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Abstract. Pareto optimization methods are usually expected to find
well-distributed approximations of Pareto fronts with basic geometry,
such as smooth, convex and concave surfaces. In this contribution, test-
problems are proposed for which the Pareto front is the intersection of
a Lamé supersphere with the positive R

n-orthant. Besides scalability
in the number of objectives and decision variables, the proposed test
problems are also scalable in a characteristic we introduce as resolvability
of conflict, which is closely related to convexity/concavity, curvature and
the position of knee-points of the Pareto fronts.

As a very basic bi-objective problem we propose a generalization of
Schaffer’s problem. We derive closed-form expressions for the efficient
sets and the Pareto fronts, which are arcs of Lamé supercircles. Adopting
the bottom-up approach of test problem construction, as used for the
DTLZ test-problem suite, we derive test problems of higher dimension
that result in Pareto fronts of superspherical geometry.

Geometrical properties of these test-problems, such as concavity and
convexity and the position of knee-points are studied. Our focus is on
geometrical properties that are useful for performance assessment, such
as the dominated hypervolume measure of the Pareto fronts. The use
of these test problems is exemplified with a case-study using the SMS-
EMOA, for which we study the distribution of solution points on different
3-D Pareto fronts.

1 Introduction

Next to introducing a manageable mathematical foundation for meta-heuristic
approaches in multiobjective optimization, constructing a repository of scalable
and multimodal test problems is of vital importance [1, 3, 6, 8, 10]. In analyzing
a test problem family with well-defined properties, we make a contribution to
this ongoing effort of the multiobjective optimization community.

One reason for obtaining the complete Pareto front (PF) of a problem instead
of a single non-dominated solution, is that the shape of the PF provides the
decision maker with useful extra information about the nature of the conflict. A
qualitative approach to this problem is to distinguish between concave, convex
and linear (parts of) PFs, as it is well known that on convex PFs it is easier to
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Fig. 1. Visualization of a measure for conflict resolvability. The left figure displays a
scenario in which a good compromise exists, while in the scenario displayed on the right
hand side they do not exists. The conflict resolvability is computed as the maximum
of y1 − y∗

1 and y2 − y∗
2 at the position which minimizes this value, where y∗

1 and y∗
2 are

the coordinates of the ideal point.

find good compromises than on concave ones, and also the behavior of algorithms
is often different on both types of geometry.

Taking this into account, we aim for test problems that capture all three
types of PFs (concave, convex, and linear). However, the test-case we propose
allows also to scale quantitatively the resolvability of conflict. As a measure of
the resolvability of conflict one may consider:

RoC(PF ) = 1 −
miny∈PF maxi∈{1,...,m} |yi − y∗

i |
maxy∈PF maxi∈{1,...,m} |yi − y∗

i | (1)

Here, y∗ denotes the ideal solution, m is the number of objective functions, and
PF denotes the PF. Note, that in case of the denominator being zero, we define
RoC(PF ) to be one. Ideally, this value should be close to 1, meaning that all
objectives are complementary.

In Figure 1 two situations are depicted. In the left figure a convex PF for a
problem is depicted, for which good compromise solutions exists. In the right
figure, a concave PF is depicted for which there exists no good compromise. We
construct a highly symmetrical class of functions for which the geometry of the
PF can be varied gradually from convex shapes with high resolvability of con-
flicts, to linear shapes, and concave shapes with low resolvability of conflicts (cf.
figure 1). The problem family we propose is highly symmetrical and only intro-
duces the difficulty of obtaining well-spread solutions on the different shapes of
PFs. We consider these problems as interesting, as they can be used for ana-
lyzing metaheuristics in a controlled way, i. e. by isolating difficulties. However,
we note that the complexity of the test problems can be gradually increased by
adding difficulties in a managed way.

The problems can be considered as generalizations of models with spheri-
cal symmetries, that are frequently used as elementary test problems in single
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Fig. 2. PFs of different shapes as obtained with the test problem generator. The
parameter γ controls the curvature and also the convexity, linearity and concavity of
the PF. The points exemplify an approximation sets achieved with the SMS-EMOA.

objective optimization. Moreover we provide an analysis of the geometry
of the PFs.

