriented computing approach [9]
is an attractive option. The present day automobile is function-defined — most
consumer perceived features are based on the specification of distributed on-
board functions; the future automobile will likely be service-defined, with fea-
tures being specified, modeled and synthesized by aggregating consumer and
vehicle related services from both on-board and off-board sources.

The next section (Section 2) of this paper elaborates the case for SPUR in
the automotive context and outlines the role of modeling SPUR. Section 3 intro-
duces two broad examples that highlight the new computational terrain of the
automobile and the role of modeling SPUR in these contexts: one example shows
how the computational terrain logically extends from the the physical bound-
aries of the automobile into the roadside infrastructure and the second example
illustrates how the new automotive computational terrain extends through no-
madic devices and services into the wide area communication networks (such
as the wireless telephony networks and, in general, the wireless internet). Sec-
tion 4 shows how SPUR attributes associated with a specific use-case could be
modeled. Section 5 lists requirements for tools needed to develop SPUR models.
Section 6 discusses related work. Section 7, in conclusion, summarizes the need
to model SPUR in the automotive context.
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2 SPUR in the Automotive Context

SPUR [1] was advocated on the premise of shifting research efforts in computer
science and engineering away from making faster, cheaper systems to making
systems that are more secure, privacy-preserving, usable, and reliable. While
these attributes can take on many meanings, we are interested in applying them
to the experience of the individual people who own and interact with these
systems on a daily basis. For example, while security and reliability can be
seen as two sides of the same coin from a technology perspective, from a user’s
perspective they are two very distinct concepts. A system that constantly fails
impacts a user very differently from a system that causes her credit card to be
stolen. In this context, we believe that the automotive industry is particularly
well-suited to understand the value of each aspect of SPUR-oriented design.

Security in the automotive domain has so far emphasized physical security.
The first automobiles were produced without any built-in theft deterrents. Grad-
ually they acquired keys to start the engine and door locks to protect property
left in the vehicle. Modern vehicles now use sophisticated radio transmission
devices with strong cryptography to prevent unauthorized entry.

Network connectivity is being added to vehicles through telematics services
(e.g., OnStar, R© BMW ASSISTTM) and hands-free telephony, introducing the
possibility of remote intrusion into a vehicle’s embedded networks. Not only
could a remote intrusion compromise the physical security of the vehicle (i.e.,
unauthorized remote unlock), but it could directly affect the vehicle’s drivabil-
ity. For example, a virus could trigger the vehicle’s theft alarm while driving.
Clearly, as the automotive industry integrates more digital network technology
into vehicles, its impact on both physical and digital security must be assessed.

On the flip-side of the security coin is a concern for privacy. Modern vehi-
cles “know” much more about their drivers and passengers than ever before.
Vehicular navigation systems could be used to correlate data and extract po-
tentially private information. For example, correlating driver location data with
the locations of points of interest such as stores, places of worship, commu-
nity centers and other buildings an organization can build an accurate profile
of the driver’s interests. The privacy concerns of automobile customers must be
treated seriously and safeguarded with the introduction of new technologies such
as telematics and navigation services.

The usability aspect of SPUR in the automotive context is especially impor-
tant because of its impact on safety. An automobile’s human-machine interface
(HMI) must allow the driver to focus on the task of driving while at the same
time providing un-occluded access to driver information as well as comfort and
convenience features such as climate and radio controls. Complicating the matter
are the integration of new technologies such as mobile phone services, voicemail,
messaging, and email into the vehicle HMI. A balance must be struck between
the complexity of an HMI with many features and safe usability.

Reliability has been a serious concern in the automotive industry and in
the consuming public’s minds for some time now. Automobiles are increasingly
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becoming software-driven, not just mechanically driven. Therefore, software re-
liability will be as important as mechanical reliability in future automobiles.

Table 1 outlines automotive examples that exhibit varying combinations of
SPUR attributes. Each row categorizes examples as having or lacking some
SPUR attributes. In the text that follows, we describe the reasoning behind
the values assigned for each row:

– The Carfax R© web service allows anyone to view detailed maintenance and
accident histories of any vehicle for a fee. The service must be secure to pre-
vent unauthorized tampering with vehicle records, usable enough for anyone
to understand, and reliable to provide correct information. It’s important
to note that we’re considering these attributes from the perspective of an
individual user of the system. In this context, these attributes are neither
orthogonal or rigorously defined. Instead, these attributes are intended to
direct attention to attributes that can be easily overlooked when designing
systems that are bigger, better, and faster.

– Safety is the primary concern of anti-lock braking systems (ABS) and so
naturally the desire for reliability is high. Along similar reasoning, ABS must
be easy and intuitive enough in its function such that untrained drivers can
use the system. Security is as much of a concern as for any safety-critical
module and should not be vulnerable to remote attack. Privacy is not much
of a concern because the ABS does not collect or process any sensitive data
to function properly.

– Comparing a standard door key and a valet key, we see that they are sim-
ilar except in the privacy attribute. Both keys and their associated locking
mechanisms must be secure enough to prevent people without keys from en-
tering, both must be highly usable and reliable. However, while a standard
door key should grant the holder access to all parts of the vehicle, the valet
key is designed to prevent the valet from entering “private” areas, such as
gloveboxes or trunks.

Table 1. Examples illustrating SPUR in an automotive context and the relative im-
portance (Low, Medium, High) of each SPUR attribute to each example

Example S P U R

Carfax R© database H L H H
Anti-lock braking system M L H H
Door key H L H H
Valet key H H H H

The examples shown in Table 1 have software that resides either wholly inside
the vehicle, or entirely outside the vehicle. Conversely, software implementing
sophisticated telematics services reside not only on-board the vehicle but also
off-board, including the IT infrastructure of original equipment manufacturers
(OEMs), dealerships, telecommunications operators, and in hand held consumer
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Fig. 1. Diagram of automotive SPUR

devices. Because of the new push of automotive software across module and ve-
hicular boundaries, there is a need to develop models that cross these boundaries
as well. Furthermore, because vehicular telematics software relies on dynamic ex-
ternal software, models of telematics systems must change along with deployed
systems. A service-oriented approach to implementing automotive software —
both in-vehicle software as well as enterprise software — eases the design, im-
plementation and maintenance of systems to ensure that each requirement of
SPUR design is present in the system.

Figure 1 illustrates this interesting space. As we stated before, we believe it
is important to understand how to model services that cross the embedded and
enterprise domains. Within this space are both functional and para-functional (or
non-functional) requirements. Functional requirements are more visible, however
we believe that the para-functional requirements will be increasingly important.
In particular, we are interested in understanding how the mobility inherent in a
vehicle impacts this space. Providing functionality to a person driving at highway
speeds requires strong attention to SPUR both at the human to machine interface
as well as the machine to machine interface. The safety and quality of the driving
experience is clearly affected by these attributes. At the same time, designing
computer communications systems that support SPUR concerns in these types
of mobile applications requires careful attention to system interactions.

3 Examples of Automotive Services

In this section we use two examples to demonstrate the trend towards auto-
motive services extending outside the physical constraints of the vehicle. The
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first is the Vehicle Infrastructure Integration (VII) project [7]. The second is
the Vehicle Consumer Services Interface (VCSI) project [8]. These two examples
demonstrate integration of the vehicle with roadside infrastructure and consumer
services respectively.

3.1 VII

The Vehicle Infrastructure Integration project is a joint effort involving the
United States Department of Transportation (USDOT), state transportation
departments, and vehicle manufactures. The VII goal is to develop and deploy
the roadside and vehicular infrastructure needed to improve the safety of the
nation’s roadways. By improving the amount and types of information available
from the roadway and by having improved safety warnings and controls, drivers
will be better prepared to mitigate or avoid accidents. The features enabled by
VII include everything from warning drivers that another vehicle is about to run
a red light, to notifying drivers that a given section of road is covered with ice.

The VII roadway system consists of roadside units (RSUs) deployed along
highways and onboard units (OBUs) built into vehicles that communicate with
each other using the Dedicated Short Range Communications (DSRC) protocol
at 5.9GHz. The roadside units are wired to an information services backend
that can track traffic conditions as well as log safety problems throughout the
system. Vehicles transmit useful sensor data, such as GPS location, velocity, and
traction to the roadside units, which in turn process the sensor data and report
back to vehicles in the area if any safety issues may be present. For example,
if several vehicles report that their traction control and anti-lock brake systems
were activated at the same spot on the highway, the roadside unit nearest the
problem area can broadcast a warning to oncoming vehicles. Vehicles can also
communicate with other vehicles directly, enabling dynamic warnings such as
a vehicle notifying the vehicles directly behind it that the driver is braking
suddenly.

Table 2 lists the titles assigned to some of the first scenarios being consid-
ered. In addition, it highlights how important the SPUR attributes are to each
scenario. In general, scenarios that are likely to affect driver behavior or well-
being have a high impact from security. For example, an incorrect signal that
an emergency vehicle is approaching could cause great headaches to drivers, and
potentially disrupt the usage of this signal by true emergency vehicles. Thus,
it’s important that such a system be secure against malicious manipulation. On
the other hand, spurious information about traffic is less likely to significantly
impact drivers, hence it is listed as having medium importance relative to se-
curity.1 Privacy is more of a concern when revealing information about specific
vehicles, as in the case of intersection warnings. On the other hand, road condi-
tions are likely to be broadcast to everybody, and therefore unlikely to contain a

1 It’s important to note that we’re talking about a subjective measure of security for
illustrative purposes. We strongly believe that all of these attributes are important
considerations for any scenario.
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Table 2. List of VII use cases and the relative importance (Low, Medium, High) of
each SPUR attribute to each use case

Use case S P U R

Emergency Brake Warning M L H H
Curve Speed Warning M L H H
Traffic Signal Violation Warning H M H H
Stop Sign Violation Warning H M H H
Emergency Vehicle Approaching H L H H
In-Vehicle Signage M L M M
Traffic Information and alt route guidance M L M H
Electronic payments H H M H
Roadway Condition Information M L H H
Traffic Management H L H H
Emergency Vehicle At Scene H L H H

significant privacy risk. In general, usability and reliability are significant to all of
these scenarios. In some cases, usability is less important, since the consequences
are less severe.

3.2 VCSI

The second project, the Vehicle Consumer Services Interface (VCSI), is a project
at Ford to provide an interface between consumers, their personal devices, off-
board services, and vehicle systems including both networks and devices. VCSI
is implemented as a service-oriented architecture, meaning that functions within
the vehicle are designed as services to be used by other functions and may reside
on one or more hardware modules. This design philosophy has advantages such
as code reuse between modules and reduces the impact of the redesign of a
module. For a more extensive treatment of VCSI see [8].

To demonstrate this system, we developed a prototype vehicle that contained
several specific applications including those shown in Table 3. As with the VII
examples above, we’ve made some attempt to demonstrate the relative impor-
tance of each SPUR attribute to each service. Since most of the consumer facing

Table 3. List of VCSI services and the relative importance (Low, Medium, High) of
each SPUR attribute to each service

Service S P U R

Vehicle Personalization L H M H
Personal Information Management H H M M
MyHome (Home Automation Services) H H M M
Bluetooth Technology H H M M
Real-time navigation M L M H
Diagnostics H M H H
In-vehicle media player M M M M
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services provided by VCSI are not safety critical, they have lower requirements
on usability and reliability. At the same time, most of these services depend
on interfacing with devices that have personal information. In that context, it’s
important that the privacy of the data contained within those devices be kept
secure.

Overall, we think these two projects demonstrate an increasing trend towards
increased connectivity with a vehicle, both from consumer devices and from
roadside infrastructure. In addition, we believe that modeling provides the means
to understand these services provided to the consumer at a system level.

Driver

LeaveVehicleInGarage()

Vehicle

NotifyDriverOfCostToPark()

DisplayParkingBill()

AcceptCharges()

AcknowledgeCost()

OEM

AuthorizePayment()

ReceiptForPayment()

Parking
Garage

CostOfService()

ExitGarage()

TotalCostOfService()

TransferPayment()

ReceiptForServiceRendered()

AcknowledgeCost()

Fig. 2. A sequence diagram showing the interactions between entities in a parking
garage with an electronic payment service. In this scenario a driver parks her car in a
smart parking garage and electronically pays upon exit.
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4 Electronic Payment Use Case

In this section, we present a more in-depth look at the electronic payment use
case mentioned in Section 3 and how it relates to SPUR-oriented design. With
electronic payments, drivers will have the ability to pay for parking electronically
without interacting with a parking meter or a garage attendant. Drivers will no
longer have to dig around for spare change and municipalities will no longer have
to collect cash from parking meters.

Figure 2 shows a sequence diagram for a vehicle involved in an electronic
payment scenario with a parking garage. The main entities in the diagram are
the driver of the vehicle, the vehicle’s software systems (implemented in a service-
oriented architecture, as shown in Figure 3), the vehicle’s OEM (or a delegate
of the OEM), and the parking garage authority. When the vehicle enters the
garage, the garage transmits a list of services and their costs to the vehicle,
which in turn presents this information to the driver through the vehicle’s HMI.

Vehicle Service Set

Cryptographic
Authentication

Service

HMI
Service

Secure Data
Store Service

Network
Transport
Service

Telematics
Services

Fig. 3. The vehicle services needed to implement electronic payment in a service-
oriented architecture

Assuming that the driver is willing to pay the cost to park, she acknowledges
the cost of service, parks the vehicle and leaves. The vehicle sends a signed
acknowledgement to the garage. Later, the driver returns and begins driving out
of the garage. The garage calculates the amount of money owed and securely
transmits a bill to the vehicle. The vehicle notifies the driver of how much is owed
through the HMI and requests that the driver consent to pay. Confirmation
from the driver causes the vehicle to transmit an encrypted, signed payment
authorization message to the OEM. The OEM, acting in the role of an e-payment
service, securely credits the funds to the parking garage and returns a signed
receipt to the vehicle showing proof of payment. Finally, the garage sends a
signed receipt to the vehicle showing that it has received its requested payment.

Thus, at the end of the interaction between the driver and the garage, the
driver has proof from both the OEM and the garage that she has paid what she
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owed. The garage has a signed acknowledgement from the driver stating that
she understood the cost to park before she parked her vehicle as well as funds
deposited by the OEM to pay for parking. The receipts returned to the driver
are necessary to prove that she paid for services in the case of a dispute between
the garage and driver. Similarly, the signed acknowledgement agreeing to the
cost of parking from the driver is necessary to dissuade a driver from reneging
on payment upon exit from the garage.

4.1 Challenges

There are many challenges involving SPUR in the context of such an automotive
e-payment system. While many of these challenges are not unique to e-payments
in general, the scope of this paper is to understand how these issues are unique
in an automotive context.

First are questions of infrastructure. E-payments require a secure, potentially
private, system for transferring money from a driver or other occupant in the car
to a specific payee. We also assume that these payments will reflect current cash
payment characteristics, specifically, we need to support individual transactions
of less than one dollar. This requires the support of a third party to aggregate
payments on both sides of the payment. This could be the vehicle manufacture,
as we’ve outlined before, a credit card issuer, or an Internet e-payment provider.

Automotive e-payment is inherently a mobile application. Malicious agents
are likely to have easy access to all communication that takes place outside the
vehicle. In addition, unlike personal mobile devices such as a cell phone, there
is inherently less physical security over the vehicle. Cars are often parked in
public spaces, and routinely in control of mechanics. Even users sometime have
a vested interest in modifying the vehicle software, as evidenced by powertrain
modification chips. These reasons imply that some type of end-to-end assurance
is needed about the legitimacy of each individual transaction. However, there is
an inherent trade-off between the sophistication of a given security system and
the risk of compromise. For example, an individual driver is unlikely to notice
or care if a individual penny or quarter is missing from his car when she takes
it in for service. Similarly, users often trade off convenience for increased risk
of monetary loss. For example, many electronic cash cards such as the Octopus
card used in Hong Kong [10] require no authentication to use, and the owner
assumes that a lost card implies the money associated with that card is also lost.
Similarly, in-vehicle e-payment systems need to take into account the unique
environment when trading off risk with cost. Mobility also has implications for
the reliability of the system. There is no guarantee that a device will always stay
in communications range during the period of a transaction.

Providing security and privacy in electronic transactions naturally implies the
use of cryptographic protocols. In contrast to general purpose computers, the
computational power and upgrade capabilities of embedded devices is severely
limited. In addition, unlike the consumer electronics side of the embedded, mo-
bile marketplace, vehicle software has a useful life of over ten years. In this
context, how do we ensure that the computational power will be great enough
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to support key lengths that can’t be easily compromised long into the future,
without needless expense? At the same time, flaws in cryptographic protocols
are not uncommon, so the in-vehicle software should be upgradable, without
causing undue burden on the driver.

Second, are questions of authentication. How do we authenticate that the per-
son responsible for the account used in the transaction is authorized to make
the payment? We can’t always assume that the driver is authorized to make
payments with an account associated with the vehicle. Valets or even teenage
drivers quickly complicate this assumption. At the same time, we want to au-
thenticate the payee to the driver, making sure that a hacker hasn’t set up
their own virtual toll booth at the side of the highway, while still making it
easy for small businesses to use the system. In some sense, the physical nature
of our scenario provides opportunities not usually seen on the Internet. Most
drivers require a physical or electronic key in order to enter a vehicle. At the
same time, in the scenarios that we described, the payee will be in physical view
of the driver. This presents an opportunity to provide out-of-band signaling to
facilitate authentication.

Similarly, the physical nature of owning a vehicle presents an opportunity for
associating real people with digital identities. In buying or leasing a vehicle, most
buyers have little expectation of privacy. Most transactions require some type
of financing, necessitating at least a credit check. Even in situations where this
isn’t the case (e.g. person to person cash transactions), owning a vehicle requires
licensing with the state, another transaction which implies a lack of privacy, and
a financial interest in correctly identifying the owner.

Finally, the interface between the driver and the vehicle computer system
poses several important challenges. Because we are talking about the driver au-
thorizing payments while driving, this interaction needs to require little attention
from the driver. At the same time, we need drivers to understand the security
implications of the actions they’re performing. Studies of web browser security
have demonstrated techniques to better inform users of the security implications
of the current browser state [11].

5 Modeling Requirements

The electronic payment use case detailed in Section 4 touches on all aspects of
SPUR-oriented design. For vehicular electronic payment to be widely accepted,
sensitive financial information must be securely exchanged between the vehicle,
the OEM, and a service vendor. The privacy of financial dealings must also be
preserved. Furthermore, the HMI must clearly present information about the cost
of a service and indicate when consent is required. Finally, electronic payment
systems must be reliable enough to give drivers the confidence to wholly adopt
them.

In order to design an electronic payment system, it’s important to model var-
ious aspects of the design before building a production system. This modeling
would allow designers to understand how the intended system meets these and
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other important attributes. However, modeling the parking garage use case re-
quires a diverse set of tools and disciplines. The driver must not be distracted
while making financial transactions yet the HMI must be involving enough to
assure the driver that they are making a secure transaction. The HMI may use a
text display, an LCD, voice recognition, or a combination of interface technolo-
gies to communicate with the driver. We must be able to realistically model a
user interface with all of these qualities.

A significant amount of software of varying complexity is involved in our use
case, from less complex programs embedded in the vehicle to highly complex
back-end software at the OEM and parking garage vendor. The interactions be-
tween the vehicle, the OEM, and the service vendor must be modeled as well. We
thus require a software modeling tool that can effectively model heterogeneous
software environments with varying levels of complexity.

Each aspect of SPUR is a whole-system attribute. For example, spending
resources on creating a security-hardened implementation of the vehicle’s em-
bedded programs is useless if the communications between the vehicle and OEM
are unencrypted. Similarly, an electronic payment system with a highly reliable
embedded program but a buggy OEM back-end interface makes the system as
a whole unreliable.

Therefore, to fully evaluate each aspect of SPUR we must be able to study
the HMI of the vehicle, its embedded programs, the OEM and parking garage
enterprise software as a single system. We require a single tool or suite of tools
that can fully inter-operate in order to model the interactions between each of
the system’s components. The tool must allow us to inject faults or directed
attacks and measure the effects both in terms of software metrics (i.e. loss of
privacy, reduced reliability) and in terms of customer-facing metrics such as the
effect of a fault at the OEM on the in-vehicle HMI.

While many existing tools could be used to realize this goal, there are some
important requirements that should be met. First, it’s important for a model
to accurately reflect the design of the final product. A software system that is
modeled in one tool and then completely redesigned and rewritten for production
is likely to provide little value in predicting security and reliability concerns.
At the same time, a modeling tool needs to allow abstractions that simplify
the process of quickly building a model that can be tested before the design is
finalized. Another important requirement is a tool that can easily inter-operate
with other tools. While a single tool that can model everything from the HMI
to the back end database might be simpler, it is unlikely to ever meet all the
needs of designers and researchers. Instead such a system is likely to be tested
using a suite of tools tied together to meet the unique needs of the team.

Overall, the important attributes for a system for modeling SPUR attributes
has less to do with the individual tool features, but more to do with the ability of
the tool to adapt to the goals of the modeling project. For example, techniques
for compromising the security of a system are constantly evolving. A single tool
is unlikely to meet the needs of a system security audit without adapting to new
techniques. At the same time, the local resources and techniques available to
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a design team are likely to be unique. However, we believe that a system level
approach to modeling new systems provides a valuable approach to understand-
ing how the SPUR attributes are preserved by a given design.

6 Related Work

While we could not hope to completely cover all relevant works in the individual
disciplines of security, privacy, usability and reliability, in this section we present
key related work in each of the SPUR attributes related to information systems
in the automotive domain.

– Security As vehicles become connected to exterior networks, such as through
telematics systems, the possibility of malicious hacking of vehicle networks
increases. Wolf et al. [12] investigate the vulnerabilities of several common
vehicle networking technologies including CAN, FlexRay, and LIN.

– Privacy Privacy is a concern in any system where vehicles broadcast their
GPS location on a regular basis. A powerful entity, such as a government,
could attempt to track the locations of individual vehicles if countermeasures
are not taken. Sampigethaya et al. [13] have devised CARAVAN as a way
to ensure location privacy in these types of systems. CARAVAN works by,
among other techniques, grouping clusters of vehicles together and period-
ically nominating a new group leader to broadcast probe data while other
vehicles remain silent.

– Usability Usability is probably the most familiar attribute to the general
public. Most people have experienced the frustration of trying to turn on
the windshield wipers, for example, in an unfamiliar car. A lot of research
has been performed in understanding driver distraction as it relates to the
usability of various in-car features. For example, Nowakowski et al. investi-
gate usability problems with in-vehicle navigation systems [14].

– Reliability Reliability is also extremely important to the automotive indus-
try and the embedded systems community in general. Unlike a desktop com-
puter, an embedded system, such as an automotive powertrain controller, is
expected to work all the time or at least fail in a way that doesn’t leave the
driver stranded on the side of the road. Tindell et al. look at formal methods
for designing safe automotive software [15].

7 Conclusion

Given the transformation that both the nature and terrain of computing in the
automobile are undergoing, this paper has outlined the case to model security,
privacy, usability and reliability (SPUR) in the context of the software enabled
services associated with the automobile. SPUR represents a set of attributes that
are not explicitly articulated or demanded by the end customer or consumer and
hence, broadly speaking, SPUR represents non-functional, or para-functional,
attributes.
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Security, privacy, usability and reliability have all been product creation re-
quirements that have been well understood and refined by the automotive indus-
try over the years, but almost exclusively in the mechanical or physical context.
With the advent of the information-enabled automobile — connected to the road-
side infrastructure and to consumer devices — SPUR takes on a very different
interpretation. This paper highlights the importance of SPUR. In addition, we
make a case for modeling SPUR, as this would avoid costly and time consuming
hardware investments and will likely provide quick insights into how technologies
and standards could be adapted to meet automotive SPUR requirements.
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Abstract. Emerging model-based development methods in the Auto-
motive Vehicle Motion Control (VMC) domain are using different tools
at various stages of the engineering process. Behavioral models created in
various forms of finite state machines have to be exchanged across these
tools, but semantic unknowns in modeling environments and semantic
variations across tools preclude automated correct interpretation. This
research presents an approach to address this issue through an unambigu-
ous, math-based, tool-neutral extended finite state machine metamodel
(eFSM) for behavior specifications in the automotive VMC domain. The
semantics of the metamodel are anchored to formal specifications in a
mathematical framework. Our approach requires modeling with com-
mercial tool environments conforming to the eFSM. The conformance
is enforced by exporting the tool native models into eFSM-conformant
models and checking them against the well-formed rules encoded as OCL
constraints in the eFSM. We have performed “proof of concept” exer-
cises with two commercial tools in transforming their native models into
eFSM-conformant forms, and have been able to show that certain am-
biguities in both tools can be prevented through the eFSM, promising
higher confidence software engineering for the VMC domain.

1 Introduction

High integrity functions in Automotive Vehicle Motion Control (VMC) soft-
ware are becoming increasingly complex as more functions are being realized in
software. Factors contributing to the rising complexity include increasing num-
ber of interactions, distribution across many electronic control units (ECU-s)
and buses, number of different suppliers, and number of engineering stages
spread across different disciplines and different tool environments. To add to
the complexity, VMC functions are tightly constrained in timing interrelation-
ships, combining discrete and continuous control in ways that are difficult to
analyze. The size and complexity of VMC systems have grown beyond the abil-
ity to assure their correctness through exhaustive testing and simulation. These
difficulties motivate the need for VMC systems engineering processes that pre-
vent errors from the earliest stage and provide work products that are correct by
construction [1].
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In order to improve engineering quality, industry has been shifting effort from
program code level activity towards model based control and software engineer-
ing [2,3]. However, it is not possible to transfer model data unambiguously from
the tool of one engineering stage to that of another. In other words, different
tools are not able to interpret the model with the same meaning. Although tools
popular in the VMC engineering process, such as MathWorks Stateflow, I-Logix
Rhapsody, and ETAS ASCET, support modeling in the finite state machine
(FSM) paradigm, there are semantic unknowns and variations in their FSM-s.
Therefore, model data has to be manually interpreted, manipulated and trans-
ferred from one engineering stage to the next, imposing penalties in integrity,
quality, cost, and time.

Many research and industrial endeavors have addressed cross-tool model ex-
change issues. Industrial efforts include various standardization activities. ISO
10303 AP 233 [4] extends STEP, the international standard for exchange of prod-
uct data, to support exchange of behavioral models of various kinds, including
the FSM. The Object Management Group (OMG) SysML [5] is developing a
standardized system modeling language, as a profile of UML 2.0 [6]. However,
UML 2.0 does not have a strong mathematical foundation, e.g., it does not spec-
ify constraints on relationships such as generalization-specialization. Thus UML
2.0 does not support unambiguous model transformation and exchange. SAE
Analysis Architecture Description Language (AADL) [7] is a modeling language
to model system architecture for analysis. AADL focuses on structure and para-
functional properties, and is not suitable for systems engineering activities such
as requirement specifications. EAST-ADL [8] was developed as a modeling lan-
guage for electronic architecture with similar objectives, but does not provide
unambiguous semantic support for behavior specification. EAST-ADL relied on
external tools and languages for behavioral specifications. In parallel, researchers
have endeavored to formally specify the semantics of commercial tools. For ex-
ample, the formal operational semantics for Stateflow by Hamon and Rushby
[9] and the operation semantics of Stateflow in BSpec notation by Kestrel Tech-
nologies [10] are two of a dozen published Stateflow semantics. However, the
formal semantics defined by these research activities are “reverse engineered”,
without support from the tool vendors, based on the behaviors observed over a
set of examples. Conformance to vendor-implemented semantics is demonstrated
in most cases by comparing traces with a few tests. It does not provide adequate
confidence for the VMC domain.

While the international standards and commercial tools seek breadth of ap-
plication to enlarge their market, we seek disambiguation of model data for a
narrowly defined domain of applications, VMC, where integrity is paramount.
The scope is limited to statically configured systems with statically defined deter-
ministic behaviors. The typical behavior of a VMC application can be described
in a finite state machine with the continuous closed loop control functions em-
bedded in its action elements. The scope of data exchanges includes VMC sys-
tems engineering processes such as requirement specification, functional design,
analysis of various types, specification of the distributed platform, allocation of
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application functions and interactions to platform elements, code generation, in-
tegration, verification at every step, and overall validation. Behaviors of this kind
can be metamodeled as an extended finite state machine (eFSM). In this paper,
we propose an eFSM, with unambiguous semantics anchored in a mathematical
foundation, as a well-suited medium for interchange across different stages of the
engineering process mentioned above. The proposed approach requires modeling
constraints, which are VMC domain-specific to enable a correct-by-construction
process.

The rest of this paper is organized as follows. Section 2 explains the language
requirements for unambiguous model exchange in the context of the systems
engineering process for future VMC development. Section 3 presents the math-
based eFSM and its support for unambiguous model exchange. Section 4 de-
scribes model export exercises with two commercial tools, using the eFSM, and
the lessons learned from these exercises. The concluding Section 5 recapitulates
the approach, in the context of planned future work.

2 Disambiguation Needs in a High Integrity Process

Elimination of errors in interpreting model data transferred across engineering
process stages is the primary objective of this research. The eFSM is required as
an enabler for the process framework shown in Fig. 1 and Fig. 2. The objectives
of the process framework are to provide correct by construction products at
the minimum feasible life cycle cost, time-to-market, and execution complexity.
Vehicle-specific construction, verification and certification constitute a significant
part of vehicle cost and time to market. Other supporting requirements are
discussed during the following overview of the process framework.

Fig. 1. Systems engineering process framework for vehicle motion control development
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The process framework shown in Fig. 1 is based on principles of domain en-
gineering [11] and product line engineering [12]. It has five major groups of
processes or sub-frameworks, designated and related as follows. Pv are processes
specific to a vehicle and are based on reusing assets created and maintained
through processes, Pr, which in turn, follow the process and architectural frame-
work specifications created in the processes, Pa. The eFSM is a part of Pa.
Pintegrity , the processes of risk management, configuration management (CM),
quality assurance (QA), and V&V are applied to processes, Pv, Pr, and Pa.
Presources, the processes to plan, specify, select, maintain and qualify resources
(e.g. human skills, knowledge, tools, reuse repository, and other aids), are also
applied to processes, Pv, Pr, and Pa. Presources also include processes for up-
grade, growth, and adaptation. Thus, VMC systems are specified and created
with the reuse of proven elements and in ways proven to “plug & play” (com-
pose) correctly. In other words, Pv should be a correct-by-construction process
that guarantees the resultant models satisfy the specified system requirements.
This process imposes a requirement that the asset be reusable correctly in future
VMC applications yet unknown, thus requiring unambiguous semantics. As in
the systems engineering process framework, the software development processes
include the resource-related processes, Presource, the development processes, Pa,
Pr, and Pv, and the integrity processes, Pintegrity .

With formal reuse of a full complement of assets from a library or reposi-
tory, system conceptualization becomes a composition process rather than the
traditional decomposition process. Formal reuse begins with formal fine-grained
requirements models (in the form of extended finite state machines or automata)
from which vehicle-specific requirements are composed, following pre-defined
composition rules, applied to the requirements space (see layer 2 in Fig. 2).
The process requires that incorrect compositions, including unwanted interac-
tions, be prevented.

While the formal external behavioral models will endure over time, it is ex-
pected that the concrete realizations, for example layer 3 and greater in Fig. 2,
will change as implementation technologies change. Referring to Pv in Fig. 1,
the system conceptual architecture evolves bottom-up from the fine-grained re-
quirements models by searching for matching design & implementation (D & I)
entities in the reusable assets library in Pr . Search and matching criteria include
not only the functional requirements model, but also associated parafunctional
requirements and D & I constraints. When the best match is determined, the
requirements are “allocated” to the matching “D & I” entities. The process is
iterated until all requirements are allocated.

For provably correct transformation of requirements into concrete realizations
or implementations, certain process and architectural constraints are imposed.
Referring to the layer 2-3 transformation, shown as 2T3 in Fig. 2, the process
of functional design is constrained to be an elaboration (or refinement) of the
requirements specification automata. More than one requirement automaton
may be allocated to a functional design unit. The refinement constraint assures
that the functional design inherently conforms to the specification. When the
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Fig. 2. Multi-stage model transformation in the systems engineering process

engineering process progresses to the stage of identifying a component, for ex-
ample in layer 3-4 transformation — 3T4, the external interface of the functional
design (which is the same as the requirements specification) maps on to the
component, and becomes a part of the components external interface (through
its service access points). Thus the component is also a composable automaton.
More than one functional design unit may be allocated to a component.

The framework provides for a number of stages or layers of transformation,
i−1Ti, (beyond layer 3 in Fig. 2), depending on the complexity of the system, in
order to localize and isolate the effects of implementation decisions. Each trans-
formation stage uses previously proven transformation rules, mappings, meta-
models and ontologies defining the language of each stage, collectively shown as
the knowledge base. It is a combination of work products from processes Pa and
Pr. The language of each layer defines the universe of services available from
that layer, specified as composable automata.

As engineering, denoted as Pv in Fig. 1, progresses beyond the 3T4 transfor-
mation (Fig. 2), the modeling frameworks on both sides of the transformation,
i−1Ti, must be compatible, i.e., the semantics of elements in layers (i-1) and i
be unambiguous, the transformed elements have a defined correspondence from
layer (i-1) to layer i, and the process, i−1Ti, be semantic-preserving. Each trans-
formation, i−1Ti, requires a combination of tool automation for the rule-driven
part and human effort for the creative part of the work. It should be possible
to use the best-in-class tool for each i−1Ti. The reusable assets and work prod-
ucts of Pv should be protected from obsolescence due to changes in the tools. It
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should be possible to reposit the work products of every stage in a form inde-
pendent of the tools producing or consuming the work products. Upon a change
in implementation (layers greater than 3 in Fig. 2), the systems engineering pro-
cess is reapplied to the affected composable entity. If there is no other change
in the system, with formal reuse and conformance to the specified architecture,
only the changed component has to be re-verified against its specification. When
compositions of formally proven components (assets created in Pr) are created,
using rules defined in Pa, the components do not have to be re-verified. This
is an important requirement on the modeling framework, because it reduces
vehicle-specific costs of verification, rectification, and certification.

3 A Language for Modeling Finite State Machines

To enable unambiguous exchange of FSM-based behavioral models in the con-
ceptual process framework for high integrity VMC software, we have developed a
modeling language, eFSM, with rules and constraints, for describing FSM models
unambiguously. The eFSM is represented in a tool-neutral metamodel form and
consists of a set of modeling elements whose semantics and composition rules are
formally anchored to a math-based specification for unambiguous interpretation
and processing. Fig. 3 is an overview of the mathematical framework for defin-
ing and interpreting the eFSM. The basic elements of a FSM, such as states,
events, transitions, and actions, and their relationships are defined in the eFSM
and are linked to additional mathematical specifications (ontologies) which may
be expressed in other mathematical languages and processed by their respective
mathematical engines to reason about the model. The semantics of eFSM have
been developed as a composition of multiple semantic domains using ASML. A
detailed description of eFSM language, examples, and semantics are presented
in [13]. Multiple mathematical languages are accommodated by means of lan-
guage transformation, based on their respective metamodels and cross-language
transformation rules.

Adopted from the Mealy machine definition [14], the transition in the eFSM,
F , is a mathematical function defined as follows:

F : S × Σ → S × Γ (1)

where S is a finite, non-empty set of states. Σ is the input alphabet for a finite,
non-empty set of symbols, and Γ is the output alphabet for a finite, non-empty
set of symbols. We choose to formalize transition as function which precludes
non-determinism, owing to the high-integrity needs of the VMC domain. The
tradition formalization of transition as a relation allows for non-determinism,
which is not suitable for the VMC domain. The arrow labeled Tij in Fig. 3
shows an example transition from state Si to state Sj .

The elements in the input alphabet and output alphabet are called events
(ein and eout in Fig. 3). The FSM function uses “saturated” expressions for
input and output events [15]. Events may have associated parameters when
needed for input to the function performed during a transition or for the output
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Fig. 3. eFSM for unambiguous cross-tool model exchange

generated by the function during the transition. The function performed during
a transition, called an action, is defined mathematically as follows:

f : σ → γ

where f is an action function (b in Fig. 3) with σ being a set of inputs related to
the parameters associated with an input event (a in Fig. 3) in Σ and γ being a set
of outputs related to the parameters associated with an output event (c in Fig. 3)
in Γ . The guard condition, modeled as a function with a Boolean output, can also
be associated with an input event, the truth-value of which is interpreted as pres-
ence or absence of the event. With this definition, a FSM can itself be treated as a
mathematical function that maps an input alphabet into an output alphabet. In
the eFSM, a FSM is a specialization of a mathematical function where each tran-
sition is also a function, whose input alphabet is a combination of event, guard,
and state, and output alphabet, a combination of event and state.

3.1 Composition Rules

Compositions of FSM-s, transitions, and actions in eFSM are all constrained
to mathematical function composition with one-to-one or many-to-one mapping
from input to output. Complex functions in a model are composed from primitive
functions or less complex functions. If a composite function involves control
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flow, e.g., branching or forking, the control flow must be modeled explicitly
in a FSM conforming to the eFSM. Otherwise, a composite action is modeled
as a sequential composition of functions. Interacting FSM-s are also composed
mathematically to form a composite FSM. For sequential composition of FSM-
s, the outputs of a FSM in the composition are the inputs of its immediate
successor with the rules [16] specified as follows:

ΣF1∗F2 = ΣF1 ∪ ΣF2 − (ΓF1 ∩ ΣF2),
ΓF1∗F2 = ΓF1 ∪ ΓF2 − (ΓF1 ∩ ΣF2),
SF1∗F2 = SF1 ∪ SF2 ,

(2)

where F1 ∗F2 is sequential composition of FSM F1 and F2 (as defined in Eq.(1)),
as shown below:

F1 ∗ F2 =
⋃ {f |f ∈ F1, f(γ) �∈ ΣF2}

{f |f ∈ F2, f(σ) �∈ ΓF1}
{f = f1 ∗ f2|f1 ∈ F1, f2 ∈ F2, f1(γ) = f2(σ)}

(3)

For parallel compositions, the inputs and outputs of constituent FSM-s obey
the rules [17] specified as follows:

ΣF1||F2 = ΣF1 ∪ ΣF2 ,
ΓF1||F2 = ΓF1 ∪ ΓF2 ,
SF1||F2 = SF1 × SF2

(4)

where F1||F2 is the parallel composition of FSM F1 and F2, as shown below:

F1||F2 =
⋃ {f |f ∈ F1, f(σ) �∈ ΣF2}

{f |f ∈ F2, f(σ) �∈ ΣF1}
{f =f1||f2|f1 ∈ F1, f2 ∈ F2, f1(σ)=f2(σ), f(γ)={f1(γ)}∪ {f2(γ)}}

(5)

3.2 Constrained Generalization-Specialization Relationship

The eFSM supports extensions through a generalization-specialization relation-
ship. It utilizes the generalization-specialization relationship from the object-
oriented modeling paradigm as a technique to unify related concepts and thereby
support integration and reuse. The eFSM constrains specialization to be per-
formed by restriction and extension only, in order to eliminate ambiguity and
to reduce computational complexity. Specialization by restriction may be per-
formed by restricting the type of at least one element used in the more general
model type to a specialization (e. g., subtype) of the corresponding element in
the more general model. Restriction of the type of an element representing some
value may also be performed by limiting the range of eligible values (i.e. the
domain of a function), often expressed with an addition of constraint clauses.
Extension of a model type is performed through addition of elements. For exam-
ple, a FSM model type may be specialized to derive another FSM model type
through the addition of a state or a transition.
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A model type can also be specialized through a composition of elements from
multiple more general model types, if the elements in these general types are
mutually exclusive. An element in the specialized model type can be either of
the same type as the element in its corresponding more general model type or a
specialization of the element in the more general model type. The object-oriented
analogy of this type of specialization would be a class C composed of class A
and class B, is specialized to a class C’ that is composed of A’ and B where A’
is a specialization of A.

