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Abstract. Among the multi-objective optimization methods proposed
so far, Genetic Algorithms (GA) have been shown to be more effective
in recent decades. Most of such methods were developed to solve pri-
marily unconstrained problems. However, many real-world problems are
constrained, which necessitates appropriate handling of constraints. De-
spite much effort devoted to the studies of constraint-handling methods,
it has been reported that each of them has certain limitations. Hence,
further studies for designing more effective constraint-handling methods
are needed.

For this reason, we investigated the guidelines for a method to effec-
tively handle constraints. Based on these guidelines, we designed a new
constraint-handling method, Pareto Descent Repair operator (PDR), in
which ideas derived from multi-objective local search and gradient pro-
jection method are incorporated. An experiment comparing GA that use
PDR and some of the existing constraint-handling methods confirmed
the effectiveness of PDR.

1 Introduction

Multi-objective optimization (MOO) has many real-world applications, e.g. port-
folio optimization, for which multiple conflicting objective functions are to be
simultaneously optimized. MOO whose variables are real-valued is called multi-
objective function optimization, which is the subject of this paper. Genetic Al-
gorithms (GA) are known to be relatively efficient and effective MOO methods
[1]. GA applies crossover and selection to a set of solutions and converge them
to entire Pareto-optimal solutions. Selection for MOO consists of ranking, which
brings solutions closer to Pareto-optimal solutions, and sharing, which enhances
the diversity of solutions.

Most MOO methods, including GA, were designed for solving primarily un-
constrained problems. However, real-world problems often have constraints, and
the handling of them can substantially influence the performance of the opti-
mization methods. When GA is applied to constrained problems, two major
difficulties arise.
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One of them is that some GA require feasible solutions to start with. The
most naive way of obtaining feasible solutions is to randomly generate solutions
until a prespecified number of them are found. However, this approach fails
when the probability of obtaining a feasible solution in such a way is very low.
Therefore, feasible solutions must be explicitly searched for, which is one role
that constraint-handling methods play.

The other difficulty is that, on problems whose Pareto-optimal solutions lie
on feasible region boundaries (boundaries hereafter), GA may not be able to
obtain solutions close to the Pareto-optimal solutions. The most commonly used
constraint-handling method in GA is death penalty (DP), which simply discards
infeasible solutions. The solutions that GA generates can be mostly infeasible on
problems whose Pareto-optimal solutions lie on boundaries. Extreme examples
of such problems are ZDT1 and ZDT2 [1] whose Pareto-optimal solutions form
line segments at which 29 constraint boundaries intersect perpendicularly. When
the solutions that GA maintains come near the Pareto-optimal solutions, most
of the solutions that GA generates are infeasible and discarded by DP, which
implies that GA cannot obtain solutions close to the Pareto-optimal solutions.
Therefore, effective constraint-handling methods which facilitate searching for
Pareto-optimal solutions on boundaries are necessary.

One class of constraint-handling methods modify solution representation
and/or crossover so that infeasible solutions can never be generated [2]. However,
these methods are not applicable to general problems. Another class of methods
attempt to search for feasible solutions from infeasible solutions by reducing con-
straint violations. The existing methods of this kind are known to have certain
limitations as described in Sect. 2.2.

In order to design an effective constraint-handling method, we first investigate
the guidelines for a method to effectively handle constraints. We then explain
the concepts and calculations necessary to meet these guidelines and propose
them as Pareto Descent Repair operator (PDR).

Section 2 formulates constrained multi-objective function optimization, ex-
plains Pareto-optimality, and reviews existing constraint-handling methods. Sec-
tion 3 presents the guidelines for effective constraint handling and explains the
details of PDR. To demonstrate the effectiveness of PDR, Sect. 4 shows the
results of experiments comparing PDR and other constraint-handling methods
when they are used in GA. Lastly, Sect. 5 summarizes this paper.

2 Constraint Handling in Multi-objective Function
Optimization

2.1 Constrained Multi-objective Function Optimization

Formulation. Constrained multi-objective function optimization problem can
generally be formulated as

Minimize f(x) subject to x ∈ S , (1)



158 K. Harada et al.

where x ∈ IRN , and f = (f1, f2, . . . , fM )T is a vector of M objective functions.
Feasible region S is the region that satisfies inequality constraints g(x) ≤ 0,
where g = (g1, g2, . . . , gP )T is a vector of P constraint functions. Solutions that
satisfy all constraints are said to be feasible, and those that do not, infeasible.
Objective functions are defined for arbitrary feasible solutions, and constraint
functions, for arbitrary solutions. Constraint functions are assumed to be con-
tinuously differentiable in this paper, since there are a considerable number of
problems for which analytical or approximate gradients of constraint functions
are available and continuous.