For the 2-D objective space, we generalize Schaffer’s well known test problem
f1(x) = x2, f2(x) = (1 − x)2 to higher dimensional search spaces. The gen-
eralized Schaffer problem [15], which has been used in some applied studies,
reads: f1(x) = 1

nα (
∑n

i=1 x2
i )

α → min and f2(x) = 1
nα (

∑n
i=1(1 − xi)2)α → min

for xi ∈ R+, where i = 1, ..., n. The parameter α ∈ R+ controls the convex-
ity/concavity and the resolvability of the PF, as it will be obtained in our
analysis. For these generalized Schaffer functions explicit descriptions of the
PF (f2 = (1 − fγ

1 )
1
γ , γ = 1

2α ) and efficient set are derived . More impor-
tantly the concavity changes for different choices of γ gradually from concave
(0 < γ < 1), to linear (γ = 1) and convex (1 < γ). An interesting ob-
servation is that the shapes of the different Pareto curves are arcs of Lamé
supercircles.

Adopting the bottom-up-approach of test-problem generation [3], the con-
cept can be generalized to arbitrary numbers of objective functions. Again we
obtain problems with super-spherical geometry of the PF for which the convex-
ity/concavity and resolvability can be controlled by means of a single parameter.
For higher dimensions the geometrical properties of such PFs are not obvious to
see. Thus, we provide a detailed analysis of the geometry, focussing on proper-
ties like convexity/concavity and the size of dominated hypervolume. Based on
the geometrical analysis, we provide explicit formulas for computing standard
performance metrics that measure the quality of finite set approximations to the
PFs, e.g., the average distance to the PF and percentage of dominated hyper-
volume. This will help the practitioner, who wants to assess the performance of
meta-heuristics on these test problems.

The structure of this article is as follows: After the preliminaries (Section 2),
Section 3 focusses on problems with two criteria. We derive an explicit formula
for the PF of the generalized Schaffer problem. In Section 4 we study a general
class of m-dimensional PFs for which the solution of the Schaffer problem is the
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2-dimensional instance. In particular we will focus on the influence of the control
parameter γ on the convexity/concavity of the PF. Adopting the bottom-up
approach of multiobjective test problem construction, we provide in Section 5 a
family of test problems with scalable geometrical properties. Section 6 deals with
performance metrics. Finally, Section 7 illustrates the use of the test problems
by means of a case study. Concluding discussions are in section 8.

2 Mathematical Preliminaries

Next, we are going to outline notions and definitions of Pareto optimality and
non-dominance as they are used throughout this article. The notation is mainly
borrowed from Ehrgott [4].

Definition 1. Given two vectors y ∈ R
m, y′ ∈ R

m we say y dominates y′ (in
symbols: y ≺ y′ , iff ∀i = 1, . . . , m : yi ≤ y′

i and ∃i ∈ {1, . . . , m} : yi < y′
i.

Moreover, we define y � y′ ⇔ y ≺ y′ ∨ y = y′.

Definition 2. Given a set of points Y, a point y is said to be non-dominated
with respect to Y, iff there does not exist y′ ∈ Y : y′ ≺ y. Moreover, the subset
of non-dominated points y in Y with respect to Y is called the non-dominated
set of Y. Also this set is referred to as the Pareto front (PF) of Y.

In the context of optimization problems fi(x) → min, i = 1, . . . , m, x ∈ X the
concept of dominance is also defined on the search space.

Definition 3. We say x ≺ x′ :⇔ (f1(x), . . . , fm(x)) ≺ (f1(x′), . . . , fm(x′)).
Also, we define x � x′ :⇔ (f1(x), . . . , fm(x)) � (f1(x′), . . . , fm(x′)).

Definition 4. Given a set of points X the non-dominated subset of the set
{y | y1 = f1(x), . . . , ym = fm(x), x ∈ X } is called the Pareto front (PF) with
respect to the optimization problem. Moreover, the inverse image of this set in X
is called the efficient set in X , see[4]. The elements of this set are called efficient
points.

In the sequel R
m
+ denotes the set {(y1, . . . , ym) ∈ R

m | yi � 0, i = 1, . . . , m} and
by 1 we denote (1, . . . , 1) ∈ R

m where m is clear from the context.

3 Efficient Set and Pareto Front for the Generalized
Schaffer Problem

In this section we derive a closed form expression for the solution of the problem

f1(x) =
1

nα
(

n∑

i=1

x2
i )

α → min, f2(x) =
1

nα
(

n∑

i=1

(xi − 1)2)α → min, x ∈ R
n
+ (2)

Moreover, we will show that the efficient set of this problem will be the line
segment Ln:

Ln = {x ∈ R
n|x = λ1, λ ∈ [0, 1]} (3)
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Next, a number of lemmata for α = 1 will be derived that provide building
blocks for proving the interesting result for general α > 0.