Multiple levels of specialization are possible to form a generalization-
specialization chain. With multi-level specialization, the eFSM can support the
creation of reusable assets (types) through recursively-chaining type instances.
At the first level of reusability are the types defined in the metamodeling en-
vironment, which include the FSM, State, Event, Transition, etc. as mentioned
earlier. These elements in effect constitute the modeling constructs for the first
level. When creating a FSM model, i.e., an instance of a FSM model type, as
many instances of these modeling elements are created and assigned values as
required to model the intended behavior. The behavior specification thus created
in a FSM model can also be made a “type” (say level-2 type), and a collection of
level-2 types constitutes the “type library” for the second level of reuse. At the
second level, instances of level-2 types are created for a particular vehicle (or a
vehicle product family). The level-2 types could also be specialized and placed
in the type library, and then instantiated for a particular vehicle. A third, or in
general nth, level of reuse will include in its “type library” elements created in
the (n − 1)th level.

3.3 Ontology

The ontologies used in the eFSM are based on mathematical languages. The fun-
damental modeling elements in the eFSM have a one-to-one correspondence with
mathematical concepts in the externally-defined mathematical specifications.
Common elements include the mathematical function, its domain (including co-
domain hereafter), and set. Domains include numbers with quantities extensible
to physical quantities. The language elements for specifying constraints in the
metamodeling environment map into first order logic (FOL). Structures of mod-
eling elements, constructed in the modeling environment, can also be represented
in FOL. To achieve semantics-preserving, unambiguous model transformation,
we adopt a rule-based model transformation method with a set of formally-
defined, isomorphic transformation rules. The mathematical reasoning can then
be performed by established mathematical engines external to the modeling tool.
Examples of such math-processing engines include Abstract State Machine Lan-
guage (ASML), Mathematica, and ISO 10303-11, EXPRESS.

As an example of domain-specific specialization, definitions of Action related
elements in the eFSM utilize an ontology which defines the basic knowledge of
rigid body motion in VMC, related to displacement, time, velocity, acceleration,
and jerk, and includes units of measurement, their dimensions, and unit bal-
ancing rules. When this ontology is specified as a constraint-set on functions
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relating these physical quantities in a composition, f1(f2(x)), the codomain of
f2, must match the domain of f1, i.e., be the same set of physical quantities.
Thus, this constraint-set is used to assure that the specification is unambiguous
and consistent with the physics of the controlled process. This check on the spec-
ification prevents errors from propagating and multiplying in the D&I stages of
the engineering process.

3.4 Language Transformation

In the systems engineering process, commercial tools are commonly used as the en-
gineering interface for creation of work products at each stage. The work products,
typically in the form of models, must have unambiguous semantics for
(re)use across the stages. As the modeling languages adopted by different
commercial tools are different, unambiguous semantics of models across tools and
engineering stages cannot be achieved by directly using the tool native modeling
languages. The models created in the tools must then be transformed to the eFSM-
conformant models for exchanges with unambiguous interpretation and process-
ing. This implies the semantic domain of a commercial tool must be mapped to
the semantic domain of the eFSM. Such mapping is the metamodel-level trans-
formation of modeling languages, and it requires the modeling constructs in the
tool native modeling language have semantically equivalent modeling constructs
in the eFSM. This can be achieved through constraining tool native modeling
language followed by mapping of allowed tool native modeling language con-
structs to the eFSM modeling constructs unambiguously. The feasibility of such
a mapping is assured if the semantic domain of the eFSM is wider than that
of the tool’s restricted native modeling language, though we do not provide
a formal proof. To meet this condition and avoid introducing the ambiguity
when modeling using a tool, only those modeling elements of the tool-specific
modeling language, whose semantics can be unambiguously mapped to those of
the eFSM elements, are allowed to be used in modeling. This requires applying
domain-specific constraints to the tool native modeling languages. The modeling
elements with tool-specific, implicit semantics, such as priorities of transitions
captured in graphical layout, must be explicated before they can be used for
modeling. To ensure the resultant model in a tool is eFSM-conformant, the con-
straints must be checked inside the tool, if the tool-APIs support user-specified
constraints, or during exportation of the model. Models satisfying the constraints
are eFSM-conformant.

The constrained tool-specific modeling elements can be transformed into se-
mantic equivalent eFSM modeling elements (simple or composite) through a
one-to-one mapping. The semantic, one-to-one mapping between the constrained
tool-specific modeling elements and the eFSM modeling elements can be defined
as transformation rules. Some tool-specific semantics defined unambiguously
within a tool, which may be ambiguous across tools, such as data retention
during event processing, can also be captured in the transformation rules. Addi-
tional semantic well-formedness rules, such as the presence of required elements
and matches of their types, can also be defined as rules incorporated in the
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eFSM. The transformation of a model created natively in a tool to an eFSM-
conformant model is then realized by applying transformation rules. The rules
are encoded and operationalized using techniques such as a graph rewriting and
transformation engine [18], and are applied to the tool-native models to obtain
the eFSM-conformant models. When the transformation encounters elements for
which a mapping rule is not defined, it flags a violation of the elements, thereby
testing conformance of the eFSM. Rules for mapping from the “canonical form
to the tool are part of future work.

3.5 Execution Semantics

Given the basic modeling elements, composition rules, constrained relationship
and ontology, and parafunctional 1 specification support, the eFSM is further
constrained to achieve the following execution semantics. The FSM processes
only one event in each computation cycle. A computation cycle, modeled using
a parafunctional element, starts from an arrival of an triggering event and ends
with the production of the output. The next computation cycle begins only after
the completion of the preceding computation cycle. All parts of the input are
available before the computation cycle starts and are stable during the cycle.
Discretized continuous control behavior is modeled as an action, triggered by
a periodic event occurring at the fixed time period, required by the executing
control algorithm. A simple unit of continuous control behavior can then be
modeled as a function, f(x). Its domain and co-domain are limited to a specified
topological vector space. Multiple functions, f1, f2, and f3, which are limited to
the same topological vector space, may be composed sequentially as f1(f2(f3(x)))
to create a complex behavior. These semantics assume the completion of the
action before the start of next computation cycle.

The assumption on the action completion is specified as a rule and must be
verified in order to ensure correct operation. To allow the verification, the eFSM
is extended to associate some normalized equivalent of its worst case execution
time (WCET).

4 Proof of Concept Exercises

Our proof-of-concept exercises is to examine the mapping from the semantic
domains of two selected commercial tools, Rhapsody [19] from I-Logix and State-
flow [20] from Mathworks, to the eFSM semantic domain for unambiguous inter-
pretation and processing. The exercises follow the transformation principles in
Section 3.4. Since neither Stateflow nor Rhapsody provides API-s for specifying
and checking user-specified constraints, the constraints and transformation rules
were checked during and after transformation.

1 Parafunctional refers to properties of software that are considered beyond the func-
tional requirements, and is equivalent to Quality of Service (QoS) properties.
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Table 1. Transformation rules from Rhapsody Statechart to eFSM (r2e() is a injective
mapping from a Rhapsody element to an eFSM element)

Rhapsody element eFSM element Mapping rules

basic states SR states SF sr ∈ SR ⇒ (sf = r2e(sr))
∧(SF = SF ∪ sf )

termination states St
R final states St

F sr ∈ St
R ⇒ (sf = r2e(sr))

∧(St
F = St

F ∪ sf )

actions AR actions AF ar ∈ AR ⇒ (af = r2e(ar))
∧(AF = AF ∪ af )

triggers ER events EF er ∈ ER ⇒ (ef = r2e(er))
∧(EF = EF ∪ ef )

guards GR guards GF gr ∈ GR ⇒ (gf = r2e(gr))
∧(GF = GF ∪ gf )

transitions TR transitions TF tr ∈ TR ⇒ (tf .event = r2e(tr.trigger))
∧(tf .guard = r2e(tr.guard))
∧(tf .action = r2e(tr.action))
∧(TF = TF ∪ tf )

termination connectors Ct
R final states St

F cr ∈ Ct
R ⇒ (sf = r2e(cr))

∧(St
F = St

F ∪ sf )

junction connectors Cj
R transitions TF (jr ∈ Cj

R) ∧ (t1r . . . ti
r, t

j
r ∈ TR)

∧({t1r, ..., t
i
r} → j → tj

r)
⇒ (t1f .event = r2e(t1r.trigger))

∧(t1f .guard = r2e(t1r.guard))
∧(t1f .action = r2e(t1r.action + tj

r.action))
· · ·
∧(ti

f .event = r2e(ti
r.trigger))

∧(ti
f .guard = r2e(ti

r.guard))
∧(ti

f .action = r2e(ti
r.action + tj

r.action))
∧(TF = TF ∪ {t1f , ..., ti

f})

condition connectors Cc
R states S (cr ∈ Cc

R) ∧ (tc
r, t

1
r . . . ti

r ∈ TR)
∧(tc

r → cr → {t1r, ..., t
i
r})

⇒ (t1f .event = r2e(tc
r.trigger))

∧(t1f .guard = r2e(tc
r.guard + t1r.guard))

∧(t1f .action = r2e(tc
r.action + t1r.action))

· · ·
∧(ti

f .event = r2e(tc
r.trigger))

∧(ti
f .guard = r2e(tc

r.guard + t1r.guard))
∧(ti

f .action = r2e(tc
r.action + tj

r.action))
∧(TF = TF ∪ {t1f , ..., ti

f})

action on entry ai
r ∈ sr action af ai

r ∈ sr ⇒ (tf .tostate = r2e(sr))
∧(af = r2e(ai

r))
∧(tf .action = tf .action + af )
∧(TF = TF ∪ tf )

action on exit ao
r ∈ sr action af ao

r ∈ sr ⇒ (tf ∈ TF ) ∧ (tf .fromstate = r2e(sr))
∧(af = r2e(ao

r))
∧(tf .action = af + tf .action)
∧(TF = TF ∪ tf )

reaction in state ar
r ∈ sr transition tf ar

r ∈ sr ⇒ (tf .fromstate = sr)
∧(tf .tostate = r2e(sr))
∧(tf .event = r2e(ar

r.trigger))
∧(tf .guard = r2e(ar

r.guard))
∧(tf .action = r2e(ar

r.action))
∧(TF = TF ∪ tf )
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4.1 Rhapsody

Rhapsody 6.0 employs Statecharts for state-based behavior modeling. In Rhap-
sody Statecharts, a State can be a basic state, or a termination state, or an or-
state, or an and-state. Each state can have action on entry, action on exit , and
reaction in state defined. A connector can be Condition, or History, or Termina-
tion, or Junction, or Diagram, or Sync-Join, or Sync-Fork . A transition has Trig-
ger , Guard , and Actions. To support unambiguous model exchange, we mapped
a defined subset of the Statechart to our eFSM with the rules, as shown in Ta-
ble 1, according to the behavioral semantics of the modeling constructs. The trans-
formation rules shown in Table 1 show the mathematical mapping of syntactic
constructs of Rhapsody into eFSM, and are operationalize with a rule-based trans-
formation engine [21] that matches the appropriate syntactic construct in Rhap-
sody and performs the mapping actions as shown in the table. For example, a
junction connector jr with a set of transitions {t1r . . . tir, t

j
r} in Rhapsody indicates

that t1r . . . tir sharing some common actions in tjr. Consequently, the mapping rule
for jr transforms the junction connector with its transitions {t1r . . . tir, t

j
r} into a

set of eFSM transitions {t1f . . . tif} with the event and guard of tkf (1 ≤ k ≤ i) being
the trigger and guard of tkr and the actions of tkf being the actions of tkr followed
by the actions of tjr. Since the eFSM does not yet incorporate State hierarchies,
composite states and state hierarchy were outside the defined subset. Similarly,
since the eFSM execution semantics allows only one event to be processed each
computation cycle, History is outside the defined subset.

(a) Sensor interface and signal processor

(b) Sensor interface (c) Signal processor

Fig. 4. Behavioral models in Rhapsody
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With the above defined transformation rules, we translated a part of a behav-
ioral model for a cruise control defined using elements within the defined subset
of Rhapsody Statecharts, to eFSM realized in the Generic Modeling Environ-
ment (GME) [22]. Fig. 4 and 5 show the sensor interface and signal processing
portion of the whole model in Rhapsody and in eFSM in GME, respectively. Af-
ter the transformation, we performed checks of the rules and constraints defined
in the eFSM, and detected errors such as signal mismatches in value ranges or
units, which were not detectable in the Rhapsody model.

(a) Sensor interface and signal pro-
cessor.

(b) Sensor interface (c) Signal processor

Fig. 5. Behavioral models in GME conforming to our eFSM

As can be seen, the states in Rhapsody models were transformed to states in
eFSM. The sensor interface Statechart model in Rhapsody contained entry and
exit actions, which were combined with actions of corresponding transitions as
composite actions in eFSM-compliant sensor interface transitions. The compo-
sition followed the function composition rules and was implemented as mapping
rules in Table 1. Similarly, the reaction in state action in state Enable state in
the Rhapsody signal processor model was transformed to a separate, self-loop
transition in eFSM-compliant signal processor model. In addition to the map-
ping rules in Table 1, other constraints and rules implemented in eFSM, such as
the constraint for signal type match and the rule of generalization-specialization
relationship, were also enforced during the transformation.

4.2 StateFlow

Stateflow models behaviors of dynamical systems based on finite state machines,
and uses a different Statechart formalism with additional semantic elements,
notably junction structures, and flow charts. Also, the Stateflow action language
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Table 2. Transformation rules from Stateflow to eFSM (s2e() is a injective mapping
from a Stateflow element to an eFSM element)

Stateflow element eFSM element Mapping rules

leaf states SS states SF ss ∈ SS ⇒ (name(sf ) = s2e(ss))
∧(SF = SF ∪ sf )

actions AS actions AF as ∈ AS ⇒ (af = s2e(as))
∧(AF = AF ∪ af )

condition actions CAS actions AF cas ∈ AS ⇒ (af = s2e(cas))
∧(gf = s2e(c))
∧(AF = AF ∪ af )
∧(GF = GF ∪ gf )

triggers ES events EF es ∈ ES ⇒ (ef = s2e(es))
∧(EF = EF ∪ ef )

guards GS guards GF gs ∈ GS ⇒ (gf = s2e(gs))
∧(GF = GF ∪ gf )

transitions TS transitions TF ts ∈ TS ⇒ (tf .event = s2e(ts.trigger))
∧(tf .guard = s2e(ts.guard))
∧(tf .action = s2e(ts.conditionaction))

∪(s2e(ts.action))
∧(TF = TF ∪ tf )

entry action ai
s ∈ ss action af ai

s ∈ ss ⇒ (tf .tostate = s2e(ss))
∧(af = s2e(ai

s)
∧tf .action = tf .action ∪ af )
∧TF = TF ∪ tf

exit action ao
s ∈ ss action af ao

s ∈ ss ⇒ (tf .fromstate = s2e(ss))
⇒ (af = s2e(ao

s))
∧(tf .action = af ∪ tf .action)
∧(TF = TF ∪ tf )

during action ad
s ∈ ss transition tf ad

s ∈ ss ⇒ (tf .fromstate = s2e(ss))
∧(tf .tostate = s2e(ss))
∧(tf .event = s2e(ES − {es|ts.fromstate = ss})

∧(tf .action = s2e(ad
s))

∧(TF = TF ∪ tf )

differs from Statecharts, and has been extended to reference Matlab functions,
and Matlab workspace variables.

As in the Rhapsody case, we restricted Stateflow modeling elements to a
defined subset, disallowing Junctions, History, State hierarchies, and Function
States [20] to avoid ambiguity. Table 2 summarizes the transformation rules for
mapping the defined Stateflow subset into eFSM. Similarly, the mapping rules
are based on the behavioral semantics of the modeling constructs in Stateflow
and eFSM. For example, the entry actions as of a state s in Stateflow is trans-
formed into the last actions of each incoming transition tf of the ss in the eFSM
model. According to the rule, tf .tostate = s2e(ss) identifies all transitions tf in
the eFMS, whose destination state is ss. The Stateflow action as is then trans-
formed into the eFSM action af and is added to the transition’s action set with
tf .action = tf .action ∪ af . Due to different graphical representations, the trans-
formed eFSM model in Fig. 5 has the trigger events and the transition actions as
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embedded elements in the blockarrows instead of representing as textual labels
as in the Rhapsody model. One major advatage of using embedded type elements
over textual labels is that the type elements support better type checking.

In addition to the above rules, while parsing and mapping actions, we checked
that (i) the arguments of the actions are from the set of inputs and/or outputs
to the Stateflow model, similar to what the Stateflow compiler does, and (ii)
the functions are contained in a pre-defined set of mathematically well-formed
functions. According to the Stateflow semantics, Data variables are persistent
and retain their their values over multiple computation cycles, while Events are
transient and consumed in a single computation cycle. These implicit semantics
results in creation of unintentional state variables. In the transformation rules
specified here these are transformed to explicit definition in eFSM as parame-
terized Events carrying Data of sampled signals. This results in elimination of
the implicitly defined state variables in the original Stateflow model.

As in the Rhapsody case, we have been able to map Stateflow models cre-
ated within the eFSM-imposed constraints, into eFSM models in GME. We are
currently investigating techniques for natively enforcing the eFSM restrictions
within the Stateflow environment using the Stateflow provided API-s.

4.3 Lessons Learned

Through the proof-of-concept exercises, we gathered some valuable lessons on
modeling language support for high integrity VMC control software. Modeling
language support for strong type and modeling constraints are essential for un-
ambiguous model exchange. For example, while the signals in both Rhapsody
and Stateflow can be strongly typed with a specified unit, these tools do not
incorporate any automated check for type compatibility prior to simulation or
code generation. Some of the typing errors related to programming data-types
are occasionally caught by a compiler; however, the more serious ones related to
units and dimensionality are never caught since programming languages do not
offer any abstractions for capturing physical quantities. In such a modeling en-
vironment, integration of discrete and continuous control behaviors in a unified,
unambiguous model is not possible. Large amounts of effort have been spent
on reducing model ambiguity through restrictions using some ad hoc approach
such as a style guide for Stateflow. However, these approaches have not enabled
unambiguous exchange of models across different tools.

As the behavioral models for VMC have complex interactions, ad hoc transfor-
mation is infeasible. The mathematical foundation of the eFSM allows creation
of rules and constraints formally so that they can be interpreted and executed
by machines automatically. Our experiences indicate that domain-specific rules
and constraints are the key to support correct-by-construction modeling and un-
ambiguous model exchange. Such domain-specific rules allow unambiguous se-
mantic model transformation, thus preventing errors in the model and enabling
a correct-by-construction process. For example, a constraint that any transition
involving physical devices must be explicit and deterministic with all exceptions
and interruptions captured as events will be implemented as a rule in eFSM.
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Many semantic mistakes made by the designer during modeling, which cannot
be captured otherwise, can be captured with such domain-specific rules.

5 Conclusions and Future Work

Semantics-preserving cross-tool model exchange is a key requirement to sup-
port a correct and efficient systems engineering process. In this paper, we have
presented a math-based eFSM to enable software engineering of high integrity
systems, e.g. drive-by-wire vehicles, with higher confidence and lower effort
than current techniques. The eFSM contains modeling elements with explicitly-
defined generalization-specialization relationship, mathematical composition
rules and constraints, and domain-specific ontology. It also enables mathematical
reasoning, transformation, and checking for the satisfaction of system require-
ments from early stages of the engineering life cycle. Models conforming to the
eFSM can be unambiguously exchanged across different tools. The developed
eFSM enables better “process efficacy” in the systems engineering processes,
mostly in the requirements specification and verification and validation aspects.

It should be noted that our approach involves overlaying a restricted semantic
domain (eFSM semantics) on the wider semantic domains of COTS tools such as
Stateflow and Rhapsody. Enforcing this common semantic domain across mul-
tiple tools enables semantic preserving transformation and reduces the problem
of verifying transformation correctness from establishing behavioral equivalence
to structural equivalence.

One of the consequential challenge of this approach lies in imposing restric-
tions on the engineers using the Stateflow and Rhapsody tools. This is both a
technological and an educational challenge. The availability of certain features in
a tool, despite their semantic ambiguity, makes it attractive for the users. Auto-
matic overlays, and online constraint checkers embedded within tools may make
it technologically feasible to impose the restrictions, by automatically ensuring
conformance to the high confidence high integrity design subset. Educational
aids must also be created to assist the developers in understanding the cause
and impact of the ambiguity in the use of certain abstractions. Some degree of
restrictions are already in use by way of adherence to ”best practice” and ”safety
guidelines” developed by Automotive Manufacturers, and other bodies such as
Mathworks Automotive Advisory Board (MAAB).

The restrictions also impose challenge on the overall scalability of our ap-
proach, since the restrictions while improve the semantic preciseness of the
models, also increase the effort in representing some behaviors. For example
history driven behaviors can be conveniently represented with history junctions
in Stateflow, and have to be otherwise represented with larger number of states.
The transformations as described earlier are polynomial complexity and are not
subject to scalability concern.

The eFSM represents early work on building the foundations for correct-by-
construction process for VMC domain. However, much work remains to be done
in the area of transformation and verification. We will continue this research to
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extend and evaluate the eFSM through constructing challenge problem model
sets of representative VMC applications and platforms, and exercising the full
systems engineering process with tool-assisted modeling and transformation. The
extensions will include additional domain-specific rules for VMC modeling and
transformation. The evaluations will include examining the breadth of the eFSM
applicability, i.e., the scope of the domains over which various rule-sets hold,
proving semantic mapability between tool native modeling elements and the
eFSM modeling elements in both directions, and studying the effect on software
correctness, process efficacy, system complexity reduction, and overall scalability
of eFSM.
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Abstract. This paper describes an advanced modeling facility for sys-
tem and software design that is being constructed at the Ford Research
and Innovation Center. This facility is intended to address the growing
complexity of automotive embedded software and the resulting issues
for vehicle development. Software complexity is expected to grow at a
significantly higher rate in the near future as vehicle systems begin to
interact with external software based systems to provide significant new
capabilities in both the infotainment and the safety areas. Increased com-
plexity will require a broader range of modeling capabilities than just
functional/behavioral modeling. Our recent experience with the latter
has shown substantial benefits for the product development process, and
we expect that the more comprehensive modeling process described here
will bring even greater benefits.

1 Introduction

Automotive electronics systems have traditionally been self-contained in the
sense that they did not depend on systems outside of the vehicle. The primary
form of interaction was to transfer information from the vehicle to an external
system as with diagnostics, or to import information in an unmodified form,
as in entertainment systems, such as the radio or CD player. This is changing
somewhat with the advent of telematics systems, but it still has not reached the
point where the off board system and the vehicle system can be described as co-
operating processes. This is likely to change in the near future for two reasons.
First, there is a trend towards integrating mobile consumer devices with the
vehicle such that the consumer device functionality can be accessed using the
vehicle human machine interface (HMI). This requires a more complex integra-
tion between the consumer device and the vehicle entertainment system. Second,
there is a major effort, led by the United States Department of Transportation
to create a nationwide wireless communication infrastructure that would allow
communication between vehicles and the roadside in order to prevent accidents
and reduce congestion. The primary purpose of the resulting network would be
to improve safety, but driver information and commercial services using this
mechanism are envisioned as well. These developments raise new concerns of
security and privacy that are not present when the vehicle electronics forms a
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self-contained system. They also make the job of validating the correct func-
tioning of the vehicle more complex because interactions with external systems
must be taken into account as well as interactions between on-board compo-
nents. Since these interactions with external systems are primarily implemented
through software, the net result is to raise new concerns about the correctness
of embedded vehicle software. In addition to the complexity brought about by
interactions with external systems, vehicle software complexity is also rising due
to the fact that traditional vehicle features are increasingly being implemented
through software, and new features are being created by software implementa-
tions, many of them based on interactions of vehicle subsystems that previously
did not interact. Perhaps the canonical example of the latter is adaptive audio
volume, which adjusts the radio volume depending on the vehicle speed.

In order to address these concerns, as well as the related issues of vehicle
embedded software quality, we are constructing a facility for model based em-
bedded software design and engineering at the Ford Research and Innovation
center. This facility will have the capability to model vehicle systems from mul-
tiple viewpoints, both the traditional functional point of view and the viewpoints
of software structure, component interactions and the human machine interface.
In order to enable this multi-view modeling we are connecting models built with
a number of very different tools. The tools themselves are not novel and are used
individually by different groups within the company.What is unique in our effort
is the attempt to bring these separate viewpoints together in a common set of
models.

The remainder of this paper will discuss the issues that we are trying to solve
with this facility, the reasons that we feel that a multi-tool approach to modeling
is essential to address these issues,the reasons behind our specific choice of tools
and the detailed steps that we are taking to approach the problem. At this point
we do not have specific results from this facility, but it builds on previous results
that we have done.

2 Motivations for Modeling Vehicle Software

2.1 Validation of Embedded Software Implementation

Current vehicles contain a number of Electronic Control Units (ECUs) for con-
trol of body electronics functions, such as door locks, interior and exterior lights,
power seats and windows, climate control, driver information systems, electri-
cal load distribution and so forth. These are in addition to ECUs that control
powertrain (engine, transmission and emission systems) function, and those that
control vehicle motion (brakes, traction control, cruise control, etc.). Powertrain
and vehicle dynamics generally require a combination of discrete and continuous
control. Modeling tools based on Simulink and Stateflow are now widely used in
the design and development of software where discrete and continuous controls
coexist [1]. Body electronics functions, on the other hand, are almost exclusively
limited to discrete control. The functionality of body ECUs can normally be de-
scribed as an interacting set of state machines of limited to moderate complexity.
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For example, Fig. 1 shows the state machine for the courtesy lights battery saver
function. Because of the relative simplicity of body functions, modeling has not
previously been used in the development of body control software to the same
extent that it has for powertrain and chassis control software. Increasingly, how-
ever, features are being added to the vehicle that depend on the interaction
between two or more distinct functions, such as turning on the interior lights
when the doors are unlocked. The state machine shown in Fig. 1 is typical in
that it has a small number of states with relatively complex transition conditions
due to interactions with other subsystems. As more and more of these features
are added to body electronics systems, dependencies are being created between
different features that lead to interactions between ECUs that are increasingly
complex and often unintended. Currently, 60% of all new features are distributed
functions. The number of interactions have increased to the point where even
a simple system such as the central locking system, for example, may interact
with eighteen other subsystems in the vehicle.

The effect of this development has been to increase the number of issues that
are first found at vehicle integration time, when all of the ECUs have been
designed and built at least as prototypes. However, problems that occur late in
the development process are expensive to correct and raise the risk of delays
in the overall vehicle program. Our experience at Ford has been that there has
been a large increase in the number of issues related to embedded body module
software in recent years, These range from issues that affect a single module, to
issues that only occur as the result of the interaction of multiple modules. An
example of the former might be the failure to initialize a filter in software that
displays the outside air temperature, resulting in grossly inaccurate temperatures
being displayed for a significant period of time after the vehicle is turned on.
Many examples of module interaction issues are related to the sleep/wakeup
protocol where modules go into low power mode when certain conditions are
satisfied. For example, a module may go to sleep but fail to send a message on
the CAN bus indicating that it has gone to sleep. This would cause a second
module that depended on a periodic value output to the bus by the first module
to assume that there was an error condition and to use an incorrect default value
in place of the last value output by the first module. Or a module might not
monitor the network for changes that occur between the time that it decided to
go to sleep and the time that the entire CAN network shut down. This could
result, for example, in the courtesy lights not working because the module that
controls them did not see the key out of ignition message before it went to sleep.

Because of this increased complexity modeling tools are increasingly being
used in the development of body control software in addition to their use in the
powertrain and vehicle dynamics domains. As a result of its use in the latter
domains, the Simulink/Stateflow toolset from MathWorks is being used in this
domain as well. In a recent project involving the development of a new ECU that
integrated the functionality of a number of modules in earlier vehicles, the use
of models combined with hardware in the loop testing based on systems from
dSPACE led to over 60 issues being uncovered that would otherwise not have
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Fig. 1. State diagram of the power management feature for the vehicle courtesy lights
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been found until integration testing was performed. In this project, which in-
volved the development of a smart power distribution junction box, the supplier
provided a Simulink/Stateflow model of the ECU behavior. Behavioral mod-
els of the modules that interact with this module were created at Ford. These
models were then extensively tested on a dSPACE hardware in the loop sys-
tem at Ford. The model was also used to generate code for the module. This
step is important, because if modeling is to avoid problems with the software
in a module, the model must match the actual implementation. If the failure to
initialize the temperature filter in the first example were due to a coding error
rather than a design error, the model could give correct results even though the
ECU implementation misbehaved and modeling would provide no help in finding
the error. It is for this reason, rather than for any increase in the productivity
of embedded software development, that tools that can generate code directly
from models are important. As a result of the success of the hardware in the
loop project described here, Ford is now moving towards requiring all suppliers
of body modules to provide Simulink/Stateflow models of their ECU as one of
their deliverables.

One of the most significant benefits of hardware in the loop testing using
behavioral models of the vehicle systems is that it is possible to carry out a
much larger number of tests within the same period of time than is possible
using manual testing on a breadboard or in a vehicle. Many more scenarios can
be tested because the test engineer is not spending a significant amount of time
setting up and entering test inputs. This means that there is much better test
coverage than was possible without model based testing. Our experience with
the HIL project was that test coverage was five times greater than with manual
testing.

The hardware in the loop system that was used in this project is shown in
Fig. 2. It also had a programmable fault insertion unit that was able to create
shorts and open circuits in the inputs and outputs of the module. This facility
is important because most of the failures that occur in vehicles in the field are
hardware failures, with wiring harness problems being the largest source of issues.
It is important to understand how the software will behave in the presence of
such faults and to design it to mitigate the impact of such failures to the greatest
extent possible. Such fault testing is often neglected in manual testing, because it
is difficult to set up the hardware to exhibit the fault, particularly when testing
is being done in a vehicle.

Models of individual electronic modules will help improve the quality of de-
livered ECUs. However, they will not, by themselves address interaction issues
such as those described in the second example. To accomplish this goal the fa-
cility we are building at the Research and Innovation Center will extend the set
of ECU models to a system model. For the body modules subsystem this can
be accomplished by integrating state machine models with models of the CAN
network over which they communicate. To this end we have added a network
modeling tool to the set of tools that will be a part of the modeling lab. Another
important extension to the HIL modeling process that we are investigating is the



A Software and System Modeling Facility 39

Fig. 2. body electronics hardware in the loop facility

automatic generation of test cases from Stateflow models of a feature or an ECU
using a tool such as Reactis [2]. Such tools have the potential to extend the test
coverage of a module significantly beyond the improvement that is obtained just
by testing with a hardware in the loop system. However additional investigation
is required to determine whether the tools can generate complete coverage of the
ECU behavior without generating a large number of redundant tests. The process
that we envision for this application of behavior modeling is illustrated in Fig. 3.

2.2 New and Emerging Software Mediated Functionality; the
Connection to the External World

The applications discussed thus far relate to the development of existing or
well defined technology. An even more important use of modeling, however,
lies in the exploration of new concepts. The emerging trends toward increasing
interaction between vehicle systems and off-board systems referred to above fall
into this category. It is in this area that the most interesting challenges for
software modeling lie, and it is in this area that the need for types of modeling
beyond functional modeling, such as modeling of the HMI design, arises. The
process that we envision for new concept development is illustrated in Fig. 4. The
challenges in this area can be divided into two categories: challenges in enabling
consumer devices that are brought into the vehicle to work with vehicle systems,
and challenges relating to the upcoming enablement of vehicle-to-vehicle and
vehicle-to-roadside wireless communication.
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Fig. 3. Software validation process

The fourth domain of vehicle electronics software is the infotainment system.
This domain includes traditional entertainment devices, such as the radio and
CD player, as well as systems whose primary purpose is providing information,
such as navigation and telematics systems, or communication systems such as
in-vehicle cell phones. Systems in this domain have been more self-contained
and less ”vehicle related” than electronics in the other domains. A radio, for
example, has been more or less self contained with respect to other modules in
the vehicle. However two major trends are changing this.

ConsumerDevices. One is the trend toprovide a closer connectionbetween con-
sumer devices that are brought into the vehicle by the occupants and the vehicle
electronics systems. A major example of this is the provision of allowing occupants
to use their personal cell phone through the vehicle’s audio system to make hands
free phone calls. Many vehicles will have Bluetooth interfaces to support this capa-
bility. Vehicle based voice recognition systemswill alsobecome common to support
the same capability. Just as with other vehicle systems, there are a number of ad-
ditional features that can be offered to the user by integrating the functions of in-
fotainment systems. Navigation system data bases, for example, often have phone
numbers associated with points of interest, and it would be useful if the navigation
system could offer the option to dial such a phone number on the user’s cell phone.

The opportunities provided by combining functionality provided by consumer
devices with that provided by vehicle electronics has led to a trend towards the
implementation of service oriented architectures in the vehicle. Groups such as
AMI-C have designed vehicle multimedia standards that incorporate a service
oriented architecture [3] and a number of vehicle manufacturers are producing or
considering systems that are based on the OSGi platform [4]. Service oriented ar-
chitectures are more dynamic than traditional embedded software architectures
and require different techniques to model them properly [5].
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Fig. 4. The new concept development process

The infotainment domain also differs from the other domains in that the
human machine interface is more complex for many of these features and less
well known to the user than interfaces to traditional vehicle functions such as
braking and acceleration. Thus it becomes more important to model the human
machine interface in this area, both for usability and to ensure that it does not
contribute to driver distraction. Other consumer devices that users might like
to access through vehicle HMI systems include mp3 players, such as the Ipod,
PDAs, hand held navigation devices and hand held gaming devices. Additionally,
existing devices are offering more services in addition to the ones they were
originally designed for. Cell phones, for example, not only maintain a contact
list, but in many cases allow the user to play games. There are few standards for
interfacing to these devices and services. Bluetooth profiles provide standards
for some services, but these are a minority of all the possibilities. For the others,
the variety of devices and manufacturers makes it completely infeasible to delay
testing the interfaces until the hardware becomes available in a prototype vehicle.

In each of these cases it is important to model not only the functionality of the
device or service as presented over the vehicle HMI, but also the usability and
aesthetic acceptability as well. Since we have no control over the consumer de-
vices in question, it is important to model how they will behave with a proposed
vehicle HMI at the stage that the latter is being designed.

The Vehicle and Infrastructure Integration Initiative. The second major
trend that will affect vehicle infotainment systems is the Vehicle and Infrastruc-
ture Integration (VII) initiative of the US Department of Transportation [6]. This
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initiative is aimed at providing crash prevention and congestion relief through
vehicle-to-vehicle and vehicle-to-roadside communication. The vision of this ini-
tiative is that every vehicle in the U.S. would be equipped with a communications
device and a GPS unit so that data could be exchanged with a nationwide instru-
mented roadway system. This system is now undergoing initial testbed deploy-
ment with a view to making a decision on deployment of the full system by 2007.
It is expected that the system will have enough bandwidth above that required
for accident prevention and congestion control that commercial applications can
use the system as well.The system will be based on DSRC, a short range wireless
protocol being standardized by ASTM, IEEE and other organizations [7]. This
protocol uses the 5.9 GHz band. Ford is a member of the VII consortium and is
currently involved in testbed deployment at its Dearborn campus.

The main driver behind the VII initiative is a mandate on USDOT to reduce
the national accident rate by 50%. It has been determined that This requires ac-
cident prevention rather than just mitigation. The proposed uses for VII include
services that require direct vehicle to vehicle communication as well as services
based on communication between the vehicle and the roadside infrastructure.
For example, one proposal is a sudden deceleration warning that would be sent
from a vehicle that decelerates above a certain threshhold rate together with
the vehicle’s precise location and heading. Following vehicles which would then
provide a warning to their drivers that a vehicle ahead is decelerating rapidly.
This would help to reduce the number of rear end collisions, particularly in con-
ditions of poor visibility. However, for this technique to work correctly, without
giving false warnings that could in themselves be dangerous, the algorithm in
the receiving vehicle that decides whether to warn the driver based on the de-
celeration message must be carefully designed. This is an example of a problem
that our facility is designed to address since we have the capability to model the
wireless communication link, the software in the controller and the vehicle HMI
and their interactions in this situation.

Opening vehicle safety systems to outside communications both from other ve-
hicles and from a national roadside infrastructure also raises serious security and
privacy concerns that must be addressed. Possibilities such as spoofing critical
sources and inserting malicious information into vehicle systems did not exist pre-
viously, and we have little experience with them. Security expert Bruce Schneier
has raised the possibility of a scenario where a virus from a Bluetooth device in
a passing car could enter your vehicle’s Bluetooth gateway module and cause the
navigation system to suddenly stop working [8]. Prevention of scenarios such as
this while maintaining the connectivity desired by consumers will require exten-
sive modeling of these new vehicle systems, including threat modeling.

3 The Modeling Facility

In order to address these concerns we have put together a modeling facility that
consists of a number of tools. This lab is intended to address software and system
design in the infotainment and body electronics domains rather than the vehicle
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dynamics or powertrain domains. Our primary goal is to extend the modeling
that has proven successful for body electronics ECUs to the system level and
to the infotainment domain, and particularly to the requirements for wireless
connectivity that are emerging in that domain.

This lab has five major modeling tools and two hardware in the loop systems.
These tools provide different views on the software of a vehicle system and when
combined allow the modeling of different aspects of the system from multiple
viewpoints. The relation between these tools is shown in Fig 5. In addition to
the components shown in the figure there is one other major component; a repos-
itory with version control for holding the models. This repository will hold two
types of models. The first are feature models that describe the intended function-
ality of a vehicle feature or service and that will serve as a detailed specification
for the implementation of that feature or service. The second are ECU models
that describe the behavior of a vehicle electronic module, including all of the
services and features that are implemented by that module. In a production
development environment, the first type of model will be created by Ford engi-
neers and given to module suppliers to guide their implementation of the desired
vehicle functionality, while the second will be produced by the module supplier
and given to Ford for validation against the vehicle system level model.

In order to cover the wireless communications area, we have added to the
MathWorks / dSPACE behavioral modeling tools an RTlab hardware in the
loop system designed by OpalRT and based on National Instruments equipment.
This equipment includes RF analyzer and generator boards that can be used
to analyze and produce a number of RF protocols, such as Bluetooth, 802.11
and DSRC through the use of appropriate software to drive the boards. The
boards are also capable of handling automotive specific RF protocols, such as
the remote keyfob protocol and the tire pressure monitor protocol. Both the
dSPACE and the RTlab HIL systems can be connected to a CAN bus to allow
communication with other modules, or with a CANoe network modeling tool [9].
The RTlab HIL system also includes a fault insertion unit to allow simulation
of hardware failures. The other components shown in figure 5 are workstations
running tools for network modeling (CANoe), HMI development and modeling
(Altia), software modeling (Rhapsody) and requirements capture and analysis.