If gj(x) = 0 holds for solution x, x lies on the boundary of the corresponding
constraint, and the constraint is said to be active at x. If a direction d ∈ IRN

satisfies d · ∇gj(x) ≤ 0, d is said to be feasible w.r.t. the active constraint. The
constraint violation of constraint gj(x) ≤ 0 at x can be defined as g+

j (x) =
max(gj(x), 0). By reducing the positive components of g+ = (g+

1 , g+
2 , . . . , g+

P )T ,
feasible solutions can be searched for.

Pareto-Optimality and the Objective of MOO methods. If, for x1, x2 ∈ S,

∀i ∈ {1, 2, . . . , M}, fi(x1) ≤ fi(x2) ∧ ∃i ∈ {1, 2, . . . , M}, fi(x1) < fi(x2)

holds, x1 is said to be superior to x2, which is denoted by x1 � x2. If a solution
x in a set of solutions is not inferior to any other solution in the set, x is said to
be non-inferior within the set. If x′ ∈ S such that x′ � x does not exist, x is
said to be Pareto-optimal. If a solution x′ such that x′ � x does not exist in the
feasible ε-vicinity of x, x is said to be locally Pareto-optimal. There are often
multiple Pareto-optimal and locally Pareto-optimal solutions.

The objective of MOO methods is to find a set of solutions which are close
to Pareto-optimal solutions (proximity) and which evenly cover entire Pareto-
optimal solutions (diversity) [1,3].

2.2 Existing Constraint-Handling Methods

This section reviews prominent constraint-handling methods which search fea-
sible solutions by reducing constraint violations, and explains their drawbacks
regarding the abilities to find feasible solutions and to search Pareto-optimal
solutions on boundaries.

Penalty Methods. A vector of penalty functions P (x) = (P1(x), P2(x), . . . ,
PM (x))T , each of whose components represents the degree of overall constraint
violation at a solution, is defined, and the unconstrained optimization problem

Minimize f(x) + P (x)

is solved. It has been pointed out that it is difficult to design appropriate penalty
functions [2]. In addition, penalty methods cannot be used when there are in-
feasible solutions for which objective functions are undefined.
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Objectivization of Constraint Violations. Constraint violations are re-
garded as additional objective functions, and the unconstrained problem

Minimize f̃(x), where f̃ = (f1, f2, . . . , fM , g+
1 , g+

2 , . . . , g+
P )T , (2)

is solved [2]. Many methods that use GA for the optimization of (2) have been
proposed [4,2]. We call such methods OCV(e) since constraint violations and
objective functions are treated equally. It has also been proposed to redefine
superiority relationship in OCV so that the regular superiority relationship is
used for feasible solutions, the multi-objective superiority relationship w.r.t con-
straint violations is used for infeasible solutions, and feasible solutions are always
superior to infeasible solutions [5,6]. Such variants of OCV are called OCV(ne)
in this paper.

Regardless of whether or not constraint violations and objective functions are
treated equally, OCV may not be able to find feasible solutions. Consider the 2-
variable-22-constraint problem shown in Fig. 1. Assume that the feasible region is
sufficiently small, and, when solutions are randomly generated, at least one solu-
tion is inside each of the 22 dark-shaded areas which violate two constraints. In
this situation, at least one non-inferior solution w.r.t. constraint violations exists
in each of the dark-shaded areas, and there are at least 22 of them in total. On
a similar problem with N variables, the number of such solutions is at least 2N .
When N is big, almost all of the randomly-generated solutions are non-inferior,
for which ranking does not function. Sharing, in the meantime, attempts to in-
crease the diversity of solutions and, as a result, disperses the solutions. Hence,
OCV may not find feasible solutions, which will be demonstrated in Sect. 4.

The entire region
that solutions
can represent

Non-inferior
w.r.t. constraint
violations

Fig. 1. A problem on which OCV fails when
the dimension of the variable space becomes
big. Dashed lines denote constraint bound-
aries. Infeasible regions are shaded, and, the
more constraints they violate, the darker
they are shaded.