Lemma 1. Decision vectors on the line segment λ1, λ ∈ [0, 1] are mutually non
dominated with respect to problem (2) and α = 1.

Proof. For any (λ, λ′) ∈ [0, 1]2 with λ′ > λ: f1(λ1) = nλ2 < n(λ′)2 = f1(λ′1)
and f2(λ1) = n(1 − λ)2 > n(1 − λ′)2 = f2(λ′1) �

Lemma 2. Let x ∈ R
n
+ − Ln. Then λ1 ≺ x for some λ ∈ (0, 1].

Proof. Let x ∈ R
n
+ − Ln. We consider the number λ =

√
1
n

∑n
i=1 x2

i . We first
show that for this λ, λ1 ≺ x. Note that λ > 0 and possibly λ > 1. In case λ ≤ 1
we are done. In case λ > 1 we easily see that 1 ≺ x (since 1 ≺ λ1 ≺ x). So in
both cases the lemma obtains. In the remainder we will show that for the above
chosen λ, λ1 ≺ x holds:

It is clear that f1(λ1) = f1(x) holds, since f1(λ1) = 1
n

∑n
i=1 λ2 = λ2 =

1
n

∑n
i=1 x2

i = f1(x). Moreover, we can show that under the given assumptions
f2(λ1) < f2(x) holds: f2(λ1) < f2(x) ⇔ 1

n

∑n
i=1(1 − λ)2 < 1

n

∑n
i=1(1 − xi)2 ⇔

1−2λ+λ2 < 1−2 1
n

∑n
i=1 xi + 1

n

∑n
i=1 x2

i ⇔ λ2 > 1
n2 (

∑n
i=1 xi)2 ⇔ n

∑n
i=1 x2

i >
(
∑n

i=1 xi)2. The latter inequality holds in general for positive xi, if for some
pair (i, j) ∈ {1, . . . , n}2 the inequality xi �= xj holds. Since for at least one
pair (i, j) ∈ {1, . . . , n}2 the inequality xi �= xj holds, we can show the relevant
inequality as follows. To make the structure of the sum on the right hand side
more visible let us format the expression in a matrix form:

(
n∑

i=1

xi)2 =

x1x1 + · · ·+ x1xj + · · ·+ x1xn+
...

...
xix1 + · · ·+ xixj + · · ·+ xixn+

...
...

xnx1 + · · ·+ x1xj + · · ·+ xnxn

(4)

Now, with xixj + xjxi ≤ x2
i + x2

j and in particular xixj + xjxi < x2
i + x2

j for
those pairs (i, j) ∈ {1, . . . , n}2 with xi �= xj the result can be simply obtained
by overestimating all of the (n − 1)/n expressions xixj + xjxi by x2

i + x2
j for

distinct i and j and then adding the diagonal x2
i which, in summary, results in

an (strict) overestimator n
∑n

i=1 x2
i . In other words we have shown that for the

chosen λ, λ1 ≺ x holds. �

Now, the lemmata can be assembled to prove the following central lemma:

Lemma 3. The efficient set for problem (2) with α = 1 is given by Ln.

Proof. Firstly we will show that Ln is a subset of the efficient set (ES) of problem
(2). Secondly we will show that ES of problem (2) is a subset of Ln. Let x ∈ Ln.
We want to show that x belongs to ES. Suppose the contrary. That is, ∃x′ ∈ R

n
+

such that x′ ≺ x. We distinguish two cases. Case I: x′ ∈ Ln. This leads to a
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contradiction because of Lemma 1. Next consider Case II: x′ ∈ R
n
+ − Ln. This

also leads to a contradiction because of Lemma 2 and Lemma 1.
Secondly we will show that ES is a subset of Ln. Or equivalently: We will show

that the assumption that there exists an x in ES such that x /∈ Ln leads to a con-
tradiction. Assume the existence of such an x. Since x /∈ Ln we know – according
to Lemma 2 that there exists x′ ∈ Ln such that x′ ≺ x. A contradiction. �

Now, by assuming general λ > 0 the proof can be extended to the central theorem
of this section as follows:

Theorem 1. The efficient set for f1(x) = ( 1
n

∑n
i=1 x2

i )
α → min, f2(x) =

( 1
n

∑n
i=1(1 − xi)2)α → min and x ∈ R

n
+ is given as Ln = {λ1|λ ∈ [0, 1]}.