These tools allow actual consumer devices to be tested against a model of
the vehicle interface prior to its implementation in a vehicle. For example, the
designer of a Bluetooth phone module might implement the Bluetooth Hands-
free profile in terms of a certain set of CAN messages. by modeling this module
plus the audio system and testing it against actual Bluetooth enabled phones
one can ensure that both the vehicle module designer and the implementor of
the cell phone have the same understanding of the Hands-free profile.

In the simpler world of device control it suffices to model an algorithm that
provides the required functionality and then to generate code from this model
without being concerned about the structure of the resulting software or the re-
sources that it uses. In the more complex world that is presented by infotainment
functions however, the software is much more dynamic and its structure becomes
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Fig. 5. Modeling facility toolset

important. For this reason we thought it important to have a tool that could
model other aspects of the software than its functionality. The most widely used
tool in this area is the Unified Modeling Language, UML [10]. UML is already
being used by Ford in Europe as well as Jaguar and Volvo for entertainment
systems software design.Models already exist therefore for the software architec-
tures used by those groups. We chose Rhapsody from Ilogix as a UML modeling
tool because it is heavily oriented towards embedded software and supports the
new UML 2.0 standard from the Object Management Group, as well as SYSML,
a variant of UML designed for system modeling. A significant advantage of UML
2.0 is that there is a standard vendor independent representation of models based
on XMI and the diagram interchange standard using SVG. This is important be-
cause we expect that eventually software models will be shared between various
groups within Ford and our global supplier base, and we cannot expect all of
these groups to use tools from a single vendor. The fact that the models have
a standard vendor independent representation also makes it easier to apply new
tools that may be developed in the future to implement improved methodologies.

Software oriented modeling is particularly important when dealing with service
oriented software architectures. Behavioralmodeling techniques, such as state ma-
chines, are inadequate by themselves to analyze processes such as service discovery
and their associated data structures, such as registries. This makes it important
to model the middleware layer that implements service based architectures with a
comprehensive tool. UML sequence diagrams provide an important technique for
analyzing the interactions between servers and their clients that define services.
They can be used for example to lay out the interactions that must occur between
a consumer device and the vehicle components that are providing HMI services
to it and the resulting scenarios can be tested against behavioral (state machine)
models of those components to ensure that the implementation is adequate.
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The UML model can communicate with a CANoe model over a TCP/IP
network using the COM interface of CANoe. One simply creates a class in the
model representing the CAN driver software that is implemented to talk over
TCP/IP instead. For Simulink/Stateflow, CANoe has a built-in interface. Thus
UML models and stateflow models can talk to each other using CANoe as an
intermediary, and we can execute a detailed software model of the code in a
particular ECU against behavioral models of the rest of the ECUs in the system
and of the network.

The final tool that is required is a tool to model the human machine interface
in a realistic way. The tool that was chosen for this purpose is Altia Design
from Altia [11]. This tool, like the others, is already in use within Ford by the
ergonomics group. They use the tool to model and evaluate layouts of the vehicle
HMI that have been proposed by designers before hardware prototypes are built.
The limitation of the process that they are using is that the models, although
exact in terms of appearance, cannot be made functional unless the functionality
is hand coded in C. This requires a significant amount of effort, and even if it
is done there is no guarantee that the resulting model behaves in the same way
as the ECU that controls the HMI in the vehicle will behave.To address this
issue we are connecting the Altia tool to the other modeling tools by writing
adapters between the modeling tools and the Altia interface. These adapters
exist for Labview and Simulink/Stateflow, end we have written them for Rhap-
sody and CANoe. Tying the HMI modeling to functional models provides an
important opportunity to improve the communication between the ergonomics
and engineering activities that should result in improved vehicle interiors.

The HMI modeling provided by the Altia tool can provide important informa-
tion on the usability of an HMI design, but there are important issues related to
driver distraction that arise when consumer devices are brought into the vehicle.
Ultimately these questions require studying human reactions in a more realis-
tic environment than a lab based modeling tool. Ford has such an environment
in its Virttex driving simulator [12, 13]. In the longer term we hope to be able
to connect the system and software modeling tools to the Virttex simulator to
study the driver distraction issues that are raised by consumer devices and novel
multimedia systems in the vehicle and to use these studies to eliminate driver
distraction from those sources.

4 Conclusion

A number of issues remain to be resolved before the facility described here
is fully functional. A major one that was not discussed here is the issue of
model configuration management. As a significant amount of effort is involved
in creating an accurate model of a vehicle system or feature, it is important
to be able to reuse the models that have been created and thus to be able
to configure them readily to represent different combinations of systems that
are implemented in different vehicles. Moreover, as a software enabled feature
moves through different stages of its lifecycle, from concept to validation of the
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implementation in the final product, it will be modeled from different viewpoints.
The same feature will thus be represented by a number of different models,
which need to be linked to each other to maintain traceability throughout the
development process. This requires model management tools that understand
the relationship between different types of models and that fit into the broader
product development process as well.

Another issue that must be resolved to support model reusability is the de-
velopment of guidelines for constructing models with each of the tools that can
ensure that the models developed by different groups are compatible. This has
already been done for Simulink/Stateflow models in the powertrain area. It will
be particularly important for UML modeling, because UML is a very large lan-
guage that is designed to support many very different uses. Some restriction of
the UML constructs that are used will certainly be necessary. Our current usage
is primarily limited to class diagrams, sequence diagrams and state diagrams,
but it remains to be seen which of the other diagram types will be useful as well.

We are addressing these and other issues in our current work with the model-
ing lab. Based on our experience with the use of modeling and hardware in the
loop testing on a single body module, we expect that the extension of this mod-
eling to the vehicle systems level will result in substantial productivity increases
in the development of embedded software. The work that we are doing this year
will confirm or deny this expectation.
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Abstract. Modern real-time embedded systems are complex,
distributed, feature-rich applications. Model-based development of real-
time embedded systems promises to simplify and accelerate the imple-
mentation process. Although there are appropriate models to design such
systems and some tools that support automatic code generation from
such models, several issues related to ensuring correctness of the imple-
mentation with respect to the model remain to be addressed.

In this work, we investigate how to derive sampling rates for dis-
tributed real-time systems generated from a hybrid systems model such
that there are no switching discrepancies and the resources spent in
achieving this are a minimum. Of particular interest are the result-
ing mode switching semantics and we propose an approach to handle
faulty transitions and compute execution rates for minimizing missed
transitions.

1 Introduction

Modern real-time embedded systems are complex, distributed, feature-rich appli-
cations. For example a car incorporates thirty to sixty micro-controller units [1]
and desired functionality includes automatic parking, automatic car coordina-
tion, and automatic collision avoidance. The development of such functionality is
time-consuming and difficult, since faults in the temporal or value domain may
lead to system failures, which in turn can lead to catastrophes with possibly hu-
man losses. Model-based development of real-time embedded systems promises
to simplify and accelerate the implementation process. This is because of its
promises such as formal guarantees and code generation. Several mathematical
models such as Timed Automata [2], Hybrid Systems [3], State-charts [4] have
been successfully applied to real-time embedded systems. For embedded con-
trol software, hybrid systems are an appropriate modeling paradigm because it
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can be used to specify continuous change of the system state as well as discrete
transition of states [5, 6].

Although modeling and analysis play an important part in development of
applications, it is also essential to establish the same guarantees in the imple-
mentation of the model. In particular, it is imperative that the correspondence
between the model and the code is precisely understood. In keeping with this ob-
jective, our efforts are directed towards automatic and faithful code generation
from hybrid systems models.

Introduction to CHARON. Charon [7], is a tool for modular specification of
interacting hybrid systems based on the notions of agent and mode. For hierar-
chical description of the system architecture, Charon provides the operations
of instantiation, hiding, and parallel composition on agents, which can be used
to build a complex agent from other agents. The discrete and continuous be-
haviors of an agent are described using modes. For hierarchical description of
the behavior of an agent, Charon supports the operations of instantiation and
nesting of modes. Furthermore, features such as weak preemption, history reten-
tion, and externally defined Java functions, facilitate the description of complex
discrete behavior. Continuous behavior can be specified using differential as well
as algebraic constraints, and invariants restricting the flow spaces, all of which
can be declared at various levels of the hierarchy. The modular structure of the
language is not merely syntactic, but also reflected in the semantics so that it
can be exploited during analysis.

Code generation from hybrid system models. A problem for code generation from
verified models is to understand the relationship between the model and the code.
The model’s verification and analysis are only useful, if the generated code has
the same properties as the model. Several code generators can derive code from
a model, however, the relationship between model and the code using continuous
time is not their primary concern (c.f., [4,8] or commercial tools like Real-Time
Workshop or TargetLink). On the other hand, some academic code generators
ensure that the model and the code have the same properties (c.f., [9]), but the
issue remains challenging.

Code generation from hybrid systems models eventually involves assigning a
rate by which the continuous state evolves. In such a discretized hybrid systems
model, the state changes in a discrete manner according to the rate typically
assigned by the model designer. Further, the concurrency of the model is broken
in distributed implementations where delays in updates can result in semantic
differences. Realizing a faithful implementation of the model, therefore, involves
addressing all of these issues.

Dynamic elements in the model aggravate the problem of faithful implementa-
tion. Such dynamic elements are, for instance, battery power output, sensor qual-
ity, actuator precision, which change over time and with respect to the changing
environment. Current models rely on a steady environment and resource set. Our
research is motivated by the need to provide formal semantics and guarantees
in dynamic environments.



50 M. Anand et al.

1.1 Related Work and Problem Statement

Model-based automatic code generation has been an extensive research initiative
in recent years, in the industry as well as academia. Commercial modeling tools
such as RationalRose [10], TargetLink [11], and Simulink [12] also support code
generation and address the effect of errors in the code. However, their concerns
are largely limited to numerical errors occurring each step during simulation,
and the effect of such errors on to discrete behavior is not addressed rigor-
ously. Synchronous languages for reactive systems, such as Statecharts [4],
Esterel [13], and Lustre [14], also support code generation. However, they
do not support hybrid systems modeling. Shift [15] is a language for hybrid
automata that also also supports code generation, but the focus is on dynamic
networks. A complementary project is the time-triggered language Giotto that
allows describing switching among task sets so that timing deadlines can be spec-
ified in a platform independent manner separately from the control code [16].
This concern is orthogonal, and in fact, Charon can be compiled into Giotto.

Model-based development of embedded systems is also promoted by other
projects with orthogonal concerns: Ptolemy supports integration of heteroge-
neous models of computation [8] and GME supports meta-modeling for develop-
ment of domain-specific modeling languages [17]. Girard et al [18] also consider
hybrid systems modeling of embedded applications, however, their focus is on
verification of safety properties and not code generation. There also exist other
efforts towards model-driven development of embedded software from models
other than hybrid systems(c.f., [19]). In a closely related work, Stauner [20]
discusses at length, the discrete refinement of hybrid automata, considering im-
plementation effects such as sampling errors and its impact on verification.

There are several modeling tools for hybrid systems such as Charon [7],
Ptolemy [8], Shift [15], the Matlab/Simulink Hybrid Toolbox [21], Hytech [22],
and d/dt [23]. However, most of them are only modeling tools and do not sup-
port automatic-code generation. A listing of many tools and their description is
available at [24].

Code generation from hybrid models was introduced with focus on single-
thread execution in [3]. This was extended to multi-threaded models accounting
for faulty transitions in [25]. and distributed systems in [26,27]. All these previous
works however, are not aware of the resources available on the implementation
platform and therefore need manual parameter assignment in the code.

Contributions. In this paper, we extend previous, related work to consider the
problem of calculating sampling rates based on the platform resource model.
Specifically, we investigate how to derive criteria to preserve the model’s switch-
ing semantics based on the platform resource model to ensure that there are
no faulty or missed transitions. Our ideas are demonstrated in the context
of the modeling language CHARON, where we propose an additional step in
the code generation module. This additional step involves (1) specifying a plat-
form resource model for the available hardware and its properties and (2) using
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this model to compute the optimal sampling rates so that switching semantics
are preserved while expending the least amount of resources in the process.

2 Basic Model and Assumptions

A hybrid model consists of a real vector x denoting the continuous state, a finite
set of discrete states P that associates x with a differential equation ẋ = fp(x).
For each p ∈ P , and a set of transitions E ⊆ P × P . The continuous state x
evolves according to the differential equation ẋ = fp(x) when the current discrete
state is p. When the current discrete state is changed from p to p′, x is optionally
reset to a new value R(x, p, p′) defined by a map R : R

n × P × P → R
n, and

continues evolution in accordance with a new differential equation ẋ = fp′(x)
associated with p′. To control the discrete behavior, discrete transitions can be
guarded by predicates over x and externally updated variables. That is, a set
G((p, p′)) ⊆ R

n for each (p, p′) ∈ E specifies the necessary condition on the
continuous state that the transition (p, p′) can be taken. Note that a discrete
transition is not necessarily taken immediately even if the guard is true. To
enforce a transition, an invariant set I(p) ⊆ R

n is associated for each p ∈ P to
specify the condition that the discrete state can stay in p (that is, the condition
that x will follow ẋ = fp(x)). An outgoing transition should be taken before the
continuous state goes out of the invariant set.

In this paper, we assume that there is a network of hybrid automata (called
agents) communicating via a set of shared variables. We will denote a single agent
by A = (A, SV ) where A is the hybrid model of the agent, and SV is the set of
shared variables. A system of communicating hybrid agents is represented by the
tuple C = 〈(A, SV )1, . . . , (A, SV )n〉. We assume that every s ∈ SV is updated
by a unique agent, and it follows dynamics such that ṡ ∈ [L1, L2], L1, L2 ∈
Q \ {0}. Such linear automata are of practical significance, as hybrid systems
with very general dynamics can be locally approximated arbitrarily closely using
rectangular dynamics [28]. The transition guards at a location are assumed to
be such that at most one of them is enabled at a time.

Example 1. Consider the example of vehicle coordination where we assume that
there are two vehicles. The first vehicle is the leader and follows the dynamics
depicted as agent A1 in Figure 1. x1 denotes the distance of the leader from the
baseline, v1, its velocity. The leader’s dynamics are determined by the control
function u. The second vehicle trails the leader and maintains a safe distance
from it. The dynamics of this vehicle is described as the agent A2. Its distance
from the baseline is given by x2, and velocity by v2. If it is closer than dmin

from the leader, it slows with a rate v̇2 = −1 and if it is farther than dmax,
it accelerates with a rate v̇2 = 1. The invariant in the state q1 is x1 − x2 ∈
[dmin − η, dmax + η], in q2 is x1 −x2 ≥ dmin − η, and in q3 is x1 −x2 ≤ dmax + η,
where η is the tolerance parameter. It is assumed that, there is an infrastructure
for communicating variables between the vehicles and that, the transmission
delay is bounded and known. ��
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G3 : x1 − x2 ∈ (dmin, dmax)

q1 q2

A2

v̇1 = u

q3

ẋ2 = v2

v̇2 = 0
ẋ2 = v2

v̇2 = 1

A1

q0

ẋ1 = v1

G1 : x1 − x2 ≥ dmax

G2 : x1 − x2 ≤ dmin

G4

G5G6

G5 : x1 − x2 ≥ dmax

G6 : x1 − x2 ≤ dmin

G4 : x1 − x2 ∈ (dmin, dmax)

v̇2 = −1
ẋ2 = v2

Fig. 1. A system with two agents

We now formally define the resource model and the platform on which the code
will be implemented. Implementation of the continuous model involves assigning
a suitable sampling rate to every agent. Such a discretization of the continuous
model can be defined as,

Definition 1. (DCHA) Given a system of communicating hybrid agents C, and
a relative period of update of variables ρ, ρ ∈ Z

+, the discretized system of
communicating agents (DCHA) is given by D = 〈(A, SV, ρ)1, . . . , (A, SV, ρ)n〉,
such that gcd(ρ1, . . . , ρn) = 11,2. ��

In our notation, we denote the maximum difference between the sampling rates
of agents as skew3.

Note that the DCHA is the model implemented on actual platforms. We
will therefore, give guarantees of execution with reference to this model. For a
rigorous definition of system of communicating agents and their semantics, we
refer the reader to [25].When the discretized model is mapped to a real time task
in the code-generation environment, each agent is assigned a period of execution.
These periods of execution are assigned taking into consideration correctness
guarantees and the resources available at each node. The exact procedure for
assigning periods is elaborated in Sections 4.

Our objective in incorporating the resource model (i.e., model of memory,
energy, CPU,etc) in addition to the hybrid model is that, we can generate a
minimal sampling frequency that can be supported on the platform. This opti-
mum is calculated by ensuring the model semantics and conserving the resources
available. Therefore, we define a resource as consisting of a utilization function
and a specification of energy utilization for every operation.

Definition 2. (Resource) A resource R is defined by the tuple 〈id, U, E〉, where,
id ∈ Z

+ is a unique identifier of the resource, U is the maximum amount of uti-
lization, and an optional field E which indicates the amount of energy consumed
per unit of utilization. A node N is defined as a set of interacting resources. ��
1 Greatest common divisor.
2 This assumption is not necessary but introduced to keep the discussion simple.
3 We acknowledge that our definition here differs from the standard definition of skew.

However, our use of the term is motivated by similar considerations.
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The definition of platform consists of a mapping between the model and the
node that executes the code corresponding to that model, the communication
delay involved, and finally a quantum of execution supported at each node. The
quantum is defined by how often a computation can be performed on any node.

Definition 3. (Platform) A platform P is defined as the tuple 〈N , M, φ, ν〉
where N is a system of nodes, M : A → N is a function that maps an agent to
a node on which it is to be executed, φ is a map that takes as input the agent ids
and returns the bound on communication delay between two agents in A, and ν
is the baseline period, i.e., the quanta of the period of execution of any agent.

Note that we assume a underlying reliable communication mechanism The ab-
stractions for platform and code consider only the basic of all the actual im-
plementation effects and make several simplifying assumptions. For instance,
jitter, clock drift, message loss, and other errors in the system, which are of-
ten observed in real systems, have not been considered here. These effects can
potentially weaken some of the results presented in this work. The aim of this
work however, is to establish a sound theory as a first attempt at categorizing
some of the implementation effects. More artifacts of the implementation can be
incorporated into the model at the cost of more involved analysis.

Example 2. Consider the vehicle coordination system with two agents as shown
in Figure 1. For the trailing vehicle (V2), the resources could be a battery, the
CPU and the sensor for tracking the leader(V1). The resource model for the
vehicle V2 can thus be represented as,

V2 id Umax E
Batt1 1000mAh -

CPU 5Mhz 0.001J/op

Sensor1 1kHz 0.2J/sample

The target platform here consists of two nodes, the leader and the trailing vehicle,
and if we assume no communication delays, it is described as 〈{V1, V2}, M,
φ(V1, V2)〉, where M = {A1 → V1, A2 → V2}, and φ(Ai, Aj) = 0. The baseline
period (quantum of execution) is the smallest sampling period that could be
supported. For example, we could have ν to be 0.01. ��

3 Code Generation from Hybrid System Models

This section gives a brief overview of the procedure of code generation from
hybrid models. We first present translation of continuous behavior specified by
differential equations and algebraic equations, and then explain translation of
discrete actions specified by guarded transitions. Later in this section, we discuss
the issue of discrepancy between the model and the generated code, real-time
resource concerns and choice of correctness criteria. For more details on code
generation, we refer the reader to [3,25].
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3.1 Code Generation Procedure

A differential equation of the form of ẋ = f(x) specifies continuous change of
variable x at the rate specified as the first derivative f(x) of x with respect to
time (i.e., dx/dt = f(x)). Continuous change of a variable can be simulated by
stepwise update of the variable based on a numerical method that computes
an approximate value of the variable after a discrete time step (e.g., Runge-
Kutta method [29]). The simplest numerical method is the one known as Euler’s
method, which projects the value of the variable at the next time step through
linear extrapolation. For example, a differential equation ẋ = 2 is translated into
an assignment statement x := x + 2 × h, where h is the step size. In fact, no
more sophisticated method is necessary if the right-hand side of the differential
equation is a constant.

Once the differential equations are solved, algebraic equations are evaluated
to reflect the change due to differential equations. The general form of algebraic
equations is y = g(x). An algebraic equation can be implemented by an assign-
ment statement of the same form. That is, an algebraic equation y = g(x) is
simply translated into an assignment of the form y := g(x).

Discrete actions of hybrid automata specify instantaneous switching of system
dynamics and optional reset of variables. Discrete actions are specified by tran-
sitions between positions, where each position defines different dynamics. The
transition has a guard that specifies the necessary condition for the transition
to be taken, and may have optional assignments to variables that are performed
at the moment when the transition is taken. When a transition is taken, differ-
ential equations and algebraic equations defined in the source position become
no longer active, and those defined in the destination position take effect imme-
diately.

The guard in the hybrid system model enables or disables a transition, rather
than immediately triggers a transition in hybrid systems models. This means
that enabled transitions may be taken delayed as long as the invariant is satis-
fied. Conceptually, transitions are non-deterministic in the model, and the im-
plementation determines exactly when a transition is taken. An obvious policy
is an urgent transition policy where a transition is taken as soon as the guard
evaluates true. We have proposed a transition policy what we call instrumenta-
tion [25] that enforces transitions to be taken some time Δ after the transition
is enabled but no later than Δ before the transition is disabled. The value of Δ
is chosen such that all faulty transition possibilities are eliminated (Section 4.1).
Yet another possibility is to enforce a transition once it evaluated to be enabled.
We call such a policy an eager transition policy. Surely, the urgent transition
policy is an eager transition policy. The instrumented transition policy is an ea-
ger transition policy if the instrumented guard set is a non-empty set. We only
consider an eager transition policy in this paper.

3.2 Switching Discrepancies in the Code

There are a number of issues, such as ensuring the switching semantics and faith-
ful translation of continuous dynamics, that need to be addressed to provide
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guarantees in the generated code. Here, we focus on preventing switching dis-
crepancies. The continuous semantics of the model are implemented in the code
with the help of numerical methods which introduce an error due to discretiza-
tion in addition to the roundoff and truncation errors on target platforms. These
errors along with the order of scheduling of the reads may cause a transition to
be falsely enabled. If such a faulty transition is taken, the dynamics of the sys-
tem may be completely different from the intended model. The example below
highlights such a possibility.

Example 3. (Faulty Transition) Consider the vehicle coordination system in Ex-
ample 1. Let us say that the relative period of update for agents A1 and A2 be
(5, 3) and the actual periods of updates be 0.1s and 0.06s, respectively. Also, let
u = 2, dmin = 0.1, dmax = 0.5, and initial positions of vehicles be x0

1 = 0.3072
and x0

2 = 0.2, from the baseline, initial velocities v0
1 = 0, v0

2 = 0, the commu-
nication delay φ(A1, A2) = 0.03, and the current states of agents be q0 and q2.
Then, a possible run of the system is,

t x1(A1) x1(A2) x2(A2)

0.06 0.3072 0.3072 0.2018

0.10 0.3172 0.3072 0.2018

0.12 0.3172 0.3072 0.2072

. . .

where xi(Aj) denotes the value of variable xi on agent Aj . Notice that at time
0.12, the difference between vehicles is 0.3172 − 0.2072 = 0.11(> 0.1), but the
estimated distance at A2 is 0.3072−0.2072 = 0.0956 < 0.1 and the system makes
a faulty transition to q3. ��

Although the above example indicates a faulty transition, since the transition is
made to q3 in which the trailing vehicle decelerates, it is not critical to ensuring
safety. However, in some cases, if the system makes a faulty transition to an
accelerating state q2, then, the trailing vehicles accelerates. This is critical to
safety as the gap between the vehicles decreases in this case. The example below
illustrates this.

Example 4. (Faulty Transition) Now consider that the relative period of update
for agents A1 and A2 be (2, 1) and the actual periods of updates be 0.2s and 0.1s,
respectively. Also, let dmin = 0.1, dmax = 0.2, and initial positions of vehicles
be x0

1 = 0.19 and x0
2 = 0.1 from the baseline, initial velocities v0

1 = 0.1, v0
2 = 0.2,

the communication delay φ(A1, A2) = 0.01, and the current states of agents be
q0 and q3. The first vehicle reverses its direction at v̇2 = −1 at time 0.1s. Then,
a possible run of the system is,

t x1(A1) x1(A2) x2(A2)

0 0.19 0.19 0.1

0.1 0.21 0.19 0.1

0.2 0.20 0.21 0.11

. . .
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At time 0.2, the difference between vehicles is 0.20 − 0.11 = 0.09(< dmax), but
the estimated distance at A2 is 0.21− 0.11 = 0.1(= dmax) and the system could
a faulty transition to q2. Since q2 is an accelerating state, this transition reduces
the distance between vehicles, potentially causing a collision. ��

Yet another possibility for switching errors is that of missed transitions. Insuffi-
cient sampling rates, choice of scheduling of reads, etc., may cause a transition
to be missed. Missing some transitions may cause the system to end up in a
erroneous state. We illustrate this with an example below.

Example 5. (Missed Transition) Consider the system in Example 1. Let the rel-
ative periods of execution be (5, 3), the actual periods of update (0.25s, 0.15s),
dmin = 0.25, dmax = 0.5, the control parameter u = 0. x1 = 0.48, v1 = 5,
v2 = 4.5 at t = 0.15, and the current state of A2 be q2. Further, let d = x1 − x2,
ḋ = ẋ1−ẋ2 ∈ [0.45, 0.5]. The guard G4 is then the condition d ∈ (0.25, 0.5) which
on instrumentation will become d ∈ (0.25+0.1×0.5, 0.5−0.1×0.5) = (0.3, 0.45)
as the maximum skew is 0.1, and L2 = 0.5. We would then have a run of the
system as,

t x1(A1) x2(A2)

0.15 0.48 0.0

0.25 0.98 0.0

0.30 0.98 0.6862

. . .

We see that the transition from q2 to q1 is missed here, and at time t = 0.3s,
the system transits to q3. ��

Switching can also be affected by resource constraints and its dynamic nature.
For example, as the battery wears off, it may not yield the same output causing
a deadline miss of some task. If the tasks scheduled to run do not meet the
deadlines, it may affect the dynamics which in turn could induce faulty transi-
tions. To counter this, in our proposed approach, we start with an assignment of
relative periods to different agents. From these relative periods, and the current
estimates of resources, the actual periods of execution are synthesized. We choose
these actual periods so that these correspond to the least amount of energy used
while retaining the guarantees of switching behavior.

3.3 Correctness Criteria

The generated code and the model can be termed equivalent if the code exhibits
a trace that is also a trace in the model. However, to account for delays in
communication and skew due to different rates of execution in the code, we
relax this requirement and define a relative faithful implementation. Under this
relaxed form of correctness, the code exhibits a trace of the model, but the state
of the model is entered at a later time. This can be captured formally as,

Definition 4. (Relative Faithful Implementation) Let V C be the set of all vari-
ables and αx be the maximum bound on the error of a variable x. Given a trace
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of states of the code K for an agent Aj, 〈q0, q1, . . .〉, at physical timestamps
〈clk0, clk1, . . .〉, if, ∀clk,

1. ∀x ∈ V C, |xD(lt) − xK(lt)| < αx, where xK and xD represent the value of
variable in the code and the model respectively, and lt, the logical time in the
code.

2. ∀j, ∃qD, qK = qD , (ltD − ltK) < φj(ltK)+ ϕ(ltK) where qK is the state of the
code of logical time ltK, at physical time clk, qD is the projection of the state
of the model onto the code for Aj at logical time ltD, φj = maxi φ(i, j) and
ϕ is the maximum skew due to different rates of updates at logical time ltK.

then, code for Aj is a relative faithful implementation. If ∀j, Aj is a relative
faithful implementation, then K is a relative faithful implementation of D. ��

Informally, a relative faithful implementation says that (1) the error in continuous
variables is bounded , and (2) the difference between the state of the model and the
implementation can be off by at most the sum total of worst case communication
delay and skew in update of variables. Under this relaxed scheme of things, the
implementation can enter the state of the model after updates are received (which
can arrive at worst φj(ltK) + ϕ(ltK) late). We now present the framework that
would help ensure that the implementation is relative faithful to the model.

4 Proposed Implementation Framework

In this section, we propose a framework for code generation with an emphasis
to avoid switching discrepancies (faulty and missed transitions) and conserve re-
sources while giving these guarantees. The Figure 2 provides an overview of how
the model-driven development process in our framework with CHARON: first,
the developer creates the application-specific hybrid systems model by program-
ming agents, modes, and mode changes and by defining relative update periods.
Then he specifies the platform resource model, which includes, for instance, an
agent-to-node assignment, each node’s hardware properties, power levels, com-
munication delays, and agent’s worst-case execution times. This resource model
is then fed into a constraint solver, which computes the optimal agent’s sam-
pling rates to prevent faulty and missed transitions as described in the following
sections. Note that we do assume that the base period of updates of variables
in an agent (ρ) are provided beforehand, and we compute the actual period of
updates (which is a multiple of base periods) depending on available resources.

GenerationAppl. hybrid
system model

Constraint
solver

CHARON
generated code

resource model
Platform

Fig. 2. Resource-aware Code-generation Framework
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Before we elaborate on computing the optimal rates of sampling of agents, we
highlight the solution to avoiding faulty and missed transitions.

4.1 Preventing Faulty Transitions

A faulty transition is a violation of equivalence of discrete states in a faithful
implementation. It may occur due to the following reasons : 1) errors in the
variables cause the guard to be evaluated true that should otherwise be false,
or 2) variables are updated at different times due to scheduling and/or different
update frequencies, causing the guard to be evaluated to be true. To prevent this
from occurring, we have proposed a technique what we call instrumentation. The
essence of that technique is to refine the model by tightening transition condi-
tions according to the maximum errors due to numerical and different sampling
rates. The approach enforces that the transitions in the code are consistent with
the model.

Errors in variables could be due to roundoff, truncation or be timing-induced
due to the different rates of execution of the agents. Roundoff and truncation
errors are assumed to be given, the communication delay is obtained by mon-
itoring and the maximum skew, denoted by ϕ due to dissimilar periods can
be computed by, ϕ(Ai, Aj)max = maxn∈[1..N ]

(
nhj −

⌊
nhj−φ(Ai,Aj)

hi

⌋
hi

)
where

N = LCM(hi,hj)
hj

4, hi and hj are the step sizes in the sampling of Agent Ai and
Aj , respectively.

Definition 5. (Instrumentation) Let p be a state of agent Aj with EAj (p) being
the set of discrete transitions, and the interval under consideration be [lt, lt+Δ].
If the guard set g ∈ GAj (e), e ∈ EAj is of the form, g =

∧
i xi ∈ [lxi , uxi], the

invariant IAj (p) =
∧

i xi ∈ [l
′

xi
, u

′

xi
], ϕ and φ(Ai, Aj) compute the skew and delay

between the agents, then, the instrumented guards and invariants are given by,

ginst =
∧

i

xi ∈
[
lxi + γp,xi + L2xi

δxi , uxi − γp,xi − L2xi
δxi

]
(1)

Iinst =
∧

i

xi ∈
[
l
′

xi
+ γp,xi + L2xi

δxi , u
′

xi
− γp,xi − L2xi

δxi

]
(2)

where δxi = ϕ(Ai, Aj)+φ(Ai, Aj), xi is updated by agent Ai, with ẋi ∈ [L1xi
, L2xi

],
and γp,xi is the roundoff and truncation error in xi in the state p. ��

We now illustrate how instrumentation prevents faulty transitions with the fol-
lowing example.

Example 6. Consider the system in Example 3 and the time interval under con-
sideration be [0,1]. If we denote d = x1 −x2, then, ḋ = ẋ1 − ẋ2 = 2t− t = t. Since
t ∈ [0.05, 1], we can say that ḋ ∈ [0.05, 1]. Now, given that φ(A1, A2) = 0.03, and

4 Least common multiple.
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the skew at t = 0.12 is 0.02, and assuming the bound on roundoff and trunca-
tion errors is 0.001, the transition guard, x1 − x2 ≤ 0.1 upon instrumentation
becomes x1 − x2 ≤ (0.1 − 0.001− 1 · (0.02+0.03)) = x1 −x2 ≤ 0.049. Therefore,
the faulty transition at t = 0.12 can be prevented. ��

The theorem below formally states that instrumentation prevents faulty transi-
tions. For a sketch of the proof, we refer the reader to [25].

Theorem 1. Let the code K of the model D be implemented on a distributed
platform. Let for every agent Aj , p be the current state with IAj (p) the set of
invariants in that state, and GAj (e) the set of guards. If every guard (in GAj (e))
that evaluates to true is instrumented as given in Definition (5) then there will
be no faulty transitions. ��
Notice that in Example 6, the instrumentation reduces the guard interval sub-
stantially. In general, it is possible that with the shrinking of the guard set, the
transition is missed completely. In the next section, we will analyze and derive
a condition to check for missed transitions and possibly avoid them by sampling
at a higher rate.

As a final note in this section, we add that while instrumentation reduces the
guard set, it does not affect switching in any other way. In particular, if the
original interval was such that only one transition was enabled from the location
at any time, the property remains valid with instrumented guards as well as it
is a subset of the original interval.

4.2 Preventing Missed Transitions

Missed transitions are transitions that are enabled in the model but not taken
in the code. They occur either because the guard is not evaluated sufficiently or
scheduling affected the order of evaluation. In general, a transition will not be
missed, if it stays enabled long enough to be detected. The theorem below gives
a sufficient condition to prevent missed transitions.

Theorem 2. Let the code K of the model D be implemented on a distributed
platform, hj be the period of sampling in agent Aj. Let I be an instrumented
invariant in a state and g =

∧
i xi ∈ [lxi , uxi ], g ⊆ I represent the instrumented

guard of a transition in that state. If lt represents the current logical time at Aj,
xi(lt) the current estimate of xi at Aj , and Txi are defined as,

Txi(k) =

⎧
⎨

⎩

[
lt + lxi

−xi(lt)

Lkxi

+ δmax, lt + uxi
−xi(lt)

Lkxi

+ δmin

]
if (xi(lt)<lxi), ẋi >0

[
lt + uxi

−xi(lt)

Lkxi

+ δmax, lt + lxi
−xi(lt)

Lkxi

+ δmin

]
if (xi(lt)>uxi), ẋi <0

k = 1, 2, then, the transition will not be missed if,
∥∥∥∥∥∥

⋂

i

⎛

⎝
⋂

k=1,2

Txi(k)

⎞

⎠

∥∥∥∥∥∥
≥ 2hj (3)
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where δmin = ϕmin + φ(Ai, Aj), δmax = ϕmax + φ(Ai, Aj) between agents Ai

and Aj, and ẋi ∈ [L1xi
, L2xi

], then, the transition will be detected and will not
be missed if they are taken as soon as enabled.

Proof. (sketch) We proceed to sketch the proof of the theorem in two parts.
First, we will derive a condition on the overlap of guard and invariant that will
allow us to detect the enabling of the transition. Then, given that the guard is
of the form g =

∧
i xi ∈ [lxi , uxi] , we will derive a sufficient condition to meet

this overlap, based on the periods of execution of agents.
To prove the first statement, assume that we are given a task-period set

Ω = {(τi, hi)}1 ≤ i ≤ n. Each task τi will be treated as a periodic task with
period hi executing in a distributed environment. Let the execution time of τi

be ηi and this is scheduled to run every hi time units. Note that ηi here includes
both execution time and also perhaps communication delay associated. Also, we
speak of time in the reference frame at the processor executing task τi. Therefore,
in the worst case, τi might be scheduled at time jhi and a guard might be enabled
(in the code, perhaps on a different processor) immediately after that, i.e., at
time jhi + ε, ε > 0 and be detected only when τi is next scheduled to run which
may be as late as (j +2)hi − ηi. Since we assume eager switching, this transition
will be taken at (j +2)hi −ηi. Thus, if a guard is not enabled at (j +2)hi −ηi, it
will go undetected and this will result in a missed transition. Hence, the guard
should stay enabled for at least ((j + 2)hi − ηi) − (khi + ε) = 2hi − ηi − ε time
units. Since ε is arbitrary, to be safe, we can claim that it should stay enabled in
the code for 2hi time units so that the transition is not missed. This is illustrated
in Figure 3. Now, consider the guard set g =

∧
i xi ∈ [lxi , uxi]. Let the current

���
���
���
���

���
���
���
���

G enabled

j · hi (j + 1) · hi (j + 2) · hi

ηi

Fig. 3. Worst case scenario

logical time be lt and current values of variables at agent Aj given by xi(lt).
We will consider the case where xi(lt) < lxi and xi(lt) > 0, the argument for
the case where xi(lt) > uxi and xi(lt) < 0 is similar. Since ẋi ∈ [L1xi

, L2xi
], ẋi

can utmost grow as L2xi
. The guard on xi, ([lxi , uxi ]) will then be enabled for

the time interval T2 = [lt + lxi
−xi(lt)

L2xi

+ δmax, lt + uxi
−xi(lt)

L2xi

+ δmin], assuming
that in the worst case, the notification for enabling of the guard gets to Aj in
time δmax and the notification for exiting comes at δmin. This is true because
xi is continuous and the guards are assumed to be disjoint in time, otherwise
there could be resets and the dynamics of xi would be different. Similarly, if ẋi

grows as slow as L1xi
], then, it will be enabled for the time interval of T1 =

[lt + lxi
−xi(lt)

L1xi

+ δmax, lt + uxi
−xi(lt)

L1xi

+ δmin]. Therefore, if T1 ∩ T2 �= ∅, then
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it represents the time interval for which guard on xi will be enabled. Hence
considering the time interval for each of the xi’s, we can find the time interval
when the guard will definitely be true.

From the above arguments, we can conclude that a Condition (3) gives a
sufficient condition for preventing missed transitions, if the transitions are taken
as soon as they are detected. ��

The example below illustrates a case where a transition is missed and the suffi-
cient condition is not met.

Example 7. Consider the case of Example 5. As a quick check, we find that if
the system evolves as fast as 0.5, then T2 = (0.48−0.45

0.5 + 0.1, 0.48−0.3
0.5 + 0.05) =

(0.16, 0.41). Similarly, T1 = (0.48−0.45
0.45 + 0.1, 0.48−0.3

0.45 + 0.05) = (0.167, 0.45). We
find that ‖T1 ∩ T2‖ = 0.243 �≥ 2(0.15) does not satisfy the sufficient condition
for preventing missed transitions. However, if we choose the period of execution
to be 0.12, we can see that the transition will not be missed. ��

With the Theorems 1 and 2, we have a sufficient condition to ensure a relative
faithful implementation that we record in the following corollary.

Corollary 1. Let the code K of the model D be implemented on a distributed
platform. If the code for every agent Ai every G ∈ GAj is dynamically instru-
mented so that G and corresponding invariant I satisfy the condition of overlap
in Theorem 2, and all variables in K have bounded error, then, K is a relative
faithful implementation of D. ��

4.3 Minimal Periods of Execution

In this section, we describe an algorithm to choose minimal periods of execution
to avoid missing a transition and meeting the resource constraints. The main idea
of the approach described as Algorithm 1 is to scale the relative periods of exe-
cution so that they meet the supported level of utilization. Specifically, as we are
interested in finding the minimal periods of execution, we start with the smallest
possible assignment and keep incrementing the periods till the supported level
of utilization is met. Note that our algorithm needs to be run every time the
available resource changes. We assume that the run time is instrumented to take
this into consideration and call the procedure appropriately.