Infeasible
solution

Feasible
sollution
closest to
feasible
solultion

g2

O g1

Fig. 2. Feasible solutions closest to
infeasible solutions in the constraint
function space

Another drawback of OCV(e) is that, on problems whose Pareto-optimal
solutions lie on boundaries, infeasible solutions remain in the set of solutions
throughout the entire search [2]. Furthermore, in some cases, not even one fea-
sible solution may be found, as demonstrated in Sect. 4. In addition, OCV(e)
itself is infeasible when there are some infeasible solutions for which objective
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functions are undefined. Although OCV(ne) does not have these drawbacks, it
can practically reduce to DP: when most of the offspring solutions that GA gen-
erates are infeasible, they are simply discarded since their parent solutions are
feasible and superior to them. Therefore, OCV(ne) cannot facilitate searching
for Pareto-optimal solutions on boundaries, either.

Repair Operators. Repair operators for function optimization search for fea-
sible solutions by reducing constraint violations, without considering objective
functions. Such repair operators have a great potential since they are applicable
to any function optimization problems. However, there have been a very small
number of such studies [2]. Although GENOCOP III [7] is proposed as a repair
operator, it cannot be used to search for feasible solutions since it assumes that
some feasible solutions are available.

3 Pareto Descent Repair Operator

3.1 Guidelines for Effective Constraint Handling

This section gives the guidelines for designing an effective constraint-handling
method that circumvents the problems pointed out in Sect. 2.2.

Guideline 1: Take the Repair Operator Approach. It is difficult to define appro-
priate penalty functions for penalty methods, and OCV may find no feasible
solutions, as pointed out in the previous section. In addition, some of these
methods themselves are infeasible if objective functions are undefined for some
infeasible solutions. These imply that the approach of repair operators is more
promising.

Guideline 2: Monotonically Decrease the Number of Violated Constraints and
Constraint Violations. A feasible solution can be searched for by reducing con-
straint violations, as mentioned earlier. Since there are multiple constraint vi-
olations, it can be regarded as an MOO problem. Note that, since constraint
functions are assumed to be continuous, there is a region, surrounding each fea-
sible region, in which constraint functions can be regarded as unimodal. In fact,
when constraint functions are linear or quadratic, constraint functions are uni-
modal in the entire infeasible region. Note also that infeasible solutions generated
during GA’s search are often near feasible regions, and constraint functions can
be regarded as unimodal around the infeasible solutions. Being able to repair
infeasible solutions in such regions is important in terms of both improving the
probability of obtaining initial feasible solutions and facilitating GA’s search on
problems whose Pareto-optimal solutions lie on boundaries. In order to repair
infeasible solutions in such regions, it is appropriate to monotonically decrease
both the number of violated constraints and constraint violations.

Guideline 3: Search for the Feasible Solution Closest in the Constraint Function
Space. Since constraint violations represent the degrees of violation of constraints,
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it is reasonable to search for the feasible solution at which violated constraint func-
tions are as close to zero as possible, that is, the feasible solution closest to the in-
feasible solution in the constraint function space. This repairing approach in the
case of two constraints is shown schematically in Fig. 2.

3.2 Strategies for Meeting the Guidelines

Guideline 1 implies the use of repair operators for constraint handling. This
section explains what are necessary for meeting Guidelines 2 and 3.

Decrease Constraint Violations using Multi-objective Local Search. To monoton-
ically decrease constraint violations, a multi-objective local search can be used
with violated constraint functions regarded as objective functions. In this paper,
Pareto Descent Method (PDM) [8,9] is used, which, as mentioned in the ap-
pendix, calculates appropriate Pareto descent directions and descent directions
with relatively small computational cost and efficiently decreases all objective
functions simultaneously. PDM consists of search direction calculation and linear
search, and a repair operator based on it has a similar structure.

Search for Feasible Solutions on Boundaries. When no violated constraints have
been satisfied yet, there is no active unviolated constraints (active constraints
hereafter), and the search direction should be a Pareto descent direction of vi-
olated constraint functions so that they are decreased efficiently. When there
are active constraints, violated constraint functions have to be reduced on the
boundaries of the active constraints, since the feasible solutions closest to infea-
sible solutions in the constraint function space are on the boundaries of initially
violated constraints. For this purpose, we can draw on the ideas of gradient
projection method [10]. In the constraint-handling context, the search direction
must be in the null-space of the gradients of active constraint functions. In order
to decrease constraint violations in the null-space, the search direction should be
a Pareto descent direction of the violated constraint functions in the null-space
if such a direction exists, and a descent direction in the null-space otherwise.
Linear search must be conducted while moving solutions in the search direction
back onto the boundaries of active constraints.