Moreover the PF of this problem is y2 = (1 − y
1/2α
1 )2α, y1 ∈ [0, 1].

Proof. The generalization to α > 0 follows from the fact, that f1 and f2 are
transformed by the same strictly monotonous function y �→ yθ, θ > 0, such
that for any two points x and x′: f1(x) > f1(x′) ⇔ f1(x)θ > f1(x′)θ, f1(x) ≥
f1(x′) ⇔ f1(x)θ ≥ f1(x′)θ and the same for f2. Hence, also the pre-order defined
on the decision space remains equal for the problem with α = 1 and any other
α > 0. The expression for the PF can be derived as follows: Let x denote an
arbitrary vector (λ, . . . , λ) ∈ Ln, λ ∈ [0, 1]. Then f1(x) = (λ2)α and f2(x) =
((1 − λ)2)α. From the first equation we get λ = f

1/2α
1 , which is then to be

substituted in f2, resulting in f2 = (1 − f
1/2α
1 )2α �

For α = 1 an alternative geometric proof of Theorem 1 can be given.
One thing that is apparent is that the parameter α plays an important role for

the shape of the PF. It is easily seen that for α = 0.5 the PF is linear, for α > 0.5
it gets convex and for α < 0.5 it gets concave (see also Theorem 2 and Fig. 2).
Moreover the PF is symmetric w.r.t the main bisector line between the f1 and f2
coordinate axes and takes its extremal values (extremal solutions) in the points
y∗
1 = (0, 1)T and y∗

2 = (1, 0)T . The Nadir point is yN = (1, 1)T . Note, that for the
more general problem 1/nα(

∑n
i=1 |xi|q)α → min and 1/nα(

∑n
i=1 |1 − xi|q)α →

min similar expressions for the non-dominated front can be found. However, for
0 ≤ q ≤ 1 the efficient set is no longer a line segment. Emmerich [6] derived that
the efficient set for q = 1 is the hypercube of dimension m. The problem was
used in [5]. An open question for future research would be how to extend further
Schaffer’s problem for more than two objective functions, where each objective
function is a distance function to a fixed point in R

n. For linearly independent
points, we conjecture that the convex hull of the points is the efficient set.

A crucial observation is, that the PFs of this class of problems are Lamé su-
percircles [12], i. e. zero sets of |y1|γ + |y2|γ , intersected with R

2
+. The connection

between γ and α is established as γ = 1
2α . These curves have interesting ge-

ometric properties that can be exploited to compute performance metrics (cf.
section 6). A generalization of Lamé curves are the m-dimensional superspheres
discussed in the next section.
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4 N-Dimensional Pareto Fronts with Superspherical
Geometry

In this section we will define and look at superspheres of arbitrary dimension.
More specifically we will consider parts of superspheres which consist of mutually
non-dominated points, of which the solutions of the aforementioned generalized
Schaffer problems are special cases. It is easy to see that they arise as zero sets
of strictly concave or strictly convex functions. Alternatively they can be viewed
as graphs of strictly convex or strictly concave functions. Since the sets we are
considering consist of mutually non dominated points, we can view them as PFs
arising from multiobjective optimization problems.

4.1 Convexity and Concavity of Superspheres

In the sequel we will use notions on concavity and convexity such as convexity
of sets, convexity/concavity of functions, strict convexity/concavity of functions
etcetera without defining them. Instead we refer the reader to the standard
literature (for instance, Convex Analysis by R. Tyrrel Rockafeller [14]).

The following definition introduces the main building blocks of the test prob-
lems we study: postive parts of superspheres and hyperspheres.

Definition 5. Consider the set

{(y1, . . . , ym) ∈ R
m | |y1|γ + · · · + |ym|γ − 1 = 0}, (5)

where γ ∈ R+ is arbitrary and fixed. We will call such zero-sets γ–superspheres
or more precisely the m − 1-dimensional γ–supersphere (notation: Sm−1

γ ). The
supersphere which arises for γ = 2 is usually called the m − 1-dimensional hy-
persphere (notation: Sm−1).

In the sequel we will only consider the ”positive” parts of the γ-superspheres,
i.e., we consider sets of the form:

{(y1, . . . , ym) ∈ R
m
+ | yγ

1 + · · · + yγ
m = 1}, (6)

where γ ∈ R+ is arbitrary but fixed. We denote these ”positive” parts of hyper-
spheres (γ = 2) by Sm−1,+ and those of superspheres by Sm−1,+

γ

Theorem 2 shows that we can view the (positive parts) of the γ-superspheres
as graphs of concave (γ > 1) or convex (0 < γ < 1) functions.