This is implemented in the function SMALLEST-K. Here we consider schedu-
lability under EDF and Rate Monotonic (RM) algorithms. The function takes
as input α, that is the level of utilization permissible with the supported levels
of energy, and returns the smallest multiple of the base period of update k for
which all the agents mapped onto a particular node (N) can be scheduled. We
assume that voltage scaling techniques (c.f., [30]) can be used to fix a level of
utilization of the CPU. In addition to checking schedulability, we assume that a
function RESOURCE-CHECK is implemented that checks to see if agents are
scheduled with a particular period and other resource constraints. For exam-
ple, the function could check to see, if the frequency of reading of sensor data
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is less than the maximum permissible sampling frequency of the sensor. If an
energy budget is associated, then it can be used to check whether the budget is
met. If a particular k does not satisfy schedulability or resource constraints, it is
incremented and then tested again. Note that increased k results in longer pe-
riods of execution. In the algorithm, Wj and ρj denote the maximum execution
requirement and the sampling rate of Agent Aj which we assume are fixed.

Algorithm 1. Algorithm to find periods of execution of agents.
SMALLEST-K (α,N):

1: k ← 1
2: CASE-EDF:
3: while

((∑
M(j)=N

Wj

k·ρj
	≤ α

)
∨ (RESOURCE-CHECK(N) 	= true)

)
do

4: k ← k + 1
5: end while
6: CASE-RM:
7: J = {j1, . . . jn|M(ji) = N}
8: while

((
∀j ∈ J,

∑
j

ρj

ρ1
� · Wj 	≤ α · k · ρj

)
∨ (RESOURCE-CHK(N) 	= true)

)
do

9: k ← k + 1
10: end while
11: return k

SELECT-PERIODS-NODE (N):

1: kNmax ← SMALLEST-K(αmin)
2: kNmin ← SMALLEST-K(αmax)
3: return (kNmin , kNmax)

SELECT-PERIODS (〈p1, . . . , pn〉):
1: (kmin, kmax) ← (0, 0)
2: for N ∈ N do
3: (k1, k2) ← SELECT-PERIODS-NODE(N)
4: (kmin, kmax) ← (max(kmin, k1), max(kmax, k2))
5: end for
6: k ← kmax

7: while k ≥ kmin do
8: if (CHECK-MISSED(〈p1, . . . , pn〉, k)) then
9: return k

10: end if
11: k ← k − 1
12: end while

The function SELECT-PERIODS-NODE returns the maximum and mini-
mum possible utilization and returns the range of scaling factor k possible on
that node. The KNmin corresponds to the smallest periods possible on the node
N with the supported amount of resources on node N . The SELECT-PERIODS
function takes as input the present set of states 〈p1, . . . , pn〉 and computes the
possible values of k for every node and computes the range of k’s possible for all
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the nodes. This range is represented by (kmin, kmax). To find the minimal value
of k, we start iterating from kmax since it represents the least utilization level.
At each iteration, we check to see whether choosing that value of k would result
in a missed transition. The function CHECK-MISSED implements this check.
Thus, at the end of the while loop (Steps 7-12), we would have found a k which
can be supported on all nodes while being guaranteed for no missed transitions.
Once we have found the value of k, we can supply the parameters to the code.

Example 8. (Room Heater) Our example for illustrating the algorithm is
adapted from the heater benchmark for hybrid systems verification [31]. The
benchmarks considers the case of a set of rooms being heated by limited num-
ber of heaters that are shared by the rooms. The number of heaters is strictly
less than the number of rooms. In our example, we consider two rooms and
one heater. The model of this system, described in Figure 4 consists of two
thermostats and a heater. The temperature in a room is assumed to vary as,
ẋi = cihi +bi(u−xi), i = 1, 2 where hi is 1 if the heater is in the room, otherwise
0, u is the outside temperature, and ci, and bi are constants. The heater model
is a pure switched system. If (xi ≤ geti) ∧ (xj − xi ≥ difi), then the heater is
moved from room j to room i, where i = 1, 2; j = 2/i.

G2 : (xi ≤ offi) ∧ (hi = 1)

Thermostat

ẋi = bi(u − xi)

bi(u − xi)

ON OFF
G1 : xi ≥ oni

ẋi = ci+

Fig. 4. The hybrid system model of the thermostat

The system is implemented on two nodes. There are two agents, one to check
whether the heater has to be moved (A1), and the other for switching on or
switching off the heaters(A2). The controller in the room with the heater runs
both of them, and the controller in the other room runs only the second agent.

Let us assume that the relative periods of the two agents are (3, 1) and the
relative worst case execution times be (2, 1). Let us also assume that the lev-
els of utilization are 0.25 and 0.5. In the room with the heater (say room 1),
the controller has to schedule both the agents so, we have k1min is such that

1
k1max

(2
3 + 1

1 ) ≤ 0.5 which yields k1min = 4. Similarly with utilization 0.25, we
can get k1max = 7. In room 2, since there is only one agent to be scheduled, we
have, k2min is such that 1

k1max
(1
1 ) ≤ 0.5 which yields k2min = 2. Similarly with

utilization 0.25, we can get k2max = 4. Therefore, after taking the maximum over
both nodes, we get (kmin, kmax) = (4, 7). The agent A2 in room 1 is waiting on
transition G1 and in room 2 is waiting on transition G2. It can be seen that k = 7
that corresponds to utilization 0.25, indeed satisfies the sufficient condition for
no missed transitions. ��
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5 Conclusions and Future Work

We have proposed a framework for generating resource-aware code from hybrid
systems models with guarantees of no switching discrepancies. Our approach is
an effort to bridge the semantic gap between the model and the code due to
discretization and resource constraints. We accomplish this by incorporating a
resource model of the target platform in addition to the application model and
generating parameterized code from this model. The parameters are supplied
at runtime by monitoring the state of the resources and checking for missed
transitions.

There are potentially many directions of future work. We hope to complete
the implementation of the framework. In the paper, we have largely focused
on power and CPU as the main resources. We would like to extend it to more
comprehensive set of resources. Also, in the present scheme of things, a change in
resource levels or transition on any agent can trigger a recalculation of the periods
of all the agents. This is so because of the assumption that all the agents have
relative periods of execution. An alternative, would be to start with constraints
on periods, such as ρ1 ≤ 2ρ2. This way, we would only need to recompute the
periods whenever the constraints are about to be violated. Another possible
extension to the framework, would be to mask faults and failures or consider
graceful degradation by viewing it as an extreme case of resource dynamism.
Finally, we hope to use ideas from runtime monitoring [32] to monitor and steer
the system towards desirable behavior.

Acknowledgments. We would like to thank anonymous referees for their sug-
gestions in improving this paper.
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Abstract. Embedded software is widely used in automotive applica-
tions, often in critical situations where reliability of the system is ex-
tremely important. Such systems often use model based development
approaches. Model transformation is an important step in such scenarios.
This includes generating code from models, transforming design models
into analysis models, or transforming a model between variants of a for-
malism (such as variants of Statecharts). It becomes important to verify
that the transformation was correct, and the transformed model or code
preserved the semantics of the design model. In this paper, we will look
at a technique called “goal-directed certification” that provides a prag-
matic solution to the verification problem. We will see how we can use
concepts of bisimulation to verify whether a certain transformation in-
stance preserved certain properties. We will then extend this idea using
weak bisimulation and semantic anchoring, to a more general class of
transformations.

Keywords: Behavior Preservation, Bisimulation, Weak Bisimulation,
Semantic Anchoring.

1 Introduction

Model-driven development of embedded systems relies on the use of model trans-
formations that translate and establish linkage between different modeling for-
malisms, design artifacts produced during the development process, and possibly
executable code. The validity of these transformations is crucial for the correct
functioning of the system. To prove that the system will work as predicted, we
must be able to assure that the model transformations preserved the semantics
of the models. For instance, the control logic of an automotive application (say,
an Anti-lock Braking System) may be developed using a model-based approach
(say, using Stateflow). We may transform this model to verify its control logic
(say, using NuSMV), or generate code from it (say, using Mathworks’ Real-time
Workshop). In a high-consequence application (like the ABS) it is essential that
the results of the verification hold true for the generated code. The question
at the heart of any model-based development process is: for applications where
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safety is essential, do the transformations on the models provide verifiable as-
surances for the preservation of properties across the transformation?

Observe that the problem is similar to the verification of compilers for high-
level languages. Compiler verification, in general, is currently not solved: we
don’t have a full formal “proof” of a production-quality compiler. The prag-
matic approach is to use a “certification process” which validates the behavior
of a compiler using a large set of test examples and observing the results of the
compilation (often through execution). Unfortunately, this approach may not
be feasible for model transformations, as model transformations often do not
produce executable code. It may not be economical to develop a large set of test
examples for certifying a highly specialized transformation tool, and the correct-
ness of the transformations’ results is difficult to establish only via reading.

2 Background

2.1 Goal-Directed Certification

If the requirement for total verification can be relaxed, some verification prob-
lems could be solved using techniques from program synthesis tools. NASA ARC
[8] has recently developed an approach to generating assurances for code pro-
duced by automatic program synthesis tools. Their approach is based on

1. adding annotations to the generated code that capture certain pre-conditions
and post-conditions on each statement,

2. capturing safety properties that need to be verified in some logic notation,
3. translating the conditions from (1) and the safety properties from (2) into a

set of verification conditions that are simplified,
4. using a symbolic (and automatic) theorem prover to generate a formal proof

that the selected safety conditions hold for the generated code, and
5. using a proof checker to check that the proof is valid.

The result of this process is a “certificate”: a formal proof that the generated
code does satisfy the desired safety properties.

This approach does not solve the verification problem in general. It answers
the question for a specific generated code, and for a selected set of safety prop-
erties. This simplifies the process greatly, and makes it technically feasible. We
will call this approach “goal-directed certification”.

Note that this approach removes the need for trust in the generator, as the
certificate is evaluated after the generation. This means that the certification will
capture any errors in the generated code, irrespective of faults in the generator.

The work of Denney and Fischer in [8] is similar to the Proof-Carrying Code
(PCC) work of Necula [16]. In PCC, a compiler is extended to produce object
code accompanied with proofs for safety policies that can be independently veri-
fied on a host system. In Certifiable Program Generation, the idea is extended to
code generators, to provide assurances about the generated source code. Since
they operate at the level of source code (as opposed to object code), the for-
mulation of the safety properties is changed appropriately. In this paper, we
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extend this idea to model transformations, where we wish to provide assurances
about the generated models. Consequently, the formulation of the safety poli-
cies and the verification methods will be different, but the basic architecture is
comparable.

2.2 GReAT

GReAT [5] is a language for specifying model transformations graphically using
elements of the meta-models of the constituent domains. The meta-models of
the domains are specified using UML and OCL. GReAT belongs to the class
of practical graph transformation systems such as AGG[9], PROGRES[17] and
FUJABA[18].

One of the features of GReAT is the ability to link elements from the different
meta-models, to create temporary cross-domain links. These links are called
cross-links, and can be used to trace relations between model elements belonging
to different domains during the course of the transformation.

2.3 Extended Hierarchical Automata

To demonstrate our idea of goal-directed certification, we will use Statecharts as
the design language, and Extended Hybrid Automata (EHA) [14] as the analysis
language. EHA has been chosen as the analysis language as it has a straightfor-
ward mapping into the PROMELA language used in SPIN[15]. EHA were used to
give formal operational semantics for Statecharts, and they offer a simple hierar-
chical representation for Statecharts that was used in correctness proofs [19].

EHA models are composed of one or more Sequential Automata, which are
non-hierarchical finite automata. The states of a Sequential Automaton (called
Basic States) may be refined into further Sequential Automata, to express hier-
archy in a flat notation. A Statechart model can be represented by a Sequential
Automaton, with a finite automaton representing the top level states of the
Statechart. Compound states in the Statechart must be represented as individ-
ual Sequential Automata, and marked as refinements of the corresponding Basic
States in the EHA. The entire Statechart can be represented this way, using a
set of Sequential Automata and a series of refinements.

Some transitions in the Statechart may cut across levels of hierarchy. Such
transitions are said to be inter-level. Transitions in an EHA model, however, are
always contained within one Sequential Automaton, and cannot cut across levels
of hierarchy. Inter-level transitions my therefore be elevated based on the scope
of the transition. An inter-level transition is placed in the Sequential Automaton
corresponding to the Statechart state containing it, and is drawn between the
Basic States corresponding to the top-most ancestors of the source and target
states in the Statechart. The transition in the EHA is also annotated with special
attributes called source restriction and target determinator, which keep track of
the actual source and target states of the transition. Figure 1 shows the meta-
model for EHA. The complete transformation from Statechart to EHA will be
explained later.
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Fig. 1. EHA meta-model in UML

2.4 Bisimulation

Bisimulation is an equivalence relation between Labeled Transition Systems
(LTS), which can conclude whether the two systems will behave identically.
In other words, if two systems have a bisimulation relation, then one system
simulates the other and vice versa. Given an LTS (S, Λ, →), a relation R over S
is a bisimulation if:

(p, q) ∈ R and p α→ p′ implies that there exists a q ′ ∈ S,
such that q α

→ q ′ and (p′, q ′) ∈ R,

and conversely,

q α→ q ′ implies that there exists a p′ ∈ S,
such that p α

→ p′ and (p′, q ′) ∈ R.

If we considered the union two transition systems representing a Statechart
model and an EHA model, and find a relation R relating each Statechart state
to an EHA state, and proved that R is a bisimulation, we can conclude that the
Statechart model and the EHA model will behave identically.

3 Verifying Model Transformations by Goal-Directed
Certification

In goal-directed certification, we do not wish to provide a general correctness
proof for the transformation. We try to solve the more tractable and useful
question of trying to prove that a particular instance of a transformation pre-
served certain properties of interest for the instance models involved. Suppose
we have a design modeling language that has convenient features for represent-
ing complex controller behaviors and designs, and we have a simpler analysis
language that comes with sophisticated verification tools. In our case study, we
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will consider Stateflow [1] as our design language, and PROMELA (of the SPIN
model checker [12]) as be the analysis language. We use the design language for
expressing controller designs, and then translate the design models into the anal-
ysis language where the actual verification is done. We then try to answer the
question, do the results of the verification on the PROMELA instance model hold
on the Stateflow instance model? In other words, how can we be sure that the
model transformation that maps design models into analysis models preserves
the semantics of those models?

We wish to note that in some simple cases, we may be able to specify a
transformation using a sequence of declaratively specified steps, and provide an
argument for its correctness by construction. However, we do not yet have a
model transformation tool that can take a purely declarative specification and
produce an automated transformation. In a production scenario, it is usually
not feasible to provide such assurances by construction, due to implementation
complexity issues. We propose an automatable and reusable method to verify
the correctness of the implementations of model transformations, which can be
integrated into the transformation, but will perform the verification independent
of the transformation itself. Thus, an incorrect implementation will not produce
a valid certificate of correctness.

The above questions are difficult to answer in general, but we can possibly
answer them if we restrict ourselves to single instances and specific properties.
One such model property is reachability: what states are reachable/unreachable
in the design model? We would like to answer this by translating the design
model into an analysis model, executing the reachability analysis on the analysis
model, and deducing that the reachability holds for the original design model
given the model transformation is correct.

Reachability is checked by a model checker via state-space exploration. Thus,
if we can somehow show that the state-space of the design model has an isomor-
phic mapping into the state-space of the analysis model, then the reachability
properties checked on the analysis model have the same logical truth-value for
some equivalent reachability properties in the design model. We can use our
definition of bisimulation here, to find the relation R between the elements of
the two instance models, and check if R is a bisimulation. If R is a bisimulation,
we can conclude that the two models behave identically, when it comes to the
property of reachability.

Figure 2 shows the basic architecture for this evaluation. The model trans-
formation generates the target model from the source model, and the target
model is verified by the model checker (SPIN). As described earlier, our model
transformation language (GReAT) allows us to link source and target elements
using cross-links. We will use these cross-links to trace the relation R which links
states in the source (Stateflow) model to the corresponding items in the target
(EHA) model. A straightforward bisimilarity checker is used to trace these rela-
tions and find whether R is a bisimulation. If the bisimilarity checker determines
R to be a bisimulation, we can conclude that the results of the model checker
for the analysis (EHA) model will be valid on the design (Stateflow) model.
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Fig. 2. Architecture for verifying reachability preservation in a transformation

Please note that there exist solutions that can perform reachability analysis
on Stateflow/Simulink models, such as the OSC Embedded Validator [2] and
TNI’s Safety-Checker Blockset [4] that are available in the industry. Our aim
is not to provide such a solution. We also do not wish to provide a method for
defining the semantics of these languages. We simply wish to consider a simple
model transformation as a case study to demonstrate our methodology.

The following subsections will describe in detail the transformation, construc-
tion of the cross-links and checking for bisimilarity.

3.1 Transforming Statechart Models to EHA

The model transformation was built using GReAT and GME [13]. We first de-
fined meta-models in GME for the two languages, Statechart and EHA. The
transformation uses the following steps (which are automatically executed by
the GReAT transformation engine):

1. Every Statechart model is transformed into an EHA model, with one top
level Sequential Automaton in the EHA model.

2. For every (primitive or compound) state in the Statechart (except for regions
of concurrent states), a corresponding Basic State is created in the EHA.

3. For every composite state in the Statechart model, a Sequential Automaton
is created in the EHA model, and a “refinement” link is added that connects
the Basic State in the EHA corresponding to the state in the Statechart, to
the Sequential Automaton in the EHA that it is refined to.

4. All the contained states in the composite state are further transformed by
repeating steps (1) and (2). The top level states in the Statechart are added
to the top level Sequential Automaton in the EHA.

5. For every non-interlevel transition in the Statechart model a transition is
created in the EHA between the Basic States corresponding to the start and
end states of the transition in the Statechart model.

6. For every inter-level transition in the Statechart model, we trace the scope of
the transition to find the lowest parent state sP that contains both the source
and the target of the transition. A transition is created in the EHA, in the
Sequential Automaton corresponding to sP . The source of the transition in
the EHA is the Basic State corresponding to the highest parent of the source
in the Statechart that is within sP , and the target in the EHA is the Basic
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State corresponding to the highest parent of the target in the Statechart
that is within sP . The transition in the EHA is further annotated, with the
source restriction attribute set to the Basic State corresponding to the actual
source in the Statechart, and the target determinator set to the basic state
corresponding to the actual target in the Statechart.

Fig. 3. A sample Statechart model

Figure 3 shows a sample Statechart model and Figure 4 shows the transformed
EHA model. Transitions 2 and 3 are inter-level, and the source restriction and
target determinator values for the EHA model are shown in the table on the top
right.

Fig. 4. Sample EHA model

3.2 Verifying Behavior Equivalence

In order to define the verification problem we introduce the following concepts.
A state configuration in a Statechart is a valid set of states that the system can
be active in. If a state is part of an active configuration, then all its parents
are also part of the active configuration. A transition in the Statechart can take
the system from one state configuration to another state configuration, where
the source and target states of the transition are subsets of the initial and final
state configurations. Similarly, a state configuration in an EHA model is a set
of Basic States. If a Basic State is part of an active configuration, and is part of
a non-top-level Sequential Automaton, then the Basic State that is refined into
this Sequential Automaton is also a part of the active configuration.
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An EHA model truly represents the reachability behavior of a Statechart
model, if every reachable state configuration in the Statechart has an equivalent
reachable state configuration in the EHA and vice versa.

Definition. We can define a relation R between the Statechart and the EHA
models, and check if the relation is a bisimulation as follows:

1. Given a state configuration SA in the Statechart model, there exists an equiv-
alent state configuration SB in the EHA model

2. Given a transition t : SA → S′
A in the Statechart, there exists an equivalent

transition t′: SB → S′
B in the EHA

3. If for any two equivalent state configurations (SA, SB), there exist equivalent
transitions (t : SA → S′

A, t′: SB → S′
B) such that S′

A and S′
B are equivalent

(and vice-versa), then the relation R is a bisimulation.

If the R is a bisimulation, then verifying the EHA model for reachability will
be equivalent to verifying the Statechart model for reachability. If not, it means
that the models do not behave identically with respect to reachability, and that
could be due to an error in the transformation.

When the model transformation algorithm outlined earlier is implemented, it
is known which of the Basic States and Transitions in the EHA were created
corresponding to which of the states and transitions in the Statechart. However,
it is not certain whether all the states were represented, all compound states were
refined correctly, all the transitions were connected correctly, and all the inter-
level transitions were annotated correctly. To verify this, we need to keep track
of the relation R between the two models, and check if there is a bisimulation.

3.3 Checking for Bisimilarity

We built a tool that checks the bisimilarity between the design and analysis
models by validating the equivalence relation between the states and transitions
of the two sides. The checking of bisimilarity is of linear complexity in the number
of states and transitions considered. The checking was made possible by the
model transformation approach we have used that uses graph rewriting with
explicit links between source and target elements maintained throughout the
transformation, as explained below.

During the model transformation, our model transformation tool allows us
to create cross-links that link model elements in the source model to those in
the target model. During the transformation process, when a transformation rule
matches a state or a transition in the Statechart and creates the equivalent Basic
State or transition in the EHA, a cross-link is created, which marks the relation R
between the two elements. Figure 5 shows a sample GReAT rule which achieves
this. The top part of the rule matches the Statechart element, and the bottom
part creates the corresponding EHA element. The �mark in BasicState indicates
that it is newly created, along with the associated links (these appear in blue
when seen in color). The link from BasicState to PrimitiveState is a cross-link.
The AttributeMapping block allows us to add code to the rule, to perform some
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Fig. 5. Sample GReAT rule with cross-link

special actions such as set the attribute values for the newly created elements.
When the transformation is complete, the equivalence relations can be accurately
traced using these cross-links.

At the end of the transformation, we can check if the equivalence relation
is a bisimulation. Rather than checking for all possible state configurations in
the Statechart, it is more efficient to consider every transition in the Statechart
and the minimal source state configuration. If we can confirm that every transi-
tion in the Statechart model has an equivalent transition in the EHA model for
which the source and target state configurations are equivalent (and similarly
from transitions in the EHA model to the Statechart model), then we can con-
clude that a state configuration in the Statechart is reachable if and only if its
equivalent state configuration in the EHA model is reachable.

In our implementation of the bisimulation checker, we collect the set of all
the transitions from the source graph. For each transition in this set, we find
the equivalent transition in the EHA by following the cross-link. Now we can
compute the minimal source state configuration SA for the transition in the
Statechart model, and the source state configuration SB for the EHA model. We
check the equivalence of SA and SB by taking every state s in SA, finding its
equivalent state s′ from the EHA, and checking if s′ is in SB, and vice versa.
The target states are checked similarly. If this check succeeds for all transitions
in the Statechart, and there are no more transitions in the EHA, then the two
systems can be said to be bisimilar with respect to reachability. In other words,
if bisimilarity holds then we can determine reachability in the Statechart model
by verifying it in the EHA model. If this check fails, then there may be errors in
the transformation, and the generated EHA model does not truly represent the
input Statechart model.

3.4 Conclusions from the First Case Study

The experimental setup used to demonstrate the approach was as follows. We
created a set of models in the design language and translated them into the
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analysis language, marking the equivalence relations during the transformation
using cross-links. After finishing the translation, the bisimulation checker was
called, with the cross-links between the source and target models preserved. If
this checker verified that there is a bisimulation relation between the models,
then reachability properties verified on the analysis model will be guaranteed to
hold for the source model.

Note that in this approach, the verification done on the analysis models to-
gether with the bisimilarity check provides the certification. Either one of them
alone is not sufficient. Furthermore, the certificate is valid only for the particular
model and not for the model transformation in general.

To illustrate this point, we deliberately introduced a small error in the trans-
formation process that caused problems only if hierarchical states were used.
This resulted in transformations that checked correctly for specific models (with
no state hierarchy), but failed to check for others (i.e. hierarchical ones). Hence,
models without hierarchical states where transformed correctly, while models
with hierarchical states were not. The result of the verification could be accepted
only if the bisimilarity check has succeeded. It is interesting to note that though
the transformation had an error, in the instances where the check succeeded, the
target models did truly represent the source models with respect to reachability.
Thus, there would be no error in performing reachability analysis on the target
models in these instances. In other words, our approach will capture instances
where a transformation fails, rather than capture errors in the transformation
itself.

The question that arises is whether a strict bisimulation relation is provable in
a wider range of transformations, where there may not be a one-to-one mapping
between the models that are representable in the source and the target languages.
An important question is whether we even need to prove that a strict bisimula-
tion exists. It would be useful to explore other less strong forms of equivalence,
that can be applied to more generic cases.

To answer these questions, we will go to our next case study, where we will
consider two Statechart variants that differ in certain features, and thus in the set
of systems they can represent. We will study a transformation from one variant
to the other, and try to prove that it preserved certain properties of interest. We
will use Semantic Anchoring [6] and a slightly modified notion of bisimulation,
called weak bisimulation.

4 More Background

4.1 Semantic Anchoring

The meta-model of a domain Specific Modeling Language (DSML) specifies its
syntax and static semantics. Semantic Anchoring [7] [6] is a method for specifying
the dynamic semantics of DSMLs. It relies on the observation that a broad cat-
egory of behaviors can be represented by a small set of behavioral abstractions.
The behavior of certain abstractions such as Finite State Machines or Timed
Automata has been studied over several years in a wide range of applications.
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Their behaviors are well understood and precisely defined. Such abstractions are
called Semantic Units. Semantic Anchoring is the specification of the behav-
ior of a DSML as a transformation from the DSML to a chosen semantic unit.
The semantic unit is usually represented in some formalism, such as Microsoft’s
Abstract State Machine Language (AsmL) [3], for performing verification.

Fig. 6. Tool Architecture for Semantic Anchoring

Figure 6 shows the architecture used for semantic anchoring. In our case study,
we will use FSMs as the semantic unit.

4.2 Statechart Variants

Statecharts [10] were first proposed by Harel to model the reactive behavior of
systems. Since then, different variants of the formalism have been proposed to
address specific problems. The result is that today we have several variants of the
Statecharts formalism, such as iLogix Statecharts and MATLAB Stateflow. A
number of such variants and the differences is studied in [20]. On some occasions,
such as during tool integration, we may need to transform models from one
variant of the formalism to another. It is very important in these cases that the
behavior is preserved by the transformation.

Since the common commercial Statecharts variants vary in subtle issues, we
will look at two hypothetical variants that will vary on a small but significant
set of features. Let us call these hypothetical variants SCA and SCB. We will
now look at the differences between SCA and SCB.

Compositional Semantics. Compositional semantics is the property of be-
ing able to define the semantics of a compound component completely from
the semantics of its subcomponents, without looking at its internal syntactical
structure. Having compositional semantics simplifies verification in many cases.
Having transitions that cut across levels of hierarchy violates compositional se-
mantics. Thus, if a Statechart variant allows inter-level transitions, then it will
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not have compositional semantics. For our case study, SCA will permit inter-level
semantics, while SCB will not.

Note that SCA models which have inter-level transitions can also be repre-
sented in SCB, by using self termination and self start states [20]. These will be
explained with examples later.

Instantaneous States. Some Statechart variants allow states to be entered
and exited in a single time step (In the current case study we only consider
the synchronous model). Such states are called instantaneous. Such a Statechart
can step through a series of instantaneous states in a single time step, until a
non-instantaneous state is reached. Such a series of transitions is called a macro
step. For our case study, SCA will not permit instantaneous states, while SCB
will permit them.

State References. In some Statechart variants, transitions may be guarded by
referencing the activity of other parallel states. This is done using state refer-
ences, which are special conditions denoting the activity of states. The condition
in(S), en(S) and ex(S) will be true in the time steps when the state S is ac-
tive, entered and exited respectively. In our case study, SCA will permit state
references, while SCB will not.

These are significant differences in the features offered by the variants. Rep-
resenting a model in one variant in terms of the other variant will require some
significant changes. This will be explained with an example later. It must be un-
derstood that all SCA models may not be representable in SCB (and vie versa),
but our goal is to verify whether the transformation was correct in the specific
cases that were representable.

4.3 Weak Bisimulation

Let us go back to our earlier definition of bisimulation. Given an LTS (S, Λ, →),
a relation R over S is a bisimulation if:

(p, q) ∈ R and p α
→ p′ implies that there exists a q ′ ∈ S,

such that q α
→ q ′ and (p′, q ′) ∈ R,

and conversely,

q α→ q ′ implies that there exists a p′ ∈ S,
such that p α

→ p′ and (p′, q ′) ∈ R.

This defines a strict bisimulation, which enforces a strict one-to-one mapping
of the state space. In some cases, two systems may have essentially the same
behavior, but differ in their state spaces. One system may have intermediate
states that are not observable externally, but truthfully reproduce the observable
behavior of another system. If we modified our notions of what constitutes states,
transitions and labels, we may find that the two systems are bisimilar. This leads
us to the notion of weak bisimilarity [11]. For instance, in a system that allows
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instantaneous states, we can define weak bisimulation by considering only non-
instantaneous states in the bisimulation definition, and by considering macro
steps as a single transition. This gives a more practical and usable method to
compare the behavior of two systems.

5 Verifying Transformations Using Semantic Anchoring

We now look at our modified architecture for goal-directed certification, using
semantic anchoring and weak bisimulation.

We first define the behavior of the DSMLs of the transformation by semantic
anchoring. This is used to generate the behavior model from the instance models.
The behavior models will be in a common semantic unit (Finite State Machines).
A tool is used to check if the generated behavior models are weakly bisimi-
lar, based on a suitable definition of weak bisimulation which we will see later.
Figure 7 shows an overview of this framework.

Fig. 7. Framework for verifying behavior preservation

5.1 Transformation from SCA to SCB

Figure 8 shows an SCA Statechart model, and Figure 9 shows the transformed
SCB model. The transformation from SCA to SCB first represents all the states
in the SCA model. The first issue to address is the presence of inter-level tran-
sitions. These are represented using self-termination and self-start states. The
transition T2:b in the SCA model is an inter-level transition, triggered by an
event b. This is represented in the transformed SCB model by adding a self-
termination state D. The transition is broken into two parts, one from the start
state to D, and another from the parent state Q to C. Neither of these transitions
are inter-level, but their combined effect is similar to the inter-level transition in
the SCA model.

For the semantics of the transition to be identical, the system must transition
from state B to state C in a single time step. To achieve this, D is made an
instantaneous state, and an instantaneous event i is generated. Thus, the D
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Fig. 8. A sample SCA model Fig. 9. A sample SCB model

can be exited and i will be available in the same time step. This will make the
series of transitions T21 and T22 into a macro step that will be identical to the
transition T2 in the SCA model, to an external observer.

After copying the states, the transformation copies all normal transitions be-
tween the corresponding states. Inter-level transitions are then elevated to the
common parent of both the start and the end states. Self-termination and self-
start states are added on the source and target sides of the transition as neces-
sary, using unique instantaneous states and actions. When state references are
encountered in the SCA model, unique actions representing the state activity
are added to all transitions entering or exiting the state. For instance, when a
state reference en(S) appears, all its occurrences are denoted in the SCB model
by a specially named action, and this action is added to all transitions entering
state S.

Fig. 10. Meta-model for FSM semantic unit

5.2 Behavior by Semantic Anchoring

We represent the behavior of both the Statechart variants using a common se-
mantic unit, namely Finite State Machines. The meta-model for FSM is shown
in the Figure 10.

The semantic anchoring is specified as a transformation from the Statechart
variant to the FSM semantic unit. The FSM is enhanced with instantaneous
states and actions, to represent the behavior of instantaneous states and actions
of the SCB model. Figures 11 and 12 show the behavior models in terms of the
FSM semantic unit, for the sample Statechart models described above. The FSM
semantics are defined by an AsmL model generated from the FSM model. The
AsmL model models the behavior of the states and transitions of the FSM, taking
into account the instantaneous nature of some of the states. Here, we assume
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that the semantic anchoring has been correctly specified, and does not need to be
verified. However, it may be possible to use the bisimulation techniques described
earlier to verify that the semantic model correctly represents the source model.

Fig. 11. FSM semantic model for the SCA model

Fig. 12. FSM semantic model for the SCB model

5.3 Verifying Behavior Preservation

To provide a certificate for an instance of a transformation from SCA to SCB,
we will compare the generated behavior models of the Statechart models, using
the definition of weak bisimulation described below.

Weak Bisimulation. We establish the relation R between non-instantaneous
states of the two transition systems. We then define a transition T as a transition
from one non-instantaneous state to another, and its label as the aggregate of
the events and actions of the constituent transitions, if instantaneous states are
involved, ignoring the instantaneous actions (which will not be visible outside
the macro step). Using these conditions, we redefine our bisimulation relation for
weak bisimulation as follows. Given the relation R between non-instantaneous
states p and q, R is a weak bisimulation if:

∀ (p, q) ∈ R and ∀α: p α
⇒ p′, ∃ q ′ such that q α

⇒ q ′ and (p′, q ′) ∈ R,

and conversely,

∀α: q α⇒ q ′, ∃ p′ such that p α⇒ p′ and (p′, q ′) ∈ R.

The weak transition is represented by ⇒, and its label α is represented as a
comma-separated list of the triggers and actions involved. According to this
definition, the FSMs shown in Figure 11 and Figure 12 are weakly bisimilar.
Note that this notion of weak bisimilarity guarantees equivalence of behavior
between the two models, for all practical purposes.

Checking for Weak Bisimulation. The relation R between corresponding
(non-instantaneous) states of the two behavior models is traced by using specially
coined labels to represent the states in the system. Having generated the behavior
models, and given the relation R, we can modify our bisimulation checker to
check for weak bisimulation. If the checker shows that the two behavior models
are weakly bisimilar, we can conclude that the transformed SCB model truly
represents the source SCA model.
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6 Conclusions

We feel that goal-directed certification is more practical and achievable than
providing a general correctness proof for a model transformation. Using the
transformation itself to trace the equivalence relation R between the source and
target elements makes it easier to check if the systems are bisimilar. We have
also seen that weak bisimulation helps us to practically extend this approach to
a wider range of systems. Semantic anchoring is a very powerful technique for
specifying DSML behavior, and a combination of a well chosen semantic unit
and a well defined weak bisimulation criterion can help us verify the semantic
equivalence of models generated by a model transformation.

We may also choose to represent a small subset or a specific aspect of a
system’s behavior by semantic anchoring, and use suitably defined weak bisimu-
lation criteria to verify the preservation of specific behaviors in model transfor-
mations between DSMLs that are otherwise very different. Further research in
using this technique in a wide range of transformations will provide more insight
into the nature of such behaviors. Other types of transformations that we wish
to address in the future include abstractions and refinements, such as from a
block diagram like representation (such as Simulink) to embedded code.
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Abstract. This paper discusses the concept of Instrumentation-Based Validation
(IBV): the use of model instrumentation and coverage-based testing to validate
models of embedded control software. IBV proceeds as follows. An engineer first
formalizes requirements as assertions, or small models, which may be thought
of as monitors that observe the behavior of the controller model as it executes.
The engineer then instruments the model with these assertions and develops test
suites with the aim of highlighting where assertion violations occur. To make our
discussion of IBV more concrete, we also consider its implementation within the
Reactis tool suite for the automated testing and validation of controller models
given in Simulink R© / Stateflow R©.

1 Introduction

In the traditional V-process for software development depicted in Figure 1, artifacts
at one stage, such as requirements, are used as a reference point for determining the
adequacy of artifacts, such as subsystem specifications, at later stages. Model-based
development (MBD) strengthens the V-process by allowing executable models to be
used to convey system and subsystem design information. The behavior of these models
may then be used to assess the eventual behavior of deployed systems. Tools such as
the Simulink R© / Stateflow R© 1 modeling notations have proved very useful for MBD.

One may criticize existing industrial MBD approaches, however, for their relative si-
lence on the question of model validation: the process of determining whether or not a
given model satisfies its requirements. An executable model provides an excellent base-
line for validating lower-level, more-detailed system descriptions, such as source code.
In this case, one can check that the source code’s executable behavior is consistent with

1 MATLAB R©, Simulink R© and Stateflow R© are registered trademarks of The MathWorks, Inc.

M. Broy, I.H. Krüger, and M. Meisinger (Eds.): ASWSD 2006, LNCS 4922, pp. 84–97, 2008.
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Subsystem
Implementation

Subsystem
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Subsystem (Unit)
Test

System-Level
Specification

System-Level
Integration & Test

Requirements
Definition

Complete
Integration & Test

Fig. 1. The V-Process. The red line highlights the validation activity that is the subject of this
paper.

that of the model. However, the eventually deployed system will only be satisfactory if
the model itself can be shown to meet the requirements that have been defined for it.
Requirements, by and large, are expressed in natural language, rather than in any sort
of mathematical notation, and validating models against requirements has traditionally
been a labor-intensive activity, with little tool support available.

In this paper, we show how Instrumentation-Based Validation (IBV) remedies this
state affairs by automating the task of checking requirements against models. The basic
usage scenario involves the following steps.

1. An engineer formalizes requirements as Simulink / Stateflow models that are in-
tended to monitor a controller model for violations.

2. The engineer then instruments his or her controller model with these requirements
and generates test suites that are then run on the model to determine whether viola-
tions can occur.

3. The test suites are designed to highlight any assertion violations that may occur.

The chief virtues of the instrumentation approach to requirements capture are the fol-
lowing.

1. Engineers can use the same notation for modeling and requirements formalization;
there is no need to learn a new formalism.

2. Requirements models may themselves be simulated and debugged.
3. Requirements models may be linked deeply within a model in order to access in-

ternal values computed by the model; there is no need to expose internal model
variables at the top level of the model purely so that requirements may “see” them.

To make our discussion of instrumentation-based validation more concrete, we con-
sider the implementation of IBV within the Reactis tool suite for the automated testing
and validation of controller models given in Simulink / Stateflow [1]. Specifically, Re-
actis Validator automates the process of instrumentation-based validation by thoroughly
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simulating the model in question with the aim of achieving 100% coverage of different
structural coverage criteria.

The remainder of this paper develops along the following lines. Section 2 addresses
related work. Section 3 gives a user-level viewpoint of how IBV is supported by Valida-
tor. Section 4 then discusses how requirements may be captured in Validator’s assertion
notation. Section 5 explains how one uses Validator to instrument a controller model
with assertions, while Section 6 describes how Validator checks for assertion violations
in instrumented models. Section 7 contains our concluding remarks.

A Note on Terminology

We shall use the following terminology. For an SUT (System Under Test), a test suite is
a collection of tests, where a test is a sequence of input/output vectors. An input/output
vector captures the SUT’s response (the outputs) to a given set of stimuli (the inputs),
and a test can now be understood as a simulation run of the SUT. When the SUT in
question is a Simulink / Stateflow model, Reactis generates test suites exactly of this
nature.

2 Related Work

Recent approaches to IBV for Simulink / Stateflow and related languages [2,3,4,5,6]
attempt to verify whether or not a controller model satisfies a requirement specified as
a safety property of the form “some undesirable system configuration never occurs.”
To perform the verification, some form of exhaustive state-space analysis is conducted.
One such approach, and perhaps the closest in spirit to Reactis Validator, is that of [4].
There it is shown how safety properties can be captured as “model observers” in the
SCADE graphical language for block diagrams and state machines. A SAT solver, along
with arithmetic decision procedures and constraint solving, are used to determine if a
SCADE model is compliant with an observer. A result of “indeterminate” is returned
if the model or observer uses arithmetic expressions not supported by the underlying
technology.