Even when there are no descent directions in the null-space, the number of vi-
olated constraints and constraint violations may be further reduced by regarding
some of the active constraints as inactive (inactivation). Consider the 2-variable-
3-constraint problem shown in Fig. 3. Since there are two active constraints at
x1, no descent directions of c3 exist in the null-space. When c1 is considered
inactive, there are descent directions of c3 in the null-space that are feasible
w.r.t. c1. Hence, feasible solution x2 can be obtained by inactivating c1. Note
that, when some active constraints are inactivated, not all violated constraint
functions can be zero at the resulting feasible solution.

The details of these direction calculations and linear search are described in
the following sections.
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c2

x2

x1c1

c3

Fig. 3. Inactivation. At infeasible solution x1, there are no descent directions of the
violated constraint functions in the null-space of the gradients of the active constraint
functions. Inactivation of c1 allows for obtaining feasible solution x2.

3.3 Search Direction Calculation

When No Active Constraints Exist. Pareto descent directions of violated
constraint functions can be obtained using PDM, if they exist. If they do not,
PDM detects it [8,9]. In this case, descent directions do not exist either, which
implies that constraint violations cannot be locally decreased any further.

When Active Constraints Exist. Denote the active constraint functions by
ĝu

j (j = 1, 2, . . . , P̂ u) and those of violated constraints by gv
j (j = 1, 2, . . . , P v).

In order for a search direction d ∈ IRN to be a descent direction of the violated
constraint functions in the null-space of the gradients of the active constraint
functions, d has to satisfy

ĜuT d = 0 , where Ĝu = [∇ĝu
1 , . . . , ∇ĝu

P̂u ] and (3)

GvT d ≤ 0 , where Gv = [∇gv
1 , . . . , ∇gv

Pv ] . (4)

The following sections detail the calculations of Pareto descent directions and
descent directions in the null-space.

Pareto Descent Directions in the Null-space. The condition for a descent direc-
tion d in the null-space to be a Pareto descent direction is that there exists a
convex combination weight α = (α1, α2, . . . , αPv)T ∈ IRPv

+ , where IR+ is the set
of non-negative real numbers, such that

d = −Gvα . (5)

Substituting this into (3) gives

Gα = 0 , where G = −ĜuT Gv . (6)

Denote the rank of G by r(G). When r(G) = P v, the sole solution α = 0 of
(6) represents d = 0, which implies that no Pareto descent directions exist.
When r(G) = 0, the gradients of violated constraint functions are already in the
null-space, and the search direction should simply be a Pareto descent direction
of the violated constraint functions. When 0 < r(G) < P v, (6) implies that
α exists in a subspace of dimension P v − r(G). Denote the basis vectors of
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the subspace by u1, u2, . . . , uPv−r(G) ∈ IRPv
and the coordinates of α in the

subspace by β ∈ IRPv−r(G). Now α can be expressed as α = Uβ, where U =[
u1, u2, . . . , uPv−r(G)

]
. Substituting this into (5) and then substituting the result

into (4) gives
−GvT GvUβ ≤ 0 . (7)

The constraint Uβ ≥ 0 that each component of α is non-negative and (7)
are homogeneous linear inequalities of β. This is of the same form as that for
calculating Pareto descent directions in PDM. PDM calculates α that maximizes
αi for each i = 1, 2, . . . , M to obtain Pareto descent directions. Similarly, β that
maximizes αi for each i = 1, 2, . . . , M can be calculated, which give Pareto
descent directions in the null-space.1

Descent Directions in the Null-space. When r(ĜuT ) = N , the sole solution d = 0
of (3) implies that no descent directions exist. When r(ĜuT ) < N , (3) implies
that d exists in a subspace of dimension N − r(ĜuT ). Denote the basis vectors
of the subspace by e1, e2, . . . , eN−r(ĜuT ) ∈ IRN and the coordinates of d in

the subspace by γ ∈ IRN−r(ĜuT ). Now d can be expressed as d = Eγ, where
E =

[
e1, e2 . . . , eN−r(ĜuT )

]
. Substituting this into (4) gives

GvT Eγ ≤ 0 . (8)

This is a homogeneous linear inequality of γ and is the same form as that for
calculating descent directions in PDM. Therefore, descent directions in the null-
space can be obtained as descent directions are calculated in PDM.