Theorem 2. Let γ ∈ R+ and let Xγ = {(y1, . . . , ym−1) ∈ R
m−1
+ | yγ

1 + · · · +
yγ

m−1 ≤ 1}. For each positive γ, define a function hγ : Xγ −→ R by h(y) =
(1− (yγ

1 + · · ·+yγ
m−1))

1
γ , where y ∈ R

m−1. Then hγ is strictly concave for γ > 1
and strictly convex for 0 < γ < 1. For γ = 1, hγ is convex and concave (but
neither is strict). �
Alternatively, the next Theorem shows that the positive parts of
γ-superspheres can also be viewed as zero-sets of strictly concave or strictly
convex functions – we again omit the proof of this theorem:
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Theorem 3. Let γ ∈ R+ and let fγ : R
m
+ −→ R be the function defined by

fγ(y) := yγ
1 + · · · + yγ

m − 1.

1. for γ > 1, the function fγ is strictly convex and the below set B = {y ∈
R

m
+ | f(y) ≤ 0} is convex and Sm−1,+

γ = {y ∈ R
m
+ | f(y) = 0} is a sub-

set of the boundary of B. (The remaining boundary points lie in the co-
ordinate hyperplanes and the set of these remaining points is described by⋃m

i=1{(y1, . . . , yi−1, 0, yi+1, . . . , ym) ∈ R
m
+ | yγ

1 + · · · + xγ
i−1 + 0 + xγ

i+1 +
· · · yγ

m − 1 ≤ 0}. Or equivalently by
⋃n

i=1 B ∩ {(y1, . . . , ym) ∈ R
m
+ | yi = 0}.)

2. for 0 < γ < 1, the function fγ is strictly concave and the above set A = {y ∈
R

m
+ | f(y) ≥ 0} is convex and Sm−1,+

γ = {y ∈ R
m
+ | f(y) = 0} is a subset of

the boundary of A. (The remaining boundary points of A lie in the coordinate
hyperplanes and the set of these remaining boundary points is described by⋃m

i=1{(y1, . . . , yi−1, 0, yi+1, . . . , ym) ∈ R
m
+ | yγ

1 +· · ·+xγ
i−1+0+xγ

i+1+· · · yγ
m−

1 ≥ 0}. Or equivalently by
⋃m

i=1 A ∩ {(y1, . . . , ym) ∈ R
m
+ | yi = 0}.)

Moreover the part of the boundary which is equal to Sm−1,+
γ in each of the above

cases is equal to the graph of the function hγ defined in Theorem 2. �
For a proof of these theorems the reader is referred to [7].

4.2 Resolvability/Intractability of Conflict Versus γ

Next, we discuss how the measure of resolvability of conflict is related to γ. It
would be desirable for the user, to provide only the desired value for the RoC
and then compute a corresponding value for γ. In order to come up with an
expression for γ, we exploit that the Minkowski distance to the ideal point gets
minimized in points with y1 = · · · = ym. Moreover, we use yγ

1 + . . . yγ
m = 1.

Combining these expressions yields the desired equation:

γ =
log(1/m)

log(1 − RoCm)
(7)

For a visualization and some explicitly computed values, see Figure 3.
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5 Construction of Test Problems

Now we are ready to use the superspheres as PFs of test problems. First we in-
troduce parametrizations for superspheres. After that we can apply the methods
introduced by Deb et al. [3] to generate test problems of which the superspheres
are the PFs. We are afforded scalability in the number of objectives and also
in the number of decision variables and a complete control over the extent of
convexity/concavity and therefore resolvability of conflict.

5.1 Parametrizations of Hyperspheres and Superspheres

Consider the following representation of an m − 1-dimensional γ-super-sphere
(notation: Sm−1

γ ) as a subset of R
m

Sm−1
γ = {(y1, y2, ..., ym) ∈ R

m | |y1|γ + |y2|γ + . . . |ym|γ = 1} (8)

where γ ∈ R+ is fixed. Since super-spheres with γ = 2 – they are usually
called hyperspheres – admit parametrizations, we easily get parametrizations
for any γ-super-sphere. For consider an (m-1)-dimensional hypersphere
Sm−1:

Sm−1 = {(y1, y2, ..., ym) ∈ R
m | y2

1 + y2
2 + . . . y2

m = 1} (9)