The techniques presented in [2,3,6] support the IBV of a restricted set of safety prop-
erties by allowing one to insert special “proof operator” blocks into Simulink models.
In [7], the problem of searching the space of input sequences for test cases that violate
a given safety property in a controller model is interpreted as an optimization problem.
Evolutionary algorithms are then used to automate test-case generation.

Due to the problem of state explosion, approaches to IBV based on state-space explo-
ration in general cannot handle complex controller models comprising large numbers of
model components. In contrast, Reactis Validator does not perform an exhaustive state-
space search; rather it aims to exhaustively cover all model coverage targets via testing.
Consequently, Reactis Validator can be expected to handle models of much greater com-
plexity, and our—and our customers’—experience with the tool lends credence to this
claim.

In the context of Reactis Validator, the term assertion has its usual, English defini-
tion: a proposition that, at any given point in time, may be determined to be either true
or false. Validator assumes that assertions should be invariantly true; if one becomes



An Instrumentation-Based Approach to Controller Model Validation 87

false, the tool treats this as evidence of deficiencies in the model. Validator assertions
are thus different from the so-called “assertion blocks” found in the Model Verifica-
tion block library in Simulink. Assertion blocks are similar to assert statements in
C/C++; whenever the input signal to an assertion block becomes zero, simulation halts.
Assertions in Validator, on the other hand, do not block simulation; it is possible to
continue when an assertion becomes false.

3 Using Validator

Validator provides facilities for instrumenting Simulink / Stateflow controller models
with assertions; checking whether or not instrumented models can violate assertions;
and generating tests that demonstrate why assertions are violated. The tool does not
modify the Simulink / Stateflow controller model itself; the instrumentation is main-
tained by Validator separately.

Figure 2 shows a screen shot of the top-level Reactis window, with an instrumented
model loaded. The model is a simplified version of a cruise control and is included
with the latest Reactis release. The utilities provided by Validator are accessed from
this top-level window, as are those of the other main components of Reactis, Tester and

Fig. 2. Main Reactis window. Assertions are circled.
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Simulator. In the screen shot, one may see two blocks containing zig-zag, “lightning-
bolt” icons. These blocks are assertions that have been added into the model using
Validator. The Reactis User Manual describes how this is done.

Although these blocks appear to be “unconnected” to the rest of the model, they in
fact are able to “read” data items at the level of the model in which they are embedded.

Fig. 3. An expression assertion

Assertions take one of two forms in Reactis. First, they may be expressions given in
a simple MATLAB/C-based boolean expression language. Figure 3 shows an example
obtained by hovering over one of the assertions in Figure 2. In this case the assertion
monitors the following requirement:

The cruise control shall disengage when the brake pedal is pressed.

If the expression !(brake & active) ever becomes false, then a violation of the
requirement has occurred. Note that the variables mentioned in this expression refer to
data items in the model.

The second form that assertions may take is Simulink / Stateflow models. Figure 4
shows an assertion block that contains such a model. In this example, the icon itself
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Fig. 4. An Simulink / Stateflow assertion

differs only slightly from the one for expressions (in this case, one may see the term
ok in the lower-right corner). Hovering over the icon, however, reveals the name of the
assertion (here SpdCheck/ok: SpdCheck is the name of the Simulink / Stateflow
model that implements the assertion, while ok is the name of the single outport in the
assertion). In addition, one may see wiring information showing which data items in
the model the inports of the assertion (here named active, speed and dSpeed) are
connected to.

Launching Validator is accomplished by clicking on the Validate pull-down menu
and selecting Check Assertions, as shown in Figure 5. This results in the launch
panel depicted in Figure 6 appearing. Clicking Check initiates the checking procedure.
When this finishes, one sees a panel like the one shown in Figure 7. In this case, the
tool has determined that 67% (two of three) assertions in the model were violated, and
that Validator constructed 8 tests containing a total of 349 steps to determine this. The
tests also covered the model to the displayed levels according to the various (Simulink-
specific, Stateflow-specific and generic, e.g., MC/DC) coverage criteria tracked by Re-
actis. The procedure Validator uses to check for the possibility of assertion violations
in instrumented models is explained more fully below in Section 6.
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Fig. 5. Launching Validator

4 Encoding Requirements as Validator Assertions

This section concentrates on explaining how assertions, and more specifically Simulink
/ Stateflow assertions, may be used to encode requirements.

In the case of a cruise control, one might find the following requirement written in a
requirements document.

“When active, the control mechanism shall not allow the set and actual speeds
to differ by more than 1 km/h for more than three seconds.”

This requirement is in fact encoded within the SpdCheck assertion referred to earlier,
the diagram for which is given in Figure 8. This view of the assertion was obtained from
within Reactis by double-clicking on the icon for SpdCheck.

In general, one captures requirements as models by imagining how one might imple-
ment a monitor that observes the behavior of the controller model and reports when the
requirement in question is violated. In the case of the sample requirement, a monitor
might repeatedly sample the actual and set speeds. If the monitor notices a discrepancy
of greater than 1 km/h, it might begin timing how long this discrepancy persists. If the
difference dips below the allowed threshold of 1 km/h, then the monitor discontinues
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Fig. 6. The Validator launch panel

timing and reverts to its old mode of tracking values. If, however, three seconds elapse
without the difference in the speeds being brought to within the acceptable range, then
the monitor would report a violation of this requirement.

Note that the requirement imposes constraints on the speed differential only when the
cruise control is active. If the cruise control is not engaged, then of course the controller
has no obligation to control the speed of the vehicle. So the monitoring described above
should only be in effect when the cruise control is “on”.

The SpdCheck assertion is, in effect, an implementation of the above monitor
in Stateflow. In the model, one may find a user-defined Stateflow graphical function,
diff(), that is responsible for computing the difference between the values of speed
and dSpeed (both of which are inputs to the model). Control resides initially in state
Inactive; when active (another input to the model) becomes true, state Active
is entered, together with its substate OkDiff. Intuitively, OkDiff remains the current
state so long as the difference in the speeds remains within 1. Whenever the differ-
ence is larger than this value, substate BigDiff is entered, at which point counter
cnt is initialized to 0. In every subsequent simulation step, if the difference in speeds
remains too high, then the counter is incremented; when the counter value exceeds 3,
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Fig. 7. The Validator results panel



An Instrumentation-Based Approach to Controller Model Validation 93

Fig. 8. The Stateflow model for the SpdCheck assertion, as seen from within Reactis

state Error is entered, and variable ok (the only output of the model) is set to 0. This
act of “outputting 0” is how Simulink / Stateflow assertions “report” failure.

As a practical matter, Simulink / Stateflow assertions should be created using The
MathWorks’ Simulink / Stateflow tools and sorted in a model library. Validator may
then be used to link specific assertion models in the library into the controller model.
This strategy also facilitates the use of tools like DOORS to manage assertion models,
so that they may be linked to the natural-language requirements from which they are
derived.

4.1 How Simulink / Stateflow Assertions Are Constructed

To create the Simulink / Stateflow assertion models used by Validator, one uses The
MathWorks’ environment to create a library such as the one depicted in Figure 9. This li-
brary contains two models, one of which, DesiredSpeedCheck, corresponds to the
assertion SpdCheck in the instrumented cruise-control model. Note the input/output
interface to this model: there are three inports — speed, dSpeed and active —
and one output — ok.
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4.2 A Strategy for Building Simulink / Stateflow Assertions

This section outlines a simple strategy for building assertions from the natural-language
statements that requirements are often given in.

1. Identify the interface. Specifically, what are the inputs to the assertion? In the case
of SpdCheck, the requirement asserts a relationship between two speeds, so it is
natural that the eventual “monitor” (i.e. assertion) will have, as two of its inputs,
these speeds. Implicit in the requirement is another input that determines the on/off
status of the cruise control.

2. Identify the major “modes” for checking the requirement. In the SpdCheck exam-
ple, the behavior of the monitor depends foremost on whether or not the cruise con-
trol is active or not. This observation prompts the inclusion of the two main states,
Inactive and Active, as well as the conditions for transitioning between them.

3. Within major modes, identify key scenarios. In the case of SpdCheck, one can
identify three key situations: when the difference in speeds is tolerable, when it has
exceeded the tolerance but for less than the allowed time, and when the difference
has been too large for too long. Each of these scenarios is represented as a substate
in Active, with transitions used to define when the substate should change.

Fig. 9. The Stateflow model for the SpdCheck assertion, as given within the library
cruiseValidator.mdl contained in the latest Reactis release
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4.3 Expression-Based Assertions

Expression-based assertions may be seen as a simple short-hand for Simulink / State-
flow assertions that contain (1) no Stateflow and (2) no state information that persists
from one simulation step to the next. In particular, any expression-based assertion may
also be rendered as a Simulink assertion. For this reason this report will not specifically
address techniques for constructing them.

5 Instrumenting Models with Assertions

To annotate models with assertions, one uses the Add Assertion entry in the top-
level Validate menu, as depicted in Figure 10. Selecting Expression or
Diagram then invokes a dialog panel that allows one to enter an expression (in the
former case), or import a model contained in a library (in the latter case), and “wire” it
into the model. The Reactis User Manual contains more information about this.

Fig. 10. Adding assertions into models



96 R. Cleaveland, S.A. Smolka, and S.T. Sims

6 How Validator Works

This section describes how Validator checks for the possibility of assertion violations
in instrumented models.

Validator uses the same underlying technology, guided simulation, that Reactis Tester
uses to generate good test data. Specifically, Validator simulates the instrumented model
thoroughly, with the goal of maximizing the same model-coverage criteria that Tester
also attempts to maximize as it generates test cases. The guided-simulation strategy
involves selecting input data at each simulation step that advance how much of the
model has been exercised according to these criteria. While generating this input data,
Validator also tracks whether any assertions are violated in the process.

Conceptually, then, Validator executes by (1) running Reactis Tester in order to get
good test data, and (2) executing those tests on the model in order to determine if any as-
sertions are violated. (In practice, these two steps are intertwined.) For this reason, Valida-
tor is not guaranteed to uncover all assertion violations; while test data may be thorough
enough to give 100% coverage of the controller model, this does not ensure that all con-
ceivable internal configurations of the model have been covered, and some subtleties can
be missed on occasion. In the case of the cruise-control example, for instance, it is possi-
ble for SpdCheck to be violated. However, this violation is not uncovered in all runs of
Validator. For this reason, it is advisable to run Validator several times on a model before
deeming it violation-free. Like Tester, Validator contains a randomized component to its
input-date generation, so different runs of the tool will yield different input data, with
different model behavior potentially being exercised as a result.

7 Conclusions

This paper has discussed the use of Instrumentation-Based Validation to check for re-
quirements violations in models, and the automation of IBV within the Reactis tool
suite. IBV and Reactis Validator fill a niche in the model-based development paradigm
for which there is little, if any, other tool support available: checking early-stage mod-
els against system requirements. Validator works by thoroughly simulating models that
have been instrumented with assertions, in order to determine if any of these assertions
can be violated. In general, one has an assertion for each requirement of interest; these
assertions monitor the behavior of the model and report anomalies. The paper described
how these assertions may be formulated as Simulink / Stateflow models and “wired
into” models; it also briefly discussed how Validator then searches for violations.

Validator originally appeared in release V2003.2 of Reactis and is a component of
all subsequent releases, the most recent of which is V2006.
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Abstract. Test processes in the automotive industry are tool-intensive
and affected by technologically heterogeneous test infrastructures. In the
industrial practice a product has to pass tests at several levels of abstrac-
tion such as Model-in-the-Loop (MIL), Software-in-the-Loop (SIL) and
Hardware-in-the-Loop (HIL) tests. Different test systems are applied for
this purpose (e.g. dSPACE MTest, dSPACE Automation Desk, National
Instruments Teststand) and almost each test system requests its own
proprietary test description language. The exchange of tests between
different test systems and the reuse of tests between different test levels
is normally not possible. Efforts to integrate these heterogeneous test
environments, to address test exchange in a general manner and to stan-
dardize and harmonize the existing language environment are still at the
beginning and not tailored towards the requirements of the automotive
domain. To keep the whole development and test process efficient and
manageable, the definition of an integrated and seamless approach is re-
quired. TestML – the test exchange language we present in this article –
is defined to overcome the technological obstacles (different test language
syntax and semantics, different data formats and interface descriptions)
that almost automatically accompany the application of heterogeneous
test tools and test infrastructures. TestML supports the exchange of tests
between different test notations in a heterogeneous tool environment. In
this paper, we introduce the XML schema of TestML and demonstrate
the efficiency of the interchange format by giving examples from the
model-based development of electronic control units. Tool support is il-
lustrated by an application with Simulink/Stateflow.

1 Introduction

Development processes in the automotive industry are highly distributed and
fragmented. The Original Equipment Manufacturer (OEM) acts as the system
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integrator and solution provider. He is responsible for the development of high
level specifications and the integration and quality assurance at system level.
The software and hardware of the individual electronic control units (ECUs)
are normally provided by different suppliers. Tools, methods and data formats
used in the development processes of the suppliers and the OEMs are normally
different.

Moreover, new development paradigms, such as model based development,
have to be integrated into existing development processes and tool chains. Model-
based specifications in development and the establishment of powerful code gen-
erators have led the development process to be noticeably more effective, and
automated at a higher level of abstraction. Due to the availability of executable
models, tests and analytical methods can be applied early and integrated into
subsequent development steps. The positive effects — early error detection and
early bug fixing — are obvious.

To keep the whole development and test process efficient and manageable, the
definition of an integrated and seamless approach is required. Such an approach
especially would address the subjects of test exchange, autonomy of infrastruc-
ture, methods, and platforms and the reuse of tests. The respective technological
basis will be constituted by a domain specific test language, that is executable
will unify the test infrastructure as well as the definition and documentation
of tests. For this purpose, the BMBF project IMMOS (Integrated Methodol-
ogy for Model-based ECU Development) was carried out by DaimlerChrysler
AG, IT Power Consultants, dSPACE GmbH, Fraunhofer FIRST, FZI Karlsruhe
and Paderborn University. We present the test exchange language TestML as a
substantial project result.

In section 2 we give a short overview of the test processes in the automo-
tive domain and address related work. Section 3 describes the overall purpose
and ideas behind TestML whereas section 4 depicts the set-up and structure of
the language itself. To illustrate the behavioral semantics of TestML we pro-
vide a mapping between TestML constructs and Matlab/Simulink constructs in
Section 5. Section 6 provides a number of short test cases that exemplify the
expressiveness of TestML. Section 7 summarizes the paper.

2 Related Work

In the industrial practice an automotive control system has to pass several kind of
tests on different levels. Tests that go along with the integration of the complete
vehicle system are mainly the responsibility of the OEM. These tests address
the interaction between control units, the vehicle communication infrastructure
and last but not least tests of the complete vehicle system. Tests on ECU level
are mainly in the responsibility of the respective suppliers. They encompass
the verification of the of the software driven functionality and the electronic
characteristics of the ECU.

Actually a wide range of different test and simulation environments are used
in the automotive domain. For tests on model level, so-called Model-in-the-Loop
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(MIL) environments are used. To test the software itself, so-called Software-in-
the-Loop (SIL) and Processor-in-the-Loop Environments are introduced1. In the
end the integration between soft- and hardware (i.e. the complete ECU) is tested
using Hardware-in-the-Loop- (HIL) Environments [1]. Besides software related
tests (functionality, software integrity, software robustness), HIL environments
allow to test the electronic characteristics and may simulate a complete net-
work of interacting ECUs. Finally the OEM uses HIL Environments to test and
simulate the complete electronic infrastructure of a vehicle.

Normally, different test systems are applied for the different simulation envi-
ronments and almost each test system has individual requirements for methods,
languages and concepts. The established test tools from National Instruments [2],
dSPACE [3], Etas [4], Vector [5], MBtech [6] for example are highly specialized
ones. They rely on proprietary languages and technologies and are mostly closed
in respect to portability, extension and integration. In comparison, in the domain
of Electronic Design standardization efforts have culminated in the definition of
a set of verification and test languages: SystemVerilog [7], PSL [8], and e [9]. The
languages and tool support facilitate the efficient creation of highly automated
model-based testbenches [10]. This is achieved by a concise representation of in-
terfaces including timing information, and by support for constraint based stim-
ulus generation, and advanced (temporal) coverage and assertion facilities for
evaluation. However, the current concepts focus on digital design, and they do
not focus on testing of continuous domain models which are commonly applied
in the automotive industry.

Efforts to address test exchange and test reuse in such heterogeneous envi-
ronments are still in the beginning. The emerging IEEE standard ATML [11] is
not finalized and not supported by the automotive tool chains. A new promising
approach, that is based on TTCN-3 [12] and — among others — integrates the
TestML concepts described in this paper, is already under definition but not yet
available for industrial practice [13,14].

3 The TestML Principles

TestML is a tool-independent XML-denoted language, which was developed for
the interchange of test descriptions. The language elements are represented by
individual XML elements that are defined by an XML schema. The complete
XML schema for TestML can be accessed in [15].

TestML was tailored specifically to meet the demands of model-based testing
of embedded software in the automotive sector. The language covers the differ-
ent test stages from the module to integration and system tests as well as test
levels from MIL to HIL. Besides describing strictly functional tests, different
comparative test approaches such as regression testing and back-to-back testing
1 A SIL environment allows to test the compiled target software using environment

models both running on standardized personal computers. A PIL platform addition-
ally simulates the targets processor environment to allow tests that address special
target platform issues.
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are supported. Our aim is to realize an interchange format for the large spec-
trum of test description languages established in the automotive industry. This
section describes the purpose of TestML and expands on the background and
the demands of the language design.

3.1 A Unified Format for Test Exchange

Our basic assumption is that semantic similarities as well as overlaps exist be-
tween the different test description languages (see [16] for an overview). On the
one hand, these similarities represent the indispensable precondition for the idea
of interchanging test scenarios and test data across tool and language barriers.
On the other hand, they offer the necessary foundation for the definition of a
generic exchange format.

TestML was conceived as a language for exchanging test descriptions in the
context of model-based testing of embedded automotive software. This includes
software from different sub-domains like telematics, body control, power train
and driving assistance. Whereas communication related issues are crucial for
telematics, the majority of body control and driving assistance software belongs
to feedback control systems that rely on sensors and actuators and have to deal
with a large amount of continuous real world data. The general conditions of
the different automotive sub-domains constitute a series of specific demands
that have to be made on a technology-independent test description language
spanning different tools in the automotive domain:

– specification of discrete and continuous (analogue) stimuli
– a concept of time to describe time-dependent events
– specification of reactive test cases to test feedback communication and con-

trol systems
– management of measurement data as inputs as well as reference data for

comparative tests
– expressions for tests evaluation regarding the analysis of discrete and con-

tinuous signals.

The Basis of TestML is a self-contained language definition that makes it possible
to cover test descriptions at different levels of abstraction (such as test scenarios
and test data) independent from the respective tool environment.

The integrating effect of the language results from the potential to map the
language constructs of existing test description languages to TestML and vice
versa by using appropriate adapters. TestML itself acts as an intermediate no-
tation that is interposed between the separate tool-dependent languages in the
exchange of test data and test descriptions (see Fig. 1). The advantages are ob-
vious. If multiple languages are to be supported, the complexity of integration
increases only linearly for this solution. If integration is achieved through the
realization of bilateral, point-to-point coupling without an intermediate format
instead, the complexity increases quadratically.
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Fig. 1. Integration of different test descriptions using an intermediate language

3.2 Abstraction of Specific Test Systems

Complex test systems are used for the testing of control units. Test systems
usually consist of multiple logical components (signal generators, capture/replay
tools, test evaluation components, environment models etc.) that have to be
coordinated and collectively controlled in the course of test execution. Setup
and control of test systems differ contingent. In addition to the heterogeneous
tool environment different test notations exist that can be used to describe the
tests. For an evaluation and categorization of existing test notations for model-
based software testing of embedded software systems see [16].

In its function as an exchange language TestML enables operation of several
different test systems. Because individual test systems differ greatly in their
concrete technical specifications, it must be possible to abstract from the concrete
realization of the respective source and target system for the exchange of test
descriptions. Thus, we define one such abstraction termed TestML test system.
A TestML test system consists of a combination of test components that we
consider minimally necessary regarding the exchange of test descriptions. The
individual components of the test system subsequently given below are, except
for the test interface, represented implicitly by TestML means of description.
The TestML test system itself is not an explicit part of the TestML language.
Knowledge about setup and structure of the system help to better understand
the subsequent annotation of individual means of description in TestML. Figure 2
shows a diagrammatic illustration of the TestML test system including TestML
elements referring to the individual components.

The abstract test system for TestML consists of the following components:

– The system under test (SUT) represents the system that is to be tested.
Mainly relevant for TestML is its test interface. From the perspective of
TestML, the SUT itself is hidden behind the test interface.

– The stimulation unit is responsible for the generation of test stimuli; actual
test execution takes place here.

– The capture unit records the system reactions and/or the system reactions
as well as the test stimuli.

– The evaluation unit is responsible for the evaluation of test cases. It ac-
cesses all data recorded by the capture unit and can be operated temporally
independent from the stimulation unit.
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Fig. 2. Abstract test system for TestML

3.3 Test Behavior

The term test behavior subsumes processes that describe the stimulation of the
test object at the moment of test execution. To serve its function as an exchange
language, TestML has to cover and integrate the widest possible spectrum of
different behavioral descriptions. Below we will specify a series of different cri-
teria that can serve as the basis for the differentiation of varying classes of test
behavior and fundamentally characterize the spectrum of TestML behavioral
descriptions. The criteria are:

1. Types of stimuli
The type of stimuli used for stimulation represents a basic criterion of differ-
entiation in the stimulation of a test object. Four different types of stimula-
tion signals are differentiated in literature ([17], [16]). Relevant at this point
is the differentiation of timed signals and timeless messages.

2. Determination
Test behavior can be specified as reactive behavior or as determined behavior.
A test with reactive test behavior controls and changes the stimulation of
the test object depending on how the test object reacts to the continuous
stimulation. To do so, the output signals or output messages of the test object
are interpreted, evaluated, and considered for the generation of new stimuli.
In determined test behavior, the stimulation of the test object is established
from the outset. The reaction of the test object is not considered for the
generation of stimuli or is used only to abort the test at an appropriate
time.

3. Data synthesis
Another criterion for test behavior is the differentiation of synthetically gen-
erated stimulation sequences and recorded measured data that can later be
replayed for test purposes. Synthetically generated stimulation sequences are
usually described through programming techniques. Apart from the stimu-
lation of a test object, recorded data is mainly used as a reference for test
evaluation. Comparative approaches like regression testing or back-to-back
testing explicitly require the existence of recorded reference data.



104 J. Grossmann et al.

Specification of test behavior is one of the main aspects of a test description
and is an essential part of a test description language. In practice, a variety of
different methods, notations, and tools exist for this purpose. For a good synopsis
for the automotive sector see [16]. For TestML we decided to use hybrid timed
automata as a basic concept to describe test behavior. Hybrid automata emanate
the theory of hybrid systems and are regarded as a mathematical model, which
offers a reliable basis for modeling timed applications and systems with discrete
and analog behavior (cf. [18]). The use of hybrid automata to describe continuous
test behavior in the context of embedded systems could be successfully shown
in [19]. To support the definition of exact and well-defined mappings between
existing test languages and TestML we provided a rigorous formal behavioral
semantics for TestML by means of Abstract State Machines (ASMs) [20].

4 Structure and Elements of TestML Test Descriptions

This section describes the elements and the setup of test descriptions with
TestML. The most important basic elements of the language will be introduced
individually and illustrated below. Each basic element represents an important
concept and/or function from the field of testing and, as is common in XML,
stands for a container that may contain further means of description and encap-
sulates them to the outside.

– The element testml forms the root element for each TestML description and
represents a number of test cases. The element testml needs no further ex-
planation from here on.

– The element testInterface serves to describe the interface to the SUT.
– The elements testSequence and rtTestSequence constitute test sequences that

describe an operating scenario to be tested by means of test inputs.
– The elements stimulate, capture and evaluate describe stimulation, recording,

and test analysis within one test sequence.
– The element behavior is used for the specification of test behavior.

A number of other means of description exist besides the mentioned basic ele-
ments that represent either data types, operators and/or mathematical
expressions, structure the language and/or form the inner structure of the above-
mentioned elements. Figure 3 shows the section of the TestML schema in which
the basic elements are defined.

4.1 The Test Interface

The test interface is described by the element testInterface. A large number of
input and output channels represented by the element port in TestML are part of
a test interface, ensuring type safe communication between the SUT and the test
behavior defined modularly in TestML. Values can be written to the SUT and/or
read by the SUT through each defined channel. The type of communication can
be specified in more detail by stating the direction of communication and the
data types supported by the individual channel.
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Fig. 3. The basic elements of a test description with TestML

Specification of a test interface

<t e s t I n t e r f a c e ID=”Te s t i n t e r f a c e 1”>
<port ID=”P1 phi Brake ” type=”double ” d i r e c t i o n=”input”

name=”phi Brake”/>
<port ID=”P2 phi Gas ” type=”double” d i r e c t i o n=”input”

name=”phi Gas”/>
<port ID=”P3 v act ” type=”double” d i r e c t i o n=”input”

name=”v act”/>
<port ID=”P4 BrakePedal” type=”boolean ”

d i r e c t i o n=”output ” name=”BrakePedal”/>
</t e s t I n t e r f a c e >

The listing above depicts the description of a test interface with 4 channels
in TestML. The direction of communication, the type and the name of the port
are annotated in the form of XML attributes to the element port.

4.2 Test Sequences

TestML represents test cases through the elements testSequence and rtTestSe-
quence. To emphasize that test cases are usually complete application scenarios,
they are identified as test sequences in TestML. While the element rtTestSe-
quence can describe a real-time test case, the element testSequence represents a
non real-time test case. Real-time test cases and non real-time test cases can be
differentiated by the lack of temporal references within the element testSequence.
The structural set-up of TestML test sequences otherwise remains the same.

A TestML test sequence usually consists of the elements stimulate, capture
and evaluate as well as a modular behavioral description through elements of
the type behavior. We will address this in more detail in section 3.3.

4.3 Stimulation, Recording and Evaluation

The specification of stimulation, recording, and evaluation in TestML is under-
taken, with a strict conceptual separation, by the elements stimulate, capture
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and evaluate: Among other things, this separation is rooted in the separation of
time- and resource-intensive evaluation operations necessary for real-time tests
that usually have to be carried out after the stimulation to ensure the necessary
reaction times of the real-time test system during stimulation.

The elements stimulate, capture and evaluate essentially have two functions.
On the one hand, they serve as control commands for the abstract stimulation,
capture and evaluation units defined in section 4.3. The control occurs implicitly,
that is without the existence of explicit control commands. This means that for
a concrete target system each element stimulate, capture and evaluate is inter-
preted as a number of platform-specific control commands. These are necessary
to control the concrete test units provided by the concrete system.

On the other hand, the elements stimulate, capture and evaluate encapsulate
the detailed expressions and statements of a TestML test description. The el-
ement stimulate contains the complete behavior specification to generate the
required stimulus signals (see element behavior in section 3.3 for details). More-
over, the elements stimulate and capture contain mappings that map the input
and output ports of a test interface (element port, see section 4.1) on the ele-
ments of a behavior signature (element signature, see section 3.3) or accordingly
on capture variables. The mapping on a behavior signature is part of the stimu-
lation description while mapping of capture variables is conducted in the element
capture. Capture variables serve as references to access recording data and are
later used within the element evaluate for test evaluation. Irrespective of it be-
ing used for stimulation or recording, mapping is specified through the element
interfaceMapping. The following listing depicts mapping between channels of a
test system and recording variables within an element capture.

Mapping of channels to capture variables

<inter faceMapping >
<map>

<portRef IDREF=”P1 phi Brake”/>
<s i gna lRe f IDREF=”S ig1 ph i Brake”/>

</map>
<map>

<portRef IDREF=”P2 phi Gas”/>
<s i gna lRe f IDREF=”Sig2 phi Gas”/>

</map>
</interfaceMapping >

The element evaluate describes the test evaluation. Whereas the elements
stimulate and capture are obligatorily started simultaneously at the beginning
of test execution, the element evaluate can be started independent of the two
other elements, even after test execution. In principle, test evaluation takes place
based on the data recorded by the element capture. Test evaluation is carried
out by specifically defined operators and commands. These operators and com-
mand allow the comparison of signal values and complete signal shapes and are
explained in the following section.
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4.4 Data Types, Operators and Expressions

In most programming languages the basic data types are bool, integer, double,
and string. Naturally, they are supported by TestML. They may be represented
according to their corresponding type as defined in the W3C XML schema, i.e.
xs:integer for an integer. Also, test specific special data types are offered, such
as time and signal. Times are given as a double value and a time unit. The
possible units are day, hour, second, millisecond, and microsecond represented
by their common abbreviations “d”, ”h”, “s”, “ms”, and “us”. The following
listing shows the declaration of a double variable and, following the declaration,
a write operation to set the variable to the value of 100. All declared variables
are referenced within TestML by their ID.

Instantiation of data types

<double ID=”var1 ” name=”Examples v a r i ab l e ”/>
<write>

<doubleRef IDREF=”var1”/>
<value><double>

<value >100</value>
</double></value>

</write>

The data type signal is special in that it may not only describe a singular
value, but a time-dependent wave-form. Most of the times, the value data type
of a signal is double. The waveform is represented by means of simple signal
expressions or TestML automata, which are introduced in section 3.3. The next
listing shows a simple signal expression specifying a ramp which rises from 0 to
100 within 10 seconds.

Instantiation of a signal

<s i gna l >
<time>

<unit>s</unit> <double><value >10</value></double>
</time> <ramp>

<s ta r t ><double><value>0</value></double><s ta r t >
<end><double><value >100</value></double></end>

</ramp>
</s i gna l >

For expression evaluation a set of simple operators is provided. Table 1 shows a
selection of operators. The four basic arithmetic operations are provided, as well
as equality, comparison, and logical operators. The operators may be combined
to form expressions as usual. They may be applied in an extended form to signals,
which represent a time series of values.
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Table 1. List of Operators

Operator Meaning Operator Meaning

< add/ > addition < and/ > logical and

< sub/ > subtraction < or/ > logical or

< mult/ > multiplication < not/ > logical not

< div/ > division < xor/ > logical xor

< abs/ > absolute value < equ/ > equality

< max/ > maximum value < grt/ > greater

< min/ > minimum value < geq/ > greater or equal

An example of a comparison expression is shown in the next listing, which
compares two signals with the identifiers Data1 v act and Data2 v act.

comparison expression

<cond>
<grt>

<s i gna lRe f IDREF=”Data1 v act”/>
<s i gna lRe f IDREF=”Data2 c act ”/>

</grt>
</cond>

4.5 Behavioral Constructs

The structure and elements of the element behavior are depicted in Fig. 4. They
all together form a so-called TestML automaton. The most important elements
of a TestML automaton are the elements signature, step and switch. The element
signature provides an interface to the internally specified and encapsulated be-
havior. The element itself consists of a number of signal declarations (much like
the ports in the test interface) that can individually be accessed in reading or
writing depending on the specification.

Fig. 4. The element behavior
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The element step describes a defined state within a TestML automaton. Each
step in turn is either defined by a TestML automaton or contains one or more
commands that define test behavior directly — either through arithmetic equa-
tions, time-based signal primitives or alternatively for timeless messages. The
element switch defines a transition that marks the passage between two steps.
By use of the element cond every transition can be annotated by conditions for a
time- or value-dependent control of automata. If the transition condition evalu-
ates to true, the transition fires and the step referenced by the element succ will
be processed next. For each step one transition without condition is allowed. A
transition without condition fires after all time-dependent instructions that are
defined within the respective step have been terminated.

5 Mapping TestML Automata to Matlab Simulink

This section provides an executable TestML implementation using Simulink/S-
tateflow [21]. We mainly emphasize on behavioral aspects and introduce a de-
tailed mapping that maps the TestML constructs defined in section 4.5 to the
well-defined behavioral constructs of Simulink/Stateflow. For a concise TestML
semantics refer to [20].

In TestML we generally distinguish between timed automata and non-timed
automata. Timed automata reside inside TestML real-time test cases and non-
timed automata reside inside non real-time test cases. Each top level TestML
automaton, independent of its type, can be mapped to a Stateflow chart, that
resides inside a Simulink Stateflow block. The signature of a TestML automaton
is represented by the input and output ports of the Stateflow block. Hence the
mapping between the automaton signature and an arbitrary test interface can
be simply realized by drawing lines between Simulink ports. Figure 5 shows a
Stateflow block called “TestML Automaton”, which provides four data output
ports phi Brake, phi Gas, v des, leverPos and one data input port v act.

Each Stateflow chart that represents a TestML Automaton consists of a top
level state with the same name as the TestML automaton. This top level state
contains further states and transitions, which each represent either a TestML
step or a TestML switch. For time control the top level state provides a local
time property called time. We define local time with

time = t − startT ime

in which time represents the local time, t holds the global time, and startT ime
represents the point in time that the automaton has started. In general global
time progress is realized by Simulink simulation time using a discrete simulation
solver. Moreover, each TestML step — except a final or start step — is real-
ized by a Stateflow state, which provides a local time property called stepT ime.
Local step time is defined in the same way as local automaton time. The prop-
erty startT ime here represents the point in time when the step has started.
As we will see later on, TestML steps have to control the running status of
all embedded entities (write statements and embedded automata). Hence we
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v_act

phi_Brake

phi_Gas

v_des

leverPos

TestML Automaton

phi_Brake

phi_Gas

v_des

lever_pos

v_act

Out2

Out3

Out4

SUT

Fig. 5. A TestML automaton represented by Stateflow

introduce a step property called runningEntities. This property is initialized
when a step is entered and holds the number of all embedded entities (e.g.
en : runningEntities = 2). It is decremented whenever an embedded entity
stops and sends the EntityStopped event.

on EntityStopped : runningEntities − −

TestML start steps are simply realized as Stateflow default transitions.
TestML final steps are denoted as empty states with the name “final”.

TestML_Automaton/
  en:startTime=t
  du: time=t-startTime

final/

Step2/
  en: runningEntities=2
  en: startTime=t
  on EntityStopped: runningEntities--
  du:stepTime=t-startTime

Step1/
  en: runningEntities=2
  en: startTime=t
  on EntityStopped: runningEntities--
  du:stepTime=t-startTime

WriteStatement_1 1
WriteStatement_1 1

SubAutomaton_1 2WriteStatement_2 2

[Step2.runningEntities==0]

[Step1.runningEntities==0]

1

[v_act>=18]
2

Fig. 6. Base structure of a TestML automaton in Stateflow

We have to provide an equivalent Stateflow transition for each TestML switch.
A switch is composed of the elements cond and next. The element next can
simply be interpreted as transition end, which refers to the next Stateflow state
to be executed when the respective transition condition evaluates to true. The
element cond expresses a switch condition that can in most cases be mapped
directly to a Stateflow transition condition. The sole exception is the absence of
a switch condition. In TestML the absence of a switch condition defines a so-
called “default switch” which fires when all embedded entities of the current step
have been finished. In contrast a Stateflow transition without any annotations
fires immediately after its source state is activated.

We can not use the empty Stateflow transition to implement the TestML
default switch. Instead we have to check the status of all embedded entities.
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When all entities are finished the property runningEntities of a TestML step
is zero. We can use this as a switch condition of a Stateflow transition.

[< Stepname > .runningEntities == 0]

Figure 6 shows the base structure of a TestML automaton implemented with
Stateflow. The Automaton consists of two steps with two switches in between: a
TestML default switch and a switch listening on the input port v act. The main
functional behavior of a TestML step is defined by its embedded entities. These
are either embedded TestML automata or write statements which assign signals
or simple values to ports. Embedded TestML automata are implemented almost
in the same way as top-level automata. Sole difference: Embedded automata
have to provide the EntityStopped event that will be fired when the execution
of the automaton has finished. The event is triggered by the final state and
can be realized by en : EntityStopped using the Stateflow Action Language.
The concrete implementation of TestML write statements depends on the type
of the enclosing automaton. Inside timed automata we assign timed signals to
ports. Timed signals have a distinct duration. When executing write operations,
one has to consider and control the duration of the signal that is written. In
contrast, non-timed automata only provide simple value assignments that have
no duration. Temporal control is not necessary here.

WriteStatement _1/ 1

execution/
en: duration=20;
du: phi_Brake=const(5)

finished/
en:EntityStopped

[stepTime>=execution.duration]

Fig. 7. Timed write statement which applies a constant signal to phi Brake

We start with the implementation of write statements that reflect duration.
For each write statement we provide a top level state that contains a controller
structure that manages temporal and functional behavior. Multiple write state-
ments that belong to the same TestML step are realized as multiple parallel
executed top level states (see section 6). The enclosed controller structure con-
sists of two states. The “execution state” is responsible for signal execution and
its application to a port. When activated, an execution state calculates signal
values as part of its during action and applies the calculated value to a speci-
fied port (e.g. du : phi Brake := const(4)). We may use graphical functions for
value calculation that each represent a signal of a certain kind which is param-
eterized by a set of signal-specific parameters (e.g. ramp(offset, slope, limit),
const(constval)), sinewave(offset, frequency, amplitude). The “finished” step
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is triggered when the actual step time exceeds the signals duration. We imple-
ment this using the following transition condition:

[executer.duration > stepT ime]

During its entry a finished step fires an EntityStopped event en :
EntityStopped so that the enclosing step is informed about the signals end.
Figure 7 shows the implementation of a write statement that applies a constant
signal with the length of 20 seconds to a port called phi Brake.

WriteStatement_1/ 1

finished/
en:EntityStopped

{phi_Brake=const(5)}

Fig. 8. Non-timed write statement which applies a constant signal to phi Brake

Non-timed automata contain write statements that do not reflect duration.
For this kind of write statements we adopt the structure of timed write state-
ments and simply omit the execution state. The value calculation and its appli-
cation to a port are realized as an action defined as part of the Stateflow default
transition. Figure 8 shows a non-timed write statement that applies a constant
value to a port called phi brake.

6 Exemplary Use of TestML Automata

In the following, the description potential of TestML is shown and illustrated by
means of short examples taken from practice. The samples selected each repre-
sent a specific type of test behavior mentioned in section 3.3. In the following
examples, the TestML automata are not depicted in their XML representation
but as annotated states in an UML alike notation2.

6.1 Specification of Timed, Deterministic Test Stimuli

We now examine a typical test sequence taken from a cruise control test. The
focus of the test is on accelerator pedal interpretation, i.e. the unit which is re-
sponsible for interpreting the driver interaction via brake and gas pedal. For this
2 We deliberately avoid to depict the XML representation here, since this quickly be-

comes too large even for short examples. The use of graphical representations makes a
more compact visualization possible. In the following the TestML element step is de-
picted as a state and the element switch is presented as a transition. Statements which
are used within the element step, either for the definition of signals or simple values or
to assign these definitions to a port, are annotated in the form of pseudo code inside the
states. For further information on XML representations, refer to the enclosed schema.
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example, the test interface was deliberately kept small. The port v act describes
the current vehicle speed in m/s, phi Acc represents accelerator pedal travel and
is given in percent and phi Brake represents brake pedal travel and also given
in percent. In order to test the acceleration pedal interpretation the following
timed test scenario is used:

1. Within the first second, the current vehicle speed is kept constantly at
−10 m/s and afterwards the value for v act is set to −5 m/s for a second.