Inactivation. Denote the set of active constraints by Ĉu, its subset by Ću, and
the constraint functions of constraints in Ću by ǵu

j (j = 1, 2, . . . , Ṕ u). In order
for Guideline 2 to be satisfied when Ću is inactivated, there must exist descent
directions in the null-space of the gradients of the constraint functions of the
constraints in Ĉu\Ću that are feasible w.r.t. Ću, i.e.,

ǴuT d ≤ 0 , where Ǵu = [∇ǵu
1 , . . . , ∇ǵu

Ṕu ] . (9)

Equation (9) can be incorporated into the above-mentioned calculations of de-
scent directions and Pareto descent directions, and their existence can be tested
by PDM. Hence, the possibility of inactivation of Ću can be determined using
PDM.2

When multiple subsets of Ĉu can be inactivated, the one to be inactivated
should be chosen based on the following rules according to Guideline 3:
1 Some of the thus found Pareto descent directions may be redundant. Such redun-

dant directions can be identified and removed as done in the calculation of descent
directions in PDM [8,9].

2 In order to find subsets that can be inactivated, every subset of Ĉu must be examined.
When the cardinality of Ĉu is big, however, not all subsets can be examined, and
some compromise has to be made.
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1. Choose the subset with the smallest cardinality, and
2. If there are more than one such subsets, choose the one for which there

exist Pareto descent directions of the violated constraints in the null-space
of the gradients of the active constraint functions that are feasible w.r.t. the
inactivated constraints.

3.4 Linear Search over Active Constraint Boundaries

Moving Solutions back onto Active Constraint Boundaries. In order to
move a solution y in a search direction back onto active constraint boundaries, we
can search for a solution that satisfies active constraints by small margins using
y as the initial solution.3 Consider using golden section method for the linear
search in the optimization. The length of closed linear search interval and the
number of iterations determine the maximum error ε that can transpire in the

linear search. Minimizing
∑P̂u

j=1

(
dĝu

j
(x) − (−ε)

)2
gives a solution that satisfies

active constraints by the distance of at most 2ε, where ĝu
j (x) (j = 1, 2, . . . , P̂ u)

are active constraint functions, and dĝu
j
(x) is the signed distance of x from the

j-th boundary. Since dĝu
j
(x) cannot usually be calculated precisely in practice,

it has to be approximated. Applying Taylor expansion to ĝu
j (x) and ignoring the

terms of order greater than two, dĝu
j
(x) can be approximated [11] by

d̃ĝu
j
(x) =

∇ĝu
j (x) · x + ĝu

j (x)
||∇ĝu

j (x)|| . (10)

Linear Search. Since the number of violated constraints and constraint vio-
lations must be monotonically decreased according to Guideline 2, the step-size
must be chosen so that the solution in the search direction is 1) just before
any of the unviolated constraints is violated or 2) just before any of the vio-
lated constraint functions increases. Additionally, the step-size must be chosen
so that the solution in the search direction is 3) just after any of the violated
constraints is satisfied, since the next iteration searches over the boundaries of
active constraints including the one just satisfied.

3.5 Proposal of Pareto Descent Repair Operator

We propose the repair operator consisting of the above-mentioned search direc-
tion calculations and linear search as Pareto Descent Repair operator (PDR).
PDR efficiently decreases constraint violations by calculating an appropriate
search direction for each case it may encounter: active constraints may or may
not exist, and Pareto descent directions and descent directions may or may not
exist. The most computationally intense part of PDR is that of solving linear
3 We can alternatively search for a solution which minimizes the distance to each

boundary. The optimum, however, may violate the active constraints by small mar-
gins since the linear search used in that optimization always transpires a small error.
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programming problems for direction calculations. Since computationally efficient
linear programming solvers such as simplex method [12] can be used, the com-
putational complexity of PDR is accordingly small.