Such a hypersphere admits parametrizations (for example:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1 = cos(θ1)
y2 = sin(θ1) cos(θ2)
y3 = sin(θ1) sin(θ2) cos(θ3)
. . . = . . .

ym−1 = sin(θ1) sin(θ2) . . . sin(θm−2) cos(θm−1)
ym = sin(θ1) sin(θ2) . . . sin(θm−2) sin(θm−1),

(10)

where θ1 . . . θm−1 are in R (or if need be in bounded intervals of R)). For each
parametrization of the hypersphere Sm−1, we obtain a parametrization of an
(m − 1) − γ-super-sphere, for a fixed γ ∈ R+. For let

yi = pi(θ1, . . . , θm−1), (11)

where i = 1, . . . , m be a parametrization of Sm−1, then

yi = ±(pi(θ1, . . . , θm−1))
2
γ , (12)

where i = 1, . . . , m is a parametrization of Sm−1
γ (if we are willing to tread

carefully with raising to the power 2
γ in (12), i.e., first raise to the power 2 and

subsequently to the power 1
γ ).
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5.2 Test Problems

Next we proceed to use parametrizations for the positive part of γ-superspheres in
the construction of test problems. We will single out one family of parametriza-
tions for the γ-superspheres which arise from the parametrization of the hyper-
sphere as in (10). In more detail we define the positive parts of γ-superspheres as
follows. Let γ > 0 be fixed. We let p̃1(θ1, . . . , θm−1) = (cos(θ1))

2
γ ,

p̃i(θ1, . . . , θm−1) = (sin(θ1) · sin(θ2) · . . . · sin(θi−1) · cos(θi))
2
γ . where 1 < i < m,

and finally p̃m(θ1, . . . , θm−1) = (sin(θ1)·sin(θ2)·. . .·sin(θm−1))
2
γ with 0 ≤ θj ≤ Π

2
and j = 1, . . . , m − 1 be a parametrization of Sm−1,+

γ .
Adopting the approach of Deb et al. [3] for spheres and linear surfaces, the

parametrization for the γ-superspheres can be used to construct test problems
as follows. We let

fi(θ, r) = (1 + g(r))p̃i(θ) (13)

for i = 1, . . . , m and where 0 ≤ θj ≤ Π
2 for j = 1, . . . , m − 1 and g : R+ −→ R+

and the test problem consists of the minimization of the fi for i = 1, . . . , m
under the constraints 0 ≤ θj ≤ π

2 , for j = 1, . . . , m − 1.
The variables θi with i = 1, . . . , m − 1 are viewed as meta-variables and

one can, for instance, map the decision variables to θi as follows: θi = π
2 xi for

i = 1, . . . , m − 1 with the restriction 0 ≤ xi ≤ 1. But one can choose other
mappings as well. Also given the function g we can view the body we obtain
as the image of (fi)m

i=1 as a layered ’onion’ where each layer corresponds to a
function value of g. Each of the layers can be described as follows: {(x1, . . . , xm) ∈
R

m
+ | xγ

1 + · · · + xγ
m = (1 + g(r))γ} if we fix r or if we fix a function value g(r).

Also r can be considered as a meta-variable. The PF occurs for the minimum of
the function g.

From the above it is clear that it is straightforward to apply the methods
developed in Deb et al. [3] to the case of superspheres.

5.3 Uni- and Multimodal Test Problems and Their Mirror
Problems

As an unimodal test problem with n ≥ m decision variables we propose the
problem ED1: g(r) = r, r =

√
(x2

m + · · · + x2
n).

For a given γ with convex (concave) PF, we can obtain a problem (we will
term it the mirror problem) with congruent concave (convex) PF by setting:
fi(x) = 1/(g(x) + 1)p̃i(θ1, . . . , θm−1), i = 1, . . . , m For γ = 2 the PF of the
mirror problem is given in Figure 4 (left).

In order to make the problem multimodal, we propose to choose g(r) =
Fnatmin(r), for a function Fnatmin that we define next (cf. Figure 4 (right)):

Fnatmin(r) = b+(r−a)+0.5+0.5 cos(2π(r−a)+π), a ≈ 0.051373, b ≈ 0.0253235
(14)

The function Fnatmin has the ’nice’ property that it takes its minima at the
natural numbers. The optimal function values are the natural numbers. There-
fore, it can be checked which of the local PFs has been reached. The constants
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a and b have been computed numerically by setting the derivative of Fnatmin
to zero and at the same time setting the function Fnatmin to zero and solving
(numerically) for a and b.