2. In the course of the test, the accelerator pedal travel is raised from 0% to
100% and then lowered linearly from 100% to 0%.

3. In the course of the test, the brake pedal travel is linearly lowered from 100%
to 0% and then raised from 0% to 100%.

Figure 9 shows both the individual signal forms and the description used
for the generation of signal forms with TestML. Every state of the TestML

Step1

write(phi_Brake,ramp(100,0,1s))
write(phi_Gas,ramp(0,100,1s))
write(v_act,const(-10,1s))

Step2 Step3

FinalInitial

0
1

2

phi_Brake
phi_Gas

v_act

0

50

100

time [s]

write(phi_Brake,ramp(0,100,1s))
write(phi_Gas,ramp(100,0,1s))
write(v_act,const(-5,1s))

write(phi_Brake,const(0,0.1s))
write(phi_Gas,const(100,0.1s))
write(v_act,const(0,0.1s))

Fig. 9. Specification of synthetic stimulation sequences with TestML automata

automaton depicted above defines a time interval with its length being deter-
mined by the duration of instructions within the respective state. The example
mentioned above contains for the state “Step1” the following three instructions:

– Write a ramp signal with the value course from 100 to 0 and the length of one
second on the channel called phi Brake [write(phi Brake, ramp(100, 0, 1s))].

– Write a ramp signal with the value course from 0 to 100 and the length of one
second on the channel called [phi Gas (write(phi Gas, ramp(0, 100, 1s))].

– Write a constant signal with the value −10 and the length of one second on
the channel called v act [write(v act, const(−10, 1s))].

After the statements have been executed a change into the next state, called
“Step2”, takes place via the output transition. For the state “Step2” we have
the following three instructions. The complete execution stops as soon as the
final state is reached.

– Write a ramp signal with the value course from 100 to 0 and the length of one
second on the channel called phi Brake [write(phi Brake, ramp(0, 100, 1s))].

– Write a ramp signal with the value course from 0 to 100 and the length of one
second on the channel called phi Gas [write(phi Gas, ramp(100, 0, 1s))].

– Write a constant signal with the value −10 and the length of one second on
the channel called v act [write(v act, const(−5, 1s))].
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6.2 Specification of Timed, Reactive Test Stimuli

In order to be able to show the use of TestML automata for the specification
of reactive test behavior, the example mentioned above needs to be modified.
Here, it is not the pedal interpretation which is tested rather than the cruise
control. The test interface is expanded by an input and an output channel. The
port v target is an input port and describes the desired vehicle speed; v act is an
output port and represents the current vehicle speed. The reactive test behavior
may be described as follows:

1. Set target speed v target at 18 m/s
2. Use gas pedal until vehicle speed is greater than or equals 18 m/s.
3. Switch on cruise control.
4. Use brake pedal until vehicle speed equals 0 m/s.

Figure 10 shows the individual signal forms (left-hand side) as well as the
description for the generation of the signal forms with (right-hand side).

Initial Final

Step1 Step2

write(LeverPos, const(0))
write(v_target, const(18) ) 
write(phi_Brake, const(0))
write(phi_Gas, const(50))

write(LeverPos, const(1))
write(v_target, const(18))
write(phi_Brake, const(25))
write(phi_Gas, const(0))

v_act>=18 v_act<=0

0
10

20

phi_Brake

phi_Gas

v_act

0

25

50

time [s]

Fig. 10. Specification of reactive stimulation sequences with TestML automata

In contrast to the example from the previous section, the transition between
the states “Step1” and the state “Step2” is equipped with a condition. The con-
dition defines the switching characteristics between “Step1” and “Step2”. The
instructions are executed until the transition condition for “Step1” is fulfilled.
Then the instructions from “Step2” are executed.

– Write a constant signal of 50 on phi Gas [write(phi Gas, const(50))] and a
constant signal of 0 on phi Brake [write(phi Brake, const(0)]. The cruise
control is switched off [write(LeverPos, const(0))] and the velocity of the
target vehicle is set to 18m/s [write(v target, const(18))].

– If the channel v act has taken on a value greater or equal 18 m/s, write a con-
stant signal of 0 on the channel phi Gas [write(phi Gas, const(0))], a con-
stant signal of 70 on the phi Brake channel [write(phi Brake, const(70))]
and switch on the cruise control [write(LeverPos, const(1))]. The velocity
of the target vehicle remains at 18m/s [write(v target, const(18))].

With a basic set of signal primitives and their suitable combinations, the use of
TestML automata supports the definition of complex signal forms.
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6.3 TestML Automata for Timeless Test Stimuli

Apart from systems working with timed test stimuli, there are frequently systems
found in practice which are controlled solely by timeless stimuli, so-called mes-
sages. A test description for such a system consists of a set of actually timeless
messages, which – by all means in a given order – are sent to different channels
of the test system. The message sequence depicted below stands as an example
for the discontinuous test case description as it can be used in this case for the
AutomationDesk tool from dSPACE [3]. Again, we define the test of a cruise
control function. Besides the already known phi Brake input the brake pedal
flag BrakePedal is also read.

A possible hysteresis of the brake pedal recognition is tested. First, a rising
edge from 0 to 100 for the phi Brake input is created and then the ped min
value is set. The ped min value is the highest value in which the BrakePedal
output again takes on the value 0, provided that there is no hysteresis. The test
description to be represented in the TestML looks as follows:

1. Writing 0.0 to phi Brake
2. Waiting for time step seconds
3. Writing 100.0 to phi Brake, this way a rising edge from 0.0 to 100.0 is

created
4. Waiting for time step seconds
5. Calculation of ped value according to ped value = ped min − tol
6. Writing of ped value to phi Brake
7. Reading BrakePedal and saving of the value in the brake flag variable

The following automaton shows the implementation of the simulation by a
TestML automaton. Reading the model output (last point of list mentioned
above) is carried out by the capture element, which will not be depicted at this
point.

Initial

WriteWrite
write(phi_brake,
ped_min - tol)

Write

write (phi_Brake,0)
write

(phi_Brake,100)
Final

Wait

Timer t=0

Wait

Timer t=0

t>=time_step t>=time_step

Fig. 11. Specification of message based test sequences with TestML automata

Individual states of the automaton describe the activation of individual mes-
sages. Because of the use of timers, which can be defined locally on the automata,
the transitions between the states are time-controlled and define temporal dis-
tances between messages.

7 Summary and Outlook

TestML is a XML-noted test exchange language that is tailored towards the re-
quirements of model-based testing of embedded vehicle software throughout the
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course of development. The reason for this development can be found in the need
for test definitions, which can be reused during the whole development process,
both in different test phases and different test environments as well as in the
exchange between suppliers and the OEM. Thus, the aim of the language design
was to be able to map a spectrum as broad as possible of the test description
languages established in the automotive industry. With this, an exchange of tests
between different tool platforms for the MIL, SIL and HIL test is made possi-
ble. TestML supports, besides classical functional tests, also comparative test
approaches, such as regression testing and back-to-back tests, which are based
on the existence of recorded reference data.

Test scenarios capable of real-time use are an important functionality of HIL
test beds. As a major extension over most existing means for test description,
TestML provides language constructs for tests under real-time conditions. This
enables support of the entire development process by the test exchange language.

Special care was taken to provide a flexible test behavior description language
covering different levels of abstraction. The concept of hybrid automata used to
capture test behavior permits the mapping of common classes of automotive test
descriptions, including deterministic and reactive test stimuli with or without
temporal references as well as the use of recorded data streams as they accrue out
of test drives. The decision to map all test aspects on automata made it possible
to avoid an overloading of the exchange language with manifold constructs, which
ultimately would have led to semantically redundant definitions. We would like to
thank our participants in the IMMOS project for their contribution to TestML,
especially S. Sadeghipour and H.-W. Wiesbrock from ITPower Consultants, Prof.
H. Schlingloff and M. Friske from Fraunhofer FIRST.
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Abstract. Software for automotive systems is rapidly increasing in complexity
and scale, and leveraging reusable software frameworks in the development of
these systems offers significant potential to reduce engineering costs and cycle
times. However, the development of practical models and verification and valida-
tion techniques for automotive software built with reusable frameworks remains
an open research challenge. This paper makes three main contributions to the
state of the art in software engineering for automotive systems. First, it sum-
marizes ways in which reusable software frameworks are relevant to automotive
software engineering. Second, it describes an approach to verification and valida-
tion of reusable software frameworks which we have developed for other appli-
cation domains. Third, it presents an evaluation of our approach in the context of
an illustrative verification and validation scenario.

1 Introduction

The increasing complexity and scale of software for automotive systems argues for in-
creasing re-use of software in the development of those systems. Because interacting
software functions are increasingly distributed across many embedded micro-
controllers in automotive systems, leveraging reusable middleware in the development
of these systems offers significant potential to reduce engineering costs and cycle times.

However, these benefits only can be realized if the reusable middleware can be spe-
cialized through configuration and customization to address constraints, optimizations,
and trade-offs in timing and other quality of service (QoS) dimensions that are specific
to the automotive software applications being developed. Furthermore, system devel-
opers must be able to verify designs involving middleware prior to investing in their
implementation, and to validate those implementations prior to investing in their com-
mercial deployment.

Model checking can play a valuable role in verifying automotive applications’ in-
creasingly heterogeneous constraints, e.g., for safety-critical functions like computer
assisted steering and braking and for comfort functions such as in-vehicle navigation

� Research supported in part by NSF CAREER award CCF-0448562.
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and entertainment systems. As we discuss in Section 5, model checking also can gen-
erate verification traces to guide validation experiments, and the comparison of verifi-
cation and validation traces can be valuable to assess and improve the fidelity of the
models with respect to the actual behavior of the implemented software.

Our previous research has focused on specializing reusable middleware frameworks
to address footprint and timing trade-offs in networked embedded systems [1], enforc-
ing run-time timing [2] and liveness [3] constraints at run-time, and developing high-
fidelity timed automata [4] models of canonical reusable software building blocks that
are widely used in practice [5]. In this paper we describe our most recent research on
the integrated verification and validation of systems built with reusable software frame-
works. The results of that investigation (which we summarize in Section 5) demonstrate
the need for careful co-design in both the models and the reusable software itself to en-
sure that (1) scientifically valid comparisons are made between the software and the
models, (2) irrelevant differences between the software and the models are abstracted
away to reduce the effort required for verification and validation, and (3) relevant dif-
ferences between the software and the models are preserved and analyzed to reveal
important mis-matches between the software, the models, and the application require-
ments, which at least must be documented and where possible corrected .

The rest of this paper is structured as follows. Section 2 summarizes other research
related to our approach, and to its application in the automotive software application do-
main. Section 3 summarizes software platforms, frameworks, and design patterns that
are relevant to automotive applications. Section 4 describes our solution approach, in
which timed automata models of reusable middleware building blocks are used to ver-
ify properties of software built using them, and to generate traces used for integrated
verification and validation. Section 5 presents an illustrative example drawn from our
previous research in the avionics software domain, and shows how our approach can be
used to verify and validate that example: our results show that (1) checking models of
reusable middleware building blocks can verify timing properties of software that uses
those building blocks, (2) verification and validation can be integrated through collec-
tion and comparison of detailed time and event traces, and (3) observed differences be-
tween the verification and validation traces can be used to refine models to reflect more
accurately the actual software implementations they represent. Section 6 concludes the
paper with a summary of observations and recommendations arising from this research,
and describes remaining open research challenges and future work for verification and
validation of automotive software built upon reusable software frameworks.

2 Related Work

DREAM [6,7,8] provides an open-source tool and methodology that allows distributed
real-time embedded (DRE) system designers to do model-based schedulability anal-
ysis of time and event-driven DRE systems. DREAM offers a computational model
called the DRE semantic domain [7]. The key elements in this computational model
are tasks, timers, event channels and schedulers. Tasks are triggered either by a timer
or by external aperiodic events, and tasks communicate among themselves by means of
an event channel. Within this computational model, DREAM considers the problem of
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deciding the schedulability of a given set of tasks with time and event-driven interac-
tions. By using timed automata models for each of the elements in the computational
model, the schedulability problem is converted [8] into a reachability problem in the
composed model through a model checking tool like UPPAAL. DREAM also provides
a model transformation facility by which a model of the DRE system is expressed using
a domain specific modeling language (e.g.ESML [9]), and is transformed using model
transformation [6] tools to create timed automata models in the DRE semantic domain.

Even though our approach is similar to DREAM in that we use timed automata mod-
els to verify system properties, the problems that these two bodies of research address
are different. Whereas DREAM addresses the problem of deciding schedulability of a
set of tasks under the DRE semantic domain, our research addresses the problem of
correct composition of reusable software elements that are at a finer level of granu-
larity than the elements in the computational model offered by DREAM. Both these
kinds of analysis are important - while the higher level computational model provided
by DREAM helps the DRE systems designer to address the schedulability problem in
time and event-driven systems, our approach helps the system designer choose config-
urations that are appropriate for the specific application. Moreover, the computational
model in DREAM makes an assumption that all communication between tasks uses an
event channel, and the communication between tasks and event channels themselves are
abstracted away using synchronized transitions in UPPAAL. During actual implemen-
tation, these synchronized transitions are realized using reusable software which could
have different configurations that impact the timing and liveness properties of a DRE
system in different ways. Hence a more detailed model of the fundamental reusable
software elements is necessary, which has been the focal point of our research.

Automotive Software Verification [10,11] uses a design pattern based approach to build
reusable software that provides high-level communication services to higher layer au-
tomotive software tasks. A middleware architecture for communication is realized in
the context of the OSEK/VDX operating system. The communication activities carried
out by the middleware are mapped on to tasks in OSEK/VDX. [12] discusses code gen-
eration from a high level RT-UML [13] model for OSEK/VDX. That work identifies
key issues in mapping of UML models where some annotations in RT-UML cannot be
mapped directly to the constructs and primitives offered as part of OSEK/VDX.

AUTOSAR (AUTomotive Open System ARchitecture) [14] is an open standard for au-
tomotive software architecture that specifies standardized interfaces for communication
among automotive electronic components. It aims to alleviate the complexity involved
in developing and upgrading software based control systems in the automotive domain.
The use of abstract concepts that are fundamental building blocks in a particular domain
combined with adequate modeling techniques and models based on these fundamental
building blocks can have a valuable and sustainable impact on automotive software
engineering.

3 Automotive Software Engineering

Fine-grained reusable middleware frameworks like ACE [15] address the challenge of
providing common domain-specific building blocks that can be used to build higher
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level software abstractions. For example, the ACE framework provides building blocks
like Reactor, Acceptor, Connector and Active Objects, which have been used to build
a wide range of reusable middleware frameworks and services for distributed real-time
embedded systems - e.g., for real-time scheduling (Kokyu [16]), distributed commu-
nication (TAO [17], nORB [18,19,20]), and component middleware (CIAO [21]). The
presence of such foundational fine-grain abstractions is not limited to reusable software
built on ACE. For example, in the sensor networks application domain, TinyOS [22]
provides building blocks like Timer, ADC, RFM, Active Messages, etc. for building dif-
ferent kinds of sensor network middleware - e.g., for reconfiguration, scheduling, group
communication, and self-stabilization. We now discuss a similar low-level framework
in the context of automotive software engineering.

Operating System Features. OSEK VDX [23] is a set of interface specifications for op-
erating systems, communication, and network management in the automotive domain.
The OSEK operating system is targeted to run on micro-controllers and is therefore
designed to require a minimum of hardware resources (e.g., CPU and memory). These
specifications enable automotive OEM and third-party ECU (electronic control unit)
suppliers to use a standardized set of APIs to facilitate system integration, thus making
automotive applications more portable, reusable and interoperable. A customized ver-
sion of the OSEK OS can be generated by using the OSEK Implementation Language
(OIL), through which one can specify a portable description of all OSEK-specific ob-
jects (e.g., events, tasks, resources).

An OSEK compliant operating system implementation provides automotive applica-
tion developers with a set of reusable primitive building blocks that include (1) tasks,
(2) event objects, and (3) messages. Tasks are the equivalent of threads in general pur-
pose operating systems. They are the basic schedulable entities in the OSEK/VDX and
forms the basis for enforcing the various real-time requirements of automotive applica-
tions. Event objects are used to inform tasks of various events occurring in the system
- e.g., arrival of messages on a communication link, or expiration of a timer. Messages
are used to communicate between software components residing within an ECU.

POSA2 Abstractions. A task in OSEK/VDX can wait on multiple events at a time using
the WaitEvent function, which is a key feature of the Reactor pattern [24]. Reactor is an
event handling design pattern used in network programming (e.g., in ACE [15]) to de-
multiplex events from multiple sources, possibly using just a single thread. This design
pattern is used in low level reusable middleware to demultiplex and dispatch incom-
ing requests and replies from peers. Event handlers like request and reply handlers are
registered with a reactor. The reactor uses a synchronous event demultiplexer, e.g., the
UNIX select system call, to wait for data to arrive from one or more peers. When data
arrives, the synchronous event demultiplexer notifies the reactor, which then dispatches
the appropriate event handler based on the event source.

The Active Object pattern, which separates method invocation from method exe-
cution, is also relevant. Since the thread of execution is separate from the thread of
invocation, this pattern can be used to serialize access to resources used by multiple
threads. This pattern can be used, as is discussed in [10,11], to separate the communi-
cation subsystem from the automotive application by using different tasks for each of
these layers of the system.
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4 Solution Approach

In previous research [25,5], we have developed timed automata [4] models of reusable
software building blocks that have been used to implement a wide range of software
frameworks and applications. These lower-level timed automata models of the reusable
building blocks can be combined with higher-level formal models of the applications
and frameworks that use them to provide a faithful model of a system including the
reusable software platform on which the system is deployed, such that the composite
models can be verified for correctness with high fidelity to the implemented system.

Our focus has been on creating timed automata models of reusable software ob-
jects provided by ACE [15]. ACE is a portable C++ framework used for developing
high-performance concurrent and real-time software using threads, sockets, and other
mechanisms provided by a wide range of OS platforms. By developing high fidelity
formal models at a level of abstraction that is just above the operating system, our ap-
proach adds rigor to other model-based approaches currently being pursued by the sys-
tems research community, which target reusable software architectures at higher levels
of abstraction. Our approach also provides sound and composable models of founda-
tional reusable software building blocks to the formal methods community, offering
new opportunities for innovation in formal methods that can directly impact the design,
implementation, verification, and validation of real-world software systems.

In Section 4.1 we first present a simple example drawn from our previous research
in the avionics software domain, which serves to illustrate and motivate our approach.
In Section 4.2, we then give an overview of the ACE building blocks we have modeled,
and discuss the suitability of several model checking tools for verification of timing and
liveness properties in software built using those building blocks.

4.1 Illustrative Example

In this section, we illustrate how timed automata models can be used to analyze tim-
ing and liveness properties in software built upon reusable software building blocks.
We first present a motivating example [26] - a simple distributed real-time embedded
subsystem from the domain of avionics mission computing [27] - and describe how our
modeling approach presented in Section 4.2 can be used to describe the reusable ACE
software building blocks incorporated within that example. In Section 5 we then show
how our approach can be used to analyze timing properties of this example subsystem
taking into account the semantics of the reusable software building blocks with which
this system is implemented.

Figure 1 shows the elements of our example avionics system: (1) a Rate Generator,
which wraps a hardware timer and sends periodic events to event consumers that register
for those events; (2) a GPS Subsystem, which wraps one or more hardware devices for
navigation and caches a periodically refreshed location value to provide low-latency
response; (3) a Graphical Display, which wraps the hardware for a heads-up display
device in the cockpit to provide visual information to the pilot and a location value
that is updated by querying an interface on the GPS component when the controlling
software receives a triggering event.
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TIME
14:34:06

POSITION
N 43˚ 39'    W 93˚ 21'

GPS Subsystem Graphical DisplayRate Generator

Fig. 1. Example Avionics System

This example is representative of a broader class of distributed real-time embedded
systems where clusters of closely-interacting components are connected via specialized
networking devices, such as VME-bus backplanes. Although the functional character-
istics of these systems may differ, they often share the rate-activated computation and
display/output timing constraints illustrated here.

Both control flow (rate generator to GPS and GPS to display) and data flow (dis-
play to GPS) interactions occur in this subsystem. An event push style of communica-
tion is used by the rate generator (to send a timer-driven triggering event to the GPS),
and by the GPS (to communicate the availability of data to the display). A data pull
style of communication is then used by the display subsystem (to obtain location data
from the GPS). In the middleware-based software framework from which this example
was drawn, the push style of communication is typically implemented using a publish-
subscribe event channel, and the pull style of communication is typically implemented
using a remote function call.

Even though middleware-based software architectures currently are not prevalent
in the automotive software engineering domain, the low-level software building blocks
that are the focus of our work are directly relevant there, as we have discussed in greater
detail in Section 3. Furthermore, as reducing development costs and cycle times be-
comes increasingly important, specialized reusable middleware solutions designed for
stringent timing and footprint constraints [18,19,20] may be adapted further for the au-
tomotive software engineering domain. Therefore, the observations and lessons learned
from our verification and validation studies of this example, which we present in Sec-
tion 6, are relevant to automotive software engineering.

Figure 2 illustrates how reusable low-level building blocks like the reactors, event
handlers, and thread pools provided by ACE, are incorporated into the example shown
in Figure 1. Each communication channel in the example subsystem illustrated in Fig-
ure 1 has a corresponding event handler. For example, the Timer EC EH event han-
dler handles requests sent from the rate generator to the Event Channel (EC), the
GPS EC EH event handler handles requests sent from the GPS unit to the EC, etc.

To illustrate how timed automata models of reusable software can be used to analyze
timing and liveness properties in practice, we now consider a simple but representative
example scenario using the low-level models of reusable ACE building blocks described
in Section 4.2 in order to (1) capture the semantics of the reactor and event handler
models, (2) illustrate how interference with specified constraints on timing can arise
in software built with those reusable software building blocks, and (3) show how the
particular form of interference that may arise can be analyzed through model checking.
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Fig. 2. Reusable Software in the Avionics Example

In many distributed real-time embedded systems, correct operation can depend on
satisfying stringent but relatively simple timing constraints, such as receiving the result
from a remote method invocation before a relative deadline. In this example, system
timing is affected by interference between nominally independent call sequences, when
they must contend for shared resources such as the CPU. We consider a scenario where
a single thread is used by a reactor to demultiplex events to its registered event handlers.
The extent to which the event handlers contend for shared resources impacts whether
or not a deadline miss can occur. Using our models we then can determine (1) whether
any deadline misses can occur due to interference between call sequences, and (2) if a
deadline miss is possible, which sequences of actions can cause it to occur. For example
if the rate generator and GPS push events at roughly the same time, then whichever
event handler (Timer EC EH or GPS EC EH) is dispatched first could delay the other
event handler, potentially resulting in a missed deadline.

4.2 Modeling in ACE

To be able to verify the correctness of customized reusable software in the context of
each specific application, we have developed detailed and formal models of common
reusable software building blocks found in the widely used ACE [15] framework, such
as reactors, thread pools, event handlers, and interaction channels, which can be com-
posed and checked rigorously to evaluate timing and liveness properties in each partic-
ular application and its supporting reusable software configuration. A crucial challenge
is to determine the appropriate level of abstraction at which to model system software.
To answer this question, one must look at the kinds of abstractions used in state-of-
the art system implementations. For example, distribution middleware services such as
CORBA [28] object request brokers (ORBs) provide a level of abstraction that pro-
motes portability and reusability and hence makes an appealing candidate for formal
modeling. Since many state-of-the-art distribution middleware implementations expose
sets of configuration options used to tailor the reusable software for particular applica-
tions, modeling the combinations of configuration options [29] is a useful and necessary
step toward model-driven construction and verification of distributed real-time embed-
ded systems. We contend, however, that to evaluate issues such as timing and liveness,
which are crucial to many distributed real-time embedded systems, finer-grained models
of lower-level reusable software building blocks are needed to capture (and supplement
analysis of) crucial details related to concurrency and interaction.
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Results of our previous experience with system software construction indicate the
efficacy of such a fine-grained approach. In that work we built a special-purpose ORB
called nORB [18,19,20], with support for real time operation dispatching in the context
of memory constrained networked embedded systems. We took a fine-grained bottom-
up approach to the development of nORB, starting with lower level elements of the
ACE [15] framework: Reactor, Acceptor, Connector, CDR Stream, etc. Along with tak-
ing a fine-grained approach to building nORB, we used the application itself as a guide
for making fundamental design and implementation trade-offs. That work has given us
insights into application-driven construction and customization of reusable software for
this and other domains, allowing us to define composable models with a high degree of
fidelity to how reusable software is built in practice.

Our modeling approach is designed specifically for analysis of timing and liveness in
concurrent software with real-time constraints. We rely first on model checking to en-
sure soundness. Due to the potential size of the state spaces that need to be checked, we
then apply several optimizations: (1) building highly modular models, by sub-dividing
them into fine-grain composable automata; (2) encoding our models in formats used
by model checkers that allow automata to be added to a model, or removed from it,
dynamically; and (3) adopting a hybrid approach in which parts of the analysis are pro-
vided by other analysis techniques [30,3] thus reducing the state space that must be
explored through model checking. Model checkers such as UPPAAL [31], IF [32], Bo-
gor [33], and SPIN [34] each have their particular features and restrictions. For example,
among these four tools, timed automata models are supported only by UPPAAL and IF,
whereas only Bogor supports object-oriented and concurrent constructs explicitly. UP-
PAAL uses a rendezvous model of communication whereas in IF communication is
asynchronous. Because our models must capture time, concurrency, and asynchronous
interactions between system elements that can be added and removed dynamically, we
selected IF as the most suitable model checking environment for our needs in that work.

Figure 3 shows our model architecture, which is implemented using the IF tool
set [32,35,36]. We specify our fine-grained models as IF processes that run in parallel
and interact through shared variables and asynchronous signals. The behavior of these
processes is represented formally in IF as timed automata with urgency [37] and the
semantics of a system modeled in IF is the Labeled Transition System (LTS) obtained
by interleaving the executions of its processes.

Our models are divided into three layers: (1) models of network and OS level abstrac-
tions such as channels for interprocess communication; (2) models of semantically rich
reusable software building blocks like reactors; and (3) models of the application func-
tionality implemented in the form of event handlers. Although Figure 3 shows a static
view of our models, the models themselves are executable in the IF environment and
can be checked against system property specifications. The unshaded rectangular boxes
shown in Figure 3 are modeled using timed finite state automata specified using the
IF language. The shaded rectangular boxes shown in Figure 3 are data structures that
are shared by the different automata in the models. Automata with timed transitions
(transitions that are guarded with conditions based on clock variables) are indicated in
Figure 3 by timer icons. [38] and [39] provide detailed explanation of these models.
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Fig. 3. Model Architecture

5 Integrated Verification and Validation

We now summarize the results of a verification and validation study we conducted to
evaluate the fidelity of the reusable middleware models developed in our previous re-
search [5] by instrumenting both the models and the software they represent, and com-
paring the execution traces produced by that instrumentation in both cases. To do this,
we recorded events via instrumentation points in the kernel, middleware, and applica-
tion layers using data streams [40]. We also added output to timed automata transitions
corresponding to the middleware instrumentation points. We then collected traces from
the execution of the models and of the software, and post-processed those traces to
generate time-lines for comparison. We compared the two timelines in terms of (1) the
sequence of events that occurred in each case, and (2) the time at which each event
occurred. The models were realized and executed using IF 2.0 (with bug-fixes) on a
2.8GHz Pentium 4 with 2GB RAM running Enterprise Linux with a 2.6.9-22 kernel.
All validation experiments were run on a 1.4GHz Pentium 3 with 1GB RAM and run-
ning Fedora 2 with a LibeRTOS [41] 2.6.12 kernel.

Figure 4 shows a short extract from the sequence of events generated by post-proces-
sing traces from model and actual executions of the example scenario described in Sec-
tion 4.1. In that scenario, two clients each send a request to the same server and the
server hosts two event handlers each processing the requests from one client. We logged
the following events along with their time stamps - (1) a client sending a request, (2)
the request arriving at the socket buffer on the server, (3) the upcall to the event handler,
and (4) the receipt of reply from the event handler by the client. The sequence of events
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0: BEFORE_CLIENT_SEND_REQUEST(2)
0: EVENT_SOCK_DEF_READABLE(4)
0: BEFORE_CLIENT_SEND_REQUEST(1)
0: EVENT_SOCK_DEF_READABLE(2)
0: HANDLE_INPUT_BEGIN(2)
25: EVENT_SOCK_DEF_READABLE(1)
25: AFTER_CLIENT_RECV_REPLY(1)
25: HANDLE_INPUT_BEGIN(4)
50: EVENT_SOCK_DEF_READABLE(3)
50: AFTER_CLIENT_RECV_REPLY(2)
50: BEFORE_CLIENT_SEND_REQUEST(2)
50: EVENT_SOCK_DEF_READABLE(4)
50: BEFORE_CLIENT_SEND_REQUEST(1)
50: EVENT_SOCK_DEF_READABLE(2)
50: HANDLE_INPUT_BEGIN(2)
75: EVENT_SOCK_DEF_READABLE(1)
75: AFTER_CLIENT_RECV_REPLY(1)
75: HANDLE_INPUT_BEGIN(4)
100: EVENT_SOCK_DEF_READABLE(3)
100: AFTER_CLIENT_RECV_REPLY(2)

0 : BEFORE_CLIENT_SEND_REQUEST(2)
0 : EVENT_SOCK_DEF_READABLE(4)
0 : BEFORE_CLIENT_SEND_REQUEST(1)
0 : EVENT_SOCK_DEF_READABLE(2)
0 : HANDLE_INPUT_BEGIN(2)
25 : EVENT_SOCK_DEF_READABLE(1)
25 : AFTER_CLIENT_RECV_REPLY(1)
25 : HANDLE_INPUT_BEGIN(4)
51 : EVENT_SOCK_DEF_READABLE(3)
51 : AFTER_CLIENT_RECV_REPLY(2)
51 : BEFORE_CLIENT_SEND_REQUEST(2)
51 : EVENT_SOCK_DEF_READABLE(4)
51 : BEFORE_CLIENT_SEND_REQUEST(1)
51 : EVENT_SOCK_DEF_READABLE(2)
51 : HANDLE_INPUT_BEGIN(2)
76 : EVENT_SOCK_DEF_READABLE(1)
76 : AFTER_CLIENT_RECV_REPLY(1)
77 : HANDLE_INPUT_BEGIN(4)
102 : EVENT_SOCK_DEF_READABLE(3)
102 : AFTER_CLIENT_RECV_REPLY(2)

Fig. 4. Comparison of timelines between model (left) and actual (right) executions

shows that that the model and actual executions are reasonably close both in terms of the
order of events and the time at which they occur. However, one key difference between
the model and actual execution traces is the execution time of event handler processing.
During model execution, the progress of time is controlled by the model checker and
unless it is specified explicitly (as we show later), there is no execution jitter. However,
during actual software execution we recorded the execution jitter shown in Figure 5.

As part of our experiments, we ran 25 iterations of the above flow - i.e., with the
client sending a request and the event handler responding with a reply - in both model
and actual execution. Based on the generated timeline traces, we then plotted the events
generated against their timestamps for both model and actual executions to obtain the
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Fig. 5. Timeline comparison between model and actual implementation
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graph shown in Figure 5. This figure shows visually how close the model is to the actual
execution in terms of the times at which various events occur.

We also observed that the cumulative effect of jitter during actual execution becomes
more pronounced as time progresses, which suggests that modeling the execution jitter
as random noise would be a reasonable first approximation. To make the composed ver-
ification model reflect the actual system more closely, we added a jitter interval of 1ms
to the event handler execution time in our model, which caused a significant increase in
state space explored by the model checker. For exhaustive simulation, the model with-
out jitter produced 2325 states, 2380 transitions, and took 1 second, whereas with jitter
the model produced 217885 states, 225130 transitions, and took 181 seconds to explore
exhaustively. The exhaustive simulation with jitter produced 288 traces of possible ex-
ecutions of the example scenario described in Section 4.1. To illustrate the range of
variability added to the model by the jitter interval, we generated timelines for each of
the 288 verification traces from the model with jitter, and then superimposed them in a
new graph with the event numbers on the y-axis and timestamps on the x-axis. The re-
sult, shown in Figure 6, confirms that the model checker explores various combinations
of execution jitter as it moves from state to state during exhaustive simulation.
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Fig. 6. Timeline with execution jitter for all paths explored by the model checker

6 Concluding Remarks

Observations and Lessons Learned. These results shown in Section 5 highlight several
important principles for co-design of verification and validation in middleware mod-
els and software. First, the choice of instrumentation points is essential: discrepancies
between where events are recorded in the software and in the models may skew the
relationships between the timelines. While fixing this may be trivial in some cases, in
other cases it may be necessary to expand a single model state into a more nuanced
automaton to capture software semantics in more detail.
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Second, observational equivalence must be evaluated subject to the constraints being
checked. Relevant non-determinism in the software must be reflected in the model to
ensure that the model is not over-constrained (and thus fails to check important cases)
but irrelevant non-determinism should be eliminated from the model to reduce model
checking complexity and to increase correspondence between the timeline representa-
tions for the model and software traces. Because the same model elements may be re-
used for a variety of software configurations, doing this in practice can be aided greatly
by (1) the ability to turn model and software instrumentation points on and off together,
through a set of common configuration descriptors, (2) post-processing predicates for
both time-lines that filter out irrelevant variations while detecting relevant ones, and
(3) classifiers that annotate the timelines to indicate regions where event timing and
ordering correspond between them, and regions where event timing or ordering differ.

Third, the ability to conduct scientifically valid evaluations of the correspondence
between verification and validation results, especially in the face of concurrency [42],
requires that (1) the sources of non-determinism in the model be the same as those in
the software, (2) the equivalence classification of traces from the model be the same as
the equivalence classification of traces from the software, (3) for every specific trace
generated from the model, a trace in the same equivalence class must be generated by
the software experiments, and vice versa, and (4) the likelihood of generating a partic-
ular trace from the model or the software should be appropriate even if the generation
of every trace is impractical or intractable. The last two points highlight a very impor-
tant relationship between (1) exerting more control (e.g., through scheduling [2]) over
when events occur and in what order to (re)produce specific scenarios, and (2) allowing
a wider variety of scenarios to be explored to avoid repeated verification or validation
of essentially equivalent scenarios.

Open Problems and Future Work. Several open problems will shape our future work
on model-based verification and validation of reusable software frameworks. First, the
need for automated instrumentation of both models and software with respect to par-
ticular constraints to be checked motivates the development of automated analysis and
aspect weaving techniques. Second, the need for round-trip co-design and engineering
of models and software is demonstrated by our results in Section 5, which emphasizes
the need to develop integrated tools for software design, implementation, verification,
and validation, into which different sets of reusable software building blocks and fine
grained formal models for those building blocks can both be incorporated. Third, the
ability to configure schedulers and other means of controlling software execution at
run-time must also be integrated within these software tools, in terms of both models
and software implementations.
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Abstract. This paper describes the model-based development process of hard 
real-time software with the Timing Definition Language (TDL): modeling and 
simulation of TDL components in Matlab®/Simulink®, their mapping to a spe-
cific platform and finally the code generation. 

1   TDL Components 

Model-based development requires appropriate domain abstractions. They allow de-
velopers to ignore nasty details in the process of modeling automotive software sys-
tems. On the one hand,  the challenge is to find abstractions that are high-level so that 
as many details as possible can be ignored. On the other hand, these abstractions must 
not be too disconnected from the underlying system so that efficient code can be gen-
erated out of the models.  

In case of general purpose programming, imperative languages turned out to rep-
resent an appropriate level of abstraction from the von-Neumann computer architec-
ture. In case of hard real-time systems, such abstractions have to consider the timing 
behavior as well as concurrency and have only been proposed recently. Synchronous 
languages such as Esterel [1] assume that infinitely fast computers exist that can  
immediately react to sensor input. Though composition of Esterel software is straight-
forward in theory, it encounters barriers in practice, in particular for distributed sys-
tems [2]. Giotto [3, 4, 5] and the Timing Definition Language (TDL) [6] share the 
same basic programming model which relies on the Logical Execution Time (LET) 
[5] abstraction. LET means that the observable temporal behavior of a task is inde-
pendent from its physical execution. It is only assumed that physical task execution is 
fast enough to fit somewhere within the logical start and end points. The following 
figure shows the relationship between logical and physical task execution. 

The inputs of a task are read at the release event and the newly calculated outputs 
are available at the terminate event. Between these, the outputs have the value of the 
previous execution. LET provides the cornerstone to deterministic behavior, platform 
abstraction as basis of portability and well-defined interaction semantics between 
parallel activities. It is always defined which value is in use at which time instant and 
there are no race conditions or priority inversions involved. 
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Fig. 1. Logical Execution Time (LET) abstraction 

In addition to expressing LET semantics in a more convenient syntax than Giotto, 
and slightly simplifying the mode switching semantics, TDL has introduced the mod-
ule (= component) as a top level language construct. This represents a significant step 
towards a component model for hard real-time systems. A TDL component provides a 
namespace for the definition of constants, types, sensors, actuators, tasks and modes. 
For the formal specification of the TDL constructs and their semantics we refer to the 
language report [6]. The TDL component construct serves multiple purposes: 

  

1) it supports information hiding, 
2) it acts as a static specification of components and dependencies,  
3) it serves as the unit of distribution of functionality over a network of elec-

tronic control units.  
4) it represents a partitioning of the set of actuators and control logic avail-

able in a system, and 
5) it may serve as the unit of dynamic loading of system extensions  

 

The TDL component construct is the precondition for another enhancement of LET-
based languages. LET introduces a delay for observable outputs which poses a prob-
lem for controllers whose behavior would be better if outputs are provided as fast as 
possible without LET delays. With the TDL component construct it became possible 
to introduce globally asynchronous, locally synchronous (GALS) behavior. In this 
context ‘globally’ means between TDL components and ‘locally’ means within a 
TDL component. In order to avoid delays within a TDL component for the benefit of 
digital controller applications, a task’s functionality code may be split in two parts: (a) 
a fast step and (b) a slow step, where the fast step is executed in logical zero time 
right at the release time of the task and the slow step is executed regularily. Output 
ports updated in the fast step are available immediately for a component’s actuator 
updates or as inputs to other tasks within a TDL component. 