3.6 Use of PDR in GA

When a repair operator is used in GA, infeasible solutions can be replaced by
their corresponding feasible solutions (Lamarckian). They can also be stored and
used in crossover, and their corresponding feasible solutions are used for evalu-
ations of objective functions (non-Lamarckian) [2]. Consider solving a problem
with a single feasible region using a crossover operator such as UNDX [13] which
generates offspring solutions around the center of mass of parent solutions. Note
that, when GA generates infeasible offspring solutions, Pareto-optimal solutions
are likely to lie on boundaries. When Lamarckian PDR (PDR(l) hereafter) is
used, parent solutions are either inside the feasible region or on boundaries,
and their offspring solutions therefore are inside the feasible region. When non-
Lamarckian PDR (PDR(nl) hereafter) is used, parent solutions are both inside
and outside the feasible region, and their offspring solutions are more likely to be
generated near the boundaries. This difference becomes prominent on problems
such as ZDT2 on which a number of boundaries intersect at the Pareto-optimal
solutions. Therefore, Pareto-optimal solutions on boundaries are expected to
be obtained with higher precision when PDR(nl) is used than when PDR(l) is
used. Even if there are multiple feasible regions, a similar argument applies when
mating restriction is imposed so that solutions close to each other, which often
belong to the same feasible region, are chosen for mating.

4 Experiments

In order to verify the effectiveness of PDR, GA that use PDR(l), PDR(nl),
OCV(e), and OCV(ne) are compared on some well-known multi-objective bench-
mark problems. The results of death penalty (DP) will also be shown just for a
reference, since it is the standard constraint-handling method for GA.

4.1 Experiment Setup

Performance Metrics. In order to evaluate the proximity and diversity of so-
lutions, we use generational distance (GD) and D1R, which are used in many
existing studies. GD is defined as the mean of the distances from each solu-
tion to its nearest Pareto-optimal solution in the normalized objective space [1]
and measures proximity. D1R is defined as the mean of the distances from each
Pareto-optimal solution to its nearest solution in the normalized objective space
[14] and measures both proximity and diversity.

Pareto-optimal solutions are necessary to evaluate GD and D1R. We assume
that the solutions obtained by running GA with a large population size and many
generations are Pareto-optimal, as existing studies do. Note that, when OCV is
used, the set of solutions may contain infeasible solutions. Since the number
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of non-inferior solutions, which are necessarily feasible, is sometimes used as a
performance metric [1], obtaining more feasible solutions is better than obtaining
less. Since infeasible solutions only deteriorate both proximity and diversity, GD
and D1R are calculated using all the solutions in the solution set.

Benchmark Problems. Since the methods being compared are applicable to prob-
lems with arbitrary numbers of objective functions and feasible regions, the
benchmark problems in Table 1 are used, each of which has two objective func-
tions and a single feasible region. These problems with relatively simple con-
straints were chosen so that the behaviors of the constraint-handling methods
can be examined in detail.

Table 1. The properties of the benchmark problems used in the experiment [1]

GA. Population size is 100, which is commonly used for MOO. Initial solutions
are generated uniformly at random in [−100, 100]N. For DP, however, initial so-
lutions are generated uniformly at random in feasible regions. 50 parent pairs are
formed at each generation. Since it has been reported that proximity is improved
as the number of offspring solutions for each parent pair is increased [15,16], 20
offspring solutions are generated for each pair. Since it has also been reported
in [15,16] that, although the best-performing crossover is problem dependent,
UNDX [13] performs relatively well on many problems, UNDX is used in the
experiment. SPEA2 [17] is known to exhibit good performance as a survival se-
lection [18]. However, since the original SPEA2 requires substantial computation
and memory space, modified SPEA2 [15,16] is used, which approximates crowd-
edness around a solution with the Euclidean distance from the solution to the
other solution nearest to it in the normalized objective space.

PDR. Gradients are approximated by forward difference with the difference of
10−4. To move a solution in a search direction back onto active constraint bound-
aries, steepest descent method is used. For linear search, golden section method is
used, with the closed linear search interval length of 10−2, the maximum number
of extension of the interval of 20, and the basic number of iterations of 20. When
active constraints are Ĉu = {ĉu

1 , . . . , ĉ
u
P̂u}, Ĉu and {ĉu

i } for each i = 1, 2, . . . , P̂ u

are considered for inactivation. In order to accommodate a solution violating 30
linear constraints, search direction calculation and linear search are applied at
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most 30 times. Unrepairable infeasible solutions are discarded. Infeasible initial
solutions are repaired in the Lamarckian way for PDR(nl) as well.

OCV. Since diversity w.r.t. constraint violations is unnecessary, sharing is ap-
plied in the original objective space.

4.2 Results

Figure 4 shows the transitions of GD and D1R, averaged over 10 trials, against
the number of objective function evaluations when GA with constraint-handing
methods are applied to the benchmark problems. For the methods that diverged
GD, the lines of both GD and D1R are omitted.