The resulting optimization problem, we will name it ED2, is a multimodal
test-problem with equidistant local Pareto-fronts with respect to the radii ||x||γ .
Many-to-one mappings can be introduced by replacing this function by the func-
tion sin2(x/π) in a similar manner as discussed for the Fnatmin function.
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Fig. 4. (l) Convex PF of the mirror problem for γ = 2. (r) The function Fnatmin :
R+ −→ R+ that takes its minima at the natural numbers is depicted.

In conclusion, we note that in the bicriteria case and γ = 2 the new test
problems result in the same PF as Schaffer’s 1D problem [15]. For m > 2 and
γ = 1 and γ = 2 the PFs we propose are equivalent to those of DTLZ prob-
lems [3]. However, we extended this benchmark by introducing scalability w.r.t.
the RoC. Huband et al. [8] compiled a list of recommendations and desirable
features. Regarding this list we note that we focus on the difficulties of scal-
ability in dimensions, number of objective functions, and curvature (e.g. con-
cavity/convexity, RoC). Moreover, we discussed multimodal versions of the test
problems. Many extra difficulties, such as non-separability, plateaus etc., can be
introduced in a managed way by designing adequate functions for g and using
coordinate transformations.

6 Implementation of Performance Metrics

The measure of dominated hypervolume and the average distance of points to
the PF are two measures that are frequently used to measure the quality of a
pareto set approximation [2, 5].

6.1 Dominated Hypervolume of Pareto Fronts

Next, we provide expression for the measure of the dominated hypervolume
[16] for PFs of the problem. Let S(P ) denote the measure of the dominated
hypervolume of a PF P . For different γ and m it suffices to provide formulas for
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a reference point of r = 1 ∈ R
m as it just dominates all points of the PF. Note,

that in case of reference points that are dominated by r the computation of the
remaining part reduces to computing a sum of hyperbox volumes. The Lebesgue
measure of the dominated hypervolume for r = 1 and different γ and m will be
denoted with Sγ,m.

For the objective space with dimension m = 2 (and m = 3) the equations
are obtained as complements of quarters of areas of super-circles (super-spheres)
[12, 11]:

1 − Sγ,2 =
41− 1

γ
√

πΓ (1 + 1
γ )

Γ (1
2 + 1

γ )
/4, 1 − Sγ,3 =

8[Γ (1 + 1/γ)]3

Γ (1 + 3/γ)
/8 (15)

Note, that we considered only the first quadrant and a constant radius of r = 1.
For higher dimension, we know no general formula for the hypervolume. However,
for γ = 2 the volume of the m-dimensional unit hypersphere Sm can be used to
compute the S2,m.

1 − S2,m =
πm/2

Γ (0.5m)
/(2m) (16)

Expressions for integer m allow for a simplified formulas (cf. [13]). Finally, for
the linear case we get the simple expression S1,m = 1−1/m!. Some special cases
are reported in the table below1:

Sγ,m γ = 2 γ = 1 γ = 0.5 γ > 0
m = 2 1 − π/4 1

2 1/6 Sγ,2

m = 3 1 − π
6 1- 1

6 1 − 8/6! Sγ,3

m > 3 πm/2

Γ ( m
2 +1) 1 − 1

m! ? ?

6.2 Distance to the Pareto Front

The average distance of points to the PF is another measure that can be used
to measure the quality of PF approximations. Usually, it is combined with other
measures that take the coverage of the PF into account. This measure also turns
out to be useful as an indicator for local convergence to a local PF, as it may
easily occur for the multimodal test function proposed in Section 5.3.

A straightforward approach to compute the distance of a point to the Pareto-
front that also fits with the detection of local convergence is to compute directly
the supersphere radius rγ of a point with respect to γ, i.e.: d(x) = −1 + rγ(x).
This measure becomes zero, if and only if the point y lies on the PF. Otherwise
it is a value that decreases with the Minkowski distance of that point to the
PF. Moreover, the value can be used to detect the local PF to which a run has
converged.

1 Question marks indicate results unknown to us.
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6.3 A Note on Knee-Points

It has been often stated that, in case of convex parts of the PF it is desirable
to obtain knee-points in Pareto optimization, as they are considered to be good
compromise solutions. In case of our test problems knee-points for convex PFs
are exactly given by (1 − RoCm(γ))1 ∈ R

m. Hence, the distance of a solution to
a knee-point can be easily checked.