Transparent Distribution. The TDL component in combination with the LET ab-
straction also forms the basis of what we call transparent distribution: Due to the 
LET semantics (1) the observable functional and temporal behavior of a system is the 
same no matter on which node of a distributed platform a TDL component is executed 
and (2) the developer does not have to care about the differences of local versus dis-
tributed execution of a TDL component. We refer to (1) and (2) as transparent distri-
bution [7]. Transparent distribution facilitates, for example, what the automotive in-
dustry calls Electronic Control Unit (ECU) consolidation. The implementation of 
transparent distribution has required solutions of non-trivial communication schedul-
ing problems as described in [10]. 
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TDL is a textual language. We show the TDL code of a sample TDL component 
after Figure 8. In addition to the textual version we have developed a visual and inter-
active TDL editor tool, called the TDL:VisualCreator, that offers exactly the same 
constructs as the textual version of TDL. The user of the TDL:VisualCreator tool can 
view the corresponding textual version of the TDL component at any time. The 
TDL:VisualCreator and other TDL tools are available as products from preeTEC.com 
and have been built on the basis of research results in the realm of the Giotto project 
[3] at the University of California, Berkeley and the MoDECS project [8] at the Uni-
versity of Salzburg, Austria. The following section exemplifies TDL development 
with the TDL:VisualCreator tool. In section 3 we illustrate how TDL components are 
automatically mapped to a sample FlexRay platform, illustrating the benefits of trans-
parent distribution. TDL with its component model and the transparent distribution of 
TDL components cut the  overall development time of FlexRay software by a factor 
of 20 compared to tools that require a manual or slightly automated specification of 
communication schedules and that do not abstract from the platform. 

2   Modeling Sample TDL Components 

A case study for controlling an Active Rear Steering (ARS) system illustrates the 
advantages of the straight-forward modeling process with TDL. The ARS system is 
courtesy of MagnaSteyr Fahrzeugtechnik [9].  

A TDL module (= component) corresponds to a control application that periodi-
cally reads sensor values, calculates output values and writes these to actuators. Thus, 
a TDL module consists of a set of sensors, a set of actuators and a set of modes. Each 
mode consists of a set of periodic task invocations and other periodic activities such 
as actuator updates or mode switch checks. A module can be in one mode at a time.  

In the ARS case study we use the TDL:VisualCreator tool that also allows TDL 
modeling within Matlab®/Simulink®. This has the advantage, that TDL components 
can be simulated. Note that the developer specifies the TDL modules and their timing 
behavior, that is the LET of the tasks, independent of a specific execution platform. 

To edit a TDL module we drag the TDL module block from the Simulink® Library 
Browser (see Figure 2) and drop it on to a model. 

 

 

Fig. 2.  TDL module as block in Matlab®/Simulink® 
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A double-click on the module block opens the TDL:VisualCreator where you can 
edit the various elements of a module (see Figure 3). The tree on the left hand lists the 
possible TDL constructs: the imported modules (see below) in folder Imports, the 
constants, types, sensors, actuators, the task declarations in folder Tasks, and the 
modes of the TDL module. Figure 3 shows that we have defined three sensors 
(delta_r_act, angular_rate, current) and one actuator (voltage) of the TDL module 
RearActuatorController. The developer edits the properties of a TDL construct by 
clicking on it. Figure 3 shows the properties of the selected sensor current. The corre-
sponding properties and the corresponding values are displayed below the tree. 

 

Fig. 3. Editing a TDL module in the TDL:VisualCreator 

The TDL module RearActuatorController has only one task DCMotorController 
(see also Figure 3). In this simplified case study the mode main is the only mode of 
operation in this TDL module.  

 

Fig. 4. Modeling a task’s functionality with Matlab®/Simulink® 
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Let us now illustrate how we define the functionality of task DCMotorController 
and its timing behavior, that is, its LET. A double-click on the task opens a Simulink 
editor. The developer can use any of Matlab®/Simulink®’s discrete blocks to model 
the controller behavior. Figure 4 exemplifies this for the DCMotorController. 

In the next step we define the timing behavior of the task DCMotorController in 
mode main and how it gets its inputs and to where it provides its output. For that 
purpose we click on mode main in the tree. Now we can define the period of mode 
main as one of its properties. In this example we set it to 1ms (see Figure 5). In the 
data flow editor, shown on the right-hand side of the window, we define the input and 
the output connections of task DCMotorController. 

 

Fig. 5. Defining the timing of a mode 

Finally, we define the LET of task DCMotorController within mode main. This is 
done by specifying the invocation frequency in relation to the mode period (see Fig-
ure 6). As the Frequency property is set to 1 it means that the LET of task DCMotor-
Controller is 1ms (mode period) divided by 1 (frequency), thus 1 ms. 

Figure 7 shows the overall Matlab®/Simulink® model of the ARS system, consist-
ing of the two TDL modules RearActuatorController and VehicleDynamics and a 
subsystem Vehicle that represents the ‘plant’, that is, the relevant aspects of the vehi-
cle that needs to be controlled. What we did not show was the definition of the import 
relationship between the two modules. Module RearActuatorController imports Vehi-
cleDynamics and uses the output port delat_r_sp of VehicleDynamics’ public task 
dynamicsController. TDL module imports are discussed below. 
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Fig. 6. Defining the LET of a task 

 

Fig. 7. ARS system model 

The output of the Scope block (see Figure 8: speed, front angle, rear angle) illus-
trates the controller behavior: at low speeds steering operations cause the wheels on 
the rear axis to point in the opposite direction of the front wheels, whereas at higher 
speeds the wheels on the front axis and the rear axis point in the same direction. 

The following listing shows the textual version of the TDL module RearActuator-
Controller. As stated above this module imports the other TDL module VehicleDy-
namics. The sensor, actuator, task and mode declarations correspond exactly to the  
 



 Modeling with the Timing Definition Language (TDL) 139 

 

Fig. 8. ARS scenario 

definition in the TDL:VisualCreator described above. The uses keyword marks an 
external function that implements platform-specific behavior. For example, the sensor 
delta_r_act is read by means of the external function getDelta_r_act. The implementa-
tion of sensor reading and actuator writing depends on the hardware and is thus sepa-
rated from the platform-independent TDL code. 

 
module RearActuatorController { 
 
  import VehicleDynamics; 
 
  public sensor double delta_r_act uses getDelta_r_act; 
  sensor double angular_rate uses getAngular_rate; 
  sensor double current uses getCurrent; 
 
  actuator double voltage uses setVoltage; 
 
  public task DCMotorController { // task declaration 
    input 
      double delta_r_sp; 
      double delta_r_act; 
      double angular_rate; 
      double current; 
    output 
      double voltage; 
    uses DCMotorControllerImpl(delta_r_sp,delta_r_act,  
        angular_rate,current,voltage); 
  } 
 
  start mode main [period=1 ms] { 
    task 
      [freq=1] DCMotorController { // task invocation with LET = 1 ms 
         delta_r_sp := VehicleDynamics.dynamicsController.delta_r_sp; 
         delta_r_act := delta_r_act; 
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         angular_rate := angular_rate;current := current; 
        } 
    actuator 
      [freq=1] voltage := DCMotorController.voltage; 
  } 
 
} 

 
Module Import. In order to allow the decomposition of large applications into 
smaller parts and to allow expressing dependencies between modules statically, the 
module concept provides an import mechanism, which allows a client module to spec-
ify that it depends on a service module and to access public elements of the imported 
module. In the ARS case study module RearActuatorController imports VehicleDy-
namics. Thus module RearActuatorController can use any of the exported items, that 
is, those that have the property Public set to true. 

While it is obvious that using imported constants, types and sensors does not pose 
any semantic difficulties, it is not a priori clear how to treat constructs such as tasks 
and actuators. Multiple applications may read the same sensors, for example, but what 
happens if multiple applications write to the same actuators? Note that any of the 
parallel running TDL modules may be in one of several modes and it is not statically 
defined which actuators are under control of which application at which time. There-
fore it must be prevented that multiple modules write to the same actuator. The mod-
ule construct comes in handy to solve this problem. We simply restrict actuator  
updates to the module the actuator is declared in. Thus, the module construct also acts 
as a partitioning of the set of actuators. In a large application, sensors could be de-
clared in a common service module, from where they can be used in any client mod-
ule. A client module declares a subset of the actuators of the complete system and 
provides the functionality and timing to set their values. 

Tasks form the units of computation. They are invoked periodically with a speci-
fied frequency. They deliver results through task output ports to actuators or to other 
tasks, and they read input values from sensor ports or from output ports of other tasks. 
A task whose visibility property Public is set to true exports all of its output ports. 
Thus, client modules can access the results delivered through a task’s output ports, but 
it is not possible to invoke tasks from client modules. 
 

Separation of Concerns. A TDL module expresses only the timing behavior with 
LET semantics: when tasks read inputs and when they provide outputs, when mode 
switch conditions are checked and when actuators are updated. The functionality is 
separated and specified as functions external to TDL: that is, how sensors are read, 
how actuators are updated, how tasks process their inputs. These external functions 
can be implemented in any programming language. In case of using TDL within Mat-
lab®/Simulink® as illustrated in the realm of the TDL modeling by means of the 
TDL:VisualCreator above, the task functionality can be specified with Simulink® 
blocks (see Figure 5). For these Simulink® subsystems the developer generates C 
code with one of the available code generation tools so that the system can be mapped 
to a specific execution platform. Currently, TDL supports language bindings for 
ANSI C and Java. 

We view this separation of timing and functionality as a precondition of an appro-
priate component model, in particular in the automotive industry. It allows the  
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protection of intellectual property rights of the supplier companies. The supplier com-
panies still can implement the specific control laws and provide that functionality as 
object code. On the other hand, the Original Equipment Manufacturers (OEMs) can 
integrate the components from various different suppliers based on the TDL compo-
nent model—they do not have to know about the implementation of the functionality. 
We will exemplify one aspect of the integration process, the TDL module-to-node 
mapping, in more detail in the next section. 

3   Sample TDL Component Deployment on a FlexRay Cluster  

The TDL component model offers another separation of concerns that we have called 
transparent distribution: the behavior of a component is independent of the execution 
platform. With TDL the platform can also be considered after a component has been 
developed. This is in stark contrast to the current development practice which pro-
duces software that is strongly intertwined with the platform it was developed for. 
The good news for the developer is that the mapping to a specific platform, no matter 
whether it is distributed or not, becomes a straight-forward assignment of TDL mod-
ules to nodes (ECUs). preeTEC’s automatic schedule and code generators and the 
TDL run-time system guarantee that the executable code exhibits exactly the same 
timing behavior as in the simulation, provided that the target platform offers sufficient 
computing resources. If not, no code is generated and the developer gets hints why 
this was not possible. 

In order to map a set of TDL modules to a specific platform, the user puts a Distri-
bution block from the Simulink® Library Browser to the particular model by drag-
ging it from the library and dropping it onto the model (see Figure 9). In our  

 

 

Fig. 9. Adding a Distribution block to the ARS system model 
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example, we name the block AES-FlexRay platform as we want to map the two TDL 
modules to a FlexRay cluster [11] with the socalled AES operating system [12]. Note 
that any number of platform mappings could be defined for a model, simply by put-
ting further Distribution blocks to a model with TDL modules.  

A double-click on the TDL Distribution block opens the TDL:VisualDistributor 
tool (see Figure 10). It already contains the TDL modules RearActuatorController and 
VehicleDynamics defined in the ARS model where the Distribution block was in-
serted. 

 

Fig. 10. TDL:VisualDistributor tool with the TDL modules defined in the Simulink® model 

In order to assign the TDL modules to the nodes of a platform we now have to de-
fine the platform. The TDL:VisualDistributor offers the editing features to define the 
topology and properties of potentially distributed platforms that are common in the 
automotive domain. For a demo video that illustrates how to define a FlexRay plat-
form we refer to the Web [13]. The TDL:VisualDistributor can also save and load 
platforms. In this case study we assume that a platform that describes a FlexRay clus-
ter with two MPC5554 nodes as ECUs, each running the AES operating system, has 
already been defined.  We load that platform and can then assign the two TDL mod-
ules by means of a straight-forward drag & drop operation to the two nodes ECU1 
and ECU2 of that particular FlexRay cluster. Figure 11 shows the resulting view of 
the specified module-to-node assignment. 

The TDL:VisualDistributor accomplishes the automatic generation of all files that 
are required to build the executable(s) for the specific platform. In case of the FlexRay-
AES platform we need, for example, the platform-independent TDL source code for the 
modules RearActuatorController and VehicleDynamics, the C code (generated, for 
example, with the Real-Time-Workshop Embedded Coder) for each task function of 
each TDL module, the FIBEX file representing the communication schedule, the 
FlexRay-specific configurations and the makefiles. For that purpose we simply choose 
the Build All menu item in the File menu of the TDL:VisualDistributor tool. 

After compiling the code and uploading it to each of the nodes the system behaves as 
simulated in the TDL:VisualCreator. As TDL modeling means basically setting the LET 
periods of tasks, and as the user does not have to define a communication schedule and 
the numerous FlexRay details, TDL together with the automatic generators reduces the 
development time by a quantitatively measured factor of 20 and more compared to 
state-of-the-art methods and tools, if a FlexRay-system is developed from scratch. 
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Fig. 11. TDL module-to-node assignment for a FlexRay cluster 

4   Opportunities for the Automotive Industry Resulting from a 
TDL-Based Development Process  

Besides significant development and maintenance cost savings, for example, for 
FlexRay software, a TDL-based development process could provide the desired flexi-
bility for automakers to change the execution platform when required and at the same 
time redefine the OEM-supplier relationship. 

Remember that the TDL components can be modeled and simulated without 
knowing on which platform they will be executed. One key benefit of the TDL-based 
development process is that an Original Equipment Manufacturer (OEM) would not 
have to worry from the beginning on which node of a distributed platform a TDL 
component will be executed. 

Let us assume a sample scenario of how the automotive industry could harness the 
TDL technology: An OEM and a supplier agree about the coarse-grained system 
structure by means of TDL components. Each TDL component corresponds to a sys-
tem function, such as automatically maintaining the distance to other vehicles. The 
OEM and its suppliers only have to refine each system so far as required by TDL, that 
is, the definition of the timing. The suppliers then implement the functionality of the 
TDL components, that is, typically the control laws, and error handling as well as 
accomplish the component validation and testing. 

Parallel to this activity the OEM selects the computing and communication plat-
form. For example, the OEM wants to reduce the number of ECUs (Electronic Con-
trol Units) and use more powerful computing nodes instead. The OEM can finetune 
the platform configuration with a tool such as the TDL:VisualDistributor. 
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Once the supplier companies return the TDL components together with the im-
plemented functionality, the integration has already been accomplished and the sys-
tem testing effort is significantly reduced—the TDL tools and middleware guarantee 
the time-safe execution of all TDL components. 

Instead of specifying the platform in parallel to the development activities of the 
supplier companies, the OEM might prefer to define, in the traditional way, the plat-
form upfront and give away the TDL components to the suppliers afterwards. The 
OEM would still benefit from the TDL approach: besides the guaranteed time and 
value determinism, future changes of the platform only require an automatic regenera-
tion of the code and the communication schedules. This improves an OEM’s flexibil-
ity, for example, to reduce the number of ECUs or to upgrade the hardware. 
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Abstract. Software developers in the automotive sector must achieve
high quality objectives. Many design and implementation errors are
avoided by synthesizing code from model-based software specifications
using automatic code generators such as ETAS’ ASCET. To ver-
ify non-functional properties of the implementation, model-based de-
sign processes should be complemented with static program analysis
tools like AbsInt’s StackAnalyzer and timing analyzer aiT. AS-
CET, StackAnalyzer and aiT can be integrated in a way that the
aiT/StackAnalyzer analysis results for code generated by ASCET
are conveniently accessible from within the ASCET development envi-
ronment. This gives ASCET users a direct feedback on the effects of
their design decisions on resource usage, allowing them to select more
efficient designs and implementation methods. In the paper, we present
the tools, the experimental integration, preliminary results and plans for
further tool integration.

1 Introduction

Software developers in the automotive sector face some specific challenges: Many
software systems are safety-critical and, thus, must achieve high quality objec-
tives. On the other hand, competitive markets require software and hardware
that can be mass-produced using a minimum of resources. Additionally, today’s
cars feature complete networks of Electronic Control Units (ECUs), which re-
quire highly collaborative software development. Therefore, even from the start,
safety and budget considerations influence the design and specification of auto-
motive software systems.
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Often these challenges induce conflicting goals concerning reduction of compo-
nent costs, of development costs, and of development complexity. One example
would be reduction of component costs by using cheaper ECUs without floating
point units, where all calculations need to be performed using integers. However,
due to the additional scaling and converting needed due to the representation
of floating point numbers by integers, this can become an additional source of
defects during the actual implementation of the system, leading to an increase
in development costs and complexity.

There are different approaches to deal with the development problems in the
automotive context. Standards like MISRA-C [1] attempt to minimize the amount
of errors introduced by manual coding. Following such guidelines, however, may
increase the time needed for coding and incur a cost in higher resource usage.

Model-based design tries to satisfy the high safety requirements in combina-
tion with good development productivity by starting with a software specifica-
tion. The implementation process is not necessarily automatic. It is therefore
still possible to introduce software defects through misinterpretation of design
and specification documents or through human error during the manual coding
process. Automatic code generators such as the one provided by ASCET are
increasingly used to generate the implementation from the specification. By cre-
ating C code directly from the model-based specification, these code generators
avoid the typical translation problems that occur in the implementation stage.

Many design and implementation errors are avoided by synthesizing code
from specifications. However, non-functional properties such as absence of mem-
ory overflow and timer overruns are still an issue. To verify such properties of
the implementation, unit tests and runtime measurements are currently used in
the industry. Assuming sufficient test coverage of the system, some information
about the typical runtimes of the software processes can be obtained. However,
to acquire a higher level of confidence and to aid the development process, it
is necessary to gather reliable and precise information about the code. Recent
advances in the area of static program analysis based on abstract interpretation
led to the development of tools to automatically detect upper bounds on resource
usage like worst-case execution times (WCET) and worst-case stack usage, and
of tools to prove the absence of runtime errors like null pointer dereferencing
and out-of-bounds array accesses.

When using automatic code generation, tools checking for runtime errors are
of minor importance – the code generator is expected to produce correct code
given its knowledge about the model. Tools to determine safe and precise bounds
on resource usage, however, can be very helpful for the users of modeling and
automatic code generation tools. Tools of this kind include AbsInt’s Stack-
Analyzer and timing analyzer aiT. Other timing tools, including academic
prototypes, are described and discussed in [2].

In the context of safety-critical hard real-time applications, the standard use
of tools like aiT and StackAnalyzer is to demonstrate and prove that pieces of
code are guaranteed to always execute within limited time intervals and resource
bounds.
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In our work, we propose to complement model-based design processes with
static program analysis tools. This guarantees the satisfaction of safety require-
ments, and it helps to speed up the project by aiding in the establishment of
general guidelines, the configuration of the build environment used as well as
the coordination of distributed development and the development itself. We ar-
gue that to develop hard real-time systems, model-driven development coupled
with detailed analysis of the implemented software is much better suited than
traditional development methods that rely on programming C code.

The users of ASCET usually work on a much more abstract level than the
producers of manual code. ASCET, StackAnalyzer and aiT can be integrated
in a way that the aiT/StackAnalyzer analysis results for code generated by
ASCET are conveniently accessible from within the ASCET development en-
vironment. This gives ASCET users a direct feedback on the effects of their
design decisions on the resource usage, allowing them to select more efficient
designs and implementation methods.

In the following, we present the tools, the experimental integration, prelimi-
nary results and plans for further tool integration.

2 Model-Based Design and Automatic Code Generation

In the automotive industry, model-based design has rapidly become a standard
technology for system development. Complex automotive functions are usually
based on abstract function models that make use of domain-specific knowledge.
In this context, model-based CASE tools can offer significant development ben-
efits as they allow for an easier transfer of domain-specific knowledge into a
software engineering context. A comprehensive study of different model-based
CASE tools can be found in [3].

2.1 Model-Based Development for Real-Time Applications

Software development using C offers many degrees of freedom that make it more
difficult to verify the fulfillment of safety and real-time requirements. It is there-
fore necessary to provide a more abstract and more clearly defined specification
of the system to be developed.

To solve this problem, ETAS’ ASCET offers graphical specification editors
to model control and data flow and state machines for state-based algorithms,
as well as textual specification using ESDL, a programming language with a
syntax based on Java that operates on the model level. Working with these
specifications allows the developers to abstract away from the concrete variables
on the target and deal with (physical) model variables instead, each with a well-
defined representation in terms of concrete variables. These specifications can
then be used to generate C code both for rapid-prototyping as well as ECU tar-
gets. The code generator will take care of the translation of model variables to
program variables (according to the chosen representation of model variables)
and of implementing operations on the model variables in a way that is con-
sistent with their concrete representation, thereby eliminating a lot of possible



148 C. Ferdinand et al.

oversights on the side of the developer. The code generators intended for pro-
ducing C code used in series production were the first world-wide to be certified
according to IEC 61508, the international standard for “functional safety of elec-
trical/electronic/programmable electronic safety-related systems”.

The improvements offered by this approach are demonstrated in [4]. To verify
the correctness of their active steering model, BMW developed a formal verifi-
cation tool that operates on components developed using ASCET.

To reduce the effort needed for verification, ASCET strongly supports mod-
ular development through so-called classes, encapsulated modules closely related
to object-oriented programming concepts (while avoiding dynamic memory allo-
cation and inheritance). Components can be reused by using multiple data sets
and implementations depending on the project context. ASCET offers strong
separation of algorithm, data and implementation details (memory classes, types,
etc.), thus facilitating the software engineering process and the verification and
testing process.

These improvements are especially useful in the context of fixed-point integer
calculations on low-cost platforms, where manual coding typically introduces
many bugs that can be avoided using code generation. To verify the model
during different stages of development, ASCET offers several code generators
to aid the developer in a step-by-step transition from model to production code.
This allows verification of the code against the model on the PC using PC
simulation of the generated code, and on real time-capable rapid-prototyping
hardware similar to the target platform, but with additional resources. Finally
the code can also be run on the target platform, either as a complete model or
(using bypassing) as newly developed functions integrated into already released
versions of the software.

2.2 Model-Based Development in the Context of Large Applications

To be usable for large-scale automotive applications, model-based tools need to
integrate themselves tightly into existing toolchains. Amongst different tools,
ANSI C code has established itself as a quasi standard for embedded develop-
ment. Since ASCET allows for the integration both of models developed using
Matlab/Simulink as well as legacy C code, we focused our analysis on compiled
binaries as well as annotated C code.

3 Code Performance in Real-Time Systems

3.1 Stack Usage

Stack overflow is a possible cause of catastrophic failure that usually leads to
run-time errors that are difficult to diagnose. The problems stem from the fact
that the user needs to specify the amount of memory that should be reserved for
the stack. Underestimating the maximum stack usage leads to stack overflow and
thus system failure, overestimating means wasting valuable memory resources.
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One approach to solve this problem is to measure the maximum stack usage
using a debugger. However, even when running the program several times using
a test suite, it is not guaranteed that the maximum stack usage is ever observed.

AbsInt’s StackAnalyzer is able to provide a general worst-case estimate.
By performing a value analysis on the stack pointer, the tool can figure out
how the stack increases and decreases along all possible control-flow paths. This
information can be used to derive the maximum stack usage of a task.

Fig. 1. Call graph with stack analysis results

The results of StackAnalyzer are presented as annotations in a combined
call graph and control-flow graph. Figure 1 shows the call graph of a small
application, with stack analysis results at routines and for the entire application
(at the top). On this level, the results of stack analysis are displayed in boxes
located to the right of the boxes representing the routines of the application.
Each result box carries two results: a global result, coming first, and a local
result, following in angular brackets. Each result is an interval of possible stack
levels.

The local result at a routine R indicates the stack usage in R considered
on its own: It is an interval showing the possible range of stack levels within
the routine, assuming value 0 at routine entry. The local result for a routine is
derived from the results at individual instructions, which are shown in Figure 2
for one of the routines of this example.

The global result for routine R indicates the stack usage of R in the context
of the entire application. It is an interval providing bounds for the stack level
while the processor is executing instructions of R, for all call paths from the
entry point to R. Thus, the global result at routine R does not include the stack
usage of the routines called by R.

The predicted worst-case stack usages of individual tasks in a system can be
used in an automated overall stack usage analysis for all tasks running on an Elec-
tronic Control Unit, as described in [5] for systems managed by an OSEK/VDX
real-time operating system.
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Fig. 2. Individual instructions with stack analysis results

3.2 Worst-Case Execution Time

Many tasks in safety-critical embedded systems have hard real-time character-
istics. Failure to meet deadlines may be as harmful as producing wrong output
or failure to work at all. Yet the determination of the worst-case execution time
(WCET) of a task is a difficult problem because of the characteristics of modern
software and hardware [6]. Underestimating the execution time leads to systems
that are prone to errors because of timing failures, whereas overestimating might
lead to the wrong conclusion that the system designed will not be able to run
on the selected hardware or that so much capacity is already used that no new
functionality can be added.

Embedded control software (e.g., in the automotive industries) tends to be
large and complex. The software in a single electronic control unit typically has to
provide different kinds of functionality. It is usually developed by several people,
several groups or even several different providers. It is typically combined with
third-party software such as real-time operating systems and/or communication
libraries.
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Caches and branch target buffers are used in virtually all performance-oriented
processors to reduce the number of accesses to slow memory. Pipelines enable
acceleration by overlapping the executions of different instructions. Consequently
the timing of the instructions depends on the execution history.

The widely used classical methods of predicting execution times are not gener-
ally applicable. Software monitoring and dual-loop benchmark modify the code,
which in turn changes the cache behavior. Hardware simulation, emulation, or
direct measurement with logic analyzers can only determine the execution time
for some fixed inputs. They cannot be used to infer the execution times for all
possible inputs in general.

In contrast to that, abstract interpretation can be used to efficiently compute
a safe approximation for all possible cache and pipeline states that can occur at a
program point in any program run with any input. These results can be combined
with ILP (Integer Linear Programming) techniques to predict a safe upper bound
of the worst-case execution time (WCET bound) and a corresponding worst-case
execution path.

AbsInt’s WCET tool aiT determines the WCET of a program task in several
phases [7] (see Figure 3).

Fig. 3. Phases of WCET computation

The starting point of AbsInt’s analysis framework is a binary program and
additional information about numbers of loop iterations, upper bounds for
recursion, etc. This information may appear in a separate parameter file called
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AIS file, or as special comments in the C source that can be generated by
ASCET.

In the first step a decoder reads the executable and reconstructs the con-
trol flow [8]. This requires some knowledge about the underlying hardware, e.g.,
which instructions represent branches or calls. The reconstructed control flow is
annotated with the information needed by subsequent analyses and then trans-
lated into CRL (Control-Flow Representation Language) – a human-readable
intermediate format designed to simplify analysis and optimization at the ex-
ecutable/assembly level. This annotated control-flow graph serves as the input
for micro-architecture analysis.

Then, value analysis tries to determine the values in the processor registers
for every program point and execution context. Its results are used in loop bound
analysis and in cache analysis (possible addresses of indirect memory accesses).
Value analysis can also determine that certain conditions always evaluate to
true or always evaluate to false. As consequence, certain paths controlled by
such conditions are never executed. Therefore, their execution time does not
contribute to the overall WCET of the program, and need not be determined in
the first place.

WCET analysis requires that upper bounds for the iteration numbers of all
loops be known. aiT tries to determine the number of loop iterations by loop
bound analysis, but succeeds in doing so for simple loops only. Bounds for the
iteration numbers of the remaining loops must be provided as specifications in
the AIS file or annotations in the C source.

Cache analysis classifies the accesses to main memory. The analysis in aiT
is based upon [9], which handles analysis of caches with LRU (Least Recently
Used) replacement strategy. However, it had to be modified to reflect the non-
LRU replacement strategies of common microprocessors: the pseudo-round-robin
replacement policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU)
strategy of the PowerPC MPC 750 and 755. The modified algorithms distinguish
between sure cache hits and unclassified accesses. The deviation from perfect
LRU is the reason for the reduced predictability of the cache contents in case of
ColdFire 5307 and PowerPC 750/755 compared to processors with perfect LRU
caches [10,11], leading to higher estimates of the WCET.

Pipeline analysis models the pipeline behavior to determine execution time
bounds for sequential flows (basic blocks) of instructions as done in [12]. It takes
into account the current pipeline state(s), in particular resource occupancies,
contents of prefetch queues, grouping of instructions, and classification of mem-
ory references by cache analysis. The result is an execution time bound for each
basic block in each distinguished execution context.

Using the results of the micro-architecture analyses, path analysis determines
a safe upper bound of the WCET. The program’s control flow is modeled by an
integer linear program [13,14] so that the solution to the objective function is
the predicted worst-case execution time bound for the input program. A special
mapping of variable names to basic blocks in the integer linear program enables
execution and traversal counts for every basic block and edge to be computed.
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aiT’s results are written into a report file from which they may be extracted
by the ASCET system. In addition, aiT produces a graphical description that
can be visualized by the aiSee tool [15] to view detailed information delivered
by the analysis.

Fig. 4. Call graph with WCET bounds

Figure 4 shows the graphical representation of the call graph for a small
example. The calls (edges) that contribute to the worst-case runtime are marked
by the color red. The computed WCET bound is given in CPU cycles and in
microseconds provided that the cycle time of the processor has been specified.

Fig. 5. Basic block graph in a loop, with timing information

Figure 5 shows the basic block graph of a loop. The number sum # describes
the number of traversals of an edge in the worst case, while max t describes
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the execution time bound determined by aiT for the basic block from which the
edge originates (taking into account that the basic block is left via the edge). The
worst-case path, the traversal numbers and timings are determined automatically
by aiT. Upon special command, aiT provides information on the origin of these
timings by displaying the cache and pipeline states that may occur within a
basic block.

4 Integration into the Software Development Process

When developing software with ASCET, reusable components are typically
combined into a project. Through this project, the various operating system
tasks can be configured and code generation and build can be started. There-
fore, the project is the main center of the generate/compile/link-workflow. To
integrate the analysis tools into this workflow, a graphical tool has been de-
veloped that takes the code and binaries created by ASCET, calls aiT and
StackAnalyzer and displays the results in a window of its own (see Figure 6).
This tool can be called directly from the project window. It fetches the informa-
tion needed about the project via ASCET’s extensible tool API.

Fig. 6. Window with analysis results

In addition to the information calculated by aiT and StackAnalyzer, our
tool also analyzes the generated map file to calculate the total memory usage.
This tool serves as a one-stop information center that can be used to quickly
review the effects of changes made to the project.

The ASCET software development framework is specifically suited for the
development of real-time systems. The configuration of the operating system
necessary for embedded development is directly built into ASCET projects.
Processes and messages allow interfacing with real-time operating systems based
on the OSEK standard. We therefore decided to base our integration on the
pre-existing structure of operating system tasks and processes (called by the
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tasks). This way, the user can quickly check whether the actual worst-case task
runtimes clash with the task scheduling periods chosen. It is planned to improve
the integration by communicating the calculated WCET information back into
ASCET to correct or improve the operating system configuration.

4.1 Improving Function Development

For the developer, the immediate and detailed feedback provided helps to find
the critical areas of the project where most of the resources are spent. It also
can help to decide between different alternatives to solve a given problem. Using
model-based design, different modeling techniques can lead to strongly varying
code. Here, the information provided by aiT and StackAnalyzer can help to
prototype and develop software more rapidly.

An application of this is given in [16]. For his thesis, Abhik Dey has used our
integration of aiT into ASCET to identify the components of a lambda probe
model that need to be optimized for code size and performance. He was able to
measure the impact of different modelling techniques as well as compiler settings
precisely and managed to reduce the WCET of his complex lambda probe task
down by 87% and the code size by 54%.

4.2 Improving the Complete Process

Through our tool, the project manager receives the information necessary to make
choices for the project regarding modelling guidelines, code generation settings,
compiler tools and compiler settings. By analyzing a set of representative projects,
the complete tool chain can be optimized. As aiT also takes into account the ex-
act hardware configuration and memory layout, various alternative platforms and
configurations can easily be tested to achieve optimal resource usage.

Static analysis tools are also a valuable addition for managers coordinating
the development of several pieces of software that will need to work together or
even will be distributed on the same ECUs. By establishing memory and runtime
quotas for individual parts of the software and checking and enforcing them using
ASCET, aiT and StackAnalyzer, it is possible to prevent divergence of the
efforts of several teams working on the same project.

4.3 Additional Improvements over Manual Coding

For the calculated WCET and stack usage to be useful, they need to be as close
to the realistic model values as possible. Therefore, it is important to improve
the precision of the calculation.

Instead of just relying on the C source code, we can make use of the additional
information provided by the model, which is usually much more rigidly defined
than the resulting C code. One example would be the implementation of phys-
ical values as integer values in the program: A temperature ranging from -20.0
to +50.0 in the model might be implemented as a 16 bit integer value in the C
code, with appropriate conversions. Such implementations are used even when
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developing using C. In this case, the developer has to take care that conversions
take place in all cases where the value is used. When using model-based devel-
opment coupled with a code generator, all conversions are taken care of by the
code generator automatically. After specifying the range and number of digits,
the developer can work with a physical view of the variable.

In this example, the implementation of the physical value does not make use of
the full range of the 16 bit integer. Depending on the way that the conversions are
performed, this might or might not be obvious to the static analysis tool (and to
a less careful human reader of the source code). Model-based development tools
are able to supply exact information on the value range used, therefore allowing
for higher precision of the analysis results. Further information to be supplied
could be the maximum iteration number of loops, possible values of pointers,
etc. Normally, aiT tries to find such information by static analysis, but relies on
user annotations in cases where static analysis does not succeed.

Conversely, the results of aiT and StackAnalyzer are meant to be used to im-
prove the C code used in the project. A developer working on C code discovering
a certain coding pattern to be inefficient has to change every instance of this pat-
tern as well as monitor future changes for instances of the pattern. Using model-
based development, this information can be used to improve the implementation
of the code generator. To update the C code, it is enough to regenerate it using
the new version of the code generator. In addition to this manual improvement
process, there are a few instances where it could be possible to use the informa-
tion gained by static analysis to automatically configure the code generator. One
example would be in- and outlining of state machines. Here, there are few rules
to choose the implementation with the best performance that apply for all state
machines. Instead, the developer could generate different variants of the state ma-
chine and choose the parameter setting that results in the code performing best.

We were able to use additional information supplied by the code generator
in the context of interpolation routines for characteristic tables. Here, a special
loop construct is used in the C code where the loop iteration count depends on
the size of the data structures involved. This special loop construct could not be
resolved by static analysis, rendering the calculation of loop bounds impossible.
By providing annotations on the nature of the loop bounds, we were able to
calculate the WCET for the table accesses.

4.4 Experiments

The software used in the experiments was an engine throttle control module
specified in ASCET and compiled with Tasking compiler v7.5. The compiled
code was run on an STM ST10F269 microcontroller board. Run-times were
extracted from bus traces made with the ISYSTEMS ILA 128 logic analyzer.

In general, finding a worst-case input for each procedure can be very chal-
lenging. In our experiments, we used worst-case path information provided by
aiT to manually construct a corresponding input.

In order to allow a fully automatic analysis, some adaptations were necessary
that are described in the following.
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Volatile Variables. Some data structures in the generated code were statically
initialized with the volatile qualifier. aiT uses the values from the initialized
data segment of the executable for value analysis, in particular to find infeasible
paths and to determine loop bounds. Since aiT works on the binary level on
which no information about volatile variables is preserved, it requires that all
volatile variables be declared as volatile by means of annotations. Without these
annotations, the initializations for variables produced by ASCET do not lead
to the worst-case path.

For example, in the following (simplified) code the variables active and
noOfTransfers were both initialized to zero. Without annotations, aiT would
consider the true branch of the if statement as infeasible and derive a loop
iteration count of zero.

if (active) {
...
dst_ptr = ...;
adr_ptr = ...;
end_dst_ptr = dst_ptr + noOfTransfers;
while (dst_ptr < end_dst_ptr) {

*dst_ptr++ = *adr_ptr++;
}

}

Currently, volatile annotations must be written manually. For the future, AS-
CET is expected to pass information about volatiles to aiT automatically.

Synchronization. In the following example the boolean variable condition
is set externally by another process.

while (_condition) {
...

}

In such a case, an upper bound for the number of loop iterations cannot be
determined statically.

This code is used to synchronize processes. Here we use an annotation speci-
fying that this condition is never true. The cost for the synchronization should
be taken into account by a system-wide schedulability analysis.

Interpolation Functions. The generated code contains lots of interpolation
routines using iterative search algorithms like binary search or linear search. The
loop bounds for these algorithms usually depend on some parameters, e.g., the
size of the problem in case of binary search. Therefore, aiT has been extended
by parametric loop bounds featuring an expression instead of a fixed number,
for instance

loop here max ceil (log2 (R4/2));
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In this case, value analysis tries to determine the contents of register R4 at the place
of the annotation, and if successful evaluates the expression to obtain a concrete
loop bound. Parametric loop bounds can thus be used to specify automatic loop
bounds for ASCET interpolation routines without effort for ASCET users.

4.5 Discussion of the Results

Table 1 shows the results of practical experiments for aiT. The measured and an-
alyzed times are given in processor cycles. Overall, the predicted WCET bounds
are very precise.

Table 1. Comparison of maximal measured run-times and WCETs predicted by aiT
(in cycles)

Procedure name Measured aiT Overestimation

ANALOGIN16 IMPL AdInterrupt 291 291 0.0%
ANALOGIN16 IMPL AnalogIn16 6 6 0.0%
CONVERTER IMPL convert 26 26 0.0%
DISTAB12 IMPL measurement a 263 283 7.6%
DISTAB12 IMPL measurement b 263 283 7.6%
DISTAB12 IMPL measurement c 263 283 7.6%
PIDT1 MODULE IMPL normal 2980 3138 5.3%
PIDT1 MODULE IMPL out 133 133 0.0%
PWMOUT7 2 IMPL PwmOut7 2 109 110 0.9%
PWMOUT7 7 IMPL PwmOut7 7 116 117 0.9%

Table 2. Comparison of maximal simulated system/user stack usage and usage as
predicted by StackAnalyzer (in bytes)

Procedure name Simulated StackAnalyzer Overestimation
ANALOGIN16 IMPL AdInterrupt 0/0 0/0 0.0%
ANALOGIN16 IMPL AnalogIn16 0/0 0/0 0.0%
CONVERTER IMPL convert 0/0 0/0 0.0%
DISTAB12 IMPL measurement a 0/0 0/0 0.0%
DISTAB12 IMPL measurement b 0/0 0/0 0.0%
DISTAB12 IMPL measurement c 0/0 0/0 0.0%
PIDT1 MODULE IMPL normal 16/32 16/32 0.0%
PIDT1 MODULE IMPL out 4/0 4/0 0.0%
PWMOUT7 2 IMPL PwmOut7 2 0/0 0/0 0.0%
PWMOUT7 7 IMPL PwmOut7 7 0/0 0/0 0.0%

Table 2 compares the results of stack usage analysis with results obtained
from simulator runs, showing that the analysis results are precise. All stack sizes
are given in bytes. The user stack usage is 0 in most routines since the generated
code rarely contains local variables that would be stored on the stack. The system



Towards Model-Driven Development of Hard Real-Time Systems 159

stack usage is 0 in those routines that do not call other routines and therefore
never push a return address on the stack.

5 Conclusion

Tools based on abstract interpretation can perform static program analysis of em-
bedded applications. Their results hold for all program runs with arbitrary inputs.
Employing static analyzers is thus orthogonal to classical testing, which yields
very precise results, but only for selected program runs with specific inputs. The
usage of static analyzers enables one to develop complex systems on state-of-the-
art hardware, increases safety, and saves development time. Precise stack usage
and timing predictions enable the most cost-efficient hardware to be chosen. As re-
cent trends in the automotive industry (e.g., X-by-wire, time-triggered protocols)
require knowledge of the WCETs of tasks, a tool like aiT is of high importance.