BNHand TNK. RegardingGD, PDR(nl) performed the best, followedby PDR(l).
PDR(nl) performed better because part or all of the Pareto-optimal solutions of
these problems lie on boundaries, and GA’s search for the Pareto-optimal solu-
tions was better facilitated by PDR(nl), as explained in Sect. 3.6. No performance
difference regarding D1R can be observed between PDR(l) and PDR(nl).

DP and OCV(ne) performed worse than PDR w.r.t. GD since it is difficult
for DP to search for solutions on boundaries, and OCV(ne) behaves practically
the same as DP, as explained in Sect. 2.2. Regarding D1R, PDR performed no
worse than DP and OCV(ne).

On BNH, OCV(e) performed the worst. This is because OCV(e) maintains
infeasible solutions throughout the entire search. OCV(e) performed poorly in
D1R because its GD is not good. OCV(e) diverged GD on TNK. The entire third
quadrant of TNK is Pareto-optimal w.r.t. constraint violations and objective
functions, and solutions in the second and fourth quadrants can also be non-
inferior. Therefore, ranking did not function on TNK, and crossover and sharing
dispersed solutions.

ZDT2. Again, PDR(nl) performed the best regarding both GD and D1R since
PDR(nl) better facilitates the search of the Pareto-optimal solutions on bound-
aries than DP and PDR(l) do, as explained in Sect. 1 and Sect. 3.6, respectively.
OCV diverged GD as predicted in Sect. 2.2. Since this was observed despite
the strong interpolating property of UNDX, similar results are expected to be
observed when other less interpolative crossovers are used.

On the Whole. Experimental results confirmed that GA performs the best when
PDR is used, which requires additional computational complexity comparable to
that of linear programming solvers. They have also shown that OCV(ne) exhibits
performance similar to that of DP on low dimensional problems, and OCV(e) and
OCV(ne) can disperse solutions on problems with many constraints. In addition,
it has been confirmed that, on problems whose Pareto-optimal solutions lie on
boundaries, GA’s search is better facilitated and solutions are obtained with
higher precision when PDR is applied in the non-Lamarckian way.
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Fig. 4. Transitions of GD and D1R, averaged over 10 trials, when GA combined with
constraint-handling methods are applied to the benchmark problems

5 Conclusions

This paper first presented the guidelines for designing effective constraint-handling
methods. It thenproposedParetoDescentRepair operator (PDR) thatmeets these
guidelines.PDR’s effectivenesswasverified throughexperiments comparing itwith
other constraint-handling methods. It was also confirmed that Pareto-optimal so-
lutions on the boundaries are obtained with higher precision when PDR is applied
in the non-Lamarckian way.

Although this paper proposed PDR as a repair operator for MOO, it can
also be applied to single-objective optimization problems. Hence, it remains to
investigate the effectiveness of PDR on single-objective optimization problems.
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Appendix: Pareto Descent Method

Denote the normalized gradients of objective functions at solution x by ∇̄fi(x)
(i = 1, 2, . . . , M). If a direction d ∈ IRN satisfies

d · (−∇̄fi(x)) ≥ 0 (i = 1, 2, . . . , M) , (11)

all objective functions can be simultaneously decreased by moving x in direc-
tion d. Such directions are called descent directions for MOO. There are often
multiple descent directions. The descent directions to which no other descent
directions are superior in improving all objective functions are called Pareto
descent directions [8,9]. There are often multiple Pareto descent directions. A
descent direction is a Pareto descent direction if it can be expressed as a convex
combination of the steepest descent directions of objective functions. Descent
directions and Pareto descent directions of a 2-variable-2-objective problem are
shown in Fig. 5.

Descent directions
x Pareto descent directions

- f1 - f2

Fig. 5. Descent directions and Pareto descent directions of a 2-variable-2-objective
problem

Since objective functions can be efficiently decreased by searching in Pareto-
descent directions, several methods that calculates such directions were pro-
posed in recent years, which include Multi-objective Steepest Descent Method
(MSDM) [19] and Pareto Descent Method (PDM) [8,9]. PDM calculates feasible
Pareto descent directions or descent directions, as appropriate, by solving linear
programming problems, which has less computational complexity than MSDM
does. Therefore, PDM can both effectively and efficiently decrease all objective
functions simultaneously.
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