7 Case Study

In a case study, illustrating the use of the test problem, we looked at the results
of the SMS-EMOA [5, 9]. This steady state EMO algorithm aims at finding
well-spread solution sets by maximizing their dominated hypervolume. It is an
interesting question how exactly this algorithm distributes points on PFs of
different shape. Test runs for the 2-D case are reported in Figure 2 (left). A
population size of 15 was used and 15000 objective function evaluations. The
generalized Schaffer problem with x ∈ [−2, 2]5 has been solved for different
values of γ (= 1

2α ). The results indicate well-distributed point sets and the
almost all solutions are on the PF. For high RoC the density of points grows
near the knee point, while for the linear case points are distributed uniformly.
This corresponds to the optimal distribution w.r.t. S-metric maximization [7].

In addition we computed PFs for the following 3-D problem: Setting g =
(
∑n

i=m x2
i )

0.5 and

f1 = ((cos(x1))2)
1
γ (1 + g(x)) → min (17)

f2 = ((sin(x1) cos(x2))2)
1
γ (1 + g(x)) → min (18)

f3 = ((sin(x1) sin(x1))2)
1
γ (1 + g(x)) → min (19)

x ∈ [0, π/2]2 × [0, 1]n−2, n = 7 (20)

The population size was changed to 70, while the other settings remained the
same. for different γ are displayed in Figure 5 and, for the convex mirror problem
of γ = 2, in 4 (right). From another viewpoint the same results are shown in
Figure 2 (right). Again, in the linear case points are distributed evenly across
the PF. In case of convex and concave fronts, compromise regions as well as
regions at the boundary are sampled with higher density. The results for γ = 1
and γ = 2 conform to the SMS-EMOA results on the DTLZ test-suite reported
in [9]. A more detailed study of the SMS-EMOA (and similar algorithms) on the
new test problems, though interesting, is beyond the scope of this paper .

8 Conclusions

We proposed and studied test problems with PFs being parts of Lamé super-
spheres, i.e. zero sets of yγ

1 + · · · + yγ
m, for γ ∈ R

+. They can be scaled from
concave problems with low conflict resolvability, to linear problems, and finally
convex problems with high conflict resolvability.
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00.20.40.60.81
f1

0 0.2 0.4 0.6 0.8 1
f2

0

0.2

0.4

0.6

0.8

1

f3

00.20.40.60.81
f1

0 0.2 0.4 0.6 0.8 1
f2

0

0.2

0.4

0.6

0.8

1

f3

00.20.40.60.81
f1

0 0.2 0.4 0.6 0.8 1
f2

0

0.2

0.4

0.6

0.8

1

f3

00.20.40.60.81
f1

0 0.2 0.4 0.6 0.8 1
f2

0

0.2

0.4

0.6

0.8

1

f3

Fig. 5. Results of the SMS-EMOA for different settings of γ on the 3-D test-problems

As a first class of such functions we introduced generalized versions of Schaf-
fer’s test-problem f1(x) = 1

mα (
∑m

i=1 |xi|q)α → min, f2(x) = 1
mα (

∑m
i=1 |1 −

xi|q)α → min and provided closed form expressions for their efficient set and
PFs, which turned out to be arcs of Lamé supercircles with γ = 1

2α . Then,
adopting the construction methods proposed by Deb et al. [3], we constructed
test problems that result in PFs that are parts of m-dimensional super-spheres.
For all test problems we provided means to compute performance measures,
such as the dominated hypervolume measure, the (average) distance to the PF
and distance of solutions to the knee point. A case study with the SMS-EMOA
illustrated the use of these test problems.

Our primary goal was to introduce and study a set of test problems with basic
geometry, rather than benchmark problems that include all kinds of difficulties
in an intertwined way. This way, properties of the algorithm and its solution sets
can be studied in a isolated manner on well-understood geometries. However,
these elementary problems can be used as building blocks for more complex test
problems in benchmark suites.

In future, it would be interesting to extend the test problems, in order to
capture problems, for which subsets of the objectives lead to highly resolvable
problems and for which other subsets do not. A promising approach is to use
individual γ values for different dimensions, i.e. look at zero sets of the form
yγ1
1 + · · · + yγm

m = 1. However, such families of PFs deserve a thorough study
that would extend the scope of this paper.

Supporting material (C++-implementation of test problems, related technical re-
ports) is provided under www.liacs.nl/∼emmerich/superspheres.html.

www.liacs.nl/~emmerich/superspheres.html
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