Combined with model-based design and automatic code generation, the poten-
tial of static analysis tools is increased greatly: More strict specification and devel-
opment guidelines enforced by tools like ASCET allow for a high precision of the
analyzers’ estimates as demonstrated by our experiments. The resulting combi-
nation allows for the development of more secure and better-performing systems
while decreasing time-to-market through enhancing development productivity.

Since memory class information is only finalized in the linking stage, aiT and
StackAnalyzer currently operate on completely linked binaries. This is not
always convenient for the user. Many companies rely on a complicated toolchain
to create binaries for the embedded platforms. It would be a huge overhead to
use this toolchain just to analyze the performance of a single component. We
currently research different ways of analyzing single compiled object files, either
through direct analysis of the object file or through linking just the object file,
ignoring or providing undefined symbols. In both cases, the calculated WCET
bounds will be higher (and therefore less exact) due to the information missing
from the linking stage. But even those less exact results might help users to
improve the performance of their component.

We plan to further improve on the solution that we have developed so far by
integrating static analysis tools like aiT and StackAnalyzer even more tightly
into ASCET’s development environment. By allowing developers to analyze
smaller parts of a model without integrating them into a project, we would be
able to decrease turn-around-times for function development even more. We also
hope to use the results obtained by aiT for semi-automatic OS configuration of
the whole project.
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Abstract. Automotive software has become an important factor in the
development of modern and innovative high-end vehicles. More and more
functions can only be realized by the cooperation of different control
devices. In addition, not only a single product but a number of basic
configurations and a large number of optional functions for each new
type series have to be addressed by the software. While product lines
are a promising approach to address known variability within a car se-
ries, the reuse of functions across type series is not feasible with the
current proposals. In this paper, a service-oriented approach is sketched
which exploits that functions in automotive systems only have to be
recombined in a restricted manner in order to enable reuse across car
series. Components are used as basic units which provide localized basis
functionality, patterns represent reusable assets which capture the in-
teraction and protocols in between several roles, and services capture
complex reusable functionality which requires the interaction of multi-
ple units. It is sketched how all phases of the development process can
benefit from a service-oriented approach and that advanced synthesis
techniques can be employed to reuse the components, patterns and ser-
vices and compose them with only minimal manual efforts.

1 Introduction

Automotive software has become an important factor in the development of
modern high-end vehicles. The size of the software is growing at an exponential
rate. Today, about 70% of the innovations in these cars are software driven and
an increase of the percentage of costs due to the development of software is
expected from 20-25% up to 40% in the next few years (cf. [1,2]).

While, in the past, single control devices had to fulfill a single task only and
had been connected to other devices only in rare cases, today more and more
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functions can only be realized by the cooperation of different control devices
which results in dramatically increasing complexity (cf. [1]).

The software of automotive systems is in fact even more complex, as a car
vendor typically offers not only a single product but a number of basic config-
urations and a large number of optional functions for each new type series. In
order to be able to customize the cars such that they are better suited to the
specific needs of each customer, not only single software versions but a number
of software configurations have to be mastered.

In addition, due to short innovation cycles and high time and costs pressure,
productivity is of major importance for automotive software. Increasing reuse at
all levels is therefore a valuable objective. The fact that the development of new
functions is an exception rather than the regular case in automotive software [3]
indicates a high potential for reuse. However, today an open and flexible software
architecture which facilitates reuse is often missing and thus many functions are
nearly built from scratch for each vehicle model (cf. [1]).

Initiatives such as AUTOSAR1 are the first step towards and open and flex-
ible software architecture. The definition of standard interfaces for the soft-
ware components ensures that components from different suppliers and vendors
can technically interoperate. However, at the application level the need for an
application-specific design of the coordination between these components still
hinders reuse.

Also software product families for automotive software (cf. [4]) are a promising
direction for different variants of software for a type series. However, the resulting
reuse is restricted to a single product family as the software components can
only be reused if the architectural context is quite similar. Thus the product-
line approach in general can only solve the problem of reuse for a single vendor
or when the same standard product-line architecture is employed by all vendors.

However, as innovative solutions in software are a main competitive factor,
we cannot assume that for these solutions integration into standard product-line
architectures is already at hand when required. This is particularly problematic,
as the different software components of a car or car series are developed by
a multitude of suppliers within a complex vendor supplier network. Thus in
contrast to standard software interfaces, the interfaces must not only serve as
means to protect and decouple the components of the developed system from
each other in order to handle the development complexity, but to also guarantee
that the division of labor can really take place. Thus a solution is required where
reuse can also happen at each stage of a complex supplier chain.

The observed limitation for reuse and the needed support for multiple system
configurations result in great challenges for the software engineering of automo-
tive software. At first, an approach for the development of the software is required
which enables reuse across multiple type series and different software architec-
tures in order to support the requirements of vendors and suppliers. Therefore,
the approach must support adjusting of the software such that the required con-
figurations can be derived with minimal effort. In addition, the software design

1 www.autosar.org
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and implementation has to be supported in such a manner that each component
can be configured to be adjusted to the needs of specific architectures and con-
figurations which might either mean that different levels of service have to be
supported or that depending on the configuration a coordination with different
other components might be required. Finally, when it comes to the verification
of the system, an approach is required such that the verification efforts can be
restricted to a limited number of feasible steps for the development artifacts
and integrated system which guarantee that each type series and all delivered
configurations operate as expected.

This paper outlines how a service-oriented approach can enable the reuse
of automotive software within and across type series.2 It is further discussed
which existing solutions can be employed to achieve the outlined goals and how
requirements engineering, architectural design, detailed design, implementation,
and verification are affected by the proposed service-oriented proceeding.

It is important that the outlined approach does not really introduce a new
style of modeling but employs the architectural views as they are already in-
tuitively employed by the engineers when describing the different functions of
automotive systems. Instead, the existing views are made explicit by means of
the service concept.

The paper is organized as follows: At first in Section 2 an advanced function
for a modern vehicle in the form of an intelligent energy-management system
is introduced. It is employed in the following Section 3 to introduce and define
step-wise the basic concepts for a component-based architecture, its extension
with patterns, and finally the employed notion of services and the resulting
architecture. Then, in Section 4 the implications of a service-oriented approach
are discussed for the life-cycle phases requirements (Section 4.1), architectural
design (Section 4.2), fine-grained design and implementation (Section 4.3), and
verification & validation (Section 4.4). Finally, the paper discusses related work
in Section 5 and some conclusions and an outline of planned future research is
presented. Some formal prerequisites are provided in the Appendix.

2 Application Example

The ongoing electrification of more and more vehicle functions such as electric
steering, driver-assistance systems, ABS, ESP, etc. creates a plus in function-
ality but also results in a steadily increasing need for electrical energy. There-
fore, today in advanced cars all energy storage devices and energy producers
are equipped with monitoring capabilities to ensure proper supervision of the

2 The presented results extend the Mechatronic UML approach which supports the
description and compositional verification of the real-time coordination by means of
components and patterns [5] and the integrated description and modular verification
of discrete behavior and continuous control with components [6,7]. As introducing
all the required Mechatronic UML notations would not be possible with the given
space constraints, we will however use standard UML notations and timed automata
instead.
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power supply for safety-related functions. Examples are systems such as Dy-
namic Electrical Energy Management3 from Siemens VDO or eBalance [8] from
Hella KGaA Hueck & Co., which guarantee that the storage devices are always
properly charged and that, in case of problems, the energy consumption of com-
fort functions is restricted.

The specific functions such advanced energy-management systems provide
are: (1) In specific operation scenarios, it is possible that the energy provided
by the generator is not sufficient and the battery has to be used to handle the
overload. If a critical load status of the battery and such an overload is detected,
the loads due to comfort functions are shut down gradually so that sufficient
energy can be provided to primary and safety-relevant systems like the braking
system or steering. This reduces the energy load in the vehicle and guarantees
that the battery can be properly charged in order to guarantee the long-term
operation of the car. (2) Another scenario occurs if the engine is in its idle state.
If such a situation and an overload are detected, the energy management system
can request to increase the revolutions per minute (rpm) in idle state in order
to ensure that the battery is not discharged beyond the safety margins. (3) To
allow a safe operation of the electrical safety-critical functions, it is mandatory
that these functions are 100% available even if all conventional energy systems
fail. Therefore, such systems require a second independent energy storage device
that is activated when the standard storage is not available.

In the following we will focus only on the first function and how the realization
of the energy management system (EMS) in software is accomplished.

3 Software Architecture

The introduced example of intelligent energy management is now employed to
introduce the concepts required for the service-oriented architecture of auto-
motive systems step-wise. Besides introducing the concepts informally, we also
provide some basic formalization in order to clarify the introduced concepts.

3.1 Component-Based Architecture

A component-based architecture ensures that the components only interact with
their environment via well-defined interfaces (cf. [9]) and thus provide a reason-
able decoupling of the different components. Following this principle, an archi-
tecture for an intelligent energy-management system inspired by the eBalance
system [8] can be derived as depicted in Figure 1 using the UML standard no-
tation for components, ports, and connectors.

A core component serves as the central management unit which controls all
consumers and observes all producers. The core may in addition interact with
the higher-level vehicle control by providing relevant status information and
3 http://www.siemensvdo.com/products solutions/chassis-

carbody/body chassis electronics/battery-energy-management/Battery-and-
energy-management-BEM.htm
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consumer driver

driver

driverproducer

consumer

core

std. interface appl. specific interface

Fig. 1. Component-based architecture for the EMS software (cf. [8])

reading relevant information about the vehicle such as the current operation
mode and requested system characteristics (omitted here). In addition, special
driver components operate as wrappers to the different energy producers and
consumers, and can be either located on the central ECU or on the local ECU
of the producer resp. consumer.

Between the driver and core component, a standard protocol can be employed
which permits reusing the core in many settings, while the driver components
have to be adjusted depending on the application-specific interface they can
employ to control and monitor the different producers and consumers.

Assuming that all employed interfaces are defined by a related real-time proto-
col to encode modes and timing constraints,4 we can formally define a component
as follows:

Definition 1. A component C is a pair (MC , MC) with a set MC of automata
MC

1 , . . . , MC
h denoting a protocol for each port of the component and the overall

component behavior in form of a single automaton MC.5

While usually in models without time the connector behavior is omitted, channel
delay and reliability are of crucial importance for real-time systems and thus have
to be addressed explicitly in the form of an additional connector automaton:

Definition 2. A connector N is a pair (MN , MN) with a pair MN of automata
MN

1 and MN
2 for each connector end and the connector automaton MN .

4 See AUTOSAR modes or UML protocol state machines for related modeling con-
cepts. In addition, the exchanged information (the parameters of the exchanged mes-
sages/signals) is assumed to be modeled using an appropriate interface description
language (e.g., AUTOSAR).

5 See Appendix A for the basic definition of automata employed here.
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Using the definition for components and connectors, we can thus define the
formal system model as follows:6

Definition 3. A component-based system S is a triple (N , C, map) with a set N
of connector instances N1, . . . Nn, a set C of component instances C1, . . . , Cm,
and a bijective mapping map from the set of all connector automata {MN

i ∈
MN |N ∈ N} onto all components ports {MC

i ∈ MC |C ∈ C}.
For a correctly composed architecture, we assume that the ports conform to
the connector automata they are mapped to (in fact it must hold a refinement
relation as defined in Definition 12: MC

i � map(MC
i )) which ensures that all

signals are properly connected and that the interface match w.r.t. their timing
protocols.

Given a correctly composed architecture, we can derive its behavior by simply
combining all component behaviors MCi and connector behaviors MNj :

(‖C∈CMC) ‖ (‖N∈NMN ).

3.2 Pattern-Based Architecture

A component-based architecture focuses on the potential for reuse present in
the form of the different components. The protocols and interaction between
the components are valuable assets for reuse in practice, too. While for the
protocols this reuse often occurs in the form of reuse of the interfaces, for the
interaction behavior the potential for reuse at the conceptual level has lead to
the concept of patterns [11] and pattern-oriented software architectures [12]. A
related architecture which extends the one depicted in Figure 1 by employing
patterns is presented in Figure 2 using the UML concept of collaborations for
the patterns.

The protocol and role behavior for the interaction between the core and its
drivers has become a first class entity of the architecture and thus the reuse that
was implicit present before is documented explicitly.

A simplified version of the Consume pattern is depicted in Fig. 3 where instead
of different service levels only the normal and critical mode of a consumer are
supported using UPPAAL timed automata [13]. In Fig. 3(a), the behavior of
the consumer role is depicted. The consumer can stay in mode normal as long as
it receives ping events each 2 msec. If not, it has to switch in at most 4 msec
to the mode critical, which requires that no energy or only minimal energy is
consumed. The connector behavior which could result in a delay of at most 2
msec is depicted in Fig. 3(b). Finally, the possible behavior of the coordinator
role is outlined in Fig. 3(c). In normal operation it is required that the ping is
sent at least after 2 msec. If the critical mode has been reached, the coordinator
will not send the ping events any more.

In our approach, a pattern thus extends the notion of a connector and permits
multiple and not only two connection points. It comprises of a set of roles that
6 For the different component and connector instances and their automata, we assume

an appropriate labeling (cf. [10]).



Reusable Services and Semi-automatic Service Composition 167

consumer driver

driver

driverproducer

consumer

core
Produce

Consume

Consume

consumer

consumer

coordinator

coordinator

coordinatorproducer

Fig. 2. Pattern-based architecture for the software of the Energy-management system
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Fig. 3. The Consume pattern with automata for the two roles and the connector

interact only via connectors. The roles will later connect the related component
ports in the final system. In addition, the connector behavior which defines the
expected channel delays and reliability are also included in the pattern in form
of an automaton.

Definition 4. A pattern P is a pair (MP , MP ) with a set MP of automata
M1, . . . , Mk for each role and the connector automaton MP .

It is to be noted that the beforehand employed notion of a connector is included
in this definition of a pattern. The explicit consideration of a connector further
ensures that besides the client and server protocols, the effects of the commu-
nication medium are also taken into account. A system with a pattern-based
architecture can thus be built by a number of components and patterns which
overlap at their ports resp. roles. Using these assumptions, a system can be
formally defined as follows:

Definition 5. A system S is a triple (P , C, map) with a set P of pattern in-
stances P1, . . . Pn, a set C of component instances C1, . . . , Cm, and a bijective
mapping map which maps to each component instance port {MC

i ∈ MC |C ∈ C}
the related unique pattern instance role {MP

i ∈ MP |P ∈ P}.

We further require for a correctly composed pattern-based architecture that the
ports conform to the role automata they are mapped to (MC

i � map(MC
i ))
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which like in the case with connectors ensures that all signals are properly con-
nected and the interface match w.r.t. their timing protocols.

For a correctly composed pattern-based architecture, we can then derive its
behavior by simply combining all component behaviors MCi and the connector
behaviors CPj for all patterns:

(‖C∈CMC) ‖ (‖P∈PMP ).

3.3 Service-Oriented Architecture

Following the definition of services in [14], we define a service by ”the inter-
action among entities involved in establishing a particular functionality.”7 The
entities are further called the service roles. This general definition includes sim-
ple request/response interaction scheme as well as complex coordination patterns
between different independent roles [5]. Therefore, this notion of a service can
be seen as a generalization of the pattern concept.

The success of patterns has shown that the interaction scheme rather than
the elements of that interaction are the right vehicle for reuse at the conceptual
level. As depicted in Figure 4, the full potential for reuse in our example can
also only be realized when we consider the whole web of interacting roles and
embedded components as a reusable asset.

consumer driver

driver

driverproducer

consumer

core
Produce

Consume

Consume

consumer

producer

consumer

driver

driver

driver

EMS

Fig. 4. Service-oriented architecture for the software of the energy management system

While the decomposition of components into a set of subcomponents is simply
the standard way how the architectural principle of hierarchical decomposition is
employed, applying the same principle to services such that a subset of a system
with only unconnected pattern roles results in a service is not present in the
component- or pattern-based approaches (see Figure 4).

7 It is to be noted that there exist other definitions of the term service which focus more
on their run-time composition. However, in the considered domain of automotive
software such a restricted view on what constitutes a service is too restrictive.
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Definition 6. A service W can thus be defined as a tuple (P , C, map, R) with P
a set of patterns P1, . . . Pn, C the set of components C1, . . . , Cm, map a injective
mapping from the component ports to pattern roles, and R the set of unconnected
pattern roles MR

1 , . . . , MR
k such that a pattern role is either mapped to a port or

element of R.

It is to be noted that like for patterns and connectors the definition of a service
includes the one of a pattern as a special case. In addition, it might include
components which are essential to achieve the functionality of the service or can
contain other services as elements.

The tight relation between the notion of a pattern and the introduced notion
of a service can also be seen by the fact that for each service W we can build
the related composed pattern by P = (MP , MP ) as follows:

– MP = {MR
1 , . . . , MR

h } is the set of role protocols and
– MP is the connector automaton built by MP1‖ . . . ‖MPn‖MC1‖ . . . ‖MCm .

This mapping permits service definitions which rely on other service definitions
and to derive the formalization of a system with services using their related
composed pattern.

The producer and consumer components in our example will not only interact
with the core of the intelligent energy-management system, but will also interact
with other vehicle functions which might also be described as a service. Even
though we have the driver components operating as adapters between the specific
components and the core, the specific components have to provide sufficient
interfaces and internal processing which ensures that a correct coordination with
respect to all services it is involved in is guaranteed. This is of course a major
hindrance to reuse as the specific components cannot know a priori with which
services they have to coordinate later on.

In the domain of automotive software, the required integration of the com-
ponents with all the service roles they realized can be restricted to three cases:
(1) the reading of data when a given role requires that the component provides
some required information to the service, (2) the writing of data when the service
intents to control a specific parameter of that component, and (3) the synchro-
nization of the reactive behavior of the component with the coordination of the
service (via the role protocol). The first straightforward solution to avoid this
problem is the use of standardized interfaces (e.g., all components are capable of
cooperating with a standard interface for energy management). Later in Section
4.2 we will describe our solution which handles this problem by synthesizing the
required wrapping behavior to a great extent.

4 Services During the Different Development Phases

The introduced service-oriented description of software makes the overlapping
specification of required functionality the rule rather than the exception. In the
following, it is outlined how and why this paradigm shift can help in the different
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development phases to address the problem of many system configurations and
reuse across different architectures.

4.1 Requirements Engineering

In requirement engineering for automotive systems, a number of major func-
tions are usually identified and a functional decomposition approach is used to
decompose them into smaller functions. At this level, a scenario and service-
oriented description is natural, as the requirements do not respect any a priori
decomposition of the system.

producer consumer consumer driver driver driver core

getStatus

sendStatus

getParam(3)

setMode

setMode

setOpModeStop

setModeEqRun

Fig. 5. Service-oriented description of the required behavior by means of scenarios

For our example, a possible scenario of the service is specified in Figure 5.
The core is checking the status of the producers and setting the mode for the
consumers via the driver components. The driver translates the command to the
specific interface of the specific components.

It is to be noted that for the requirements level it might be sufficient to de-
scribe the interaction using a number of scenarios. Later, the complete behavior
has to be defined using an operational model which, to a certain extent, might
be derived using available synthesis approaches (cf. [15,10]).

In addition to the scenarios, required properties of the system might be spec-
ified using, for example, temporal logic.

4.2 Architectural Design

When employing the outlined service-oriented approach during the architectural
design, complex functions are described as services. Within each service the coor-
dination of the roles by means of command and/or data flow and fully embedded
components are specified to make up the service. In this macro view of the ar-
chitecture, the different roles are mapped on related architectural components
or subsystems. How the assigned roles are coordinated is described on the micro
architectural level within the components.

Macro Architecture. The assignment of roles to architectural components is
described in Figure 6. The producer and consumer component both take over
the corresponding role. In the example of Fig. 3, the states of the related role
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protocols define the permitted energy consumption of the consumer. The states
normal and critical imply that the regular amount of memory resp. only a minimal
amount of energy or no energy can be consumed (taking only the mechatronic
actuators and sensor and not the ECU into account).

consumer

comsumer driver

producer
core

Produce

Consume

Consume

operator

control

operator

control

Fig. 6. Service-oriented architecture for the software of the energy-management system
with operator and controller micro-architecture

The outlined guarantees for the energy consumption are captured in the ap-
proach with So-called role invariants (cf. [16,5]). These role invariants capture
the constraints which must hold for different operational modes (cf. AUTOSAR).
The constraints for the components result from the combination of the differ-
ent role invariants of its ports. Usually, the simple logical conjunction of the
role constraints is sufficient here. In our example, we have to consider for each
component which realizes the energy consumer role that its energy consumption
in mode critical is minimal denoted by the role invariant (consumer.critical =>
energy min).

However, when shared resources are described, also additive constraints are
possible. E.g., if one role requires that the energy usage is below a certain thresh-
old and a second role referring to another function of the same component makes
a similar constraint, the sum of both thresholds has to be ensured.

Micro Architecture. For the internal architecture of the software components,
we propose to distinguish between a controller part which provides the perma-
nent service (e.g., a feed-back control algorithm) and an operator part which
takes care of the mode management of the component, failure management, and
the communication with other components (cf. [17]).

In the outlined service-oriented setting, the different roles played by these
components via their ports which have their origin in the related system services
have to be addressed in the operator part. The controller in contrast realizes the
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available control strategies and the constraints concerning the switching between
them.

Due to the domain-specific restrictions of automotive software concerning the
required integration of the reactive behavior of the operator, we thus have to
face the following integration problems:

1. A service requires the reading of data via a given port. Restricting our atten-
tion at first to the data aspect of such a requirement, we can envision that at
the architectural level we can address this integration by elaborating which
required data can be read by providing a mapping to the provided data of
the embedded controller. In simple cases such a mapping would simple relate
a provided data item to the requested one in the form of a name mapping. In
practice, however, more complex mappings might also be required. In these
cases, we propose to only address the question of whether such a mapping is
possible (e.g., by developing a required observer which exploits the provided
data to construct the required one) and add a method to the operator which
is to be realized during the detailed design and implementation stage in or-
der to realize the effective mapping. Note that we propose here to equip the
interfaces not only with the concrete measurement units for each value but
also with more detailed information about its accuracy (max. value failure,
covered frequency spectrum, period, jitter, . . . ).

2. A more complicated case is the writing of data. A similar mapping of the
value including a mapping from the provided must-value of the port to the
must-values of the underlying controller can be employed and a correspond-
ing method of the operator must be added. However, if multiple ports want to
write a must-value which affects the same provided must-value of the under-
lying controller, such a straightforward treatment would result in conflicting
write requests. Possible strategies to resolve such conflicts are a prioritization
of the services. However, this can only resolve the conflict, if the lower pri-
ority service includes operation modes which do not result in the conflict. In
the next case we will consider such conflicts taking the full reactive behavior
related to a port into account.

3. Finally, the reactive behavior of the controller which is responsible for the
mode coordination has to resolve all conflicts between the modes of the ports
and the controller interface. In addition, the operator has to realize the read
and write operations via the ports by mapping them on the available op-
erations of the controller. To address the latter case, the operator has to
periodically execute the related mapping methods to propagate the read or
written values. If all involved operations are mode-independent, the required
propagation can be derived straightforward from the information available
in all required interfaces. In contrast, in the latter case – the integration
of the remaining reactive behavior which includes the mode-dependent read
and writes operations and fulfills the constraints for the modes of the related
ports and the controller – is a complicated and error-prone undertaking. We
will present our concepts for automatically addressing this issue by an ap-
propriate synthesis algorithm which extends earlier work on the separation
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of concerns at the architectural level (cf. [18]). The algorithm at first al-
lows determining whether such integration is possible at all. In addition, the
algorithm outputs a synthesis result which is correct by construction.

Existence and Synthesis of the Operator. While the cases 1 and 2 are
mainly addressed in the detailed design and implementation (cf. Section 4.3),
the existence of a proper realization for the synchronization of the ports is of
crucial importance and has to be ensured earlier during the architectural design
of the system.

Besides the local rules specified for each service role, we may also have more
general requirements: e.g., the valid mode combinations for the roles of the mul-
timedia subsystem and the EMS require that the multimedia system is switching
to a mode with only minimal energy consumption when the EMS identifies crit-
ical conditions. In our example the multimedia component provides an interface
and protocol play to start or pause the multimedia presentation which in its core
form is depicted in Fig. 7(a).

(a)
play

pause

off

off?

play?

off?

pause?play?

pause?

(b)

off

play

pausestandby
on?

on?

off!

off!

play? pause?play?

pause?

Fig. 7. Two alternative play protocols

Given automata M1, . . . , Mn for the ports of a component the algorithm for-
mally defined in [18,19] can be employed to derive an automaton M which refines
M1‖ . . . ‖Mn and fulfills all constraints concerning mode conflicts if such an au-
tomaton exists at all (see Appendix A).8 As such an automaton only describes
the synchronization skeleton (cf. [20]) of the required operator behavior, the
more detailed functional behavior including its functional behavior in the form
of the matching methods remains to be integrated also.

The synthesis checks how the main play concern of the multimedia component
and the energy management concern (represented by the coordinator role of
Fig. 3(a)) can be combined. This combination has to take care that in the case
of the critical state of the consumer role the play interface must not be in a
state which consumes more than a minimal amount of energy captured by the
condition (consumer.critical => energy min) and ((play.play or play.pause) => not
energy min) (how this condition is derived from the employed pattern roles is
8 For the case without time, we have shown in [18] that due to the construction of an

symbolic synthesis algorithm and an appropriate variable ordering for the employed
symbolic encoding, an only linear increase for the size of the encoding with respect
to the number of involved automata can be guaranteed.
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later outlined in Section 4.4). Thus, the states play and pause cannot be combined
with the critical mode of the consumer protocol.

In our example, the synthesis reports that there is a conflict. The source of
this conflict is that the play protocol is not able to leave the conflicting states play
or pause and that even the state off requires that a play request will be granted.
In contrast the second variant of the play protocol depicted in Fig. 7(b) can be
combined requiring 0.769 sec to run the algorithm. An additional state called
standBy which replaces the off state, the modified state off which really covers
the idea of an inactive behavior, and transition to this state give the component
the degree of freedom to leave the critical states in time. Therefore, the synthesis
step is now successful.

In the consider case, the controllers represent reusable assets which can be
provided by different suppliers as block-box components. The required integra-
tion within the operator in contrast is highly application specific but can be
to a great extent automated in such a manner that crucial properties can be
guaranteed by construction.

4.3 Detailed Design and Implementation

At the level of detailed design and for the implementation, the separate design
and implementation of the services and its roles seems an interesting perspective
which supports the often required division of labor between vendors and suppliers
resp. subcontractors.

The resulting detailed design and implementation of a service can extend the
reuse present at the architectural level. Whole components such as the core may
be simply reused.

As outlined for the micro-architecture, the embedded controllers are inte-
grated by the operator which adjusts the interaction in a wrapper-like style.
Therefore, the controllers can also be considered reusable assets at the imple-
mentation level.

Concerning the operator, the automated synthesis of the reactive synchroniza-
tion skeletons including the required execution of the mapping methods can be
employed. In addition, manual refinement steps can be considered which further
restrict the possible behavior while still providing behavioral consistency.

While case 3 is thus more or less covered at the architectural level, the cases
1 and 2 remain to be addressed during the detailed design and implementation.
In the case of simple direct mappings, the required code for the methods may
be also automatically derived using the mapping tables as input. In the case of
more complex functional behavior, either a realization with classical CAE block
diagram tools or a programming language are the possible choices.

4.4 Verification

It is important to notice that the verification activities have already been started
at the architectural level. Choosing a service-oriented description which decou-
ples the functions and a declarative specification of the constraints concerning
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that interaction allows us to rule out any other unexpected interference by means
of correctness by construction due to the described synthesis step and additional
verification steps outlined in the following.

To ensure correctness for a pattern or service, we verify whether the behavioral
requirements specified by means of a temporal logic formula φ and ¬δ (denoting
deadlock freedom) hold for the related pattern or composed pattern.

Definition 7. A pattern or composed pattern P = (MP , MP ) with a set MP

of automata MP
1 , . . .MP

k is locally correct w.r.t. a constraint φP iff:

MP
1 ‖ . . . ‖MP

k ‖MP |= φP ∧ ¬δ. (1)

This can be verified using testing and/or a real-time model checker by building
the model MP

1 ‖ . . . ‖MP
k ‖MP and then verify whether the constraint φP ∧ ¬δ

holds. For the Consume pattern we can thus verify deadlock freedom as well as
the crucial property that a consumer is shutdown after at most 6 msec after
this decision has been made by the controller switching into the state critical by
checking A[] (coordinator.critical and coordinator.y>6) imply consumer.critical for
y the local clock of the coordinator.

While this is rather obvious for a failure-free channel, we can also proof this
for a slightly modified connector which also models signal omissions depicted in
Fig. 3(d). This allows us to also check whether the protocol is crash resistant and
can handle lost messages. A more detailed analysis of the simple pattern would
also reveal that the performance of the protocol is not satisfactory as jitter in
the channel behavior could result in unnecessary consumer shutdowns.

If for a resulting system S with behavior MS holds MS |= φP ∧ ¬δ we say
that the system preserves the correctness of the pattern P .

In addition, the role automata MP
i may be equipped with role invariants φP

i

which capture the mode specific constraints and guarantees which must hold
for any component that realizes that role. In case of the Consume pattern, the
consumer role has the invariant consumer.critical => energy min. In case of the
former play protocol the condition will be (play.play or play.pause) => not en-
ergy min.

Besides the patterns, the components also have to be verified. We therefore
have to verify that the required constraints ψC for the component behavior which
results from the invariants of the related roles hold.

ψC =
∧

MP
j =map(MC

i )∧MC
i ∈MC

φP
j .

In addition, the component must refine each port automaton (cf. �
I/O

in
Definition 13) denoted by the following notion of a correct component.

Definition 8. A component C = (MC , MC) with a set MC of automata MC
1 ,

. . . , MC
h for the ports is locally correct w.r.t. a condition ψC iff:

MC �I/O MC
1 ‖ . . . ‖MC

h and MC |= ψC ∧ ¬δ (2)
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We can again use testing and/or a real-time model checker to prove ψC ∧ ¬δ for
MC . To ensure that MC refines each of the role protocols associated to its ports
we can also use available automated refinement checks [21].

If for a resulting system S with behavior MS holds MS |= ψCj ∧ ¬δ we say
that the system preserves the correctness of the component Cj .

The correctness of the wiring can be checked statically if the correct connec-
tion of the ports and roles has been verified and is defined as follows:

Definition 9. A system S = (P , C, map) is correctly composed iff map is a
partial bijective mapping between the set of all ports of any component instance
in C and the set of all pattern instance roles of P. The mapping must further
ensure that the pattern role are valid refinements of the related port protocols:

∀MPi

k = map(MCj

h ) : M
Cj

h � MPi

k .

If map is total we have a closed system where each component instance port is
uniquely mapped to a compatible pattern instance role.

The correctness of a correctly composed system w.r.t. the pattern invariants and
the component invariants is defined as follows:

Definition 10. For a correctly composed system S = (P , C, map) with a set P
of pattern instances P1, . . . Pn, a set C of component instances C1, . . . , Cm, and
a bijective mapping map is globally correct iff the pattern constraints φP

i and
component invariants ψC

j also hold for the system itself:

MP1‖ . . . ‖MPn‖MC1‖ . . . ‖MCm |= φP1 ∧ · · · ∧ φPn ∧ ¬δ and (3)

MP1‖ . . . ‖MPn‖MC1‖ . . . ‖MCm |= ψC1 ∧ · · · ∧ ψCm . (4)

Note that the conditions 3 and 4 are by construction fulfilled by the synthesis
considered earlier where ψC1 ∧· · ·∧ψCm equals (consumer.critical => energy min)
and ((play.play or play.pause) => not energy min).

Due to the compositional nature of our approach, only a verification of the lo-
cal correctness of the patterns and components as well as the correct composition
is required to ensure global correctness.

Theorem 1. (from [5,22]) A correctly composed closed system S = (P , C, map)
with a set P of locally correct pattern instances P1, . . . Pn and a set C of locally
correct component instances C1, . . . , Cm is globally correct.

This result can be used to compositionally verify required properties. It not only
ensures the scalability of the approach (cf. [22]) but also permits restricting the
required verification efforts in the case of changes, as only the modified patterns,
services and components affected by the changes of its roles have to be verified
again.
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5 Related Work

The outlined approach employs the concept of port protocols. This concept has
already been advocated for embedded real-time systems in the ROOM approach
[23] and has also finally found its way in the UML in the form of protocol state
machines. A more formal source for such a proceeding are interface automata
[24], which provide in combination with compatibility checks a number of ad-
vantages similar to the presented approach. However, these approaches remain
rooted in the component-based architectural view, while the presented approach
supports services.

A number of results concerning the service-oriented development of au-
tomotive software targeting the requirement and architecture phases exist
(cf. [25,26,27]). In [27] aspect weaving is employed to derive the first behavioral
prototypes which can help to guide early architectural decisions. The resulting
prototypes are evaluated to detect inconsistencies which result from their over-
lapping and possibly conflicting behavior. The presented approach in contrast
suggests equipping the patterns and services with additional constraints in the
form of pattern invariants and role invariants which can then be systematically
checked by a compositional verification approach. To ease the integration of a
single component into multiple services, in contrast to the validation via pro-
totyping the presented approach presents a synthesis algorithm which helps to
identify whether a consistent behavior is possible at all and the correct by con-
struction synthesis result can serve as a starting point for realizing the required
coordination within the component in the operator.

6 Conclusion

While the envisioned solution provides a number of conceptual benefits such as
support for many variants and reuse across type series, which makes it espe-
cially attractive and beneficial for automotive software, the outlined vision for
the service-oriented development of automotive software still has to be further
elaborated and evaluated. In particular, a tighter integration with approaches
which address the earlier phases [25,26,27] is required to enable a seamless de-
velopment of automotive software with reusable services.

It is to be stressed that the introduced concepts are to some extent already
implicitly present in the employed example. We claim here that a service-oriented
view of the example is not only the result of the employed concepts but already
inherently present in the function-oriented description chosen by the engineers
(cf. [8]). Therefore, we are optimistic that switching to a service-oriented view
for the architectural descriptions of the system is possible in practice without a
great cultural change.
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vices with UML Sequence Diagrams. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 522–536. Springer, Heidelberg (2005)
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27. Krüger, I.H., Mathew, R., Meisinger, M.: Efficient exploration of service-oriented
architectures using aspects. In: ICSE 2006: Proceeding of the 28th international
conference on Software engineering, pp. 62–71. ACM Press, New York (2006)

28. Giese, H., Hirsch, M.: Checking and Automatic Abstraction for Timed and Hy-
brid Refinement in Mechtronic UML. Technical Report tr-ri-03-266, University of
Paderborn, Paderborn, Germany (2005)

A Appendix

The following notion of a discrete real-time automaton is used to describe the
required real-time behavioral of a systems and its elements, the refinement and
the basic idea of the synthesis algorithm. For a more detailed formal treatment
which includes the dense time case please see [28,19].

Definition 11. A real-time automaton is a 7-tuple M = (S, I, O, T, Q) with a
finite set S of states, a finite set I of input signals, a finite set O of output
signals, a finite set of transitions T ⊆ S × ℘(I) × ℘(O) × S, and the initial state
set Q.

Within the presented formal model signals are used to describe the synchro-
nization of a real-time automaton with its environment. A restriction operator
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can be further used to abstract from signals where required. For an automaton
M = (S, I, O, T, Q) we define its I/O restriction for I ′′/O′′ denoted by M |I′′/O′′

as the automaton (S′, I ′, O′, T ′, Q′) with S′ = S, I ′ = I ∩ I ′′, O′ = O ∩ O′′,
Q′ = Q, and (s1, A

′, B′, s2) ∈ T ′ iff (s1, A, B, s2) ∈ T exists with A′ = A − I ′′

and B′ = B − O′′. Using the restriction operator, we further define the hiding
Mi\I/O as Mi|Ii−I/Oi−O.

An appropriate notion for refinement has to ensure two fundamental proper-
ties. (1) We require that each behavior of the refining behavior can be observed
in the original one and (2) if the original behavior offers a transition with specific
input and output signals the refining behavior must also offer a transition with the
same I/O signal sets to ensure that deadlock freedom is preserved. When both re-
quirements are fulfilled, a notion of refinement which is strong enough to preserve
deadlock freedom and weak enough to permit further refinements results.

The employed notion of refinement is defined as follows:

Definition 12. For automata M = (S, I, O, T, Q) and M ′ = (S′, I ′, O′, T ′, Q′)
we call M a refinement of M ′ denoted by M � M ′ iff a relation Ω ⊆ S × S′

exists with ∀q ∈ Q ∃q′ ∈ Q′ : (q, q′) ∈ Ω and for all (s1, s
′
1) ∈ Ω holds:

∀(s1, A, B, s2) ∈ T ∃(s′1, A, B, s′2) ∈ T ′ : (s2, s
′
2) ∈ Ω, (5)

∀(s′1, A
′, B′, s′3) ∈ T ′ ∃(s1, A

′, B′, s3) ∈ T. (6)

The relation Ω initially ensures that for each initial state of the refinement an
appropriate interpretation in terms of the initial state of the refined automaton
exists. For each transition in the refinement M equation 5 further ensures that a
related transition in M ′ exists that again leads to an appropriate state pair in Ω.

Equation 6 further ensures that for each pair of I/O signal sets offered by a
state in M ′ a corresponding transition offering the same pair of I/O signal sets
is provided in its refinement M . However, the condition does not itself require
that s3 and s′3 build a pair contained in Ω.

To have a refinement notion that permits the refined behavior to extend the
original one, we have to combine refinement with abstraction using the restriction
operator |.

Definition 13. For automata M = (S, I, O, T, Q) and M ′ = (S′, I ′, O′, T ′, Q′)
we name M an I/O refinement of automaton M ′ denoted by M �

I/O
M ′ iff

M |I′/O′ � M ′.

The I/O refinement adjusts the considered signals and can be further used to
characterize if an automaton is a correct concretization of another one.

The refinement notion results in a partial ordering on the set of all automata.
Therefore, w.r.t. a specific invariant ψ we are able to derive the maximal refined
automaton M ′ that satisfies ψ and also refines a given automaton M as follows:

We start the processing simply with S0 = {s ∈ S | M, s |= ψ}. Then, we
compute the largest fix-point for a property ψ and condition 6 with the following
step:
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Si+1 = {s1 ∈ Si|∀(s1, A, B, s2) ∈ T ∃(s1, A, B, s′2) ∈ T : s′2 ∈ Si}

When a fix-point with Si+1 = Si is reached, a maximal automaton M ′ which
refines M has been computed. For the automaton M ′ further holds M ′ |= ψ.

It is to be noted that the proof that the above algorithm does indeed compute
the maximal refinement requires that the implicitly defined function (f	,ψ(Si) :=
{s1 ∈ Si|∀(s1, A, B, s2) ∈ T ∃(s1, A, B, s′2) ∈ T : s′2 ∈ Si}) on the state set is
monotonous and determines uniquely which states have to be erased.
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